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Abstract

This report explores continuous-time recurrent neural networks (CTRNNs)
and their utility in the field of adaptive robotics. The networks herein are
evolved in a simulated environment and evaluated on a real robot. The
evolved CTRNNs are presented with simple cognitive tasks and the results
are analyzed in detail.
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1 Preface

The task was given by the Department of Computer and Information Science
(IDI) at NTNU, and more specifically our supervisor, Professor Keith Downing.

1.1 Problem definition

Robots are commonplace in society; they perform all sorts of jobs.
However, most are hard-wired to perform a few fixed tasks and
have little or no ability to adapt to changing or unforeseen circum-
stances. Artificial Intelligence (AI) enters the picture when robots
must be capable of autonomous behavior in unpredictable environ-
ments. In this project, the student must utilize AI machine-learning
techniques to produce a robot with adaptive capabilities. Possible
techniques include reinforcement learning (RL), artificial neural net-
works (ANNs), evolutionary algorithms (EAs), or combinations of
these, such as evolving neural networks. A few E-puck robots are
available in our laboratory, and these should be sufficient for build-
ing adaptive robots. Students who desire more advanced equipment
will have to arrange for it themselves.

In addition to our work with adaptive techniques and solving minimally cog-
nitive tasks, we would like to give a simple introduction to using the E-puck
robots.

We would like to thank Professor Keith Downing for being a great source of
inspiration, and for always making himself available. Thanks to Professor Ran-
dall D. Beer for explaining some of the key concepts, and for discovering several
flaws in our approach. We would also like to thank Associate Professor Gunnar
Tufte for providing us with new and interesting perspectives. Last, we wish to
thank PhD Candidate Boye Annfelt Høverstad for all the work he did in order
to get us started with the clustering.

2



Contents
1 Preface 2

1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introduction 8
2.1 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Background 12
3.1 Emergence in Artificial Intelligence (AI) systems . . . . . . . . . 13
3.2 Behavior-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Subsumption architecture . . . . . . . . . . . . . . . . . . 14
3.2.2 Maes’ Agent Network Architecture . . . . . . . . . . . . . 15
3.2.3 InterRap . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Case-based reasoning(CBR) . . . . . . . . . . . . . . . . . 16
3.2.5 TouringMachines . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 The evolutionary approach . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Gaussian mutation for Genetic Algorithms . . . . . . . . 21
3.3.2 Evolutionary growth of complexity . . . . . . . . . . . . . 22
3.3.3 Baldwin effect . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Artificial development . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.4 Indirect encoding . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 Self-organizing maps . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 Hopfield nets . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.3 Hebbian learning . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.4 Back-propagation learning . . . . . . . . . . . . . . . . . . 28
3.5.5 Continuous-Time Recurrent Neural Networks . . . . . . . 29

3.6 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Design 32
4.1 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Reality problem . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Continuous-time recurrent neural network . . . . . . . . . . . . . 34

4.3.1 Dynamical properties . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.1 Genotype representation . . . . . . . . . . . . . . . . . . . 41
4.4.2 Fitness functions . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.3 Crossover and mutation . . . . . . . . . . . . . . . . . . . 45
4.4.4 Number scales . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.5 Thread problems . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Evolution pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3



4.7.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Experiments 54
5.1 Early experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Obstacle-avoidance . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Escaping the maze . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Perceptual aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Recent experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Experiment with the first simple maze . . . . . . . . . . . . . . . 61
5.5 Experiment 1: Time constants . . . . . . . . . . . . . . . . . . . 61

5.5.1 Evolutionary parameters for experiment 1 . . . . . . . . . 61
5.5.2 Observations in the simulator . . . . . . . . . . . . . . . . 63
5.5.3 Observations on the real robot . . . . . . . . . . . . . . . 64
5.5.4 Brief discussion . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Experiment 2: Time constants, no self-connection, no. 2 . . . . . 65
5.6.1 Evolutionary parameters for experiment 2 . . . . . . . . . 65
5.6.2 Observations in the simulator . . . . . . . . . . . . . . . . 66
5.6.3 Observations on the real robot . . . . . . . . . . . . . . . 67
5.6.4 Brief discussion . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Experiment 3: Time constants and one self-connection . . . . . . 68
5.7.1 Evolutionary parameters for experiment 3 . . . . . . . . . 68
5.7.2 Observations in the simulator . . . . . . . . . . . . . . . . 69
5.7.3 Brief discussion . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 Experiment 4: Time constants and two recurrent nodes . . . . . 70
5.8.1 Evolutionary parameters . . . . . . . . . . . . . . . . . . . 70
5.8.2 Observations in simulator . . . . . . . . . . . . . . . . . . 70
5.8.3 Observations on the real robot . . . . . . . . . . . . . . . 72
5.8.4 Brief discussion . . . . . . . . . . . . . . . . . . . . . . . . 72

5.9 Future experiments - exploring . . . . . . . . . . . . . . . . . . . 72
5.10 Analysis and future work . . . . . . . . . . . . . . . . . . . . . . 73
5.11 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion 75
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Appendix A: Getting started with the E-puck 78
7.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Appendix B: Code . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Appendix C: Notes on how to be able to evolve CTRNNs 82

9 Bibliography 83

4



List of Figures
1 Benard Rolls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Subsumption architecture . . . . . . . . . . . . . . . . . . . . . . 15
3 Maes’ Agent Network Architecture . . . . . . . . . . . . . . . . . 15
4 InteRRAP architecture . . . . . . . . . . . . . . . . . . . . . . . . 16
5 CBR cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Model of a horizontal TouringMachine [1] architecture . . . . . . 18
7 Overview of an EA . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8 Crossover and mutation . . . . . . . . . . . . . . . . . . . . . . . 20
9 Gaussian mutation . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10 The Baldwin Effect, showing two individuals and the effect that

the environment has on their fitness. . . . . . . . . . . . . . . . . 23
11 Two-dimensional Self-organizing map . . . . . . . . . . . . . . . . 25
12 Self-organizing map shown before and after learning [7] . . . . . 26
13 Hopfield net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
14 Proximity sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
15 WALL-E, the robot . . . . . . . . . . . . . . . . . . . . . . . . . . 33
16 Simulated environment (table) . . . . . . . . . . . . . . . . . . . 34
17 Physical environment (table) . . . . . . . . . . . . . . . . . . . . 35
18 Phase portrait of 2-neuron circuit, where stable equilibrium points

are denoted by blue dots and semi-stable points are shown as
green dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

19 Simplified behaviour (CTRNN state equation) . . . . . . . . . . . 38
20 τ affects the decay. The blue line shows the impact that a large

τ (0.95) has on the decay and the red line shows the same for a
smaller τ (0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

21 The effect of sensor input . . . . . . . . . . . . . . . . . . . . . . 40
22 The logistic function σ . . . . . . . . . . . . . . . . . . . . . . . . 41
23 The effect of θ on the sigmoid-function. The bias values shown

here, from left to right, are -5, 0 and 5. . . . . . . . . . . . . . . . 42
24 Visualization of EANN . . . . . . . . . . . . . . . . . . . . . . . . 43
25 Gauss distribution with mean = 0 and variance = 0.05 . . . . . . 45
26 Logistic transfer function . . . . . . . . . . . . . . . . . . . . . . 46
27 Breve simulator and the e-puck robot. . . . . . . . . . . . . . . . 48
28 Visual run in the Breve simulator. . . . . . . . . . . . . . . . . . 49
29 Distributed simulation . . . . . . . . . . . . . . . . . . . . . . . . 50
30 Run on simulated robot . . . . . . . . . . . . . . . . . . . . . . . 52
31 Run on physical robot . . . . . . . . . . . . . . . . . . . . . . . . 53
32 Sensor input at x cm from a wall. . . . . . . . . . . . . . . . . . 54
33 Circular path, using four sensors. . . . . . . . . . . . . . . . . . 56
34 Escaping the maze using eight sensors. . . . . . . . . . . . . . . 57
35 Evolved CTRNN in the old maze . . . . . . . . . . . . . . . . . . 61
36 CTRNN connectivity for experiment 1 . . . . . . . . . . . . . . . 62
37 Fitness plot for experiment 1 . . . . . . . . . . . . . . . . . . . . 63
38 Robot running in the simulator for experiment 1 . . . . . . . . . 63
39 Real robot run for experiment 1 . . . . . . . . . . . . . . . . . . . 64
40 CTRNN connectivity for experiment 2 . . . . . . . . . . . . . . . 65
41 Fitness plot for experiment 2 . . . . . . . . . . . . . . . . . . . . 66
42 Movement observed in the simulator for experiment 2 . . . . . . 67

5



43 Movement observed on the real robot for experiment 2 . . . . . . 68
44 CTRNN connectivity for experiment 3 . . . . . . . . . . . . . . . 69
45 CTRNN connectivity for experiment 4 . . . . . . . . . . . . . . . 70
46 Fitness plot for experiment 4 . . . . . . . . . . . . . . . . . . . . 71
47 Robot movement in the simulator for experiment 4 . . . . . . . . 71
48 Robot movement on the real robot for experiment 4 . . . . . . . 72

6



List of Tables
1 Transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Hebbian learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Variables in a CTRNN state equation . . . . . . . . . . . . . . . 30
5 Classic ANN presented with input over 2500 iterations . . . . . . 58
6 CTRNN presented with inputs over 2500 iterations . . . . . . . . 59
7 Configuration features . . . . . . . . . . . . . . . . . . . . . . . . 59
8 Evolutionary parameters for experiment 1 . . . . . . . . . . . . . 62
9 Evolutionary parameters for experiment 2 . . . . . . . . . . . . . 65
10 Evolutionary parameters for experiment 3 . . . . . . . . . . . . . 69
11 Evolutionary parameters for experiment 4 . . . . . . . . . . . . . 70

7



2 Introduction

What are robots? There are no good, formal definitions of robots. In ancient
Greece, around 2500 years ago, they developed some of the first machines that
were able to perform actions in their environment. In the 15th century, Leonardo
da Vinci created machines that were able to move around and perform simple
tasks. However, it was not until 1948 that autonomous machines were able to
perceive their environment [35]. If you take perception into account, we can
consider these the first real robots, and they were created by William Grey
Walter. The robots were called Elmer and Elsie, and both of them had three
wheels that allowed them to navigate their environment. They were capable of
photo taxis, which means that they could move towards a source of light, and
therefore make their way to a charging station when they ran low on battery
power. In one of his experiments, Walter put a light in front of one of the robots
and watched as it observed itself in a mirror. “It began flickering, twittering and
jigging like a clumsy narcissus”, he wrote [35]. Walter also argued that this was
evidence of self-awareness.

Evolutionary robotics is an imitation of natural evolution applied to robots. We
can think of a robot as an organism. These organisms have not been designed,
and they are the result of an evolutionary process.

Why would we want evolve robots? It is very difficult to design complicated
behavior by hand. With many traditional approaches, one can easily run into
certain difficulties. We will continue to give a brief example of one of these
problem scenarios, and later we will return to it and look at the details. With
direct programming, we can enable robots to perform various tasks, ranging
from simple to complicated. However, as the complexity grows, they become
almost impossible to maintain. Among the various traditional approaches is
Brooks’ Subsumption Architecture [1], which decomposes behaviors into simple
modules. Each module is decomposed into a set of layers, and each individual
layer implements a specific goal. Each layer’s goal subsumes that of the under-
lying layers, e.g. the decision to move forward by the eat-food layer takes into
account the decision of the lowest obstacle-avoidance layer. As the number of
layers increases, the goals begin to interfere with each other, making the action
selection completely random. This is a common problem for most direct pro-
gramming approaches concerning autonomy - at some point they become very
difficult to maintain.

Another problem with the direct programming approach is that its search space
is limited to that of your own mind, whereas an adaptive approach is typically
evolved, making the search space much larger. Real Darwinian evolution is
not driven by any goals, but rather the resources and threats imposed by the
environment. If the world is inhabited by dangerous carnivores, legs that enable
an individual to escape by running away are likely to be beneficial. We are able
to create the resources and threats in our artificial world such that we can guide
the evolutionary process towards our goals. This in turn provides us with a
selection of individuals that are likely to possess the traits we are looking for.

This brings us to the next question: How do these individuals determine what
do to next, i.e. what defines their behavior? The model that encompasses our
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action-selection and behavior is dynamical neural networks, more specifically
Continuous-Time Recurrent Neural Networks (CTRNNs). We would like to
examine how we can benefit from these networks, and whether they provide
better solutions than the feed-forward network from our prestudy.

An interesting dilemma is that, in this day and age, we have extremely pow-
erful hardware; state of the art computers are quickly catching up to human
performance, in terms of processing power. Yet, many of the simplest cognitive
tasks remain unsolvable for a computer, even for super computers. It is clear
that processing power alone is not enough to make intelligent machines. If we
assume that we have the processing power needed for cognitive tasks, what then,
makes us unable to create machines that can solve cognitive tasks like the ones
animals so trivially solve every day? The solution to that question probably lies
in how we program our machines. Computers are only very fast calculators, the
real cleverness of computers are found in the software, rather than hardware.
All that the computer really gives us is a sandbox in which we can mold the
behavior of the computer. Faster computers allows for more complex molds.

Since the computer is programmable, we can create our own universe. This
enables us to model a replica of the real world in which we can play around in.
In this simplified version of the world we can perform experiments on simulated
robots. So far it all sounds good, but there is a catch. Simulated robots are
no use if they only work in the toy universe on the simulator. For some ex-
periments, using only the simulator is enough, but we want to develop robots
that work in the real world too. And with more complex robots, this poses a
serious challenge. The model of the real world inside the simulator will never
be completely accurate when compared to the real world. Real world scenarios
are extremely complex. Light, friction, noise and other phenomena found in the
real world are truly random events. The robots have to be developed with that
in mind, in order to tackle the real world randomness.

One way of trying to create robots that can have the possibility to solve cog-
nitive tasks is to look at biology. Animals solve challenging tasks all the time.
Anticipating predators, sensing dangers or space travel are all examples of tasks
performed by non-human and human animals. All these tasks are solved by
means of the animals’ brains. A fully working animal brain is a huge network
of interconnected cells and the topology is very complicated. However, the in-
dividual cells are very simple. These brains have evolved through Darwinian
evolution over billions of years. The most powerful brains can be found in hu-
mans, but it seems that all brains are based on the same technology, namely
neuroscience. Artificial brains, also known as artificial neural networks which
are based on this brain theory started to become popular in the 1960s [13]. Ad-
vancements in brain theory will no doubt lead to advancements in brain inspired
robot controllers.

Darwinian evolution (survival of the fittest) is currently the only model known
to man, that is able to produce the level of adaptivity and intelligence of animals.
These brains cope with the complexity of life and can quite accurately predict
the future. This level of adaptivity is far beyond anything humans have ever
made. Evolution as a developmental tool for robot controllers is therefore a very
interesting subject to explore further.
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A recent paper [27] reports of some problems with adapting robot controllers
developed in a simulator on to the real world. Proper understanding of why
simulator developed controllers struggle to cope with the real world, can lead
to better robot controllers. In order to create robots that can work well in real
life scenarios we need to improve our understanding of how to develop robot
controllers: What technologies are suited, and what developmental tools can
be used? When developing robot controllers in a simulated environment, how
can we move the controller onto the real world? The controller itself has to be
inherently adaptive in order to cope with the change of environments.

We are going to look at different possible models for creating robot controllers
and further explore these in empirical experiments.

Many machine learning approaches require training examples as well as correct
answers. In the case of robotics, it is sometimes hard to know a priori what deci-
sions to make. An answer to the problem is to rate the actions taken by a robot,
and use those the results to determine what to do next. An incremental search
can take the form of an evolutionary process inspired by Darwinian evolution.
What we evolve must not suffer the same limitations as direct programming
approaches do, e.g. conflicting goals in selection mechanisms.

In the prestudy, simple feed-forward networks were evolved and applied to a set
of problems, including one in which a robot was rewarded for finding its way out
of a maze. Through these experiments, certain limitations became apparent, e.g.
an encounter with the perceptual aliasing problem [28]. The perceptual aliasing
problem occurs when two inputs are near identical, but the desired outputs are
different. This is described further in the next section.

It could seem that our behavior space was too simple to achieve the behavior
we were looking for. This continued effort tries to solve some of the problems,
including the perceptual aliasing problem, through the use of dynamical neural
networks. With these networks, we can take a few steps further in our pursuit
of adaptive behavior. Real biological systems are often unpredictable, and there
is a large variety of behaviors even within the same species. By evolving simple
models of biological frameworks, we hope to discover some of the same diversity.

Intelligence is often measured in terms of behavior, though some argue that
the ability to make predictions is a better measure [29]. After all, being able
to predict changes in the environment is an important part of adaptivity. The
dynamical neural networks used herein provide a form of prediction, and though
we evaluate them based on their performance, the predictive ability indirectly
determines which networks get selected and propagated into future generations.

We should also point out that it is not in our interest to create a black box that
does the job for us, but rather a system that is more fault-tolerant and adaptive
than what we are able to engineer by hand.

Throughout this report we would like to:

• Tackle the perceptual aliasing problem

• Handle the real world problem

• Further investigate evolutionary robotics

10



During the prestudy, the perceptual aliasing problem prevented us from finding
efficient solutions. The feed-forward networks that we were using didn’t seem
capable of producing anything but very simple behavior. This is one of the
problems that we would like to address by implementing a network structure
with fewer constraints. See section 5.2.

The real world problem, in this context, describes the issues that might occur
when transferring a solution that is evolved in a simulated environment onto the
real world robot. These issues indicate differences between the simulated world
and the real world, such as lighting conditions, sensors, friction and the batteries’
effect on the robot. When using the simple network from the prestudy, the real
world problem was not much of an issue. However, with the more complicated
networks herein, this becomes a far more challenging task. This part of the task
is important since it indicates whether this is a viable approach to solving real
world problems.

In a general sense, we would like to continue investigating evolutionary robotics
and some of its applications and limitations.
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2.1 Report outline

This report is organized into the following chapters:

(2) Background. This chapter provides some background concerning adap-
tive robotics as well as a description of some of the existing technologies and
approaches in the field. We try to get some concept of their shortcomings, and
what we can learn from them.

(3) Design. This chapter contains a detailed description of the system that
was developed for this report.

(4) Experiments. This chapter explains and analyses the results of the ex-
periments herein, and what can be learnt from them.

(5) Conclusion.

3 Background

This is the continuation of a prestudy concerning adaptive robotics. In the
prestudy, simple feed-forward networks were evolved and applied to a set of
problems, including one in which a robot was rewarded for finding its way out
of a maze. Through these experiments, certain limitations became apparent,
e.g. an encounter with the perceptual aliasing problem [28]. The perceptual
aliasing problem occurs when two inputs are near identical, but the desired
outputs are different. Consider a robot that tries to find its way out of a maze:
it is likely that it will face the wall several times (similar perceptual input, but
at different times), but it is not desirable that it always reacts the same way.
This specific problem is illustrated in figure 33 on page 56.

This section will try explore some of the state-of-the-art technologies and men-
tion some of the more traditional approaches for robot controllers. In short we
will have a look at known methods for robot controller design.

The following section is not meant to be a full list of possible ways to model a
robot controller, but rather those we have been looking into in our exploratory
research prestudy. We will also mention some important and relevant concepts
in the fields of machine learning and AI.

Robot control defines the relation between the sensors and actuators in a robotics
system. The four most commonly used approaches to robot control today are
[22]:

(1) Deliberative control. This indicates that the robot uses all its stored in-
ternal states and sensor input in order to plan the next action. Typically it
searches through all the available choices and picks the one that it considers
to be most rewarding. If the robot has to respond quickly, this might not be
a good approach. Also, if the robot finds itself in a dynamic environment, its
actions will be less optimal if it spends too long thinking (due to the fact that
the environment will be different by the time it acts).
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(2) Reactive control. This type of control works well for rapidly changing envi-
ronments. Note that this “simple” form of control has no memory or learning.
Basically the robot only acts directly on the sensor input that it is currently
receiving. In some ways this resembles instinctive behavior (i.e. not thinking,
but reacting).

(3) Hybrid control. A combination of the deliberative- and reactive control
approaches. This system usually uses a control system that decides when inputs
require planning or whether they can be acted upon directly. An important part
of the control system is solving conflicts between the two parts. It is common
that the reactive parts have very high priority in the system, such as “avoid
obstacles”, while parts that require planning are often more abstract and less
important, e.g. “explore the environment”.

(4) Behavior-based control. Systems that use behavior-based control have a
set of different parts (often layers) that are encoded as behaviors. There is
no centralized control as with hybrid systems, but a network of behaviors that
can communicate by sending inputs and outputs to each other. Some of these
systems are explained in detail in the next section.

3.1 Emergence in Artificial Intelligence (AI) systems

Emergence is a complex and abstract phenomena. Emergence is important for
many of the technologies described below and for life as we know it. A formal
definition of emergence is difficult to formulate, but the following one tries to
capture the essence of it.

An unpredictable quality arises as a result of collaboration between
entities, or the organization of entities in a particular way.

Figure 1: Benard Rolls

It should also be noted that emergence relies heavily on local interactions. Emer-
gence is often the result of a self-organizing system. Local interactions in the
micro world are seen as self-organizing systems in the macro world. An example
taken from thermodynamics, is Benard Rolls, as seen on figure 1[12]. If energy
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in form of heat is applied from the bottom, convection cells will appear and
begin to rotate. This is an example of an emergent phenomena.

Self-organizing systems are known to be very fault-tolerant (resilient). This is
because they are a product of the cooperation of simpler modules and thrive on
randomness.

Emergence is as previously mentioned a complex phenomena. It is therefore
very hard to design systems that have emergent properties. Designing a system
that has the desired emergent property and not just any emergent property, is
even harder. However, there are techniques that can be used to achieve this,
such as evolutionary algorithms.

In our system, emergent behavior is a result of the evolved dynamics in the
Continuous-Time Recurrent Neural Network.

3.2 Behavior-based

Control systems for adaptive autonomous robots have traditionally been de-
signed using a “divide and conquer” strategy. This implies that the problem at
hand can be divided into smaller sub-tasks. Behavior-based robotics typically
have a number of simple behaviors and a control mechanism that determines
the strength of each behavior and selects the optimal one at the given time.

3.2.1 Subsumption architecture

One example of the behavior-based approach was introduced by Brooks and it
is known as the Subsumption Architecture [1]. The idea behind this architec-
ture is to avoid any symbolic representation or symbolic reasoning. Behavior
modules are then organized such that they are task-oriented. Each module can
be thought of as an individual action function where inputs are mapped onto
an action. Control systems are then built up of many of these action functions
where more abstract behaviors are on top of more basic ones. An example would
be to have obstacle-avoidance low in the hierarchy while eat-food would be high
in the hierarchy as shown in figure 2 on the following page. It is important to
mention that multiple actions can “fire” at the same time. Therefore actions at
lower positions in the hierarchy can inhibit actions that are present higher up,
ie. lower level actions have higher priority.

The complexity level of the subsumption architecture is no greater than O(n2),
where n is the largest number of either behaviors (actions) or the number of per-
cepts. This computational simplicity is one of the strengths of the subsumption
architecture.

Reactive approaches have several advantages such as: simplicity, speed and
robustness against failure. But the strengths they carry with them are also their
inherited limitations. Since reactive agents only rely on local information they
are forced to take the short-term view. Building a purely-reactive controller
such that it can learn from experience or exercise complex behaviors such as
adaptivity is hard and complex to understand.
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Figure 2: Subsumption architecture

3.2.2 Maes’ Agent Network Architecture

Maes’ activation networks use dynamic action selection. They try to avoid
using modules, but instead focus on tasks. These can be viewed as a set of
competence modules, which are shown in figure 3. They have pre- and post
conditions and an activation level that specifies the relevance of the module in a
given situation. The higher the activation level, the greater chance the module
will affect the behavior. The different competence modules are connected with
successor links, predecessor links and conflictor links. The competence modules
compete to control the agent’s behavior.

Figure 3: Maes’ Agent Network Architecture

There are similarities between these networks and neural networks, such as the
activation level and connectivity. However, since these competence modules are
described in declarative terms, they are easier to understand. They are also
more constrained by their very precise design, giving little room for emergent
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representation of behavior.

3.2.3 InterRap

Just like in TouringMachines, InteRRAP consists of three control layers. The
lowest layer (behavior) deals with reactive behavior, the middle layer (planning)
deals with proactive planning such that the agent can reach its goals and the
layer on top (cooperation) handles social interactions. Each layer has its own
knowledge base which is the representation of the world that is relevant to the
particular layer.

In InteRRap, layers communicate with each other in order to process input and
select action output functions. The communication is done with either bottom-
up activation or top-down execution. Bottom-up activation happens when a low-
level layer is incapable of solving a problem, and it therefore passes the control
to a higher-level layer. Top-down execution refers to a situation where a high-
level layer utilizes functionality from a low-level layer. Each layer implements
three general functions, which are situation recognition, goal activation and
scheduling.

Figure 4: InteRRAP architecture

3.2.4 Case-based reasoning(CBR)

Creating behavior-based controllers based on CBR is reasonable since a priori
knowledge from the designer is needed in behavior-based controllers.
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Figure 5: CBR cycle

CBR is a technique where knowledge is stored and looked up as cases are being
presented for the system. New cases are matched against old cases and then
stored for later usage in the knowledge base illustrated in figure 5. This knowl-
edge base is a sort of memory, where solutions are previous cases (experience)
stored in the knowledge base [23]. The method has its roots from the work on
understanding reasoning as a form of explanation driven process.

A paper from Georgia Institute of Technology presents an approach to robot
navigation using spatio-temporal CBR. Here they developed a hybrid-architecture
(reactive, proactive) using a reactive schema-based system coupled with a proac-
tive planning system. Their CBR module supported navigational states of type
“GOTO” which were used for goal-directed navigation. This was done by ex-
tracting behavioral parameters from the CBR module depending on the sensory
data, and then creating a vector, which in turn worked on the actuators.

Using the CBR approach, the team at Georgia Institute of Technology produced
successful results both in simulation and on real robotics. One limitation that
they report is that cases could only be learned but never forgotten. This posed
a problem in cases where training in the simulator could not reflect all the
characteristics of the real environment[24].

3.2.5 TouringMachines

TouringMachines [1] is a hybrid architecture, which has reactive and proactive
properties. Hybrid(reactive-proactive) systems try to address some of the lim-
itations that purely-reactive agents pose. In TouringMachines this is done by
a horizontal layer based architecture. This allows for subsystem separation for
the reactive part and a proactive part.

As seen on figure 6 on the next page there are four layers. The idea behind this
architecture is that each layer produces action suggestions in different ways. The
reactive layer instantly produces action suggestions. This layer reacts much like
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Figure 6: Model of a horizontal TouringMachine [1] architecture

Brooks subsumption architecture would, by mapping sensory input into actuator
output. A simple name for this layer would be the reaction layer.

The proactive part of TouringMachines is situated in the planning layer. This
layer is responsible for the overall performance. Planning is done through the
use of schemes, however, it does not generate plans from scratch. Rather, it uses
skeleton schemes that are placed in a hierarchical manner and generates a plan
according to the situation at hand. The planning layer essentially searches for
schemes that match the goal. Another name for this layer could be the solution
layer.

The modelling layer contains the world model. Conflicts can then be discovered
in the modelling layer and new goals to solve these are then generated. These
are then posted down to the planning layer. The planner then has to find a
schema that will solve the conflict.

The control system is responsible for choosing which of the above layers that
is supposed to have control over the robot at any given time. This essentially
mean that the control system can inhibit a layer in such a way that inputs would
not reach that layer.

The decomposition of the reactive layer and proactive layer makes this architec-
ture appealing due to its simplicity. However, in order for the robot to behave
coherently you must have a centralized mechanism that controls which of the
layers are to be in control of the robot. This is problematic in practice and the
architecture has many of the same problematic characteristics of behavior-based
ones. Real adaptivity and learning is still too complex and hard to achieve.
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3.3 The evolutionary approach

Evolutionary robotics is a term which started to emerge in the early 1990s [10].
It relies on genetics and Darwinian selection (survival of the fittest) by sexual
or asexual reproduction. Evolutionary search techniques for computational pur-
poses date back to the 1950s, but were not used for developing controllers for
robotics until the 1990s.

This process has many names: evolutionary computation, evolutionary algo-
rithms or genetic programming. But they all cherish the same core values,
illustrated by figure 7 and figure 8 on the next page.

Figure 7: Overview of an EA

In this approach there is no need to break down the task into smaller sub-
tasks. By starting with a random population of controller setups, evolution
allows individuals that perform well to reproduce and propagate their genes
into future generations. This way a variety of controllers get tested and those
with desirable properties can emerge. This is where artificial evolution usually
differs from evolution in nature. Evolution in nature is open-ended where as
artificial evolution often is not open-ended. Open-ended evolution means that
there is no a priori goal for evolution.

Gene representations in nature are based on the DNA alphabet consisting of
A, T, C, G as building blocks. Gene representations in artificial evolution vary
from bits(0,1) to real numbers. Choosing a good genotype representation is
important so that a small change in the genotype reflects a small change in the
phenotype, and other way around. Direct mapping from genotype to phenotype
is commonly used in artificial evolution, but methods for development exist.

Reproduction can either be done sexually or asexually. In sexual reproduction
a type of crossover mechanism is used, while asexual production is similar to
replication. Both types exist in nature as well but with very low error rate. In
artificial evolution this error rate is much greater, typically ranging from 0.01%
up to 100%. This error is called mutation. Mutation is a small change in the
genotype. Mutation can be seen as exploitation in the fitness landscape while
crossover resembles exploration.

The term fitness is commonly used when talking about evolution. Fitness comes
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Figure 8: Crossover and mutation

from biology where the true meaning is how well a certain phenotype propagates
its genes. High fitness doesn’t necessarily mean that the phenotype is stronger
or bigger, but rather how well it can reproduce. This is where we can observe
how well a certain gene affects the fitness of a phenotype. Genes that make the
phenotype exceptionally good at reproduction can be said to become immortal
[19].

Since evolution is a search technique, it is important to know about genotype and
phenotype search spaces. Evolution searches cumulatively and incrementally
through the search spaces.

Varieties exists, such as co-evolution of predator and prey. This can lead to
progressively more complex evolutionary processes which are not possible with
just one population.

Evolution can be allowed to tap into just about anything in the control system
of a robot. However, without development one needs to specify everything in
the genotype. This can result in a huge genotype. From a neural network
perspective it is common to allow evolution to work on the weights within a
neural network, the topology or the Hebbian learning rules for each neuron.

The evolutionary approach is very appealing for a number of reasons. First and
foremost it is a good way of achieving emergent behavior. Evolution incremen-
tally closes in on a near-optimal solution, or at least tries to. Evolution is very
successful in nature and it is the only process that is known to create complex
systems such as the human brain.

Most evolutionary algorithms are not as true to nature as one would wish. A
common problem in evolutionary computation is that the phenotype is given a
fitness after a full run. This means that even if the phenotype did some horrible
mistakes during the fitness evaluation but got lucky, or that the fitness function
did not notice the mistakes, it will often be able to reproduce.
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3.3.1 Gaussian mutation for Genetic Algorithms

In nature we find that mutation is the exception and crossover is the rule. In
other words, most animals reproduce sexually, where a male fertilizes a female
and the genes are combined in order to produce an offspring. Mutation of genes
happen by an accident during the copying process, and is considered to be a
very rare phenomena. That being said, there exists animals that only reproduce
asexually, but mutation is still very rare.[19]

When looking at genetic algorithms evolving neural networks, crossover of geno-
types often does not make sense. This is due to the fact that one “concept” found
in one part of a neural network won’t make sense when set into a different neural
network. Using asexual reproduction with mutation can give much smoother
travel in the genotype search space when evolving neural networks.

In most genetic algorithms mutation rates are much higher than in nature. The
classic way of performing mutation is the bit-flip mutation illustrated in the
previous chapter. Unless you manipulate more than one gene, the movement in
the genotype search space is limited to one dimension.

An alternative approach when using a real valued genotype representation is to
use Gaussian mutation. Creating offspring using Gaussian mutation consists of
adding a random value from a Gaussian (see figure 25 on page 45) distribution
to each element of an genotype’s (parent) vector. This leads to movement
in genotype search space in any n dimensions. A way of looking this is to
picture a sphere around the parent location, and movement can occur in any
direction from this location, only limited by the amount of dimensions. Since
we potentially change more than one gene, the movement can occur in multiple
dimensions. And as a consequence of this, steps in search-space can occur
that would be impossible with bit-flip mutation. This kind of property can be
desirable, and is not obtainable unless you allow bit-flip mutation to mutate
all the genes. The creation of a bit-flip mutation mechanism, which can flip
all bits in such a way that we get smooth transitions in genotype search space,
is difficult. This makes Gauss-mutation a good alternative when using real
numbers to represent the genotype.

Figure 9 illustrates how Gauss-mutation potentially mutates vector based geno-
types. It should be noted, that most uses of Gaussian mutation has a mean set
to 0 and a very low variance. This would imply that on average there should
be no change (or at least, very small) to the genotype.

0.100 0.400 0.700 -0.200 ⇒ 0.080 0.401 0.710 -0.190

Figure 9: Gaussian mutation

Although Gaussian mutation possibly is less biologically plausible, it remains a
useful tool for GAs. And in [26], experiments show that Gaussian mutation can
outperform bit-flip mutation.
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3.3.2 Evolutionary growth of complexity

The problem of classical engineering approaches is closely linked to the com-
plexity of the machine that is being engineered. In fact, if we look at classical
engineering, it is clear that if we want to build a machine with a certain com-
plexity level we need an even more complex machine to build it. This simply
means that we go from complex to less complex. If we then follow the engineer-
ing trail backward, we end up with our own brains. Thus, using the classical
engineering approach we will never be able to produce something more complex
than ourselves.

This is where evolution steps in as a possible solution to the problem mentioned
above. Evolution goes the other way around. Our theory and understanding of
evolution shows us that complexity can grow with time. In nature this would
be the same as going from a single-celled organism to a multi cellular organism
[20].

3.3.3 Baldwin effect

The Baldwin Effect (ontogenic evolution) is an organism’s ability to adapt to its
environment during its lifetime (phenotypic plasticity). The most common case
of phenotypic plasticity is perhaps the ability to learn. Among other examples
is the increase of strength through exercise or tanning in order to better endure
exposure to sunlight.

There are two phases of the Baldwin Effect. First, the phenotypic plasticity
allows an organism to adapt to a mutation which is only partially successful.
If this mutation increases the fitness of the individual, it is likely that it will
propagate. However, phenotypic plasticity requires a lot of energy and time,
such as the training that is necessary for increased muscular strength. This
is where evolution comes into play. It is capable of finding alternatives that
can replace the phenotypic plasticity, making it instinctive. This must not
be confused with Lamarckism, where the genotype is modified based on the
phenotype. Note that in the Baldwin Effect, the genotype is never modified
directly.

An example provided by Terrence Deacon [14]:

First phase:

An earthquake closes off a traditional migratory route. Migratory animals
change their route and end up in a colder location.

Second phase:

Some of the animals are better able to withstand the cold. Natural selection
favors those animals and the population adapts to their new circumstances.

This example is illustrated in figure 10 on the following page.
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Figure 10: The Baldwin Effect, showing two individuals and the effect that the
environment has on their fitness.

3.4 Artificial development

Artificial development is a sub-field of evolutionary computation, and it is moti-
vated by the lack of scalability, robustness and non-trivial structures as a result
of direct encoding. The development occurs in the mapping from genotype to
phenotype. It is also worth to note that development is a continuous process
that does not stop once the organism is completely mature. This enables adap-
tion to changing environments and self-repair.

How does development solve the problems concerning scalability, robustness and
non-trivial structures?

3.4.1 Scalability

As the search space grows exponentially with the size of the genotype, it could
be beneficial to use indirect encoding from genotype to phenotype. Development
uses a genetically encoded growth program in recursive steps.

3.4.2 Robustness

Biological organisms ability to regenerate is an inspiration for many groups of
researchers. Self-repair sometimes appears as an emergent property of artificial
development.
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3.4.3 Structures

When we evolve e.g. robot controllers, we typically end up with complex struc-
tures. Through the application of development, simpler structures can appear
by exploiting environmental aspects.

3.4.4 Indirect encoding

This indirect encoding is usually based on biological development which can
be divided into four simple steps. A zygote (fertilized egg) develops into a
multi-cellular organism through these steps:

Pattern formation. Cells organize in different regions according to their type,
in order to become distinct parts (body segments).

Morphogenesis. Some of the cells change shape (expand/contract) exerting a
force on other cells. This causes formation of general shape in the organism.

Cell differentiation. Cells become structurally and functionally different from
each other.

Growth. In this step, the organism is enlarged. This is called by cell-divisions
and expansions. Programmed cell death can help generate fingers or toes with
sheets of tissue.

These steps have analogous computational processes such as re-writing, iter-
ation and time. Artificial development has been applied to several types of
computational problems, e.g. evolution of robot controllers [36] and electronic
circuit design [37].

3.5 Neural networks

Neural networks stem from the human knowledge about how the biological brain
works[18]. Computer science had largely abandoned neural networks in the late
1970s, but research continued in other fields. Physicists like John Hopfield
analyzed their storage and optimization properties.

With the invention of the back-propagation learning algorithm in the mid 1980s
the field of neural networks started to blossom once again. Inter-connected
networks of neurons make up a highly parallel computation machine. Feed-
forward architectures commonly propagate signals through the network using
sigmoidal or hyperbolic tangent transfer functions or a step function, these are
found in table 1 on the next page.

Neural networks make use of connection strengths (named weights) between
the neurons in order to classify inputs into output signals. Learning the correct
weights is therefore crucial for the network to work properly for most cases.
These models are called connectionist models of intelligent systems[4]. As a
small definition: “Instead, connectionists suggest that intelligence is to be un-
derstood as the result of the transmission of activation levels in large networks
of densely interconnected simple units”[3].
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Function Definition Range

Step
{

0 : x < 0
1 : x ≥ 0

}
[0, 1]

Sigmoidal 1
1−e−x (0,1)

Hyperbolic tanhx (-1,1)

Table 1: Transfer functions

Neural networks have been applied to a wide variety of problems with great
success. Despite researchers questioning the “validity” of the connectionist ap-
proach, the current view is that connectionist and symbolic models are comple-
mentary to each other and not competitors.

3.5.1 Self-organizing maps

T. Kohonen is recognized as the father of self-organizing maps(SOM). SOMs are
a form of neural network where the structure of the nodes can be said to carry
the information. Through an unsupervised learning process cells on a lattice
tend to become self-organized.

Transfer functions are normally not necessary for SOMs, as it is the structure
of the network that is of importance and not the signal propagation.

Figure 11: Two-dimensional Self-organizing map

An initial setup of the grid is typically a random configuration or in some cases,
it contains some a priori knowledge which can make learning easier or faster.
The learning is usually based on moving cells, and making their neighbours
follow. This way the grid becomes an elastic moving grid which then can be
trained to fit a certain problem. In a simple form, training can adjust the
weights (connections) of a cell to its closest neighbors by a decreased adaption
gain. This makes one change to a cell propagate to neighboring cells. Variations
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of this basic method exists, and has reported decent results on e.g. cortial map
development [5].

Self-organizing maps can be used to create maps of the world around a robot.
One example of map creation for robots using self-organizing maps is described
in a paper written at the University of Athens[7].

Figure 12: Self-organizing map shown before and after learning [7]

From figure 12, the initial state is an untrained grid. After learning it gets
stretched so it is possible to determine where there are walls and where there is
open space. They then used an A* algorithm [8] to find paths through the envi-
ronment. The results they report were satisfactory during simulations. However,
there were no reported tests on actual robots.

Self-organizing maps are hard to analyze mathematically, but extensive testing
has shown that the idea is plausible. Choosing the correct amount of nodes
for the environment can have a huge impact on performance. Therefore it can
arguably be hard to apply a map technique like the one described above to
environments that are dynamic.

3.5.2 Hopfield nets

The Hopfield model [13] was an important milestone for the development of
artificial neural networks and was proposed by John Hopfield in the early 1980s.
The model showed how a group of simple processing units can have complex
computational power and behavior.

The Hopfield network is a bidirectional auto-associative network with memory,
and it can recall a saved pattern when presented as input in the form of a
noisy version of that pattern. A Hopfield net has a single layer of processing
units where every unit is connected to all the others, but not back to itself. In
addition, every node has an external input I. Unlike most neural networks, this
model treats all the neurons as both input and output units.

An important issue that must be taken into consideration when designing neural
networks is that of global synchronization. A solution to this problem, is the
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assumption that the activation of a neuron takes some units of time. The
network can be arranged such that it takes delay and time into consideration.
A network that makes no such assumptions behaves like a stochastic dynamical
system. In other words, units are updated one at a time, and in random order.

The sum of inputs to a neuron can be calculated as

netj =
n∑

i=1

siwij

where si is the state of unit i. Each unit gets its state updated according to
the signum function, i.e. it will be +1 if netj > 0 and -1 if netj < 0. If the net
input is zero, the state doesn’t change.

The network processes input the following way: Input is given in the form
of a vector containing the initial states of all the neurons. A random unit
is selected and updated based on weighted input received from all the other
neurons. Another unit is selected and the operation repeats itself. When none
of the units change state when updated, the network has converged. A simple
Hopfield net is displayed in figure 13.

Figure 13: Hopfield net
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Description Update rule
Classic Hebbian If : B ↑ ∧A ↑→ w ↑
Anti-hebbian If : A ↑ ∧B ↑→ w ↓

General Hebbian If : A = B → w ↑If : A opposite (B)→ w ↓

Table 2: Hebbian learning

3.5.3 Hebbian learning

Early models described by Holland is based on a concept of “fire together, wire
together”. The name Hebbian learning comes from the Canadian psychologist
Donald Hebb who reasoned about how the human brain learned through re-
sponse and stimulus.

This is a type of unsupervised learning where weights are strengthened when
two connected neurons fire at the same time. Varieties exists, classic Hebbian,
anti Hebbian and general Hebbian learning[6]. To illustrate how some of these
update rules work consider table 2.

A and B are two connected nodes and w is the strength of the connection between
them. The ↑ means that the neuron is firing and w↑ means that the connection
weight is strengthened and w↓ means that the connection is dampened.

Hebbian learning algorithms are very appealing due to their computational sim-
plicity. In addition the learning algorithm is very robust against noisy data. But
since there is very little control over what is going on during training, the al-
gorithm has a tendency to make the network fire on all inputs once it has been
trained. This happens in particular when using the classic Hebbian update rule.

Allowing each neuron to have an individual update rule helps the network to re-
sist the above mentioned problem. But this in turn poses a new problem. Deter-
mining which update rule to give to which neuron is hard. Evolution(described
in more detail below) can be allowed to tap into this, but this makes Hebbian
learning more computationally expensive.

3.5.4 Back-propagation learning

Back-propagation learning is also known as supervised error based learning. The
amount of work required in finding the correct set of weights for a neural network
increases substantially when the network grows in size and connectivity. Back-
propagation is a numerical gradient decent method for finding these weights.
Back-propagation is a supervised learning algorithm and arguably one of the
most successful methods for finding a good set of weights [9]. The comeback of
neural networks can likely be credited to back-propagation’s good results and
wide variety of applications, particularly in pattern recognition.

The idea behind back-propagation is to minimize the error between the desired
outputs and the actual outputs. In a feed-forward neural network without hid-
den layers the problem is trivially solved by the delta rule [10]. However, solving
problems without hidden layers poses a serious problem as they are unable to
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A B A xor B
0 0 0
0 1 1
1 0 1
1 1 0

Table 3: XOR function

solve problems that are not linearly separable. One example of a non-linear
separable problem is XOR, see table 3.

The natural solution is to add hidden layers to the neural network. In order to
compute the error contribution made by the hidden layers, the delta rule has to
be extended into the generalized delta rule. After sweeping forward, the delta
rule can find an error. The error contribution found by the delta rule is then
transmitted backwards into the hidden layers using the same weights. This is
the reason behind the name back-propagation. We want to change the weights
of the network to minimize the output error. This method can also be applied
to recurrent neural networks.

A continuous transfer function is needed, since the back-propagation algorithm
relies on derivatives. The step function (see table 1 on page 25) cannot be used.

When using the sigmoid function in a network where all outputs at layer n are
connected to all inputs in layer n+ 1, a typical use of back-propagation would
be [11]:

1) Sweep the signal forward in the network using the sigmoidal function.

yi = 1
1−e−x

2) Update weights. t = desired output at node i while o = actual output at
node i.

4wij = η
∑

d∈D(tid − oid)oid(1− oid)xjd

Adding hidden layers gives the network more expressiveness, however it should
be noted that having too large networks can end in poor results due to over-
fitting. It can be showed that neural network architectures using back-propagation
can learn any arbitrary mapping from inputs to outputs. The need of knowing
the correct output for every input is a huge drawback. When working with
robotics in a dynamical environment, knowing the correct output for every in-
put(percept) is very hard, if not impossible.

3.5.5 Continuous-Time Recurrent Neural Networks

In recent robotics papers [25] the use of more complex networks is emerging.
These networks, as introduced by R. Beer are called Continuous Time-Recurrent
Neural Networks and are biologically plausible in respect to their properties [17].
This is one of the technologies used in this report, and we will get back to the
specific details of our setup. For now, here’s a general outline:

These types of networks use the following state equation[16]:
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Variable Meaning
y State of each neuron
τ Time constant
wij Strength of connection between the i’th and the j’th neuron.
g gain
θ bias term
I External input

Table 4: Variables in a CTRNN state equation

τiẏi = −yi +
N∑

j=1

wijσ(gj(yj + θj)) + Ii, i = 1, ..., N

where σ is the sigmoidal activation function:

σ(x) = 1
1−e−x

and the remaining variables are explained in table 4.

Normal feed forward Neural networks lack the ability to remember and there-
fore only support reactive behavior. Continuous-time recurrent neural networks
allow the network to remember from previous experiences. Remembering from
previous experience allows the robot to become proactive and anticipate future
events [17]. CTRNNs are arguably one of the simplest ways of achieving this
type of behavior. Using evolution to evolve the weights seems to work well with
CTRNNs [16]. A growing interest is being shown by the robotics community.

The implementation used in this report is described in detail in the design
section.

3.6 Reinforcement learning

Problems that involve learning through trial and error interactions with the
environment are referred to as reinforcement learning problems. One can search
through a space of behaviors in order to find one that behaves well in the
environment. Through the use of statistical tools it is possible to estimate the
utility of taking specific actions. If the problem is modelled with care, some
reinforcement learning algorithms can converge to the global optimum. This is
the ideal behavior that maximises the reward.

With reinforcement learning there is no need for a human expert in the actual
domain, nor any need for hand-crafted and complex sets of rules as with expert
systems. Among the examples in [15] was the simple game of tic-tac-toe. This
isn’t a complicated game, but it is difficult to train an agent using traditional
techniques since most of them require a complete specification of their oppo-
nent. With reinforcement learning, the problem could be solved without a priori
knowledge of the opponent. However, it would have to play many games before
it could behave like a skilled player.

In order to play well with reinforcement learning, one would have to set up a
table containing every possible state of the game. Note that for certain problems
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this would be extremely exhaustive in terms of memory. The problem could be
reduced by using value approximation techniques such as neural networks or
decision trees, but that would typically produce less accurate value estimations.
Each state in the table would display the chance of winning from that position.
If we consider two values in the table, where value S gives a higher chance of
winning than T, we would say that S is better than T. Assuming that we play
with Xs and our opponent with Os, the states with three Xs in a row give us a
probability of 1 to win. States with three Os in a row give a probability of 0 to
win, and all the other states give a probability of 0.5 of winning.

The next step is to play several games with the opponent. For each move, we
would examine all the possible moves by looking at their values in the table,
and then we would usually select the most rewarding one (greedy behavior).
Sometimes however, we would select a random move instead of the best one,
since this leads to better exploration of the solution space. When we get to a
new state, we change its value such that it better reflects our chances of winning.
The update is done in the following way: When we move from state A to state
B, we read the value of state B and adjust the value of A such that it comes
closer to the value of B. The rate of change depends on a predetermined step
size α. The update function is

V (s)← V (s) + α[rss′ + γV (s′)− V (s)]

where s is the state before the greedy move and s′ is the state after the greedy
move. rss′ is the reward or penalty in going from s to s′ and γ is a discount
factor.

This approach differs significantly from an evolutionary solution. An evolution-
ary approach would use a fixed solution candidate and evaluate it only after a
full game. What happens during the game would be ignored, and the fittest
solution would reward all the moves taken on its way to the local- or global op-
timum. Both of the approaches search the solution space, but learning a value
function benefits from the information that is available while the game is being
played.

Above we described a lot of different technologies that exist, along with some
problems that we have run into. These technologies can be used by themselves,
but a more interesting approach would be to combine a number of them and to
extend them for robotics. Jesper Blynel and Dario Floreano [27] used CTRNNs
and evolution to see if reinforcement learning-like abilities could be evolved, and
if they could be extended to robotics. Their results on the T-Maze task show
that this is possible and that the “learning” resembles a type of learning found
in biological systems.

We want to explore adaptive behavior and how this can be achieved. We also
want to look at how nature has achieved it, since we find adaptive behavior in
nature. Nature is proof-of-concept for a biology inspired approach.
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4 Design

4.1 Robot

In our experiments, we are using an E-puck robot named WALL-E. It has eight
infrared sensors, a camera, three microphones and an accelerometer. In our
current experiments, we will only be using the infrared sensors and the wheels.

Figure 14: Proximity sensors.

The robot can be controlled either by uploading data to its memory, or by send-
ing/receiving instructions over Bluetooth. We have chosen the latter approach,
such that we can perform offline computations (in any language of choice). The
robot can only understand machine code compiled with a C/C++ compiler that
supports the dsPic chipset, whereas any language that supports Bluetooth can
communicate with it otherwise.

We have chosen the Python programming language for this purpose. Python’s
syntax closely resembles pseudo code, something that should make it easy for
others to get started with the E-puck irregardless of what programming back-
ground or paradigm they come from.

Those of you looking into this report with the purpose of getting started with
the E-puck, see Appendix A.

4.1.1 Reality problem

It is common to run into some difficulties when running synaptic weights that
have been evolved in a simulator on a real robot. When the neural network is
subject to Darwinian evolution, the evolutionary process evolves solutions that
are good in that specific environment. This means that evolution finds solutions
that are good in the simulator. When this solution then is applied to the robot,
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Figure 15: WALL-E, the robot

the solution might be unable to cope with the physical variations found in the
real world. Variations which the simulator can’t simulate, or variations that are
very hard to simulate accurately. Realistic physics, Newtonian physics, is com-
putationally very expensive, and very hard to completely simulate realistically.
A completely realistic simulation which reflects the real world is hard and pos-
sibly impossible to create. Recent papers on CTRNNs also describe encounters
with this reality problem [27].

In our particular case, friction against objects and timing of the internal dynam-
ics of the CTRNN is subject to the reality problem. One problem with friction
in the simulator is that friction varies a lot in the real world. While running on
the real robots some parts of the walls might have just a slightly rougher surface,
which in turn will make the robot turn slower, or not turn at all. While evolving
the CTRNN solution the friction is more predictable, and evolution might have
exploited this during simulation. The timing of the CTRNN internal dynamics
is another issue which can provoke the reality problem. With our current genetic
algorithm, we speed up time in order to test phenotypes faster. This makes it
hard to control how often and at which time we update the internal state of the
CTRNN. Sensory input which is being read by the CTRNN also changes with a
tiny amount from the simulator to the robot, and in reality (on the robot) from
one run to another due to lighting conditions.

From the above described problem, it is possible to see that an evolved solution
that doesn’t touch the wall much is a good counter measure against the problem
with friction . However, wall touching is only part of the problem (removes
friction from our reality problem “equation”). A good solution has to, in general
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be robust enough to withstand a lot of noise. Adding noise to the simulator has
been somewhat successful in other experiments [25].

4.2 Environment

Part of the criteria for this task, was the ability to adapt in a changing environ-
ment. For this purpose we created a table and a simulated environment with
the following specifications:

Length: 150 cm
Width: 120 cm
Height: 9.5 cm
Floor color: S5000N 9929(dark gray)
Wall color: S1500N 9915(light gray)

Figure 16: Simulated environment (table)

Since further (or other) experiments might use cameras, the floor is painted
quite dark, while the walls are light, such that it can distinguish between them.

We have put some movable obstacles in the environment, such that we can easily
set up mazes and paths. See figure 16 and figure 17 on the next page.

4.3 Continuous-time recurrent neural network

A CTRNN is a dynamical neural network composed of a system of differential
equations. Each differential equation approximates the state of a single neuron
in the network:
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Figure 17: Physical environment (table)

ẏ =
1
τi

(−yi +
N∑

j=1

wjiσ(yj + θj) + I)

where y is the state of each neuron, τ is its time constant (learning rate), yi is
the state of the post-synaptic neuron, wji is the synaptic strength (weight) from
neuron j to neuron i, yj is the pre-synaptic neuron, θj is a bias term and I is a
constant external input (e.g. sensor input). σ is the logistic activation function
1/(1− e−x).

Basically, for each neuron it does the following: Calculate the sum of incom-
ing connections wσ(yj + θj), subtract the current output yi, add the constant
external input I and finally multiply the result with 1/τi.

Real neurons operate in continuous time. In order to produce behaviours that
rely on continuous time (on a computer), we have to discretize time by integrat-
ing neurons over small time steps. The accuracy of this approximation depends
on the size of the time steps: small time steps give accurate approximations
while large time steps result in less accurate approximations.. The general rec-
ommendation is to keep the time step smaller than the smallest time constant
by a factor of ten [30].

These differential equations can be thought of as artificial neurons. When con-
nected, they are reminiscent of how neurons in a real brain are wired, i.e. they
form a dynamical neural network. The state of each neuron can be thought
of as a nerve cell’s mean membrane potential, and σ(x) is associated with its
short-term average firing frequency [17].
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4.3.1 Dynamical properties

CTRNNs are typical dynamical systems in the sense that they have an arbitrary
number of variables that vary over time, depending on the values of these same
variables. These networks can be thought of as a type of neural networks, but
they are really systems of differential equations.

In dynamical systems, effects are not proportional to their causes, i.e. small
changes can have large effects and great changes can have small effects. The
dynamics in CTRNNs can be understood through the circular relation between
the system’s differential equations: a single differential equation (neuron) affects
the other components (neurons), and these components in turn affect the first
differential equation. In other words: any change in the first component gets
feedback to itself, through its effect on the other components.

The feedback is considered positive if it amplifies the recipient’s initial state, i.e.
if a differential equation’s change in one direction receives feedback that takes
place in the same direction. If the feedback given to a differential equation
works in the opposite direction, it is considered negative. These feedbacks have
opposite effects: negative feedback stabilizes the system towards an equilibrium
(stable state), whereas positive feedback accelerates it towards chaos.

In order to examine the dynamical properties of a CTRNN, it can be useful
visualize it in a phase plane. A phase plane displays plots of trajectories in
the state space. This can indicate the presence of an attractor, a repellor or a
limit cycle for our given parameter values. The model can also tell us something
about the stability or instability of the system. Using Randall Beer’s Dynamica
software, which is an extension package for Mathematica, we can easily produce
a phase portrait for a 2-neuron CTRNN circuit.

The blue dots in the portrait (figure 18 on the following page) represent sta-
ble equilibrium points, i.e. points where the competing forces are balanced.
The green dots are semi-stable equilibrium points. Note that these points oc-
cur where the trajectories intersect (nullclines). These trajectories are solution
curves, and for every point in the plane, precisely one trajectory passes through
it.

These equilibrium points occur where dx/dt = 0. We look at the stability of
these points because we want to find out what happens to x when we move
away from them. The stable points will return to 0, whereas unstable points
will make x grow in time and move away from the equilibrium point. The semi-
stable points can have a periodic behaviour that oscillates between stable and
unstable.

Unstable- and semi-stable equilibrium points can cause difficulties when mov-
ing a phenotype (CTRNN) from the simulated environment and onto the real
environment because of significant changes in the parameter space, differences
in the sensors and the fact that the battery level on the real robot influences
the sensory readings. This can be remedied to some extent by evolving with
imitated noise in the simulated environment in order to produce a more robust
solution.
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Figure 18: Phase portrait of 2-neuron circuit, where stable equilibrium points
are denoted by blue dots and semi-stable points are shown as green dots.

4.3.2 Variables

The state equation for a single neuron is:

ẏ =
1
τ

(−y + wσ(y + θ) + I)

The neuron state equation can be simplified by setting τ = 1 and I = 0. If
we assume that the neuron has no self-connection, the state equation can be
simplified to:

ẏ = −yi · s

where s is a small integration time-step for discretizing time, i.e. giving an
approximation of continuous time. We can easily iterate through the time-
steps: Let’s say that we have y(t0) = 20 and the time-step s = 0.01. We find
that the change in y with respect to time is ẏ = −y(t0) · s = −20 · 0.01 = −0.2.
This tells us that y(t1) = 20− 0.2 = 19.8.

For the next timestep, we get ẏ = −y(t1) · s = 19.8 · 0.01 = 0.198 which gives
y(t2) = 19.8−0.198 = 19.602 etc. We can see that ẏ declines along with yi until
yi reaches 0.

In the figure below, we can see this behaviour over time with starting values 1
and -1.
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Figure 19: Simplified behaviour (CTRNN state equation)

Time constants

The next variable that is subject to examination is the time constant τ . This
variable affects the decay time of the system. If τ is small, it will decay quickly,
allowing the system to reach an equilibrium state in little time, as a response to
changes in the environment. In this case, its output is a smooth decay curve.

If the constant is large, the decay happens slowly and provides a form of memory
as the new state is affected by the previous one [31]. With a small constant,
the output becomes less accurate, i.e. we integrate over large time steps. Note
that it is important to keep the size of the time step s smaller than τ to avoid
instability in the output. The effect that τ imposes on the output is illustrated
in figure 20 on the next page.

Sensory input

The output eventually converges to the sensory input, I. In the simplified
equation without any connections, the output decays to I with the time constant
τ .

Figure 21 on page 40 shows three different neurons with their own respective
sensor inputs. The first neuron (blue) converges to I = 0.1 with a small time
constant, i.e. it decays quickly. The second neuron (red) converges to I = 0.5
with a large time constant (slow decay). The last neuron (yellow) converges to
I = 1.4 with a small time constant.

Logistic function

The logistic function gives values between 0 and 1 where negative inputs result in
output values below 0.5 and positive inputs yield outputs higher than 0.5. Note
that the logistic function’s output converges towards the extremes, such that
all values below -4 will stay at approximately 0 and values above +4 will stay
at approximately 1. In theory, the difference between the logistic function and
transfer functions such as the hyperbolic tangent, is only a mapping. In practice,
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Figure 20: τ affects the decay. The blue line shows the impact that a large τ
(0.95) has on the decay and the red line shows the same for a smaller τ (0.5).

it might be possible to discover more interesting dynamics with other transfer
functions. Consider that the volume in the parameter space that generates
CTRNNs with phase portraits with only stable point attractors might be larger
when using the logistic function than when using the hyperbolic tangent function
[32].

Weight term

The weights are multipliers that determine the impact of each node’s output to
the network. The weights (along with the topology) are essential components
that help tailor the network for a particular purpose. The weights both amplify
and inhibit neurons in order to create a desired behaviour. This is explained in
detail in the section concerning emergence.

Bias term

The bias term, θ, is passed to the logistic function. This term affects the out-
put of the logistic function by saturating it towards zero or the weight value,
depending on whether it is positive or negative. In other words, we can use this
term to bias the output of the logistic function into a desired section, which is
typically where the output changes with the input.

Figure 23 on page 42 illustrates the logistic function σ with three different
biases: -5, 0 and 5. From the graph we see how θ can be used to bias the
logistic function’s output into a specific section.

4.3.3 Visualization

In order to debug and ensure the correctness of our phenotypes, we wrote a
stand-alone module that can visualize them. This allows us to check whether
our genetic algorithm and artificial neural network are producing what we expect
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Figure 21: The effect of sensor input

them to. When a phenotype is being evaluated the artificial neural network is
displayed as shown in figure 24 on page 43. The thickness of the weighted graphs
indicate the weights’ strength. This tells us something about how a neuron that
fires can excite or inhibit other neurons in the next layer. The visualization
also tells us whether or not the neurons are connected the way we intended.
This tool currently only works with the initial stages of development where
you can examine the flow through the neural network from input- to output
neurons. In other words, it does not provide any useful information when used
with recurrent networks.

4.4 Genetic Algorithm

The CTRNNs herein are evolved with an extrinsic genetic algorithm that uses
the principles of Darwinian evolution in order to evolve synaptic weights. Our
genetic algorithm does the following:

(1) Evolve a set of random synaptic weights (genotypes) that we refer to as our
genotype pool. Each genotype has a specific length, which is the number of
synapses that we want to evolve. Each gene resides within a given range. The
number of genotypes in this pool is called the genotype population.

(2) Every genotype can develop into a phenotype through a simulated biological
cell development process: pattern formation, morphogenesis, cell differentiation
and growth. This part is under development, and instead it performs a simple
copying process. This is the segment where we could eventually enable devel-
opment.

(3) Each phenotype is evaluated according to our criteria (which is unsuper-
vised). In our specific context, the phenotypes are tested in a simulated envi-
ronment (Breve) and assigned a fitness value after a full run has been completed.
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Figure 22: The logistic function σ

A fitness value is assigned to every genotype relative to how well its phenotype
performed. The fitness functions used will be described in further detail below.

(4) Different selection mechanisms are being used in our experiments. Due
to our varied fitness values we are using both tournament selection and rank
selection. The reason we rely on probability in this step is because we want to
avoid premature convergence. In nature, the best wolf sometimes falls off a cliff,
making more room for alternative paths in the solution space. We also wanted
to see which results the different selection mechanisms gave.

Previous version: The parents are likely to produce an offspring (recombination),
but there is also a small chance that the best of the two gets a walkover into
the next generation (replication). In the cases where the parents recombine,
the offspring inherits part of the genes from one parent, and the rest from the
other. This typically results in exploration of the solution space. There is also
a chance that mutation can occur in the offspring, a small tweak that can result
in novel features as well as exploitation of the solution space. This phase is
repeated until there are enough candidates to fill up the next generation with
the specified population.

New version: Purely Gaussian mutation.

(5) Return to step number two and continue working with the latest pool of
individuals. Each cycle (complete genotype pool) is called a generation.

4.4.1 Genotype representation

There are a number of known methods for genotype representation. Both bit
and real valued representations is widely used. For our GA we have chosen to
use a real valued representation. We have chosen the latter, mainly because it
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Figure 23: The effect of θ on the sigmoid-function. The bias values shown here,
from left to right, are -5, 0 and 5.

goes well with Gaussian mutation. In addition to this we do not need to convert
from bits to floating point numbers when we convert the genotype to phenotype.

Each genotype is built up of the CTRNNs time-constants, bias and connection
weights. The initial construction of the genotype is set up as if the CTRNN
was fully connected. A total genotype is simply a list of neurons. Each neuron
is built-up of a time-constant, bias and weights. The list of the neurons weights
are the weights that go from neuron j to neuron i(wji).

This type of genotype scales quadratically with the number of neurons of the
network. Since each neuron has one time-constant and one bias, the size of the
genotype is then n2 + 2n where n is the number of neurons in the network.

In our experiments we never allow the network to be completely fully connected.
This would imply that we could remove some of the unused weights, but we
quickly found out that we would not gain much(if any) performance gain by
making the genotype smaller. Our GAs bottleneck is situated in the fitness
evaluation of phenotypes, and not in genotype handling. Instead we set the
unused weights wji to 0. A minor and positive consequence of not removing
any weights, is that we can now determine the number of neurons by using the
quadratic equation n2 + 2n = 0.

4.4.2 Fitness functions

Arguably the most important feature of any genetic algorithm is the fitness
function one choose to use. In Evolutionary Robotics [10] Nolfi and Floreano
state that if the fitness function becomes too restrictive the overall possibilities
for emergence are reduced. So we try to use fitness functions that do not specify
much, but rewards general behaviors instead.
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Figure 24: Visualization of EANN

Earlier results were obtained using this fitness function: f = aW − bS, where a
and b are constants, W being the sum of wheel speeds counted each time cycle
and S being the total sum of inputs counted each time cycle. The idea behind
this fitness function is to reward movement and penalize sensor input. Simply
put: high speed is good, being close to walls is not.

The fitness function f = aW - bS is very sensitive to a and b. If they are scaled
such that a >> b, the network will often converge to solutions that drive full
speed ahead while facing the wall. When a << b, the network tends to converge
to solutions that move in circles, typically with just one of the engines moving
forward such that it receives little sensor input, but does not score high on
motor speed either.

Due to the problems described above concerning scaling we experimented with
different variations of the fitness function. One of these variations was a fitness

43



function which added Φ each time cycle. This variation is taken from Evolu-
tionary Robotics[10].

Φ = V (1− i)
0 ≤ V ≤ 1
0 ≤ V ≤ 1

Where V is the sum of the absolute values of each wheel speed (right wheel +
left wheel) and i is the sensor reading of the most active sensor (ie. the one
which is the closest to an object). Note that we rescaled our wheel speeds to
be between -0.5 and 0.5, where -0.5 is full speed backwards and 0.5 is full speed
forward.

V = wheel1+wheel2
2

i = max(sensors)

The general idea behind this fitness function is the same as the first one, reward-
ing high wheel speed and penalizing sensor input. However, they both seem to
give cyclic results. Therefore we also tried variation where one included the
following component: (1 −

√
δv), where δv is the difference between the two

wheels. This component rewards wheel speeds that are similar. Now rewriting
the above function to Φ = V (1 −

√
δv)(1 − i). This function now captures the

general idea of what we want to see in our robot controller. First, it rewards
high wheel speeds. Second, it rewards similar wheel speeds on both wheels,
which rewards movement in straight lines. It also penalizes sensor input, such
that staying close to walls is bad.

While the above fitness functions measure how well the robot is doing, it only
measures how well actuators are doing and only relies on local variables that are
known to the robot at any given time. However, it does not capture a general
behavior. These fitness functions basically check “how fast does the actuator
move” instead of seeing how well a solution is, from a more biological point
of view. This and input from fellow researchers inspired us to write a fitness
function that checks how good a total solution is. In order to do this we decided
to base fitness on distance travelled. The main problem that had earlier steered
us away from such a solution was the reality problem. In the simulator such
a task is trivial, in the real world it is much less trivial. In the simulator one
can get the coordinates of the robots location very accurately, this however, is
not possible in real life. One solution to this is to integrate the wheel speeds,
but this leads to another problem when friction fails! Since the robot could be
running into a wall and spin the wheels at max speed and gain good fitness.

Even though the above problems do exist we decided to go through with the
fitness function. We ended up with a Euclidean distance measure as a fitness
function. It should be noted that Euclidean distance might not be a good way
of solving mazes, since the robot then is forced to move a lot back and forth.
Moving back and forth would give zero fitness. However, in our simple maze
euclidean distance is a good measure, since the optimal solution is not backwards
at all, but rather a steady increase in fitness. The closer the robot gets to the
exit in our maze, the more fitness it will get, and should it be able to get out it
will increase its fitness even more.
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Euclidean distance fitness:
Sp = (Px, Py) Ep = (Qx, Qy) ED =

√
(Px −QX)2 + (Py −Qy)2

Where Sp is the starting point, Ep is the end point and ED being the euclidean
distance between the two points. ED is also the number we used as fitness for
the phenotypes.

As a final variation of measuring fitness we combine the fitness produced by the
ones described above. We can the scale the individual values up or down in
order to see if we are able to get interesting behaviours. In the case of a com-
bination of fitness functions we will describe how the combination is computed
in detail. Since all the possible variations isn’t going to be described in this
section. We will document the configuration per experiment. A full description
of the possible variations would take up too much space, and they would not be
relevant unless used.

4.4.3 Crossover and mutation

Previous work had the most successful individuals using a 70% mutation rate
and 30% crossover rate. This however, is not the case when we start testing
on CTRNNs. Due to the dynamic nature of CTRNNs, crossover simply did
not give smooth jumps in phenotype search space. Mutation seems to be the
preferred way of evolving neural networks, specially highly dynamic ones such
as CTRNNs.
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Figure 25: Gauss distribution with mean = 0 and variance = 0.05

We also experimented with different ways of performing mutation. Previously
we had only used the classic “change one gene” approach. This type of muta-
tion is commonly known as bit-flip mutation. One problem with the bit-flip
approach, is the way it moves in genotype search space. The movement using
classic mutation happens in one dimension only, unless you start manipulating
multiple genes, which is what Gauss-mutation does. In all our experiments,
Gauss-mutation is used.

45



4.4.4 Number scales

Early experiments lead to stationary circling behavior, no matter which evolu-
tionary properties we tried. We then learned about the importance of proper
scaling of all the numbers that is used with the CTRNN. Proper scaling of num-
bers is of great importance in order to get a system that behaves the way one
should expect. Unless we encode the outputs from the network, the robot will
be unable to move. The same principle applies for the sensors that are being
set as input to the network. If one is using the wrong ranges the neural net-
work can be totally blinded by the number and not respond to sensor changes.
Interpolation is used on the sensors and wheel speeds such that their ranges
are correct when used to set wheel speed, calculate fitness and as input to the
neural network.

Sensors on the robot and in the simulator are scaled between 0 (no walls in
sight) to 3000 (sensor practically touching the wall). This range will not work
well with the logistic transfer function σ = 1/(1 − ex), showing in figure 26.
The logistic transfer function is active when −5 <= x <= 5, and converge
towards 0 when x <= −5 and converge towards 1 when x >= 5. In order to
properly inject sensory information into the input neurons we set up the system
to interpolate the sensor range [0, 3000] to the range [-10, 10]. This step is
important, if we did not scale the number properly we would only see changes
in output activation values from the input neurons when the sensor values were
very small, ie. when the sensors are just beginning to see an obstacle.
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Figure 26: Logistic transfer function

Further use of interpolation is used in order to extract the wheel speed for
each wheel from the neural network. The output from the neural network is as
shown on figure 26 between [0,1]. These values are interpolated into the range
[-1000,1000].

The fitness function Φ = V (1−
√
δv)(1−i) also requires proper scaling of input i

and wheel speed V. The first component V is the sum of the wheels. In order to
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make the sum of the wheels make sense in this setting the original wheel speed
range [-1000,1000](where -1000 is max speed backward and 1000 is max speed
forward) is interpolated to [-0.5, 0.5]. Input i is interpolated from the range [0,
3000] to [0,1]. A thorough analysis of why these ranges are needed can be found
in [10, p. 73].

Since the simulator was originally tuned to the E-puck robots, we used the same
scales as we used for testing on the actual e-puck robots.

4.4.5 Thread problems

One of the major changes that were done compared to our earlier results was
that the GA and simulator were running on a cluster in order to speed up tests.
This gave us a whole set of new problems. Our simulator was coded thread-wise
using one thread for the simulator (Newtonian physics, environment setup and
sensor handling, etc) while the controller was running in a thread alone. Each
node on the cluster is a 3GHz single-core machine. Our earlier machines where
dual-core machines. One problem that this posed is that fitness evaluation
varied a lot, and were not consistent. This where due to the nature of our
fitness functions, which gave higher fitness with more cycles. On a dual-core
architecture it seemed to have less of an effect than on the single-core nodes on
the cluster, which it seemed to give huge differences. We suspect that this lead
our GA to favour solutions that were computationally less expensive, and it still
might do that.

The behaviour of CTRNNs also vary with how often you update and change the
internal state, in our case using the Euler integration method. Using threads
on different architectures(multi-core and single-core) and on different operating
systems which has different schedulers can result in very different behaviours
depending on the setup of the system. This happens because of the amount
of time the thread is allowed to run. On a system where the thread is allowed
to run practically in parallel with the simulator, it would naturally check the
sensors, and update the internal state of the CTRNN more often. This resulted
in very shifting behaviour depending on how often the thread was allowed to
run. And in turn made us go for a non-threaded solution.

4.5 Simulation

Simulations were carried out in the Breve simulator. This allowed us to carry out
both rendered and non-rendered simulations. We observed the robot running
for each configuration in a rendered version to make sure that the initial setup
performed as expected. The non-rendered simulation made it possible to run
larger population sizes and increased amount of generations at much greater
speed.

We created our own E-puck robot within the Breve simulator. It is a modified
version of a simple Braitenberg robot, set up with eight sensors placed approxi-
mately at the same position as seen on the real robot. These sensors were tuned
to somewhat match those on the E-pucks. The simulator environment was set
up to match the real world table size and robot size.
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Figure 27: Breve simulator and the e-puck robot.

Weights found during evolution in the simulator were easily placed onto the
real world robots for further evolution and tuning to the real world sensory
mechanics. This was necessary because the weights found in the simulator is
trained against simulated sensors. Sensors in the simulator are not affected by
varied amounts of light or quality in the electronics. We therefore set the system
up so we could evolve basic weights in the simulator to avoid the bootstrapping
problem and then continue evolution on the real world robot. This would allow
evolution to further improve the weights.

Running simulations became really time consuming. We experienced that fitness
evaluation was the real time sink. Each phenotype took somewhere between 25
to 30 seconds in the simulator. This simulated approximately 80 seconds in real
time.

This would mean that a population size of 50 over 30 generations would take
in excess of 10 hours of simulation time. The solution to this problem was
either to look into the code that Breve uses (and attempt to optimize this) to
simulate or get access to a cluster and create a distributed version of the GA.
We decided to go for the distributed version as our program turned out to be
“easily” distributable.

If we assume the same simulation time per phenotype on a distributed archi-
tecture, using 50 nodes on a cluster the simulation time would be drastically
reduced. We hope to be able to simulate a run with the same population size
(50) and number of generations (30) in less than 30 minutes as our calculations
predict. Some overhead is to be expected, however it would be insignificant.

After writing a distributed version of the evolutionary algorithm we confirmed
our predictions.
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Figure 28: Visual run in the Breve simulator.

4.6 Cluster

In all our experiments we are executing an evolutionary search in a simulator.
This process is computationally expensive, and would simply take too much
time unless we were able to write a distributed evolutionary algorithm. By
evaluating fitness in parallel we are able to drastically reduce the amount of
time the evolutionary algorithm uses.

Our distributed version consist of a distributor program(master node) that dis-
tributes each fitness evaluation(slave nodes) onto the cluster nodes as shown in
figure 29 on the next page.

In order to minimize the amount of time it takes to run the evolutionary al-
gorithm from start to end, we set the size of the genotype pool to match the
amount of nodes we use on the cluster. As an example to make this clearer:
if we use 30 nodes on the cluster, we set the size of the genotype pool to be
any number which is dividable by 30 and that will use all 30 nodes as much as
possible, such as 30, 60 or 90.

By using a distributed model for our clustering, we are able to drastically reduce
the amount of time the evolutionary algorithm takes to complete. For instance,
if we use 30 nodes on the cluster and a population size of 60, and the fitness
evaluation of one phenotype takes 1 min. Each generation would then take
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-Slave -Master

Figure 29: Distributed simulation

2 minutes. In a non distributed evolutionary algorithm, the same generation
would take 60 minutes.

The model we use is called a master-slave model. This model has been been
criticized by recent papers [33], but it seems to be the best solution we could
find to distribute our genetic algorithm.
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4.7 Evolution pipeline

This section explains how we conduct our search for the fittest phenotypes. The
first step is the evolution in the simulated environment, and the second step is
evolution on the robot.

The evolutionary process in the simulated environment begins with the genetic
algorithm producing a set of random phenotypes containing synaptic weights,
time constants and bias values. Each complete phenotype is transformed into a
fully-fledged CTRNN by filling its attributes into a bare bones dynamical neural
network.

Complete and ready for testing, the CTRNNs are passed onto the cluster’s
master node that distributes them onto a number of slave nodes running our
simulated environment. The phenotypes (CTRNNs) are evaluated and assigned
a fitness value according to their performance. Once all the phenotypes have
been evaluated, the master node communicates the results back to the genetic
algorithm. This loop, displayed in figure 30 on the following page, continues for
a specified number of generations.

A summary of the procedure could be described as follows:

(1) Genetic algorithm: Produce synaptic weights, time constants and bias
values and pass these to the CTRNN.

(2) CTRNN: Insert phenotypes into bare bones dynamical network and pro-
vide testable phenotypes for the cluster.

(3) Cluster: Distribute phenotypes to slave nodes. Wait for phenotypes to be
evaluated (in parallel) and communicate the results back to the genetic algo-
rithm.

(4) Repeat steps (1) to (4) for a given number of generations.

See illustration in figure 30 on the next page.

Evolving from scratch (random weights) on the robot would take an unimag-
inable amount of time and effort. However, the fresh phenotypes coming from
the simulator are rarely well-adapted for real-life environments. Despite our
effort to mimic the real world as closely as possible in the simulated environ-
ment, the weights rarely work without some continued evolution. This worked
directly with the initial feed-forward neural network, but not so well with the
CTRNNs. This problem is described in detail in the section concerning the
“Reality problem (3.1.1).”

In this second stage of evolution (now on the physical robot), the last generation
of phenotypes from the simulation phase is used for initial weights, time con-
stants and biases. The genetic algorithm provides these weights to the CTRNN
which in turn passes the CTRNN phenotypes to the robot controller. Note
that the robot controller application resides outside, but communicates with
the actual robot using Bluetooth. The phenotypes are evaluated and assigned a
fitness according to their performance in the real-life environment. These fitness
values are passed from the controller and back to the genetic algorithm. This
loop, which is shown in figure 31 on the following page, can continue to run for
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Figure 30: Run on simulated robot

several generations. In this case, however, it is rarely run for more than a few
generations.

The general outline of this procedure is as follows:

(1) Genetic algorithm: Obtain the previously evolved genotypes and pass
them to the CTRNN.

(2) CTRNN: Insert phenotypes into bare bones dynamical network and pro-
vide testable phenotypes to the robot controller.

(3) Robot controller: Communicate with physical robot using bluetooth, i.e.
read sensory input, integrate neurons and pass motor speeds (actions) back to
the robot. Evaluate fitness and pass it back to the genetic algorithm.

(4) Repeat steps (1) to (4) for a given number of generations.

See illustration in figure 31 on the next page.

4.7.1 Software

The Python Programming Language. All our code is written in Python.
http://www.python.org

The Breve Simulation Environment. 3D simulation environment for ALife.
http://www.spiderland.org/

52



Figure 31: Run on physical robot

Mathematica. Used for creating graphs and phase portraits.
http://www.wolfram.com

Dynamica. Randall Beer’s addition to Mathematica.
http://mypage.iu.edu/ rdbeer/

Inkscape. All the illustrations herein are made with Inkscape.
http://www.inkscape.org
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5 Experiments

5.1 Early experiments

We will present some of our experiments and the problems we ran into. We
would like to begin with some of the early experiences we had with the robot.
At this point we had already built and painted the environment, and the robot
was ready for a test-drive. The process of getting the robot ready to be used is
described in the form of a tutorial in Appendix A.

We decided to monitor four out of the eight infrared proximity sensors and drive
around in the environment for a while. The sensors gave values ranging from
0 to 3000, 0 meaning that it was in the open, and 3000 indicating that it
was touching one of the walls. The sensors are very stable and rarely affected
by external factors. However, we ran into some problems that were difficult
to locate, due to low battery power. When the battery runs low on power,
some of the data is lost during transfer, and the sensor input is generally a bit
lower than usual. We quickly decided that we shouldn’t conduct any serious
experimentation without full battery capacity. Figure 32 shows the input from
a single sensor as the robot slowly backs away from a wall.

Figure 32: Sensor input at x cm from a wall.

Running into the walls didn’t cause any problems as the robot is fairly light,
and the floor was slippery enough for the robots’ wheels to spin, such that it
didn’t cause much strain on the motors. The wheel speed can be programmed
to run at -1000 (full backwards movement) to 1000 (full speed ahead) where
1000 equals one full rotation on the wheels per second. However, the maximum
speeds are quite hard on the motors, so we set the range in our control software
to [-500, 500] (500 equals the half of a full rotation on the wheels per second),
which is sufficient for our use.
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5.1.1 Obstacle-avoidance

The Evolutionary Artificial Neural Network was first put to the test with obstacle-
avoidance in mind. The network was still reading input from four sensors and
acting on both wheels, using a 4-2-2 topology. The artificial environment was
created in the Breve simulator, with both the table and robot as similar to the
physical environment as possible. This was achieved by modelling the robot
and table in Breve, and linear interpolation of the sensors and wheels in the
physical environment. The simulator comes with simulated physics, and this
had to be adjusted such that it behaved as much like the real environment as
possible. Evolution would typically exploit materials that were too smooth by
sliding past them. In our physical environment, the obstacles were quite rough,
such that the friction made the robot stop as soon as it hit them. This was
solved by increasing the friction on our materials in the simulator. Many of the
issues encountered in the physical environment, such as the friction-problem,
did not occur in the simulated environment. Typically, only one out of five sets
of synaptic weights would work as well in the physical environment as they did
in the simulator.

Every individual was evaluated according to

Φ =
100∑
i=1

(α ∗W − β ∗ S)

where i is a measurement at 100 fixed time intervals throughout a trial run. W is
the sum of the speed on both wheels at time i and S is the sum of the input on all
active sensors at time i, in this case four sensors. Each phenotype is rewarded
for forward speed on the motors and punished for backwards movement and
sensor input. Evolution was able to exploit this function by running into the
wall while maintaining a high speed on the wheels in order to get a fairly high
fitness score (and resulting in convergence to an early local optimum). This was
solved by introducing the coefficients α and β and keeping α < β.

After some time, the system evolved an interesting obstacle-avoiding behaviour.
However, when driving front-first towards a wall, the evolved weights would
cause the robot to either turn left, or right, every time. In other words, if the
robot turned left the first time it faced a wall, it would always turn left, making it
explore the environment in a circular path. Being unable to distinguish between
two situations where the sensor (function) input is the same, is known as the
“Perceptual aliasing problem” [28]. The problem scenario is shown in figure 33
on the next page.

5.1.2 Escaping the maze

The purpose of this next test was to see if the robot could solve the task of
escaping a simple maze. In order to encourage this behaviour in evolution, the
simulator was run for longer than usual, such that the individuals that managed
to get out of the maze would benefit more from the time spent in freedom (zero
sensor input).
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Figure 33: Circular path, using four sensors.

The individuals were evaluated according to

Φ =
150∑
i=1

(α ∗W − β ∗ S)

with i set to 150 fixed time intervals for sampling this time around. Otherwise,
the fitness function is the same as the one that was used in the previous test.

Note that all eight sensors were enabled in this test. This had some interesting
effects on the robot. Normally when it came close to a wall, it would turn and
drive away from it, but still following it from a small distance. With all sensors
enabled, it would be punished for staying close to the wall while it turned. This
evolved a robot that would back up before turning, and it would also stay further
away from the walls in general.

The path taken from one of the best solutions is shown in figure 34 on the
following page.

5.2 Perceptual aliasing

The problem of perceptual aliasing as discussed earlier became a problem when
we used a classic feed-forward network. The robot was unable to take different
decisions when presented with the same input at two different occasions during
the same run. In order to solve more complex tasks, our robot should optimally
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Figure 34: Escaping the maze using eight sensors.

be able to produce different behaviour over time when presented with similar
sensory input, depending on the time it receives the input. Our goal was to
explore CTRNNs and to see if they could provide the robot with the ability to
use perceptual aliasing to our advantage, ie. receive sensory input from some
sensor x and behave differently on two separate occasions during a run, when
sensor x has the same input.

In order to quickly check that our old artificial neural network and our CTRNN
are in fact different when it comes to the ability to solve the problem of percep-
tual aliasing, we wrote a small test program. In this program we could insert
weights found during evolution. We would then be able to see if they had prop-
erties that would give different output using the same input at two different
times.

This program feeds the networks with 2500 inputs in total. At iteration 100
and 2500 we present the network with one particular input string. The rest of
the time we present the network with complete random inputs. The range on
the random input is between [-10,10].

For the following tests we are using a 4-4-2 topology without any recurrent
neurons. A classic ANN will be used in the first test.

From table 5 on the next page, we can see that net state is the output from
each neuron. Not surprisingly the classic ANN does not change its output from
iteration 100 to iteration 2500. Since there is no dynamic internal states or
weight changes during the iterations. This behaviour of the ANN is expected.
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Iteration 100 Running known input((0.5, 0.5, 0.5, 0.5))
Net state [0.46211715726000974, 0.46211715726000974,

0.46211715726000974, 0.46211715726000974,
-0.45055625211872402, -0.020344305625434184,
0.056202296874276025, 0.25425225902456011,
0.059505989381954776, 0.22542321054369299]

Iteration 1000 RANDOM input((4.5852628077288067, 5.735389737880805,
-2.8694498683165186, 4.97480286616711)):

Net state [0.99979189805773494, 0.99997913928276294,
-0.9935840339232419, 0.99990451164901095,
-0.66419748077911778, -0.39364684157408286,
0.42122002047065987, 0.87513899077800583,
0.21262160374233, 0.7295461580377498]

Iteration 2500 Running known input((0.5, 0.5, 0.5, 0.5)):
Net state [0.46211715726000974, 0.46211715726000974,

0.46211715726000974, 0.46211715726000974,
-0.45055625211872402, -0.020344305625434184,
0.056202296874276025, 0.25425225902456011,
0.059505989381954776, 0.22542321054369299]

Table 5: Classic ANN presented with input over 2500 iterations

When we do the same to a CTRNN using the evolved time constants and evolved
weights we will be able to see if the state of the network is enough to produce
output which are different. Even when presented with the same input. The
following test uses a CTRNN.

From table 6 on the following page we can see that output states illustrate the
state of each neuron. We would read motor data from the two last numbers in
this list. From iteration 100 to iteration 2500 we can see that there is a change.
This happens even when the network is presented with the same input at both
iteration 100 and iteration 2500. The time constants alone are able to change
the internal state of the network over time, so that it is able to produce different
outputs.

With this knowledge we are sure that, at least in theory the CTRNN has the
capabilities of solving our perceptual aliasing problems. It should be noted that
this is a quite crude test, it is however mathematically provable that CTRNNs
have these capabilities [17].

5.3 Recent experiments

Instead of making a major leap from a simple feed-forward network to a full
CTRNN, it might be more interesting to gradually extend the old network with
new concepts.

With a CTRNN of the same topology and connectivity as the old feed-forward
network, a reasonable first step would be to evolve time constants to see how they
affect the behaviour. The question then becomes, how many features do we need
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Iteration 100 Running known input((1, 1, 1, 1, 0, 0, 0, 0, 0, 0))
Output states [0.19978596665581355, 0.29870836298144993,

0.16686415629477661, 0.48560578598064924,
0.40379589422399653, 0.81667689906878027,
0.84015543998079789, 0.20287252625492952,
0.99349197156286617, 0.48451966878439079]

Iteration 1000 RANDOM input((0.63760519271426119, 3.5434957725672618,
-5.5737544426594976, 2.878331948224325,
0, 0, 0, 0, 0, 0)):

Output states [0.19332512278743358, 0.34608660588111917,
0.11692019316210628, 0.44102604643444293,
0.21778146983377095, 0.92755922729140083,
0.90800049543878703, 0.16623158732042792,
0.97184723637073223, 0.42018039345697511]

Iteration 2500 Running known input((1, 1, 1, 1, 0, 0, 0, 0, 0, 0)):
Output states [0.52861861763771201, 0.45158195100837639,

0.23314033249068122, 0.24240861400238797,
0.3300208638115219, 0.85845015314490203,
0.95286425367397454, 0.079893981788752594,
0.99526391646505319, 0.33749464858110939]

Table 6: CTRNN presented with inputs over 2500 iterations

Evolved weights Recurrence Time constants Biases Self-connections
Yes None None Single None

Table 7: Configuration features

to add before we get enough dynamics for our tasks, is time constants enough
or do we need to go further, and add recurrence? Another interesting question
is whether or not added complexity to the CTRNN will result in more complex
behaviour. Observing how evolution behaves with more complex CTRNNs is
also interesting.

The following tests have the selection mechanism in common. The selection
mechanism used was rank selection. These are the first series of testing, starting
without recurrence. It is important to add that even if we have no recurrence
the CTRNN will have possibility for dynamics which avoids the aliasing problem
encountered using a normal feed forward architecture. The reason for this is
that the CTRNNs that are being produced are using evolved time constants.
Evolution can quickly evolve time constants which can be large enough so that
internal dynamics begin to emerge.

The old feed-forward network had evolved weights but a single firing threshold
(bias) on all the neurons:

Evolved weights: This binary state tells us whether there is synaptic plastic-
ity during evolution. Note that there is no plasticity during the evaluation of
phenotypes, i.e. there is no learning through synaptic plasticity. Without plas-
ticity during evolution, it is possible to look at what what degree of complexity,
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in terms of behaviour, it is possible to produce by exploiting neuron dynamics.

Recurrence: This can take on the values: none, limited or full. None meaning
the network defaults to feed-forward connections only. Full recurrence means
that each neuron connects to all the other neurons, but not to itself unless
that is specified in table 7 on the previous page. The various conductivities are
displayed graphically, showing the details of the limited recurrent compositions.

Time constants: There can be multiple, single or no time constants. Multiple
indicates that each neuron has its own constant whereas single indicates that
every neuron shares the same constant. None means that the time constant
is ineffective (defaults to 1). In our experiments we allowed for multiple time
constants. Evolution was allowed to evolve each individual time constant.

Biases: The biases here are equivalent to the firing thresholds in the old feed-
forward network. This entry can take on the values: single, multiple or none,
where single means that every neuron shares its bias value with all the other
neurons and multiple means that every neuron has its own bias value. None
means that the bias is ineffective (defaults to 0). In our experiments we allowed
for multiple biases. Evolution was allowed to evolve each individual bias.

Self-connections: This indicates whether the neurons have self-connections,
and takes on the values: full, limited or none, where full means that every neuron
connects to itself, limited means that some of the neurons have self-connections
and none means that there isn’t a single neuron with a self-connection.

The idea here is to incrementally extend upon the old network and analyse the
results, until it forms a complete CTRNN. Hopefully, this will provide some
reasoning about the various parameters in the CTRNN model.

Experiments will be presented in the following matter:

1) Experiment showing that CTRNNs solve the old (from the prestudy) maze
quite easily.

2) Experiments in the extended maze.

3) Experiments with slow incrementation in added complexity to the CTRNNs
(more recurrence).

Each experiment will roughly follow this schema:

1) Evolutionary parameters

2) Graphical representation of the network, displaying which nodes were recur-
rent.

3) Figure and description of how the robot moves in the simulator.

4) Figure and description of how the set of weights work on the real robot.

5) Brief per experiment conclusion/explanation.
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5.4 Experiment with the first simple maze

When we first started to evolve CTRNNs, we continued with the same maze
that we used in our earlier work.

Figure 35: Evolved CTRNN in the old maze

Figure 35 illustrates one of the solutions evolution found for us. The solution
angles the robot so it can start on a large circle which moves the robot out of
the maze. Evolution quickly found these circling ad-hoc solutions for the maze.
The angle made the robot able to escape the maze. But it is so fine tuned
to the environment, that even small changes to the environment will make the
angle useless and the robot will be unable to escape the maze. These types of
non-adaptive ad-hoc solutions are not the types of solutions we find interesting.
This led us to extend our maze in an attempt to get results which could be more
interesting.

5.5 Experiment 1: Time constants

In this experiment we increase the complexity from a classic feed-forward neural
network by using CTRNNs. We use the same 4-4-2 typology but we allow for
evolved time-constants.

5.5.1 Evolutionary parameters for experiment 1

The evolutionary parameters for experiment 1 are displayed in table 8 on the
next page.
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Figure 36: CTRNN connectivity for experiment 1

Population size: 60
Generations: 300

Run-time pr phenotype: 130 seconds
Network configuration: 4, 4, 2 topology, see figure 40 on page 65

Elitism: off
Mutation parameters: Gauss-mutation
Gauss parameters: µ(mean) = 0, σ(variance) = 0.09

Selection mechanism: Rank-selection.

Table 8: Evolutionary parameters for experiment 1

Fitness function: Euclidean distance. In addition to this, we added a phenotype
termination mechanism. The method gives each phenotype 20 lives. One of
these lives is lost when the phenotype has more than 2050 sensory input. This
is made so that evolution avoids wall-huggers (which seem to be appearing
frequently, unless we stop them). The anti wall-hugger mechanism was added in
an attempt to make evolution find solutions more suitable for real-life transfers
over to our robots. From experience we noticed that wall-huggers have a high
probability of not working on the real robots due to issues with friction.

In figure 37 on the next page we do not plot the minimum fitness for each
generation. The reason for this is that the minimum fitness is always 0. In each
generation there is at least one individual that triggers the anti-wall hugging
mechanism, leaving it with 0 fitness.

As seen on figure 37 on the following page there is a large difference in maximum
fitness and average fitness. We are lead to believe that this is due to the fact
that not many actually pass the anti-wall hugging mechanism. And this in turn
holds the average fitness down. However, evolution seem to climb steadily and
continue to find better solutions which leads to a steady increase in fitness.
The fitness plot shows an increase in average fitness and an overall increase in
maximum fitness.

62



50 100 150 200 250 300
Generations

20

40

60

80

100
Fitness

Fitness plot

Best fitness

Avg fitness

Figure 37: Fitness plot for experiment 1

5.5.2 Observations in the simulator

Figure 38 illustrates how the robot moves in the simulator. The best solution
in the last generation had a fitness of 65 when running on the cluster. When
it ran on the test machine it had a fitness value of 58. This value is within the
expected +/− 20 range. The difference in fitness on the cluster machines and
test machines will be discussed and analysed later.

Figure 38: Robot running in the simulator for experiment 1

The robot starts off by running straight forward. It then starts to progress
through the early parts of the maze in a circling behaviour. The circling motion
is clockwise. During our experiments that use the anti wall-hugging mechanism,
spinning behaviour was rewarded with a high fitness value.

When the evolved robot is allowed to continue its run past the time limit used
during evolution, it quickly drives straight into the wall and ends there. This
occurs shortly(1-2 seconds) after the time-limit is passed. This lead us to believe
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that the CTRNN does not generalize, but has instead evolved to maximize its
fitness to fit the 130 simulated seconds.

5.5.3 Observations on the real robot

Figure 39 illustrates the behaviour observed when moving the controller onto
the real robots.

Figure 39: Real robot run for experiment 1

As figure 39 illustrates, the behaviour observed in the simulator is not preserved.
The robot instead runs straight into the wall and gets stuck. Both wheels
continue their forward speed. The robot seems blind, and does not react to
sensory input once it gets close to the wall.

5.5.4 Brief discussion

In a faster simulator it might prove useful to allow evolution to run through more
generations. The anti-wall hugging mechanism in essence limits the evolutionary
search space of good fitness-values, however it does not limit the size of the
genotype search space.

Already the CTRNN is showing promising behaviour in terms of solving the
perceptual aliasing problem we experienced using a classic feed-forward ANN.
When the robot sees the first wall, the general movement is changed so it can
move towards the right. It then sees another wall, and instead of another right
turn it is able to turn left. This behaviour is achieved by the robot using
spinning behaviour. This spinning behaviour enables the robot to exit the spin
at different times so it can head in a direction which is appropriate.

The spinning behaviour observed in the simulated experiment did not transfer
well onto the robot, and is heavily affected by the reality problem. Using the
anti-wall hugging mechanism could have affected how adaptive the robot is to
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Population size: 60
Generations: 300

Run-time pr phenotype: 130sec
Network configuration: 4,4,2 topology, see figure 40

Elitism: off
Mutation parameters: Gauss-mutation
Gauss parameters: µ(mean) = 0, σ(variance) = 0.09

Selection mechanism: Rank-selection.

Table 9: Evolutionary parameters for experiment 2

transfer onto the real world. We will have to see what will happen if we disable
it.

5.6 Experiment 2: Time constants, no self-connection, no.
2

The previous experiment was made with a rather strict fitness function, which
kills phenotypes when they spend too much time too close to the wall, which ends
up with either wall sliding or wall-hugging behaviour. However, the result did
not prove functioning on the real robot. In order to see what kind of behaviour
we would get without the strict phenotype we do the same evolutionary run
except that we do not enable the anti wall-hugging mechanism. We continue
with the same topology and connectivity as in experiment 1.

Figure 40: CTRNN connectivity for experiment 2

5.6.1 Evolutionary parameters for experiment 2

The evolutionary parameters used in experiment 2 is displayed in table 9.

Fitness function: Euclidean distance.

Since we removed the anti-wall hugging mechanism it is now useful to plot the
minimal fitness per generation, see table 41 on the following page. Evolution
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Figure 41: Fitness plot for experiment 2

seems to converge much faster without the anti-wall hugging mechanism, which
leads us to believe that we have converged onto a local minimum. Convergence
onto a local minimum might be easier as we allow for individuals that slide
through the maze as well as those that are able to travel through the maze
without hugging the wall often. Even the maximum fitness seems to spike much
less. It is also interesting that the overall fitness is so much higher than without
the anti wall hugging mechanism. It is likely that evolution finds it easier to
discover individuals with high fitness when it is not restricted to solutions that
have to avoid walls to the same extent.

5.6.2 Observations in the simulator

Figure 42 on the next page illustrates how the robot moves in the simulator.
The gray line indicates the 130 second simulated time run. While the red line
indicates how the robot behaves when it is allowed to continue past the time-
limit used during evolution.

The gray lined run is good, and it gets very high fitness, the resulting fitness
is 467 (compared to experiment 1 which got a fitness of 58). From the illustra-
tions it can seem that this is unusual. However, the run from the end point of
experiment 1 to the end point in experiment 2 is slightly longer than what the
illustrations may imply, in the simulator. At first glance this is a very good solu-
tion found by evolution. It has many desirable behavior characteristics. One of
these is that it does not touch the wall that often. However, this solution would
not pass our anti-wall hugging mechanism. When running in the simulator this
is shown by the way the robot handles the section with the narrow gap mid-run.
In order to get through the gap the robot actually hugs the walls closely as it
spins around.

Interestingly, when the robot is allowed to continue its run after the time-limit
used during evolution, it goes into a dead-lock in the outer parts of the maze.
This is illustrated by the red line. Evolution seems to have found a solution

66



Figure 42: Movement observed in the simulator for experiment 2

that is tailored for the 130 seconds run time. This in turn leads to the robot
not being adaptive.

At this point it was hard to see if the robot was actually responding to input or
if it was the internal state changes alone that was responsible for the behaviour.
In order to test this we placed the robot in the middle of the table, without any
walls nearby. We then observed the robot doing only one large circle instead of
the turn which makes the robot head in the right direction. This leads us to
conclude that this CTRNN is indeed in need of sensory input in order to make
decisions.

5.6.3 Observations on the real robot

When the robot controller is placed on the real robot we observe quite different
behaviour from that which we observed in the simulator as illustrated on 43 on
the following page.

The robot starts off driving straight ahead. It then starts to turn right. This
behaviour is also seen in the simulator. However, the robot does touch the wall
in the real world and then starts in a circular movement pattern. This, in turn
leads to the robot getting stuck on the right side of the first wall.

5.6.4 Brief discussion

In the simulator the robot is yet again able to spin its way out, avoiding the
aliasing problems we experienced using classic feed-forward ANNs. The con-
troller is able to do both left and right turns by ending a spinning behaviour
at the correct time. This type of behaviour is frequently seen in our CTRNN
experiments.
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Figure 43: Movement observed on the real robot for experiment 2

As a simulated result this is a fairly good one. Sadly, this is not the case when
the controller is placed onto the robot in the real world.

It is hard to understand why the controller fails. At this point we believe there
is a series of reasons for this solution not to work. First of all the simulator
updates the internal state of the CTRNN much more often and at a slightly
more predictable way. The real life robot can suddenly suffer from 0.2 second
Bluetooth lag, which can cause noise which in turn leads to instability.

In this experiment we also tested the CTRNN to see if the sensory input was
needed to produce behavior. Since the CTRNN was in need of sensory input
we are lead to think that the difference from our simulator to the real world is
too big for it to produce the same behaviors.

5.7 Experiment 3: Time constants and one self-connection

As an extension from experiment 1 and experiment 2, we are adding recurrence
to one single node. This would make us able to see if the added complexity can
give us novel behaviour, even though it may only work in the simulator. In this
experiment we increase the complexity from a CTRNN without any recurrence
to a CTRNN with one self-connecting node. We will continue to use the same
4-4-2 topology. In addition to this we will allow evolution to run through 150
additional generations.

5.7.1 Evolutionary parameters for experiment 3

The evolutionary parameters used in experiment 3 are displayed in table 10 on
the next page.
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Figure 44: CTRNN connectivity for experiment 3

Population size: 60
Generations: 450

Run-time pr phenotype: 130sec
Network configuration: 4,4,2 topology, see figure 44

Elitism: off
Mutation parameters: Gauss-mutation
Gauss parameters: µ(mean) = 0, σ(variance) = 0.09

Selection mechanism: Rank-selection.

Table 10: Evolutionary parameters for experiment 3

Fitness function: Euclidean distance and the anti-wall hugging mechanism. Ex-
periment 2 resulted in some interesting behaviour. However, most of the time
we get results that are exploiting friction, and keep sliding on the walls. These
results may look promising in the simulator and result in a high fitness value,
but it is unlikely that they work on the real robots. This is the reason why we
want to continue to experiment using the anti-wall hugging mechanism.

5.7.2 Observations in the simulator

We were unable to produce any good phenotypes using only one self-connection
in the middle layer. All attempts converged on an average fitness between 7
and 10 with the highest fitness being around 10. We are also uncertain why
our experiments using this configuration have failed. One possibility is that
CTRNNs using only one self-connection has a very difficult search space. It
is also possible that the neurons on one side of the network saturate, giving a
higher chance of spinning behaviour.

5.7.3 Brief discussion

Since we were unable to produce any interesting controllers using only one
self-connection, we decided to try to expand the CTRNN with one more self-
connection.
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Population size: 60
Generations: 300

Run-time pr phenotype: 130sec
Network configuration: 4,4,2 topology, see figure 45

Elitism: off
Mutation parameters: Gauss-mutation
Gauss parameters: µ(mean) = 0, σ(variance) = 0.09

Selection mechanism: Rank-selection.

Table 11: Evolutionary parameters for experiment 4

5.8 Experiment 4: Time constants and two recurrent nodes

This experiment will extend the complexity of the CTRNN using two recurrent
nodes.

Figure 45: CTRNN connectivity for experiment 4

5.8.1 Evolutionary parameters

The parameters used are shown in table 11.

Fitness function: Euclidean distance. In addition we make use of the phenotype
termination algorithm in order to penalize wall-hugger behavior.

As shown in figure 46 on the next page, a steep climb can be seen very early
in the evolutionary run, quickly followed by a slow period of minor increase
in average fitness. Evolution seems to climb abruptly towards the end, then
followed by a convergence in average fitness.

5.8.2 Observations in simulator

The solution seems at first glance to be a rather robust one, as long as the
rhythmic behavior is preserved when the robot is about to hit obstacles. A test
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Figure 46: Fitness plot for experiment 4

needs to be done here, in order to see if the CTRNN hits a steady-state, which
is often what will happen over long periods of time.

Figure 47: Robot movement in the simulator for experiment 4

Figure 47 shows how a rhythmic behavior between a stationary spin and move-
ment makes the robot travel toward the exit. Rhythmic movement like this is
typical for CTRNNs. An interesting question about this type of behavior is
to see if the behavior is a result of the combination of sensory input and the
internal dynamics. Rather than the CTRNNs internal dynamics alone.

We allowed the simulator to keep running past the time limit in order to observe
where the robot would end up. The robot stopped progressing through the maze
approximately halfway through. Circling behaviour back and forth was observed
when the robot stopped progressing. Evolution seems to have found a solution
that progresses through the maze in the given time-limit used during phenotype
fitness evaluation, and this solution does not generalize situations well.
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5.8.3 Observations on the real robot

As seen on figure 48 the same result was not observed when transferring the
evolved CTRNN to the real robots. Instead a small forward drive quickly fol-
lowed by continuous circling at the same location.

Figure 48: Robot movement on the real robot for experiment 4

5.8.4 Brief discussion

It is clear that our current approaches give decent results in the simulator.
However, they do not work on the real robots.

5.9 Future experiments - exploring

Using the simulator without particular modifications or tricks does not seem
to work in our experiments. Other research seems to get better results in the
real world by adding a lot of noise into the system [27]. As illustrated by the
above experiments, noise would have to be added throughout the system, and
not just to the sensory data. Varying time limits, noisy sensors and perhaps
even noisy time on updates of the internal states could be useful. Behaviour in
experiments with added noise would be interesting to see.

Another problem is that the simulator updates the CTRNN a lot more often
than what the real world robot is able to. Slowing down the amount of updates
to further match the real-world would also be interesting to experiment with.

In addition to this, our goal is to create robots that are able to adapt to the real
world. This means that we really want to behavioral diversity. Implementing
awards for behavioral diversity into the fitness function is also something we
want to experiment with [34].

As a final attempt we did try to evolve CTRNNs with some noise added to the
sensors and with reduced update rate on the CTRNN. However, there was not
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enough time to produce any good results, considering the amount of time evolu-
tion and analysis takes. It could be interesting to see some further experiments
with the solutions discussed above.

5.10 Analysis and future work

In our observations we found that the CTRNNs internal state over time is the
hardest part to fit onto a real world robot. The internal state that is evolved on
the cluster hardware changes in the simulator when run on different hardware.
This in turn makes the real life robot behave differently, although similarities
can be found. Another interesting but logical consequence is changes in the
code which makes updates slower or faster. This affects how often the internal
state is being changed and can make the same pair of weights generate different
behaviors. This occurs because the behavior is determined by the internal state
over time which is dependent of previous states. A delay in update rate will in
time result in different behaviour even when the network parameters stay the
same.

We unknowingly encountered a similar problem in our early experiments. This
led us to remove the threaded code, which minimized the difference from the
single-core CPU on the cluster to our dual-core test machines. However, in
experiments using the “anti wall-hug” mechanism, we observed that individuals
which survive on the cluster, can trigger the “anti wall-hug” algorithm on our
test machines. However, the fitness values found on the cluster are very well
matched against those on the test machines. Then we found that the difference
is in general around +/− 20. Individuals that are found to be the best at the
end of each evolutionary run all performed according to their fitness. This led
us to believe that the general behavior of the phenotype is preserved when they
are moved from the cluster onto the test machines.

When we move the phenotype CTRNN from the test machines onto the robots
we do not preserve this behavior. Our CTRNNs seems to fail in most cases.
Based on the above reasoning we believe this is caused by how often we are
able to update the internal state during evolution and on our test machines
compared to how often this is done on the robots.

In an attempt to avoid wall-hugging behaviour, we experimented with a phe-
notype killer mechanism. The mechanism succeeds in eliminating wall hugging
phenotypes. However, due to the nature of this mechanism, evolution seems
to create circling behavior to a greater degree. The phenotypes also seemed
reluctant to generalize and to progress further when allowed to run on extended
time. It seems that evolution tend to favour solutions that are circling when we
use this mechanism. This could happen because the circling behaviour makes
sure that no sensor are in touch with the wall for many ticks. In addition, we
suspect that circling behaviour can make the robot more careful on its direc-
tion. In general, our observations using the anti wall-hugging mechanism tends
to evolve robots with a circling behaviour.
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5.11 Debugging

Due to the complexity of these systems and the way they interact, it can be
difficult to find the cause of undesired behavior. The user has to evaluate mul-
tiple steps in the evolutionary process as well as the end result - the dynamical
neural network. With a series of interconnected components that have been
evolved, the flow of data can be difficult to follow, even with the aid of good
analytical tools. The data flow in the system is subject to several interpolations
which are necessary for the system to work. These interpolations can lead to
some loss in precision, though it is questionable whether a high level of accuracy
is necessary for analysis of emergent behaviour in dynamical networks. With
sufficient attention to detail, it is possible to trace the logic throughout the pro-
cess to some extent. Dynamical systems theory allows us to look at a general
behavioural space, and how neurons interact in a theoretical sense. Analysis
of arbitrary-size networks doesn’t provide much useful information in terms of
solving the problems here, however.

Simple mistakes in the system tend to affect the end result, without leaving any
obvious clues along the way. A possible approach to the problem would be to
change the encoding of our neural network. Most of the time, the indication
that something was broken, appeared as circling behaviour in the final pheno-
type. This could be caused by a flawed selection mechanism or mutation error,
logical errors in the neural network code, low battery power etc. Our dynamical
neural networks had two output neurons, specifying the motor speeds on the
left and right motors, respectively. Since it was very likely that the two output
neurons ended up with different values, any error would be indicated by the
robot running in circles, irregardless of the component causing it. A better so-
lution, perhaps, could be to decode the output neurons as general heading and
speed indicators. This was pointed out by Randall D. Beer, along with some
mistakes in the mutation code and the fitness functions, which solved some of
the major problems.

Generally the system is extremely sensitive to the number ranges provided by
the genetic algorithm (bias, weights, time constants) and interpolations of these
passed to the neural network. Also, the data provided to the robot via the
interpolated output from the neural network and correct interpolation of sensory
input is crucial for evolving any useful behaviour. Without the proper ranges,
the system will not function at all.

Late in our work we were told that evolving time biases for input and output
nodes might not be a good idea. This because evolved biases on the output and
input nodes could cause problems with the sensory data. We did not have time
to implement this into our system as that would require extensive recoding of
the evolutionary algorithm. However, we will consider it in our plans for future
work.
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6 Conclusion

In this report we have looked at some cases of evolutionary robotics in theory and
practice. We have looked at some of the limitations of the direct programming
approach, and whether we can benefit from continuous-time recurrent neural
networks.

In the prestudy, we looked at existing approaches to adaptive behaviour in
robotics. Among the most interesting for our context, was the continuous-time
recurrent neural network and reinforcement learning. The intricate dynamics
found in the continuous-time recurrent neural networks in combination with
evolution, make them very appealing for robotics. In other words we are looking
for greater diversity in our phenotype space than what the old feed-forward
network could provide.

A lot of applications until now have focused on designing controllers for self-
organizing systems in order to fulfill a particular function. It can seem that the
more classical approaches to achieving adaptivity are stalled by the complexity
of the problems that they are trying to solve. The best adaptive systems we
can think of, are found in biological systems. We would like to explore the
possibilities of evolution further, and get some insight into this complexity. Even
though the designer is limited to the specification of a fitness function in terms
of steering the search, evolution gives useful results. By selecting individuals
that perform well from an overall perspective, and being burdened only with
the specification of a simple fitness function, the designer is spared from much
of the complexity of the design process. It is important to mention that the
selection of a well-defined fitness function is crucial, and not always an easy
task. However, this task is often simpler than completely specifying a dynamical
environment or solution. In addition to this, evolution provides the designer
with creative solutions, as evolution often comes up with unexpected results.
Evolution is a motivating approach because you can observe its impressive proof-
of-concept everywhere in nature, such as the emergence of advanced sensory
organs. Typical examples would involve eyes and ears, and in particular the
human brain. We have also observed that biological systems are robust and
resilient, and most importantly, adaptive.

This approach to evolving robot controllers has given several good solutions.
However, the final controller is designed for a specific task, and making it per-
form other tasks would require further evolution. For other tasks, we would
most likely have to evolve separate neural networks, as it can be difficult to
combine multiple functions into one. However, that leads us back to the action
selection problem, which in turn would probably require yet another neural net-
work. As the complexity grows, we run the risk of operating with a series of
black boxes, and the assumption that evolution will solve all our problems. We
have experienced some of the frustration of being unable to see a connection
between undesired behaviour and programming errors, and we have marvelled
at the clever exploits discovered by Darwinian evolution. The creative solu-
tions that emerge from evolution makes this approach viable when there is no
obvious solution using direct programming. The alternatives to the standard
engineering approach might be better or more efficient in some sense, and we
can certainly learn something from them.
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We have tried to demonstrate that there is a number of ways for evolution to
be used in robotics and in particular how they affect the neural networks they
are allowed to work on. What we have not mentioned is the way evolution can
work on hardware instead of existing solely in software.

Artificial evolution came up with solutions that matched the environment quite
well, and in unpredictable ways. By unpredictable, we mean in ways that we
normally wouldn’t think of. It was challenging to circumvent the many exploita-
tions that evolution made within the simulated environment, which wouldn’t
work in the real environment. We looked at two basic experiments that used an
evolutionary artificial neural network in order to produce adaptive behaviour.

We have also made sure that our evolutionary algorithm and neural network
is allowed to not only work in simulation but also on the real robots. We feel
that this is important, since simulations tend to make assumptions about a
number of things, and to make the task more trivial than it really is. Despite
the degree of realism in the simulated environment, there are things that you
cannot predict.

We solved many technicalities during early development which was related to
the E-puck robot. In addition to creating our own evolutionary algorithm and
neural network we had to build the simulation environment from scratch using
the Breve simulator as a starting point.

In the introduction, one of the things we said that we wanted to look at was
whether dynamical neural networks had any benefits compared to our much sim-
pler feed-forward networks. Based on our experiments we can conclude that the
use of dynamical neural networks provides us with a much greater diversity in
the phenotype space. The dynamics along with the feedback loops (recurrence)
provide a form of memory which can enable e.g. rhythmic behaviour, bursting
(which is similar to an epileptic seizure where all the neurons fire simultane-
ously) and some limited prediction. However, the possibility of bursting is not
a desired effect, it just makes the structure more biologically plausible. In the
simulated environment, we have obtained better and more efficient solutions,
though the evolution time has increased significantly along with the behaviour
space.

Concerning our first goal, which was to tackle the perceptual aliasing problem,
we are somewhat satisfied. In section 5.2 we showed that our CTRNN will
respond differently to the same input given at different times. However, with
this added diversity, the behavior became difficult to control and led to unex-
pected solutions. We were looking for a phenotype that would result in efficient
solutions, and not anything like the circular wall-following behavior that we
experienced with the old feed-forward network. The new solutions are much
better in terms of exploration, but they spin a lot, which ideally should not be
necessary for solving our tasks. It is important to keep in mind that the robot
can not really “see” in the traditional sense; imagine yourself walking blindfolded
through a maze, feeling your way with your hands. The only advantage to spin-
ning, is that it provides a more precise description of the environment. There
is a gap between each sensor, and spinning can help uncover details, such as
corners that might otherwise go unnoticed.

Our second goal was to handle the real world problem. With the simple feed-
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forward networks, the evolved phenotypes from the simulator worked on the
robots without any difficulty. We would usually run a few evolutionary genera-
tions in the real environment after the initial evolution in order to adapt to the
lighting conditions and noise in the environment to achieve a nearly identical
behaviour. However, as we concluded in the section concerning CTRNNs, with
dynamical neural networks this became a very difficult task. Because of insta-
bility (bifurcations) in the dynamical system, small changes in the parameter
space led to completely unpredictable behaviour. We were unable to solve the
real world problem when using our most recent networks and in this sense, using
CTRNNs was a step backwards.

In essence, the dynamics provided by CTRNNs felt very rewarding in our sim-
ulated environment, but it also made it very difficult to apply our solutions to
real world problems. Using CTRNNs might be a step in the right direction if
you have sufficient time and analytical skills.

6.1 Future work

With the evolved CTRNNs, we were able to produce phenotypes that solved the
maze faster and more efficiently than our feed-forward networks, but only in the
simulated environment. We feel that the dynamics of CTRNNs eliminated, to
some extent, the perceptual aliasing problem [28]. However, our understanding
and evidence of why it works is not complete. Given more time, it would
be interesting to create interactive tools to investigate neuron activity during
a run. It would also be interesting to be able to take a few steps back in
time and examine how previous states would behave differently with alternative
parameters.

It would also be interesting to make more experiments with random sensory
noise on the simulator in order to see if this would evolve more robust solutions.
With sensory noise, one would think that unstable solutions would be filtered
out along the evolutionary generations, though we haven’t been able to eliminate
this problem.

As we mentioned in section 5.11, it was proposed by Professor Randall D. Beer
that it could be beneficial to give the output neurons of the network different
encodings. Rather than specifying the motor speeds, one neuron could define a
general heading and the other could specify motor speeds. It is very likely that
this would prevent some of the spinning behaviour, and perhaps result in more
efficient solutions. It wouldn’t, however, solve the real world problem.
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7 Appendix A: Getting started with the E-puck

This guide explains how to get the E-puck robot up and running with Python,
or any other language, and Bluetooth. Some of the information here is specific
to Mac OS X, but it should be easy to adapt to other operating systems.

(1) Flash the E-puck:

The E-puck must be flashed with software that allows it to read and parse in-
structions received over bluetooth. For this purpose, we use a program called
BTcom, which is available at the official E-puck website. It is located in “Down-
loads”, “Software”, “Library”, “e-puck library compiled”. It comes with instruc-
tions that explain how to flash the E-puck. You only have to do this once.

(1.1) Download the e-puck project via svn from “https://gna.org/svn/?group=e-
puck”

(1.2) Browse into the directory ’e-puck/program/BTcom’

(1.3) Flash your e-puck with BTcom_default.hex using Tiny PIC bootloader

(2) Connect and pair with the bluetooth device:

Click the bluetooth icon in the top right corner of your screen and click “Open
Bluetooth Preferences”. Make sure that “on” is checked. Click “Set Up New
Device”. Make sure that your E-puck is turned on, select “any device” and
continue with the wizard. In the list, you should find “e-puck_XXXX”. Select
it and continue. You will be asked to enter a passkey, which is the same as your
pincode. Voila! Bob’s your uncle and you are paired with the E-puck.

(3) Connect to the E-puck from Python:

First, we need to locate the bluetooth device. Open up a new terminal window
and write:

$ ls /dev | grep e-puck

Typical output would be something like:

cu.e-puck_XXXX-COM1-1
tty.e-puck_XXXX-COM1-1

Now that we’ve found the device, we can connect to it using pyserial. Note that
you have to replace XXXX with the pincode of your E-puck.

import serial

com = serial.Serial(
port = "/dev/tty.e-puck_XXXX-COM1-1",
bytesize = 8,
baudrate = 115200,
timeout = 1

)

com.write("\n")
out = com.readline()
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com.write("t,1\n") # Play sound 1
out = com.readline()

com.close()

This code has no error-checking, and is the minimum of what you need in
order to communicate with the E-puck. For some reason, the E-puck returns
“Command unknown” in response to the first instruction you send to it. To
remedy this, we can simply send com.write(“\n”) prior to our set of instructions.
Note that com.readline() will empty the buffer on the robot, and should be used
after each instruction you send to it. For a basic, error-handling skeleton, we
suggest the following:

import serial
import sys

def connect():
"Connect to E-puck through serial-port."
try:

com = serial.Serial(
port = "/dev/tty.epuck_XXXX-COM1-1",
bytesize = 8,
baudrate = 115200,
timeout = 1

)
except serial.serialutil.SerialException:

print "*** E-puck appears to be offline."
sys.exit(1)

print "*** Connected to E-puck"
return com

def disconnect(com):
"Disconnect from E-puck."
com.close()
print "*** Disconnected from E-puck"

def test(com):
"Your code goes here."
try:

com.write("\n")
out = com.readline()
com.write("t,1\n")
out = com.readline()

except serial.serialutil.SerialException:
print "*** Port is closed by operating system"
disconnect(com)
sys.exit(1)

def main():
e_puck = connect()
test(e_puck)
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disconnect(e_puck)

if __name__ == "__main__":
main()

By now you you are probably wondering what kind of instructions you can send
to the E-puck. Here’s the complete list:

"A" Accelerometer
"B,#" Body led 0=off 1=on 2=inverse
"C" Selector position
"D,#,#" Set motor speed left,right
"E" Get motor speed left,right
"F,#" Front led 0=off 1=on 2=inverse
"G" IR receiver
"H" Help
"I" Get camera parameter
"J,#,#,#,#" Set camera parameter mode,

width,height,zoom(1,4 or 8)
"K" Calibrate proximity sensors
"L,#,#" Led number,0=off 1=on 2=inverse
"N" Proximity
"O" Light sensors
"P,#,#" Set motor position left,right
"Q" Get motor position left,right
"R" Reset e-puck
"S" Stop e-puck and turn off leds
"T,#" Play sound 1-5 else stop sound
"U" Get microphone amplitude
"V" Version of SerCom

7.1 Notes

We have used the Python programming language in the above example, but it
is important to note that any language that can communicate through a serial
COM-port is able to communicate with the E-puck.
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7.2 Appendix B: Code

This section briefly describes the code we used in our experiments.

Project homepage:

http://code.google.com/p/adaptive-robotics/

Both the source code for the threaded and non-threaded version is available for
download via SVN. Code controlling the E-puck is also in our repository.

SVN directories:

svn
branches

ctrnn
simulator_cluster -
simulator_cluster2 - Not-used
simulator_cluster_no_thread - Non threaded version
simulator_solo - E-puck controller code, not simulator

docs - Master thesis documentation
images
prestudy

tags - Not used
trunk - Not used

textures
weights_old

wiki - Not used

ctrnn.py

- Neural network library code.

ea.py

- Evolutionary Algorithm library code.

e_puck_sim.py

- Simulator file written for breve.

e_puck_vehicle.py

- E-puck vehicle for the Breve simulator. Based on the Braitenberg vehicle.

ga_master.py

- Evolutionary parameters

draw_ann.py

- Tool for displaying the neural networks(only works with feed-forward net-
works).

controller.py

- Startup code for the e-puck robots. EA parameters changeable in the code.
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8 Appendix C: Notes on how to be able to evolve
CTRNNs

This guide was created after we experienced problems related to evolving CTRNNs.
This is a short recap of what we struggled with and what we belive is important
to keep in mind when evolving CTRNNs.

(1) Correct values into the input nodes.

(2) No recurrence in input or output nodes. This is to avoid “seeing things that
aren’t there”. The network’s input and output nodes quickly begin to behave
unpredictably when using recurrence.

(3) When writing your own CTRNN library, testing if the code is working
correctly is hard. In particular when testing against complex network structures.
We found that it was very useful to check the CTRNN code by testing it against
other people’s working code. In our case we used Proffesor Randall D. Beer’s
code as a benchmark.
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