
June 2009
Keith Downing, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Hybrid Topological and Geometrical
Robot Mapping Approach

Aasmund Nordstoga

Abstract

Robotic mapping systems are traditionally separated into the metric and the topolog-
ical paradigm. The metric approach provides geometrical accuracy, but is fragile because
it is bounded in an absolute coordinate system and depends on the use of odometry for
navigation. The topological paradigm provides a compact representation and naviga-
tion free of accumulated error. In this thesis the topological and the metric paradigm
is combined into a hybrid representation where a topological map joins a set of local
maps. Each local map contains a pair of self-organizing maps, one that maps the metric
space of the local map, and one that maps the perceptual space of the local map. Local
navigation is performed over the SOM mapping the metric space and position correction
is performed over the SOM mapping the perceptual space. A boundary-tracing behavior
is used for navigation within the global map, while the local metric maps allow for more
precise navigation and is navigated by performing path-integration.

Contents

1 Introduction 5
1.1 The Problem . 5
1.2 The Proposed Answer . 8

1.2.1 A Dynamical Topological Map . 9
1.2.2 Local Self-Organizing Maps . 10
1.2.3 Self-Organizing Maps For Landmark Storage and Self-Localization 11
1.2.4 Periodic Self-Position Correction Over Perceptual Cues 11

1.3 Central Research Issues . 11
1.4 Summary . 12

2 Background Information 14
2.1 The History of Robotic Mapping . 14
2.2 Representation Types . 16

2.2.1 Topological and Geometrical Maps 16
2.2.2 Hybrid Topological and Geometrical Approaches 17
2.2.3 Biologically Inspired Approaches and The Cognitive Map 18
2.2.4 Probabilistic Approaches . 19

2.3 Related Approaches . 21
2.3.1 A Hybrid Approach by Tomatis, Nourbakhsh and Siegwart 21
2.3.2 A Hybrid Approach by Thrun and Bucken 21
2.3.3 Atlas . 22
2.3.4 Huang and Beevers . 22
2.3.5 Owen and Nehmzow . 23

3 Implementation 24
3.1 The Simulated Robot . 24

3.1.1 Sensors . 24
3.2 The Control System . 25

3.2.1 Control System Paradigms . 25
3.2.2 The Horizontally Layered Control System 27

3.3 Path Integration . 29
3.4 The Mapping Process . 31

3.4.1 Environment Exploration by Boundary Tracing 32
3.4.2 A Dynamic Topological Map . 34
3.4.3 Local Maps Anchored to Global Nodes 38

3.5 Navigation in a Mapped Environment . 53

1

3.5.1 Global Navigation . 53
3.5.2 Position Correction Over Landmarks 55
3.5.3 Local Navigation . 56

4 Experiments 59
4.1 The Simulated Environment . 60
4.2 Global and Local Mapping . 61

4.2.1 Global Mapping . 61
4.2.2 Local Mapping . 64

4.3 Global and Local Navigation . 73
4.3.1 Global Navigation . 73
4.3.2 Local Navigation . 74

4.4 Loop Closing . 79

5 Conclusion 83
5.1 Motivations . 83
5.2 Experimental Results . 84
5.3 The Hybrid Approach . 85

A Algorithms 92
A.1 Path-integration algorithm . 92
A.2 A* algorithm . 92
A.3 Boundary-tracing algorithm . 92

2

List of Figures

3.1 The E-Puck Robot . 24
3.2 Historic control systems . 26
3.3 Hybrid control systems . 27
3.4 The horizontally layered control system 28
3.5 Geometrical properties of the e-puck robot 29
3.6 An exemplified mapping process . 31
3.7 E-Puck proximity sensors . 32
3.8 Wall-following behavior . 34
3.9 A global topological map. Global nodes are connected by arcs and contain

a local map each . 35
3.10 Global node . 35
3.11 Global node added to the map . 36
3.12 Arc . 37
3.13 Node relation . 38
3.14 A hexagonal SOM . 39
3.15 A Gaussian and a bubble neighborhood function. 41
3.16 Function curves . 41
3.17 A linear learning rate function and a power series learning rate function . 42
3.18 The local space of a global map. 44
3.19 Initial pose . 44
3.20 A temporary rigid map used for systematic exploration of local space . . 45
3.21 Exploration strategies . 46
3.22 Paths after performing path-finding . 47
3.23 A metric SOM in its initial configuration 47
3.24 The resulting robot path and sampled coordinates after exploration of local

space . 48
3.25 The metric SOM before and atfer training 48
3.26 A perceptual SOM . 49
3.27 Sampling of perceptual space . 50
3.28 Association between the coordinates of perceptual samples and the nodes

of the trained perceptual map . 50
3.29 Robot exploration path leading back to the initial node 51
3.30 A global topological map . 53
3.31 Navigation from directionally opposite initial nodes 54
3.32 Coordinate retrieval from a perceptual SOM 56
3.33 Approaching the transition position . 57
3.34 The SOM of a local map . 58

3

4.1 A simulated environment . 60
4.2 Three environments of varying size and complexity 61
4.3 Approximate robot paths from right-side exploration 62
4.4 Approximate robot paths from left-side exploration 62
4.5 Accumulated positional error from path-integration 63
4.6 A selection of rigid maps anchored to nodes 65
4.7 Sampling of local maps, circles are coordinate samples while crosses are

four-directional image samples . 66
4.8 Example robot paths from vertical exploration 66
4.9 Local metric SOMs of varying node size after training 69
4.10 Example local metric SOMs after training 70
4.11 Example perceptual SOMs after training. Nodes are linked with the coor-

dinates of the visual samples identified by numbers within the nodes. . . 71
4.12 Worst case positional error . 74
4.13 Localization, and local map error, map traversal 1 75
4.14 Localization and local map error, map traversal 2 75
4.15 Localization and local map error, map traversal 4 76
4.16 Corrupting position estimate . 77
4.17 Both left-side and right-side exploration paths 78
4.18 ”Open corner” situations . 79
4.19 Example correct and incorrect closing of a loop 81

4

Chapter 1

Introduction

Robotic map building is the task of autonomously generating a spatial model of an un-
known physical environment and is performed by a mobile robot. Robotic map building,
or robotic mapping, is often considered one of the core problems in the area of mobile and
autonomous robotics. Without a sense of location in the world, globally or locally, a mo-
bile robot will be unable to move safely in its environment, much less perform intelligible
action and high level tasks in it.

1.1 The Problem

This work is motivated by the classical problem of robotic map building. The problem
of robotic mapping has enjoyed a substantial amount of attention in the previous three
decades within the AI community. It is widely regarded as the hardest perceptual problem
in robotics, and progress in this area is expected to propagate progress in related research
[53]. Although the area of robotic mapping has experienced considerable progress through
the last three decades of research it is far from complete.

Robotic mapping systems are traditionally separated in two central paradigms, topo-
logical and geometrical systems. A recent trend in robotic mapping concerns the merging
of these two approaches into a hybrid representation able to implement the favorable as-
pect of both paradigms, while omitting the less favorable aspects affiliated with each
approach in isolation. The work presented in this thesis investigates the motivations that
have introduced a range of hybrid approaches by discussing the attributes of purely topo-
logical and purely geometrical approaches. Existing hybrid systems are discussed and a
novel hybrid mapping approach, combining topological and geometrical representations,
is proposed.

Geometrical approaches represent the environment as a grid of evenly spaced cells, in
which each cell represents a fraction of coordinate space in an absolute coordinate system.
The cells of such grids are normally small, as most geometrical systems seek to map an
environment in detail. Topological approaches represent the environment as nodes in a
topological graph, in which each node represent a location in the environment and may
be linked to topologically neighboring nodes , through a set of arcs with information on
how to move between the connected nodes. Such information includes metrical data in
some systems [5, 6], such as the angle and distance between nodes, while other systems
use no metrical data to define the relations between nodes [26, 28]. The topological

5

and the geometrical paradigm both exhibit positive and negative attributes for use in
environment representation. These attributes can be linked to a set of central issues in
robotic mapping.

Odometric error Odometry is the process of estimating the pose of a robot based
on the information given by wheel encoders. The wheel encoders are sensors reading
the number of degrees a wheel has turned. The pose of the robot means the relative
position and rotation of the robot. Odometric information can be used to continuously
estimate the pose of a robot by the use of relatively simple geometric calculations. If the
odometric readings given by the wheel encoders of a robot were always correct, robotic
map building would be a straightforward business; this is unfortunately not the case. In
the case of odometric information one problem leading to false sensory reading is wheel
slippage which could happen if the surface the robot is exploring is slippery or the robot
could bump into an obstacle, shifting its orientation slightly. The statistical dependence
of odometric noise leads to an accumulation of error. Odometric noise is statistical
dependent since noise at earlier measurements is propagated into later measurements.
Consider for example a robot navigating only by integrating odometric information. If
the robot should bump into a wall and this collision shifted its orientation by 2 degrees
to the left its current rotation would now be 2 degrees off. Now when the unlucky robot
moves i.e. 20 centimeters ahead its position will be off the estimated new position in
addition to being of relative to its estimated rotation.

This accumulation of error over time, leads to a large overall error in the generated
map, often rendering the map completely useless. As noise in odometric information is
all but unavoidable it is not enough to use such readings in its raw form alone to build
an accurate map.

The process in which odometric information is used to continuously estimate the pose
of a moving robot is called path integration, also referred to as dead reckoning. Geo-
metrical approaches depend on path integration for navigation. This makes geometrical
approaches sensitive to accumulated pose error from wheel encoder readings, and makes
additional corrective measures necessary. One often used correction mechanism in this
context is the use of a Bayes filter for integrating perceptual data and odometric data in
a probabilistic model. The Bayes filter and its use in robotic pose and map estimation is
discussed in section 2.2.4 of this thesis.

The sensitivity to accumulated error in topological approaches depends on the degree
of metrical information used in navigation. It is of course possible to implement topo-
logical systems that make use of path integration alone for navigation. Such systems
will naturally be just as sensitive to odometric error as geometrical ones. Most topolog-
ical systems however do not rely on path integration for navigation to the same degree
as geometrical systems do. A typical characteristic of topological systems is the use of
perceptual information and landmarks linked to the nodes of the topological graph. A
landmark is a collection of perceptual cues that defines a location in an environment.
Perceptual cues are not limited to the visual domain; it can entail any perceivable at-
tribute of a location in an environment. By periodically estimating the pose of a robot
through landmark recognition, topological approaches partly circumvent the problem of
accumulated odometric error even if metric information is used to define the relations
between the nodes of the representation. This is due to relative nature of topological

6

nodes. In a geometrical system each cell of the map is anchored in an absolute coordi-
nate system, conversely, nodes in a topological map are not linked to absolute coordinates
but defined by their edges to other nodes in the map alone. Because of this odometric
error are not statistically dependent in topological systems where robot pose information
is periodically corrected against external landmarks. Some topological approaches omit
the use of metric information completely, thus avoiding the problem of odometric error
altogether.

Perceptual aliasing In the problem of perceptual aliasing, physically distinct places
in the environment have a similar perceptual signature, meaning they may for example
look identical visually. The problem of perceptual aliasing becomes relevant if a robot
need to estimate its pose in the map based on perceptual cues alone. In a scenario where
several distinct locations in the environment look perceptually identical to the robot, and
its only means of pose estimation is by analyzing perceptual cues, the robot could easily
estimate a faulty pose, which could at best lead to a less accurate map and at worst
render the robot immobile. If a robot knows approximately where it is in the map, either
topologically or in absolute metric terms, the problem of perceptual aliasing becomes
less relevant. This is the case in geometrical approaches. In such systems the robot
continuously estimates a pose in absolute metric space. Thus it is able to separate similar
perceptual location by considering its estimated pose in space. The issue of perceptual
aliasing is mainly a problem in topological approaches. Topological maps are not set in an
absolute coordinate space as is geometrical one, and are thus unable to rely on absolute
coordinate information to separate perceptually similar locations. One method used in
topological systems to counter perceptually similar locations is ”simply” to increase the
number of perceptual cues constituting landmarks, for example by including both visual
and sonar information. Other methods may involve analyzing the perceptual properties
of neighboring locations to separate similar locations.

The Correspondence problem Another well known issue in robotic mapping is the
correspondence problem. The correspondence problem is that of matching a unique place
in the environment at different times in the mapping process. This problem is linked with
the problem of perceptual aliasing, where the problem is to differ between similar places
at different locations in the environment. The correspondence problem is valid in both
metric and topological approaches. In both approaches the problem usually present itself
at the closing of a cycle or a loop, and the problem is therefore often referred to as the cycle
or loop closing problem in literature. In metric systems the successful closing of a cycle
enables the map to be corrected, but this correction must also be propagated backwards
trough the map.In topological maps error is usually not allowed to accumulate freely as
in metric maps, and the correspondence problem is as a consequence not as important
for the building of an accurate map as in the metric approach. One consequence of
cycle closing in topological maps however, are the resulting graph where nodes are closed
in a loop, allowing for potentially shorter routes, conversely if cycles or loops are not
closed the routes implicit in the map will be longer for nodes close to physically close but
topologically unconnected places in the environment.

7

Environment dimensionality Another substantial problem encountered in robotic
mapping is the inherent high dimensionality of a physical environment. Even small
environments such as a laboratory room or an office present a large amount of features.
The challenge for the robotic mapping system is then to reduce the dimensionality of the
map representation sufficiently so that the computational cost stays acceptable and still
provide enough information necessary for a functional representation.

Metrical approaches seek to map an environment highly accurately. Geometrical rep-
resentations contain a grid of evenly spaced cells covering the entire area of the environ-
ment to be mapped. Though this allows for highly geometrically accurate maps, the cost
is potentially very large in computational means. A detailed geometrical map will need
to store large amounts of information for even moderately sized environment. In addition
to requiring large amounts of memory, the detailed representation of geometrical systems
affects the computational efficiency of robot path planning. Path planning is arguably an
important aspect of robotic navigation. Path planning is the process of estimating the
optimal path between two locations in an environment. The computational price of this
process is decided mainly by the amount of information that is necessary to estimate a
path. In geometrical systems the amount of information to be considered is potentially
very large, increasing the complexity of a path planning process. However, the detailed
representation of geometrical maps enables path finding algorithms to find the shortest
physical path available between two locations.

Topological approaches do not map an environment in the highly accurate way of
metrical maps, but rather seeks to describe the environments topological features. This
approach tends to produce coarser representations of the environment, with consequently
lesser memory requirements. This is because topological maps only store information of
specific locations in the environment without the need to describe the space between the
nodes, or locations, in the map. Though this attribute of topological systems produces
compacted representations of an environment, it means such approaches must in some
way ensure that a sufficient amount of topological nodes are produced to fit the complexity
of an environment. This is necessary to enable the robot to move unhindered between
the locations represented by nodes in the topological map.

As topological approaches stores less information than a geometrical one, path plan-
ning is normally a less resource demanding process in the topological approach as a lesser
amount of information needs to be considered. Another favorable attribute of topological
maps is the transferability of well known optimal path algorithms known from graph
theory, such as the A* algorithm.

1.2 The Proposed Answer

The topological and the geometrical approaches to robotic mapping arguably each have
problematic elements as discussed above. A number of methods have been proposed
to alleviate the different weaknesses of both paradigms. Examples of relatively recent
methods of this type involves the use of probabilistic methods in both pose and map
estimation in geometrical maps. Although exclusive topological or geometrical approaches
have been considerably improved over the last decades of research, such approaches still
suffer from problems traditionally related to each paradigm.

8

One obvious method to meet the challenges presented by the topological and the
metrical approach is to combine them.

I present in this thesis a novel robotic mapping system with a hybrid topological and
geometrical map representation. The proposed system builds a topological graph rep-
resenting the environment by performing environment exploration based on a boundary
tracing technique. The representation is hybrid topological and geometrical as local met-
ric maps are anchored to each node of the topological map. The merging of topological
and geometrical approaches is motivated by the potential to implement the favorable ele-
ments and dampen the perceived negative elements presented by each paradigm. Hybrid
approaches are not a new concept in robotic mapping; it has indeed received a great deal
of attention as a means of avoiding the shortcomings of isolated metrical and topological
systems. Most prominent in the field of hybrid systems are perhaps the work of Thrun
[46],though many approaches exists [33, 37, 47, 54]. These systems are discussed in detail
in section 2.3 of this document. What is novel in the system proposed here is dominantly
the use of a self organizing map (SOM) as the representation of local metric maps and
the pose estimation technique related to the local maps.

1.2.1 A Dynamical Topological Map

The map representation proposed here joins a topological map with several local metric
maps. At the heart of the representation lies the topological map. The topological map
is in structure a topological graph, consisting of nodes that represent locations in the
environment. I refer to the topological map as the global map and the metric maps as
local maps in this thesis. This is because the metric maps are anchored to each node of
the topological map, and represents the immediate space around each topological node.
The topological map however defines the overall mapped environment.

The global topological map is dynamically constructed. This means that the nodes
of the map are created and added to the map only when significant changes in the
topography of the environment are encountered during map generation. Detection of
topographical changes is closely linked to the way environment exploration is performed.
Exploration of the unknown environment is done by a process of boundary tracing, where
the robot moves along the boundaries of the environment. Boundary tracking is imple-
mented as a simple reactive wall following behavior, where the raw readings from the
robots infrared proximity sensors are mapped directly to a left and right robot wheel
speed.

The choice of a reactive wall following behavior for environment exploration is moti-
vated by several factors. Firstly it allows for the integration of non-metric information
in map navigation. This non-metric information is in the form of wall following behavior
data, which is recorded in the environment exploration phase, when the map is gener-
ated. Wall following behaviors constitutes the main link between topologically adjacent
nodes in the global map, and are contained in directional arcs connecting the nodes of
the topological map. An arc linking two topological nodes will contain some metric in-
formation though, in the form of a distance value. The distance between two nodes is
estimated from performing path integration, and is necessary to accurately define the
relation between global nodes.

A second motivation for using a reactive boundary tracing exploration technique is

9

founded in the simplicity of operation in reactive behaviors. As boundary tracing is
implemented as a direct mapping from perception to action, it is computationally fast.

1.2.2 Local Self-Organizing Maps

Anchored to each topological node of the global map is a local self-organizing map.
Self-organizing maps are a type of neural network that are adjusted trough a process
of unsupervised learning [55]. A Self-organizing map, or SOM, consists of two layers,
the input layer and a layer containing typically a one or two-dimensional collection of
topological connected nodes or neurons. A SOM is used to produce a discrete and low
dimensional representation of the input space of a set of training samples. A SOM is
able to keep the topological structure of the input space by the use of a neighborhood
function trough the training process. This ability to retain the topological properties of
the input space is the central property of a SOM, differentiating it from other types of
neural networks where topological relations are not kept [55]. A more detailed description
of SOMs are provided in chapter 3 of this thesis.

The SOM has attributes that makes it promising as the foundation for a robotic
map. One such attribute is indeed the learning capabilities central to a SOM, the ability
to topologically order and map the distribution of the input space of a set of samples
in an unsupervised way. The unknown environment of an autonomous robot may be
interpreted as a two-dimensional input space with a high probability for open space and
a low probability for occupied space. In the proposed system the SOM is trained to
statistically map the open space surrounding each global node of the global map, where
the open regions are sampled trough robotic exploration in a systematic manner.

One of the main research questions this work tries to answer is how well the use of a
SOM in this capacity handles noise in the sensory data. As already mentioned sensory
noise is a complicating factor in robotic map building and must be handled. In the system
proposed here path integration is used to calculate and continuously update the self posi-
tion of the robot when mapping local environments. In a pure metric system using path
integration but no position correction based on external cues to update the self position,
an accumulated error would be expected due to unavoidable and statistically dependent
odometric error. This accumulated error would distort the produced map increasingly
relative to the distance traveled. By filtering the input data, sampled coordinates, trough
a SOM, this accumulated error would still impact the resulting map, though the effect
might be dampened to a certain degree in comparison to a direct metric interpretation of
the sampled coordinates. In the system described here a method of self position correc-
tion over external cues is used to counter statistically dependent error. The hypothesis
is therefore that a SOM will be tolerant to noise in the sampled data and thus produce
a more accurate map of the environment.

Another attractive attribute of a SOM in this context is its topological structure.
This topological structure, except for its use in the training process itself, can be used
path planning. A standard A* path-finding algorithm, based on either Euclidian distance
heuristics, or topological distance heuristics, can be applied to the map, calculating the
shortest open path from the current node of the robot to a specified goal node [56].

10

1.2.3 Self-Organizing Maps For Landmark Storage and Self-
Localization

In addition to mapping the coordinate space surrounding the global nodes of the topo-
logical map, local perceptual space is mapped as well. Mapping of perceptual space is
performed through an unsupervised clustering of visual data in a self-organizing map.
Visual data is sampled systematically from the local space of global nodes by the use
of a camera attached to the robot. The excitation pattern of the self organizing map
when presented with visual samples at a later stage can then be seen as indicating the
position of the robot in perceptual space. This technique supporting self-localization by
a static mapping of perceptual data in a SOM is implemented in a range of systems
[26, 27, 28, 57]. In one type of systems implementing this technique [26, 27, 28] the map-
ping of perceptual space and the resulting excitation patterns function as an imitation of
place cells found in the hippocampus of rats [49] . In the system proposed here however,
the clustering of perceptual space is linked directly to coordinates in Euclidian space.

The clustering of local perceptual data in self organizing maps is motivated by the error
that can be expected as a consequence of odometric drift. Although path integration is
used only in part to generate robot motion between global nodes, as it is used to estimate
the distance between nodes in the topological map, it cannot be discarded as a problem
entirely.

1.2.4 Periodic Self-Position Correction Over Perceptual Cues

Even if limited use of metric information in the global representation is expected to
dampen the effect of accumulated position error due to path integration, path integration
is the sole method for navigation in the local maps of the representation and methods
to counter drift error accumulated as a result of this is needed. Over a large enough
time and distance such an accumulated error would grow large enough for the map to be
potentially non-functional.

To account for odometric drift most robotic mapping systems using path integration
for robotic navigation, either partly or fully, implement mechanisms to periodically correct
this error by analyzing external perceptual data.

The approach presented in this work estimates the robots position within the map
by correction over perceptual data when robot arrives at a node in the topological map,
and thus the local metrical map connected to the node. As described above, the local
metric map is affiliated with a number of landmarks stored in a self organizing map. By
sampling perceptual space through a set of camera images and retrieving the landmark
most similar to the sample from the self organizing map, the robot also receives the
coordinate affiliated with the landmark and can use this to update its position within the
map.

11

1.3 Central Research Issues

The central hypothesis underlying the work of this thesis is that a hybrid representation,
merging the topological and the metrical paradigm into one representation, will provide
a robust representation that draws on the strengths of both approaches while dampening
the less favorable aspects affiliated with the paradigms in isolation.

The motivations for each part of the proposed system can be described clearly by
reviewing them in light of a collection of paradigm related issues.

Environment dimensionality and map resolution The approach presented in this
thesis provides a global topological representation joined with a collection of local metri-
cal maps anchored to the nodes of the global topological map. The global map provides
a compact representation of the overall environment, while the local maps provide higher
resolution and geometrical accuracy in regions of the map of significant changes in to-
pography.

Pose estimation and odometric drift To dampen odometric drift due to path in-
tegration, a non-metric wall following behavior is used to define the relation between
nodes in the global map together with a metric distance value. By avoiding the use of
a metric heading value describing the angle between nodes in the global map, the effect
and indeed the presence of odometric drift should be largely avoided in global map nav-
igation. Additionally, correction over perceptual cues is performed periodically in map
navigation. The suitability and robustness of a self-organizing map for landmark storage
are investigated.

In the local geometrical maps of the representation, navigation is performed by path
integration. A central research issue considered in this thesis is the impact of odometric
drift from navigation in the size limited space of local maps and the noise tolerance of a
self organizing map as the local map representation.

1.4 Summary

Chapter 2 provides an overview into the field of robotic mapping and seeks to describe
the prominent paradigms and how they handle the issues relevant to this thesis. Section
2.1 discusses the area in general and section 2.2 describes a select set of relevant systems.

Chapter 3 describes the implementation of the systems in depth. The different ele-
ments of the systems are described sequentially.

Section 3.2 describes the control system used in the robot in brief.
Section 3.3 describes the fundamental principles of the path-integration mechanism

implemented in the system. Path-integration is the process of position estimation over
self-motion. This process is a simple but important part of the mapping system and it is
used in many part of the system.

Section 3.4 describes the parts of the system used in map generation. Firstly, the
boundary tracing behavior is described in section 3.4.1. The boundary tracing behavior
is used to explore unknown environments and in global topological navigation. Section

12

3.4.2 describes how the global topological map is created, and section 3.4.3 how local
maps are created and anchored to nodes of the global map.

Section 3.5 describes how the robot performs navigation in the global topological map,
and in the local maps anchored to the nodes of the global map. Section 3.53 describes
how the position of the robot is periodically corrected over external cues.

Chapter 4 presents a range of experiments where the system is tested and provides
analysis and discussion over the results. Section 4.1 describes the simulated environments
in which the experiments are performed and how noise is simulated to provide a realistic
framework for system testing.

Section 4.2 presents experiments over the map building part of the system. In section
4.2.1 the experiments testing the global mapping part in isolation is tested. Section 4.2.2
presents experiments over the complete mapping system, where local maps are created
ans anchored to the nodes of the global map.

Section 4.3 presents experiments over the map navigation part of the system. In
section 4.3.1 experiments where the global map is navigated in isolation is presented,
while section 4.3.2 presents experiments where the complete map is navigated and section
4.3.3 presents experiments where position correction is performed periodically during
navigation.

Chapter 5 sums up the project and discusses the implications of the experimental
results as well as stating some thoughts on possible future revisions of the system.

13

Chapter 2

Background Information

Robotic map building has received enormous amounts of attention in the robotics com-
munity over the last decades. The problem of autonomously generating a reasonably
accurate and usable map of a previously unknown, dynamic and otherwise complex part
of the real world is widely regarded as the hardest problem in perceptual robotics. A set
of core challenges has been identified through a variety of observations on the performance
of robotic mapping systems, demanding new approaches to the problem.

A trend reaching back to the late eighties [1, 2, 3] has introduced the use of probabilis-
tic methods in robotic mapping. This trend has strengthened over time, and practically
all state of the art systems involve the use of probabilities in some way or another. The
use of probabilistic methods in robotic mapping is motivated by the inherent uncertain-
ties in autonome robotics, stemming from i.e. noise in sensor readings and accumulation
odometric error.

Another often used classifier of robotic mapping systems are the structure of the
representations, traditionally topologic or metric. Recently systems mixing both metric
and topological representations have been suggested, this kind of system is called a hybrid
map.

Robotic mapping research has also sought inspiration in the domain of biology. Sys-
tems built to simulate the so called cognitive maps [4] found in animals. Cognitive maps
are map like spatial representations found in the hippocampus of i.e. rodents and are
believed to contain information about relevant locations in an environment visited by
the animal and the relation between places allowing for complex navigation. Approaches
seeking to imitate cognitive maps for use in robotic mapping are closely related to topolog-
ical approaches, and many topological systems inhibit elements of certain characteristics
found in cognitive systems [27, 29, 28, 5, 30] without trying to simulate cognitive maps
accurately.

Below I describe the history of robotic mapping in brief. In section 2.2 I discuss the
different paradigms of systems in more detail and in section 2.3 I describe a number of
key systems relevant to the work in this thesis.

2.1 The History of Robotic Mapping

Historically robotic maps have been split into two classes; metric and topological maps.
Metric maps usually tries to represent the geometrical features of an environment in detail,

14

while topological maps represent the environment trough a topographically connected
graph of nodes, were each node store information on how to reach the nodes it is connected
to. Metric information though is usually necessary at some level also in topological maps
to define the relations between nodes in the topological graph. Hybrid systems have also
been proposed, mixing metric information and topological information to a greater extent
than that usually found in purely topological approaches [34, 36, 37, 38, 39, 40].

An early example of a purely geometrical system is the Occupancy Grid system pro-
posed by Elfes in 1989 [1, 2]. The Occupancy Grid approach represents the environment
by mapping it as an evenly spaced grid of empty and occupied cells. A key element in
Elfes approach was the use of probability profiles in the determination of occupied and
empty grid cells. The classical approach used sonar readings, integrated from multiple
points of view using a Bayes filter, to generate a two-dimensional map. The approach
assumed that the pose of the robot was known and correct at all times, and did not con-
sider the problem of robot localization. Occupancy Grids have been used and modified
in a range of systems since it was first introduced [41, 42]. Another classical metric ap-
proach was that suggested by Chatila and Laumond in 1985 [4]. Their approach modeled
objects in the environment in the form of polyhedral shapes. The model suggested by
Chatila and Laumond incorporated robot position correction trough a process of ”fading”
where identified accumulated odometric error were propagated backwards to earlier robot
positions in a non-uniform way. Other significant and early metric approaches include
that of Crowley and Durrant-Whyte [43, 44]. In Crowleys approach the environment is
represented as a collection of line segments and in Durrant-Whytes by specific geometric
features.

An early example of a topological mapping system is that proposed by Mataric in 1990
[5]. Mataricss approach represents the environment as a two-dimensional acyclic graph of
landmarks in the form of permanent structures such as walls and corridors. The nodes in
the graph were added dynamically and represented a distributed map of the environment,
as they functioned as concurrently acting behaviors, not unlike the nature of biological
neurons ex. Path finding were implemented as a activation spreading process, where the
goal node calls its neighbors and the call is propagated trough the graph, recording the
direction of the call at each receiver node, to register the direction to the goal node from
any node in the graph. Other early topological approaches include that of Kuipers [6]
and McDermot [9].

Robotic mapping systems, topological as well as geometrical, in the last two decades
have been largely united in the use of probabilistic methods. The use of probabilis-
tic methods may be in having a probabilistic model of the environment and the robot
and also for integrating sensory information into maps. One class of systems tightly
connected with probabilistic methods is the systems relying on the use of a Kalman
filter to simultaneous estimate the map and the position of the robot within the map
[16, 17, 18, 19, 20, 21, 22]. These systems are often referred to as SLAM systems, an
acronym for simultaneous localization and mapping. SLAM is the definition of a prob-
lem within robotic mapping, but has nonetheless become synonym with Kalman filter
approaches in recent years. SLAM approaches are usually metric in representation rep-
resenting the environment through a collection of landmark locations.

Other methods closely linked with probabilistic methods are those based on the Ex-
pectation maximization algorithm introduced by Dempster in 1977 [45].

15

2.2 Representation Types

2.2.1 Topological and Geometrical Maps

The difference between geometrical and topological maps is often hard to identify in a
clear manner. Generally, geometrical maps represent the environment in an absolute
coordinate system using evenly distributed cells which in turn forms a two dimensional
grid. Topological systems however represent the environment as a graph in which the
nodes represents a location in the environment. The nodes in a topological graph are
linked with arcs where there exists a direct path between them. Often arcs contain met-
ric information however, such as the direction and distance between the nodes which it
connects. Systems of this kind [6, 5] can be said to be partially metric since they depend
on metric information to some degree. Topological and metric approaches exhibit char-
acteristics that can be related to vital problems in robotic mapping. One such problem is
the perceptual aliasing issue, concerning the ability to separate perceptually similar but
spatially distinct places. Geometrical approaches, such as the Occupancy Grid method
[1, 2], continuously updates the position of the robot by a process of path-integration.
The robot knows its location at all times within a global and absolute coordinate system
and it can thus separate spatially distinct location on this information alone. This of
course, assumes that the self position of the robot is updated accurately. Under this
assumption it can also recognize spatially related places even with differing sensor read-
ings. This is the Correspondence problem, usually linked with the closing of a loop in the
map. Topological methods however are generally not anchored to absolute coordinates
in the same way metric approaches are. The position of the robot is computed relative to
the map based on perceptual cues in the environment. This fact means that topological
approaches may have problems in separating places that looks alike but are in fact not.
Topological systems usually implements additional procedures to reduce the perceptual
aliasing problem. One approach [12] combines local topology information and local land-
marks to disambiguate perceptually similar places, other approaches rely on perceptual
information from neighboring locations as well as local metric information [7, 8].

The assumption that the position of the robot position in metric systems is always
accurate is naturally difficult to satisfy. Metric models must therefore constantly try to
correct error in odometric readings due to phenomena such as drift and slippage, as is the
case in most SLAM implementations where Kalman filters are employed to statistically
estimate the robots position [22, 21, 16, 17, 18]. Topologically approaches are usually not
as sensitive to this kind of error, because they do not need to operate on the exact pose
of the robot at all times. This attribute, exhibited by most topological approaches, allow
them to avoid the accumulated error suffered by metrical systems.

Another attribute of the typical metric approach is that of resolution. As geometric
maps cover the entire environment to be mapped, so to say, the grid cells of the map need
to be small enough to provide a sufficiently accurate model of the world. The grid-based
structure of metric maps means that they keep a more geometrically correct represen-
tation of the world than topological maps, or in other words a higher resolution of the
environment. The high resolution of a geometrical map may be needed in certain cases,
but it also makes the memory and efficiency of the map larger. For large maps this may be
catastrophic. Topological maps in relation contain a far more compact representation. In

16

topological approaches the resolution of the map tends to correspond to the resolution of
the environment. This is because nodes in the graph are usually dynamically added based
on some requirement, which may i.e. be a maximum distance between nodes or some
kind of novelty detection method, adding nodes only when a sufficiently different region
of the environment is discovered. The compactness of topological approaches reduces the
memory requirement for the representation itself, but it also makes path planning faster
and shortens the divide between symbolic inference methods and the map representation.

In path planning however, metric approaches usually allows for the computation of
shorter paths between places in the environment than topological ones, because of their
high resolution. Topological path planning approaches must operate on the nodes in the
graph only, and the arcs connecting them. This is usually remedied to some degree by
closing loops in the graph, though such methods assume a well functioning solution to
the correspondence problem.

As both approaches provide favorable attributes, hybrid approaches have been pro-
posed to take advantage of attributes from both paradigms.

2.2.2 Hybrid Topological and Geometrical Approaches

A relative recent development in robotic mapping research has introduced approaches
combing topological and metric mapping frameworks in order to retain the positive at-
tributes of both paradigms and compensate for the negative ones.

Hybrid approaches combine the paradigms in varying ways. In a system proposed by
Thrun [46] adopts the Occupancy Grid approach in building a metric maps of the envi-
ronments and a topological map is posterior computed from the metric map. Approaches
of this kind inherit the positive attributes of topological maps, but they also inherit nega-
tive elements from the metric approach. Because the topological map is merely extracted
from the metric representation it will be affected by accumulated odometric error present
in the metric map, thus compromising the consistency of the topological map as well as
the consistency of the geometrical map.

In [47] the environment is represented as a collection of local metric maps, all of which
are anchored to nodes in a global topological map. The node in the topological graph
of this approach, records a set of landmarks visible from the boundary of each obstacle
discovered by the robot, and uses this visual only information in later navigation between
nodes in the graph. This approach avoids robot pose estimation entirely.

This is to some degree similar to the approach in [34] which also connects a set of
local metric maps in a global topological map. In the latter approach the local maps are
represented as a set of infinite lines and topological nodes are connected to the local maps
by a necessary distinct transition point. This transition point is indicated by a stored
metric feature and is used to relocate the robot correctly in the local map. The metric
maps themselves are built and navigated by the use of an Extended Kalman Filter. In the
topological navigation process a Partially Observable Markov Decision Process is used
for state estimation.

Systems like the two mentioned above manages to limit the effect of accumulated
error found in purely metric maps relying heavily on odometry to construct a global
coordinate system representation of the environment. This is because the metric maps
are merely local in nature and long distance navigating is performed over topological maps

17

not anchored to a global coordinate system. They do however enjoy higher precision in
the area of each node, as local metric maps exist at each node.

2.2.3 Biologically Inspired Approaches and The Cognitive Map

The approach to the mapping problem in autonome robotics can be formulated as a
question of how to represent a physical environment in an abstracted simplified way and
what elements to store in such a representation. It is natural and perhaps unavoidable,
too view this question in relation to how we humans, as well as animals and insects
navigate and map environments successfully.

The considerable amount of research done on biological navigational systems has
yielded results not only interesting to neuroscientists but also to computer scientist striv-
ing to build robust artificial navigation systems for mobile autonomous robots. Animals
such as rats, and indeed humans, seem to inhabit both robust and scalable systems for
the purpose of navigation in the usually complex real world. Although robotic mapping
has seen steady progress through the last decades, state of the art artificial systems can
hardly be compared to biological ones when it comes to performance in simple as well as
complex and dynamic environments.

The problem interesting both researchers of cognitive science, neuroscience and re-
searchers within the area of robotic mapping is the how and why of how spatial infor-
mation is stored in the brain of animals. There have been several experiments trying to
simulate biological mapping systems [29, 31, 32, 30, 33, 38, 39] and many artificial robotic
mapping systems have been built partly inspired by the findings in biological mapping
research [27, 29, 28]. Biological mapping systems have evolved into robust and impressive
standards, arguably outsmarting state of the art artificial systems by far. The motivation
behind studying such systems is quite clear from the computer scientist s perspective; if
the processes behind biological mapping systems were well understood it would be possi-
ble to build artificial copies and use them in autonomous robots. Although the processes
underlying the mapping capabilities in biological systems are not yet fully understood
there have been a lot of research done and interesting findings have inspired a variety of
artificial systems.

The notion of a cognitive map is that of an abstract spatial representation of the
environment generated through experiences of the environment over time. In a series of
behavioral experiments done on rodents in 1976 by OKeefe [49] a type of cell named place
cells were discovered in the rat hippocampus. These place cells were found to fire when
the rat moved into certain areas of the environment, seemingly independent of the rats
orientation. OKeefe named the area in the environment which modulated the firing of a
place cell the most the place field of the place cell. It was discovered that place cells were
not restricted to represent one environment, but could indeed represent several, though
with changes in the relationships between the firing fields in the neurons [51].

Soon after the discovery of place cells another element was found, thought to be part
of the cognitive map processes in the rat brain, namely head-direction cells [40]. These
cells were found to discharge when the rats head were pointing in a certain direction.

In 1978 OKeefe & Nadel suggested that place cells provide the core elements of a
distributed and noncentric map. They also suggested that this map provided the rat with
a dynamic and continually updated representation of the environment in allocentric space

18

and the position of the rat in this space. Recent findings within neuroscience research on
the navigational system of rats suggest the process of path integration is central to the
initialization and maintenance of so called grid cells which are found in the entorhinal
cortex of the rat [52]. There is also evidence suggesting the existence of a general metric
navigational system of which these grid cells may be a part of [52]. There have been and
still is discussion on the role of metric and topological information in biological navigation
systems. Central is the question of how much quantifiable metric information is stored
in biological cognitive maps and how much is contained in topological form. There is no
conclusive answer to this question thus far, but many different models are proposed and
explored [29, 31, 32, 33, 38, 39].

Usually the dominant influence of biological research on artificial systems concerns
simulations of place cells. In an approach suggested by Owen and Nehmzow [26, 28] a
self-organizing feature map is proposed as the map representation. In this system a robot
uses the SOFM to cluster sensory data obtained in an exploration phase. The excitation
pattern of the network when provided with a perceptual sample from the environment
locates the position of the robot in perceptual space. Route learning is realized by
associating control input from a joystick with the ”place cells”, or nodes, in the network
during a route learning phase. Another approach by Mataric, mentioned already in
section 2.2.1, focuses on simulating the distributed nature of biological mapping systems
by simulating biological neurons by implementing the nodes in her graph as concurrently
simulation behaviors [5].

2.2.4 Probabilistic Approaches

Probabilistic approaches to the problem of robotic mapping and navigation have become
the core unifying factor of most robust mapping algorithms in the last two decades. On
the reason why probabilistic approaches are beneficial Thrun in [24] states; ”A robot that
carries a notion of its own uncertainty and that acts accordingly, will do better than one
that does not”.

The probabilistic approach span a lot of process in total, but one can separate the
appliance of these into two main categories.

The first category is that of robotic perception. Robotic sensors are flawed by noise
and the inherent uncertainty of complex environments. Alternative to producing a single
uncompromising quantity from censor readings the use of probabilistic methods allow for
the computation of a probability distribution over the observed data, resulting in a more
consistent integration of sensor data and ambiguity handling.

The second category is that of robotic control. Because an autonomous robot cannot
rely on perfect sensors it cannot justify an assumption that it knows exactly how an
environment is structured and where it is in that structure. Probabilistic approaches
operate by integrating this uncertainty when making control decisions.

Bayes rule and Bayes filter Practically every probabilistic approach to the robotic
mapping problem builds on variations of a central principle in statistical inference, Bayes
rule.

19

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

In equation 2.1 P (A) defines a prior probability of A, P (A|B) states the conditional,
or posterior, probability of A given B, P (B|A) is the conditional probability of B given
A and P (B) is the prior probability of B. Bayes rule allow for the specification of a
probability P (B), stating the probability of B prior to the introduction of other data
which is multiplied with the probability of observing a variable d under a hypothesis A,
P (B|A), this again gives the probability of observing a variable A given a condition B.

Bayes rule is most notably adopted for simultaneously robot pose and map estimation
in a Bayes Filter:

zt = z1, z2, ..., zt

ut = u1, u2, ..., ut
(2.2)

where in example zt is a sensor measurement z taken at time t, and ut is a robot
motion command sampled at time t. The data is used in a recursive Bayes Filter:

p(st,m|zt, ut) = ηp(zt|st,m)

∫
p(st|ut, st − 1)p(st − 1,m|zt−1, ut−1)dst−1 (2.3)

where m denote the map and s the robots pose.
Equation 2.3 describes a Bayes filter that estimates the map and the robot pose si-

multaneously and assumes a static environment to simplify the estimation. The recursive
nature of a Bayes filter gives it the favorable ability to compute updates in constant time,
allowing for incremental integration of sensor readings and motion data for map and pose
estimation.

Many robotic mapping algorithms have been derived from the Bayes filter. Most no-
table are perhaps Kalman Filter approaches [22, 21, 16, 17, 18]. Kalman filter approaches
are often referred to as SLAM approaches, an acronym for Simultaneous Location and
Mappping. In SLAM the robot pose and the map is estimated simoultanesly. Kalman
filters are Bayes filters which make the assumption that posteriors p(st,m|zt, ut) can be
represented by Gaussian distributions. The Gaussian model in Kalman Filter approaches
is a state vector x, constituting a robot’s pose s and the map m:

xt = (st,m) (2.4)

The robots pose in Kalman filter approaches is usually modeled by three variable, the
Cartesian coordinates in the environment and the heading of the robot while the map is
usually represented as the coordinates of a set of features, i.e. landmarks.

Other approaches derived from the Bayes filter includes the EM approach, The Lu/Milos
approach and Incremental ML among others.

20

2.3 Related Approaches

2.3.1 A Hybrid Approach by Tomatis, Nourbakhsh and Sieg-
wart

The hybrid approach proposed by Tomatis, Nourbakhsh and Siewgeart in [33] is an
excellent example of a hybrid topological and geometrical approach for map building and
localization, where the metric and topological modules are completely separated in two
levels of abstraction. In the approach a global topological map connects a collection of
local metric maps. The topological map consists of a set of nodes with edges to other
nodes and metrical places in the environment. Metrical places are modeled by local
metrical maps, which consist of infinite lines that belong to the same place.

To travel between a topological node and a metric location require the presence of a
detectable metric feature to determine the transition point where the system changes from
the topological to the metric paradigm. Transition from metric navigation to topological
navigation is performed purely through metrical navigation. The metric approach in the
system utilizes an Extended Kalman Filter for localization and adopts the Stochastic Map
approach for metric map building while topological navigation uses a partially observable
markov decision process for state estimation.

Tomatis, Nourbakhsh and Siewgeart empirically validate their approach through a
range of experiments described in [33]. The notable contribution of their system is the
compact and computationally efficient representation gained from merging the topological
and the metric paradigm, while allowing for precise metrical local representations and
a robust global representation by integration of the POMDP approach in topological
navigation.

2.3.2 A Hybrid Approach by Thrun and Bucken

In [58], Thrun and Bucken propose to combine the topological and the metric paradigm
to gain the accuracy and consistency of metric maps and the efficiency of topological
maps in a hybrid representation. Central to the approach is the extraction of topological
maps from grid-based maps. The metric approach used is in the form of occupancy
grids, proposed in [58]. Thrun and Bucken use artificial neural networks trained by back
propagation to estimate the occupancy values of the occupancy grids which input is a
collection of sensor readings. Bayes rule is adopted to estimate occupancy probabilities
over time while the robot pose is estimated through a process of gradient descent over
pose probability densities acquired from wheel encoder data, map correlation data and
wall orientation data. A topological map is extracted from the occupancy grid based map
by partitioning the free-space of the grid map into a set of regions, separated by critical
lines, which correspond to narrow passages in the environment. The extraction process
is done in a series of steps, where the cells of the occupancy grid are first separated
into occupied and unoccupied space by thresholding and then transformed into a voronoi
diagram. From the voronoi diagram a set of critical point is identified. Critical points
are points from the voronoi diagram that minimize clearance locally. Finally critical
lines connecting the critical lines are constructed and the partitioning mapped into an
isomorphic graph, regions of which correspond to topological nodes and critical lines to

21

arcs.
By extracting topological maps from metric maps, the different locations of the topo-

logical map are naturally disambiguated and nearby locations naturally identified. Thrun
and Bucken show in a series of experiments described in [58] that planning is several or-
ders of magnitude more efficient in their hybrid approach than in purely metric maps,
while the decrease in performance due to loss in precision was negligible. The approach
does however suffer from odometric drift over large distances as the base for the resulting
topological map, an occupancy grid map, relies heavily on path integration for navigation.

2.3.3 Atlas

Atlas is a hybrid topological and metric approach to SLAM proposed by Bosse et al. in
[35]. In Atlas the environment is represented in a graph of coordinate frames, where each
vertex in the graph corresponds to a local frame and edges between vertexes represent the
transformation between adjacent frames. Each frame contains a map of the local fraction
of the environment. This map captures the uncertainties of the map itself, as well as
the uncertainties of the robots pose with respect to the local coordinate frames. The
uncertainty of the edges in the graph is derived from the output of a SLAM algorithm
that is the method used in local mapping. The computational complexity of each local
map is measured and this complexity measure is not allowed to exceed a defined threshold.

Atlas is intended as a generic framework in which a variety of small-scale SLAM
algorithms may be integrated. The central motivation behind Atlas was the various
problems presented by the complexity and potential robot pose errors due to the use
of path-integration driven navigation in existing SLAM approaches employing a single,
globally referenced coordinate frame for state estimation. By joining several local coor-
dinate frames in a topological graph, Atlas is able to restrict representations of errors to
local regions, without affecting the entire map.

2.3.4 Huang and Beevers

In [59], Huang and Beevers propose a topological approach to the map building problem
with respect to sensing-limited robots. Their approach utilizes a topological map with
edges defining a set of wall-following behaviors that describe the path between topological
locations, or the nodes of the topological graph. A wall-following behavior is used to
create an initial map of an open area. As corners and similar well defined features are
detected by changes in the wall-following behavior, vertices are added to the topological
graph until the robot returns to the initial point of departure and the loop may be closed.
Because the mapping process requires a return to the initial robot position to terminate,
the algorithm assumes an enclosed environment. Each vertex of the graph is given a
probability distribution, which is monotonically growing as the map expands, that model
the odometry error of the robot with respect to the estimated pose in relation to the initial
robot position. Loop closing is performed through a process of hypothesis evaluation. A
initial hypothesis of a closed loop event is created upon odometric information. The
initial hypothesis is then evaluated through a evidence-based approach that compares
characteristics of subsequent edge traversals.

Additionally Huang and Beevers introduce a concept of portals and forays. Portals

22

are special links connecting open space maps, built through wall following, to corridor like
spaces. Forays are special links connecting open space nodes by crossing open spaces to
create more direct links than that produced by wall following alone. Huang and Beevers
approach is mainly motivated by the loop closing problem in robotic mapping. To better
support correct loop closing and consistent maps, the system features a probabilistic
modeling of error and hypothesis evaluation. Furthermore, the use of portals implies
that loops can be identified and closed in local environments, lowering the scope of error
related to each loop.

2.3.5 Owen and Nehmzow

The system proposed in [26] by Owen and Nehmzow is an interesting example of a robotic
mapping system inspired by the cognitive map found in rats. The approach builds a
topological map of the environment by mapping the perceptual space of the environment.
This mapping is done by systematically sampling robot range sensors readings from a
set of locations in the environment. The range samples are fed to a self organizing map,
which in turn clusters the samples through an unsupervised clustering process. Each
node in the trained SOM can then be linked to a specific location in perceptual space,
enabling the robot to perform self-localization by sampling perceptual space and retrieve
the closest matching node from the trained SOM. To enable route following, Owen and
Nehmzow associate motor actions with nodes of the trained SOM, a process in which
the robot is controlled manually and actions retrieved from a joystick used to control the
robot.

Ownen and Nehmzow show in a range of experiments that their approach consequently
navigated successfully over repeated experimental runs in fairly complicated environ-
ments. The approach stores no metric information in its representation and the relevance
and irrelevance of perceptual features is decided autonomously through a process of un-
supervised clustering of perceptual data. This use of sub-symbolic information alone to
map an environment is favorable in that no predefinition of perceptual features is needed,
it requires however human interaction for route learning purposes in this approach.

23

Chapter 3

Implementation

3.1 The Simulated Robot

The mapping system presented here is implemented and tested on a simulated e-puck
robot in the Webots simulator. The Webots simulator is a 3 dimensional simulator that
simulates all features of the physical robot.

Figure 3.1: The E-Puck Robot

3.1.1 Sensors

The e-puck comes with a range of sensors. Below I list and outline the sensors the
implementation in this thesis makes use of.

Differential wheels and wheel encoders The e-puck robot is set up with two dif-
ferential wheels for locomotion. Because the wheels are connected to a differential mech-
anism they are able to rotate at different speeds, and this mechanism is naturally used to
turn the e-puck in different directions. The wheels are also connected to wheel encoders,
which are sensors that record the number of wheel rotations. This information can be
used to estimate the relative direction and distance traveled by the robot over time, this
process is referred to as odometry.

The wheel encoders are used to perform path integration in the system proposed here,
a process that is further discussed in later sections of this thesis.

24

Infrared proximity sensors The e-puck features a set of 8 infrared proximity sensors,
distributed along the circular frame of the robot. These sensors estimates the distance to
a physical obstacle by measuring the infrared light radiating from objects in its field of
view. To supplement the IR sensors, which are passive receiving sensors only, the e-puck
employs a ring of LED light sources that can be used in concert with the IR sensors to
intensify the radiation of nearby objects.

The proximity sensors of the e-puck is used in the processes of obstacle avoidance and
wall following, both of which are discussed in detail later in this document.

Camera The e-puck also has a color frontal camera, with a maximum resolution of
640*480 pixels. The camera is used to retain visual landmark information in the approach
presented here

Other sensors Besides the sensors described above the e-puck robot is set up with a
3d accelerometer, which can be used to estimate changes in three dimensions. It also
features three microphones for sound recording.

3.2 The Control System

Robot control systems have been a hotly discussed subject in the field of autonomous
robotics for the last three decades. Although it is not the focus this thesis it constitutes
an important part of the complete system, and I will describe its design and motivation
in brief.

The problem of robot control concerns the issue of how to connect sensory percepts
to the capabilities of the robot and on to actuator commands. Traditionally this problem
is viewed as that of decomposing a set of tasks into either a vertically or horizontally
layered set of modules. Each module contains some form of competence, which it uses
to generate or propagate actions from perceptual input or input propagated from other
modules in the system. This type of systems can be separated into three main categories;
reactive, hybrid and hierarchical systems.

The control structure chosen for the system proposed in this thesis is a horizontally
layered hybrid system. To clearly describe the motivations for this choice I discuss the
prominent alternatives in brief.

3.2.1 Control System Paradigms

Hierarchical systems were the dominant paradigm in early robotic mapping. In hierar-
chical systems percepts travels through the entire set of modules before generating any
action. Figure 3.2(a) illustrates this process. The hierarchical approach is characterized
by its horizontally organized architecture, where the path between sensory input to the
effectors are decided by the number of modules in total, increasing complexity and time
consumption relative to the capabilities of the robot.

Arguably the main drawback of the hierarchical control architecture is the need for a
centralized modeling and planning mechanism. After each perception received, modeling
based on the received percepts is done, after this planning is performed based on the

25

(a) an hierarchical architecture (b) Brooks’ Subsumption architecture

Figure 3.2: Control system architectures

updated model. The hierarchical architecture was designed with a strong focus on robot
planning in mind, and must be judged with that in mind. Hierarchical architectures was
largely abandoned for use in autonomous robots with the introduction of reactive and
hybrid architectures in the 1980s.

One typical and often used example of the reactive paradigm is the subsumption
architecture of Brooks [52]. Brooks approach were founded on a set of theses stating that
intelligent behavior is possible without the explicit representations of symbolic AI and
without the explicit abstract reasoning of symbolic AI and finally that intelligence is an
emergent property of complex systems.

The subsumption architecture, illustrated in figure 3.2(b), introduces a vertically or-
ganized architecture. The modules of the system are implemented as independent be-
haviors, each of which is directly connected to the sensory input and each of which is
able to produce action output by mapping perceptual input directly into actions. Each
behavior was assumed to contain no complex symbolic information and be responsible for
some particular task. Additionally the layers in the subsumption architecture presented
by Brooks were in the form of finite-state machines. Another characteristic of Brookss
subsumption architecture is that all behaviors can fire simultaneously. Brooks proposed a
method of controlling which action to choose from the actions proposed by each behavior
that relied on the behaviors being set in a subsumption hierarchy. In this system lower
level behaviors can inhibit behaviors on higher levels in the hierarchy, thus prioritizing
the lower level behaviors over the higher ones. Higher level layers are assumed to repre-
sent more abstract behaviors while lower level layers are assumed to represent the more
important behaviors for operational robustness, such as obstacle avoidance behaviors.
The higher level layers goals subsume those of underlying layers. The subsumption and
inhibition mechanisms of this system allows the lower level layer to operate in a reflex
like manner, while the higher lying layers work to achieve some overall goal.

The largest advantage of the subsumption architecture in its original form perhaps,
is the modularity of the approach, allowing for iterative development and testing of real-
world systems. It is also computationally tractable, the action selection function in Brooks
proposed system has a worst case of O(n2) where n is max(behaviors, percepts). The
subsumption architecture and other purely reactive control architectures however suffers

26

from some fundamental problems yet unsolved. Reactive architectures assume that the
local environment alone provide enough information to generate a sensible action, as
they contain no explicit model of the environment. This assumption is a large one and
arguably not possible to satisfy for large and potentially complex tasks. Another limiting
factor connected to the way decisions are made based on local information only, is the
inability to include non-local information in the decision process. Another issue is that of
emergent behavior in reactive systems. The overall behavior of a purely reactive system
can be said to emerge from the interaction of the modular and simple behaviors of the
system. Such emergence of behavior could certainly be favorable in many situations, but
it is hard for a designer to implement a system meant to perform specific tasks, by relying
on the emergence of certain behaviors.

(a) Horizontally layered system (b) Vertically layered system

Figure 3.3: Hybrid control systems

Hybrid control architectures seek to unite reactive approaches with proactive abilities.
They do this by handling reactive behaviors and proactive behaviors in separate subsys-
tems of the architecture. Hybrid systems usually separate these subsystems into layers
which are able to interact in some way. There are two central hierarchies in which to
place such layers, a vertically layered architecture and a horizontally layered architecture.

Both horizontally layered and vertically layered systems are advantageous over purely
reactive ones in that they are able to handle reactive behaviors as well as proactive
behaviors such as performing planning over a model of the environment. This ability
means that reactive behaviors such as obstacle avoidance can be executed rapidly if the
environment changes suddenly for example, while explicit abstracted behaviors such as
following a path retrieved from a map representing the non-local environment can be
executed when there is no immediate obstacles in front of the robot.

3.2.2 The Horizontally Layered Control System

I use a horizontally layered hybrid control system including a mediator function in my
approach. As can be seen from figure 3.4, the system contains 5 vertical layers, each
connected indirectly to perceptual input through a mediator function and each able to
generate action output. Additionally the structure contains a sixth layer, which is not
connected to the mediator function, the path-integrator.

27

Figure 3.4: The horizontally layered control system

As discussed in the above sections, the different control system paradigms have certain
advantages as well as disadvantages over each other. My choice of a horizontally layered
hybrid paradigm was motivated by the following key points

1. both reactive and proactive behaviors

2. conceptually simple

3. Iterative development and testing of layers

4. Limited interaction between layers

While the hierarchical paradigm only supports proactive behaviors and the purely
reactive approach only supports reactive behaviors, the hybrid paradigm supports both
these behaviors. This is the main reason I chose the hybrid system instead of a purely
reactive or a hierarchical approach. Reactive behaviors are arguably favorable in that they
map perceptual input directly to action, without the need for an intermediate reasoning
process. This exclusion of an intermediate reasoning stage allows for fast execution of
motor commands, which is necessary in certain situations such as obstacle avoidance. I
implement two reactive behaviors in my system, obstacle avoidance and wall following,
both of which are described in detail in the following parts of this section.

Proactive behaviors are also favorable. Such behaviors can operate on non-local data
as well as local data. A system using reactive behaviors exclusively relies on emergent
overall behavior as discussed above. A system with abstract behaviors with access to
non-local information does not rely on the emergence of overall behavior, as the overall
behavior can be explicitly programmed into the representation itself.

Horizontally layered hybrid systems are conceptually simpler than vertically layered
ones. This is because horizontal approaches contain independent layers, all of which
generate their own action output based on some input. In contrast vertical layers are
interconnected as either input has to be propagated through the layers of the architecture
in one pass systems, and additionally action output is propagated back through the layers
in two pass systems. This propagation of input and output through layers suggest that the
designer of the layers must consider how this propagation is to be implemented and how
to translate input and output signals between the different layers. In a horizontal system
however, the layers are not connected in this way, and the designer needs not consider
translation between layers, but can focus on the actual functionality of each separate layer.

28

The independence of the horizontal layers is also helpful in regard to the development
process itself. Independent layers can be iteratively developed, and iteratively tested. In
the case of a horizontal system the interaction between layers must be considered at the
development of each layer in a larger degree than in vertical approaches, because each
layer must contain a function to handle propagation of input and additionally output in
two pass systems.

The horizontal approach needs a mediator function to decide which layer is to be in
control at any time. The vertical approach does not require this, as inherently only one
layer can be in control at any time in vertical approaches. As previously mentioned the
need for a mediator function leads to a larger worst case number of layer interactions
the designer of the systems needs to identify. This, of course, is a negative aspect of
horizontally layered systems. I prioritized the conceptual simplicity and iterative nature
of a horizontal system over the potential complexity introduced by a mediator function.

3.3 Path Integration

Path integration in robotics is the process in which a number of movement cues are
continuously integrated to estimate the position of a robot. This process is also called
dead reckoning. Path integration is continuously performed during both the mapping
phase and the mapping phase in the system described in this thesis. Because the process
is both fundamental to the operation of the system and at the same time exist as a layer
of its own in the control system, I describe its implementation in detail in this section.

To perform path integration it is necessary to consider the geometry of the robot and
the actuator system it uses. The e-puck robot is a differential drive robot, meaning it
produces motion from turning two independent wheels. These wheels can rotate either
backwards or forwards and are connected to a pair of wheel encoders that measure the
angle of each wheel periodically. The wheel encoders use this measurement of wheel angle
to count the number of steps a wheel has turned. Each step of rotation is set to a specific
fraction of a turn of a wheel. If a wheel rotates backward this counter counts down, if it
rotates forward it counts up.

Figure 3.5: Geometrical properties of the e-puck robot

The distance traveled by a wheel in one step of rotation depends on the number of
steps in one full revolution of the wheel and the diameter of the wheel.

29

distancePerStep =
π ∗ diameterWheel

stepsPerRevolution
(3.1)

The calculation of the distance traveled when the robot moves in a straight line is
then straightforward.

∆distance =
leftSteps+ rightSteps

2.0
∗ distancePerStep (3.2)

To estimate the heading of the robot after a rotation both the track width and the
diameter of the wheels must be considered. First the number of steps per in place full
rotation of the robot is calculated. This rotation equals 2 ∗ π radians, which translates
to 360 deg.

stepsPerRotation =
trackWidth

wheelDiameter
∗ StepsPerRevolution (3.3)

We can rearrange equation above to estimate a new heading based on the wheel
encoder readings.

radiansPerStep =
π ∗ wheelDiameter

trackWidth

stepsPerRevolution
(3.4)

heading = (rightSteps− leftSteps) ∗ radiansPerStep (3.5)

Equation 3.5 gives us the new heading in radians. However, both the distance and
heading equations above assumes that the robot only moves in straight lines and rotates in
place. To continuously estimate the position and heading of the robot when its following
an arbitrary path it is necessary to handle the robots total motion in many small and
discrete movements, which are continuously accumulated to estimate the robots actual
position. This technique assumes that each discrete movement does not contain large
variations in heading. This means that the wheel encoders must be sampled in sufficiently
small intervals. The required minimum sampling rate is decided by the speed of the robot,
if it moves and turns quickly a faster sampling rate is needed than at lower speeds. To
estimate the position over small discrete movements, the results from equation 3.2 and
3.5 is used in equation 3.7.

∆X = ∆distance ∗ cosheading

∆Y = ∆distance ∗ sinheading
(3.6)

∆X and ∆Y are then added to the previous position estimate.

∆Xt+ = ∆Xt+1

∆Yt+ = ∆Yt+1

(3.7)

The complete path integration algorithm is described in pseudo code in appendix 2.

30

3.4 The Mapping Process

The map building process in the system presented in this thesis consists of two separate
mapping operations, global and local mapping. The process of global mapping is respon-
sible for creating a quantitative global map of the environment, where areas of sufficient
change in topology in the environment are represented as nodes in a topological map.

Each node in the global topological map is linked to a qualitative local map, repre-
senting the immediate local space surrounding a node in the global map.

The overall mapping process can be decomposed into a series of steps:

1. Explore the environment through boundary-tracing until a sufficient change in en-
vironment topography is detected.

2. Create a new global node ni and connect it to the previous node ni−1 if such a node
exists.

3. Map the metric and perceptual local space surrounding global node ni and anchor
the resulting local map to global node ni.

4. Repeat the process from step 1 until a loop is closed or a maximum number of
global nodes is created.

(a) An example mapping process (b) The resulting topological graph

Figure 3.6: An exemplified mapping process

Figure 3.6(a) shows an example of the mapping algorithm in an enclosed rectangular
room. The robot detects the change in topography at the corners of the room and creates
global nodes at these locations. Local metric maps are also created and anchored to the
respective global nodes. Figure 3.6(b) shows the resulting closed graph produced by the
mapping algorithm. The nodes of the graph are topologically connected via arcs, these
arcs contains information on how to navigate between the nodes of the graph.

The remainder of this section describes the central elements of the mapping process
in detail.

31

3.4.1 Environment Exploration by Boundary Tracing

The global mapping process employs a boundary tracing routine to build a topologi-
cal representation of the environment. Boundary tracing is realized through the wall-
following behavior.

The wall-following behavior is implemented as a purely reactive behavior. It is purely
reactive because the raw distance information acquired from the IR sensors of the robot
is mapped directly to a left and right wheel speed. The mapping is performed through
a simple multiplication of raw distance information with an array of distance biased
weights.

(a) IR sensors on e-puck (b) Raw sensor readings

Figure 3.7: E-Puck proximity sensors

Figure 3.7(a) displays the ring of IR proximity sensors equipped on the robot. The
patterned rings in the figure shows a series of example weights related to each sensor.
These weights are used to modulate the proximity signal from each sensor in a way that
produces a wall following behavior. The outermost ring of weights governs the speed of
the right wheel, while the innermost ring governs the speed of the left wheel.

Figure 3.7(b) shows the sensory data from infrared sensor 0 as the robot gradually
backs away from a wall. The x-axis show the number of steps the wheels has turned as
the robot goes backward, 628 steps equals 12.5 centimeters. It is seen in the figure that
at approximately 160 steps, translating to 3.2 centimeters, from the wall the distance is
too far for the sensors to discern.

The wall-following behavior computes a left and right wheel speed based on the prox-
imity data from the IR sensors and matrix of weights, each of which is connected to a
specific IR sensor. The matrix I contains the eight values of the IR sensors:

I = [IR0, IR1, IR2, IR3, IR4, IR5, IR6, IR7] (3.8)

There are two matrixes of weights, one for computing the left wheel speed of the robot
L, and one for computing the right wheel speed of the robot R:

32

L = [−10,−10,−5, 0, 0, 5, 10, 10]

R = [10, 10, 5, 0, 0,−5,−10,−10]
(3.9)

To allow for bidirectional navigation between nodes, a process described in section x,
two types of wall following behavior is implemented; a left-side behavior and a right side
behavior. The left-side behavior aligns the left side of the robot with a wall, while the
right-side behavior aligns the right side of the robot with a wall.

The difference in alignment is produced by adjusting the weights connected to IR
sensor 0 and IR sensor 7. In the case of left-side behavior this can be written:

L[0] = 10

L[7] = 10

R[0] = −10

R[7] = −10

(3.10)

the inverse of the values used above is used in the right-side behavior:

L[0] = −10

L[7] = −10

R[0] = 10

R[7] = 10

(3.11)

The speed of the right and the left robot wheel respectively denoted by sr and sl, is
calculated by:

sl = b+
∑

0≤i≤7

L[i] ∗ I[i]

16

sr = b+
∑

0≤i≤7

R[i] ∗ I[i]

16

(3.12)

where b is a bias speed value.
When any of the robot’s sensors are within the minimum IR proximity range, meaning

it is close enough to a wall for its IR sensors to detect it, the calculations of robot wheel
speed in equation 3.12 is valid. If, however, none of the robot’s sensors are within the
minimum IR proximity range the robot will either circle towards the left or the right,
depending on the type of wall-following behavior engaged, until any of its sensors detect
a wall. If right-side behavior is used the speeds are calculated by:

sl = b

sr =
b

2

(3.13)

33

(a) Within minimum proximity
range

(b) Outside of minimum prox-
imity range

Figure 3.8: One robot performing left-side behavior, Rl, and one the right-side behavior,
Rr

and if left-side behavior is used:

sl =
b

2
sr = b

(3.14)

where b is a bias speed in both equations.
Figure 3.4.1 exemplifies both types of wall-following behavior within and outside of

the minimum IR proximity range. Please see appendix 5 for a complete wall-following
algorithm.

3.4.2 A Dynamic Topological Map

A dynamical topological map is chosen as the core representation of mapped space in
the system proposed in this thesis. Dynamical in this context means that the nodes
of the topological map are created during the mapping process, when a certain set of
requirements are met. The topological map contains both global information, in the form
of topological nodes, and local information, in the form of geometrical maps assigned to
each global node.

Figure 3.9 illustrates the conceptual architecture of the global map representation.
The representation consists of a linear list containing what I refer to as global nodes.
Each global node represents a location in the environment. A global node may contain a
set of arcs connecting it to other global nodes. These arcs keep wall behavior information
and a distance value, defining the relation between the connected nodes.

Nodes

Global nodes are the core units of global topological map. A global node defines the
topography of a mapped environment through its links to other global nodes. A global

34

Figure 3.9: A global topological map. Global nodes are connected by arcs and contain a
local map each

node contains three attributes, a node id, separating it from other nodes, a collection of
directional arcs, connecting it to other nodes and a local metric map.

Figure 3.10: Global node

Generation of nodes Generation of new nodes in the global map is executed when-
ever the global mapping algorithm detects a significant change in local topography. The
global mapping algorithm can detect topographic changes by auditing path-integration
data generated by the wall following behavior, which is responsible for environment ex-
ploration, and recording the change in distance and rotation from the previously created
node to the current position of the robot.

A change in topography, significant enough for a new node to be created, is decided by
the Euclidian distance from the previous created node to the current position of the robot,
as well as the variation in robot direction. Specifically, for a new node to be created, the
distance must be greater than a specified distance threshold, and the variance in rotation
must be greater than a rotational threshold. The choice of threshold values decides how
detailed an environment is topologically mapped. The smaller the choice of threshold
values, the greater the amount of global nodes.

Figure 3.11 illustrates the creation of a new topological node. At the initiation of
the mapping process an initial node is created at the starting position of the robot. No
odometry information is recorded prior to this event, and the direction of the robot is
therefore set to 0 radians and the initial coordinate position to 0.0.

35

Figure 3.11: A new node, marked in blue, is added to the global map. The node is added
because the Euclidian distance between the initial node and the new node position is
larger than a defined distance threshold, and the angular difference between the heading
related to the initial node(1) and the heading related to the new node(2) is larger than a
defined angular difference threshold.

The position of the robot is continuously estimated by the path integration process,
described in section 3.3, as the robot begins exploration of the environment through
the wall following process described in section 3.4.1. The global mapping algorithm
preserves the direction and position values from the point upon which a previous node was
created. At the beginning of the global mapping process, the previous node corresponds
to the initial node. By continuously comparing the pose linked to the previous node with
updated odometry data, a change in direction and the distance traveled are estimated.

The relative angular difference between the previous node pose and the current pose
is calculated by equation 3.16 where the previous node heading and the current heading
are kept in the two headings:

P ◦, C◦ (3.15)

angularDifference = |wrapvalue(P ◦ + 180− C◦)− 180| (3.16)

The function wrapvalue used in equation 3.16 wraps any value greater than 360
around.

The distance between the previous node pose and the current pose is calculated as
standard Euclidian distance, where the previous node pose coordinate and the current
pose coordinate is kept in the two points:

P (px, py), C(cx, cy) (3.17)

36

Figure 3.12: An arc with possible values

distance =
√

(px − cx)2 + (py − cy)2 (3.18)

To decide when a new topological node is to be added to the global map, the estimated
traveled distance and angular difference is continuously compared to a pair of threshold
values. This process is conceptually very simple, as illustrated in algorithm 1.

Algorithm 1 Generate new node

1: while mapping globally do
2: θ = angularDifference(P ◦, C◦)
3: distance = distance(P (px, py), C(cx, cy))
4: if θ > thresholdAngle&&distance > thresholdDistance then
5: Add new node to map
6: P ◦ = C◦

7: P (px, py) = C(cx, cy)
8: end if
9: end while

Arcs

The arcs linking the global nodes of the topological map describe the relation between
the nodes, that is, how to navigate between each pair of linked nodes. In the system
proposed here, this information is in the form of a wall following behavior and a distance
value. By recording such information during map generation, the robot can navigate the
map at a later stage.

Figure 3.12 show the structure of an arc. An arc is a directional link between two
nodes, and therefore contains a reference to the node from which the connection goes and
a reference to the node in which the connection ends. An arc also contains information on
how to navigate between the connected nodes. Information needed for navigation consist
of a combination of a wall-following behavior and a metric distance value.

Navigation based on wall-following As described in section 3.4.1, wall following
behaviors come in two types, a left-side and a right-side behavior. In right-side behavior,
the robot aligns its right side to a wall before following it in the forward direction,
conversely, in left-side behavior; the robot aligns its left side to a wall before following

37

Figure 3.13: The wall-following behaviors defining the relation between two global nodes.

it in the forward direction. The attributes of the two types of wall-following behavior
enable the system to link global nodes bidirectional in a single pass.

Figure 3.13 illustrates how two global nodes, n1 and n2, are linked with wall-following
behaviors. In figure 3.13 the robot moves by following its right side wall from node n1
to node n2, which it creates according to the process described above. For the nodes to
have any topological meaning, their relations must be described, and for the robot to be
able to navigate between them at a later stage, this description must contain information
on how to move between them. The entire robot motion path between node n1 and n2
in figure 3.13 lies within the minimum proximity range of the ir sensors, meaning that
direct wall-following was performed to move between the nodes.

The relation from node n1 to node n2 is thus described by the right-side wall-following
behavior and a metric distance between the nodes, estimated through path integration.
The relation information is kept in an arc object, linked with node n1 When the robot
later needs to move from node n1 to node n2 it executes right-side wall-following behavior
until it has moved equal to the distance stored in the distance value of the arc.

To enable bidirectional navigation of the global map, it is necessary to describe all
relations between topologically connected nodes, regardless of how and in what order
they are connected. In figure 3.13 the robot only moves from node n1 to node n2, but
in later navigation ir must be able to also move from node n2 to node n1. To describe
the relation between node n2 and node n1 another arc must be created and linked to
node n2. This arc will contain the same distance value as the arc found in node n1,
but the wall-following behavior will be the inverse of that found in node n1, a left-side
wall-following behavior.

3.4.3 Local Maps Anchored to Global Nodes

Anchored to each global node of the topological map are localized metric and percep-
tual representations in the form of self-organizing maps. Localized maps are meant to
provide accurate representations of interesting areas in the environment, the immediate
space surrounding each global node in this representation. The global nodes represent
locations in the environment of change in topography, while the space between the global
nodes is uniform in the sense that it ideally contains empty space and approximately
straight boundaries. It is therefore contended in this approach that the immediate space
surrounding global nodes are inherently more complex than the intermediate space be-
tween global nodes, and would gain from a more accurate representation, both in terms

38

of overall map accuracy and in terms of local navigational capability.
A local map consists of two self-organizing maps, one for metric mapping and one for

perceptual mapping of the space surrounding a global node. Before describing the local
map in detail, it is necessary to introduce the concept of a self-organizing map.

Self-Organizing Maps

Self-organizing maps(SOM) are types of neural networks which performs unsupervised
topological clustering of sample data through a learning mechanism. The learning process
of a SOM is done in such a way that the nodes of a SOM become ordered in relation to
each other, which leads to a mapping of a high-dimensional continuous signal to a lower-
dimensional topological representation of the input signal, thus the topological properties
of the high-dimensional input signal is preserved in the lower-dimensional representation.
A SOM consist of one layer of nodes and is typically one or two-dimensional in structure.
Figure 3.17 shows the basic structure of a hexagonal two-dimensional SOM, with each
node connected topologically to six immediate adjacent neighbors.

Figure 3.14: A hexagonal SOM

In figure 3.17 an input pattern is represented in the vector:

~ξ = [ξ1, ξ2, ξn] ∈ Rn

Where i represent an input sample and n the nth element of the input pattern.
The input pattern is presented to each node in the output layer of the map. Addi-

tionally each output node is connected to a weight vector:

~wj = [wj1, wj2, wjn] ∈ Rn

Where j is the identificator of a node j in the output layer and n is the nth element
of the input vector.

The core training process of a SOM can be separated into three steps:

39

1. The weight vectors connected to each output node is initialized with either ran-
domized values, or an estimate of the expected input distribution. Each value of
the weight vectors are then normalized in the range of [0, 1]

2. A random input pattern
−→
ξ is drawn from a collection of input patterns and nor-

malized in the range of [0, 1]. The Euclidian distance between the input vector and
the output of each weight vector connected to the output layer nodes are calculated
to identify the node closest to the presented input pattern by means of Euclidian
distance.

The output oj of node j is the weighted sum of the inputs to node j:

n∑
k=1

wjkik = ~wj ·~i (3.19)

where n is the number of elements in the input vector.

The winning node p is given by:

p = min(||~ξ − ~wj||), j = 1, 2, 3.., K (3.20)

where K is the total number of cells in the output layer.

3. The values of the weight vector connected to node p and the weight vectors of a set
of topologically neighboring nodes to p are adjusted according to equation 3.21.

∆pjk = α(ik − pjk)
pjk(t+ 1) = pjk(t) + ∆pjk

(3.21)

where α is a learning rate parameter in the range [0, 1], that starts out large and
decreases with time t. The number of nodes to adjust neighboring a winning node
are usually also decreasing from an initial neighborhood size that may include all
the nodes of the output layer before degenerating to the winning cell p only, after
a certain number of time-steps.

If no defined time-step or convergence limit is reached, the process is repeated from
step 2.

As the algorithm described above iterates the network will organize into a structure in
which similar input vectors clusters onto specific regions of the network, while dissimilar
input vectors map onto different regions of the map.

There are a some parameters to be considered when using a SOM, most important
are perhaps the neighborhood function and the learning rate.

40

(a) A Gaussian neighborhood
in a hexagonal SOM. The cen-
ter node in red illustrates the
winning node. The degrada-
tion into yellow color symbol-
izes the decreased impact of the
winning node.

(b) A bubble neighborhood in
a hexagonal SOM. The bub-
ble function updates in this
case the six closest nodes in
the map. The constant red
color symbolizes that the bub-
ble function is constant over
the defined neighborhood. The
blue line outline the neighbor-
hood size of the exemplified
bubble function, the size being
two in this example

Figure 3.15: A Gaussian and a bubble neighborhood function.

(a) Two Gaussian probability
density functions (PDF). This
distribution is also referred to
as the normal PDF

(b) Two bubble function
curves.

Figure 3.16: Function curves

41

Neighborhood function A neighborhood function decides to what degree the nodes
neighboring a winning node should be adjusted. In this system I implement two
differing neighborhood functions, a Gaussian and a bubble neighborhood function.

The Gaussian neighborhood function can be written:

exp(−(
||rc − rp||2

2σ2(t)
)) (3.22)

where rc is the topological location of node c in the output layer and rp is the
location of the winning node p. σ(t) is the neighborhood radius at time t. Fig-
ure 3.15(a) shows how the impact of the Gaussian neighborhood function decreases
outwards from the winning node.

The bubble neighborhood function is an approximation of the Gaussian function.
Instead of a Gaussian gradual decrease of neighborhood impact outwards from the
winning node, the bubble function is a constant function in the neighborhood of
the winner node, thus every node within a neighborhood at time t is updated by
the full difference between the winner node’s weight vector and the input vector,
while all nodes outside of the neighborhood is not updated at all. An example of a
bubble function’s impact is illustrated in figure 3.15(b).

Learning rate The learning rate is another parameter affecting all node updates, as seen
in equation 3.21. The learning rate is typically in the range 0.1− 0.9, the learning
rate being initially large before decreasing through the SOM training process. The
manner in which the learning rate decreases can vary. In this system I implement
two types of learning rate functions, a linear function and a power series.

Figure 3.17: A linear learning rate function and a power series learning rate function

The linear learning rate function is simply a gradual and small linear decrease of
the learning rate; typically a minimum learning rate is defined.

The power series can be written:

42

α0

(
αT
α0

)t/T
(3.23)

where α0 is the initial learning rate, aT the minimum learning rate, t is the time
step and T the total number of time-steps of decrease.

Both the learning rate and the neighborhood-function impacts how rigid or fluid a
SOM behaves in the topological ordering process, and must be tuned through experimen-
tation to fit the variables of individual cases in which the SOM is applied. In brief, such
variables typically include the number of input patterns available, the level of generaliza-
tion needed and more.

43

Local Metric Maps

In the system presented here, local metric maps are anchored to each of the nodes of the
global map and represent the immediate two-dimensional metric space surrounding the
global nodes. The robot samples the unoccupied metric space and the perceptual space
surrounding each global node by exploring the local environment in a systematic manner,
an exploration process in which navigation is performed trough path-integration alone.

The mapping of the local space surrounding a global node is performed directly after
a global node is created. The size of the area to be mapped is set before the mapping
process begins. I refer to the surrounding space of a global node to be mapped as ”local
space”.

Figure 3.18: The local space of a global map.

Figure 3.18 shows the local space of a global map. The size of the local space to be
represented in a local map is defined by a length value, Sx and a height value, Sy.

Figure 3.19: The angular orientation of the local coordinate system, θim, equals that of
the angular heading of the robot as it created the global node, θi.

A local space is bounded in an absolute coordinate system. The orientation of this
coordinate system is equal to that of the robot’s angular heading upon creation of the
global node the local space surrounds. Figure 3.19 shows three global nodes with a θ value
related to each. This value represents the angular heading of the robot as it created the
global nodes, I refer to this as the entry direction. The local SOM anchored to global
node i in figure 3.19 is outlined in the figure. The local space is bounded in a coordinate

44

system with an orientation equal to the entry direction of the node i. To generalize the
relation between the entry direction of a global node and the orientation of the coordinate
system of the related local space we can state for node ni and the related local space mi:

θni = θmi (3.24)

The coordinate system related to a local space is also positioned so that the center of
the global node equals the center point of the local space to be mapped. This is illustrated
in figure 3.19 where the center of the global node is equal to the center of the local space.
The center point Sc is defined by:

Sc = [
Sx
2
,
Sy
2

] (3.25)

where Sx is the length of local space and Sy the height of local space.

Exploration of local space The systematic exploration of local space employs a tem-
porary rigid topological graph, with nodes representing a collection of coordinate locations
in local space and arcs connecting adjacent locations. The rigid topological graph used
for exploration covers the local space of a global node in a uniform manner, as the nodes
of the graph are evenly distributed over the local space. To provide a uniform distribution
of the nodes with respect to the hexagonal neighborhood setup, every other column of
nodes is offset in the y-direction according to:

oi =
s

2

where oi is the offset of node i and s is the size of the spacing between nodes.

Figure 3.20: A temporary rigid map used for systematic exploration of local space

A rigid topological coordinate graph is only a temporary construction used in explor-
ing a newly created local space. Figure 3.20 illustrates a rigid graph overlaid a local
space. Implied by the grid in the figure, each node contains a coordinate in local space.

45

The reason why such a topological graph is used is that it provides a framework for a
systematical exploration of local space. The robot is able to explore the local space in its
entirety by moving from node to node in the rigid graph until it has visited all nodes. The
movement from node to node is controlled by path-integration only, a process described
in section 3.3.

(a) Column by column exploration (b) Row by row exploration

Figure 3.21: Exploration strategies

The middle node of the rigid graph is always centered over the global node which
local space it maps. Because of this the robot is initially positioned at the middle node
of the rigid graph. In the exploration strategies in figure 3.21 the robot will begin the
exploration process by moving to the first node of the graph. The first node is defined as
that with the initial weight vector ~wj = [0, 0], and the path to the first node is illustrated
by the blue arrows in figure 3.21. The red arrows in figure 3.21 illustrate the path leading
back to the center node from the last reached node, which is node 15 in this example.

Both exploration strategies illustrated in figure 3.21 show the exploration path of the
robot in a local environment with no obstacles. To handle obstacles blocking the path a
method of topological path finding is applied. The method use a modified A* algorithm
to find the shortest path between two nodes in a graph. The A* algorithm is a best-
first, graph search algorithm that finds the optimal path between graph nodes by using
a heuristic function to determine the order in which to search the graph, written as:

f(x) = g(x) + h(x) (3.26)

where g(x) is the actual shortest distance traveled from the initial node to the current
node and g(x) is the estimated distance from the current node to the goal node. For a
more detailed description of the A* path-finding algorithm please see appendix 3

Figure 3.22 illustrates how the A* algorithm is employed to generate a new path when
an arc between two nodes is blocked by an obstacle. In figure 3.22(a) an obstacle blocks
the arc between node three and four. By use of the A* path finding algorithm a new path
is generated to node four via node eight. In figure 3.22(b) the arc between node four and
five is blocked by an obstacle, and a new path via node ten is generated. The arc between
node ten and five is also blocked by an obstacle and since there are no more potentially

46

(a) A blocked path between node 3
and node 4

(b) Node 5 isolated by a an obstacle

Figure 3.22: Paths after performing path-finding

open paths to node five, it is marked as unreachable and the robot will move to the next
potentially reachable node of the exploration strategy, node ten in this example.

The purpose of exploring the space covered by a rigid graph in a systematic manner
is to sample and map the metric and the perceptual space of that area.

Sampling and mapping of metric local space The metric representation of local
space is in the form of a SOM. The metric SOM, as I shall call it, bears superficial
similarities to the rigid graph used in local space exploration. However, the metric SOM
is not a temporary construction; it is a representation of the unoccupied space surrounding
a global node.

Figure 3.23: A metric SOM in its initial configuration

Alike the rigid graph, a metric SOM initially naively maps local space uniformly. Each
node in the output layer of a metric SOM is connected to a weight vector ~w containing
two weights, one for each value of the input vector ~ξ:

~w = [wx, wy]

~ξ = [ξx, ξy]
(3.27)

where ξx represents the x−position and ξy the y−position of an Euclidian coordinate
sample.

47

(a) The path of a robot executing
the column by column exploration
strategy

(b) The coordinates sampled by the
robot during exploration

Figure 3.24: The resulting robot path and sampled coordinates after exploration of local
space

The robot samples coordinates from the local space by simply recording its position,
generated by path-integration, at certain intervals during the exploration of a local space.
The length of such an interval is defined a distance threshold denoted:

Td (3.28)

The robot will record coordinate samples each time it has moved for a Euclidian
distance equal to Td from the last sampled coordinate.

Figure 3.24 shows the path of the robot after exploring a metric SOM and the trail of
coordinate samples that was sampled during the exploration. As illustrated in the figure,
coordinates are sampled at distance intervals equal to Td.

After a metric SOM has been explored and sampled, the metric SOM is trained over
the recorded samples by the SOM training algorithm described in section 3.4.3.

(a) The SOM before training (b) The SOM after training

Figure 3.25: The metric SOM before and atfer training

Figure 3.25 shows a metric SOM that is trained over coordinate samples recorded

48

during exploration. The nodes of the trained SOM are now distributed over the coordinate
samples, and essentially provide a metric mapping of local unoccupied space.

Sampling and mapping of local perceptual space To support perception-based
localization, the perceptual space surrounding global nodes are mapped in addition to
the metric space. The mapping of perceptual data is not unlike the sampling of metric
data, both processes employ a SOM for unsupervised sample clustering. In the metric
mapping approach these samples consist of two-dimensional coordinate information, while
in perceptual mapping the samples consist of camera images.

Figure 3.26: A perceptual SOM

The nodes of the perceptual SOM are connected to a weight vector ~w containing N
weights, one for each value of the input vector ~ξ.

~w = [wi, wi+1, ..., wN]

~ξ = [ξi, ξi+1, ..., ξN]
(3.29)

where ξi represents i’th pixel of an image sample and N the last pixel of an image
sample.

Sampling of perceptual data is performed in parallel to the sampling of coordinates.
The sampling rate of camera images is related to the sampling rate of coordinates by:

Td ∗ 2 (3.30)

where Td is the distance threshold defining the sampling rate of coordinates. Thus,
camera images are sampled at half the rate as that of coordinates.

Image samples consist of four separate camera images, sampled in the four cardinal
directions; north, east, south and west. Figure 3.27(a) shows how camera images are
sampled during the exploration of local space. The arrows in the figure represent the
four cardinal directions at which camera images are sampled. Figure 3.27(b) exemplifies
the merging of four images sampled in these directions into a single image sample.

After a perceptual SOM has been explored and sampled, the metric SOM is trained
over the recorded samples by the SOM training algorithm described in section 3.4.3.

After training is complete, the nodes of a perceptual SOM will exhibit different exci-
tation patterns when presented with visual input patterns, indicating the position of the

49

(a) Sampling of camera images and coor-
dinates

(b) Four images in the cardinal directions
merged into one image sample

Figure 3.27: Sampling of perceptual space

input patterns in perceptual space. To enable association between visual input patterns
and metric coordinates, the coordinates at which the perceptual samples used to train a
perceptual SOM were captured, are related to the nodes of the perceptual SOM.

(a) Perceptual samples (b) The trained perceptual SOM

Figure 3.28: Association between the coordinates of perceptual samples and the nodes of
the trained perceptual map

The association of coordinates with the nodes of the trained perceptual map can
be described in the following algorithm assuming perceptual SOM of N nodes, and a
collection of K visual samples:

1. Calculate the winning node nw of input pattern ~ξi+t by:

nw = min(|| ~ξi+t − ~wj||), j = 1, 2, 3.., N (3.31)

2. Associate the coordinate of input pattern ~ξi+t with node nw. If a coordinate is
already associated with node nw, calculate the middle coordinate of the existing
and the new coordinate by:

50

nc = [
x1 + x2

2
,
y1 + y2

2
] (3.32)

3. Advance input pattern count, t+ 1. Repeat from step 1 until ~ξi+t equals ~ξK

Figure 3.28 exemplifies how the coordinates of visual samples are associated with
nodes in a perceptual SOM trained over those visual samples. The figure illustrates how
visual sample 1 and 2 are associated with node i of the perceptual SOM and visual sample
3 are associated with node j of the perceptual SOM.

Loop-Closing

Loop-closing is the process of closing a loop in the topological map by connecting nodes
that are close to one another. The mapping algorithm in this system assumes a closed
environment, and uses a wall-following behavior in exploration. Due to these attributes
of the mapping procedure, the robot is expected to revisit any node of the global map
given exploration over a sufficient time. Loop-closing in topological maps are favorable
mainly because the result is a more complete graph, allowing for shorter paths in later
navigation.

(a) Global node revisitation (b) The topological graph.

Figure 3.29: Robot exploration path leading back to the initial node

Figure 3.29 illustrates how the exploration path of the robot eventually leads it ”back”
to an existing global node. To properly close the loop of the map shown, node g5 must
be connected to node g1, and to this, the robot must in some way recognize that it
has indeed returned to an existing node. In the system presented here this is handled
by comparing the visual attributes of a new global node’s surroundings with that of the
surroundings of the existing nodes. The visual surroundings of existing nodes are mapped
in the perceptual SOMs of the local maps anchored to existing global nodes.

To perform a comparing of visual surroundings the robot captures a four-directional
image of the environment before creating each new global node. This sample is run over
the perceptual SOM found in the first global node created and compared to the weight
vector of the winning node, according to the algorithm:

51

1. Before global node creation, sample the perceptual space at the current position of
the robot.

2. Retrieve the perceptual node nw with the minimum Euclidian distance dm from the
sample by:

nw = dm = min(||~ξ − ~wj||), j = 1, 2, 3.., N (3.33)

where ~ξ is the input sample, wj is the weight vector of node j and N is the total
number of perceptual nodes in the first global node of the map.

3. If the minimum distance dm < Td, which is a distance threshold, the robot is
assumed to be positioned at the transition position of the global node gwto which
the winning perceptual node nw is belonging. A loop is then found in the map.
The loop is closed by connecting the previous node gp with node gw
If dm < Td, the dissimilarity is deemed to large for a confident position estimate to
be made, and a new global node is created.

52

3.5 Navigation in a Mapped Environment

Navigation over an existing map can be separated into two parts, global navigation and
local navigation.

3.5.1 Global Navigation

Global navigation concerns navigation over the nodes in the global topological map. An
existing global map consists of nodes representing locations in the environment. The
global nodes are topologically connected through arcs, containing information on how to
navigate between topologically adjacent nodes.

Because of the topological nature of the global map, path-finding is implemented as
a best-first graph search over the global map, specifically in the form of a A* shortest
path algorithm. The A* algorithm is fairly straight-forward, and is described in detail in
appendix 3.

Assuming the robot initiates navigation from a known starting point that is positioned
at the location of a global node; navigation is performed as a result of sequentially fol-
lowing the navigational data contained in the arcs connecting global nodes. Navigational
data is in the form of a wall-following and distance pair.

Figure 3.30: A global topological map

Global navigation algorithm To describe the global navigation process, we consider
figure 3.30. The figure shows four global nodes G1, G2, G3 and G4 initially mapped
by performing right-side wall-following behavior. The nodes are therefore connected by
right-side wall-following behaviors in the original direction:

G0 → G1 → G2 → G3

and by left-side wall-following behaviors in the opposite direction:

G3 ← G2 ← G1 ← G0

Navigation over the global map where the robot is initially positioned at global node
Gi is defined by the following steps:

53

1. Generate the shortest path from initial node Gi to goal node Gn by:

P [N] = findPath(Gi, Gn)

where P [N] is an ordered list of N nodes, constituting a shortest path from node
G1 to node Gi given by findPath(G1, Gi) . findPath(G1, Gi) is an implementation
of the A* algorithm, described in appendix x.
Set step number t = 0.

2. Retrieve navigational information from the current node P [t] to the next node of
the path P [t+ 1] by:

Arc<wall-following behavior, distance> ac = P [t]→ P [t+ 1]
WallFollowingBehavior WFn = ac.[0]

Distance Dc = ac.[1]

3. Initiate wall-following behavior WFn for distance Dc.

4. Advance step count, t+ 1. Repeat from step 2 until the goal node is reached.

Due to the self-aligning nature of the two types of wall-following behavior, the robot
needs only to be at the location of the initial node, without considering the initial heading
of the robot. This can be illustrated by a pair of cases:

Figure 3.31: Navigation from directionally opposite initial nodes

Figure 3.31 shows the movement of two robots R1 and R2 from two different initial
global nodes G1 and G2 to a third global node G3. The nodes are connected with the
wall-following behaviors:

G1 → G3 → G2

G1 ← G3 ← G2

where → denotes a left-side wall-following behavior and ← a left-side wall-following
behavior.

R1 executes right-side wall-following behavior until it has moved the entire distance
defined in the arc connecting node G1 and G3. The numbered arrows in figure 3.31

54

illustrates how the robot aligns its right-side to the wall, before moving in parallel to the
wall for the specified distance. The same sequence of alignment is shown for robot R2

that aligns its left side to the wall before moving parallel to the wall for the specified
distance. The distance traveled is measured relative to the global coordinate system in
which the global map is set, thus the exact shape of the wall-following behavior executed
has no impact on the distance traveled.

3.5.2 Position Correction Over Landmarks

Global navigation is driven by wall-following navigation routines and does not require full
path-integration for movement control. The only metric information used in navigation
between global nodes is the Euclidian distance between the nodes, angular information
is not used. Because of this accumulating position error related to path-integration is
avoided. This is however no guarantee that the position of the robot will be devoid of
error. During navigation over any significant distance the estimation of the robots posi-
tion within the map may become erroneous. Reasons for erroneous position estimations
may be i.e. wheel slippage when the robot transits between global nodes, resulting in
erroneous distance estimations that would terminate the wall-following behavior at the
wrong time.

Navigation over local maps is performed by path-integration. Local maps represent
fractions of the environment, and are intentionally small of scale to limit the accumulated
position error resulting from navigation within these maps. The accumulated error due
to navigation over local maps may not be negligible, leading to incorrect navigation.

To negate robot position error a method of position correction over external cues is
implemented. This position correction method allows the robot to estimate its position
over the landmarks stored in the perceptual SOMs of local maps. The perceptual SOMs
of local maps contain nodes that are trained to exhibit different excitation patterns when
presented with visual stimuli in the form of four-directional images. Through the percep-
tual training algorithm these nodes were also associated with coordinates from the local
space to which they are anchored. Coordinates of the robots current position within a
local space may thus be retrieved from a perceptual SOM by sampling the perceptual
space and present the sample to the local perceptual SOM. The node exhibiting the
strongest excitation when presented with the node represents the position of the robot
in perceptual space. If a coordinate is linked with the winning node, a position can be
estimated based on purely external sensory stimuli.

A new position is retrieved from a perceptual SOM by:

pi(t+ 1) = pj (3.34)

where pj is a coordinate retrieved from a perceptual SOM.

Position correction algorithm To perform position correction over the landmark or
perceptual SOM the robot must initially be positioned in a local map. If the robot is not
positioned in a local map when a position correction is performed, the node responding
the most to the supplied visual sample will still return the coordinate it potentially is

55

(a) A four-directional image sampled at
position Sxn, Syn colored in red, and a po-
sition Sxm, Sym retrieved from the percep-
tual SOM

(b) The winning node Nw of a input pat-
tern sampled at position Sxn, Syn, and the
coordinate it is linked with Sxm, Sym

Figure 3.32: Coordinate retrieval from a perceptual SOM

associated with. A threshold value could potentially safeguard against a robot estimating
its position to be within a local space when it is not, such a threshold value is not
implemented in the current system.

1. Capture a visual input pattern ~ξ of the robots environment in the form of a four-
directional image

2. Present the visual sample ~ξ to the perceptual SOM of the current local map.

3. Calculate the winning node of the perceptual SOM Nw by:

p = min(||~ξ − ~wj||), j = 1, 2, 3.., K (3.35)

where K is the total number of cells in the output layer.

4. Set the position of the robot to the coordinate retrieved from the winning node Nw

5. Navigate to the middle node of the map

3.5.3 Local Navigation

Local navigation concerns navigation over local metric maps anchored to the global nodes
of the global topological map.

Transition pose When the robot approaches a global node, it must first correct its
position according to the algorithm described in section 3.5.2. The heading of a robot as
it reaches a global node is assumed to be approximately identical to the heading of the
robot as the node were created, which defined the orientation of the local space anchored
to that global node, given that it reaches the global node by engaging the wall-following
behavior used in map creation. If the inverse wall-following behavior of that used in map

56

(a) A robot as it approaches a global
node, and the local metric area anchored
to that node

(b) A robot in a transition pose

Figure 3.33: A robot approaching a global node and entering the transition position to
navigate the local map anchored to the global node.

creation is engaged in navigation, the heading of the robot as it reaches a global node
is assumed to be approximately inverse to the orientation of the local space anchored to
that node. The robot must align its heading with the orientation of the local space in
cases of inverse navigation. As the robot heading is assumed to be inverse of the local
space orientation, this alignment is done by rotating the robot deg 180. In figure 3.33(b)
the robot has aligned itself properly; it is now in a transition pose. The robot must be in
a transition pose to properly navigate the local map by performing path-integration over
the coordinate system related to individual local maps.

To navigate over the local map of a global node, the robot must place itself in a
transition pose. A transition pose means that the robot is located at the center point
of a local space and that the robot’s heading equals the orientation of that local space.
Figure 3.33 illustrates this operation. Figure 3.33(a) shows a robot as it approaches a
global node, marked in blue. The figure also show the local space anchored to the global
node. The local space has length Sx, height Sy and orientation θl.

After the robot has aligned itself to the local space of a global node, it is ready to
navigate in local space by moving from node to node in the trained metric SOM of the
local map. Initially the robot must move to the node of the metric SOM that is closest by
means of Euclidian distance to the middle point of local space. Figure 3.34(a) illustrates
this, where node i is the closest to the middle point.

When the robot finds itself at a node in the metric SOM, navigation is a straightfor-
ward process of navigating by path-integration between the nodes of the metric SOM.
Paths between nodes in the SOM is generated by use of the A* algorithm, described in
appendix 3

When the robot encounters an obstacle during navigation between two nodes it will
mark the arc connecting the relevant nodes as blocked. Thus when navigation is per-
formed over the same map at a later stage, the arcs will be excluded from the path-finding
algorithm. Figure 3.34(b) illustrates how the robot will marked the arc connecting node
j and k as blocked.

57

(a) The trained metric SOM of a local
map

(b) A blocked path

Figure 3.34: The SOM of a local map

For the robot to return to the topological paradigm, it must return to the transition
point, which equals the position of the actual global node.

58

Chapter 4

Experiments

The system presented in this thesis is tested on a simulated e-puck robot in the Webots
simulator. The Webots simulator is a 3d robot simulator that supports simulation of
Gaussian sensory noise. The simulation of sensory noise is vital to properly test the
robustness of a robotic mapping system, as it is in practice unavoidable in the real world,
where such systems are put to use.

The noise model in Webots was used to add cumulative uniform noise to the incre-
mental wheel-encoders of the robot. At each simulation step, every 32 ms, an increase
value is computed for each encoder. A random uniform noise is applied to the increase
value before it is added to the encoder value. A noise component of +/− 10% was used.

The experiments are separated into four main parts, where the separate modules of
the system are empirically tested over varying scenarios. The results of the experiments
are discussed at the end of each part:

1. Global and local mapping
In the first part the global mapping algorithm is empirically tested both in isolation
and in concert with the local mapping algorithm over environments of varying
complexity.

2. Global and local navigation
In the second part the global and local navigation algorithms are empirically tested
both in isolation and in concert over the maps created in part 1. This includes
experiments on the localization methods over external cues.

3. Loop closing
In the third part the loop closing capabilities of the system is empirically tested
over a set of environments.

59

4.1 The Simulated Environment

(a) An example environment in orthographic view

(b) An example environment in perspective

Figure 4.1: A simulated environment

The simulated environments used in the experiments described in this thesis all have
elements in common, they are all fully enclosed, allowing for a cyclic environment, upon
which the mapping system presented here depends. An example cyclic environment is
illustrated in figure 4.1. The walls and obstacles of the environments are all colored white
so that they will properly reflect infrared light. Additionally, the obstacles found in the
environments are rectangular in shape.

60

(a) Environment 1, 1x1 meters (b) Environment 2, 1.5x1.5 me-
ters

(c) Environment 3, 1.5x1.5 me-
ters

Figure 4.2: Three environments of varying size and complexity

4.2 Global and Local Mapping

4.2.1 Global Mapping

The mapping system presented in this thesis is tested in the three different environments
shown in figure 4.2. The environments vary in size from 1 square meter to 1.5 square
meters, besides varying in topographic complexity.

In a first set of experiments the global mapping algorithm was tested in isolation over
the environments. Each environment was mapped ten times over, five using right-side
behavior and five using left-side behavior. The initial position of the robot was identical
in all runs. The parameters used in these experiments are listed in table 4.1.

Global map parameters
Angular threshold 45◦

Distance threshold 5cm

Wall-following parameters
Minimum wall-distance 2.0cm
Robot speed 3cm/sec

Table 4.1: Mapping parameters

The global map threshold parameters define the change in heading and Euclidian
distance from the previous global node required for a new global node to be created
(Angular threshold and Distance threshold).

Figure 4.3 shows example paths of the robot during right-side exploration of the three
environments, and in figure 4.4 paths resulting from exploration by left-side behavior.
The nodes are also shown at the locations in which they were created.

The runs over each of the three maps were compared to find the degree of consistency
exhibited by the wall-following exploration technique. A set of key comparisons of results
from the global mapping experiments is presented in table 4.2. These results consider the
distance covered by the maps in one cycle of the environment. Distance statistics from
the runs are compared with the approximate actual distance covered by the robot in one
such cycle. The actual distance presented in the table was approximated by mapping
the three environments with no noise affecting sensors, including the wheel-encoders,
essential in distance estimation. The average positional error at the end of the mapping

61

(a) (b) (c)

Figure 4.3: Approximate robot paths from right-side exploration

(a) (b) (c)

Figure 4.4: Approximate robot paths from left-side exploration

62

runs is also presented.
The distance value is important because it defines the relation between global nodes

in addition to a certain type of wall-following behavior, and thus it defines the global
map itself.

Env. 1 Env 2 Env 3
Approximate actual distance 461 cm 909 cm 987 cm
Maximum distance traveled 472 cm 920 cm 1005 cm
Minimum distance traveled 448 cm 894 cm 979 cm
Average distance traveled 455 cm 915 cm 985 cm
Average distance variance 10 cm 15 cm 14 cm
Best-case positional error 5 cm 6 cm 6 cm
Worst-case positional error 12 cm 11 cm 18 cm
Average positional error 8 cm 9 cm 10 cm

Table 4.2:

Before discussing the implications of these results it is useful to review the accumulated
position error resulting from using path-integration driven navigation over the same runs:

(a) (b) (c)

Figure 4.5: Accumulated positional error from path-integration

Env. 1 Env 2 Env 3
Maximum positional error 95 cm 124 cm 122 cm
Minimum positional error 24 cm 25 cm 45 cm
Average positional error 61 cm 84 cm 91 cm

Table 4.3: Accumulated positional errors

Discussion, global map accuracy The resulting data from the experiments described
above comes in the form of a global map, with global nodes connected through arcs
containing distance and wall-following behavior information. The results will be discussed
in relation to how accurate the resulting global maps represent the mapped environments.

The results presented in table 4.2 and 4.3 are interesting, and especially in comparison
to each other. The one-cycle distance comparisons in table 4.2 show that the variance

63

in the distance estimates from the mapping runs are on average low over significant
distances in a significant amount of runs, implying consistency in the two types of wall-
following behaviors in that they consistently generate maps of approximately the same
size. Additionally the average distance error is also averagely consistently low over the
runs.

Figure 4.5 shows examples of node positions estimated by path-integration and table
4.3 lists the resulting positional errors from one cycle of mapping. These errors are shown
to be very large, even in the smallest of the environments. This result was expected and
can be explained by the way in which new positions are continuously estimated based
on the previous position estimates in path-integration. Small errors in orientation, due
to sensor noise, wheel-slippage etc., results in an accumulation of error, producing the
un-operational maps exemplified in figure 4.5. In the global mapping algorithm presented
here, global nodes are not defined as absolute coordinate positions as is the case in path-
integration. A distance metric is used however, but the distance values defining the
relations between nodes is not dependant on any previous position estimates, and error
is thus not allowed to accumulate as in path-integration driven mapping.

The results presented above demonstrates the effect of using limited metric informa-
tion in topological mapping in comparison to using path-integration driven navigation
over significant distances. Even so, the global mapping algorithm is not noise-free. The
reason for the noise can be explained by wheel-encoder error. Even though noise clearly
does not accumulate in the same way shown in path-integration, it is still a factor. As the
noise is not accumulative, it can be assumed to flatten out statistically over time. The
results do support this, as the average error is shown to be very small. Of course, the
worst-case maps cannot be discarded; they demonstrate that the system cannot generate
perfectly accurate maps by discarding the heading value alone. As distance metrics are
used in defining the relations between nodes in the topological map.

4.2.2 Local Mapping

Local mapping includes both a mapping of the metric space and the perceptual space of
a defined fraction of an environment.

The local mapping algorithm was tested over the three environments shown in figure
4.2. Local metric and perceptual maps were created at the location of global nodes in a
series of runs, where each environment was mapped six times over, three for each wall-
following behavior. The parameters used in the global mapping process are identical to
those found in table 4.1, the parameters specific to the sampling process of the local
mapping algorithm are shown in table 4.4.

Rigid map setup
Rows 5
Columns 5
Node distance 5 cm

Sampling parameters
Metric sample threshold 2cm
Perceptual sample threshold 4cm
Perceptual sample resolution 16 ∗ 16px

Table 4.4: Local map parameters

64

Exploration and sampling of local spaces First the exploration and sampling pro-
cess is reviewed. Figure 4.6 shows the size of the local maps and their orientation relative
to the robots heading at the time of local map generation.

(a) (b)

Figure 4.6: A selection of rigid maps anchored to nodes

The vertical and the horizontal sampling strategies were used in alternation, producing
sampling paths as exemplified in figure 4.7.

65

(a) Horizontal exploration (b) Horizontal exploration

(c) Vertical exploration (d) Vertical exploration

Figure 4.7: Sampling of local maps, circles are coordinate samples while crosses are four-
directional image samples

(a) (b)

Figure 4.8: Example robot paths from vertical exploration

66

Figure 4.7 shows examples of recorded samples over two local spaces, explored by
both vertical and horizontal exploration strategies. Figure 4.8 shows examples of the
actual robot paths from the local spaces mapped in figure 4.7(c) and 4.7(c). Table x lists
statistics over positional and angular error relative to the robots position before and after
mapping of local spaces. The statistics covers all the mapping runs, 18 in total.

Env. 1 Env 2 Env 3
Average number of local maps 10 23 27
Maximum positional error 2.1 cm 1.8 cm 2.7 cm
Minimum positional error 0.3 cm 0.2 cm 0.3 cm
Average positional error 0.6 cm 0.6 cm 1.0 cm
Maximum angular error 20◦ 17◦ 23◦

Minimum angular error 3◦ 5◦ 2◦

Average angular error 12◦ 9◦ 13◦

Table 4.5: Positional and angular error over local maps

To describe how the inclusion of local maps and the positional error resulting from
this affected the accuracy of the global map distance statistics for the global map is listed
in table 4.6.

Env. 1 Env 2 Env 3
Approximate actual distance 461 cm 909 cm 987 cm
Maximum distance traveled 465 cm 922 cm 1004 cm
Minimum distance traveled 450 cm 902 cm 977 cm
Average distance traveled 451 cm 910 cm 984 cm
Best-case positional error 4 cm 4 cm 7 cm
Worst-case positional error 11 cm 13 cm 17 cm
Average positional error 7 cm 8 cm 11 cm

Table 4.6:

Discussion, local maps and the impact on global map accuracy Before present-
ing the remaining results related to local mapping I discuss the impact on the accuracy
of the global map in light of the inclusion of local maps, and the accuracy of sampling in
local maps.

During exploration of local spaces surrounding global nodes the robots motion is
driven by path-integration. Table 4.5 show statistics over the positional error acquired
after local map exploration. After a local map is fully explored the robot returns to the
transit position to continue global mapping. Location error resulting from the local space
exploration process may result in the robot positioning itself in a position not equal to
the transition position from which local mapping was initiated and this error would then
be propagated into the global map.

Table 4.5 shows the worst case location error acquired from local space exploration
to be 2.7 cm, which is not a large number considering that navigation is driven by path-
integration. The reason why local map navigation seems to be so accurate could be due

67

to two factors. The first and obvious of which is the small size of local maps, limiting
the distance over which path-integration is performed and thus limiting the accumulated
positional error. However, the worst-case errors are still surprisingly low compared to the
large errors resulting from path-integration driven global mapping exemplified in figure
4.3 and table 4.5, even though the distances traversed in those cases far exceeds that
of the local maps. The explanation for the dampened accumulated error found in local
maps could be explained by, together with smaller distances, the way in which path-
integration is performed in local maps. The path-integration driven mapping exemplified
in figure 4.5 was performed by a continuous estimation of position, allowing for calculating
the coordinates of an arbitrary path. In local mapping however the robot navigates
from node to node in the rigid map, rotating in place and moving in straight lines only.
This form of path-integration require fewer position estimates than what is needed when
estimating arbitrary paths and essentially it separates turning operations from moving
operations. This method of path-integration does not require a continuous partition of
robot motion into small discrete movements as is the case when estimating arbitrary
paths. These attributes seems to aid local map accuracy considerably in concert with the
limited distances of local map navigation.

Table 4.6 shows error statistics over the global maps when local maps are generated
and anchored to global nodes. The results indicate that the inclusion of local maps and
the path-integration performed within these does not have a large negative impact on
the accuracy of the global map. In fact, the accuracy of the global map has in some
cases improved fractionally. The inclusion of local maps was expected to have a negative
influence on global map accuracy to some degree. The reason that this has not happened
can be explained by the minute accumulated error resulting from path-integration over
local maps. The local maps are separated and anchored to global nodes too support
limited navigation by path-integration while avoiding accumulated error. The results
indicate that the separation of metric maps accomplishes this and that the hypothesis
that path-integration over small distances yield negligible accumulated error holds.

Metric and perceptual SOM training The metric and perceptual samples recorded
in the local spaces of global nodes were presented as input to the metric SOM and the
perceptual SOM constituting the local maps. The varying parameters tested for the
SOMs are listed in table 4.7.

Metric SOM
Horizontal nodes 3, 5, 10
Vertical nodes 3, 5, 10
Initial weights uniform*

Perceptual SOM
Horizontal nodes 5
Vertical nodes 5
Initial weights < −0.3, 0.3 > **

Table 4.7: SOM parameters. * Initial weights are distributed evenly over the size of local
spaces. ** Initial weights are randomly chosen from the range.

Training of the metric and perceptual SOMs were performed over two configurations
described in table 4.8.

68

Parameters Metric SOM Perceptual SOM
Config. 1 Config 2 Config 1 Config 2

Ordering phase T 1000 1000 500 500
Initial learning-rate α0 0.4 0.1 0.7 0.3
Initial neighborhood radius σ0 - 3 - 3
Minimum learning-rate αT 0.01 - 0.01 -
Adoption gain linear p.s. * linear p.s. *
Neighborhood function bubble Gaussian bubble Gaussian
Average delta value 10−8 10−8 10−6 10−6

Table 4.8: SOM configurations. * Power series

Learning-rate functions

Linear
α0 − (α0 − 0.1)t/T ,t < T

0.01,t > T

Power series
α0

(
αT

α0

)t/1000

0.01,t > 1000

Neighborhood functions

Linear, Ni
i + 6 neighbors of i, t < 1000

i,t > 1000

Gaussian exp(−(||rc−rp||
2

2σ2(t)
))

Table 4.9: Description of learning-rate functions and neighborhood functions

(a) 3 x 3 nodes (b) 5 x 5 nodes (c) 10 x 10 nodes

(d) 3 x 3 nodes (e) 5 x 5 nodes (f) 10 x 10 nodes

Figure 4.9: Local metric SOMs of varying node size after training

69

(a) Configuration 1 (b) Configuration 1

(c) Configuration 2 (d) Configuration 2

Figure 4.10: Example local metric SOMs after training

Metric SOM training iterations
Configuration 1 Configuration 2

Max iterations 2890 4345
Min iterations 1850 3640
Average iterations 2308 4460
Average time usage 2.0 sec 4.0 sec

Perceptual SOM training iterations
Configuration 1 Configuration 2

Max iterations 1241 1609
Min iterations 816 1235
Average iterations 954 1444
Average time usage 6.5 min 8.0 min

Table 4.10: Statistics over the number of iterations used in each configuration to reach
the error threshold

70

(a) Example 1 (b) Example 2

(c) Configuration 1, example 1 (d) Configuration 1, example 2

(e) Configuration 2, example 1 (f) Configuration 2, example 2

Figure 4.11: Example perceptual SOMs after training. Nodes are linked with the coor-
dinates of the visual samples identified by numbers within the nodes.

71

Discussion, local metric and perceptual SOMs The metric SOMs and perceptual
SOMs were tested over two parametric configurations each; this was done to compare
the two methods of SOM training implemented in the system. Configuration 1 has a
linearly decreasing learning rate and a bubble neighborhood function while configuration
3 has a power series learning rate and a Gaussian neighborhood function, both of which
are described in table 4.9. Examples of metric SOMs in a trained state is shown in
figure 4.10. These figures examplify the similar mapping resulting from both training
configurations. Both configurations yielded topologically ordered nodes, mapping the
recorded coordinate samples in a fairly precise manner.

Several metric SOM setups were tested, to find the best node resolution. Three
different amount of nodes were tested, a 3x3 map, a 5x5 map and a 10x10 map. Examples
of these variations are shown in figure 4.9. As can be seen from the figure the larger the
map resolution the larger the accuracy of the mapping. Accuracy is certainly a favorable
attribute of a local metric map, but other factors must also be taken into account. A
3x3 node resolution is clearly too small for accurate local space representation with a
significant amount of free-space and topographic complexity. Figure 4.9(d) exemplifies
this, the map resolution is simply too small to map the environment to any significant
accuracy. Indeed, large portions of the sampled free-space are entirely left out of the
trained metric SOM. The largest resolution tested, 10x10 nodes, consistently yielded
very accurate maps. However, even in the local space with the largest amount of actual
sampled coordinates and the most complex topography, a large percentage of the metric
SOMs nodes were redundant, leading to unnecessarily large maps, relative to the number
of nodes. An example of redundant nodes are shown in figure 4.9(f) and 4.9(c). A
resolution of 5x5 nodes consistently yielded fairly accurate maps while at the same time
avoiding redundant nodes in all but the local spaces with a small amount of free-space.
An example of such a local space is shown in figure 4.9(b). Thus a resolution of 5x5 nodes
in metric SOMs seems to be a good compromise between accuracy and map size.

The metric SOMs were additionally tested over two different parametric configura-
tions, configuration 1 has a linearly decreasing learning rate and a bubble neighborhood
function while configuration 3 has a power series learning rate and a Gaussian neighbor-
hood function, both of which are described in table 4.9. Examples of metric SOMs in a
trained state is shown in figure 4.10. These figures exemplify the similar mapping result-
ing from both training configurations. Both configurations yielded topologically ordered
nodes, mapping the recorded coordinate samples in a nearly identical manner. Figure
4.9(a) shows statistics over the iterations used in the two configurations. Configuration 2
is shown to be slightly more time-consuming than configuration 1, although both config-
urations reach equilibrium within few seconds. This can be explained in part by the more
gradual tuning of weights in configuration 2, resulting from the Gaussian neighborhood
function used in this approach, even though all the parameters of the configurations
impact the gradient of the weight tuning. A more gradual weight tuning should pro-
duce more accurate maps, however the results show no apparent increase or decrease
in accuracy when configuration two is employed compared too when configuration 1 is
employed.

Figure 4.11 shows two perceptual SOMs after training over perceptual samples recorded
from two different local maps. Figure 4.11(c) and 4.11(d) show example SOMs trained
over configuration 1 while figure 4.11(e) and 4.11(f) show example SOMs trained over

72

configuration 2. The SOMs produced using both configurations were shown to be consis-
tently accurate, in that visual samples captured at similar locations in the environment
maps to similar nodes, and in some cases the same node, in the perceptual SOMs. Dif-
ferences in the degree of accuracy were notable between the two configurations used in
training. Configuration 2 consistently produced more accurate SOMs, in that that the
visual samples were associated with a larger number of nodes after completion of the
training process. This is clearly favorable, as it allows for a more accurate localization
over visual samples when the perceptual SOM is used in position correction. The reason
for the better accuracy of configuration two could, as in the case of the metric SOMs,
be explained in part by the more gradual tuning of weights resulting from the Gaussian
neighborhood function used, compared to the bubble function. The use of a Gaussian
neighborhood function seems to have a significant impact on the resulting SOMs. Table
4.9(b) shows that configuration 2 is slightly more time consuming than configuration 1,
though the training process of perceptual SOMs are extremely time consuming in either
configuration. The reason for this is explained by the number of weights related to each
node of the perceptual SOMs, one for each pixel in the visual samples. The visual sam-
ples used in the experiments described in this section consisted of four camera images,
each having a resolution of only 16x16 pixels, merged into one image sample of 256x256
pixels resolution. Thus each node of the perceptual SOMs has 1024 weights each. As a
result perceptual SOM training is a time-consuming process. Early experiments included
smaller image samples, and although this improved time-consumption considerably it
lowered the accuracy of the SOMs to un-operational values.

4.3 Global and Local Navigation

4.3.1 Global Navigation

The global navigation algorithm was tested in isolation. The robot navigated over three
of the maps created in the experiments described in section 4.2.2. The maps used where
those with a an error closest to the average positional error among the maps created, the
actual errors are listed in table 4.11. The robot was programmed to navigate each map,
by sequentially moving from the first to the last node of the map and back again five
times over in each run. Maps for each environment were navigated in this fashion five
times over.

Env. 1 Env 2 Env 3
Positional error in the maps 7 cm 8 cm 11 cm

Table 4.11:

The parameters used in the wall-following behavior was identical to the ones used in
map creation, defined in table 4.1.

Discussion, positional error Figure 4.12 show the worst case positional error after
map navigation for each of the environments and table 4.12 show positional error statistics
over all the runs. An average error of 49 cm after traversing the largest map five times,

73

Env. 1 Env 2 Env 3
Approximate actual distance 23.05 m 45.0 m 49.35 m
Best-case distance error 17 cm 25 cm 26 cm
Worst-case distance error 41 cm 65 cm 71 cm
Average distance error 32 cm 46 cm 49 cm

Table 4.12:

(a) (b) (c)

Figure 4.12: Worst case positional error

constituting a total traveling length of almost 50 meters, seems to be fairly good in
the absence of periodic position correction over landmarks. The reason for this limited
positional error even after traversal of such long distances could be explained by the
way in which global navigation is performed. As in the case of environment exploration,
the robot moves by engaging a wall-following behavior for certain distances to navigate
from node to node. Because no heading information is needed, the error from wheel-
slippage and sensor noise is not allowed to accumulate unboundedly as is the case in
path-integration driven navigation. Even though limited, the average errors listed in
table 4.12 demonstrates the need for additional techniques for localization. Errors of this
magnitude may be tolerable in a system purely meant for global navigation, but it is far
to large for accurate navigation in local maps anchored to global nodes. The reasons for
this are discussed in the next section.

4.3.2 Local Navigation

Local navigation was tested by navigation over a set of three maps created in the exper-
iments described in section 4.2.2. Two best-case maps were used for environment 1 and
2 while an average map was used to navigate environment 3. The errors related to each
map are listed in table 4.13.

The global nodes of the maps were traversed five times per run for five runs, and
every other local map was navigated in their entirety at the two first and the two last
traversals of each map. The reason for this was to test navigation of a local space when
that space was approached from both types of wall-following behaviors. Additionally
testing local navigation at both the first two and the last two traversals was done to test
the algorithms in the presence of varying positional error, as this error was assumed to be

74

smaller at the beginning compared to the error resulting from traveling the full distance
of the runs.

Env. 1 Env 2 Env 3
Positional error in the maps 4 cm 4 cm 11 cm

Table 4.13:

The position of the robot was corrected over landmarks at every global node visit,
regardless of whether a local map was explicitly navigated to test local map navigation
or not.

(a) Position estimate, env. 2 (b) Map orientation and posi-
tion

Figure 4.13: Localization, and local map error, map traversal 1

(a) Position estimate, env. 2 (b) Map orientation and posi-
tion

Figure 4.14: Localization and local map error, map traversal 2

Figure 4.13,4.14 and 4.15 show position updates in a local map at different traversals
of a map over environment 2 in this example.

The figures contain a set of crosses of different colors. The blue colored crosses show
the actual position of a robot as it assumes the transisiton position of the local map.
Ideally, this position should of course be equal to the middle point of the local map, con-
stituting the coordinate of the transit pose. The red colored crosses show the coordinates
retrieved from the perceptual SOMs. These coordinates constitute the updated position
estimate of the robot.

75

(a) Position estimate, env. 2 (b) Map orientation and posi-
tion

Figure 4.15: Localization and local map error, map traversal 4

The arrows in the figures show the heading of the robot as it assumes the transition
pose. In the figures where bi-directional arrows are pictured, the robot approaches the
local map from the opposite direction of that used in map creation, and must thus turn
180◦ to assume the estimated transition pose.

Additionally the local metric maps are shown in the positions and orientations esti-
mated after robot localization is performed.

Successfull runs
Env. 1 Env 2 Env 3

4/5 3/5 0/5

Table 4.14:

Global accuracy
Env. 1 Env 2 Env 3

Approximate actual distance 23.05 m 45.0 m 49.35 m
Best-case distance error 6 cm 4 cm -
Worst-case distance error 11 cm 8 cm -
Average distance error 7 cm 6 cm -

Table 4.15:

Discussion, global and local accuracy The experiments described above provided
ambivalent results. As table 4.14 implies, not all rounds were successfully completed,
in fact none of the maps were successfully completed in all five runs, and none of the
runs over environment 3 were successful. By unsuccessful it is meant that the robot
was completely lost during the run and was unable to complete the run. Table 4.15
shows statistics over the accuracy of the successful runs, in great contrast these statistics
show that the navigation was very accurate during the successful runs, with an average
positional error of just 7 cm and 6 cm. The reason for these apparently mysterious results
can be found by analyzing the position correction function.

76

Local accuracy
Env. 1 Env 2 Env 3

Average pre-correction error 2 cm 2.1 cm -
Average post-correction error 1.0 cm 1.1 cm -
Average angular error 18◦ 21◦ -

Table 4.16:

The position correction function is described in section 3.5.2. When the robot during
global navigation reaches a global node it terminates the wall-following behavior. To
correct its position against the perceptual SOM of the current global node it samples a
four-directional image. This image sample is run over the perceptual SOM, and coor-
dinate associated with the node having the strongest reaction pattern to the sample is
returned to the robot. The robot now believes it is positioned at the returned coordinate
in the local space, and corrects its position by navigating to the center node.

The position correction function takes two critical assumptions; it is assumed that the
robot actually finds itself within the mapped local space it believes it has reached, and
that it is rotated correctly according to the rotation of the local space. The experiments
above, shows that these assumptions cannot be made in all circumstances. Figure 4.16
illustrates a situation in which these assumptions lead a robot astray.

Figure 4.16: Corrupting position estimate

The blue cross in the figure shows the position of the robot as it believes it has reached
a global node. The red cross is the coordinate returned by the position correction function,
it is in this example nearly perfectly accurate. The heading of the robot ΘR however is
very inaccurate compared to the orientation of the local space connected to the global
node the robot is visiting. Because of the faulty heading the robot navigates to a faulty
location instead of to the global node before it rotates itself into its initial heading before
continuing navigation. As the robot is positioned with an error of approximately 7 cm,
in this example, the robot will if behaving ideally, terminate wall-following behavior 7

77

cm before reaching the actual middle position of the next global node. If its heading is
equally faulty at the next node, the new position estimate will most likely be even worse
than the one before.

It is easy to see that a faulty position estimate such as that pictured in figure 4.16 can
throw the robot off course, as the error is propagated to the next position estimation. To
understand why 3 of 5 runs were very accurately completed over environment 2, even with
the existence of a fragile position estimation function, the figures 4.13,4.14 and 4.15 must
be investigated. The figures show that the position estimates are consistently accurate
through the traversals of the map. The heading of the robot is seen to vary slightly from
that of the orientation of the SOMs, but as it is so close to the middle node, the error in
heading seems to close enough. This reflects the accurate positions of the robot at the
end of the navigation process described in table 4.15. The results can be explained by
the way in which position estimates are periodically corrected over landmarks. Positional
error between pairs of global nodes are shown to be small, due to the way in which global
navigation is performed by avoiding the use of a heading value, and as the robots position
is updated at short distance intervals, any positional error due to i.e. wheel slippage or
sensory noise is corrected.

The noise related to the maps must be considered to properly explain the ambiva-
lent results. No runs was successfully completed over environment 3, the map used in
navigation over this environment contained an error of 11 cm, doubly that of the other
maps. Even so, this error will be spread approximately evenly over the map, and as the
accurate results in table 4.15 shows, the position correction function clearly functions well
when initial pose of the robot is fairly close to the middle node or within the map and
in an accurate heading. It can be argued that inconsistent wall-following behavior also
can corrupt the initial pose of a robot The consistency of the two types of wall-following
behaviors can be measured in the way they align. A robot engaging absolutely inverse
wall-following behaviors, left-side and right-side, should have exactly the same position
and exactly the inverse heading at the same point in the environment, depending on the
behavior type used.

(a) (b) (c)

Figure 4.17: Both left-side and right-side exploration paths

Figure 4.17 shows two example mapping runs for each of the three environments, one
explored by engaging left-side behavior and one explored by engaging right side behavior
overlaid each other. The figure clearly illustrates that there is some divergence between

78

the two types of behavior. Especially true is this in ”open corner” situations. This is
situations in which the robot detects no walls in its vicinity. In such situations the robot
will turn gradually to its left or right, depending on the wall-following behavior used.

(a) Left-side behavior en-
gaged

(b) Right-side behavior
engaged

(c) Ideal corner paths (d) Left-side behavior (e) Right-side behavior

Figure 4.18: ”Open corner” situations

Figure 4.18 shows how the robot path varies slightly when navigating an ”open corner”
using the two wall-following behaviors. The lack of consistency in navigation of ”open
corners” could to some degree corrupt the initial heading and consequently the navigation
of local maps. This is because the entry heading of a local map anchored to a global node
is defined by the entry heading of a robot as it created the global node. When navigating
the map engaging another wall-following behavior than that used in map creation, the
heading of the robot as it enters a global node is assumed to be the exact inverse of the
orientation of the local map. Figure 4.18(c) illustrates how an ideal robot path would
look, exhibiting the exact inverse heading during navigation.

Navigation of local maps suffers to a certain degree from the lack of a method of
robot heading correction. With this taken into account, the average initial angular errors
shown in table 4.16 was still small enough for a partially successful navigation of the local
maps. Partially successful because the majority of local space was still covered by the
metric maps, despite a degree of error in map orientation.

The reason no runs were completed successfully over environment 3 is likely to be a
combination of the noise present in the map, inconsistent wall-following behavior and the
length of the map, increasing the chance for a faulty initial pose to be assumed.

4.4 Loop Closing

The loop closing algorithm was tested in the mapping experiments of the three environ-
ments described in section 4.2.2, and produced an additional set of maps. The parameters
for mapping in the loop-closing experiments was thus equal to the parameters used in
standard environment mapping, listed for global mapping in table 4.1 and for local map-
ping in table 4.4.

79

A set of three distance thresholds used in defining the similarity requirement for a loop
to be closed was tested. These thresholds were related to the accuracy of the perceptual
SOMs contained in the initial global node of the map over which testing was done. The
three thresholds were estimated by first deciding the average distance Da between the
visual samples used to train the perceptual SOM and the nodes most responsive to each
visual sample in:

Dm =
k∑
i=1

min(||~ξi − ~wj||), j = 1, 2, 3.., N

Da =
Dm

k

(4.1)

where ~ξi is the i’th input sample, K is the number of input samples, wj is the weight
vector of node j and N is the total number of perceptual nodes in the first global node
of the map.

Threshold 1 T1
Da

2

Threshold 2 T2 Da

Threshold 3 T3 Da ∗ 2

Table 4.17: Distance thresholds used in the loop closing experiments

Figure ?? shows an example of a loop being correctly closed in environment 2. The
loop closing algorithm returns an Euclidian distance below the current threshold, thresh-
old 2 in this example, between the camera image, or input vector, sampled at the location
of the robot and the weight vector of the winning node of the perceptual SOM in the
initial node. Thus, instead of creating a new global node at this location, the previously
create node, marked by a dotted arrow in the figure, is connected to the initial node and
the loop is closed and mapping is terminated.

In figure ?? the robot mistakenly believes it has returned to the initial node as the
Euclidian distance between the visual sample and weight vector of the winning node of
the perceptual SOM in the initial node is below the threshold, threshold 3 in this example.
Consequently, a new global node is not created, but the previously created global node
is wrongly connected to the initial node and mapping is terminated prematurely.

Table 4.18 lists the success rate of the loop-closing algorithm over the three threshold
values.

Discussion, loop-closing The results show that only one of the tested threshold val-
ues, threshold 1, consistently avoids erroneous loop-closing. The loop-closing algorithm
using threshold 2 managed to correctly close the largest number of loops in all environ-
ments. However, it was also shown to consistently perform incorrect loop-closing as seen
in table 4.17(b), while in the case of threshold 3, a large amount of incorrect loop-closing
was observed.

Because of the way in which threshold 1 was estimated to be only half of the average
error of the visual samples that was used to train the perceptual SOM, this threshold was
expected to be to small for operational position estimation. When using this threshold

80

(a) Correct loop-closing (b) Incorrect loop-closing

Figure 4.19: Example correct and incorrect closing of a loop

Threshold 1
Env. 1 Env.t 2 Env. 3

Incorrect loop-closing 0 0 0
Correct loop-closing 1 0 0
No loop-closing 5 6 6

Threshold 2
Env. 1 Env.t 2 Env. 3

Incorrect loop-closing 1 1 2
Correct loop-closing 4 3 2
No loop-closing 1 2 2

Threshold 3
Env. 1 Env.t 2 Env. 3

Incorrect loop-closing 4 5 6
Correct loop-closing 2 1 0
No loop-closing 0 0 0

Table 4.18: Loop closing success rates

81

the visual samples captured at the global nodes must match the weight vectors of the
perceptual nodes of the initial node doubly as precise as the average of the visual sam-
ples over which the nodes were actually tuned, clearly a restrictive limitation assuming
accurately trained perceptual SOMs with weight vectors closely resembling the train-
ing patterns. The results clearly reflect that this is the case in a large majority of the
runs. Interestingly, the results show that one loop was correctly closed using threshold 1.
This can be explained by inaccuracies in the perceptual SOM of the initial node, in turn
increasing all threshold values.

Although further experimentation with other threshold values could produce better
results than those presented here, the results indicates that the method used is to fragile
for operational use. Significantly small threshold values seems to ensure that no loops
are mistakenly closed but it also seems to severely limit the performance of the algo-
rithm as it requires an overly large similarity between a visual sample and the weight
vectors of the initial SOM. Larger thresholds lead to an increase in both incorrect and
correct loop-closing occurrences. The problem is then that of perceptual aliasing, where
physically distinct locations have similar perceptual signatures. One possible method of
improving the robustness of the loop-closing method, without algorithmic change would
be to increase the resolution of the image samples used in perceptual mapping. An in-
creased input pattern resolution would further distinguish perceptually similar locations
in the environment. This would in turn allow for increased threshold values without
an increased risk of incorrect position estimates. An increase in the resolution of visual
samples would however affect the already large time consumption of perceptual SOM
training. Another method could be to diversify the perceptual sampling of local spaces,
by mapping i.e. distance values from distance sensors in addition to visual samples.

A third method could be to extend the existing method by sampling the entire local
space of a potentially existing global node in loop-closing situations. A sampling of the
perceptual space in the entire local space of a potential global node could be compared to
the mapping already existing in local map of the initial global node. Such a comparison
would be more informed than the single sample approach currently used.

82

Chapter 5

Conclusion

I conclude the thesis by providing a summary of the motivations and the central issues
underlying the research done, in section 1. Section 2 reviews the results and summarizes
the key points from the discussion. Finally, in section 2 I review the approach presented
and reiterate how the central elements of the approach answers to the research issues and
hypotheses formulated in the introduction chapter.

5.1 Motivations

This thesis introduced a hybrid robotic mapping system, merging the topological and the
metric paradigm in a single unified representation. Topological and metric approaches
both exhibit favorable attributes for use in autonomous robotic mapping, but few of these
are shared between the two paradigms. The central hypothesis motivating the work in
this thesis was that by combining elements from a metric and a topological representation
in a hybrid representation, the positive attributes of purely metric and purely topological
approaches could be obtained in one system, while the negative attributes traditionally
associated with the two paradigms in isolation could be omitted.

Purely metric approaches represent an environment as a grid of evenly spaced cells.
The cells of the grid represent fractions of coordinate space and are set in an absolute
coordinate system. Purely topological approaches represent an environment as a set
of nodes in a topological graph, and each of these nodes represent a location in the
environment. The nodes of topological maps contain no positional information; instead
the map is defined by how the nodes are connected.

These types of environment representation dictates the strengths and weaknesses tra-
ditionally associated with the two paradigms. Metric approaches provide geometrically
accurate representations of environments. Accuracy is naturally a positive attribute by
itself, but a large accuracy also leads to a large increase in memory usage and computa-
tional efficiency. Conversely, topological approaches do not need to map an environment
in the complete way found in metric approaches, but generally seek to map the overall
topography of an environment. Topological approaches therefore tend to keep compact
representations of the environments. As a result topological approaches demand less
memory than metric approaches as well as being more computationally efficient. These
positive attributes are reflected by the obvious disadvantages associated with a less precise
representation.

83

Another significant factor separating the two paradigms is the way in which navigation
is performed. In metric approaches the prime method of navigation is to retain odometry
data acquired from wheel-encoders and use this information to estimate the pose of the
robot within the map. Because wheel-encoders are subject to noise and imperfect envi-
ronments, the use of odometry data, referred to as dead reckoning, for position estimation
alone will lead to incorrect estimations over time. This is because positions estimated
by virtue of dead-reckoning depend on the string of previous position estimates, and po-
sition error will as a result accumulate unboundedly. Because sensory noise and factors
like wheel-slippage cannot be avoided in practice, odometry based position estimation is
characterized by large errors. Topological map are defined by the nodes and the way in
which they are connected alone. The nodes of a topological map are not bounded in a
coordinate system and do not depend on global consistency as does metric approaches.
Topological systems are characterized by a reluctance to involve metric data in defining
the relation of nodes. Topological maps that avoid the inclusion of a heading value in
navigation do not suffer from accumulated position error.

A hybrid approach using a topological map to represent the overall topography of
the environment and individual local metric maps to represent specific fractions of the
environment was hypothesized to constitute a more robust representation than purely
metric or purely topological approaches in isolation. By combining the paradigms, the
robust and compact natures of topological maps are proposed to provide a robust and
computationally efficient global representation, while local metric maps of limited size
provide metric accuracy without introducing significant accumulated positional error.

5.2 Experimental Results

The approach was tested thourhougly in a range of simulations. The different elements
constituting the complete system were tested in isolation and in concert over a range
of experiments. The approach was tested on a simulated e-puck in the Webots simula-
tor, a 3d simulator supporting the adding of Gaussian sensory noise to provide realistic
simulation.

In a first range of experiments the global mapping part of the system was tested in
isolation. The algorithm was tested in a series of runs over the three environments. The
robot also estimated its position by path-integration in all the runs; this was performed
so that the position error resulting from path-integration could be compared to the error
estimates of the global mapping algorithm.

The results from the first experiments showed that the global mapping algorithm
was significantly more accurate than the positions estimated by path-integration, though
some error was observed. This error was caused by noise from the wheel-encoders used
to estimate the distance between global nodes.

In the following experiments the global mapping algorithm was tested again, but this
time local maps were created as well. The approximate angular and positional error from
the sampling of local maps was observed to be negligible. The error after sampling of
local maps was expected to be limited due to the small size of local maps, but the results
exceeded expectations. The reason for the small error is likely a combination of the local
spaces’ limited size, but also due to the way in which path-integration is performed in

84

local spaces by moving from node to node in straight lines, and only rotating in place.
This method of path-integration is more resistant than when an arbitrary path is followed,
and this seems to have had a positive effect on the navigation in local maps.

The impact of local mapping on the global map accuracy was shown to be negligible,
as the errors were very similar, and even better in some cases, than that estimated in the
experiments were the global mapping algorithm was tested in isolation. The reason for
this small impact can be explained by the accurate performance of local map navigation.

The perceptual and metric SOMs of the local maps were trained in varying configura-
tions, both of which produced fairly accurately tuned SOMs. The nodes of the perceptual
SOMs was consistently associated with correct coordinates, as visual samples captures
at physically close locations in the local maps stimulated the same or adjacent nodes
in the perceptual SOMs. The use of SOMs to both map the coordinate space and the
perceptual space was thus showed to work well in that regard. The metric SOMs were
instantly trained, but the perceptual SOMs spent almost 10 minutes adjusting in each
local space. The reason for this is explained by the large number of weights in each node
of the perceptual SOM, increasing the time used in the training of perceptual SOMs
significantly.

A third series of experiments tested robot navigation over maps created in the exper-
iments described above. To test the navigation algorithms properly maps for two of the
environments was chosen that only were shown to inhabit small errors from the mapping
process itself, while a map having an averagely large error was chosen for the last and
biggest environment. This was done to test the navigation algorithm over maps with a
small amount of noise but also over a map with a considerable amount of noise.

The experiments were first run over the global navigational algorithm in isolation. The
positional error at the end of the runs was shown to be significant, but surprisingly small
in light of the distances traveled with an average positional error of about 40 cm. The
same experiments were run again, but this time the position of the robot was corrected
against the perceptual SOMs of the global nodes when these were encountered.

The results from these runs were ambivalent. For the two first maps with the smallest
inherent errors a majority of the runs was performed with very good accuracy, while a
few runs did not complete successfully. This was also the case for the largest map with
the largest inherent error. It was observed that position correction over perceptual SOMs
alone was not enough to accurately estimate the position of a robot in all scenarios, as
erroneous initial headings of the robot combined with significantly large errors in the
initial positions of the robot could lead to a propagation of error, quickly leading to the
robot getting lost.

In a final range of experiments the loop-closing abilities of the robot was tested, but
the results showed inconsistent loop-closing performance, implying that the loop-closing
method is too simple to operate functionally.

5.3 The Hybrid Approach

The approach presented in this thesis use a topological map to represent the overall
topography of an environment while metric maps are anchored to locations in the topo-
logical map. A topological map used as the global map is favorable for several factors.

85

A global topological map allows for a compact representation of the overall environment,
compared to a metric representation. Additionally, topological maps allows for the inclu-
sion of non-metric data in navigation. By including non-metric data, navigation need not
depend on dead-reckoning, and accumulated positional error is avoided. This is ensured
by relating the nodes of the topological map with wall-following behaviors and metric
distance values. As no angular heading value is used in global navigation, the global
topological map can be expected to provide robust navigation.

The topological map was contained in a dynamical graph. An exploration strategy
employing a reactive wall-following behavior was implemented. This wall-following be-
havior was also a vital part of the global map itself, as wall-following behavior was used
in concert with a distance metric to define links between the topological nodes. A re-
active wall-following behavior was considered to be important for robust navigation of
the global map. This was justified by the consistency expected from a simple reactive
behavior.

Local maps were implemented, consisting of a pair of self-organizing maps (SOMs). A
metric SOM was implemented to map the unoccupied space surrounding a global node.
The metric SOM was used to approximate the metric local space. A SOM was used
because of the unsupervised learning process employed and the noise tolerance expected.
The unsupervised training process allows SOMs to produce maps that retain the topog-
raphy of the supplied training patterns. The unsupervised training allows an accurate
mapping of the coordinate space surrounding global nodes without the need for any in-
tervention by a human operator, ensuring robot autonomy and robustness. Additionally
SOMs trained over coordinate samples could be used directly in later navigation of the
local space and path finding was easily done because of the topological properties of the
SOM.

Perceptual SOMs were used to map the perceptual space of local maps in the form
of camera images. As with the metric SOMs, this allowed an unsupervised topogra-
phy preserving mapping of perceptual space. After training these maps exhibit reaction
patterns when supplied with input samples. The image samples were presented to the
SOMs after training was completed, and the most reactionary nodes of the SOM were
associated with the coordinates at which the samples were captured in the metric map.
The perceptual SOM therefore could be used for periodical position correction in later
navigation, adding to the robustness of both local map navigation and global navigation
as errors in the distance values and wall-following behaviors could be corrected at short
distance intervals, ensuring that no error was allowed to accumulate in any direction.

The implementation of the hybrid topological and metric approach presented in this
system was motivated by the potential of merging the topological and the metric paradigm
into one representation to draw on the strengths and lessen the weaknesses of the repre-
sentations in isolation.

The global topological map provided a very compact presentation, mapping the to-
pography of the environment. Self-organizing maps proved to be very well suited for both
metric and perceptual mapping. The open space surrounding global nodes were consis-
tently mapped with great accuracy. The topology preserving nature of SOMs provided
maps suited for navigation. The perceptual SOMs showed great robustness in operation,
consistently mapping the perceptual space accurately.

86

Bibliography

[1] Elfes, A. (1987), ”Sonar-based real-world mapping and navigation”, IEEE Journal of
Robotics and Automation, RA-3(3):249 - 265, June 1987

[2] Elfes, A. (1989), ”Occupancy Grids: A Probabilistic Framework for Robot Perception
and Navigation”, PhD thesis, Department of Electrical and Computer Engineering,
Carnegie Mellon University, 1989.

[3] Moravec. H.P. (1988), ”Sensor fusion in certainty grids for mobile robots”, . AI Mag-
azine, 9(2):61-74, 1988.

[4] R. Chatila and J.-P. Laumond (1985), ”Position referencing and consistent world mod-
eling for mobile robots”, In Proceedings of the 1985 IEEE International Conference
on Robotics and Automation, 1985.

[5] M. J.Mataric (1990), ”A distributed model for mobile robot environment-learning
and navigation”, Masters thesis,MIT, Cambridge, MA, January 1990. also available
as MIT AI Lab Tech Report AITR-1228.

[6] B. Kuipers and Y.T. Byun (1991), ”A robot exploration and mapping strategy based
on a semantic hierarchy of spatial representations”, Journal of Robotics and Au-
tonomous Systems, 8:47-63, 1991.

[7] Choset, H. (1996), ”Sensor Based Motion Planning: The Hierarchical Generalized
Voronoi Graph.”, PhD thesis, California Institute of Technology, 1996.

[8] Choset, H and Burdick, J.W. (1996), ”Sensor Based Planning: The Hierarhical Gener-
alized Voronoi Graph.”, In Proc. Workshop on Algorithmic Foundations of Robotics,
Toulouse, France, 1996.

[9] S. Engelson and D. McDermott (1992), ”Error correction in mobile robot map learn-
ing”, . In Proceedings of the 1992 IEEE International Conference on Robotics and
Automation, pages 2555-2560, Nice, France, May 1992.

[10] D. Kortenkamp and T.Weymouth (1994), ”Topological mapping for mobile robots
using a combination of sonar and vision sensing.”, In Proceedings of the Twelfth
National Conference on Articial Intelligence, pages 979-984,Menlo Park, July 1994.
AAAI, AAAI Press/MIT Press.

[11] D. Pierce and B. Kuipers (1994), ”Learning to explore and build maps.”, In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence, pages 1264-1271,
Menlo Park, July 1994. AAAI, AAAI Press/MIT Press.

87

[12] H. Shatkay and L. Kaelbling (1997), ”Learning topological maps with weak local
odometric information”, In Proceedings of IJCAI-97. IJCAI, Inc., 1997.

[13] H. Shatkay (1998), ”Learning Models for Robot Navigation.”, PhD thesis, Computer
Science Department, Brown University, Providence, RI, 1998.

[14] B. Yamauchi and R. Beer (1996), ”learning for navigation in dynamic environ-
ments.”, IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics,
Special Issue on Learning Autonomous Robots, 1996.

[15] U.R. Zimmer (1996), ”Robust world-modeling and navigation in a real world. ”,
Neurocomputing, 13(2-4), 1996.

[16] J.A. Castellanos and J.D. Tardos (2000), ”Mobile Robot Localization and Map
Building: A Multisensor Fusion Approach. ”, Kluwer Academic Publishers, Boston,
MA, 2000.

[17] M. Csorba (1997), ”Simultaneous Localisation and Map Building.”, PhD thesis,
University of Oxford, 1997.

[18] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba (2001),
” A solution to the simultaneous localization and map building (SLAM) problem.”,
IEEE Transactions of Robotics and Automation, 2001.

[19] J. Guivant and E. Nebot (2001), ”Optimization of the simultaneous localization and
map building algorithm for real time implementation”, IEEE Transaction of Robotic
and Automation, May 2001.

[20] J.J. Leonard, H.F. Durrant-Whyte, and I.J. Cox. (1992), ”Dynamic map building for
an autonomous mobile robot.”, . International Journal of Robotics Research, 11(4):89-
96, 1992.

[21] P. Newman (2000), ”On the Structure and Solution of the Simultaneous Localisa-
tion and Map Building Problem”, PhD thesis, Australian Centre for Field Robotics,
University of Sydney, Sydney, Australia, 2000.

[22] S.Williams, G. Dissanayake, and H.F. Durrant-Whyte. (2001), ”Towards terrain-
aided navigation for underwater robotics.”, Advanced Robotics, 15(5), 2001.

[23] F. Dellaert, S.M. Seitz, C. Thorpe, and S. Thrun. (2000), ”EM, MCMC, and chain
?ipping for structure from motion with unknown correspondence.”, Machine Learning,
2000.

[24] S. Thrun (2001), ”A probabilistic online mapping algorithm for teams of mobile
robots.”, International Journal of Robotics Research, 20(5):335-363, 2001.

[25] S. Thrun, D. Fox, and W. Burgard (1998), ”A probabilistic approach to concurrent
mapping and localization for mobile robots.”, Machine Learning, 31:29-53, 1998. also
appeared in Autonomous Robots 5, 253-271 (joint issue).

88

[26] C. Owen and U. Nehmzow, (1996), ”Route Learning in Mobile Robots through
Self-Organisation”, Published by IEEE Computer Society, Proc. Eurobot 96. Kaiser-
slautern 1996.

[27] Duckett and Nehmzow (1998), ”Mobile robot self-localisation and measurement of
performance in middle scale environments. ”, Robotics and Autonomous Systems,
24(1-2):57-69.

[28] Nehmzow, U. and Owen, C. (2000), ”Robot navigation in the real world: Experi-
ments with Manchesters FortyTwo in unmodified, large environments”, In Robotics
and Autonomous Systems, 33,2000.

[29] M. Mataric (1991), ”Navigating with a rat brain: A neurobiologically-Inspired Model
for Robot spatial representation”, in Jean-Arcady Meyer and Stuart Wilson (eds.),
From Animals to Animats, MIT Press 1991.

[30] N. Burgess And J. O’Keefe (1996), ”Neuronal computations underlying the firing of
place cells and their role in navigation”, Hippocampus 7:749-762(1996).

[31] N. Burgess and J. O’Keefe and M. Recce (1993), ”Using hippocampal ’place cells’ for
navigation, exploiting phase coding”, in Hanson, Giles and Cowan (eds.), Advances
in neural information processing systems 5, Morgan Kaufmann 1993.

[32] U. Nehmzow and T. Smithers (1991), ”Mapbuilding using Self-organizing Network”,
Jean-Arcady Meyer and Stewart Wilson (eds.) From Animals to Animats, MIT Press,
Cambridge Mass and London England, 1991,pp. 96-104.

[33] Tomatis, N., I. Nourbakhsh, and R. Siegwart (2003), ”Hybrid simultaneous local-
ization and map building: a natural integration of topological and metric”, Robotics
and Autonomous Systems, 44:3-14.

[34] Hafner V.V. (2000), ”Learning Places in Newly Explored Environments”, in Meyer,
Berthoz, Floreano, Roitblat and Wilson (Eds.), SAB2000 Proceedings Supplement
Book, Publication of the International Society for Adaptive Behavior, Honolulu.

[35] Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., and Teller, S (2003),
”An Atlas framework for scalable mapping.”, in Proceedings International conference
on Robotics and Automation. 2003.

[36] A. Tapus, R. Siegwart (2003), ”Incremental Robot Mapping with Fingerprints of
Places”

[37] Yeap, W.K. and Jefferies, M.E. (1999), ”Computing a representation of the local
environment. ”, Artificial Intelligence, 1999. 107. 265-301.

[38] Yeap, W.K. (1988), ”Towards a computational theory of cognitive maps.”, Artificial
Intelligence 1988. 34. 297-360.

[39] Chown, E., Chaplain, S., and Kortenkamp, D., (1995), ”Prototypes, location, and
associative network (PLAN): Towards a unified theory of cognitive mapping.”, Cog-
nitive Science, 1995. 19. 1-51.

89

[40] OKeefe and Nadel (1978), ”The Hippocampus as a Cognitive Map”, Oxford Univer-
sity Press

[41] J. Borenstein and Y. Koren (1991), ”The vector ?eld histogram - fast obstacle avoid-
ance for mobile robots.”, IEEE Journal of Robotics and Automation, 7(3):278-288,
June 1991.

[42] J. Buhmann, W. Burgard, A.B. Cremers, D. Fox, T. Hofmann, F. Schneider, J.
Strikos, and S. Thrun. (1995), ”The mobile robot Rhino.”, AI Magazine, 16(1), 1995

[43] J. L. Crowley (1985), ”Navigation for an intelligent mobile robot”, IEEE Journal of
Robotics and Automation 1985.

[44] J.J.Leonard, H.F. Durrant-Whyte (1989), ”A Unified Approach to Mobile-Robot
Navigation”, Department of Engineering Science, University of Oxford, UK., Septem-
ber 28 1989.

[45] A.P. Dempster, A.N. Laird, and D.B. Rubin (1977), ”Maximum likelihood from
incomplete data via the EM algorithm.”, Journal of the Royal Statistical Society,
Series B, 39(1):138, 1977

[46] Thrun, S (1998), ”Learning metric-topological maps for indoor mobile robot navi-
gation”, In Artificial Intelligence 99(1):21-71.

[47] Taylor C. J. and Kriegman D.J. (1998), ”Vision-Based Motion Planning and Explo-
ration algorithms for Mobile Robots”, IEEE Transactions on Robotics and Automa-
tion, Vol. 14, No 3, June 1998, pp 417-426.

[48] J.A. Castellanos, J.D. Tards, et al (1997), ”Building a global map of the environment
of a mobile robot: the importance of correlations”, in: Proceedings of the IEEE
International Conference on Robotics and Automation, Albuquerque, 1997.

[49] OKeefe J. (1976), ” Place units in the hippocampus of freely moving rat”, Experi-
mental Neurology, 51:78-109.

[50] Rosen, C. A. and Nilsson, N. J (1966), ”Application Of Intelligent Automata to
Reconnaissance”, Technical Report . Stanford Research Institute, November 1966.

[51] Brooks, R. (1986), ”A robust layered control system for a mobile robot”, Robotics
and Automation, IEEE Journal of [legacy, pre− 1988] 2 (1): 14:23.

[52] Wooldridge M (2004), ”An introduction to MultiAgent Systems”, 5:89-104.

[53] S. Thrun (2002), ”Robotic Mapping: A Survey”

[54] H. Baltzakis, P. Trahanias (2002), ”Hybrid mobile robot localization using switch-
ing state-space models”, in: Proceedings of the IEEE International Conference on
Robotics and Automation, Washington, DC, USA, 2002

[55] T. Kohonen (1988), ”Self Organisation and Associative Memory.” Springer Verlag,
Berlin, Heidelberg, 1988

90

[56] Hart, P.E. Nilsson, N. J. Raphael, B (1972), ”A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”, SIGART Newsletter 37: 28:29.

[57] A. Kurz (1996), ”Constructing maps for mobile robot navigation based on ultrasonic
range data”, IEEE Trans Systems, Man and Cybernetics B, Col 26 No 2 1996

[58] Thrun, A. Bcken (1996), ”ntegrating grid-based and topological maps for mobile
robot navigation”, in: Proceedings of the National Conference on Artificial Intelli-
gence, Portland 1996

[59] Huang, W. H. and Beevers, K. R (2004), ”Topological mapping with sensing-limited
robots”, proceedings of the 6th International Workshop on the Algorithmic Founda-
tions of Robotics (WAFR 2004), Utrecht, the Netherlands, July 11:13, pp. 367:382.

[60] I. Nourbakhsh, R. Powers and S. Birchfield (1995), ”DERVISH: An Office-Navigaing
Robot”, , Artificial Intelligence Magazine, 16(2). 1995

[61] R. Simmons and S. Koenig (1995), ”Probabilistic Robot Navigation in Partially
Observable Environments”, Proc. of the International Joint Conference on Artificial
Intelligence. 1995.

[62] M.E. Lpez et al (2003), ”Visually Augmented POMDP for Indoor Robot Naviga-
tion”, rom Proceeding (378) Applied Informatics, 2003

91

Appendix A

Algorithms

A.1 Path-integration algorithm

Algorithm 2 Path-integration algorithm

heading = 0
xPosition = 0
yPosition = 0
previousLeftSteps = 0
previousRightSteps = 0
while robot moving do
deltaLeft = encoderLeftSteps− previousLeftSteps
deltaRight = encodeRightSteps− previousRightSteps
deltaDistance = 0.5 ∗ (deltaLeft+ deltaRight) ∗ distancePrStep
deltaX = deltaDistance ∗ cosheading
deltaY = deltaDistance ∗ sinheading
deltaHeading = (deltaRight− deltaLeft) ∗ radiansPerStep
xPosition+ = deltaX
yPosition+ = deltaY
heading+ = deltaHeading
previousLeftSteps = encoderLeftSteps
previousRightSteps = encoderRightSteps

end while

A.2 A* algorithm

A.3 Boundary-tracing algorithm

92

Algorithm 3 A*(startNode,goalNode)

closedSet = empty set
openSet = startNode
gScore[startNode] = 0
hScore[startNode] = heuristicDistance(startNode,goalNode)
gScore[startNode] = hScore[startNode]
while openSet not empty do

x = node in openSet with lowest fScore
if x=goalNode then

return generatePath(historicPath,goalNode)
end if
remove x from openSet
add x to closedSet
for n in neighboringNodes of x do

if n found in closedSet then
continue

end if
nGScore = gScore[x] + heuristicDistance(x,n)
nScoreBest = false
if n not in openSet then

add n to openSet
hScore[n] = heuristicDistance(n,goalNode)
nScoreBest = true

else if nGScore ¡ gScore[n] then
nScoreBest = true

end if
if nScoreBest = true then

historicPath[n] = x
gSscore[n] = nGScore
fScore[n] = gScore[n] + hScore[n]

end if
end for
return no path exists

end while

Algorithm 4 generatePath(historicPath,currentNode)

if historicPath[currentNode] is set then
p = generatePath(historicPath,historicPath[currentNode])
return (p + currentNode)

else
return empty path

end if

93

Algorithm 5 Boundary tracing(wall-following type)

weightsRight = [10, 10, 5, 0, 0,−5,−10,−10]
weightsLeft = [−10,−10,−5, 0, 0, 5, 10, 10]
biasSpeed = 100
wallClose = FALSE
for i = 0 to 7 do

if distance[i] > threshold then
wallClose = TRUE

end if
end for
if wallClose == TRUE then

if follow right wall then
weightsLeft[0] = −10
weightsLeft[7] = −10
weightsRight[0] = 10
weightsRight[7] = 10
if distance[2] >300 then
distance[1]− = 100
distance[2]− = 600
distance[3]− = 100

end if
else if follow left wall then
weightsLeft[0] = 10
weightsLeft[7] = 10
weightsRight[0] = −10
weightsRight[7] = −10
if distance[5] > 300 then
distance[4]− = 100
distance[5]− = 600
distance[6]− = 100

end if
end if
leftSpeed = biasSpeed
rightSpeed = biasSpeed
for i = 0 to 7 do

leftSpeed += weightsLeft[i] ∗ distance[i] >> 4
rightSpeed += weightsRight[i] ∗ distance[i] >> 4

end for
else

if follow right wall then
leftSpeed=biasSpeed
rightSpeed=biasSpeed/2

else if follow left wall then
leftSpeed=biasSpeed/2
rightSpeed=biasSpeed

end if
end if

94

	Title Page
	masteroppgave.pdf

