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Problem Description
Malware (malicious software) is a general term for any malicious program such as a virus, worm,
trojan, bot or rootkit. The prevalence of malware is rapidly growing on the Internet and poses an
increasing threat to computer systems.

Effective incident handling can be achieved by analysing malware in order to understand its
functionality and capacity. This may involve analysing already compromised systems or assessing
the level of risk for systems being exposed to such a threat.

However, malware analysis is labour intensive and time consuming, and does not scale well with
the ever increasing prevalence of malware. Automating parts of the analysis process can reduce
the required amount of human intervention, and save precious time during the analysis.

Techniques involving running malware in a controlled and secure environment whilst monitoring
its behaviour is often referred to as dynamic analysis. This project should focus on studying
dynamic malware analyses, and automate such a process.

The student is free to automate any analysis process that is regarded dynamic, but it would be
preferable if the information gained from the automated analysis is actionable. That is, the
information gained is directly useful for handling the particular incident(s) where the malware is
involved.

The project may optionally look into integrating the final system with NorCERT's internal system
for handling malware samples.
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Summary

Sophisticated software with malicious intentions (malware) that can easily and
aggressively spread to a large set of hosts is located all over the Internet. Such
software struggles to avoid malware analysts to continue its malicious actions
without interruption. It is difficult for analysts to find the locations of machines
infected with unknown and alien malware. Likewise, it is hard to estimate the
prevalence of the outbreak of the malware. Currently, the processes are done using
resource demanding manual work, or simply rough guessing.

Automating these tasks is one possible way to reduce the necessary resources.
This thesis presents an in-depth study of which properties such a system should
have. A system design is made based on the findings, and an implementation is
carried out as a proof of concept system. The final system runs (malicious) software,
and at the same time observes network traffic originating from the software. A
signature for intrusion detection systems (IDSes) is generated using data from the
observations. When loaded in an IDS, the signature localises hosts that are infected
with the same malware type, making network administrators able to find and repair
the hosts. The thesis also covers a deep introductory study of the malware problem
and possible countermeasures, focusing on a malware analyst’s point of view.
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Chapter 1

Introduction

The amount of malicious software being spread on the Internet increases steadily
and rapidly [Krister et al., 2007], and forms a threat to the users of the Internet.
To sustain secure computer environments, such software must be evaded. However,
the software uses complex and intelligent techniques to replicate and spread, which
makes it difficult to completely avoid malware at all times [Schultz, 2004; Szewczyk
et al., 2008].

NorCERT1 handles threats and attacks related to key networks and critical IT
infrastructure in Norway. This master thesis covers, in cooperation with NorCERT,
a study of the threats that comes with malicious software and discusses possible
approaches to overcome the risks and countermeasure the threats. The thesis looks
into the possibility of improving the effectiveness of malware analyses by automating
one or more of the time consuming analytical processes. Based on knowledge and
background material from the document, analytical processes that could benefit
from job automation are presented. A prioritisation is made concerning what is
most advantageous for a malware analyst, combined with what is most suitable
for this thesis and feasible with the time available. A proof of concept software
implementation able to automate the highest prioritised process is implemented.
The implemented system is released and published with a freely to use open source
license, making it possible to use and contribute to for anyone interested.

1.1 Terminology and acronyms
Specific terms used in this thesis are subject to ambiguous interpretation and their
meaning are thus explained in this section. Table 1.1a on page 4 can be used as a
summary of the section.

The malware term is used throughout this document to signify a large group
of software containing a number of more specialised groups of software including,
but not limited to, trojan horses, logic bombs, worms, spyware and viruses. Each of
these groups have their own definition, but share an important property—they are
all software written to compromise the integrity, confidentiality or availability2 of
a victim’s data. The literature about malware is wide and sometimes ambiguous,

1General information about NorCERT can be found at http://www.nsm.stat.no.
2The three terms “integrity”, “confidentiality” and “availability” together form the basis of

“software security”. [McGraw, 2006].

1
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Chapter 1. Introduction

making a proper definition of these terms difficult to specify. This thesis does
not focus on differences in these groups, but whenever possible instead treat all
subgroups of malicious software under the term “malware”, and use “malicious
code” and “malicious software” interchangeably.

One of the methods malware uses to spread to other hosts is utilising software
vulnerabilities, which are weaknesses in a computer system allowing attackers to
violate the integrity of that system. An attacker is the person that performs the
malicious actions. A malware producer is therefore not considered an attacker until
he or she uses the malware for malicious gains.

A reported case or an observed event where there is reason to believe that
malware and/or cyber crime are involved is called an incident.

The sample term is used in this thesis to describe a limited quantity (usually
one file) that is characterised as a suspicious object, and subject for an analysis.
During the analysis process, functionality and goals of the sample are meant to
be deduced. “Analysis” and “malware analysis” are terms used interchangeably to
describe the process. The term malware analyst, or the shortened form analyst,
signifies the person performing the actual analysis. One of the results from an
analysis is a score indicating how threatening the analysed sample is. The score
is called the threat level, and a high value signifies an imminent threat from the
sample, forcing the analysts to pay particular attention to the malware. Which
values the threat level spans varies, but the span over three levels “High”, “Medium”
and “Low” is an example.

The signature term is used throughout the thesis with sometimes slightly
different meanings. A signature is, in general, a characteristic byte pattern or set of
rules to filter out certain events, files or actions from a larger set [Rehman, 2003].
A signature is not used standalone, and requires a host program to have any real
usage. Antivirus programs and intrusion detection/prevention systems are heavily
based on signatures to localise and eliminate threats. The description of these
appliances is deferred until Section 2.6.1 on page 28 and Section 6.2.3 on page 67,
respectively.

The software implementation produced in this thesis is referred to as the
final system, the implemented system, the realised system, and also the system
where it is clear that it is a reference to the software implementation produced
during this master’s thesis. The terms implementation and realisation are used
interchangeably through the thesis. “Zero+One” and “vmcom lite” are named
subparts, or submodules, of the final system.

Newly introduced non-trivial terms are highlighted in emphasised text the first
time they are written, with a description. The detail level of each description
depends upon the importance of the term concerning the thesis. Command line
text and application names are written in a typewriter font to make it clear
that it is in fact a reference to a program, a command line function or similar.
Using such a typography ensure distinctions between software (“VMware Server”),
and the company behind the software (“VMware”).

Frequently repeated non-trivial acronyms used in this thesis are shown with
corresponding meanings in Table 1.1b on page 4. Their meaning are, in general,
written in full length. However, their abbreviated versions are used in sections
where the words are often repeated. The first time the acronym is presented, the
meaning is defined together with the acronym—in addition to in the table. For
acronyms found in one single section in the thesis, their meaning are presented

2



1.2. Result goals

only at the relevant sections, and not in the table.

1.2 Result goals
A few concise goals are stated in this section. The goals are each derived from
the problem description, and they are labelled for a referring purpose. The goals
are derived using the given problem description, after removing information that
is unnecessary in regard to a concretised goal. The information that is removed
is convenient for explaining and reasoning for the problem description, but not
particularly usable when stating a result goal.

RG.01 Study the problems of malware, how the malicious software operates and
how it propagates. Discuss available countermeasures to the problems, and
reason for why these methods are not sufficient to overcome threats from
malware.

RG.02 Describe the structure of a malware analysis. State of the art analytical
methods and professional tools used in such an analysis shall be studied.

RG.03 Choose a solution that can be used to reduce the time spent during a
manual dynamic analysis phase. The solution shall be possible to realise as
an automated process of the dynamic malware analysis phase. The solution
should be capable of handling incidents where the malware is involved (the
solution should be “actionable”).

RG.04 Implement a system able to automate the solution chosen in RG.03.
The system shall not be fully functional, but merely a proof of concept
implementation.

RG.05 Use the implemented solution and look into the possibility of integrating
the solution with NorCERT’s existing system for handling malware analyses.
Describe what is needed to integrate the implemented system.

1.3 Methodology
This document consist of two main parts: (1) a gathering of background material
regarding the malware problem, and (2) a realisation of a system able to automate
particular tasks in a dynamic malware analysis. The first part is the largest, and is
referred to as the preliminary studies of the document. The preliminary studies are
based on research documented in articles, conference proceedings and information
from web pages, forums and other online documents. All essential references of
importance are stated where appropriate. In most cases, published articles and
proceedings have been more up to date than books with the same topics, and are
for that reason prioritised as references above books. Still, a few references to books
are used, but they are used as bibliography only and have not necessarily been
read throughout. Where web pages that are subject for modification are used as
references, the date accessed is written close to the corresponding reference. Web
pages of a static nature is not marked with a last date accessed.

The preliminary studies contain a survey of state-of-the-art tools and best
practice work methods used by malware analysts at NorCERT. All tools and every

3
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Term Comment
Attacker A person that is performing actions with malicious

intentions.
Incident A violation or imminent threat of violation of com-

puter security policies, acceptable use policies or
standard security practices.

Malicious code/software Signifies a large group of software written to com-
promise the security of a victim’s data.

Malware Same as above
Malware analyst Person performing the malware analysis.
Sample A suspicious file subject for a malware analysis.
Signature A characteristic byte pattern or rule set to filter out

certain events, files or actions.
Software vulnerability A weakness in software code that may lead to a

possible security breach.
Final/realised system The software implementation produced during this

master’s thesis.
Threat level A relative score based on a sample’s malicious capa-

bilities.
(a) Terminology

Acronym Meaning
API Application programming interface
C&C Command and control (server)
CERT Computer emergency response team
(D)DoS (Distributed) denial of service (attack)
RG.X Result goal number X
IDS Intrusion detection system
IPS Intrusion prevention system
OS Operating system
P2P Peer-to-peer
PE Portable executable
VM Virtual machine

(b) Acronyms

Table 1.1: An overview of terms and acronyms frequently used in the thesis.

4



1.3. Methodology

possible work method cannot be covered in this thesis due to time constraints and
space limitations, but the most frequently used tools and work methods concerning
malware analyses are discussed. An analysis scenario is conducted as part of the
preliminary studies. The scenario is using a sample of the Asprox botnet, which
got famous due to its rapid spread, aggressive behaviour [Bradbury, 2008] and
frequent appearance in media from early 2008 to early 2009. An Asprox sample is
chosen due to its representation of malware as complex software, and its ability
to clarify the difficulty of performing malware analyses and conclude them with a
correct threat level.

The given problem description is stated too wide to make it possible to start a
realisation of a system, so it has to be narrowed prior to starting a requirements
specification for a system. The problem description is interpreted and narrowed in
the last parts of the preliminary studies, where focus areas are defined (Chapter
6). The interpretation of the problem description presents relevant approaches for
analysis automation by describing them one by one. Doing so assists ensuring the
best approach is selected when implementing a system. The preliminary studies
are not affected by the interpretation of the problem description. Additionally, the
studies support the selection of focus areas with background material. That is why
the interpretation of the problem description is not placed earlier in the thesis.

It is important to note that actual requirements for the implemented system
are not elicited until Chapter 7, meaning the system architecture and design are
not chosen before the requirements specification is complete. However, the problem
description interpretation in Chapter 6 chooses the specific approach to realise,
merely a proof of concept implementation that can be used to generate vital input
for intrusion detection systems (IDSes). The input is referred to as a signature,
and is a pattern to filter out certain events [Rehman, 2003]. Using the generated
signature, the IDSes are able to localise infected hosts in a potentially large network.
When localised, network administrators can take appropriate action to solve the
threat. The system is utilising an existing open source sandbox solution to execute
malware. The signatures are generated by observing network traffic initiated by
the malware. The existing sandbox solution is modified, so familiarising with the
existing code base was needed to understand the program logic and flow. The
released system is not a fully finished implementation and must undergo quality
improvements and proper testing before it can be deployed in a real environment.

The reason for realising a proof of concept system instead of a complete
and ready-to-use system is due to this master’s thesis focus. The focus stays on
state-of-the-art background material, a preliminary study of the malware problem,
approaches to countermeasure the problem, and a survey of systems and applications
that can be useful for a system that can reduce necessary human intervention in
an analysis. The actual realisation of the system receives less attention, but still
sufficient to document, release and test a working prototype. The thesis suggests
relevant further work to the software implementation in Section 10.3 on page 119.

The development process of the system followed a traditional waterfall pro-
cess [Braude, 2000], and is documented and structured in this thesis accordingly.
Diagrams following the UML notation are shown during the development part of
the document. The diagrams are shown to make the development process more
clear and understandable for the reader, without the need of a vast amount of
supplementary text. Utilising best practice standards, such as the UML notation
for the diagrams, gives the reader that has software development experience a

5
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notation he or she quickly can familiarise with. A brief book about the basics of
the UML notation is written by Fowler [2003], but is not necessarily needed as the
diagrams shown are kept fairly simple.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OP-
TIONAL” in this document are to be interpreted as described in RFC 2119 [Bradner,
1997]. The key words are found throughout the document, but is particularly im-
portant upon defining requirement and result goal levels.

To avoid unnecessary huge listings of code in the document, only example code
is shown. Full source code can be found in the appendices for readers with special
interest.

Reasoning for conclusions and choices made are given where appropriate, in
particular where the problem description is narrowed and concretised.

1.4 Related work
Automating malware analyses are vital to keep up with the increasing prevalence
of malware. The problem description is, at this stage in the document, not yet
narrowed or concretised. A survey of related work and relevant research papers
that suggest improvements to analytical processes are in consequent deferred to
Section 6.1 on page 63. The section also assumes some background knowledge on
the topic, found in its preceding chapters.

1.5 Document structure
In addition to this introduction, the thesis is structured in the ten following chapters.

Chapter 2 reasons for importance of the problems regarding malware, and dis-
cusses malware’s progress, its threats and available countermeasures.

Chapter 3 explains, at a general level, all phases of a malware analysis process.

Chapter 4 studies in detail the analytical phase that is most relevant for this
thesis, merely the dynamic analysis phase.

Chapter 5 contains a practical study of a malware analysis, focusing on the
dynamic analysis phase that is discussed in the previous chapter.

Chapter 6 narrows the problem description, concretises what to achieve with
a software implementation, and selects focus areas for the implementation
using background material from previous chapters. The preliminary studies
of the thesis is then finished, and continues with the actual realisation of the
system.

Chapter 7 contains the requirements specification for the system.

Chapter 8 sketches the design of the system based on requirements defined in
the previous chapter.

Chapter 9 uses the sketched design and describes the realisation of the system as
an implementation chapter. System tests are also found in the same chapter.
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Chapter 10 evaluates the work process.

Chapter 11 finalises the thesis with a conclusion.
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Chapter 2

Background and Rationale

This chapter contains information about how malware works, how it evolves, the
threats from malware and available countermeasures to prevent the dangerous
software from compromising systems. This way, the chapter gives a deep study
of malware in general, and functions as a necessary knowledge foundation before
continuing to the following chapters. At the same time, the chapter indicates that
better, more robust and trustworthy solutions are needed in the fight against
malware.

2.1 Malware propagation
With an increasing amount of online hosts having more and more computing
resources available, taking control over machines can prove valuable for people
having malicious intentions [Bradbury, 2006; Grizzard et al., 2007; Li et al., 2008a;
Muttik, 2008]. The amount of discovered malware increases aggressively, and has
continued with an exponential rate the last years as shown in Figure 2.1 on the
following page. Malware spreads more than ever before, and the ongoing use of
the Internet makes it easy to earn money and gather intelligence with help from
malicious software. This section describes two main techniques malware use for
propagation, and thus is able to spread to new hosts.

2.1.1 Utilising weaknesses in software
A goal for malware is often to infect as many hosts as possible, and in general, there
are two main methods to achieve this. One of them is utilising weaknesses in software
code [Heiser, 2004], and as the amount of flaws and bugs has increased almost
every year [Krister et al., 2007], it tends to get easier to accomplish. Figure 2.2
on page 11 shows the amount of vulnerabilities reported annually since 1996, and
indicates that software vulnerabilities are not likely to disappear all of a sudden.
Several reasons explain the discovered vulnerabilities, but as software grows in size
when functionality is added, its level of complexity rises consequently. Complex
code is harder to maintain for a software developer and increases the probability
of generating faults in the code. The available code to attack also increases as a
result of larger software projects, which makes the situation more imminent since
only one exploitable weakness is sufficient for a successful attack. The data in the
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Figure 2.1: Increase in the amount of discovered malware during the time span from 1997
to 2007. The numbers are not cumulative, meaning the counter resets at the start of each
year. Discovered variants derived from a unique malware type are all counted. The graph
is based on data from http://www.av-test.org.

figure is collected from the Common Vulnerability Enumeration (CVE)1, which
is considered the de-facto standard for collecting and storing information about
software vulnerabilities [Mann and Christey, 1999]. A first and quick glance of the
graph indicates that the increase in amount of discovered flaws continues, but that
is not necessarily the case; the two last years show the opposite trend—a decrease
in reported software vulnerabilities. Software developers are now getting more
focused on producing secure code due to the consequences of flawed systems [Wyk
and McGraw, 2005], and new operating systems are designed to be more secure and
can prevent common methods of exploiting vulnerabilities [Ahmad, 2007] such as
trying to overflow a predefined buffer (buffer overflow) [Scambray, 2007]. Together,
these reasons hopefully lead to less vulnerabilities in produced software, and to
further decrease the amount of (discovered) software weaknesses.

2.1.2 Social engineering
Another method malware uses to spread is by misusing the fact that people are
blissfully ignorant about the threats they are facing on the Internet. Users visit

1CVE’s web site can be found at http://cve.mitre.org.
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Figure 2.2: Amount of discovered vulnerabilities in software code during the time span
from 1998 to 2008. Data is collected from the National Vulnerability Database (http:
//www.web.nvd.nist.gov).

malicious links that install malicious software on their computers - even when they
are recommended by the system not to proceed [Dhamĳa et al., 2006]. An example
is malware spreading using instant messaging (IM). An increase of such events have
been reported over the last years [Leavitt, 2005] and has proven as an effective
way of replication. By utilising the interfaces exposed by the IM clients, malware
is able to send messages to all contacts an infected user has on his or her list. To
be able to infect more machines, the message usually recommends to click on a
link that downloads malicious software [Hindocha and Chien, 2003]. Users often
uncritically visit these links, effectively infecting their own machine. Fooling a user
into performing an action that may lead to infection is called social engineering.

2.1.3 Using a combination of the methods
Regularly, a combination of the two methods is used to infect a host as the IM
example shows. The first step is to ensnare a user to visit a link that install
malicious programs using social engineering. The installed software then tries to
exploit one or more weaknesses in software that is present on the machine under
attack (the victim). The vulnerable program(s) are arbitrary programs having
one or several open (exploitable) vulnerabilities. If the attack is successful, it is
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Chapter 2. Background and Rationale

possible that the attacker takes total control over the machine, and the computer
is rendered insecure.

2.2 Techniques for controlling malware
With some exceptions, most malware is not instructed to infect particular hosts and
is satisfied as long the infection is successful. A large list of hosts can be infected
during a short time spam depending on how difficult it is to remove the malware,
and how effectively the malware spreads. For certain types of malware, the infected
hosts are operated remotely as controlled “robots” (bots). The network of infected
hosts operated by an attacker is called a “botnet” and is a platform for distributed
malicious computing [Savage, 2005]. The combined amount of CPU and bandwidth
from the set of infected hosts can be incredible powerful, and is often used in a
profitable business for the attacker in control [Li et al., 2008a].

The attacker can prioritise hosts to infect, and powerful hosts with high uptime
are the most valuable machines. Consequently, hosts with low downtimes, large
network bandwidths and powerful CPUs are higher priority than dial-up hosts
online only 30 minutes each day—as they are not worth much for the attacker. A
botnet can grow and shrink in size as its population continuously changes when
infected hosts are repaired, or new hosts are getting infected [Dagon et al., 2005].
This section presents two approaches used to determine how the malware operates:
(1) a remote control technique, having the possibility to dynamically change the
malware’s behaviour, and (2) a predetermined and fixed set of tasks.

2.2.1 Remotely controlled malware
Different methods are available to control the infected hosts, and the three most
common [Ianelli and Hackworth, 2007] are presented below. The two first methods
uses one or more centralised servers (called “command & control” (C&C) hosts),
while the latter two are not. A graphical representation of three controlled networks
is shown in Figure 2.3 on the facing page.

IRC/chat C&C

The online chat phenomena has existed for a long time, and even if the Internet
relay chat (IRC) protocol was introduced early [Oikarinen and Reed, 1993], the
technology is still in use. IRC server software is publicly and freely available, and
can be used by anyone having a certain technical skill level. The servers allow a
large number of concurrent connected users and require only limited hardware
resources, which is one of the reasons for its success in the malware circles. The
communication in the networks can be plain text, but also encrypted [Stinson
and Mitchell, 2007]. Thus, the data a client sends to the IRC server can be
encrypted and practically impossible to decrypt without knowing the decryption
key. Additionally, the communicating clients can use encrypted sessions on top of
this encryption layer using securely transmitted keys over a non-trusted channel
with Diffie-Hellman key exchange [Krister, 2007]. The data traffic in the resulting
communication channel is impossible to interpret for others than the communicating
party. Malware producers utilise the IRC technology extensively [Gryaznov, 2005],
where infected hosts automatically join chat rooms and listen for instructions
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C&C C&C

Infected hosts in a P2P net-
work. Each node is familiar
with a limited set of other
nodes. There is no centralised
control within the network.

Infected hosts controlled by a
IRC C&C server.

Infected hosts controlled by a
HTTP C&C server.

Figure 2.3: Attacker (red face) in control of three networks of infected hosts. Two of them
are operated by a centralised C&C server, while one is a P2P network without any form of
centralised control within the network. Arrowed lines show the attacker’s communication
path, while solid lines show routing paths for each network.
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(commands). Using a symmetric encryption algorithm for communication requires
that the malware has access to the encryption key somewhere [Grawrock, 2005],
and even if data traffic is encrypted, it is possible to analyse communication and
pick up commands if the encryption key is found. When the encryption key is
stored in the malware binary, a (skilled) analyst are always eventually able to
deduce the key given sufficient time and resources [Dube et al., 2008].

An attacker controls his or her network by issuing commands to the bots. A
command can be as simple as attack 1.2.3.4, with the meaning “all hosts attack
the IP address 1.2.3.4”. What an “attack” is varies, and common attack methods
are discussed in Section 2.5 on page 22. If a defender identifies a C&C server, the
communication between the attacker and the infected hosts can be disrupted, and
the botnet is no longer effective. To somewhat cope for this limitation, attackers
use DNS host names with small time to live (TTL) values and change the pointer
at regular intervals. If a server is taken down, the host name pointer can easily be
changed, and another pointer can be introduced instantly. By using a small TTL
value, DNS cache servers will soon update their records and be aware of the new
address.

Using services to register sub-domains, an attacker can easily change the domain
pointer. Such services are called dynamic DNS, and are perfectly legal and a useful
technology, but are subject to misuse [Heron, 2007b]. Since dynamic DNS services
may be anonymous, tracing back to the attacker (the DNS account owner), might
be difficult. In addition to disrupting the communication, the collection of infected
hosts is revealed once the C&C server is detected. To make tracing the attacker
even more complicated, the C&C servers are themselves compromised hosts or
hacked servers. To prevent authorities taking down the servers, they are placed
in a country without laws that cover cyber crime activities, making prosecutions
juridically difficult [Chaikin, 2006].

HTTP/web C&C

A similar approach to the IRC C&C is the HTTP based C&C, where infected
hosts look for tasks on a web server [Polychronakis et al., 2008]. The interface used
by the attacker can be more easily be custom made using HTML and JavaScript,
and give a more pleasant overview over the controlled network(s) than the IRC
servers usually do. The two C&C approaches share most of their properties, but use
different technologies for communication. When analysing network traffic without
any specific unique data or patterns to look for, detecting traffic to and from a
HTTP based C&C server is more difficult than on IRC based servers. A significant
amount of legitimate HTTP traffic is already present in most networks. So to catch
HTTP based C&C traffic, a method to filter out the legitimate traffic is needed
unless the analyst know exactly what to look for. HTTP based traffic can more
easily venture undetected through network observations. Additionally, it is easier
to block IRC traffic in a network, since the consequences of blocking HTTP traffic
are usually much higher than IRC traffic that fewer people use [Myers, 2006].

Peer-to-peer networks (P2P)

The centralised architecture in a C&C server provides efficient communication
to all infected hosts but it is also a central point of failure. If the C&C server
goes offline, the control is temporarily lost until the C&C is replaced [Grizzard
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et al., 2007]. In a P2P architecture, there is no centralised control over infected
hosts, and botnet commands are instead retransmitted through the network so all
peers receive the command [Dittrich and Dietrich, 2008]. Each compromised host
know of a limited number of other hosts, contrasting IRC C&C where everyone
knows of all the others. All nodes are allowed to send commands in a P2P network,
but to avoid anyone from controlling the botnet, commands are digitally signed
using public-key cryptography [Heron, 2007a]. When signing commands with the
attacker’s private (secret) key, each hosts can determine if the command comes
from the attacker by validating the signature using the corresponding public key.
If the validation succeeds, the command is considered legitimate and carried out
by the bot. If the validation on the other hand does not succeed, a non-authorised
command is detected—possibly sent by an intruder. Depending on how the bots are
programmed, they can respond to this event as an intrusion and act accordingly;
automatically initiate attacks on the source IP address is one possibility to avoid
further unauthorised requests.

Email-controlled networks

P2P and IRC C&C’s expose the list of some, or all, compromised hosts with
varied detail level, and can be used to localise infected hosts. Using more dispersed
networks can make the detection of infected hosts almost impossible. New research
proposes a solution where the bots do not know of any of the other bots [Singh
et al., 2008]. The malware registers an email account (using such as a free and
anonymous online provider) automatically from the infected host, and reports the
email address to the attacker. The attacker sends emails to each of the addresses
containing botnet commands. The malware periodically polls the email account and
checks for new emails. The botnet commands are camouflaged using brute force
breakable encryption and steganography2. When the malware downloads the emails,
it tries to break the encryption and decode the steganography, which requires a
significant part of the CPU. Consequently, the approach makes it infeasible for a
large email provider to do the same on all incoming emails to find attack emails.

2.2.2 Malware without control mechanisms
Not all malware uses a control mechanism, but controlling the infected hosts
is a valuable property for the attacker since he or she can make the malware
perform any kind of operation, making the malware highly dynamic. Malware not
controlled in this way certainly exists, but is less dynamic. Some malware samples
are programmed for static goals, such as log credit card numbers and report to
a server and do not need any modifications. In these cases, it is favourable for
the attacker to avoid using a control mechanism, as such can assist exposing the
attacker or the malware infection itself.

2.3 Custom made malware
Malware can be made custom for a set of users to perform a more concrete set
of tasks. The tasks can be anything the attacker wants, and hosts are selected

2Steganography is techniques to hide information to avoid detection of hidden messages [Katzen-
beisser and Petitcolas, 2000].
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by properties including, but not limited to, their location, a connection link to
interesting networks, or that they are owned by persons of interest by the attacker.
Such malware may or may not be controlled, but the amount of infected hosts
might be significantly lower compared to the malware using control mechanisms.
One infection might be sufficient. One of the main reasons for creating custom
made malware is for information gathering [Bethencourt et al., 2008]. Attackers
use malware as tools in espionage to collect documents, files or other secret data
located on the infected computer or on one of its connected networks [Magruder and
Lewis Jr, 2006]. This also affects encrypted networks, as the computer authenticates
and handles the encryption routines as normal, and the malware works as a regular
application, located on a higher level in the OSI model [Zimmermann, 1980] than
the encryption algorithms. Malware can also capture keystrokes and pick up login
credentials sent to applications, servers and networks.

Computers with specific foreign locations are also high value targets for central
point of administration (C&C) or used as special routing detours (proxies) to make
the life harder for those trying to track down the source of the malware. Proxies
are discussed in Section 2.5.5 on page 28.

2.4 The development of malware
Malware has been around since the dawn of personal computers [Harrington,
2005, chapter 8], but the malicious intentions was, compared to now, relatively
harmless in malware’s early years. The goals were simple during malware’s first ten
years; the malware deleted files locally out of pure spite, wasted CPU cycles with
pointless calculations and infinite loops, and occasionally displayed dialog boxes
announcing its infection to tease the user behind the keyboard. In other words,
the main goal from the malware was to make itself known to the user [Greiner,
2006]. Malware has since then become much more intelligent, and as opposed to its
early years, malware is a key element in a lucrative business where CPU capacity,
stolen credit card information and enormous amounts of stolen bandwidth are sold
to people with malicious intentions [Bradbury, 2006]. It is now valuable for the
malware producer to hide the software instead of exposing itself to the user, and
the malware goals have changed from frustrate a user to gain financial profit [Li
et al., 2008a]. The evolution of malware follows the steadily increasing amount of
Internet nodes [Goudey, 2004], and so does the level of sophisticating techniques
malware uses to multiply it self and camouflage its functionality [Katzenbeisser
et al., 2005].

Avoiding detection is important not only to prevent the victims of infection
from repairing their machine, but also from automated antivirus applications3
that are usually more observant than the user and struggle to deny malicious
actions. To prevent a third party from learning a program’s functionality, its
source code can be kept private for no one to see. However, by resorting to reverse
engineering (reversing) techniques on a compiled binary file, its source code can
in fact be partially or completely deduced [Eilam, 2005]. Code obfuscation is a
common approach used to avoid successful reversing attempts by complicating the
program’s source code and binary content. Multitude of techniques are available,
and new ones occur from time to time. The obfuscation techniques are usually

3Section 2.6.1 on page 28 discusses the usage of antivirus applications.
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static, meaning when someone figures out how to detect or countermeasure the
technique, it is no longer of any value [Dube et al., 2008]. Malware has proven
to use nonstandard techniques and clever, never before seen methods to avoid
exposing its real content and prolonging a successful attempt of deducing its (evil)
functionality. Reasons for obfuscating malware includes, but are not limited to, the
following [Skulason, 1990].

Preventing code analysis Suspicious code instructions are assets to look for
during malware analysis. Obfuscating code disguises the actual malware
content and hides the instructions from the analysts, which effectively prevents
deducing the sample’s real functionality.

Prolong the dissection process When the functionality of a malware sample
is deduced, it is usually easier to deploy countermeasures, decrease its threat
level and eventually eliminate it completely. Obfuscating code complicates
and dwell out malware analyses, and thus increases the life span of the
malware. Additionally, properly implemented malware can spread on a large
scale in only a few hours, so each passed minute without descent available
countermeasures is in great favour for the malware producers [Beaucamps,
2007].

Evade detection Changing code makes it appear different from the original
version, and generates distinct malware samples. Each different sample is
called a variance of the original form, and changing appearance makes
detection more difficult for applications that use signatures to match files,
such as antivirus applications.

Malware writers have taken code obfuscation even one step further, and resorted
to self mutating programs that can more efficiently evade detection and complicate
analyses. The malware changes itself dynamically either during running time, while
being dormant in a computer or upon infecting another host. Doing so leads to a
malware variant which appears different on the machines it infects. The variances
of the malware more easily evade the antivirus applications, as each variance is
unrecognisable offspring from the original malware. Malware using such techniques
are called oligomorphic, polymorphic [Nachenberg, 1997] or metamorphic [Ször
and Ferrie, 2001] malware, each method with an increasing level of complexity.
The problem of self mutating malware has been known a long time, but is still
truly difficult to countermeasure. How the malware changes is interesting, and the
mutating methods used rarely differ. Still, it may be very complicated to detect
the source of the new variance. Techniques used by malware to create a mutation
of itself work mostly on low-level code, and operate on instructions found in the
binary file [Walenstein et al., 2007a].

The most common techniques for code obfuscation are described below [Borello
and Mé, 2008; Collberg et al., 1997], immediately followed by a description of the
three different mutation techniques.

2.4.1 Junk insertion
Obfuscation by junk insertion is applied by adding code sequences to a sample
without changing its behaviour [Christodorescu et al., 2007]. Using such modifica-
tions effectively evade signature based detection techniques, as a a new signature
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must be created to recognise each of the modified malware variants. Antivirus
signatures are rule sequences made to recognise particular files, and are frequently
used by antivirus products to detect malware. The added code sequences do not
change the program’s behaviour, and are empty operations. An empty operation (or
“nop” (no-operation) has no effect to the behaviour of the program, but changes
the checksum of the program. If the unnecessary operations are removed prior
to matching them with a signature, only one signature is needed for all of the
malware’s variants. Research shows that it is possible to remove unnecessary in-
structions on assembly level [Christodorescu et al., 2005], and end up with a sample
stripped from all junk insertions. If this method is applied on all files, only one
signature is needed to catch all variances of a malware type.

2.4.2 Control flow alteration
Instructions in an executable file can be placed syntactically different, and by using
unconditional jumps, the functionality remains indifferent even when the instruc-
tions depend upon each other. An example based on a report by Christodorescu
et al. [2005] is shown in Figure 2.4 on the facing page. Figure 2.4a shows the original
set of instructions, located sequentially in the compiled sample. The instructions
are then reordered internally in the file, and “jump” instructions are inserted to
point to the next correct instruction. Figure 2.4b shows the modified instruction
set.

2.4.3 Code permutation
Instructions independent of each other can be arbitrarily placed in the program
without altering the functionality. The program keeps its functionality, but appears
different for each change. An example partly taken from the literature [Bruschi
et al., 2006] goes as follows (the && operator signifies a logical AND-operation).

a = b× c
d = b+ e
f = b&&c

The above statements can be executed whenever wanted due to no mutual depen-
dencies. As long as the statements are all executed, variable a, d and f always
bound to the same values whether the statements are executed in the same order.
However, if the above statements are the only known part of a larger program,
their sequence can only be changed internally, since it is possible that the variable
values are used elsewhere in the program and other, unknown, statements depend
on them.

2.4.4 Utilise executable packers
An executable packer is a program that can transform a binary into a smaller version
and thus changing its appearance. The packed binary is in most cases in an unpacked
form in memory, but is stored compressed on the persistent storage (disk) [Yan
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instruction N1

instruction N2

instruction N3

(a) Original instruction set

jmp label1

instruction N1

jmp label2

instruction N2

jmp label3

instruction N3

label1:

label2:

label3:
(b) Reordered instruction set leading to an
alteration in the control flow. The instruc-
tions can be placed at arbitrary places in the
binary file and “jump” (jmp) instructions are
inserted to point to the place of the next
instruction.

Figure 2.4: Control flow alteration in a sample to change its appearance [Christodorescu
et al., 2005].

et al., 2008]. Over 80% of malware use packing techniques, and often apply different
techniques recursively to complicate analyses further [Guo et al., 2008]. More than
200 packer families are known and together sum up over 2000 packer variances. If
a packed binary is unpacked, the body is easier to detect. However, understanding
the different packers requires a significant amount of resources and time. As new
packer variances easily can be introduced by an attacker, learning how all packers
work is not practically feasible.

It is possible for antivirus applications to emulate a malware execution and wait
for the unpacking to happen, but it is hard to ensure this event, as its execution
can depend upon the environment, and its running time can be arbitrary long [Zuo
et al., 2005].

Martignoni et al. [2007] proposed a design that would detect packed binaries
and then execute an antivirus scan the moment the binary has unpacked itself in
memory. The design does not guarantee negative side effects, and is its imminent
drawback. Guo et al. [2008] published a similar design that does not leave any
undesirable side effects, but packer technologies are highly dynamic and evolves
prior to the countermeasures, and can evade the unpacking. The designs can assist
the detection process, but do not guarantee a correct result.
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1 mov e s i , ADR_OF_SOURCE ; move the s t a r t address ( p o i n t e r )
2 ; o f the encrypted data i n t o e s i
3 mov edi , ADR_OF_DESTINATION ; move the s t a r t address ( p o i n t e r )
4 ; o f what w i l l become the
5 ; decryp ted data
6 mov bx , SIZE_OF_DATA ; move the s i z e o f the encrypted
7 ; con ten t s i n t o bx
8

9 loop :
10 lodsd ; f e t c h a by t e o f the address
11 ; po in ted to by e s i i n t o a l
12 xor al , 0A5H ; decryp t t h i s by t e us ing a
13 ; s imp le XOR opera t ion wi th
14 ; t he key "0A5H"
15 stosb ; s t o r e the r e s u l t i n t o the by t e
16 ; po in ted to by ed i
17 dec bx ; are we f i n i s h e d ( decrement
18 ; t he s i z e by one )
19 jnz again ; r epea t i f the s i z e v a r i a b l e ( bx )
20 ; i s nonzero . upon complet ion , bx
21 ; has decremented to zero
22

23 . . . ; code cont inues a f t e r decryp t i on
24 ; i s complete

Listing 2.1: Assembly code showing a simple decryption loop that can be used to decrypt
the actual malicious content of a sample. The code is based on an example by Skulason
[1990].

2.4.5 Oligomorphic mutation
One of the first and simplest methods used to obfuscate malware was to encrypt
its content [Konstantinou, 2008]. The malware must be exposed in its original form
upon execution, and a decryption key is used to unlock the malware’s original
content. The algorithm used for decryption is called the decryptor, and is in the
simplest case static in each copy of the sample. How to find the decryption key
and the decryptor are stored in the sample code, and can be found using reverse
engineering techniques. When the key and algorithm are found, the sample can be
manually decrypted in an analysis.

If the sample is capable of generating a multiple decryptors n, where n > 1
but still a limited set, it is capable of an oligomorphic mutation [Szor, 2005, page
258-260]. The malware is able to generate different variances of itself upon mutation,
and n different signatures must be made to detect it using signature based detection
techniques.

A simple decryption algorithm (decryptor) is shown as assembly code in List-
ing 2.1, where the first column contains an assembly operation. What the different
operations do are briefly described below.

lodsd (load string doubleword) loads a string into the processor register.

xor is the mathematical XOR operation that can be used as a simple encryption
mechanism.
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M0D0 M1D1 M2D2 MnDn

(a) Oligomorphic and polymorphic malware mutating itself while spread-
ing. For oligomorpic malware, there are n fixed different decryptors
chosen by the malware producer making a set of n different variances
of the malware. For polymorphic malware, the amount of decryptors is
arbitrary large and generated automatically.

m0 m1 m2 mn

(b) Metamorphic malware mutating itself while spreading using
a variety of code transformation techniques. The sample m0 ap-
pears completely different from its mutated variance m1, but the
functionality remains untouched.

Figure 2.5: Oligomorphic, polymorphic and metamorphic malware mutations.

stosb (store string byte) copies the altered data from the processor register.

dec decrement variable by 1

jnz jump if condition is met.

The oligomorphic process is shown in Figure 2.5a where the malware is able to
generate a limited amount of decryptors, n. The malware multiplies itself, and to
be detected by signature based techniques, its body must either be decrypted, or n
different signatures must be made.

2.4.6 Polymorphic mutation
Polymorphic malware can dynamically change the available decryptors to an
extensive number, making an large amount of actually used decryption meth-
ods [Nachenberg, 1997]. The polymorphic mutation makes it practically impossible
to create signatures for all variances. To detect polymorphic malware, the detectors
must be able to scan samples while they are in memory, decrypted and in the
original constant form [Konstantinou, 2008]. Figure 2.5a applies for polymorphic
mutations as well as oligomorphic ones, but a polymorphic mutation is able to use a
significantly larger set of nondeterministic decryptors than oligomorphic mutations
are.

2.4.7 Metamorphic mutation
Instead of changing decryptors and encryption methods, metamorphic malware
mutates its own body, usually upon propagation [Ször and Ferrie, 2001]. In theory,
except for the behaviour, variances have not necessarily anything in common
with each other, and can be virtually undetectable when using signature based
detection [Chouchane and Lakhotia, 2006]. Metamorphic malware changes its
appearance without the use of an encryption routine, but at the same time keeps the
original functionality. To achieve this, combinations of the different transformations
discussed in this section are used. Metamorphic malware can be extensively complex
and incredible difficult to detect. In some cases, a metamorphic malware sample
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can decompile itself, change its body in source code form and recompile to generate
a completely new variance of itself [Ször and Ferrie, 2001].

Lakhotia and Mohammed [2004] suggested a normalisation of the malware so
fewer signatures are needed to detect all variances. Malware normalisation undoes
obfuscations applied on a sample, and results in a normalised executable. The
approach is able to reduce the number of variances, but depending on the quality of
the normalising techniques used, the decrease in variances is not sufficient to be of
any practical use. For example, the authors reported 10183 variances were reduced
to 1020 normal forms, which are still too many forms to cover using signatures.

Christodorescu et al. [2005] suggested a similar approach giving better results.
The approach normalises effects from the obfuscation techniques code reordering,
packing and junk insertion. A significant drawback is long running times for the
normalisation processes.

Figure 2.5b on the preceding page shows how metamorphic malware changes
during spreading. The malware is not using any encryption, so no decryptor is
available. Instead, the malware transforms dynamically and independently of the
initial malware sample. Even its core changes during the transformation, and the
mutated sample m1 looks completely different from its predecessor m0.

2.4.8 Summary of code obfuscation and mutation methods
Table 2.1 on the next page shows a brief summary of the different code obfuscation
techniques and mutation methods described in this section. Each applied method
and technique effectively evades signature based detection techniques by producing
a variance of the malware. Using a combination of the techniques and methods
complicates the detection process even further, and makes it practically impossible
to use purely signature based detection techniques to detect all variances.

2.5 Threats from malware
In addition to compromising the security in a system, numerous threats comes
along with a malware infection. Without a sample analysis, the complete set of
possible effects from the malware is seldom known, or at least not guaranteed
to be known. In consequence, malware can operate unexpectedly and sudden; as
malware is capable of doing anything a computer can do, only the creativity limits
the possibilities. This section focuses on the most dangerous threats from malware,
which are the threats that indicate a struggle for economic gains [Grizzard et al.,
2007].

2.5.1 Denial of Service (DoS)
DoS attacks are operations to prevent a service from operate normally, or overload
it in such a level that legitimate users cannot use it. The DoS attacks can be local,
denying usage of the computer or software on it, but attacking remote servers are
more common. A DoS attack can be any attack, but the common goal for the attacks
is to prevent legitimate users from using one or more servers and/or services. An
example is the “SYN attack” that floods a victim server with half-open connections.
The attack is explained in a handful of papers, but Lau et al. [2000] have published
a good and simple example. The attack goes as follows. When a client initiates a
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Technique Description
Junk insertion Adding empty (nop) code sequences to a file. The

added code has no meaning to the behaviour.
Control flow alteration Introducing additional jumps in the program.
Code permutation Reordering the location of instructions indepen-

dent of each other.
Utilise executable packers Compressing a file into a smaller version. The file

content are mostly unreadable without running
or manually unpacking it, but it is stored as its
original form in memory.

Encryption Obfuscating file content by using an encryption
key. The simplest encryption routine uses the XOR
operator on file content with a key stored together
with the file.

(a) Code obfuscation techniques

Method Description
Oligomorphic mutation Same as encryption, but the decryption routine

(decryptor) differs.
Polymorphic mutation Same as oligomorphic, but uses a significantly

larger set of decryptors.
Metamorphic mutation Utilises a multiple of the different techniques ex-

plained in this section to obfuscate the code.
(b) Mutation methods

Table 2.1: Summary of code obfuscation techniques and mutation methods.

TCP connection to a server, a “three way handshake” is required. Handshakes apply
to all TCP connections, and are used to ensure a reliable connection (TCP manages
an active connection even if packets in a data stream are lost or duplicated in the
network). When the client never transmits the last ACK packet required for the
handshake to succeed, the memory used to hold the connection remains half-open
and is not freed until a timer expires [Schuba et al., 1997]. If tens of thousands
infected hosts request a connection to the server at the same time, the memory and
available ports will be exhausted, and the service is soon overloaded. Such flooding
attack is one of different methods to overload a service, and distributing the attack
over a multiple of sources is called a distributed denial of service (DDoS) attack.
As a botnet can vastly outnumber a victim in available bandwidth and computing
resources, the victim must try to seize the attack, but a DDoS attack is very hard
to prevent due to its distributed nature and its capability of exploiting weaknesses
in best practice solutions such as TCP. There are in general no bullet proof defence
against a large DDoS attack, but safety measures to avoid the attacks in the first
place should be used, and precautions should be taken to limit the consequences
of an attack [Mirkovic and Reiher, 2004]. Due to the difficulties of preventing a
DDoS attack, the attacker is subject to severe consequences if the case is brought
to court [Curran, 2006; Hilley, 2006]. The attack is, however, difficult to trace when
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C&C

Network of infected hosts with a centralised
control (A C&C server).

Server suffering from a DDoS attack. The
entire network of infected hosts is partici-
pating in the attack.

Figure 2.6: An attacker (red face) controlling an attack on a server through his or her
network of infected hosts (botnet). The botnet can be arbitrary large, and combined
vastly outnumber the server in resources. The victim will have a hard time preventing the
attacker be technical means, and must solve the problem using other approaches.

compromised hosts are used to control it, and consequently places the attacker in
a role only indirectly involved in the attack [Lau et al., 2000].

To gain profit using a DDoS attack, the attacker can run a “sample” attack,
proving what he or she is capable of, and then demands money to stop further
attacks, turning the DDoS attack into an extortion [Bridges, 2008]. The attacks are
usually targeted against a few networks, but there are reports of incidents shutting
down the IT infrastructure in a whole country—for political reasons [Goth, 2007;
Lesk, 2007]. Figure 2.6 displays a DDoS attack over a network graphically.

2.5.2 Spam
Spam is a term that describes unwanted advertisement, often sent in very large
quantities. Spam is distributed using a variety of different technologies, but the email
service is currently the most popular to use [Gomes et al., 2004]. A way to stop email
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spam is deny incoming emails sent from hosts known to send spam (blacklisting),
and is an approach widely used [Ramachandran et al., 2007]. Additionally, filters
based on guessing whether the content is genuine or not are applied to stop
distributed spam runs. Millions of spam emails are sent every day, and if they all
were sent from a strict set of hosts, it would have been relatively easy to block the
hosts using a blacklist-.even if the hosts changed from time to time. Using a large
set of compromised hosts that each send their share of spam emails makes managing
a blacklist difficult. Moreover, impossible if the amount of hosts is sufficiently large.
Spam emails often contain malicious attachments [Barroso, 2007], which could be
the same malware that infected the source of the sent email. Due to the enormous
amounts of emails sent, the probability that some of the users execute the malware
and get infected, is high.

2.5.3 Phishing
Phishing is a process that masquerades a trustworthy entity, and trying to acquire
sensitive information such as login credentials or credit card numbers. A common
scenario is to construct a replica of a web page, copying the design and content
of the real page to fool a user to believe the copied site is the legitimate one.
To avoid tracing to the attacker, such web sites are hosted on compromised
systems, and any collected information is bounced to the attacker. If the server
is taken down, the attacker can simply start a server on another compromised
host. Phishing is a technique relying on manipulating people into performing an
action (social engineering) to succeed [Bilogorskiy, 2005]. Bank, web auction and
social networking sites are prime targets for phishing, and attackers use a variety
of different techniques to avoid revealing that their fraudulent site is in fact a fake
one [Fogg et al., 2001]. Common methods used for phishing are described below.

Utilising URL semantics

The URL “www.myBank.com” will for most persons be acknowledged as safe and
trustworthy, especially if “myBank” is the name of their bank. Accessing the URL
would render the page hosted at “myBank.com”, as expected. However, by using sub
domains, an attacker can construct URLs similar to “www.myBank.attacker.com”.
When accessing the constructed URL, the host “attacker.com” is contacted
instead of myBank.com. Of course, the legitimate “myBank” has nothing to do
with attacker.com. “Attacker.com” is not the best disguised domain name, but
not all persons would notice the irregularity in the URL. A similar method is
using different representations of the URL; IP addresses in different notations can
disguise the threat using representations the user is not familiar with [Lance, 2006].
If the IP address for “attacker.com” is 15.16.17.18, the host can be represented
as shown in Equation (2.1).

(2563 × 15) + (2562 × 16) + (2561 × 17) + (2560 × 18) = 252711186 (2.1)

Therefore, a different way of typing the URL pointing to the attacker’s site is
“http://15.16.17.18” and “http://252711186”. Yet another method is using the
“at” sign (@) as a denominator between the legitimate site and the fake. Accessing
the URL “http://myBank.com@252711186” use “myBank.com” as user name to

25



Chapter 2. Background and Rationale

the attacker’s site. This method is used legitimately for web sites using HTTP
authentication. Most browsers now warn the user when such tricks are detected, but
a warning is not necessarily sufficient to stop people from entering the site [Dhamĳa
et al., 2006; Florencio and Herley, 2005]. If the attacker’s site has implemented
a HTTP authentication mechanism (the web server asks each users to supply
login credentials), the warning a web browser displays is similar to the following4:
“You are about to log in to the site 252711186 with the user name myBank.com”.
The warning will, in many cases, sound legitimate for users lacking the necessary
knowledge to reveal the threat.

Visual deception

Attackers mimic text, images and windows to gain the trust from potential victims.
The letter “w” in a URL can be switched with two “v”s 5 , and the“l” letter with an
“i”. Observing this irregularity is not trivial, even for an experienced user. Assuming
an attacker registers a domain www.trustvvorthybank.com, points it to his web
site which has a complete replica of the real “Trustworthy Bank” web site. An
unobservant user with a bank account at the real bank could mistakenly believe the
URL is perfectly legitimate, and supply his or her login credentials to the attacker.

Additionally, if multilingual character sets are available, an attacker can use
characters in different language sets that resemble each other. Some of the Cyrillic
and Latin letters have very similar appearance, which is possible to exploit during
a phishing attack. Such an attack is called a internationalised domain name (IDN)
homograph attack [Gabrilovich and Gontmakher, 2002], and when internationalised
universal resource locators (URLs) will be more common on the web, this attack
point can be exploited if it is not properly taken care of.

Avoid the pitfalls of amateurism

A company is commonly having well designed web sites. Phishing sites (or emails)
with (obvious) typographical errors, broken links or other small glitches are easier
revealed fraudulent than the ones with professionally produced content. Therefore,
the most successful phishing attempts use exact site/email copies, and every detail
is as close as possible to the source itself.

Tailor the user experience

A site is more credible when some elements are custom made for that specific user.
Examples of such personal elements are last date accessed, a personal welcome
message with the name of the user or specific ads directed to the user. Getting
such information is not trivial, but a successful attack makes it easier to gain the
users trust.

4The exact wording varies in the different browsers.
5The attack was recently performed on Twitter’s web page, http://twitter.com.

An attacker registered the domain name tvvitter.com (with double “v”s), and used
the domain as a phishing site. See http://www.sophos.com/blogs/gc/g/2009/05/21/
beware-tvvitercom-video-live-twitter-phishing-attack/ for more information (accessed
2009-05-22).
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Combination of methods

Attackers commonly use a combination of the above methods to succeed, and
properly designed phishing sites can fool as many as 90% of the users [Dhamĳa
et al., 2006]. An inexpensive method to fool users to visit web sites is sending emails.
The email service can by used to send fake content to a large number of recipients.
Email is using the old SMTP protocol that was never designed for security [Piessens
and De Win, 2002] and is easy to forge. SMTP is unauthenticated, and sending
emails from a fake source address is trivial. The “FROM” field in an email can
be manipulated similar to traditional mail. Phishing emails can in that way be
sent from an address that appears legitimate, and can contain content identical
to what is expected from the corresponding legitimate source. Information can
easily be sent to a large number of users, where some of these users will most
certainly access the fraudulent site with. Using malware to distribute such spam
makes it possible for an attacker to send large quantity of emails having links to
the phishing sites. The quality of the emails sent varies significantly, from obvious
grammatical errors to sophisticated elaborate documents indistinguishable from
official correspondence [Goudey, 2004].

2.5.4 Click fraud
One of the most popular ways to advertise currently on the Internet charges the
advertiser by number of “clicks” on the ads. The ads are usually images, flash
animations or occasionally text with special crafted HTTP hyperlinks. The ads are
located at any web site, and a scenario of concern is click fraud. The problem was
published with detailed attack scenarios as early as 1999 [Anupam et al., 1999] and
is because that clicking on ads are nothing else than clicking on a link on a web site.
A browser sends the same HTTP headers when clicking on an ad as any other link,
so the click can easily be programmed. If a large amount of compromised hosts is
instructed to simulate a click on a specific ad, the action can cost an advertiser a
significant amount of money and is difficult to prevent since the sources are distinct
and unrelated IP addresses. An attacker benefits from this in the following two
cases.

1. The attacker instructs his or her compromised bots to simulate a click on
one of his competitors ads, thus generating an expensive and wasteful bill for
the competitor.

2. An attacker having an arbitrary web site rents out space on his or her site for
advertisement material that is selected by an advertiser. Each click on the
rented space costs the advertiser X$ that he or she must pay the owner of
the web page. Since the owner is also the attacker in control, the click traffic
can be generated from a set of compromised bots.

Studies show that rates between 12% and 16% of advertisement clicks on the
Internet are done by automated scripts, bots and low wage workers earning their
living simply by clicking on ads [Jansen, 2006]. A large error percentage is calculated
into these numbers, as it is hard to distinguish between a legitimate click and
a programmed one since they technically do not differ. So statistical learning
mechanisms regarding a legitimate user’s navigational behaviour before and after
the click happens is carried out [Immorlica et al., 2005]. For example, thousand
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instant clicks from a page that normally has 100 visits per day are likely a network
of bots clicking on the advertisement and not potential customers. It is difficult to
guarantee that such behaviour is from a human or not, so the statistical methods
suffer from high error rates and are in the worst cases pure guessing. As soon as
the attackers behind the click fraud implements these navigational techniques into
their programs that simulate clicks, the statistical methods seize to work, and have
to be continually changed to be of any use; an endless race between the attackers
and advertisers happens with this approach. Another method suffering from the
same problems is client side observation of mouse movement and keyboard events
that are normally expected from a legitimate user. However, such movements
are possible to simulate in a program as well [KyoungSoo et al., 2006], or easily
manipulated on the client side.

Statistics regarding the amount of advertisement clicks that later lead to a
sale, can be utilised to filter out automatic clicks [Brooks, 2006]. This is relevant
particularly for web shop advertisements, where it is feasible to conclude that if
none of the registered clicks lead to a purchase, the click sources are not human.
Of course, the method is also subject to high error rates as the expected click/buy
ratio depends on too many factors to be correctly calculated in all cases.

A different approach is authenticating clients before the clicks happen, and
count the clicks only when performed by authenticated clients [Juels et al., 2007].
The authentication is transparent for the user and utilises generated cryptographic
tokens supplied by a third party that validates the clients. Such an approach is
feasible, but significantly increases the complexity level of the advertisement design.

2.5.5 Proxies
A proxy server, or a bouncer, is a daemon receiving incoming connections and
forward them to the actual receiver. A proxy server at an infected host can be used
to launder connections with malicious payloads through that particular machine
and hide the attacker’s source [Levy, 2003]. The actual receiver sees the infected
host’s IP address instead of the attacker’s. Recursive usage of proxies is also possible,
making tracing back to the original source even more complicated. Proxies are
therefore used for malicious gains to prevent the attacker being caught by IP logs.

2.6 In need for more effective countermeasures
Malware is without doubt dangerous, and to guarantee a secure system, malicious
software cannot be allowed to enter its environment. This section covers the most
common countermeasures to stop malware, and to prevent it from performing
malicious actions.

2.6.1 Antivirus
For an end user point of view, the most common countermeasure against the threats
from malware is an installed antivirus application actively monitoring the system.
The antivirus software tries to withstand malware and can deny the execution of
malware if detected. However, antivirus software does not always succeed. There
are several issues to be aware of when relying on an antivirus application, notably
the fact that the software is flawed by design and can rarely, or never, guarantee
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a correct result [Krister, 2008]. The antivirus programs are based on a mix of
techniques such as signature based detection and “heuristic” scanning techniques
(explained below) [Kay, 2005; Sanok, 2005]. To be able to detect threats using
signature based detection, the antivirus software must be instructed by a byte-
pattern signature to localise each threat [Bailey et al., 2007]. One signature must
therefore be created for each threat to recognise. Newly discovered threats are
in consequence not likely to be detected until the antivirus vendor creates and
publishes updates with new signatures. Malware can thus easily evade the signature
based detection by morphing a slight variance of itself. Malware mutations are
explained in Section 2.4 on page 16, but a new signature is needed for each unique
variance, when signatures based detection is used [Christodorescu and Jha, 2004].
If the malware changes rapidly enough, publishing new signatures for each variance
of the malware are eventually infeasible. The antivirus industry figured out these
issues with signature based approaches, and implemented the heuristic detection
type that is able to recognise threats based on common suspicious behaviour. The
problem with the heuristic scanning is scan results are never guaranteed to be
correct, and can only be used as an indication of the actual reality [Krister, 2008].
There are chances for both false positives and false negatives, making the actual
security undetermined and brittle. Malware analysts know this, and fight a hard
match against the dangerous software.

2.6.2 Stay updated
As malware often targets specific versions of applications or operating systems, it
is essential for users to stay alert and apply security update patches [Cole et al.,
2007]. Many operating systems automatically “push” updates out to the user to
avoid forcing the user to manually patch the system, which often implies large
delays [Byrne, 2006, section 5]. New security patches repair vulnerabilities, flaws and
bugs, but may introduce new vulnerabilities as with any other software—possible
even more critical than the repaired vulnerabilities. The longer the applications
are known to be vulnerable, the more people will know about the particular flaw
and it will be easier to take advantage of it as applications exploiting the weakness
are often easily available [Barroso, 2007; Maynor and Mookhey, 2007]. Having a
non-patched application to avoid introduce possible new flaws is not the optimal
way of running a system, and it is in general better to patch systems even due to
the fact that patching can introduce new software vulnerabilities.

2.6.3 Extensive analyses
For malware producers, it is usually not important if their software works on all
kinds of computers and systems. The malicious software usually targets a specific
application, and simply halts if the application is not found. The malware may even
clean up itself to remove any traces. A malware analyst on the other hand must
ensure samples run in their expected environment to avoid false conclusions about
threat levels. How to ensure the correct environment, which kind of vulnerable
software must be installed is difficult, and hours of analysing might be needed to
make a survey of such requirements. Due to the large amount of malware, prioritising
samples correctly is a central element for the analysts. However, when prioritising a
large number of malware samples, the chance of missing important samples is high.
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Thus, solutions that are more efficient required to fight the continuously increasing
amount of malware. Automating tasks is one of the steps towards a faster analysis,
and is the overall main focus in this thesis. Repetitive tasks are especially relevant
for automation, but all tasks that have some sort of fixed structure are possible
candidates for automation.

2.6.4 Firewalls
Another common proactive defence is an appliance that inspects network traffic
and denies certain packets based on rules set by the user. These devices are called
firewalls, and can prevent malicious software from entering a machine or network. If
a host is already infected, a firewall can prevent malware from “signalling home”6.
Firewall types span from application level software to hardware based appliances.
Firewalls can be based on traffic flow attributes such as source of origin and
destination address; and also states in the communication protocols [Bellovin and
Cheswick, 1994]. A firewall can as an example allow all traffic from the address
X but deny the rest—unless the traffic was initiated from within the network
(having state “ESTABLISHED” or “RELATED”). Firewalls can certainly be used
to block malware, but the required set of rules to stop all kind of malware is too
large to manage a complete and updated set. Many state-based firewalls allows all
established connections from the machine or network, but since it is often the user
behind the keyboard that initiate actions leading to infections, a firewall suddenly
becomes useless. If used correctly, firewalls can prevent attacks or infections, but
the way they are normally used does not hinder the user to click on neither a
malicious link nor visiting a web site filled with malware.

2.6.5 User awareness
Malware may require human interaction for a successful infection, such as visiting
a link or execute a harmful program. Otherwise, the malware at least requires
one or more present vulnerabilities to exploit so it can gain control of the system.
Using resources on user awareness gives users a chance to stop malware before it
enters the system by understanding the threat instead of relying on error prone
applications. Users lack, in general, knowledge about the threats from malware,
its common ways of infecting a system and simple steps to countermeasure the
dangerous software. Training users in these areas prevent infections and lower
malware’s propagation abilities.

2.7 Computer emergency response teams (CERTs)
A CERT is a group of professionals dedicated to handle computer security issues.
A CERT observes networks and handles any threats to their covered IT structure.
Most countries, or at least the ones dependent on their IT-infrastructure, have one
or more CERTs that cover network traffic in important networks. Some CERTs
cover a specific (sub)network only, while others cover a whole country [West-Brown
et al., 2003]. The CERTs in the latter group do not necessarily observe all network

6Malware tends to communicate with fixed servers (their “home”) with the purpose of receiving
an updated set of instructions, commands or software.
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traffic in a country, but merely traffic to and from important assets. Uninett CERT7

that covers the networks for universities in Norway is a network CERT, while
NorCERT is the Norwegian national CERT observing particular vital networks in
Norway.

As computer security is a wide and complex area, it is important for the CERT
to determine which services they offer, and to whom. The following services are
examples of services provided by CERT’s.

Announcements The CERT analyses new security threats and publishes warnings
based on their investigation.

Vulnerability handling The CERT follows updates on software vulnerabilities,
their available exploits and how to withstand any attacks using them.

Training The CERT educates people by sharing knowledge and giving practical
examples.

Risk analysis The CERT analyses software and/or hardware in regard to its
security level. That is, how properly it can withstand attacks. Looking for
vulnerabilities in the source code and studying design flaws are key elements
here.

Watching technology The CERT observes the network and looks for new attack
patterns and scenarios. The information is published to other CERT teams
and cooperative groups.

Software development The CERT produces new (security) software or improves
existing solutions.

Exactly where to limit the coverage depends upon a variety of different practical
factors, but it is important the team can understand and familiarise with their
assets, determine attack trends on their networks, and stay updated on new threats
and how to withstand them [Smith, 1994].

2.7.1 Malware analysis in a CERT
A CERT usually has a group of malware analysts available, maybe even dedicated
to work on deducing functionality from malicious code. The observant reader may
ask why duplicate the work probably already done by antivirus companies or other
persons publishing malware information on the Internet, but that is not the exact
case. As discussed in Section 2.4 on page 16, the sophistication level of malware has
increased tremendously since the first types of malicious software. The malware
analysed in a CERT is sometimes unique, and targeted for a particular person,
company or network for a very specific purpose. The reasons include gaining access
to specific networks originally meant hidden for the rest of the world, or stealing
intelligence and classified documents. Therefore, the information published by
antivirus vendors and other individuals can be very limited for some of the samples
analysed in a CERT, and often nothing at all.

7See http://cert.uninett.no for more information about Uninett.
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2.7.2 Network monitoring tools
Malware analysed in a CERT is often picked up by a sensor monitoring their
networks, or other suspicious events targeted directly to persons located on the
inside of any of the networks. The sensors are nodes connected to selected entry
points in the network actively monitoring all traffic passing by, looking for suspicious
events. The amount of concurrent network traffic each CERT can analyse depends
on the amount of sensors available and their physical and logical deployment in the
network. A national CERT have a multitude of sensors connected to possible large
networks, while a smaller one can suffice with only one sensor deployed on the outer
rim in the network, covering all hosts inside. Some sensors can be instructed with
patterns (signatures) to filter out certain events, which can be used to estimate the
size of infection from a newly discovered sample. The sensors are usually a part
of a “network intrusion detection system” solution, which is covered in detail in
Section 6.2.3 on page 67.

2.7.3 Cooperation
There are more malware producers than malware analysts, and the producers can
suddenly get one step ahead of analysts by creating new never-before-seen malware.
To be able to cope with this, and quickly deduce the functionality to find the threat
level from new malware, cooperation between the different CERT teams, antivirus
vendors and other individuals is essential. CERT analysts work towards the same
goal, and their fight against malware is usually not driven by profit. For this reason,
the teams communicate and seek assistance from each other to improve their
proactive and reactive response to security incidents. One of the key cooperation
groups are the Forum of Incident Response and Security Teams (FIRST)8 group
having over 200 teams, including NorCERT, as members. In addition to bringing
CERT teams together, FIRST organises conferences, provides education and the
teams help each other on incidents, both local small ones and large ones affecting
the whole world.

2.7.4 Confidentiality
A security incident is not always a public matter, and this is particularly so for
malware targeting determined systems. Incidents involving systems that people
assume to be safe and trustworthy are also not necessarily information that should
leak. If information about infected networks or web sites is published, the reputation
of the company in harm can be significantly weakened. People may react as avoiding
the companies and their web pages for the fear of infection and doubting their
competence, strongly decreasing the revenue for the company.

A CERT utilises a multitude of different systems and appliances to run analyses
efficiently, where some of them are third party commercial applications only available
online. To use these services, a necessity is to upload samples to the third party and
let their systems handle the analysis. Depending on the overall field of responsibility
for a CERT, the CERT can be under special juridical terms and must act accordingly.
In Norway, NorCERT is subject to specific laws, and using third party online services
to analyse samples or material is far from optimal and is illegal by law when the

8See FIRST’s web page http://www.first.org for more information.
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material, or the incident connected to the material, is a classified matter. Analysing
samples in-house and having local versions of tools and applications are in some
cases therefore the only option for a CERT like NorCERT. Sandboxes9 used in
malware analyses are often located online, where some sell the services as a local
version for an (expensive) cost. Such economic resources are not available in this
thesis, prioritising freely licensed software.

2.8 Summary
Due to the chapter’s length, this section lists a summary of the chapter’s sections,
shown in Table 2.2.

Section Section summary
Propagation The amount of discovered malware increases aggressively,

and malware is able to propagate by utilising a combina-
tion of weaknesses in software code and social engineering
techniques - fooling people into installing the malware on
their systems.

Control techniques Malware can be controlled to do what an attacker wants,
using communication methods such as HTTP, IRC, P2P
and email. Malware can also be static, with a predeter-
mined set of tasks to perform.

Custom made Most malware is made to infect as many hosts as possible,
but sometimes the hosts to infect are carefully selected
and the malware is custom made for the targets.

Development Malware is now complex pieces of software, as opposed
to its initial years where it was mostly made to tease
its victims. Malware uses sophisticated methods to avoid
detection and be able to stay active as long as possible.

Threats By controlling a sufficient amount of infected machines,
an attacker can have an enormous amount of available
processing and bandwidth capacity. This power can be used
for malicious gains and it often is. DDoS, spam, phishing,
click fraud and proxy usage are the most common attack
scenarios.

Countermeasures Countermeasure malware is mostly applied using error
prone antivirus and firewall software. Users often rely
blindly on these appliances, but they are not bullet proof.

CERTs CERTs are teams dedicated to handle computer security
issues. They understand the threats from malware, and
works continuously to fight malware and research the risks
from such software.

Table 2.2: Brief summary of the different sections in the chapter.

9A sandbox is software and/or hardware used to execute malware in a safer environment. The
sandbox phenomena is studied more in detail in Section 4.1.5 on page 45.
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Chapter 3

Phases of a Malware Analysis

When source code and documentation for a program is unavailable, understanding
its complete functions and behaviour is sometimes difficult. Analysts are often set
in this position since malware source code is rarely known [Bruschi et al., 2006],
and malware producers struggle to obfuscate and hide their code—as seen in the
previous chapter. There are two main approaches to solve this problem, called
respectively dynamic and static program analysis. Nevertheless, prior to any of
these phases, an analyst usually runs a quick surface scan on the sample to parse
valuable metadata and information about the file(s). This is done without running
the file or going into its inner details. This chapter covers how these three groups of
analysing techniques works, but firstly describes the overall structure of a sample
file, which is necessary knowledge throughout the thesis. Figure 3.1 on the following
page shows a graphical representation of the different phases during the analysis
process.

3.1 Structure of a malware sample
Malware, like a legitimate application, is not entirely unique and have similar
structure and content [Barr et al., 2008; Walenstein et al., 2007b]. In addition to
the use of packers and obfuscation, which is discussed in the previous chapter,
low-level operations and overall file structure are often similar for the different
malware samples. This section covers how malware files are structured, and why
and how usage of API calls is carried out by malware. The file structure can always
differ and there is no rule without an exception, but this section covers the file
structure commonly seen.

3.1.1 File structure
The form of a malware sample spans from textual macro content to complex binary
files, but malware can be in any form - all depending on its targets, functionality
and ability to evade detection. Most of the reported malware targets the Windows
operating systems [Pegoraro, 2003], and are often in an executable binary form. An
executable file is meant to “perform indicated tasks” according to Merriam Webster
online dictionary, but an executable file is a file you can run standalone from other
programs. The Windows operating systems usually mark such files with one of the
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Surface
scan

Dynamic
analysis

Static
analysis

File sample

Success
No threats are found in the sample file.
The sample is already found and analysed completely.
New threats are found and functionality is deduced, either partly or entirely.

Failure
Complex obfuscation techniques are used in the file sample.
There is lack of time or resources available from the analysis team.
File sample is not prioritised.

Figure 3.1: Graphical representation of the different steps in a malware analysis.

file extensions .exe or .bat, while UNIX environments mark executables with a
special executable parameter.

Executable files are not necessarily in binary form, but malware usually is to
more easily hide its functionality. The files must be structured specifically so the
operating system is able to recognise their binary form as executables and thus
is able to run them. The preferred, or only way, of structuring executable binary
files in the Windows operating systems are in the portable executable (PE) binary
form that was introduced in 1993 [Kath, 1993] together with the Windows NT 3.1
system. Studying the PE file format is out of the scope for this thesis, and being
aware that it exits and used in most executable malware samples are sufficient.
The PE structure is documented and discussed in detail by Pietrek, and the reader
of special interest is encouraged to read his articles [Pietrek, 1994, 2002].

3.1.2 Usage of APIs
If the malicious intentions are overlooked, malware works in many ways similar to
a normal application and performs the same operations a legitimate program does.
For an application written for the Windows operating systems, how to perform the
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various operations may differ from the different revisions or release versions. To
avoid needing rewriting of all applications with each operating system change or
version upgrade, application programming interfaces (APIs) are made public for
usage by developers, including developers of malware. Using the APIs avoid calling
kernel code, which potentially differ in the various operating system revisions. So
operations such as creating a file do not need to call kernel code, but the developer
can instead call a high level API method that takes care of the details. Malware
may or may not use the APIs, but uses them in most cases [Willems et al., 2007].
By hooking on an API, a programmer is able to observe the calls to the API before
they are actually performed. The programmer can then later on forward the call
to the actual receiver so the functionality in the system remains the same. This
approach is called API hooking and is an important strategy used by malware [Yin
et al., 2008], but also its countermeasures are utilising the method [Sanok, 2005].
Malware hooks on to the Windows APIs to filter each running application’s view
of whats going on in the system so the system users are not able to see it [Harley
and Lee, 2006]. As a result, malicious software can benefit from hooking techniques
by maintaining undetected and legitimate applications can hook on to selected
APIs to observe calls to them. As an example, creating or modifying files is a
common procedure from malware. Hooking on the respective APIs for creating
and modifying files gives the possibility to pick up the calls before they are issued,
analyse them and do whatever action seems reasonable. Hooking on the API for
file modifications gives an analyst the possibility to observe all file system changes
applied by the malware, and is one of the methods a sandbox environment is
utilising. Sandboxes are studied in Section 4.1.5 on page 45, but is a safer way of
running malware samples.

3.2 Surface scanning
The surface scanning phase consist mainly of a set of automated tasks performed
on a suspect sample file [Wedum, 2008]. Hash sums on the suspect file are often
generated and compared to a list of known text strings to ensure the sample is not
already known, or maybe even already analysed.

A multitude of commercial antivirus applications are used to scan the suspect
file for known malware [Krister, 2008]. The analyst can base a threat level for the
sample using information and results gained in the surface scanning. The threat
level is used to prioritise the sample concerning its importance, and eventually
as background material for the next phases of analysis. Additionally, a few other
small programs may also be used during the surface analysis, depending on the
file type. For example, if the file is a document in a Microsoft Office file format,
certain algorithms can be used to scan the file for suspicious content that is not
necessarily detected by antivirus software1.

If the sample is unknown, not already analysed or considered safe by the
antivirus applications2, the analysis process continues. If the sample is already
known and analysed, the analysis process is complete and exits successful. If the
results from the antivirus scan indicate a harmful file, the antivirus vendors may

1The MOICE tool can be used to find suspicious content in Microsoft Office files. See http:
//support.microsoft.com/kb/935865 for more information.

2Remember from Section 2.6 on page 28, antivirus results must be considered as possible false
negatives.
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already have analysed the sample in their laboratories. Their information databases
can supply sufficient data about the malware functionality so the analysis process
completes successfully. This of course assumes the antivirus scan results are not
including false positives, and the vendor’s reports are trustworthy. A deeper and
more throughout analysis may be needed if the published information cannot be
trusted, or is incomplete.

3.3 Dynamic malware analysis
The dynamic analysis phase studies the behaviour of a program while active and
running in its normal, or simulated, environment. Applying the dynamic analysis
methods on a malicious program require the analyst to closely observe, and possible
trap, program activity including file system changes, network communication and
suspicious collection of data from the system. The analytical environment may suffer
from the consequences by running malware the same way as a normal computer
would do. In consequence, it is likely the environment will be compromised if that
is the sample’s intention. For this reason, it is extremely important the analysis
process is under tight control and changes to the environment are reversed as soon
as possible to sustain a secure environment.

Malware often tries to communicate with host servers to download new malware
or receive further instructions and tasks [Dittrich and Dietrich, 2007]. Therefore,
an Internet connection might be unwise as what flows through the communication
network is unknown and can cause further harm from the malware. On the other
hand, to simulate a real infection, the analysis must be run as it would in an
actual infected environment to properly observe all effects—including prior and
after any suspect network communication. There is no single correct answer of
how to perform a dynamic analysis, but if the sample is allowed to run wild, it
is essential the analyst ensures he or she can control the execution properly. To
manage control, the analyst needs as much information of the software as possible to
perform the analysis securely. For well known and widespread samples, the amount
of information from analytical sources are potentially high. For new samples and
the ones with low spread, few or no details are available.

Most analyses stop at the dynamic analysis, successful or not, due to the
difficulty of the next phase which is the static analysis. Nevertheless, some samples
require special treatment and are given the resources needed for the last analysis
step. Dynamic analysis is the focus area for this thesis, and is studied more in
detail in Chapter 4. A practical example of a malware analysis can be found in
Chapter 5.

3.4 Static malware analysis
While dynamic analysis has its similarities with proactive research, static analysis
is more reactive where the goal is to deduce the functionality of the program by
reversing the compilation process. This is, as mentioned in the previous chapter,
commonly called “reverse engineering”. Applying static analysis methods on a
sample forces the analyst to work on byte code and is, compared to high level
programs such as Java, Ruby and C++, extremely low-level and complex. However,
by using the correct techniques and having sufficient time available, the analyst is
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eventually able to discover the entire program flow [Dube et al., 2008]. Producers of
malicious code write programs that obfuscates itself using sophisticated methods,
which does not make the problem any easier [Ször and Ferrie, 2001]. A discussion
about code obfuscation can be found in Section 2.4 on page 16.

3.5 Finalising the analysis
Analysing malware is both time consuming and difficult. Compiled programs written
by an attacker in a couple of hours may require days of analysing to reverse the
process. A combination of both dynamic and static methods are therefore often
required to understand the functionality of the program with the use of a reasonable
amount of resources. As malicious software is getting more intelligent, the analyst
is required to think like an attacker and familiarise with obfuscation patterns to
conduct a successful analysis. Static analysis does not receive particular attention
in this thesis, and the focus stays on the dynamic analysis phase.

The analysis ends as a success when the analysis goal is reached, and as a failure
if the analyst stops the analysis before reaching the goal. An utopian goal is to
deduce the complete functionality from a malware sample, but due to the expenses
required to do so, the analyses usually succeed when only partial functionality is
deduced; sufficient data to base a threat level on. If the sample is already analysed
successfully, the analysis exits successfully already at the surface analysis phase
upon identification of the sample.

A failure during analysis happens frequently if few resources are available, either
in amount of analysts or available time and money. Additionally, new previously
undiscovered samples may be prioritised above old ones, making analysts abort
currently running analyses. A particular example of this is samples camouflaged
and obfuscated in such a level that an analysis is not feasible with the available
resources, leading to a failed analysis.
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Chapter 4

Dynamic Analyses in Depth

The dynamic analysis phase usually initiates just after the surface scan ends. This
is previously mentioned, and also reflected in Figure 3.1 on page 36. A dynamic
analysis is the process of studying a running sample in its expected environment.
The analyst observes every kind of event happening during its running time, and
possibly after the execution is complete, if other processes were altered or started.
The analyst then observes these processes the same way. The phase is contrasting
the surface scan by currently consisting of mostly manual work, using a handful
of different tools to assist the process. Most of the tools work at the same level
as regular applications do, which is “on top of the operating system” away from
hardware and low-level functionality. It is therefore important to note if malware
has managed to breach down deep in the operating system kernel and successfully
altered the normal flow expected in an application, the dynamic analysis can give
erroneous and incorrect information about a sample’s threat level [Hoglund and
Butler, 2005]. This malware type is called rootkit, and uses API hooking, which
is discussed in Section 3.1.2 on page 36. Using a rootkit allows the malware to
bypass operating system checks and gain higher privileges operations than other
applications do, and therefore interfere with the dynamic analysis. It is possible to
monitor kernel level functionality in a dynamic analysis using specialised kernel
debugging tools, but is for the extreme cases due to the complexity of these methods.
Kernel level debugging is not a topic in this thesis.

The chapter contains a description of commonly used methods to assist a
dynamic analysis, and continues with a list of important events to look for during
the analysis. The chapter flows by describing assisting solutions and tools available
in the dynamic analysis phase, and finishes with weaknesses with the phase.

4.1 Analysis methods
Luckily, the analyst has some tricks up his sleeve, which make the fight against
malicious software feasible. This section covers the most commonly used techniques
and methods during the dynamic analysis phase. Which of the method(s) to use in
the different cases depends on the sample’s threat level, the consequences if the
security is broken and which resources that are available. In addition, analytical
experience can determine which method(s) to use as some of the methods are more
complex to use than others.
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4.1.1 Physical deployment
Having total control over the analysis is essential to avoid damages to the analytical
environment by the malicious software. If the machines used for analysis were
to be infected and controlled by an external attacker, there is a chance for fatal
consequences; the analysts reputation would be strongly crippled and valuable
information accessible in the analytical environment can be stolen. A dedicated
room (a “laboratory”) can be used during the analysis, physically sealing both
analysts and the dangerous software from the rest of the world.

4.1.2 Separate networks
Another more practical solution than a change in the physical deployment is to
separate networks with a set of few observed entry and exit points. Doing so strictly
controls the network traffic, avoiding attackers from gaining access and malware
escape the exit point(s). Still, the physical architecture and environment remains
unchanged.

As malware tends to use the Internet for receiving instructions and sending
back information, the malware analysis may be required to use Internet access, and
therefore is in need for dedicated controlled and monitored channels for Internet
traffic. All response malware expects to receive must be simulated by the analyst
to ensure the program flow reflects an actual infected system. A possible method is
explained below as a scenario.

Practical example

A malware laboratory consists of two computers where the first of them is running a
Windows based installation and the latter a Linux based operating system. The two
machines can communicate with each other, but no other machines are connected
to the network during analyses. The two machines are isolated from the outside
world, but only the Linux machine is aware of this. The Linux based machine acts
as a router for the small network, meaning all traffic within the network ventures
through the router machine before entering the remote network—which is not
available during analyses. During an analysis, all remote communication is dropped
at the network boundary, and the traffic halts at the Linux based machine during
the routing process. Figure 4.1 on the facing page displays the scenario graphically.

The analyst can observe a running sample’s effects from both machines. The
sample is executed on the Windows host, since the Windows operating systems are
widely used and are prime targets for malware. The Windows host is therefore the
victim host in this context. The victim host is subject to an observation regarding
changes to the registry and file system, while network traffic should be observed
at the Linux based router, as one cannot know if the network observation on the
victim machine is tampered with by the malware. File system observation is also
subject to tampering attempts, but file changes are difficult to observe from outside
of the machine, and therefore still performed from the victim machine. In addition
to observing network traffic, fake responses to remote communication requests
can be given from the router to fool the malware to believe it is actually has
access to a remote network. Using this approach, one can fool the malware to send
communication requests.
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Internal sealed network Remote networks

Network traffic is blocked

Linux based machine
Monitors network traffic
Denies remote connections during
analysis

Windows based machine
Malware is executed on this machine

Figure 4.1: Analysing malware in a separate network isolated from remote communication.
All traffic in the internal sealed network must flow through the Linux based machine
before entering the remote network. The Linux based machine denies all such traffic, but
is able to observe it all.
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4.1.3 Virtual environments and software based snapshots
When using a virtual environment instead of a normal software environment,
the analyst is handled unique properties. An operating system normally expects
unique access to physical hardware, so without special modifications it is not
possible to use more than one active operating system on a computer at the same
time. Platform virtualization is a technique that escapes the limitation and allows
multiple operating systems to run simultaneously on the same machine. A virtual
machine consists of a operating system, and has a mapping between the real
hardware elements and virtual hardware elements. The operating system having
the virtual environment installation (and all installed virtual machines) is called
the “host” operating system, and each virtual machine’s operating system is called
a “guest” operating system. Platform virtualization during a dynamic analysis is
advantageous for the following reasons.

Control network access Dangerous and unknown malware may force an analyst
to shut off all remote communication to sustain control over the malicious
software. At the same time, malware might deviate from its normal program
flow when it is unable to access particular remote host servers, forcing the
analyst to enable the connection again. Instead of opening the remote network
link, the machine hosting the virtual environment can act as the remote
machine instead of the actual one. Exactly how is applied is discussed more
in detail in the practical example shown in Section 4.1.2 on page 42.

Easy switching of operating systems Malware often targets a vulnerability
in a particular program, or sometimes, in a particular operating system.
Virtualization makes it possible to more easily change between different
versions of operating systems and programs by keeping each one separated
without any need of physical restructure of hard drives, which are often the
case when using multiple OSes in the same machine.

Snapshots Several of the available platform virtualization solutions offer the
possibility to store the current system state, called a “snapshot” of the
system. If an analyst is afraid of having his system compromised during an
analysis, he or she can simply store a clean and safe state, and later on reverse
to the state using a simple procedure in the virtualization software.

The preliminary project for this thesis contains an in depth explanation of the
platform virtualization phenomena, and the reader of special interest is encouraged
to study the corresponding document for a more detailed discussion [Krister, 2008].

4.1.4 Hardware based snapshots
The virtual environments use software based methods for reverting a system
state. This is however not the optimal case in all situations. Hardware based
snapshots instead load the default (clean) state into memory at each reboot. Such
an approach clears all changes applied in the machine after the snapshot was
taken, thus cleaning possible infections (assuming there were no infections at the
time the snapshot was taken). Reverting to software based snapshots is usually
an on demand procedure initiated by the analyst, but hardware based snapshots
make the reversion process default on each reboot and makes it unnecessary to
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manually perform the procedure. Additionally, hardware based snapshots gives the
analyst the opportunity of working in a non-virtual environment. Certain malware
is able to detect virtual environments, and can change its program flow if such an
environment is found. Detecting virtual environments is discussed in Section 4.7 on
page 49, but is a solid reason to avoid analytical environments in software based
virtual environments.

4.1.5 Utilising sandboxes
Recall that keeping control is a key element during malware analysis. This is
particularly so for the dynamic analysis, where malicious code is observed while it
is running. A security technique called sandboxing is a way of more safely execute
programs in a strictly controlled environment [Prevelakis and Spinellis, 2001]. The
sandbox operates as a jailed environment around a system, usually with snapshot
capabilities. The sandboxes might run periodical reversions to keep clean and safe
system states. Sandboxes cover a large spectrum of operations and functionality,
but concerning malware they are most commonly used to monitor system (API)
calls, particular system events and network traffic. When the sandbox analysis is
complete, an aggregated report file showing spotted events is created and returned
to the analyst. At least the following three functions can be performed with help
from a sandbox analysis 1.

Analysing threats By using sandbox report files, malware analysts can deduce
a sample’s functionality on a general level. The report files usually contain
operations requested by the malware during its execution. Certain patterns
are common to see from malicious software, and an experienced analyst may
spot these suspicious patterns from a report file.

Construction tools for removal To quickly remove the effects from malware,
the reports can be used to build simple programs, or even scripts, to revert
the reversible malicious effects. Such tools are often built more quickly than
an antivirus update is published. The tools are usually directed to one
particular malware type, contrasting the antivirus design that is meant to
countermeasure as many possible threats as possible.

Signature generation The sandbox analysis might help to generating signatures
for intrusion detection systems2, antivirus applications and other appliances.
A signature in correlation with sandboxes are a characteristic byte pattern
or rule set to filter out certain events, files or actions [Rehman, 2003].

From the above three functionality areas in a sandbox, the final implemented
system is utilising the signature generation, based on an automatic threat analysis.
The system is outlined and designed starting from Chapter 6.

A malware analyst can utilise the power from sandboxes to deduce the func-
tionality of a malware sample safely by monitoring network interfaces, disk usage
and process spawning—and at the same time be able to trap, analyse or stop
critical behaviour. This way of setting custom restrictions on the system, may be

1Information about the functionality is based on Joebox’s visions, located at the web page
http://www.joebox.org/vision.php (accessed 2009-05-25). Joebox is a sandbox application that
is explained in Section 4.3.1 on page 47.

2Intrusion detection systems are explained in Section 6.2.3 on page 67.
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required prior to running an unknown program to sustain control over the malicious
software.

4.2 Information prioritisation
The amount of information and data gained during a dynamic analysis is in most
cases huge, and makes correctly prioritising the information a challenging task.
However, certain actions by malware are more important than others and should
receive particular attention [Moser et al., 2007]. A list of the most commonly
observed actions performed by malware is shown below. Events such as these
should be closely looked for during an analysis.

Check for Internet access As malware communicating remotely is common [Bai-
ley et al., 2007], a sample checking for Internet access may indicate a suspicious
program. This is especially so if the check happens at an early stage of the
program flow, or the program immediately exits without any further notice
when no Internet access is available.

File system and registry activity Malware often targets weaknesses in a par-
ticular version of a program, and tries to exploit these. Whether a program is
installed on a Windows machine can in most cases be found in the Windows
registry, and the rest directly on the file system. Research shows that over
80% of reported malware changes the file system, and over 70% of them
changes the Windows registry [Bayer et al., 2008]. For these reasons, it is
important to keep an eye up for file system and registry checks or creations
especially if the program halts immediately if not found.

Check for a mutual exclusion object (mutex) A mutex is a lock used in pro-
grams to ensure one single execution from a method or the entire program
in parallel. Malware often checks for mutex objects to guarantee only one
instance of itself is active concurrently.

Read from file File accesses can lead to interesting discoveries. Samples reading
files containing sensitive information are for example likely to be suspicious.

Read from/write to network Malware is highly dependent on a network con-
nection to either spread or receive further commands from an attacker in
command; if a significant part of the sample’s instructions are reading from
and/or writes to the network, special attention should be given to the event.

Spotting one or more of the actions above during an analysis do not necessarily
indicate neither a harmful nor a safe file, as the actions may be perfectly legitimate
and are just as commonly used in normal applications as malicious ones. The list
should be used only to highlight certain events when the amount of information
is overwhelming. Doing so can more easily give the analyst an overall view of the
sample, but it is important that no conclusions regarding threat levels should be
made solely on counting interesting elements spotted during an analysis.
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4.3 Available complete sandbox-solutions
There exist a multitude of sandbox systems, and the most used publicly available
ones are each briefly described in this section. Sandboxes are usually expensive
software and/or hardware with a license that makes modifying functionality com-
plicated. However, many of the vendors offer free usage to a web based interface for
their product where users can execute samples on the vendor’s servers and receive
the results back. The economic resources for buying a sandbox solution to run
locally, is not available in this thesis. The web interfaces are instead used.

4.3.1 Joebox
The sandbox service Joebox can be used by anyone with access to the Internet.
Sample executable files are uploaded via its web interface, and analysed on one
of their servers. Joebox uses a real system and not an emulated one, and utilise
the fact that it is harder for malware to detect the analytical system. Results are
emailed back to the user when ready, and are structured in open formats such
as HTML and XML. Due to its parse-friendly format, the XML files make an
integration with other tools more simple, but if that is not needed, HTML files
are also available. Joebox does not supply network traffic monitoring in the result
files, and a local installation of the application is not available. All sample files
must venture through the web interface, and reports are sent unencrypted over the
SMTP protocol.

4.3.2 CWSandbox
CWSandbox has similar functionality found in Joebox, and, at a general level, they
look like clones of each other. There are still a few differences, especially in their
different designs. Though the results from CWSandbox contains network traffic as
opposed to Joebox, the different reports are quite similar. Sample uploads must
be made through their web site for non-commercial licenses. CWSandbox runs in a
simulated system environment [Willems et al., 2007]. Such an environment utilise
virtualization products, contrasting Joebox which runs in an actual system.

4.3.3 Anubis
Anubis is yet another sandbox project, and as Joebox, it spawned from an academic
research project. Its predecessor was called TTAnalyze and had origin from a masters
thesis [Bayer, 2005]. Further developments are now performed by International
Secure Systems Lab as the service Anubis. Usage of the service requires uploading a
sample through the web interface. One of Anubis’ positive properties is a published
script for automatically submit samples to the web interface. An email address
must be enclosed so results can be emailed back to the submitter. The Anubis
service runs in the QEmu open source virtual environment.

4.3.4 Zero Wine
An open source research project called Zero Wine was released late in 2008. The
project has functionality close up to what the commercial sandboxes offers, but
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is unique of its kind by releasing its source code publicly. Zero Wine ships with
a Debian based Linux operating system running in a virtual machine. With a
ready-to-use web server and interface that can be used to upload sample files,
Zero Wine is a quite interesting project. The uploaded samples are executed on a
Linux based host using a translation layer able to load programs for Microsoft
Windows. This is required since uploaded samples are assumed PE-based files for
the Windows operating systems. API calls are monitored, collected and aggregated;
and a report is produced and shown to the user. The Zero Wine software is too
new to be extensively tested, and it is not very widespread. Due to its publicly
available source code it is still a unique project. Zero Wine and its usage of the
translation layer “Wine” is studied more in detail in Section 6.5 on page 79.

4.4 In need for applications running locally
While access to a free web upload interface is sufficient for most users, sensitive
malware that is targeted against a particular firm or company is not necessarily
a software that should be spread further to a third party service. As mentioned
in Section 2.7.4 on page 32, software samples may even be classified—making
uploading to the Internet illegal by law. In consequence, it is important that any
sandbox system used in this thesis has an open source license, to be modifiable and
freely available. This property ensures the software can be used locally without a
large license fee. Zero Wine is currently the only sandbox solution that complies
with this requirement.

4.5 Available smaller dynamic analytical tools
This section covers the most relevant tools used in the dynamic analysis phase
that are relevant for this thesis. This is not a complete list of tools used in a
dynamic analysis. A more extensive list can be found in the document for this
thesis’ preliminary project [Krister, 2008].

4.5.1 Sysinternals’ system information utilities
Sysinternals’ project consists of dozens of administration and diagnostic utilities for
the Windows operating system. There are over sixty applications on the project’s
list of tools, including coverage for both troubleshooting and diagnostic tools as well
as monitoring for internal activity and network traffic. When performing dynamic
analyses, some of the tools can help keep track of changes to the file system or
additions to the registry. In addition, malware often tries to open connections to
foreign hosts, and the Sysinternals tools can give the analyst immediate notice. The
most relevant tools for malware analysis from the Sysinternals package is briefly
discussed below.

TCPView

Imagine you are working on a computer that is suspected to be infected with
malicious software. Malware is often working as a background process and is
waiting for remote commands before the actual malicious events happen. Naturally,
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you are curious of which hosts the computer is sharing information with, or if it is
listening for incoming requests. TCPView can be used to gain such information, and
it is configurable to display the information you need and strip away the unnecessary
part. The TCPView application does however only list the connections, not the
data traffic. In a way, TCPView can be described as a graphical user interface to
structure and parse information from the netstat program shipped with Windows
installations.

Process monitor

To be able to spread through other processes, run at each system boot or store
non-volatile information, malware often writes and reads to the file system and
registry [Bayer et al., 2008; Erdélyi, 2004]. To understand how a particular malware
sample works, it is for this reason essential to know what kind of data being stored
and where to locate it. After executing a binary file for dynamic analysis, it may or
may not tamper with the computer. Process monitor assists the analyst with a
list of changes done by the started process. Since this is such a common procedure
to expect from malicious programs, Process monitor is one of the core utilities
in the malware hunting toolkit.

4.5.2 Wireshark
Wireshark is a network protocol analysis tool that saw the bright of the day in
1998. The continuous improvements of this freely available and open source software
have made it strong, enriched with add-ons and it is now the de-facto standard for
sniffing and reading network traffic. With the support for decryption of IPSec, SSL,
WEP and Kerberos, even encrypted data can be read as decrypted text using this
powerful tool. The main usage of this application regarding malware analysis is its
basic data capturing properties. It shows the content of data traffic, compared to
TCPView, which show only a list of active connections. For this reason, Wireshark
is a more in-depth tool for analysing network data. Due to its level of detail and lack
of connecting network traffic to system processes, it is not used as a replacement
for TCPView but rather as an addition. A screen capture of Wireshark used to
capture network traffic is shown in Appendix B.

4.6 Summary of described tools and solutions
Table 4.1 on the next page is shown to give an overview over the tools and sandbox
systems discussed in this chapter.

4.7 Problems with dynamic analysis
Dynamic analysis is far from an exact science [Valli and Brand, 2008]. How to
perform a successful analysis differs significantly depending on the complexity and
behaviour of the malware sample, available resources, and each analyst’s experience.
There are also design issues with the dynamic analysis phase, making it error prone
in some cases. This section covers the most well known weaknesses and problems
regarding a general dynamic analysis.
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Name Comment
Joebox Commercial sandbox solution. A free version is available

as a web based interface that run analyses remotely.
CWSandbox Commercial sandbox solution. A free version is available

as a web based interface that run analyses remotely.
Anubis Online sandbox solution. Only a web based interface is

available. An uploading script is made available.
Zero Wine Free sandbox solution. Unique for its open source license,

making it modifiable and possible to use locally.
TCPView Windows application that monitors simple data (source

and destination) regarding network traffic.
Process monitor Windows application that monitors changes to the file

system and registry.
Wireshark Monitors all kinds of details regarding network traffic. It is

open source and cross-platform.

Table 4.1: An overview over the analysis tools described.

4.7.1 Observing single path executions
One of the main weaknesses with dynamic analysis comes from a limitation in its
design. Dynamic analysis is all about observing programs executing as it would in
a normal machine, preferably in an environment equal to an environment expected
by the malicious program. The problem using such a black box approach is that it
is hard for an analysis to guarantee all possible execution paths are covered. Only
one or a few single paths are examined in an analysis, using a finite set of input
parameters. A malware sample in an analysis may remain dormant until some
particular event happens, and if the event happens rare, there is a large chance that
the analyst draws incorrect conclusions about the risk from the sample [Moser et al.,
2007]. To understand this, consider the code example shown in Listing 4.1 on the
facing page. The intended effect of the program is to erase “a set of critical data”,
but only on the 15th day of each month. Therefore, even if the program runs in an
analysis, the harmful effect is not seen until the system clock reaches the 15th day
of month. Assuming the system clock is set correctly, a dynamic analysis is in this
case only able to examine the harmful effects one day of each month. Conditional
executions with malicious intentions are called trigger-based behaviour, and can
be extremely hard to find during a dynamic analysis if hidden properly [Brumley
et al., 2007]. Of course, in this example the program reads from the system clock
and the date can easily be changed manually, but the analyst is not necessarily
aware of the conditional check. In the general case, trigger-based behaviour can
be camouflaged to run only when certain properly selected conditions are met. A
static analysis on the other hand does not suffer from this weakness since the entire
program flow is eventually deduced if the correct techniques are used.

There are certain methods available to force multiple execution paths. One is
by keeping track of conditional branches in the program during a normal execution,
and later on revert to each of the conditions with changed parameter value(s) [Moser
et al., 2007]. An example can be shown from the code above. Say the current date is
the 10th of January, so running the program yields “10” to the today variable. The
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1 # Method f o r e ra s ing a v i c t im ’ s v a l u a b l e data
2 def e r a s e_a l l_c r i t i c a l_da ta
3 # I n s e r t harmful code here
4 end
5

6 while true
7 # today v a r i a b l e g i v e s a fixnum (Ruby i n t e g e r ) from 1 to 31
8 # depending on which current day o f month the system c l o c k
9 # i s c u r r e n t l y s e t to

10 today = Time . now . day
11

12 # Cal l harmful method only on the 15 th day o f the month
13 e r a s e_a l l_c r i t i c a l_da ta i f today == 15
14

15 s l e e p 120 # Sleep two minutes to avoid wast ing the CPU (
prevent d e t e c t i o n from the user )

16 end

Listing 4.1: Ruby code showing the problem of single path executions during dynamic
analysis of malware. Ruby is selected in this example simply because it is easy to read
and very expressive.

program continues, but when the conditional “if-clause” arise, control is taken from
the program and a snapshot of the process is made. After a successful snapshot,
control is given back to the program. The conditional clause in the program returns
false, and the execution loops inside the while loop. Since there is at least one
uncovered path from the conditional clause, the process is reverted to the state
at the conditional if-clause by using the stored snapshot. Before restarting the
execution, the time variable is changed in-memory to force the conditional clause
to return true instead of the earlier value which was false. The conditional check
changes, and the harmful method executes. The analyst is then able to observe its
effect, even when the day is not the 15th day of the month.

The method observes conditional jumps from instructions executed by the
program, and inverts the conditions until all branches in the program are executed.
A conditional if-clause in a high-level program compiles to a “conditional jump”
instruction in low-level code, leading to two or more execution branches. Assuming
an if-clause checks for either true or false values, and there are no further
branches in the program, all of the program’s execution paths are then covered.
Figure 4.2 on the next page shows a graphical example of a condition giving two
branches from a simple if-clause.

4.7.2 Detection of analysis environments
Even if virtual environments are meant to act like a complete replica of a normal
computer, research shows that algorithms and methods available to detect the
environment exists [Garfinkel et al., 2007; Quist and Smith, 2000]. Malware analysts
often work in virtual environments to control the malware more easily. When the
malware detects a virtual environment, it may act differently than in a normal
system [Haukli, 2007]. The detection methods are commonly called anti virtual
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if a == B

Second branch

false

First branch

true

Figure 4.2: Conditional if-clause giving two branches in the program flow (the clause
can evaluate to true or false). Both branches contain program logic and the conditional
clause result must be tampered with to force the program to visit both branches, and
thus cover all execution paths.

machine methods, but is a subgroup of methods able to detect general environments
often used by malware analysts. The parent group is called anti-debugging methods,
and covers VM detection as well as other debugger detection. A list of possible
actions by the malware upon detection is shown below.

• Escape the protected environment and try to infect the host system.

• Signal home and report the current IP address or subnet. CERT and other
analytical networks can easily be a prioritised target for DDoS attacks if their
IP addresses are exposed to the malware producers, as they are their number
one enemies.

• Choose to run differently than in a normal system environment, maybe fooling
the analyst to falsely conclude a safe threat level on the sample.

• Choose not to run at all.

Avoiding the normal malicious execution if a virtual environment is detected is
common [Ferrie, 2006; Raffetseder et al., 2007]. Using anti-debugging methods
stealth the real functionality of the malware, and avoids exposing its functionality
to the analysts working in protected virtual environments. If the analyst even
notices the irregularity in the program, the malware forces him or her to one of
the following actions.

• Move the dynamic analysis to a normal operating system. The approach leads
to a more difficult process of reversing changes to the system state by the
malware.

• Move on to a static analysis, which is potentially much more resource de-
manding than a dynamic one.

The few lines of code in Listing 4.2 on the facing page is an implementation written
in C by the Polish security researcher, Rutkowska. These lines are one of the results
from her “Red Pill project” [Rutkowska, 2004], and is one code example able to
detect if the operating system is running in a virtual machine or not3.

3There are some limitations, but the listing is just meant as an example to show what kind of
methods available for detecting virtual environments.
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1 int swa l l ow_redp i l l ( ) {
2 unsigned char m[2+4] , r p i l l [ ] = " \ x0f \x01\x0d\x00\x00\x00\x00\

xc3 " ;
3 ∗ ( (unsigned∗)&r p i l l [ 3 ] ) = (unsigned )m;
4 ( ( void (∗ ) ( ) )&r p i l l ) ( ) ;
5 return (m[5] >0xd0 ) ? 1 : 0 ;
6 }

Listing 4.2: C code returning a non-zero value if a virtualized environment is detected.
The details of the code is not important, and the importance of the figure is to observe
how easy (in lines of code) it can be to detect a virtual machine. Only a few lines of
carefully selected code is necessary for a detection [Rutkowska, 2004].

Dynamic analyses might fail if a sample has a Red Pill implementation, or similar,
in its core that halts the sample if a virtual environment is detected. Static analysis
and on demand virus scanning on the other hand do not study the programs
while running, so such anti-debugging methods are not a problem for these phases.
Software may try to avoid reverse engineering techniques to protect its own code,
and is often applied due to software licenses and anti-piracy [Gagnon et al., 2007].
Except for this, there are few reasons for a legitimate program to look for a
debugging environment. Therefore, anti-debugger code stubs are good indications
of a malicious sample that alters its normal flow depending on what kind of
environment it is running in.

4.7.3 Scalability issues
The large amount of discovered malware, together with the increasing level of
sophisticated functionality makes the fight against malware complex and tough.
Days or weeks of analysing could be required to deduce the functionality of a
program, and it is difficult to estimate the value of an analysis before seeing the
actual results. When performing a dynamic analysis manually, the analyst may
for that reason be required to prioritise samples above others due to limited time
available. Important samples will be skipped due to this fact, and can result in
severe consequences depending on the actual importance and danger of the sample.
Automating more of the tasks during dynamic analyses is a possible method to
increase the ratio between analysed and skipped samples.
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Chapter 5

A Malware Analysis Scenario

To understand choices made later in this thesis, an analysis scenario of a suspicious
sample is given in this chapter. The scenario also helps the reader to familiarise
with the structure and execution of a malware analysis by presenting a practical
case. Additionally, results found in the scenario are used for measuring tests results
of the final system. The test results are located in Section 9.4 on page 108. The
scenario does not cover all possible ways of doing an analysis, but is merely an
example of one. Task automation is one of the possibilities to reduce time spent in
an analysis, so the chapter includes discussions about automation of tasks where
appropriate.

The chapter contains a description of the general setup and physical deployment
of the analytical environment, and continues with an analysis of the two first phases
in a malware analysis: the surface scanning and the dynamic analysis. The last
phase, which is the static analysis, is not the focus for this thesis, and consequently
excluded from the scenario and chapter.

5.1 Initial setup and environment overview
The system setup is similar to the practical example shown in Figure 4.1 on page 43,
using a Windows XP based “victim” machine, and an Ubuntu Linux based router.
The malware is executed on the victim machine, hence the name. Events such
as registry changes and file modification are observed locally on the same victim
machine. Network traffic is observed at both machines, but remote communication
requests from the victim machine are trapped at the router, making the victim
machine unable to contact other machines.

The victim machine is a virtual machine located in the same computer as the
router, making administration and setup easier than introducing an additional phys-
ical machine. A virtual machine offers valuable properties as seen in Section 4.1.3
on page 44, and makes it easy to revert to a clean state using a stored system
snapshot. Virtualization software by VMware is used for this task reasoned for by
the same causes this thesis’ preliminary project did [Krister, 2008]; (1) the software
must support a job automation interface, and (2) the software should be stable
and properly tested.

A network interface having full Internet access is enabled on the router. The
virtual machine (victim) has no access to this interface, but instead a separate
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interface that is set up on the router dedicated for the virtual machine. This network
interface uses a fixed IP subnet and is created for unique use in the scenario. By
using router software, the interfaces can be connected so certain network traffic
from the malware network interface is able to pass through out on the Internet.

The sample to be used in the scenario is obtained from the web page http://
www.offensivecomputing.net, which has a large database of discovered malware.
An infected sample spread by the well known Asprox botnet, a successful botnet
that utilises SQL injection vulnerabilities [Provos et al., 2009], is fetched from their
web page and used as a subject for analysis in the scenario. The reason for choosing
an Asprox sample is its representation of malware as complex software, and its
ability to clarify the difficulty of concluding a malware analyses a correct threat
level.

5.2 Surface scanning
The surface scanning phase consists mostly of automated tasks [Wedum, 2008], but
the scenario ventures through the phase as they were done manually.

5.2.1 Generating and comparing hash sums
First, hash sums of the samples are made. The programs md5sum, sha256sum
and sha512sum are used to make unique hash sums on the sample. The most
prominent visible difference from them is the output string length (hash), which
are respectively 128, 256 and 512 bytes. In addition, their level of security varies,
but that is not important in this context. The output is shown below.

$ md5sum asprox . exe
1311 f650aa1209a3ec962b6a9a38fc98 asprox . exe

$ sha256sum asprox . exe
9885504 c9d21193735adbb1f8c9cb53e
9 c044d0fb0f9449df12bbe537820838a asprox . exe

$ sha512sum asprox . exe
0 f0ca f930 f ea5 fb5d7 f3 f 2750e38d740
c29bf205934e6cce5accbb50b9cda683
9202 b5b7bde8cdf87259ec91afe125c9
6041 e87a3f0ee64826cb191872fd654e asprox . exe

If any of the hash sums are found in an previously completed analysis, the sample is
already analysed1, and the process is complete. The task is trivial to automate and
analysts can easily arrange automatic hash sum generation on uploaded samples in
their analysis systems.

1Basing results on up to three three distinct hash generation algorithms makes hash collisions
very unlikely to happen [Biham and Chen, 2004]. A collision occurs when a hash algorithm
outputs the same hash for two distinct files.
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5.2.2 Antivirus coverage testing
Assuming the hash sums are not already known, the analysis process continues.
The opinion antivirus vendors give the sample is at this time valuable. That is, if
the vendors consider the sample harmful or not. Antivirus checks are performed
using a multiple of antivirus products from different vendors, since the opinion
from one vendor is not necessarily the correct one. The implemented result from
this thesis’ preliminary project was a program made to automate antivirus scans by
a multiple of antivirus programs [Krister, 2008]. The program is called vmcom, and
can initialise concurrent antivirus scanning from different products using virtual
machines. vmcom is used in this scenario using ten different antivirus products to
scan the sample automatically. Aggregated results are shown as comma separated
columns in Listing 5.1. Column two displays any threat found by each product,
where “0” means no threat found.

$ . /vmcom. p l −−scan /tmp/asprox . exe
PRODUCT, THREAT FOUND, INFO,ERROR
Avira AntiVir , 0 ,0 ,0
AVG Free , −1,Error , 1
Panda Engine 1 . 4 . 3 , 0 ,0 ,0
ClamWin , 0 ,0 ,0
BitDefender Free , 0 ,0 ,0
Kaspersky Anti−Virus , 0 ,0 ,0
F−Secure AntiVirus , −1,Error , 1
ESET NOD32, probably a var i ant o f Win32/Agent .NEQ

tro jan , 0 , 0
Trend Micro , Mal_Asprox , 0 , 0
Avast Pro f e s s i ona l , Win32 : Agent−GPS [ Trj ] , 0 , 0
McAfee , 0 ,0 ,0

Listing 5.1: Aggregated results from an antivirus scan by ten different antivirus products.

The results show that using a multiple of antivirus products when scanning are
essential for the check to be of any worth. Only three of total ten antivirus products
are considering the sample harmful (detection coverage = 3

10 ), even if the sample
had existed for some time—and should be picked up by the various antivirus
signature databases. However, not all of the virus definition databases were up to
date with the latest signatures during the execution, and two of the products refused
to scan the sample due to expired software licenses (leading to two “error”s in
the results). Handling these issues would probably increase the detection coverage,
but it is not vital in this scenario. It would be however, during an actual analysis
where all antivirus software must be up to date to allow analysts using leading
edge opinions from the different vendors.

One of vmcom’s key requirements was to allow an easy integration to exist-
ing analysis systems, so automating the antivirus coverage testing is already a
straightforward task.

5.2.3 Find string data
Files contain readable text (strings) even if they are in binary form [Schultz et al.,
2001]. While the binary data is most interesting during the static analysis, readable
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text is still relevant during the surface scanning. Valuable information is gained by
listing string data such as API calls, XML data and even IP addresses. Analysing
structure of API calls can help the analyst to deduce the overall functionality of the
sample. XML can contain interesting values, words or structure, and IP addresses
can be used to signify which host(s) the malware tries establishing a connection to.
API calls are used to deduce functionality done locally, which can be file system
modification, observing processes or any other functionality related to the local
operating system.

With assistance from the free program GNU strings, shipped with most Linux
distributions, locating text data in files is a trivial procedure. However, on the
current malware sample, the output from GNU strings is mostly unreadable for the
human eye—even when the data is plain text. The output is shown in Listing 5.2,
where the first running of GNU strings counts the amount of lines found (using the
program GNU wc (word count)), while the second lists the actual output. Comments
added are started with a hash sign (#).

$ s t r i n g s /tmp/asprox . exe | wc − l
802

$ s t r i n g s /tmp/asprox . exe
This program cannot be run in DOS mode .
Rich
TVtI
. t ex t
‘ . rdata
@. data
. r s r c
jH :L
$X A
h ( !A
$P !A
$x !A
$D‘ ‘A
$t ’ ’A
$t#A
Y_^[
# Around 750 l i n e s o f more g i b b e r i s h are removed here

# API c a l l s f o l l o w s
memcpy
f r e e
mal loc
f c l o s e
fw r i t e
fopen
strncmp
memmove
s t r l e n
# End of API c a l l s

Listing 5.2: String content of the sample used in the analysis scenario. The listing is shown
to display the few readable strings that are present in the sample.
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Only a few API calls are possible to parse from the sample file. The reason for lacking
intelligible strings may suggest the sample is packed or otherwise obfuscated [Lyda
and Hamrock, 2007]. In the current case, the few API calls shown in clear text
are most certainly methods used to decompress and/or decrypt the content during
running time. Automating execution of GNU strings can be easily accomplished,
and is available in sandbox solutions discussed in Section 4.1.5 on page 45.

5.2.4 Packer information
If the sample is packed and/or encrypted, the analyst benefits from this knowledge
since it definitely should raise a warning signal. PEiD is a program used to detect
packer technologies commonly used by PE-based malware. Using PEiD on the
sample shows “Microsoft Visual C++” is used to pack the sample. If necessary,
the analyst can use this information in a static analysis to unpack the sample and
locate the actual instructions. A recursive packing or encryption can be applied
below the first level of compression, to further complicate the de-obfuscation process.
A screen capture of PEiD’s results is shown in Appendix B.

5.3 Dynamic analysis
It is important to be aware of the danger of running an Asprox sample, and the
possible consequences to the system and network if it is not handled properly. This
is especially true during the dynamic analysis, where the sample’s effects to the
system and the environment are observed while it is running.

The victim machine is now used for the first time in the scenario. A clean install
of a Windows XP operating system is installed as a virtual machine. The scenario
does not describe how to install the OS, and the documentation from VMware
should be used to study the installation details if necessary.

Generally, to be as protected from vulnerability exploits as possible, all security
patches should be installed. However, for the current scenario, it is preferable to be
unprotected. This allows malware that targets a specific vulnerability to discover
the weak point. It is still one important issue to consider concerning patching
or not, namely the single path execution problem discussed in Section 4.7 on
page 49. Applying security patches change the operating system environment, and
malware terminating its execution when the environment is not as it expects is
common. Of course, this also applies the other way around. The malware may
just as possible target a specific patched version, as new program updates can
introduce new vulnerabilities [Lippmann et al., 2002, section 4]. The system is kept
non-patched as the gain from patching the system is unknown, and it is a larger
probability a non-patched system is vulnerable than an updated one [Arbaugh
et al., 2000].

Prior to running the sample, key applications are installed on the operating
system. Two of the programs that were explained in Section 4.5 on page 48,
ProcessExplorer and TCPView, are installed and set to monitor respectively
running processes, and network events on the victim machine. Wireshark is installed
on the router and set to capture traffic going through the dedicated network
interface.

Many Internet services rely on the DNS protocol to work, so such traffic is
accepted through the network and forwarded on to the Internet. Additionally, it is
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Host name Maps to IP address
203-174-83-75.rev.ne.com.sg 203.174.83.75
ha-42.web.de 217.72.195.42
www.web.de 217.72.195.42
www.yahoo.com 69.147.76.15
ns.uk2.net Expired

Table 5.1: Host names contacted by the sample during the scenario. Their IP address
mappings at the time of writing (2009-05-26) are shown in the second column. ns.uk2.net
has an expired mapping.

possible the malware halts if an Internet connection is not found if the malware
requires remote communication. Therefore, if the malware requests a particular
service remotely, more traffic should be allowed to pass the router barrier. Several
solutions can be used for the purpose, but the iptables IP filtering software
is selected since it ships with most Linux distributions, is open source, and has
all the functionality needed. iptables is based on command line functions so
an executable batch script is created. See Appendix C for the script used in the
scenario.

When all programs are set up, the sample is executed. Immediate action is seen
on all observation points, and a summary is shown below.

5.3.1 Connection attempts
Several attempts of establishing connection to hosts are made, but the iptables
script is currently denying the attempts out on the Internet. The malware initialise
the connection using fixed host names, and by observing their respective domain
suffixes, they seem to belong to hosts in Singapore (.sg) and Germany (.de).
The malware also attempts to contact the Yahoo web server. The host names in
Table 5.1 are looked up using standard DNS queries, which are allowed by the
iptables script. Their IP address matches at the time of writing are shown in the
right column in the table. A screen capture of Wireshark while actively monitoring
the virtual machine’s network interface is shown in Appendix B.

5.3.2 Processes
The sample created a system service named aspimgr.exe, and inserted it into the
operating system together with the other running operating system services. The
service listened on port 80, which is usually a port used for web traffic. Attempting
to connect to this service was tried using raw TCP connections with help from
netcat and telnet. However, the service did not reply on the attempts, and it is
possible the new system service waits for a particular TCP sequence, a concrete
source IP address or another hidden event that is hard to deduce from a dynamic
analysis.

5.3.3 File system changes
During the observation of network traffic, the sample file had already done a handful
of API calls and file system operations. Process Monitor picked up 2082 events
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spanning from opening files, creating new files and deleting files. The sample scanned
for FTP login credentials in common files created by the CuteFTP programs, and
was the most obvious suspicious operation observed. The executed malware sample
deleted itself by creating and running a batch script after it successfully created the
aspimgr.exe service. Monitoring the new system service process, around additional
1000 file system events were found, including ongoing process profiling, and reading
and writing a binary file called s32.txt which was written to the main Windows
operating system folder. After a couple of minutes after the process’ creation, it
started looking for other files with similar names as s32.txt, but none of these
files existed. A theory is by using the server listening on port 80, an attacker could
create the files searched by the service and populate them with any (malicious)
instructions. However, that is just a speculation and a possibility, and due to the
binary file format hard to find out in a dynamic analysis.

5.3.4 Changing routing
Manipulating a particular file2 on the victim machine makes it possible to fool
a DNS query and spoof the corresponding IP address. Inserting the router’s IP
address for the hosts earlier shown, makes the malware send traffic to the router
instead of the host’s actual IP addresses.

To be able to fetch the data, and respond to the connections, a server listening
on the particular port must be set up. Again, the program netcat is capable of
exactly this, and is used for the purpose. The malware issued several connection
requests, having invalid data that netcat was unable to parse properly. It is possible
that the sample sent malformed network packets, but analysing the traffic further
is out of the scope for this thesis.

5.4 Reflections
By using a practical example, the scenario has shown that analytical techniques
can assist deducing the functionality and behaviour from a (malicious) sample.
Surface scanning is a quick process that indicates valuable information for the rest
of the analysis, such as feedback from antivirus software. The surface scanning also
ensures the sample is not previously analysed.

The dynamic analysis phase is more complex and non-deterministic. The en-
vironment where the sample runs is monitored for suspicious activity, but it is
vital the analyst remains in control the entire execution period. How the phase is
structured, and which tasks to apply varies on how the analysed sample operates,
and can differ significantly from time to time. The scenario shows the analysed
sample’s search for login credentials in the file system, and its connection attempts
to a set of host names. However, this is not necessarily the sample’s main goals. It
is possible the analysis missed one or more important triggers. These triggers might
have led to a different program flow than the observed execution. If the sample is
utilising anti-debugging checks, vital triggers are likely to be missed in a dynamic
analysis.

2The file c:\windows\System32\drivers\etc\hosts is a flat file containing host-to-IP ad-
dresses. Thus it acts as a very small static DNS database. DNS queries from the local machine
search this file before asking remote DNS servers, and if a match is found, a host-to-IP mapping
is assumed to be correct [Hare and Siyan, 1996, chapter 1].
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It is difficult to guarantee a complete deducing of the sample’s functionality based
on information from a dynamic analysis phase, but for many cases, a dynamic
analysis is valuable and sufficient. Some cases must continue the analysis with a
static analysis, where the binary code is reverse engineered, making it possible to
guarantee to observe the entire program flow if sufficient resources are available.
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Chapter 6

Concretisation of the Task

This chapter contains an interpretation of the problem description and narrows it
down to make it more specific. An in-depth study of which properties a system
that can reduce necessary human intervention in a malware analysis is carried out.
The chapter decides, in particular and at a general level, what the system does,
and why this is chosen. More concretised requirements for the system are found in
Chapter 7.

The chapter first presents related work in the field of automatic malware
analysis, and flows by describing a set of possible problems to solve with a new
system implementation. A selection of these approaches is then made based on a
prioritisation. To be able to finalise the selected approach using the limited time
available, existing software solutions must be utilised; the chapter therefore follows
with a survey of software that can assist the realisation of the system, and presents
which of these that are in use—and why. The chapter flows by presenting a detailed
description of Zero Wine, which is a central part of the final system. The chapter
ends with a brief summary of the selections made in the chapter.

6.1 Related work
Automating malware analyses are vital to keep up with the prevalence, and increase
of complexity in malware. This section covers techniques and published research
about automation of analyses, where focus is kept on processes linked to the
dynamic analysis phase.

Bohne [2008] suggested an automatic way of uncompressing files packed using
packing technologies. A prototype called “Pandora’s Bochs” was developed that
is able to monitor running, initially compressed, processes and automatically save
the decompressed version from memory as soon as it is unpacked.

Brumley et al. [2007] published research that shows how to detect conditional
execution flow in malware automatically, and how to find inputs that manipulates
the triggers. Conditionally executions, also called “trigger-based behaviour”, is
explained in Section 4.7 on page 49. A prototype called “Minesweeper” was created,
and works on binary programs. It is able to manipulating the triggers automatically,
forcing malicious behaviour from these binary samples.

Another approach is proposed by Yin et al. [2007]. The authors designed the
“Panorama” system, which is able to detect malicious behaviour in running programs
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based on what they call “sharing of fundamental characteristics”. The characteristics
are patterns commonly seen in the observed programs. The approach is similar to
the heuristic scanning techniques found in antivirus products.

Singh et al. [2004] published similar research, and proposed an automated
approach for detecting previously unknown malware. That is, automating the
generation of signatures when new suspicious software is detected. The authors
base the design upon two key behavioural characteristics: (1) a common exploit
sequence found in malicious software, and (2) unique sources that generate infections,
together with destinations being targeted.

Another approach is suggested by Li et al. [2008b]. The authors developed
the system “AGIS”, which is able to detect new malware infections by monitoring
sample’s behaviour in a controlled environment. Upon detection, the system is able
to generate a signature automatically. The signature generation is similar to an
antivirus signature, which is usually created in a manual process.

An completely different angle was suggested by Kim and Karp [2004]. The
authors developed a prototype called “Autograph” able to automatically generate
intrusion detection (IDS) signatures for the Bro IDS. The explanation of intrusion
detection systems is deferred until Section 6.2.3 on page 67, but IDSes cover several
hosts concurrently and look for suspicious activity in network external data or
internal traffic for each host. The generation is based upon TCP transport content,
and the signatures are generated by analysing payloads in the traffic content—
looking for specific suspicious network flow. The generated signatures are heavily
based on payload found in malware, and not the data traffic’s source or destination.
The observation part of the approach is similar to what is seen in antivirus products.
However, while an antivirus product usually observes one host, Autograph uses
IDSes to observe an entire network.

Another version of the prototype, “Polygraph”, is using the same design but
with an improved the signature generation for polymorphic malware [Newsome et al.,
2005]. A polymorphic technique is a way of mutating malware, and is explained in
Section 2.4.6 on page 21. The Polygraph application collects specific substrings
from the polymorphic malware that is known to be alike in the different variances
of the malware, and gives fewer false negatives than its predecessor Autograph.

Kreibich and Crowcroft [2004] describe “Honeycomb”, a system that gathers
suspicious traffic sent to hosts that are assumed to receive no legitimate traffic. All
traffic to such a system, called a Honeypot, is considered suspicious [Spitzner, 2003].
Signatures are automatically generated based on pattern matching techniques and
similarities in the different network communication protocols from the observed
traffic data.

Hsu et al. [2006] have designed a framework to remove malware from a system
while preserving complete system integrity; no undesirable side effects are made by
removing the malware. The framework utilises system log files to reverse (malicious)
actions applied by malware.

Sandboxes are software using techniques to restrict executions of applications
in a controlled environment [Prevelakis and Spinellis, 2001]. There exists a multiple
of sandbox solutions, some of them already supporting automated execution and
analysing of samples with extensive report generation. The sandbox phenomena is
a frequently used method in dynamic analyses, but a discussion is not repeated as
Section 4.1.5 on page 45 is dedicated to the topic.
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6.2 Available approaches
According to RG.04 (the fourth result goal), the implemented system shall auto-
mate one (or more) dynamic analysis tasks. However, how, or even which task(s)
are currently not decided. Therefore, prior to drafting a design for a new system,
an interpretation of the problem description must be made; the interpretation is
presented in this section. The relevant part regarding automation is quoted from
the problem description and shown below.

The student is free to automate any analysis process that is regarded
dynamic, but it would be preferable if the information gained from the
automated analysis is actionable. That is, the information gained is
directly useful for handling the particular incident(s) where the malware
is involved.

The last half of the above quote can be ambiguously interpreted, so a concrete
interpretation is made. Representatives from NorCERT defined “actionable infor-
mation” as data that effectively can be used to handle incidents regarding malware.
An incident is a violation or imminent threat of violation of computer security
policies, acceptable use policies or standard security practices [Scarfone and Mell,
2007].

An incident is usually a reported case or an observed event where there is reason
to believe malware, compromised hosts and/or cyber crime is involved. Incidents
can be malicious, but does not need to be. A person can as an example, accidentally
type the wrong host address and attempt to connect to a different system than
originally expected without authorisation. Such an action is not malicious, but is
still considered an incident.

One additional important part of the problem description is about NoCERT’s
malware analysis environments, and is quoted below.

The project may optionally look into integrating the final system with
NorCERT’s internal system for handling malware samples.

Available approaches are prioritised having integration with NorCERT’s internal
system in mind. However, look into is emphasised, and the integration with the
internal system is to be delivered as a draft, and not implemented.

Three approaches, having a varied level of actionable output, are presented
below. The approaches shown are having the following three characteristics: (1) the
approach is believed to be useful in a dynamic malware analysis, (2) is feasible
with the given time limitations, and (3) does not prevent the fulfilment of stated
result goals. It is believed to be other possible approaches, but the shown ap-
proaches are considered a sufficient amount of options. Not everything from all of
these approaches can be implemented due to time limitations. For that reason, a
prioritisation of the approaches is performed in Section 6.3 on page 72.

6.2.1 Further development of sandbox solutions
Following Section 4.1.5 on page 45, one of the tasks subject to automation is
implementing a sandbox solution able to run locally. Realising a new standalone
sandbox solution is feasible, but it is already done several times before and the
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sandbox concept has existed a long time. However, since the list of publicly available
sandboxes is far from extensive, a new sandbox with an open source license can
give the sandbox community a non-commercial competitor. This is, however, not
sufficient in this case, and producing a new sandbox solution is not chosen for the
following reasons.

• A handful of available sandbox solutions already exists, including at least one
publicly available solution (Zero Wine) licensed under the General Public
License (GPL)1.

• The existing sandbox solutions available are complex pieces of software
developed by dedicated large teams with a large amount of resources available.
The possibility of any breakthrough or massive improvements from this thesis
is thus slim.

It is however possible to improve one or more existing sandbox solutions available,
and at the same time look into an integration with NorCERT’s internal system for
handling malware samples. Such an approach avoids starting a sandbox development
from scratch, and instead utilises work and best practice methods from existing
sandbox systems. The improvements can be given to NorCERT in source code so
any requested changed could be applied whenever needed.

6.2.2 Antivirus coverage testing during dynamic analysis
Further improvements on this thesis’ preliminary project is possible. That is, further
developing on the implementation delivered at the end of the project (vmcom) [Kris-
ter, 2008]. Malware today is often camouflaged, packed and/or encrypted, as
discussed in Chapter 2. This shell of “protection” is frequently modified by manipu-
lating internal encryption keys, packing algorithms or similar procedures, effectively
evading detection. Antivirus applications are heavily based on signature based
scanning. This means, prior to be able to recognise threats, a set of signatures
must be loaded into the antivirus application for each threat to recognise. For that
reason, an antivirus application might falsely consider a camouflaged malicious
sample safe since it is currently not having signatures for the camouflaged variant
of the malware.

A compressed executable unpacks, in most cases, its content before its real func-
tionality is exposed to the system. Consequently, at some point during execution
of a sample, its content is stored as de-obfuscated form in memory [Christodorescu
et al., 2006]. The de-obfuscated sample is more easily detected by an antivirus
application than obfuscated versions since it is in the original form of the mal-
ware [Royal et al., 2006]. A possible approach is therefore an automated antivirus
scan on unpacked files and all de-obfuscated content as soon as they become
available in an analysis. Additionally, all newly introduced files whether they are
downloaded by the malware or simply spawned from the original sample can be
checked automatically. By utilising the vmcom system that is already implemented
in the thesis’ preliminary project, an arbitrary amount of antivirus products can be
automatically instructed to scan these files. The results could be aggregated and a
report created to get the opinion from a multiple of antivirus products. However,
there is one issue to consider shown below.

1See http://www.gnu.org/licenses/gpl.html for more information.
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• Analysts are working in their own environments, using their own virtual
machines, hardware snapshots, tools and operating systems. Implementing
a solution able to properly observe all file creations and similar low level
functionality could be difficult without assuming a particular type of analytical
environment.

6.2.3 Generate signatures for network intrusion detection
systems

Intrusion detection systems (IDSes) are software and/or hardware used to detect
unwanted activity by monitoring and analysing events in a computer system or
networks [Scarfone and Mell, 2007]. An IDS is usually able to record and store all
information gathered in the process. Additionally, most IDSes collect and aggregate
the potential large amount of information and produce clean reports periodically
based on the collection. An IDS can cover a large set of hosts and can use traffic
sensors to cover thousands of hosts concurrently. An IDS can also be more fine
grained, focusing on one single host and its corresponding applications and running
processes. However, all IDSes observe suspicious behaviour.

IDSes are limited to probing an asset and analyse the data, and do, by definition,
nothing to directly prevent any suspicious behaviour. An IDS consists of a sensor,
which is observing the network traffic and triggers alerts based on the observations.
The sensor can be a regular computer with IDS-software, but just as well be a
device with specialised hardware. A normal computer is usually the cheapest, while
special devices can claim better performance. Different methods for observing
traffic are available, where the most prominent are described below [Sanders, 2007;
Tanenbaum, 2002].

Using hub-based networks

A hub is a repeating device that connects machines together in a network. Incoming
traffic to the hub is sent to all connected machines, and since it is in most cases
one single machine that expects the traffic data, a large quantity of unnecessary
traffic is generated. Even if hubs suffer from this bandwidth problem, it is a positive
property when observing traffic; it is easy to plug in the IDS in an available port
on the hub. The IDS can then observe traffic to and from all other hosts connected
to the hub. However, due to hubs’ bandwidth problem, the devices are now rarely
used.

Using switch-based networks

Switches are similar to hubs, but keep an internal table over connected machines to
ensure traffic are sent to one, and only one, machine (the receiver). The table maps
machines’ IP addresses and media access control (MAC) addresses. The IP address
scheme is used as addressing in the network layer from the OSI-model [Zimmermann,
1980], but the layer below, the data link layer, uses an addressing scheme called
MAC. A MAC address is a 48 bit long address uniquely given to hardware interfaces
on a network [Tanenbaum, 2002]. The switch keeps track over machines by mapping
the addresses in the two layers and ensures traffic is not wastefully duplicated in
the network. For that reason, observing traffic through a switch is more difficult
than in a hub, but some switches can be configured to have a spanning port that
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all traffic is mirrored to. The spanning port is a particular port on the switch that
receives traffic to and from all other ports, just as in a hub. If the spanning port
does not have sufficient bandwidth to cover the combined traffic in the switch, the
switch may be dropping packets if its capacity is reached.

ARP cache poisoning

The mapping between IP and MAC addresses internally in a switch is carried out
using a protocol called ARP. A computer can receive another computer’s traffic
by forging the other machine’s MAC address and publish the false information
repeatedly to the switch [Welch and Lathrop, 2003]. The switch stores the mapping
in an expiring cache, but the mapping remains in an incorrect state even when the
data is expired, since the attacker repeatedly publishes false ARP data. This is
called ARP cache poisoning, and is an attack commonly used in man-in-the-middle
attacks [Gu and Hunt, 2005]. If a computer runs a cache poisoning attack on the
switch with a forged MAC identical to the router in the network, all network traffic
going to the router ventures through the attacker’s machine, and can be observed.
Forwarding the traffic to the router makes it hard to detect the irregularity. This
is a man-in-the-middle attack, but is in this case used for a legitimate purpose in a
network.

Using a router

Routers are similar to switches and the technology is located in the same OSI
model layer as switches. A router is however, a more advanced device for forwarding
network packets, used to connect different logical subnets in a network. Everyone
with administrator privileges in a router can easily monitor all the traffic venturing
through the device, and ready-to-use applications structuring and listing traffic
flow are already available for free download.

Similar systems as IDSes with the additional capability to stop suspicious events
are called intrusion prevention systems (IPSes). An IPS is an IDS blended with a
firewall [Zhang et al., 2004], but the prevention capability of an IPS force constraints
upon its physical deployment. It is not sufficient to simply tap the network traffic
as with an IDS, but the flow in the network must venture through the IPS host
so certain traffic can be dropped. Deploying the IPS system in (or as) a router
device is sufficient to be able to drop the unwanted traffic. See Figure 6.1 on the
facing page and Figure 6.2 on page 70 for an example of network based2 IDS and
IPS architecture, respectively. The figures show a firewall outside of the IDS/IPS
sensor, enabling a course grained filtering. Coarse-grained filtering drops traffic that
is obvious unwanted, allowing the IDS/IPS sensor to better utilise its CPU and
memory capacity. Firewalls use CPU and memory at a very low rate compared to
an IDS/IPS. The figures also show a management server connected to the IDS/IPS
device. This server is used as a dedicated entry point to the IDS/IPS device to
prevent non-authorised users from gaining entrance.

Signatures are used the same way for intrusion detection whether the traffic
is stopped. Therefore, the physical deployment of the systems are not important

2There are several types of IDSes, but the network type is most relevant for this thesis. Read
more about the different types of IDSes in Section 6.4.1 on page 73.
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Internal network

Remote networks

Firewall Coarse-grained filtering

Switch Internal network traffic forwarding

IDS sensor Analysing network traffic

IDS-management

Figure 6.1: Example of an IDS architecture. The IDS sensor is connected to a spanning
port on the switch. All traffic to the switch passes through the spanning port. The IDS is
then able to analyse traffic to and from all sources. The IDS observes and analyses the
traffic, but does nothing to actually stop it. The IDS management is a dedicated server
to manage the IDS sensor.
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Internal network

Remote networks

Firewall Coarse-grained filtering

IPS sensor Analyses network traffic
Fine-grained filtering

Switch

IPS management

Figure 6.2: Example of an IPS architecture. The IPS sensor is deployed as a router so
all remote traffic must pass through it before entering the internal network. This allows
the device to deny any non-wanted traffic entrance to the internal network. The IPS
management is a dedicated server to manage the IPS sensor.
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when generating signatures, as a signature is meant primarily to detect traffic. For
this reason, this thesis does not distinguish between the two different IDS/IPS
approaches. An IDS solution suffices for the final system, so “IDSes” is the term
used to refer to the appliances observing traffic and detecting suspicious behaviour
in a network.

Pattern based signatures are used to filter out requested information from
observed network data. Filters can be set to fields such as IP addresses, or specific
protocol types. As an example, the pattern “find all network traffic between the
dates 2009-01-01 and 2009-01-31 from source IP address 200.200.200.0 with
destination port 53 using the UDP protocol” might be structured as an IDS
signature. The syntax used for signatures varies for the different IDS solutions, but
the idea is nevertheless the same. The signatures can thus be used as an advanced
search mechanism on a huge quantity of data.

Utilising IDS signatures during dynamic analyses

As discussed in Chapter 2, malware is often dependent on Internet access for its
malicious actions, either it is to signal home or multiply itself. Malware can spread
to a large set of hosts, and the software struggles to avoid malware analysts to
continue its malicious actions without interruption. To be able to repair or disable
hosts that are infected, these hosts must be identified and localised. However, as
seen in previous chapters, malware tries to camouflage its existence to remain
undetected; and it is difficult for analysts to localise machines that are infected.
This is particularly true for unknown and alien malware, as their functionality and
behavioural patterns are not necessarily known. Analysts are for that reason not
aware of exactly what what to look for, and estimate the prevalence of the outbreak
of the malware is difficult. In the worst case, an entire network of hosts are infected
without anyone being aware of the threat.

The functionality in a malware type tends to remain the same, even if the mal-
ware might frequently mutate its appearance. By utilising the power from existing
IDS solutions, an analyst can observe an entire network of hosts. Combining this
power, with the fact that malware rarely changes its functionality, one can gather
vital characteristics from a malware sample’s network communication behaviour,
and create an IDS signature. By using the generated signature in an IDS, analysts
can find hosts that have the same (or very similar) communication patterns.

Consider a new malicious sample is executed in a sandbox environment during
a dynamic analysis. During the execution, the sample tries to initialise remote
communication with a host using an IP address or a DNS host name. The sandbox
catches the remote communication attempt, and key information about the con-
nection is filtered out. Using this information, a signature is created to find similar
events in any network observed by an IDS. In an IDS-observed network, the scale
of the infection can then easily be found using the generated signature to filter
out machines matching the same connection patterns. However, the process can be
automated, which reduces the necessary human intervention.

CERT teams often use IDSes in their infrastructure, covering network spanning
large geographic areas, and machines connected to vital networks. For CERT teams,
a signature able to recognise possible infected hosts can help tracing down infected
clients and eventually the source of infection to properly mitigate threats exposed
by the malware.

71



Chapter 6. Concretisation of the Task

Further development of sandbox solutions
Creating a new, or improving an already existing sandbox solution is feasible,
but not an optimal approach. Instead, integrating best practice methods from
existing sandbox solutions into NorCERT’s malware analysis environments is a
more suitable approach for this thesis.

Antivirus coverage testing during dynamic analysis
Forcing automatic virus checks on new files that appear during an analysis is a
positive functionality for an analyst, and the work from the preliminary project
for this thesis can be used as foundation for the approach. However, due to large
differences in the analysts environments, this is not an optimal approach and is
not selected as a problem to solve.

Automating signature creation for IDSes
IDSes play an important role for analysts, especially in CERT teams. The
IDSes are monitoring large Internet segments that have large numbers of hosts.
Working with NorCERT, which has numerous IDS sensors monitoring traffic
across Norway, makes the signature creation an excellent choice as analysts more
easily can get an overview over potential malware outbreaks with the generated
signatures.

Table 6.1: Summary of discussed approaches.

6.3 Selecting an approach
The previous section presented three possible approaches, but due to the time
constraints in this thesis, it is not feasible to implement everything from all of the
approaches. The approaches and their corresponding weaknesses and strengths are
already discussed, but Table 6.1 is shown as a summary. A prioritisation of the
approaches is made, based on the following characteristics.
• The approach is believed to reduce time spent during dynamic malware
analyses,

• it is believed to be feasible with the time available,
• it is actionable,
• it is innovative, and
• it can be integrated into NorCERT’s internal analysis system.

The first two approaches presented have issues that are presented together with
the corresponding approach. The first approach is not particularly innovative, and
the time required for realising a usable sandbox application is significantly more
than is available during this master’s thesis. The second approach is innovative
and actionable. However, it is likely the approach is not very usable as it must
assume too much of an analyst’s environment. Analyst’s environments are subject
to frequent changes.

The last approach, automating signature creation for intrusion detection sys-
tems is, due to the mentioned reasons, of overall best current interest. Additionally,
the first approach is partly implemented together with the signature generation.
However, an entirely new sandbox solution is not realised. Instead, selected func-
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tionality from existing sandbox solutions is integrated with the system, making it
unnecessary for an analyst to run two distinct sandbox solutions when analysing
a sample. The last approach, and parts from the first, is therefore taken further
to a requirements elicitation of a new system. Combined, the approaches base a
system that is “actionable”, by loading the generated signature in an IDS, and
can reduce time spent in a dynamic analysis. Also, the combined solution can be
integrated into NorCERT’s internal analysis system (NAAS) by avoiding a graphical
user interface, and utilising available interfaces to NAAS. A discussion about how
the integration with NAAS is feasible is deferred to 9.6 on page 112. The approach is
innovative by the way signatures are generated. However, these design details are
not decided until Chapter 8, and a discussion about the final system’s uniqueness
and innovative aspects is deferred to Section 10.2 on page 119.

Representatives from NorCERT have approved the suggestion of the approach.

6.4 Selecting products as base
This section covers systems that can be of use in an architecture for automatic
generation of signatures. Implementing the entire signature generation system from
scratch is neither necessary nor practically possible with the available time, so
existing software and/or hardware are utilised. Below is a list of products evaluated
and selected in this section. A particular software and/or hardware solution is
chosen for each of the entries.

1. An IDS product must be selected. However, prior to this, one of three types
of IDS solutions must be chosen, as they differ significantly in their setup
and use. Section 6.4.1 describes and chooses an IDS type to use.

2. An IDS product is used to decide the syntax of the generated signatures.
This is to decrease the amount of manual work required upon a successful
signature generation. By generating the signatures with a predetermined
syntax, the signature can be used by the selected IDS product without any
necessary modifications. Section 6.4.2 on the next page lists IDS products
and chooses one of them to use.

3. To securely run a sample, an environment able to execute malware and
safely restore a clean environment is needed. A sandbox solution fits for the
requirement, but the sandbox should be open source and freely available—
which eliminates most of the available options. Section 6.4.4 on page 77
chooses a sandbox solution to use.

6.4.1 IDS Type
The different IDS types available are differentiated primarily by which level they
observe events. The three most prominent types [Scarfone and Mell, 2007] are each
briefly described below.

Host-based IDSes monitor a single host for suspicious activity. A “host” can
be a desktop computer, server, router or any other device where log files,
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processes, files and/or changes in the configuration are present and can be
observed for changes.

Network behaviour analysis (NBA) IDSes monitor and examine network
traffic to identify threats generating unusual traffic flow. NBA technolo-
gies primarily detects large deviations from the normally excepted behaviour,
and the configuration is updated mostly in a automatic dynamic matter.
Observing the network during a time period where there are no infections
or attacks, might be used as a basis for a normal state in the network. Each
deviation from this normal state might trigger an alarm. NBA IDSes offer
strong detection capabilities for certain threats such as distributed denial of
service attacks (DDoS), but their signature based detection capabilities are
very limited.

Network based IDSes monitor and analyse network traffic in a network segment
to identify suspicious activity. Network based IDSes are similar to NBA IDSes,
but they are more focused on single events. Additionally, using signatures
in network based IDSes are easier to accomplish than in NBA IDSes. NBA
IDSes usually cover a larger set of hosts concurrently than network based
IDSes do, and therefore work on a more overall and course grained level than
network based IDSes do.

NorCERT’s infrastructure is utilising IDSes that monitor a large set of hosts, and
host-based IDSes are for this reason not particularly useful. Since NBA IDSes by
design have limited signature based search functionality, it is not chosen as the
IDS type either. In consequence, the syntax in the signatures is structured for a
network based IDS product.

6.4.2 IDS Product
How the signature files are structured depends on the actual IDS product used; there
are no standardised way of writing IDS signatures [Kreibich and Crowcroft, 2004],
although there have been attempts of deploying a standard using XML [Cansian
et al., 2002]. No details regarding NorCERT’s IDS system(s) are publicly available,
and their implemented IDS product(s) remains unknown. For this reason, exactly
which product(s) NorCERT uses are not taken into account when choosing a
particular product. The final implemented system depends on the selected IDS
product by its specified syntax rules. However, the system is made to allow switching
output syntax to suit another IDS product relatively easy. Therefore, the signature
generator can be changed to reflect another IDS product without too much effort.
The selection criteria for a product are not that strict, and are based on the
following properties. Each criteria is labelled for a referring purpose, and named as
“Product Selection Criterion” (PSC) More concrete and specific requirements are
elicited in Chapter 7.

PSC.01 - Open source Using open source software makes it possible to change
or add functionality wherever needed. By supporting add-ons to be plugged
into the core, adding functionality to an open source software piece is also
relatively easy [Lerner and Tirole, 2002]. Open source software is usually free
of cost, which is highly preferable for software in this thesis. The open source
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communities are strong, and assistance and guides are often available by the
use of forums, web sites and live chat rooms. Additionally, encouraging use
of open source software causes a competition for the commercial solutions
which are often widely used in a monopolised market.

PSC.02 - Deployable without any hardware elements Some IDSes require
specialised hardware elements in their deployment, and buying such (ex-
pensive) hardware elements is not an option. Thus, IDS products requiring
hardware elements other than one, or possibly a couple of working computers
with a network interface must be avoided.

PSC.03 - Network based From the conclusion in Section 6.4.1 on page 73, the
chosen IDS product should be network based.

PSC.04 - Widespread and well known To more easily get assistance if any
problems arise, a well known product with a solid user community is preferable.
This can indicate of how thoroughly tested the product is, and also how well
it is to detect intrusions.

The amount of available IDS products spans a large list, making a product selection
non-trivial. However, due to criterion PSC.03, only network based products
are relevant; all host based and network behaviour analysis IDSes are excluded.
Table 6.2 on page 78 lists a set of network based IDS products, and even if PSC.03
already excluded many products, the amount of products is still significant in size.
Most of the products are commercially licensed and too expensive for this thesis,
sorting out pretty much the rest the products. Additionally, the products in the
list require specialised hardware equipment from the respective vendor, making
them even more expensive. Few products are open source software, making most
of the products fail concerning criteria PSC.01 and PSC.02. Products Bro by
developer Vern Paxson from Lawrence Berkeley National Laboratory, and Snort
by the firm Sourcefire are the two most suitable products regarding the first three
selection criteria and are taken further for a final selection.

Snort and Bro are similar systems. They operate on a normal computer system
that has a network interface, so their environment does not need any necessary
specialised hardware elements. Both products were designed to be extensible
systems, and to be used in high speed network environments [Paxson, 1998; Roesch,
1999]. Their essential functionality is capturing network packets and do content
matching based on signatures to detect network intrusions. While Snort is primarily
signature based and looks for specific traffic content, Bro analyses network traffic
at a higher level of abstraction. Bro records the network history and tries to
understand the context of the traffic. The signatures used in Bro have the potential
to be more advanced than Snort signatures are. Snort signatures are usually a
one-liner, contrasting the long Bro signatures. Developers of Bro have gone as far
as writing a separate scripting language to use when writing signatures. Sourcefire,
the team behind Snort, asserts their flagship product to be the de-facto standard in
intrusion detection systems according to their web site3. Millions of downloads are
registered, and Sourcefire has received a multiple of high value awards and is ranked
among the top quality systems available [Rehman, 2003]. Bro that started out as a
research project, is not that widespread. This has not necessarily anything to do

3See http://www.sourcefire.com/company/ for more information about Sourcefire.
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with its quality, but rather a handful of other factors. Snort is GPL licensed for
users wanting to be on their own, but Sourcefire also offers network security services
for the commercial sector. The Bro community supplies code, documentation and
assistance, but the product has still strong academic roots with non-profit ideas.
This could be one of many reasons Bro is less widespread than Sourcefire’s Snort,
which team has more resources available and is financially driven.

Bro has without doubt more extensive capabilities when creating signatures,
but the automatically generated signatures in the final system are not utilising such
advanced functionality. To generate a signature, only standard fields (IP address
and port numbers) are needed. This is chosen to make the system independent
to the malware’s content; the malware can mutate and change its data payloads,
but still be detected by the same IDS signature. Not using data content as basis
for the signatures also avoids unnecessary complexity in the final system. Snort’s
simplicity therefore surpasses the advanced signature methods available in the
Bro scripting language, and is sufficient for the final system. Both products are
considered to fulfil PSC.04. However, due to Snort’s dedicated signature based
design and its simplicity of writing new signatures [Roesch, 1999] compared to
Bro, it is chosen as the IDS product to determine the syntax for automatically
generated signatures.

6.4.3 Structuring Snort signatures
Snort uses a simple and powerful descriptive language for its signatures. They are
usually not exceeding one “readable line” of length, but will in some cases expand
to multiple lines for fine grained filters. The “header” part of the signature contains
the following fields4.

• Transmission protocol: “tcp”, “udp”, “icmp” or “ip”. The first three signifies
one particular protocol, and the latter all of them.

• Source and destination address: “any”, one particular IP address, or a network
of IP addresses using a netmask as routing prefix. As an example, “10.10.
10.10” signifies one specific IP, while “10.10.10.0/255.255.255.0” (or a
shorter notation “10.10.10.0/24”) means a subnetwork with the netmask
255.255.255.0. Using the bitwise “AND” operation on an IP address and
a netmask, results in the network destination address. So a packet having
the source IP address “10.10.10.65”, its network destination is as shown in
Equation (6.1). Note the conversion of the IP addresses to binary form to
more easily apply the AND operation.

00001010.00001010.00001010.01000001
AND 11111111.11111111.11111111.00000000

=00001010.00001010.00001010.00000000
=10.10.10.0 (6.1)

4How to write Snort signatures can be studied more in detail with the online help documents
found at http://www.snort.org/docs/writing_rules/chap2.html (accessed 2009-04-22).

76

http://www.snort.org/docs/writing_rules/chap2.html
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All IP addresses from the IP address “10.10.10.1” to “10.10.10.255” be-
longs to the particular network shown in Equation (6.1), and will there-
fore potentially trigger alerts in signatures specifying source address as
“10.10.10.0/24”.

• Source and destination port: can be a specific port, a range using “:” as a
separator or all ports using “any”. An example of the first 80 ports is “1:80”,
or just “:80”.

• Action, that is the job to perform if the signature is triggered. The relevant
options are “log” and “alert”, where the first one writes to a log file and the
latter also signals an alert to the IDS.

In addition to the signature header, Snort gives the possibility of tuning signatures
using additional options. The options make it possible to match data traffic content
with the signature, check if the packet has a particular TCP sequence number, and
more. The example shown below logs all traffic to the 10.10.10.0/24 subnet having
a source port above 1024, destination port 55 and TCP flags set to SYN+FIN.
Upon triggering the rule, “SYN-FIN packet” is written in the log file in addition
to the current time, source and destination data. The rule is useless, and is just
stated as a simple example for this section.

l og any 1024 : −> 10 . 10 . 10 . 0 /24 55 ( f l a g s : SF ; msg : "SYN−FIN
packet " ; )

6.4.4 Sandbox product
Prior to selecting a particular sandbox solution, a set of selection criteria are
determined. The criteria are shown below, each labelled as “sandbox selection
criteria X” (SSC.X) for a referring purpose.

SSC.01 - Sample execution The sandbox shall be able to run samples files, and
it must be possible to fetch any results from the execution.

SSC.02 - Clean up The environment where the sandbox runs in shall be cleaned
up after executing the sample, preferably with least amount of effort possible.

SSC.03 - Observing network traffic The sandbox shall either support observ-
ing network traffic on its own, or be able to route the traffic through an
interface that can. The latter is preferred, as malware can cause irregulari-
ties in the sandbox and deny service to, or interfere with the local network
observer.

SSC.04 - Open source The sandbox should have an open source license so any
necessary change more easily can be carried out.

Most of the sandbox solutions, including the ones discussed in Section 4.1.5 on
page 45, cover both SSC.01 and SSC.02. Some of them also cover SSC.03.
However, Zero Wine is the only known solution that covers SSC.04. An open
source license is vital for this thesis, as modifying the code base is required to
develop the final system. Zero Wine does not, however, cover SSC.02 and SSC.03,
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Product name PSC.01 PSC.02 Note
Attack Mitigator

⊗ ⊗
Commercial product

Bro
√ √

Open source software. Free
of charge.

Cisco IPS
⊗ ⊗

Commercial product
Cyclops

⊗ √
Commercial product

DefensePro
⊗ ⊗

Commercial product
Dragon

⊗ ⊗
Commercial product

Juniper Networks IDP
⊗ ⊗

Commercial product
IntruShield

⊗ ⊗
Commercial product

iPolicy
⊗ ⊗

Commercial product
IPS-1 (Former Sentivist)

⊗ ⊗
Commercial product

Proventia
⊗ ⊗

Commercial product
SecureNet

⊗ ⊗
Commercial product

Snort
√ √

Open source software. Free
of charge.

Sourcefire
⊗ ⊗

Commercial version of
Snort with more function-
ality. The same company
has developed both
systems.

StoneGate
⊗ ⊗

Commercial product
Strata Guard

⊗ √
Commercial product

UnityOne
⊗ ⊗

Commercial product

Table 6.2: List of network based IDS products. Column two and three list fulfilment of
PSC.01 and PSC.02, respectively. Each item in the list fulfils PSC.03. The list is based
on data from National Institute of Standards and Technology [Scarfone and Mell, 2007].
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but as Zero Wine is an open source system, these limitations are possible to get
around using little effort. How to overcome these limitations are discussed in
Section 8.3 on page 95. Consequently, without further discussions, Zero Wine is
selected as the sandbox solution, and is studied in detail in the following section.

6.5 Zero Wine in detail
Zero Wine is previously mentioned in Section 4.3.4 on page 47, but is studied more
in detail in this section. Zero Wine is a research product made to analyse malware
in a vaguely protected sandbox environment. Zero Wine runs on a normal Linux
based host and depends upon a translation layer called Wine to run samples. The
translation layer makes it possible to execute Windows programs through Linux
(and similar) operating systems. Wine is therefore capable of running PE-structured
files, and malware is usually structured in this form. The PE structure is mentioned
in Section 3.1.1 on page 35.

Since Wine behaves as a Windows operating system, it operates as a light version
of a virtual environment. More powerful virtual machine solutions use dedicated
techniques to isolate operations inside the virtual environment, while Wine is not
designed for execution of malware. Therefore, Wine’s protection level cannot be
matched with the commercial sandbox solutions discussed in Section 4.3 on page 47.

Wine is not meant as a operating system replica, but merely to execute software
written for Windows operating systems in Linux based systems. Wine is able to
do so by simulating the Windows core such as dynamic link library (DLL) files,
registry and file system. It is modularly designed, meaning changes in the Windows
core (usually DLL modifications or additions) can be added to Wine when needed.

Zero Wine depends on Wine for sample executions, but is an appliance written
purely in Python. It ships with both a preconfigured environment ready without
any necessary configuration, and as modifiable source code if that is needed. The
preconfigured release of Zero Wine uses a Debian based image, making it possible
to launch Zero Wine as a QEmu based virtual machine to utilise the application
directly without any configurations. QEmu is an open source machine emulator that
Zero Wine utilises to allow users to quickly try out the functionality. Zero Wine
is shipped with a simple web server that is automatically started from the QEmu
image, and a web based interface that communicates with the scripts handling the
analyses. The web interface supports one main interaction from the user, which is
uploading of sample files. After receiving a sample, Zero Wine initiates its magic
by running the sample under Wine with debugging functionality enabled. While
the sample runs in the background, API calls are parsed from the debug output
and is returned to Zero Wine.

Using GNU strings, non-binary content in the sample file is collected and
returned. Using a third party Python module, Zero Wine is also able to scan for
file headers and information about used packers to compress the file. Lastly, Zero
Wine looks for suspicious anti-debugging methods, as explained in Section 4.7.2
on page 51, and is able to dump a running binary if needed. Dumping a running
binary enables the analyst to fetch the sample from memory, which is often in an
unpacked and unencrypted form.

What is especially interesting with the Zero Wine project is its simplicity,
but yet powerful functionality. It is in version “0.0.0.2” at the time of writing
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Debian Linux (OS)

QEmu (Virtual environment)

Wine (Translation layer)

Python (Programming language)

PEfile (Python library)

Zero Wine dependencies

Figure 6.3: Dependency tree for a unmodified version of Zero Wine. The software depends
on PEfile, which again depends on Python. To be able to run samples, it depends on
Wine and so on.

and is currently far from a full-blown sandbox capable of what the commercial
sandbox variants are. Zero Wine is still a good example of what it is possible to
achieve using relatively simple additions to existing software solutions. Zero Wine
is released under the GPL license, making it an excellent choice for further studies
and improvements since the source code is modifiable and redistributable. The
software depends on a handful of different tools, applications and solutions to work,
a property that at the same time is positive and negative. On the good side, using
already existing solutions decrease the necessary code base, and abstract away tasks
to other solutions or tools. On the other hand, having many different dependencies
make the deployment more cumbersome, and make it more difficult for a user to
quickly start using Zero Wine. The developer has, however, solved this problem
by the ready-to-use QEmu image. The dependency tree for Zero Wine is shown in
Figure 6.3.

6.5.1 Program flow and structure of Zero Wine’s automated
analysis

Zero Wine’s program flow can be deduced by studying the source code shipped
with the software. Starting from the initial step, just after downloading Zero Wine,
a script launching a QEmu virtual machine with a Debian based Linux operating
system must be executed. The script contains one line only, merely the arguments
QEmu requires to start. They are not important in this context, and are not explained
further. After the QEmu image is started, a virtual QEmu machine is running in the
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background. A web server is automatically started from the virtual machine, and
serves a simple HTML upload form. The form forwards uploaded files to the Python
script “upload.py”, which handles the analysis of the file. The analysis is using two
other library files, namely “libmalware.py” and “libutils.py”. These library files
contain the main analysis logic. The scripts depend on a third party Python script
able to parse information from PE based files, named PEfile, which also ships with
Zero Wine. After the analysis is complete, the Python scripts returns results back
to the web server, which presents them to the user. A simplified sequence diagram
displaying the program flow is shown in Figure 6.4 on the following page, but one
of the library files are omitted as it contains methods to modify the appearance of
the HTML web page only. The flow shown in the figure assumes a file has been
uploaded using the HTML upload forms. Method calls required to understand the
basic program flow are shown, but the rest is skipped.

6.6 Summary of selections
This section briefly summaries the conclusions made in this chapter. The selected
approaches are marked in emphasised text.

The selected main approach solved by the final system realisation is to automat-
ically generate signatures for intrusion detection systems (IDSes). The signatures
are created by observing a sample’s network traffic while it is running. The mal-
ware samples are executed in the open source sandbox solution Zero Wine, and
signatures are generated according to the Snort syntax. Snort is an open source
network based IDS, meant to observe network traffic to and from a multitude of
hosts in a network.
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index.html upload.py libmalware.py pefile.py

Forward sample

analyzeMalware(file)

executeMalware(file)

lines

getStrings(file)

executeCommand("strings", file)

strings

strings

getHeaders(file)

dump_info(file)

PE file headers

PE file headers

analyzeCalls(file)

suspicious calls

showMemoryDumps(file)

showDebuggingTricks(file)

showVMDetectionTricks(file)

Results

Figure 6.4: UML Sequence diagram displaying program flow from unmodified Zero Wine.
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Chapter 7

Requirements Specification

This chapter focuses on elicitation, analysis and specification of the requirements for
the implementation part of this thesis. A top-down approach to the requirements
analysis is presented. This approach refers to a development process utilising a
set of selected existing software solutions. The overall main goal is to offer new
important functionality when using these solutions.

Within the requirements specification phase it is quite important to describe
the application’s qualities that has to be assured, rather than describing how such
qualities will be designed or implemented (“what” versus “how”). Functionalities
that the system has to supply are defined in this part of the thesis. This is done
without indicating a specific architecture or a particular algorithm to adopt in the
implemented solution. Software requirements analysis is one of the key elements of
the development work flow as the other stages are based upon it, such as software
design.

The chapter starts by deciding a set of high level requirements based on
conclusions and selections found in previous chapters, and from the problem
description. Next, the chapter presents a use case analysis that eventually leads
to a collection of formal requirements for the system. The chapter ends with a
mapping of the requirements to the high level requirements.

7.1 High level requirements
Before analysing requirements by textual use cases and corresponding diagrams,
an initial list of more general requirements is defined and shown below. The entries
in the list are each named for referring purposes. Their detail level is low, but
more concrete requirements is elicited in Section 7.3 on page 88. These high-level
requirements are derived from the previous chapter, partly combined with the
result goals from Section 1.2 on page 3. Remember the key words “MUST”, “MUST
NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described
in RFC 2119 [Bradner, 1997].

HR.01 The system shall generate signatures for the Snort intrusion detection
system based on a sample running in a dynamic analysis.

HR.02 Once the system is set up and configured, the only manual effort required
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by an analyst should be to submit the sample file to the system. The rest of
the tasks should be automated.

HR.03 The system must be secure. Executed malware shall not be able to escape
the system, and the environment shall be cleaned for all possible infections
after an execution.

HR.04 The software should be kept open source and freely available for other
people to use and modify.

HR.05 The software shall be documented so possible contributors more easily can
familiarise with the code.

7.2 Use case analysis
The purpose of this section is to elicit important use cases [Fowler, 2003]. Use cases
are used to capture functional requirements of the final system. The use cases are
described in a textual form underlining the involved actors, the goal for the use
case, its priority, entry conditions, and basic flow of events. The goal describes
what the actor wants to achieve with the current use case. Entry conditions are
used to imply requirements for the use case to happen. Use cases are specified only
if the condition is not considered trivial. Use cases assists in at least three areas,
each listed below.
• Use cases can assist to the process of deducing an initial set of requirements.
• Creating and analysing use cases can help determining overseen requirements.
• The simple notation assists the communication with supervisors and contact
persons at NorCERT.

The following two use cases are each supplied with a use case diagram to graphically
display the textual representation. Together with the high level requirements,
they are considered as the starting point for the functional and non-functional
requirements specification. Investigating the use cases and their relationships make
it possible to more easily understand which are the most important services and
functionalities the system shall supply. Implementing the described operations,
moreover, is the best way to fulfil the expressed requirements.
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7.2.1 Use case: Generate Snort signature
An analysis is performed using a sample file. The goal of the analysis is to create an
IDS signature, which can be used in Snort intrusion detection systems. Utilising
the generated signature makes the analyst able to get an overview over the clients
that are infected with the particular sample. Additionally, hosts infected with the
sample’s mutated variants are also found. The use case is shown in Table 7.1 with
a corresponding use case diagram shown in Figure 7.1.

Generate Snort signature

Figure 7.1: Use case diagram for “Generate Snort signature”.

Name Generate Snort signature
Actor Analyst
Goal The actor wants to automatically generate a signature that

can be used in the Snort IDS. The signature looks for in-
fected clients of a distinct malware type.

Priority High
Entry conditions (a) A Snort IDS is installed, and is actively covering a set

of nodes, (b) a sample file is available, and (c) a command
line shell is available (through terminal, secure shell (SSH)
or similar).

Flow of events 1. The actor starts the command line script with a sample
file and waits while the dynamic analysis is running.
2. The system presents a Snort signature file created by
observing network traffic that originates from the sample.

Table 7.1: Use case for “Generate Snort signature”.
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7.2.2 Gain information about sample
An analysis is performed using a sample file. The actor’s intentions are to automate
the following tasks and return the results back. The corresponding use case is
shown in Table 7.2 on the next page with a use case diagram shown in Figure 7.2.

• Let the system parse the sample file for any packer technologies. This assists
the actor in the following two areas.

– The actor uses the information as an indication of whether the sample
is malicious or not, as malware often use packers to obfuscate and
camouflage code.

– The actor saves the information for a later phase, and then utilises the
knowledge to more effectively run the analysis.

• Let the system fetch suspicious API calls made to the system. The API calls
are used to get an overall view of how the sample operates, and whats its
functions are. The types of calls considered “suspicious” are presented in
Section 9.2.1 on page 102.

• Let the system fetch string data from the sample file. Valuable information
is often found as plain text in binary files, and getting important information
in an early analysis phase is cheaper than it is in the following phases.

Get packer info

Get list of API calls

Get list of strings

Figure 7.2: Use case diagram for “Gain information about sample”.
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Name Gain information from sample
Actor Analyst
Goal The actor wants to get vital information about a sample:

(1) packer technologies used to pack the sample, (2) impor-
tant API calls made by the sample, (3) and its string data
content.

Priority Medium
Entry conditions A sample file is available.
Flow of events 1. The actor starts the command line script with a sample file

and waits while the dynamic analysis is running. The actor
specifically supplies certain selected arguments to enable
string scanning together with API call and information about
used packer technologies.
2. Important API calls made by the sample, found packer
technologies used in the sample and string content of the
sample file is returned to the actor.

Table 7.2: Use case for “Gain information about sample”.
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7.3 Overall list of requirements
This section contains the list of requirements derived from the use case analysis
combined with the high level requirements found previously in the chapter. Each
requirement has a brief description and a measurable property. Also, a priority
that expresses the requirement’s importance with respect to the others is included.
The priorities are one of “High”, “Medium”, or “Low”. A comment is included with
each requirement to reason for why the corresponding requirement is priorities as
it is.

All of the requirements are shown below in Table 7.3 below, and are classified
in one of the two following groups.

The F group contains the functional requirements for the system, showing its
behaviour and results. This group concretises what the system is supposed
to do.

The NF group contains the non-functional requirements, showing how the sys-
tem is supposed to be. Contrasting the functional requirements, the NF group
does not list specific behaviour.

ID F.01
Name Parse out API calls made by the sample
Description The system should execute (run) samples and monitor API

calls made while they are running.
Measurement Start the system using a sample file with a known set of

API calls as input. Compare the list of API calls with the
result from the system.

Priority Medium
Comment API calls may give an analyst clear indications of what a

sample does, and can help deducing its functionality and
threat level. Automatically parse suspicious API calls can
definitely help reducing time spent during dynamic analy-
ses, making the requirement important. The idea is already
applied in other solutions—sandboxes in particular. How-
ever, if the API call parsing is implemented in the final
system, the probability of running two distinct analyses
decreases. For these reasons, the requirement is prioritised
with a “Medium” level.

ID F.02
Name Automatically generate a Snort signature
Description The system shall generate signatures to be used in the Snort

IDS based on network traffic during execution of samples.
Measurement Start the system using a sample file that contacts various

hosts and compare the signature output with the hosts.
Priority High
Comment The IDS signature generation is the main goal of the sys-

tem, and is believed to fulfil all characteristics shown in
Section 6.3 on page 72. The requirement is, in consequence,
of top priority.
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Table 7.3: (continued)

ID F.03
Name Restore clean states after sample execution
Description The system shall be secure and shall be automatically re-

verted to a clean state after each executed sample.
Measurement Create a sample that changes a specified token or setting.

Start the system using this sample and ensure the corre-
sponding token/setting has changed back to the original
form after the execution of the sample.

Priority High
Comment Each malicious sample analysed may infect the analytical en-

vironment. Using snapshots is a method to easily ensure the
system is returned to a clean state. The requirement is pri-
oritised high, since it is essential the system remains secure
and avoids permanent infections between the analyses.

ID F.04
Name Fetch list of strings in sample
Description The system may optionally fetch text data (strings) in

samples.
Measurement Create a sample containing a specific list of string data and

start the system using this sample and ensure the results
contains the expected strings.

Priority Low
Comment Text data may disclose information about a sample’s be-

haviour, and in that way help deducing its functionality. The
requirement helps assuring analysts not necessarily need
two distinct solutions. However, finding text data is related
to the surface scanning, and is possible to find using existing
software. The requirement is therefore prioritised low.

ID F.05
Name Fetch information about executable packer from sample
Description The system may optionally parse samples for executable

packer technologies used to compress it.
Measurement Start the system using a packed sample. Compare results

from the system and the packer technology (or technologies)
used.

Priority Low
Comment A sample compressed with an executable packer raises a

warning signal. If which used packer type is found, the
analyst may be able to manually unpack the sample and
disclose its real content. However, the requirement covers
techniques used in surface scanning and static analyses, and
for that reason prioritised low.

ID NF.01
Name Open source
Description The system should be released in open source form to allow

the public to utilise and improve the code.
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Table 7.3: (continued)

Measurement Not applicable
Priority Medium
Comment Using an open source license makes it easier to improve soft-

ware after its release by contributing to the code. Since the
implementation is a proof of concept system, it is preferable
that anyone is able to study the code and add functionality
as needed. The requirement is prioritised with “Medium”
importance.

ID NF.02
Name Modifiable system
Description The system shall be sufficiently documented so modifications

can be made without familiarise with the complete code
base.

Measurement Not applicable
Priority High
Comment A proof of concept system is assumed to be further devel-

oped, and familiarising with the code base is then needed.
By documenting code, a developer not familiar with the code
will more easily be able to understand what the software
does. The requirement is therefore highly prioritised.

ID NF.03
Name Possible to follow Zero Wine upgrades
Description It is recommended that it is manageable to upgrade code

strongly related to Zero Wine. That is, when new releases
of Zero Wine are made public, the new functionality should
be possible to integrate in the system.

Measurement Not applicable
Priority Low
Comment New Zero Wine upgrades may add useful functionality. How-

ever, the rest of the requirements are more important, pri-
oritising this requirement with “low” importance.

Table 7.3: Requirements for the implementation part of the thesis.

7.4 Mapping of requirements
The high level requirements defined in Section 7.1 on page 83 are in this section
mapped to the non-functional and functional requirements specified in the previous
section. Table 7.4 on the facing page can be used as an overview.

Requirement HR.01 maps to F.02. HR.02 is covered mainly by F.02, but
also F.01 and F.03 are partly covering the high level requirement due to its design
details. The design specifications are described in the following chapter.

HR.03 maps directly to F.03, and HR.04 directly to NF.01. The last high
level requirement, HR.05 is covered by non-functional requirements, NF.02 and
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High level requirement Maps to
HR.01 F.02
HR.02 F.02, and partly F.01 and F.03
HR.03 F.03
HR.04 NF.01
HR.05 NF.02 and NF.01

Table 7.4: Mapping of high level requirements (HR) to functional F and non-functional
(NF) requirements.

NF.01. Two additional functional requirements and one non-functional requirement
remains with no mapping to the high level requirements. The relevant requirements
are F.04, F.05 and NF.03 which all include useful functionalities for an analyst,
but they are prioritised lower due to the higher importance of other requirements.
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Chapter 8

Design

Other than describing the system in terms of components and relations among
them, this part of the thesis registers all the significant decisions about the design
and the motivations that led to these decisions. It is vital to cover requirements
defined in the previous chapter by the design proposed in this chapter, so no design
choices conflicting the requirements are made. Doing so ensures the design does
not prevent fulfilment of the requirements.

8.1 Modifying Zero Wine
The system utilises existing work from the Zero Wine code base, but modifies the
software to be a standalone system part. The web interface that is originally shipped
with Zero Wine is removed, since such an interface is meant primarily for human
interaction—and has no use in an automated system. Instead, a command line
interface is implemented in the final system. Such a design choice allows running the
system with, or without, an external interface; making it easier to switch between
automatic and manual control. The approach enables an easy integration with
other arbitrary software solutions. This property allows the system to be integrated
with NorCERT’s internal system for handling malware samples.

Zero Wine does not support a snapshot capability, so to be able to revert to a
clean state after each sample execution, a virtual machine is used as environment
during execution of samples. Zero Wine ships with a QEmu image with snapshot
capabilities, but QEmu lacks a programming interface. A programming interface is
needed to communicate with the virtual machine easily. To communicate with a
QEmu virtual machine, additional software must be used or implemented specifi-
cally for the purpose. QEmu is for this reason replaced with VMware Server. The
preliminary project for this thesis showed VMware Server is able to automate
virtual machine tasks using its programming interface, VIX. Consequently, VIX
is not extensively described in this document, but knowing it is an interface to
VMware Server is sufficient knowledge.

The system is split up in two main parts, one located on the virtual machine
guest operating system and one on the host operating system where the virtual
machine software (VMware Server) is running. The modified Zero Wine part is
deployed in the guest environment, while the host contains a script to control the
virtual machine using VIX. Results are aggregated and structured from the guest
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OS. Using this approach together with VMware Server makes it possible to reuse
existing virtual machine communication code from the preliminary project. That
is the reasons the system is split, and the two parts (or modules) are as follows.

1. “Zero+One” is the modified Zero Wine code that handles sample execution
and analyses events during the execution. The main task Zero+One does is
generating IDS signatures, but also do other tasks common in an analysis.
These tasks are described in Section 8.4 on page 96. Most of the analytical
functionality from the original Zero Wine project is kept, but some unneces-
sary methods are removed and others added. The execution of malware in
Wine does by no means guarantee a safe execution, and a cleanup most be
done after each analysis to ensure a safe environment. Therefore, the modified
system uses an operating system in a virtual machine environment that
supports restoring clean system states. VMware Server has this functionality,
and is already selected to be the virtual machine system. The first part (Zero)
of the module’s name derives from Zero Wine, and the additions to Zero
Wine’s original functionality are the reasons for the last part of the name
(+One).

2. “vmcom lite”, is a script that communicates with virtual machines. The
full version, vmcom, was developed during this thesis’ preliminary project.
vmcom lite is a modified version of this program, without the extensive focus
on antivirus scanning. Instead, it is a general version that can be used run
arbitrary programs from a virtual machine. vmcom lite is the entry point
of the system connecting to and executing the Zero+One program from the
virtual machine. After Zero+One has completed its execution, vmcom lite
receives aggregated and computed data results back. vmcom lite presents the
results as-is (text based data), but interfaces using vmcom lite can present
this data in any form.

To avoid complex and tangled control structures between the different parts, the
vmcom lite part shall be stripped from analytical program logic, and let Zero+One
do the analytical work.

8.2 Task automation
VMware Server supports task automation using a software component called “VIX”
to communicate with the virtual machines. VIX is a high level API accessible from
a variety of programming languages. The API is partially supported by VMware,
and was extensively used in the preliminary project for this thesis [Krister, 2008].
The following tasks are automated on the virtual machine by vmcom lite, and are
all supported using VIX.
• Copy the sample file to the virtual machine.
• Start the analysis of the sample from the virtual machine using the modified

Zero Wine software (Zero+One).
• Return the analysis results from the virtual machine.
• Revert the virtual machine’s system state to a previously stored and clean
snapshot, reversing any change done by the sample.
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8.3 Generating IDS signatures
By analysing network traffic generated by the sample while it is running, Snort
signatures can be generated based on the observed traffic data—so an application
monitoring the network device used by the samples is needed. The application
should be configurable, meaning: (1) it should be easy to modify the application’s
filter mechanisms so the correct network traffic events are processed, and (2) as
many events as possible that are considered uninteresting for the signature should
be dropped. Traffic filtering is the process of sorting out interesting traffic and
events. There are different approaches available to capture network traffic and filter
out particular events, but the following network capture product selection criteria
(NCPSC) are emphasised when selecting a solution.

NCPSC.01 - Modifiable The selected approach shall be easily modified, during
development or in a later stage. What modifiable means in this context is
what to filter out must be possible to change without an extensible amount
of effort.

NCPSC.02 - Easy to set up The selected network capturing approach should
not require too much effort before it is ready for use.

Since all network traffic from the guest virtual machine passes through the host
operating system, it is possible to place the network listener in the host, as well as
in the guest operating system. Available approaches are as follows.

Implement a new listener A new network listener can be programmed for either
the Perl part that utilises VIX, or the modified Python Zero Wine code that
performs the signature generation. Network listening is not directly analytical
work, but is closest to Zero+One’s functionality. Therefore, the most relevant
choice is to place it together with Zero+One. A problem using such an approach
is due to operating systems’ privileges levels, administrator privileges are
needed to observe network traffic. Running malware with high privileges
can be damaging to the environment as the malware can do anything an
administrator of the system is allowed to do.

Use an existing software module It is possible to try localising an already
existing open source network listener project and integrate it into the im-
plemented. This is similar to the above approach with the same drawbacks,
except a less necessity of custom made implementation.

Utilise third party external solutions A multitude of network listener appli-
cations running independently and standalone, exists. A negative side of this
approach is yet another dependency is added to the system. However, the
approach gives the possibility to keep the malware execution code free from
any network listening code, and simply instead parse results from the third
party application. A third party application can safely run with administrator
privileges as it does not even need to know about the malware execution—just
log observed network traffic.

The approach of best current interest is using a third party application running
with administrator privileges, simply because it is the safest of the three above
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options. The network monitoring application Wireshark is already discussed in
Section 4.5.2 on page 49 and proves to be more than sufficient for this case, except
for its graphical user interface (GUI) that is meant for human (non-automatic)
interaction. However, Wireshark has a command line version named tshark which
has the same functionality as the GUI version. tshark is more simple to use for
automatic interactions, and is for that reason also in use in the final system. It
supports a large variety of command line parameters to modify its filters, making
it modifiable. No further selection is needed, as Wireshark/tshark supplies the
needed functionality and the NCPSC selection criteria. The network observer
that monitors data traffic is placed together with Zero+One in the guest operating
system. The reason for this is to keep vmcom lite free from other functionality than
virtual machine communication, and have all analytical functionality in Zero+One.

8.4 Other design choices
Even though generating an IDS signature is the main focus for the final system,
three additional features are also mentioned in the requirements specification. The
features are found in other software solutions, but are still relevant for this system
to avoid the need for additional sandbox software when performing an IDS signature
generation. The features are shown below, with a brief description regarding their
corresponding design. The features are prioritised medium and low, so they are
not on the same level of importance as the signature generation is. With the help
from Zero Wine’s code base, they are all relatively easily implemented and is still
implemented in the final system.

Fetch API calls Wine is configured to output API calls made by programs ex-
ecuting in its environment, so suspicious calls can be filtered out while an
analysis is running. Results are returned as plain text to the analyst. The
text is not parsed in any way, simply filtered out and returned. “Interesting”
calls are API calls that can be suspiciously abused, often seen in relation to
malware. This includes file accesses and manipulation, remote connection
attempts, common anti-debugging techniques and Windows registry changes.

Fetch list of strings Text data in the sample is fetched using the UNIX program
GNU strings.

Get packer information Packers that are used to compress the sample are found
using packer signature files (available online).

8.5 Choice of programming languages
There are two main modules of the system to consider when selecting programming
languages, namely the VIX communication program vmcom lite, and the modified
version of Zero Wine, Zero+One. Zero Wine is written completely in Python, and
porting its entire code base is not an option due to time limitations. Thus, Python
is chosen as the programming language to use when modifying Zero Wine into
Zero+One.

vmcom lite can be written in any language supported by the VIX API, which
is C, Perl, Python, Java and COM based languages. If Python was selected also
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�device�
:AnalysisServer
{OS: Ubuntu}

vmcom lite (Perl)
(VM communication)

�device�
:VirtualMachine
{OS: XUbuntu}

Zero+One (Python)
(Analyses happens here)

VIX

Figure 8.1: A possible system set up shown as a UML deployment diagram.

for this module, the same programming language would have been used for the
complete system. However, Python is not supported by VMware and requires a third
party wrapper to work. Using the wrapper adds another dependency. Additionally,
Perl was used to communicate with the virtual machines in this thesis’ preliminary
project [Krister, 2008] so reuse of the Perl code is more suitable, and saves time.
For these reasons, Perl is selected for the virtual machine communicator (vmcom
lite) and Python for the modified Zero Wine code (Zero+One). Two good books
for learning these languages are written by Schwartz et al. [2008] and Hetland
[2005] for respectively Perl and Python.

8.6 System deployment overview
Figure 8.1 shows a UML deployment diagram of a possible system configuration.
The figure is using one machine only, but if it is necessary to seal the analysis
away, the Zero+One element can be placed in a separate physical machine. It is
preferable the virtual machine’s operating system is stripped from unnecessary
background programs to avoid consuming the system’s resources. XUbuntu is a
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vmcom lite Zero+One tshark

VMConnect()

StartAnalysis(file)

StartNetworkListener()

ExecuteSample(file)

data

GenerateSignature(data)

GetAPICalls(file)

GetStringOutput(file)

GetPackerInfo(file)

Aggregated results

Figure 8.2: Sequence diagram showing program flow in the final system including virtual
machine communication (vmcom lite), modified Zero Wine code (Zero+One) and network
capturing using tshark.

lightweight version of Ubuntu and is, in this deployment example, selected for the
virtual machine’s operating system.

Figure 8.2 displays the program flow in the system, and gives an overview using
a UML sequence diagram. The method names in the diagram are partly taken
from Zero Wine’s existing code base, but is in use also in the final system.

8.7 Design limitations
There are negative aspects with the system design that are exposed during devel-
oping, and while using and administrating the final system. This section discusses
known problems with the proposed design.

8.7.1 Dependencies
Using Zero Wine as base for the execution of samples leads to a large number of
software dependencies. This might make system administration tedious when new
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versions of the software dependencies are released, and these new versions introduce
changes to code taken for granted by the modified Python code. However, the
software dependencies are relatively easy to install, and significantly decrease the
necessary amount of own implementation to get the analysis working. Therefore,
no attempts are made to reduce the amount of dependencies.

8.7.2 Follow Zero Wine upgrades
At the release of new revisions of Zero Wine, it is preferable to simply overwrite
some code base, for example one or more files—and nothing more. Since the
Zero+One part of the system uses modified methods found in Zero Wine, new
versions of Zero Wine must be manually merged with the system. However, method
names and content together with the overall program structure are kept as close to
the original Zero Wine project as possible to simplify upcoming upgrade processes.

8.7.3 Detection of Wine
As with most new open source software, Zero Wine is not perfect. The source code
is not documented, and there are in some cases hard to figure out what the code
means to do. Luckily, the number of code lines is at a manageable level. Another
more complex and serious flaw comes from Zero Wine’s design. The software
utilises Wine as a “virtual machine” when executing the samples, but a program
running in Wine can easily detect the environment—so a malware sample might
detect Wine if it wants to. Two methods to detect the environment are shown
below.

• Check the size of critical system files in the Windows operating system folder.
The size in Wine is much smaller than a normal Windows operating system
installation.

• Wine adds values to its internal Windows registry. There is a good indication
of a present Wine environment if one of the following values are found.

– HKEY_CURRENT_USER\Software\Wine
– HKEY_LOCAL_MACHINE\Software\Wine

Other registry checks are also most likely possible, as the registry used by
Wine is minimal in size compared to a real Windows operating system.

Wine was never meant to safely run malware, so an additional security layer must
be applied upon Zero Wine to safely execute samples. By using an already existing
virtual machine solution, it is possible to automate a cleanup after each sample
execution by reverting to a clean snapshot.

8.7.4 Multiple tools in an analysis
It is preferable that an analyst is not required to use multiple distinct sandbox
solutions when performing a malware analysis. Using one single sandbox solution
able to do perform all necessary tasks reduce time spent of managing different
software solutions. The design does not include all tasks used in sandboxes, but
a set of common functionality in addition to the unique signature generation.
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Analysts might be forced to run an additional sandbox analysis if analytical tasks
that are not included in the design are needed. However, the design is not trying
to present a complete sandbox system, and the goal in this thesis is not to create a
new sandbox. The design does not prevent additions of new functionality, making
it possible to implement these in further work.
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Implementation

This chapter contains a description of how the system is realised, and explains the
two main parts of the system; (1) vmcom lite, and (2) Zero+One. Additionally,
a description of the code conventions used in the implementation is found in the
chapter, together with code examples. The chapter flows by testing the final system,
and continues with a selection of a software license to apply for the published
system. The chapter continues with a presentation of limitations the system have,
and finalises by looking into an integration with NorCERT’s internal system for
handling malware samples (NAAS).

This chapter explains how the system works, but the gory details of the system
can be studied using the full source code listings, and its in-line documentation, in
Appendix C.

9.1 Implementing vmcom lite
As explained in the previous chapter, the modified Zero Wine system runs in a
virtual machine to ensure the environment is kept secure and free for infections.
vmcom lite takes care of the communication with the virtual machine. This means
the entry point of the system is vmcom lite, and vmcom lite does in particular
forward the analysis asset (a sample) and starts the analysis by initiating Zero+One
within the virtual machine. vmcom lite then waits until Zero+One has finished
the analysis, and downloads the results from a text file located in the virtual
machine. vmcom lite is a stripped version of the vmcom system implemented in
this thesis preliminary project, and is documented in detail in the corresponding
document [Krister, 2008].

9.2 Implementing Zero+One
Zero+One is the modified version of Zero Wine, but is closely linked to the tshark
network observer so IDS signatures can be generated based on network traffic
originating from malware samples. This sections covers how the Python code base
of Zero+One and the network observer, tshark, works.
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9.2.1 Python code base
Even if the Zero+One architectural design differs from Zero Wine’s, existing code
from Zero Wine is heavily utilised. Some of the functionality needed in Zero+One
is already implemented in Zero Wine, and the corresponding code has been kept
unchanged whenever possible, including method names and content. Doing so makes
it easier for people already familiar with Zero Wine to more quickly understand
Zero+One. Further improvements to Zero Wine can then also more easily be
integrated with Zero+One. Web interface code is not separated from analytical code
in Zero Wine, and was removed since it is unused in Zero+One. Zero+One performs
a task depending on which startup argument given to the program. Zero+One can
perform the following different tasks, with the argument shown in parenthesis.
• Parse suspicious API calls (-e, or --execute)
• Find packer technologies that are used to compress a sample (-p, or

--packers)
• Fetch list of strings (-s, or --strings)
• Generate an IDS signature (-e, or --execute)
• Show a brief help screen (-h, or --help)

The “-e” argument is used to parse suspicious API calls and generate an IDS
signature. Therefore, results from both API calls and the signature generation are
returned when using the “-e” argument. This is a design choice to avoid running
the sample twice if the analyst forgets to supply two distinct arguments. The
different tasks are explained in this section.

Parsing API calls

By enabling Wine’s debug functionality, one can parse out API calls generated by
executing programs. A program is calling a large number of of API’s during its
execution, but some calls are more suspicious and consequently more important to
look for than others. Table 9.1 on the next page shows the list of API calls filtered
out by Zero+One, and a brief comment about why they are considered suspicious.
There are a few additional API calls filtered out by Zero+One, but the entries in
the table are the most important. For a more detailed description for the entries in
the table, see Section 4.2 on page 46.

Finding which type of executable packers that are used to compress a
sample

Zero Wine uses the Python library PEfile, which supports scanning a PE-based
file for used packer technologies. PEfile uses file signatures to localise the packers,
and the functionality is easily implemented in Zero+One. A list with 1832 signatures
are shipped with the final system1. A drawback using this approach is when a
sample is recursively packed, only the first layer of compression is found.

1Packer signatures are available from http://www.peid.info/BobSoft/Downloads.html (ac-
cessed 2009-04-20).
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API call Comment
CreateMutex Mutex objects are created to ensure one, and only one, in-

stance of a program is running concurrently.
CopyFile Malware is frequently utilising the file system and registry.

CreateFile Same as above.
RegCreate Same as above.

RegSet Same as above.
CreateProcess Malware is frequently manipulating processes.
getbyhostname Malware is often dependent on the Internet. “getbyhostname”

performs DNS queries.

Table 9.1: API calls filtered out by Zero+One during execution of samples. See Section 4.2
on page 46 for a more detailed discussion about why the functionality from the API calls
are suspicious.

Fetch list of strings

To fetch a list of strings from a sample, Zero+One simply runs the program “GNU
strings”, which is available in most Linux distributions, and returns the result.

Signature generation

An entirely new functionality in Zero+One is the IDS signature generation, which is
based on activity observed while a sample is running. When a sample has finished
its execution, data from a network analysis is gathered, aggregated, and parsed
to generate one IDS signature which can be used in the Snort IDS system. The
signature can give analysts overview over potential infections in a network. The
final system executes the sample once, meaning the signature generation process
has data for one single execution only, using a limited set of execution paths.
This approach can lead to a signature that is subject to generate false positives
and/or negatives. Therefore, based on a “granularity level” (explained in the next
section) the analyst can create signatures covering a more fine– (or coarse–) grained
network.

9.2.2 IDS signature quality
Section 6.4.3 on page 76 explains how a Snort signature is structured, but it is
more than one single method to generate such a signature. This sections presents
approaches to generating a signature and their corresponding problems and benefits.
The section also reasons for and explains how the signature generation works in
the final system.

To localise hosts in a network infected with particular malware with help from
IDS signatures, the signature must consist of rules matching observed network
data against fixed network data expected to see from the particular malware type.
For example, if a sample always connects to a specific foreign IP address on a
particular port, a signature can be generated based on the knowledge of the IP
address and port. A perfect IDS signature finds all infected hosts the signature
is meant for, and only those. In practice, this is truly difficult to achieve; there
may be too few similarities in network traffic generated by malware to guarantee
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the traffic originates from an infected host, or the IDS signature is too narrow,
allowing infected hosts to dodge the signature.

The final system is balancing these two issues, and is basing the signature
generation purely on IP source and destination addresses and TCP/UDP source
and destination ports. Traffic data content is not processed and ignored by the
signatures. To localise infections in a network based on the generated signature, the
system assumes the malware contacts the same hosts (or they belong to the same
subnetwork if a more coarse-grained signature generation is performed). Observed
network traffic during executions of samples are aggregated and collected after
the sample has finished running (or is killed when a time limit is reached). The
IP addresses and TCP/UDP ports found are then combined, and only unique
values are filtered out, avoiding redundant and unnecessary data in the generated
signatures.

Using such an approach makes the solution independent to malware’s content. A
malware sample can mutate and change, but as long as the malware communicates
with the same hosts, the IDS signature is able to find the infections of a malware
type and its variants. IDS systems are subject to consume large amounts of resources
when matching traffic with signatures [Lee et al., 2002]. The approach used in
the final system does not match the content of the data, leading to a significant
decrease in the necessary processing power in the IDSes.

The signature generation can be set to a more coarse-grained output returning
subnetworks of hosts instead of IP addresses. This is practical when samples are
contacting machines located in the same networks. Consider a malware sample
contacting the IP addresses 14.10.10.1–14.10.10.255 in somewhat random se-
quences. Instead of listing each of these IP addresses in the generated signature,
an IDS-granularity level can be used when generating the signature. A granularity
level is a number from 1 to 32, and indicates how broad the IDS signature output is.
Granularity level “32” returns an IDS signature including all observed IP addresses
(netmask of all bits set to “1”), while granularity level “24” returns IP addresses
using a netmask having the 24 (of total 32) most significant bits set to “1”. For the
above example using granularity example “24”, the subnetwork 14.10.10.0/24
is generated which covers IP addresses including and between 14.10.10.1 and
14.10.10.255. See Section 6.4.3 on page 76 for more information, or use books by
Tanenbaum and Stevens for a detailed overview of how IP subnets work [Stevens,
1994; Tanenbaum, 2002].

There are negative sides with the approach as well. The generated signature is
subject to not find infected hosts when the malware is not contacting the same IP
addresses as it did at the time the signature was generated. Different IP addresses
can be contacted due to trigger based behaviour in the malware, or the malware
has been modified in some way, and contacts different addresses. This problem is
somewhat coped with by using host names instead of IP addresses, and is discussed
more in detail in Section 10.3.2 on page 120.

If the signature has a granularity level too high, or malware is contacting
random hosts, there is a large chance of introducing false positives by adding
hosts that are obviously legitimate. For example, a malware sample is looking up
“www.google.com” does not mean that the domain is necessarily used for malicious
actions—but rather a simple check for Internet access. This limitation is discussed
more in detail in Section 10.3.3 on page 121.
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9.2.3 tshark
The tshark application is launched within the virtual machine operating system,
and is constantly running as a background process to collect network traffic. tshark
collects information from the IP protocol as well as TCP and UDP headers and
content. The information includes the following relevant data.
• IP source and destination
• Transport protocol ports for IP source and destination
• Traffic content, both the textual and binary content

To generate an IDS signature, the final system filters out necessary elements from
network traffic and ensures the output is structured so the signature generation
process can be performed automatically.

Due to the possible complexity of traffic data and the difficult process of
automatically mapping it to malicious actions, signatures generated from the final
system is using the first two entries from the above list and excludes traffic content
entirely. Further work suggests to include traffic data, but signature generation
based on possible large quantities of highly dynamic and non-deterministic data
content requires a project of its own. See Section 10.3.4 on page 121 for more
information about the issue.

The command line to start tshark is shown below, logging the network interface
“eth0”. tshark supports a capturing filter to limit the amount of logged fields.
However, in this case is all traffic data observed logged, including header and
content. The log file’s path is /var/log/tshark.

sudo tshark − i eth0 −w /var / log / tshark

Using a tshark display filter gives the possibility to filter out particular fields
and discard the unnecessary. The below command line outputs IP addresses for
source and destination, transport protocol ports and TCP flags, and is sufficient
for the current implemented signature generation algorithm. If a TCP flag is
absent in a packet, no data is printed in the output. Otherwise, boolean true
(typed as “1”) is written. Fields are separated with a semicolon (“;”). For more
information about the application, see tshark’s manual page found at http:
//www.wireshark.org/docs/man-pages/tshark.html.

t shark −r /var / l og / tshark −T f i e l d s −E separa to r = ’ ; ’ \
−e ip . s r c \
−e tcp . s r cpo r t \
−e ip . dst \
−e tcp . ds tpor t \
−e tcp . f l a g s . ack \
−e tcp . f l a g s . syn \
−e tcp . f l a g s . f i n \
−e tcp . f l a g s . r s t
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1 " " "
2 Finds the h i ghe s t f r e qu en t l y used port in an array . Returns the

port as a
3 s t r i n g .
4 " " "
5 def f indHighestFrequent lyUsedPort ( por t s ) :
6 " " " Dic t ionary used to f i nd f r e qu en c i e s " " "
7 portFrequentDict = {}
8

9 " " " Simply re turn ’ any ’ i f 0 i s found in the l i s t " " "
10 i f 0 in por t s :
11 return ’ any ’
12 " " " I t e r a t e the por t s and p lace t h e i r count in the d i c t i ona ry

" " "
13 for port in por t s :
14 i f s t r ( port ) not in portFrequentDict :
15 portFrequentDict [ s t r ( port ) ] = 1
16 else :
17 portFrequentDict [ s t r ( port ) ] += 1
18

19 " " " Find the port with the h i ghe s t f requency and return i t " " "
20 highestPortFreq = −1
21 for k , v in portFrequentDict . i t e r i t em s ( ) :
22 i f v > highestPortFreq :
23 highestPortFreq = k
24

25 return highestPortFreq

Listing 9.1: Example from the Zero+One code base. The method shown finds the highest
frequently used port in a list of ports found during network traffic observations.

9.3 Code conventions
The application is assumed to undergo changes by other software developers after
its release, and it is therefore important to adhere to particular known coding
conventions to make code maintenance easier. This section shows examples from
the implemented system, but the entire source code is found in Appendix C.

9.3.1 Zero+One and its Python code base
Following Zero Wine’s code conventions are important to more easily allow an
integration with Zero Wine’s new upcoming versions. However, the official Python
coding conventions are used wherever reasonable2. Zero Wine’s original code base
does not strictly follow the conventions, especially method names and mixing of
tab/space indentations deviate from the rules. The method names are written in
the “mixedCase” convention since Zero Wine has adopted this particular style,
even if it is not recommended. The mixedCase convention starts each word in a
function name in uppercase, except the first word that is in lowercase.

The mixing of tab/space indentations is assumed to be a fault by the Zero

2A Python code style guide can be found at http://www.python.org/dev/peps/pep-0008/.
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1 # Copies a f i l e from hos t opera t ing system to gue s t opera t ing
system

2 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
3 # an open v i r t u a l machine handle (open_vm)
4 # a powered on v i r t u a l machine (power_on_vm)
5 # vmware t o o l s loaded ( log_in_vm )
6 # a user l o gged i n t o the v i r t u a l machine gue s t OS (

log_in_vm )
7 sub copy_fi le_to_guest {
8 my( $err , $vm_handle , $ s ub j e c t_ f i l e_ l o c a t i on ) = @_;
9

10 $e r r = VMCopyFileFromHostToGuest ( $vm_handle ,
11 $ sub j e c t_ f i l e_ l o ca t i on , # src name
12 " /tmp/ up loaded_f i l e " , # d e s t name
13 0 , # opt ions
14 VIX_INVALID_HANDLE) ; # proper tyL i s tHand l e
15

16 abort ( "VMCopyFileFromHostToGuest ( ) f a i l e d " , $ e r r ) i f $e r r !=
VIX_OK;

17 }

Listing 9.2: Example from the vmcom lite code base. The subroutine copies an arbitrary
file from the host OS to the guest OS using the VIX API.

Wine developer, and is simply fixed in Zero+One that uses four spaces for each
indentation, and no tabs. Zero Wine is not documented directly in the code,
but Zero+One is released with in-line code documentation following the Python
docstrings conventions3.

Code example

An example taken from the Zero+One code base is shown in Listing 9.1 on the
facing page. The Python method is utilised by the IDS signature generation, and
finds the highest frequently used port in a list of ports found by tshark during
network traffic observations. The tshark logs are parsed prior to running the
Python method.

9.3.2 vmcom lite and its Perl code base
The perlstyle conventions4 were followed when developing the VIX communication
in the preliminary project, and is for that reason used also for vmcom lite. The
perlstyle differs from the Python conventions, and acts, in some cases, as a direct
contrast. For example, Perl suggest to vertically align up corresponding code, while
Python suggests the opposite. The conventions are used for the respective languages
anyway, to adhere to a standardised way of coding—even when the conventions
are in conflict with each other.

3The docstrings conventions can be found at http://www.python.org/dev/peps/pep-0257/.
4The perlstyle conventions can be found at http://www.perlmonks.org/?node=perlstyle.
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Code example

An example taken from the vmcom lite code base is shown in Listing 9.2 on the
previous page. The listing shows a subroutine for copying a file from the host
operating system to the guest operating system using the VIX API. Prior to the
file copy subroutine can be called, the VM must be opened in the vmcom lite
program, be powered on and have a user logged in. The subroutine acts on behalf
of the logged in user when performing the file copy operation.

9.4 Testing
This section contains documentation about the system tests’ structure, how each
test is performed, and the corresponding results. Testing is done in order to assure
the system is functional and in according to requirements elicited in Chapter 7.

9.4.1 Test levels
There are a multitude of levels during software testing, and according to the
V-model [Watkins, 2001, chapter 4], each of these levels link to one or more
phases of the development process. Such a link means the development phase
gives requirements to the test level. The V-model states the design phase in a
development process leads to requirements for tests dealing with small units in the
implemented code, and how these operate together [Copeland, 2004, chapter 1].
These units are usually what a programmer knows as “methods”. The tests are
known as unit and integration tests respectively, and are often written as automated
test cases.

System testing is also derived from the design phase, but at a more general
level. System tests compare design specifications against the actual realised system,
and can be automated.

Usability testing and acceptance testing are also common test levels during
software testing. They derive from the requirements specification (which is usually
made prior to the design phase) and is meant to determine whether a system
satisfies the elicited requirements. These tests is a manual process including the
project owner, and are in consequence not automated.

As the implemented system is a proof of concept realisation, focus is held on
integration testing and system testing, where each test specifies submodules of the
system, and a successful test run indicates a submodule functioning as it should
according to the design specifications.

9.4.2 Test method
“Black box” and “white box” testing are two different ways of testing a system.
Black box testing does not consider any internal behaviour of the system, but
assure the output of the system is as expected using a well-defined set of input.
A mixture of white and black bow testing is performed when testing the final
implemented system, but focus is held on testing the functionality of the system,
not the inner details of the code.
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Test name Result
Testing communication between the system parts (vmcom lite and
Zero+One)

PASSED

Testing parsing of API calls PASSED
Testing the system’s capability of finding packer technologies PASSED
Testing IDS signature generation PASSED

Table 9.2: Summarised test results.

9.4.3 Test plan
There are four tests, and each test runs separately. If small, easily repairable,
bugs are discovered during testing, they will be fixed and the test is immediately
restarted. Tests are based on executing submodules of the system, and comparing
actual results with a set of expected results. The test still passes if the actual
results, after potential repairs, are equal to the expected results. If the test still do
not pass after repairs are applied, the test eventually fails.

The test includes the following five attributes. (1) the command line used to run
the test, (2) what the expected results are, (3) which requirement or requirements
are affected by the test, (4) a comment to the test run, and (5) entry conditions
(not for the third test)

Table 9.2 can be used as an overview of the tests, and a summary of the final
results.

Testing internal system communication

The purpose of the first test is to communicate with the virtual machine using vmcom
lite. The test assumes the virtual machine is available and properly configured
in vmcom lite. The test starts by initiating the analytical parameter -a FILE
and supplies the password (shown as the scrambled text *PASSWORD*). During the
test, attention is given to the virtual machine system to see if the specified file is
uploaded at the configured location. Likewise, a simulated result file is created,
which should be copied to the host system by vmcom lite during the test. It is
important to ensure these files are not present before the analysis has started. The
virtual machine state is reverted to a clean state, so the uploaded file should be
unavailable (removed by the reversion process) after the file has finished running.
The test run is shown in Table 9.3 on the next page.
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Test name Testing internal system communication
System module vmcom lite
Entry conditions (a) A virtual machine OS is set up in vmcom lite’s

configuration part, referred to as “the VM OS” from now
on, and (b) the simulated result file is not present neither
in the VM OS nor in the host OS.

Test case Run “./vmcomlite.pl -a DUMMYFILE -p *PASSWORD*”
from the host OS.

Expected Results (a) The dummy file (an arbitrary file) shall be uploaded
to the VM OS, (b) the simulated result file shall be
created in the VM OS, and (c) the simulated result file
shall be removed from the VM OS after the analysis is
complete.

Requirements tested F.03
Result PASSED

Comments
Minor bugs were fixed in vmcom lite’s source code before the test ran success-
fully.

Table 9.3: Testing internal system communication.

Testing parsing of API calls

From now on is the focus held on Zero+One and further tests cover functionality
found in Zero+One. A real analysis and sample execution would use vmcom lite
to communicate with and initiate requests to Zero+One, but since the previous test
passed, communication between vmcom lite and the virtual machine is assumed
to work.

Zero+One supports parsing of suspicious API call during execution of samples.
This test executes the file used in the malware scenario in Chapter 5, and studies
the results. The results are not compared to an expected list of suspicious API calls.
Instead, the test is considered successful if API calls regarding the sample’s network
communication are found during the test. The test run is shown in Table 9.4 on
the facing page.

Testing the system’s capability of finding packer technologies

The analysis scenario successfully concluded which kind of packer technology was
used to compress the sample. This test runs Zero+One and supplies the “find packer”
argument. The result is compared to the analysis scenario result. The test run is
shown in Table 9.5 on the next page.
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Test name Testing parsing of API calls
System module Zero+One
Entry conditions tshark is set to log network traffic, logging data to

/var/log/tshark in the VM OS.
Test case Run “./kmanalyse.py -f asprox.exe -e” from the

VM OS.
Expected Results API calls shall be returned, where some are concern-

ing the sample’s network communication found in the
malware analysis scenario.

Requirements tested F.01
Result PASSED

Comments
The test returned 283 suspicious API calls, where eight calls are related to
network communication. The network communication is the same as what was
found in the analysis scenario. These eight calls look up one IP address and
three host names using the DNS query API. The output of these eight API
calls is shown in Appendix D.

Table 9.4: Testing parsing of API calls.

Test name Testing the system’s capability of finding packer tech-
nologies

System module Zero+One
Entry conditions None

Test case Run “./kmanalyse.py -f asprox.exe -p” from the
VM OS.

Expected Results “Microsoft Visual C++” shall be found, the same re-
sult as found in the malware analysis scenario from Chap-
ter 5.

Requirements tested F.05
Result PASSED, see comments.

Comments
The test returned “Armadillo v1.71”, which is not the same result found in
the malware analysis scenario. “Armadillo” is a different packer type than
“Microsoft Visual C++”, but the two different packer signatures are similar,
meaning a sample can match both of them. This information was not easy
to find, but email correspondence with the contact point at the web page
offensivecomputing.net indicating these results can be found in Appendix
D. For this reason, the test passes—even due to the found packer name differs
from the expected.

Table 9.5: Testing the system’s capability of finding packer technologies.
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Testing IDS signature generation

The main purpose of this test is to ensure the system is able to generate an IDS
signature. Additionally, generating an IDS signature requires the additional tshark
component to work, so the test also covers this functionality.

The sample used in the malware analysis scenario in Chapter 5 is used for the
test asset. From the scenario, a set of distinct hosts and IP addresses were found.
These addresses are the expected content of the generated signature, and the test
pass if they are found.

The Snort IDS is a system already tested thorough. Therefore, as long as the
generated IDS signature follows the Snort signature syntax, the signature will not
be tested by loading it into an IDS. The syntax is described in Section 6.4.3 on
page 76. The reason for this selection is the amount of time required to establish
an IDS with sufficient network coverage is extensive, and is considered unnecessary
due to Snort’s proven functionality. The test run is shown in Table 9.6 on the next
page.

9.5 Software licenses
In order to choose a license on the developed software, it is important to note that
existing source code from Zero Wine has been used in the final system. Zero Wine
is released under the Public License (GPL), which ensures free use of the software,
and also modifications of it. Therefore, the final system, which is a modified version
of Zero Wine, is released entirely under the GPL license. Using a GPL license forces
the source code in the final system to be public, including further modifications of
it. The GPL license can be studied at http://www.gnu.org/licenses/gpl.html.

9.6 Integration with NAAS
NorCERT’s analysis repository, NAAS, is a web based system used for storing
information about samples and analyses. NAAS is the internal system for handling
malware samples, mentioned in the problem description. It is a collaborative tool
and is used to share the information across the analysis team. The software is partly
implemented by NorCERT’s software developers, and standalone programs will, in
time, be possible to use through the regular NAAS interface. An interface connecting
NAAS to third party program is now being designed, and at its completion there will
be possible to hook standalone programs onto NAAS, and run them as components
in the NAAS system.

The standalone applications use command line interfaces for simplicity, are
able to run without NAAS, and use NAAS as a graphical user interface component
only. To integrate a standalone application, which in this example is the system for
automatically generating IDS signatures, only a few settings in a Python class is
needed. The Python class is one part of the NAAS design chosen by developers from
NorCERT. To understand the link, consider Figure 9.1 on page 114 that shows
how third party applications can be connected through NAAS, using a simplified
UML class diagram. The figure is stripped from details, and shown to give an
overview only. It displays the different operations (called “tools”), collected in an
array instantiated by an “AnalysisClient” located together with the main NAAS
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Test name Testing IDS signature generation
System module Zero+One
Entry conditions tshark is running on the VM OS and logs network traffic

to /var/log/tshark.
Test case Run “./kmanalyse.py -f asprox.exe -e” from the

VM OS.
Expected Results An IDS signature to use in the Snort IDS shall be gen-

erated. The content of the signature shall match some,
or all of the addresses found in the malware analysis
scenario.

Requirements tested F.05
Result PASSED

Comments
The test ran for 200 seconds before the system generated the follow-
ing signature. “log [$HOME_NET] any -> [58.65.233.17/32, $HOME_NET,
217.72.195.42/32, 87.248.113.14/32] 80”, which is following the Snort
IDS signature syntax. When active in the Snort IDS, this signature look for
connections from the home network on any port to a set of IP addresses
observed by the network monitor during the sample execution. The IP address
217.72.195.42 maps to two of the five hosts found during the malware analysis
scenario (results from the scenario are shown in Table 5.1 on page 60). These
two hosts are “ha-42.web.de” and “www.web.de”. The three remaining hosts
are missing from the signature, but two new IP addresses are shown instead.
One of the missing hosts has an expired IP mapping, meaning no data traffic
can be sent to it, and thus not seen by the network observer and neither in
the generated signature. The IP address “87.248.113.14” maps to the host
name “f1.us.www.vip.ird.yahoo.com”, owned by Yahoo. One of the missing
IP addresses from the generated signature is the “www.yahoo.com” pointer, so
there is probably a connection between the two different addresses. The second
new IP address is “58.65.233.17”, which originates in Hong Kong. These
results indicate the sample varies its contact points from time to time, but the
test is nevertheless successful as the generated signature strongly resemble the
results from the analysis scenario.

Table 9.6: Testing IDS signature generation.

application. To generate an IDS signature, simply run the “generateSignatureTool”
Python class from NAAS that takes care of the execution details. After the tool’s
execution, the AnalysisClient receives the results. The IDS signature is in this case
the result. Upon receiving the signature, the AnalysisClient delivers it to the NAAS
system for representation.
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AnalysisClient

tools: Tools[]

add(): void
run(): void

Tool

name: string
description: string

generateSignatureTool

consistOfTools

Figure 9.1: NAAS integration in a simplified UML class diagram.
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Evaluation

This chapter contains an evaluation of achievements from the work described in
this thesis. The chapter starts by listing whether the stated result goals are reached,
and elicited requirements fulfilled. The chapter finishes by comparing the thesis to
related work, and describes limitations in the system that is possible to improve in
further work.

10.1 Result goals achieved, system requirements
fulfilled

This section contains a discussion about whether each result goal is reached, and
to which extent the requirements are fulfilled. Result goals are stated in Section
1.2, and the full requirements elicitation is documented in Section 7.3. To make
it unnecessary to turn back to these sections when reading, Table 10.1 on the
following page repeats each result goal, and the description of each requirement. A
summary is shown in Table 10.2 on page 118.

10.1.1 Result goals
The problems of malware have been mentioned throughout the thesis, but particu-
larly Chapter 2 is dedicated to discussions about threats from malware and available
countermeasures. The chapter contains research and documentation sufficient for
reaching the first result goal (RG.01).

A malware analysis scenario has been performed in this thesis, focusing on the
dynamic analysis phase and excluding static analysis. Since the problem description
explicitly emphasises the dynamic analysis phase, RG.02 is considered reached by
the analysis scenario documented in Chapter 5.

Chapter 6 contains a survey of possible tasks to automate, thus tasks that
reduce time spent during dynamic analyses. The content of two of the tasks are
combined into requirements for a new system able to automate these tasks. RG.04
is reached by implementing the final system, and its corresponding documentation.

The implemented IDS signature generation can be used to get an overview over
infected hosts in a network. The signature generation process is in consequence
directly useful to handle incidents where malware is involved, and with the content
of Chapter 6, RG.03 is therefore reached.
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Label Goal
RG.01 Study the problems of malware, how the malicious software operates

and how it propagates. Discuss available countermeasures to the
problems, and reason for why these methods are not sufficient to
overcome threats from malware.

RG.02 Describe the structure of a malware analysis. State of the art analytical
methods and professional tools used in such an analysis shall be
studied.

RG.03 Choose a solution that can be used to reduce the time spent during
a manual dynamic analysis phase. The solution shall be possible to
realise as an automated process of the dynamic malware analysis
phase. The solution should be capable of handling incidents where the
malware is involved (the solution should be “actionable”).

RG.04 Implement a system able to automate the solution chosen in RG.03.
The system shall not be fully functional, but merely a proof of concept
implementation.

RG.05 Use the implemented solution and look into the possibility of inte-
grating the solution with NorCERT’s existing system for handling
malware analyses. Describe what is needed to integrate the imple-
mented system.

(a) List of result goals

Label Description
F.01 The system should execute (run) samples and monitor API calls made

while they are running.
F.02 The system shall generate signatures to be used in the Snort IDS

based on network traffic during execution of samples.
F.03 The system shall be secure and shall be automatically reverted to a

clean state after each executed sample.
F.04 The system may optionally fetch text data (strings) in samples.
F.05 The system may optionally parse samples for executable packer tech-

nologies used to compress it.
NF.01 The system should be released in open source form to allow the public

to utilise and improve the code.
NF.02 The system shall be sufficiently documented so modifications can be

made without familiarise with the complete code base.
NF.03 It is recommended that it is manageable to upgrade code strongly

related to Zero Wine. That is, when new releases of Zero Wine are
made public, the new functionality should be possible to integrate in
the system.

(b) Description of requirements

Table 10.1: To make it unnecessary to turn back to Section 1.2 (where result goals are
stated), and Section 7.3 (where requirements are elicited), key information about result
goals and requirements is repeated.
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Third party tool integrations in NorCERT’s analytical system, NAAS is under
development by NorCERT’s software developers. By using NAAS’ current Python
interfaces, a sketch of how to integrate the final system with NAAS is documented in
Section 9.6 on page 112. Due to the incompleteness of the integration interface, and
the emphasis on “look into an integration” from the problem description, delivery
of the sketched design is considered sufficient to reach RG.05.

10.1.2 Functional requirements
The final system executes samples using Wine, which is set to filter out suspicious
API calls when a sample is running. The system presents the results to the user,
thus satisfying requirement F.01.

An IDS signature is generated during the execution of a sample. It is structured
to find infected hosts in a network based on observed network traffic generated by
a sample during its execution. As a result, requirement F.02 is fulfilled.

By utilising functionality from the vmcom program previously implemented
during this thesis’ preliminary project together with platform virtualization by
VMware, the final system is automatically reverted to a clean state after each
sample execution. Such an approach is made possible by the use of virtualization
software, and ensures a secure and non-infected environment. Requirement F.03 is
therefore fulfilled.

Text content of binary files are parsed with help from the program GNU strings,
thus fulfilling requirement F.04.

Utilising functionality from PEfile and an open packer signature database, the
final system is able to localise 1832 different packer technologies. However, only one
layer of compression is found with the final system, and recursively packed layers
are not exposed. F.05 is for that reason only partly reached, but the requirement
is given a low prioritisation, so an incomplete fulfilment of the requirement is not
critical. It may be possible to manually unpack the sample and rerun the check,
but this procedure is not implemented in the final system.

10.1.3 Non-functional requirements
The final system is released under the GPL license that ensures the system and
further modifications remain open source and freely available. Requirement NF.01
is thus fulfilled.

Best practice documentation conventions are used to document the final system
in the code. Additionally, Chapter 9 is dedicated to explain the structure and
functionality of the system, thus satisfying NF.02.

Method names and the content of methods are kept unchanged wherever
possible. In some occasions, where Zero Wine originally had tangled its web
interface together with the analytical functionality, the corresponding methods
were changed to sustain a readable code structure. Additionally, some methods
from Zero Wine, unused by the final system, are completely removed. This choice
makes requirement NF.03 partly fulfilled, but it is a low prioritisation requirement
so a partial fulfilment is not critical.
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Result goal Reached?
RG.01 Yes, by Chapter 2 that studies threats and countermeasures

concerning malware.
RG.02 Yes, by the malware analysis scenario in Chapter 5.
RG.03 Yes, by work documented in Chapter 6, where focus areas for the

final system are chosen.
RG.04 Yes, by the final system.
RG.05 Yes, by the sketched integration design found in Section 9.6 on

page 112.
(a) Reaching result goals

Requirement According to measurements?
F.01 Yes, by utilising functionality from Zero Wine.
F.02 Yes, by modifying Zero Wine and adding new functionality

during execution of samples.
F.03 Yes, by automatically revert to a clean state after each sample

execution.
F.04 Yes, by utilising functionality from the GNU strings applica-

tion.
F.05 Partly. The system is able to localise 1832 different packer

technologies, but only one layer of compression and not layers
below if packing is applied recursively.

NF.01 Yes, the final system is released under the GPL license.
NF.02 Yes, the final system is documented according to best practice

conventions.
NF.03 Partly. Method names and content are kept wherever possible,

but some changed are made to sustain readability and follow
code conventions.

(b) Fulfilment of requirements

Table 10.2: Reaching result goals, and fulfilment of requirements.
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10.2 Discussion
The information presented in this thesis provides a rich picture of the negative
consequences by an increasing prevalence of malware on the Internet. The thesis
has clarified malware as advanced pieces of software, and deducing malware’s
functionality is a complex process that requires much manual work and human
intervention. Automating tasks performed in analyses is a way to decrease the
necessary amount of resources to conduct an analysis.

This thesis has showed it is possible to automate common analytical tasks, and
has finished the implementation of a proof of concept system. The system performs
various analytical tasks, but particular focus has been kept on running malware,
observing its network usage, and generating signatures for intrusion detection
systems (IDSes) in an automated manner. Using the generated signatures, one can
observe a network monitored by the Snort IDS for data traffic that matches the
signature.

A host is considered infected if the signature matches traffic to or from the host.
The probability of a false positive is based on how coarsely grained the granularity
level of signature is, but the granularity level is a modifiable parameter. By utilising
the generated signature, one is able to find compromised hosts in a network, and
eventually be able to repair them or disable them to prevent them causing further
harm.

The implemented system is unique of its kind by the way signatures are
generated, and on which data basis that is used to derive them. The final system is
focusing on traffic source and destination, contrasting the Polygraph system that
was suggested by Newsome et al. [2005]. Polygraph, and its predecessor Autograph,
focus on content in the observed data traffic—not source and destination addresses
and ports. Zero+One is also easy to integrate with analytical systems.

10.3 Further work
The realised system is automated, leading to a more swift and easier analytical
process than manual analyses. The system requires only minor interaction with
an analyst, and scales better than a normal, often manually performed, dynamic
analysis process. Still, and not surprisingly, there are room for improvements.
The final system is a proof of concept implementation and not a fully functional
realisation, so further work and improvements were always expected.

This section discusses various areas in the final system that can be improved
and suggests solutions to the issues. The suggested solutions are feasible for future
work.

10.3.1 General issues with dynamic analyses
The final system is strictly connected to the dynamic analysis phase and therefore
suffers from some of the same general problems in the phase. Key issues from the
dynamic analysis phase are discussed in Section 4.7 on page 49, so they are not
repeated.

The problem of observing single path executions are the most prominent
weaknesses from dynamic analyses and this is also reflected in the final system.
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The input sample is executed and analysed once when requesting an IDS signature
or API calls listing from the system. No attempts are made to force multiple
execution paths during the execution, but results are instead gathered from one
single execution of the sample. Without knowing the structure of the sample, an
analyst is never guaranteed to generate a signature that covers all possible network
traffic generated by a sample. This is simply because the system does not guarantee
to visit all possible execution paths in the executable file. Looking for packer
information and string parsing are not affected by the issue, as these processes are
not required to execute the sample.

Is is possible to force the system to visit all conditional branches, but the
techniques to do so are too complex for the scope of this thesis and saved for future
work.

As explained in Section 8.7.3 on page 99, it is also straightforward to detect
the analytical environment used in the system. Samples can therefore easily halt
its own execution if Wine is found, using simple checks to locate the environment.
Forcing multiple execution paths in the signature generation would have resolved
the issue by manipulating the results returned by the conditional check.

10.3.2 Using host names instead of IP addresses
Fast flux networks are a set of compromised computers and constantly changing
DNS records that points to them. A domain name can have thousands of IP
addresses assigned to it concurrently [Holz et al., 2008]. The domain name on
the other hand points to one single IP address at a given time, but the pointer
changes as often as every three minutes to a new IP address [Riden, 2007]. Fast flux
networks are used to ensure high service availability by having a service redundantly
spread over a large number of (compromised) machines. If one machine is disabled,
the host name pointer changes to another machine’s IP address, which is online and
available. Additionally, fast flux networks effectively prevent an authority to take
down the service due to its highly distributed architecture. Signatures generated
by the final system is based on IP addresses, leading to a potential enormous
number of relevant IP addresses when analysing a sample that utilises fast flux
networks. In the worst case, each infected machine contacts distinct IP addresses.
The generated signature will then consist of a set of unique IP addresses unique
for that particular infection. A way to solve this problem is to store the host name
(which is constant) when generating signatures. The host name should be used in
the signature instead of its current IP address pointer, which is changed almost
instantly after the signature is generated. All IP addresses pointed to by the host
name must of course be fetched prior to using the signature in an IDS. Special
passive DNS databases that keeps track over host names DNS history exists, and
are handy for cases like this [Weimer, 2005]. These DNS databases listen to all kinds
of DNS queries and continuously store results returned by the DNS name servers.
Eventually, the databases have history of a domain name’s history and usage. The
web site http://www.bfk.de/bfk_dnslogger.html is one of the services available
to show the pointer history of a host name. However, automated queries to the
services are not allowed without explicit agreements with the respective owners.
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10.3.3 Adding a whitelist
The signature generation is currently not able to distinguish between obviously
legitimate IP addresses from more suspicious addresses, leading to legitimate IP
addresses showing up in the generated IDS signature. When the signature is used,
the analysts may falsely conclude clean hosts are infected. It is possible to reduce
the amount of such false positives by manually checking the generated IDS signature
for known legitimate IP addresses or their host names. It is also possible to create
a whitelist, which consists of trusted host names that should not be added to
generated signatures.

The same problem applies to generated signatures having too high granularity
levels. One IP addresses in a subnetwork might be used for suspicious actions,
but the rest of the IP addresses in the network might be perfectly legitimate. In
consequence, too low granularity levels should be used with caution when generating
signatures.

10.3.4 Using additional metadata during signature genera-
tion

Signatures are generated solely on observed addresses and ports in network traffic.
By abstracting away the necessity of processing data content in network traffic,
the system is unique compared to previous work. There are still implications with
such an approach, notably the fact that false negatives and positives can easily be
introduced when using the generated signature.

Data content matching can be used to strengthen the generated signatures, and
decrease the probability of detecting false positives and negatives when using the
signature to find infected hosts. The data content should still be prioritised lower
in the signature than addresses and ports are, but used as assistance in signatures
to reduce false positives and negatives.

10.3.5 Using statistical filter algorithms
The selection of which addresses and ports to use in the generated signature is now
straightforward; all IP addresses are processed, and the highest frequently used
ports are chosen. Vital ports may easily be missed, making this approach error
prone and subject to false negatives. The correct port value(s) can be deduced
using statistical algorithms that observe similarities in multiple executions of the
same sample. These algorithms should be capable of filtering out the fixed port(s),
or a range of changing ports that are used by the malware and increase the quality
level of generated IDS signatures.
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Chapter 11

Thesis Conclusion

The dangers from malicious software become imminent by its increasing level of
complexity and prevalence on the Internet. The key to countermeasure malware is
to understand how it operates, but deducing its functionality is a time consuming
and difficult task. Malware exposes a serious threat to computer systems, and
efficient solutions to prevent the software from performing malicious actions are
needed more than ever before.

Malware is highly dependent on the Internet to perform its malicious duty,
spanning from simple checks to determine if an Internet connection is available,
to participation in enormous distributed attacks. When malware spreads to other
hosts, it replicates or creates a variance of its original form. The new sample may
look different, but usually behaves the exact same way on hosts it successfully
infects.

11.1 Contributions
This thesis has presented a thorough preliminary process of studying malware—from
trivial programs that bug the user, to sophisticated and complex pieces of software.
Malware producers use large amounts of resources to create software that is efficient
and dangerous. They struggle to implement programs that evade detection and can
avoid exposing their own malicious code. The thesis has shown how state-of-the-art
programming techniques, in both a theoretical and practical way, are utilised in
such software to make deducing its functionality difficult. Likewise, the thesis
presents countermeasures to malware, and how to avert computer systems from
being compromised—both for malware analysts, and end-users. The thesis points
out a clear indication that more effective solutions are needed to fight malicious code
when the prevalence of malware and its sophistication level continue to increase.

Automating resource demanding malware analyses is one of the steps to reduce
the necessary human intervention, and thus save analysts for precious time. However,
malware analyses are subject to significant variations depending on the observed
behaviour of a sample, meaning one analysis can be performed completely different
from another. These variations make a complete automation of an analysis infeasible,
but constructing tools to automate common processes and tasks in an analysis, is the
first step to save valuable time for analysts. The thesis presents an in-depth study
of which properties such a system should have, and why it is so. A prioritisation
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of available approaches is made to select the correct choices properly, and these
choices are reasoned for throughout the thesis. Based on the findings, a system
is outlined and designed. The system automatically creates a signature for an
intrusion detection system (IDS) by executing malware and observing its network
activity. The system is realised as a proof of concept implementation that, in
a secure manner, controls the execution of the malware and generates the IDS
signature. The signature uses a syntax equal to the rule specifications defined by
the Snort IDS, and can thus be easily loaded in Snort IDSes. The system is can
be integrated into existing solutions for handling malware analyses using minor
necessary effort. The generated signature is useful to identify infected hosts in
an arbitrary large network by watching the network activity, and allows analysts
to take appropriate action for hosts identified as being infected. Otherwise, since
malware tends to camouflage its existence, hosts may be infected, under control
by an attacker, and used for malicious activity—without anyone being aware of
the incident. Additionally, functionality commonly seen in sandboxes is included in
the system. This choice is made to show that the system is capable of performing
multiple tasks, allowing analysts to use only one analytical tool in an analysis.

The results goals defined in the thesis are reached, and all medium– and high-
prioritised requirements are fulfilled. The system works as expected and has the
potential to significantly reduce the necessary human intervention when locating
infected hosts in an IDS covered network. However, the system is a proof of
concept implementation, and is subject to improvements and further work. The
system can be modified to suit any network monitored by an IDS, and is a strong
contribution when estimating the scale of an infection. The system assists the
process of identifying infected hosts, which gives the opportunity to immediately
disable or repair the hosts to prevent the malware from doing further harm. Being an
open source solution allows anyone that sees potential in the software to contribute
to the code. In time, the system may grow to a complete dynamic analysis tool
and a free full value sandbox system that is a competitor for commercial sandbox
solutions and malware analysis tools.

11.2 The future
Producers of malware are no longer computer savvy teenagers, but rather organised
groups of experts having vast amount of resources. Malware’s goals are no longer to
tease the user, but is a profitable business using sophisticated and state-of-the-art
techniques. The fight against malicious software continues, and current trends
indicate it will be increasingly difficult to countermeasure the threats exposed by
the software. Automation of analyses are one way to more swiftly deduce malware’s
functionality to be able to produce countermeasures, but the analyses will eventually
take too much time as the prevalence of malware in time becomes overwhelming.
New approaches to decrease the potential value of an attack are necessary to make
the cost of an attack higher than the value gained if the attack is successful. By
forcing producers of malware to spend more resources on the malware than it is
able to generate as profit, the malware market would significantly reduce, and
eventually vanish or change beyond recognition. The techniques to achieve such an
utopia are far from obvious, but approaching the problem from multiple angles are
most certainly necessary. Software must be developed with explicit requirements
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regarding its security, more resources must be dedicated to produce code that is
free for bugs and designs that have no flaws. Users must be trained to be able to
withstand obvious intrusion attempts and to understand the threats from malware
and consequences by a security breach. Appliances dedicated to protect hosts
from malware should be unnecessary, and kept as assistance in defence in depth
strategies only. When such appliances are used, they should be efficient, solid and
trustworthy to guarantee the results they supply are correct. Approaches such as
these could effectively reduce, or in time eliminate, the available attack points
in computer systems, and thus reduce the possible consequences from malware.
The process of eliminating all malware is lengthy, but each approach, solution and
method reducing the necessary human intervention when fighting malware is one
step closer to utopia.
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Appendix A

User Manual

This appendix contains the user manual for the final system. The appendix does
not contain specific details about installation of any dependencies, but focuses
on usage of vmcom lite and Zero+One. The final system is located at https:
//sourceforge.net/projects/zeroplusone/.

A.1 Configuring and using Zero+One
Prior to using Zero+One, some configuration settings must be edited. They are
located in the file “config.py”. Each setting is self explanatory.

Zero+One is a set of Python scripts controlled by command line arguments.
The program is able to perform the following tasks.
• Check for known packer signatures in FILE
(--packers --file /folder/file)
• Scan FILE for strings (ASCII data)
(--strings --file /folder/file)
• Execute FILE and get a list of suspicious API calls and an IDS signature
with granularity level 16 on IP addresses.
(--execute --file /folder/file --granularity 16)

The network monitoring tool tshark must be logging network data to the file
/var/log/tshark before starting an analysis.

A.2 Configuring and using vmcom lite
Zero+One should be run in an virtual environment to avoid permanent infections
when running malware. vmcom lite ensures the samples are safely executed in a
virtual machine. Zero+One must be deployed on a VMware Server based operating
system where the VIX API is installed on the virtual machine host for this to work.

Some settings must be edited prior to running vmcom lite. They are found in
the configuration part of the source code.

vmcom lite is a Perl script controlled by command line arguments. It is able
to perform the following tasks.
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• vmcom lite requires a clean snapshot of a system prior to running Zero+One.
--takesnapshot
• Run an analysis using Zero+One.

--analyse --password PASSWORD, where PASSWORD is the guest operating
system password.
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Appendix B

Screen Captures

This appendix contains the following screen captures.
• Figure B.1 on the following page shows vmcom lite’s help screen and func-

tionality that is accessible using command line arguments.
• Figure B.2 on the next page shows Zero+One’s help screen and functionality
that is accessible using command line arguments.

• Figure B.3 on page 143 shows Wireshark, the graphical version of tshark,
while observing network traffic.
• Figure B.4 on page 143 shows PEiD that has found a packer technology used
in a sample.
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Figure B.1: Screen capture from vmcom lite’s help screen.

Figure B.2: Screen capture from Zero+One’s help screen.
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Figure B.3: Screen capture from Wireshark capturing network traffic during the malware
analysis scenario in Chapter 5. The screen capture is too small to show any details, but is
meant to give an overview over the interface only.

Figure B.4: Screen capture from PEiD’s results when scanning for utilised packer tech-
nologies on the sample from the malware analysis scenario in Chapter 5. PEiD detects the
packer used as a Microsoft Visual C++ packer.
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Appendix C

Implementation Appendix

This appendix contains the script used to control the network in Chapter 5, and
complete source code listings of the final system.

C.1 iptables script
This section contains the iptables script used in the malware analysis scenario
from Chapter 5. The script is deployed on the host operating system, and ensures
a strictly controlled set of network traffic is allowed out on the Internet. The script
shown enables all DNS traffic (UDP traffic on port 53) and SSH traffic (TCP port
22) so it is possible to communicate remotely and secure with the machine. The
script is shown below in Listing C.1.

1 #!/ bin / bash
2

3 # Fol lowing commands w i l l " f l u s h " the prev ious i p t a b l e s−r u l e s
4 i p t a b l e s −F
5 i p t a b l e s −X
6 i p t a b l e s −t nat −F
7 i p t a b l e s −t nat −X
8

9 # Var iab l e ho l d ing the IP−subnet f o r the malware network
10 VM_IP=192.168 .127 .0/24
11

12 # Var iab l e ho l d ing the remote IP−address
13 PUB_IP=193.156 .97 .172
14

15 # Enable packe t forward ing
16 echo " 1 " > /proc / sys /net / ipv4 / ip_forward
17

18 # Always enab l e DNS r e q u e s t s
19 i p t a b l e s −t nat −A POSTROUTING −s $VM_IP −p udp −−dport 53 −o

eth0 −j SNAT −−to−source $PUB_IP
20

21 # Always enab l e SSH t r a f f i c
22 i p t a b l e s −t nat −A POSTROUTING −s $VM_IP −p tcp −−dport 22 −o

eth0 −j SNAT −−to−source $PUB_IP
23
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24 # Check i f we want to enab l e the r e s t o f the network t r a f f i c .
25 # Commented va lue d i s a b l e s , o the rw i s e enab led
26 #i p t a b l e s −t nat −A POSTROUTING −s $VM_IP −o eth0 −j SNAT −−to−

source $PUB_IP

Listing C.1: Script containing iptables chains for filtering out traffic coming from the
VM OS.

C.2 vmcom lite source code
vmcom lite is the entry point of the system. It is used to initiate commands on
the virtual machine operating system, and is ensuring a cleanup after a successful
execution. See Listing C.2 below for the complete Perl source code for vmcom lite.
The program can be downloaded as a regular file from https://sourceforge.
net/projects/zeroplusone/.

1 #!/ usr / bin / p e r l
2

3 # Run in s t r i c t mode
4 use s t r i c t ;
5

6 # Supply the user with warnings
7 use warnings ;
8

9 # We need case−swi t ch f u n c t i o n a l i t y in the parser
10 use Switch ;
11

12 # We a l s o need command l i n e swi tch pars ing
13 use Getopt : : Long ;
14

15 # Output can be co lored
16 use Term : : ANSIColor ;
17

18 # Import the VIX API
19 use VMware : : Vix : : Simple ;
20 use VMware : : Vix : : API : : Constants ;
21

22 # #######################################################
23 #
24 # CONFIGURATION PART
25 #
26

27 my $host_name = ’ https : / / 1 2 7 . 0 . 0 . 1 : 8 3 3 3 / sdk ’ ;
28 my $host_port = 0 ;
29 my $host_username = ’km ’ ;
30 my $host_password = ’ ’ ; # can be f e t c h e d from command l i n e arguments
31 my $COMMAND = ’ ~/ zero+one/ zero+one . py −f /tmp/ up loaded_f i l e −e ’ ; #

analyse command to run
32 my $vmx_location = ’ [ mybook ] l inux_1/ linux_1 .vmx ’ ;
33 my $guest_os_username = ’km ’ ;
34 my $guest_os_password = ’ ’ ; # can be f e t c h e d from command l i n e

arguments
35 my $ r e su l t_ f i l e_ sou r c e = ’ /tmp/ r e s u l t s . txt ’ ; # Source o f r e s u l t f i l e

from a n a l y s i s (on gues t OS)
36 my $ r e s u l t_ f i l e_d e s t i n a t i o n = ’ /tmp/ r e s u l t s . txt ’ ; # Dest ina t ion o f

r e s u l t f i l e from a n a l y s i s ( on hos t OS)
37

38 # Do not wait more than TIMEOUT f o r each VM operat ion .
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39 use constant TIMEOUT => 220 ;
40

41 #
42 # END CONFIGURATION PART
43 #
44 # #######################################################
45

46

47 # #######################################################
48 #
49 # MAIN PROGRAM
50 #
51

52 # Disp lay a he lp screen i f :
53 # a ) user have supplemented the argument −−he lp
54 # b ) no arguments are s p e c i f i e d
55

56 pr int_help ( ) unless ($ARGV[ 0 ] ) ;
57

58 # This i s the Getopts swi t ch hash , c o n f i g u r i n g the l e g a l command l i n e
59 # s w i t c h e s . The s w i t c h e s " only " and " scan " r e q u i r e s an argument each ,
60 # r e s p e c t i v e l y a s t r i n g and an i n t e g e r .
61 my %swi tche s =() ;
62 GetOptions (
63 " ana lyse=s "=>\$swi tches { ana lyse } ,
64 " takesnapshot ! "=>\$swi tches { takesnapshot } ,
65 " hostpass=s "=>\$swi tches {h_password } ,
66 " gues tpas s=s "=>\$swi tches {g_password } ,
67 " he lp ! "=>\$swi tches { he lp }
68 ) ;
69

70 pr int_help ( ) i f $swi tches { help } ;
71

72 # Overwrite the d e f a u l t pw i f another one i s s u p p l i e d
73 $host_password = $swi tches {h_password} i f $swi tches {h_password } ;
74 $guest_os_password = $swi tches {g_password} i f $swi tches {g_password } ;
75

76 # Fetch the s u b j e c t f i l e path
77 my $ sub j e c t_ f i l e_ l o c a t i on = $swi tches { ana lyse } i f $swi tches { ana lyse } ;
78

79 # I f t he re are any arguments l e f t a f t e r g e t o p t s has parsed the
80 # arguments , some of them was not accepted by g e t o p t s . Inform the

user
81 # a c c o r d i n g l y .
82 foreach (@ARGV) {
83 i f (defined ( $ sw i t ches {$_}) ) {
84 print "$_ = $swi tches {$_}\n" ;
85 }
86 else {
87 print "$_" ;
88 }
89 }
90

91 # Prints some he lp .
92 sub pr int_help {
93 print ( " Usage : vmcomlite . p l [−a ] [−h ] [−g ] \ n\n" ) ;
94 print ( "−a FILE , −−ana lyse=FILE\ t \ tAnalyse FILE\n" ) ;
95 print ( "−ho PW, −−hostpass=PW\t \tUse PW as password to the host OS\

n" ) ;
96 print ( "−g PW, −−gues tpas s=PW\t \tUse PW as password to the v i r t u a l

machine ’ s OS\n" ) ;
97 print ( "−t , −−takesnapshot \ t \tTake a snapshot o f the v i r t u a l
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machine ’ s s t a t e \n" ) ;
98 print ( " \ t \ t \ t \ t (maximum one snapshot can be s to r ed per v i r t u a l \n " )

;
99 print ( " \ t \ t \ t \ tmachine f o r VMware Server ) \n " ) ;

100 print ( "−he , −−help \ t \ t \ tThis he lp s c r e en \n" ) ;
101 die " \n " ;
102 }
103

104 # Aborts the current running opera t ion and r e p o r t s back to the user .
105 sub abort {
106 my( $text , $ e r r ) = @_;
107 print " Error rece ived , $text , $ e r r " . GetErrorText ( $e r r ) ;
108 die $text , $err , GetErrorText ( $e r r ) , " \n " ;
109 }
110

111 # I n i t i a t e error and hand les
112 my $e r r = VIX_OK;
113 my $host_handle = VIX_INVALID_HANDLE;
114 my $vm_handle = VIX_INVALID_HANDLE;
115 my $snapshot_handle = VIX_INVALID_HANDLE;
116

117 i f ( $ sw i t ches { takesnapshot } or $swi t ches { ana lyse }) {
118 print ( " I n i t i a t i n g \n" ) ;
119 $host_handle = connect_to_vm( $err , $host_handle , $host_name ,

$host_port , $host_username , $host_password ) ;
120 print ( " Connected\n" ) ;
121 ( $host_handle , $vm_handle ) = open_vm( $err , $host_handle ,

$vm_handle , $vmx_location ) ;
122 print ( "vm opened\n" ) ;
123 power_on_vm( $err , $vm_handle ) ;
124 print ( "vm powered on\n" ) ;
125

126 i f ( $ sw i t ches { ana lyse }) {
127 print ( " wa i t ing f o r vm" ) ;
128 wait_for_vm( $err , $vm_handle ) ;
129 print ( " l ogg ing in \n" ) ;
130 log_in_vm( $err , $vm_handle , $guest_os_username ,

$guest_os_password ) ;
131 print ( " logged in \n" ) ;
132 copy_fi le_to_guest ( $err , $vm_handle , $ s ub j e c t_ f i l e_ l o c a t i on ) ;
133 print ( " cop ied f i l e \n " ) ;
134 run_vm_program( $err , $vm_handle , $COMMAND) ;
135 print ( " program ran\n" ) ;
136 copy_fi le_to_host ( $err , $vm_handle , $ r e su l t_ f i l e_sou r c e ,

$ r e s u l t_ f i l e_d e s t i n a t i o n ) ;
137 print ( " cop ied f i l e back\n" ) ;
138 de l e t e_re su l t_ f i l e_ in_gue s t ( $err , $vm_handle ,

$ r e s u l t_ f i l e_ sou r c e ) ;
139 print ( " de l e t ed f i l e \n " ) ;
140 print ( " r e v e r t i n g snapshot \n" ) ;
141 reverte_snapshot ( $err , $vm_handle , $snapshot_handle ) ;
142 }
143 e l s i f ( $ sw i t ches { takesnapshot }) {
144 print ( " tak ing snapshot \n" ) ;
145 take_snapshot ( $err , $vm_handle , $snapshot_handle , 0) ;
146 }
147 }
148 else {
149 pr int_help ( ) ;
150 }
151

152
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153 # Connects to v i r t u a l machine .
154 sub connect_to_vm {
155 my( $err ,
156 $host_handle ,
157 $host_name ,
158 $host_port ,
159 $host_username ,
160 $host_password ) = @_;
161

162 ( $err , $host_handle ) = HostConnect (VIX_API_VERSION,
163 VIX_SERVICEPROVIDER_VMWARE_VI_SERVER,
164 $host_name ,
165 $host_port ,
166 $host_username ,
167 $host_password ,
168 0 , # opt ions
169 VIX_INVALID_HANDLE) ; # proper tyLis tHand le
170

171 abort ( " HostConnect ( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
172

173 return $host_handle ;
174 }
175

176 # Opens a v i r t u a l machine handle
177 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
178 sub open_vm {
179 my( $err , $host_handle , $vm_handle , $vmx_location ) = @_;
180

181 ( $err , $vm_handle ) = VMOpen( $host_handle , $vmx_location ) ;
182

183 abort ( "VMOpen( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
184

185 return ( $host_handle , $vm_handle ) ;
186 }
187

188 # Power on a v i r t u a l machine handle
189 # Opens a v i r t u a l machine handle
190 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
191 # an open v i r t u a l machine handle (open_vm)
192 sub power_on_vm {
193 my( $err , $vm_handle ) = @_;
194

195 $e r r = VMPowerOn($vm_handle ,
196 0 , # powerOnOptions
197 VIX_INVALID_HANDLE) ; # proper tyLis tHand le
198

199 abort ( "VMPowerOn( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
200 }
201

202 # Wait u n t i l vmware t o o l s i s loaded in the v i r t u a l machine
203 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
204 # an open v i r t u a l machine handle (open_vm)
205 # a powered on v i r t u a l machine (power_on_vm)
206 sub wait_for_vm {
207 my( $err , $vm_handle ) = @_;
208

209 $e r r = VMWaitForToolsInGuest ( $vm_handle ,
210 TIMEOUT) ; # timeoutInSeconds
211

212 abort ( "VMWaitForToolsInGuest ( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
213 }
214

149



Appendix C. Implementation Appendix

215 # Log i n t o v i r t u a l machine gues t opera t ing system
216 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
217 # an open v i r t u a l machine handle (open_vm)
218 # a powered on v i r t u a l machine (power_on_vm)
219 # vmware t o o l s loaded ( log_in_vm )
220 sub log_in_vm {
221 my( $err , $vm_handle , $guest_os_username , $guest_os_password ) = @_;
222

223 $e r r = VMLoginInGuest ( $vm_handle ,
224 $guest_os_username , # userName
225 $guest_os_password , # password
226 0) ; # opt ions
227 # vm suspend
228 abort ( "VMLoginInGuest ( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
229 }
230

231 # Copies a f i l e from hos t opera t ing system to gues t opera t ing system
232 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
233 # an open v i r t u a l machine handle (open_vm)
234 # a powered on v i r t u a l machine (power_on_vm)
235 # vmware t o o l s loaded ( log_in_vm )
236 # a user logged i n t o the v i r t u a l machine gues t OS (

log_in_vm )
237 sub copy_fi le_to_guest {
238 my( $err , $vm_handle , $ s ub j e c t_ f i l e_ l o c a t i on ) = @_;
239

240 $e r r = VMCopyFileFromHostToGuest ( $vm_handle ,
241 $ sub j e c t_ f i l e_ l o ca t i on , # src name
242 " /tmp/ up loaded_f i l e " , # d e s t name
243 0 , # opt ions
244 VIX_INVALID_HANDLE) ; # proper tyLis tHand le
245

246 abort ( "VMCopyFileFromHostToGuest ( ) f a i l e d " , $ e r r ) i f $e r r !=
VIX_OK;

247 }
248

249 # Dele te the r e s u l t f i l e in the gues t
250 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
251 # an open v i r t u a l machine handle (open_vm)
252 # a powered on v i r t u a l machine (power_on_vm)
253 # vmware t o o l s loaded ( log_in_vm )
254 # a user logged i n t o the v i r t u a l machine gues t OS (

log_in_vm )
255 sub de l e t e_re su l t_ f i l e_ in_gue s t {
256 my( $err , $vm_handle , $ s ub j e c t_ f i l e_ l o c a t i on ) = @_;
257 $e r r = VMDeleteFileInGuest ( $vm_handle , " /tmp/ r e s u l t s . txt " ) ;
258 }
259

260 # Run an a r b i t r a r y program on the gues t opera t ing system with the
logged

261 # in users p r i v i l e g i e s
262 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
263 # an open v i r t u a l machine handle (open_vm)
264 # a powered on v i r t u a l machine (power_on_vm)
265 # vmware t o o l s loaded ( log_in_vm )
266 # a user logged i n t o the v i r t u a l machine gues t OS (

log_in_vm )
267 sub run_vm_program {
268 my( $err , $vm_handle , $command) = @_;
269 print ( "Command er $command" ) ;
270

271 $e r r = VMRunProgramInGuest ( $vm_handle ,
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272 $command ,
273 " /tmp/ r e s u l t s . txt " ,
274 0 , # opt ions
275 VIX_INVALID_HANDLE) ;
276

277 abort ( "VMRunProgramInGuest ( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
278 }
279

280 # Copy a f i l e from the gues t opera t ing system to the hos t
281 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
282 # an open v i r t u a l machine handle (open_vm)
283 # a powered on v i r t u a l machine (power_on_vm)
284 # vmware t o o l s loaded ( log_in_vm )
285 # a user logged i n t o the v i r t u a l machine gues t OS (

log_in_vm )
286 sub copy_fi le_to_host {
287 my( $err , $vm_handle , $ r e su l t_ f i l e_sou r c e , $ r e s u l t_ f i l e_d e s t i n a t i o n

) = @_;
288

289 $e r r = VMCopyFileFromGuestToHost ( $vm_handle ,
290 $ r e su l t_ f i l e_sou r c e , # src name
291 $ r e su l t_ f i l e_de s t i n a t i on , # d e s t name
292 0 , # opt ions
293 VIX_INVALID_HANDLE) ; # proper tyLis tHand le
294

295 abort ( "VMCopyFileFromGuestToHost ( ) f a i l e d " , $ e r r ) i f $e r r !=
VIX_OK;

296 }
297

298 # Store the system s t a t e o f a v i r t u a l machine
299 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
300 # an open v i r t u a l machine handle (open_vm)
301 sub take_snapshot {
302 my( $err , $vm_handle , $snapshot_handle , $opt ions ) = @_;
303

304 ( $err , $snapshot_handle ) = VMCreateSnapshot ( $vm_handle ,
305 undef , # name
306 undef , # d e s c r i p t i o n
307 $opt ions , # opt ions
308 VIX_INVALID_HANDLE) ;
309

310 abort ( " VMCreateSnapshot ( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
311 }
312

313 # Revert to a p r e v i o s l y taken system s t a t e o f a v i r t u a l machine
314 # Requires : connect ion to a v i r t u a l machine ( connect_to_vm )
315 # an open v i r t u a l machine handle (open_vm)
316 # p r e v i o s l y s t o r e d snapshot ( take_snapshot )
317 sub revert_snapshot {
318 my( $err , $vm_handle , $snapshot_handle ) = @_;
319

320 ( $err , $snapshot_handle ) = VMGetRootSnapshot ( $vm_handle ,
321 0) ; # index
322 abort ( "VMGetRootSnapshot ( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
323

324 $e r r = VMRevertToSnapshot ( $vm_handle ,
325 $snapshot_handle ,
326 0 , # opt ions
327 VIX_INVALID_HANDLE) ; # proper ty handle
328 abort ( "VMRevertToSnapshot ( ) f a i l e d " , $ e r r ) i f $e r r != VIX_OK;
329 }
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Listing C.2: Complete source code for the vmcom lite program.

C.3 Zero+One source code
Zero+One are Python scripts running from the virtual machine operating system.
They are performing the executions and analyses of samples. This sections covers
the different scripts that combined is the Zero+One Python part of the final system.

C.3.1 Configuration
Configuration settings are separated from the other scripts to avoid tangling the
functionality and configuration settings. Listing C.3 is shown below, and contains
the configuration settings used during the implementation and testing phases from
this thesis. Each configuration setting is self explanatory.

1 TIMEOUT = 200
2 MEMORY = True
3 MALWARE_FOLDER=" /tmp/ "
4 LAUNCHER_PATH=" xvfb−run −a /path/ to /malware_launcher . sh "
5 CONFIG_X11_DISPLAY = " : 1 "
6 TSHARK_LOGFILE = " /var / log / tshark "
7 HOME_NETWORK_ADDRESS = " 192 . 168 . 127 . 128 "
8 PE_SIGNATURE_PATH = ’ /path/ to / packer_s ignatures . txt ’
9 INTERESTING_CALLS = [ " CreateMutex " , " CopyFile " , " Crea t eF i l e .∗WRITE" ,

" Ntasd fCreateF i l e " , " c a l l s h e l l 3 2 " , " advapi32 . RegOpenKey" ,
10 "KERNEL32. CreateProcess " , " shdocvw " , " gethostbyname " , "ws2_32 .

bind " , "ws2_32 . l i s t e n " , "ws2_32 . htons " ,
11 " advapi32 . RegCreate " , " advapi32 . RegSet " , " http :// " ,
12 " ^ ( [ 0 1 ] ? \ d\d? |2 [0 −4 ]\d |25 [0 −5 ] ) \ . ( [ 0 1 ] ? \ d\d? |2 [0 −4 ]\d |25 [0 −5 ] )

\ . ( [ 0 1 ] ? \ d\d? |2 [0 −4 ]\d |25 [0 −5 ] ) \ . ( [ 0 1 ] ? \ d\d? |2 [0 −4 ]\d
|25 [0 −5 ] ) " ,

13 # Common debugger d e t e c t i o n te c h n i q ue s
14 " OutputDebugString " ,
15 "FindWindow" , # For OllyDbg , i . e .
16 " IsDebuggerPresent "
17 ]
18

19 JUNK_CALLS = [ ’ t r a c e : f i l e : CreateFileW L"C:\\\\\\\\windows\\\\\\\\win .
i n i " GENERIC_READ FILE_SHARE_READ FILE_SHARE_WRITE c r e a t i on 3
a t t r i b u t e s 0x80 ’ ,

20 ’L" Software \\\\\\\\ Microso f t \\\\\\\\Windows\\\\\\\\ CurrentVers ion
\\\\\\\\ThemeManager ’ , ’ RegSetValueEx .∗L"Cache " ’ , ’
RegSetValueEx .∗L" History " ’ ,

21 ’ RegSetValueEx .∗L" Cookies " ’ , ’L" Software \\\\\\\\ Microso f t \\\\\\\\
Windows\\\\\\\\ CurrentVers ion \\\\\\\\ Explorer \\\\\\\\User
Sh e l l Fo lder s " ’ ,

22 ’L" Software \\\\\\\\ Microso f t \\\\\\\\Windows\\\\\\\\ CurrentVers ion
\\\\\\\\ Explorer \\\\\\\\ Sh e l l Fo lder s " ’ ,

23 ’L" System\\\\\\\\ CurrentContro lSet \\\\\\\\ Control \\\\\\\\
NetworkProvider \\\\\\\\Order " ’

24 ’L" Software \\\\\\\\ Microso f t \\\\\\\\Windows NT\\\\\\\\
CurrentVers ion \\\\\\\\ P r o f i l e L i s t " ’

25 ’ Software \\\\\\\\Wine ’ , ’L" System\\\\\\\\ CurrentContro lSet
\\\\\\\\ Control \\\\\\\\Keyboard Layouts ’ ,

26 ’L" winedbg . exe " ’ , ’ "RPCSSMasterMutex0x ’ , ’ c : ! windows ! ’ ,
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27 ’L" System\\\\\\\\ CurrentContro lSet \\\\\\\\ Control \\\\\\\\
NetworkProvider \\\\\\\\Order ’ ,

28 ’L" Software \\\\\\\\ Microso f t \\\\\\\\Windows NT\\\\\\\\
CurrentVers ion \\\\\\\\ P r o f i l e L i s t ’ ,

29 # The f o l l o w i n g SHOULD be removed
30 ’L"DejaVu ’ , ’ Font ’ , ’L"__WINE_FONT_MUTEX__" ’ , ’ ( ) r e t v a l ’ , ’ (

TrueType ) ’ ,
31 ’Wine ’ , ’WindowMetrics ’ , ’ desktop . i n i ’ , ’ Colors " ,00000000 ’ , ’ {9

D20AAE8−0625−44B0−9CA7−71889C2254D9} ’ ,
32 ’ Control Panel \\\\\\\\ Colors ’
33 ]

Listing C.3: Zero+One’s configuration settings.

C.3.2 Libraries
The libraries are a collection of methods that performs the main functionality of
Zero+One. The code found in the Python class shown below in Listing C.4 are
partly taken from Zero Wine and implemented from scratch.

1 import os
2 import sys
3 import md5
4 import re # r e g u l a r expre s s ion l i b r a r y
5 import l i n e c a ch e # to be a b l e to read from the t sh a r k l o g f i l e

e f f i c i e n t l y
6 import s t r i n g
7

8 from c on f i g import ∗ # Get a l l o f the c o n f i g data
9

10 " " "
11 Execute a s h e l l command . Command i s the program to run in c l ud ing

path
12 ( w i l l use PATH) re tu rn s everyth ing the program wr i t e s to stdout as an
13 array .
14 " " "
15 def execute_command (command) :
16 p = os . popen (command)
17 return p . r e a d l i n e s ( )
18

19 " " "
20 Fetches s t r i n g s from the input f i l e l o ca t ed at the path f i l ename ( or
21 cur rent f o l d e r ) . Returns found s t r i n g s in array form .
22 " " "
23 def g e tS t r i n g s ( f i l ename ) :
24 return execute_command ( " s t r i n g s −n 4 %s " % f i l ename )
25

26 " " "
27 Returns PE s i gna tu r e s .
28 " " "
29 def getSignatureForPe ( pe ) :
30 try :
31 import p e u t i l s
32 s i gna tu r e s = p e u t i l s . S ignatureDatabase (PE_SIGNATURE_PATH)
33 return s i gna tu r e s . match_all ( pe )
34 except :
35 return None
36

37 " " "
38 Todo
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39 " " "
40 def getHeaders ( f i l ename ) :
41 try :
42 import p e f i l e
43 pe = p e f i l e .PE( f i l ename )
44

45 s i g na tu r e I n f o = getSignatureForPe ( pe )
46 peIn fo = pe . dump_info ( )
47

48 i f s i g na tu r e I n f o :
49 msg = "−−−−−−−−−−Signature−−−−−−−−−−\n\n"
50 for match in s i g na tu r e I n f o :
51 msg += "%s\n" % s t r (match [ 0 ] )
52 msg += " \n\n"
53 msg += " " . j o i n ( pe In fo )
54 else :
55 msg = " " . j o i n ( pe In fo )
56

57 return msg
58 except :
59 return " Error g e t t i n g headers : %s " % s t r ( sys . exc_info ( ) [ 1 ] )
60

61 def timeout_command (command , timeout ) :
62 import subprocess , datetime , os , time , s i g n a l
63 cmd = command . s p l i t ( " " )
64 s t a r t = datet ime . datet ime . now( )
65 proce s s = subproces s . Popen (cmd , stdout=subproces s . PIPE , s t d e r r=

subproces s . PIPE)
66

67 while proce s s . p o l l ( ) i s None :
68 time . s l e e p ( 0 . 2 )
69 now = datet ime . datet ime . now( )
70 i f (now − s t a r t ) . seconds> timeout :
71 print " K i l l i n g proce s s %d" % proce s s . pid
72 os . k i l l ( p roc e s s . pid , s i g n a l . SIGKILL)
73 os . waitp id (−1 , os .WNOHANG)
74 return None
75 return proce s s . s tdout . r e a d l i n e s ( )
76 return proce s s . s tdout . read ( )
77

78 def executeMalware (malware , f o l d e r , timeout , memory) :
79 os . env i ron [ "DISPLAY" ] = CONFIG_X11_DISPLAY
80 i f memory :
81 num = 1
82 else :
83 num = 0
84

85 return timeout_command ( "%s %s %d" % (LAUNCHER_PATH, malware ,
t imeout ) , t imeout )

86

87 " " "
88 Runs a malware sample . Supply path argument f o r malwareFi le ( or

assume
89 cur rent path ) , a timeout in seconds f o r the malware (we do not want

to
90 run i n f i n i t e l y ) and enable memory dumping ( t rue or f a l s e ) . Memory
91 duming i s NOT ac t i v e t h i s ver s ion , but keeped to keep con s i s t ency

with
92 new Zero Wine v e r s i on s .
93 " " "
94 def analyzeMalware ( malwareFile , timeout , memory) :
95 data = malwareFi le . read ( )
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96 folderMd5 = md5 .md5( data ) . hexd ige s t ( )
97 folderName = MALWARE_FOLDER + folderMd5
98

99 i f os . path . e x i s t s ( folderName ) == 1 :
100 print " Folder a l r eady e x i s t s ! F i l e was p r ev i ou s l y analyzed ? "
101 else :
102 os . mkdir ( folderName )
103 f i leName = folderName + os . sep + os . path . basename ( malwareFi le

. name)
104 try :
105 f = f i l e ( f i leName , "wb" )
106 f . wr i t e ( data )
107 f . c l o s e ( )
108 except :
109 print " Error sav ing f i l e (%s ) , e x i t i n g " % s t r ( sys .

exc_info ( ) [ 1 ] )
110 sys . e x i t (0 )
111

112 try :
113 buf = executeMalware ( f i leName , folderName + os . sep + "

dump" , timeout , memory)
114 except :
115 print " Error running malware ! "
116 print s t r ( sys . exc_info ( ) [ 1 ] )
117 sys . e x i t (0 )
118

119 i f " " . j o i n ( buf ) . f i nd ( " wine : Unhandled page f a u l t " ) > −1:
120 print "One or more spawned p ro c e s s e s crashed whi l e

running ! "
121

122 return buf , folderMd5 , f i leName
123

124 " " "
125 Returns bool depending on wether or not the WINE debug l i n e i s junk
126 ( t rue ) or not ( f a l s e ) .
127 " " "
128 def junkCal l ( l i n e ) :
129 for junk in JUNK_CALLS:
130 i f re . s earch ( junk , l i n e ) :
131 return True
132 return False
133

134 " " "
135 F i l t e r s out i n t e r e s t i n g c a l l s from input array l i n e s and return a new
136 array .
137 " " "
138 def ana ly z eCa l l s ( l i n e s ) :
139 prevLines = [ ]
140 for l i n e in l i n e s :
141 for mcal l in INTERESTING_CALLS:
142 i f re . s earch ( mcall , l i n e ) :
143 i f l i n e not in prevLines and not junkCal l ( l i n e ) :
144 prevLines . append ( l i n e )
145 return prevLines
146

147

148 " " "
149 Generates a s i gna tu r e f o r the Snort IDS based on network
150 t r a f f i c data l o ca t ed in the " l i n e s " argument .
151 Each l i n e should be s t ruc tu r ed as the f o l l ow i n g :
152 source_ip ; port ; dest_ip ; port ; ack ; syn ; f i n ; r s t
153 Example :
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154 8 4 . 2 0 8 . 1 2 4 . 1 6 1 ; 3 3 8 9 ; 1 9 3 . 1 5 6 . 9 7 . 1 7 2 ; 4 2 6 5 7 ; 1 ; 1 ; ;
155 1 9 3 . 1 5 6 . 9 7 . 1 7 2 ; 4 2 6 5 7 ; 8 4 . 2 0 8 . 1 2 4 . 1 6 1 ; 3 3 8 9 ; ; 1 ; ;
156

157 The g r anu l a r i t y f l a g s p e c i f i e s how l a r g e the subnetworks in the
158 s i gna tu r e w i l l be . Granular i ty s i g n i f i e s the coverage f o r the ∗

f o r e i g n ∗
159 de s t i n a t i on only , and the $HOME_NET remains constant . The

g r anu l a r i t y
160 l e v e l i s assumed to be an i n t e g e r from 1 − 32 , or e l s e i t w i l l

d e f au l t
161 to 32 .
162

163 Examples :
164 32 − Returned s i gna tu r e uses a /32 CIDR notat ion mask (The exact same

IP addre s s e s − de f au l t )
165 24 − Returned s i gna tu r e uses a /24 CIDR notat ion mask . 255 IP−

addre s s e s covered ( Class C subnet )
166 16 − Returned s i gna tu r e uses a /16 CIDR notat ion mask . 65535 IP−

addre s s e s covered ( Class B subnet )
167 8 − Returned s i gna tu r e uses a /8 CIDR notat ion mask . 16777215 IP−

addre s s e s covered ( Class A subnet )
168 " " "
169 def gene ra t eS ignature ( l i n e s , g r anu l a r i t y ) :
170

171 s ou r c e Ip s = [ ] # L i s t to i n c l u d e a l l source ip addresses found .
172

173 de s t Ip s = [ ] # Simi lar with t h i s one , i n c l u d i n g a l l d e s t i n a t i o n
ip

174 # addresses found
175 sourcePort s = [ ]
176 des tPor t s = [ ]
177

178 for l i n e in l i n e s :
179 s ub s t r i n g s = l i n e . s p l i t ( " ; " )
180 i f l en ( s ub s t r i n g s ) != 8 :
181 print "Wrong syntax : "
182 else :
183 source Ip = sub s t r i n g s [ 0 ] ;
184 sourcePort = sub s t r i n g s [ 1 ] ;
185 des t Ip = sub s t r i n g s [ 2 ] ;
186 destPort = sub s t r i n g s [ 3 ] ;
187 f lagAck = sub s t r i n g s [ 4 ] ;
188 f l agSyn = sub s t r i n g s [ 5 ] ;
189 f l a gF in = sub s t r i n g s [ 6 ] ;
190 f l a gRs t = sub s t r i n g s [ 7 ] ;
191

192 " " "
193 Create l i s t s from the IP addre s s e s
194 " " "
195 des t IpAsL i s t = c l e anL i s t ( re . s p l i t ( r ’ (\d+) ’ , de s t Ip ) )
196 source IpAsL i s t = c l e anL i s t ( re . s p l i t ( r ’ (\d+) ’ , source Ip ) )
197

198 " " "
199 In case g r anu l a r i t y i s s e t to an i n v a l i d va lue
200 " " "
201 i f not i s i n s t a n c e ( g ranu la r i ty , i n t ) :
202 try :
203 g r anu l a r i t y = in t ( g r anu l a r i t y )
204

205 except ValueError :
206 g r anu l a r i t y = 32 # Set the d e f a u l t va lue
207
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208 i f g r anu l a r i t y < 1 or g r anu l a r i t y > 32 :
209 g r anu l a r i t y = 32 # Set the d e f a u l t va lue
210

211 " " "
212 Use the IP− l i s t and trans form the IP ’ s i n to l a r g e r s e t s

based on
213 the g r anu l a r i t y l e v e l s e t .
214 " " "
215 i f l en ( des t IpAsL i s t ) == 4 :
216 des t Ip = ipToCidr ( dest IpAsLis t , g r anu l a r i t y )
217 else :
218 print "Wrong length o f de s t Ip "
219 print des t IpAsL i s t
220 i f l en ( source IpAsL i s t ) == 4 :
221 source Ip = ipToCidr ( sourceIpAsLis t , g r anu l a r i t y )
222 else :
223 print "Wrong length o f source Ip "
224 print source IpAsL i s t
225

226 " " "
227 We do not want our own IP−address in the Snort s i gna tu r e .

Replace
228 i t with Snort ’ s $HOME_NET va r i ab l e
229 " " "
230 i f des t Ip . p a r t i t i o n ( ’ / ’ ) [ 0 ] == HOME_NETWORK_ADDRESS:
231 " " " S t r ing Snort r e c o gn i s e s as the IP as the i n t e r n a l

home network
232 va r i ab l e . " " "
233 des t Ip = "$HOME_NET"
234

235 de s t Ip s . append ( des t Ip )
236

237 i f source Ip . p a r t i t i o n ( ’ / ’ ) [ 0 ] == HOME_NETWORK_ADDRESS:
238 source Ip = "$HOME_NET"
239

240 s ou r c e Ip s . append ( source Ip )
241

242 try :
243 " " "We do not want to add the port i f i t s i s a

randomly generated source
244 port upon i n i t i a t i o n o f the connect ion . " " "
245 i f f l agSyn == 1 and f lagAck == 0 :
246 " " "Append a 0− i n t s i g n i f y i n g an ’ any ’ port " " "
247 s ou r c e Ip s . append (0 )
248 sourcePort s . append ( i n t ( sourcePort ) )
249 des tPor t s . append ( i n t ( destPort ) )
250 except ValueError :
251 " " " Probably an UDP port " " "
252 s ou r c e Ip s . append (0 )
253

254 " " " Create the s i gna tu r e and return i t . " " "
255 i f l en ( s ou r c e Ip s ) > 1 :
256 s ou r c e Ip s = ’ [ ’ + ’ , ’ . j o i n ( s e t ( s ou r c e Ip s ) ) [ 0 : ] + ’ ] ’
257 else :
258 s ou r c e Ip s = ’ ’ . j o i n ( s e t ( s ou r c e Ip s ) )
259

260 i f l en ( de s t Ip s ) > 1 :
261 de s t Ip s = ’ [ ’ + ’ , ’ . j o i n ( s e t ( d e s t Ip s ) ) [ 0 : ] + ’ ] ’
262 else :
263 de s t Ip s = ’ ’ . j o i n ( s e t ( d e s t Ip s ) )
264

265 sourcePortRange = f indHighestFrequent lyUsedPort ( sourcePort s )
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266 destPortRange = f indHighestFrequent lyUsedPort ( des tPort s )
267

268 s i gna tu r e = " log " + sour c e Ip s + sourcePortRange + " −> " +
des t Ip s + destPortRange

269

270 return s i gna tu r e
271

272

273 " " "
274 Finds the h i ghe s t f r e qu en t l y used port in an array . Returns the port

as a
275 s t r i n g .
276 " " "
277 def f indHighestFrequent lyUsedPort ( por t s ) :
278 " " " Dic t ionary used to f i nd f r e qu en c i e s " " "
279 portFrequentDict = {}
280

281 " " " Simply re turn ’ any ’ i f 0 i s found in the l i s t " " "
282 i f 0 in por t s :
283 return ’ any ’
284 " " " I t e r a t e the por t s and p lace t h e i r count in the d i c t i ona ry " " "
285 for port in por t s :
286 i f s t r ( port ) not in portFrequentDict :
287 portFrequentDict [ s t r ( port ) ] = 1
288 else :
289 portFrequentDict [ s t r ( port ) ] += 1
290

291 " " " Find the port with the h i ghe s t f requency and return i t " " "
292 highestPortFreq = −1
293 for k , v in portFrequentDict . i t e r i t em s ( ) :
294 i f v > highestPortFreq :
295 highestPortFreq = k
296

297 return highestPortFreq
298

299 " " "
300 Removes whitespace and dots ( . ) from the l i s t / s e t and re tu rn s the
301 a l t e r e d l i s t
302 " " "
303 def c l e anL i s t ( l i s t ) :
304 for block in l i s t :
305 i f block == " " or block == " . " or block == " " :
306 l i s t . remove ( block )
307

308 return l i s t
309

310 " " "
311 Changes an IP address in l i s t format ( [ X, Y, Z , W ] ) to CIDR
312 format depending on the g r anu l a r i t y s p e c i f i e d . Returns the changed

l i s t .
313 " " "
314 def ipToCidr ( ipAsList , g r anu l a r i t y ) :
315 i f l en ( ipAsL i s t ) != 4 :
316 print " F e i l l engde pa l i s t e : "
317 print i pAsL i s t
318 else :
319 i f g r anu l a r i t y <= 8 :
320 i pAsL i s t [ 1 ] = " 0 " ;
321 i f g r anu l a r i t y <= 16 :
322 i pAsL i s t [ 2 ] = " 0 " ;
323 i f g r anu l a r i t y <= 24 :
324 i pAsL i s t [ 3 ] = " 0 " ;
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325

326 return s t r i n g . j o i n ( ipAsList , ’ . ’ ) + ’ / ’ + s t r ( g r anu l a r i t y )

Listing C.4: Zero+One’s library methods.

C.3.3 Entry point source
Zero+One’s starting point is separated from the rest of the program since it contains
the user interface to operate rest of Zero+One. Separating the entry point in a file
makes it easy to switch out the user interface and keep the functionality if that
is needed. The separation of files also improve the code’s readability. Entry point
source code is shown below in Listing C.5.

1 #!/ usr / bin / python
2

3 import sys
4 " " " Imports p e f i l e a l s o in t h i s f i l e to su s t a i n compatab i l i ty with new
5 zero wine ve r s i on so i t i s not nece s sa ry to modify the packer

gene ra t i on
6 stub " " "
7 import p e f i l e
8

9 from c on f i g import ∗
10 from l i b r a r i e s import ∗
11

12 from optparse import OptionParser
13

14 par s e r = OptionParser ( usage="%prog [− f ] " , v e r s i on="%prog 1 .0 " )
15 par s e r . add_option ( "−f " , "−− f i l e " , des t=" f i l ename " ,
16 help=" use FILE as sample input " , metavar="FILE" ,
17 type=" s t r i n g " )
18

19 par s e r . add_option ( "−s " , "−−s t r i n g s " ,
20 help=" scan FILE f o r s t r i n g s " , des t=" s t r i n g s " ,
21 ac t i on=" store_true " )
22

23 par s e r . add_option ( "−p" , "−−packers " ,
24 help=" check f o r known packer s i gna tu r e s in FILE" , des t=" packers " ,
25 ac t i on=" store_true " )
26

27 par s e r . add_option ( "−e " , "−−execute " ,
28 help=" execute FILE" , des t=" execute " ,
29 ac t i on=" store_true " )
30

31 par s e r . add_option ( "−g " , "−−g r anu l a r i t y " ,
32 help="Use LEVEL as g r anu l a r i t y when gene ra t ing s i gna tu r e s " ,
33 dest=" g r anu l a r i t y " , metavar="LEVEL" ,
34 type=" s t r i n g " )
35

36 ( opt ions , a rgs ) = par s e r . parse_args ( )
37

38 " " " Fetch the item to ana lyse . " " "
39 item = opt ions . f i l ename
40

41 " " " Exit i f no f i l e argument i s supp l i ed . " " "
42 i f not item :
43 print " Miss ing FILE argument ( Supply a f i l e us ing \"−− f i l e PATH

\" ) "
44 sys . e x i t (0 )
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45

46 " " "Try to open the f i l e . " " "
47 f i l e = open ( item , ’ rb ’ )
48 i f f i l e :
49 i f opt ions . s t r i n g s :
50 print g e tS t r i n g s ( item )
51

52 i f opt ions . packers :
53 print getSignatureForPe ( p e f i l e .PE( item ) )
54

55 i f opt ions . execute :
56 #l o g f i l e = open (TSHARK_LOGFILE, ’ r ’ )
57 #l o g f i l e . r e a d l i n e s () # Place f i l e p o i n t e r to the end o f the

f i l e
58

59 " " " Executes the malware us ing malware_launcher . sh " " "
60 msg , strMd5 , f i l ename = analyzeMalware ( f i l e , TIMEOUT, MEMORY)
61

62 " " "Not a l l o f the l i n e s are i n t e r e s t i n g . S ta r t from the f i r s t
63 i n s t anc e o f ’ S t a r t i ng proce s s ’ " " "
64 idx = −1
65 for l i n e in msg :
66 idx += 1
67 i f l i n e . f i nd ( " S ta r t i ng proce s s " ) > −1:
68 break
69

70 " " " Analyse a l l c a l l s s t a r t i n g from index ’ idx ’ in the msg
array . " " "

71 print ana ly z eCa l l s (msg [ idx : ] )
72

73 " " " Fetch data from the tshark log and generate a s i gna tu r e
from

74 i t . " " "
75 print gene ra t eS ignature ( execute_command ( " tshark −r /var / log /

tshark −T f i e l d s −E separa to r = ’ ; ’ −e ip . s r c −e tcp .
s r cpo r t −e ip . dst −e tcp . ds tpor t −e tcp . f l a g s . ack −e tcp .
f l a g s . syn −e tcp . f l a g s . f i n −e tcp . f l a g s . r s t " ) , opt i ons .
g r anu l a r i t y )

76 #l o g f i l e . c l o s e ()
77

78 f i l e . c l o s e ( )
79

80 else :
81 print " I nva l i d f i l e "

Listing C.5: Entry point for Zero+One.

C.3.4 Malware launcher
To execute samples from Zero+One, a shell script is used. The scripts runs a sample
using Wine, but first sets the debug flags to allow parsing of API calls. Results are
returned to Zero+One for processing. The script’s source is shown below in Listing
C.6.

1 #!/ bin / bash
2

3 # Warn the user i f no f i l e i s s p e c i f i e d
4 i f [ $# − l t 1 ] ; then
5 echo " Usage $0 malware . exe timeout "
6 exit 1
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7 f i
8

9

10 # Set wine debug f l a g s
11 export WINEDEBUG=+re lay ,+ d l l ,+ l oadd l l ,+ f i l e ,+network ,+wininet ,+

winsock ,+ ole ,+msgbox ,+ n t d l l
12

13 # Set d e f a u l t t imeout to 5 seconds i f nothing i s s p e c i f i e d
14 i f [ $# −g t 1 ] ; then
15 t imeout=$2
16 else
17 t imeout=5
18 f i
19

20 # Run wine and parse out important informat ion
21 wine $1 2>&1 | egrep −v ’ C r i t i c a l S e c | SysLevel | Tls . etVal | window proc |

CallWindowProc | n t d l l . Rtl | Heap | user32 . I sDia logMessage |KERNEL32.
CreateEvent |KERNEL32. ResetEvent |KERNEL32.
Disab leThreadLibraryCal l s | user32 . GetMessage | user32 . SendMessage |
Ret d i a l o g proc | Ca l l d i a l o g proc | gdi32 . SetBkMode | user32 .
DispatchMessage | user32 . DefWindowProc | user32 . BeginPaint | user32 .
EndPaint | gdi32 . De lete | gdi32 . Create | user32 . CharNext |KERNEL32.
l s t r c p y | gdi32 |KERNEL32. l s t r |KERNEL32. Local |KERNEL32. Mult ibyte |
user32 . GetWindowLong | : Ret |WindowLongA\ ( |KERNEL32. Global |
KERNEL32. T l sA l l oc |KERNEL32. CloseHandle |KERNEL32.
WaitForMult ipleObjects | user32 . GetSysColor | user32 . LoadCursor |
user32 . Reg i s t e r | user32 . Char |KERNEL32. GetTickCount |KERNEL32.
Wri teF i l e \ ( 00 |KERNEL32. ReadFile \ ( 00 | Ca l l KERNEL32. GetProcAddress
\ ( | user32 . Inva l i da t eRec t | rpc r t4 . RpcString |KERNEL32. MultiByte |
KERNEL32.WideChar | o l e32 .CoTaskMem| user32 . GetDlgItem \(00 | user32 .
RedrawWindow | user32 . UpdateWindow | user32 . PeekMessage | imm32 .
ImmProcessKey | user32 . GetKeyboard | user32 . PostMessage | Ca l l KERNEL32
. __wine | Ca l l user32 . LoadString |KERNEL32. SetLastError |KERNEL32.
GetLastError |KERNEL32. FlsGetValue | Ca l l KERNEL32. _lread \ (00 | Ca l l
KERNEL32. _ l l s e ek \ (00 |KERNEL32. S e tF i l ePo in t e r | rpc r t4 . Ndr | rpc r t4 .
I_RpcGet | rpc r t4 .NDR| rpc r t4 . Ndr | n t d l l .mem| msvcrt . mal loc | n t d l l . a t o i
| msvcrt . c a l l o c | n t d l l . s t r | n t d l l . _str | msvcrt l . r e a l l o c | msvcrt . f r e e |
w inea l sa . drv | msacm32 . drv | Ca l l KERNEL32. WaitFor | Ca l l KERNEL32.
ReleaseMutex | Ca l l KERNEL32. _lwr i te \ (00 |^warn : ’ &

22

23 # Wait . . .
24 s l e e p $timeout
25

26 # Ok, t imeout i s over . K i l l the program i f i t s t i l l runs .
27 # However , we do not want to k i l l the Zero+One python s c r i p t .
28 ps −ed f | grep ^$USER | grep exe | grep −v python | grep −v grep |

awk ’{ p r i n t $2 } ’ | xargs k i l l −9 && echo " Ki l l ed , t imeout "

Listing C.6: Shell script used by Zero+One to execute malware.
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Appendix D

Testing Appendix

This appendix contains material from the testing phase of the system implementa-
tion.

D.1 Suspicious API calls returned
During the API call parsing test in Section 9.4.3 on page 110, a significant amount of
suspicious calls were found. A counting program found 283 suspicious calls. Below
are the network communication API calls shown, which are the same host/IP
addresses found in the malware analysis scenario in Chapter 5.

001e:Call ws2_32.gethostbyname(7e2534cc "58.65.233.17")
trace:winsock:WS_gethostbyname "58.65.233.17"
001d:Call ws2_32.gethostbyname(7e37c64c "ns.uk2.net")
trace:winsock:WS_gethostbyname "ns.uk2.net" ret (nil)
001d:Call ws2_32.gethostbyname(7e37c754 "www.yahoo.com")
trace:winsock:WS_gethostbyname "www.yahoo.com"
001d:Call ws2_32.gethostbyname(7e37c85c "www.web.de")
trace:winsock:WS_gethostbyname "www.web.de"

D.2 Email correspondence
http://www.offensivecomputing.net is the web page where the sample used in
the malware analysis scenario was downloaded from. During the scenario, the packer
signature “Microsoft Visual C++” was found using the program PEiD. This is
documented in Section 5.2.4 on page 59. During the system testing in Section 9.4.3
on page 110, a different packer type was found, namely “Armadillo v1.71”. This
section contains emails sent to and received from info@offensivecomputing.net
to underline the possibility of gaining multiple distinct “correct” results when
scanning a sample for packer signatures. The received emails are made anonymous
to prevent exposing the sender’s name. The name of the responder is replaced with
“X Y”.
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Initial email sent
The first email sent was meant to find out why PEiD and Zero+One resulted in two
different packer signatures on the same sample. On the http://offensivecomputing.
net web page, the sample has three packer signatures listed so a good place to
start asking is the web page’s contact point.

From: Kris-Mikael Krister <krismika@stud.ntnu.no>
Subject: Questions about Packer signatures in malware search
To: info@offensivecomputing.net
Date: Thu, 21 May 2009 11:06:36 +0200
Greetings,

I have two quick questions about the shown packer signatures when
performing a malware search on the offensivecomputing web page.

- A sample may show a multiple of packer signatures, does this
mean that the sample is recursively packed?

- What does the numbers in the square brackets to the right of
the signature name mean? For example, the sample with md5
1311f650aa1209a3ec962b6a9a38fc98 has three signatures listed,
as follows:

Microsoft Visual C++ [169,677]
Armadillo v1.71 [197,789]
Microsoft Visual C++ v5.0/v6.0 (MFC) [142,569]

Thank you

--
Kind regards,
Kris-Mikael Krister
krismika@stud.ntnu.no

First response received
The response received indicated the trigger of three different packer signatures
when scanning the sample, but it is not clear which of the three actually was used
to pack the sample.

From: X Y <XY@XY.com>
Subject: Re: Questions about Packer signatures in malware search
To: krismika@stud.ntnu.no
Date: Thu, 21 May 2009 09:22:52 -0600

That just means it matched all three signatures. In order to figure
out what the packer is you will need to manually reverse it. It’s
possible that it’s recursively packed but the check we do wouldn’t
pick up on that.
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Second email sent
The first response did not answer to what the square numbered brackets right of
the signature name signifies, so a new email was sent.

From: Kris-Mikael Krister <krismika@stud.ntnu.no>
Subject: Re: Questions about Packer signatures in malware search
To: X Y <XY@XY.com>
Date: Thu, 21 May 2009 23:58:44 +0200

Thank you for your swift reply.

On Thu, May 21, 2009 at 09:22:52AM -0600, X Y wrote:
> That just means it matched all three signatures.
> [..]

Ok, I see. I guess that means the three packer signatures are
similar or even equivalent?

What about the numbers in the square brackets to the right of the
signature name?

For example, the sample with md5 1311f650aa1209a3ec962b6a9a38fc98
has the following three signatures listed on your web page, each
with a six digit number in square brackets.

Microsoft Visual C++ [169,677]
Armadillo v1.71 [197,789]
Microsoft Visual C++ v5.0/v6.0 (MFC) [142,569]

What do the numbers indicate?

Thanks again for your time and valuable help.

--
Kind regards,
Kris-Mikael Krister
krismika@stud.ntnu.no

Second response received
The last response and reply to the second sent email concluded the numbers in the
square brackets are for internal use by administrators of the offensivecomputing.
net server. Exactly which packer used is not derivable without initiating manual
reverse engineering, but note the sender’s opinion about the packer. The sender
believes the packer type to be Armadillo, which is also the results from Zero+One.

From: X Y <XY@XY.com>
Subject: Re: Questions about Packer signatures in malware search
To: krismika@stud.ntnu.no
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Date: Thu, 21 May 2009 19:10:06 -0600

Those numbers are the rule number in our file that matched. All a
similar match means is that the signature is probably bad and is
triggering on multiple items. For the one you posted, it seems
like it is packed with Armadillo.
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