
June 2009
Dag Svanæs, IDI
Erlend Stav, Sintef

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Web Service Clients on Mobile Android
Devices
A Study on Architectural Alternatives and Client Performance

Johannes Knutsen

Problem Description
In the ongoing EU IST project MPOWER, an open platform to simplify and speed up the task of
developing and deploying services for persons with cognitive disabilities and elderly have been
developed. This master assignment will investigate architectural choices and realization
mechanisms for developing web service based applications for the Android platform, with the
MPOWER services as the main case. By developing one or more proof-of-concept application
using MPOWER services from the handheld device, it will be evaluated how different architectures
affects the properties of the client and whether direct invocation of SOAP based Web services from
Android is a viable approach.

MPOWER - Middleware platform for empowering cognitive disabled and elderly - is an ongoing IST
research project. MPOWER has defined and implemented an open platform to simplify and speed
up the task of developing and deploying services for persons with cognitive disabilities and elderly.
The services of the platform cover two focus areas:
- A collaborative environment for distributed and shared care, providing requirements for
information security, information models, context awareness, usability and interoperability.
- A SMART HOUSE environment, providing requirements for information security, information
models and usability.
The MPOWER middleware services been released for free and are available in open source from:
http://sourceforge.net/projects/free-mpower/.

Assignment given: 19. January 2009
Supervisor: Dag Svanæs, IDI

Abstract

This paper studies Android, a new open source software stack initiated by
Google, and the possibilities of developing a mobile client for MPower, a
service oriented architecture platform based upon SOAP messaging.

The study focuses on the architectural alternatives, their impacts on
the mobile client application, Android’s performance on SOAP messaging,
and how Web services’ design can be optimized to give well performing
Android clients.

The results from this study shows how different architectures directly
impacts properties, like off-line usage support, of a SOAP client application
on Android. Additionally, the performance measurements shows that
building Android client applications which directly invokes Web services
with SOAP messaging is possible to make effective enough for typical
usage situations. Further, the results indicates how Web services should be
designed with care to minimize the required data transfer and processing
on the device. Such careful design can be achieved by using coordinating
Web services which hides complexity and provides an interface designed
for the specific client applications.

i

Preface

This report is a documentation of the work carried out throughout
the spring of 2009 by Johannes Knutsen in TDT4900, Computer and
Information Science, Master Thesis. The work is performed in the tenth,
and last, semester of the Master of Technology education in computer
science in The Norwegian University of Technology and Science, NTNU.

The project was defined by co-supervisor Erlend Stav at Sintef, and
is supervised by Dag Svanæs at the Department of Computer and
Information Science. I would like to thank both supervisors for their
feedback, guidance, encouragements, and an interesting topic to work on
during my master.

Trondheim, June 2009

Johannes Knutsen

iii

Glossary

Dalvik The Android virtual machine. One Dalvik instance runs for each
running Android application.

EDGE (Enhanced Data rates for GSM Evolution) Data transmission rate
extension to GSM networks.

GPRS (General Packet Radio Service) Packet switch mobile service of the
2G GSM service.

HSPA (High Speed Packet Access) Higher speed transmission protocol,
typically deployed on UMTS mobile services.

IDE Integrated Development Environment.

Mobile client In the context of this thesis, a mobile client is a application
running on a mobile platform like Android, which accesses SOAP
based Web services.

SOA Service oriented architecture. An architecture where functionality is
divided into loosely coupled communicating services.

SOAP A protocol specification which describes the representation of
messages in an XML format and how they can be transported over
application protocols like HTTP or SMTP.

Third party code library Ready to use code which solves a specific task
developed by a party external to the official platform API. For
example a third party XML library, helps developers to parse XML
data.

UMTS (Universal Mobile Telecommunications System) Third generation
mobile services (3G).

XML Extensible Markup Language, is a structured, hierarchical, text-
based data format widely used as a data exchange format[17].

v

Contents

1 Introduction 1
1.1 Research questions . 2
1.2 Research method . 2
1.3 Research design . 2
1.4 Outline . 4

2 Prestudy 5
2.1 Android platform . 6

2.1.1 Android Software development kit (SDK) 6
2.1.2 Why Android? . 6
2.1.3 Android availability 7
2.1.4 Third party code library support 7

2.2 Service Oriented Architecture introduction 10
2.3 Web service messaging . 11

2.3.1 Plain HTTP Post . 11
2.3.2 JSON and REST . 11
2.3.3 SOAP messaging protocol 12
2.3.4 Conclusion . 12

2.4 Mobile computing characteristics 13
2.5 Time limits on user feedback 14
2.6 Android Web services support 15

2.6.1 Manually create SOAP messages 15
2.6.2 Third party libraries for SOAP support 15

2.7 The MPower platform . 16
2.7.1 MPOWER benefits of mobile clients 16

2.8 RPC versus document style Web services 17
2.9 Existing research . 18

3 Architectural alternatives and their impacts 19
3.1 Architectural alternatives for mobile Web service access . . . 20

3.1.1 HTML frontend . 20
3.1.2 Direct Web service invocation 20
3.1.3 Web service gateway 20

vii

CONTENTS

3.2 Quality attributes and attribute tactics 22
3.2.1 Availability . 22
3.2.2 Modifiability . 23
3.2.3 Performance . 24
3.2.4 Security . 25
3.2.5 Testability . 25
3.2.6 Usability . 26

3.3 Architecture development impacts 28
3.4 Conclusion . 29

3.4.1 HTML frontend . 29
3.4.2 Direct Web service invocation 30
3.4.3 Web service gateway 30

4 Basic Web service invocation on Android 31
4.1 Basic invocation . 32

4.1.1 Research action, justification and goals 32
4.1.2 Results . 32
4.1.3 Evaluation . 33

4.2 Code generation support . 34
4.3 Invocation performance . 35

4.3.1 Research action, justification and goals 35
4.3.2 Testing environment 35
4.3.3 Test measurements . 35
4.3.4 Results . 36
4.3.5 Evaluation . 40

5 MPower proof of concept Android client 41
5.1 MPower proof of concept client application 42

5.1.1 Research action, justification and goals 42
5.1.2 Test environment . 42
5.1.3 Benchmark description 42
5.1.4 Results . 43
5.1.5 Evaluation . 46

5.2 Proof of concept invocation performance 48
5.2.1 Research action, justification and goals 48
5.2.2 Test environment . 48
5.2.3 Benchmark description 48
5.2.4 Results . 49
5.2.5 Evaluation . 53

5.3 Android compared to native Java performance 55
5.3.1 Research action, justification and goals 55
5.3.2 Test environment . 55
5.3.3 Benchmark operations 55
5.3.4 Results . 55

viii

CONTENTS

5.3.5 Evaluation . 56
5.4 General development experiences 58

5.4.1 Android development 58
5.4.2 KSoap2 and Android 58
5.4.3 Best practices in mobile SOAP clients 58

6 Conclusion 61
6.1 Contributions . 62
6.2 Conclusion . 62

6.2.1 Which architectural alternatives exists for using
SOAP based Web services on Android, and how do
the architectural choice affect the client application? . 63

6.2.2 Is it possible to directly invoke SOAP Web services on
Android, and will such invocation be effective enough? 63

6.2.3 How can the design of SOAP Web services be
optimized for use on mobile devices running Android? 64

6.3 Further work . 64

Bibliography 65

Appendices 67

A Android API vs Java API A-1
A.1 Supported Java 2 Platform Standard Edition 5.0 API packages A-1
A.2 Unsupported Java 2 Platform Standard Edition 5.0 API

packages . A-2
A.3 Included third party libraries A-3

B Android SDK tools B-5

C Proof of concept application screenshots C-7

ix

List of Figures

2.1 Android system architecture as found in [13] 6
2.2 Nokia N800 running NITdroid (Android port) 8
2.3 Service Oriented Architecture request overview as found in

[7, p. 117] . 10

3.1 HTML frontend illustrated . 21
3.2 Direct Web service invocation illustrated 21
3.3 Web service gateway illustrated 21

4.1 Sequence diagram which shows what happens in a KSoap2
Web service invocation. 37

4.2 Total request duration for a simple SOAP request. Requests
lasting longer than 4000 ms is not shown on the plot. 38

4.3 Measure points duration results. Measurements lasting
longer than 250 ms is not shown on the plot. 39

5.1 Benchmarks running on Nokia N800 with WLAN connection 43
5.2 Benchmarks running on Android Emulator with LAN

connection . 44
5.3 Benchmarks running on Android Emulator with UMTS

simulation . 44
5.4 Benchmarks running on Android Emulator with EDGE

simulation . 45
5.5 Benchmarks running on Android Emulator with GPRS

simulation . 45
5.6 Benchmarks running on Nokia N800 with WLAN connection 51
5.7 Benchmarks running on Android Emulator with LAN

connection . 51
5.8 Benchmarks running on Android Emulator with UMTS

simulation . 52
5.9 Benchmarks running on Android Emulator with EDGE

simulation . 52
5.10 Benchmarks running on Android Emulator with GPRS

simulation . 53

xi

LIST OF FIGURES

5.11 Benchmarks running on native Java. 56
5.12 Performance benchmarks running on native Java. 57

C.1 Authentication screen. C-8
C.2 Progress dialog while loading messages. C-8
C.3 List of messages retrieved from MPower. Available when

authenticated as a patient. C-9
C.4 Confirmation dialog when deleting a message. C-9
C.5 Screen for posting messages. Available when authenticated

as a doctor. C-10

xii

List of Tables

2.1 Nokia N800 compared with HTC Dream 8

4.1 Total request duration measurement percentiles.1 38

5.1 Android’s message retrieval performance on large responses. 50

1Percentile is here defined as the request duration below which a certain percent of
measures fall. For example do 60% of the measurements last 98ms or less.

xiii

Chapter 1

Introduction

Smart mobile devices have become increasingly popular in the recent
years. Together with the popularity, a range of system platforms and
application programming environments have been created for the phones.
This includes Symbian, PalmOs, J2ME, Blackberry, Windows Mobile and
iPhone.

In this context, Google together with the Open Handset Alliance1 recently
released an open source mobile software stack named Android. Android
supports a subset of the Java API, uses Java as it’s programming language,
has broad customization support, has built-in graphical user interface
components and comes with a set of core applications accessible by third-
party developers. Google’s heavy effort in Android has resulted in a
range of mobile device manufacturers to announce their support and
commitment to the Open Handset Alliance. This includes Motorola, HTC,
Samsung, LG, Sony Ericsson and many more.

A range of service platforms have recently been built based on a
Service Oriented Architecture (SOA) with the SOAP messaging protocol.
By creating mobile clients for these application platforms, an increased
support for in-field usage of the systems is possible.

MPOWER[12] is one such service platform which aims to support
rapid development and deployment of services for cognitive disabled and
elderly[11]. MPOWER has been seen as a success from the end-users
perspective and Android is an upcoming mobile platform, which makes
them particular interesting in light of the research questions. Hence they
are both chosen as research platforms for this thesis.

This thesis evaluates which architectural choices must be made and
how such choices impacts client applications on mobile devices running
Android. Further, a study of how directly invoking Web services and the
performance of such invocations, is performed on Android. It will also
analyze to what degree existing Web services must be redesigned to fit such

1http://www.openhandsetalliance.com

1

http://www.openhandsetalliance.com

CHAPTER 1. INTRODUCTION

mobile access.

1.1 Research questions

The main topic of this thesis is a study on how mobile devices running
Android can be incorporated in service oriented architectures and the
following research questions will be answered:

1. Which architectural alternatives exists for using SOAP based Web
services on Android, and how do the architectural choice affect the
client application?

2. Is it possible to directly invoke SOAP Web services on Android, and
will such invocation be effective enough?

3. How can the design of SOAP Web services be optimized for use on
mobile devices running Android?

A mobile client is in this thesis’ context defined as a Web service client
application which runs on a mobile handheld device, like a device running
Android. Further, are these Web services implemented on a SOAP based
service oriented architecture.

The meaning of architectural alternatives is in this context the
composition of nodes, like servers and clients, between the service oriented
architecture endpoint to the client, including the transmission protocols
and communication paths. The internal composition alternatives of the
client application and service platform is thus not evaluated.

1.2 Research method

The research method used, is based upon a design science[10] research
methodology. Design science is performed by implementing an artifact,
testing it and using the gathered knowledge to further develop the artifact.

The artifact development used the services available on the MPOWER
service oriented platform platform, described in section 2.7.

1.3 Research design

In order to answer the research questions, the following research activities
was performed.

A search for architectural alternatives In order to find alternative
architectures, a search for architectures described and used on other
platforms than Android is performed.

2

CHAPTER 1. INTRODUCTION

Analyse architectural alternatives The analysis should evaluate the
architectural alternatives found for using SOAP Web services on Android
and identify how the architectural choice affects the client application. The
analysis is based upon quality attributes as defined by Bass, Clements and
Kazman[3].

Implement a simple Android SOAP client Create a simple SOAP client
which makes a simple SOAP request and parses the SOAP response.

The goal is to identify a suitable approach for performing SOAP
invocations directly from Android and through basic benchmarks identify
potential bottlenecks and problems. Additionally, this will be the first
use of the Android SDK and the research action should provide a better
understanding of the new platform.

Implement Android SOAP client against a MPOWER service Access
the MessageBoard service on MPOWER and create a mobile client which
is able to send a message through the message board to another user. The
client should call the required Web Services directly.

This will be a proof of concept application on the Android, showing
how the direct invocation architecture works on Android. The goal is to use
it for further benchmarking of direct SOAP invocation against the MPower
platform. Additionally, it should prove that direct SOAP invocation is
possible on Android.

Measure performance on expected MPower MessageBoard user opera-
tions A set of defined user operations which are likely to be performed
on an Android client application for the MPower MessageBoard, should be
performed on the proof of concept application.

The measurements should help identify Android’s effectiveness and
performance on parsing SOAP responses. Additionally, by performing the
operations an impression of the application responsiveness is experienced.

Measure performance on large SOAP responses A defined set of SOAP
responses with increasing complexity should be processed by the proof of
concept application and the processing duration of each response should
be measured.

The action should identify Android’s performance on parsing larger
responses and by this help to identify how Web services can be designed to
better fit client applications running on Android.

Measure performance on native Java The same measurements per-
formed on Android, are to be run on a desktop computer with native Java.

3

CHAPTER 1. INTRODUCTION

The results creates a reference for the measurements on Android. The
comparison of the Android and native Java results enables a comparison
on how Web services should be design for use on Android in difference to
a desktop computer.

1.4 Outline

Chapter 1 Introduction Gives an introduction to the project, research
questions, research method and this outline.

Chapter 2 Prestudy An initial study of the Android platform, its develop-
ment tools, introduction to service oriented architectures, SOAP, the
MPower platform, and a basic introduction to existing research.

Chapter 3 Architectural alternatives and their impacts A presentation of
architecture alternatives and an analysis of quality attributes for each
presented architecture.

Chapter 4 Basic Web service invocation on Android An initial study and
implementation of a Web service client on Android. Identify minimal
requirements and an initial response time measure.

Chapter 5 MPower proof of concept Android client Description of a MPower
proof of concept application on Android, and a deeper study of the
performance of such an application. Identifies best practice guide-
lines for clients and Web services.

Chapter 6 Conclusion A final conclusion which answers the research
questions defined in the introduction.

4

Chapter 2

Prestudy

This chapter gives an introduction to the Android platform and the
development tools. It gives a brief introduction to service oriented
architectures (SOA) and describes MPower, a service oriented architecture
research platform used throughout the study.

5

CHAPTER 2. PRESTUDY

Figure 2.1: Android system architecture as found in [13]

2.1 Android platform and development environment

Android is a software stack for mobile devices that includes an operating
system, middleware and key applications[13]. It relies on a Linux 2.6
kernel for core system functionality[13] and runs code written in the Java
programming language on a specially designed virtual machine named
Dalvik. Dalvik executes Dalvik Executable files which are Java compiled
classes optimized to minimize memory footprint[13]. The overall system
architecture is found in figure 2.1.

2.1.1 Android Software development kit (SDK)

The Android SDK consist of several tools to help Android application
development. This includes both an Eclipse IDE plugin, emulator,
debugging tools, visual layout builder, log monitor and more. The tools
included in the SDK are described in appendix B.

2.1.2 Why Android?

In contrast to most other mobile platforms, Android is available as
open source software. This enables devices to be customized without

6

CHAPTER 2. PRESTUDY

restrictions and enables any device manufacturer to ship devices with
Android. Likewise are developers able to distribute applications to any
Android device trough the Android market. Unlike Apple’s iPhone platform,
application distribution does not require any external review or acceptance
and multiple application markets exists.

Within the context of this thesis, Android is especially interesting due
to it’s state of the art status. It is a newly released platform which has
already gained massive support from device manufacturers like HTC, LG,
Motorola, Samsung, and Sony Ericsson. This is expected to make it an
attractive platform, since the development of a single application can reach
a broad range of devices, all with a rich user interface experience.

2.1.3 Android availability

By the beginning of this project HTC Dream, marketed as T-Mobile G1,
was the only available Android device. This device was only available
at T-Mobile markets, thus not available in Norway. The first phone to be
released on the Norwegian market is the HTC Magic, which is available for
pre-orders as of 4th of June 2009. Because of this lack of available Android
devices, applications and analysis performed during this thesis, will be
performed on a Nokia N800 internet tablet which runs Android thanks to
the NITdroid project1. NITdroid is “a kernel and userspace port from scratch
of the Android operating system to the Nokia internet tablet’s hardware”[1]. The
device is shown in figure 2.2.

Nokia N800 compared to the HTC Dream

Running NITdroid on the Nokia N800 implies a rather undocumented
hardware support. Hardware driver compatibility issues and bugs, are
likely to appear or give performance penalties to the Android system
running on the device. After booting Android on the device, this is
immediately shown by the touch screen being a bit hard to use and the
software keyboard constantly crashing. Nevertheless, the Nokia N800
device is believed to give a good indication of Android’s performance,
although the HTC Dream is rated with a processor running at 528 MHz
versus Nokia N800’s 330 MHz. A summary of the device specifications are
given in table 2.1.

2.1.4 Third party code library support

The Android platform is not a complete implementation of the Java API.
Instead it is a defined subset of the API. This imposes challenges in using
external libraries which depends on parts of the API which is not included.

1Available at http://code.google.com/p/nitdroid

7

http://code.google.com/p/nitdroid

CHAPTER 2. PRESTUDY

Figure 2.2: Nokia N800 running NITdroid (Android port)

Nokia N800 HTC Dream
Processor (CPU) ARM1136, 330 MHz ARM11 Qualcomm

MSM7201A 528 MHz
Memory 128MB 192MB
Network 802.11b/g WLAN HSPA/WCDMA,

GSM/GPRS/EDGE,
802.11b/g WLAN

Table 2.1: Nokia N800 compared with HTC Dream

8

CHAPTER 2. PRESTUDY

A complete list of the Android implemented and missing packages is found
in appendix A.

Missing Java API dependencies are unfortunately not possible to add,
since application developers are not allowed to add classes within the
java.* or javax.* packages. The restriction is not found documented, but
is confirmed on the official Android IRC chat room and an attempt to create
a class within these package names, gives a compilation error.

This limits the choice of usable third party libraries to the ones which
only depends on Android implemented Java API classes or where the source
code is available. In such cases, Android specific implementations of the
dependencies can be added to the libraries. Unfortunately, this often would
require major rewrites of the libraries and requires a deep knowledge the
library itself and the missing dependencies.

9

CHAPTER 2. PRESTUDY

Figure 2.3: Service Oriented Architecture request overview as found in [7,
p. 117]

2.2 Service Oriented Architecture introduction

A service oriented architecture (SOA) is based on the principle of
separation of concerns[7, p. 32]. These concerns are separated as modules,
or services, which communicates with each other through messages.

Although SOA can be built using a range of technologies, the scope of
this thesis limits and focuses SOA to consist of an architecture which

a) uses SOAP as messaging protocol;

b) uses HTTP to transport messages; and

c) uses Web Services Description Language (WSDL) to describe available
services.

Figure 2.3 shows multiple clients requesting a service’s response.
Response messages are not shown, but are returned to the initial requester.
Figure 2.3 also shows how services can be both service providers and
requesters. This enables a range of services to be assembled so that they
together solve a larger task[7, p. 125].

10

CHAPTER 2. PRESTUDY

2.3 Web service messaging

A SOA architecture is not dependent upon a specific technology, since
different protocols for messaging can support the principle of separation
of concerns.

Different protocols are mainly interesting for this thesis due to the
different processing and memory requirements they may have. It is to be
noticed that most SOA platforms supprts only a single or a few messaging
protocols, thus making use of new protocols a non-trivial task for large
scale systems.

2.3.1 Plain HTTP Post

Plain HTTP Post requests are typically simple messages encoded as
application/x-www-form-urlencoded as defined by the HTTP protocol [22].
The response is typically in an application specific XML encoded format.
This makes processing and memory requirements of message creation and
parsing low, but it also restricts the messages by making complex requests
hard to create and responses are very specific to a expected result.

2.3.2 JSON and REST

JavaScript Object Notation (JSON) is a lightweight, text-based, language-
independent data interchange format[6]. Android have built-in support for
JSON, thus making it a compelling alternative to XML within the context
of this thesis.

Representational State Transfer (REST) is an architectural style for
distributed hypermedia systems[8, p. 76]. It describes an architecture
where each resource, such as a web service, is represented with an
unique URL. The principle of REST is to use the HTTP protocol as it
is modelled[20], thus accessing and modifying the resources through the
standardized HTTP functions GET, POST, PUT, and DELETE.

REST is not in itself a standardized protocol, but defines principals on
how to use existing standards. In combination with for instance JSON, they
define a Web service architecture with an increasing support. Notice that
REST does not require JSON as data interchange format.

REST based Web services’ success is exemplified by major websites
like Flickr, del.icio.us, eBay, Google, and Amazon which now offers access
to Web services based on REST and JSON. Additionally, the WSDL 2.0
specifications now supports all HTTP functions[5], which enables REST
services to be described.

JSON/REST based Web services are designed to be lightweight and
easy to access, but lacks more complex functionality like type checking and
adhesion to a contract.

11

CHAPTER 2. PRESTUDY

2.3.3 SOAP messaging protocol

SOAP is a message transport protocol which has been accepted as the
default message protocol in SOA[7, p. 142]. SOAP messages are created
by wrapping application specific XML messages within a standard XML-
based envelope structure[15, p. 55]. The result is an extendable message
structure which can be transported through most underlying network
transports like SMTP and HTTP.

SOAP Criticism

One of the main criticisms of SOAP relates to the way the SOAP messages
are wrapped within an envelope. With HTTP as transport layer, most
requests are typically sent as POST requests to a single URL, thus ignoring
the HTTP resource-oriented design[20]. For example modelling requests as
POST when they in fact could be modelled as GET, PUT, POST or DELETE
requests results in HTTP traffic which is hard to monitor by for example
firewalls[2].

2.3.4 Conclusion

Within a larger context, SOAP is the de-facto standard for Web service
message exchange. A range of tools and application platforms are
available with SOAP support, which enables techniques like model-driven
development to be used in service design.

Within a mobile context, the REST architecture is considered as more
light-weight[20] than a SOAP based Web service architecture. Additionally
the Android platform have built-in JSON support which enables that
objects can be directly converted from Java to JSON objects and back again.

A move towards a JSON/REST based Web service architecture and it’s
impact on mobile clients is outside the scope of this thesis, although an
interesting subject for further investigation.

12

CHAPTER 2. PRESTUDY

2.4 Mobile computing characteristics

Mobile computing is in [21] characterized by four constraints:

• “Mobile elements are resource-poor relative to static elements.

• Mobility is inherently hazardous.

• Mobile connectivity is highly variable in performance and reliability.

• Mobile elements rely on a finite energy source.”

All these constraints puts restrictions and consequences for any
architectural choices made. The constraints also are self contradicting. On
one side, because of the resource poorness, lower trust and robustness,
the constraints argues for a static server design. On the other, the varying
network and finite energy resources argues for self reliance.[21].

An architecture for mobile SOAP clients must at least be able to support
a static server design. The degree of self reliance on the other hand depends
on the end users’ requirements. A mobile client can be as simple as a
web application with a HTML frontend designed for small screens. Clients
will in these cases have no self reliance, since they are dependent upon an
available static server. On the other hand, by having the clients cache it’s
data and do synchronization against the server, almost complete self relied
clients is possible.

A description of the identified architectures for mobile SOAP clients
and their differences is found in chapter 3. This analysis uses the
constraints given above as a basis for the evaluation of each architecture.
Most of this analysis is believed to be applicable not only to Android, but
also most other modern mobile platforms.

13

CHAPTER 2. PRESTUDY

2.5 Time limits on user feedback

In order to evaluate how effective a Web service client on Android must
be, basic usability guidelines from Jacob Nielsen have been studied and
used as guidelines. Jacob Nielsen is regarded as one of the gurus on Web
usability and describes three time limits on user feedback in Web driven
applications. These limits are described as follows in [19].

“0.1 second is about the limit for having the user feel that the system is reacting
instantaneously, meaning that no special feedback is necessary except to
display the result.

1.0 second is about the limit for the user’s flow of thought to stay uninterrupted,
even though the user will notice the delay. Normally, no special feedback is
necessary during delays of more than 0.1 but less than 1.0 second, but the
user does lose the feeling of operating directly on the data.

10 seconds is about the limit for keeping the user’s attention focused on the
dialogue. For longer delays, users will want to perform other tasks
while waiting for the computer to finish, so they should be given feedback
indicating when the computer expects to be done. Feedback during the delay
is especially important if the response time is likely to be highly variable,
since users will then not know what to expect.”

It should be noticed that the limits are not to be treated as absolute, but
rather be part of the evaluation on how quick a user expects some kind of
feedback. For this thesis, the limits are used in the evaluation on how fast
a Web service client actually must respond to user actions in order for the
user to stay focused and perceive the application as responsive.

14

CHAPTER 2. PRESTUDY

2.6 Android Web services support

The Android platform has no built in SOAP support for Web services.
However, it does have built in libraries for both HTTP communication
through Apache HTTPClient and XML construction and parsing through
application programming interfaces (APIs) like SAX, DOM and XmlPull
v1.

2.6.1 Manually create SOAP messages

Android’s built in XML and HTTP support enables SOAP request messages
to be constructed manually and dispatched through the HTTPClient API.
The SOAP response is then manually parsed and converted into Java
objects.

Since mobile devices have limited resources, this manual way of
creating and parsing SOAP messages could help minimizing memory and
processing requirements. Additionally, mobile applications are built more
task oriented than desktop and web applications which normally makes
such manual SOAP handling far less complex than other SOAP clients.

Although manual SOAP handling could be justified in many cases, this
thesis will focus on the use of third party libraries.

2.6.2 Third party libraries for SOAP support

Through Apache Axis2 found at http://ws.apache.org/axis2, Java is
given full support for SOAP based Web services. This includes code stub
generators from WSDL definitions.

KSoap2 is a SOAP library made specifically for J2ME. This makes it
much more light-weight than Axis2, thus believed to fit Android better.
Several posts on the Android development forums confirms that KSoap2
works good not only on J2ME, but also on Android. However since KSoap2
is designed for J2ME, KSoap2 is not using Java features like reflection which
is not available in J2ME.

KSoap2 does not have support for stub generation from WSDL defini-
tions, but do have mechanisms to help serialization and deserialization of
Java classes.

15

http://ws.apache.org/axis2

CHAPTER 2. PRESTUDY

2.7 The MPower platform

MPOWER is a SOA platform targeting easier development and deploy-
ment of services helping persons with cognitive disabilities and elderly[12].
Currently, the platform has been tested with various proof of concept
clients, including HTML based frontend and Windows Mobile client. The
proof of concept applications currently released has been rewarded with
positive response from the end users making it a interesting platform to
extend with new clients.

Throughout this thesis, all architectural analysis and performance
benchmarks have been performed with the MPower platform in mind.
However, the MPower platform is built on a standard service oriented
architecture. Therefore the results and evaluations should be applicable
also on other similar platforms.

2.7.1 MPOWER benefits of mobile clients

So far the MPOWER platform primarily have been tested with desktop or
web based clients. Such clients are restricted to be used in the physical
location where they are deployed.

A mobile MPOWER client is identified to improve several of the
features announced to be particularly supported in MPOWER, found at
[12]. These features are foremost gained by the a) increased system
availability to mobile users which often change context; and b) access to
mobile devices’ sensors like GPS location and accelerometer sensor.

Additionally, a mobile client would allow a tight integration with basic
phone functionality like initiating phone calls, SMS or MMS messages. One
could also benefit from bundled applications like the calendar with alarms
and to-do lists by implementing synchronization services. Such use of
built in functionality on the mobile device is believed to decrease required
development time and increase the usability from a end user’s perspective.

16

CHAPTER 2. PRESTUDY

2.8 RPC versus document style Web services

RPC and document style Web services have a confusing dual meaning
in a SOA architecture. Within a WSDL and SOAP formatting context,
document style and RPC style describes syntactical differences of a SOAP
message. Within a broader context, the difference between document style
and RPC style Web services is based on the invocation and response type.
A document style Web service is designed, as the name implies, to respond
with a document type of response. This typically means a lager chunk of
data, like a list of complex data. A RPC style Web service on the contrary, is
designed to have a larger number of requests, each with a smaller response.
In the latter years, document style Web services has become more and more
common.

Although a clean SOA architecture should enforce to use only one of
the invocation styles, there is no technical problems mixing them within
an environment. It should also be noticed that document style invocations,
generally are harder to make abstract and reusable since a larger response
will require more information on what to return.

MPower is designed to use as much document style services as possible.

17

CHAPTER 2. PRESTUDY

2.9 Existing research

Topics concerning the use of service oriented architectures on mobile
devices is not a new research field. Mobile platforms like Microsoft’s .NET
Compact Framework have had SOAP messaging support since it’s release[4].
Likewise has the J2ME platform had Web service support through the use
of libraries like KSoap[16] and the JSR-172 Web Services Specification[14].

However, in contrast to the .NET Compact Framework, Android does
not have any built in SOAP support neither in the development tools nor
in the platform API. Like the J2ME platform, Android is Java based, but
Android is supposed to be much closer to the desktop Java (J2SE) and
devices running Android will typically run on faster hardware than devices
with J2ME. These differences makes it hard to directly use the studies
performed on other platforms.

Since Android is a new and community supported platform, the most
current research and documentation is the resources made available by
people who have tried the platform and shares their knowledge and
experience on blogs, developer forums, and communication channels
like IRC. The lack of articles and books, especially on topics like SOAP
messages on Android, makes these shared experiences the only updated
source of information.

18

Chapter 3

Architectural alternatives and
their impacts

This chapter presents three architectural alternatives for accessing SOAP
based Web services on an Android client. Further, an analysis of the three
architectures and how they will affect the client application is performed
and the results are presented.

19

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

3.1 Architectural alternatives for mobile Web service
access

Three well suited client/server architecture patterns are identified for
mobile devices and SOA architectures. HTML frontend, Web service
gateway[16] and direct Web service invocation[16].

3.1.1 HTML frontend

A Web service client is placed on a server as a web application serving
dynamically generated HTML responses to HTTP requests. A standard
web browser is used on the mobile client to access and communicate
with the web application. As seen in figure 3.1, requests are plain HTTP
requests from the browser to a HTTP server. The HTTP server runs a web
application which uses the available SOAP services, and returns a HTML
formatted response. User input is handled through standard HTML form
posts.

3.1.2 Direct Web service invocation

All requests to the Web services are performed from the mobile device.
Implies that the mobile client must be able to wrap and unwrap SOAP
messages.

3.1.3 Web service gateway

A Web service client is placed as a gateway server and converts incoming
requests from the mobile client to Web service invocations. Web service
responses are then converted to a more lightweight format than SOAP
and returned to the client. Responses can typically be formatted as XML,
WBXML, JSON or other formats with a simpler structure than complete
SOAP messages. The architecture is seen in figure 3.3. Notice that
one request to the gateway, could result in multiple SOAP request and
responses.

20

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

Mobile client HTTP Server Web service
server

HTTP request

HTML response SOAP response

SOAP request

Figure 3.1: HTML frontend illustrated

Mobile client Web service
server

SOAP response

SOAP request

Figure 3.2: Direct Web service invocation illustrated

Mobile client Middleware
Proxy/gateway

Web service
server

HTTP request

XML, JSON, ... SOAP response

SOAP request

Figure 3.3: Web service gateway illustrated

21

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

3.2 Quality attributes and attribute tactics

Bass, Clements and Kazman defines the concept of quality attributes
for architectural evaluation. These attributes are characterized by a
set of quality attribute scenarios[3]. In order to compare the three
architectural designs given in section 3.1, these quality attributes and their
characterisation through general attribute scenarios are used.

As described in [3], each quality attribute have a set of tactics which
should enforce the architecture to support the focused quality attributes.

During the following sections, each of the quality attributes are briefly
presented and defined based on the general quality attributes given in [3].
Further are the three architectural designs evaluated on how they support
the achievement of each quality attribute. It should be noticed that this
evaluation is based on the tactics presented for each attribute as given in
[3, chp. 5].

3.2.1 Availability

Availability is defined to concern any failure which makes the system
unable to deliver the service it is design to deliver[3, chp 4]. This includes
both service for the end user and other systems relying on the system. It
also includes a systems possibility to recover from an unavailable state and
resume it’s normal operation.

With the increasingly available mobile networks, one could have
believed that off-line support became an issue out of date. However,
questions like how to handle connectivity interruptions are of more interest
than ever. Applications are expected to be available at all times and always
updated with the most recent data. A transparent handling of changes
in network connectivity includes dealing with conflicting revisions, data
changes, and avoidance of locked data. All with as little user intervention
as possible.

In this analysis it is focused on loss of network connectivity, which
should be expected to happen frequently in a mobile environment.

HTML

Pros A web application enables a centralized point of control which
makes the system availability easy to monitor and redundancy tactics can
be applied. Synchronization issues of data is typically easy to handle, since
clients are directly requesting data from the server.

Cons Since the HTML frontend architecture is based on HTTP requests
of basic HTML pages, such an architecture would not be possible to use in
an environment without a network connection. The web application does

22

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

neither have any ways of detecting which clients are online and in use,
except when the clients actually are sending a HTTP request.

Depending on the implementation and security measures applied,
recovering after loosing network connectivity might require users to
relogon to the system. This is especially true if the client’s IP address is
changed or a session has timed out. This makes rapid loss of network
connectivity annoying to the users.

Direct invocation

Pros Direct Web service invocation supports availability tactics like
ping/echo and heartbeat. This means that each mobile client can publish
their availability to the server by sending frequent messages about it’s
presence and detect the server availability by issuing frequent response
requests to the server. The client can by this be designed to use an
internal storage when it is off-line and resynchronize with the server when
it is online again. This enables clients both to be used without network
connectivity and to quickly detect a required network connection and
recover it’s normal operation.

Cons Implementing a system which transparently handles online and
off-line modes is hard, since resynchronization is hard in a multiuser
environment.

Gateway

Same as direct invocation.

3.2.2 Modifiability

The purpose of a SOA architecture in itself is to localize changes and
separate concerns. Within a mobile client context, the question of
portability and the work of extending the MPower platform with new
services is especially relevant.

HTML

Pros Web applications are relatively easy to make and a range of
frameworks are available with direct SOAP support. One web application
will support any mobile device with a internet browser and deployment
is only necessary on one server. Thus, are new features and changes very
quick and easy to set in production.

23

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

Cons Multiple views could still be necessary in order to support multiple
screen sizes.

Direct invocation

Pros Client applications can use existing device functionality like calen-
dar and contact list instead of implement such features.

Cons Updated application versions must be deployed to all devices.

Gateway

Pros Could make porting clients to new devices easier, since the
gateway may hide Web services complexity and serve more client specific
communication interfaces.

Cons Three points of implementation creates more complexity when a
new service is created, changed or removed.

3.2.3 Performance

The overall goal of performance attribute is to lower the time from request
to response is available.

HTML

Pros All SOAP and heavy processing is done server side.

Cons Each request requires a complete post and wait for a new page as
response. Thus, the response time will be dependent on size of each page.

Direct invocation

Pros Supports to have local cache of both already retrieved data and, by
using optimistic fetching, data expected to be requested. Thus, network
usage can be optimized and the response times can be minimal. Such
optimizations are especially important in high latency data networks like
GPRS, EDGE and UMTS networks.

Cons Direct invocation with SOAP messages typically have a significant
size and complexity overhead. This leads to more data transfer and more
processing required to create and read the messages.

24

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

Gateway

Pros Supports the same tactics as direct invocation but additionally
can reduce computational overhead by using more lightweight, system
specific, transport formats than SOAP.

Cons None major cons identified.

3.2.4 Security

Small mobile devices are easy to loose and get hijacked by third-party
which should not have access to sensitive data. With MPower, this is
especially true due to it’s medical sensitive application context.

HTML

Pros As long as a secure transport protocol like HTTPS or VPN systems
is ensured, a minimal amount of data is stored on the actual client.

Cons Cache is still vulnerable and HTML suffers from security issues like
session hijacking. The web server is vulnerable to attacks and adds another
software system to secure.

Direct invocation

Pros The developer will have complete control of the data stored locally
on the actual device. Enables encryption and cache deletion when
appropriate.

Cons Cached and saved data on the mobile device is vulnerable since the
data is stored on the actual device. If anyone gains access to the device,
they do not need access to the actual system to get the data.

Gateway

Pros Same as direct invocation.

Cons Data is replicated at least three places. In addition to secure the Web
service server, the gateway must also be secured.

3.2.5 Testability

Testability concerns the implications of testing the correctness of the
system.

25

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

HTML

Pros A number of web application test frameworks exists, making HTML
frontends easy to test.

Cons The HTML rendering on mobile devices might vary from device to
device. How the pages are rendered on a device is hard to automatically
test.

Direct invocation

Pros Tests can be made with unit testing frameworks and mocks1 which
mimics external functionality.

Cons Each mobile platform, must have platform specific tests written to
them. User interfaces are in general hard to test.

Gateway

Pros Simpler interfaces between the remote platform and the mobile
client makes testing on the mobile client easier since the mobile client can
potentially be made simpler with less complexity.

Cons The testing of the gateway introduces another software platform to
test. Thus, simple to test, it introduces more code and another environment
to test.

3.2.6 Usability

MPower is targeting persons with cognitive disabilities and elderly. Thus,
usability is essential for the platform to be used.

HTML

Pros HTML has become a very well-known user interface to most people
and is easy recognizable. Since HTML allows identical user interface on a
range of devices, the interface will also be recognizable independent on the
actual device a user uses.

1A mock is a software component which mimics another software component during
software testing. A Web service mock can for example be used to return test data responses
to a Web service client in order to have a controlled test environment.

26

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

Cons An architecture based on a HTML frontend, disables device specific
benefits. A short list of example follows.

• Data from a GPS or an accelerometer is not possible to send to a
HTML page.

• Integration with other device specific application like for example
phone, SMS, MMS, calendar, alarm and notification functionality.

• User interaction styles are restricted to the ones defined by form
inputs of HTML.

A sporadic usage pattern of the application is difficult to achieve.
Users wishing to check the system for any update must open the browser,
navigate to the systems logon page, enter credentials and find the correct
page.

Additionally HTML, without the use of JavaScript, only support
complete page reloads. Thus, dynamic update of the user interface based
upon state and user interaction is impossible.

Direct invocation

Pros The direct invocation architecture is dynamic by nature since it is
based upon using the native user interface and programming environment.
This enables better support for adaptive user interfaces, device specific
functionality, and sporadic usage. Information can be regularly pulled
from the server and integration with the device enables device application
to be synchronized with the Web service server.

Cons Building a user interface easily recognizable by users on any device,
could be difficult because of the use of native user interface components.

Gateway

The gateway have the same pros and cons as the direct invocation above.

27

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

3.3 Architecture development impacts

The complexity of application development depends on range of factors,
including but not limited to

• Number of supported platforms

• Required code and functionality abstractions and reusability

• Off-line usage support

• Possibility to auto generate code

• Availability of third-party code libraries

• SDK development support

The number of supported platform is specifically an issue for mobile
application development. The large number of platforms, have little or
no possibility to run the same application code. Hence, a pure HTML
based front-end design lowers the complexity of supporting all platforms
dramatically, since most devices have a web browser.

28

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

3.4 Conclusion

Each of the architectures in section 3.1 have their advantages and
drawbacks. When choosing an architecture, the quality attributes should
be prioritized against each other. This allows the architecture to be chosen
based on the most important quality attributes one wishes to achieve.

In the context of MPower and this thesis, a goal has been to build
a dynamic platform which is easy to use. A mobile client should be
usable without network connectivity and the possibility to synchronize
MPower information directly with Android’s device specific functionality
should be available. Thus, a HTML frontend would not support these
requirements and a gateway is preferred to be avoided due to the
additional development complexity.

A summarization of the advantages and drawbacks found for each
architecture follows.

3.4.1 HTML frontend

The HTML frontend is typically ideal when a device is expected to
always have an available internet connection and the same application
must be available on a range of different device platforms. Additionally,
a HTML frontend enables efficient development thanks to the available
development tools with SOAP support.

Advantages

HTML frontends are quick and easy to create. They can be deployed on
any web server and a range of SOAP client frameworks are available to
web applications. Additionally, HTML frontends are device independent.
Any mobile device with an internet browser, can access the same web
application.

Drawbacks

By using a web browser interface on the client, any device specific feature
is not possible to utilize. Synchronization with device applications like a
calendar, contact list, map, SMS and so on is not possible.

Unfortunately, the client is required to be online for the web application
to be available. When the internet connection is lost, the application is
unusable with the risk of loosing data which the user was working on
submitting.

Although dynamic web interfaces are built for desktop browsers,
mobile browsers still have very limited or no Javascript support. Thus,

29

CHAPTER 3. ARCHITECTURAL ALTERNATIVES AND THEIR
IMPACTS

HTML frontend applications are limited to the default full page reload on
updates.

3.4.2 Direct Web service invocation

A direct invocation is typically ideal when a client application must be
possible to use without an internet connection and a high degree of
modifiability is necessary.

Advantages

Mobile clients can have internal caching and synchronization logic. Several
clients can connect to the same service architecture and make any
application supported by the given services possibly without any specific
service design.

Drawbacks

SOAP messages are XML based and typically large and complex[18]. Such
complexity results in both computational and data transfer overhead.

3.4.3 Web service gateway

The Web service gateway is first and foremost found beneficial when a
direct Web service invocation style is not usable due to too much message
overhead or when the Web services are not open for changes.

Advantages

By using a gateway between the mobile client and the Web services, one can
leave the services unchanged while building more lightweight interfaces
for mobile clients.

Possibility to use compressed and task specific data representations, re-
duces data traffic and processing. This improves application performance
and lowers the application latency.

Drawbacks

A gateway creates yet another architectural element to maintain. Any new
features requires implementation both on a Web service server, gateway
and mobile client.

Additionally, the gateway approach is not standardized. Thus, it
easily becomes application specific and ignores Web service’s principle of
separation of concerns.

30

Chapter 4

Basic Web service invocation
on Android

This chapter presents an example approach for direct invocation of SOAP
based Web services from an Android client application and an evaluation
of the approach.

31

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

4.1 Basic Web service invocation

4.1.1 Research action, justification and goals

The complexity of most MPOWER services, justified an initial study of
calling simpler Web services from the Android platform.

The activity will have the following goals.

• Try to use the Axis2 library for Web service invocation.

• Try to use the KSoap2 library for Web service invocation.

A Web service found at W3Schools’ website, http://w3schools.
com/webservices/ws_example.asp, which converts temperatures
between the Celsius and Fahrenheit scales was used for the clients.

4.1.2 Results

Axis2 for Web service invocation

Axis2 is Apache’s reference SOAP implementation and consists of several
modules, both for Web service server capabilities, client support and code
generation tools.

The Axis2 did unfortunately have dependencies within the Java API,
which was not implemented in Android. Thus, it is not possible to use
without major changes.

It is also to be noticed that Axis2 is a large and complex library possibly
not well suited for mobile device with lower resources.

KSoap2 for Web service invocation

KSoap2 is a light-weight SOAP client library targeting Java 2 Micro Edition
platforms. KSoap2 is also released with a Java 2 Standard Edition version
which works without modifications on the Android platform.

public c l a s s Cels iusFahrenhei tConverter {
S t r i n g soapAction = ” http :// tempuri . org/Cels iusToFahrenhei t ” ;
S t r i n g methodName = ” Cels iusToFahrenhei t ” ;
S t r i n g namespace = ” http :// tempuri . org/” ;
S t r i n g u r l = ” http ://www. w3schools . com/webservices/tempconvert .

asmx” ;

Transport ht tpTransport = new HttpTransportSE (URL) ;

public S t r i n g ce l s i u sT oF a hr e nh e i t (i n t c e l s i u s) throws Exception
{

SoapObject request = new SoapObject (namespace , methodName) ;
request . addProperty (” Cels ius ” , c e l s i u s) ;

32

http://w3schools.com/webservices/ws_example.asp
http://w3schools.com/webservices/ws_example.asp

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

SoapSer ia l iza t ionEnvelope envelope = new
SoapSer ia l iza t ionEnvelope (SoapEnvelope . VER11) ;

envelope . setOutputSoapObject (request) ;

ht tpTransport . c a l l (soapAction , envelope) ;
SoapObject soapResponse = (SoapObject) envelope . bodyIn ;
SoapPrimit ive body = (SoapPrimit ive) soapResponse . getProperty (

” Cels iusToFahrenhei tResul t ”) ;
return body . t o S t r i n g () ;

}
}

Listing 4.1: asic KSoap2 Web service request/response example.

Listing 4.1 shows a very basic use of KSoap2. It wraps an integer
within a SOAP envelope and send the envelope to a service’s end point
through a HTTP transport. The response is then extracted from the KSoap2
serialization envelope and returned as a string. It should be noticed
that this only demonstrates the most basic example and KSoap2 have a
much more refined support for wrapping and unwrapping requests and
responses.

4.1.3 Evaluation

Although an attempt to use Axis2 on Android failed, KSoap2 seems to give
a beneficial support to this thesis’ implementation needs.

By using a third-party library like KSoap2 when building a Web
service client, it is easier to keep focus on the actual content of each
SOAP invocation instead of the detailed XML structure of the message.
Additionally, are message envelopes easy to change according to new
SOAP versions or Web service implementations if necessary.

Based on the initial study, the KSoap2 library will be used throughout
the rest of this thesis’ implementations.

33

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

4.2 Code generation support

Automatic generation of code from Web services’ WSDL files, especially
simplifies the serialization and deserialization of XML and Java classes.
Such serializing code would otherwise be coded by hand, often with
repeating code patterns.

Axis2 have built-in support for generating stub classes and provides
automatic mapping between XML and Java classes. Axis2 generated stubs
does not fit on Android, since Axis2 is unusable, but the generator is easily
tweaked to output code in other formats[9]. Such modifications allows
generation of custom made Java bean stubs which for example can be used
in KSoap2 or manually created SOAP environments on Android.

KSoap2 has not officially provided any tool for generating stub classes,
but a user contributed patch is available at KSoap2’s SourceForge page. The
patch uses parts of the Axis2 library in order to analyze the WSDL and
generate stub classes. Unfortunately this patch is totally undocumented,
thus making it hard to use.

Based on the available alternatives to automatically generate code
stubs, the code generation solutions are found too demanding to be used
during this project. Not only because of the work involved in customizing
and adapt existing solutions, but also due to the limited number of WSDL
files the client applications which are to be developed will use.

34

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

4.3 Invocation performance

4.3.1 Research action, justification and goals

One of the issues concerning Web service invocation on a mobile device,
is performance and latency. As a preliminary study the Androids
performance on the most basic Web service call was performed. The goal
was to identify Android’s basic potential to host a Web service client.
This includes identification of bottlenecks and performance on multiple
sequential invocations.

As described in section 4.1.3, KSoap2 is used to leverage the test client
development.

4.3.2 Testing environment

The temperature converter service described in section 4.1.1 and the code
from listing 4.1 was used as a basis.

In order to avoid server bottlenecks and have a controlled server
environment, soapUI1 was used to set up a fictive SOA environment serving
SOAP responses to SOAP requests. The environment was set up with a
local wireless network infrastructure for data transport.

The Web service invocations were performed on a Nokia N800 device
with Nitdroid installed. The N800 is an internet tablet device designed to
run with a light-weight Linux operating system. Nitdroid is a open source
port of the Android platform to the Nokia N800. It runs a patched kernel
with the complete Android stack on top.

4.3.3 Test measurements

A total of seven measure points were defined. Each point measured the
invocation duration of a single or small set of Android API or KSoap
invocations.

A total of 500 Web service invocations were performed in sequence.
Each invocation measuring the durations stated above by saving the debug
output to a log file.

createRequestData KSoap2 method which takes a KSoap2 SOAP envelope
object and writes serializes it as as a byte array with the SOAP
request.

setRequestProperties Creates a new connection represented as a
HttpURLConnection object, which is part of the Java API and

1The official soapUI website states that: “soapUI is the most used testing tool in the world for
inspecting Web Services, invoking Web Services, developing Web Services, Web Service Simulation
and Web Service Mocking, Functional Testing of Web Services, and load Testing of Web Services”.

35

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

implemented in the native Android API. Additionally, it sets some
basic HTTP headers to this connection.

openOutputStream Native Android API call to getOutputStream() on
the current connection.

outputStreamWrite Writes the request data to the current connection.

connect Native Android API call to the current connection.

openInputStream Native Android API call to getInputStream().

parseResponse KSoap2 method which reads the available data from the
input stream and deserializes the SOAP response.

An overview of the method invocations in the performance benchmark
is illustrated as a sequence diagram in figure 4.3.

4.3.4 Results

The measurements shows some irregularities with random requests lasting
much longer than anticipated. A total of forty requests (8%) lasted more
than a second. To verify the result, the same test was repeated on the
Android Emulator. When running the same code on the emulator, no
requests lasts more than a second. It is believed that the long durations
happens because of bugs in Nitroid or other Nokia N800 specific issues.
Also notice that most of these long durations lasts close to 3 seconds as
shown in figure 4.3 and could be a socket timeout on the device.

As seen in table 4.1, 85% of the requests are shorter than 300 ms and
more than 60% of the requests are shorter than 100 ms. When garbage
collecting, which lasts approximately 120 ms and is included in the request
duration measurement, is taken in account one could anticipate that
approximately 85% of the readings are representable for the application
running on a native Android device.

The shortest total request duration was 75 ms and the average request
duration of the 90 percentage shortest requests was 137 ms. As seen in
figure 4.3, the opening of the output stream takes the most time in average.
It should be noticed that parsing of the response only takes 15 ms in
average.

36

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

<
<

c
re

a
te

>
>

<
<

c
re

a
te

>
>

co
n

n
ec

t

w
ri

te
(r

eq
u

es
tD

at
a)

cl
o

se

ca
ll

(S
O

A
P

_A
C

T
IO

N
, e

n
v

el
op

e)

<
<

c
re

a
te

>
>

<
<

C
el

si
u

sT
o

F
ah

re
n

h
ei

t>
>

ce
ls

iu
sT

o
F

ah
re

n
h

ei
t(

ce
ls

iu
s)

an
d

ro
id

H
tt

p
T

ra
n

sp
or

t

cr
ea

te
R

eq
u

es
tD

at
a(

en
v

el
o

p
e)

co
n

n
ec

ti
o

n
<

<
S

er
v

ic
eC

o
n

n
ec

ti
o

n
>

>

<
<

c
re

a
te

>
>

se
tR

eq
u

es
tP

ro
p

er
ty

se
tR

eq
u

es
tM

et
h

o
d

("
P

O
ST

")

o
p

en
O

u
tp

u
tS

tr
ea

m

co
n

n
ec

ti
o

n
<

<
H

tt
p

U
R

L
C

o
n

n
ec

ti
o

n
>

>

<
<

c
re

a
te

>
>

g
et

O
u

tp
u

tS
tr

ea
m

o
s

<
<

O
u

tp
u

tS
tr

ea
m

>
>

co
n

n
ec

t

is
<

<
In

p
u

tS
tr

ea
m

>
>

o
p

en
In

p
u

tS
tr

ea
m

g
et

In
p

u
tS

tr
ea

m

p
ar

se
R

es
p

o
n

se
(e

n
v

el
o

p
e,

 i
s)

se
tR

eq
u

es
tP

ro
p

er
ty

se
tR

eq
u

es
tM

et
h

o
d

("
P

O
ST

")

en
v

el
o

p
e

<
<

S
o

ap
S

er
ia

li
za

ti
o

n
E

n
v

el
o

p
e>

>

Figure 4.1: Sequence diagram which shows what happens in a KSoap2 Web
service invocation.

37

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

Percentile Request duration
100 21092 ms
95 3087 ms
90 675 ms
85 299 ms
80 290 ms
75 221 ms
70 216 ms
65 132 ms
60 98 ms
55 92 ms
50 90 ms

Table 4.1: Total request duration measurement percentiles.a

aPercentile is here defined as the request duration below which a certain percent of
measures fall. For example do 60% of the measurements last 98ms or less.

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350 400 450 500

m
ill

is
ec

on
ds

Total request duration

Figure 4.2: Total request duration for a simple SOAP request. Requests
lasting longer than 4000 ms is not shown on the plot.

38

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500

m
ill

is
ec

on
ds

createRequestData
setRequestProperties

openOutputStream
outputStreamWrite

connect
openInputStream

parseResponse

Figure 4.3: Measure points duration results. Measurements lasting longer
than 250 ms is not shown on the plot.

39

CHAPTER 4. BASIC WEB SERVICE INVOCATION ON ANDROID

4.3.5 Evaluation

Most requests lasted much less than a second, which is the limit for the
user’s flow of thought to stay uninterrupted, even though the user will notice the
delay[19]. Although the test is performed with an almost minimal SOAP
request, the results indicates that the performance is well within the time
limits required for building a responsive mobile client. Especially since the
test device is not designed to run Android.

40

Chapter 5

MPower proof of concept
Android client

This chapter presents a proof of concept Android application, which by
direct invocation allows users to access the MPower MessageBoard Web
service. Several benchmarks are performed on the application and the
results are presented and evaluated.

41

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

5.1 MPower proof of concept client application

5.1.1 Research action, justification and goals

In order to verify the results from section 4.3.4 and to get a more actual
experience with mobile SOAP client development on Android, a small
proof of concept application was decided to be developed.

The goal was to create a small Android application which used some of
the MPower Web services.

Such a proof of concept application enabled the client response to be
experienced and measured.

5.1.2 Test environment

The application was built to support a MPower MessageBoard service. This
is a HL71 which enables doctors and relatives to send text messages to a
patient. The application should also provide an authentication screen. The
goal is not to build a complete application, but rather a working example
of how a mobile MPower client can be built on Android.

The client uses KSoap2 and performs direct SOAP invocations to a
MPower application server located at Sintef, while the client is located at a
remote site with an ADSL2 internet connection.

5.1.3 Benchmark description

The test client gives an actual feeling with the responsiveness of a SOAP
client. Additionally, a set of application operations will be performed as
described below. All benchmarks will be measured by the duration of each
operation.

Benchmark operations

1. Authenticate a user.

2. Retrieve a list of 20 messages.

3. Retrieve a list of 20 messages without updating the user interface.

4. Remove a message.

5. Retrieve a single message.

6. Retrieve a single message without updating the user interface.

7. Post a new message to a user.

1HL7 (Health Level 7) is a standardization for health information data exchange.

42

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

0

100

200

300

400

500
A

ut
he

nt
ic

at
e

R
et

ri
ev

e
20

m
es

sa
ge

s

R
et

ri
ev

e
20

m
es

sa
ge

,
no

U
Iu

pd
at

e

R
em

ov
e

a
si

ng
le

m
es

sa
ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge
,

no
U

Iu
pd

at
e

Po
st

a
m

es
sa

ge

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.1: Benchmarks running on Nokia N800 with WLAN connection

All measurements includes SOAP request creation, network round-trip,
response processing, and update of the user interface. Benchmarks will be
performed both on the Nokia N800 device and Android emulator.

Each benchmark will be performed ten times and an average measure
will be calculated and plotted together with the minimum and maximum
duration. In order to simulate various network environments, the
benchmarks are also to be run using the built-in GPRS, EDGE, and UMTS
emulation options in the emulator.

In order to get an even and realistic performance measurement,
measurements where the garbage collector runs or the server processes the
request particularly slow, is discarded and the measurement is repeated.

5.1.4 Results

Screenshots from the proof of concept application running on Nokia N800,
is shown in appendix C.

The results from the benchmarks are plotted in figure 5.1, 5.2, 5.3, 5.4,
and 5.5. The plots shows the maximum, minimum, and average duration
of each benchmark operation listed in section 5.1.3.

Throughout the benchmarks, the authentication invocation call took
fairly long time to perform. Service invocations performed from native Java
clients, indicates that this could be a server issue resulting in slow server

43

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

0

100

200

300

400

500

A
ut

he
nt

ic
at

e

R
et

ri
ev

e
20

m
es

sa
ge

s

R
et

ri
ev

e
20

m
es

sa
ge

,
no

U
Iu

pd
at

e

R
em

ov
e

a
si

ng
le

m
es

sa
ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge
,

no
U

Iu
pd

at
e

Po
st

a
m

es
sa

ge

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.2: Benchmarks running on Android Emulator with LAN
connection

0

100

200

300

400

500

600

A
ut

he
nt

ic
at

e

R
et

ri
ev

e
20

m
es

sa
ge

s

R
et

ri
ev

e
20

m
es

sa
ge

,
no

U
Iu

pd
at

e

R
em

ov
e

a
si

ng
le

m
es

sa
ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge
,

no
U

Iu
pd

at
e

Po
st

a
m

es
sa

ge

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.3: Benchmarks running on Android Emulator with UMTS
simulation

44

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

0

200

400

600

800

1000

A
ut

he
nt

ic
at

e

R
et

ri
ev

e
20

m
es

sa
ge

s

R
et

ri
ev

e
20

m
es

sa
ge

,
no

U
Iu

pd
at

e

R
em

ov
e

a
si

ng
le

m
es

sa
ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge
,

no
U

Iu
pd

at
e

Po
st

a
m

es
sa

ge

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.4: Benchmarks running on Android Emulator with EDGE
simulation

0

200

400

600

800

1000

1200

1400

1600

A
ut

he
nt

ic
at

e

R
et

ri
ev

e
20

m
es

sa
ge

s

R
et

ri
ev

e
20

m
es

sa
ge

,
no

U
Iu

pd
at

e

R
em

ov
e

a
si

ng
le

m
es

sa
ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge
,

no
U

Iu
pd

at
e

Po
st

a
m

es
sa

ge

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.5: Benchmarks running on Android Emulator with GPRS
simulation

45

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

responses. This is also indicated by the similar results on the authentication
invocation when measuring native Java performance in section 5.3.4.

When latency and throughput simulation of GPRS, EDGE, and UMTS
mobile networks are enabled on the emulator, the benchmark results
varies more than using a LAN connection. Thus, the low number of
measurements for each operation is believed to be too low to ensure valid
results. The correctness of the network simulation is also uncertain and
not found documented by Google. Nevertheless are the results believed to
indicate the application performance when using devices within areas of
good network signal strength.

Both the device and emulator clearly shows how updating the user
interface impacts the performance. The performance penalty of updating
the user interface is also strengthened in the retrieve message operations,
because of these operations running in their own thread. Thus, thread
switching is added to the complexity when the user interface is to be
updated.

5.1.5 Evaluation

With a high speed network connection, like a wireless network, all
measures are timed below 500 ms which is well within Jacob Nielsen’s one
second limit described in section 2.5.

Even though the performance decreases on benchmarks with mobile
network simulation, most of the measures are still within Nielsen’s one
second limit. Thus, simple service invocation might be performed without
having any progress bar shown, but might feel a bit sluggish to the user[19].

From the measured results, it should also be noticed that SOAP client
applications which requires more than one SOAP invocation to show a
response to a user’s interaction, quickly will reach the one second limit.
Such applications should either have Web services designed specifically
to reduce the number of invocations or show a progress bar to indicate
remaining time.

RPC versus document style requests

In order to evaluate RPC versus document style SOAP requests on mobile
clients, a scenario where a user have 20 messages which he wants to
retrieve on his mobile device is defined.

By considering the retrieval of a single message as a RPC style
invocation and the retrieval of 20 messages as a document style invocation,
the performed benchmark clearly show how mobile SOAP clients benefits
from avoiding pure RPC style services. In the given scenario, retrieving the
messages with only RPC style invocations would require 20 invocations.
Thus, retrieving the messages would last approximately 20 × 130ms =

46

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

2600ms on average. In contrast did the document style retrieval of 20
messages last 199ms on average.

However, the given scenario can be extended by having the mobile
client to regularly check for new messages. In the implemented proof of
concept application, this is performed by retrieving all 20 messages for each
check, since retrieving all of the user’s messages is the only way MPower
allows messages to be retrieved. The list of messages is then compared to
the list currently shown. A RPC style service would in this case allow the
client to check if the list of messages have been changed and only download
the new messages, thus dramatically reduce data transfer in the long run.

The given scenario calls for service platforms to support both RPC
style and document style Web services. This would enable clients to use
document style services typically to retrieve an initial data set and the RPC
style services to update it’s state according to changes. This combination
would help to minimize both processing requirements, thus maximizing
battery life, and data transfer.

47

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

5.2 Proof of concept invocation performance

5.2.1 Research action, justification and goals

The results from the proof of concept application, clearly demonstrated
how a direct invocation architecture can be used on an Android device.
The relatively low response times on the previously defined benchmark
operations, justified a study on how the performance scales on larger sets
of response data.

For this research action, the same proof of concept application will be
used to test retrieval of large sets of user messages.

The goal is to identify how the processing duration scales according to
the SOAP response size. Additionally, are the measurements comparable
with the results from the invocation performance of the same code running
on native Java found in section 5.3.4.

5.2.2 Test environment

In order to create controlled responses for the benchmark operations
described in the following section, a service mock was set up in SoapUI
as in section 4.3.2.

5.2.3 Benchmark description

Benchmark operations

1. Retrieve 100 messages and update the user interface.

2. Retrieve 100 messages without updating the user interface.

3. Retrieve 500 messages and update the user interface.

4. Retrieve 500 messages without updating the user interface.

5. Retrieve 1000 messages and update the user interface.

6. Retrieve 1000 messages without updating the user interface.

Each of the operations defined above will be run on the Nokia N800
device and emulator. The operations will also be run on the emulator with
the different network simulation modes, UMTS, EDGE, and GPRS.

Each operation will be performed ten times and minimum, maximum,
and average measurements are calculated for each operation and plotted.

48

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

Response complexity

In order to relate the results to other systems and SOAP responses, the
response complexity from the operations is presented as the size of each
response. However, if these results are to be compared with other SOAP
responses, an evaluation of how the responses differs in respect to the
number of children and siblings in the XML tree, should be taken in
account.

The response is shown in listing 5.1. For each message in the
response a new <ns2:reference /> XML element is added to
ActRetrieveMessages.

<S:Envelope xmlns:S=” h t t p : //schemas . xmlsoap . org/soap/envelope/”>
<S:Body>

<ns2:eRetre iveMessagesForPat ientResponse xmlns:ns2=” urn:hl7−
org:v3 ” xmlns:ns3=” h t t p : //soap . types . s e c u r i t y . framework .
mpower . eu”>

<ActRetreiveMessages>
< !−− R e p e a t e d once f o r e a c h message −−>
<n s 2 : r e f e r e n c e>

<ns2 :observat ionEvent>
<n s 2 : i d extens ion=”38”/>
<n s 2 : t e x t>Test message f o r p a t i e n t</ n s 2 : t e x t>
<n s 2 : a c t i v i t y T i m e value=”2009−05−05 16 : 2 2 : 4 7 . 6 4 8

”/>
</ns2 :observat ionEvent>

</ n s 2 : r e f e r e n c e>
</ActRetreiveMessages>
<S t a t u s>

<messageId>0</messageId>
<r e s u l t>0</ r e s u l t>
<timestamp>1241769279779</timestamp>

</S t a t u s>
</ns2:eRetre iveMessagesForPat ientResponse>

</S:Body>
</S:Envelope>

Listing 5.1: Retreieve messages response example

The size of each response is given in table 5.1 together with the
measurement results.

5.2.4 Results

The results from the benchmarks are plotted in figure 5.6, 5.7, 5.8, 5.9, and
5.10. The plots shows the maximum, minimum, and average duration of
each benchmark operation listed in section 5.2.3.

The results show that updating the user interface have a much more
constant time penalty than actually retrieving and parsing the responses.

49

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

Average Throughput
Response Size duration (kB/s)
Device
20 messages 7kB (6725B) 199ms 33.8
100 messages 32kB (31604B) 641ms 49.3
500 messages 156kB (156004B) 2612ms 59.7
1000 messages 312kB (311504B) 5368ms 58.0
Emulator
20 messages 7kB (6725B) 293ms 23.0
100 messages 32kB (31604B) 537ms 58.9
500 messages 156kB (156004B) 2114ms 73.8
1000 messages 312kB (311504B) 4068ms 76.6
Emulator, UMTS
20 messages 7kB (6725B) 407ms 16.5
100 messages 32kB (31604B) 887ms 35.6
500 messages 156kB (156004B) 3107ms 50.2
1000 messages 312kB (311504B) 5869ms 53.1
Emulator, EDGE
20 messages 7kB (6725B) 544ms 12.4
100 messages 32kB (31604B) 1428ms 22.1
500 messages 156kB (156004B) 5928ms 26.3
1000 messages 312kB (311504B) 11370ms 27.4
Emulator, GPRS
20 messages 7kB (6725B) 836ms 8.0
100 messages 32kB (31604B) 3678ms 8.6
500 messages 156kB (156004B) 16571ms 9.4
1000 messages 312kB (311504B) 32662ms 9.5

Table 5.1: Android’s message retrieval performance on large responses.

50

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

0

1000

2000

3000

4000

5000

6000

7000

8000

10
0

m
es

sa
ge

s

10
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

50
0

m
es

sa
ge

s

50
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

10
00

m
es

sa
ge

s

10
00

m
es

sa
ge

s,
no

U
Iu

pd
at

e

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.6: Benchmarks running on Nokia N800 with WLAN connection

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

10
0

m
es

sa
ge

s

10
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

50
0

m
es

sa
ge

s

50
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

10
00

m
es

sa
ge

s

10
00

m
es

sa
ge

s,
no

U
Iu

pd
at

e

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.7: Benchmarks running on Android Emulator with LAN
connection

51

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

0

1000

2000

3000

4000

5000

6000

7000

8000

10
0

m
es

sa
ge

s

10
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

50
0

m
es

sa
ge

s

50
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

10
00

m
es

sa
ge

s

10
00

m
es

sa
ge

s,
no

U
Iu

pd
at

e

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.8: Benchmarks running on Android Emulator with UMTS
simulation

0

2000

4000

6000

8000

10000

12000

14000

10
0

m
es

sa
ge

s

10
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

50
0

m
es

sa
ge

s

50
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

10
00

m
es

sa
ge

s

10
00

m
es

sa
ge

s,
no

U
Iu

pd
at

e

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.9: Benchmarks running on Android Emulator with EDGE
simulation

52

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

0

5000

10000

15000

20000

25000

30000

35000

10
0

m
es

sa
ge

s

10
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

50
0

m
es

sa
ge

s

50
0

m
es

sa
ge

s,
no

U
Iu

pd
at

e

10
00

m
es

sa
ge

s

10
00

m
es

sa
ge

s,
no

U
Iu

pd
at

e

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.10: Benchmarks running on Android Emulator with GPRS
simulation

5.2.5 Evaluation

In a real world application, very few responses would be as large as 500
or 1 000 messages. However, the results shows how Android actually
handles such large responses. The given results supports the conclusion
in section 5.1.5; data should be transfered in batches and larger responses
are preferred over multiple Web service invocations.

As seen in table 5.1, even with UMTS simulation 500 messages were
transferred in approximately three seconds. Such reasonable response
times, allows mobile clients to prefetch data likely to be requested by the
user.

Based on the calculated throughput of 500 and 1 000 messages, the
transfer and parsing time seems to scale linearly when the responses
are large enough. Constant operations like the creation of the SOAP
request and network connection are getting relatively smaller to the entire
operation as the response grows. Thus, these constants seems to be
negligible on invocations with large responses.

In respect to Nielsen’s response time guidelines, response time up to
about ten seconds actually will keep the user’s attention on the dialog[19].
In respect to this limit, even retrieving 1 000 messages with EDGE network
simulation is close to acceptable.

53

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

Although most results are satisfiable, it should be noticed how poor the
GPRS simulation performed. The throughput of less than 10kB/s would
be a major issue for any real world application. However, is this not an
Android specific issue and the throughput is actually on line with the
theoretical maximum throughput of GPRS networks. It should also be
noticed that most mobile networks today is upgraded to support EDGE
network speeds or better.

54

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

5.3 Android compared to native Java performance

5.3.1 Research action, justification and goals

As a reference, the operations will also be run on a simple native Java
client. The native Java client will use the same code as the proof of concept
application, except that the user interface is removed.

The goal is to compare how a native Java desktop client would perform
compared with the mobile Android application. It also helps to identify
if the best practices described in section 5.4.3 are to be treated as Android
specific practices or if they also are applicable to native Java clients.

5.3.2 Test environment

For the large service responses with 100, 500, and 1 000 messages, the same
test responses are set up using SoapUI as in section 5.2.2. SoapUI is during
these tests running on the same machine as the client application, causing
no network latency in the results. All other requests will be sent to the
MPower test server at Sintef.

The client application is executed on a desktop computer with an Intel
Q6600 quad core CPU, 3GB of memory, Ubuntu 9.04, and Sun’s Java SE
Runtime Environment v1.6.0 13.

5.3.3 Benchmark operations

The basic benchmark operations will be the same as listed in section 5.2.3
and 5.1.3 and each operation will be run ten times.

Additionally will the large performance test operations described in
section 5.2.3 be executed in two ways. One where the application is
restarted for each of the ten requests and one where the ten requests will be
performed in a loop. This goal is to show how native Java Just-In-Time (JIT)
compilation2 affects the performance. JIT is one of the Java Virtual Machine
features not available on Android, but Dan Morill, Developer Advocate
at Google, states that JIT “is definitely on the Dalvik roadmap” at the official
Android developers forum, although not officially confirmed.

5.3.4 Results

The results from the measurements are plotted in figure 5.11 and 5.12.
Figure 5.11 shows rather large variations in the response times. This

is believed to be a result of heavy load variations on the MPower server
during the tests. Notice that the average values are much lower than the

2Java’s Just-In-Time compilation is used to cache machine code representation of an
application’s byte-code. This compilation and caching is done dynamically at application
run-time, but is not yet implemented on Android.

55

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

0

50

100

150

200

250

300

350

400

450

A
ut

he
nt

ic
at

e

R
et

ri
ev

e
20

m
es

sa
ge

s

R
em

ov
e

a
si

ng
le

m
es

sa
ge

R
et

ri
ev

e
a

si
ng

le
m

es
sa

ge

Po
st

a
m

es
sa

ge

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.11: Benchmarks running on native Java.

maximum response duration, thus very few of the operations where close
to the maximum. Manual tests from SoapUI to the server confirmed the
variations in response times on the server. For more accurate results, these
tests should be rerun in a more controlled server environment.

Retrieval of 1 000 messages took in average 196ms when JIT is not
taken in account which results in a roughly estimated throughput of
312kB ÷ 0.196s = 1592kB/s. When JIT is taken in account, and the SOAP
requests where performed in a for loop, the average throughput was
312kB ÷ 0.54s = 5778kB/s.

5.3.5 Evaluation

The results from the native benchmarks reveals how much the available
computation resources differs between Android and a desktop computer
running native Java. Increasing the response from 500 to 1 000 messages,
only increased the average processing time from 158ms to 196ms.

The calculated average throughput is more than 20 times higher on a
desktop computer running native Java than the best result achieved on
Android. These results where achieved even when JIT was not active and a
application startup penalty is included in the native application measures.
Sending the ten trail requests in a loop, an by this utilize JIT compilation,
increased the throughput more than 3.5 times. Any real world application

56

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

0

50

100

150

200

250

10
0

m
es

sa
ge

s

10
0

m
es

sa
ge

s,
10

ti
m

es
in

a
lo

op

50
0

m
es

sa
ge

s

50
0

m
es

sa
ge

s,
10

ti
m

es
in

a
lo

op

10
00

m
es

sa
ge

s

10
00

m
es

sa
ge

s,
10

ti
m

es
in

a
lo

op

m
ill

is
ec

on
ds

Min
Average

Max

Figure 5.12: Performance benchmarks running on native Java.

would potentially utilize JIT compilation, thus if Android gets JIT support,
it will become interesting to see if the same 3.5 times of performance
increase is achievable.

By observing the huge differences in throughput on Android and native
Java, it seems that native Java applications are not that dependent upon the
actual Web service design. Having services responding with a response
of 1 000 messages, will have almost no noticeable effect in applications
running on native Java. However, an identical response on Android,
will take several seconds to parse independently of the available network
connection. Although the tests were running without adding any network
transfer, the results shows that a native Java client better supports to invoke
multiple Web services before presenting results to the user. Because of
the available resources, such invocations can be performed in parallel.
Android devices would have had problem handling such multiple parallel
requests.

From the results, it is noticeable how much faster even small requests
runs on native Java than on Android. For example do a request like Remove
a single message last 95ms on native Java, while 195ms on the N800 and
316ms on the emulator. Additionally, the native Java client executes the
fastest operation 23ms in contrast to the N800’s 121ms, and the emulator’s
176ms.

57

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

5.4 General development experiences

5.4.1 Android development

By having earlier experience both from enterprise Java development and
iPhone development, the Android provided software development kit was
real easy to getting started with. The provided Eclipse plug in, made
starting a new project as easy as starting any other project. Additionally,
deploying the application to the Nokia N800 device was as easy as starting
the application on the emulator. This included normal debugging tools,
which allowed debugging functionality like line stepping.

Android’s use of Java as programming language was experienced as a
lot easier to get started on than for example iPhone’s Objective-C language.
Additionally, a feature like Android’s automatic garbage collection of
objects made the programming experience feel more modern than the
iPhone’s C based approach.

5.4.2 KSoap2 and Android

The experience with KSoap2 was nothing but positive. The third party
library seems not to be actively maintained, but is open source and
available for modifications. In conjunction with Android, the KSoap2
worked without modifications by using the Java SE SOAP transport.

When building the proof of concept application, the deserilization
mechanisms in KSoap2 were used and they proved to be flexible and well
designed. In addition to provide basic serialization support, KSoap2 also
allowed optimized parsers and logic to be plugged in where applicable.

5.4.3 Best practices in mobile SOAP clients

Based on the results and evaluations in the previous sections, I here
propose a set of design principles for accessing Web services directly from
Android with SOAP messaging. These principles are basic guidelines
which affects both the client application in itself and the actual Web
services’ design on the server.

• Updates of the user interface should be minimized when possible.

• Data should be fetched in large batches, instead of multiple small
requests.

• Data transfer should be minimized. When possible, only check for
data changes and retrieve the changes instead of complete data sets.

• Minimize the number of service invocation necessary to display the
result.

58

CHAPTER 5. MPOWER PROOF OF CONCEPT ANDROID CLIENT

• Design for a slow server response and show progress dialogs at
least when more than one SOAP request is issued or where a large
response is expected.

59

Chapter 6

Conclusion

61

CHAPTER 6. CONCLUSION

6.1 Contributions

This thesis contributes to identifying impacts of architectural decisions,
and specifically evaluates challenges and possibilities in using Android in
conjunction with a SOAP based service oriented architecture.

Further, this study contributes with a proof of concept application
which shows that direct invocation of Web services with SOAP messages is
possible on Android. Thus, the research shows how the Android platform
can use an existing SOA infrastructure, like MPower, to create new and
innovative applications.

By documenting performance measures of direct SOAP Web service
invocations on Android, the research helps designing applications and Web
services for optimal client responsiveness.

Additionally, this research contributes to the MPower project with
documentation on how to access SOAP Web services and the proof
of concept application source code which is available at http://
knutseninfo.no/mpower/android_poca.zip.

6.2 Conclusion

Mobile device processing capabilities have increased remarkably through
the latest years. This makes it possible to build more complex applications
targeted for mobile devices. This study and its results, shows how
architectures and systems mostly designed for desktop usage like Web
service invocation with SOAP messaging, now also is possible to be used
on mobile platforms like Android.

With the help from faster and more available mobile networks,
accessing Web services directly with SOAP messaging is definitely possible
on Android. However, the high network availability on such mobile
devices, also makes an architectural alternative like a HTML frontend
increasingly competitive. This is strengthen by the increasing number of
mobile platforms application developers must support and by observing
the trend on desktop computers where web-based applications like Google
Docs1 have become a strong alternative to native desktop applications.

The following sections presents the results and conclusions of the
research questions given in section 1.1.

1Google Docs is a free web-based office suite featuring a word processor, spreadsheet,
presentation, and form application available at https://docs.google.com.

62

http://knutseninfo.no/mpower/android_poca.zip
http://knutseninfo.no/mpower/android_poca.zip
https://docs.google.com

CHAPTER 6. CONCLUSION

6.2.1 Which architectural alternatives exists for using SOAP
based Web services on Android, and how do the architec-
tural choice affect the client application?

Three main architectural alternatives was found to support mobile SOAP
clients on Android. The web application serving a HTML frontend,
direct invocation, and gateway architectures were all found to have their
strengths and weaknesses.

In respect to the gateway architecture, the performance results achieved
with the direct invocation alternative, gives rise to the question whether
the work of building a gateway architecture is justifiable in any project
or if most of the gateway advantages can be achieved by designing the
Web services specifically for mobile usage. Thus, the HTML frontend
architecture and direct invocation remained as the two most interesting
alternatives.

While the HTML frontend architecture utilizes already well known
techniques of building SOAP capable clients, the direct invocation
represented an architecture more dependent on the mobile device the client
is running on both with concern to hardware resources and the available
programming environment.

6.2.2 Is it possible to directly invoke SOAP Web services on
Android, and will such invocation be effective enough?

Although the proof of concept application never was run on a device
designed for Android, the benchmark results shows how well an SOAP
application actually might work. Typical client operations, performed on
an EDGE simulated network or faster, are all well within Jacob Nielsen’s
one second limit of response[19]. Based on the request and response
complexity of the messages measured, these results are believed to be
representable also for other client operations in a real world application.

Running the application on an Android device like HTC Dream, is
believed to further improve the invocation performance. Especially since
the performance seemed to be limited by the CPU resources and the HTC
Dream has a faster CPU than the Nokia N800 used for testing.

While Android is proved to be usable for hosting SOAP client
applications, the process of developing such applications are found to
quickly become a tedious process of manual coding SOAP serialization
and deserialization classes. Mainly because KSoap2 lacks any code
generation utilities, but also because of MPower’s complex WSDL files
and the responses received from the MPower platform not necessarily
validated against the provided WSDL. Notice however that MPower still
is a development project not ready for production.

63

CHAPTER 6. CONCLUSION

6.2.3 How can the design of SOAP Web services be optimized for
use on mobile devices running Android?

Benchmark results from the proof of concept application indicates that the
number of subsequent SOAP requests should be limited to a minimum,
especially as network latency increases and transfer capacity decreases.
This requires the Web services to be designed in such manner that the
clients directly may obtain required data.

In respect to the development process of Android based SOAP clients,
it is experienced that by limiting the depth of the SOAP messages XML
structure, the parsing complexity on the client is reduced. Also by serving
content easily interpreted as simple types like strings and integers instead
of complex classes, removes the need of creating a deep parsing structure.

In a service oriented architecture, this kind of Web service specializa-
tions are typically easy to accomplish by creating intermediary and coor-
dinator services which enables results from multiple services to be directly
returned to the client. Such a design, would create a tighter coupling be-
tween the client application user interface and the services, just as by using
a gateway architecture. However, in contrast to a gateway architecture, cre-
ation of client specific Web services is possible by only using the tools and
server architecture already in use. Thus such customizations will introduce
a minimal amount of overhead in development of the service oriented ar-
chitecture platform.

6.3 Further work

It would be useful to test the developed proof of concept application on
an actual Android device such as the HTC Dream. The same benchmarks
described in this thesis, are repeatable and the results can be compared.
Such a comparison enables the architectural choices and Web service
design practices to be revised based upon more accurate results.

Further, a study on how SOAP invocations’ affect battery lifetime will
be valuable in order to evaluate how applications can be used in real world
situations.

During this study, a set of guidelines for accessing Web services directly
from Android was proposed in section 5.4.3. An analysis on how the
MPower platform supports these guidelines, might help to identify how
available Web services can be changed in order to better support direct
invocation from mobile devices. Such a study might also be applicable to
other SOA platforms, making it a valuable research contribution.

64

Bibliography

[1] NITdroid project website. http://code.google.com/p/
nitdroid. Collected 2009-05-19.

[2] Amit Asaravala. Giving SOAP a REST. http://www.devx.com/
DevX/Article/8155. Collected 2009-03-27.

[3] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, april 2007.

[4] Jon Box and Dan Fox. Building solutions with the Microsoft .NET Compact
Framework. Addison-Wesley, 2003.

[5] Roberto Chinnici, Hugo Haas, Amelia A. Lewis, Jean-Jacques Moreau,
David Orchard, and Sanjiva Weerawarana. Web Services Description
Language (WSDL) Version 2.0 Part 2: Adjuncts. http://www.w3.
org/TR/wsdl20-adjuncts. Collected 2009-04-09.

[6] Douglas Crockford. Introducing JSONThe application/json Media
Type for JavaScript Object Notation (JSON). http://www.ietf.
org/rfc/rfc4627.txt. Collected 2009-04-09.

[7] Thomas Erl. SOA: Principles of Service Design. Prentice Hall, jun 2007.

[8] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, Irvine, California, 2000. http://www.ics.uci.edu/

˜fielding/pubs/dissertation/top.htm.

[9] Apache Software Foundation. ADB Tweaking Guide. http://ws.
apache.org/axis2/1_3/adb/adb-tweaking.html. Collected
2009-03-31.

[10] Alan R. Hevner, Salvatore T. March, and Jinsoo Park. Design science
in information systems research. MIS Quarterly, 28:75–105, 2004.

[11] SINTEF ICT. MPOWER objectives. http://www.sintef.
no/Projectweb/MPOWER/The-Project/Objectives. Collected
2009-03-23.

65

http://code.google.com/p/nitdroid
http://code.google.com/p/nitdroid
http://www.devx.com/DevX/Article/8155
http://www.devx.com/DevX/Article/8155
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/wsdl20-adjuncts
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://ws.apache.org/axis2/1_3/adb/adb-tweaking.html
http://ws.apache.org/axis2/1_3/adb/adb-tweaking.html
http://www.sintef.no/Projectweb/MPOWER/The-Project/Objectives
http://www.sintef.no/Projectweb/MPOWER/The-Project/Objectives

BIBLIOGRAPHY

[12] SINTEF ICT. MPOWER project. http://www.sintef.no/
Projectweb/MPOWER/The-Project. Collected 2009-03-23.

[13] Google Inc. Android developer’s guide - What is An-
droid. http://developer.android.com/guide/basics/
what-is-android.html. Collected 2009-03-18.

[14] Sun Microsystems Inc. JSR-172 J2ME Web Services Speci-
fication. http://jcp.org/aboutJava/communityprocess/
review/jsr172. Collected 2009-05-23.

[15] Ramarao Kanneganti and Prasad Chodavarapu. SOA Security.
Manning Publications, jan 2008.

[16] Tomas Kozel and Antonin Slaby. Mobile access into information
systems. In Proceedings of the ITI 2008 30 Int. Conf. on Information
Technology Interfaces, pages 851–856, 2008.

[17] Simon St. Laurent and Michael Fitzgerald. XML Pocket Reference.
O’Reilly Media, Inc, 3rd edition, aug 2008.

[18] Luqun Li, Minglu Li, and Xianguo Cui. The study on mobile phone-
oriented application integration technology of web services. In GCC
(1), pages 867–874, 2003.

[19] Jacob Nielsen. Response Times: The Three Important Limits.
http://www.useit.com/papers/responsetime.html. Col-
lected 2009-05-05.

[20] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly
Media, Inc, may 2007.

[21] Mahadev Satyanarayanan. Fundamental challenges in mobile
computing. In Symosium on Principles of Distributed Computing, pages
1–7, 1996.

[22] The Internet Society. Hypertext Transfer Protocol – HTTP/1.1. http:
//www.w3.org/Protocols/rfc2616/rfc2616.html. Collected
2009-04-09.

66

http://www.sintef.no/Projectweb/MPOWER/The-Project
http://www.sintef.no/Projectweb/MPOWER/The-Project
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://jcp.org/aboutJava/communityprocess/review/jsr172
http://jcp.org/aboutJava/communityprocess/review/jsr172
http://www.useit.com/papers/responsetime.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Appendices

67

Appendix A

Android API vs Java API

The list is based on http://blogs.zdnet.com/Burnette/?p=504
and updated to match Android 1.1 r1 API.

A.1 Supported Java 2 Platform Standard Edition 5.0
API packages

java.io File and stream I/O

java.lang (except java.lang.management) Language and exception sup-
port

java.math Big numbers, rounding, precision

java.net Network I/O, URLs, sockets

java.nio File and channel I/O

java.security Authorization, certificates, public keys

java.sql Database interfaces

java.text Formatting, natural language, collation

java.util (including java.util.concurrent) Lists, maps, sets, arrays, collec-
tions

javax.crypto Ciphers, public keys

javax.net Socket factories, SSL

javax.security (except javax.security.auth.kerberos, javax.security.auth.spi, and javax.security.sasl)
Security

javax.sound Music and sound effects

A-1

http://blogs.zdnet.com/Burnette/?p=504

APPENDIX A. ANDROID API VS JAVA API

javax.sql (except javax.sql.rowset) More database interfaces

javax.xml.parsers XML parsing

org.w3c.dom (but not sub-packages) DOM nodes and elements

org.xml.sax Simple API for XML

A.2 Unsupported Java 2 Platform Standard Edition 5.0
API packages

• java.applet

• java.awt

• java.beans

• java.lang.management

• java.rmi

• javax.accessibility

• javax.activity

• javax.imageio

• javax.management

• javax.naming

• javax.print

• javax.rmi

• javax.security.auth.kerberos

• javax.security.auth.spi

• javax.security.sasl

• javax.swing

• javax.transaction

• javax.xml (except javax.xml.parsers)

• org.ietf.*

• org.omg.*

• org.w3c.dom.* (sub-packages)

A-2

APPENDIX A. ANDROID API VS JAVA API

A.3 Included third party libraries

junit.framework JUnit unit test framework

org.apache.http HTTP authentication, cookies, methods, and protocol

org.json JavaScript Object Notation

org.w3c.dom Provides the official W3C Java bindings for the Document
Object Model, level 2 core.

org.xml.sax Core SAX APIs.

org.xml.sax.ext Interfaces to SAX2 facilities that conformant SAX drivers
won’t necessarily support.

org.xml.sax.helpers ”Helper” classes, including support for bootstrapping
SAX-based applications.

org.xmlpull.v1

org.xmlpull.v1.sax2

A-3

APPENDIX A. ANDROID API VS JAVA API

A-4

Appendix B

Android SDK tools

Collected from http://developer.android.com/guide/developing/
tools/index.html and describes the Android SDK v1.1 r1.

Android Emulator A virtual mobile device that runs on your computer.
You use the emulator to design, debug, and test your applications in
an actual Android run-time environment.

Android Development Tools Plugin (for the Eclipse IDE) The ADT plu-
gin adds powerful extensions to the Eclipse integrated environment,
making creating and debugging your Android applications easier
and faster. If you use Eclipse, the ADT plugin gives you an incredible
boost in developing Android applications.

Hierarchy Viewer The Hierarchy Viewer tool allows you to debug and
optimize your user interface. It provides a visual representation of
your layout’s hierarchy of Views and a magnified inspector of the
current display with a pixel grid, so you can get your layout just right.

Draw 9-patch The Draw 9-patch tool allows you to easily create a
NinePatch graphic using a WYSIWYG editor. It also previews
stretched versions of the image, and highlights the area in which
content is allowed.

Dalvik Debug Monitor Service (ddms) Integrated with Dalvik, the An-
droid platform’s custom VM, this tool lets you manage processes on
an emulator or device and assists in debugging. You can use it to
kill processes, select a specific process to debug, generate trace data,
view heap and thread information, take screenshots of the emulator
or device, and more.

Android Debug Bridge (adb) The adb tool lets you install your applica-
tion’s .apk files on an emulator or device and access the emulator or
device from a command line. You can also use it to link a standard

B-5

http://developer.android.com/guide/developing/tools/index.html
http://developer.android.com/guide/developing/tools/index.html

APPENDIX B. ANDROID SDK TOOLS

debugger to application code running on an Android emulator or de-
vice.

Android Asset Packaging Tool (aapt) The aapt tool lets you create .apk
files containing the binaries and resources of Android applications.

Android Interface Description Language (aidl) Lets you generate code
for an interprocess interface, such as what a service might use.

sqlite3 Included as a convenience, this tool lets you access the SQLite data
files created and used by Android applications.

Traceview This tool produces graphical analysis views of trace log data
that you can generate from your Android application.

mksdcard Helps you create a disk image that you can use with the
emulator, to simulate the presence of an external storage card (such
as an SD card).

dx The dx tool rewrites .class bytecode into Android bytecode (stored in
.dex files.)

UI/Application Exerciser Monkey The Monkey is a program that runs
on your emulator or device and generates pseudo-random streams
of user events such as clicks, touches, or gestures, as well as a
number of system- level events. You can use the Monkey to stress-
test applications that you are developing, in a random yet repeatable
manner.

activitycreator A script that generates Ant build files that you can use to
compile your Android applications. If you are developing on Eclipse
with the ADT plugin, you won’t need to use this script.

B-6

Appendix C

Proof of concept application
screenshots

Screenshots from the proof of concept application running on Android
which accessses the MPower Messageboard Web service with SOAP
messaging is shown in figure C.1, C.2, C.3, C.4, and C.5.

The dropdown box shown on the screenshots, is used for switching
between different Web service end-points during testing.

C-7

APPENDIX C. PROOF OF CONCEPT APPLICATION SCREENSHOTS

Figure C.1: Authentication screen.

Figure C.2: Progress dialog while loading messages.

C-8

APPENDIX C. PROOF OF CONCEPT APPLICATION SCREENSHOTS

Figure C.3: List of messages retrieved from MPower. Available when
authenticated as a patient.

Figure C.4: Confirmation dialog when deleting a message.

C-9

APPENDIX C. PROOF OF CONCEPT APPLICATION SCREENSHOTS

Figure C.5: Screen for posting messages. Available when authenticated as
a doctor.

C-10

	Title Page
	Problem Description
	Introduction
	Research questions
	Research method
	Research design
	Outline

	Prestudy
	Android platform
	Android Software development kit (SDK)
	Why Android?
	Android availability
	Third party code library support

	Service Oriented Architecture introduction
	Web service messaging
	Plain HTTP Post
	JSON and REST
	SOAP messaging protocol
	Conclusion

	Mobile computing characteristics
	Time limits on user feedback
	Android Web services support
	Manually create SOAP messages
	Third party libraries for SOAP support

	The MPower platform
	MPOWER benefits of mobile clients

	RPC versus document style Web services
	Existing research

	Architectural alternatives and their impacts
	Architectural alternatives for mobile Web service access
	HTML frontend
	Direct Web service invocation
	Web service gateway

	Quality attributes and attribute tactics
	Availability
	Modifiability
	Performance
	Security
	Testability
	Usability

	Architecture development impacts
	Conclusion
	HTML frontend
	Direct Web service invocation
	Web service gateway

	Basic Web service invocation on Android
	Basic invocation
	Research action, justification and goals
	Results
	Evaluation

	Code generation support
	Invocation performance
	Research action, justification and goals
	Testing environment
	Test measurements
	Results
	Evaluation

	MPower proof of concept Android client
	MPower proof of concept client application
	Research action, justification and goals
	Test environment
	Benchmark description
	Results
	Evaluation

	Proof of concept invocation performance
	Research action, justification and goals
	Test environment
	Benchmark description
	Results
	Evaluation

	Android compared to native Java performance
	Research action, justification and goals
	Test environment
	Benchmark operations
	Results
	Evaluation

	General development experiences
	Android development
	KSoap2 and Android
	Best practices in mobile SOAP clients

	Conclusion
	Contributions
	Conclusion
	Which architectural alternatives exists for using SOAP based Web services on Android, and how do the architectural choice affect the client application?
	Is it possible to directly invoke SOAP Web services on Android, and will such invocation be effective enough?
	How can the design of SOAP Web services be optimized for use on mobile devices running Android?

	Further work

	Bibliography
	Appendices
	Android API vs Java API
	Supported Java 2 Platform Standard Edition 5.0 API packages
	Unsupported Java 2 Platform Standard Edition 5.0 API packages
	Included third party libraries

	Android SDK tools
	Proof of concept application screenshots

