
June 2009
Keith Downing, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Parallelization of Artificial Spiking
Neural Networks on the CPU and GPU

Tor Brede Vekterli

Abstract

Conventional artificial neural networks have traditionally faced inherent
problems with efficient parallelization of neuron processing. Recent re-
search has shown how artificial spiking neural networks can, with the in-
troduction of biologically plausible synaptic conduction delays, be fully
parallelized regardless of their network topology. This, in conjunction
with the influx of fast, massively parallel desktop-level computing hard-
ware leaves the field of efficient, large-scale spiking neural network sim-
ulations potentially open to even those with no access to supercomputers
or large computing clusters.

This thesis aims to show how such a parallelization is possible as well
as present a network model that enables it. This model will then be used
as a base for implementing a parallel artificial spiking neural network on
both the CPU and the GPU and subsequently evaluating some of the chal-
lenges involved, the performance and scalability measured and the poten-
tial that is exhibited.

Contents

1 Introduction 5
1.1 Purpose and motivation . 5

1.1.1 Why focus on spiking neural networks? 6
1.1.2 Why multi-core CPUs 6
1.1.3 Why GPUs show a vast potential for neural networks

processing . 7
1.2 Existing research . 7
1.3 Structure of this thesis . 8

2 A parallelization primer 10
2.1 Introduction . 10

2.1.1 Challenges . 12
2.2 Supporting tools . 14

2.2.1 OpenMP . 14
2.2.2 NVIDIA CUDA . 17

3 Artificial Spiking Neural Networks 21
3.1 Introduction . 21

3.1.1 The biological spiking neuron 21
3.1.2 Simplifications in conventional neural networks . . . 22
3.1.3 Spiking neural networks 23

3.2 Artificial neuron models . 24
3.2.1 Leaky integrator model 24
3.2.2 Hodgkin-Huxley . 25
3.2.3 Izhikevich model . 25

3.3 Learning in SNNs . 26
3.3.1 Hebbian learning . 28
3.3.2 Spike-time dependent plasticity (STDP) 29

3.4 SNN parallelization . 30
3.4.1 Limitations of conventional artificial neural networks 30

1

CONTENTS

3.4.2 Synaptic conduction delays as an enabler of paral-
lelization . 32

3.4.3 Learning-parallelization 35
3.5 Spiking Neural Network model 35

3.5.1 Structure . 35
3.6 Network construction . 38
3.7 Network simulation . 38

4 Implementation 50
4.1 Introduction . 50
4.2 Parallel Izhikevich SNN on the CPU using OpenMP 50
4.3 Parallel Izhikevich SNN on the GPU using NVIDIA CUDA . 50

5 Method 53
5.1 Introduction . 53
5.2 CPU (OpenMP) . 54

5.2.1 Areas and procedures of testing 54
5.3 GPU (CUDA) . 55

5.3.1 Areas and procedures of testing 55

6 Results 56
6.1 CPU . 56
6.2 GPU . 64

7 Discussion 70
7.1 OpenMP implementation . 70
7.2 CUDA implementation . 73
7.3 Comparison . 75

8 Conclusions 76
8.1 Summary . 76
8.2 Possible future work . 78

2

List of Figures

2.1 Overview of single-threaded and multi-threaded processes . 11
2.2 Diagram of a shared-memory system 12
2.3 Task dependencies . 13
2.4 OpenMP task scheduling example 16
2.5 Threading hierarchy in CUDA 18
2.6 Coalescing of memory accesses 20

3.1 Figure of simplified biological neuron 22
3.2 Izhikevich Regular Spiking (RS) neuron 27
3.3 Izhikevich Fast Spiking (FS) neuron 28
3.4 LTP and LTD based on spike arrival and neuron firing times 29
3.5 STDP curve graph for interspike intervals 31
3.6 Parallelization issues with conventional, layered neural net-

works . 33
3.7 Conceptual example of spike input over synapses with delays 39
3.8 ASNN construction phases 40
3.9 Network simulation task dependencies 44

4.1 Control-flow diagram of the kernels and their invocation . . 51

6.1 CPU network processing, 1–4 threads, M = 100 57
6.2 CPU network processing, 1–4 threads, M = 200 59
6.3 CPU network processing, 1–3 threads, M = 300 60
6.4 Average neuron firing frequencies 61
6.5 Time spent during input buffer reset 62
6.6 Time spent during firing check+LTP stage 63
6.7 Time spent during delayed input+LTD stage 64
6.8 Time spent during membrane potential update stage 65
6.9 GPU SNN processing—10 seconds 66
6.10 GPU kernel timings for M = 100 67
6.11 GPU kernel timings for M = 200 68

3

LIST OF FIGURES

6.12 GPU kernel timings for M = 300 69

7.1 GPU and CPU SNN simulation comparison 75

4

Chapter 1

Introduction

For decades, Moore’s “law” of steady leaps in the speed of microproces-
sors held true. In today’s world, however, it finds itself increasingly chal-
lenged by the hard realities of physics and the speed of light itself. As a
result, a shift has been made towards horizontal rather than vertical ex-
pansion of performance. This, of course, means parallelization—increasing
the number of processing units working in tandem on problems that al-
low themselves to be solved by the power of divide and conquer, greatly
improving the efficiency of producing solutions to these problems.

One of the immediately appealing aspects of biological neural networks
is their ability to work completely in parallel, giving hopes that their ar-
tificial counterparts would be able to exhibit the same performance traits.
However, artificial neural networks have traditionally faced many chal-
lenges in this area, and some are inherently incapable of being truly par-
allelized. This thesis aims to show, amongst other things, how artificial
spiking neural networks do not suffer from these limitations given certain
biologically plausible preconditions.

1.1 Purpose and motivation

The overall purpose of this thesis is to look at the properties of artificial
spiking neural networks (generally used in the abbreviated form SNNs
throughput this thesis) that make them possible to be parallelized, how
this may be implemented on parallel hardware and to what extent the
end result lives up to the expectations of scalable performance gains. All
implementational work is done with a full focus on consumer (i.e. desk-
top) level hardware rather than the more classical high performance com-
puters or computer clusters that you seldomly find outside large research

5

CHAPTER 1. INTRODUCTION

institutes or government agencies. The reasoning behind this is simple—
enabling efficient large-scale simulation of SNNs on consumer level hard-
ware opens up the possibility for more wide-spread research in this area,
as the hardware costs and simulation-time spent are no longer excessive.
There have also been significant recent advances in parallel consumer-
level technology, giving a high factor of relevance to this approach.

To achieve this, a theoretical spiking neural network model and its
components will be described, and this theoretical model will be used as a
base for two implementations—one for multi-core PC Central Processing
Units (CPUs) and one for multi-core Graphics Processing Units (GPUs).
All hardware used is readily and widely available on the consumer mar-
ket.

It is not the intention or goal to create any optimally parallelized net-
work implementations. For reasons that will be discussed in later chap-
ters, this is highly non-trivial and would go beyond the scope timewise
for this thesis. The goal in this case is to give proof of concept examples
of how one might go about creating a parallel artificial spiking network
on commodity hardware, both on multicore personal computer systems
as well as new generations of graphics hardware and what many of the
challenges and issues are with this venture, the prototypical nature of the
software notwithstanding.

1.1.1 Why focus on spiking neural networks?

The obvious answer as to what it is about artificial spiking neural net-
works that makes them so compelling and relevant to explore in the con-
text of parallel computation is simply that they provide the closest (not
counting very low-level simulations) approximation to their biological spik-
ing counterparts, and that they can be used to replicate the emergent phe-
nomena found in the brain, the most sophisticated parallel computer in
existence. As hinted to in the introductory paragraphs, given certain bio-
logically plausible preconditions, we can get one small step closer to such
a level of massive parallelization on modern desktop hardware. This ap-
proach, as we shall see in Chapter 3, works even in the face of completely
arbitrary network topologies.

1.1.2 Why multi-core CPUs

In today’s hardware world, hardly any new computers are sold without a
multi-core CPU onboard. Adding more cores allows for running more ap-

6

CHAPTER 1. INTRODUCTION

plication code simultaneously, which leads to increased performance and
improved response time when the computer is under load. At the time
of writing, most budget-level computers—be they desktops or laptops—
come equipped with at least 2 cores, with 3 or 4 cores available for those
who are willing to pay a bit more and 8-core setups just around the cor-
ner. The raw processing power available to e.g. a 4-core CPU with each
core running at 2.5 GHz is formidable, and is something researchers only
a decade ago would have problems achieving even on supercomputers.

1.1.3 Why GPUs show a vast potential for neural networks
processing

Although the amount of cores present in CPUs are on a steady rise, the
number of cores on GPUs have essentially exploded in comparison [NVIDIA,
2008, pg2]. Graphics hardware has always been focused on—and have ex-
celled at—processing many small potentially computation-heavy items of
data in parallel (e.g. vertices in a triangle, pixels on the screen), but this
has for the longest time only been useful for purely graphical applications.
Throughout the not too distant years, this limitation has been gradually
removed, allowing people to begin thinking outside the box and using
the available power for other purposes. Now, with the latest generations
of graphics hardware, this limitation has effectively ceased to be, giving
nearly free reigns to general purpose computation on the GPU (also known
as GPGPU).

The cores found on GPUs are far less complex than those found on
CPUs since they make the assumption that the code they will be run-
ning are especially tuned for minimizing their limitations and maximizing
their potential. As such, the transistors that would have been used for eg.
caches or program flow control on the CPU can rather be used for fitting in
more cores [NVIDIA, 2008]. Combine this with stellar arithmetic compu-
tation capabilities and internal memory bandwidth that goes above and
beyond that found on even very high-end PCs and you get a hardware
platform that is highly attractive (albeit challenging) for AI tasks that ben-
efit from high levels of parallelization.

1.2 Existing research

Parallelization of artificial neural networks is not by any stretch of the
imagination a new phenomenon, but previous research has primarily fo-
cused on large, distributed supercomputing clusters [Ananthanarayanan

7

CHAPTER 1. INTRODUCTION

and Modha, 2007] or specialized hardware [Seiffert, 2004]. The topic of
performing such tasks on single-machine commodity hardware has not
yet been investigated nearly as in-depth. This is hardly a conspiracy or
a product of oversight, but rather a natural consequence of desktop com-
puting simply not being able to reach the required performance numbers
in the past.

To the author’s best knowledge, there are no existing published papers
giving an explicit comparison of SNN parallelization on CPUs and GPUs,
but a previous attempt at a GPU SNN implementation can be found in
[Bernhard and Keriven, 2006], although it was based on older GPU tech-
nology and did not feature any synaptic delays.

Towards the end of the thesis period (late March 2009), a paper was re-
leased outlining a highly effective network architecture based on the same
principles as the ones found herein, but with several important optimiza-
tions that makes it far more efficient, both memory and performance-wise
[Nageswaran et al., 2009]. Although it offers very attractive improvements
to the algorithms and datastructures used, due to time constraints and lack
of published implementational details, there was only time to adapt a few
of these changes.

1.3 Structure of this thesis

Chapter 1 gives an introduction into the thesis topic, its purpose and mo-
tivation as well as outlining some existing research.

Chapter 2 offers a brief excursion into the realm of parallel programming
and some of the challenges and concepts it involves. The tools that
will be used to create the CPU and GPU implementations are also
covered in reasonable detail here.

Chapter 3 is the main thesis chapter, describing both biological and ar-
tificial spiking neurons and the networks they comprise, as well as
creating an abstract model of a parallel spiking network and the the-
ory behind its operation.

Chapter 4 gives a rundown of the most important aspects of creating the
two implementations.

Chapter 5 outlines the methodology behind the experiments performed
to evaluate the potential and shortcomings of the presented SNN
model and its implementations.

8

CHAPTER 1. INTRODUCTION

Chapter 6 presents the results that the experiments given in Chapter 5
outlined.

Chapter 7 offers an in-depth discussion about the results from both im-
plementations and considers some of the non-trivial details that can
drastically skew the results negatively.

Chapter 8 concludes the thesis as well as outlining some potential fu-
ture work aspects based on the results and author’s experiences pre-
sented herein.

9

Chapter 2

A parallelization primer

This chapter considers the computer science aspect of the thesis, and the main
concepts and tools that enable the spiking neural network to be parallelized in the
first place. It introduces concepts that will be used and referred to throughout
the rest of the text. It is not meant to be in any way an exhaustive parallelization
reference.

2.1 Introduction

As mentioned in Section 1.2, parallelization of (spiking) neural networks
is not a new thing by far, but these efforts have predominantly been fo-
cused around high-performance computing, e.g. supercomputers such as
IBM’s BlueGene [Ananthanarayanan and Modha, 2007] or parallel clus-
ters of computers [Izhikevich and Edelman, 2008, pg3595]. Given that this
thesis focuses on consumer—that is to say, desktop—level hardware, these
will not be covered in any detail.

Any attempt to parallelize a program or an algorithm (or parts of it)
will be intimately tied to its problem domain. Some problems are what’s
referred to as “embarassingly parallel”, meaning that they require very
little effort to correctly parallelize. An example of this would be a genetic
algorithm system wherein the fitness calculation of any given phenotype
is completely independent from the calculations for all other phenotypes.
The code for doing this might then have an arbitrary granularity in terms
of how many processors it could be run on. Many problem domains are
unfortunately not so easy to deal with. To return to the GA example, it
becomes clear that if eg. the fitness calculation of a given phenotype re-
quires it to interact in an environment that contains other phenotypes (that
are also simultaneously trying to compute their own fitness), some sort of

10

CHAPTER 2. A PARALLELIZATION PRIMER

Execution

Stack Registers

Memory Resources Process

Thread

(a) Single thread

Execution

Stack Registers

Execution

Stack Registers

Execution

Stack Registers

Memory Resources

(b) Multiple threads

Figure 2.1: Overview of single-threaded and multi-threaded processes.
Multiple threads in the same process share the same memory space and
can therefore easily be set to work on different parts of the same datasets,
improving performance.

overarching control—or synchronization—is required for these interactions
in order to prevent total chaos.

When discussing parallel execution of any kind, the most central con-
cept is usually that of the thread. In essence, a thread is a series of in-
structions executed to complete a task and the bookkeeping required to
facilitate this (such as maintaining a per-thread stack, registers etc.). On
modern operating systems, running a program involves creating a process,
each of which has at least one or more threads. The threads in question
may generally be scheduled on any available CPU. All threads in a pro-
cess share the resources allocated to the process, including memory, file
handles, network sockets et al. This shared access means that multiple
threads can work on the same sets of data, but this comes with some snags,
as outlined in the next section. Figure 2.1 shows a graphical example of
how the threads in a given process operate with both private and shared
resources.

Only so-called “shared memory” architectures will be considered here,
meaning that all CPUs are able to access the same areas of memory in a
uniform way. A very simplified diagram of this is shown in Figure 2.2.
This is contrary to the non-uniform memory access architectures found in
many supercomputers, in which different CPUs generally can access some
parts of the memory fast and other parts slowly, depending on its locality
relative to the CPU.

11

CHAPTER 2. A PARALLELIZATION PRIMER

system memory bus main memory
system devices

Figure 2.2: Diagram of a shared-memory system

2.1.1 Challenges

There are certain aspects of parallel programming that anyone attempting
to parallelize a program will almost inevitable run into. Some of the more
common ones (which are all relevant for this thesis) are: For an overview

of common
approaches to
parallelization,
see Ambrus
[2003].

Dependencies Whenever an operation requires to know the results of an-
other operation before performing its own, there is a dependency be-
tween them. This may be seen as the primary limiting factor for
whether or not (and in the case of the former—how much) a pro-
gram may be parallelized. Whenever operations depend on each
other, these will have to be performed in a proper order, that is to
say sequentially. A graphical example of what this entails is given in
Figure 2.3.

Non-linear performance gains When throwing n processors at a prob-
lem, the theoretically optimal result would be that the task would
take n times shorter amount of time. In practice, this is almost never
the case, as the bookkeeping operations needed for synchronization
and scheduling, as well as inherently sequential operations will place
an upper bound on the scalability achievable. This was postulated
by Amdahl [1967]—later referred to as “Amdahl’s law”—and for-
malized as the equation

S =
1

1− P
where S is the total possible speedup and P is the parallelizable frac-
tion of the program. Example: if 90% of the program may be par-
allelized, and 10% must run sequentially, the maximum speedup
S = 1/(1− 0.9) = 10, or a factor of 10x over the original.

12

CHAPTER 2. A PARALLELIZATION PRIMER

function f1()
{
 a = foo1()

 b = bar1(a)

 c = baz1(b)
}

function f2()
{
 a = foo2()

 b = bar2()

 c = baz2()
}

depends on no dependencies
(assuming functions
have no side-e�ects)depends on

a = foo1()

a = foo2() b = bar2() c = baz2()

b = bar1(a)

c = baz1(b)

sequential only parallelizable

}

Figure 2.3: Dependencies may cause tasks to be impossible to perform
in parallel by imposing a strong requirement of sequential ordering. On
the contrary, a lack of dependencies would mean that we may perform the
operations in parallel. The same principle applies if we imagine the 3 tasks
in the figure to rather be 3 elements processed one at a time by a loop, with
the sequential code not allowing the loop to be parallelized and vice versa.

13

CHAPTER 2. A PARALLELIZATION PRIMER

A radically different computing model that is aimed at high per-
formance parallelization from the bottom up is introduced in Sec-
tion 2.2.2.

Synchronization When running code in parallel that operates on shared
data, read-write operations on these will generally have to be syn-
chronized somehow. This may range from something as simple as
incrementing an integer to executing a “critical section” of code in
which only one thread of execution may be at any given time. This is
solved through the use of various synchronization primitives that
ensure that this invariant is not broken. One important example
of this is the use of so-called atomic memory operations. They are
named as such due to their “indivisable” nature, that is, only one
thread can perform the operation at a time. Using e.g. an atomic
integer add is important because adding a number requires reading
the value already stored at the location in memory, performing the
addition and then writing the new value back. If a second thread
that also wants to perform an addition comes in and reads the same
memory location before the first thread has written to it, it will get
a “stale” value, add to that value and then write it back, effectively
losing the addition done by the first thread.

Failure to properly protect critical sections of code or shared data
accesses will eventually lead to a race condition, which are notoriously
hard to reproduce and debug. It is important to note that although
critical for correctness, synchronization comes with some inherent
overhead. This might be from having to “lock” the entire (or parts
of) system memory bus when such an operation occurs, invoking the
operating system’s thread scheduler and so on.

2.2 Supporting tools

2.2.1 OpenMP

OpenMP [Gatlin and Isensee, 2005] is an established standard for easily www.openmp.
orgparallelizing code in a cross-platform way on multi-CPU shared-memory

systems, and is readily available for many of the biggest C/C++ and FOR-
TRAN compilers, as well as a host of operating systems. Put succinctly,
it allows a programmer to specify regions of code that would benefit from
parallelization, which are then with the help of an OpenMP-supporting
compiler transformed into implementation-defined thread handling and

14

CHAPTER 2. A PARALLELIZATION PRIMER

task allocation code. The important part is that the programmer does not
have to explicitly deal with any native thread management or the process
of subdividing the tasks amongst the threads. Any OpenMP region will
also run transparently on a single-processor system.

To give a brief example, consider a C/C++ for-loop processing a mil-
lion elements:

for (i n t i = 0 ; i < 1000000 ; i ++)
do work (i) ;

Given that all elements i ∈ [0, 1000000) are independent of each other,
we can use OpenMP to speed things up by utilizing a special compiler
declaration that tells it that a parallel region should be created. In this case
we can use a declaration for automatically handling for-loops.

#pragma omp p a r a l l e l for
for (i n t i = 0 ; i < 1000000 ; i ++)

do work (i) ;

Now the OpenMP runtime will, when we reach this part in the program,
subdivide the loop iterations and schedule them on the available worker-
threads (generally, the total number of threads available—including the
master thread in which the program process runs—is equal to the number
of processor cores on the system). A graphical example of a hypothetical
system with 4 processor cores is given in Figure 2.4

The default scheduling policy is to simply statically schedule n/m op-
erations on each thread, where n is the total number of operations and m
is the number of threads. It may be noted that only “simple” for-loops
where OpenMP can determine the number of operations in advance can
be parallelized with this method [Gatlin and Isensee, 2005]. This means
no do-while loop constructs can be work-shared.

Due to the relative ease of use from a multiprogramming point of view,
OpenMP will be utilized as the method of parallelization for the CPU ver-
sion of the spiking neural network model.

Although one can assume the that the OpenMP implementation used
by the compiler is highly optimized, there is still inherent overhead present
with the thread scheduling and task allocation. According to experiments
performed in [Gatlin and Isensee, 2005], the minimum number of loop it-
erations that are required before a parallel region starts to show a measur-
able benefit is in the range of thousands when the amount of work done
per iteration is small.

15

CHAPTER 2. A PARALLELIZATION PRIMER

for i in [0, 1000000)
 do_work(i);

for i in [0, 250000)
 do_work(i);

for i in (750000, 100000)
 do_work(i);

.

Synchronize and join the threads. Only
the master thread continues from here

Schedule tasks and branch into multiple
threads

Serial code Parallel code

Figure 2.4: Control flows for serial and OpenMP parallel versions of the
same code. In the serial version, a single thread (the program’s “master
thread”) does all the work, while in the parallel version the work is di-
vided into evenly sized chunks and processed by the available threads—in
this case the program’s master thread and 3 worker threads.

16

CHAPTER 2. A PARALLELIZATION PRIMER

2.2.2 NVIDIA CUDA

CUDA (Compute Unified Device Architecture) is a platform for massively www.nvidia.
com/object/
cuda_home.
html

parallel high-performance computing on the recent generations of GPUs
from NVIDIA. It has seen great reception for areas such as computational
chemistry, physical modelling etc [Nickolls et al., 2008]. A core goal for
CUDA is that parallelism should be transparent, meaning that software
written for it should not have to know nor care how many physical pro-
cessors are present, and they should be able to scale appropriately as a
result.

Typical modern CUDA-enabled GPUs have several dozen thread pro-
cessors, each capable of executing multiple threads in parallal, as well as
a memory bandwidth available to its internal memory that is many times
greater than that available for a regular CPU to the standard system mem-
ory. Together this creates a formidable performance potential for code that
can be adapted to its programming model.

The core concept in CUDA is the kernel, a small program that is com-
piled down to GPU-native code and can be executed in parallel over a
set of threads. These threads may be organized into a hierarchy of thread
blocks, offering a level of thread cooperativity across this block, as well as
access to a block-private memory space. On the next level of the hierarchy
we find the grid of blocks that may be executed in parallel. See Figure 2.5
for a graphical representation of this hierarchy. A CUDA application spec-
ifies the dimensions for the grid and blocks whenever it “launches” a ker-
nel, enabling it to tailor these for the problem at hand (rather than the
hardware at hand). An example might be running a 16× 16 convolution
kernel over an image of dimensions W × H, where each kernel invocation
outputs 1 pixel. In this case, the application simply requests that the ker-
nel be launched with W × H blocks of 16× 16 threads each. The number
of blocks may be (read: usually is) far greater than the number of available
processor cores on the hardware, as these are scheduled automatically to
the available Streaming Multiprocessors (SMs) by the hardware [Nickolls
et al., 2008].

The great level of parallelism comes from enforcing that different blocks
must be able to be processed completely independently of each other, as
there is no way to synchronize between kernels in different blocks (aside
from atomic operations) and blocks may be run in any order, at any time.
A CUDA application often consists of multiple kernels that can be launched
in sequence (although different kernels aren’t themselves run in parallel),
with each kernel comprising the logic for a certain task.

There is a cost to all this potential, however, and it comes in the form of

17

CHAPTER 2. A PARALLELIZATION PRIMER

Block (0,0) Block (1,0) Block (2,0)

Block (0,1)

Thread (0,0)

Thread (0,1)

Thread (0,2)

Thread (1,0)

Thread (1,1)

Thread (1,2)

Thread (2,0)

Thread (2,1)

Thread (2,2)

Thread (3,0)

Thread (3,1)

Thread (3,2)

Block (1,1) Block (2,1)

Grid 0

Block (1,1)

Figure 2.5: Threading hierarchy in CUDA (inspired by figure in [NVIDIA,
2008]). In this case, the kernel has been launched with a 2-dimensional
grid of size 3× 2 blocks and each block with a 2-dimensional set of threads
of size 4× 3.

18

CHAPTER 2. A PARALLELIZATION PRIMER

certain requirements as to how the kernels must be programmed in order
to actually truly benefit from it.

The first is a product of how the processors execute their threads. A
single GPU multiprocessor is capable of running 32 threads simultaneously The 32 thread

grouping is
referred to as a
warp

as long as these are all executing at the exact same point in the kernel (i.e.
they are at the same instruction on the same path of execution) due to its
ability to execute a single instruction in parallel for all its threads. If say
just a single one of these 32 threads choose a different branch than the oth-
ers (e.g. it executes the body of an if-statement while the others do not), all
32 threads must have their instructions executed serially until their paths
once again converge, at which point the processor resumes parallel opera-
tion. This means that unless code is written to ensure such divergences are
limited in their count and duration, execution throughput will be severly
reduced. On the upside, thread scheduling and context switching is com-
pletely hardware-based on has zero overhead [NVIDIA, 2008]. This stands
as a stark contrast to that of OpenMP and CPU threading in general.

The second is how memory must be accessed in order to give opti-
mum throughput. As mentioned above, a single multiprocessor is capable
of executing an instruction for many threads at once. An optimization
technique is utilized so that when 16 threads simultaneously attempt to The 16 threads

come from the
upper or lower
part of a warp,
and are referred
to as a half-warp

access memory locations that are continuous and fit certain alignment cri-
teria, only a single memory transaction needs to be generated rather than
16, cutting the load on the GPU memory bus tremendously and leading to
throughput in the 100 GB/sec range on newer GPUs. This process is re-
ferred to as memory coalescing [NVIDIA, 2008], and is vital for all CUDA
applications to consider if they want to get anywhere near optimum per-
formance. It may be mentioned that CUDA comes in several hardware
versions, or compute capability versions, and version 1.2 removes many of
the limitations for such coalescing [NVIDIA, 2008, pg57], but as the only
hardware available for this thesis is a version 1.1 card, these limitations are
all in place. Figure 2.6 shows a graphical representation of what is required
for thread accesses to be coalesced into a single memory transaction.

There are additional challenges involved in programming for the CUDA
platform, but these are sufficiently low-level that they are beyond the scope
of this thesis. Interested readers are referred to [Nickolls et al., 2008] and
[NVIDIA, 2008].

19

CHAPTER 2. A PARALLELIZATION PRIMER

64.68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

0Thread #:

Address:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

64.68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

0Thread #:

Address:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

64.68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

0Thread #:

Address:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

Coalescable. All accesses aligned

Not coalescable. Unaligned accesses

Not coalescable. Unaligned accesses

Figure 2.6: The first example has all threads accessing memory in an
aligned way, thereby resulting in only 1 memory transaction. Both subse-
quent examples are not aligned, resulting in 16 memory transactions and
with the resulting performance understandable impacted. Adapted from
figure in [NVIDIA, 2008]

20

Chapter 3

Artificial Spiking Neural
Networks

The first part of this chapter revolves around the abstract spiking network model
and its biologically plausible components. Second part dives deeper into more
concrete ways of representing such a network and then finally how to actually
realize it in the form of pseudo-code, identifying and discussing areas of paral-
lelization as it goes. The spiking network model presented herein will be used as
a direct base for both the CPU and GPU implementations.

3.1 Introduction

3.1.1 The biological spiking neuron

To cover the terminology that will be used throughout the rest of this
thesis, a simplified representation is given of a biological spiking neu-
ron. Each neuron has an extended, tree-like structure of dendrites and
axons, the dendrites bringing the input into the cell body (soma) and the
axon, originating at this cell body, sends the output signal to other neu-
rons (see Figure 3.1). These signals are based on the movement of charged
atoms (ions). Whenever ions flow into and out of the neuron, the neuron’s
internal charge (voltage) changes in relation to that outside of its mem-
brane. This charge is referred to as the neuron’s membrane potential. If this
potential reaches a certain threshold, the neuron is said to “spike” and an
electrical pulse (the action potential) is sent down the axon, propagating this
action potential down to other neurons it is connected to at their dendrites.
This effectively resets the membrane potential and causes a refractory pe-
riod in which the neuron can not fire. [O’Reilly and Munakata, 2000, pg27–

21

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

32]. There is a certain conduction delay involved when spikes travel down
its transmission channels (axon, synapse, dendrite, . . .), meaning that the
transfer of action potential is not instantaneous [Izhikevich, 2006].

At the junction point between a sending neuron’s axon and a receiving
neuron’s dendrite, we find the synapse. The synapse works as a modulator
of the signal by affecting its strength (also known as synaptic efficiacy).
The modification of this efficiacy is believed to be what causes learning in
the brain.

Throughout this thesis, the term presynaptic will be used for the neuron
sending action potentials (as it is before the synapse), and postsynaptic for
the receiving neuron (as it is after the synapse).

soma (cell body)

dendrites

synapses

�ow of action potential

dendrites

axon

Figure 3.1: Simplified biological neuron and its connectivity.

Readers are referred to e.g. [O’Reilly and Munakata, 2000] for in-depth
information on the electrochemical and biophysical properties of biologi-
cal neurons and neural networks.

3.1.2 Simplifications in conventional neural networks

In conventional error-driven neural networks (primarily looking at the in-
credibly common backpropagation network [Callan, 1998]), the properties
of biological neurons are simplified down by considering the axon→syn-
apse→dendrite connection as one abstract synaptic weight factor for all
of a neuron’s synapses. The membrane potential and spiking is abstracted

22

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

away by having the output of a neuron be the real-valued integration of its
input (weighted by the synaptic efficiacies per connection) be run through
a function. A common choice here is the sigmoidal function, as it is con-
tinuous yet still provides a form of thresholding. This real-valued output
is often considered to represent the “average firing rate” for a neuron. The
notion of synaptic conduction delay is abstracted completely away, mean-
ing transmission is instantaneous.

These neurons are then generally arranged in sequential interconnected
layers that are processed in a “left to right” fashion. Learning takes place
by modifying the weights of the synapses according to the difference (er-
ror) in actual output vs. desired output for each layer, and this is per-
formed in a “right to left” fashion.

3.1.3 Spiking neural networks

A spiking neural network distinguishes itself from the majority of con-
ventional neural networks in a very central way. Whereas the output of
any neuron in eg. a feed-forward network is real-valued (usually in the
range [0, 1)), the output of a spiking neuron can be considered discrete
and binary—either a spike is “fired” or it’s not. Although one might be
tempted to think this is the same as having a neuron with a real-valued
output that is latched to either 0 or 1 depending on whether or not the
sum of all inputs is above a certain value, biological spiking neurons (as
well as the SNN model considered in this thesis) operate with some very
different characteristics:

• Rather than depending only on the current input, the membrane po-
tential gets modified by the input over time according to its neural
dynamics [Izhikevich, 2003].

• Due to the transmission channel conduction delay, another aspect of
time is introduced. This will prove critical for the parallelization of
ASNNs.

• Inhibition is provided only from neurons with certain characteristics
that allow them to fire rapidly and strongly, thus being able to pre-
vent the network from having a “seizure” from uncontrolled firing.
The non-inhibitory neurons are referred to as excitatory neurons, as
they provide positive input to their receiving neurons. In eg. a back-
propagation network, inhibition will be provided from weights with
a negative sign, but all the neurons generating such inhibitory in-

23

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

puts will generally have the same characteristics as those generating
excitatory ones.

Although there are many different types of neurons in a biological
network [Izhikevich, 2003], only two will be used for the SNN model
in this thesis.

3.2 Artificial neuron models

When working with a spiking network architecture, the choice of how to
represent the neurons themselves is just as important as e.g. choosing
a suitable transfer function for a real-value output architecture (such as
the ubiquitous sigmoid function). Depending on the desired biological
realism of the network, spiking neurons and their connections to other
neurons may be represented at vastly different levels, ranging from near
molecular level when the physical processes themselves are to be stud-
ied, to simply duplicating the end-result via mathematical equations. This
end-result is usually centered around the neuron’s membrane potential
and the changes made to it by synaptic input and time.

It should come as no surprise that simulating many neurons at a very
low level is incredibly computationally expensive, and not something that
can reasonably be assumed to be possible to do efficiently on commodity
hardware (at least not at the time of writing). As such, only those mod-
els that abstract away the underlying electro/biochemical processes will
be considered for this thesis. But even these have significantly different
performance and biological plausibility/accuracy. A very complete, com-
parative listing can be found in [Izhikevich, 2004].

Some models are briefly introduced here, going from the computation-
ally simple leaky integrator, the “reference” model to which most artificial
neural network architectures can trace their roots, the Hodgkin-Huxley
model and finally to the recent Izhikevich model which combines good
computational performance with high biological plausibility.

All models considered in this thesis revolve around point neurons,
i.e. representations where the geometrical extent of the neuron has been
shrinked down and simplified into a single point [O’Reilly and Munakata,
2000, pg24].

3.2.1 Leaky integrator model

Also known as the “leaky capacitator“ model, a leaky integration neuron
takes temporality into account by decaying a neuron’s activation level with

24

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

time, meaning a neuron that does not receive sufficient input activation to
fire will gradually see its membrane potential return to the resting level.
A common analogy here is a water basin into which water may be poured
in at the top, but also flow out (i.e. leak) at the bottom through a hole. The
size of this hole determines the rate of leaking.

Although very simplistic in its representation, it’s also correspondingly
simple and fast to calculate. It lacks the ability to simulate many biological
phenomena such as spike frequency adaptation [Izhikevich, 2004, pg1064],
wherein the frequency of firing is high during the onset of stimulation
but then adapts (an example of this can be seen in Figure 3.21). Several
enhancements to—and discussions of—the leaky integrate and fire model
can be found in [Izhikevich, 2004, pg1067].

3.2.2 Hodgkin-Huxley

The Hodgkin-Huxley model is considered one of the most important and
accurate neuronal models in computational neuroscience, utilizing a set
of differential equations and tens of parameters that are based directly on
the corresponding biological measurements [Izhikevich, 2004]. This has
the side effect of leading to extremely high computational costs, and due
to this and its overall complexity, it will not be covered here in any more
detail. For its original paper, see [Hodgkin and Huxley, 1952].

3.2.3 Izhikevich model

Fairly recently introduced, the Izhikevich spiking neuron model [Izhike-
vich, 2003] offers highly biologically plausible neuron behavior at a rela-
tively low computational cost. It is given as a pair of differential equations

v′ = 0.042 + 5v + 140− u + I
u′ = a(bv− u) (3.1)

where v is the membrane potential and u is the recovery variable. The lat-
ter accounts for the activation of K+ ionic currents and the inactivation of

1Purely anecdotally, a very early prototype of the spiking network implementation—
arranged in a feed-forward manner—did in fact use leaky integrator neurons that spiked
after a certain threshold, and in small networks the lack of such an adaptation mecha-
nism seemed to make output neurons fire very seldomly due to the spikes reaching them
being too sparsely distributed to provide sufficient activation. With a neuron model more
sensitive to stimulus onset, this might have been mitigated.

25

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

Na+ and provides negative feedback to v [Izhikevich, 2003] (cf. the inte-
grate&fire activation leakage). a represents the time scale of the recovery
variable and b represents the sensitivity of the recovery variable.

The neuron is determined to be firing if the membrane potential goes
over a certain threshold, in this case 30 mV, in which case it is reset to a
resting potential c and the recovery variable is updated with a parameter
d.

if v ≥ 30 mV, then
{

v← c
u← u + d (3.2)

A common value for c is −65 mV, which means that after a neuron has
fired, its membrane potential goes low enough that it goes into a refractory
period (see Section 3.1.1), preventing it from firing for a certain amount of
time.

By choosing different values for parameters a and d, we effectively de-
termine the behaviour of the neuron, in particular the duration of this re-
fractory period. For “regular spiking” (RS) excitatory neurons (which is
the most common type of neuron), we use the values a = 0.02, d = 8.
For “fast spiking” (FS) inhibitory interneurons (which provide inhibition
to the excitatory neurons) [Izhikevich, 2006, pg277], we use the values
a = 0.1, d = 2. Figures 3.2 and 3.3 illustrate the behaviour of two ran-
domly selected RS and FS neurons, respectively. It is easy to see how the
FS neuron fires at a far higher rate than the RS neuron. FS is well suited
to represent interneurons, as they must be able to provide sufficient inhi-
bition even in the face of many firing excitatory neurons. As it strikes a
fince balance between computational efficiency and biological plausibility
(supposedly being at the level of Hodgkin-Huxley), the Izhikevich model
is the one that will be used for all implementations in this thesis. There
is however no inherent dependency on this model in the spiking network
model itself—it should be fairly trivial to use any other set of spiking point
neuron equations as a drop-in replacement, if this should be desired.

3.3 Learning in SNNs

Most artificial neural networks would be ultimately pointless unless they
had some way of learning, be it supervised learning (“learning by exam-
ple”), unsupervised learning (clustering, “learning by observing input”)
or otherwise2. As such, the SNN model considered herein will also re-

2Saying “most” here to avoid including networks whose synaptic weights have been
modified through eg. evolution through genetic algorithms rather than through explicit
or implicit learning.

26

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

−100

−80

−60

−40

−20

0

20

40

0 100 200 300 400 500 600 700 800 900 1000

m
V

ms

Membrane potential

Figure 3.2: Izhikevich Regular Spiking (RS) neuron

quire that learning is capable of parallelization.
A common trait of most traditional artificial neural networks is that

their learning is done through minimization of error, or gradient descent,
wherein errors are propagated backwards in the network (and potentially
time, such as with the Simple Recurrent Network [Callan, 1998] and its
architectural siblings). However, SNNs are discontinuous in time due
to their explicit spike timings, leaving such methods out of the question
unless special considerations and simplifications are made [Kasiński and
Ponulak, 2006]. This begs the question of what exactly to learn in a SNN,
since the fairly intuitive notion of error generally speaking no longer ap-
plies. Panchev and Wermter [2004] rather eloquently summarizes it: “The
task of the plasticity algorithm is to adjust the weights of the neuron, so that for a
particular set of spike trains, it is able to synchronise the peaks of the partial mem-
brane potentials, and therefore maximise the response of the soma membrane po-
tential”. The actual task of training an SNN is far beyond the scope of this
thesis, but interested readers may refer to [Kasiński and Ponulak, 2006],
although it only considers supervised learning—for the purpose of this
thesis, unsupervised learning is what will be used since we’re not dealing
with any explicit learning tasks.

27

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

−100

−80

−60

−40

−20

0

20

40

0 100 200 300 400 500 600 700 800 900 1000

m
V

ms

Membrane potential

Figure 3.3: Izhikevich Fast Spiking (FS) neuron

3.3.1 Hebbian learning

Anyone interested in biological neural networks have most likely encoun-
tered citations of Donald Hebb’s synapse postulate3 often enough for it to
take on a near catchphrase nature. It defines the strengthening (or weaken-
ing) of synaptic efficiacies based on the correlation of firings by the presy-
naptic and postsynaptic neurons. What we want to see is a strengthening
of the synapse between two neurons if the first neuron contributes to the
other neuron firing, meaning that a spike from the first neuron reached
the second neuron before it fired. Conversely, if a spike from the first neu-
ron reaches the second neuron after it has fired, we want the synapse to
be weakened, since there’s no correlation. This phenomenon is known
as long-term potentiation (LTP) and long-term depression (LTP), of synap-
tic efficiacy, respectively. A graphical example of this process is shown in
Figure 3.4

As the original Hebbian rule is inherently unstable (i.e. it causes weights

3“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased” [Hebb, 1949]

28

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

A B A B
S S

Spike over synapse S causes neuron B to �re; S is strengthened since there’s a correlation

Spike arrives.
Neuron B �res

A B A B
S S

Spike over synapse S arrives at B after it has �red; S is weakened since there’s no correlation

Spike arrives
after B �red

LTP!

LTD!

Figure 3.4: LTP and LTD based on spike arrival and neuron firing times

to grow exponentially), it faces severe problems when applied to network
learning tasks [O’Reilly and Munakata, 2000, pg124]. As a result, mod-
ified versions such as the Generalized Hebbian algorithm are generally
used in practice. These are still commonly rooted in linear neural out-
puts, so we need something that works with discrete spike timings rather
than average firing frequencies and also has a very high level of biological
plausibility.

3.3.2 Spike-time dependent plasticity (STDP)

Spike-time dependent plasticity (also known as Hebbian temporally asym-
metric synaptic plasticity [Izhikevich, 2006, pg252]) offers a purely local
mechanism of modifying synaptic efficiacy and encouraging synaptic com-
petition that correllates with experimental observations and Hebbian prin-
ciples. It provides for both LTP and LTD of synaptic efficiacy. Incidentally,
this is exactly what we need.

29

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

From Song et al. [2000], we have the STDP equation

F(∆t) =
{

A+ exp(∆t/τ+) if ∆t < 0
A− exp(−∆t/τ−) if ∆t ≥ 0 (3.3)

∆t is the delta between the times when a spike last arrived at the postsy-
naptic neuron over a given synapse and when the postsynaptic neuron ac-
tually fired. A+ and A− determine the maximum synaptic efficiacy mod-
ification for LTP and LTD, respectively. τ+ and τ− specify the pre/post
synaptic spike interval range itself over which STDP is performed [Song
et al., 2000]. A common value for both values of τ is 20 ms. To examplify
what this means for the shape of the function, see Figure 3.5.

As F(∆t) is an exponential function whose rate of change increases as
∆t→ 0, high synaptic modification changes will only occur when the time
elapsed between the spike reaching the soma and the neuron firing is also
close to zero. What this means for the learning-properties of the network
is that those neurons that are strongly correlated will have their synaptic
efficiacies proportionally strengthened, leading to a stronger binding for
future spike firings, and vice versa for neurons that are strongly disassoci-
ated.

3.4 SNN parallelization

As we have looked at the properties of spiking neural networks and an
applicable learning rule, it’s natural that we explore how this allows us
to process neurons in parallel. But before this, in order to better under-
stand the problem, let’s first have a quick look at why conventional neural
networks are not optimal for such ventures.

3.4.1 Limitations of conventional artificial neural networks

Many artificial neural network architectures have inherent challenges when
it comes to the issue of parallelization. This is due to the serial dependen-
cies that are formed in any network where the output of a neuron requires
the knowledge of the output of other neurons, and those outputs in turn
require outputs from other neurons etc. and all these neurons take as their
input the output of other neurons produced in the very same time step.
Layered networks generally have each neuron and synapse in a given
layer operate independently from all other neurons and synapses in the
same layer, so within the layer itself there is room for parallelization for

30

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

−0.15

−0.1

−0.05

0

0.05

0.1

−40 −30 −20 −10 0 10 20 30 40

∆
w

∆t

STDP

10 ms
20 ms
30 ms

Figure 3.5: STDP for ∆t showing the effect of different interspike inter-
vals τ+, τ− ∈ {10, 20, 30} ms. We can see how larger values of τ creates
a greater window in which synaptic efficiacy may be changed, and vice
versa for smaller values. For all these plots, (A+, A−) = (0.1, 0.12).

31

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

both of these. There is however no possibility to parallelize the compu-
tation of the individual layers themselves, as (assuming a feed-forward
network) layer Ln depends on Ln−1, which depends on Ln−2 and so on. To
amortize this problem, there have been significant efforts oriented towards
specialized neuron processing hardware, wherein the number of neurons
in a layer would optimally be equal to the number of processors, allowing
the network to operate in synchrony [Seiffert, 2004], but the core issue of
sequential layer processing still remains.

For learning, non-local learning rules such as backpropagation do not
make the situation much better. Again, the parallelization potential is con-
strained to be layer-local as errors are propagated backwards in the net, the
error computation of neurons in layer Ln being dependent on the error of
neurons in layer Ln+1.

Although these dependency issues might not seem like much of a prob-
lem in practice with layered networks, as you still have a fair degree of
parallelization, things quickly turn worse when network connectivity is
arbitrary, as you would effectively have to build a full graph of dependen-
cies in order to determine the proper order in which to process neurons
and their synapses so that their outputs would reach the proper recipients.
Needless to say, this is not a good starting-point for any parallelization at-
tempts, as the number of neurons that are independent of each other will
often be too small to counterweigh the overhead of thread synchronization
et al.

3.4.2 Synaptic conduction delays as an enabler of paral-
lelization

The nature of SNNs with synaptic conduction delays lets us overcome the
integration and firing dependencies, and with a suitable local learning rule
(such as STDP), lets us overcome the learning dependencies. It also allows
for completely arbitrary network topologies without this impacting the par-
alellization potential, something which is critical for realistic simulations.
In fact, the SNN model considered in this thesis is completely randomly
connected.

The critical assumption for our parallel SNN model is that for any two
neurons where there exists a connection between them, this connection
will have a conduction delay > 0. That is to say, there are no zero-delay
synaptic connections in the network. This is the most crucial assumption,
and is also biologically plausible—propagating a signal from point A to
point B will invariably incur some form of delay, no matter the conduction

32

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

Layer 1 Layer 2

Dependent layers (serial only)

In
de

pe
nd

en
t n

eu
ro

ns
 (p

ar
al

le
liz

ab
le

)

Layer 3

depends on output from...depends on output from...Feed-forward phase:

depends on error from...depends on error from...Backpropagation phase:

Figure 3.6: Parallelization issues with conventional, layered neural net-
works. The lack of synaptic connectivity between neurons within each
layer ensures these can be processed in parallel. However, layer 1 must
be processed in full before layer 2 may be processed at all and likewise
with layer 2 before layer 3. With backpropagation learning, the depen-
dency chain is reversed, but still in place.

33

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

speed of the underlying physical signal transmission channel. A discus-
sion of this can be found in [Morrison et al., 2007, p52]. For the sake of
simplicity, we’ll assume that the SNN operates with a discrete simulation
time step and that spike propagation takes at least 1 such time step.

The reason for synaptic delays being required is that they enable us to
know that which is not possible for conventional (instantaneous) networks—
all relevant network state for the current simulation time step! To see why,
imagine a single spiking neuron firing its action potential at time step t.
How many neurons require knowing this neuron’s output at this time
step, thus causing a dependency? The very short answer: none. Having
an invariant that states that there is at least a 1 time step delay between
when a neuron fires and when it reaches its destination means that it’s im-
possible for the output of any neuron at time t to actually have any effect
what so ever at that same time step t. Recall that a neuron’s membrane po-
tential is only affected when a spike reaches its soma, thus making it not
care about those that are “in transit” to it. The soonest any neuron output
at time t will be relevant is at time t + 1, at which point we already know
everything we need, as the firings happened in the past. It then comes
as an intuitive conclusion that in a SNN with synaptic delays, both input
integration and output firings may happen in parallel, as the two are com-
pletely independent operations.

There are of course certain things we must take into account when im-
plementing such a network model in practice. Although all neurons may
be processed in parallel, having each neuron operate completely indepen-
dently as its own thread of execution would be horribly inefficient, as con-
stant synchronization would be needed for their communication (a com-
puter system works very differently from a biological neural network after
all). As such, we decompose the simulation of the network model into dis-
tinct tasks that run sequentially, but where each of these tasks can process
all neurons completely in parallel. What this actual task decomposition
involves will be covered in Section 3.7.

Although it’s fairly intuitive, this approach to enable parallelization of
spiking networks was seemingly first introduced in [Morrison et al., 2007].
The sheer simplicity of the approach allows for this parellization to be im-
plemented easily on commodity—rather than specialized—hardware, as
the task decomposition removes the need for expensive synchronization
between the neurons themselves (although it does introduce the need for
certain atomic operations—see Section 2.1.1).

34

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

3.4.3 Learning-parallelization

We’ve already seen how integration and firing can rely completely on con-
ceptually “local” information only, and if this were the case with the learn-
ing mechanism as well, we’d be all set. Luckily, this is the case with spike-
time dependent plasticity, which may be considered fully local. To see
why, revisiting Section 3.3.2—more specifically Equation 3.3—shows both
its prerequisite information and the information that gets modified as a
result of its invocation. ∆t requires knowledge of when the postsynaptic
neuron fired and when a spike travelling down a synapse last arrived a
the soma. This may be accomplished by eg. maintaining timestamps in
the neuron (for firings) and in the synapses (for spike arrivals). By ensur-
ing that the network model task that writes these timestamps runs before
the one that reads them, we also remove any dependencies here, thus al-
lowing parallel, local learning.

3.5 Spiking Neural Network model

The parallel SNN model described herein is an ehanced version of that
found in [Izhikevich, 2006], more specifically, the C++ version of it4. The
most prominent differences are that whereas Izhikevich’s code uses com-
pile-time, static-sized data buffers, this implementation is fully dynamic
in terms of neuron population size, synaptic connectivity and the max-
imum synaptic conduction delay, as well as having several algorithmic
redesigns/simplifications in order to enable proper parallelization. The
construction algorithms have also been redesigned, yielding a potential
speedup of a factor of N (N being the total number of neurons and com-
pared to the original reference algorithm) for its most time-consuming as-
pects, in addition to being heavily parallelized. The reference algorithms
will not be covered in any detail here—please see the original sources if
they are of interest.

3.5.1 Structure

The behaviour of any neural network is completely dependent on its con-
nectivity and the properties of the neurons in it. For the SNN, we’ll be
using the same approach as that found in [Izhikevich, 2006], as it allows
us to observe the network emergently change its dynamics and go into
waveform oscillations that resemble those of the brain (although this is

4http://vesicle.nsi.edu/users/izhikevich/publications/spnet.cpp

35

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

mostly so the STDP will have something to work upon, not something
that will be covered. Interested readers are referred to the original text).

For this and subsequent sections and chapters, let NE be the number
of excitatory neurons, NI the number of inhibitory interneurons, N the
sum NE + NI (i.e. the total number of neurons in the network, regardless
of their type), M the number of synaptic connections from a given neu-
ron to another (i.e. the number of axonal connections branching out from
a neuron) and D the maximum synaptic conduction delay between two
connected neurons.

We assume a linear, contiguous array of neurons, where each neuron is
referred to by its index i ∈ [0, N).

3.5.1.1 Neural dynamics

To control neuron membrane potential dynamics, four 1-dimensional ar-
rays v, u, a and d, all of length N, are maintained. These correspond di-
rectly to the Izhikevich model parameters outlined in Section 3.2.3, and
each neuron ni, i ∈ N will use and/or update elements of the tuple
{vi, ui, ai, di} for its dynamics.

All excitatory neurons are initialized with (a, d) = (0.02, 8.0), and all
inhibitory with (a, d) = (0.1, 2.0). These are the 2-dimensional differen-
tial variables for Regular Spiking and Fast Spiking neurons, respectively
[Izhikevich, 2004]. For all neurons, (v, u) = (−65.0, 0.2v), meaning that
they start out with a membrane potential at resting levels and a default re-
covery variable. Note that unlike v and u, a and d are never changed after
the initial network construction. This is because the intrinsic behaviours of
the neurons themselves do not change during the course of the simulation
(i.e. a Fast Spiking neuron will never cease to be a Fast Spiking neuron).

To update the membrane potential and recivery variables as the net-
work is being simulated, we also maintain an input-array of length N
where synaptic input to any given neuron is accumulated during a sin-
gle time step. Once the variables have been updated, this array is reset to
zero to prepare for the input from the next time step.

3.5.1.2 Synaptic connectivity

As with the implementation in [Izhikevich, 2006], the connectivity is com-
pletely random, with each neuron having exactly M axonal outputs to
other neurons. For this model, excitatory neurons may connect to other
excitatory and inhibitory neurons. Inhibitory neurons may only connect
to excitatory neurons. No recurrent self-connections are allowed, and a

36

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

given presynaptic neuron may only connect at most once to another post-
synaptic neuron.

Upon initialization, all synaptic weights are set to 6 for connections
from excitatory neurons, and −5 for connections from inhibitory neurons.
As inhibitory connections are considered non-plastic (i.e. have a fixed
value), this initial weight value will not change during the network’s life-
time. A maximum weight value of 10 is used for excitatory connections,
and any STDP updates that cause the weight to go > this value will be
truncated. Similarly, 0 is the lowest value a weight may have, as negative
weights are illegal for excitatory connections.

The synaptic connectivity is stored in two ways: a post 2-d matrix of
size N ×M containing for each neuron i ∈ N the index of the postsynap-
tic neuron that neuron i’s jth synapse points to. Inversely, we maintain
for each neuron the indices of its incoming connections (i.e. dendrites) in
a separate matrix pre syn w of size N × 3M. 3M is because the random
connectivity may lead to more than M neurons being connected to a given
neuron, so we must be able to store the indices to all these.

3.5.1.3 Synaptic conduction delays

Synaptic delays for all excitatory neurons’ outgoing connections are uni-
formly distributed, meaning that it will have M/D synapses for any value
∈ [1, D]. To allow the inhibitory connections to provide sufficient inhibi-
tion to their postsynaptic neurons, all their M synapses have a fixed con-
duction delay of 1 ms. D will be fixed at 20 ms throughout this thesis.

Referring back to Section 3.4, this guaranteed absence of zero-delay
connections satisfies the requirements for a fully parallelizable network.

To know which postsynaptic neurons to distribute synaptic input to
relative to when the presynaptic neuron has fired, we use two 2-matrices
delays start and delays length of size N × D that for any delay delta d ∈ D
determine the range [start, start + length) into a neurons post matrix row
that should have their inputs modified. To take an example, if neuron i is
an interneuron and d is 0, delays start[i][d] will be 0 and delays length[i][d]
will be M, as interneurons have a fixed 1 ms delay. Any d > 0 here would
leave both the length and start as 0, as no other delay delta is valid for
these. This is an algorithmic improvement over the original implementa-
tion that came from [Nageswaran et al., 2009] and takes advantage of the
fact that our synaptic delays are distributed sequentially, and interested
readers are referred to it for further details. This approach may under-
standably not be the easiest to grasp and is also more of an implemen-
tational detail, so a purely conceptual figure outlining how delayed input

37

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

works in relation with previously fired neurons is given in Figure 3.7. This
figure does not directly reflect the implementations.

3.5.1.4 Spike-time dependent plasticity

To enable efficient STDP, we use a N × M matrix of timestamps of when
any given synapse si,j ∈ N, M last had a spike arrive at its postsynaptic
neuron, and a 1-d matrix of length N containing each neuron’s last fir-
ing timestamp. This allows us to sparsely update parameters required for
STDP only when it is absolutely necessary, i.e. when a neuron actually
fires or a synapse actually carries a spike to the soma. Using timestamps
lets us directly use the STDP equations from Song et al. [2000] as outlined
in Section 3.3.2.

3.6 Network construction

Put briefly, this process is threefold:

1. Initialize the properties of all neurons and synapses.

2. Randomly connect each neuron to exactly M other neurons, ensuring
that no interneuron connects to other interneurons, that any neuron
attempts to recurrently connect to itself or that a neuron tries con-
necting more than once to another neuron. Synaptic weights are also
set at this point, depending on which neuron they branch out from.

3. Assign conduction delays to each synapse. This is as mentioned the
critical step for allowing the network to be parallelized.

A (simplified) graphical representation of this process is given in Figure 3.8.
During the thesis-work, the construction stages were also parallelized and
optimized, yielding a significant speedup over the serial reference-algorithm,
but as the simulation is by far the most time-consuming (and relevant) as-
pect, this will not be covered.

3.7 Network simulation

Referring back to the Izhikevich equations in Section 3.2.3, they are all
tuned to yield biologically plausible membrane potentials at an update
rate of 1 millisecond. Going by this it comes as no surprise that we have

38

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

B

C

D

A
2

1

4

5
0 1 2 3 4∆t

presyn
neuron

A

B

D

-

C

-

-

-

-

D

-

C

Delay table

Spike �ring event tablet=0

No neurons �red yet

t=1

Neuron A �res

Find neurons to give input to by checking the event array
For each (N, t_n) in the array, provide input to all neurons listed in delay table column t-t_n
Only match is at table cell A,0; add weight_A,D to D’s input.

A:1

t=2

Neuron B �res

C found at A,1 (as t-t_n is 2-1 = 1). Add weight_A,C to C’s input

A:1 B:2

t=5

No new neurons �ring

D found at B,3 (as t-t_n is 5-2 = 3). Add weight_B,D to D’s input

A:1 B:2

t=6

No new neurons �ring

C found at B,4 (as t-t_n is 6-2 = 4). Add weight_B,C to C’s input

A:1 B:2

t=3

No new neurons �ring, and no delays match A:1 B:2

t=4

No new neurons �ring, and no delays match A:1 B:2

Figure 3.7: Conceptual example of spike input over synapses with delays.
Each synapse has an integral delay associated with it.

39

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

1. Create initial neuron pool
 - Initialize neuron dynamics variables that
 determine the behaviour of the neurons

 - white: excitatory neuron (Regular Spiking)
 - shaded: interneuron (Fast Spiking)

2. Create random connectivity
 - Each neuron has the same amount of outgoing
 axons, but may have a di�erent number of
 incoming dendrites
 - Assign initial synaptic weights. Synapses from
 excitatory neurons get +6, inhibitory get -5.

3. Assign synaptic delays
 - All connections from interneurons have a 1 ms
 delay, as they need to be able to strongly inhibit
 their target neurons
 - In the actual model, all these delays would be
 uniformly distributed

No self-recurrent connections, interneuron-to-interneuron
connections or multiple connections from one neuron to
another are allowed in our network model

1

5

7

5

w = -5

w = -5

w = 6

w = 6

w = 6

w = 6

w = 6

w = 6

w = -5

w = -5

1 8

4
1

1

3
2

Figure 3.8: Randomly connected spiking network construction phases

40

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

to process 1000 individual time steps per simulated second. There are
numerous stages/tasks that goes into a single time step:

1. (Re)set all elements of neuron input array to zero.

2. Simulate random thalamic input by setting neural input to +20 mV
for a total of N/1000 randomly selected neurons. Even though this
might seem like a very low amount of neurons, the relatively rich
connectivity ensures that we get activity as that seen in [Izhikevich,
2006].

3. The membrane potential v is checked for every neuron to see if it’s
equal to, or beyond, the threshold required for it to fire. If so, reset
its membrane potential, update its firing timestamp and add it to the
list of fired neurons.

In addition, all synapses that connect to the neuron have their weight
derivatives updated with STDP LTP based on when they last carried
a spike to the neuron relative to the current firing-time.

4. All neurons that have fired in the D previous time steps are pro-
cessed, distributing input to their proper postsynaptic neurons based
on the synaptic delays present. This updates the “spike last arrived
from this synapse”-timestamps for all the synapses in question, as
well as invoking STDP LTD on their weight derivatives relative to
the time the postsynaptic neuron last fired.

5. Membrane potentials for all neurons are updated based on the input
from the previous stage. It may be noted that it’s fully possible to
reset the input for the neurons in the same operation as this, avoiding
having this as a separate task altogether, but the input task is kept as
it (hopefully) makes the process more intuitive.

In addition, after each simulated second, other tasks have to be performed:

1. Every synapse has its actual weight modified by its weight deriva-
tive, which may be positive or negative, depending on the STDP per-
formed on it in the course of the last 1000 ms. This derivative is then
reset back to zero so that it may be used for another second of STDP.
Weight bounds checking is also done here to ensure that no weight
ends up outside the preset range.

2. The list of firing neurons is “shuffled” so that it only contains the
neurons that have fired late enough in the last second that they’ll

41

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

have an effect on the neurons that will fire at the start of the next sec-
ond (consider a neuron firing at timestamp 995 which has synapses
with up to 20ms of delay). The rest of the firing-list is then free to be
used by firings in the next second.

3.7.0.5 Identifying parallelizable tasks

The approach used for identifying parallel regions is to look at the logical
control flow loop regions that make up the overall simulation algorithm
and ascertain the level of dependency between them (refer back to Sec-
tion 2.1.1), and inside them. If there are dependencies between them it
means they have to be run sequentially. Conversely, if they are free of de-
pendencies they may be run in parallel. For the tasks’ internal loops, if all
iterations of a loop do not require the knowledge of any other iterations of
the loop, the loop itself may be parallelized as well.

Due to the inherent nature of SNNs, we can already dismiss one sort of
“embarassing parallelism” that was discussed in Section 2.1, meaning that
no time step can be computed in parallel with another one. Millisecond
3 depends on millisecond 2 which in turn depends on millisecond 1 and
so on. This is a natural consequence of the behaviour of the net being an
emergent product of the individual spike timings, and simulating the time
steps out of order would give completely different (and not to mention
completely incorrect) outcomes.

Looking at the stages that make up a second and time step, it quickly
becomes obvious that we’re dealing with several chains of data-dependen-
cies. Resetting the input array is required before any of its elements can be
assigned during the random thalamic input (otherwise, the random input
would be lost as the input buffer is cleared). The firing-check does not re-
quire any knowledge about the state of the input buffer, and does therefore
not have a data-dependency here. This may seem very counterintuitive,
but recall that the firing check only uses the membrane potentials of the
neurons, which were already calculated at the end of the previous time
step. Distributing the delayed inputs requires both knowledge of firings
and the ability to add to the input of neurons, and does therefore have a
dependency to both the input handling and firing-checks5. Updating the
membrane potentials requires the final known state of the input buffer for
all neurons, and therefore depends on all the tasks mentioned thus far.

5Although since all it does is add to existing values, the random thalamic input could
conceivable be performed after the firing processing. There is still a dependency on hav-
ing an initially reset input buffer, however.

42

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

The tasks that are performed at the end of the simulated second—the
weight updates on all the STDP operations and the firing buffer “shuf-
fling” on all the firings—have an obvious dependency on all the millisec-
ond time steps the second is comprised of. These two are on the other hand
not dependent on each other, as they operate on completely different data.
The final dependency graph is given in Figure 3.9.

All the tasks listed here are comprised of an inner loop, and all are con-
ceptually internally parallelizable, as the individual loop iterations do not
have dependencies on the results of other iterations. This does however
require the proper use of synchronization operations, as outlined in Sec-
tion 2.1.1 whenever a shared piece of data is updated. The shared pieces of
data that are relevant for the network simulation is the value of the input
buffer for any given neuron (as multiple neurons processed in parallel may
be attempting to add their delayed input to the same postsynaptic neu-
ron) and the current neuron firing count, as this value is used as an index
into where information about the firing neuron should be placed. Failure
to maintain such synchronization will mean that certain individual neu-
ron firings eventually will appear to be randomly dropped or overwrit-
ten, resulting in a erroneous network operation (and a massive debugging
headache).

3.7.0.6 SNN model simulation pseudocode

The realization of the network simulation and its identified parallel re-
gions is given here in the form of pseudocode. The keyword parallel-for
indicates that the body of its for-loop may be arbitrarily parallelized for the
entire range that the loop in question covers. This also naturally implies
that the correctness of the code would be unchanged if these loops were
changed to be serial loops. Note that although the parallel task identifi-
cation shows how certain phases may be run side-by-side, this code stays
simple and only parallelizes within the tasks, not between them (i.e. only
loop-level parallelism, not task-level parallelism). Also note that the ac-
tual pseudocode’s operation deviates slightly from what has already been
discussed, as it is meant to provide a decently close approximation to how
the code may appear in anyone’s (imperative) programming language of
choice, rather than merely representing high-level concepts.

The pseudocode uses the same format as that from the ubiquitous Cor-
men et al. [2003], and should as a result hopefully be of a familiar format to
most. All matrix/vector subscripts are shown using standard C-notation
rather than mathematical notation. All variables used are presumed to
be global and correspond directly to those discussed in the previous sec-

43

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

reset neuron input

for each millisecond time step:

for each simulated second:

random thalamic input neuron �rings and LTP

distribute delayed input and LTD

update membrane potentials

update synaptic weights prepare �ring event bu�er for next second

= individual task whose internals may be parallelized

= grouping of multiple tasks

Arrows identify data dependencies and subsequent task ordering. Tasks that are on the
same horizontal line may be executed in parallel.

Figure 3.9: Network simulation task dependencies

44

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

tions. For those who aren’t already mentioned, their function/contents is
as follows:

timestamps and syn timestamps correspond to the 1-dimensional neuron
firing timestamp and 2-dimensional synapse spike arrival timestamp ma-
trices outlined in Section 3.5.1.4, respectively. sd is the 2-d matrix holding
synaptic weight derivatives for STDP, and s is the 2-d matrix holding the
current active synaptic weights, both of dimensions N×M. I is an 1-d ma-
trix of size N that contains the current synaptic input to any given neuron
(see Section 3.7).

firings is a 2-d matrix of size max firings×2. The matrix’s first column
contains the time step at which the neuron fired and the second column
contains the index of the fired neuron itself. max firings is a “sufficiently
high” value so that the number of firings in any given second does not
overflow the firing buffer. A fairly safe value here could be e.g. 100N.

45

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

PARALLEL-PROCESS-SPIKING-NETWORK(sectotal)
1 � Initialize STDP timestamp variables
2 for i← 0 to N
3 do timestamps[i]← −100000
4 for j← 0 to M
5 do syn timestamps[i][j]← −100000
6 for i← 0 to D � Initialize firing history buffer
7 do firing start history[i]← 0
8 n firings← 0 � Number of neuron firings
9 ts← 0 � Timestamp—not reset per second

10 � Begin neural simulation
11 for sec← 0 to sectotal
12 do � 1 ms time step resolution
13 for t← 0 to 1000
14 do � Reset neural input
15 parallel-for i← 0 to N
16 do I[i]← 0
17 � Random thalamic input
18 for i← 0 to N/1000
19 do I[RANDOM(N)]← 20
20 pre firings← n firings
21 parallel-for i← 0 to N
22 do if v[i] ≥ 30
23 then HANDLE-NEURON-FIRING(i)
24 � Update firing history array
25 for i← 0 to D− 1
26 do firing start history[i]← firing start history[i + 1]
27 firing start history[D− 1]← pre firings
28 parallel-for k← firing start history[0] to n firings
29 do time← firings[k][0]
30 neuron← firings[k][1]
31 length← delays length[neuron][t− time]
32 post start← delays start[neuron][t− time]
33 for j← post start to post start + length
34 do i← post[neuron][j]
35 ATOMIC-ADD(I[i], s[neuron][j])
36 syn timestamp[neuron][j]← ts
37 if neuron < NE
38 then wd← 0.12 exp(−(ts− timestamps[i])/τ−)
39 sd[neuron][d]← sd[neuron][d]−wd
40 (cont’d on next page)

46

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

41 � Update membrane potentials and recovery variables
42 parallel-for i← 0 to N
43 do UPDATE-NEURON(i)
44 ts← ts +1
45 � Modify excitatory synapses
46 parallel-for i← 0 to NE
47 do for j← 0 to M
48 do sd[i][j]← 0.9 sd[i][j]
49 s[i][j]← s[i][j] + 0.01 + sd[i][j]
50 if s[i][j] > s max
51 then s[i][j]← s max
52 if s[i][j] < 0
53 then s[i][j]← 0
54 � Update firing count buffer for next second
55 k← firing start history[1]
56 for i← 0 to D
57 do firing start history[i]← firing start history[i]− k
58 for i← 0 to n firings−k
59 do firings[i][0]← firings[i + k][0]− 1000
60 firings[i][1]← firings[i + k][1]
61 n firings← n firings−k

HANDLE-NEURON-FIRING(i)
1 v[i]← −65 � Reset membrane potential
2 u[i]← u[i] + d[i] � Update recovery variable
3 timestamps[i]← ts � Set “last fired” timestamp
4 for j← 0 to pre count[i]
5 do � Note: see the comments below for explanation on the indexing
6 pre syn idx← pre syn w[i][j]
7 wd← 0.1 exp((syn timestamp[pre syn idx]− ts)/τ+)
8 sd[pre syn idx]← sd[neuron][d] + wd
9 fire idx← ATOMIC-ADD(n firings, 1)

10 if fire idx ≥ n firings max
11 then error “Too many neurons firing”
12 firings[fire idx][0]← t � Time
13 firings[fire idx][1]← i � Neuron index

47

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

UPDATE-NEURON(i)
1 � Update membrane potential and recovery variable for neuron i
2 v[i]← v[i] + 0.5((0.04v[i] + 5)v[i] + 140− u[i] + I[i])
3 v[i]← v[i] + 0.5((0.04v[i] + 5)v[i] + 140− u[i] + I[i])
4 u[i]← u[i] + a[i](0.2v[i]− u[i])

At the very top, lines 2–5 initialize the firing timestamps for all neurons
and the spike arrival timestamps for all synapses. These are initially set to
−100, 000 so that when they’re used in a STDP calculation without having
first been overwritten by an actual timestamp, they will yield a number
extremely close to zero, thereby not having an effect. Lines 6—7 set the
contents of the firing history buffer. This is just a simple way to keep track
of how many neurons were firing in the last D time steps, allowing us
to know exactly how many neurons might have an effect on the input of
neurons in the current time step.

The following ranges of lines correspond to the parallelizable tasks
mentioned in Section 3.7:

Lines 15–16 reset neuron output.

Lines 18–19 random thalamic input. Note that this loop is not parallelized
here, as the number of iterations is considered too small and it would
require synchronization to ensure the pseudo-random number gen-
erator does not get any race conditions.

Lines 21–23 neuron firing and LTP.

Lines 28–39 distribute delayed input and LTD.

Lines 42–43 update neuron membrane potentials and recovery variables.

Lines 46–53 update synaptic weights.

Lines 58–60 prepare firing event buffer for next second. Note again that
this loop is not parallelized here, as the number of iterations is not
deemed worth it.

Lines 7 and 8 in HANDLE-NEURON-FIRING show a rather strange way
of indexing into both the syn timestamp and sd matrices. These are 2-
dimensional matrices, but here we are treating them as an unwrapped
1-dimensional matrix by considering each of its rows as laid out continu-
ously after each other in memory. pre syn idx on line 6 is simply a precom-
puted 2-d index unwrapped into a single 1-d index which can be used

48

CHAPTER 3. ARTIFICIAL SPIKING NEURAL NETWORKS

for both the synaptic timestamp and synaptic weight derivative matri-
ces (they both have dimensions N ×M). The original implementation in
[Izhikevich, 2006] achieves this by using pointers, but this is not portable
for our later purposes, as pointers generated on the CPU are not valid on
the GPU. Integral indices, on the other hand, are always valid.

As can be seen from UPDATE-NEURON(i), it updates vi by splitting
the computation into two 0.5 ms differential equations, thereby improving
numerical accuracy [Izhikevich, 2006].

It should be mentioned that there exists a potential race condition on
line 39. If an excitatory neuron fires twice or more within D time steps,
it will get added to the list of firing neurons multiple times, and as such
there may be multiple threads attempting to modify sd. For the purpose of
this thesis, we make the simplifying assumption that no excitatory neuron
does in fact fire twice within an interval of D time steps.

49

Chapter 4

Implementation

The previous chapter gave the theoretical and algorithmical foundations for how
a parallel artificial spiking network may be realized. This chapter quickly outlines
the creation of the CPU and GPU implementations based on this.

4.1 Introduction

During development, the correctness of the different implementations was
verified by comparing their firing outputs over several seconds with that
of the reference algorithm from [Izhikevich, 2006], ensuring that their pseu-
do-random number generators had identical starting points so that their
sequence of events would also be identical.

4.2 Parallel Izhikevich SNN on the CPU using
OpenMP

The CPU version of the code is in its essence a fairly direct mapping of the
pseudocode in Section 3.7.0.6 into C++, with parallel-for replaced with
the appropriate OpenMP directives, and the invocations of ATOMIC-ADD
replaced with appropriate hardware platform support functions. Since

floating-point
atomic
operations are
not natively
supported, they
had to be
(losslessly)
emulated with
integer atomic
operations.

4.3 Parallel Izhikevich SNN on the GPU using
NVIDIA CUDA

To create the GPU CUDA implementation, we have to somehow map all
the tasks outlined in Section 3.7 to a set of individual kernels that satisfy

50

CHAPTER 4. IMPLEMENTATION

the programming model constraints of the CUDA platform.
The GPU implementation is comprised of 7 kernels that each handle

specific parts of the spiking network simulation process. 5 of these are
invoked per time step, the remaining 2 at the end of each simulated second
in order to update synaptic weights according to the STDP and to prepare
for the next second. These kernels are all fairly functionally identical to the
simulation stages we’ve already seen, so they will not be covered in great
detail. There are however certain stages that are decomposed into several
kernels for the sake of efficiency, and the reasoning behind this will be
given. See Figure 4.1 for a diagram representation of how these kernels
are launched.

Find �ring neurons Shu�e �ring array

Synaptic LTP Update synapse weights

Process excitatory �rings + LTD

Process inhibitory �rings

Update neuron dynamics

= CUDA kernel

1000 ms
processed?

No

Yes

Figure 4.1: Control-flow diagram of the kernels and their invocation (in-
spired by diagram in [Nageswaran et al., 2009])

1. Find firing neurons. Runs through all N neurons and checks which of
these have fired, adding the fired neurons to separate firing event lists
for excitatory and inhibitory neurons. The reason for this distinction
will hopefully soon be made clear.

2. Synaptic LTP. All incoming synapses for the neurons that fired in ker-
nel 1 have their synaptic weight derivatives modified (potentiated).

51

CHAPTER 4. IMPLEMENTATION

3. Process excitatory firings and LTD. As with the CPU implementation,
the recently firing neurons are processed to distribute synaptic input
to their postsynaptic neurons based on the synaptic delays, and these
synapses have their weight derivatives modified (depressed).

4. Process inhibitory firings. Since we know that all interneurons have a
fixed, 1 ms delay in our model and that no STDP is performed on
such synapses, a custom kernel is used that is especially tailored to
be efficient for this case alone. This is the reason for the separate
firing lists written to by the first kernel.

5. Update neuron dynamics. Updates membrane potentials and recovery
variables for all N neurons according to the Izhikevich neuron model
used. For this implementation, this kernel also resets the synaptic
input for the neurons.

6. Update synapse weight. Updates all N×M synaptic weights based on
the weight derivatives that were computed during the course of the
previous second of simulation.

7. Shuffle firing array. Since all the neuron firing information is kept
locally in the GPU’s memory, we must run this code on it to prepare
for the next second of simulations.

One challenge in creating these kernels lie primarily in the fact that there
is no notion of non-parallel execution of code on the GPU, meaning that
we’re left handling e.g. non-parallel for loops on the CPU, such as that
on pseudo code line 25, something that in the current implementation re-
quires a small amount of memory to be copied from the GPU to the regular
system memory (as the two cannot directly access each other) and back.
Despite the amount of memory copied being on the scale of a few dozen
bytes, it still leads to some overhead. The current implementation also
requires this information from the GPU in order to determine the block-
/thread ratio when launching certain kernels, such as those whose block
count is dependent on the number of fired excitatory and inhibitory neu-
rons.

The other challenges outlined in Section 2.2.2 were very relevant dur-
ing the implementation of the GPU spiking network and were not com-
pletely solved. The inherent low-level nature of the approaches used and
attempted in the implementation will not be covered, as they could nearly
fill a separate thesis in their own right and would take focus away from
the spiking networks.

52

Chapter 5

Method

This chapter outlines the experiments and methodologies utilized in order to
determine how well the implementations from Chapter 4 realize their theoretically
attainable goals of parallel scalability.

5.1 Introduction

As the purpose of this thesis to a large extent involves evaluating the bene-
fits that desktop-level parallelization can bring to SNN model simulation,
a very important concept is that of time. More spefically, how much time is
spent during simulations in non-parallel vs. parallel test runs, and which
parts of the algorithms that have already been outlined benefit the most
and least from parallelization. Going from this, getting good timing results
is important and for the results that will be presented in this thesis, a com-
bination of high-resolution performance timers and amortization through
averaging over multiple runs is used.

All network topology is derived from the output of pseudo-random
number generators. Pseudo-random number generator seeds were unique
for each invocation, which together with the result averaging should mit-
igate the effect of particularly “lucky” or “unlucky” seeds. Note that this
means that invocations of the same network size with different thread
counts were not with identical network topologies, but this should again
be amortized away by the multiple runs. For all test runs, maximum delay
D = 20.

53

CHAPTER 5. METHOD

5.2 CPU (OpenMP)

The hardware used for the testing was an Intel Core2Quad 9300 with each
core running at 2, 5 GHz and with a total of 4 gigabytes of 800 Mhz mem-
ory. Being a quadcore system, this allowed for testing with 4 simultaneous
threads, which should presumably provide a decent indication of scalabil-
ity performance and parallelization viability.

To ensure that the results of the single-threaded tests would not be
artificially skewed by OpenMP runtime overhead, these were run with
OpenMP directives completely removed through conditional compilation.
All C++ code was compiled in release mode on Visual C++ 2008 with op-
timizations enabled.

5.2.1 Areas and procedures of testing

For the CPU implementation, the following were tested, all over a simu-
lated time period of 10 seconds:

1. Network processing times—serial, parallel and with different values
of M

2. Total time spent for most of the individual parallelizable stages out-
lined in Section 3.7.0.5.

To determine the scalability of the parallel algorithms, total simulation
times (not including construction or buffer allocations et al.) were logged
for a total of 4 different runs of 10 simulated seconds sampled at 10k neu-
ron intervals for all thread-counts. This was performed for M ∈ {100,
200, 300} to see not only what increased synaptic connectivity does with With M as

usual being the
outgoing
synapse count
from all
neurons

the runtime and parallelism performance, but also to see what this does
for the overall network activity. As the performance of the simulations
are bound to the number of neurons being fired, this should help show
to what extent network size and synapse count impacts neuron firing fre-
quency. This was done by calculating the average firing frequency across
several runs.

Similarly, to identify the benefits (or lack thereof) of parallelizing the
presumably most expensive tasks outlined in Section 3.7.0.5, the total time
spent executing them in various neuron/synapse/thread configurations
was recorded. This included the input buffer reset, the firing checks+LTP,
the neuron delayed input+LTD and the per-second synapse weight ad-
justments. To avoid an excessive number of graphs, only the 1-thread and

54

CHAPTER 5. METHOD

4-thread test runs will be presented, as these provide the extrema of the re-
sults and should therefore serve as the biggest indication of performance.
As with the other time-oriented results, these values were calculated as the
average of 4 individual runs. Total simulation time spent to gather these
measurements was around 24 hours.

5.3 GPU (CUDA)

The graphics hardware used for these tests was an NVIDIA 9800 GTX+
graphics card with 512 MiB RAM and 16 multiprocessors, totalling 16×
8 = 128 concurrent thread execution units, otherwise running on the same
hardware as the CPU tests.

5.3.1 Areas and procedures of testing

As with the CPU implementation, the following was tested over a simu-
lated time period of 10 seconds:

1. Network processing times for M ∈ {100, 200, 300}.

2. Total time spent for the CUDA kernels outlined in Section 4.3.

Due to the explosive increase in memory requirements as M grows, it was
only possible to test up to N = 40, 000 for M = 200 and N = 25, 000 for
M = 300. There simply wasn’t enough memory on the GPU to go any
higher with the current datastructures and algorithms. To compensate for
this, the interval between timing-samples was halved to 5, 000.

55

Chapter 6

Results

This chapter gives the results of the experiments outlined in Chapter 5. These
results will be analyzed and discussed in Chapter 7.

6.1 CPU

For all test runs, T is used within the graphs to denote the thread count
used for the given run.

Figure 6.1 shows the effect that an explicitly increasing neuron count
has on a network with a connectivity factor of M = 100. Due to the connec-
tivity, this comes with an implicit synapse count of NM, so the total count
of synapses for the highest neuron count (N = 100, 000) is 10, 000, 000.
Although the theoretical speedup is not reached, adding a 2nd and 3rd
thread each yields a little less than 25% increase in performance over the
single-threaded result and combined 4 threads manage to achieve almost
50% of their optimal speedups. For large network sizes this could be con-
sidered an improvement that is well worth it, but hardware with higher
core counts would be required to ascertain how well the results scale be-
yond 4 threads. There is a fairly constant speed increase for each added
thread (except from when the 4th thread is added). A constant speed in-
crease is something that is highly desired, as it implies linear scalability is
possible (i.e. “add n cores; get a factor of n speedup”). The reason for why
the 4th thread did not reach the same benefits can really only be specu-
lated at this point, due to a lack of proper low-level profiling tools, but a Profiling here

refers to the
ability to
augment the
generated
executable code
in a way that
allows
performance to
be recorded on
a function/in-
struction
level

possible explanation is given in Section 7.1.
Figures 6.2 and 6.3 show a more troubling development. The relative

speedup is severly reduced already at M = 200 and is nearly gone al-
together at M = 300. This is a potentially very important set of results,

56

CHAPTER 6. RESULTS

0

20

40

60

80

100

120

140

160

180

0 20000 40000 60000 80000 100000

Se
co

nd
s

Total neuron count

CPU spiking neural network parallel runs

1 thread
2 threads
3 threads
4 threads

Theoretical optimum

Figure 6.1: Time spent simulating 10 seconds of SNN time for increasing
network sizes and thread counts with M = 100. Theoretical optimum is
given as a function of the 1-thread result divided by 4.

57

CHAPTER 6. RESULTS

as it could mean that the methods discussed in this thesis are incapable
of dealing with SNNs that have a high degree of connectivity, which to a
large degree is what one would find in a biological neural network and
consequently in most realistic simulations.

Despite the vanishing performance numbers with high values of M,
we can at least see that the increase in time per added 10k neurons also is
essentially linear for all tested values of M. This is again a good thing, as
a superlinear increase could quickly make computation of large networks
infeasible. As the amount of synapse processing that goes on in a sparsely
firing SNN is largely a product of how often neurons fire (delayed input
integration, LTP/LTD), the increase in simulation time for each value of
M being linear rather than superlinear can be readily explained by look-
ing at Figure 6.4. It shows that despite an increasing neuron count, the
network activity remains stable and with a near fixed frequency of firing
(aside from a frequency-leap at the rise from 1, 000 to 10, 000 neurons in all
cases). If the firing frequency had increased with the size of the network,
the rate of change in time would presumably increase at a non-linear rate
as although the number of neurons and synapses rises linearly, the amount
of work that would have to be done upon them would be higher for each
incremental step.1

The input reset stage in Figure 6.5, although contributing marginally
to the total simulation time, is clearly not a very good choice for paral-
lelization at the tested neuron counts. The graph is effectively divided in
two, where the least amount of time is spent in the serial runs and the
most amount of time is spent in the parallel ones (the serial runs being
approximately 4 times faster for low neuron counts).

The membrane potential firing check and synapse LTP stage in Fig-
ure 6.6 to a large extent reflects the results we’ve seen for M ∈ {100, 200, 300},
but actually with a higher level of displayed performance. It is interesting
to note that the resulting benefit from parallelization goes down steadily
for each increasing level of M, with the relative speedup for M = 100
being ∼ 50%, ∼ 30% for M = 200 and ∼ 20% for M = 300.

The real surprise arrives with the neuron delayed input and synapse
LTD stage as given in Figure 6.7. Aside from when M = 100, the parallel
runs take significantly longer time to execute than their serial counterparts!
M = 300 incurs a ∼ 45% slowdown when running with 4 threads, which
is very high considering the amount of time that is spent in this stage in

1It may be noted that the recording of average frequencies did not differentiate be-
tween the firings of excitatory and inhibitory neurons. Since the excitatory neuron has to
be processed over D time steps rather than just a single one, there might be discrepancies
here that go unnoticed.

58

CHAPTER 6. RESULTS

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000

Se
co

nd
s

Total neuron count

CPU spiking neural network parallel runs (M=200)

1 thread
2 threads
3 threads
4 threads

Theoretical optimum

Figure 6.2: CPU: Time spent simulating 10 seconds of SNN time for in-
creasing network sizes and thread counts with M = 200.

59

CHAPTER 6. RESULTS

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000

Se
co

nd
s

Total neuron count

CPU spiking neural network parallel runs (M=300)

1 thread
2 threads
3 threads

Theoretical optimum

Figure 6.3: CPU: Time spent simulating 10 seconds of SNN time for in-
creasing network sizes and thread counts with M = 300. Only 3 threads
used due to the almost non-existing performance increase displayed.

60

CHAPTER 6. RESULTS

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0 20000 40000 60000 80000 100000

H
z

Neurons

Average neuron firing frequency/sec

M=100
M=200
M=300

Figure 6.4: Average firing frequencies for SNN neurons in networks with
synaptic connectivity M ∈ {100, 200, 300}.

61

CHAPTER 6. RESULTS

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0 20000 40000 60000 80000 100000

Se
co

nd
s

Total neuron count

Time spent during input buffer reset

M=100, T=1
M=100, T=4
M=200, T=1
M=200, T=4
M=300, T=1
M=300, T=4

Figure 6.5: CPU: Time spent during input buffer reset for 1-thread and
4-thread test runs. Note that these test runs should be independent from
the synapse count, so the inclusion of runs for additional values of M is
primarily to ascertain this in practice.

62

CHAPTER 6. RESULTS

0

50

100

150

200

250

300

350

400

450

0 20000 40000 60000 80000 100000

Se
co

nd
s

Total neuron count

Time spent during firing checks+LTP

M=100, T=1
M=100, T=4
M=200, T=1
M=200, T=4
M=300, T=1
M=300, T=4

Figure 6.6: CPU: Time spent during the firing check+LTP stage for 1-thread
and 4-thread test runs

63

CHAPTER 6. RESULTS

general, and it would appear that for each stepwise increase in M, the gap
widens.

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

Se
co

nd
s

Total neuron count

Time spent during delayed input+LTD

M=100, T=1
M=100, T=4
M=200, T=1
M=200, T=4
M=300, T=1
M=300, T=4

Figure 6.7: CPU: Time spent during the delayed input+LTD stage for 1-
thread and 4-thread test runs

The membrane potential update stage in Figure 6.8 gives the overall
best result in terms of theoretical vs. actual performance increase. Using 4
threads here actually incurs a speedup of nearly exactly 4x over the single-
threaded version.

6.2 GPU

The big question is how the GPU compares up against the CPU, and whet-
her or not it exhibits the same issues when exposed to dense synapse
configurations. Due to the inherent parallel nature of the GPU, it makes
sense to primarily compare it up the results of the parallel runs of the
CPU, rather than the serial ones. Figure 6.9 shows the runtimes for the
tested values of M. As mentioned in the previous chapter, an immediately
visible problem here is the fact that the number of neurons testable for

64

CHAPTER 6. RESULTS

0

5

10

15

20

25

0 20000 40000 60000 80000 100000

Se
co

nd
s

Total neuron count

Time spent during membrane potential updates

M=100, T=1
M=100, T=4
M=200, T=1
M=200, T=4
M=300, T=1
M=300, T=4

Figure 6.8: CPU: Time spent during the membrane potential update stage
for 1-thread and 4-thread test runs

65

CHAPTER 6. RESULTS

each increment of M is nearly halved due to the equally rapidly increas-
ing memory requirements to represent the synaptic information (weights,
derivatives, time stamps et al). Despite this, the results are fairly promis-
ing. The simulation times are consistenly lower than those of even the best
performing M = 100, T = 4 run on the CPU, displaying a ∼ 34% relative
improvement for N = 70, 000 (76 vs 50 seconds for the CPU and GPU,
respectively). As M increases, the benefit seems to become even more ap-
parent with a ∼ 61% improvement for N = 40, 000 and M = 200 (91 vs 35
seconds) and a ∼ 76% improvement for N = 25, 000 and M = 300 (∼ 125
vs 30 seconds).

0

5

10

15

20

25

30

35

40

45

50

55

0 20000 40000 60000 80000

Se
co

nd
s

Total neuron count

M=100
M=200
M=300

Figure 6.9: Total time spent processing 10 simulated seconds for the GPU
SNN implementation N ∈ [1000, 70000] for M = 100, N ∈ [1000, 40000] for
M = 200 and N ∈ [1000, 25000] for M = 300 with 5k neuron increments

In order to get a better view on how different kernels scale with in-
creasing neuron counts, Figures 6.10, 6.11 and 6.12 show the summation
of timings for the kernels, including both the time it takes for the CPU to
initiate the invocations and the actual processing time on the GPU itself.
All tell essentially the same story—4 out of 7 kernels exhibit a very low
growth in time as a function of N, while the remaining 3 have growths
that far more resemble those of the CPU implementation. What this im-

66

CHAPTER 6. RESULTS

plies will be discussed in the next chapter.

0

1

2

3

4

5

6

0 20000 40000 60000 80000

Se
co

nd
s

Total neuron count

CUDA kernel timings, M = 100

find firing neurons
synaptic LTP

excitatory firings+LTD
inhibitory firings
update dynamics

update syn weights
shuffle firing array

Figure 6.10: GPU kernel timings for M = 100. A very distinct difference
in rate of change is noticeable between the kernels

67

CHAPTER 6. RESULTS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10000 20000 30000 40000

Se
co

nd
s

Total neuron count

CUDA kernel timings, M = 200

find firing neurons
synaptic LTP

excitatory firings+LTD
inhibitory firings
update dynamics

update syn weights
shuffle firing array

Figure 6.11: GPU kernel timings for M = 200.

68

CHAPTER 6. RESULTS

0

1

2

3

4

5

6

0 10000 20000 30000

Se
co

nd
s

Total neuron count

CUDA kernel timings, M = 300

find firing neurons
synaptic LTP

excitatory firings+LTD
inhibitory firings
update dynamics

update syn weights
shuffle firing array

Figure 6.12: GPU kernel timings for M = 300.

69

Chapter 7

Discussion

In this chapter, the results from Chapter 6 will be analyzed and discussed, fo-
cusing on to which degree the implementations can be said to have achieved the
goals they set out to, namely a notable speedup of the SNN simulation process
on desktop hardware.

7.1 OpenMP implementation

The improvement results generated by the CPU implementation range
from “good” (simulation time cut nearly in half) to “essentially not at all”.
The task here is to attempt to make sense of this and ascertain whether or
not this is an issue that is inherent to the abstract problem domain—i.e.
SNN parallelization on desktop hardware—or if it is primarily an issue
with the concrete implementation.

The poor performance of the input reset task is a good sign that this op-
eration should be incorporated into the membrane potential update task,
as the value of a neuron’s input can be safely discarded (i.e. reset) after its
membrane potential v has been recalculated. Recall from Section 2.2.1 that Refer back to

Section 3.2.3 for
details

subdividing and processing a task in parallel requires coordinating several
threads both at the start of the task and after it has finished, something that
is a fairly expensive operation when compared to simply running a tight
inner loop on the CPU on a single thread. We can see from Figure 6.5
that the time spent for serial and parallel execution will converge if we
extrapolate the graph slightly to around 110, 000 neurons, meaning that
even keeping it the way it currently stands will be beneficial after a certain
threshold is reached, but even then it stands to reason that it should be
moved to the membrane potential update task.

A very likely contributing factor for the membrane potential check and

70

CHAPTER 7. DISCUSSION

LTP task not giving a full theoretical speedup is the fact that on average
only a few of the neurons will actually have a membrane potential that
is above the firing-threshold. Recalling the average firing frequencies in
Figure 6.4, the probability for any given neuron firing when M = 100 is
∼ 5.5/N. For those neurons that do not fire (i.e. the majority of them), the
amount of code actually executed is minimal. As with the input reset task,
if there is hardly any work for a thread to do, it’s often simply not worth
the overhead associated with distributing work to the threads, synchro-
nizing their launches and rejoins et al. This is an issue that is very hard to
avoid on a multiprocessor PC system. Despite this, there is still a tanglible
benefit to keeping the parallelization, in turn justifying its presence.

The delayed neuron input and LTD task is somewhat bi-polar in its
nature. It spans a 40–50% performance increase with the lowest synapse
count to a 40–50% performance loss with the highest synapse count when
run in parallel and compared to the serial version. Aside from the distribu-
tion of work between multiple threads, the only actual difference between
the two is that the parallel version requires that all synaptic inputs to a
neuron are added atomically to avoid multiple threads overwriting each
other’s results (see pseudo-code line 35 in Section 3.7.0.6). Floating point
atomic operations are not natively supported by the hardware, meaning
input addition must be emulated through other atomic operations. This
works well and with no loss in precision, but requires the algorithm to
continuously read back the memory location and retry an atomic write if
other threads beat it to its attempt. In turn, this implies that each synapse
does not mean 1 atomic operation, but rather at least 1 atomic operation. It
also makes sense to assume that as the number of synapses (and/or CPUs)
grow, so does the number of such “collisions” between threads attempting
to write their inputs. Preliminary analysis indicates that in a network with
M = 300, the atomic synaptic input alone accounts for around 30–40% of
the total runtime.

Closely related to the previous paragraph, for any multiprocessor shar-
ed memory system, there’s also a very important notion of how your im-
plementation works with the CPUs’ caches. In essence, there are mecha- The CPU cache

is a low-latency
area of on-chip
memory that
stores recently
accessed parts
of memory,
reducing the
amount of
traffic to the
relatively
high-latency
system bus.

nisms in place to ensure that the data kept in the CPUs’ caches are coher-
ent with each other so that no CPU attempts to read or write stale data.
This mechanism will incur a not negligible scalability penalty when a lot
of CPUs are attempting to read and write to regions of memory that share
the same cache line (e.g. one can consider the main memory to be divided
into regions of 64-byte cache lines that are aligned on 64-byte boundaries),
as entire such cache lines will be copied back and forth between processors
in a near ping-pong like fashion, constantly changing the ownership of the

71

CHAPTER 7. DISCUSSION

cacheline in order to ensure no one gets out of date data[Smaalders, 2006].
Needless to say, this can essentially destroy scalability [Sutter, 2009]. The Also known as

“false sharing”
[Sutter, 2009]

author was not aware of the significance of this mechanism before creat-
ing the implementation, so the memory buffers used were not in any way
catered to avoid such problems. It is highly likely that this is phenomenon
is a major overall contributing factor to the lack of synaptic scalability
in the implementation, both for the cases where M was high and when
M = 100 and the thread count was high, as well as being a presumed
major reason for the performance problems faced by the CPU implemen-
tation in general. A potential way to solve this for delayed input with-
out having to incur an algorithm redesign is to simply have each thread
write to its own, non-shared input buffer of length N. This buffer could
then have a reduce operation performed on it in parallel, adding up all the
thread-owned buffers into the main, shared input buffer. Doing so should
effectively both remove the need for any locking and stop the cache “ping
pong” effect, at the cost of some extra memory used. This venue was not
explored in the implementation itself due to lack of time, but intuitively it
should scale far better than the current approach. For readers interested
in parallel programming and how this phenomenon affects scalability, as
well as strategies to avoid it, [Sutter, 2009] is a good starting point.

Not directly related to parallelization, but still mentionable due to its
significance is that both the two aforementioned stages use the STDP equa-
tions given in Section 3.3.2 and [Song et al., 2000] to adjust synaptic weight
derivatives based on the delta between when a neuron fires and a synapse
last carried a spike to the neuron. What these equations have in com-
mon is that they calculate the exponential of this delta, an operation that
happens to be comparatively very expensive when run in such tight inner
loops. Since all we’re feeding to the exponential function is integers within
a fixed range, it should be trivial to replace all instances of exp(∆t/τ) with
precomputed lookup-tables such as precomp ltp[∆t]. Testing showed that
the speedup caused by removing the explicit (re)calculation of exp(x) was
on the order of 4–5x for the stages involved. Certainly, any “production-
quality” SNN simulator should jump readily at such an easily implemented
performance boost.

The remaining parallelized tasks offer promising, scalable results. Al-
though the STDP weight update task at the end of each second was not
included in graph form here, both it and the per time step membrane po-
tential update task are trivial in their nature (i.e. no need for atomic oper-
ations) and therefore yield good scalability results, with the latter nearly
reaching its theoretically optimal performance increase.

Summarizing the analysis for the various stages, we see that there are

72

CHAPTER 7. DISCUSSION

some issues with the current algorithm and data structure design that to-
gether with certain aspects of modern multiprocessor mechanisms appear
to cause the current OpenMP implementation to be unfit for the simulation
of densely connected spiking neural networks. Despite of this, simulation
of less dense networks see a relatively significant speedup, and it is im-
portant to note that all the problems exhibited here are rooted in the imple-
mentation (primarily choices on how to organize and access memory when
multiple processors are involved), and not anything inherent to the PC
multiprocessor platform. Given more time and capabilities to perform in-
depth profiling (such as being able to measure the aforementioned cache
line inter-CPU copying et al) it is highly likely that a far greater factor of
scalability could have been reached.

7.2 CUDA implementation

As mentioned in the CUDA results section, there is a rather massive divide
in the neuron count vs. time spent per kernel, a trend that is particularly
visible in Figure 6.11, which immediately indicates an implementational
scalability issue.

The kernels that exhibit the worst scaling have a thing in common—
they are the ones that only work on a small subset of the total neuron/sy-
napse population based on the SNN’s sparse firings. This might at first
be very counter-intuitive—less usually means faster—but starts making
sense when we consider how the GPU prefers to operate: it thrives on pro-
cessing a great number of elements that are accessed sequentially in mem-
ory so that they can be read and written in batches, improving throughput
by an order of a magnitude (“coalescing”—see Section 2.2.2). Since our
SNN model is completely randomly connected, such sequential access is
very tricky to achieve in the aforementioned kernels and the compara-
tively small amount of elements they process is not enough to keep all
the GPU multiprocessors busy. When the inability to properly utilize the
memory bandwidth and processing power the hardware offers is added
to the fact that we have to read from—and write to—many different areas
of memory just to deliver a spike over a single synapse (the index to its
postsynaptic neuron, the weight derivative for STDP, the input buffer. . .),
the resulting lack of performance becomes less of a mystery. To avoid such
issues and start getting the most out of the hardware, it is likely that—as
with the CPU implementation—parts of the algorithms and datastructures
used would have to be redesigned entirely. This seems to be the approach
taken in [Nageswaran et al., 2009], as they manage to reach speedups of

73

CHAPTER 7. DISCUSSION

over 26x compared to the serial version, but as few details were available
for much of their model at the time of writing, no proper comparison can
be made to it.

Luckily, there are also several kernels that exhibit the exact kind of be-
havior that we’re looking for. The kernels for updating membrane po-
tentials, checking for neuron firings and updating the synapse weights all
work on the full population of neurons or synapses and are simple enough
to allow for sequential access to memory without too many programming-
related challenges. The effect of this is readily visible in the kernel time
graphs—the rate of change for all these is incredibly low. To examplify,
the membrane potential kernel—which runs once each time step and com-
putes several differential equations for each and every neuron in the net-
work—takes only ∼ 0.35 seconds more to process 70, 000 neurons a total
of 10, 000 times than doing this for only 1, 000 neurons! If the currently
under-performing kernels could somehow be brought up to this level, this
would mean some seriously impressive performance gains and scalability.

We can also see that the CUDA implementation scales much better than
the OpenMP version when synaptic connectivity becomes more dense. As
the techniques used for atomic updates of neuron input are essentially
the same between the two, the speedup is likely both because the added
synapses are amortized away by the GPU’s high parallelization capabil-
ities and memory bandwidth, as well as the fact that its multiprocessors
do not actually have any caches that have to be kept synchronized when ac-
cess occurs to the same area of memory. In this case, hardware simplicity
seems to have paid off.

By further observing the evolution of kernel timings as a factor of M,
we can see how the time spent processing inhibitory neurons goes steadily
up, essentially becoming the kernel taking the most time to execute at
M = 300. This can indicate that as the synaptic counts grow, the interneu-
rons need to fire far more frequently in order to balance out all the acti-
vation going on in the network, something which also justifies having a
separate kernel for handling exactly interneuron firings in a more efficient
manner than doing everything in one, generic way as with the CPU im-
plementation.

In summary, given the massive capabilities for parallelism offered by
the GPU, the results offered by the SNN implementation did not quite
meet the expectations, despite being consistently faster than even the fastest
CPU runs. It does, however, show the potential power that lies in a GPU
SNN when algorithms are designed in such a way that they take greater
advantage of the hardware. Yet again, the problem lies in the implemen-
tation and not in the platform.

74

CHAPTER 7. DISCUSSION

7.3 Comparison

Given what we have seen thus far (and ignoring for a moment the various
performance snags that we’ve already discussed), the GPU comes out as
the winner in essentially all tested cases, with the only real downside being
its relatively limited memory capacity compared to the CPU, although this
is due to thesis budget reasons 1 and not an inherent problem. Figure 7.1
shows this clearly, with the increase in time being nearly non-existent for
increasing values of M when compared to the CPU.

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000

Se
co

nd
s

Total neuron count

GPU M=100
GPU M=200
GPU M=300
CPU M=100
CPU M=200
CPU M=300

Figure 7.1: Comparison of the results from Chapter 6 for the CPU and GPU
implementations. All CPU data points are from the 4-thread test runs.

1More specifically, none exists

75

Chapter 8

Conclusions

This chapter aims to bring together the discussion from Chapter 7 and the overar-
ching motivations of the thesis and offer some thoughts and conclusions on their
validity and the thesis process itself. Finally, some aspects that could warrant
future work are considered.

8.1 Summary

Throughout this thesis, the capabilities of parallelization of artificial spik-
ing neural networks have been investigated alongside strategies for im-
plementing these on two significantly different multiprogramming plat-
forms. By showing how SNNs exhibit very favorable traits for paralleliza-
tion when conduction delays are taken into the equation, a parallel spiking
network model and simulation algorithm was described that features a bi-
ologically plausible neuron model and a fully local learning mechanism
based on Hebbian theory and neurobiology research.

This network model was tested with neuron counts ranging upwards
to 100k neurons for the CPU OpenMP implementation and 70k neurons
for the GPU CUDA implementation, all with synaptic connectivity per
neuron ranging between 100–300. The OpenMP implementation reached
speedups of nearly 2x over the single-threaded results on its best runs,
which is half of its theoretically optimal result on a 4-core system. It did
however exhibit serious scalability issues with high neuron counts, ren-
dering the speed benefit minimal for these. The CUDA implementation
consistently proved itself to be the fastest alternative, completely leaving
the CPU behind at high synapse counts. In this case as well, scalability
issues were identified. Reasons behind these were postulated for both the
OpenMP and CUDA implementations.

76

CHAPTER 8. CONCLUSIONS

If there is one definite conclusion that the author is left with after writ-
ing this thesis, it is that properly parallelizing even presumably fairly str-
aight forward algorithms is a task filled with many different challenges—
challenges certainly not lessened by programming up against two hard-
ware platforms with diametrically opposed paradigms of how parallel
programming is even performed and how performance is best achieved.
The sheer amount of nuances and interplay of hardware and software that
is relevant for how a given piece of parallelized code will behave in prac-
tice is often staggering and beyond the programmer’s control (and per-
haps even more frequently—knowledge). Whereas the majority of AI re-
search is focused on making algorithms work, when one’s area of focus is
that of parallelization, one is suddenly faced with the problem of ensuring
that it not only works, but overall works faster, and preferably in a way that
scales as effortlessly as possible and with as much hardware investment
return as possible. Otherwise, the point would be moot, as it would add
complexity with no visible gains. A great deal of fairly low-level knowl-
edge of the more esoteric aspects of the hardware is required to analyze the
results and figure out exactly why a perfectly legitimate looking algorithm
does not give the results that it theoretically should/could do, and even
moreso when it comes to figuring out how it can be adapted into reach-
ing such results. During development, even details such as upgrading the
motherboard had more to say for GPU performance than completely over-
hauling several of the program kernels involved (although this probably
says more about design-challenges related to the kernels than anything
else).

The main limiting factor and challenge for both the OpenMP and CUDA
SNN implementation can be summarized in one word: memory. Merely
the patterns in which neurons and synapses are accessed can mean an or-
der of a magnitude in difference for how the algorithm implementations
behave in practice when multiple processors are involved. What this im-
plies is that a parallel SNN system would preferably be implemented as a
library by a group of experts in artificial intelligence, computer science and
concurrent programming and made available to the research community.
That this is in fact a highly relevant concept can be shown in [Nageswaran
et al., 2009], as they appear to be contemplating the release of a highly op-
timized CUDA SNN library based on their research and results, closely
matching the ideas that this thesis set out with (albeit with far better num-
bers to show for it in the end). Add this to the fact that the parallelization
property of spiking networks with delays is also a fairly recent discovery
([Morrison et al., 2007]), the author finds it plausible to claim that there
is still much work that can be done with developing efficient algorithms,

77

CHAPTER 8. CONCLUSIONS

datastructures and synchronization methods to enable the simulation of
ever larger networks, even bringing real-time large-scale simulation well
into the realm of possibility.

Based on the results achieved in this thesis and the analysis performed
upon them, the capabilities of the GPU vs. the CPU in conjunction with
the results outlined in [Nageswaran et al., 2009], it seems like a logical
step to conclude that if the performance problems were solved for both
implementations, the GPU would pull ahead to an even greater extent
than what we’ve seen here, making it an excellent and highly cost-efficient
potential choice for SNN parallelization. This is to a large extent because
the GPU directly caters to the kind of problems that highly parallelizable
neural networks represent—many small elements, often a high degree of
mathematical computation required and a high memory bandwidth.

With the current trend of increasing processor core counts—one that
does not seem like it will taper off in the foreseeable future—and more
and more of this technology finding its way into affordable consumer
hardware, it is in the author’s eyes not at all a far fetched concept that
large-scale parallel spiking neural network simulations—as well as other
parallel scientific simulations—can to an increasing degree be performed
with the aid of these.

8.2 Possible future work

Chapter 7 revealed several more or less pressing issues related to realizing
the potential of the hardware and tools used. A few approaches to deal
with some of those are presented here, as well as other potential future
tasks.

Algorithm redesign The algorithms used in this thesis are based closely
on those given in [Izhikevich, 2006], which were presumably never
initially designed with parallelization in mind. There are certain in-
herent issues with the current design, such as requiring a high num-
ber of atomic operations that is proportional the number of synapses
from a neuron. This is again because neurons being processed by
multiple threads may be attempting to add synaptic input to the
same target (post-synaptic) neuron.

It seems plausible that this process could be “reversed” by taking
inspiration from conventional integrate-and-fire networks. Rather
than adding each firing neuron to a list and having them later “push”
synaptic input into other neurons, it might be possible to add the

78

CHAPTER 8. CONCLUSIONS

synapses themselves to a list, allowing the individual postsynaptic
neurons to “pull” their input from this, removing the need for syn-
chronization (since a neuron’s input will be touched by a single thread
of execution only). Further inspiration here could be gotten from ex-
isting large-scale simulators such as [Ananthanarayanan and Modha,
2007], where synchronization overhead is already a major factor.

Improve memory access patterns As mentioned, getting good results from
both the OpenMP and CUDA implementations require us to be very
vigilant in how we write code that can access memory from the point
of view of multiple processors. This is closely related to the previous
point, but deserves its own mention.

Utilize STDP exponents lookup table It was already pointed out how re-
moving the calculation of exp(x) essentially gave a speedup of 4–5x.
Since we can do this without losing any numeric precision for the
STDP calculations, this seems like a very logical step to implement
in both the CPU and GPU versions of the algorithm.

(CUDA) Multi-GPU scalability Many motherboards sold today come equ-
ipped with so-called SLI (Scalable Link Interface) support, which al-
lows multiple graphics cards to be used simultaneously. As CUDA
has support for such arrangements, it would be interesting to deter-
mine the viability of running a randomly connected SNN on multi-
ple GPUs, taking in mind such challenges as neurons having post-
synaptic neurons that may exist solely in the other GPU’s memory
space.

Integrate into distributed system Although this thesis consciously did not
consider large, distributed systems, it seems like a natural extension
to eventually perform an integration into such a system, allowing
far larger networks to be simulated by a scalable, connected array of
desktop computers (should still be much more affordable than any
supercomputing setup). This would naturally bring along a host of
new challenges for keeping the state of the network coherent and in
sync, but luckily there is already a well-established research area for
such systems from which inspiration and techniques can be had.

79

Bibliography

Wagner Ambrus. A framework for automatic parallelization of sequential
programs. In Telecommunications, 2003. ConTEL 2003. Proceedings of the
7th International Conference on, volume 2, pages 693–696 vol.2, June 2003.
doi: 10.1109/CONTEL.2003.1215896.

Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In AFIPS ’67 (Spring): Proceedings of
the April 18-20, 1967, spring joint computer conference, pages 483–485, New
York, NY, USA, 1967. ACM. doi: http://doi.acm.org/10.1145/1465482.
1465560.

Rajagopal Ananthanarayanan and Dharmendra S. Modha. Anatomy of a
cortical simulator. In SC ’07: Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, pages 1–12, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-764-3.

Fabrice Bernhard and Renaud Keriven. Spiking neurons on GPUs. In
International Conference on Computational Science (4), pages 236–243, 2006.

Robert Callan. Essence of Neural Networks. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1998. ISBN 013908732X.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. McGraw-Hill Science / Engineering /
Math, 2nd edition, December 2003. ISBN 0072970545.

Kang Su Gatlin and Pete Isensee. OpenMP and C++: Reap the benefits
of multithreading without all the work. MSDN Magazine, October 2005.
URL http://msdn.microsoft.com/en-us/magazine/cc163717.aspx.

Donald O. Hebb. The Organization of Behavior: A Neuropsychological Theory.
Wiley, New York, June 1949. ISBN 0805843000.

80

BIBLIOGRAPHY

A. L. Hodgkin and A. F. Huxley. A quantitative description of mem-
brane current and its application to conduction and excitation in nerve.
The Journal of Physiology, 117(4):500–544, 1952. URL http://jphysiol.

highwire.org/content/117/4/500.short.

Eugene M. Izhikevich. Simple model of spiking neurons. Neural Networks,
IEEE Transactions on, 14(6):1569–1572, 2003.

Eugene. M. Izhikevich. Which model to use for cortical spiking neurons?
Neural Networks, IEEE Transactions on, 15(5):1063–1070, 2004. URL http:

//dx.doi.org/10.1109/TNN.2004.832719.

Eugene M. Izhikevich. Polychronization: Computation with spikes.
Neural Computation, 18(2):245–282, February 2006. ISSN 0899-7667. URL
http://vesicle.nsi.edu/users/izhikevich/publications/spnet.

htm.

Eugene M. Izhikevich and Gerald M. Edelman. Large-scale model
of mammalian thalamocortical systems. Proceedings of the Na-
tional Academy of Sciences, 105(9):3593–3598, 2008. doi: 10.1073/
pnas.0712231105. URL http://vesicle.nsi.edu/users/izhikevich/

publications/large-scale_model_of_human_brain.htm.

A. Kasiński and F. Ponulak. Comparison of supervised learning meth-
ods for spike time coding in spiking neural networks. International
Journal of Applied Mathematics and Computer Science, 16(1):101–113,
2006. URL http://baztech.icm.edu.pl/baztech/cgi-bin/btgetdoc.

cgi?BPZ1-0028-0007.

Abigail Morrison, Sirko Straube, Hans Ekkehard Plesser, and Markus
Diesmann. Exact subthreshold integration with continuous spike times
in discrete-time neural network simulations. Neural Comput., 19(1):47–
79, 2007. ISSN 0899-7667. doi: http://dx.doi.org/10.1162/neco.2007.19.
1.47.

Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L Krichmar, Alex
Nicolau, and Alex Veidenbaum. Efficient simulation of large-scale spik-
ing neural networks using CUDA graphics processors. In IJCNN ’09.
University of California, Irvine, June 2009.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with CUDA. In SIGGRAPH ’08: ACM SIGGRAPH
2008 classes, pages 1–14, New York, NY, USA, 2008. ACM. doi: 10.1145/
1401132.1401152. URL http://dx.doi.org/10.1145/1401132.1401152.

81

BIBLIOGRAPHY

NVIDIA. NVIDIA CUDATM Programming Guide version 2.1, December
2008. URL http://developer.download.nvidia.com/compute/cuda/2_

1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf.

Randall C. O’Reilly and Yuko Munakata. Computational Explorations in
Cognitive Neuroscience: Understanding the Mind by Simulating the Brain.
MIT Press, Cambridge, MA, USA, 2000. ISBN 0262650541.

Christo Panchev and Stefan Wermter. Spike-timing-dependent synaptic
plasticity: from single spikes to spike trains. Neurocomputing, 58-60:365
– 371, 2004. ISSN 0925-2312. doi: DOI:10.1016/j.neucom.2004.01.068.

Udo Seiffert. Artificial neural networks on massively parallel computer
hardware. Neurocomputing, 57:135–150, 2004. URL http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.6.8003.

Bart Smaalders. Performance anti-patterns. ACM Queue, 4(1):44–50, 2006.
ISSN 1542-7730. doi: http://doi.acm.org/10.1145/1117389.1117403.

S. Song, K. D. Miller, and L. F. Abbott. Competitive hebbian learning
through spike-timing-dependent synaptic plasticity. Nat Neurosci, 3(9):
919–926, September 2000. ISSN 1097-6256. URL http://dx.doi.org/

10.1038/78829.

Herb Sutter. Eliminate false sharing. Dr. Dobb’s Journal, May
2009. URL http://www.ddj.com/go-parallel/article/showArticle.

jhtml?articleID=217500206.

82

	Title Page
	masteroppgave.pdf

