
June 2009
Trond Aalberg, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Full-Text Search in XML Databases

Robin Skoglund

Abstract

Background The Extensible Markup Language (XML) has become an in-
creasingly popular format for representing and exchanging data. Its �exible
and extensible syntax makes it suitable for representing both structured data
and textual information, or a mixture of both.

The popularization of XML has lead to the development of a new database
type. XML databases serve as repositories of large collections of XML doc-
uments, and seek to provide the same bene�ts for XML data as relational
databases for relational data; indexing, transactional processing, fail-safe phys-
ical storage, querying collections etc.

There are two standardized query languages for XML, XQuery and XPath,
which are both powerful for querying and navigating the structure XML. How-
ever, they o�er limited support for full-text search, and cannot be used alone
for typical Information Retrieval (IR) applications. To address IR-related issues
in XML, a new standard is emerging as an extension to XPath and XQuery:
XQuery and XPath Full Text 1.0 (XQFT).

Results XQFT is carefully investigated to determine how well-known IR tech-
niques apply to XML, and the characteristics of full-text search and indexing
in existing XML databases are described in a state-of-the-art study. Based on
�ndings from literature and source code review, the design and implementa-
tion of XQFT is discussed; �rst in general terms, then in the context of Oracle
Berkeley DB XML (BDB XML).

Experimental support for XQFT is enabled in BDB XML, and a few exper-
iments are conducted in order to evaluate functionality aspects of the XQFT
implementation.

A scheme for full-text indexing in BDB XML is proposed. The full-text index
acts as an augmented version of an inverted list, and is implemented on top of
an Oracle Berkeley DB database. Tokens are used as keys, with data tuples for
each distinct (document, path) combination the token occurs in. Lookups in
the index are based on keywords, and should allow answering various queries
without materializing data.

Conclusions Investigation shows that XML-based IR with XQFT is not fun-
damentally di�erent from traditional text-based IR. Full-text queries rely on
linguistic tokens, which � in XQFT � are derived from nodes without con-
sidering the XML structure. Further, it is discovered that full-text indexing is
crucial for query e�ciency in large document collections. In summary, common
issues with full-text search are present in XML-based IR, and are addressed in
the same manner as text-based IR.

Keywords: XML, XML databases, full-text search, Information Retrieval,
XQuery, XPath, inverted list, Oracle Berkeley DB XML

Preface

This master's thesis was carried out within the Information Management (IF)
group under the Department of Computer and Information Science (IDI) at the
Norwegian University of Science and Technology (NTNU). I would like to thank
my supervisor Trond Aalberg for his guidance, helpful suggestions and valuable
feedback during the thesis's work.

Trondheim, June 1, 2009

Robin Skoglund

iii

Contents

I Thesis Context 1

1 Introduction 3

1.1 Background and motivation . 3
1.2 Problem de�nition . 4
1.3 Method and approach . 4
1.4 Outline of thesis . 5

2 XML and Information Retrieval 7

2.1 XML . 7
2.2 XML databases . 8
2.3 XQuery 1.0 and XPath 2.0 Data Model (XDM) 8
2.4 XML Path Language (XPath) 2.0 10
2.5 XQuery 1.0: An XML Query Language 11

2.5.1 Expressions . 11
2.5.2 Context . 11
2.5.3 Query processing . 12
2.5.4 Error handling . 13

2.6 Limitations . 14

3 XQuery and XPath Full Text 1.0 17

3.1 Tokens and phrases . 17
3.2 Full-text extensions to XQuery and XPath 17

3.2.1 Processing model . 18
3.2.2 Full-text contains expression 18
3.2.3 Score variables and weight 18
3.2.4 Extensions to the static context 20

3.3 Full-Text Selections . 20
3.3.1 Specifying search tokens and phrases 20
3.3.2 Cardinality constraint . 21
3.3.3 Match options . 21

3.3.3.1 Language . 21
3.3.3.2 Wildcards . 21
3.3.3.3 Thesaurus . 21
3.3.3.4 Stemming . 22
3.3.3.5 Case sensitivity 22
3.3.3.6 Diacritics . 23
3.3.3.7 Stop words . 23
3.3.3.8 Extension option 23

v

vi CONTENTS

3.3.4 Logical full-text operators 23
3.3.5 Positional �lters . 24

3.3.5.1 Ordered selection 24
3.3.5.2 Window selection 24
3.3.5.3 Distance selection 24
3.3.5.4 Scope selection 25
3.3.5.5 Anchoring selection 25

3.3.6 Ignore option . 25
3.3.7 Extension selections . 25

3.4 Summary . 26

4 State of the art 27

4.1 The Quark Project . 27
4.1.1 TeXQuery . 27
4.1.2 Quark . 28

4.1.2.1 Storage and indexing 28
4.2 Sedna . 30

4.2.1 Indexing . 30
4.2.2 Full-text search . 31

4.3 BaseX . 31
4.3.1 Storage and indexing . 31

4.4 Qizx . 32
4.4.1 Storage and indexing . 32

4.5 Summary . 33

II Thesis Contribution 35

5 Implementing full-text search in an XML database 37

5.1 Introduction . 37
5.2 General implementation of full-text concepts 37

5.2.1 Tokenization . 37
5.2.2 Thesaurus . 39
5.2.3 Stop words . 41
5.2.4 Stemming . 42
5.2.5 Positional �lters . 42
5.2.6 Relevance ranking . 43

5.3 Oracle Berkeley DB XML . 44
5.3.1 Architecture . 44

5.3.1.1 XQuery Engine 45
5.3.1.2 Storage . 45
5.3.1.3 Indexing . 46

5.3.2 Implementing XQFT in BDB XML 48
5.3.2.1 Query lexer-parser 48
5.3.2.2 Tokenization . 49
5.3.2.3 Evaluation of full-text selections 49
5.3.2.4 Enabling experimental XQFT support in BDB

XML . 50
5.3.3 Full-text indexing in BDB XML 50

5.3.3.1 Inverted list structure 51

CONTENTS vii

5.3.3.2 Extending the index speci�cation with full-text
options . 52

5.3.3.3 Extending the XML Indexer 52

5.4 Summary . 52

6 Results 55

6.1 Overview of experiments . 55

6.2 Searching for a single token . 55

6.2.1 Query script . 55

6.2.2 Result . 55

6.3 Searching for a phrase and a token 56

6.3.1 Query script . 56

6.3.2 Result . 56

6.4 Searching with a cardinality selection 57

6.4.1 Query script . 57

6.4.2 Result . 57

6.5 Searching with the case sensitivity match option 57

6.5.1 Query script . 57

6.5.2 Result . 58

6.6 Searching two tokens with ftand 58

6.6.1 Query script . 58

6.6.2 Result . 58

6.7 Searching with the not in operator 58

6.7.1 Query script . 59

6.7.2 Result . 59

6.8 Searching with the window positional �lter 59

6.8.1 Query script . 59

6.8.2 Result . 59

6.9 Searching with order and scope positional �lters 60

6.9.1 Query script . 60

6.9.2 Result . 60

6.10 Searching with the distance positional �lter 60

6.10.1 Query script . 60

6.10.2 Result . 61

6.11 Summary . 61

III Thesis Conclusion 63

7 Evaluation and discussion 65

7.1 Summary of thesis . 65

7.2 Discussion of contributions . 65

7.2.1 XQFT implementation in BDB XML/XQilla 65

7.2.2 Proposed full-text index for BDB XML 66

7.3 Evaluation . 66

viii CONTENTS

8 Conclusions and further work 67

8.1 Concluding remarks . 67
8.1.1 XQuery is too limited for full-text search 67
8.1.2 XQFT adds IR concepts to XQuery 67
8.1.3 IR in XML/XQFT is not fundamentally di�erent from

text-based IR . 67
8.1.4 Full-text indexing is critical for query e�ciency 68
8.1.5 XQFT can and will be implemented in BDB XML 68
8.1.6 Full-text indexing in BDB XML may be implemented us-

ing Berkeley DB . 68
8.2 Future work . 68

8.2.1 Improving the XQFT implementation in BDB XML . . . 68
8.2.2 Dealing with frequent updates 69

A XQuery Full-Text Semantics 71

A.1 Semantics for fts:lookupThesaurus 71
A.2 Semantics for fts:resolveStopWordsUri 76
A.3 Simple SKOS thesaurus . 77
A.4 Stop words represented as XML 79

B XQFT in BDB XML 81

B.1 Patch: Fix for full-text logical operators 81
B.1.1 Lexer patch . 81
B.1.2 Parser patch . 82

B.2 Patch: Enable XQFT in BDB XML 83
B.3 Default tokenizer implementation 83
B.4 Example data . 85
B.5 Loading example data into a container 89

Bibliography 91

List of Figures

2.1 XQuery Processing Model . 13

3.1 XQuery Full-Text Processing Model 19

4.1 A path/value index in Quark, implemented as a relational table . 29
4.2 An inverted list index in Quark 29

5.1 Query expansion with a thesaurus 40
5.2 Overview of BDB XML architecture 45
5.3 Berkeley DB XML Query Processing 46
5.4 Classes used in the evaluation of full-text selections 50
5.5 Inverted list structure in a Berkeley DB database 51

6.1 AllMatches model for �information retrieval� and �web� 56

ix

x LIST OF FIGURES

List of Tables

2.1 XML Schema primitive datatypes 10

4.1 Summary of XML databases . 33

5.1 XQFT grammar productions not parsed in XQilla 49
5.2 Incorrect XQFT grammar productions in XQilla 49

xi

xii LIST OF TABLES

Part I

Thesis Context

1

Chapter 1

Introduction

This chapter presents the motivation behind the thesis. A short introduction to
Information Retrieval (IR) in the context of XML is given, and the rest of the
thesis is outlined.

1.1 Background and motivation

The Extensible Markup Language (XML) has become a prominent format for
exchanging data over the Internet. The features of XML have made it an in-
creasingly popular format for a vast number of applications, ranging from con-
�guration �les to vector images via message interchange formats and document
markup languages. Its non-limiting and �exible syntax make it possible to ex-
press di�erent kinds of information � highly structured data as well as freely
written text � from diverse sources, and it lends well to mixing structured and
non-structured information in the same document.

To cope with the increasing popularity of XML, a new database type has
been developed during the last decade. XML databases serve as repositories of
large collections of XML documents, and seek to provide the same bene�ts for
XML data as relational databases (RDBMS) for relational data; indexing, trans-
actional processing, fail-safe physical storage, querying collections etc. Several
implementations exist, and there is no industry standard that de�nes what an
XML database is, and how it should operate.

Storing data in XML requires new retrieval mechanisms, which take ad-
vantage of the inherent structure XML provides. After the standardization of
XML, work began on standardizing the process of querying XML documents.
The XML Path Language (XPath) has been standardized in two versions[13, 8],
and is a powerful language for navigating the tree structure of XML documents.
As an extension to XPath 2.0, XQuery 1.0[30] was developed as a standard to
allow more complex queries than what is possible with the path language of
XPath.

While XPath and XQuery are both powerful languages for structural queries,
they o�er very limited support for querying textual information in XML. There
are several XML repositories that contain mix of semi-structured data and un-
structured text data; the IEEE Initiative for the Evaluation of XML (INEX),
the Library of Congress documents in XML, the Digital Bibliography & Library

3

4 CHAPTER 1. INTRODUCTION

Project (DBLP) in XML, SIGMOD Record in XML, Shakespear's plays in XML
etc. Furthermore, application domains, such as the �eld of library science, have
a growing need to seamlessly query over both the structured and text parts
of XML documents. To address this issue, the World Wide Web Consortium
(W3C) started working on a standard called XQuery and XPath Full Text 1.0
(XQFT)[18]. It is an extension to XPath and XQuery that adds full-text search
capabilities. XQFT is currently a Candidate Recommendation, meaning it will
soon be ready for wide deployment. The standardization of XQFT marks an
important milestone for XML to be accepted and used in mainstream search
applications. After the popularization of web search engines, end users expect
the system to take care of IR (stemming, thesauri, stop words, case sensitiv-
ity, diacritics) and serve a list of ranked results based some algorithm. XQFT
should in theory solve all of this.

1.2 Problem de�nition

Based on the background and motivation in the previous section, the goal of
this thesis can be summarized as the following problem de�nition:

Investigate how full-text search and indexing apply to XML databases.
Discussions should be based around the XQuery and XPath Full
Text 1.0 Candidate Recommendation and related standards. Infor-
mation Retrieval in XML should be explained, and common issues
with indexing should be addressed.

The problem de�nition above can be broken down to several sub problems. Each
of these sub problems should be considered guidelines for discussion during the
investigation:

1. Various index types exist for various kinds of data. Which types of indexes
are required for supporting full-text search in XML, and how are they
implemented?

2. Text-based IR has been a subject of study for several decades, while XML
has grown popular during the last decade. XML introduces a more struc-
tured approach for representing textual documents. Are there fundamen-
tal di�erences between text-based IR and XML IR? Does the structure of
XML call for a new approach to IR?

3. The XQFT standard de�nes the language and formal semantics for full-
text queries, but does not give speci�c implementation details. Are there
open issues in the standard that implementers need to keep in mind? If
so; how do we address these issues to best promote cross-implementation
compatibility?

1.3 Method and approach

The characteristics of XML and IR in XML will �rst be studied closely. In
light of �ndings from this study, existing XML database implementations will
be analyzed through literature and source code review. Then, we will take a

1.4. OUTLINE OF THESIS 5

closer look on the implementation of various IR concepts in XML databases in
general, and speci�cally in Oracle Berkeley DB XML. Hopefully, we will be able
to implement XQFT in Oracle Berkeley DB XML. After the implementation
reaches a usable state, a small number of experiments will be carried out to
verify correctness of various query results. In addition, a scheme for full-text
indexing will be proposed for Oracle Berkeley DB XML.

1.4 Outline of thesis

The rest of the thesis is organized as follows:

Chapter 2 Describes XML standards related to the thesis, introduces XML
databases, and states why the current query languages are too limited for
full-text search.

Chapter 3 Studies XQFT � the full-text extension to XQuery and XPath
which is currently being developed by the World Wide Web Consortium.

Chapter 4 Gives a state-of-the-art review of some existing implementations of
XML databases with support for full-text search and indexing.

Chapter 5 Provides a description of the design and implementation of various
IR concepts from XQFT, and proposes modi�cations and additions to
Oracle Berkeley DB XML.

Chapter 6 Presents some experiments which were conducted to evaluate func-
tionality aspects of concepts described in chapter 5.

Chapter 7 Sums up the thesis, and evaluates how well the thesis achieves the
goals of the problem de�nition.

Chapter 8 States the �ndings of the thesis, draws some concluding remarks,
and outlines future work.

Appendix A Shows formal semantics and examples related to XQFT imple-
mentation discussions in chapter 5.

Appendix B Contains patches and example data related to the XQFT imple-
mentation in Oracle Berkeley DB XML (chapters 5 and 6).

6 CHAPTER 1. INTRODUCTION

Chapter 2

XML and Information

Retrieval

This chapter outlines the features of XML that are relevant to this thesis,
along with current Information Retrieval methods and their limitations. XML
databases are also introduced and discussed.

2.1 XML

Since its emergence, the Extensible Markup Language (XML) standard has
gradually found its way as one of the preferred formats for data exchange. It is
non-binary and non-proprietary, making it platform and protocol independent,
and easy to implement in programs or libraries. Raw XML may be trans-
ferred as-is between programs or users, in contrast to relational databases or
other database types, where raw data must be transformed before returning
it to users. In addition to data exchange, the �exible and extensible design
of XML has proven useful for a wide number of diverse applications, ranging
from con�guration settings to document markup languages and domain-speci�c
programming languages, via metadata formats and image formats.

XML can be highly structured, semi-structured, or unstructured. In the
latter case, a document contains few structural entities such as elements and
attributes, and can be considered as merely a container for storing freely written
text. Highly structured XML documents, on the other hand, can be said to
mimic the function of relational databases or a tables in relational databases.
Highly structured documents often follow a strict set of rules speci�ed by an
XML schema1, with constraints on structure and data. The purpose of schema
speci�cation is typically to achieve higher normalization of data, but it can
also be used for expressing semantic relationships and semantic properties of
documents.

Semi-structured XML is a mixture of structured data and freely written text.
An example of semi-structured XML could be a patient journal. It contains
some structured data � the patient's name, date of birth, person identi�cation

1XML schema, �schema� in lower case, refers to any general schema language. It is not
limited to the W3C XSD Schema.

7

8 CHAPTER 2. XML AND INFORMATION RETRIEVAL

number, etc � and some free text, such as diagnostical considerations written
by the doctor. The free text may be structured according to a scheme, e.g.,
one �record� per visit, but it is mainly a collection of sentences written by a
human being, and would thus require another retrieval mechanism than the
highly structured data found elsewhere in the journal.

Throughout this thesis, the focus will be on semi-structured documents,
because these bear the closest resemblance to real-world applications of XML
databases and full-text search. If your data is highly structured, it would prob-
ably �t a relational model better, and if your data has no structure at all, you
are likely to have more success using a traditional text-based IR engine.

2.2 XML databases

The features mentioned in the previous section have made XML a prominent
format for transporting data over the web. More and more web applications
and content providers choose XML for exposing their data and services to the
world or their business partners. XML is suitable for transport over the wire,
and if a system also deals with XML data internally, one may argue that it
makes perfect sense to use XML throughout the system. Relational databases
can indeed be automatically �shredded� to similarly disposed XML documents
as shown in [16], but with this usage pattern it might prove more e�cient to
store data as XML in the �rst place. The system avoids spending computational
time converting data, it is less prone to errors occurring when converting, and
time spent developing the system is cut down.

Another reason for using XML databases is this crucial point; not all data
is �relational�. A notable amount of an organization's information simply does
not �t to the relational model, because it is less structured (semi-structured),
it is hierarchical and maybe sequential, and made of documents.

When data is pulled from relational databases � or other database types �
and served as XML, it is called an XML-enabled database, which implies that
the database software has an additional layer of query processing which maps
XML operations to ordinary database operations. This layer often accepts XML
as input, e.g., XPath or XQuery queries, and outputs raw XML accordingly. The
internals of the database system itself perform the conversions (as opposed to
using middleware), so the user only relates to XML when querying.

When the fundamental storage unit in a database is an XML document, the
database is said to be a native XML database. Since the primary storage unit
is XML, there is no conversion or mapping of input and output when running
queries.

2.3 XQuery 1.0 and XPath 2.0 Data Model (XDM)

XQuery 1.0 and XPath 2.0 share the same underlying data model, called XQuery
1.0 and XPath 2.0 Data Model (XDM) [31], which purpose is to provide an
abstract representation of one or more XML documents or document fragments.
XDM is also the data model for XSLT 2.0[20], and can be summarized in two
sentences;

2.3. XQUERY 1.0 AND XPATH 2.0 DATA MODEL (XDM) 9

1. it de�nes the information contained in the input to an XSLT or XQuery
processor, and

2. it de�nes all permissible values of expressions in the XSLT, XQuery, and
XPath languages.

XDM is based on another W3C recommendation, XML Information Set (Second
Edition)[12] from 2004, but di�ers on some points to meet the requirements[28,
15] of XPath 2.0 and XQuery 1.0:

� Support for XML Schema types[7]

� Representation of collections of documents and complex values

� Support for atomic values

� Support for (ordered, heterogeneous) sequences

To meet those requirements, XDM de�nes 4 basic components:

Node There are 7 node types: Element nodes, attribute nodes, document
nodes, text nodes, processing instruction nodes, comment nodes,
and namespace nodes. An important feature is that every node has
a unique identity. Even though there are two equal elements in a
document, they will have di�erent identities. The identity of a node
is assigned by the query processor, and is not visible to the user.

Nodes may be typed or untyped. Type - simple or complex - is
acquired by validating against an XML Schema, and will be anno-
tated to the node upon successful validation.

Atomic value A simple data value with no markup associated with it. Atomic
values may be any of the 19 prede�ned primitives types in the XML
Schema speci�cation, or a type that is derived from any of the prim-
itive types. Examples of atomic values include the number 1337 and
the string �Hello, World�. A full list of primitive types is given in
Table 2.1 on the following page.

Item A generic term that refers to either a node or an atomic value.

Sequence An ordered list of zero, one, or more items. A sequence containing
exactly one item is called a singleton.

Understanding XDM is analogous to understanding tables, columns and rows
when learning SQL. With XDM, there are other primaries that make up the
model than in the relational world. A sequence could be considered XDM's
answer to a relation, as it is the foundation for almost all operations � much like
a relation in the RDBMS world � but XDM is able to express more complicated
structures than tables, columns, and rows.

10 CHAPTER 2. XML AND INFORMATION RETRIEVAL

Table 2.1: XML Schema primitive datatypes

XSD Name Represents

string Character strings, e.g., �Hello World�
boolean Binary-value logic, e.g. ,true or false.
decimal A subset of real numbers that can be represented with

decimal numbers.
�oat IEEE single-precision 32-bit �oating point type.
double IEEE double-prevision 64-bit �oating point type.
duration A duration of time, six dimensions (year, month, day,

hour, minute, and second).
dateTime Objects with integer-valued year, month, day, hour and

minute properties, a decimal-valued second property, and a
boolean timezone property

time An instant of time that recurs every day.
date A "date object" is an object with year, month, and day

properties just like those of dateTime objects, plus an
optional timezone-valued timezone property.

gYearMonth A speci�c Gregorian month in a speci�c Gregorian year.
gYear A Gregorian calendar year.
gMonthDay A Gregorian date that recurs, speci�cally a day of the year

such as the third of May.
gDay A Gregorian day that recurs, speci�cally a day of the

month such as the 5th of the month.
gMonth A Gregorian month that recurs every year.
hexBinary Arbitrary hex-encoded binary data.
base64binary Base64-encoded arbitrary binary data.
anyURI A Uniform Resource Identi�er Reference (URI).
QName XML quali�ed names, such as an element name. Contains

an optional namespace pre�x and a local name.
NOTATION The NOTATION attribute type from XML.

2.4 XML Path Language (XPath) 2.0

XPath 2.0 is an expression language that allows the processing of values con-
forming to XDM. In simpler words, an XPath expression returns a sequence
of items from a given XML document that match the given expression. Since
XPath builds on XDM, it inherits the type system from XML Schema along with
the concept of the 4 basic components (node, atomic value, item, sequence).
XPath adds a number of operators, and a multitude of functions in a function
library. A full list of functions and operators is available in [21].

The most interesting operator in XPath is the �/� (slash) operator. It is a
binary operator that applies the expression on its right-hand side to each item
on the left-hand side. An expression using the slash operator is called a path

expression, and is useful for �ltering out parts of a node, most commonly a node's
descendant nodes. A path expression can navigate the tree representation of an

2.5. XQUERY 1.0: AN XML QUERY LANGUAGE 11

XML document by using axis speci�ers. The default axis is the child axis, but
this and all other axises can be speci�ed. Example: The abbreviated expression
//ul/li is equal to /descendant-or-self::node()/ul/child::li, and will
select all li child elements of all ul elements, which in turn are children of the
current context node.

2.5 XQuery 1.0: An XML Query Language

XQuery 1.0 is an extension of XPath 2.0, and was designed by the W3C XML
Query Working Group to meet the requirements[15] for an XML query language.
In 1998, just after the �nal recommendation of XML 1.0, interest grew in having
an intelligent way of querying XML. A small number of independent implemen-
tations existed within a year or two, and XQuery ended up being derived from
the Quilt[11] XML query language, which in turn was based on features from
other languages; XPath 1.0[13], XQL[27], XML-QL[14], SQL2, and OQL3. It is
fair to say that XQuery is to XML what SQL is to relations, albeit the syntax
is di�erent.

2.5.1 Expressions

Expressions are the basic units of evaluation in a query. An expression is a
string of Unicode characters, and may be as simple as 2 + 3, or as complex
as almost any other programming language, by declaring and using functions,
FLWOR expressions, comparisons, and path expressions from XPath. FLWOR
is pronounced ��ower�, and is an acronym for For, Let, Where, Order by,

Return, which are expressions for iterating sequences and and binding variables
to intermediate results. E.g., for expressions may be used for joining two XML
documents and returning combined information or aggregated results.

2.5.2 Context

Expressions are always evaluated in a certain context. The context of an expres-
sion contains all information that can a�ect the result of the expression. The
XQuery standard de�nes two context types; static context and dynamic con-
text. The static context contains information that is available before evaluating
the expression, during the static analysis of the query. Examples of informa-
tion in the static context include base URI, statically known documents and
collections, ordering mode, default namespace etc. The dynamic context, on
the other hand, contains information that is not available until evaluating the
query. Examples of information in the dynamic context include context item
(the item currently being processed), context position, context size (sequence
size), variable values, current dateTime etc. Most importantly, the dynamic
context contains the available documents and available collections.

2Structured Query Language, for relational databases
3Object Query Language, for object-oriented databases

12 CHAPTER 2. XML AND INFORMATION RETRIEVAL

2.5.3 Query processing

While the XQuery standard does not specify in detail how a query should be
carried out in implementations, it does outline a basis for the processing model
of a query. There are 5 basic elements in the XQuery processing model:

1. Data model generation

2. Schema import processing

3. Expression processing

4. Serialization

5. Consistency constraints

Data model generation takes place before query processing. Its purpose is to
parse input data and provide an XDM instance, which is the basis of further
processing. Schema import processing is also outside the bounds of actual query
processing, and provides in-scope schema de�nitions for the static context. Def-
initions may be extracted from existing XML schemas, or provided by other
mechanisms, e.g., a component in an XML-enabled database.

The expression processing is split in two phases; static analysis and dynamic
evaluation. During static analysis, the query is parsed into an operation tree,
the static context is initialized and augmented with information from the query
prolog4, and implementation-speci�c features are applied. The operation tree
is normalized by making implicit operations, and each expression is assigned
a static type if the static typing feature is supported in the implementation.
The purpose of the static analysis is to give developers more control of the
query execution, and make sure that queries are evaluated in a consistent and
orderly fashion. It also has performance implications, since a query can be
compiled statically and evaluated several times dynamically. The outcome of
static analysis is either success or one or more type errors, static errors, or
statically-detected dynamic errors.

The dynamic evaluation phase can only be started if no errors were raised
during the static analysis, and depends on the operation tree, the input data,
and the dynamic context (which may use external data and the static context).
A dynamic type is associated with each value as it is computed. The dynamic
type of a value allows for more speci�c constrains, e.g., limiting the number of
allowed atomic values in a sequence. The result of the dynamic evaluation phase
is either a result value, a type error, or a dynamic error.

Serialization is the process of converting an XDM instance to a sequence
of octets, e.g., XML output, XHTML output, , HTML output, or text output.
Serialization is optional, i.e., an implementation may choose to only provide a
DOM interface or an interface based on an event stream.

The system of consistency constraints is a means to ensure that the XDM
instance, the static context, and the dynamic context are mutually consistent.
The XQuery standard lists a number of consistency constraints that are pre-
requisites for a correctly functioning XQuery implementation, e.g., �For every
node that has a type annotation, if that type annotation is found in the in-scope

4A series of declarations and imports that de�ne the environment for a query.

2.5. XQUERY 1.0: AN XML QUERY LANGUAGE 13

schema de�nitions (ISSD), then its de�nition in the ISSD must be equivalent to
its de�nition in the data model schema.�.

Figure 2.1 is copied from [30], and shows a schematic overview of what
is described above. The black border denotes the boundaries of the XQuery
standard.

Figure 2.1: XQuery Processing Model

2.5.4 Error handling

Errors may be raised during the expression processing phases mentioned in the
previous subsection. XQuery de�nes three error types:

14 CHAPTER 2. XML AND INFORMATION RETRIEVAL

A static error is an error that must be detected during the static analysis
phase. A syntax error is an example of a static error.

A dynamic error is an error that must be detected during the dynamic evalu-
ation phase and may be detected during the static analysis phase. Numeric
over�ow is an example of a dynamic error.

A type error may be raised during the static analysis phase or the dynamic
evaluation phase. During the static analysis phase, a type error occurs
when the static type of an expression does not match the expected type of
the context in which the expression occurs. During the dynamic evaluation
phase, a type error occurs when the dynamic type of a value does not
match the expected type of the context in which the value occurs.

A vast number of conditions exist where the result of the query processing would
be one or more of the aforementioned errors. Implementations may also de�ne
additional erroneous conditions outside the XQuery speci�cation, which would
result in dynamic errors.

2.6 Limitations

While XPath and XQuery are both powerful languages for structural queries,
they o�er very limited support for querying textual information in XML, as
shown in [2, 4]. For instance, searching text in an element is in XQuery/X-
Path limited to boolean substring matching by use of the fn:contains($str1,
$str2) function, which would return true if $str2 is a substring of $str1.
This may be a valid search in some situations, but the function is unable to
answer queries like the following, from XML Query Use Cases[10]:

(Use Case 2.2.6 Q6): Consider an XML document that contains
books. Find all book titles which start with �improving� followed
within 2 words by �usability�.

Clearly, a simple substring query is unable to answer the above search, which
would require the underlying implementation to support word queries, order
speci�cation, and starts-with functionality. There is also a desire for searching
text across element boundaries:

(Use Case 3.2.1 Q1): Find all book chapters containing the phrase
"one of the best known lists of heuristics is Ten Usability Heuristics".

The use case above could translate into a query that looks for text spanning
several elements, e.g., �... One of the best known list of heuristics is <citation
url=�foo�>Ten Usability Heuristics by Jacob Nielson</citation> ...�.

Queries with wildcards is another example of something that cannot be
implemented with substring matching:

(Use Case 5.2.5 Q5): Find all books with the word �test� with a
three to four character su�x in the text.

It should match �testers� and �testing�, but not �pretest�, �tests� and �tested�.
Wildcard queries allow any su�x. Unlike a wildcard query which could

potentially match �testimony�, a query using stemming would not. The following
query will match �tests�, �testing� and �testers�, but not �testimony�:

2.6. LIMITATIONS 15

(Use Case 6.2.1 Q1): Using stemming, �nd all books with the word
"test" in the text.

Another IR technique that should be supported is the use of a thesaurus. An
example of a search utilizing a thesaurus:

(Use Case 7.2.1 Q1): In the same book collection, �nd all introduc-
tions which quote someone.

The query for the use case above should �nd synonyms for the word �quote�,
such as �said�, �stated�, �remarks�, �replied� etc.

There are a number of other use cases involving Information Retrieval tech-
niques that are not supported by the bare XQuery or XPath standards. This
�nal example shows how it is desirable to give scores to results:

(Use Case 17.2.1 Q1): Find all books which mention �usability� in
the title or the text. Return book titles and scores.

Ranking results like in the query above could be done outside the boundaries of
XQuery query processing, but this would prevent a query from taking advantage
of scores, and is likely to be far from optimal with respect to execution time.

To summarize, XQuery has limited or no support for common IR techniques
and concepts.

16 CHAPTER 2. XML AND INFORMATION RETRIEVAL

Chapter 3

XQuery and XPath Full Text

1.0

This chapter describes in detail the full-text extension that is currently under
development for XQuery 1.0 and XPath 2.0.

3.1 Tokens and phrases

As stated in Section 2.6 on page 14, XQuery has only rudimentary support for
full-text search � limited to substring matching. This is not enough to meet
the expectations of full-text search from end users.

�Where a document contains unstructured or semi-structured
data, it is important to be able to apply IR techniques such as scor-
ing and weighting.� � XQFT[18]

The main di�erence between substring matching and full-text search is that the
latter operates on tokens and phrases rather than a continuous stream of char-
acters. Character strings are broken into linguistic tokens through the process
of tokenization. Tokenization will typically break a string into; tokens, punctua-
tion units, and spaces. Informally, a token is a word. Formally, it is a non-empty
sequence of characters returned by a tokenizer as a basic unit to be searched.
Further, a phrase, sentence, or paragraph, is an ordered sequence of any number
of tokens.

Tokenization lets functions and operators operate on a part or the root of the
token, which enables wildcards, stemming, and use of thesauri. Tokenization
also lets functions and operators work with the relative positions of tokens,
which in turn enables proximity operators.

3.2 Full-text extensions to XQuery and XPath

To add support for full-text search, XQFT extends XQuery and XPath in three
ways. It 1) adds a new expression; ftcontains, 2) enhances the syntax of
FLWOR expressions with score variables, and 3) adds full-text match options
to the static context. The following subsections describe those three things in
further detail.

17

18 CHAPTER 3. XQUERY AND XPATH FULL TEXT 1.0

3.2.1 Processing model

Full-text queries are de�ned using a full-text contains expression (ftcontains).
To evaluate this expression, the execution engine (see Figure 2.1 on page 13)
needs to tokenize both the query and the input data The input data in the
case of XQFT is made from an XPath or XQuery expression, and speci�es the
sequence of items to be searched. This sequence is called the search context.
With a tokenized query and search context, the execution engine will use a
Matcher to combine tokens from each, and create instances of an AllMatches

model, which is a means to describe all possible solutions to the query for a
given search context item. Each solution is described by a Match instance,
which contains positive (include) and negative (exclude) terms from the search
context. An AllMatches instance is converted to a boolean value before being
returned to the XQuery or XPath expression. If at least one member contains
only positive terms, the result is true. If all members contain negative terms,
the result is false. Figure 3.1 on the facing page shows how XQFT extends the
processing model from known from XQuery. To summarize, the algorithm has
the following steps:

1. Evaluate the search context expression, the ignore option (if any), and
other nested expressions.

2. Tokenize the query string(s).

3. For each search context item:

(a) Delete ignored nodes from the item.

(b) Tokenize the result of the previous step.

(c) Evaluate full-text selections against the search tokens.

4. Convert the topmost AllMatches instances into a boolean value.

3.2.2 Full-text contains expression

A full-text contains expression (ftcontains) is an expression that evaluates a
sequence of items against a full-text selection. It returns a boolean value; true
if there is some item that matches the full-text selection. The expression may
be used anywhere where a comparison can be used.

This example shows an ftcontains expression that returns the author of
each book with a title containing a token with the same root as dog, and the
token cat:

1 f o r $b in /books/book
2 where $b/ t i t l e f t c o n t a i n s (" dog" with stemming) f tand " cat "
3 re turn $b/author

3.2.3 Score variables and weight

In addition to adding ftcontains, XQFT extends the for clause from FLWOR
expressions to allow scoring of results. The score of a full-text query result ex-
presses its relevance to the search conditions, and is the result of an implementation-
dependent scoring algorithm. Score values are of type xs:double in the range
[0, 1], and a higher score implies a higher relevance.

3.2. FULL-TEXT EXTENSIONS TO XQUERY AND XPATH 19

Figure 3.1: XQuery Full-Text Processing Model

This �gure is taken from [18], and shows a schematic overview of how XQFT
extends the processing model from Figure 2.1 on page 13. The execution engine
is zoomed to show the evaluation of a ftcontains expression. The black border
denotes the boundaries of XQuery/XQFT.

Below is an example of a query using score variables to only return a ranked
list of books matching �web site� and �usability� with a relevance (score) higher
than 50%:

1 f o r $b s co r e $s
2 in /books/book [content f t c o n t a i n s "web s i t e " ftand

" u s a b i l i t y "]
3 where $s > 0 .5
4 order by $s descending
5 re turn <r e su l t >
6 <t i t l e > {$b// t i t l e } </ t i t l e >
7 <score> {$s } </score>
8 </r e su l t >

By adding weights to search tokens, a user can in�uence the scoring algo-
rithm the implementation uses. Weights must have an absolute value in the
range [0.0, 1000.0]. The default weight of a token is 1.0.

Example:

1 (: " u s a b i l i t y " i s important , "web s i t e " not so much :)
2 f o r $b in /books/book
3 l e t s c o r e $s := $b/ content f t c o n t a i n s ("web s i t e " weight 0 . 5)
4 f tand (" u s a b i l i t y " weight 2)

20 CHAPTER 3. XQUERY AND XPATH FULL TEXT 1.0

5 re turn <r e s u l t s co r e="{$s}">{$b}</ r e su l t >

3.2.4 Extensions to the static context

The static context (Figure 2.1 on page 13) is extended by adding support for
full-text match options. Match options modify the semantics of ftcontains

expressions, and can be declared in the query prolog using declare ft-option

<match option>. Available match options are described in the next section.

3.3 Full-Text Selections

A full-text selection speci�es the conditions for a full-text search. It contains
full-text operators and match options used in an ftcontains expression. This
subsection describes the parts involved in full-text selections.

A general full-text selection (FTSelection) is speci�ed as containing logical
operators (FTOr), optionally followed by positional �lters (3.3.5 on page 24)
and a weight. Semantically, the FTOr translates into a primary full-text selection
optionally followed by match options (3.3.3 on the facing page). A primary full-
text selection (FTPrimary) is the basic form of a full-text selection, and speci�es
tokens and phrases, optionally followed by a cardinality constraint (3.3.2 on the
next page). A primary full-text selection may also be a general full-text selection
or an extension selection (3.3.7 on page 25).

3.3.1 Specifying search tokens and phrases

Tokens and phrases that an ftcontains expression should search for are spec-
i�ed by giving a literal or an XQuery expression, which will be converted to a
sequence of strings. Semantically in XQFT, this is de�ned as FTWords. The
FTWords production also allows specifying an option for how the query tokens
should be matched:

� �any� is the default if the option is omitted. This will treat the sequence
of tokens for each string as a phrase. The resulting matches must contain
at least one of the phrases.

� �all� will also treat the sequence of tokens for each string as a phrase.
Resulting matches must contain all the phrases.

� �phrase� will concatenate the given string sequence, and a resulting match
must contain the generated phrase.

� �any word� will join combine the string sequence into a single set, and a
resulting match must contain at least one token from the set.

� �all words� will also combine the sequence of strings into a single set, and
a resulting match must contain all the words

Examples:

1 (: s p e c i f y a s i n g l e word :)
2 //book [. / t i t l e f t c o n t a i n s "Expert "]
3

3.3. FULL-TEXT SELECTIONS 21

4 (: s p e c i f y a phrase :)
5 //book [. / t i t l e f t c o n t a i n s "Expert Reviews "]
6
7 (: s p e c i f y two words , and that a l l /both must match :)
8 //book [. / t i t l e f t c o n t a i n s {"Expert " , "Reviews "} a l l]

3.3.2 Cardinality constraint

In a primary full-text selection, FTWords may be followed by FTTimes, which
is the �occurs� operator. This is used for specifying the cardinality of a suc-
cessful match of a FTWords operand. Valid ranges for �occurs� are: �exactly
<n> times�, �at least <n> times�, �at most <n> times�, and �from <n>

to <m>�.
Example:

1 (: s p e c i f y c a r d i n a l i t y us ing the occurs operator :)
2 //book [. f t c o n t a i n s " u s a b i l i t y " occurs at l e a s t 2 t imes]

3.3.3 Match options

3.3.3.1 Language

The language option (FTLanguageOption) is used for localization of full text
queries. It a�ects tokenization, stemming, and stop words in an implementation-
de�ned way. The default language is speci�ed in the static context.

Example:

1 (: s p e c i f y language opt ion to s e l e c t appropr ia te stop word l i s t :)
2 //book [@number="1"]// ed i t o r f t c o n t a i n s " sa lon de the "
3 with d e f au l t stop words language " f r "

3.3.3.2 Wildcards

The wildcard option (FTWildCardOption) enables wildcard matching of tokens
and phrases. Valid options are with wildcards and without wildcards, the
latter being the default. The syntax for wildcards is the same as for regu-
lar expressions: a period (.) indicates a wildcard, and quanti�ers (?, *, +,

{n,m}) may be used for specifying the range of characters that should match
the wildcard.

Example:

1 (: s p e c i f y wi ldcard opt ion :)
2 //book [@number="1"]/ t i t l e f t c o n t a i n s " improv .*" with wi ldcards

3.3.3.3 Thesaurus

A thesaurus option (FTThesaurusOption) modi�es token and phrase matching
by specifying whether and how thesauri should be used. An option can specify 1)
the location of thesauri (either a default or a URI reference), and optionally 2)
the relationship to be applied (see below) and 3) how many levels hierarchical
relationships should be traversed. (2) and (3) are only used if a thesaurus
location is given as a URI reference.

22 CHAPTER 3. XQUERY AND XPATH FULL TEXT 1.0

When enabled, a thesaurus will modify the words in the query, or add tokens
and phrases to the query. The search will then be performed as though the used
had speci�ed additional tokens in a disjunction (FTOr). How the thesaurus is
represented is implementation-dependent, and may be e.g., a topic map, an
ontology, a taxonomy, a soundex etc.

XQFT states that relationships include, but are not limited to, the rela-
tionships and their abbreviations in ISO 27881, and their equivalents in other
languages. Listed here in English, with abbreviations in brackets:

1. equivalence relationships (synonyms): PREFERRED TERM (USE), NON-
PREFERRED USED FOR TERM (UF);

2. hierarchical relationships: BROADER TERM (BT), NARROWERTERM
(NT), BROADER TERMGENERIC (BTG), NARROWERTERMGENERIC
(NTG), BROADER TERM PARTITIVE (BTP), NARROWER TERM
PARTITIVE (NTP), TOP Terms (TT); and

3. associative relationships: RELATED TERM (RT).

Example:

1 (: use thesaurus to a l s o match synonyms o f " du t i e s " , e . g . , " ta sk s "
:)

2 count (// book/ content f t c o n t a i n s " du t i e s " with
3 thesaurus at "http :// cdn . example . com/ thesaurus . xml"
4 r e l a t i o n s h i p "UF")

3.3.3.4 Stemming

The stemming option (FTStemOption) modi�es token and phrase matching by
specifying whether stemming should be used. Valid values are with stemming

and without stemming (the default). How stemming should be performed is
implementation-de�ned.

Example:

1 (: use stemming to a l s o match " improving" :)
2 /books/book [@number="1"]/ t i t l e f t c o n t a i n s " improve" with stemming
3
4 (: the r e s u l t would be d i f f e r e n t from a wi ldcard match , which
5 po t en t i ona l l y could match " improv i s ing " and othe r s :)
6 /books/book [@number="1"]/ t i t l e f t c o n t a i n s " improv .+" with wi ldcards

3.3.3.5 Case sensitivity

A case option (FTCaseOption) speci�es how case should be considered. There
are four possible options: case insensitive (default), case sensitive, lowercase,
and uppercase. The second will only match tokens with the same case as spec-
i�ed in the query. The last two options will only match tokens of the speci�ed
case.

Example:

1 (: s p e c i f y that only lowercase tokens / phrases should be matched :)
2 //book [@number="1"]/ t i t l e f t c o n t a i n s " Usab i l i t y " lowercase

1ISO 2788: 1986: Documentation � Guidelines for the establishment and development of
monolingual thesauri.

3.3. FULL-TEXT SELECTIONS 23

3.3.3.6 Diacritics

A diacritics option (FTDiacriticsOption) speci�es whether token matching
should be sensitive to diacritics. Possible options are diacritics insensitive

(default) or diacritics sensitive.

1 (: s p e c i f y i n g " d i a c r i t i c s s e n s i t i v e " w i l l not match "Verá" :)
2 //book [@number="1"]/ e d i t o r s f t c o n t a i n s "Vera" d i a c r i t i c s s e n s i t i v e

3.3.3.7 Stop words

A stop word option (FTStopWordOption) in�uences matching of FTWords by
specifying whether stop words are used. Like with the thesaurus option, the
stop word option may specify a default list that should be used (from static
context or otherwise in an implementation-de�ned manner) or giving a URI
reference to a location where a stop word list could be found. In addition, a list
of stop words may be given as a comma-separated list of string literals directly
in the query. Multiple lists can be combined using one of the keywords union
or except between lists. The default is without stopwords.

If stop words are used, any token matching a stop word will be removed from
the search, and may be substituted by any other token.

Example:

1 (: w i l l match " propagat ing few e r r o r s " :)
2 /books/book [@number="1"]//p f t c o n t a i n s " propagat ion o f e r r o r s "
3 with stemming with stop words (" a " , " the " , " o f ")

3.3.3.8 Extension option

The extension option (FTExtensionOption) is de�ned by XQFT as an implementation-
de�ned match option. The reason for specifying this syntax is to allow queries
utilizing custom match options to be successfully parsed by any implementation.
An extension option consists of the literal �option� followed by a QName and a
string literal.

Example:

1 (: pass an extens i on opt ion to the implementation ' s i n t e r n a l s :)
2 // para [. f t c o n t a i n s
3 (" Kinder" ftand "Platz " d i s t anc e exac t l y 1 words)
4 with stemming
5 opt ion exq : compounds " d i s t ance=1"]

3.3.4 Logical full-text operators

Full-text selections can be combined with logical operators:

� ftor; �nds all matches that satisfy at least one of the operands,

� ftand; �nds matches that satisfy all of the operands,

� ftnot; �nds matches that do not satisfy the operand, and

� not in; is a milder form of the operators ftand ftnot. The selection A

not in B �nds tokens matching A, but not if the token is part of a match
in B.

24 CHAPTER 3. XQUERY AND XPATH FULL TEXT 1.0

Example:

1 (: or :)
2 //book [. / / author f t c o n t a i n s "M i l l i c e n t " f t o r " Vo l t a i r e "]
3
4 (: and :)
5 //book/ author f t c o n t a i n s "M i l l i c e n t " ftand "Montana"
6
7 (: and not :)
8 //book f t c o n t a i n s " in fo rmat ion "
9 ftand " r e t r i e v a l "
10 ftand f tno t " in fo rmat ion r e t r i e v a l "
11
12 (: not in :)
13 /books/book f t c o n t a i n s " u s a b i l i t y " not in " u s a b i l i t y t e s t i n g "

3.3.5 Positional �lters

Positional �lters are post�x operators used for �ltering matches based on their
positional information, such as constraints on distance and document/semantic
scope. An arbitrary number of �lters may be speci�ed after a full-text selection.
Multiple �lters will be applied from left to right (output from �rst �lter is input
to second �lter etc.).

3.3.5.1 Ordered selection

An ordered selection is a full-text selection followed by the post�x operator
ordered. An ordered selection will only match if the tokens in the search text
appears in the same order as in the query.

Example:

1 (: w i l l not match the s t r i n g " lorem ipsum do lo r s i t amen" :)
2 //book/ t i t l e f t c o n t a i n s (" ipsum" ftand " lorem ") ordered

3.3.5.2 Window selection

A window selection is a full-text selection followed by one of the window op-
erators. A window operator speci�es that each matching token in the search
text must occur within a given number of units from each other. Possible units
are words, sentences, or paragraphs. A window selection may cross element
boundaries, and stop words are included when computing the window size.

Example:

1 (: would not match the s t r i n g
2 "a web s i t e about how to improve u s a b i l i t y " :)
3 //book/ content f t c o n t a i n s "web s i t e f tand " u s a b i l i t y " window 3

words

3.3.5.3 Distance selection

A distance selection is a full-text selection followed by one of the distance op-
erators. It can be considered a more detailed version of a window selection,
as it speci�es the distance of units (a range) that each matching token in the
search text must occur within. The range is the same as for cardinality selection

3.3. FULL-TEXT SELECTIONS 25

(exactly, at least, at most, from <n> to <m>), and the unit is the same as
for window selection (words, sentences, paragraphs).

Example:

1 (: w i l l not match " the u s a b i l i t y o f a web s i t e " :)
2 /books/book f t c o n t a i n s "web" ftand " s i t e " f tand " u s a b i l i t y "
3 d i s t anc e at most 2 words

3.3.5.4 Scope selection

A scope selection is a full-text selection followed by one of the scope operators.
A scope operator speci�es that matching tokens must occur in either the same
or different unit. Valid units are sentence and paragraph.

Example:

1 (: w i l l not match i f tokens are in d i f f e r e n t paragraphs :)
2 //book [. f t c o n t a i n s " u s a b i l i t y " ftand " t e s t i n g " same paragraph]

3.3.5.5 Anchoring selection

An anchoring selection is a full-text selection followed by one of the operators
at start, at end, or entire content.

Example:

1 (: w i l l match a s t r i n g ending in " propagat ing very few e r r o r s " :)
2 /books //p [. f t c o n t a i n s "propagat .*" with wi ldcards
3 ftand " few e r r o r s "
4 d i s t anc e at most 2 words at end]
5
6 (: w i l l r e turn each b element whose e n t i r e content i s "web s i t e " :)
7 /books //b [. f t c o n t a i n s "web s i t e " e n t i r e content]

3.3.6 Ignore option

The ignore option speci�es a set of nodes whose content are ignored when pro-
cessing the query.

Example:

1 //book [. / chapter f t c o n t a i n s " u s a b i l i t y "
2 without content chapter // annotat ion]

3.3.7 Extension selections

As with the extension match option, XQFT de�nes an implementation-de�ned
extension selection to enable custom selections in implementations without break-
ing parsing in others. An extension selection consists of one or more pragmas
followed by a full-text selection closed in curly braces. A pragma is an identify-
ing QName and implementation-de�ned content, delimited by �(#� and �#)�.

Example:

1 (: t e l l the under ly ing implementation to use index ing :)
2 /books/book/ author [name
3 f t c o n t a i n s (# exq : use−index #) { ' Berners−Lee ' }]

26 CHAPTER 3. XQUERY AND XPATH FULL TEXT 1.0

3.4 Summary

We have seen that XQFT on an abstract level de�nes a full-text extension to the
existing XQuery standard. The most notable addition is the full-text contains

expression, which performs full-text selections on sequences of items. Full-text
selections allow specifying a multitude of options and �lters as conditions for
the search. All of those, however, require that both the query and the sequence
of items are segmented into tokens and phrases, through the process of tokeniza-
tion.

XQFT does not specify how parts of the standard should be implemented.
To borrow a term from object-oriented programming; XQFT merely de�nes the
interface to which an implementation must conform. Concepts such as indexing,
storage mechanisms and access methods are outside the scope of the standard,
and no hints are given on how these concepts should be dealt with (except that
indexing may or may not in�uence search conditions).

Chapter 4

State of the art

This chapter provides an analysis of how full-text search and indexing are im-
plemented in existing XQuery extensions and XML database projects.

4.1 The Quark Project

The Quark Project1 at the Cornell Database Group was a project that aimed to
provide an XML database with e�cient search using a mix of structured queries
and full-text predicates. They developed TeXQuery[3]; a full-text extension to
XQuery that was a precursor to XQFT, and Quark[6, 29]; an e�cient XQFT
implementation.

4.1.1 TeXQuery

The structural part of queries in Quark are regular XQuery queries, which re-
trieve sequences of items. The full-text part of queries was originally based on
TeXQuery � a full-text extension to XQuery that was a precursor to XQFT.
TeXQuery adds full-text support by de�ning a full-text contains expression
(FTContainsExpr) and a score expression (FTScoreExpr). Both expressions
work on full-text selections, which as in XQFT specify the conditions (tokens,
phrases, boolean connectivities, scoping, term weights) for a full-text search.
TeXQuery also adds context modi�ers, which are equivalent to match options
in XQFT. The di�erence between TeXQuery and XQFT is that the latter has
matured more, leading to a more generalized approach (i.e., a standard). For
example, the full-text contains expression in TeXQuery works only on full-text
selections, whereas the XQFT version works on the more general range expres-

sion. The score expression in TeXQuery is de�ned as score variables in XQFT,
which are used in conjunction with FLWOR expressions to make it easier to
write queries. All in all, TeXQuery was very in�uential on the standardization
of XQFT (the authors of TeXQuery are also editors of XQFT).

1http://www.cs.cornell.edu/bigreddata/Quark

27

http://www.cs.cornell.edu/bigreddata/Quark

28 CHAPTER 4. STATE OF THE ART

4.1.2 Quark

The Quark Project identi�es an interesting issue that is likely to occur in large-
scale XML search applications: traditional IR engines rely on the assumption
that documents are materialized, i.e., static documents that can be parsed, tok-
enized, and indexed when documents are loaded into the system. Quark states
that there are several search applications in XML/IR where queries do not op-
erate on materialized base data, but rather a virtual view made up of fragments
of several documents, or even aggregated from web services. Examples:

� personalized views for large-scale web portals or enterprise search; the view
a user is searching is speci�c for the user, e.g., based on personal interests
or access levels in the system, and

� information integration; a user is searching a view that is aggregated from
web services.

Quark argues that maintaining materialized virtual views is often undesirable
and impractical, because:

� a system with many users implies having many views that need to be
constantly updated,

� content might be overlapping between users, leading to duplicates and
wasted resources, and

� materialized views might be out-of-date with respect to the base data they
aggregate.

To accommodate for keyword searches in virtual views, Quark utilizes indexes
on the base data to e�ciently determine which parts of the data that are relevant
to the query. Only those that are relevant will eventually be materialized.

4.1.2.1 Storage and indexing

Documents are stored in a compressed binary format in the �le system, allowing
stream based XML processing. Each element is given a unique identi�cator, a
Dewey ID, which is a way to encode the order of elements. The Dewey ID
for an element is pre�xed with the ID of the parent element, which allows for
traversing an XML tree in both directions (upward and downward) using IDs.
Using Dewey IDs in various forms of inverted lists was shown to be successful
for ranked keyword searches[17]. This is re�ected in Quark's indexing strategy.

Quark uses two types of indexes internally:

� Structure+Value Based Index (SVBI), a path index used in path queries,
and

� Structure Based Inverted List Index (SBILI), used to evaluate keyword
searches over materialized documents.

The SVBI could be implemented as a relational table, as in Figure 4.1. Each
row contains a unique pair of Path and Value, and a list of IDs to elements on
the Path with a matching Value. A B+-Tree index could be built on the (Path,
Value) pair to allow fast lookups. The index would be used as follows:

4.1. THE QUARK PROJECT 29

� A path query with value predicates (/book/author/fn[. = 'Jane'])
uses the index to �nd paths matching the value �Jane�.

� A path query without predicates merges the IDLists corresponding to the
given path.

� A path query with descendant axes (/book//fn) probes the index for each
full data path (e.g., /book/name/fn)

� A twig query2 is evaluated in two steps; 1) by evaluating each individual
path query in the twig and 2) merging the results based on Dewey ID.

Figure 4.1: A path/value index in Quark, implemented as a relational table

This �gure is copied from [29] �g. 5.

Figure 4.2: An inverted list index in Quark

The tree on the left-hand side represents an example document with Dewey
IDs for each node, which are mapped to keywords in the inverted list on the
right-hand side. This �gure is copied from [29] �g. 4.

The SBILI, shown in Figure 4.2, is used for linking keywords with elements
that directly contain them. Each keyword in the document collection has a list
of element IDs, in addition to extra information, such as term frequency and
positional information. As with the SVBI, a B+-tree index can be built on top
of the SBILI, which allows for e�ciently checking whether a speci�c element
contains a given keyword.

By using indexes to create and materialize (pruned) views, the query proces-
sor avoids doing expensive joins and accessing base data directly. This is crucial
for large-scale search applications, and Quark claims to be a very e�cient solu-
tion.

2�A twig query is a small tree, whose nodes n represent simple predicates pn on the content
(text) or the structure (elements) of a queried XML document, whereas its edges de�ne the
desired relationship between the items to match.� � Quote from [6].

30 CHAPTER 4. STATE OF THE ART

4.2 Sedna

Sedna3 is an open source native XML database with support for XQuery and
full-text search. The full-text extension is based on the commercial dtSearch
Text Retrieval Engine4, and supports:

� token/phrase searches,

� boolean operators,

� proximities,

� thesauri,

� stemming,

� wildcards,

� fuzzy searching; a proprietary algorithm that �nds misspelled words, and

� relevance ranking with scoring and weights.

4.2.1 Indexing

Sedna supports two index types: value indexes and full-text indexes.
A value index is speci�ed by giving a general path, a key path, and an atomic

type the content will be cast to before stored in the index. Example:

1 CREATE INDEX "books"
2 ON doc (" books ") /book BY author / lastname
3 AS xs : s t r i n g

The index above will index book elements by author/lastname. Authors' last
names will be cast to xs:string values and used as keys in the index.

A full-text index is a path index that stores an element's contents either
as XML or as a string value, or a customized mixture of those. If an XML
index is created, the XML representation of a node will be stored as-is. A string
value index will use the fn:string function to make string versions of the node
(including all descendant nodes). Example:

1 CREATE FULL−TEXT INDEX " ab s t r a c t s "
2 ON doc (" books ") // abs t r a c t
3 TYPE " s t r i ng−value "

Unfortunately, Sedna does not provide documentation on how indexes are
utilized by the query processor. The dtSearch engine is a commercial third-party
product which is not bundled with Sedna, and none of the companies provide
su�cient information on implementation details. However, if the full-text index
stores a serialized string value of the entire node, then index cannot be used for
queries with positional �lters, because this information is lost when the node
is converted to a string. Furthermore, if the index stores XML intact, certain
lookups in the index will require a scan of the entire node to determine which
parts of the XML that are relevant to the query.

3Sedna XML Database: http://modis.ispras.ru/sedna/
4dtSearch Text Retrieval Engine: http://www.dtsearch.com/PLF_engine_2.html

http://modis.ispras.ru/sedna/
http://www.dtsearch.com/PLF_engine_2.html

4.3. BASEX 31

4.2.2 Full-text search

Sedna de�nes two auxiliary XQuery functions for performing full-text search:

1. ftindex-scan($title as xs:string, $query as xs:string) as node()*

2. ftscan($seq as node()*, $query as xs:string, $type as xs:string,

$customization_rules as xs:string) as node()*

The �rst function searches an index directly, e.g., using the $query �apple and
not pear�. The second function searches a sequence of nodes that are not in-
dexed, and allows specifying the parameters known from the full-text index.
Both functions return a sequence of matching nodes, whereas XQFT returns a
sequence of items.

4.3 BaseX

BaseX is an open source native XML database developed by the Database and
Information Systems Group at the University of Konstanz, Germany. BaseX
supports full-text search by implementing XQFT. They claim to o�er the most
complete implementation of the standard. As an extension to XQFT, they add a
match option called fuzzy, which uses Levenshtein distance to match misspelled
words (fuzzy searching). Example of a fuzzy query:

1 (: w i l l a l s o match " u s a b i l i t y " :)
2 //book [. / t i t l e f t c o n t a i n s ' u s a b i l i t i ' with fuzzy]

4.3.1 Storage and indexing

BaseX supports 3 indexes for databases, which are enabled/disabled upon cre-
ation of a database. If enabled, the indexes will be used for all queries auto-
matically, i.e., a user is not required to specify in a query that indexes should
be used.

Elements, documents, text nodes, and attributes are stored in binary form
in a node table (not relational). For each node type, the table stores various
information, such as unique node ID, number of attributes and descendants,
distance to parent node, and references to text values and attributes. The
query processor communicates with a data access layer, which encapsulates
the storage mechanism(s) and available indexes. The various index types are
described below:

Text index speeds up text-based queries by indexing text nodes. It is based
on a B-tree, and supports exact and range queries. The data access layer
probes the index for text values, and get o�sets in return, which may then
be used in the node table to retrieve more information for the match. An
example query that will utilize the text index:

1 //book [t i t l e = ' Usab i l i t y ']

Attribute index works exactly like the text index, but for attribute values
(instead text nodes in elements). An example query that will utilize the
attribute index:

32 CHAPTER 4. STATE OF THE ART

1 //book [@id = ' 42 ']

Full-text index comes in two versions; fuzzy and trie (speci�ed when creating
the index). The fuzzy version is implemented as a sorted array, and is
optimized for simple and fuzzy searches. It uses a binary search to �nd
indexed keywords, and will � as with the text index � return o�sets
to the node table where more information is found. The trie version is
implemented as a compressed trie, and allows using the index for wildcard
searches, though it requires more memory and is less e�cient for fuzzy
searches.
For each token in the query, BaseX calculates and stores references to the
current sentences and paragraph, along with positional information and
other �ags (match options). This allows BaseX to use the index to answer
queries with scoping and proximities.

With its indexes, the BaseX system should be able to only materialize the
necessary parts of a query result.

4.4 Qizx

Qizx5 is an �XML indexing and searching engine� developed by XMLMind, a
division of Pixware6. Qizx supports most of XQFT. Big units (�sentence� and
�paragraph�) are not supported in distance and window selections, and scope
selection (which relies solely on big units) is not supported. Stop words are
also not supported, as Qizx considers stop words a feature of the past (when
reducing index size was essential).

Scoring in Qizx is on a document-level, i.e., the same score will be given
to all matching nodes in a document. The default scoring implementation is
the result of a normalized token weight multiplied by relative term frequency
(number of occurences in document

average number of occurences in all documents). Scoring, stemming, thesaurus, and

parsing (tokenization) are pluggable features, meaning developers can provide
customized implementations. No stemming algorithm or thesaurus is provided
by default.

4.4.1 Storage and indexing

Qizx stores XDM representations of documents in libraries, which are persisted
on disk in compressed form. There are four indexes available, which � as
in Quark and BaseX � are utilized automatically by the query processor (as
opposed to voluntarily in queries). Indexes are also stored in compressed form.

Qizx does not disclose how storage mechanisms and indexing are imple-
mented, although one may assume that indexes are organized as a sorted data
structure which allows fast lookups, and also contains positional information
and term frequencies to avoid expensive I/O and materialization of documents.
There is reason to believe that records in indexes contain pointers/o�sets to the
actual nodes in the binary document storage. The following index types are
available:

5Qizx: http://www.xmlmind.com/qizx/
6Pixware: http://www.pixware.fr/

http://www.xmlmind.com/qizx/
http://www.pixware.fr/

4.5. SUMMARY 33

Element index Contains element names and information about child/descen-
dant relationships. A lookup takes an element name, and returns all ele-
ments in all documents of a library matching the given name.

Attribute index Contains attribute names and their values. A lookup takes
an attribute name and a value, and returns all elements with the given
attribute and value.

Simple content index Contains element values (text nodes) that are recog-
nized as tokens, i.e., the element contains a single value without any
whitespace. A lookup takes an element name and a simple value, and
returns all elements with the given name and value.

Full-text index Contains all keywords/tokens with a given minimum and max-
imum length. A lookup takes a keyword, and returns all text nodes con-
taining an occurrence of the given word.

4.5 Summary

We have investigated four state-of-the-art XML databases through literature
and source code. Several other databases have been left out of the study, be-
cause they a) do not use XQuery for querying, b) do not use XQFT (or similar
approaches) for full-text search, or c) are undocumented and source code not
available.

Indexing has proven to be essential for retrieval performance (except for very
small document collections). It is simply too expensive to query large data sets
without an index, since common queries will require a scan of entire document
collection (sometimes several scans), leading to massive I/O tra�c.

Most implementations seem to store XML data in a compressed binary for-
mat, allowing random access (streaming capabilities). Each stored node is given
a unique identi�er which allows addressing nodes directly in the physical stor-
age. Indexes will typically store the IDs as pointers/o�sets combined with term
frequencies and positional information. Depending on the information stored in
indexes, a query may be answered entirely by index lookups, thus reducing I/O
to only materializing the relevant parts of a document/element/node.

The table below summarizes relevant features of the mentioned XML databases.

Quark Sedna BaseX Qizx

Full-text engine XQFT dtSearch XQFT XQFT
Structure index Yes No No Yes
Value index Yes Yes Yes Yes
Full-text index Yes Yes Yes Yes
Index utilization Automatic Voluntary Automatic Automatic

Table 4.1: Summary of XML databases

34 CHAPTER 4. STATE OF THE ART

Part II

Thesis Contribution

35

Chapter 5

Implementing full-text search

in an XML database

This chapter describes and discusses the design and implementation details of
various IR concepts from XQFT; �rst in general terms, then in the context of
Oracle Berkeley DB XML.

5.1 Introduction

In this chapter, we will see how XQFT may be implemented in an XML database
that already supports XQuery, but has no full-text search capabilities. When
implementing XQFT as an extension to XQuery, there are a number of issues
that need to be considered.

As shown in Chapter 3, the processing model is di�erent, and requires modi-
�cations to the execution engine (query processor) beyond the syntactical addi-
tions XQFT introduces. Queries and data must be tokenized to enable full-text
search at all, and several queries require more information than just tokens to
be answered, e.g., a token's position and scope, or match options which should
be tailored to the content of the database, such as thesauri and stemming.

In Chapter 4, we investigated a few XML databases that already implement
XQFT, and learned that choice of indexing strategy is crucial for e�ciently
querying large data sets. A full-text index is di�erent from a regular value
index, and should leverage positional queries and scoring in addition to simple
keyword lookups.

In the following sections, we take a deeper look at how XQFT and full-text
indexing may be implemented an XML database. We start by discussing a few
selected IR concepts in general, and proceed to see if and how those may be
implemented in Oracle Berkeley DB XML.

5.2 General implementation of full-text concepts

5.2.1 Tokenization

Tokenization is at the core of every full-text search, be it in XQFT or any other
text-based IR system. As we will see in this subsection, tokenization of XML

37

38CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

for full-text search is not fundamentally di�erent from tokenization of regular
text.

The following de�nition is taken from [18]:

�Formally, tokenization is the process of converting an XDM item to
a collections of tokens, taking any structural information of the item
into account to identify token, sentence, and paragraph boundaries.
Each token is assigned a starting and ending position.�

The de�nition above is elaborated in a list of six constraints that implementa-
tions must conform to:

1. Each token must consist of one or more characters.

2. Tokenization of an item must include only tokens derived from the string
value of that item.

3. The tokenizer should, when tokenizing two equal items, identify the same
tokens in each.

4. The starting and ending position of a token must be integers, and the
starting position must be less than or equal to the ending position.

5. In the tokenization of an item, consider the range of token positions from
the smallest starting position to the largest ending position; every token
position in that range must be covered by some token in the tokenization.
That is, for every token position P, there must exist some token T such
that T's starting position <= P <= T's ending position.

6. The tokenizer must preserve the containment hierarchy (paragraphs con-
tain sentences contain tokens) by adhering to the following constraints:

(a) Each token is contained in at most one sentence and at most one
paragraph. (In particular, this means that no tokens of any sentence
are contained in any other sentence, and no tokens of any paragraph
are contained in any other paragraph.)

(b) All tokens of a sentence are contained in at most one paragraph.

(c) The range of token positions from the smallest starting position to
the largest ending position in a sentence does not overlap with the
token position range from any other sentence.

(d) The range of token positions from the smallest starting position to
the largest ending position in a paragraph does not overlap with the
token position range from any other paragraph.

As we see, for an implementation to conform to the XQFT standard, the to-
kenization process must take account of a token's positional information and
scope. In addition, constraint 2 states that tokens must be derived from the
string value of an item, i.e., fn:string($item), which implicitly leaves out at-
tributes and comments, and more importantly; it dissolves element boundaries.
An element containing child elements will after tokenization be represented as
a single string (segmented in tokens) without the notion of child elements.

5.2. GENERAL IMPLEMENTATION OF FULL-TEXT CONCEPTS 39

A typical tokenizer for western languages will consider each word a token.
However, a sophisticated tokenizer might be language-dependent, yielding dif-
ferent results for a word depending on the language. For example, in Norwegian,
a compound word like �busstopp� might result in the tokens �busstopp�, �buss�,
�stopp�, whereas a language-independent tokenizer will only see one word.

We propose a general language-independent tokenizer with the following
rules:

1. Tokens are split by whitespace (space, horizontal tabulation, newline), and
common punctuation marks (period, comma, quotation mark, semicolon,
etc.). For each token, increase a position counter (integer) by one.

2. Sentences are split by end-of-sentence punctuation marks (period, colon,
exclamation mark, question mark). For each sentence, increase a sentence
counter (integer) by one.

3. Paragraphs are split by newline whitespace. For each paragraph, increase
a paragraph counter (integer) by one.

4. A token stores its word, along with position, sentence, and paragraph
relative to the item the token was derived from.

With those rules, an item in the search context needs only a single scan (the
toknization) to answer queries with positional �lters.

Besides the ability to parse XDM instances, a tokenizer in XQFT is not
remarkably di�erent from a tokenizer in text-based IR systems.

5.2.2 Thesaurus

As mentioned in 3.3.3.3 on page 21, a thesaurus will expand queries by adding
related terms in a disjunction. An example of this is shown in Figure 5.1 on
the following page. A query asking for �car� might be expanded with narrower
terms, such as �sedan� and �roadster�. In the example, the query speci�es that
a thesaurus can be found at a given URL. The query processor will fetch the
speci�ed document, parse it, �nd related terms with respect to the match option
(relationship, range), and add terms to the query accordingly. This implies that
the query processor has knowledge of the schema for thesauri, so it will be
able to parse it and extract information from it. How a thesaurus should be
represented is up to implementers.

An issue for implementers is that there is no standard or preferred way for
representing thesauri. The ISO standard mentioned in XQFT is only used for
suggesting the relationships an implementation should support. Consequently,
a query using thesauri may yield di�erent results in di�erent implementations,
or even raise errors depending on the implementation.

XQFT being an XML and web standard, it would make sense to represent
thesauri as XML. In this regard, there have been made some e�orts by var-
ious organizations; Medical Subject Headings1 by the US National Library of
Medicine; the Alexandria Digital Library Thesaurus Protocol2 at the University
of California, Santa Barbara; The Open University Thesaurus3; and others.

1MeSH: http://www.nlm.nih.gov/mesh/
2ADL Thesaurus Protocol: http://www.alexandria.ucsb.edu/∼gjanee/thesaurus/
3Open University Thesaurus Schemas: http://guardians.open.ac.uk/schemas/thesaurus/

http://www.nlm.nih.gov/mesh/
http://www.alexandria.ucsb.edu/~gjanee/thesaurus/
http://guardians.open.ac.uk/schemas/thesaurus/

40CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

Figure 5.1: Query expansion with a thesaurus

The most standardized approach, however, is the SKOS Simple Knowledge
Organization System[23] published by the Semantic Web Deployment Working
Group4 as part of the W3C Semantic Web Activity5. SKOS de�nes a common
data model for knowledge organization systems, based on the OWL Web Ontol-
ogy Language[25], using a Resource Description Framework (RDF)[9] syntax,
such as RDF/XML[5]. The following example is based on an example from [22],
and shows an entry for the word �automobile� expressed as RDF/XML:

1 <rd f :RDF
2 xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"
3 xmlns : skos="http ://www.w3 . org /2008/05/ skos#">
4
5 <skos : Concept rd f : about="http :// example . com/ t#1">
6 <skos : pre fLabe l>automobile</skos : pre fLabe l>
7 <skos : a l tLabe l>car</skos : a l tLabe l>
8 <skos : broader rd f : r e s ou r c e="http :// example . com/ t#2"/>
9 <skos : narrower rd f : r e s ou r c e="http :// example . com/ t#3"/>
10 <skos : narrower rd f : r e s ou r c e="http :// example . com/ t#4"/>
11 <skos : narrower rd f : r e s ou r c e="http :// example . com/ t#5"/>
12 <skos : r e l a t e d rd f : r e s ou r c e="http :// example . com/ t#6"/>
13 </skos : Concept>
14
15 </rd f :RDF>

As the example above shows, thesaurus terms are referenced by rdf:resource

attributes. When parsing the thesaurus, each term must be retrieved based
on the rdf:resource attribute. The retrieved terms will be similar to the
example listing above, and the keywords to expand the query with are retrieved
from either the skos:prefLabel element or the skos:altLabel element (if the
speci�ed relationship is �uf�). A complete example for the thesaurus above is
given in Appendix A.3.

XQFT de�nes the following semantics for applying an FTThesaurusOption:

1 de c l a r e func t i on f t s : applyThesaurusOption (
2 $matchOption as element (f t s : thesaurus) ,
3 $queryTokens as element (f t s : queryToken) *)
4 as element (f t s : queryItem) *

4Semantic Web Deployment Working Group: http://www.w3.org/2006/07/SWD/
5W3C Semantic Web Activity: http://www.w3.org/2001/sw/Activity

http://www.w3.org/2006/07/SWD/
http://www.w3.org/2001/sw/Activity

5.2. GENERAL IMPLEMENTATION OF FULL-TEXT CONCEPTS 41

5 {
6 i f ($matchOption/@thesaurus Ind icator = "with ") then
7 f t s : lookupThesaurus ($queryTokens ,
8 $matchOption/ f t s : thesaurusName ,
9 $matchOption/@language ,
10 $matchOption/ f t s : r e l a t i o n sh i p ,
11 $matchOption/ f t s : range)
12 e l s e i f ($matchOption/@thesaurus Ind icator = "without ") then
13 <f t s : queryItem>
14 {$queryTokens}
15 </ f t s : queryItem>
16 e l s e ()
17 } ;

The semantics for the fts:lookupThesaurus function is de�ned as a stub
in XQFT:

1 de c l a r e func t i on f t s : lookupThesaurus (
2 $tokens as element (f t s : queryToken) * ,
3 $thesaurusName as xs : s t r i n g ? ,
4 $thesaurusLanguage as xs : s t r i n g ? ,
5 $ r e l a t i o n s h i p as xs : s t r i n g ? ,
6 $range as element (f t s : range) ?)
7 as element (f t s : queryItem) * ex t e rna l ;

An example implementation of the semantics for the fts:lookupThesaurus
function is given in Appendix A.1.

Except for how they are represented, thesauri in XQFT are not very di�erent
from their text-based siblings in traditional IR systems. Queries are expanded
by adding related keywords based on lookups in a thesaurus.

5.2.3 Stop words

Contrary to a thesaurus � which adds tokens to a query � stop words will
remove tokens from a query. If a token in a query matches a stop word, that
token will not be matched against tokens in the search context. A query token
matching a stop word will retain its positional information, which is considered
in distance or window searches (positional �lters).

The FTStopWordsOption allows for stop words to be retrieved from a URI
reference. As with thesauri, this introduces an issue for cross-implementation
compatibility, because there is no de�ned standard way of representing stop
words. We looked at the SKOS W3C standard for representation of thesauri,
but no equivalent standard exists for stop words. However, a list of stop words
is in its nature less complex than a thesaurus, and may thus be represented with
a simpler (less verbose) syntax.

Semantically, a list of stop words resolves to a sequence of xs:string items.
XQFT de�nes the semantics for applying a thesaurus option (fts:applyThesaurusOption),
and a function stub for resolving a URI reference to a list of stop words (fts:resolveStopWordsUri).
We propose the following syntax for representing stop words as XML:

1 <?xml ve r s i on ="1.0" encoding="UTF−8"?>
2 <stopWords>
3 <stopWord>a</stopWord>
4 <stopWord>of</stopWord>
5 <stopWord>or</stopWord>
6 </stopWords>

42CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

Amore complete example is given in Appendix A.4. The semantics for fts:applyThesaurusOption
and our example implementation of fts:resolveStopWordsUri are given in
Appendix A.2.

As it turns out, stop words in XQFT are not remarkably di�erent than stop
words in text-based IR systems. The implementation of stop words does not
need to consider a document's structure, because this information is discarded
during tokenization.

5.2.4 Stemming

In XQFT, the stemming option is a simple on/o� switch. XQFT imposes no
restrictions on how stemming should be implemented. Stemming is generally
independent of document structure, i.e., stemming tokens in an XML document
is no di�erent than stemming tokens in any other text document. Consequently,
a stemmer in XQFT may be implemented in the same way as stemmers in text-
based IR systems.

There are several approaches to implementing stemmers; brute force dictio-
nary lookups, su�x stripping algorithms, lemmatization algorithms etc. A pop-
ular approach is to use an algorithm based on the Porter Stemming Algorithm[26],
such as the open source Snowball6 project. This is a su�x stripper that works
well for most western languages, and can be customized for speci�c application
needs.

5.2.5 Positional �lters

The implementation of positional �lters relies on having available the positional
information for tokens, such as

1. a token's relative position in the query,

2. a token's relative position in the search context,

3. (1) versus (2), or

4. which sentence or paragraph a token resides in.

From 5.2.1, we recall that a tokenizer is required to store this information per
token. With this in mind, implementing positional �lters should be trivial.

An ordered selection iterates each token in the query, and veri�es that match-
ing tokens in the search context are positioned in the same ascending order.

A window selection veri�es that the �rst and last matching token does not
span wider than the given number of words, sentences, or paragraphs.

A distance selection veri�es that two matching tokens adhere to the given
distance, i.e., that the position of the matching tokens are are greater/-
less/equal to the given number of words, sentences, or paragraphs.

A scope selection veri�es that matching tokens occur in the same (or di�er-
ent) paragraph or sentence.

6Snowball: http://snowball.tartarus.org/

http://snowball.tartarus.org/

5.2. GENERAL IMPLEMENTATION OF FULL-TEXT CONCEPTS 43

An anchoring selection veri�es that matching tokens a) range successively
from position 0 and outwards, b) range successively so that the last match-
ing token has the maximum position possible for the search context, or c)
succeed from position 0 to the maximum position possible for the search
context.

Answering those selections is ultimately a matter of simple arithmetic opera-
tions (integer comparisons), performed on the positional information stored in
tokens. The XML structure of documents could potentially in�uence the result
of positional �lters. However, the structure is discarded by the tokenizer, thus
the implementation of positional �lters is not substantially di�erent from similar
concepts in text-based IR systems.

5.2.6 Relevance ranking

The implementation of IR-style relevance ranking for XML documents has been
investigated in several publications [1, 19, 17]. A recurring subject is how to
apply scoring for content-and-structure (CAS) queries, and how to best utilize
indexes for retrieval e�ciency. There seems to be a general agreement that a
matching token's importance � and hence relevance � is determined by three
factors:

1. where in a document the token is located (e.g., title vs. footnote),

2. how frequently the token occurs in the matching document (tf; term fre-
quency), and

3. how frequently the token occurs in the document corpus as a whole (idf;
inverse document frequency).

The �rst factor is related to the XML structure of documents. If query tokens
match the title of a document word by word, it is likely to be more relevant than
a document matching a footnote or an annotation. However, an XML document
by itself has no knowledge of what the title of a document is. A title element
in one document may have a di�erent meaning in another document, which
e�ectively leaves out ranking based on element names alone. Applying XML
schemas does not help, unless the query processor is tied to a speci�c schema,
which again would not be ideal for documents not using that schema. XQFT
has solved this issue � handling diversity of documents and schemas � by
letting users specify weights (3.2.3) per query. Consider the following query:

1 f o r $b s co r e $s
2 in /books/book [t i t l e f t c o n t a i n s (" u s a b i l i t y " weight 2 . 0) or
3 content f t c o n t a i n s (" u s a b i l i t y " weight 0 . 8)
4 order by $s descending
5 re turn <re su l t >{$b/ t i t l e }{$b/ abs t r a c t }</ r e su l t >

The query above will emphasize matches in the title element under books,
in e�ect giving it higher relevance than matches in the content element. As
such, a token's relevance based on location (structure) may be calculated using
weights.

Term frequency and inverse document frequency are the other factors in�u-
encing relevance. There are two issues related to calculating tf and idf in XQFT.
First, there is the question of �what is a document?�, i.e., which parts of an XML

44CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

tree should logically be considered a document? For the example query above;
is /books a single document, or is each /book/book a separate document? A
common approach in implementations is to operate with collections of docu-
ments, and de�ne methods for inserting XML documents into collections. Each
inserted document will logically be a distinct document, and the collection acts
as the document corpus. Consequently, tf is calculated by counting occurrences
in the unit (XML document) that was inserted into the collection, and idf is
calculated by counting each matching document in the collection. Documents
and collections potentially contain large amounts of data, which introduces the
second issue.

Scanning entire documents (or indeed entire collections) to count tf and idf
is time-consuming, and is not a conceivable option unless the document corpus
is very small. This calls for indexes. A common indexing strategy for relevance
ranking is to augment inverted lists. If an inverted list contains a token's tf for
the documents it occurs in, a measure for relevance can be calculated without
materializing and scanning the actual documents.

5.3 Oracle Berkeley DB XML

When choosing an XML database to implement XQFT in, the decision was
made to use Oracle Berkeley DB XML (BDB XML)7. BDB XML was chosen
for a number of reasons:

� the source code is available (open source),

� it is well-documented,

� it is and active project which is still maintained, and

� it has an active community

Most of all, BDB XML was chosen because it is used in research projects at
NTNU, which could bene�t from having the possibility run full-text queries on
large collections of XML documents.

The subsequent subsections are based on BDB XML version 2.4.16.

5.3.1 Architecture

BDB XML is an embeddable native XML database. The term �embeddable�
refers to the process architecture; rather than having a full-blown client/server
stack with networking, BDB XML is a use-at-will library � with bindings for
many languages � that is linked (embedded) in applications. This has impli-
cations for performance, as there is no inter-process communication or context
switching.

BDB XML builds on top of Berkeley DB, which provides common database
features; transactions, database replication, locking mechanisms, intermediate
caching and indexing, and logging. BDB XML adds features for managing and
indexing XML, and an XQuery Engine to run queries. An overview of the
architecture is given in Figure 5.2 on the next page.

7Oracle Berkeley DB XML: http://www.oracle.com/technology/products/berkeley-
db/xml/index.html

http://www.oracle.com/technology/products/berkeley-db/xml/index.html
http://www.oracle.com/technology/products/berkeley-db/xml/index.html

5.3. ORACLE BERKELEY DB XML 45

Figure 5.2: Overview of BDB XML architecture

5.3.1.1 XQuery Engine

The XQuery engine in BDB XML is, based on XQilla8. XQilla is an open source
project, which builds on top of the Xerces-C++9 XML parser � another open
source project, developed by The Apache XML Project10. Xerces-C++ features
numerous XML-related standards, and provides DOM and SAX programming
interfaces. XQilla adds XQuery and XPath support to Xerces-C++, and BDB
XML �glues� the projects together with Berkeley DB.

Figure 5.3 on the following page shows a rough overview of query processing
in BDB XML, and how the various architectural components interact with each
other. Users interact with the XmlManager, which acts as a façade for opera-
tions on lower levels. XQilla parses the query, and uses Xerces-C++ to represent
information combined from Berkeley DB databases (documents and indexes).
Query plan optimization is not shown in the �gure, but is an important part of
the XQuery engine in BDB XML.

5.3.1.2 Storage

BDB XML uses Berkeley DB for data storage. Documents are stored in con-
tainers, which are logical groupings of documents, indexes and statistics, data
dictionaries, and other metadata. Each container comprises several Berkeley DB
databases (for content, indexes, etc), and represents a collection of documents.

8XQilla: http://xqilla.sourceforge.net/
9Xerces-C++: http://xerces.apache.org/xerces-c/

10The Apache XML Project: http://xml.apache.org/

http://xqilla.sourceforge.net/
http://xerces.apache.org/xerces-c/
http://xml.apache.org/

46CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

Figure 5.3: Berkeley DB XML Query Processing

A Berkeley DB database is, in essence, a high-performance key/value storage
for arbitrary data, where each key may contain several data items. Data is
stored in byte arrays, and Berkeley DB does not by itself force any schemas,
i.e., applications � such as BDB XML � are free to de�ne schemas for their
data. Berkeley DB o�ers four access methods; B-tree, Hash, Queue, and Recno.
BDB XML uses the B-tree access method for its databases, because a B-tree
o�ers decent e�ciency for searches, insertions, and deletions, and thus supports
the varying usage patterns an application may have.

Containers may store XML documents intact, or break documents into nodes
that are stored individually. Intact storage is required for round-tripping[24] and
makes for e�cient materialization and serialization of documents, at the cost
of slowing down query processing; raw XML must be parsed during evaluation
to answer queries. Node storage makes query processing faster, because whole
documents need not be materialized to answer structure or content queries.
Answers are generated from direct node lookups, and only the necessary parts
of documents are materialized.

5.3.1.3 Indexing

Indexes are not created and utilized automatically, instead BDB XML allows a
variety of indexes to be created by users. There are �ve properties that de�ne
an indexing strategy:

Uniqueness indicates whether the indexed value must be unique within the
container.

Path type de�nes the path type to index for values, and is either node or
edge. Node type stores the direct parent node of a value (e.g., title),

5.3. ORACLE BERKELEY DB XML 47

while edge type stores the �edge� of a value, i.e., the parent node and the
parent's parent (e.g., book/title).

Node type de�nes the type of node being indexed; element, attribute, or
metadata.

Key type de�nes the sort of test that the index supports; presence, equality,
or substring. The substring type improves performance for queries using
the fn:contains() function, while the other improve performance for queries
testing for node existence or equality.

Syntax type de�nes the syntax to use for the indexed value, and maps to any
of the XML Schema primitive types (Table 2.1 on page 10), or one of
the following; dayTimeDuration, yearMonthDuration, untypedAtomic,
or none.

Consider the following example document from a collection of books11:

1 <book id="424">
2 <t i t l e>Modern Informat ion Re t r i e va l</ t i t l e>
3 <pub l i s h e r>Addison Wesley ; 1 s t e d i t i o n (May 15 , 1999)</ pub l i s h e r>
4 <isbn n="10">020139829X</ isbn>
5 <isbn n="13">978−0201398298</ i sbn>
6 <author>Richardo Baeza−Yates</author>
7 <author>Ber th i e r Ribe iro−Neto</author>
8 <de s c r i p t i o n>
9 Di s cus s e s the changes in modern in fo rmat ion r e t r i e v a l and
10 the p rov i s i on o f r e l e van t in fo rmat ion with minimal no i s e .
11 So f t cove r . DLC: In format ion s to rage and r e t r i e v a l systems .
12 </ d e s c r i p t i o n>
13 <toc>
14 <chapter>
15 <name>Int roduc t i on</name>
16 <s e c t i o n>
17 <name>Motivation</name>
18 </ s e c t i o n>
19 <s e c t i o n>
20 <name>Basic Concepts</name>
21 </ s e c t i o n>
22 </ chapter>
23 <chapter>
24 <name>Modeling</name>
25 <s e c t i o n>
26 <name>Int roduc t i on</name>
27 </ s e c t i o n>
28 <s e c t i o n>
29 <name>A Taxonomy o f In format ion Re t r i e va l Models</name>
30 </ s e c t i o n>
31 </ chapter>
32 </ toc>
33 </book>

Index strategies are speci�ed as strings of the form �[unique]-{path type}-{node
type}-{key type}-{syntax type}�. Index strategies are associated with a URI
and a name for the attribute element to be indexed. The following index strate-
gies are candidates for the collection of books as in the example:

11Example data copied from amazon.com: http://www.amazon.com/Modern-Information-
Retrieval-Ricardo-Baeza-Yates/dp/020139829X/

http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X/
http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X/

48CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

� �unique-edge-attribute-equality-double� for the name �id�, to allow fast
lookups based on the id attribute for book elements,

� �edge-element-equality-string� for the names �title�, �isbn�, and �author�,
to a allow fast lookups based on string equality,

� �edge-element-substring-string� for the name �description�, to allow fast
substring matching book descriptions.

The query optimizer will inspect the query and detect situations where an index
may apply., and use the index to retrieve a subset of possible documents.

5.3.2 Implementing XQFT in BDB XML

On a high level, enabling XQFT in BDB XML involves three tasks; 1) imple-
menting the XQFT standard in XQilla, 2) adding support for full-text index-
ing, and 3) extending the query optimizer to support XQFT expressions. The
query processing model (Figure 5.3 on page 46) remains the same after enabling
XQFT; documents are stored in the same Berkeley DB database, XQilla handles
full-text queries, and indexes are used to speed up the query process.

At the time of this writing, work has begun on implementing XQFT in XQilla
and BDB XML. The implementation of XQuery and XQFT in XQilla follows
the same path as other open-source implementations we have examined:

� A lexer-parser combination is generated from the EBNF12 grammars de-
�ned in XQuery[30] and XQFT[18]. There is generally a one-to-one map-
ping of EBNF productions and classes, i.e., each formal rule in the gram-
mar results in the instantiation of a class representing the rule. These
classes contain the program logic required for implementing the function-
s/operators/expressions/productions they represent.

� In addition to the grammar classes, there are classes for representing the
non-syntactical notions of XQuery and XQFT; static and dynamic context,
query results, supporting classes for XDM, etc.

5.3.2.1 Query lexer-parser

The lexer-parser mentioned above parses input (queries) to programmatic units.
Table 5.1 on the next page shows grammar productions of XQFT that are not
yet implemented in the lexer-parser. These productions will be ignored if used,
and the parser will print an error string identifying the production. This will
cause invalid results.

Scoring and weights (i.e., relevance ranking) are not listed in the table. The
productions for score variables and weights are parsed, but they are not yet
implemented in the classes they are used.

Table 5.2 on the facing page shows productions that are incorrectly de�ned
in XQilla. We have modi�ed the lexer-parser to follow the grammar de�ned in
the XQFT standard. Patches for the lex speci�cation �le and parser generator
�le are provided in Appendix B.1 on page 81.

12Extended Backus�Naur Form

5.3. ORACLE BERKELEY DB XML 49

Production Description

FTTimes Cardinality selection.
FTLanguageOption Language match option.
FTWildCardOption Wildcards match option.
FTThesaurusOption Thesaurus match option.
FTStemOption Stemming match option.
FTCaseOption Case sensitivity match option.
FTDiacriticsOption Diacritics sensitivity match option.
FTStopwordOption Stop words match option.
FTIgnoreOption Ignore option.

Table 5.1: XQFT grammar productions not parsed in XQilla

Production Is Should be

FTOr FTAnd ("||" FTAnd)* FTAnd ("ftor" FTand)*

FTAnd FTMildnot ("&&" FTMildnot)* FTMildnot ("ftand" FTMildnot)*

FTUnaryNot ("!")? FTWordsSelection ("ftnot")? FTWordsSelection

Table 5.2: Incorrect XQFT grammar productions in XQilla

5.3.2.2 Tokenization

The query and search context tokenizer (shown in Figure 3.1 on page 19) is
based on the lexer-parser above, and parses XDM instances to linguistic tokens.
The default implementation follows the same rules as we proposed in 5.2.1 on
page 37; tokens are split by whitespace, sentences are split by punctuation, and
paragraphs are split by newline characters.

The code for the default tokenizer class is shown in Appendix B.3 on page 83.
On line 35, we see that the tokenize() method � if given a node � will
generate and use a string value of the node for further tokenization. This is in
accordance with the XQFT semantics, and will dissolve element boundaries and
discard attribute nodes.

5.3.2.3 Evaluation of full-text selections

The evaluation of full-text selections in XQilla to a large degree follows the
formal semantics de�ned in XQFT. Figure 5.4 on the next page shows the class
structure of AllMatches, Match, StringMatch, and TokenInfo, known from
Section 3.2.1 on page 18.

The classes that represent full-text selections and operators all contain an
execute(FTContext *ftcontext) method that will return a pointer to an
AllMatches instance. The FTContext class wraps the dynamic context, a to-
kenizer, a token store, and a variable holding the current query position. The
selections and operators evaluate themselves, instantiating Match instances and
adding stringIncludes or stringExcludes as �t.

When the selections and operators are evaluated, the FTContains class will
atomize the top-most AllMatches instances to a boolean value, as described in
Section 3.2.1 on page 18.

50CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

Figure 5.4: Classes used in the evaluation of full-text selections

5.3.2.4 Enabling experimental XQFT support in BDB XML

XQilla uses a set of class constants as �ags to determine which language (XPath,
XQuery, XQuery + XQuery Updates, XQuery + Full-Text, etc.) the lexer-
parser should use. To enable experimental XQFT support in BDB XML, we
need to use one of the full-text �ags in the internal QueryExpression class of
BDB XML. A patch for this is given in Appendix B.2 on page 83.

5.3.3 Full-text indexing in BDB XML

In Chapter 4, we examined full-text indexing in a few state-of-the-art XML
databases. We recall that inverted lists were used to allow lookups on tokens,
retrieving a subset of matching documents. Further, if tuples in the inverted
list are augmented with positional information and term frequency, more queries
can be answered with index lookups. We now present an inverted list index for
BDB XML based on Berkeley DB.

It turns out that Berkeley DB databases are well suited for implementing
inverted lists. Berkeley DB is a �eld-proven technology, and provides features
for data access and management which would otherwise have to be implemented
at some level. Its �exible no-enforced-scheme policy lends well to our purposes;
storing keywords and tuples. Tokens are used as keys, and the data tuples consist

5.3. ORACLE BERKELEY DB XML 51

of references to documents/nodes, the token's term frequency, and position lists.

5.3.3.1 Inverted list structure

The structure of the inverted list is shown in Figure 5.5. Tokens are used as keys,
and for each document the token occurs in, there is a data tuple containing;

1. the DocID13 for the document the token occurs in,

2. the path, as speci�ed by the indexing strategy's �name�,

3. the token's term frequency, and

4. the token's positions.

(3) and (4) are relative to the stored <path> in the referenced <DocID>.

Figure 5.5: Inverted list structure in a Berkeley DB database

Multiple full-text indexes will share the same Berkeley DB database, i.e.,
all full-text index strategies are stored in the same database, even if they have
di�erent paths. For each element that is included by an index strategy's �name�,
the indexer stores a distinct tuple. Consequently, a document with many occur-
rences of matched elements will have many tuples in the inverted list. Depending
on the document's structure, this could result in a large number of tuples per
token. However, several queries may be answered with information found in
the inverted list, thus avoiding materialization of documents not included in the
�nal result. Here are some of the advantages by this approach:

� A query specifying several tokens will �rst consult the index to see if the
inverted list contains each token. E.g., if a query uses the ftand logical
operator and one of the tokens are not de�ned as keys in the index, the
query is determined without even retrieving data from the index. For each
of the tokens found in the index, the data tuples are retrieved and merged
by DocID. This avoids materialization of documents not containing all
terms speci�ed in the query.

� A token's relevance may be calculated on document-level or element-level.
If the FLWOR+scoring expression is iterating documents, it would be de-
sirable to calculate relevance per document, i.e., sum up term frequencies
grouped by DocID. On the other hand, if a FLWOR-+scoring expression
iterates elements matching the indexed path, the sum of term frequencies
could be grouped by the path, resulting in a �ner-than-document granu-
larity relevance.

13DocID is a 64-bit integer assigned for documents upon insertion to a container.

52CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

� Positional �lters may be answered without any materialization, if the
queried path matches indexed path.

5.3.3.2 Extending the index speci�cation with full-text options

We recall that index strategies in BDB XML are de�ned by strings of the form
�[unique]-{path type}-{node type}-{key type}-{syntax type}�, and are identi�ed
by a URI and a name for the elements or attributes to be indexed. To add full-
text indexes, we propose that �fulltext� is added as an option to {key type}. A
key type of �fulltext� implies some restrictions on the other options:

� Unique must be omitted, because it does not apply to full-text indexing.

� Node type must be �element�, because attributes and metadata are not
considered by XQFT tokenization.

� Syntax type must be omitted (or ignored), because it does not apply to
inverted lists; the indexed element's values (tokens) are used as keys in
the Berkeley DB database.

5.3.3.3 Extending the XML Indexer

The XML Indexer in BDB XML must be extended to include support for our
proposed full-text index. The full-text indexer will �nd elements to index in
the same fashion as the existing indexers. For each found element, the steps to
index are as follows:

1. Get a string value of the element.

2. Tokenize the string using the default tokenizer.

3. For each token:

(a) If the index does not contain the token as a key; insert an initial data
tuple.

(b) If the token exists as a key in the index;

i. retrieve or create the data tuple matching the current DocID and
path

ii. update term frequency and add the current position

5.4 Summary

We have seen that the implementation of IR concepts in XQFT is not fundamen-
tally di�erent from text-based IR systems. This is largely due to the fact that
both XQFT and text-based IR work with tokens, as opposed to full document
representations. The tokenizer in XQFT discards the structural information
of XML (attributes, element boundaries) when parsing nodes, because tokens
must be derived from the string value (fn:string()) of items in the search
context.

We have investigated XQFT in BDB XML/XQilla; work has begun, but the
implementation is not yet complete. The following parts are not implemented
in XQilla:

5.4. SUMMARY 53

� match options,

� cardinality selection (�occurs�), and

� relevance ranking, i.e., scoring and weights.

In addition, the logical operators "ftand", "ftor", and "ftnot" were not de-
�ned correctly in the lexer-parser. This was �xed, and patches are provided in
Appendix B.

The tokenizer in XQilla has been scrutinized, and we have taken a deeper
look into the evaluation of full-text selections. The tokenizer functions as ex-
pected, and the evaluation of full-text selections is in accordance with the XQFT
standard.

BDB XML has not yet incorporated full-text support in its query optimizer,
and no plans for full-text indexing have been published. We present an in-
verted list index based on Berkeley DB. The index allows keyword lookups,
and contains a (DocID, path, term frequency, position list) data tuple for each
document and distinct path the token occurs in. This allows answering several
queries without materializing data. A potential disadvantage of this approach is
that keywords may contain many data tuples, resulting in retrieving more data
from the index than required for answering the query. Another disadvantage is
that updating the index is expensive.

54CHAPTER 5. IMPLEMENTING FULL-TEXT SEARCH IN AN XMLDATABASE

Chapter 6

Results

This chapter describes the results of some experiments which have been con-
ducted in order to evaluate the implementations discussed in Section 5.3 on
page 44.

6.1 Overview of experiments

All experiments are based on the example data in Appendix B.4 on page 85.
Each book element in the document is added as a document in a container. This
process is shown in Appendix B.5 on page 89.

The following sections each show a query script that is executed using BDB
XML's shell utility (dbxml -s <script>). BDB XML is compiled in Ubuntu
9.04 with the patches in Appendix B.

6.2 Searching for a single token

This query searches for a single token � �information� � in the title element
of book documents. Books 1, 3, and 4 should be found.

6.2.1 Query script

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 where $ t i t l e f t c o n t a i n s " in fo rmat ion "
6 re turn
7 <book>
8 {$book/@id}
9 { $ t i t l e / t ext () }
10 </book>
11 '
12 p r i n t
13 e x i t

6.2.2 Result

Script output:

55

56 CHAPTER 6. RESULTS

1 <book id="1">Modern Informat ion Ret r i eva l </book>
2 <book id="3">Int roduc t i on to In format ion Ret r i eva l </book>
3 <book id="4">Informat ion Re t r i e va l : Algorithms and Heu r i s t i c s (The

Informat ion Re t r i e va l S e r i e s) (2nd Edit ion)</book>

The results are as expected, and show that XQFT is enabled in BDB XML.

6.3 Searching for a phrase and a token

This query searches for a phrase (�information retrieval�) and a token (�web�) in
the description element of book documents. Books 1 and 3 should be found.

Figure 6.1: AllMatches model for �information retrieval� and �web�

6.3.1 Query script

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 l e t $desc := $book/ d e s c r i p t i o n
6 where $desc f t c o n t a i n s {" in fo rmat ion r e t r i e v a l " , "web"} a l l
7 re turn
8 <book>
9 {$book/@id}
10 { $ t i t l e / t ext () }
11 </book>
12 '
13 p r i n t
14 e x i t

6.3.2 Result

Script output:

1 <book id="1">Modern Informat ion Ret r i eva l </book>
2 <book id="3">Int roduc t i on to In format ion Ret r i eva l </book>

The results are expected, and shows that the implementation builds an All-
Matches model, as shown in Figure 6.1. The �gure is based on similar models
shown in XQFT[18].

6.4. SEARCHING WITH A CARDINALITY SELECTION 57

6.4 Searching with a cardinality selection

This query searches for books where the phrase �information retrieval� occurs at
least two times in the title. Book 4 should be found. However, the expected
result is is to �nd books 1, 3, and 4, because cardinality selection is not yet
implemented.

6.4.1 Query script

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 where $ t i t l e f t c o n t a i n s " in fo rmat ion r e t r i e v a l "
6 occurs at l e a s t 2 t imes
7 re turn
8 <book>
9 {$book/@id}
10 { $ t i t l e / t ex t () }
11 </book>
12 '
13 p r i n t
14 e x i t

6.4.2 Result

Script output:

1 occurs
2 <book id="1">Modern Informat ion Ret r i eva l </book>
3 <book id="3">Int roduc t i on to In format ion Ret r i eva l </book>
4 <book id="4">Informat ion Re t r i e va l : Algorithms and Heu r i s t i c s (The

Informat ion Re t r i e va l S e r i e s) (2nd Edit ion)</book>

The results are as expected; books containing the phrase �information retrieval�
are found, and �occurs� is printed by the parser. This shows that cardinality
selection is is not implemented.

6.5 Searching with the case sensitivity match op-
tion

This query searches for books where the phrase �information retrieval� all low-
ercase in the title element. Nothing should be found. However, as in the
previous section, the expected result is is to �nd books 1, 3, and 4, because
match options are not yet implemented.

6.5.1 Query script

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 where $ t i t l e f t c o n t a i n s " in fo rmat ion r e t r i e v a l " lowercase
6 re turn
7 <book>
8 {$book/@id}

58 CHAPTER 6. RESULTS

9 { $ t i t l e / t ext () }
10 </book>
11 '
12 p r i n t
13 e x i t

6.5.2 Result

Script output:

1 lowercase
2 <book id="1">Modern Informat ion Ret r i eva l </book>
3 <book id="3">Int roduc t i on to In format ion Ret r i eva l </book>
4 <book id="4">Informat ion Re t r i e va l : Algorithms and Heu r i s t i c s (The

Informat ion Re t r i e va l S e r i e s) (2nd Edit ion)</book>

The results are as expected, and show that the case sensitivity match option is
not implemented

6.6 Searching two tokens with ftand

This query searches for books where both �algorithms� and �retrieval� occur in
the description element. Books 2 and 4 should be found.

6.6.1 Query script

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 l e t $desc := $book/ d e s c r i p t i o n
6 where $desc f t c o n t a i n s " a lgor i thms " ftand " r e t r i e v a l "
7 re turn
8 <book>
9 {$book/@id}
10 { $ t i t l e / t ext () }
11 </book>
12 '
13 p r i n t
14 e x i t

6.6.2 Result

Script output:

1 <book id="2">Managing Gigabytes : Compressing and Indexing Documents
and Images</book>

2 <book id="4">Informat ion Re t r i e va l : Algorithms and Heu r i s t i c s (The
Informat ion Re t r i e va l S e r i e s) (2nd Edit ion)</book>

The results are as expected, and show that our parser modi�cations to the FTAnd
production work successfully.

6.7 Searching with the not in operator

This query searches for books where the description element contains the
token �search�, but not if the matched token is followed by �engines�. Books 3
and 4 should be found. Book 1 does not contain �search� as a word, and book
2 uses should be omitted because it contains �search engines�.

6.8. SEARCHING WITH THE WINDOW POSITIONAL FILTER 59

6.7.1 Query script

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 l e t $desc := $book/ d e s c r i p t i o n
6 where $desc f t c o n t a i n s " search " not in " search eng ines "
7 re turn
8 <book>
9 {$book/@id}
10 { $ t i t l e / t ex t () }
11 </book>
12 '
13 p r i n t
14 e x i t

6.7.2 Result

Script output:

1 <book id="3">Int roduc t i on to In format ion Ret r i eva l </book>
2 <book id="4">Informat ion Re t r i e va l : Algorithms and Heu r i s t i c s (The

Informat ion Re t r i e va l S e r i e s) (2nd Edit ion)</book>

The results are as expected, and show that mild-not selections are implemented.
It also shows that tokens are searched, as opposed to substring matching (which
would also return book 1 because it contains the substring in �researchers�).

6.8 Searching with the window positional �lter

This query searches for books where the description element contains the
tokens �retrieval� and �web� within a window of 10 words. Books 2 and 3
should be found. Book 1 matches both tokens in the same sentence, but the
distance is greater than 10 words.

6.8.1 Query script

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 l e t $desc := $book/ d e s c r i p t i o n
6 where $desc f t c o n t a i n s " r e t r i e v a l " f tand "web" window 10 words
7 re turn
8 <book>
9 {$book/@id}
10 { $ t i t l e / t ex t () }
11 </book>
12 '
13 p r i n t
14 e x i t

6.8.2 Result

Script output:

1 <book id="2">Managing Gigabytes : Compressing and Indexing Documents
and Images</book>

2 <book id="3">Int roduc t i on to In format ion Ret r i eva l </book>

60 CHAPTER 6. RESULTS

The results are as expected, and show that the implementation stores positional
information for matched tokens.

6.9 Searching with order and scope positional �l-
ters

This query searches for books where the description element contains the
tokens �retrieval� and �information� in the same paragraph, and in the same
order as in the query. Books 1 and 3 should be found. All books contain both
tokens, but book 2 should be omitted because the tokens do not appear in the
same paragraph. Book 4 should be omitted because the order is not the same
as in the query.

6.9.1 Query script

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 l e t $desc := $book/ d e s c r i p t i o n
6 where $desc f t c o n t a i n s (" r e t r i e v a l " f tand " in fo rmat ion ")
7 ordered same paragraph
8 return
9 <book>
10 {$book/@id}
11 { $ t i t l e / t ext () }
12 </book>
13 '
14 p r i n t
15 e x i t

6.9.2 Result

Script output:

1 <book id="1">Modern Informat ion Ret r i eva l </book>
2 <book id="3">Int roduc t i on to In format ion Ret r i eva l </book>

The results are as expected, and show that a) the implementation stores posi-
tional information for query tokens, and b) the implementation understands the
notion of big units (sentence, paragraph). In conclusion, the tokenizer in XQilla
works expected, and matches the one we proposed in Section 5.2.1 on page 37.

6.10 Searching with the distance positional �lter

This query searches for books where the description element contains the
tokens �retrieval� and �information� with a distance of exactly 12 words. Only
book 2 should be found.

6.10.1 Query script

6.11. SUMMARY 61

1 openContainer books . dbxml
2 query '
3 f o r $book in c o l l e c t i o n (" books . dbxml") //book
4 l e t $ t i t l e := $book/ t i t l e
5 l e t $desc := $book/ d e s c r i p t i o n
6 where $desc f t c o n t a i n s (" r e t r i e v a l " f tand " in fo rmat ion ")
7 d i s t anc e exac t l y 12 words
8 re turn
9 <book>
10 {$book/@id}
11 { $ t i t l e / t ex t () }
12 </book>
13 '
14 p r i n t
15 e x i t

6.10.2 Result

Script output:

1 <book id="2">Managing Gigabytes : Compressing and Indexing Documents
and Images</book>

The results are as expected, and show that distance selection is implemented.

6.11 Summary

We have tested 10 full-text queries with experimental XQFT support in BDB
XML. The results were as expected:

� The implemented parts we have described were functional.

� The non-implemented parts were ignored, and error messages were printed
to stderr.

� Our modi�cations to the parser were successful.

A noteworthy result we did not initially expect, was that distance selection is
functional, while cardinality selection is not. Cardinality selection was expected
not to work, but we had a suspicion the reason was a lacking implementation for
the FTRange production (�at least�, �at most�, etc.), which would spread to
distance selections as well.

62 CHAPTER 6. RESULTS

Part III

Thesis Conclusion

63

Chapter 7

Evaluation and discussion

This chapter gives a summary of the thesis. Contributions are brie�y discussed,
and the results of the thesis are highlighted and evaluated with respect to the
problem de�nition.

7.1 Summary of thesis

Searching XML � let alone full-text search �- is a relatively new �eld research,
which has been of interest the last decade. Existing query language standards
(XQuery and XPath) are powerful for querying XML structure, but are too
limited for full-text search. Several approaches to XML full-text search have
been researched by various organizations, and uni�ed in the XQuery and XPath
Full-Text 1.0 (XQFT) standard.

We have investigated the possibilities of XQFT, and discussed various design
and implementation issues in further detail. Our �ndings indicate that a) XQFT
solves many traditional IR-related problems, and b) traditional IR challenges
apply to XML as well. The most pertinent challenge is how to utilize full-text
indexes for improving query e�ciency.

In this thesis, we have contributed the following:

� A description of the design and implementation of XQFT; �rst in general
terms, then in the context of Oracle Berkeley DB XML.

� Patches for �xing and enabling parts of XQFT in Oracle Berkeley DB
XML.

� A proposal for a full-text index in Oracle Berkeley DB XML.

7.2 Discussion of contributions

The following subsections discuss two of our contributions, comparing them with
what was originally planned.

7.2.1 XQFT implementation in BDB XML/XQilla

The original plan was to implement XQFT fully in BDB XML. However, a
considerable amount of time was spent learning the architecture and getting to

65

66 CHAPTER 7. EVALUATION AND DISCUSSION

know the API1. During this phase, work began on an administration interface
for BDB XML, which would be used to generate and evaluate results. This
interface has been left out of the thesis, because it does not contribute to the
problem de�nition.

Had time been better spent, more of XQFT could be implemented in XQilla.

7.2.2 Proposed full-text index for BDB XML

The proposed full-text index is not implemented, for the same reasons as the
XQFT implementation. The original plan was to implement and experiment
with various index con�gurations on a large collection of documents, and present
empirical data for further discussion of our claims.

7.3 Evaluation

The paramount objective of this thesis was to investigate how full-text search
and indexing apply to XML databases (speci�cally Oracle Berkeley DB XML).
This goal has been achieved, and is described in Chapters 2, 3, 4, and 5. Unfor-
tunately, there was not enough time to fully implement XQFT in BDB XML.
The implementation has very limited functionality, which is re�ected by the
small number of results in Chapter 6.

Several sub problems were derived from the main problem de�nition. First,
there was the question of which index types are suitable for supporting full-text
search. This has been answered by analyzing state-of-the-art implementations
(Chapter 4), and proposing a full-text index for BDB XML (Section 5.3.3).

Second, we raised concerns about text-based IR versus IR in XML, and
asked the question of whether the structured nature of XML requires a new
approach to IR. This question has been answered by examining the design and
implementation of various IR concepts in XQFT, and is described in further
detail in Section 5.2.

Third, we wondered whether there were open issues in XQFT that would
impede cross-implementation compatibility. We have identi�ed two such cases;
thesauri and stop words. Those are subject to implementation-dependent dif-
ferences, because XQFT does not de�ne schemas for how they should be rep-
resented. For thesauri, we have proposed a standards-compliant representation
based on SKOS (Section 5.2.2), and for stop words, we have proposed a simple
schema that adheres to the prede�ned semantics of XQFT (Section 5.2.3).

1Application Programming Interface

Chapter 8

Conclusions and further work

This chapter concludes the thesis. Speci�c �ndings are summarized, and an
outline for future work is given.

8.1 Concluding remarks

The following subsections summarize �ndings and results from the thesis.

8.1.1 XQuery is too limited for full-text search

XQuery o�ers only rudimentary support for full-text search, limited to substring
matching with the fn:contains() function. This is not su�cient to answer
many of the use cases de�ned in XML Query Use Cases[10].

8.1.2 XQFT adds IR concepts to XQuery

XQuery and XPath Full Text 1.0[18] (XQFT) is a W3C standard which adds
full-text capabilities to XQuery. The standard de�nes new expressions for per-
forming full-text searches on XDM instances; token or phrase matching, boolean
connectivities, proximity/scope restrictions. Other IR concepts � thesauri, stop
words, stemming, relevance ranking (scoring and weights) � are also de�ned by
the standard, without imposing speci�c restrictions on implementation details.

8.1.3 IR in XML/XQFT is not fundamentally di�erent
from text-based IR

As with text-based Information Retrieval, operations in XQFT rely on tokenized
text. Tokenization in XQFT discards structural information (attributes and
element boundaries) from XML, and items in the search context are represented
as collections of tokens. The same concepts from text-based IR � as mentioned
in the previous subsection � apply to XQFT. The di�erence between text-based
IR and XML IR is the underlying representation of documents and tokens.

67

68 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

8.1.4 Full-text indexing is critical for query e�ciency

Full-text search is a heavy process with respect to computational e�ort and I/O
tra�c. Unless a database's document collection is very small, indexing is re-
quired for query e�ciency. Without indexing, large amounts of data needs to be
materialized, tokenized, and searched, potentially several times per query. Path
indexes help for limiting the amount of documents that need to be materialized
for the structural part of queries, but are not directly useful for full-text queries.
Full-text indexing is a way of indexing text that better resembles the tokenized
representation of text, and allows lookups based on tokens.

A common approach to full-text indexing is to use augmented forms of in-
verted lists. In this approach, keywords (tokens) are linked with tuples that
contain references to documents in which the keyword occur, in addition to
positional information and term frequency (or other relevance measures). By
combining path indexes and full-text indexes, document materialization is kept
to a minimum, and queries may be answered without accessing the real data.

8.1.5 XQFT can and will be implemented in BDB XML

Work has begun on implementing the XQFT standard in BDB XML. BDB
XML uses Xerces-C++ and XQilla internally to parse XML and run queries.
XQilla currently has experimental support for XQFT, which is disabled in BDB
XML. When the XQilla implementation is complete, BDB XML will inherently
support XQFT. Furthermore, BDB XML must take measures to optimize full-
text queries for its internal representation of physical data.

8.1.6 Full-text indexing in BDB XMLmay be implemented
using Berkeley DB

Oracle has not yet revealed their plans for full-text indexing in BDB XML. A
promising approach is to implement augmented inverted lists using Berkeley DB
databases; tokens are used as keys, with data tuples for each distinct (document,
path) pair in which the token occurs.

8.2 Future work

The following subsections outline candidates for future work related to this
thesis.

8.2.1 Improving the XQFT implementation in BDB XML

The current XQFT implementation in BDB XML is experimental, and not
feature-complete. Future work involves:

� implementing the remaining parts of the XQFT standard in XQilla,

� improve support for XQFT expressions in BDB XML's query optimizer,

� implement the proposed full-text index for improving full-text query e�-
ciency.

8.2. FUTURE WORK 69

8.2.2 Dealing with frequent updates

The primary focus in this thesis has been on the design and implementation
of well-known IR techniques in XML databases. As such, the discussed topics
mainly apply to IR-style applications, where data is �stored once, read many
times�, i.e., there are few or no updates to data already existing in the database.
A new set of issues emerges when an XML database is used in database-style
applications, with frequent updates to existing data.

The main issue with frequent updates is to keep indexes consistent with the
data they represent. Continuously updating and re-indexing requires consider-
able amounts of computational time and I/O, and there is a desire for partial
re-indexing; only re-indexing the updated data. This needs to be investigated
more with respect to full-text indexes.

70 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

Appendix A

XQuery Full-Text Semantics

A.1 Semantics for fts:lookupThesaurus

The following XQuery code (from XQFT[18]) de�nes the semantics for applying
an FTThesaurusOption:

1 de c l a r e func t i on f t s : applyThesaurusOption (
2 $matchOption as element (f t s : thesaurus) ,
3 $queryTokens as element (f t s : queryToken) *)
4 as element (f t s : queryItem) *
5 {
6 i f ($matchOption/@thesaurus Ind icator = "with ") then
7 f t s : lookupThesaurus ($queryTokens ,
8 $matchOption/ f t s : thesaurusName ,
9 $matchOption/@language ,
10 $matchOption/ f t s : r e l a t i o n sh i p ,
11 $matchOption/ f t s : range)
12 e l s e i f ($matchOption/@thesaurus Ind icator = "without ") then
13 <f t s : queryItem>
14 {$queryTokens}
15 </ f t s : queryItem>
16 e l s e ()
17 } ;

The following XQuery code shows an example implementation of the semantics
for the fts:lookupThesaurus function used in the fts:applyThesaurusOption
function above. The function expects a SKOS thesaurus as in Appendix A.3.

1 de c l a r e namespace skos = "http ://www.w3 . org /2008/05/ skos#"
2 de c l a r e namespace rd f =

"http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"
3 de c l a r e namespace f t s = " f t s "
4
5 (: f i n d s a l t e r n a t i v e terms f o r query tokens :)
6 d e c l a r e func t i on f t s : lookupThesaurus (
7 $tokens as element (f t s : queryToken) * ,
8 $thesaurusName as xs : s t r i n g ? ,
9 $thesaurusLanguage as xs : s t r i n g ? ,
10 $ r e l a t i o n s h i p as xs : s t r i n g ? ,
11 $range as element (f t s : range) ?)
12 as element (f t s : queryItem) *
13 {
14 l e t $thesaurus := doc ($thesaurusName) // skos : Concept
15 l e t $maxPos := max($tokens /@queryPos)

71

72 APPENDIX A. XQUERY FULL-TEXT SEMANTICS

16
17 l e t $addi t iona lTokens :=
18 f o r $token in $tokens
19 l e t $word := s t r i n g ($token/@word)
20 re turn
21 i f ($ r e l a t i o n s h i p eq "use ") then
22 f t s : lookupThesaurusUse ($word , $thesaurus ,

$thesaurusLanguage)
23 e l s e i f ($ r e l a t i o n s h i p eq " uf ") then
24 f t s : lookupThesaurusUF ($word , $thesaurus ,

$thesaurusLanguage)
25 e l s e i f ($ r e l a t i o n s h i p eq "bt ") then
26 f t s : lookupThesaurusBT (0 , $word , $thesaurus ,

$thesaurusLanguage , $range)
27 e l s e i f ($ r e l a t i o n s h i p eq "nt ") then
28 f t s : lookupThesaurusNT (0 , $word , $thesaurus ,

$thesaurusLanguage , $range)
29 e l s e i f ($ r e l a t i o n s h i p eq "btg ") then
30 f t s : lookupThesaurusBT (0 , $word , $thesaurus ,

$thesaurusLanguage , $range)
31 e l s e i f ($ r e l a t i o n s h i p eq "ntg ") then
32 f t s : lookupThesaurusNT (0 , $word , $thesaurus ,

$thesaurusLanguage , $range)
33 e l s e i f ($ r e l a t i o n s h i p eq "btp ") then
34 f t s : lookupThesaurusBT (0 , $word , $thesaurus ,

$thesaurusLanguage , $range)
35 e l s e i f ($ r e l a t i o n s h i p eq "ntp ") then
36 f t s : lookupThesaurusNT (0 , $word , $thesaurus ,

$thesaurusLanguage , $range)
37 e l s e i f ($ r e l a t i o n s h i p eq " t t ") then
38 f t s : lookupThesaurusTT ($word , $thesaurus ,

$thesaurusLanguage)
39 e l s e i f ($ r e l a t i o n s h i p eq " r t ") then
40 f t s : lookupThesaurusRT ($word , $thesaurus ,

$thesaurusLanguage)
41 e l s e
42 ()
43
44 return <f t s : queryItem>
45 { $tokens }
46 {
47 f o r $token at $pos in d i s t i n c t−va lue s ($addi t iona lTokens)
48 re turn <f t s : queryToken word="{$token }"

queryPos="{$maxPos + $pos }" />
49 }
50 </ f t s : queryItem>
51 } ;
52
53 (: f i n d s p r e f e r r e d terms f o r a token :)
54 de c l a r e func t i on f t s : lookupThesaurusUse (
55 $token as xs : s t r i ng ,
56 $concepts as element (skos : Concept) * ,
57 $lang as xs : s t r i n g ?)
58 as xs : s t r i n g *
59 {
60 i f ($ lang) then
61 $concepts [skos : a l tLabe l [@xml : lang = $lang] = $token]
62 / skos : p r e fLabe l [@xml : lang = $lang]
63 e l s e
64 $concepts [skos : a l tLabe l = $token]
65 / skos : p r e fLabe l
66 } ;

A.1. SEMANTICS FOR FTS:LOOKUPTHESAURUS 73

67
68 (: f i n d s non−p r e f e r r e d terms f o r a token :)
69 de c l a r e func t i on f t s : lookupThesaurusUF (
70 $token as xs : s t r i ng ,
71 $concepts as element (skos : Concept) * ,
72 $lang as xs : s t r i n g ?)
73 as xs : s t r i n g *
74 {
75 i f ($ lang) then
76 $concepts [skos : p re fLabe l [@xml : lang = $lang] = $token]
77 / skos : a l tLabe l [@xml : lang = $lang]
78 e l s e
79 $concepts [skos : p re fLabe l = $token]
80 / skos : a l tLabe l
81 } ;
82
83 (: f i n d s narrower terms f o r a token :)
84 de c l a r e func t i on f t s : lookupThesaurusNT (
85 $ l e v e l as xs : i n t ege r ,
86 $token as xs : s t r i ng ,
87 $concepts as element (skos : Concept) * ,
88 $lang as xs : s t r i n g ? ,
89 $range as element (f t s : range) ?)
90 {
91 l e t $terms :=
92 i f ($ lang) then
93 f o r $c in $concepts [skos : p r e fLabe l [@xml : lang = $lang] eq $token

or
94 skos : a l tLabe l [@xml : lang = $lang] eq $token]
95 re turn $concepts [@rdf : about = $c/ skos : narrower /@rdf : r e s ou r c e]
96 / skos : p re fLabe l [@xml : lang = $lang]
97 e l s e
98 f o r $c in $concepts [skos : p r e fLabe l eq $token or
99 skos : a l tLabe l eq $token]
100 re turn $concepts [@rdf : about = $c/ skos : narrower /@rdf : r e s ou r c e]
101 / skos : p re fLabe l
102
103 l e t $next := $ l e v e l + 1
104
105 re turn
106 i f ($range) then
107 i f ($range /@type = " exac t l y ") then
108 i f ($ l e v e l = $range /@n) then
109 $terms
110 e l s e i f (count ($terms) > 0) then
111 f o r $t in $terms
112 return f t s : lookupThesaurusNT ($next , $t , $concepts , $lang ,

$range)
113 e l s e ()
114
115 e l s e i f ($range /@type = "at l e a s t ") then
116 i f ($ l e v e l < $range /@n and count ($terms) > 0) then
117 f o r $t in $terms return
118 f t s : lookupThesaurusBT ($next , $t , $concepts , $lang , $range)
119 e l s e i f ($ l e v e l >= $range /@n and count ($terms) > 0) then
120 (
121 $terms ,
122 f o r $t in $terms
123 re turn f t s : lookupThesaurusNT ($next , $t , $concepts , $lang ,

$range)
124)
125 e l s e ()

74 APPENDIX A. XQUERY FULL-TEXT SEMANTICS

126
127 e l s e i f ($range /@type = "at most ") then
128 i f ($next > $range /@n) then
129 $terms
130 e l s e i f (count ($terms) > 0) then
131 (
132 $terms ,
133 f o r $t in $terms
134 re turn f t s : lookupThesaurusNT ($next , $t , $concepts , $lang ,

$range)
135)
136 e l s e ()
137
138 e l s e i f ($range /@type = "from to ") then
139 i f ($ l e v e l < $range /@m) then
140 i f (count ($terms) > 0) then
141 f o r $t in $terms
142 re turn f t s : lookupThesaurusNT ($next , $t , $concepts , $lang ,

$range)
143 e l s e ()
144 e l s e i f ($next > $range /@n) then
145 $terms
146 e l s e
147 i f (count ($terms) > 0) then
148 (
149 $terms ,
150 f o r $t in $terms
151 re turn f t s : lookupThesaurusNT ($next , $t , $concepts ,

$lang , $range)
152)
153 e l s e $terms
154 e l s e $terms
155 e l s e
156 i f (count ($terms) > 0) then
157 (
158 $terms ,
159 f o r $t in $terms
160 return f t s : lookupThesaurusNT ($next , $t , $concepts , $lang ,

$range)
161)
162 e l s e $terms
163 } ;
164
165 (: f i n d s broader terms f o r a token :)
166 de c l a r e func t i on f t s : lookupThesaurusBT (
167 $ l e v e l as xs : i n t ege r ,
168 $token as xs : s t r i ng ,
169 $concepts as element (skos : Concept) * ,
170 $lang as xs : s t r i n g ? ,
171 $range as element (f t s : range) ?)
172 as xs : s t r i n g *
173 {
174 l e t $terms :=
175 i f ($ lang) then
176 f o r $c in $concepts [skos : p r e fLabe l [@xml : lang = $lang] eq $token

or
177 skos : a l tLabe l [@xml : lang = $lang] eq $token]
178 re turn $concepts [@rdf : about = $c/ skos : broader /@rdf : r e s ou r c e]
179 / skos : p re fLabe l [@xml : lang = $lang]
180 e l s e
181 f o r $c in $concepts [skos : p r e fLabe l eq $token or
182 skos : a l tLabe l eq $token]

A.1. SEMANTICS FOR FTS:LOOKUPTHESAURUS 75

183 re turn $concepts [@rdf : about = $c/ skos : broader /@rdf : r e s ou r c e]
184 / skos : p re fLabe l
185
186 l e t $next := $ l e v e l + 1
187
188 re turn
189 i f ($range) then
190 i f ($range /@type = " exac t l y ") then
191 i f ($ l e v e l = $range /@n) then
192 $terms
193 e l s e i f (count ($terms) > 0) then
194 f o r $t in $terms
195 return f t s : lookupThesaurusBT ($next , $t , $concepts , $lang ,

$range)
196 e l s e ()
197
198 e l s e i f ($range /@type = "at l e a s t ") then
199 i f ($ l e v e l < $range /@n and count ($terms) > 0) then
200 f o r $t in $terms return
201 f t s : lookupThesaurusBT ($next , $t , $concepts , $lang , $range)
202 e l s e i f ($ l e v e l >= $range /@n and count ($terms) > 0) then
203 (
204 $terms ,
205 f o r $t in $terms
206 re turn f t s : lookupThesaurusBT ($next , $t , $concepts , $lang ,

$range)
207)
208 e l s e ()
209
210 e l s e i f ($range /@type = "at most ") then
211 i f ($next > $range /@n) then
212 $terms
213 e l s e i f (count ($terms) > 0) then
214 (
215 $terms ,
216 f o r $t in $terms
217 re turn f t s : lookupThesaurusBT ($next , $t , $concepts , $lang ,

$range)
218)
219 e l s e ()
220
221 e l s e i f ($range /@type = "from to ") then
222 i f ($ l e v e l < $range /@m) then
223 i f (count ($terms) > 0) then
224 f o r $t in $terms
225 re turn f t s : lookupThesaurusBT ($next , $t , $concepts , $lang ,

$range)
226 e l s e ()
227 e l s e i f ($next > $range /@n) then
228 $terms
229 e l s e
230 i f (count ($terms) > 0) then
231 (
232 $terms ,
233 f o r $t in $terms
234 re turn f t s : lookupThesaurusBT ($next , $t , $concepts ,

$lang , $range)
235)
236 e l s e $terms
237 e l s e $terms
238 e l s e
239 i f (count ($terms) > 0) then

76 APPENDIX A. XQUERY FULL-TEXT SEMANTICS

240 (
241 $terms ,
242 f o r $t in $terms
243 re turn f t s : lookupThesaurusBT ($next , $t , $concepts , $lang ,

$range)
244)
245 e l s e $terms
246 } ;
247
248 (: f i n d s top terms f o r a token :)
249 de c l a r e func t i on f t s : lookupThesaurusTT (
250 $token as xs : s t r i ng ,
251 $concepts as element (skos : Concept) * ,
252 $lang as xs : s t r i n g ?)
253 as xs : s t r i n g *
254 {
255 i f ($ lang) then
256 f o r $ id in $concepts [skos : p re fLabe l [@xml : lang = $lang] = $token

or
257 skos : a l tLabe l [@xml : lang = $lang] = $token]
258 / skos : inScheme/@rdf : r e s ou r c e
259 re turn $concepts [skos : topConceptOf [@rdf : r e s ou r c e = $id]]
260 / skos : p re fLabe l [@xml : lang = $lang]
261 e l s e
262 f o r $ id in $concepts [skos : p re fLabe l = $token or
263 skos : a l tLabe l = $token]
264 / skos : inScheme/@rdf : r e s ou r c e
265 re turn $concepts [skos : topConceptOf [@rdf : r e s ou r c e = $id]]
266 / skos : p re fLabe l
267 } ;
268
269 (: f i n d s r e l a t e d terms f o r a token :)
270 de c l a r e func t i on f t s : lookupThesaurusRT (
271 $token as xs : s t r i ng ,
272 $concepts as element (skos : Concept) * ,
273 $lang as xs : s t r i n g ?)
274 as xs : s t r i n g *
275 {
276 i f ($ lang) then
277 f o r $ id in $concepts [skos : p re fLabe l [@xml : lang = $lang] = $token

or
278 skos : a l tLabe l [@xml : lang = $lang] = $token]
279 / skos : r e l a t e d /@rdf : r e s ou r c e
280 re turn $concepts [@rdf : about = $id] / skos : p re fLabe l [@xml : lang =

$lang]
281 e l s e
282 f o r $ id in $concepts [skos : p re fLabe l = $token or
283 skos : a l tLabe l = $token]
284 / skos : r e l a t e d /@rdf : r e s ou r c e
285 re turn $concepts [@rdf : about = $id] / skos : p re fLabe l
286 } ;

A.2 Semantics for fts:resolveStopWordsUri

The following XQuery code (from XQFT[18]) de�nes the semantics for applying
an FTStopWordOption:

1 de c l a r e func t i on f t s : applyStopWordOption (
2 $stopWordOption as element (f t s : stopwords) ?)
3 as xs : s t r i n g *

A.3. SIMPLE SKOS THESAURUS 77

4 {
5 i f ($stopWordOption) then
6 l e t $swords :=
7 typeswitch ($stopWordOption / * [1])
8 case $e as element (f t s : stopword)
9 re turn $e/ text ()
10 case $e as element (f t s : u r i)
11 re turn f t s : resolveStopWordsUri ($e/ text ())
12 case element (f t s : de fau l t−stopwords)
13 re turn f t s : resolveStopWordsUri (())
14 d e f au l t r e turn ()
15 re turn f t s : calcStopWords ($swords , $stopWordOption/ f t s : oper)
16 e l s e ()
17 } ;
18
19 de c l a r e func t i on f t s : calcStopWords (
20 $stopWords as xs : s t r i n g * ,
21 $opers as element (f t s : oper) *)
22 as element (f t s : queryToken) *
23 {
24 i f (fn : empty ($opers)) then $stopWords
25 e l s e
26 l e t $swords :=
27 typeswitch ($opers [1] / * [1])
28 case $e as element (f t s : stopword)
29 re turn $e/ text ()
30 case $e as element (f t s : u r i)
31 re turn f t s : resolveStopWordsUri ($e/ text ())
32 d e f au l t r e turn ()
33 re turn
34 i f ($opers [1] / @type eq "union ") then
35 f t s : calcStopWords (($stopWords , $swords) ,
36 $opers [fn : p o s i t i o n () gt 2])
37 e l s e (: " except " :)
38 f t s : calcStopWords ($stopWords [fn : not (.)=$swords] ,
39 $opers [fn : p o s i t i o n () gt 2])
40 } ;

The following XQuery code shows an example implementation of the semantics
for the fts:resolveStopWordsUri function used in the fts:applyStopWordsOption
function above. The function expects a stop word �le as in Appendix A.4

1 (: e x t r a c t s stop words from a given $ur i :)
2 d e c l a r e func t i on f t s : resolveStopWordsUri ($u r i as xs : s t r i n g ?)
3 as xs : s t r i n g *
4 {
5 doc ($u r i) //stopWord
6 } ;

A.3 Simple SKOS thesaurus

The following example shows a simple SKOS thesaurus in RDF/XML syntax.

1 <rdf:RDF
2 xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"
3 xmlns : skos=" ht tp : //www.w3 . org /2008/05/ skos#">
4
5 <skos :Concept rd f : abou t=" ht tp : // example . com/ t#0">
6 <sko s : p r e fLab e l xml:lang="en">automotive

v e h i c l e</ sko s : p r e fLab e l>
7 <skos:topConceptOf r d f : r e s o u r c e=" ht tp : // example . com/ t "/>

78 APPENDIX A. XQUERY FULL-TEXT SEMANTICS

8 </ skos :Concept>
9
10 <skos :Concept rd f : abou t=" ht tp : // example . com/ t#1">
11 <sko s : p r e fLab e l xml:lang="en">automobi le</ sko s : p r e fLab e l>
12 <sko s : p r e fLab e l xml:lang="nb">automobil</ sko s : p r e fLab e l>
13 <sko s : a l t L ab e l xml:lang="en">car</ s k o s : a l t L ab e l>
14 <sko s : a l t L ab e l xml:lang="nb">b i l</ s k o s : a l t L ab e l>
15 <sko s :b roade r r d f : r e s o u r c e=" ht tp : // example . com/ t#2"/>
16 <skos :nar rower r d f : r e s o u r c e=" ht tp : // example . com/ t#3"/>
17 <skos :nar rower r d f : r e s o u r c e=" ht tp : // example . com/ t#4"/>
18 <skos :nar rower r d f : r e s o u r c e=" ht tp : // example . com/ t#5"/>
19 <s k o s : r e l a t e d r d f : r e s o u r c e=" ht tp : // example . com/ t#6"/>
20 <skos : inScheme r d f : r e s o u r c e=" ht tp : // example . com/ t "/>
21 </ skos :Concept>
22
23 <skos :Concept rd f : abou t=" ht tp : // example . com/ t#2">
24 <sko s : p r e fLab e l xml:lang="en">motor

v e h i c l e</ sko s : p r e fLab e l>
25 <sko s : p r e fLab e l

xml:lang="nb">motork joeretoey</ sko s : p r e fLab e l>
26 <skos :nar rower r d f : r e s o u r c e=" ht tp : // example . com/ t#1"/>
27 <sko s :b roade r r d f : r e s o u r c e=" ht tp : // example . com/ t#7"/>
28 <skos : inScheme r d f : r e s o u r c e=" ht tp : // example . com/ t "/>
29 </ skos :Concept>
30
31 <skos :Concept rd f : abou t=" ht tp : // example . com/ t#3">
32 <sko s : p r e fLab e l xml:lang="en">sedan</ sko s : p r e fLab e l>
33 <sko s : p r e fLab e l xml:lang="nb">sedan</ sko s : p r e fLab e l>
34 <sko s :b roade r r d f : r e s o u r c e=" ht tp : // example . com/ t#1"/>
35 <skos : inScheme r d f : r e s o u r c e=" ht tp : // example . com/ t "/>
36 </ skos :Concept>
37
38 <skos :Concept rd f : abou t=" ht tp : // example . com/ t#4">
39 <sko s : p r e fLab e l xml:lang="en">roads t e r</ sko s : p r e fLab e l>
40 <sko s : p r e fLab e l xml:lang="nb">roads t e r</ sko s : p r e fLab e l>
41 <sko s :b roade r r d f : r e s o u r c e=" ht tp : // example . com/ t#1"/>
42 <skos : inScheme r d f : r e s o u r c e=" ht tp : // example . com/ t "/>
43 </ skos :Concept>
44
45 <skos :Concept rd f : abou t=" ht tp : // example . com/ t#5">
46 <sko s : p r e fLab e l xml:lang="en">van</ sko s : p r e fLab e l>
47 <sko s : p r e fLab e l xml:lang="nb">van</ sko s : p r e fLab e l>
48 <sko s :b roade r r d f : r e s o u r c e=" ht tp : // example . com/ t#1"/>
49 <skos : inScheme r d f : r e s o u r c e=" ht tp : // example . com/ t "/>
50 </ skos :Concept>
51
52 <skos :Concept rd f : abou t=" ht tp : // example . com/ t#6">
53 <sko s : p r e fLab e l xml:lang="en">motorcar</ sko s : p r e fLab e l>
54 <sko s : p r e fLab e l xml:lang="nb">motorvogn</ sko s : p r e fLab e l>
55 <s k o s : r e l a t e d r d f : r e s o u r c e=" ht tp : // example . com/ t#1"/>
56 <skos : inScheme r d f : r e s o u r c e=" ht tp : // example . com/ t "/>
57 </ skos :Concept>
58
59 <skos :Concept rd f : abou t=" ht tp : // example . com/ t#7">
60 <sko s : p r e fLab e l xml:lang="en">veh i c l e</ sko s : p r e fLab e l>
61 <skos :nar rower r d f : r e s o u r c e=" ht tp : // example . com/ t#2"/>
62 <skos : inScheme r d f : r e s o u r c e=" ht tp : // example . com/ t "/>
63 </ skos :Concept>
64 </rdf:RDF>

A.4. STOP WORDS REPRESENTED AS XML 79

A.4 Stop words represented as XML

The following example shows a simple XML representation of stop words.

1 <?xml version=" 1 .0 " encoding="UTF−8"?>
2 <stopWords>
3 <stopWord>a</stopWord>
4 <stopWord>a l s o</stopWord>
5 <stopWord>am</stopWord>
6 <stopWord>an</stopWord>
7 <stopWord>and</stopWord>
8 <stopWord>as</stopWord>
9 <stopWord>at</stopWord>
10 <stopWord>be</stopWord>
11 <stopWord>by</stopWord>
12 <stopWord>can</stopWord>
13 <stopWord>could</stopWord>
14 <stopWord>do</stopWord>
15 <stopWord>e l s e</stopWord>
16 <stopWord>f o r</stopWord>
17 <stopWord>he</stopWord>
18 <stopWord>her</stopWord>
19 <stopWord>here</stopWord>
20 </stopWords>

80 APPENDIX A. XQUERY FULL-TEXT SEMANTICS

Appendix B

XQFT in BDB XML

All patches are applied to the unpatched version of Oracle Berkeley DB XML
2.4.16, available from Oracle's web site1. Before compiling, the pre-generated
lexical scanner (xqilla/src/lexer/XQLexer.cpp) must be deleted. Builds have
been tested on 32-bit and 64-bit versions of Ubuntu Desktop 9.04. For debugging
purposes, BDB XML has been compiled with the --enable-debug �ag.

B.1 Patch: Fix for full-text logical operators

The following patches generated by Git �xes the incorrect parsing of full-text
logical operators as mentioned in Table on page 49. They are applied respec-
tively to the lex speci�cation �le (consumed by Flex) and the parser generator
�le (consumed by Yacc/Bison). Note that regenerating the lexical scanner re-
quires a Unicode-patched version of Flex 2.5.4a, as per build instructions on
XQilla's Wiki2.

B.1.1 Lexer patch

1 d i f f −−g i t a/ x q i l l a / s r c / l e x e r /XQLexer . l
b/ x q i l l a / s r c / l e x e r /XQLexer . l

2 index b12b2d0 . . de7c259 100644
3 −−− a/ x q i l l a / s r c / l e x e r /XQLexer . l
4 +++ b/ x q i l l a / s r c / l e x e r /XQLexer . l
5 @@ −248 ,9 +248 ,6 @@ void XQLexer : : undoLessThan ()
6 <INITIAL>"[" RECOGNIZE(_LSQUARE_) ;
7 <INITIAL>"]" RECOGNIZE(_RSQUARE_) ;
8 <INITIAL>"?" RECOGNIZE(_QUESTION_MARK_) ;
9 −<INITIAL>"| |" RECOGNIZE(_BAR_BAR_) ;
10 −<INITIAL>"&&" RECOGNIZE(_AMP_AMP_) ;
11 −<INITIAL>"!" RECOGNIZE(_BANG_) ;
12
13 <INITIAL>"ex t e rna l " RECOGNIZE_VALUE(_EXTERNAL_,

yytext) ;
14 <INITIAL>"ascending " RECOGNIZE_VALUE(_ASCENDING_,

yytext) ;
15 @@ −373 ,6 +370 ,9 @@ void XQLexer : : undoLessThan ()

1http://www.oracle.com/technology/software/products/berkeley-db/xml/index.html
2http://xqilla.sourceforge.net/FlexandBison

81

http://www.oracle.com/technology/software/products/berkeley-db/xml/index.html
http://xqilla.sourceforge.net/FlexandBison

82 APPENDIX B. XQFT IN BDB XML

16 <INITIAL>"s t a r t " RECOGNIZE_VALUE(_START_,
yytext) ;

17 <INITIAL>"end" RECOGNIZE_VALUE(_END_, yytext) ;
18 <INITIAL>"most" RECOGNIZE_VALUE(_MOST_, yytext) ;
19 +<INITIAL>" f t o r " RECOGNIZE(_FTOR_) ;
20 +<INITIAL>"ftand " RECOGNIZE(_FTAND_) ;
21 +<INITIAL>"f tno t " RECOGNIZE(_FTUNARYNOT_) ;
22 <INITIAL>"r e v a l i d a t i o n " RECOGNIZE_VALUE(_REVALIDATION_,

yytext) ;
23 <INITIAL>"updating " RECOGNIZE_VALUE(_UPDATING_,

yytext) ;
24 <INITIAL>"sk ip " RECOGNIZE_VALUE(_SKIP_, yytext) ;

B.1.2 Parser patch

1 d i f f −−g i t a/ x q i l l a / s r c / par s e r /XQParser . y
b/ x q i l l a / s r c / par s e r /XQParser . y

2 index 7a00c23 . . 7 5 ea511 100644
3 −−− a/ x q i l l a / s r c / par s e r /XQParser . y
4 +++ b/ x q i l l a / s r c / par s e r /XQParser . y
5 @@ −273 ,8 +273 ,6 @@ namespace XQParser {
6 %token _LSQUARE_ "["
7 %token _RSQUARE_ "]"
8 %token _QUESTION_MARK_ "?"
9 −%token _BAR_BAR_ " | | "
10 −%token _AMP_AMP_ "&&"
11 %token _LESS_THAN_OP_OR_TAG_ "<"
12 %token _START_TAG_CLOSE_ "> (s t a r t tag c l o s e) "
13 %token _END_TAG_CLOSE_ "> (end tag c l o s e) "
14 @@ −303 ,7 +301 ,6 @@ namespace XQParser {
15 %token _LBRACE_EXPR_ENCLOSURE_ "{ (exp r e s s i on enc l o su r e) "
16 %token _RBRACE_ "}"
17 %token _SEMICOLON_ ";"
18 −%token _BANG_ "!"
19
20 %token <str> _INTEGER_LITERAL_ "<in t e g e r l i t e r a l >"
21 %token <str> _DECIMAL_LITERAL_ "<decimal l i t e r a l >"
22 @@ −352 ,6 +349 ,9 @@ namespace XQParser {
23 %token <str> _START_ " s t a r t "
24 %token <str> _END_ "end"
25 %token <str> _MOST_ "most"
26 +%token <str> _FTOR_ " f t o r "
27 +%token <str> _FTAND_ " ftand "
28 +%token <str> _FTUNARYNOT_ " f tno t "
29 %token <str> _SKIP_ " sk ip "
30 %token <str> _COPY_ "copy"
31 %token <str> _VALUE_ "value "
32 @@ −2971 ,7 +2971 ,7 @@ FTSelect ionOptions :
33
34 // [1 4 5] FTOr : := FTAnd (" | | " FTAnd) *
35 FTOr :
36 − FTOr _BAR_BAR_ FTAnd
37 + FTOr _FTOR_ FTAnd
38 {
39 i f ($1−>getType () == FTSelect ion : :OR) {
40 FTOr *op = (FTOr*) $1 ;
41 @@ −2987 ,7 +2987 ,7 @@ FTOr :
42
43 // [1 4 6] FTAnd : := FTMildnot ("&&" FTMildnot) *
44 FTAnd:
45 − FTAnd _AMP_AMP_ FTMildnot
46 + FTAnd _FTAND_ FTMildnot

B.2. PATCH: ENABLE XQFT IN BDB XML 83

47 {
48 i f ($1−>getType () == FTSelect ion : :AND) {
49 FTAnd *op = (FTAnd*) $1 ;
50 @@ −3012 ,7 +3012 ,7 @@ FTMildnot :
51
52 // [1 4 8] FTUnaryNot : := (" ! ") ? FTWordsSelection
53 FTUnaryNot :
54 − _BANG_ FTWordsSelection
55 + _FTUNARYNOT_ FTWordsSelection
56 {
57 $$ = WRAP(@1, new (MEMMGR) FTUnaryNot ($2 , MEMMGR)) ;
58 }

B.2 Patch: Enable XQFT in BDB XML

The following patch generated by Git enables experimental XQFT support in
BDB XML. It is applied to the internal class for representing arbitrary query
expressions.

1 d i f f −−g i t a/dbxml/ s r c /dbxml/QueryExpression . cpp
b/dbxml/ s r c /dbxml/QueryExpression . cpp

2 index ae4ab76 . . ed95a02 100644
3 −−− a/dbxml/ s r c /dbxml/QueryExpression . cpp
4 +++ b/dbxml/ s r c /dbxml/QueryExpression . cpp
5 @@ −42,7 +42 ,7 @@ QueryExpression : : QueryExpression (const

std : : s t r i n g &query , XmlQueryContext &cont
6 context_ (context) ,
7 qec_(context_ , /*debugging */ f a l s e) ,
8 conf_ (context , txn , &ci_) ,
9 − xqContext_ (XQil la : : c reateContext (XQil la : :XQUERY_UPDATE,

&conf_ , Globals : : defaultMemoryManager)) ,
10 +

xqContext_ (XQil la : : c reateContext (XQil la : :XQUERY_FULLTEXT_UPDATE,
&conf_ , Globals : : defaultMemoryManager)) ,

11 expr_ (0)
12 {
13 ((Manager &) ((QueryContext &)getContext ()) . getManager ())

B.3 Default tokenizer implementation

The following code shows the default implementation for the tokenizer in XQilla.

1 /*
2 * Copyright (c) 2001−2008
3 * Deci s ionSo f t Limited . A l l r i g h t s re served .
4 * Copyright (c) 2004−2008
5 * Oracle . A l l r i g h t s re served .
6 *

7 * Licensed under the Apache License , Version 2.0 (the "License ") ;
8 * you may not use t h i s f i l e excep t in compliance with the License .
9 * You may ob ta in a copy o f the License at
10 *

11 * h t t p ://www. apache . org/ l i c e n s e s /LICENSE−2.0
12 *

13 * Unless requ i red by a p p l i c a b l e law or agreed to in wr i t ing ,
so f tware

14 * d i s t r i b u t e d under the License i s d i s t r i b u t e d on an "AS IS"
BASIS ,

15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expres s or
imp l i ed .

84 APPENDIX B. XQFT IN BDB XML

16 * See the License f o r the s p e c i f i c language governing permiss ions
and

17 * l im i t a t i o n s under the License .
18 *

19 * $Id : Defau l tTokenizer . cpp 475 2008−01−08 18:47 :44Z jpc s $
20 */
21
22 #include " . . / c on f i g / xq i l l a_con f i g . h"
23 #include <xq i l l a / f u l l t e x t /Defau l tToken izer . hpp>
24 #include <xq i l l a / framework/XPath2MemoryManager . hpp>
25 #include <xq i l l a / context /DynamicContext . hpp>
26
27 #include <xer c e s c / u t i l /XMLString . hpp>
28
29 #i f de f ined (XERCES_HAS_CPP_NAMESPACE)
30 XERCES_CPP_NAMESPACE_USE
31 #endif

32
33 TokenStream : : Ptr Defau l tToken izer : : t oken i z e (const Node : : Ptr &node ,

DynamicContext * context) const

34 {
35 return new DefaultTokenStream (node−>dmStringValue (context) ,

context−>getMemoryManager ()) ;
36 }
37
38 TokenStream : : Ptr Defau l tToken izer : : t oken i z e (const XMLCh * s t r ,

XPath2MemoryManager *mm) const

39 {
40 return new DefaultTokenStream (st r , mm) ;
41 }
42
43 Defau l tToken izer : : DefaultTokenStream : : DefaultTokenStream (const

XMLCh * s t r , XPath2MemoryManager *mm)
44 : str ing_ (XMLString : : r e p l i c a t e (s t r , mm)) ,
45 current_ (str ing_) ,
46 tokenStart_ (0) ,
47 pos i t ion_ (0) ,
48 sentence_ (0) ,
49 paragraph_ (0) ,
50 seenEndOfSentence_ (fa l se) ,
51 mm_(mm)
52 {
53 }
54
55 Defau l tToken izer : : DefaultTokenStream : : ~ DefaultTokenStream ()
56 {
57 mm_−>dea l l o c a t e (str ing_) ;
58 }
59
60 #define REPORT_TOKEN \
61 i f (tokenStart_ != 0) { \
62 * current_ = 0 ; \
63 r e s u l t = new

DefaultTokenInfo (mm_−>getPoo l edSt r ing (tokenStart_) ,
posit ion_ , sentence_ , paragraph_) ; \

64 ++pos i t ion_ ; \
65 tokenStart_ = 0 ; \
66 }
67
68
69 TokenInfo : : Ptr Defau l tToken izer : : DefaultTokenStream : : next ()
70 {

B.4. EXAMPLE DATA 85

71 TokenInfo : : Ptr r e s u l t (0) ;
72 while (r e s u l t . i sNu l l ()) {
73 switch (* current_) {
74 case ' \n ' : {
75 REPORT_TOKEN;
76 i f (seenEndOfSentence_) {
77 ++paragraph_ ;
78 seenEndOfSentence_ = fa l se ;
79 }
80 break ;
81 }
82 case ' ! ' :
83 case ' ? ' :
84 case ' : ' :
85 case ' . ' : {
86 REPORT_TOKEN;
87 i f (! seenEndOfSentence_) {
88 ++sentence_ ;
89 seenEndOfSentence_ = true ;
90 }
91 break ;
92 }
93 case ' \ r ' :
94 case ' \ t ' :
95 case ' ' :
96 case ' " ' :
97 case ' \ ' ' :
98 case ' ` ' :
99 case ' ; ' :
100 case ' , ' : {
101 REPORT_TOKEN;
102 break ;
103 }
104 case 0 : {
105 REPORT_TOKEN;
106 return r e s u l t ;
107 }
108 default : {
109 i f (tokenStart_ == 0) {
110 tokenStart_ = current_ ;
111 seenEndOfSentence_ = fa l se ;
112 }
113 break ;
114 }
115 }
116
117 ++current_ ;
118 }
119
120 return r e s u l t ;
121 }

B.4 Example data

The following example data is loaded into a BDB XML container (shown in
Appendix B.5 on page 89), and used in experiments in Chapter 6 on page 55.

1 <?xml version=" 1 .0 " encoding="UTF−8" ?>
2 <books>
3 <book id="1">

86 APPENDIX B. XQFT IN BDB XML

4 <t i t l e>Modern Informat ion Re t r i e va l</ t i t l e>
5 <pub l i s h e r>Addison Wesley ; 1 s t e d i t i o n (May 15 ,

1999)</ pub l i s h e r>
6 <isbn n="10">020139829X</ isbn>
7 <isbn n="13">978−0201398298</ i sbn>
8 <author>Richardo Baeza−Yates</author>
9 <author>Ber th i e r Ribe iro−Neto</author>
10 <de s c r i p t i o n>Informat ion r e t r i e v a l (IR) has changed

cons id e rab ly in r e c ent years with the expansion o f the
World Wide Web and the advent o f modern and inexpens ive
g raph i c a l user i n t e r f a c e s and mass s to rage dev i c e s . As a
r e s u l t . , t r a d i t i o n a l IR textbooks have become qu i t e out o f
date and t h i s has l ed to the i n t r oduc t i on o f new IR books .
Never the l e s s , we b e l i e v e that the re i s s t i l l g r ea t need f o r
a book that approaches the f i e l d in a r i g o r ou s and

complete way from a computer−s c i e n c e p e r sp e c t i v e (as
opposed to a user−cente red pe r sp e c t i v e) . This book i s an
e f f o r t to p a r t i a l l y f u l f i l l t h i s gap and should be u s e f u l
f o r a f i r s t course on in fo rmat ion r e t r i e v a l as we l l as f o r
a graduate course on the top i c .

11
12 The book compr ises two po r t i on s which complement and balance each

other . The core por t i on i n c l ud e s nine chapter s authored or
co−authored by the d e s i gn e r s o f the book . The second port ion ,
which i s f u l l y i n t e g r a t ed with the f i r s t , i s formed by s i x
s tate−of−the−ar t chapter s wr i t t en by l ead ing r e s e a r c h e r s in
t h e i r f i e l d s . The same notat ion and g l o s s a r y are used in a l l
the chapter s . Thus , d e sp i t e the f a c t that s e v e r a l people have
cont r ibuted to the text , t h i s book i s r e a l l y much more a
textbook than an ed i t ed c o l l e c t i o n o f chapter s wr i t t en by
separa t e authors . Furthermore , un l i k e a c o l l e c t i o n o f chapters ,
we have c a r e f u l l y des igned the contents and o rgan i z a t i on o f

the book to pre sent a cohe s i v e view o f a l l the important
a spec t s o f modern in fo rmat ion r e t r i e v a l .

13
14 From IR models to index ing text , from IR v i s u a l t o o l s and

i n t e r f a c e s to the Web, from IR . multimedia to d i g i t a l
l i b r a r i e s , the book prov ide s both breadth o f coverage and
r i c hn e s s o f d e t a i l . I t i s our hope that , g iven the now c l e a r
r e l evance and s i g n i f i c a n c e o f in fo rmat ion r e t r i e v a l to modern
s o c i e t y . the book w i l l c on t r i bu t e to f u r t h e r d i s s eminate the
study o f the d i s c i p l i n e at in fo rmat ion sc i ence , computer
s c i ence , and l i b r a r y s c i e n c e departments throughout the
world .</ d e s c r i p t i o n>

15 <toc>
16 <chapter>
17 <name>Int roduc t i on</name>
18 <s e c t i o n>
19 <name>Motivation</name>
20 </ s e c t i o n>
21 <s e c t i o n>
22 <name>Basic Concepts</name>
23 </ s e c t i o n>
24 </ chapter>
25 <chapter>
26 <name>Modeling</name>
27 <s e c t i o n>
28 <name>Int roduc t i on</name>
29 </ s e c t i o n>
30 <s e c t i o n>
31 <name>A Taxonomy o f In format ion Re t r i e va l Models</name>
32 </ s e c t i o n>

B.4. EXAMPLE DATA 87

33 </ chapter>
34 </ toc>
35 </book>
36
37 <book id="2">
38 <t i t l e>Managing Gigabytes : Compressing and Indexing Documents

and Images</ t i t l e>
39 <pub l i s h e r>Morgan Kaufmann ; 2 Sub ed i t i o n (May 15 ,

1999)</ pub l i s h e r>
40 <isbn n="10">1558605703</ i sbn>
41 <isbn n="13">978−1558605701</ i sbn>
42 <author>A l i s t a i r Moffat</author>
43 <author>Timothy C. Be l l</author>
44 <de s c r i p t i o n>In t h i s f u l l y updated second ed i t i o n o f the h igh ly

acc la imed Managing Gigabytes , authors Witten , Moffat , and
Be l l cont inue to prov ide unpa ra l l e l e d coverage o f
s ta te−of−the−ar t t echn iques f o r compress ing and index ing
data . Whatever your f i e l d , i f you work with l a r g e
qu an t i t i e s o f in format ion , t h i s book i s e s s e n t i a l
reading−−an au tho r i t a t i v e t h e o r e t i c a l r e s ou r c e and a
p r a c t i c a l guide to meeting the toughest s t o rage and ac c e s s
cha l l e n g e s . I t cove r s the l a t e s t developments in
compress ion and index ing and t h e i r app l i c a t i on on the Web
and in d i g i t a l l i b r a r i e s . I t a l s o d e t a i l s dozens o f
power fu l t e chn iques supported by mg, the authors ' own
system f o r compressing , s to r ing , and r e t r i e v i n g text ,
images , and t ex tua l images . mg ' s source code i s f r e e l y
a v a i l a b l e on the Web.

45
46 * Up−to−date coverage o f new text compress ion a lgor i thms such as

block so r t ing , approximate a r i thmet i c coding , and f a t Huffman
coding

47 * New s e c t i o n s on content−based index compress ion and d i s t r i b u t e d
querying , with 2 new data s t r u c t u r e s f o r f a s t index ing

48 * New coverage o f image coding , i n c l ud ing d e s c r i p t i o n s o f de f a c t o
standards in use on the Web (GIF and PNG) , in fo rmat ion on
CALIC, the new proposed JPEG Lo s s l e s s standard , and JBIG2

49 * New in format ion on the In t e rn e t and WWW, d i g i t a l l i b r a r i e s , web
search engines , and agent−based r e t r i e v a l

50 * Accompanied by a pub l i c domain system c a l l e d MG which i s a f u l l y
worked−out ope r a t i ona l example o f the advanced techn iques
developed and exp la ined in the book

51 * New appendix on an e x i s t i n g d i g i t a l l i b r a r y system that uses the
MG so f tware</ d e s c r i p t i o n>

52 <toc>
53 <chapter>
54 <name>Overview</name>
55 <s e c t i o n>
56 <name>Document databases</name>
57 </ s e c t i o n>
58 <s e c t i o n>
59 <name>Compression</name>
60 </ s e c t i o n>
61 </ chapter>
62 <chapter>
63 <name>Text Compression</name>
64 <s e c t i o n>
65 <name>Models</name>
66 </ s e c t i o n>
67 <s e c t i o n>
68 <name>Adaptive models</name>
69 </ s e c t i o n>

88 APPENDIX B. XQFT IN BDB XML

70 </ chapter>
71 </ toc>
72 </book>
73
74 <book id="3">
75 <t i t l e>Int roduc t i on to In format ion Re t r i e va l</ t i t l e>
76 <pub l i s h e r>Cambridge Un ive r s i ty Press ; 1 e d i t i o n (July 7 ,

2008)</ pub l i s h e r>
77 <isbn n="10">0521865719</ i sbn>
78 <isbn n="13">978−0521865715</ i sbn>
79 <author>Chr i s topher D. Manning</author>
80 <author>Prabhakar Raghavan</author>
81 <author>Hinr ich Schutze</author>
82 <de s c r i p t i o n>Class−t e s t ed and coherent , t h i s groundbreaking new

textbook teaches web−era in fo rmat ion r e t r i e v a l , i n c l ud ing
web search and the r e l a t e d areas o f t ex t c l a s s i f i c a t i o n and
text c l u s t e r i n g from bas i c concepts . Written from a

computer s c i e n c e p e r sp e c t i v e by three l e ad ing expe r t s in
the f i e l d , i t g i v e s an up−to−date treatment o f a l l a spec t s
o f the des ign and implementation o f systems f o r gather ing ,
indexing , and sea r ch ing documents ; methods f o r eva lua t ing
systems ; and an in t r oduc t i on to the use o f machine l e a rn i ng
methods on text c o l l e c t i o n s . Al l the important i d ea s are

exp la ined us ing examples and f i g u r e s , making i t p e r f e c t f o r
in t roduc to ry cour s e s in in fo rmat ion r e t r i e v a l f o r advanced
undergraduates and graduate s tudents in computer s c i e n c e .

Based on feedback from ex t en s i v e c lassroom exper i ence , the
book has been c a r e f u l l y s t ruc tu r ed in order to make
teach ing more natura l and e f f e c t i v e . Although o r i g i n a l l y
des igned as the primary text f o r a graduate or advanced
undergraduate course in in fo rmat ion r e t r i e v a l , the book
w i l l a l s o c r e a t e a buzz f o r r e s e a r c h e r s and p r o f e s s i o n a l s
a l i k e .</ d e s c r i p t i o n>

83 <toc>
84 <chapter>
85 <name>Boolean r e t r i e v a l</name>
86 <s e c t i o n>
87 <name>An example o f in fo rmat ion r e t r i e v a l problem</name>
88 </ s e c t i o n>
89 <s e c t i o n>
90 <name>A f i r s t take at bu i l d i ng an inve r t ed index</name>
91 </ s e c t i o n>
92 </ chapter>
93 <chapter>
94 <name>The term vocabulary and pos t i ng s l i s t s</name>
95 <s e c t i o n>
96 <name>Document d e l i n e a t i o n and charac t e r sequence

decoding</name>
97 </ s e c t i o n>
98 <s e c t i o n>
99 <name>Determining the vocabulary o f terms</name>
100 </ s e c t i o n>
101 </ chapter>
102 </ toc>
103 </book>
104
105 <book id="4">
106 <t i t l e>Informat ion Re t r i e v a l : Algorithms and Heu r i s t i c s (The

Informat ion Re t r i e va l S e r i e s) (2nd Edit ion)</ t i t l e>
107 <pub l i s h e r>Spr inger ; 2nd ed i t i o n (December 20 ,

2004)</ pub l i s h e r>
108 <isbn n="10">1402030045</ i sbn>

B.5. LOADING EXAMPLE DATA INTO A CONTAINER 89

109 <isbn n="13">978−1402030048</ i sbn>
110 <author>David A. Grossman</author>
111 <author>Ophir Fr i ede r</author>
112 <de s c r i p t i o n>In t e r e s t e d in how an e f f i c i e n t search eng ine

works ? Want to know what a lgor i thms are used to rank
r e s u l t i n g documents in re sponse to user r eque s t s ? The
authors answer these and other key in fo rmat ion r e t r i e v a l
des ign and implementation que s t i on s .

113
114 This book i s not yet another high l e v e l t ex t . Instead , a lgor i thms

are thoroughly descr ibed , making t h i s book i d e a l l y su i t ed f o r
both computer s c i e n c e s tudents and p r a c t i t i o n e r s who work on
search−r e l a t e d app l i c a t i o n s . As s ta t ed in the foreword , t h i s
book prov ide s a current , broad , and d e t a i l e d overview o f the
f i e l d and i s the only one that does so . Examples are used
throughout to i l l u s t r a t e the a lgor i thms .

115
116 The authors exp la in how a query i s ranked aga in s t a document

c o l l e c t i o n us ing e i t h e r a s i n g l e or a combination o f r e t r i e v a l
s t r a t e g i e s , and how an assortment o f u t i l i t i e s are i n t e g r a t ed
in to the query p ro c e s s i ng scheme to improve these rank ings .
Methods f o r bu i l d i ng and compress ing text indexes , query ing and
r e t r i e v i n g documents in mu l t ip l e languages , and us ing p a r a l l e l
or d i s t r i b u t e d p ro c e s s i ng to exped i t e the search are l i k ew i s e

de s c r ibed .
117
118 This e d i t i o n i s a major expansion o f the one publ i shed in 1998 .

Bes ides updating the e n t i r e book with cur rent techniques , i t
i n c l ud e s new s e c t i o n s on language models , c ros s−language
in fo rmat ion r e t r i e v a l , peer−to−peer proce s s ing , XML search ,
mediators , and dup l i c a t e document de t e c t i on .</ d e s c r i p t i o n>

119 <toc>
120 <chapter>
121 <name>Ret r i e va l S t r a t e g i e s</name>
122 <s e c t i o n>
123 <name>Vector Space Model</name>
124 </ s e c t i o n>
125 <s e c t i o n>
126 <name>P r o b a b i l i s t i c Re t r i e va l S t r a t e g i e s</name>
127 </ s e c t i o n>
128 </ chapter>
129 <chapter>
130 <name>Ret r i e va l U t i l i t i e s</name>
131 <s e c t i o n>
132 <name>Relevance Feedback</name>
133 </ s e c t i o n>
134 <s e c t i o n>
135 <name>Clus t e r i ng</name>
136 </ s e c t i o n>
137 </ chapter>
138 </ toc>
139 </book>
140 </books>

B.5 Loading example data into a container

The following script (load.xquery) is loaded and and executing the command
dbxml -s load.xquery. Note that the $uri variable in the query refers to a
�le in the local �le system. Appendix B.4 on page 85 shows the contents of the

90 APPENDIX B. XQFT IN BDB XML

�le books.xml.

1 crea teConta ine r books . dbxml
2 putDocument "" '
3 l e t $u r i := "books . xml"
4 f o r $book in doc ($ur i) //book
5 return $book
6 ' q
7 sync
8 e x i t

Bibliography

[1] Shurug Al-Khalifa, Cong Yu, and H. V. Jagadish. Querying structured
text in an xml database. In SIGMOD '03: Proceedings of the 2003 ACM

SIGMOD international conference on Management of data, pages 4�15,
New York, NY, USA, 2003. ACM.

[2] S. Amer-Yahia, C. Botev, J. Dörre, and J. Shanmugasundaram. Xquery
full-text extensions explained. IBM Syst. J., 45(2):335�351, 2006.

[3] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. Texquery: a full-
text search extension to xquery. In WWW '04: Proceedings of the 13th

international conference on World Wide Web, pages 583�594, New York,
NY, USA, 2004. ACM.

[4] Sihem Amer-Yahia and Jayavel Shanmugasundaram. Xml full-text search:
challenges and opportunities. In VLDB '05: Proceedings of the 31st in-

ternational conference on Very large data bases, pages 1368�1368. VLDB
Endowment, 2005.

[5] Dave Beckett. RDF/xml syntax speci�cation (revised). W3C recommenda-
tion, W3C, February 2004. http://www.w3.org/TR/2004/REC-rdf-syntax-
grammar-20040210/.

[6] Anand Bhaskar, Chavdar Botev, Muthiah M. Muthaia Chettiar, Lin Guo,
Jayavel Shanmugasundaram, Feng Shao, and Fan Yang. Quark: an e�cient
xquery full-text implementation. In SIGMOD '06: Proceedings of the 2006

ACM SIGMOD international conference on Management of data, pages
781�783, New York, NY, USA, 2006. ACM.

[7] Paul V. Biron and Ashok Malhotra. XML schema part 2:
Datatypes second edition. W3C recommendation, W3C, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[8] Scott Boag, Anders Berglund, Don Chamberlin, Jérôme Siméon, Michael
Kay, Jonathan Robie, and Mary F. Fernández. XML path lan-
guage (XPath) 2.0. W3C recommendation, W3C, January 2007.
http://www.w3.org/TR/2007/REC-xpath20-20070123/.

[9] Jeremy J. Carroll and Graham Klyne. Resource description frame-
work (RDF): Concepts and abstract syntax. W3C recommendation,
W3C, February 2004. http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

91

92 BIBLIOGRAPHY

[10] Don Chamberlin, Jonathan Robie, Peter Fankhauser, Daniela Florescu,
and Massimo Marchiori. XML query use cases. W3C note, W3C, March
2007. http://www.w3.org/TR/2007/NOTE-xquery-use-cases-20070323/.

[11] Donald D. Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An
xml query language for heterogeneous data sources. In Selected papers from

the Third International Workshop WebDB 2000 on The World Wide Web

and Databases, pages 1�25, London, UK, 2001. Springer-Verlag.

[12] John Cowan and Richard Tobin. XML information set (sec-
ond edition). W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204.

[13] Steven DeRose and James Clark. XML path language (XPath)
version 1.0. W3C recommendation, W3C, November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

[14] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan
Suciu. A query language for xml. In WWW '99: Proceedings of the eighth

international conference on World Wide Web, pages 1155�1169, New York,
NY, USA, 1999. Elsevier North-Holland, Inc.

[15] Daniel Engovatov and Daniel Engovatov. XML query (XQuery)
1.1 requirements. W3C working draft, W3C, March 2007.
http://www.w3.org/TR/2007/WD-xquery-11-requirements-20070323.

[16] Joseph Fong, Francis Pang, and Chris Bloor. Converting relational
database into xml document. In DEXA '01: Proceedings of the 12th In-

ternational Workshop on Database and Expert Systems Applications, pages
61�65, Washington, DC, USA, 2001. IEEE Computer Society.

[17] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.
Xrank: ranked keyword search over xml documents. In SIGMOD '03:

Proceedings of the 2003 ACM SIGMOD international conference on Man-

agement of data, pages 16�27, New York, NY, USA, 2003. ACM.

[18] Mary Holstege, Jochen Doerre, Jim Melton, Pat Case, Chavdar Botev, Si-
hem Amer-Yahia, Jayavel Shanmugasundaram, Michael Rys, and Stephen
Buxton. XQuery and XPath full text 1.0. W3C candidate recommenda-
tion, W3C, May 2008. http://www.w3.org/TR/2008/CR-xpath-full-text-
10-20080516/.

[19] Raghav Kaushik, Rajasekar Krishnamurthy, Je�rey F. Naughton, and
Raghu Ramakrishnan. On the integration of structure indexes and inverted
lists. In SIGMOD '04: Proceedings of the 2004 ACM SIGMOD interna-

tional conference on Management of data, pages 779�790, New York, NY,
USA, 2004. ACM.

[20] Michael Kay. XSL transformations (XSLT) version 2.0. W3C recommen-
dation, W3C, January 2007. http://www.w3.org/TR/2007/REC-xslt20-
20070123/.

BIBLIOGRAPHY 93

[21] Jim Melton, Ashok Malhotra, and Norman Walsh. XQuery 1.0 and XPath
2.0 functions and operators. W3C recommendation, W3C, January 2007.
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/.

[22] Alistair Miles. Quick guide to publishing a thesaurus on the semantic web.
W3C working draft, W3C, May 2005. http://www.w3.org/TR/2005/WD-
swbp-thesaurus-pubguide-20050517.

[23] Alistair Miles and Sean Bechhofer. SKOS simple knowledge orga-
nization system reference. W3C working draft, W3C, March 2009.
http://www.w3.org/TR/2009/CR-skos-reference-20090317/.

[24] Oracle. Anatomy of an xml database: Oracle berkeley db xml. Technical
report, Oracle Corporation, 2006.

[25] Peter F. Patel-Schneider, Ian Horrocks, and Patrick Hayes. OWL web
ontology language semantics and abstract syntax. W3C recommendation,
W3C, February 2004. http://www.w3.org/TR/2004/REC-owl-semantics-
20040210/.

[26] Martin F. Porter. An algorithm for su�x stripping. pages 313�316, 1997.

[27] Jonathan Robie, Joe Lapp, and David Schach. XML query
language (XQL). W3C proposal, W3C, September 1998.
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[28] Mark Scardina, Mary F. Fernández, and K. Karun. XPath re-
quirements version 2.0. W3C working draft, W3C, June 2005.
http://www.w3.org/TR/2005/WD-xpath20req-20050603/.

[29] Feng Shao, Lin Guo, Chavdar Botev, Anand Bhaskar, Muthiah Chettiar,
Fan Yang, and Jayavel Shanmugasundaram. E�cient keyword search over
virtual xml views. The VLDB Journal, 18(2):543�570, 2009.

[30] Jérôme Siméon, Don Chamberlin, Daniela Florescu, Scott Boag,
Mary F. Fernández, and Jonathan Robie. XQuery 1.0: An
XML query language. W3C recommendation, W3C, January 2007.
http://www.w3.org/TR/2007/REC-xquery-20070123/.

[31] Norman Walsh, Mary Fernández, Ashok Malhotra, Marton Nagy, and
Jonathan Marsh. XQuery 1.0 and XPath 2.0 data model (XDM). W3C rec-
ommendation, W3C, January 2007. http://www.w3.org/TR/2007/REC-
xpath-datamodel-20070123/.

	Title Page
	I Thesis Context
	Introduction
	Background and motivation
	Problem definition
	Method and approach
	Outline of thesis

	XML and Information Retrieval
	XML
	XML databases
	XQuery 1.0 and XPath 2.0 Data Model (XDM)
	XML Path Language (XPath) 2.0
	XQuery 1.0: An XML Query Language
	Expressions
	Context
	Query processing
	Error handling

	Limitations

	XQuery and XPath Full Text 1.0
	Tokens and phrases
	Full-text extensions to XQuery and XPath
	Processing model
	Full-text contains expression
	Score variables and weight
	Extensions to the static context

	Full-Text Selections
	Specifying search tokens and phrases
	Cardinality constraint
	Match options
	Language
	Wildcards
	Thesaurus
	Stemming
	Case sensitivity
	Diacritics
	Stop words
	Extension option

	Logical full-text operators
	Positional filters
	Ordered selection
	Window selection
	Distance selection
	Scope selection
	Anchoring selection

	Ignore option
	Extension selections

	Summary

	State of the art
	The Quark Project
	TeXQuery
	Quark
	Storage and indexing

	Sedna
	Indexing
	Full-text search

	BaseX
	Storage and indexing

	Qizx
	Storage and indexing

	Summary

	II Thesis Contribution
	Implementing full-text search in an XML database
	Introduction
	General implementation of full-text concepts
	Tokenization
	Thesaurus
	Stop words
	Stemming
	Positional filters
	Relevance ranking

	Oracle Berkeley DB XML
	Architecture
	XQuery Engine
	Storage
	Indexing

	Implementing XQFT in BDB XML
	Query lexer-parser
	Tokenization
	Evaluation of full-text selections
	Enabling experimental XQFT support in BDB XML

	Full-text indexing in BDB XML
	Inverted list structure
	Extending the index specification with full-text options
	Extending the XML Indexer

	Summary

	Results
	Overview of experiments
	Searching for a single token
	Query script
	Result

	Searching for a phrase and a token
	Query script
	Result

	Searching with a cardinality selection
	Query script
	Result

	Searching with the case sensitivity match option
	Query script
	Result

	Searching two tokens with ftand
	Query script
	Result

	Searching with the not in operator
	Query script
	Result

	Searching with the window positional filter
	Query script
	Result

	Searching with order and scope positional filters
	Query script
	Result

	Searching with the distance positional filter
	Query script
	Result

	Summary

	III Thesis Conclusion
	Evaluation and discussion
	Summary of thesis
	Discussion of contributions
	XQFT implementation in BDB XML/XQilla
	Proposed full-text index for BDB XML

	Evaluation

	Conclusions and further work
	Concluding remarks
	XQuery is too limited for full-text search
	XQFT adds IR concepts to XQuery
	IR in XML/XQFT is not fundamentally different from text-based IR
	Full-text indexing is critical for query efficiency
	XQFT can and will be implemented in BDB XML
	Full-text indexing in BDB XML may be implemented using Berkeley DB

	Future work
	Improving the XQFT implementation in BDB XML
	Dealing with frequent updates

	XQuery Full-Text Semantics
	Semantics for fts:lookupThesaurus
	Semantics for fts:resolveStopWordsUri
	Simple SKOS thesaurus
	Stop words represented as XML

	XQFT in BDB XML
	Patch: Fix for full-text logical operators
	Lexer patch
	Parser patch

	Patch: Enable XQFT in BDB XML
	Default tokenizer implementation
	Example data
	Loading example data into a container

	Bibliography

