
June 2009
Guttorm Sindre, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Engineering secure software
Investigating the relationship between requirements and design

Amund Mortensen

Problem description

The need for integrating security concerns in mainstream software engi-
neering has received increasing attention lately. Several approaches have
emerged that try to include security threats in modeling techniques that
were previously meant for general systems modeling rather than security
modeling. On the requirements level, some examples are abuse cases and
misuse cases, i* / Secure Tropos, and abuse frames, and there is also re-
search into taxonomies of security-related requirements which can be used
for instance as checklists in the specification phase. On the design level,
UMLsec is an adaptation of UML targeted specifically towards security, and
security patterns are design patterns typically addressing various security
goals.

The objective of this project is to look into the transition between require-
ments and design in more detail: given requirements models in one or more
of the above-mentioned languages, possibly supplemented with plain textual
security requirements, what guidelines can be given for choosing an appro-
priate design, for instance in the form of security patterns? Two possible
outcomes can be identified: (1) a systematic description of the guidelines,
and (2) if time allows, the implementation of the guidelines in a tool provid-
ing semi-automatic assistance to the software engineer in the selection and
elaboration of a design given certain security requirements.

i

Preface

This thesis is the result of one year of work, and concludes the requirements
for a Master’s degree in informatics at the Norwegian University of Science
and Technology (NTNU). The assignment was given by the department
of Computer and Information Science in cooperation with SINTEF. The
supervisors of the thesis were Per H̊akon Meland from SINTEF and Guttorm
Sindre from NTNU.

The pursuit of a master’s degree has been a journey – a chapter in life
that soon is over. Thorough these years of education, I’ve experienced and
learned a lot and I would not trade it for anything. I would like to thanks
NTNU for the wonderful time, and the opportunity to take parts of my
master degree in Singapore where I had an incredible time and meet many
lovely people.

I would like to thank my supervisors for their valuable input and sharing of
knowledge. Without them, this master thesis would not be the same.

I would also like to thank my friends and family for their help and support
during my education. A special thanks to the guys at Gribb for all their
help and contribution, thanks for a wonderful time!

Last, but not least, a special thanks to my cohabitant Mari Harby for be-
lieving in me and having the patient and tolerance thorough these years.

iii

Abstract

Software security costs the society great deal of money each year. Consider-
able amount of research has been conducted on the subject. The conclusion
has been that it values to start early and doing it right the first time.

As it values to focus on security at an early stage, we want to investigate the
transition between requirement and design in more detail. How can infor-
mation from the requirement phase be used more substantially to produce
guidelines when designing the system.

Security requirements are one way to define what security measures a system
should have. As poor requirement engineering costs a great deal of money,
it values to do it right the first time, and create requirements with high
quality.

Pattern is one way to transfer expert knowledge. In this master thesis,
we are investigating the theory that patterns could be used when eliciting
security requirements by utilizing reusable requirements. Also, to employ
patterns that way, a mapping to Security Design Patterns (SDPs) could be
created. The mapping could be used as guidelines later in the design phase.

To test the theory, we implemented a tool as a web application. We con-
ducted an experiment to investigate the hypotheses and how it performed
with users in a controlled environment.

From the experiment we concluded that the theory is plausible, but more
research have to be conducted to investigate how useful it is.

Keywords: Software security, Requirement and design phase, Reusable se-
curity requirements, Patterns, Security requirements, Security design, Tool.

v

Contents

Problem description i

Preface iii

Abstract v

1 Introduction 1

1.1 Background and Motivation 1

1.2 Goal . 3

1.3 Approach . 4

1.4 Outline of the Document . 5

2 Research Method 7

2.1 Theory . 7

2.1.1 The Research Process 7

2.1.2 Philosophical Paradigms 8

2.1.3 Strategies . 9

2.1.4 Data Generation and Analysis 13

2.2 Our Research Process . 15

2.2.1 Literature Review . 16

vii

2.2.2 Development of the Tool 17

2.2.3 Data Collection . 20

2.2.4 Data Analysis . 25

3 Literature Review 29

3.1 Planning and Conducting Secure Software Development . . . 29

3.1.1 Software Engineering Methodologies 30

3.1.2 Secure Software Engineering Methodologies 31

3.2 Security Requirements . 36

3.2.1 Difficulties . 36

3.2.2 Approaches to Security Requirement Eliciting 37

3.2.3 Reusable Security Requirements 39

3.2.4 Security Requirement Repository 39

3.3 Security Modeling Methods 41

3.3.1 Misuse and Abuse Cases 42

3.3.2 Attack Trees . 44

3.3.3 Secure Tropos . 45

3.3.4 UMLsec and SecureUML 47

3.4 Security Patterns . 48

3.4.1 Future of Security Patterns 49

3.4.2 How to Use Security Patterns 51

3.4.3 Pattern Structure . 52

3.4.4 Security Pattern Repository 53

4 Description of the Tool 55

4.1 Requirements . 55

4.2 Design and Implementation 58

4.2.1 Authentication . 59

4.2.2 Security Requirement Eliciting 59

4.2.3 Private Security Requirements 70

4.2.4 Project Administration 74

4.2.5 Tool Administration 76

4.3 Validation of Completeness 79

5 Results 81

5.1 Participants Background . 81

5.2 Security Coverage . 83

5.2.1 Security Requirements 84

5.2.2 Security Design Patterns 87

5.3 Data Quality . 90

5.4 Participants Experience From the Test 93

5.4.1 Quality of Data . 94

5.4.2 Confidence in Method 95

5.4.3 Eliciting Speed . 95

5.4.4 Impression of Tool . 95

6 Evaluation and Discussion 97

6.1 Discussion of The Results . 97

6.1.1 Participants Background 97

6.1.2 Security Coverage Test 98

6.1.3 Data Quality Test . 101

6.1.4 Participants Experience Test 102

6.2 Hypotheses . 103

6.3 Learning Effect . 104

7 Conclusion 107

7.1 Contribution . 108

7.2 Further work . 109

References 111

Appendices 119

A Terminology 119

B Acronyms 121

C User Tests 123

C.1 Description of Case 1 . 123

C.2 Description of Case 2 . 125

C.3 Security Aspects for Case 1 127

C.4 Security Aspects for Case 2 128

D Questionnaires 131

D.1 Background Information . 131

D.2 Experience . 135

E Application Data 141

E.1 Communication . 141

E.2 Graphic Support . 143

E.3 User Data Protection . 144

E.4 Identification and Authentication 159

E.5 Security Management . 166

E.6 Privacy . 177

E.7 Protection of the Security Function 180

E.8 Resource Utilisation . 187

E.9 System Access . 188

E.10 Security Audit . 193

E.11 Trusted path/channels . 198

List of Figures

1.1 Average losses caused by computer security incidents in the
resent years [46]. 2

2.1 Model of the research process [44] 8

2.2 How we planned the research process. 15

2.3 The data model. It shows how we connected the Security
Requirement Patterns (SRPs) and SDPs 18

2.4 How we designed the layout of the experiment after the Latin
Square Design. 21

2.5 The figure outlines Technology Acceptance Model (TAM) [18]. 23

2.6 The research setting . 24

3.1 The phases in the waterfall method. 31

3.2 How the security touchpoints incorporate with the develop-
ment life cycle . 34

3.3 Example of a misuse case diagram for an e-shop [54]. 43

3.4 Example of an attack tree of a bank safe [49] 45

3.5 Example of modeling delegation of trust with i* using Secure
Tropos[22] . 47

3.6 Number of security patterns by publication year [26] 50

4.1 A high-level architecture of the tool. 58

xiii

4.2 The figure shows how the login page looks. This is the first
page a user will se when entering the tool, and all functionality
is hidden until the user is authenticated. 60

4.3 The figure shows how new users can register a user account.
The tool is publicly available, and anyone can register and
test the tool. 61

4.4 If the users forgets their password, it can be reset with the
built in reseting mechanism. 62

4.5 The figure presents how the first page looks when a user
has logged in. The left list represents categories which are
browsable by clicking the “plus” button on them. Informa-
tion about the content is presented on the right side. 64

4.6 The figure shows a search in progress. As the user is typing,
the result list will automatically update. The result contains
different types of content because we have enabled more filters. 65

4.7 The search filter is used to filter the content that is presented
by the tool. The filter is located at point 2 in Figure 4.5.
Note that the colors, also represent the type of content in the
search result list. By default, only the security requirement
filter is checked to make sure the users are not overwhelmed
by all the content. 66

4.8 The figure shows how it is possible to browse for content. By
using the browse button(“plus” sign)in the top left of the con-
tent, new content will emerge based on what filters that are
activated. The checkbox next to the browse button, represent
that a pattern can be added to the private list of requirements. 66

4.9 By browsing the content, it is possible to find other patterns
that resemble, or have a relation to the current one. In Fig-
ure (a), the design patterns that are mapped to the security
requirement “Anonymity” are shown. Last, in Figure (b),
how other requirement patterns can be found by using design
patterns are shown. For this to be possible, it is important
that the corresponding filters are enabled. 67

4.10 An example of how a Security Requirement Pattern is pre-
sented when it is selected in the list(point 4 in Figure 4.5). . 68

4.11 An example of how a category is presented when it is selected
in the list(point 4 in Figure 4.5). 68

4.12 An example of how an SDP is presented when it is selected
in the list(point 4 in Figure 4.5). 69

4.13 The figure displays the page that represents the active project.
The left list is the security requirements the user has selected.
The list represents the patterns as well. A requirement is ac-
tually a pattern. By selecting one of the requirements, the
pattern information will be revealed on the right side of the
list. The text in each requirement is based on the examples
in a pattern. By selecting one of the examples, the require-
ment will be changed to that example. New examples can be
created or changed to the users liking. 72

4.14 The figure shows how changes can be done with a SRP. When
the pattern is saved, the pattern will become a private SRP
that only the user has access to. The requirement will be
searchable and could be used in other projects. 73

4.15 The figure shows how projects are managed. A user can have
many projects, and a project can include many requirements.
The active project(point 1 in the figure), is the project which
is enabled in the top pane. New SRPs will be added to the
active project. 75

4.16 The figure shows how patterns and their mapping are admin-
istrated. Point 4 in the figure, shows how a new mapping can
be added by suppling a pattern identification number. 77

4.17 The figure shows how administrators can administrate users.
In the figure, users from the user test are listed, and all the
users are deactivated because the test is finished and the par-
ticipants should not have the possibility to login. If they want,
they could create another user to test the live demonstration
of the tool. 78

5.1 Education level of the participants. 82

5.2 Months of work experience with Information Technology. . . 82

5.3 How the participants see their own experience in software
development and software security. 83

5.4 What security aspects each method covered in Case 1 85

5.5 What security aspects each method covered in Case 2 86

5.6 The coverage result in percentage from each participant. . . . 87

5.7 SDPs that were chosen in Case 1 89

5.8 SDPs that were chosen in Case 2 91

5.9 The quality of the security requirements for each case using
the manual method. 92

5.10 The security requirement quality for each case listed by par-
ticipant. 93

5.11 What impression the participants got from the tool. 95

List of Tables

1.1 The hypotheses about the usefulness and validity of the the-
ory. 5

3.1 The relation between security methodologies and security re-
quirement eliciting techniques [56]. 38

4.1 Status of the functional requirements. 79

5.1 Statistics of coverage with security requirements in Case 1. . 84

5.2 Statistics of coverage with security requirements in Case 2. . 84

5.3 SDPs and their corresponding abbreviation. 88

5.4 The popularity of the SDPs using the tool method in Case 1 88

5.5 The popularity of the SDPs using the manual method in Case 1 90

5.6 The popularity of the SDPs using the tool method in Case 2 90

5.7 The popularity of the SDPs using the manual method in Case 2 90

5.8 Data from the participants experience after Case 1. 94

5.9 Data from the participants experience after Case 2. 94

6.1 Recapitulation of the hypotheses listed in Table 1.1 98

xvii

Chapter 1

Introduction

In this chapter we introduce this master thesis and presents the goal with
the research, and the approach to accomplish them.

Thorough this thesis some terminology specific to software security are used.
A short description of the most used once are listed in Appendix A and could
be employed as a reference when necessary. Also, Appendix B includes a
list of the acronyms used.

First an introduction of the motivation with this thesis is introduced in
Section 1.1. Next, in Section 1.2 our goal with the research is presented.
Further, in Section 1.3 our approach to accomplish the goals is outlined. At
last, in Section 1.4 we present the outline of the rest of the report.

1.1 Background and Motivation

Earlier, security was thought of as a network problem where firewalls and
system administration were the solution. Still when it came clear that this
was not enough, software security was treated as an aftertouch with low
priority. The result was patched up systems with high maintenance costs
[27].

Software security is a hot topic these days as the problem has grown with
time [46]. Figure 1.1 lists the costs of various computer security incidents
in the resent years. From the figure, a peak from 2000 to 2003 can be seen.
Since then, the costs appear to have been lowered and gotten more stable
[46].

1

2 CHAPTER 1. INTRODUCTION

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

$'''" %!!!" %!!$" %!!%" %!!&" %!!#" %!!(" %!!)" %!!*"

!"#$%&#'()**#*'

+,--.-"/0"12,3-405-"

,6"7,8849-"

Figure 1.1: Average losses caused by computer security incidents in the
resent years [46].

Because the damage costs look more stable these days, it is tempting to
conclude that we have learned and are taking enough measures as it is. Still
according to the survey by the Computer Security Institute, the total cost
of computer security incidents in 2008 were as high as 289 000 US dollars
per respondent [46]. The number is frightenly high, and we could save the
society a great deal if we could lower it.

The survey by the Computer Security Institute lists four categories that have
the highest incidence reports [46]. The four categories are viruses, insider
abuse, laptop theft and unauthorized access to systems. It has been brought
to light that few developers follow security coding practices to produce more
secure code, which implies that the number of flaws grows in the same phase
as the code base [27, 33]. Some of the categories listed by the survey are
software related. This indicates that by creating more secure software, we
could lower the number of incidents in these categories.

How can we create more secure software? For starters, it pays of to do
things right the first time [35]. Security awareness is also important. A
major factor in the security unawareness problem is a lack of focus in the
students education. Howard [27] has identified that the education has more
focus on preventive mechanisms, than looking at “security as threats”.

Software is both costly and difficult to correct, which also indicates that we
should start as early as possible to incorporate security into the development
cycle. Studies have shown that reworking requirements, design and coding
defects on most software development projects costs 40 to 50 percent of total
project effort [36]. Also, as much as 25 to 40 percent of the budget goes to

1.2. GOAL 3

requirement defects [36]. Mead and Stehney [38] have also identified that
requirement problems are a significant cause of why projects fails.

Also, a gap has been identified between the security requirement and design
phase. Several approaches that were previously meant as a general modeling
techniques have been altered to include security information. The problem is
that developers are primarily concerned with building a system that works.
The non-functional security requirements are not taken seriously, and the
security experts and developers are only getting frustrated at each other.
The problem lies in the transition between the security requirement and
design phase, where the security information gathered in the first phase is
either lost, or the information is difficult to utilize [15, 42].

As developers and security experts have different goals and prioritization, we
need a way to transfer knowledge between security experts and developers
in an easy fashion. Patterns are a way of dealing with reusable solutions to
a common problem, which means that novices can benefit from know-how
and skills of experts [26, 51]. Also, the structure of a pattern is already
known by the developers. Patterns could be used to bridge the knowledge
gap between security experts and developers and make recommendations in
the design phase [15, 42].

1.2 Goal

From the problem description outlined at the start of this master thesis,
the objective of this research is to look into the transition between the
requirement and design phase in more detail. The goal of doing this, is to
look at what guidelines can be given for choosing an appropriate design, for
instance in form of security patterns.

When conducting the pre study, we discovered the potential of using pat-
terns. Not only could patterns be used in the design phase, where they
first grew popular in the software industry [26], but also represent security
requirements [57, 58].

As more research were conducted, we got further insight into the topic and
got more and more eager to try out the following theory; that patterns
could be used when eliciting security requirements and also have a mapping
to Security Design Patterns (SDPs) to be used as guidelines in the design
phase. We did not find other research using security requirements like this,
other than work that had recognized the potential of reusable requirements
that is outlined in chapter 3.

4 CHAPTER 1. INTRODUCTION

Investigating the assumptions would also provide information on how secu-
rity requirements could be considered as patterns, and how they could be
utilized in the elicitation process. Because of this, we added it as one of the
goals with this thesis.

The following is a summary of the research goals:

• Investigate the transition between security requirements and design in
more detail.

• Study how security patterns could be used when eliciting security re-
quirements.

• Consider if a mapping between Security Requirement Patterns (SRPs)
and SDPs could be used as guidelines in the design phase.

1.3 Approach

The approach to explore the goals are described thorough this master the-
sis. Briefly outlined, we investigated the transition between the security
requirement and design phase in the pre study. The most important parts
are recapitulated in chapter 3 – Literature Review.

The approach for the last two goals were to create a tool to bring the theory
into life and investigate it by doing an experiment. As an approach to find
more information about the usefulness of a tool, and answer the goals with
the thesis, we created the hypotheses listed in Table 1.1.

To make a distinction between the theory behind the research goals and
the hypotheses in Table 1.1, we have tried to refere to them as theory and
hypotheses respectively thorough the thesis.

The tool was basically a web application with easy access in mind. The
thought was by creating a web application, we could more easily get users
to participate testing the tool, we could reach a broad user group, and the
tool could be demonstrated to the public. As the research process went
further, we saw the need of having a more controlled experiment.

To test usefulness and the theory implemented in the tool, we carried out
an experiment. The aim of the experiment was to make users test the tool
with fictitious cases and compare the results with how they performed with
and without the tool. We got twelve participants to do two different cases,
one using the tool and the other one with a manual method. The data were
gathered by using questionnaires and the results from the tasks. The data

1.4. OUTLINE OF THE DOCUMENT 5

Table 1.1: The hypotheses about the usefulness and validity of the theory.

Using data from the questionnaire
H1 It seems easier and quicker to find security requirements and

Security Design Patterns (SDPs) with a tool.
H2 The quality seems better when finding security requirements

and SDPs with a tool.
H3 Users have a higher confident when using a tool to find se-

curity requirements and SDPs.
Using data from the tasks

H4 Security requirements found with the tool has better quality.
H5 Security requirements found with the tool has better security

coverage.
H6 SDPs found with the tool have better security coverage.

were analyzed to see if there was any difference using the tool compared to
do it manually.

A live demonstration of the tool can be found at “http://myrequirements.
idi.ntnu.no” and the source code is available at “http://amundmo.githu
b.com/myRequirements/” under the GNU General Public License (GPL)
license.

1.4 Outline of the Document

This master thesis is divided into chapters that presents the content that is
outlined thorough the document. Each chapter presents some area of the
research and starts with a short introduction and a summary of the content.

The chapters are as follows:

Chapter 1 (this chapter) introduces the thesis. It summarizes background
and motivation of conducting the research and the goals and approaches we
had.

Chapter 2 describes the theory of conducting research and discusses how
the research process was conduced accordingly. The chapter also describes
how we developed the tool, conducted the experiment, gathered data and
analyzed the results.

6 CHAPTER 1. INTRODUCTION

Chapter 3 outlines the most important literature in the security field
that has some relevance to the research. The chapter presents how software
development should be conducted with security in mind. Then it presents
information about security requirements and security modeling methods. At
last the chapter gives a description of security patterns.

Chapter 4 presents the tool we implemented as an approach to satisfy the
goals. The chapter first present the requirements for the tool, then outline
the functionality of the tool and how the requirements are fulfilled. At last
a summary considering the completeness of the tool is made.

Chapter 5 gives an overview of the results that were gathered from the
empirical evaluation. Participants background, security coverage, data qual-
ity and participants experience are presented.

Chapter 6 evaluates and discusses the findings from the results presented
in chapter 5. The chapter first discuss each of the results accordingly, then
present the results of the hypotheses, and at last discuss the knowledge
gained from the results.

Chapter 7 concludes the master thesis and suggests further work.

References presents the bibliography list.

Appendices lists the supplementary material of the thesis. The mate-
rial includes acronyms and terminology used in the thesis, as well as the
assignment and questionnaires from the experiment. At last the data popu-
lated in the tool is presented as it describes how the data were mapped and
categorized.

Chapter 2

Research Method

Research is an intellectual process of investigation to gain more knowledge.
Generally, research follow a well-defined structure with a set of standard
activities. A research method is the structure that defines how to do the
research, and is a valuable way of knowing that we are doing it right. If the
research method can be doubted, so can the result [44].

In this chapter, we first, in Section 2.1 give an overview over the different
theories that apply when doing research. Afterwards, in section 2.2 we
describe how we conducted the research process.

2.1 Theory

In this section we present the theoretical backbone of research. First in
Section 2.1.1, we outline how the research process should be conducted.
Afterwards, in Section 2.1.2 we outline some of the philosophical paradigms.
Then, in Section 2.1.3, we go through some of the strategies that can be used.
At last, in Section 2.1.4, we present data collection and analysis methods.

2.1.1 The Research Process

The research process is the series of steps that make up the research from
start to finish. Oates[44] has created a model of the research process, which
is described in Figure 2.1. The model describes the different stages that
we will go through while doing research. The main steps in the model are
experience and motivation, research questions, literature review and concep-
tual framework, strategies, data generation methods and data analysis. The

7

8 CHAPTER 2. RESEARCH METHOD

model also explains different methods that could be used in the individual
phases answering the research questions.

Experiences and
motivation

Research
question(s)

Literature
review

Conceptual
framework

Survey

Design and
creation

Experiment

Case study

Action
research

Ethnography

Interviews

Observation

Documents

Questionnaires

Quantitative

Qualitative

Strategies

Data generation
methods

Data analysis

usually

1:1
Often

1:N

Figure 2.1: Model of the research process [44]

Alternative to the model in Figure 2.1 exists. One of them are the con-
ceptualize, operationalize, generalize model [44]. The focus in this model is
to use the three activities; conceptualize, operationalize and generalize to
plan and conduct the research [44]. Another interesting fact is that there
can be drawn an analogy to the Software Development Life Cycle (SDLC)
described in Section 3.1 [44]. Both systems are used to plan and conduct a
series of steps to create something new. System development creates new
software, while research creates new knowledge.

2.1.2 Philosophical Paradigms

A philosophical paradigm is the fundamental view of the researcher; how he
interprets and acquires knowledge about the world. The mostly known and
used paradigm, is the positivism. This is the paradigm that the researcher
most likely is using if nothing else is stated. It has been very successful of
finding out the nature of the world we live in, but it has limitation when
trying to study the social world. The social world includes people, how they
behave and act, and things they can modify [44].

Other paradigms that have got much attention are the interpretivism and

2.1. THEORY 9

constructivism. The constructivism paradigm is not as widely used as the
others. The paradigm argues that the knowledge that we got are generated
by our experience, and should therefore be treated that way. Interpretive
studies does not use a hypothesis that need to be proved or disproven, but
try to identify, explore and explain the social factors. This has the major
difference that e.g. reliability is treated differently. In positivist research the
argument is centered on repeatability, that an experiment can be repeated
and get the same result. In interpretivism, it is argued that individuals
construct the case being studied, so the same situation is unlikely to occur
in a repeated study [44, 25].

The major differences between paradigms are their interpretation of:

• The different view about the nature of the world(ontology).

• How to acquire knowledge(epistemology).

Other paradigms that have been drawn forward by Hevner et al. [25], are
the behavioral-science and design-science paradigm. In contrast to the philo-
sophical paradigms that is discussing where “the truth” comes from. The
behavioral-science paradigm seeks to find “what is true”, while the design-
science paradigm seeks to create “what is effective”. Both paradigms are
argued to be needed to ensure the relevance and effectiveness of information
systems [25].

What philosophical paradigm to choose is important, because it is the fun-
damental view of the researcher; how he interprets and acquires knowledge
about the world. If the philosophical paradigm can be doubted, so can the
result [44, 25].

In the thesis, we have followed the positivism paradigm. We concluded that
the other methods does not suffice acceptable in the type of research we will
conduct.

2.1.3 Strategies

A strategy is a systematic plan of how to go forward with research. When
conducting research, it is important to have a strategy because it defines
the overall approach to answering the research question [44]. Oates [44] has
six strategies listed in Figure 2.1 that are described as following:

• Survey - obtaining and analyzing a set of data from a large group of
people or events in a standardized and systematic way.

10 CHAPTER 2. RESEARCH METHOD

• Design and Creation - developing a new IT-product or artifacts. It
could also be elements of the development process such as new con-
struct, model or method.

• Experiment - investigating cause and effect relationships or seek to
prove or disprove a hypothesis.

• Case study - is focusing on one instance that is to be investigated. e.g.
a information system. The aim is to obtain a rich detailed insight into
that instance.

• Action research - focuses on research into action. The researcher does
something, and afterwards investigates the outcome.

• Ethnography - understanding the culture and ways of seeing some-
thing, e.g. particular group or people.

Each strategy has their advantages and disadvantages, and which strategy
to choose depends on what being researched on and what data to collected.

In our research, we used the strategy of design and creation as the main
strategy to create new knowledge. We also conducted an experiment to test
the theory implemented in the tool. The experiment put to use an survey
to collect information from the participants in the experiment.

We will hence give an brief rundown of the strategies in the next sub sections.

Design and Creation

The design and creation strategy are focusing on developing a new IT prod-
uct, also called artifacts. The strategy involves analyzing, designing and
developing a new product that run on computers, e.g. a web site, applica-
tion, animation etc.

When using this strategy, it is equally important to contribute to knowledge
in some way. How to contribute to knowledge, depends on what the product
does. Oates [44] has some examples of products that by it self contributes
to knowledge:

1. A product that automates something that previously was done man-
ually. The researcher can argue that the product is better.

2. A product that incorporate a new theory. The researcher can argue
for the relevance and utility of the theory.

2.1. THEORY 11

When employing the strategy, it is important to explain and document the
Software Development Life Cycle (SDLC) of the project. How the work has
been preceded through the stages of the project; analysis, design, implemen-
tation and testing.

Experiment

In research, an experiement is a strategy that investigates the relationship
between cause and effect. An experiement is trying to disprove or prove a
hypothesis. A hypothesis is usually based on some theory the researcher
want to investigate further empirically.

The result gathered in the experiement should be based on variables. The
researcher should determine what variables could be used and how they can
be used to determine a result. The researcher can control the variables,
either all at once, or in sequence to compute important parts.

Variables can be divided into dependent and independent variables. Depen-
dent variables are affected by other variables, while dependent variables are
not. How variables are affected, is important for the outcome of the result
to be valid.

Experimental design is also important to ensure that the independent vari-
ables are not affected by possible external factors. There are many different
kinds of experimental designs. Some examples are the “One Group Test”
[44], “Static Group Comparison” [44] and the “Latin Square Design” [10].
Which one to choose depends on what are research on, what variables that
are included, what bias could be presented and so on [44].

To give a confirm conclusion in an experiement, the hypotheses must be
repeated many times and get the same results, also by other researchers.

Survey

A survey is a strategy that is used to obtain and analyze a set of data from
a large group of people or events in a standardized and systematic way. The
strategy is mostly associated with the positivism explained in Section 2.1.2.
The data can be gathered from interviews, observations, questionnaire or
documents. When the data is obtained, we can look for patterns and clues
in the data that might be of importance [44, 17].

Planning and conducting of surveys can be divided into the following activi-
ties: data requirements, data generation method, sampling frame, sampling

12 CHAPTER 2. RESEARCH METHOD

technique, response rate and non-responses and sample size. When planning
and conducting the survey, it is important to go through each of the activi-
ties. The following is a brief outline of the information Oates [44] presents
of each of them:

1. Data requirements – are the activity where we find out what data to
collect. When doing a survey, we normally only get one opportunity
to collect the data, so it is important to have a good understanding of
what data we wish to generate.

2. Data generation method – is the strategy of how to gather the data.
As previously noted, there are many ways to collect data. There are
basically two main categories of data; qualitative data and quantitative
data. Both will be investigated further in Section 2.1.4.

3. Sampling frame – is the list or collection of what we are gathering the
data from – mostly people. The sampling frame needs to be appropri-
ate and include the whole population of interest.

4. Sampling technique – is how we select and choose the people from the
sampling frame. It is important to choose sampling technique that
fit the research, and that can not be criticized for having an impact
on the result, e.g. because the sample size is to small. There exist
two branches of sampling techniques; probability and non-probability
sampling. The probability sampling means that the sample is chosen
on the background that it is representative for the overall popula-
tion. Non-probability sampling on the other hand, is used when the
researcher does not think it is feasible or necessary to have a represen-
tative sample size.

5. Response rate and non-responses – are the strategy of getting a better
response rate when trying to get people to participate in the survey.
A problem is that many people ignore such requests, and those that
are willing to participate can in some cases only do it for self-gain etc.
By having this in mind, it is possible to have a plan, e.g. to send the
requests once more to the people who did not answer.

6. Sample size – It is important to have a sample size that is large enough,
so that the result cannot be criticized for not being valid. Oates [44]
argues that a good rule-of-thumb is to have a final sample size of at
least 30.

2.1. THEORY 13

2.1.4 Data Generation and Analysis

Research data can be divided into two groups; quantitative and qualitative
data. The main activity to gather the data is by using a data generation
method, e.g. interviews, observations, questionnaires or documents [44].

The data generation method is commonly associated with some research
strategy. For example a survey is often associated with questionnaires, while
experiments with observations. It is also possible to use more than one data
generation method to enhance validity which is called method triangulation
[44].

When the data have been collected, we need to analyze it. Data analysis is
the process of looking for relations and themes in the data that could say
something about the result. One way of doing this is by using mathematical
approaches such as statistics to examine the data. Some people are arguing
that we sometimes need to let everything go, and look at the data with
a open mind without any pre-conceived idea or theories. This method is
called Grounded theory and is trying to secure that we do not overlook any
important findings [44].

A simple data analysis would consist of tables, charts and graphs, that
could make the researcher see some patterns of interest. There exist also
much more complex techniques with mathematical calculations and statis-
tics. Some tools exist on the marked to make these complex techniques more
feasible. Even tough tools exist to make the job easier, it is important that
the researcher knows what he is doing and uses the right technique at the
right time [44].

Research data is divided into two main categories; quantitative and quali-
tative data. What generation and analysis method we use, depends on the
type of category the data is in. In the next sub sections, we will briefly go
through each of the categories [44].

Quantitative Data

Quantitative data are data or evidence that is based on numbers. This is
the main type of data that regularly being generated by experiments and
surveys, but other types of strategies can also generate it [44].

Oates[44] has listed the following advantages and disadvantages with quan-
titative data:

14 CHAPTER 2. RESEARCH METHOD

• Provides scientific respectability. Some people believe quantitative
data is the only form of valid research.

• Quantitative analysis has been time tested and based on established
techniques, which adds confident to the findings.

• Because the data are not generated from subjective impressions, the
data can be regenerated by others.

• Large volumes of data can be analyzed quickly using tools.

• Many people dislike working with numbers.

• Complex techniques can easily be misunderstood.

• The analysis depends heavily on the data being generated.

• Many variables are dependent when trying to make objective analysis.
E.g. the size of the group and frequency count etc.

Qualitative Data

Qualitative data includes all non-numerical data like words, images, sound
etc. [44]. It is the main type of data that regularly is being generated
by interview, diaries, documents and web sites. As quantitative data is
mainly used by the positivism, the qualitative data is mostly used by other
types of paradigms, like the interpretive paradigm. It is possible to generate
quantitative data from the qualitative. One way of doing this is by counting
a specific occurrence of something, or giving some sort of score on the data.
Qualitative analysis is not that straight forward. One problem is the lack of
a standard way to do it, and the result can vary depending on the skills of
the researcher [44].

[44] has listed the following advantages and disadvantages with qualitative
data:

• It can be difficult to study things that cannot be reduced to numbers

• There can be more than one possible explanation, rather than the
presumption that there will be only one correct explanation. This
means that two researcher may come to different concussions which is
equally valid.

• It is easy to be overwhelmed by the volume of data.

• Difficult to identify themes and patterns because the volume of data
are huge.

2.2. OUR RESEARCH PROCESS 15

• Interpretation of the data are more tied to the researcher.

• Non-textual data are not easy to present, e.g. inside a paper.

2.2 Our Research Process

The research process are the series of steps that make up the research from
start to finish. In this section we will be giving detailed description of how we
planned and conducted the research to satisfy the research goals(presented
in Section 1.2) and came to the conclusion as we did.

Meetings with advisors Milestones Activities

11 August

25 August

22 September

6 October

20 October

3 November 60% of Literate Review

17 November 100% finding solution for further work

1 December

15 December

(Christmas)

12 January

26 January

9 February

23 February

9 March Finished implementation and testing of prototype

23 March Finished testing the usefulness of the tool

(Easter)

20 April

5 May

18 May

Finished with the thesis

Figure 2.2: How we planned the research process.

In Figure 2.2 it is presented how we planned the research process. It shows
when we planned to have meetings with the advisors, how much time we
planned spending on each activity and what milestones we identified. The
colors illustrates different activities, and have the following representation:

• Red - is the literature review, and from the figure, it is illustrated that
we will never be finished with “learning” about software security.

• Green - illustrates the process of finding out what to do further with
the research. In our case, this was the theory, and the idea of devel-
oping a tool to test it.

• Light blue - is the time developing the tool.

• Orange - is the time we allocated for testing and debugging of the tool.

16 CHAPTER 2. RESEARCH METHOD

• Yellow - is the time spent for testing the usefulness of the tool – data
gathering.

• Dark blue - is the writing of the master thesis.

At the stage when we created this plan, not everything was planned down to
the detail. When first starting the literature review, we only had one goal –
to investigate the transition between security requirement and design. What
guidelines, and how to utilize them was still unclear. We used the literature
review phase (about 4 months) to investigate possible theories that we could
work further on.

We managed to hold the time schedule(outlined in Figure 2.2) at most parts.
The only problem we got was that the data analysis was not added to plan.
Maybe, at the beginning of the project we under-estimated the workload or
forgot it. This made a more or less hectic finish to the master thesis than
we had foreseen.

In this section, we will outline how we planned and performed the main
activities in the research process. First we will go through literature review,
then we will be explain how we developed the tool and conducted the data
collection. At last we will outline the data analysis.

2.2.1 Literature Review

In the literature review phase we investigated the transition between the
requirement and design phase as this was one of the research goals. As
further elaborated in Section 2.2.2, we wanted to develop a tool that would
gain valuable new knowledge to the security field. The goal with a tool
was still unclear. We used the literature review phase to investigate the
possibilities.

While we were investigating, we noticed that the transition between the two
phases, requirement and design, were not that incorporated. There was a
tendency that security experts were doing the job in the requirement phase,
and then later handed over the models, analysis and requirements to the
design people. The design people, even though were security experts, had a
problem utilizing the information from the requirement phase [15, 42].

We started to look more closely how the security requirement and design
phase could be connected more naturally. The transition between require-
ment and design phase are regularly connected by using a software engineer-
ing methodology that has some idea about how to connect the phases.

2.2. OUR RESEARCH PROCESS 17

As we were conducting the literature review, we also noticed that software
security has the potential to be highly reusable in form of security patterns
[20]. With that in mind, we found the possibility to use Security Design
Patterns (SDPs) in the design phase(which is further elaborated in Section
3.4).

We started to investigate how patterns could be used more thoroughly. We
came up with the idea that a connection between security requirements and
design patterns could be made to create guidelines in the design phase.

To make the connection between security requirements and SDPs, we needed
a way to define what security requirements to use. Investigating a bit fur-
ther, we discovered that there have been some work on reusable security
requirements(outlined in Section 3.2), and security patterns(outlined in Sec-
tion 3.4. Also, Firesmith [20] states that requirements have a great potential
to be highly reusable. Security Requirement Patterns (SRPs) were perfect
for defining what security requirement was selected and could be used to
map against design patterns.

This lead us to create the theory as described in Section 1.2, that drove us to
create two more goals with the thesis. First, to study how security patterns
could be used when eliciting security requirements. Second, to consider if a
mapping between SRPs and SDPs could be used as guidelines in the design
phase.

2.2.2 Development of the Tool

When starting to work on this thesis, we knew that we wanted to make a
tool, or do some kind of software development. Much because of the practice
and knowledge with software development, but also because it is fun.

The intention by developing a tool was to test the theory described in Section
1.2 and contribute to the goals with the thesis.

In Section 2.2.1 we described how we came up with the theory and goals with
the thesis. Also, we felt that the goals by them selves were a bit broad. We
created a list of hypotheses(listen in section 1.1) that we wanted to answer
by developing the tool. Hopefully, the hypotheses could help us conclude
the thesis at the end.

To create a tool that could test the theory, we came up with the follow-
ing data mapping as described in Figure 2.3. At first, the theory was that
“Category” in the current data model could be exchanged with “Attack/threat
pattern”. The theory was based on the idea that it is easier to know what

18 CHAPTER 2. RESEARCH METHOD

we want to be secure against, and difficult to explain it in form of a SRP.
By using threats and attack patterns, the user could search or browse the
information to find SRPs.

Security
Requirement

Pattern

Category

Security Design
Pattern

*
* *

*

* *

Domain

*

* *

*

**

related

Figure 2.3: The data model. It shows how we connected the SRPs and SDPs

We have not rejected this theory. The fact is that by including threat
and attack information, a lot more information would be added. In fare
of overwhelming the user or make the tool unpractical because of to much
information, we choose to withdraw the theory. More research on the subject
is needed.

Figure 2.3 shows the data model that was implemented. As illustrated,
the connection between SRPs and SDPs is connected as a many-to-many
relationship with category, and is used to make the link between SRPs and
SDPs. “Domain” in the figure, is to capture information about what area
the pattern belongs to, e.g. health care or e-shop. As illustrated, a pattern
can belong to many domains.

The domain information could be used to easier elicit requirements based on
what domain we are finding requirements for – as a filter. This is based on
the idea that a health care system has other requirements than an e-shop,
and by providing the information about which domain we are gathering
requirements for, we can remove unnecessary information from the list.

When deciding on development tools and technology, we gathered infor-
mation about different technologies that we found interesting. The three
most interesting technologies that we found and believed could be used were
Adobe Flex, Microsoft Silverlight and different Ajax APIs. They are all
modern technologies with focus on the User Interface (UI).

We think that the user experience depends heavily on the usability of the
UI, and when choosing the technology, it was important that the UI were
responsive and easy to use. Flexibility and development speed were also
considered.

2.2. OUR RESEARCH PROCESS 19

At last, we ended up with Silverlight 2.0 by Microsoft. The choice was not
easy, all the technologies had their advantages and disadvantages. The final
decision of selecting Silverlight, was that we could decrease development
time, and still get a good product.

Silverlight has plenty of features that should make the life of a developer eas-
ier. It is cross-browser, cross-platform implementation of the .NET frame-
work [40], which means we are actually running .NET code in the browser.
This can be done because it is a browser plugin that is running on the client,
just like Flash and Java applets. Even though Silverlight is a browser plu-
gin, it is surprisingly easy for new users to install the client plugin and get
started. Other reasons for choosing Silverlight are as follows:

• Silverlight is based on a subset of Windows Presentation Foundation
(WPF), which is a markup language to build the UI [40].

• WPF makes a clear separation between the UI and business logic [40].

• Data binding enables linkage between the data layer and the UI auto-
matically [40].

• WPF uses Controls to build the UI. This makes it easy to build the
UI and reuse components [40].

• Silverlight uses the .NET framework which enables technologies like
LINQ [40] and WCP [40].

As we had never used Microsoft technology before, we needed to learn ev-
erything from the ground up, which not only included Silverlight, but also
LINQ [40], WCP [40], C-Sharp [40] and much more.

Silverlight.net [39] is a nice resource, and has a lot of information on how
to start learning Silverlight. It has showcases, tutorials and links to other
resources like e.g. WCP and LINQ. Also, the book “Windows Presentation
Foundation Unleashed” [43] is a good resource on how to learn good UI
development with WPF.

When the tool was finished, we needed to add data to it. From the litera-
ture review, we had found a repository of SDPs which is more described in
Section 3.4.4. SRPs on the other hand, were more difficult to find. Some
authors have recognized that security requirements can be highly reusable
as stated in Section 3.2.3, but not much work has been done collecting the
patterns. We recognized two alternatives; make the patterns our selves, or
use the security requirements mechanism of Common Criteria (CC). None
of the methods was perfect. Even though CC has been blamed for being a

20 CHAPTER 2. RESEARCH METHOD

complicated standard that is too technical for non-security experts[34], we
went for the latter, and modified the security requirements mechanism from
CC to become patterns.

Because CC groups the requirements into classes, families and so on, we
applied classes as categories, families as a patterns, and the components as
a requirement example within the pattern.

The data also needed to be mapped. The SRPs were mapped to SDPs, and
both of them was mapped to categories. The mapping was based on the
assumptions and knowledge and could be a reliability of the result. The
data, with their mapping populated in the tool can be found in Appendix
E.

2.2.3 Data Collection

When the tool was finished, it was time to test the theory and get data to
support the goal with the thesis.

We decided to do an experiement with pilot users, as nothing could be more
valuable than the feedback of others.

At first, the plan was to give people access over the internet, which the
potential of getting a large sample size. With further thought, we decided
it could be difficult to manage and secure the reliability of the result.

Because we wanted to test the hypotesis presented in the introduction we
needed to test how the participants performed without a tool. An experi-
ment like that could take time, we decided to have a controlled experiment
in a controlled setting to make sure the reliability and validity of the data.
We also decided to use questionnaires to gather feedback from the partici-
pants, and validate the result(method triangulation as described in Section
2.1.4).

The experiment had to be tested by participants with at least software de-
velopment background. The goal of the tool is specific, and very technical.
Not everyone can use it efficiently. The best scenario would be to get par-
ticipants with only security background, because of their experience. On
the other hand, getting so many people that are willing to be part of the
experiment and have security background would be difficult. By getting
participants that knew about software development, we would at lest get
users with basic background.

There will always be the problem that some participants know more than

2.2. OUR RESEARCH PROCESS 21

others in an experiment. This problem is very real in this case, because some
users would have more experience within the security field than others. By
collection background information of their experience, we could hopefully
take it under consideration when analyzing the data.

The goal was to get at least eight participants that were willing to do the
experiment. We were aware that this number was a bit small, and that [44]
recommends at least 30 participants. We also estimated that the test could
take about two hours. When a test takes that much time and we needed
users with some experience with development, it could be difficult to get
enough participants. We were very happy when we got informed that it was
possible to get founding for the experiment. That way we could compensate
the participants for their time and willingness. At the end, we got twelve
volunteers by sending out requests on various e-mail lists on campus.

Manual Tool

User Group BUser Group A

Ca
se

 1
Ca

se
 2

ManualTool

Figure 2.4: How we designed the lay-
out of the experiment after the Latin
Square Design.

Getting participants by sending an
e-mail like that, is reducing the sam-
pling frame to only students at cam-
pus. Their motivation to partici-
pate should also be considered. If
only students who have the interest,
or knows something about software
security is participating, we will get
a narrow sampling frame [44].

In this experiment, we do not think
the sample frame matter that much.
Students are often curious, and
want to participate in such exper-
iments, as such their motivation
should not be an issue. Also, we
informed that software development
experience had to be a minimum to
participate, which would reduce the
sample frame regardless of required
method.

Because we wanted to test how the tool performed in contrast to the manual
method, we added some extra insurance. We created two cases. For each
case, we created two tasks. With each case, we also handed out some helping
information to get them started. Cases, tasks and helping information can
be found in Appendix C.

We could not find any similar research projects that we could compare the
result against. We had to create every aspect of the test our selves(cases,

22 CHAPTER 2. RESEARCH METHOD

tasks, validation criteria and so on). This could be problem to validity and
reliability as the participants might miss-understand the cases.

The first case was to find security requirements and the other one was to find
SDPs. Each case was done with different methods. One with the tool, and
the other with the manual method. The two cases were from two different
domains, and had to some degree different security needs. Because there
could be a learning effect between the two cases, we decided to use the
Latin Square Design [10] as the layout of the experiment as illustrated in
Figure 2.4.

The Latin Square Design could manage c number of cases, by creating c2

number of experiments. This could be done by creating a square with c
rows and c columns. The c number of experiments should be divided into
the rows and columns so that none of the experiments is represented more
than once in a row or column [10].

We had six participants do the first case with the tool and the second case
with the manual method. Then we switched, so that six participants did it
opposite(started with the manual method, and ended with the tool method).
That way we could detect if there were any learning effect and how much
impact it had on the data.

To find out if a tool could lessen the work finding security requirements and
ease the transition between the requirement and design phase(goal two and
three), we wanted to collect data to answer the hypotheses listed in Table
1.1.

We used questionnaires to gather data from the participants. They can be
found in Appendix D. First, before the experiment started, we collected
background information on the participants, as they may have an impact on
the result. Then, after each case, we collected information about the experi-
ence the participants got using the different methods. From the information
we collected, we elicited information of how they felt about the quality. Also,
when using the tool, we collected information of their impression of the tool.

When creating questionnaires, it is important to ask the right questions,
and that the questions can not be misunderstood. We did this in several
iterations where we discussed what data we wanted to create, and how the
questions should be formulated and presented with the supervisors.

Some of the problems we found with the questionnaires were that it was diffi-
cult to formulate the questions, and it required patience to do it right. Also,
some of the questions we created, could depend on confidence, experience
and so on.

2.2. OUR RESEARCH PROCESS 23

System design
features

Perceived
usefulness

Perceived ease
of use

Attitude toward
using

Actual system
use

External
stimulus

Cognitiv
response

Affective
response

Behavioral
response

Figure 2.5: The figure outlines Technology Acceptance Model (TAM) [18].

Also, we tried gathering data that could support the Technology Accep-
tance Model (TAM). TAM specifies the relationship between perceived use-
fulness and perceived ease of use [18]. TAM is used to address why users
accept or reject a information system, and how the user acceptance influ-
ences this. Figure 2.5 illustrates the TAM. From the figure, we can see how
the cognitive- and affective-response is coupled with external stimulus and
how the participants behave towards the system [18].

As this was a good idea, we lacked the knowledge and experience to do this
in practice. We had misunderstood the concept, so instead of gathering data
about their perceived usefulness and perceived ease of use before the users
were introduced with the tool, we gave them the questions afterwards. The
result was that instead of gathering data about the perceived usefulness, we
gathered data about the actual usefulness.

Before the user test, we performed a pre-run on a couple of friend. By doing
that, we got more experienced, validated the questionnaires and got a better
idea on what sequence each activity should happen. What information to
give to the user, before he get the case etc. We ended up with the following
sequence of steps:

1. Hand out questionnaire about background.

2. Explain prerequisites, like who, how, and what we are testing.

3. Hand out first case.

4. After they had read and understood the case, they got the tools need
to start working(e.g. pen and paper).

24 CHAPTER 2. RESEARCH METHOD

5. Hand out questionnaire about their experience.

6. Hand out second case.

7. After they had read and understood the case, they got the tools needed
to start working(e.g. pen and paper).

8. Hand out questionnaire about their experience.

Participant B

ResearcherParticipant A

Figure 2.6: The research setting

Because this was a lot of information, and a lot of work, we gave them plenty
of time. To not overwhelm the users, we choose to give them the case first,
and then give them plenty of time to read and understand it before they got
the tools needed to start working and had the possibility to ask questions.
On each task, we gave them as much time they needed, but we tried to get
them to finish within 30 minutes on task one and 15 minutes on task two in
both cases.

The user tests were performed on the usability lab at Norwegian University
of Science and Technology (NTNU) in the last week of March 2009. We
decided to do the tests with two users at the same time. Each user got their
own place to sit, with interior walls between them, so they could not see
each other, but we could monitor and give information on both of them at
the same time. Figure 2.6 illustrates the research setting. They also got
explicit instruction to not talk or help each other. Both got a computer at
each place with access to only the tool. When the tool was not needed, the
computer was placed aside. When giving information, we gave information
to both of them at the same time, and they followed the same experiment
design. e.g. that both of them solved the same case with the same method.

2.2. OUR RESEARCH PROCESS 25

2.2.4 Data Analysis

From the data collection phase, we knew what information to extract from
the data. The hypotheses listed in Table 1.1 was used as a foundation.

First, we needed to obtain information about the security coverage – how
good the security requirements and SDPs cover the security of the cases.
Second, we need information about the quality – how good the data were
described and what information it included. Third, we needed to extract
valuable information from the questionnaires that could answer the hypothe-
ses in Table 1.1, and get an overview of their background. Forth, as we
thought there could be a learning effect between the cases, we needed to
look at how much impact it had on the results.

As some security requirements can be described in different ways and denote
the same, we used security aspects to describe what each case should be
secure against. Security aspects is more a characteristic of consideration the
system should be secure against(threats), than a security requirement, and
we were hoping it would make the job of analyzing the security coverage
easier.

When analyzing the security coverage of the data results, we assumed that
by using the results from the participants, we could find security aspects
that we had not thought of. We started by cycling through the results and
look for security aspects that were new for us. When we found something
new, we added it as one of the threats to the system if we thought it was
needed. By using the results from the participants like this, we were hoping
that the security aspects could cover as much as possible of the security
needs in each case.

To calculate the security coverage, we went through each of the participants
security requirements, and analyzed if they covered some of the security
aspects that we had collected. When we were finished, we could calculate
how many percentage of the security aspects that the security requirements
had covered.

Looking at the coverage of SDPs, we recognized that it could be difficult
to conclude if some of the SDPs were better than others. Event though if
we were able to, it could be argued why something should be added and
not. Also, we had realized that we to some extent helped the participants
too much when eliciting SDPs using the manual method. Consequently, we
concluded that looking at the popularity of the patterns could be more useful
as it could tell us if the same patterns were selected with both methods.

When measuring the quality of the security requirements, we investigated

26 CHAPTER 2. RESEARCH METHOD

the literature on the subject and found different views of how a security
requirement should be described and what information it should include.
As denoted in Section 3.2.1, there is a lack of a defined way of describing
requirements. This is way we used information from different sources to
create variables that denotes a “good” security requirement. Using variables
to define what to look for is a good idea as outlined in Section 2.1. The
variables we found were as follows:

• Specific.

• Measurable.

• Traceable.

• Not be an architect or design decision[19].

• Express what is to happen in a given situation, as opposed to what is
not ever to happen in any situation.[24].

• Describes why we need it[24].

• Describes what objects needs protecting[24].

Using variables, we went through all the security requirements, and gave
them a score on how good quality they had.

When comparing the results, we compared how the participants used the tool
method versus the manual method. The cases were from different domains,
and had different security needs. Based on that, we concluded to represent
the results based on both case and method. We could have summarized the
results from each case, and only presented the data by method, but it is also
valuable to see the difference between the cases. By looking at the result
between the cases, we could pick up a possible learning effect or differences
between the cases.

When analyzing the data from the SRPs, it was tempting to argue that
SRPs should at least have a quality of 95%. A pattern is a well-understood
solution to a recurring problem [16], and is literally capturing the experience
from experts in a structured way that makes non-experts utilize the benefit
from this information [51]. We argue that experts should at least manage to
create patterns with a quality of 95%, based on the fact that they are experts
and that a pattern is a fabrication of research and thorough consideration.

Analyzing the results we used a paired t-test to make a statistically claim if
the results were valid. The t-test assesses whether the means of two groups
are statistically different from each other taken variability into account [2].

2.2. OUR RESEARCH PROCESS 27

When using the t-test, we looked at the p-value, because it represents the
probability that the result was not a random mishap. This could indicate the
significance in the results. When analyzing the results looking for something
that was significant, we used a risk-level of 0.05. This is the mostly used
risk-level and indicates that there is less than 5% chance that the result is
significant [2].

Chapter 3

Literature Review

This chapter reviews the literature that we went through while we investi-
gated the transition between the security requirement and design phase in
more detail.

First Section 3.1 covers methodologies that clarify how to conduct secure
software development. Then, in Section 3.2 we will give a thorough explana-
tion of the most important aspects with security requirements. Afterwards,
in Section 3.3 we will go through some popular security modeling methods
and at last in Section 3.4 present the significant parts of security patterns.

3.1 Planning and Conducting Secure Software De-
velopment

When planning and conducting secure software development, it is important
to have a well-defined plan on how to proceed with the activities at hand.
Software engineering methodologies are structured plans on how to proceed
with this process and describe how to approach tasks and activities that
take place [21].

Secure software engineering methodologies are structured plans on how to
conduct and plan a project in context of security. The methodologies pre-
sented in the next sections is not stand alone development methodologies,
but are meant to be included into existing, standard software engineering
methodologies.

In this section we will first go back to basic and describe what software
engineering methodologies are and what they do in the planning of the

29

30 CHAPTER 3. LITERATURE REVIEW

software development process. Afterwards we will be focusing on the most
important secure software engineering methodologies and describe how they
incorporate security into the planning of the software development process.

3.1.1 Software Engineering Methodologies

Software engineering methodologies are structured plans on how to proceed
with the work in a project [21]. The plan generally consist of phases that
emphasis on planning, time schedules, target dates, budgets and implemen-
tation details. Over the years new methodologies have evolved each with
different advantages. What methodology to use depends on the project,
management and team. Examples of some methodologies are[21]:

• Waterfall

• Prototyping

• Incremental

• Spiral

• Rapid Application Development(RAD)

• RUP

• Scrum

The waterfall methodology [48] is the oldest one, and was a popular in the
70s. Because new and more advanced methods are more or less based on
the waterfall methodology, it is valuable to use it to explain the foundation
behind software engineering methodologies. Figure 3.1 shows an overview
over the waterfall methodology and how it uses phases to plan and structure
the project. The phases are done sequentially and new phase cannot start
before the first one was ended. In some versions of the methodology, it
is possible to go backwards in the development cycle(or start over again)
which indicate that the methodology was iterative. A phase can be seen as
a state that the project has to go through in the development cycle. Other
methods, e.g. the Agile, Spiral or the Spiral methodology are all going
through the same phases, but they may do the phases over and over again
or in parallel. Not only phases are used to distinguish the methodologies.
All the methodologies have their own way of planning and conducting the
project [21, 48].

Secure software engineering methodologies have emphasize on the impor-
tance of security. Mostly, these methods are not stand-alone methodologies,

3.1. PLANNING AND CONDUCTING SECURE SOFTWARE DEVELOPMENT31

Initial Investigation
Requirements

Definition
System
Design

Coding, testing...

Implementation

Operation & Support

Figure 3.1: The phases in the waterfall method.

but are instead incorporated with the existing methodology used, e.g. the
waterfall method.

3.1.2 Secure Software Engineering Methodologies

Secure software engineering methodologies are structured plans on how to
conduct and plan a project in context of security. They are not stand alone
development methodologies, but are meant to be included into existing,
regular software engineering methodologies.

Secure software engineering methodologies are important because of the fo-
cus on security. One of the main problems that has been observed in applica-
tion security is the lack of focus and knowledge on security. By implementing
and using a secure software engineering methodology we are at least facing
the problem and starting to do something about it.

SQUARE

Security Quality Requirements Engineering (SQUARE) is a software devel-
opment method created by the Software Engineering Institute and provides
the means for eliciting, categorizing, and prioritizing security requirements.
The process is focusing on security from an early stage, and recognizes the
need for documentation and analysis for later work [38, 37].

To get the most out of using the SQUARE process, it is best that it is
conducted with a team of requirement engineers that have security exper-
tise, together with the stakeholders of the project. Requirement engineering
team and project stakeholders should first agree on technical definitions and
start a baseline for all further communication. Business and security goal
should be outlined and artifacts and documentation created to get the full
understanding of the system [8].

32 CHAPTER 3. LITERATURE REVIEW

SQUARE consists of a nine-step process that should end up with the final
deliverable of categorized and prioritized security requirements [38, 37]:

1. Agree on definitions

2. Identify security goals

3. Develop supporting artifacts

4. Perform risk assessment

5. Select elicitation techniques

6. Elicit security requirements

7. Categorize requirements

8. Prioritize requirements

9. Requirements inspection

The steps should be conducted in a sequential order, so that the flow of
information goes from one step to the other. After all the steps are finished,
the information gathered should be merged into one deliverable; a security
requirement document that the business should use in the rest of the process
to build security into the system from an early stage.

Comprehensive Lightweight Application Security Process (CLASP)

CLASP is a technique that can be used to build security into existing or
newly started software development life cycles. The method is structured,
repeatable and measurable, which should make it easy to integrate into more
agile development life cycles [52].

The CLASP process is divided into three sections; CLASP views, CLASP
resources and vulnerability use cases. Further, the three sections are divided
into activities that define the steps in the process [52].

CLASP recognizes security requirement elicitation as one of their “best prac-
tices”, which means that it is included as one of the base activities. Nev-
ertheless CLASP fails to give a thorough description of how the activities
should be conducted [52].

Today, CLASP is part of the The Open Web Application Security Project
(OWASP) standard, which is a worldwide free and open community focusing
on software security. All their material is part of the open software license
[4].

3.1. PLANNING AND CONDUCTING SECURE SOFTWARE DEVELOPMENT33

Trustworthy Computing Security Development Lifecycle (TCSDL)

TCSDL is the security development life cycle that Microsoft has adopted
[29]. TCSDL objective is to modify the existing process to include security
aspects to improve the software security. The modifications do not make
drastic changes in the existing process, instead it defines checkpoints and
security deliverables to be included [29].

In the requirements phase, TCSDL is focusing on inspection. The inspection
regards defining the key security objectives that include finding a security
advisor, making plans for security milestones and agree on security require-
ments [29].

TCSDL has also included threat modeling as one of the security deliverables.
It is defined as one of the tasks that should be done in the design phase. The
threat modeling process encompasses definition of assets, finding threats for
the assets and estimation of risk. TCSDL uses treat modeling to identify
needs for security features and to define where code review and security
testing are required [29].

Three Pillars of Software Security

Mcgraw [33] presents three pillars of software security that could be coop-
erated with any software engineering methodology already used. The tree
pillars of software security can better be described as guidelines and “best
practices” than a security engineering methodology, but they serve as a good
starting point and a good foundation for making secure software [33].

The three pillars of software security are applied risk management, software
security touchpoints, and knowledge. Together they form a cost effective
way a business could incorporate software security [33].

Risk management can be understood as a way to collect and analyze
security information. Mcgraw [33] presents Risk Management Framework
(RMF) as a continuous risk management process with the key idea to iden-
tify, rank, track and understand software security risks as they changes over
time.

RMF has five fundamental stages:

• Understand the business context.

• Identify the business and technical risks.

34 CHAPTER 3. LITERATURE REVIEW

• Synthesize and prioritize the risks, producing a ranked set.

• Define the risk mitigation strategy.

• Carry out required fixes and validate that they are correct.

Software security touchpoints have the intention to incorporate secu-
rity best practices into the development life cycle. To develop more secure
software, it is important that security is something that is incorporated in
the whole development cycle, and that we have a good set of practices we
can lean on. This is what software security touchpoints are trying to achieve
by defining a set of good practices that has proven to be satisfying over years
with experience.

Requirements
and use cases

Architecture
and design Test plans Code Tests and test

results
Feedback

from the field

Abuse cases

Security requirements

Risk analysis

External review

Risk-based
security tests

Code review
(tools) Risk analysis

Penetration testing

Security operations

Figure 3.2: How the security touchpoints incorporate with the development
life cycle

In Figure 3.2 the touchpoints is presented. The figure presents how the
touchpoints could be used in the different stages of the development life cy-
cle. Some touchpoints have proven to be better that others [33]. Mcgraw [33]
has ordered the touchpoints by effectiveness, based on years of experience
applying the touchpoints in real life projects:

1. Code review

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security tests

5. Abuse cases

3.1. PLANNING AND CONDUCTING SECURE SOFTWARE DEVELOPMENT35

6. Security requirements

7. Security operations

Knowledge is the third pillar of software security. By knowledge [33] ref-
ere to the knowledge of “gathering, encapsulating and sharing of security
knowledge”. Compared with information, knowledge is how the information
is set to use. Information could be books, reports, checklists etc. Knowledge
is how this information is used, for instance in form of a tool. One significant
category of tools in software security that uses important information are
static analysis tools. Without the tools, the information would be difficult
to use, understand and bring into context. By having a tool, the informa-
tion transforms into knowledge that can be used when implementing a new
system[33].

Knowledge is what drives us to better performance. By sharing knowl-
edge we collaborate to the grater good and help the field innovate[33]. To
day, there exist numerous databases and tools with the purpose of collect
information about software security. One example is the Security Focus
Vulnerability Database [7] which gathers information about security vulner-
abilities. By using this information, we can help the software security field
by innovating, decision-making and having a solid foundation for software
security practices.

Mcgraw [33] also writes about what he claims to be the tree hurdles of
knowledge. These are obstacles or bad practices in software security that
knowledge would defeat the hurdles.

The three hurdles of knowledge are as follows:

1. Thinking of software security as a coding issue.

2. Thinking that software security is really about adopting various secu-
rity features and/or conventions.

3. Overuse of checklists.

Common Criteria

Common Criteria (CC) is an international standard(ISO/IEC 15408) for
evaluating IT products [14]. CC is basically a certification that IT products
can get, but because of the guidelines on how to get the certification, CC is
also valuable as a secure software development methodology[34, 14].

36 CHAPTER 3. LITERATURE REVIEW

CC is an widely known and adopted standard, it is valuable because many
knows what to expect from the certification, and it gives a measure of how
good the IT product fulfills the security needs [34, 14].

CC consists of about 60 security functional requirements that are ordered
in 11 classes. Together they provides a common set of requirements for
the security functionality that should be used in the certification process.
This makes it easier to find measures, and also makes certified IT products
comparable [14].

Having a defined and international recognized standard like this is useful to
gain confidence in the IT-system. It is difficult to assert that an application
is secure because we do not have anything to support it. By getting certified,
we can get that confidence. One problem however, is that the CC standard
can often be too complicated and technical for non-security experts [34, 14].

3.2 Security Requirements

Requirements are the fundamental and critical part of every IT project.
Without requirements, the developers would be lost and not know what to
do, what to prioritize or what the outcome should be. Requirements are the
bridge between the developers and the customers, where they agree on what
the project should achieve [35, 12, 38].

In this section, we will first explains what difficulties exist when eliciting
security requirements. Then we change focus to security requirement elici-
tation techniques and how they relate to the software engineering method-
ologies. Then we outline the importance of reusable security requirements
and at last give some examples on reusable security repositories that exist
to day.

3.2.1 Difficulties

Tøndel et al. [56] have done a survey on security requirements elicitation and
their impression is that many are talking about it, but few are actually doing
it. Security requirements are a fundamental task when trying to achieve
better security because it values to begin early [35, 12, 38]. So why is not
everyone doing it? Software security practices are still immature, and the
approaches and techniques for eliciting security requirements may be too
difficult or comprehensive for non-security experts. The steps involved in
integrating the approach into existing software development life cycle may

3.2. SECURITY REQUIREMENTS 37

be too cumbersome, e.g. in form of too narrow or wide to fit into the existing
project.

There is lack of a universally accepted definition of security requirements
[56]. From Section 3.1 we know that the different approaches uses differ-
ent techniques, and the chosen approach will therefore have much to say
regarding the quality of the security requirements. Hence it is important
to have a clear definition of what security requirements we want, and what
techniques we should use to get it before we choose an approach. The lack
of a common definition of security requirements indicates that it would be
easier for everyone to have concrete example on how to formulate security
requirements [56].

It is also a lack of a defined way of what a security requirements should
include and how they should be described. Haley et al. [24] has noticed
that security requirements are described in different ways that may not
give all necessary information. Haley et al. [24] points out that one way of
formulating security requirements are by describing the security mechanisms
to be used, e.g. “Use SHA256 encryption between server en client”. The
problem is that the requirement is telling what to do, not why. Another way
of describing security requirements are by describing security functionality,
e.g. “Use an Firewall to protect from outside attack”. This requirement
lack the description of what to protect and why. Haley et al. [24] points
out that their framework expresses security requirements as what is going
to happen, instead of describing what is not ever going to happen. This,
they point out, has the ability to give information about when and why, and
leaves the how up to the designer [24].

3.2.2 Approaches to Security Requirement Eliciting

Security requirement eliciting approaches are strategies to eliciting and an-
alyzing information in the requirement phase. In Section 3.1 we gave a
brief outline of the processes of conducting secure software engineering. In
this section, we will describe the approaches, and how the secure software
engineering methods employ them.

Tøndel et al. [56] lists the following approaches for doing secure requirement
eliciting:

1. Definitions - agree on definitions that will make a common base of
understanding.

2. Objectives - define objectives, the goal or achievements for the busi-
ness.

38 CHAPTER 3. LITERATURE REVIEW

3. Misuse/threats - eliciting misuse and threats to the system.

4. Assets - deduce the valuables of the business.

5. Coding standards - define what programming language to use and how
to use it.

6. Categorize and prioritize - sorts the requirements to know what to
prioritize.

7. Inspect and validate - the requirements may change over time.

These are security requirement eliciting approaches that the different pro-
cesses have utilized. Some approaches are used more than others. Tøndel
et al. [56] discovered with their research that Misuse/threat, Objectives and
Assets approaches were mostly used. Because they are mostly used, it is
reasonable to conclude that they also are the most important once [56].

In Table 3.1 the approach that was used in the different methodologies
are listed. From the table, we can see that Security Quality Requirements
Engineering (SQUARE) is the methodology that has put to use the most
approaches. The other two, Comprehensive Lightweight Application Secu-
rity Process (CLASP) and Trustworthy Computing Security Development
Lifecycle (TCSDL) is only utilizing two of the approaches and have Objec-
tives in common. Also SQUARE is using Objectives. The interesting part is
that even though CLASP and TCSDL are only using two of the approaches,
they both managed to have an approach that no other has.

Table 3.1: The relation between security methodologies and security require-
ment eliciting techniques [56].

CLASP SQUARE TCSDL
Definitions Yes
Objectives Yes Yes Yes
Misuse/threats Yes
Assets Yes
Coding standards
Categorize and prioritize Yes
Inspect and validate Yes
Process planning Yes

3.2. SECURITY REQUIREMENTS 39

3.2.3 Reusable Security Requirements

Some research have shown that security requirements has the potential to be
highly reusable [20, 58]. Studies have shown that while functional require-
ments tend to be very different, the same cannot be stated about security
requirements. Firesmith [20] draws forward a good example; the functional
requirements for an embedded avionics application and an ecommerce web-
site may be very different, but the security requirements tend to exhibit far
less variability. Also, Firesmith [20] has recognized that for every applica-
tion, at the highest level of abstraction, they tend to have the same basic
kinds of valuable and potentially vulnerable assets.

There are not much research on the subject, but from what has been con-
ducted, reusable security requirements looks promising. Eliciting security
requirements is a difficult process, which require both experience and secu-
rity knowledge.

Firesmith [20] describes the following advantages by employing reusable se-
curity requirements:

• We will get suggestions on what information to include, general advice
and common pitfalls.

• We do not have to write each requirement from scratch.

• We will get more consistent and well defined formulation of the security
requirements.

3.2.4 Security Requirement Repository

Withall [58] has written a book “Software Requirements Patterns” which
is using the idea behind reusable requirements. Not only do Withall [58]
consider security requirements, but also functional requirements that he has
discovered could be reusable. His catalogue includes 37 reusable require-
ments in the form of patterns, where six of them are security related in form
of access control.

A pattern is one way of dealing with reusable items. Withall [58] has put
to use the idea, and encapsulated the requirements into patterns with the
following format:

1. Basic details - the pattern manifestation, owning domain, related pat-
terns, anticipated frequency of use, pattern classifications and pattern
author.

40 CHAPTER 3. LITERATURE REVIEW

2. Applicability - what situations the pattern can be applied.

3. Discussion - how to write a requirement, and what to consider.

4. Content - what the requirement say.

5. Template(s) - starting point of writing requirements of this type.

6. Example(s) - one or more representative requirement written using
this pattern.

7. Extra requirements - explains what sorts of requirements often follow
on from this type.

8. Considerations for development - hints on how to implement it.

9. Considerations for testing - what to have in mind when testing.

Common Criteria (CC), which is more described under chapter 3.1.2, consist
of about 60 security functional requirements that are ordered in 11 classes.
Also, CC includes a set of security assurance requirements. In this context,
they are not equally important because they are more focused on assurance
of the measures instead of the measures. Together, all the requirements form
the foundation of CC that are employed when evaluating IT products [14].

CC does not use patterns to represent the security requirements as Withall
[58] does, but are organized into a hierarchical structure. The hierarchical
structure consists of Classes, that consists of Families, that consist of Com-
ponents that finally consist of Elements. This organization is provided to
make it easier to find specific components.

Classes are used as the most general grouping. The members of the group
share a common focus, e.g. the class FIA - “Identification and Authentica-
tion”, is focusing on identification and authentication of users.

A family is a grouping of components that share a specific focus, but may
differ in emphasis and how strict they are. An example is the FIA UAU
family, which is part of the FIA class. The FIA UAU family concentrates
on authentication of users.

A component is the smallest selectable unit in CC. The set of components
are ordered by their emphasis and strictness, but they may also be ordered
by their relations to other components. An example of a component is the
FIA UAU.3 – Unforgeable Authentication (which has focus on unforgeable
authentication).

3.3. SECURITY MODELING METHODS 41

Elements are the smallest units, and together they form the construction
of components. Example of an element is the FIA UAU.3.2 which concerns
the prevention of copied authentication data.

3.3 Security Modeling Methods

Security modeling methods are ways to gather, present and elicit informa-
tion. They represent information that may have value e.g., when doing a
security analysis or describing security information [47].

This is important because the security field is constantly changing, and
the size of the systems is getting bigger and bigger. We need methods to
represent the systems and their security related information. That way we
can easily communicate and discuss information like expected functionality,
potential threats and exploits [47].

There are methods that are elicitation the same information, but they may
have different fulfillment, different name and emphasizes [23]. Some methods
are focusing on eliciting of information and others on analyzing the infor-
mation. As many of the methods have different views of the problem, they
may complete each other. For example threat modeling can help develop
realistic and meaningful security requirements [41].

Security modeling has evolved considerable and different modeling tools and
methods exists for different areas within software security. The main areas
that we have identified are threat, attack and vulnerability modeling, re-
quirement eliciting modeling and architecture and design modeling [23].

What method to prefer over another may depend on the software engineer-
ing methodology used [23]. From Section 3.1 we know that the software
engineering methodologies have different ways of conducting the develop-
ment process. That the methodologies have different approaches which are
favored as stated in Table 3.1, could have an impact on the preferred mod-
eling method.

In this section we will be giving an outline of some of the most important
security modeling techniques. First we will go through misuse and abuse
cases, then we will describe attack trees. Afterwards we will outline Secure
Tropos and describe UMLsec and SecureUML.

42 CHAPTER 3. LITERATURE REVIEW

3.3.1 Misuse and Abuse Cases

Misuse and abuse cases are modeling techniques that are used to describe
and elicit the threats of a system. Both systems are derived from use cases,
with is one of the Unified Modeling Language (UML) diagrams that are
used to describe the behavior of a system. Use cases captures the functional
requirements while misuse and abuse cases captures the malicious behavior
that the functional requirements can cause [55, 32]

Use cases are part of the widely used standard – UML. Because most de-
velopers already know UML and use cases, the threshold of understanding
misuse and abuse cases are small. It is also easier to discuss the system and
threats with the customer because of the low threshold of understanding
[55, 32].

Misuse Cases

The approach of misuse cases is to extend the positive(regular) use case
diagrams with negative use cases – misuse cases. Misuse cases specify the
behavior that is not wanted with the purpose to eliciting the security re-
quirements for a given system [54, 55].

The notation of misuse cases includes the misuse case and a misuser together
with relationships. The relationship notation includes threatens, mitigates
and aggravates, and they are used to draw the relationship between the use
cases and the misuse cases, and the misusers and the misuse cases. The
concept of this notation is that an use case mitigates a misuse case, and the
misuse case threatens the use case [54, 55].

The notation uses inverted graphics that incorporate with regular use case
diagram without confusion [54, 55]. Figure 3.3 illustrates an example of a
misuse case of an e-shop. From the example, we can see how the transition
between the behavioral and malicious behavior in the system is illustrated.

A misuse case can also be represented as a more detailed misuse case de-
scription [54, 55]. There are different templates suggested for this; some
examples of such templates are the heavyweight and the lightweight tem-
plate witch is described in more detail by Sindre and Opdahl [55]. Both of
them describe the misuse case as textual representation but they differ in
how much information that is included.

Sindre and Opdahl [54] has listed the following as proposed steps for eliciting
security requirements with misuse cases:

3.3. SECURITY MODELING METHODS 43

Register as
customer

Order products

Ask question
about product

Make reqviews

Customer

Administrator

Flood system

Get privileges

Reveal
information

Steal card
information

Submit
malicious code

Protect
information

Malicious user

<<threaten>>

<<threaten>><<threaten>>

<<threaten>>
<<threaten>>

<<threaten>>
<<mitigate>>

<<threaten>>

<<include>>

Figure 3.3: Example of a misuse case diagram for an e-shop [54].

• Identify critical assets.

• Define security goals.

• Identify threats.

• Identify and analyze risks.

• Define security requirements.

Røstad [47] proposes to extend the misuse case notation to include the abil-
ity to represent vulnerabilities and insider threats. The extended notation
enables expressing a richer and more complete picture of security threats.
The extension helps visualize the problem with insider threats, which have
much more potential of misusing the system than an external actor. Con-
sidering this, the information will help making a more correct picture of the
problem and might have an impact on the risk analysis and requirement
prioritizing [47].

Abuse Cases

Abuse cases resemble misuse cases, but uses another approach to the prob-
lem. They use the same notation from UML, but differ in the philosophy
that abuse cases should be made on different diagrams. Abuse cases are
not shown on use case diagrams and use cases are not shown on abuse case
diagrams [32].

44 CHAPTER 3. LITERATURE REVIEW

McDermott and Fox [32] has listed the following steps to make abuse cases:

• Identify the actors.

• Identify the abuse cases.

• Define abuse cases.

• Check granularity.

• Check completeness and minimality.

Both approaches extend traditional use cases to also cover abuse and misuse,
and are potentially useful for several other types of extra-functional require-
ments beyond security [54]. Sindre and Opdahl [55] have some examples
of misuse cases in domains like availability, reliability and robustness, but
points out that further research are needed to provide useful guidance on
how to utilize the techniques.

3.3.2 Attack Trees

Attack trees provide a formal, methodical way of describing the security of
systems, based on varying attacks. An attack tree is a formal and methodical
way to describe the security of systems based on varying attacks. The
attacks are presented as nodes in a tree structure, with the goal of an attack
as the root node. The different leaf nodes, will then be individual ways of
achieving an attack on the system [49].

In Figure 3.4, an example of a simple attack tree created by Schneier [49] is
illustrated. In the figure, we can see that the goal of an attack is to open the
bank safe, which is the root node. All the child nodes are possible attacks
to succeed the goal. Some child nodes also have children, e.g., the “Learn
combo” node. This illustrates that there are many ways to get to the state
where you have “Learned the combination”. So actually, the “Learn combo”
is a sub goal, on the way up to the root node.

When an attack tree is completed, we can assign values on the nodes to get
more information about the attack. All type of values can be used, boolean
and continuous, and they can be combined to learn even more about the
vulnerabilities of the system. One example of such use, is to go through all
the nodes and assign the values impossible and possible. Afterwards, we can
easily see what paths we need to look at more closely. Other examples of
such use are e.g. to find the probability of success of a given attack, or the
likelihood that an attack will be tried and so on [49].

3.3. SECURITY MODELING METHODS 45

Open safe

Instal
improperly

Cut open
safe

Learn
comboPick lock

Find written
combo

Get combo
from target

BribeEavesdropBlackmailThreaten

Listen to
conversation

Get target to
state combo

Figure 3.4: Example of an attack tree of a bank safe [49]

An attack tree can also be presented textually. It can be done by for example
using indentation to represent each level in the tree. For some, making
the tree textually may seem faster, and could be useful when e.g. doing
brainstorming [49].

A really useful property about attack trees are their reusability. A complete
attack tree can also be used in other situations that have the same needs
[49].

A problem with attack trees are that they depend heavily on the security
knowledge of the people creating them. When making an attack tree, it is
important to think like an attacker and have comprehensive knowledge of
types of attack and their severity. On the other hand, the reusability of
attack trees can lessen this problem [23].

3.3.3 Secure Tropos

Secure Tropos is a formal framework for modeling and analyzing security
requirements. Secure Tropos is an extension to the existing software devel-
opment methodology Tropos [22].

Tropos is based on Agent Oriented Programing (AOP). AOP is a program-
ming paradigm just like Object Oriented Programing (OOP) with focus
on design and implementation of software architecture. AOP is based on
agents, that should make the software more reliable when changes occur and

46 CHAPTER 3. LITERATURE REVIEW

new components are added [45].

Tropos is a software development methodology that uses AOP and is used
at different phases throughout the development cycle, from early require-
ments to detailed design [22]. The phases that Tropos is founded on are
the following: early requirements, late requirements, architectural design,
detailed design and Implementation where the last four is well-established
in the software industry [22], and can be related to the phases described in
Section 3.1.1.

The emphasis on requirements in the early phases makes Tropos get a deeper
understanding of the environment the software should operate in, e.g., what
kind of interactions the software will have with the external environment
[45].

Tropos adopts the i* modeling framework which offers the notation of actor,
goal and dependency. The strategy of i* is to model and describing the
network of relationship among the actors. i* also has support for describing
and supporting the reasoning of relationship with other actors[31].

It is argued that the Tropos framework lacks the ability to capture aspects of
security, and therefore we need the extension Secure Tropos. Secure Tropos
has the following extensions to the notion already defined in Tropos [22]:

• Ownership - is the state between the actor and a service. It represents
that the actor is the legitimate owner of the service.

• Trust - is the trust between two actors and a service. Indicates the
belief of one actor that another actor will not misuse the service that
he has been granted.

• Delegation - is the delegation of trust between two actors and a service.
Marks that permission has been granted.

The extended notions are intended for modeling and analysis of functional
and security requirements [22].

Giorgini et al. [22] has the following example of a requirement that describes
the delegation of trust between three actors using Secure Tropos:

“Alice is interested in gathering data on student performance,
for which she depends on Sam. Bob owns his personal data,
such as his academic record. Bob delegates permission to provide
information about his academic record to Sam, on condition that
his privacy is protected (i.e., his identity is not revealed).”

3.3. SECURITY MODELING METHODS 47

In this example, there is a difference in the relationship between Alice-Sam
and Sam-Bob. This can be graphically modeled with i* as in Figure 3.5. By
using the information from the example and the model, we can also make
formal arguments of the validity of the requirement [22].

Bob

SamAlice
Provide

Personal
Information

Provide
Personal

Information

O

P

P

EE

Figure 3.5: Example of modeling delegation of trust with i* using Secure
Tropos[22]

3.3.4 UMLsec and SecureUML

UMLsec and SecureUML are techniques to describe the design of a system
with security in mind. Both are extensions to the already well-defined UML
standard. UML is the de-facto standard for OOP, which has the following
advantages [30, 28]:

• Many modeling tools support UML.

• Developers are already familiar with the language.

• UML is relatively precisely defined.

When designing and implementing a system, it is widely used, and known,
that a system need to be planned down to the very detail. When designing
a system with security in mind, the current UML method is lacking func-
tionality to describe security needs. This is what UMLsec and SecureUML
are trying to do – add security information into the already widely known
and used UML standard [28].

48 CHAPTER 3. LITERATURE REVIEW

UMLsec extends the UML standard with the following mechanisms: stereo-
types, tagged values and constraints [28].

Stereotypes defines new types of modeling elements and are represented
in double angle brackets. Tagged values are a named-value pair that is
associating data with model elements that are tagged with curly brackets.
Constraints are restrictions that are placed on the stereotypes [28].

UMLsec manages to encapsulate the following security information in their
modeling elements; security requirements, threat scenarios, security con-
cepts and security mechanisms. These are information that UMLsec encap-
sulates in their models, so that security-experts and developers can read the
information from the diagrams [28].

SecureUML only extends the UML standard with information relevant
to access control. The information that SecureUML adds are based on
the Role Based Access Control (RBAC) model. The RBAC model is a
well-established access control model that has widely recognized advantages
as well as being supported by a large number of software platforms[30].
SecureUML defines a vocabulary for expressing different aspects of access
control like roles, permissions and user-role assignment.

The SecureUML method is only at the first step. Further work will involve
focus on modeling security requirements and design information [30].

3.4 Security Patterns

Patterns are a approach of dealing with reusable solutions to common prob-
lem, which means that novices can benefit from know-how and skills of
experts [26][51]. Patterns exist in many different fields. In software, the
success started with the Gang of Four (GoF), which had focus on software
design [26].

Security pattern is a type of pattern that deals with the security domain
Schumacher and Roedig [51] defines a security pattern as follows:

“A security pattern describes a particular recurring security prob-
lem that arises in specific contexts and presents a well-proven
generic scheme for its solution”

Software security is a huge area, and there are many situations security
patterns can be used. The success of patterns(in the software industry)

3.4. SECURITY PATTERNS 49

started with design patterns, and this is generally what most people think
of when talking about patterns. There exist more variations that are worth
mentioning [16]:

• Architectural patterns - describes a more high level abstraction than
design patterns.

• Anti Patterns - describes something that is initially beneficial, but
ultimately will have bad consequences[42]

• Pattern Languages - Families, groups or collections of interrelated pat-
terns which are popular for object-oriented frameworks.

Also, security patterns can further be divided into more specific and formal
identification.Darrell M. Kienzle [16] have identified two broad categories of
security patterns:

• Structural Patterns - these are patterns that can be implemented in
the final product. They encompass design patterns such as those used
by the GoF. They usually include diagrams of structure and dynamic
interaction.

• Procedural Patterns - these are patterns that can be used to improve
the process for development of security-critical software. They often
impact the organization or reporting structure of the project.

When we look at the problems the software industry are facing when regard-
ing security, we can se that there are often the same mistakes over and over
again [51]. With that in mind, security patterns should have a great poten-
tial to solve this. At present, there is a huge gap between theory and the
practice, which indicates that we need to come up with tools and practices
that make the theory more usable for the industry [51].

In this section we will first outline what state security patterns is in, and
what benefits we can get from using them. Then we will describe how to use
patterns, and what structure they have. At last we will give some example
of existing pattern catalogs, and where to find them.

3.4.1 Future of Security Patterns

The patterns approach have been greatly utilized in the software industry.
Java APIs, libraries and Microsoft Foundation Classes are examples that use

50 CHAPTER 3. LITERATURE REVIEW

patterns extensively [16]. Also, there are comprehensive workshops, books
and web sites that are devoted to further study and development of the
patterns [16]. These are examples of design patterns. Security patterns
have yet to see the same popularity as the design patterns [26]. Heyman
et al. [26] and many others [3, 1] believe that security patterns have a great
potential.

There exists user groups like SecurityPatterns.org [3] and the Yahoo user
group [1] that are gathering and discussing the future of security patterns.
Their work of collecting material, indicates that new security patterns and
research on the subject is still evolving. In Figure 3.6, from Heyman et al.
[26] work, we can see how the security pattern landscape has evolved from
1996 to 2006. From the dark line in the figure, we can clearly see that the
number of security patterns are growing each year. Their work does not
only incline that the number of security patterns are growing for each year,
it also states that the quality of security patterns are getting better for each
year.

Figure 3.6: Number of security patterns by publication year [26]

Heyman et al. [26] has identified tree main advantages when using patterns:

• The solution should be sound, because it has been time-tested.

• Benefits and drawbacks are known and can be taken into account when
designing a solution.

• Ease of communication between stakeholders.

With the advantages listed above, together with the security problems we
are facing, security patterns have the potential to bridge the gap between

3.4. SECURITY PATTERNS 51

the design phase and secure code [26]. Also, a pattern is following a well-
known structured way of dealing with information. Most developers already
knows what a pattern is, and can relatively easily get into the details [50].

Because security is a complex topic and software development is mostly done
by developers with little or no security knowledge. Make use of security pat-
terns to transfer the skills and knowledge from security experts to software
developers could be an advantage [51, 50, 16].

On the other hand, not everything is great with patterns. Many think of
patterns as a silver bullet, but it is crucial to have an understanding of the
pattern as well [13]. Also, as the number of patterns grown, it will get harder
to maintain and find the correct pattern for the right task [26].

Security patterns have a huge potential and a lot of people are believing
and working for it. The future of security patterns looks bright, and we
can already see some of the effects it will have on the software industry by
looking at the communities and their engagement.

3.4.2 How to Use Security Patterns

Given a good pattern description, it should be obvious to determine whether
a pattern is applicable to a particular situation and how the actual instan-
tiation of a pattern should be done [51]. From looking at the description of
a pattern, e.g. from a pattern catalog, you should easily have the possibil-
ity to determine whether the pattern is usable or not in the case at hand.
An example is the security pattern repository by Darrell M. Kienzle [15].
The Repository includes about 17 structural patterns, and 13 procedural
patterns. At the beginning of the document there are a nice outline that
summarizes all of the patterns by listing the name of the pattern and the
abstract description. By skimming through this list, we can get an idea of
what the pattern does, and if it could be valuable in the case [51].

Tools could have a huge impact on the simplicity and effectiveness of finding
the right security pattern [51]. Tool support for security patterns is not an
objective the pattern community has [51], but Schumacher and Roedig [51]
points out the following benefits with a toolkit:

• Maintenance - creating, editing, publishing, and reading patterns is a
huge effort. A tool could lessen the work enormously.

• Classification - with a classification we can get taxonomies on both
problems and solutions. Similarly a context hierarchy could be devel-
oped.

52 CHAPTER 3. LITERATURE REVIEW

• Modeling - a tool could help integrating the pattern when modeling
the system.

• Reasoning - patterns can overlap and subsume each other, some cannot
work with others etc. A tool can use this information to make reasoned
decisions.

Schumacher and Roedig [51] have an example of practical, but still fiction-
ally(because the tool does not exist) use of security patterns. The example
is a real case of a security flaw that Microsoft introduce in their version of
the Point-to-Point tunneling Protocol(PPTP). The problem was that the
Point-to-Point protocol used a hash algorithm that was very easy to brute-
force because of an implementation weakness. Also, both session key and
authentication token were based on the same hash value. So an attacker that
broke the hash could both have access to the system and read the traffic over
PPTP.

A tool utilizing security patterns could have prevented this from happening
by visualizing the information. The tool could show where patterns were
implemented and their relations to part of the system. Also, the tool could
have detected that both security mechanisms were based on the same hash
and give a visual feedback on the security issue. Also, the tool could have
given implementation details, like what type of data should be used to gen-
erate the hash. By having all those features into a tool, security patterns
would definitely show their value [51].

3.4.3 Pattern Structure

A pattern consists of a set of attributes that constitutes the structure of
the pattern. Design patterns generally stick to more restrictive format than
other type of patterns. They include Unified Modeling Language (UML) dia-
grams that explain the structure and the interactions between objects. They
also require examples of how they are used and relation to other patterns
together with sample code. Darrell M. Kienzle [16] have cross referenced
their template with others and found that the following consist of the most
important elements in a security pattern:

• Pattern Name - the name of the pattern.

• Abstract - a short summary of the pattern.

• Aliases - other names that the pattern may be known as.

3.4. SECURITY PATTERNS 53

• Context - is the situation the patterns may apply.

• Problem - describes what conditions that motivate the usage of the
pattern.

• Solution - describes how the patterns solves the problem.

• Static Structure - what elements that are involved with the usage of
the pattern.

• Dynamic Structure - outlines the interaction between the components
in the static structure.

• Implementation Issues - hints and details on how to implement the
pattern.

• Common Attacks - which attacks that has been identified interacting
with this pattern.

• Known Uses - actual examples of use.

• Sample Code - some sample code for the developer to more easily grasp
the pattern.

• Consequences - what benefits the pattern provide and potential liabil-
ities.

• Related Patterns - list of patterns that have something in common.

• References - citations related to the pattern in the literature.

Not all elements are equally important, and may be left out in some security
patterns.

3.4.4 Security Pattern Repository

Pattern repositories are archives that collect and present patterns. The lists
known are gathered either by communities or researchers.

The most known security pattern repository is the SecurityPattern.org [3]
web site. The web page is collecting and presenting security patterns sorted
by the date they came out. The list consists articles and books that con-
stitute the receptive patterns, and does not contain any well-defined way of
handling the pattern data.

54 CHAPTER 3. LITERATURE REVIEW

Darrell M. Kienzle [15] have another example of a security patterns reposi-
tory that consist of 16 structural patterns and 13 procedural patterns that
focus on web application security.

Example of other pattern repositories(not security specific) are the Portland
Pattern Repository [9] witch includes all sort of patterns. Quince [5] that
features Graphical User Interface (GUI) patterns. Wikipattern [6] web-page
which includes a huge collection of all sorts of patterns.

Chapter 4

Description of the Tool

This chapter describes the tool that we created to test the hypotheses in
Table 1.1. First Section 4.1 outline the requirements that were defined for
the tool. Then in Section 4.2 an presentation of the functionality of the tool
is given. At last, in Section 4.3 we conclude if the tool is complete.

4.1 Requirements

The tool was first and foremost developed as a prototype that could test the
hypotheses listed in Table 1.1. Goals like maintenance and interoperability
were not prioritized. We focused mainly on usability, as this could have an
impact on the result. We used an agile development method, with focus on
prototyping. By agile, we mean that nothing was final before the very end
and adapted new improvements and ideas as we went on. Regular meetings
and discussions of the progress kept us at a steady course. We began the
process by making low-fidelity prototypes with suggestions on how the tool
could look and behave. By presenting them to the supervisors, we got
feedback, made some changes and presented them again.

We made a list of requirements for the tool. At first, the list contained only
functional requirements. After further iterations, we made some changes
to the list and added priority, non-functional requirements and security re-
quirements. The requirements were used as a guide when developing and
planning the tool.

The list of requirements for the tool presented in this section are not intended
as an exhaustive list. More work should have been put into keeping it up
to date as the iterations went on. For what it is worth, it represents an

55

56 CHAPTER 4. DESCRIPTION OF THE TOOL

early draft of what we had in mind, and can to some degree validate the
completeness of the tool from an early point.

The requirements were ordered by priority and were prioritized as follows:

• Essential - states functionality that needs to be in place for the tool
to function properly.

• Beneficial - enhances the product and may have impact on the research,
but are not unacceptable to omit.

• Optional - functionality that would make the tool better, but has no
benefits to the research.

The following is the list of requirements that we elicited for the tool:

Functional requirements

Essential

1. Find Security Requirement Patterns (SRPs) by searching.

2. Find SRP by browsing categories and security measures.

3. Find mitigation techniques for the selected security requirements(in
form of Security Design Patterns (SDPs)).

4. The possibility to create a private list of SRPs for easy access.

5. Clear the private list of SRPs.

6. Possible to create/delete/modify a SRP.

7. When changing a SRP, the changes will only be private for the user in
question.

8. Possible to use examples in the SRP as a starting point of creating/-
modifying security requirements.

9. Find mitigation techniques based on the security requirements in the
private list.

10. Possible to sort the security requirements elicited.

11. Possible to have a private list of security requirements for more than
one project.

4.1. REQUIREMENTS 57

12. The application should give feedback on functionality(when mouse-
over) on parts that could be misunderstood.

Beneficial

13. Possibility to rank the security requirements.

14. Possible to submit suggestion for new data (SDP, SRP).

Optional

15. Context sensitive data. E.g., give suggestion of related patterns (using
data from previous users).

Non-functional requirements

Essential

1. The tool should be implemented as a web-application for easy access.

Security requirements

Essential

1. Users should be divided into two privilege groups: administrator and
regular users.

2. Only users with administrator privilege should have access to grant
new data to the tool (suggestions, new pattern, etc.).

3. Only authenticated users should have access to use the tool.

4. Data created by the users should be considered personal and other
users should not get access to it if not otherwise explicitly set or the
user has administrator privileges.

The requirements were elicited using a mind intensive planning stage where
we identified what the tool needed to support the hypotheses and goals listed
in Section 1.2 and Table 1.1.

58 CHAPTER 4. DESCRIPTION OF THE TOOL

4.2 Design and Implementation

In this section we will outline how the functionality of the tool is imple-
mented. We have roughly divided the tool into five areas; authentication,
security requirement eliciting, private security requirements, project admin-
istration and tool administration. In this section, we will outline each of
them in turn.

Microsoft
SQL

Database
Web Service

Microsoft Server 2008

IIS 7.0

Client Operating System

Web Browser

Tool running as a
Silverlight Plugin

High-level Architecture

Figure 4.1: A high-level architecture of the tool.

A high-level architecture of the tool is presented in Figure 4.1. From the
figure, we can see that the tool is a Silverlight plugin running in the web
browser at the client. Because the application is running on the client, we
also needed a web service. We could have managed only with the database,
and do the data transfer straight from the client to the database. Doing it
that way would not been a good solution as it could have caused problems
for some users. By utilizing port 80 for data transfer(as a web service does),
we circumvented any problems that e.g., a firewall could have caused.

A web service also has the advantage that it does not depend on the client.
Other developers and researchers could access the content on the web service
and use it to their likings. E.g., create a new an improved version of the
client. The web service supports all the functionality as the client does to-
day; creating new users, authentication, retrieval and populating of pattern
data and so on.

4.2. DESIGN AND IMPLEMENTATION 59

4.2.1 Authentication

The tool need a way to handle users and their projects. One way of han-
dling this was using authentication. We created two access levels, user and
administrator as specified by the first security requirement in Section 4.1.

In Figure 4.2, the login window is presented. This was the first page all
users would see when they entered the page, and worked like a wall between
the users and the functionality in the tool and fulfills the third security
requirement in Section 4.1. As you can see, authentication also involves
creating new users(point 3 in Figure 4.2), and if they forgot their password,
they needed a way to reset it(point 2 in Figure 4.2).

How users could reset their password is presented in Figure 4.4. This func-
tionality was not added as a requirement, but we developed it anyway be-
cause it is a basic functionality when using authentication. Users forget
their password all the time and this could be a useful.

In Figure 4.3 we can see how users could be registered in the tool. The
registration was open for everyone, and gave each user registering a profile
the “user” privilege. This indicated that the user had access to basic func-
tionality within the tool, but not administrate features like other users or
data population. The figures presented in this section is from a user with
administrator privileges. The only difference is that the administrator also
has access to the “AdminControl” tab as shown in the figure.

4.2.2 Security Requirement Eliciting

When a user is authenticated by logging in, the first page that is presented
is the “Search” tab as shown in Figure 4.5. This is where users can search
or browse for information.

The tool is populated with Security Requirement Patterns (SRPs), Security
Design Patterns (SDPs) and categories. The patterns are added under a
category, but it can also be a connection between the patterns as illustrated
in the data model presented in Figure 2.3.

The left list represents the content in the tool. By selecting some of the
content, the data about it will be listed on the right side. In Figure 4.5,
the category at the top(by default) is selected. The information about the
category is presented on the right side. Figure 4.10, 4.11 and 4.12 outlines
how the different content is presented within the tool.

As the tool contains different types of data, we choose to present this by using

60 CHAPTER 4. DESCRIPTION OF THE TOOL

1

23

F
igure

4.2:
T

he
figure

show
s

how
the

login
page

looks.
T

his
is

the
first

page
a

user
w

ill
se

w
hen

entering
the

tool,
and

all
functionality

is
hidden

until
the

user
is

authenticated.

4.2. DESIGN AND IMPLEMENTATION 61

F
ig

ur
e

4.
3:

T
he

fig
ur

e
sh

ow
s

ho
w

ne
w

us
er

s
ca

n
re

gi
st

er
a

us
er

ac
co

un
t.

T
he

to
ol

is
pu

bl
ic

ly
av

ai
la

bl
e,

an
d

an
yo

ne
ca

n
re

gi
st

er
an

d
te

st
th

e
to

ol
.

62 CHAPTER 4. DESCRIPTION OF THE TOOL

F
igure

4.4:
If

the
users

forgets
their

passw
ord,

it
can

be
reset

w
ith

the
built

in
reseting

m
echanism

.

4.2. DESIGN AND IMPLEMENTATION 63

different colors. The search filter presented in Figure 4.7 is one way that
indicate what color that represent each content. The blue color represents
categories, green the SRPs, while the red color presents the SDPs. Also,
users can create their own SRPs, presented by a darker green color.

In Figure 4.6, an example of a search(point 1 in Figure 4.6) is demonstrated.
This is the first functional requirement of the tool. From the search re-
sult(point 3 in Figure 4.6) we can see how the content is presented. More
filters have been enabled, and explains why some content has another color.
The default event, if the user has not done otherwise, is that the top result
is selected. In this case, a SDP is selected, and the information it contains
is presented on the right side(point 4 in Figure 4.6).

It is also possible to browse for content which is the second requirement for
the tool. Figure 4.8 is an example of how it looks when browsing a category.
In the category, two SRPs are revealed. A SRP has a checkbox beside the
browse button. This is an indication if the SRP is added to the private
list. The private list is configured in the settings tab and is presented as
a “project”. A user can have many projects, but only one project can be
active at one time. The active project is the one the pattern will be added
to, if we would select a pattern.

Sometimes it could be useful to know the relation between the data. For
example if we knew that we needed to use a design pattern, what SRPs is
related to it? That way, we could find SDPs that we had not thought of.
Also, it could be valuable to see what SDPs are suggested knowing what
security requirement we want. This would be the mitigation techniques
for that requirement pattern(the third functional requirement for the tool).
Both cases is possible, and is presented in Figure 4.9.

64 CHAPTER 4. DESCRIPTION OF THE TOOL

F
igure

4.5:
T

he
figure

presents
how

the
first

page
looks

w
hen

a
user

has
logged

in.
T

he
left

list
represents

categories
w

hich
are

brow
sable

by
clicking

the
“plus”

button
on

them
.

Inform
ation

about
the

content
is

presented
on

the
right

side.

4.2. DESIGN AND IMPLEMENTATION 65

31

2 4

F
ig

ur
e

4.
6:

T
he

fig
ur

e
sh

ow
s

a
se

ar
ch

in
pr

og
re

ss
.

A
s

th
e

us
er

is
ty

pi
ng

,t
he

re
su

lt
lis

t
w

ill
au

to
m

at
ic

al
ly

up
da

te
.

T
he

re
su

lt
co

nt
ai

ns
di

ffe
re

nt
ty

pe
s

of
co

nt
en

t
be

ca
us

e
w

e
ha

ve
en

ab
le

d
m

or
e

fil
te

rs
.

66 CHAPTER 4. DESCRIPTION OF THE TOOL

Figure 4.7: The search filter is used to filter the content that is presented
by the tool. The filter is located at point 2 in Figure 4.5. Note that the
colors, also represent the type of content in the search result list. By default,
only the security requirement filter is checked to make sure the users are not
overwhelmed by all the content.

Figure 4.8: The figure shows how it is possible to browse for content. By
using the browse button(“plus” sign)in the top left of the content, new
content will emerge based on what filters that are activated. The checkbox
next to the browse button, represent that a pattern can be added to the
private list of requirements.

4.2. DESIGN AND IMPLEMENTATION 67

(a) Case 1

(b) Case 2

Figure 4.9: By browsing the content, it is possible to find other patterns
that resemble, or have a relation to the current one. In Figure (a), the
design patterns that are mapped to the security requirement “Anonymity”
are shown. Last, in Figure (b), how other requirement patterns can be found
by using design patterns are shown. For this to be possible, it is important
that the corresponding filters are enabled.

68 CHAPTER 4. DESCRIPTION OF THE TOOL

Figure 4.10: An example of how a Security Requirement Pattern is presented
when it is selected in the list(point 4 in Figure 4.5).

Figure 4.11: An example of how a category is presented when it is selected
in the list(point 4 in Figure 4.5).

4.2. DESIGN AND IMPLEMENTATION 69

Figure 4.12: An example of how an SDP is presented when it is selected in
the list(point 4 in Figure 4.5).

70 CHAPTER 4. DESCRIPTION OF THE TOOL

4.2.3 Private Security Requirements

The private security requirement list is located between the “Search” and
“Settings” tab. The name of the tab varies with the name of the active
project. We will thorough this section call it the project tab.

Before a user begins using the tool, it is important to create a new project.
Before this is done, the project tab is hidden and it is not possible to add
SRPs.

In Figure 4.13 an example of how it looks when we got a project called
“Case 1 - Mobil nettbuikk” is shown. From the figure, we can see how the
content is presented. On the left side the security requirements that the
user has elicited is presented. On the right side, the information about the
selected pattern is outlined. This has the same analogy as the content in
the “Search” page. The list on the left side, is a presentation of the private
SRPs for the user, and is the fourth functional security requirement for the
tool.

The security requirement list is created using SRPs. This list is populated
either by using patterns from the “Search” page or by creating new patterns
by using the “(add new)” link.

A fundamental philosophy in the tool is that SRPs have examples of how
a requirement can be described. These examples should be changed to fit
into the case and used to populate the requirement list.

In Figure 4.13, the selected pattern includes examples of requirements(point
3 in Figure 4.13). When the user selects one of these examples, the text in
the requirement list on the left will change to that example. If the user
created a new SRP, the text in the requirement list on left side would be
empty because the lack of examples. To make an example that can be
selected, the user has to “edit” the pattern(point 4 in Figure 4.13), and
create a new example that could be selected.

The tool also gives guidelines for choosing an appropriate design of the
system(point 9 in Figure 4.13). The SRPs are mapped to SDPs that can
help the user in the design phase. By clicking the browse button on the
requirement, suggestions on SDPs will emerge(point 2 in Figure 4.13). The
SDPs that emerges, are of course clickable to get more information.

It is possible to create, delete and modify a SRP which is the sixth functional
requirement of the tool. Point 4 and 5 in Figure 4.13 shows how it is possible
to change and delete a pattern. Figure 4.14, gives an overview of how it is
possible to change an SRP. When changing a pattern, it is possible to change

4.2. DESIGN AND IMPLEMENTATION 71

the priority of the pattern as well(point 3 in Figure 4.14). The requirement
list on the left, is sorted by this priority, as shown in point 6 in 4.13 and point
3 in Figure 4.14. This functionality covers the tenth functional requirement
of the tool. Also, it is possible to create new examples(point 1), suggest a
pattern as public (point 3), and save the pattern(point 4).

The possibility to suggest new data were one of the functional requirements
with the priority “beneficial”. For now, the suggestion of a new pattern is
only saved in the database, and do not have any administrator capabilities
to review, decline or accept a pattern.

The eighth functional requirement is not directly covered by the tool, but
can be managed by a “copy and paste” - “create new requirement” method.
The user has to copy the example text that he wants, create a new security
requirement, change the requirement, add a new example, and paste in the
text. A slow and cumbersome method, but it works. For further work, it
should be possible to copy or duplicate an example into a new SRP.

All data that the user creates or changes will be saved as a private SRP.
The evident reason is that all changes by a user should be private.

72 CHAPTER 4. DESCRIPTION OF THE TOOL

1

2

3

6 5
4

F
igure

4.13:
T

he
figure

displays
the

page
that

represents
the

active
project.

T
he

left
list

is
the

security
requirem

ents
the

user
has

selected.
T

he
list

represents
the

patterns
as

w
ell.

A
requirem

ent
is

actually
a

pattern.
B

y
selecting

one
of

the
requirem

ents,the
pattern

inform
ation

w
illbe

revealed
on

the
right

side
of

the
list.

T
he

text
in

each
requirem

ent
is

based
on

the
exam

ples
in

a
pattern.

B
y

selecting
one

ofthe
exam

ples,the
requirem

ent
w

illbe
changed

to
that

exam
ple.

N
ew

exam
ples

can
be

created
or

changed
to

the
users

liking.

4.2. DESIGN AND IMPLEMENTATION 73

3

1

2 4

Figure 4.14: The figure shows how changes can be done with a SRP. When
the pattern is saved, the pattern will become a private SRP that only the
user has access to. The requirement will be searchable and could be used in
other projects.

74 CHAPTER 4. DESCRIPTION OF THE TOOL

4.2.4 Project Administration

Some users are working on more than one system at a time, e.g., in the user
test, we were testing two different cases which involved that each user had
to gather security requirements for both cases. When such events occur it is
useful to store each set of security requirements separately. In the tool, we
have created the possibility to have projects, which could be used to separate
the systems, which compensate for the eleventh functional requirement.

On the left side in Figure 4.15, the projects are listed. On the right side,
information about the selected project is displayed.

On the left side, it is possible to create a new project(point 3 in Figure 4.15),
by clicking the “(add new)” link. Also, it is possible to delete a project by
clicking the delete button(point 4 in Figure 4.15). Private SRPs will not be
deleted, as they also could have value for some of the other projects the user
has. For the same reason, private SRPs that are deleted from the project,
is not entirely gone. Only from the project. The fact is that the tool needs
a better way of administrating these requirements. Point 1 in Figure 4.15 is
the radio button which indicate what project is active.

On the right side, information about the selected project is listed. As de-
scribed by Figure 4.15, it is possible to save information about a project(name
and description), and we can see some statistics, like how many security re-
quirements that are found, and how many security mechanisms that are
suggested.

That the project has statistics of both security requirements and private
security requirements are to distinguish between requirements that the user
has changed in some way. Also, when talking about security requirements
in this context, we are actually talking about patterns. In other words, a
SRP that is changed, will automatically become a private SRP.

4.2. DESIGN AND IMPLEMENTATION 75

1

4

6
5

3

F
ig

ur
e

4.
15

:
T

he
fig

ur
e

sh
ow

s
ho

w
pr

oj
ec

ts
ar

e
m

an
ag

ed
.

A
us

er
ca

n
ha

ve
m

an
y

pr
oj

ec
ts

,
an

d
a

pr
oj

ec
t

ca
n

in
cl

ud
e

m
an

y
re

qu
ir

em
en

ts
.

T
he

ac
ti

ve
pr

oj
ec

t(
po

in
t

1
in

th
e

fig
ur

e)
,

is
th

e
pr

oj
ec

t
w

hi
ch

is
en

ab
le

d
in

th
e

to
p

pa
ne

.
N

ew
SR

P
s

w
ill

be
ad

de
d

to
th

e
ac

ti
ve

pr
oj

ec
t.

76 CHAPTER 4. DESCRIPTION OF THE TOOL

4.2.5 Tool Administration

As the tool contains data and mapping between data, it also includes an
administrator part where the data can be managed.

In Figure 4.16 how the data are administrated is shown. The figure displays
the SRPs that the tool has been populated with on the left side. On the right
side, the information about the selected patterns(point 1 in Figure 4.16) are
shown. By clicking the “Add new” button(point 2 in Figure 4.16), a new
pattern can be created. A pattern can be both deleted and changed with
the buttons on the right side(point 3 in Figure 4.16). Point 4 shows how
the mapping between the content is created. By having the identification
number of some content, in this case a SDP, a mapping can be created by
providing the number in the input field and clicking the “ok” button. The
pattern that corresponds to that identification number will then emerge in
the list with mapped patterns.

User administration is also an important part of the tool. In Figure 4.17
we can see how this was managed. We can see that the tool support a
“userlevel” which corresponds to the access level the user has been granted.
Also, an important part was the possibility to disable accounts when the user
test was finished, and get access to the participants data. By clicking the
“GoTo” button, we could get access to the information that the participants
had created.

4.2. DESIGN AND IMPLEMENTATION 77

2

1

4

3

F
ig

ur
e

4.
16

:
T

he
fig

ur
e

sh
ow

s
ho

w
pa

tt
er

ns
an

d
th

ei
r

m
ap

pi
ng

ar
e

ad
m

in
is

tr
at

ed
.

P
oi

nt
4

in
th

e
fig

ur
e,

sh
ow

s
ho

w
a

ne
w

m
ap

pi
ng

ca
n

be
ad

de
d

by
su

pp
lin

g
a

pa
tt

er
n

id
en

ti
fic

at
io

n
nu

m
be

r.

78 CHAPTER 4. DESCRIPTION OF THE TOOL

F
igure

4.17:
T

he
figure

show
s

how
adm

inistrators
can

adm
inistrate

users.
In

the
figure,

users
from

the
user

test
are

listed,
and

all
the

users
are

deactivated
because

the
test

is
finished

and
the

participants
should

not
have

the
possibility

to
login.

If
they

w
ant,

they
could

create
another

user
to

test
the

live
dem

onstration
of

the
tool.

4.3. VALIDATION OF COMPLETENESS 79

4.3 Validation of Completeness

In this section we list the status of the requirements that were presented
in Section 4.1. Table 4.1 lists the status of the functional requirements,
non-functional requirements, and the security requirements.

Table 4.1: Status of the functional requirements.

Functional requirement Priority Status
1 Essential Implemented
2 Essential Implemented
3 Essential Implemented
4 Essential Implemented
5 Essential 50%, it is possible by deleting

a project, or deleting each re-
quirement one by one, but a
specific functional is missing.

6 Essential Implemented
7 Essential Implemented
8 Essential Implemented, but it is cum-

bersome. Further work should
emphasize on making this
functionality easier.

9 Essential Implemented
10 Essential Implemented, the list is

ranked by priority.
11 Essential Implemented
12 Beneficial Implemented
13 Beneficial Implemented
14 Optional 40%, client have the option

to suggest a Security Require-
ment Pattern (SRP) as pub-
lic. Missing administrator
functionality and suggestion
for SDP.

Non-functional requirement Priority Status
1 Essential Implemented

Security requirements Priority Status
1 Essential Implemented
2 Essential Implemented
3 Essential Implemented
4 Essential Implemented

From the tables, we can see that all the requirements have more or less

80 CHAPTER 4. DESCRIPTION OF THE TOOL

been completed. The functional requirement five, can be argued to satisfy
100%, because we have not implemented a distinct feature that does the
functionality.

Chapter 5

Results

In this chapter we present a summary of the results gathered when testing
the tool. We used the data collected to find results related to the hypotheses
listed in Table 1.1.

In Section 5.1 the participants background is listed. Then, in Section 5.2
the results from the security coverage. Later, in Section 5.3, the quality of
the security requirements that was elicited will be presented, and at last, in
Section 5.4 outline the participants experienced using the different methods.

5.1 Participants Background

The result from the user tests depend on the background and experience of
the participants. If one of the users have much experience doing security
related activities compared with the others, it could have an impact on the
result.

From the questionnaire in Appendix D.1 we gathered information from the
participants that we could use to consider if their background could have an
impact on the data.

In Figure 5.2 the education level of the participants are presented. The blue
color(y-axis) represents the number of years in higher education, while the
red, green, purple and light blue color represents security related subjects
they have taken.

The education level of the participants were quite equal, but they differed in
security related education. From the figure, the number of years of higher

81

82 CHAPTER 5. RESULTS

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

,#" ,$" ,%" ,&" ,'" ,(" ,)" ,*" ,+" ,#!" ,##" ,#$"

!"#$%&'()

-./01"234506.2"

,,7&#%&"

,8,(!"

,8,&$%)"

9:;01"0<36=>?@"

Figure 5.1: Education level of the participants.

education is stable, with a standard deviation of 0.9. All participants had
five years of education, except one, who had four. Eight of the twelve par-
ticipants had at least one security related course while four of them had at
least two.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)#")$")%")&")'")(")*")+"),")#!")##")#$"

!"#$%&"'&(")*&+,-+).+#/+&

-./01"2301"

2.45"

6786436/96"

Figure 5.2: Months of work experience with Information Technology.

Figure 5.2 gives an idea of how many months of work experience each of the
participants have. The y-value represents number of months with relevant
work experience. From the figure, we can see that the experience vary with a
standard deviation of 17. Two of the participants had much more experience
than the other which explains the high deviation.

In Figure 5.3 the results from the questionnaire about experience is pre-
sented. The y-axis represents the score from the questionnaires about ex-
perience. The figure gives an indication on how the participants feel about

5.2. SECURITY COVERAGE 83

!"

#"

$"

%"

&"

'!"

'#"

'$"

('" (#" ()" ($" (*" (%" (+" (&" (," ('!" (''" ('#"

!"#$%&'()'*'+",-'./(01,'&2'.3'(

-./0123"

43536.7839:"

;<732=39>3"

(a) Software development

!"

#"

$"

%"

&"

'!"

'#"

'$"

('" (#" ()" ($" (*" (%" (+" (&" (," ('!" (''" ('#"

!"#$%&'(!')*&+,-(./0'&+'1)'(

-./0123"

-3452678"

9:;3263<43"

(b) Software security

Figure 5.3: How the participants see their own experience in software devel-
opment and software security.

their own experience in software development and software security.

From the figure, the participants have a relatively equal perception of their
own software development experience, with a standard deviation of 1.5. Soft-
ware security on the other hand is more variable, and has a standard devi-
ation of 2.6.

5.2 Security Coverage

Security coverage is a measure of how well the security requirements and
Security Design Pattern (SDP) will protect the system. The numbers are

84 CHAPTER 5. RESULTS

based on the assumptions and classifications which is discussed in more
detail in Section 2.2.4.

In this section we presents the security coverage that the participants man-
aged to get. The security requirements is then presented and at last the
SDPs.

5.2.1 Security Requirements

The security requirement coverage was calculated using a list of security
aspects that we thought were valuable to include in the requirement phase
for each case. This process is more thoroughly described in Section 2.2.4.

Table 5.1: Statistics of coverage with security requirements in Case 1.

N Mean St.dev. p
Manual 6 35% 0,274

0,358
Tool 6 43% 0,333

Table 5.2: Statistics of coverage with security requirements in Case 2.

N Mean St.dev. p
Manual 6 30% 0,321

0,018
Tool 6 52% 0,242

Table 5.1 and 5.2 presents the statistics of how well the security requirements
covered the security of the system with each method.

In Case 1, the manual method covered 35%, while using the tool covered
43%. The values were not statistically significantly different with a p-value
of 0.358 using the two paired t-test.

In Case 2, the manual method covered 30%, and the tool method 52%.
The values were statistically significantly different with a p-value of 0.018,
p ≤ 0.05 using the two paired t-test.

Security Coverage by Security Aspect

Figure 5.4 gives an overview over which security aspect that was covered
in Case 1. From the figure, with the tool method there were some security
aspects that got covered a much more than others. With the manual method,
more security aspects were covered, but in a less degree. The tool method
had a 33% standard deviation, while the manual method had 27%.

5.2. SECURITY COVERAGE 85

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

$-#$.#$/#$0#$1#$2#$3#$4#%-#%.#%/#%0#%1#%2#%3#&-#&.#&/#&0#&1#&2#'-#'.#'/#'0#

!"#$%&'$()*+,'(-"".(/(0&*$(1(

56718-31#

(a) With the tool method

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

$-#$.#$/#$0#$1#$2#$3#$4#%-#%.#%/#%0#%1#%2#%3#&-#&.#&/#&0#&1#&2#'-#'.#'/#'0#

!"#$%&'$()*+,'(-&,)&.(/(0&*$(1(

56718-31#

(b) With the manual method

Figure 5.4: What security aspects each method covered in Case 1

Figure 5.5 gives the same overview of security aspects that were covered,
but with Case 2. In this case, security aspects that are covered looks more
even. The tool method had a 32% standard deviation, while the manual
method had 24%.

Security Coverage by Participants

Coverage by participants are how good each of the participant covered the
security of the system.

In Figure 5.6 the result from each participant using the manual and the
tool method are presented. User Group A is the participants who used the

86 CHAPTER 5. RESULTS

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

$-#$.#$/#$0#$1#$2#$3#%-#%.#%/#%0#%1#%2#&-#&.#&/#&0#&1#'-#'.#'/#'0#

!"#$%&'$()*+,'(-"".(/(0&*$(1(

45617-31#

(a) With the tool method

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

$-#$.#$/#$0#$1#$2#$3#%-#%.#%/#%0#%1#%2#&-#&.#&/#&0#&1#'-#'.#'/#'0#

!"#$%&'$()*+,'(-&,)&.(/(0&*$(1(

45617-31#

(b) With the manual method

Figure 5.5: What security aspects each method covered in Case 2

manual method first, while User Group B started with the tool method.

From the result, there is a variance between the results. In Case 1, using
the tool method had a standard deviation of 15%, while using the manual
method had 8.9%. In Case 2, using the tool method had a deviation of 9.8%,
and the manual method 8.6%.

Also, some scores were unusually high or low in User Group B. With the
tool method, T9 had a very low score compared with others. The score was
actually 27% lower than the average score, and the only one in User Group
B who scored higher using the manual method. Considering the background
of T9, the participant did not have any software security education. With

5.2. SECURITY COVERAGE 87

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+$# +%# +&# +'# +(# +)#

!"#$%&$'()%*%

,-./#$#0#

1-23-4#

1/5678#

,-./#%#0#

5774#

1/5678#

(a) User Group A

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+*# +,# +-# +$!# +$$# +$%#

!"#$%&$'()%*%

./01#%#2#

3/45/6#

31789:#

./01#$#2#

7996#

31789:#

(b) User Group B

Figure 5.6: The coverage result in percentage from each participant.

the tool method, T12 had a good score that was 18% better than the average
score even though the participant did not have any remarkable background.
In User Group A the scores were more even.

5.2.2 Security Design Patterns

The Security Design Pattern (SDP) coverage is how good the participants
covered the security of the system design with different patterns. In Section
2.2.4 it is argued that it would be difficult to calculate the coverage, that it
could be more valuable to look at the rate the patterns have been selected
instead.

Table 5.3 list the different patterns and their abbreviation that are used

88 CHAPTER 5. RESULTS

thorough this section.

Table 5.3: SDPs and their corresponding abbreviation.

Abbreviation SDP
D1 Account Lockout
D2 Authenticated Session
D3 Choose the Right Stuff
D4 Client Data Storage
D5 Client Input Filters
D6 Directed Session (mini-pattern)
D7 Hidden Implementation (mini-pattern)
D8 Encrypted Storage
D9 Minefield
D10 Network Address Blacklist
D11 Partitioned Application
D12 Password Authentication
D13 Password Propagation
D14 Secure Assertion
D15 Server Sandbox
D16 Trusted Proxy
D17 Validated Transaction (mini-pattern)

Table 5.4: The popularity of the SDPs using the tool method in Case 1

Tool method – Case 1
Abbreviation Most popu-

lar patterns
Abbreviation Lest popu-

lar patterns
D1 Account

Lockout
D3 Authenticated

Session
D2 Authenticated

Session
D4 Choose the

Right Stuff
D12 Password

Authentica-
tion

D7 Hidden
Implemen-
tation

Figure 5.7 lists SDPs that have been selected with the manual and the tool
method in Case 1. When using the manual method, pattern D1, D2 and
D12 were the most popular once, but none of them were selected by all
participants. Pattern D3, D4 and D7 were the least chosen once. When
using the manual method, pattern D2, D8 and D12 were the most popular,
while pattern D3 and D11 were the least. Also, when using the tool method,
none of the patters were selected by all. It is interesting to note that two of
the top three patterns were equal.

5.2. SECURITY COVERAGE 89

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-
$
#

-
%
#

-
&
#

-
'
#

-
(
#

-
)
#

-
*
#

-
+
#

-
,
#

-
$
!
#

-
$
$
#

-
$
%
#

-
$
&
#

-
$
'
#

-
$
(
#

-
$
)
#

-
$
*
#

!"#$%&'$()*+,'(-"".(/(0&*$(1(

./012341#

(a) With the tool method

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-
$
#

-
%
#

-
&
#

-
'
#

-
(
#

-
)
#

-
*
#

-
+
#

-
,
#

-
$
!
#

-
$
$
#

-
$
%
#

-
$
&
#

-
$
'
#

-
$
(
#

-
$
)
#

-
$
*
#

!"#$%&'$()*+,'(-&,)&.(/(0&*$(1(

./012341#

(b) With the manual method

Figure 5.7: SDPs that were chosen in Case 1

In Figure 5.8 lists which SDPs that were selected in Case 2 using the tool
and the manual method. With the tool method, D2, D8 and D12 were the
most popular ones, while D3 and D7 were selected the least. When using
the manual method, D2, D8 and D12 were the most popular, exactly like
in Case 1. D3 was the only pattern that no one selected and was the least
popular one, while the second least popular pattern was shared by four other
patterns.

All the patterns and what abbreviation they belong to, can be found in
Table 5.3. Also, the most and least popular patterns are listed in Table 5.4
and 5.5 for Case 1, and in Table 5.6 and 5.7 for Case 2. A description of the
patterns can be found in the security patterns repository [15].

90 CHAPTER 5. RESULTS

Table 5.5: The popularity of the SDPs using the manual method in Case 1

Manual method – Case 1
Abbreviation Most popu-

lar patterns
Abbreviation Lest popu-

lar patterns
D2 Authenticated

Session
D3 Choose the

Right Stuff
D8 Encrypted

Storage
D11 Partitioned

Application
D12 Password

Authentica-
tion

Table 5.6: The popularity of the SDPs using the tool method in Case 2

Tool method – Case 2
Abbreviation Most popu-

lar patterns
Abbreviation Lest popu-

lar patterns
D2 Authenticated

Session
D3 Choose the

Right Stuff
D8 Encrypted

Storage
D7 Hidden

Implemen-
tation

D12 Password
Authentica-
tion

Table 5.7: The popularity of the SDPs using the manual method in Case 2

Manual method – Case 2
Abbreviation Most popu-

lar patterns
Abbreviation Lest popu-

lar patterns
D2 Authenticated

Session
D3 Choose the

Right Stuff
D8 Encrypted

Storage
D12 Password

Authentica-
tion

5.3 Data Quality

The data quality is the quality of the information that the users generated.
We examined the security requirements that the participants generated with

5.3. DATA QUALITY 91

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-
$
#

-
%
#

-
&
#

-
'
#

-
(
#

-
)
#

-
*
#

-
+
#

-
,
#

-
$
!
#

-
$
$
#

-
$
%
#

-
$
&
#

-
$
'
#

-
$
(
#

-
$
)
#

-
$
*
#

!"#$%&'$()*+,'(-"".(/(0&*$(1(

./012341#

(a) With the tool method

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-
$
#

-
%
#

-
&
#

-
'
#

-
(
#

-
)
#

-
*
#

-
+
#

-
,
#

-
$
!
#

-
$
$
#

-
$
%
#

-
$
&
#

-
$
'
#

-
$
(
#

-
$
)
#

-
$
*
#

!"#$%&'$()*+,'(-&,)&.(/(0&*$(1(

./012341#

(b) With the manual method

Figure 5.8: SDPs that were chosen in Case 2

and without the tool and gave each security requirement a score based on
the assumptions described in Section 2.2.4.

Figure 5.9 presents the average quality of the security requirements gener-
ated for each case using the manual method. The score of the tool method
is left out because we argue that the potential of a security requirement
pattern should at least be 95%.

It can be seen from Figure 5.9 that the average quality for each case is
not that different. In Case 1, the average quality is 71%, with a standard
deviation of 13.3%. In Case 2, the average quality is 67% with a standard
deviation of 6.4%.

92 CHAPTER 5. RESULTS

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,-./#$# ,-./#%#

!"#$%&'()*"+$&%","-').$/0&'()

01-2345#

Figure 5.9: The quality of the security requirements for each case using the
manual method.

If the quality score would be 95% using the tool(which we argue should be
possible in time), we will get a p-value of 0.000 in Case 1, and 0.003 in
Case 2 using the two paired t-test . Which means the values are statistically
significantly different in both cases because p ≤ 0.05.

In this case however, the average score on the security requirements added
with the tool were about 72%(the overall quality score of the repository).
The result has a p-value of 0.71 in Case 1 and 0.39 in Case 2 using the two
paired t-test – which is not statistically significantly different at all.

In Figure 5.10 the average quality of the security requirements for each case
based on the participants is listed.

From the figure, participant T5 and T6 have a higher quality score than
the others with a score of 82% and 83% respectively. The score relates to
their high education, work experience and security knowledge. In Case 2,
the participant T7 and T11 also have a good quality score of 80% and 77%
respectively. T11 has a high education and security knowledge, however
T7 does not have any significant background that explains the good score.
None of the scores were noticeable low.

5.4. PARTICIPANTS EXPERIENCE FROM THE TEST 93

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

-$# -%# -&# -'# -(# -)#

!"#$%&'()(*#+,(-(

./01234#

(a) Case 1

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

-*# -+# -,# -$!# -$$# -$%#

!"#$%&'()(*#+,(-(

./01234#

(b) Case 2

Figure 5.10: The security requirement quality for each case listed by partic-
ipant.

5.4 Participants Experience From the Test

Participants experience are the participants impression of the method used
in each case. By handing out a questionnaire, we collected information to
answer the hypotheses in Table 1.1 with the questions from the questionnaire
in Appendix D.2. Q1 correspond to question one, Q2 to question two, and
so on.

Table 5.8 and 5.9 lists the average results from the questionnaires. The tables
shows the participants satisfaction in percentage, the standard deviation
between the methods and if the results are statistically significantly different.

94 CHAPTER 5. RESULTS

Table 5.8: Data from the participants experience after Case 1.

Case 1
Question Manual

Method
Tool
Method

St.dev.
Tool

St.dev.
Man-
ual

p

Q1 63 % 53 % 0,983 0,816 0,361
Q2 73 % 73 % 1,033 0,516 1,000
Q3 77 % 60 % 0,983 1,265 0,233
Q4 63 % 73 % 1,169 0,816 0,413
Q5 63 % 40 % 1,169 0,632 0,065
Q6 67 % 77 % 1,033 1,329 0,485

Table 5.9: Data from the participants experience after Case 2.

Case 2
Question Manual

Method
Tool
Method

St.dev.
Tool

St.dev.
Man-
ual

p

Q1 57 % 57 % 0,983 0,408 1,000
Q2 77 % 60 % 0,753 0,632 0,065
Q3 57 % 63 % 1,472 0,753 0,636
Q4 73 % 70 % 1,033 0,837 0,765
Q5 47 % 53 % 0,816 1,366 0,622
Q6 83 % 80 % 0,753 0,632 0,687

In the following subsections we will present the findings.

5.4.1 Quality of Data

Question Q1 and Q2 gathers information about the participants experience
of the quality considering the security requirements and Security Design
Patterns (SDPs) that they collected. Q1 is the security requirements, and
Q2 is the SDPs.

From the data, there is none statistically significantly difference in any of
the questions, but the tendency is that the manual method is preferred. Q1
in Case 1 is the manual method and are 10% more desired, with a p-value
of 0.36 using the two paired t-test. Q2 in Case 2, the manual method is
17% more desired, which is almost statistically significantly different with a
p-value of 0.065 using the two paired t-test.

5.4. PARTICIPANTS EXPERIENCE FROM THE TEST 95

5.4.2 Confidence in Method

Question Q3 and Q4 gather information about the confidence in the method
used. Q3 is about the security requirements, while Q4 is about the SDPs.

From the data, we can not read any statistically significantly difference. In
Case 1, the manual method is 17% more desired, with a p-value of 0.23 using
the two paired t-test. In Q4, the tool method is desired with 10%, with a
p-value of 0.41 using the two paired t-test.

5.4.3 Eliciting Speed

Question Q5 and Q6 gather information about how the participant felt about
the speed of the elicitation process. Q5 is the security requirements, while
Q6 is the SDPs.

From the data in the table, there were no statistically significantly difference
in either case. In Q5, the manual method was 23% more desired, and almost
a significantly difference with p-value of 0.065. In Case 2, it was the opposite
that the tool method was the most desired one.

5.4.4 Impression of Tool

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

,-." /0" 1234-"

!"#$%&&'()*(+*,-%*,((.*

50678"90:.;8-<;:="6.;:="

>?-">007";:">?-"@6>6<-"

50678"<-90AA-:8">?-"

>007">0".0A-0:-"

Figure 5.11: What impression the participants got from the tool.

We asked the participants if they would consider using the tool in the future,
and if they would recommend the tool to someone. That way we got a

96 CHAPTER 5. RESULTS

glimpse of their impression of it.

Figure 5.11 lists the results. There were many who answered maybe to both
questions, but three, of the total 12 participants, answered that they would
consider using and recommend the tool to someone.

Chapter 6

Evaluation and Discussion

In this chapter an evaluation and discussion of the findings in Chapter 5 are
presented. As the results are aimed at answering the hypotheses listed in
Table 1.1, we discuss the findings in relation to them.

First we evaluate and discuss the results in Section 6.1. Then we summaries
how the results suffice to the hypotheses in Section 6.2. At last, in Section
6.3, we discuss the learning effect between the cases.

6.1 Discussion of The Results

The results presented in this section is directly aimed at answering the hy-
potheses in Table 1.1. The hypotheses is recapitulate in Table 6.1

6.1.1 Participants Background

The participants had an equal education level, but differed much looking at
the software security education. This difference could have an impact on
the results and make it unreliable if the difference is to large.

The results about the participants experience in software security, varied
a great deal. Because user background could have an impact, we expect
to see some variability on the other results as well in coherence with the
participants background. Also, the results from the questionnaire could
depend on their confidence, and should be treated with caution.

Some participants had more work experience than others. We mainly asked

97

98 CHAPTER 6. EVALUATION AND DISCUSSION

Table 6.1: Recapitulation of the hypotheses listed in Table 1.1

Discussed
in Section

Using data from the questionnaire

H1 6.1.4 It seems easier and quicker to find secu-
rity requirements and Security Design Patterns
(SDPs) with a tool.

H2 6.1.4 The quality seems better when finding security
requirements and SDPs with a tool.

H3 6.1.4 Users have a higher confident when using a tool
to find security requirements and SDPs.
Using data from the tasks

H4 6.1.3 Security requirements found with the tool has
better quality.

H5 6.1.2 Security requirements found with the tool has
better security coverage.

H6 6.1.2 SDPs found with the tool have better security
coverage.

students to participate, but we also got participants that were finished and
had worked couple of years. This difference could have an impact on the
deviation of the results.

By comparing the results from the participants work experience and their
confidence level in software development and security, we can clearly see an
relation that those with more work experience, also feel more confident.

Before the user test, we knew that the participants could have different
security knowledge. By giving the participants some help in form of hints
and suggestion of approach(listen in Appendix C), we tried to compensate
for the problem.

Also, to eliminate these kinds of threats to validity and reliability, it is
important to have a large sample size [44]. In the test, we only got twelve
participants, which could have an impact on the reliability of the result.

6.1.2 Security Coverage Test

The results from the security coverage test tended that the tool method
had a better score than the manual method. In Case 2, the result was
significantly different with a p-value of 0.018, p ≤ 0.05 using the two paired
t-test.

6.1. DISCUSSION OF THE RESULTS 99

As Case 1 did not have a significant difference, while Case 2 did – some
difference between the cases must have caused this.

The theme of the cases could be one cause. Case 2 was about creating a
patient journal, which could be less known to the users in contrast to Case
1 that was about a shopping application. This could have made the partic-
ipants more insecure. The patterns suggested by the tool could have been
more directed or better at cover the security in one of the cases. However,
we did not notice anything to make such a claim.

The participants background could also be a cause. From their background,
we can not see any significant differences between the groups that could
indicate the difference. One problem however, is that there could be a
difference that we could not pick up with the questionnaire.

Bias when analyzing the requirements could also be a factor. Having a third
party to double check the results could have made the process more reliable.
This was not possible with the time frame we had.

The variance in the result was rather large, and in some cases this could be
mapped against the users background. In some of the results, participants
with the best score also had a good foundation of software security education.
This correlation could be seen in most cases, but there were also some cases
that could not be explained.

Eliciting security requirements are a difficult and mind intensive task, and
that the results listed by participants varied a lot were not surprising. The
t-test calculates the statistical significantly difference using the variation as
consideration [2]. When the data varies, it is difficult to get a significant
result without a larger sample size.

When considering the security coverage aspects that we used to evaluate
against, the results were weak. The best average result we got, was only
52% coverage. This indicated that either it is very difficult to come up with
security requirements, or the security aspects we used to evaluate against
were not that good. Considering the damage potential in practice of a
threat not being covered, the numbers is not optimistic. Only one exploit is
necessary to have huge damage potential.

In Section 2.2.4 we explained the gathering process of security aspects, that
was used to analyze the result. The security aspects could be a reason for
the varied security coverage. Some security aspects were more valuable than
others, and might have been more difficult to come up with. Also, because
we tried to cover all the threats to the system, some aspects could not be
covered by the tool (if not explicitly creating a new security requirement).

100 CHAPTER 6. EVALUATION AND DISCUSSION

One example of an aspect that the tool did not cover is aspect 2e in Case
1, that says: “Card information(Expiry date and CVC-code should not be
saved)”. The aspect is specific, and could have been covered by a security
requirement considering sensitive information.

It could be argued that all the security aspects should have the possibility
to be covered by the tool. Doing this in practice is difficult, because the
process of discovering aspects are difficult. By adding aspects after the test
was finished, we argue that the result will reflect the real world in more
extent. It will be difficult, at least for now, to make a tool that covers all
possible security requirements in all possible cases.

Security Requirement Patterns (SRPs) populated in the tool could be an-
other reason for the varied result. Some of the security requirement examples
could have been more difficult to understand than others (e.g. because of
difficult English). Also, some patterns were populated with more examples
than others. If the requirement that covered an aspect was at the bottom(or
in the middle), the participant might have overlooked it.

The result could also depend on how good we interpreted and evaluated each
case. This were especially difficult when evaluating the security requirements
from the tool. Not all security requirements were properly filled out, and
needed to be interpreted to what aspect it was meant to fulfill.

We also got feedback that some of the SRP were difficult to understand. Not
only was the English in some cases difficult, but some users were not sure
what the security related expressions actually meant. One of the participants
suggested that the tool should have a built in dictionary, which could have
made it easier for people that have English as a second language or lack the
security vocabulary.

The coverage of SDPs of the system could not be measured in the same way
as the security requirements. The repository size populated in the tool only
consisted of 17 patterns. We gave the participants too much help by handing
out the catalogue of patterns. The catalogue had a good summary in one
of the first sections, so the participants could easily get an overview and
select the one they thought was right. Because we argue that the process of
finding patterns in a real setting would consist of much more investigation,
we needed to look at the data from another angle.

By looking at the popularity of the SDPs, we can see a tendency that the
same patterns are favored with both methods. This indicates that the tool
is not any worse at finding SDPs than the manual method. That the tool
is not any worse, also indicates that a mapping between SRPs and SDPs
could be used as guidelines in the design phase(goal two of the thesis).

6.1. DISCUSSION OF THE RESULTS 101

6.1.3 Data Quality Test

Even though we had more or less harsh way of defining a security require-
ment with “good” quality(as described in Section 2.2.4), the quality of the
security requirements were surprisingly good. Looking at the results, we can
see that the average quality score is about 70% in each case. When analyz-
ing the security requirement, not all were equally well described(e.g. using
security terminology etc.), but they did fulfill the demands. Another reason
for the good result could be that every participant had a background with
software development, and the quality of functional requirements resembles
that of security requirements.

As we have argued in Section 2.2.4, the quality score of SRPs should at
least be 95%, we got a significant difference between the methods. A 95%
quality score is high and could take some time before we have established a
repository with that quality. Even though the result is in the future, we see
the potential of using such patterns.

However, we can not draw any conclusion without doing more research and
substantiate that the quality of the SRPs can actually get that good.

Fact of the matter is that in the SRPs did not have good enough quality
to make the result significantly different. With an overall quality score of
72%(the whole security requirement repository), the tool was at least not
performing any worse than the manual method.

That the tool did not perform any worse than using the manual method,
indicates that security patterns could be used when eliciting security re-
quirements (goal two with the thesis).

The SRPs populated in the tool were collected from the Common Criteria
(CC)(described in Section 3.1.2 and 3.2.4), which has gotten some criticism
for being difficult [34]. CC is first and foremost a certification standard
where the security requirements are more meant as a common diagnostic
assurance than patterns [14]. More research has to be done creating a SRP
repository.

As we discovered with the security coverage result, we can also see from
the average quality listed by participants, that the result is varying in some
degree with the participants background. At some extent this shows that
the quality of the security requirements have a relation to the participants
experience and background.

As discussed earlier, the result depends on how good we are to interpret and
give each security requirement a score with a mutual mind. This is a crucial

102 CHAPTER 6. EVALUATION AND DISCUSSION

part, and to validate the result further, we could e.g include a third party
that could analyze the results again and look for deviations.

Looking at the quality of the SDPs had no meaning as we used the same
collection of patterns for both methods.

6.1.4 Participants Experience Test

The result from the questionnaires about the participants experience using
the methods, had a tendency to favor the manual method.

None of the results were significantly different, but in some cases it was
close. The manual method was favored with 17% to find SRPs. Likewise,
the perceived speed of finding security requirements with the manual method
were favored with 23%, with a p-value of 0.065 between the methods using
the two paired t-test.

The high rate favoring the manual method to find SRPs, could be caused
by different things. For one, the help the participants got by handing out
the catalogue of patterns(with the summary at the beginning), made the
task rather easy. Also, the tool could be interpreted as hiding information,
because it only gave suggestion on patterns that were mapped with the
security requirements. The low number of patterns that were suggested
compared with the catalogue could be misunderstood as a restriction.

The tool had some shortcomings. There were several comments about the
usability as well as suggestions on improvements. One comment was that
the moving between the search and project tab were slow and could maybe
be avoided. Another problem that we knew of beforehand, was that there
should have been a method to “copy” a SRP because they could contain
more than one desired example. To compensate for that, we introduced all
the participants to the “Copy and Paste” – “Create New Security Require-
ment” method as described in Section 4.2.3, before we started the user test.
This “method” could have a negative impression of the speed.

When collecting information with a questionnaire, some considerations have
to be made. The questions could be misunderstood or the participants could
be influenced by external factors, e.g., our presence. That we knew some of
the participants could also have an influence as some could for instance feel
obligated to answer the questions in some way.

Anonymity is also an issue. If the participants feel that they can somehow
be related to the answers, they might be influenced by that. Even though
we told the participants that both the questionnaire and the results from

6.2. HYPOTHESES 103

the tasks were anonymous, many of the participant used their full name and
email address when they created a new user account in the tool. This indi-
cate that the participants did not feel that the user test was anonymous, or
they did not see any reason for being anonymous. As a side note, we should
have created user accounts before we presented the tool for the participants.

Some of the data that we collected from the questionnaires were about their
own perception of knowledge. The problem is that some people are more
self-confident than others, and might answer accordingly. In our results, we
could se a mapping between the results and the participants background,
but in some cases not.

The data that we gathered about the usefulness of the tool, there were
a great deal of participants that maybe would consider using the tool in
the future and recommend it to someone. This indicate that with further
improvements, the participants would be more satisfied. Also, considering
the tendency that the manual method was favored and still people consider
using the tool in the future, is positive.

Even though the result from the tests had a tendency to favor the tool, it
was the opposite when asking the participants. There could be many reasons
for this, but we think the most evident reason is that the sample size is to
small, and none of the results were actually significant.

One reason for the participants impression could be caused by the illusion
of waiting time. When the participants could write down the security re-
quirements manually, the user could write all the time and thus feel more
effective. Using the tool, there was a “waiting time” because the partic-
ipants had to find the requirement, but the tool compensates for this by
giving some text “for free”.

6.2 Hypotheses

Oates [44] states that if there is insufficient information to answer some
questions, we should not completely reject the research report, but use the
findings with caution and be wary about treating the report as evidence.

Looking at the hypotheses that we presented in Table 1.1, we found that
none of the hypotheses can be confirmed or falsified and remain provisional.
From the results, we only got one statistically significant result. The result
was from testing the security coverage of the requirements gathered in Case
2, which suggests that H5 – “Security requirements found with the tool has
better security coverage.” is true. On the other hand, we did not get the

104 CHAPTER 6. EVALUATION AND DISCUSSION

same result in Case 1, which means that no firm conclusion can be drawn.

From the fact that the results did not indicate any significance, aside from
the one case about security coverage, it could be argued that we need to do
more tests and not use the report as any evidence as Oates [44] explains.
Also, this was the first release of the tool, and with more iterations we could
most likely make the tool better and maybe get a more positive result.

A tool has both advantages and disadvantages testing the theory. Usability
and the data foundation that were populated in the tool could have an
influence on the result.

Usability is a huge area of interest and just like software security, has got
a widespread recognition the recent years [53]. We had focus on the design
and usability of the tool in the design phase. If we had more time, we could
have had more focus on actually testing usability instead of only getting
comments and suggestions.

The data populated in the tool could have been better. Not much research
has been done on SRPs. The number of Security Design Patterns (SDPs)
should have been higher. That we populated the tool and created the map-
ping(presented in Appendix E), could also be a problem as it is not validated
by a third party.

A tool has some advantages as well. The results from the experiment could
be argued to be more linked with a real world scenario, because it has been
tested with users and a real tool. Also, if the theory is successful, the
transition to a live version could go faster and with less hassle.

6.3 Learning Effect

As the two cases are not that different, we believe that there could be a learn-
ing effect, and possibly an influence between the two cases – that it matter
which type of method a participant begins with, and what impressions they
get from that.

Looking at the data, we can not see any learning effect. The results are so
even, that even though we found an indication of a learning effect, we could
not have drawn any conclusion because the data are not significant enough.

On the other hand, some results have the tendency to lean towards no
learning effect, at least without any effect on the result. When looking at
the result from security requirement coverage. The results from Case 2(that
was done last) were worse than in Case 1. If we had significant result in

6.3. LEARNING EFFECT 105

both cases, we could conclude that if there was a learning effect, it did not
matter, because the tool was better anyway.

Of course, with more significant result, it could be valuable to dig even
deeper into this assumption about the learning effect, but for now, there is
no point of doing so.

Chapter 7

Conclusion

In this chapter we conclude the master thesis, outline the contribution and
discuss further work.

The goals by conducting this research was based on the assumptions that
patterns could be used when eliciting security requirements and also have a
mapping to Security Design Patterns (SDPs) to be used as guidelines in the
design phase.

From the theory, we constructed the following research goals(recapitulated
from Section 1.2):

• Investigate the transition between security requirements and design in
more detail.

• Study how security patterns could be used when eliciting security re-
quirements.

• Consider if a mapping between Security Requirement Patterns (SRPs)
and SDP could be used as guidelines in the design phase.

To answer the goals, we created the hypotheses introduced in Table 1.1. We
conducted an experiment to test the hypotheses, and came to the conclusions
listed in Section 6.2, that none of the hypotheses can be confirmed or falsified
and remain provisional. On basis of these conclusions, we conclude the
master thesis in this chapter.

All of the research goals have been conducted and described thorough this
master thesis. The first point; investigating the transition between require-
ment and design in more detail was conducted and the important parts

107

108 CHAPTER 7. CONCLUSION

are summarized in chapter 3. The second and third point were studied by
developing a tool and investigate the hypotheses and usefulness of it by
conducting an experiment with twelve participants.

From our discussion regarding the results, we conclude that none of the
results were significant enough to tell if the tool was better or worse than
doing it manually. The tendency was that the tool outperformed the manual
method when considering the results from the tests. On the other hand, the
participants tended to prefer the manual method.

Considering the shortcoming of the tool(discussed in Chapter 6) the poten-
tial after some improvements are there. With more iterations focusing on
the shortcomings like usability, data quality and the number of patterns we
are positive that the result could favor the tool.

That the results did not favor the tool or the manual method gives a clear
indication that the theory is plausible, considering that the tool did at least
not perform any worse. That the tool performed equally good as the man-
ual method, indicated that security patterns could be used when eliciting
security requirements(goal two), and a mapping to the SDPs could be used
as guidelines in the design phase(goal three).

On the other hand, from the results, we did not get any picture of how good
the theory is compared with other techniques. We did not come across other
research that could be used to compare the results. Further research has
to be conducted regarding the usefulness and advantage of the theory. We
conclude that the theory performed good enough to deserve more research.

7.1 Contribution

The research has contributed to new knowledge on how security require-
ments can be encapsulated into patterns and mapped to Security Design
Patterns (SDPs) to further be used as guidelines in the design phase. Also,
our work contributes valuable insight in the usefulness of the method and
how it can be utilized in practice.

We also leave behind a fully working prototype that demonstrates the theory
in practice at “http://myrequirements.idi.ntnu.no”. Also, the source code
can be found under the GPL license at “http://amundmo.github.com/myR
equirements/” for further research and investigation.

As the web service is a stand alone implementation that supports both au-
thentication and handling pattern data, it could be used for further research

7.2. FURTHER WORK 109

on the subject. Other clients can easily manipulate the service, and make
use of the functionality like authentication, retrieval of patterns and saving
data(if they have the authorization). As the source code is publicly avail-
able under the GPL license, it would be an easy task to e.g., deploy another
copy of the web service to create a repository of security patterns. Docu-
mentation of functionality that the web service supports can be found at
http://myrequirements.idi.ntnu.no/WebService.svc?wsdl.

7.2 Further work

The data that were populated in the tool should be of better quality. There
exists many Security Design Patterns (SDPs) out there, but lack of a com-
mon repository makes them difficult to employ and collect. The thought of
using Security Requirement Patterns (SRPs) are kind of new, and further
work creating, collecting and manage them should be conducted as well as
investigating the potential they have.

From the experience with the tool and feedback from the user tests, we
uncovered shortcomings that were left as further work. One is that the
usage of colors to represent different content is inadequate as some people
are color blind. A solution could be to use some sort of icons in addtion to
the colors. That way, the colorblinds could also distinguish the content.

Another problem was that a pattern could include more examples, or re-
quirements that the user wanted to include. A solution to duplicate, or se-
lecting more examples should be implemented. We got feedback that there
were much navigating between the tabs(“Search” and “Project tab”), so a
different navigation system should be investigated.

The tool also lack the support to export and share data with others. For
example if a user created a list of security requirements for a system, it could
be valuable to export them into another tool or have a more printer friendly
outline.

We also have some radical thoughts of how the tool could evolve;

Having a more user centric approach where users could share, contribute and
discuss data could be beneficial to make users participate in populating the
data foundation of the tool. The elicitation of security requirements could
be more directed to what domain the system is under. Some requirements
could e.g. be pre-filled based on the percentage of the popularity and the
system domain.

References

[1] Yahoo usergroup - security patterns.
http://tech.groups.yahoo.com/group/securitypatterns/, Last visited:
02/02/09.

[2] Research methods knowledge base.
http://www.socialresearchmethods.net/, Last visited: 03/05/09.

[3] Securitypatterns.org. http://securitypatterns.org/, Last visited:
04/04/09.

[4] The open web application security project. http://www.owasp.org/,
Last visited: 04/05/2009.

[5] Quince. http://quince.infragistics.com, Last visited: 20/03/2009.

[6] Wikipatterns. http://www.wikipatterns.com/, Last visited:
20/04/2009.

[7] Security focus. http://www.securityfocus.com/, Last visited:
20/04/2009.

[8] Cert. http://www.cert.org/nav/index purple.html/square.html, Last
visited: 20/04/2009.

[9] Portland pattern repository. http://c2.com/ppr/, Last visited:
22/04/2009.

[10] Anderson. Design of Experiments A Realistic Approach. Marcel
Dekker., NY, 1974.

[11] Sean Barnum and Amit Sethi. Attack patterns - knowing your
enemies in order to defeat them. OMG Software Assurance Workshop:
Cigital, 2007.

[12] Barry W. Boehm and Philip N. Papaccio. Understanding and
controlling software costs. IEEE Trans. Software Eng., 14(10):
1462–1477, 1988.

111

112 REFERENCES

[13] Betty H. C. Cheng, Sascha Konrad, Laura A. Campbell, and Ronald
Wassermann. Using security patterns to model and analyze security
requirements. In In IEEE Workshop on Requirements for High
Assurance Systems, pages 13–22, 2003.

[14] CSE, SCSSI, BSI, NLNCSA, CESG, NIST, and NSA. Common
Criteria for Information Technology Security Evaluation, v3.1 edition.

[15] David S. Tyree James Edwards-Hewitt Darrell M. Kienzle, Matthew
C. Elder. Security patterns repository.
http://www.scrypt.net/ celer/securitypatterns/, Last visited:
07/05/2009.

[16] David S. Tyree James Edwards-Hewitt Darrell M. Kienzle, Matthew
C. Elder. Security patterns security patterns template and tutorial.
http://www.scrypt.net/ celer/securitypatterns/, Last visited:
22/05/2009.

[17] Duane L. Davis. Business Research for Decision Making (with
CD-ROM and InfoTrac). South-Western College Pub, 6 edition,
August 2004. ISBN 0534404820.

[18] Fred D. Davis. User acceptance of information technology: system
characteristics, user perceptions and behavioral impacts. International
Journal of Man-Machine Studies, 38(3):475–487, 1993.

[19] D G Firesmith. Engineering security requirements. Journal of Object
Technology, (2):53–68, 2003.

[20] Donald Firesmith. Specifying reusable security requirements. Journal
of Object Technology, 3(1):61–75, 2004.

[21] Centers for Medicare and Medicaid Services. Selecting a Development
Approach, 2005, Revalidated 2008.

[22] Paolo Giorgini, Fabio Massacci, and John Mylopoulos. Modeling
security requirements through ownership, permission and delegation.
In In Proc. of RE’05, pages 167–176. IEEE Press, 2005.

[23] Winograd T. McKinley H. L. Oh L. Colon-M. McGibbon T.
Fedchak E. Goertzel, K. M. and R. Vienneau. Software security
assurance : State of the art report (soar). Information Assurance
Technology Analysis Centre (IATAC) and Data and Analysis Center
for Software, 2007.

[24] Charles Haley, Robin Laney, Jonathan Moffett, and Bashar Nuseibeh.
Security requirements engineering: A framework for representation
and analysis. IEEE Transactions on Software Engineering, 34(1):
133–153, 2008.

REFERENCES 113

[25] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. Management
Information Systems Quarterly, 28(1):75–106, 2004.

[26] Thomas Heyman, Koen Yskout, Riccardo Scandariato, and Wouter
Joosen. An analysis of the security patterns landscape. In SESS ’07:
Proceedings of the Third International Workshop on Software
Engineering for Secure Systems, page 3, 2007.

[27] Michael Howard. Building more secure software with improved
development processes. IEEE Security and Privacy, 2(6):63–65, 2004.

[28] Jan Jürjens. Umlsec: Extending uml for secure systems development.
In UML ’02: Proceedings of the 5th International Conference on The
Unified Modeling Language, pages 412–425, 2002. ISBN 3540442545.

[29] Steve Lipner. The trustworthy computing security development
lifecycle. In ACSAC ’04: Proceedings of the 20th Annual Computer
Security Applications Conference, pages 2–13, 2004. ISBN
0-7695-2252-1.

[30] Torsten Lodderstedt, David Basin, and Jürgen Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Security, pages
426–441. 2002.

[31] Université Catholique De Louvain, Jaelson Castro, Manuel Kolp, and
John Mylopoulos. Towards requirements-driven information systems
engineering: The tropos project, 2002.

[32] John McDermott and Chris Fox. Using abuse case models for security
requirements analysis. acsac, page 55, 1999.

[33] Gary Mcgraw. Software Security: Building Security In
(Addison-Wesley Software Security Series). Addison-Wesley
Professional, 2006.

[34] Nancy R. Mead. The common criteria.
https://buildsecurityin.us-cert.gov/, Last visited: 02/05/2009.

[35] Nancy R. Mead. Security requirements engineering.
https://buildsecurityin.us-cert.gov/, Last visited: 06/05/2009.

[36] Nancy R. Mead. Security requirements engineering.
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/requirements/243-BSI.html, Last visited:
10/03/2009.

[37] Nancy R. Mead. Square process. https://buildsecurityin.us-cert.gov/,
Last visited: 30/01/2009.

114 REFERENCES

[38] Nancy R. Mead and Ted Stehney. Security quality requirements
engineering (square) methodology. SIGSOFT Softw. Eng. Notes, 30
(4):1–7, 2005.

[39] Microsoft. Microsoft silverlight. http://silverlight.net/, Last visited:
01/05/2009.

[40] Microsoft. Microsoft development network.
http://msdn.microsoft.com/, Last visited: 01/05/2009.

[41] Suvda Myagmar, Adam J. Lee, and William Yurcik. Threat modeling
as a basis for security requirements. In In Symposium on
Requirements Engineering for Information Security (SREIS), 2005.

[42] K. Maruyama N. Yoshioka, H. Washizaki. A survey on security
patterns. Progress in Informatics, No. 5 pp. 35-47, 2008.

[43] Adam Nathan. Windows Presentation Foundation Unleashed. Sams, 1
edition, December 2006. ISBN 0672328917.

[44] Briony Oates. Researching Information Systems and Computing. Sage
Publications Ltd, 1 edition, November 2005. ISBN 141290224X.

[45] F. Giunchiglia P. Bresciani, P. Giorgini and J. Mylopoulos. Tropos:
An agent-oriented software development methodology. JAAMAS,
vol.8, no.3, pp.203-236, 2004.

[46] Robert Richardson. Csi computer crime and security survey.
http://www.gocsi.com/, 2008.

[47] Lillian Røstad. An extended misuse case notation: Including
vulnerabilities and the insider threat. Proc. 12th Working Conf.
Requirements Eng.: Foundation for Software Quality (REFSQ), 2006.

[48] W. W. Royce. Managing the development of large software systems:
concepts and techniques. In ICSE ’87: Proceedings of the 9th
international conference on Software Engineering, pages 328–338,
1987.

[49] Bruce Schneier. Attack trees. Dr. Dobb’s Journal, 1999.

[50] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad. Security patterns: Integrating security and systems
engineering. John Wiley and Sons, October 2005.

[51] Markus Schumacher and Utz Roedig. Security engineering with
patterns. In Lecture Notes in Computer Science, LNCS 2754.
Springer, 2001.

REFERENCES 115

[52] CLASP - Comprehensive Lightweight Application Security Process.
Secure Software, Inc., 2006.

[53] Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design:
Beyond Human-Computer Interaction. Wiley, 2 edition, March 2007.
ISBN 0470018666.

[54] Guttorm Sindre and Andreas L. Opdahl. Eliciting security
requirements with misuse cases. Requir. Eng., 10(1):34–44, 2005.

[55] Guttorm Sindre and Andreas L. Opdahl. Misuse cases for identifying
system dependability threats. Journal of Information Privacy and
Security, 4(2):3-22, 2:3-22, 2008.

[56] Inger Anne Tøndel, Martin Gilje Jaatun, and Per H̊akon Meland.
Security requirements for the rest of us: A survey. IEEE Software, 25
(1):20–27, 2008.

[57] R. S. Wahono and J. Cheng. Extensible requirements patterns of web
application for efficient web application development. In CW ’02:
Proceedings of the First International Symposium on Cyber Worlds
(CW’02), page 0412, 2002.

[58] Stephen Withall. Software Requirement Patterns. Microsoft Press,
June 2007. ISBN 0735623988.

Appendices

117

Appendix A

Terminology

Asset something of value that should be secured.

Threat is a potential breach of security and potential danger posed to the
system [33].

Vulnerability is a defect or weakness in the systems security procedures,
design, implementation, or internal controls that could be used to violate
the system. Bugs and flaws collectively form the basis of most software
vulnerabilities. [33] [11] .

Attack An attack is the act of carrying out an exploit [11].

Weakness An underlying condition existing in a software system that has
the potential for negatively impacting the security of the system [11].

Countermeasure an action taken to counteract a danger or threat.

Pattern is a solution to a reoccurring problem encapsulated in a structured
format.

Requirement is a description of something the system must fulfill.

Requirement Pattern is a description of a reoccurring behavior of the
system that is encapsulated into a reusable format

Security Pattern is a solution to a reoccurring problem in the security
domain that is encapsulated into a reusable format indended to show soft-
ware developers how to design and implement solutions to common security
problems [11].

Design Pattern is a solution to a reoccurring design problem encapsulated

119

120 APPENDIX A. TERMINOLOGY

in a reusable format [11].

Exploit is a action to the system executed against a vulerability, deading
to security compromise [33].

Encryption is a transformation of data to a format so that other cannot
conceal the original meaning of the data.

Access control is an assurance so that only the users who are entitled to
the resources get access.

Authentication is the confirmation of the users identity.

Authorization is the approval or permission to perform something.

Availability is the accessibility of the system.

Confidentiality is the insurance that information is only disclosed by the
those who has authorization to do so.

Integrity is the assurance that information has not been changed.

Appendix B

Acronyms

LGPL Lesser General Public License

RMF Risk Management Framework

CLASP Comprehensive Lightweight Application Security Process

SQUARE Security Quality Requirements Engineering

TCSDL Trustworthy Computing Security Development Lifecycle

CC Common Criteria

UML Unified Modeling Language

GoF Gang of Four

AOP Agent Oriented Programing

OOP Object Oriented Programing

RBAC Role Based Access Control

SDL Software Development Lifecycle

SDP Security Design Pattern

SRP Security Requirement Pattern

WPF Windows Presentation Foundation

UI User Interface

TAM Technology Acceptance Model

NTNU Norwegian University of Science and Technology

121

122 APPENDIX B. ACRONYMS

GPL GNU General Public License

OWASP The Open Web Application Security Project

SDLC Software Development Life Cycle

GUI Graphical User Interface

Appendix C

User Tests

C.1 Description of Case 1

123

Case 1 – Online store for use with mobile equipment 
(Translated to English) 

 
We are going to develop an online store with digital content like music, videos, 
movies, ring tones, software and other products for mobile equipment like e.g. 
3G mobile phones. The online store should be accessible by using a mobile and 
have they same functionality as any normal online store.  
 
Functional requirements 

1. A customer can create a profile. 
2. Payment information can be saved for later use. 
3. The store should have a shopping cart. 
4. A customer should search or look for products. 
5. A product can be added to the shopping cart. 
6. A customer must have the possibility to pay for the content in the 

basket cart. 
7. There should be a list with content the customer owns 
8. Paid content should be possible to download to the mobile. 

 
 
Assets (Something of value) 
Customer 
Product 
Profile 
Payment information 
Shopping cart 
Paid items 
Mobile equipment 
 
 
Assignment 

1. Find security requirements to this case. 
2. Find security design patterns that you think suits the case and security 

requirements you found. 
 
 
Hint for the assignment 

‐ What information should be saved about the customer? 
‐ Who should have access to the customer information? 
‐ How should the customer be authenticated? 
‐ Who has access to what kind of information? 

 

C.2. DESCRIPTION OF CASE 2 125

C.2 Description of Case 2

Case 2 – Patient Care Journal 
(Translated to English) 

 
We are going to develop a new system for patient care journals. The information 
in the journals is highly sensitive, and the information should only be accessible 
from the hospital internal network.  
 
Functional requirements 

1. A patient care journal should automatically exist for Norwegian citizens. 
2. It should be possible to create a patient care journal for foreigners. 
3. It should be possible to add new information about the patient into the 

journal. 
4. Information with connection to other information should be branched.  
5. People with the right access should have permission to change the patient 

care journal 
6. Those with access should have to possibility to read the patient care 

journal. 
 
NB. A patient care journal has in practice many laws and regulations to deal with. 
In this case, you do not need to take this under consideration. Make assumptions 
where you think it fits! 
 
Assets (Something of value) 
Patient journal 
Doctor 
Nurse 
Information 
 
Assignment 

1. Find security requirements to this case. 
2. Find security design patterns that you think suits the case and security 

requirements you found. 
 

 
Hint for the assignment 

‐ Who should have access to the patient journal? 
‐ What level of access should exist? 
‐ How should the access be divided? 
‐ How should the authentication work? 
‐ What kind of information should be saved? 

 
 
 
 
 
 
 
 

C.3. SECURITY ASPECTS FOR CASE 1 127

C.3 Security Aspects for Case 1

Case 1 - Mobile netshop

1. Identification and Authentication

(a) What information is available for non-authenticated users

(b) What information has higher authorization privileges(e.g. log)

(c) Customer identification

(d) Customer authentication (at least before they either pay or down-
load content)

(e) Authentication strength (e.g. password length and variability)

(f) Authentication failure mechanisms

(g) Authentication of the server

(h) Session security(limitation of concurrent sessions, session lifetime,
system access history etc.)

2. Information disclosure, Privacy and Integrity

(a) Communication between client and server

(b) Customer information(Integrity and confidentiality)

(c) Validity of the information presented to the customer.(Integrity
of database)

(d) Mobility of the client(Not save any information locally)

(e) Card information(Expiry date and CVC-code should not be saved)

(f) Secure payment

(g) Securing the downloadable content

3. Immunity

(a) Protecting the system against itself(e.g. from infection by an
unauthorized program, virus scan on content, etc.)

(b) Client should not be trusted

(c) Intrusion detection handling(e.g. block users that triggers the
detection handling)

(d) Notification (e.g. notify client or administrators about events,
e.g. content has been downloaded)

(e) Failure handling

128 APPENDIX C. USER TESTS

(f) Quota on downloaded content

4. Review and Non-repudiation

(a) Logging of usage and system notifications

(b) Availability of the log

(c) Securing the log(tamper-proof, read only, encrypted etc)

(d) Not possible to deny an activity(e.g. a purchase) from taking
place

C.4 Security Aspects for Case 2

Case 2 - Patient journal

1. Identification and Authentication

(a) Authentication

(b) Identification

(c) Authentication strength (e.g. password length and variability)

(d) Authentication failure mechanisms

(e) Authentication of the server

(f) Session security(limitation of concurrent sessions, session lifetime,
system access history etc.)

(g) Physical identification

2. Information disclosure, Privacy and Integrity

(a) Communication between client and server

(b) Secure patient information from disclosure to unauthorized users

(c) Mechanisms to secure the exported patient data from disclosure

(d) Patient information integrity

(e) Mobility and exposure of the client(Not save any information
locally)

(f) Communication between servers

3. Immunity

(a) Protecting the system against itself(e.g. from infection by an
unauthorized program, virus scan on content, etc.)

C.4. SECURITY ASPECTS FOR CASE 2 129

(b) Clients should not be trusted

(c) Intrusion detection handling(e.g. block users that triggers the
detection handling)

(d) Notification (e.g. notify client or administrators about events,
e.g. content has been added)

(e) Failure handling

4. Review and Non-repudiation

(a) Logging of usage and system notifications

(b) Availability of the log

(c) Securing the log(tamper-proof, read only, encrypted etc)

(d) Not possible to deny an activity(e.g. reading a patient journal)
from taking place

Appendix D

Questionnaires

D.1 Background Information

131

  1 

MyRequirements 
 
 

Questionnaire – background information 
(Translated to English) 

 
 
 

How many years have you studied higher education? 
 
  Number of years:     

 

Have you taken any of the following subjects? 
 
      TDT4237 ‐ Programvaresikkerhet 

      TDT60 ‐ Informasjonsikkerhet i datasystemer 

    TTM4134 ‐ Informasjonsikkerhet 

 

Have you taken any other security related subjects? 
 
  Subjects:     

 

Approximately how many months have you worked within the IT‐business 
(summer job, etc)?   
 
  Number of labour months:     

 

Have you any experience with IT‐security? 
 
      Never heard of it 

    Heard of it, but never done any practical work 

    Done some work with it in project etc in school 

    Done some work with it both in school and work 

    Working with it all the time 

 

 

  2 

 

 

 

 

What is you knowledge on Design Patterns in software development? 
 
      Never heard of it 

    Heard of it, but never used it 

    Know what it is, and have done some work with it in project 

etc. 

    Know very well what it is, and have used it a lot 

    Using it all the time 

 

What is your experience with the requirement phase? 
 
      Never heard of it 

    Heard of it, but never done any practical work in this phase 

    Done some work with it in project etc in school 

    Done some work with it both in school and work 

    Working with it daily 

 

What is your experience with security requirements? 
 
      Never heard of it 

    Heard of it, but never done any practical work in this phase 

    Done some work with it in project etc in school 

    Done some work with it both in school and work 

    Working with it daily 

 

 

 

 

 

  3 

 

 

What is your experience with design of a system? 
 
      Never heard of it 

    Heard of it, but never done any practical work in this phase 

    Done some work with it in project etc in school 

    Done some work with it both in school and work 

    Working with it daily 

 

What is your experience with design of a system with security in mind? 
 
      Never heard of it 

    Heard of it, but never done any practical work in this phase 

    Done some work with it in project etc in school 

    Done some work with it both in school and work 

    Working with it daily 

 

 

 

 

 

 

 

D.2. EXPERIENCE 135

D.2 Experience

  1 

MyRequirements 
 
 

Questionnaire – experience 
(Translated to English) 

 

What do you think about the quality of the security requirements you found 
(measurable, formulated, verifiable, etc)?  
 
      Not happy at all 

    Slightly happy 

    It was OK 

    Very happy 

    Could not be better 

 
What do you think about the quality of the security design patterns that you 
found? (Fit with the setting, will make the system more secure, etc)? 
 
      Not happy at all 

    Slightly happy 

    It was OK 

    Very happy 

    Can not be better 

 

How confident are you that you have done a good job finding security 
requirements that fit to this case? 
 
      Not confident at all 

    Slightly confident 

    They are OK 

    Very confident 

    Could not be better 

 

  2 

 

How confident are you that you have done a good job finding security design 
patterns that fit to this case? 
 
      Not confident at all 

    Slightly confident 

    They are OK 

    Very confident 

    Could not be better 

 

Do you think it went quickly to find security requirements? 
 
      Not happy at all 

    Slightly happy 

    It was OK 

    Very happy 

    Could not be better 

 

Do you think it went quickly to find security design patterns? 
 
     Not happy at all 

    Slightly happy 

    It was OK 

    Very happy 

    Could not be better 

 
 
 
 
 
 

  3 

 
Please fill out the following questions if you did the 
case with a tool. 
 
 

Was the tool easy to learn? 
 
      No, not at all 

    Slightly difficult 

    It was OK 

    It was easy 

    No problem at all 

 

Was the tool easy to understand? 
 
     No, not at all 

    Slightly difficult 

    It was OK 

    It was easy 

    No problem at all 

 

Was the tool easy to use? 
 
     No, not at all 

    Slightly difficult 

    It was OK 

    It was easy 

    No problem at all 

 

  4 

If you in the future were going to find security requirements, would you 
consider using this tool? 
 
      No, the solution is not good enough 

    Maybe 

    Yes I would 

If you get the opportunity, would to recommend someone about this tool? 
 
     No, the solution is not good enough 

     Maybe 

    Yes I would 

 

What is your general impression of the tool? 
 
 

 

 

 

 
 

Appendix E

Application Data

This is the data that the application presented to the users. The list con-
tains information about what data was connect; Which groups the security
requirements was ordered by and what Security Design Pattern was sug-
gested for each group. Both Groups and security requirements are taken
from the Common Criteria, while the Security Design Patterns are mostly
from the Security Pattern Repository by Darrell M. Kienzle et al.

E.1 Communication

This group provides assurance of the identity of a party participating in a
data exchange.

Non-repudiation of origin (FCO NRO)

Non-repudiation of origin ensures that the originator of information cannot
successfully deny having sent the information. This requires that the system
provide a method to ensure that a subject that receives information during
a data exchange is provided with evidence of the origin of the information.
This evidence can then be verified by either this subject or other subjects.

SR:7738 The system shall be able to generate evidence of origin for trans-
mitted [assignment: list of information types] at the request of the [selection:
originator, recipient, [assignment: list of third parties]].

SR:7739 The system shall be able to relate the [assignment: list of attributes]
of the originator of the information, and the [assignment: list of information
fields] of the information to which the evidence applies.

141

142 APPENDIX E. APPLICATION DATA

SR:7740 The system shall provide a capability to verify the evidence of origin
of information to [selection: originator, recipient, [assignment: list of third
parties]] given [assignment: limitations on the evidence of origin].

Suggested Security Design Patterns

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

Non-repudiation of receipt (FCO NRR)

Non-repudiation of receipt ensures that the recipient of information cannot
successfully deny receiving the information. This requires that the system
provide a method to ensure that a subject that transmits information during
a data exchange is provided with evidence of receipt of the information. This
evidence can then be verified by either this subject or other subjects.

SR:7742 The system shall be able to generate evidence of receipt for received
[assignment: list of information types] at the request of the [selection: orig-
inator, recipient, [assignment: list of third parties]].

SR:7743 The system shall be able to relate the [assignment: list of attributes]
of the recipient of the information, and the [assignment: list of information
fields] of the information to which the evidence applies.

SR:7744 The system shall provide a capability to verify the evidence of
receipt of information to [selection: originator, recipient, [assignment: list
of third parties]] given [assignment: limitations on the evidence of receipt].

Suggested Security Design Patterns

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

E.2. GRAPHIC SUPPORT 143

E.2 Graphic Support

This group has elements about cryptographic functions, the implementation
of which could be in hardware, firmware and/or software.

Cryptographic key management (FCS CKM)

Cryptographic keys must be managed throughout their life cycle. This fam-
ily is intended to support that lifecycle and consequently defines require-
ments for the following activities: cryptographic key generation, crypto-
graphic key distribution, cryptographic key access and cryptographic key
destruction. This family should be included whenever there are functional
requirements for the management of cryptographic keys.

SR:7746 The system shall generate cryptographic keys in accordance with
a specified cryptographic key generation algorithm [assignment: crypto-
graphic key generation algorithm] and specified cryptographic key sizes [as-
signment: cryptographic key sizes] that meet the following: [assignment:
list of standards].

SR:7747 The system shall distribute cryptographic keys in accordance with a
specified cryptographic key distribution method [assignment: cryptographic
key distribution method] that meets the following: [assignment: list of stan-
dards].

SR:7748 The system shall perform [assignment: type of cryptographic key
access] in accordance with a specified cryptographic key access method [as-
signment: cryptographic key access method] that meets the following: [as-
signment: list of standards].

SR:7749 The system shall destroy cryptographic keys in accordance with a
specified cryptographic key destruction method [assignment: cryptographic
key destruction method] that meets the following: [assignment: list of stan-
dards].

Suggested Security Design Patterns

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

144 APPENDIX E. APPLICATION DATA

Cryptographic operation (FCS COP)

In order for a cryptographic operation to function correctly, the operation
must be performed in accordance with a specified algorithm and with a cryp-
tographic key of a specified size. This family should be included whenever
there are requirements for cryptographic operations to be performed.

SR:7750 The system shall perform [assignment: list of cryptographic oper-
ations] in accordance with a specified cryptographic algorithm [assignment:
cryptographic algorithm] and cryptographic key sizes [assignment: crypto-
graphic key sizes] that meet the following: [assignment: list of standards].

Suggested Security Design Patterns

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

E.3 User Data Protection

This group contains requirements related to protecting user data. This
includes import, export, and storage as well as security attributes directly
related to user data.

Access control policy (FDP ACC)

Identifies access control policies.

SR:7751 The system shall enforce the [assignment: access control policy] on
[assignment: list of subjects, objects, and operations among subjects and
objects covered by the policy].

SR:7753 The system shall ensure that all operations between any subject
and object controlled by the system are covered by an access control policy.

Suggested Security Design Patterns

Encrypted Storage

E.3. USER DATA PROTECTION 145

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The

Encrypted Storage pattern ensures that even if it is stolen, the most sensitive
data will remain safe from prying eyes.

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Access control functions (FDP ACF)

This family describes the rules for the specific functions that can implement
an access control policy named in Access control policy (FDP ACC). Access
control policy (FDP ACC) specifies the scope of control of the policy.

SR:7754 The system shall enforce the [assignment: access control policy] to
objects based on the following: [assignment: list of subjects and objects con-
trolled under the indicated policy, and for each, the policy-relevant security
attributes, or named groups of policy-relevant security attributes].

SR:7755 The system shall enforce the following rules to determine if an

146 APPENDIX E. APPLICATION DATA

operation among controlled subjects and controlled objects is allowed: [as-
signment: rules governing access among controlled subjects and controlled
objects using controlled operations on controlled objects].

SR:7756 The system shall explicitly authorise access of subjects to objects
based on the following additional rules: [assignment: rules, based on security
attributes, that explicitly authorise access of subjects to objects].

SR:7757 The system shall explicitly deny access of subjects to objects based
on the [assignment: rules, based on security attributes, that explicitly deny
access of subjects to objects].

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The

Encrypted Storage pattern ensures that even if it is stolen, the most sensitive
data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The

Password Propagation pattern provides an alternative by requiring that an
individual user’s authentication credentials be verified by the database be-
fore access is provided to that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Data authentication (FDP DAU)

Data authentication permits an entity to accept responsibility for the au-

E.3. USER DATA PROTECTION 147

thenticity of information (e.g., by digitally signing it). This family provides
a method of providing a guarantee of the validity of a specific unit of data
that can be subsequently used to verify that the information content has not
been forged or fraudulently modified. In contrast to FAU: Security audit,
this family is intended to be applied to “static” data rather than data that
is being transferred.

SR:7758 The system shall provide a capability to generate evidence that
can be used as a guarantee of the validity of [assignment: list of objects or
information types].

SR:7759 The system shall provide [assignment: list of subjects] with the
ability to verify evidence of the validity of the indicated information.

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The

Encrypted Storage pattern ensures that even if it is stolen, the most sensitive
data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The

Password Propagation pattern provides an alternative by requiring that an
individual user’s authentication credentials be verified by the database be-
fore access is provided to that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

148 APPENDIX E. APPLICATION DATA

Export from the system (FDP ETC)

Define functions for system-mediated exporting of user data from the TOE
such that its security attributes and protection either can be explicitly pre-
served or can be ignored once it has been exported. It is concerned with
limitations on export and with the association of security attributes with
the exported user data.

SR:7760 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] when exporting user data, con-
trolled under the SFP(s), outside of the TOE.

SR:7761 The system shall export the user data without the user data’s
associated security attributes

SR:7762 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] when exporting user data, con-
trolled under the SFP(s), outside of the TOE.

SR:7763 The system shall export the user data with the user data’s associ-
ated security attributes.

SR:7764 The system shall ensure that the security attributes, when exported
outside the TOE, are unambiguously associated with the exported user data.

SR:7765 The system shall enforce the following rules when user data is
exported from the TOE: [assignment: additional exportation control rules].

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The

Encrypted Storage pattern ensures that even if it is stolen, the most sensitive
data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might

E.3. USER DATA PROTECTION 149

have complete access to every user’s data. The

Password Propagation pattern provides an alternative by requiring that an
individual user’s authentication credentials be verified by the database be-
fore access is provided to that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Information flow control policy (FDP IFC)

The system mechanism controls the flow of information in accordance with
the information flow control SFP. Operations that would change the security
attributes of information are not generally permitted as this would be in
violation of an information flow control SFP. However, such operations may
be permitted as exceptions to the information flow control SFP if explicitly
specified.

SR:7766 The system shall enforce the [assignment: information flow control
SFP] on [assignment: list of subjects, information, and operations that cause
controlled information to flow to and from controlled subjects covered by
the SFP].

SR:7768 The system shall ensure that all operations that cause any infor-
mation in the TOE to flow to and from any subject in the TOE are covered
by an information flow control SFP.

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The

Encrypted Storage pattern ensures that even if it is stolen, the most sensitive
data will remain safe from prying eyes.

150 APPENDIX E. APPLICATION DATA

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The

Password Propagation pattern provides an alternative by requiring that an
individual user’s authentication credentials be verified by the database be-
fore access is provided to that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Information flow control functions (FDP IFF)

This family describes the rules for the specific functions that can implement
the information flow control SFPs named in Information flow control policy
(FDP IFC), which also specifies the scope of control of the policy. It consists
of two kinds of requirements: one addressing the common information flow
function issues, and a second addressing illicit information flows (i.e. covert
channels). This division arises because the issues concerning illicit informa-
tion flows are, in some sense, orthogonal to the rest of an information flow
control SFP. By their nature they circumvent the information flow control
SFP resulting in a violation of the policy. As such, they require special
functions to either limit or prevent their occurrence.

SR:7769 The system shall enforce the [assignment: information flow control
SFP] based on the following types of subject and information security at-
tributes: [assignment: list of subjects and information controlled under the
indicated SFP, and for each, the security attributes].

SR:7770 The system shall permit an information flow between a controlled
subject and controlled information via a controlled operation if the follow-
ing rules hold: [assignment: for each operation, the security attribute-based
relationship that must hold between subject and information security at-
tributes].

SR:7771 The system shall enforce the [assignment: additional information
flow control SFP rules].

E.3. USER DATA PROTECTION 151

SR:7772 The system shall explicitly authorise an information flow based on
the following rules: [assignment: rules, based on security attributes, that
explicitly authorise information flows].

SR:7773 The system shall explicitly deny an information flow based on the
following rules: [assignment: rules, based on security attributes, that explic-
itly deny information flows].

SR:7774 The system shall enforce the [assignment: information flow control
SFP] to limit the capacity of [assignment: types of illicit information flows]
to a [assignment: maximum capacity].

SR:7776 The system shall enforce the [assignment: information flow control
SFP] to monitor [assignment: types of illicit information flows] when it
exceeds the [assignment: maximum capacity].

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The Encrypted Storage pattern ensures that even if it is stolen, the most
sensitive data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Import from outside of the system (FDP ITC)

152 APPENDIX E. APPLICATION DATA

Define the mechanisms for system-mediated importing of user data into the
system such that it has appropriate security attributes and is appropriately
protected. It is concerned with limitations on importation, determination
of desired security attributes, and interpretation of security attributes asso-
ciated with the user data.

SR:7777 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] when importing user data, con-
trolled under the SFP, from outside of the TOE.

SR:7778 The system shall ignore any security attributes associated with the
user data when imported from outside the TOE.

SR:7779 The system shall enforce the following rules when importing user
data controlled under the SFP from outside the TOE: [assignment: addi-
tional importation control rules].

SR:7780 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] when importing user data, con-
trolled under the SFP, from outside of the TOE.

SR:7781 The system shall use the security attributes associated with the
imported user data.

SR:7782 The system shall ensure that the protocol used provides for the
unambiguous association between the security attributes and the user data
received.

SR:7783 The system shall ensure that interpretation of the security at-
tributes of the imported user data is as intended by the source of the user
data.

SR:7784 The system shall enforce the following rules when importing user
data controlled under the SFP from outside the TOE: [assignment: addi-
tional importation control rules].

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The Encrypted Storage pattern ensures that even if it is stolen, the most

E.3. USER DATA PROTECTION 153

sensitive data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Internal system transfer (FDP ITT)

This family provides requirements that address protection of user data when
it is transferred between separated parts of a system across an internal chan-
nel. This may be contrasted with the Inter-TSF user data confidentiality
transfer protection (FDP UCT) and Inter-TSF user data integrity trans-
fer protection (FDP UIT) families, which provide protection for user data
when it is transferred between distinct TSFs across an external channel,
and Export from the TOE (FDP ETC) and Import from outside of the
TOE (FDP ITC), which address TSF-mediated transfer of data to or from
outside the TOE.

SR:7785 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] to prevent the [selection: disclo-
sure, modification, loss of use] of user data when it is transmitted between
physically-separated parts of the TOE.

SR:7786 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] to monitor user data transmitted
between physically-separated parts of the TOE for the following errors: [as-
signment: integrity errors].

SR:7787 Upon detection of a data integrity error, the system shall [assign-
ment: specify the action to be taken upon integrity error].

Suggested Security Design Patterns

154 APPENDIX E. APPLICATION DATA

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The Encrypted Storage pattern ensures that even if it is stolen, the most
sensitive data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Residual information protection (FDP RIP)

This family addresses the need to ensure that any data contained in a re-
source is not available when the resource is de-allocated from one object
and reallocated to a different object. This family requires protection for
any data contained in a resource that has been logically deleted or released,
but may still be present within the system-controlled resource which in turn
may be re-allocated to another object.

SR:7789 The system shall ensure that any previous information content of a
resource is made unavailable upon the [selection: allocation of the resource
to, deallocation of the resource from] the following objects: [assignment: list
of objects].

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the

E.3. USER DATA PROTECTION 155

theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The Encrypted Storage pattern ensures that even if it is stolen, the most
sensitive data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Rollback (FDP ROL)

The rollback operation involves undoing the last operation or a series of
operations, bounded by some limit, such as a period of time, and return to
a previous known state. Rollback provides the ability to undo the effects
of an operation or series of operations to preserve the integrity of the user
data.

SR:7791 The system shall enforce [assignment: access control SFP(s) and/or
information flow control SFP(s)] to permit the rollback of the [assignment:
list of operations] on the [assignment: information and/or list of objects].

SR:7792 The system shall permit operations to be rolled back within the
[assignment: boundary limit to which rollback may be performed].

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-

156 APPENDIX E. APPLICATION DATA

amples of hackers stealing databases containing sensitive user information.
The Encrypted Storage pattern ensures that even if it is stolen, the most
sensitive data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Stored data integrity (FDP SDI)

This family provides requirements that address protection of user data while
it is stored within containers controlled by the system. Integrity errors may
affect user data stored in memory, or in a storage device. This family differs
from Internal system transfer (FDP ITT) which protects the user data from
integrity errors while being transferred within the system.

SR:7794 The system shall monitor user data stored in containers controlled
by the system for [assignment: integrity errors] on all objects, based on the
following attributes: [assignment: user data attributes].

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The Encrypted Storage pattern ensures that even if it is stolen, the most
sensitive data will remain safe from prying eyes.

Password Propagation

E.3. USER DATA PROTECTION 157

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Inter-system user data confidentiality transfer protection (FDP UCT)

Define the requirements for ensuring the confidentiality of user data when
it is transferred using an external channel between the system and another
trusted IT product.

SR:7795 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] to be able to [selection: transmit,
receive] user data in a manner protected from unauthorised disclosure.

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the
theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The Encrypted Storage pattern ensures that even if it is stolen, the most

158 APPENDIX E. APPLICATION DATA

sensitive data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Inter-system user data integrity transfer protection (FDP UIT)

Define the requirements for providing integrity for user data in transit be-
tween the system and another trusted IT product and recovering from de-
tectable errors. At a minimum, this family monitors the integrity of user
data for modifications. Furthermore, this family supports different ways of
correcting detected integrity errors.

SR:7796 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] to be able to [selection: transmit,
receive] user data in a manner protected from [selection: modification, dele-
tion, insertion, replay] errors.

SR:7797 The system shall be able to determine on receipt of user data,
whether [selection: modification, deletion, insertion, replay] has occurred.

SR:7798 The system shall enforce the [assignment: access control SFP(s)
and/or information flow control SFP(s)] to be able to recover from [as-
signment: list of recoverable errors] with the help of the source trusted IT
product.

Suggested Security Design Patterns

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense against the

E.4. IDENTIFICATION AND AUTHENTICATION 159

theft of data on system servers. Although server data is typically protected
by a firewall and other server defenses, there are numerous publicized ex-
amples of hackers stealing databases containing sensitive user information.
The Encrypted Storage pattern ensures that even if it is stolen, the most
sensitive data will remain safe from prying eyes.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

E.4 Identification and Authentication

This group deal with determining and verifying the identity of users, de-
termining their authority to interact with the system, and with the correct
association of security attributes for each authorised user.

Authentication failure handling

This family contains requirements for defining values for some number of
unsuccessful authentication attempts and system actions in cases of authen-
tication attempt failures. Parameters include, but are not limited to, the
number of failed authentication attempts and time thresholds.

SR:7800 The system shall detect when [selection: [assignment: positive inte-
ger number], an administrator configurable positive integer within[assignment:
range of acceptable values]] unsuccessful authentication attempts occur re-
lated to [assignment: list of authentication events].

SR:7813 When the defined number of unsuccessful authentication attempts
has been [selection: met, surpassed], the system shall [assignment: list of

160 APPENDIX E. APPLICATION DATA

actions].

Suggested Security Design Patterns

Account Lockout

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. However, password-guessing attacks
have proven to be very successful at discovering poorly chosen, weak pass-
words. Worse, the Web environment lends itself to high- speed, anony-
mous guessing attacks. Account lockout protects customer accounts from
automated password-guessing attacks, by implementing a limit on incorrect
password attempts before further attempts are disallowed.

Network Address Blacklist

A network address blacklist is used to keep track of network addresses (IP
addresses) that are the sources of hacking attempts and other mischief. Any
requests originating from an address on the blacklist are simply ignored.
Ideally, breaking attempts should be investigated and prosecuted, but there
are simply too many such events to address them all. The Network Address
Blacklist pattern represents a pragmatic alternative.

User attribute definition (FIA ATD)

All authorised users may have a set of security attributes, other than the
user’s identity, that is used to enforce the security requirements. Define the
requirements for associating user security attributes with users as needed to
support the system in making security decisions.

SR:7814 The system shall maintain the following list of security attributes
belonging to individual users: [assignment: list of security attributes].

Suggested Security Design Patterns

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this
data. The Client Data Storage pattern uses encryption to allow sensitive or
otherwise security-critical data to be securely stored on the client.

Specification of secrets (FIA SOS)

E.4. IDENTIFICATION AND AUTHENTICATION 161

Define requirements for mechanisms that enforce defined quality metrics on
provided secrets and generate secrets to satisfy the defined metric.

SR:7815 The system shall provide a mechanism to verify that secrets meet
[assignment: a defined quality metric].

SR:7816 The system shall provide a mechanism to generate secrets that meet
[assignment: a defined quality metric].

SR:7817 The system shall be able to enforce the use of system generated
secrets for [assignment: list of system functions].

Suggested Security Design Patterns

Password Authentication

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. Any site that needs to reliably identify
its users will almost certainly use passwords. The Password Authentication
pattern protects against weak passwords, automated password- guessing at-
tacks, and mishandling of passwords.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

User authentication (FIA UAU)

Define the types of user authentication mechanisms supported by the sys-
tem. This family also defines the required attributes on which the user
authentication mechanisms must be based.

SR:7818 The system shall allow [assignment: list of system mediated actions]
on behalf of the user to be performed before the user is authenticated.

SR:7819 The system shall require each user to be successfully authenticated
before allowing any other system-mediated actions on behalf of that user.

SR:7820 The system shall [selection: detect, prevent] use of authentication
data that has been forged by any user of the system.

162 APPENDIX E. APPLICATION DATA

SR:7821 The system shall [selection: detect, prevent] use of authentication
data that has been copied from any other user of the system.

SR:7822 The system shall prevent reuse of authentication data related to
[assignment: identified authentication mechanism(s)].

SR:7823 The system shall provide [assignment: list of multiple authentica-
tion mechanisms] to support user authentication.

SR:7824 The system shall authenticate any user’s claimed identity accord-
ing to the [assignment: rules describing how the multiple authentication
mechanisms provide authentication].

SR:7825 The system shall re-authenticate the user under the conditions
[assignment: list of conditions under which re-authentication is required].

SR:7826 The system shall provide only [assignment: list of feedback] to the
user while the authentication is in progress.

Suggested Security Design Patterns

Account Lockout

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. However, password-guessing attacks
have proven to be very successful at discovering poorly chosen, weak pass-
words. Worse, the Web environment lends itself to high- speed, anony-
mous guessing attacks. Account lockout protects customer accounts from
automated password-guessing attacks, by implementing a limit on incorrect
password attempts before further attempts are disallowed.

Authenticated Session

An authenticated session allows a Web user to access multiple access-restricted
pages on a Web site without having to re-authenticate on every page re-
quest. Most Web application development environments provide basic ses-
sion mechanisms. This pattern incorporates user authentication into the
basic session model.

Network Address Blacklist

A network address blacklist is used to keep track of network addresses (IP
addresses) that are the sources of hacking attempts and other mischief. Any
requests originating from an address on the blacklist are simply ignored.
Ideally, breaking attempts should be investigated and prosecuted, but there
are simply too many such events to address them all. The Network Address

E.4. IDENTIFICATION AND AUTHENTICATION 163

Blacklist pattern represents a pragmatic alternative.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Password Authentication

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. Any site that needs to reliably identify
its users will almost certainly use passwords. The Password Authentication
pattern protects against weak passwords, automated password- guessing at-
tacks, and mishandling of passwords.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

User identification (FIA UID)

Define the conditions under which users shall be required to identify them-
selves before performing any other actions that are to be mediated by the
system and which require user identification.

SR:7827 The system shall allow [assignment: list of system-mediated actions]
on behalf of the user to be performed before the user is identified.

SR:7828 The system shall require each user to be successfully identified
before allowing any other system-mediated actions on behalf of that user.

Suggested Security Design Patterns

Account Lockout

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. However, password-guessing attacks
have proven to be very successful at discovering poorly chosen, weak pass-

164 APPENDIX E. APPLICATION DATA

words. Worse, the Web environment lends itself to high- speed, anony-
mous guessing attacks. Account lockout protects customer accounts from
automated password-guessing attacks, by implementing a limit on incorrect
password attempts before further attempts are disallowed.

Authenticated Session

An authenticated session allows a Web user to access multiple access-restricted
pages on a Web site without having to re-authenticate on every page re-
quest. Most Web application development environments provide basic ses-
sion mechanisms. This pattern incorporates user authentication into the
basic session model.

Network Address Blacklist

A network address blacklist is used to keep track of network addresses (IP
addresses) that are the sources of hacking attempts and other mischief. Any
requests originating from an address on the blacklist are simply ignored.
Ideally, breaking attempts should be investigated and prosecuted, but there
are simply too many such events to address them all. The Network Address
Blacklist pattern represents a pragmatic alternative.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Password Authentication

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. Any site that needs to reliably identify
its users will almost certainly use passwords. The Password Authentication
pattern protects against weak passwords, automated password- guessing at-
tacks, and mishandling of passwords.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

E.4. IDENTIFICATION AND AUTHENTICATION 165

User-subject binding (FIA USB)

An authenticated user, in order to use the system, typically activates a sub-
ject. The user’s security attributes are associated (totally or partially) with
this subject. Define requirements to create and maintain the association of
the user’s security attributes to a subject acting on the user’s behalf.

SR:7829 The system shall associate the following user security attributes
with subjects acting on the behalf of that user: [assignment: list of user
security attributes].

SR:7830 The system shall enforce the following rules on the initial associa-
tion of user security attributes with subjects acting on the behalf of users:
[assignment: rules for the initial association of attributes].

SR:7831 The system shall enforce the following rules governing changes to
the user security attributes associated with subjects acting on the behalf of
users: [assignment: rules for the changing of attributes].

Suggested Security Design Patterns

Account Lockout

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. However, password-guessing attacks
have proven to be very successful at discovering poorly chosen, weak pass-
words. Worse, the Web environment lends itself to high- speed, anony-
mous guessing attacks. Account lockout protects customer accounts from
automated password-guessing attacks, by implementing a limit on incorrect
password attempts before further attempts are disallowed.

Authenticated Session

An authenticated session allows a Web user to access multiple access-restricted
pages on a Web site without having to re-authenticate on every page re-
quest. Most Web application development environments provide basic ses-
sion mechanisms. This pattern incorporates user authentication into the
basic session model.

Network Address Blacklist

A network address blacklist is used to keep track of network addresses (IP
addresses) that are the sources of hacking attempts and other mischief. Any
requests originating from an address on the blacklist are simply ignored.
Ideally, breaking attempts should be investigated and prosecuted, but there

166 APPENDIX E. APPLICATION DATA

are simply too many such events to address them all. The Network Address
Blacklist pattern represents a pragmatic alternative.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Password Authentication

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. Any site that needs to reliably identify
its users will almost certainly use passwords. The Password Authentication
pattern protects against weak passwords, automated password- guessing at-
tacks, and mishandling of passwords.

Password Propagation

Many Web applications rely on a single database account to store and man-
age all user data. If such an application is compromised, the attacker might
have complete access to every user’s data. The Password Propagation pat-
tern provides an alternative by requiring that an individual user’s authen-
tication credentials be verified by the database before access is provided to
that user’s data.

E.5 Security Management

Specify the management of several aspects of the system: security attributes,
system data and functions. The different management roles and their inter-
action, such as separation of capability, can be specified.

Management of functions in system (FMT MOF)

This family allows authorised users control over the management of func-
tions in the system. Examples of functions in the system include the audit
functions and the multiple authentication functions.

SR:7832 The system shall restrict the ability to [selection: determine the
behaviour of, disable, enable, modify the behaviour of] the functions [as-
signment: list of functions] to [assignment: the authorised identified roles].

Suggested Security Design Patterns

E.5. SECURITY MANAGEMENT 167

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this
data. The Client Data Storage pattern uses encryption to allow sensitive or
otherwise security-critical data to be securely stored on the client.

Client Input Filters

Client input filters protect the application from data tampering performed
on untrusted clients. Developers tend to assume that the components exe-
cuting on the client system will behave as they were originally programmed.
This pattern protects against subverted clients that might cause the appli-
cation to behave in an unexpected and insecure fashion.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation
for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

Management of security attributes (FMT MSA)

This family allows authorised users control over the management of security
attributes. This management might include capabilities for viewing and
modifying of security attributes.

168 APPENDIX E. APPLICATION DATA

SR:7833 The system shall enforce the [assignment: access control SFP(s), in-
formation flow control SFP(s)] to restrict the ability to [selection: change default,
query, modify, delete, [assignment: other operations]] the security attributes
[assignment: list of security attributes] to [assignment: the authorised iden-
tified roles].

SR:7834 The system shall ensure that only secure values are accepted for
[assignment: list of security attributes].

SR:7835 The system shall enforce the [assignment: access control SFP, in-
formation flow control SFP] to provide [selection, choose one of: restric-
tive, permissive, [assignment: other property]] default values for security
attributes that are used to enforce the SFP.

SR:7836 The system shall allow the [assignment: the authorised identified
roles] to specify alternative initial values to override the default values when
an object or information is created.

SR:7837 The system shall use the following rules to set the value of security
attributes: [assignment: rules for setting the values of security attributes]

Suggested Security Design Patterns

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this
data. The Client Data Storage pattern uses encryption to allow sensitive or
otherwise security-critical data to be securely stored on the client.

Client Input Filters

Client input filters protect the application from data tampering performed
on untrusted clients. Developers tend to assume that the components exe-
cuting on the client system will behave as they were originally programmed.
This pattern protects against subverted clients that might cause the appli-
cation to behave in an unexpected and insecure fashion.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

E.5. SECURITY MANAGEMENT 169

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation
for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

Management of system data (FMT MTD)

This family allows authorised users (roles) control over the management of
system data. Examples of system data include audit information, clock and
other system configuration parameters.

SR:7838 The system shall restrict the ability to [selection: change default,
query, modify, delete, clear, [assignment: other operations]] the [assignment:
list of system data] to [assignment: the authorised identified roles].

SR:7917 The system shall restrict the specification of the limits for [assign-
ment: list of system data] to [assignment: the authorised identified roles].

SR:7918 The system shall take the following actions, if the system data are
at, or exceed, the indicated limits: [assignment: actions to be taken].

SR:7919 The system shall ensure that only secure values are accepted for
[assignment: list of system data].

170 APPENDIX E. APPLICATION DATA

Suggested Security Design Patterns

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this
data. The Client Data Storage pattern uses encryption to allow sensitive or
otherwise security-critical data to be securely stored on the client.

Client Input Filters

Client input filters protect the application from data tampering performed
on untrusted clients. Developers tend to assume that the components exe-
cuting on the client system will behave as they were originally programmed.
This pattern protects against subverted clients that might cause the appli-
cation to behave in an unexpected and insecure fashion.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation

E.5. SECURITY MANAGEMENT 171

for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

Revocation (FMT REV)

This family addresses revocation of security attributes for a variety of entities
within a system.

SR:7842 The system shall restrict the ability to revoke [assignment: list of
security attributes] associated with the [selection: users, subjects, objects,
[assignment: other additional resources]] under the control of the system to
[assignment: the authorised identified roles].

SR:7843 The system shall enforce the rules [assignment: specification of
revocation rules].

Suggested Security Design Patterns

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this
data. The Client Data Storage pattern uses encryption to allow sensitive or
otherwise security-critical data to be securely stored on the client.

Client Input Filters

Client input filters protect the application from data tampering performed
on untrusted clients. Developers tend to assume that the components exe-
cuting on the client system will behave as they were originally programmed.
This pattern protects against subverted clients that might cause the appli-
cation to behave in an unexpected and insecure fashion.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Secure Assertion

172 APPENDIX E. APPLICATION DATA

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation
for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

Security attribute expiration (FMT SAE)

Addresses the capability to enforce time limits for the validity of security
attributes.

SR:7844 The system shall restrict the capability to specify an expiration
time for [assignment: list of security attributes for which expiration is to be
supported] to [assignment: the authorised identified roles].

SR:7845 For each of these security attributes, the system shall be able to
[assignment: list of actions to be taken for each security attribute] after the
expiration time for the indicated security attribute has passed.

Suggested Security Design Patterns

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this

E.5. SECURITY MANAGEMENT 173

data. The Client Data Storage pattern uses encryption to allow sensitive or
otherwise security-critical data to be securely stored on the client.

Client Input Filters

Client input filters protect the application from data tampering performed
on untrusted clients. Developers tend to assume that the components exe-
cuting on the client system will behave as they were originally programmed.
This pattern protects against subverted clients that might cause the appli-
cation to behave in an unexpected and insecure fashion.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation
for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

Specification of Management Functions (FMT SMF)

174 APPENDIX E. APPLICATION DATA

This family allows the specification of the management functions to be pro-
vided by the TOE. Management functions provide TSFI that allow adminis-
trators to define the parameters that control the operation of security-related
aspects of the TOE, such as data protection attributes, TOE protection at-
tributes, audit attributes, and identification and authentication attributes.
Management functions also include those functions performed by an opera-
tor to ensure continued operation of the TOE, such as backup and recovery.
This family works in conjunction with the other components in the FMT:
Security management class: the component in this family calls out the man-
agement functions, and other families in FMT: Security management restrict
the ability to use these management functions.

SR:7846 The system shall be capable of performing the following manage-
ment functions: [assignment: list of management functions to be provided
by the system].

Suggested Security Design Patterns

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this
data. The Client Data Storage pattern uses encryption to allow sensitive or
otherwise security-critical data to be securely stored on the client.

Client Input Filters

Client input filters protect the application from data tampering performed
on untrusted clients. Developers tend to assume that the components exe-
cuting on the client system will behave as they were originally programmed.
This pattern protects against subverted clients that might cause the appli-
cation to behave in an unexpected and insecure fashion.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular

E.5. SECURITY MANAGEMENT 175

technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation
for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

Security management roles (FMT SMR)

This family is intended to control the assignment of different roles to users.
The capabilities of these roles with respect to security management are de-
scribed in the other families in this class.

SR:7847 The system shall maintain the roles [assignment: the authorised
identified roles].

SR:7848 The system shall be able to associate users with roles.

SR:7850 The system shall require an explicit request to assume the following
roles: [assignment: the roles].

Suggested Security Design Patterns

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this
data. The Client Data Storage pattern uses encryption to allow sensitive or

176 APPENDIX E. APPLICATION DATA

otherwise security-critical data to be securely stored on the client.

Client Input Filters

Client input filters protect the application from data tampering performed
on untrusted clients. Developers tend to assume that the components exe-
cuting on the client system will behave as they were originally programmed.
This pattern protects against subverted clients that might cause the appli-
cation to behave in an unexpected and insecure fashion.

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation
for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

E.6. PRIVACY 177

E.6 Privacy

This group contains privacy elements. These elements provide a user pro-
tection against discovery and misuse of identity by other users.

Anonymity (FPR ANO)

This family ensures that a user may use a resource or service without disclos-
ing the user’s identity. The requirements for Anonymity provide protection
of the user identity. Anonymity is not intended to protect the subject iden-
tity.

SR:7851 The system shall ensure that [assignment: set of users and/or sub-
jects] are unable to determine the real user name bound to [assignment: list
of subjects and/or operations and/or objects].

Suggested Security Design Patterns

Account Lockout

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. However, password-guessing attacks
have proven to be very successful at discovering poorly chosen, weak pass-
words. Worse, the Web environment lends itself to high- speed, anony-
mous guessing attacks. Account lockout protects customer accounts from
automated password-guessing attacks, by implementing a limit on incorrect
password attempts before further attempts are disallowed.

Client Data Storage

It is often desirable or even necessary for a Web application to rely on data
stored on the client, using mechanisms such as cookies, hidden fields, or URL
parameters. In all cases, the client cannot be trusted not to tamper with this
data. The Client Data Storage pattern uses encryption to allow sensitive or
otherwise security-critical data to be securely stored on the client.

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

178 APPENDIX E. APPLICATION DATA

Server Sandbox

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Trusted Proxy

A trusted proxy acts on behalf of the user to perform specific actions requir-
ing more privileges than the user possesses. It provides a safe interface by
constraining access to the protected resources, limiting the operations that
can be performed, or limiting the user’s view to a subset of the data.

Pseudonymity (FPR PSE)

This family ensures that a user may use a resource or service without dis-
closing its user identity, but can still be accountable for that use.

SR:7852 The system shall ensure that [assignment: set of users and/or sub-
jects] are unable to determine the real user name bound to [assignment: list
of subjects and/or operations and/or objects].

SR:7853 The system shall be able to provide [assignment: number of aliases]
aliases of the real user name to [assignment: list of subjects].

SR:7854 The system shall [selection, choose one of: determine an alias for
a user, accept the alias from the user] and verify that it conforms to the
[assignment: alias metric].

Suggested Security Design Patterns

Trusted Proxy

A trusted proxy acts on behalf of the user to perform specific actions requir-
ing more privileges than the user possesses. It provides a safe interface by
constraining access to the protected resources, limiting the operations that
can be performed, or limiting the user’s view to a subset of the data.

Unlinkability (FPR UNL)

This family ensures that a user may make multiple uses of resources or
services without others being able to link these uses together.

E.6. PRIVACY 179

SR:7855 The system shall ensure that [assignment: set of users and/or sub-
jects] are unable to determine whether [assignment: list of operations][selection:
were caused by the same user, are related as follows[assignment: list of re-
lations]].

Suggested Security Design Patterns

Directed Session

The Directed Session pattern ensures that users will not be able to skip
around within a series of Web pages. The system will not expose multiple
URLs but instead will maintain the current page on the server. By guaran-
teeing the order in which pages are visited, the developer can have confidence
that users will not undermine or circumvent security checkpoints.

Hidden Implementation

The Hidden Implementation pattern limits an attacker’s ability to discern
the internal workings of an application–information that might later be used
to compromise the application. It does not replace other defenses, but it
supplements them by making an attacker’s job more difficult.

Unobservability (FPR UNO)

This family ensures that a user may use a resource or service without others,
especially third parties, being able to observe that the resource or service is
being used.

SR:7856 The system shall ensure that [assignment: list of users and/or
subjects] are unable to observe the operation [assignment: list of operations]
on [assignment: list of objects] by [assignment: list of protected users and/or
subjects].

SR:7857 The system shall provide [assignment: list of services] to [assign-
ment: list of subjects] without soliciting any reference to [assignment: pri-
vacy related information].

SR:7858 The system shall provide [assignment: set of authorised users] with
the capability to observe the usage of [assignment: list of resources and/or
services].

Suggested Security Design Patterns

Trusted Proxy

180 APPENDIX E. APPLICATION DATA

A trusted proxy acts on behalf of the user to perform specific actions requir-
ing more privileges than the user possesses. It provides a safe interface by
constraining access to the protected resources, limiting the operations that
can be performed, or limiting the user’s view to a subset of the data.

E.7 Protection of the Security Function

This group contains elements that relate to the integrity and management
of the mechanisms that constitute the security functions and to the integrity
of the data.

Fail secure (FPT FLS)

The requirements of this family ensure that the system will always enforce
its requirements in the event of identified categories of failures in the system.

SR:7859 The system shall preserve a secure state when the following types
of failures occur: [assignment: list of types of failures in the system].

Suggested Security Design Patterns

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation
for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

Availability of exported system data (FPT ITA)

Define the rules for the prevention of loss of availability of system data

E.7. PROTECTION OF THE SECURITY FUNCTION 181

moving between the system and another trusted IT product. This data
could, for example, be system critical data such as passwords, keys, audit
data, or system executable code.

SR:7860 The system shall ensure the availability of [assignment: list of types
of system data] provided to another trusted IT product within [assignment:
a defined availability metric] given the following conditions [assignment: con-
ditions to ensure availability].

Suggested Security Design Patterns

Confidentiality of exported system data (FPT ITC)

Define the rules for the protection from unauthorised disclosure of system
data during transmission between the system and another trusted IT prod-
uct. This data could, for example, be system critical data such as passwords,
keys, audit data, or system executable code.

SR:7861 The system shall protect all system data transmitted from the
system to another trusted IT product from unauthorised disclosure during
transmission.

Suggested Security Design Patterns

Integrity of exported system data (FPT ITI)

Define the rules for the protection, from unauthorised modification, of sys-
tem data during transmission between the system and another trusted IT
product. This data could, for example, be system critical data such as
passwords, keys, audit data, or system executable code.

SR:7862 The system shall provide the capability to detect modification of
all system data during transmission between the system and another trusted
IT product within the following metric: [assignment: a defined modification
metric].

SR:7863 The system shall provide the capability to verify the integrity of
all system data transmitted between the system and another trusted IT
product and perform [assignment: action to be taken] if modifications are
detected.

SR:7864 Inter-system detection and correction of modification

182 APPENDIX E. APPLICATION DATA

Suggested Security Design Patterns

Authenticated Session

An authenticated session allows a Web user to access multiple access-restricted
pages on a Web site without having to re-authenticate on every page re-
quest. Most Web application development environments provide basic ses-
sion mechanisms. This pattern incorporates user authentication into the
basic session model.

Internal system data transfer (FPT ITT)

This family provides requirements that address protection of system data
when it is transferred between separate parts of a system across an internal
channel.

SR:7865 The system shall protect system data from [selection: disclosure,
modification] when it is transmitted between separate parts of the system.

SR:7866 The system shall be able to detect [selection: modification of data,
substitution of data, re-ordering of data, deletion of data, [assignment: other
integrity errors]] for system data transmitted between separate parts of the
system.

SR:7867 Upon detection of a data integrity error, the system shall take the
following actions: [assignment: specify the action to be taken].

Suggested Security Design Patterns

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

System physical protection (FPT PHP)

system physical protection components refer to restrictions on unauthorised
physical access to the system, and to the deterrence of, and resistance to,
unauthorised physical modification, or substitution of the system.

SR:7868 The system shall provide unambiguous detection of physical tam-
pering that might compromise the system.

E.7. PROTECTION OF THE SECURITY FUNCTION 183

SR:7869 The system shall provide the capability to determine whether phys-
ical tampering with the system’s devices or system’s elements has occurred.

SR:7870 The system shall resist [assignment: physical tampering scenarios]
to the [assignment: list of system devices/elements] by responding automat-
ically such that the SFRs are always enforced.

Suggested Security Design Patterns

Trusted recovery (FPT RCV)

The requirements of this family ensure that the system can determine that
the system is started up without protection compromise and can recover
without protection compromise after discontinuity of operations. This fam-
ily is important because the start-up state of the system determines the
protection of subsequent states.

SR:7871 After [assignment: list of failures/service discontinuities] the system
shall enter a maintenance mode where the ability to return to a secure state
is provided.

SR:7872 When automated recovery from [assignment: list of failures/service
discontinuities] is not possible,

SR:7873 For [assignment: list of failures/service discontinuities], the sys-
tem shall ensure the return of the TOE to a secure state using automated
procedures.

SR:7874 The system shall ensure that [assignment: list of functions and
failure scenarios] have the property that the function either completes suc-
cessfully, or for the indicated failure scenarios, recovers to a consistent and
secure state.

Suggested Security Design Patterns

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

184 APPENDIX E. APPLICATION DATA

Replay detection (FPT RPL)

This family addresses detection of replay for various types of entities (e.g.
messages, service requests, service responses) and subsequent actions to cor-
rect. In the case where replay may be detected, this effectively prevents it.

SR:7875 The system shall detect replay for the following entities: [assign-
ment: list of identified entities].

SR:7876 The system shall perform [assignment: list of specific actions] when
replay is detected.

Suggested Security Design Patterns

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

State synchrony protocol (FPT SSP)

Distributed systems may give rise to greater complexity than monolithic
systems through the potential for differences in state between parts of the
system, and through delays in communication. In most cases synchronisa-
tion of state between distributed functions involves an exchange protocol,
not a simple action. When malice exists in the distributed environment of
these protocols, more complex defensive protocols are required.

SR:7877 The system shall acknowledge, when requested by another part of
the system, the receipt of an unmodified system data transmission.

Suggested Security Design Patterns

Time stamps (FPT STM)

This family addresses requirements for a reliable time stamp function within
a system.

SR:7878 The system shall be able to provide reliable time stamps.

Suggested Security Design Patterns

E.7. PROTECTION OF THE SECURITY FUNCTION 185

Inter-system data consistency (FPT TDC)

In a distributed environment, a system may need to exchange system data
(e.g. the security requirement attributes associated with data, audit infor-
mation, identification information) with another trusted IT product, Define
the requirements for sharing and consistent interpretation of these attributes
between the system of the TOE and a different trusted IT product.

SR:7879 The system shall provide the capability to consistently interpret
[assignment: list of system data types] when shared between the system and
another trusted IT product.

SR:7880 The system shall use [assignment: list of interpretation rules to
be applied by the system] when interpreting the system data from another
trusted IT product.

Suggested Security Design Patterns

Testing of external entities (FPT TEE)

Define requirements for the system to perform tests on one or more external
entities.

SR:7881 The system shall run a suite of tests [selection: during initial start-
up, periodically during normal operation, at the request of an authorised
user, [assignment: other conditions]] to check the fulfillment of [assignment:
list of properties of the external entities] .

SR:7882 If the test fails, the system shall [assignment: action(s)] .

Suggested Security Design Patterns

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Internal system security function data replication consistency (FPT TRC)

186 APPENDIX E. APPLICATION DATA

The requirements of this family are needed to ensure the consistency of
system data when such data is replicated internal to the system. Such data
may become inconsistent if the internal channel between parts of the system
becomes inoperative. If the system is internally structured as a network
and parts of the TOE network connections are broken, this may occur when
parts become disabled.

SR:7883 The system shall ensure that system data is consistent when repli-
cated between parts of the system.

SR:7884 When parts of the system containing replicated system data are
disconnected, the system shall ensure the consistency of the replicated sys-
tem data upon reconnection before processing any requests for [assignment:
list of functions dependent on system data replication consistency].

Suggested Security Design Patterns

Partitioned Application

The Partitioned Application pattern splits a large, complex application into
two or more simpler components. Any dangerous privilege is restricted to
a single, small component. Each component has tractable security concerns
that are more easily verified than in a monolithic application.

System self test (FPT TST)

The family defines the requirements for the self-testing of the system with
respect to some expected correct operation. Examples are interfaces to
enforcement functions, and sample arithmetical operations on critical parts
of the system. These tests can be carried out at start-up, periodically, at
the request of the authorised user, or when other conditions are met. The
actions to be taken by the system as the result of self testing are defined in
other families.

SR:7885 The system shall run a suite of self tests [selection: during initial
start-up, periodically during normal operation, at the request of the autho-
rised user, at the conditions[assignment: conditions under which self test
should occur]] to demonstrate the correct operation of [selection: [assign-
ment: parts of system], the system].

SR:7886 The system shall provide authorised users with the capability to
verify the integrity of [selection: [assignment: parts of system], system data].

SR:7887 The system shall provide authorised users with the capability to

E.8. RESOURCE UTILISATION 187

verify the integrity of stored system executable code.

Suggested Security Design Patterns

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

E.8 Resource Utilisation

This group provides elements that support the availability of required re-
sources such as processing capability and/or storage capacity.

Fault tolerance (FRU FLT)

The requirements of this family ensure that the system will maintain correct
operation even in the event of failures.

SR:7888 The system shall ensure the operation of [assignment: list of system
capabilities] when the following failures occur: [assignment: list of type of
failures].

Suggested Security Design Patterns

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Server Sandbox

188 APPENDIX E. APPLICATION DATA

Many site defacements and major security breaches occur when a new vul-
nerability is discovered in the Web server software. Yet most Web servers
run with far greater privileges than are necessary. The Server Sandbox pat-
tern builds a wall around the Web server in order to contain the damage
that could result from an undiscovered bug in the server software.

Priority of service (FRU PRS)

The requirements of this family allow the system to control the use of re-
sources under the control of the system by users and subjects such that high
priority activities under the control of the system will always be accom-
plished without undue interference or delay caused by low priority activities.

SR:7890 The system shall assign a priority to each subject in the system.

SR:7891 The system shall ensure that each access to [assignment: controlled
resources] shall be mediated on the basis of the subjects assigned priority.

Suggested Security Design Patterns

Resource allocation (FRU RSA)

The requirements of this family allow the system to control the use of re-
sources by users and subjects such that denial of service will not occur
because of unauthorised monopolisation of resources.

SR:7892 The system shall enforce maximum quotas of the following re-
sources: [assignment: controlled resources] that [selection: individual user,
defined group of users, subjects] can use [selection: simultaneously, over a
specified period of time].

Suggested Security Design Patterns

E.9 System Access

This group specifies elements for controlling the establishment of a user’s
session.

Limitation on scope of selectable attributes (FTA LSA)

Define requirements to limit the scope of session security attributes that a
user may select for a session.

E.9. SYSTEM ACCESS 189

SR:7893 The system shall restrict the scope of the session security attributes
[assignment: session security attributes], based on [assignment: attributes].

Suggested Security Design Patterns

Authenticated Session

An authenticated session allows a Web user to access multiple access-restricted
pages on a Web site without having to re-authenticate on every page re-
quest. Most Web application development environments provide basic ses-
sion mechanisms. This pattern incorporates user authentication into the
basic session model.

Directed Session

The Directed Session pattern ensures that users will not be able to skip
around within a series of Web pages. The system will not expose multiple
URLs but instead will maintain the current page on the server. By guaran-
teeing the order in which pages are visited, the developer can have confidence
that users will not undermine or circumvent security checkpoints.

Limitation on multiple concurrent sessions (FTA MCS)

Define requirements to place limits on the number of concurrent sessions
that belong to the same user.

SR:7894 The system shall restrict the maximum number of concurrent ses-
sions that belong to the same user.

SR:7895 The system shall enforce, by default, a limit of [assignment: default
number] sessions per user.

Suggested Security Design Patterns

Authenticated Session

An authenticated session allows a Web user to access multiple access-restricted
pages on a Web site without having to re-authenticate on every page re-
quest. Most Web application development environments provide basic ses-
sion mechanisms. This pattern incorporates user authentication into the
basic session model.

Directed Session

The Directed Session pattern ensures that users will not be able to skip

190 APPENDIX E. APPLICATION DATA

around within a series of Web pages. The system will not expose multiple
URLs but instead will maintain the current page on the server. By guaran-
teeing the order in which pages are visited, the developer can have confidence
that users will not undermine or circumvent security checkpoints.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant validation
for a specific transaction into one page request. A developer can create any
number of supporting pages without having to worry about attackers using
them to circumvent security. And users can navigate freely among the pages,
filling in different sections in whatever order they choose. The transaction
itself will ensure the integrity of all information submitted.

Session locking and termination (FTA SSL)

Define requirements for the system to provide the capability for system-
initiated and user-initiated locking, unlocking, and termination of interactive
sessions.

SR:7897 The system shall lock an interactive session after [assignment: time
interval of user inactivity] by: a) clearing or overwriting display devices,
making the current contents unreadable; b) disabling any activity of the
user’s data access/display devices other than unlocking the session.

SR:7898 The system shall require the following events to occur prior to
unlocking the session: [assignment: events to occur].

SR:7899 The system shall allow user-initiated locking of the user’s own in-
teractive session, by: a) clearing or overwriting display devices, making the
current contents unreadable; b) disabling any activity of the user’s data
access/display devices other than unlocking the session.

SR:7900 The system shall require the following events to occur prior to
unlocking the session: [assignment: events to occur].

SR:7901 The system shall terminate an interactive session after a [assign-
ment: time interval of user inactivity].

SR:7902 The system shall allow user-initiated termination of the user’s own
interactive session.

Suggested Security Design Patterns

Authenticated Session

E.9. SYSTEM ACCESS 191

An authenticated session allows a Web user to access multiple access-restricted
pages on a Web site without having to re-authenticate on every page re-
quest. Most Web application development environments provide basic ses-
sion mechanisms. This pattern incorporates user authentication into the
basic session model.

Directed Session

The Directed Session pattern ensures that users will not be able to skip
around within a series of Web pages. The system will not expose multiple
URLs but instead will maintain the current page on the server. By guaran-
teeing the order in which pages are visited, the developer can have confidence
that users will not undermine or circumvent security checkpoints.

Network Address Blacklist

A network address blacklist is used to keep track of network addresses (IP
addresses) that are the sources of hacking attempts and other mischief. Any
requests originating from an address on the blacklist are simply ignored.
Ideally, breaking attempts should be investigated and prosecuted, but there
are simply too many such events to address them all. The Network Address
Blacklist pattern represents a pragmatic alternative.

System access banners (FTA TAB)

Define requirements to display a configurable advisory warning message to
users regarding the appropriate use of the system.

SR:7903 Before establishing a user session, the system shall display an ad-
visory warning message regarding unauthorised use of the system.

Suggested Security Design Patterns

System access history (FTA TAH)

Define requirements for the system to display to a user, upon successful
session establishment, a history of successful and unsuccessful attempts to
access the user’s account.

SR:7904 Upon successful session establishment, the system shall display
the [selection: date, time, method, location] of the last successful session
establishment to the user.

SR:7905 Upon successful session establishment, the system shall display the

192 APPENDIX E. APPLICATION DATA

[selection: date, time, method, location] of the last unsuccessful attempt
to session establishment and the number of unsuccessful attempts since the
last successful session establishment.

SR:7906 The system shall not erase the access history information from
the user interface without giving the user an opportunity to review the
information.

Suggested Security Design Patterns

System session establishment (FTA TSE)

Define requirements to deny a user permission to establish a session with
the system.

SR:7907 The system shall be able to deny session establishment based on
[assignment: attributes].

Suggested Security Design Patterns

Account Lockout

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. However, password-guessing attacks
have proven to be very successful at discovering poorly chosen, weak pass-
words. Worse, the Web environment lends itself to high- speed, anony-
mous guessing attacks. Account lockout protects customer accounts from
automated password-guessing attacks, by implementing a limit on incorrect
password attempts before further attempts are disallowed.

Authenticated Session

An authenticated session allows a Web user to access multiple access-restricted
pages on a Web site without having to re-authenticate on every page re-
quest. Most Web application development environments provide basic ses-
sion mechanisms. This pattern incorporates user authentication into the
basic session model.

Directed Session

The Directed Session pattern ensures that users will not be able to skip
around within a series of Web pages. The system will not expose multiple
URLs but instead will maintain the current page on the server. By guaran-
teeing the order in which pages are visited, the developer can have confidence

E.10. SECURITY AUDIT 193

that users will not undermine or circumvent security checkpoints.

E.10 Security Audit

Security auditing involves recognising, recording, storing, and analysing in-
formation related to security relevant activities (i.e. activities controlled by
the system).

Security audit automatic response (FAU ARP)

The response to be taken in case of detected events indicative of a potential
security violation.

SR:7715 The system shall take [assignment: list of actions] upon detection
of a potential security violation.

Suggested Security Design Patterns

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Security audit data generation (FAU GEN)

Define requirements for recording the occurrence of security relevant events
that take place under system control. This family identifies the level of
auditing, enumerates the types of events that shall be auditable by the
system, and identifies the minimum set of audit-related information that
should be provided within various audit record types.

194 APPENDIX E. APPLICATION DATA

SR:7716 The system shall be able to generate an audit record of the following
auditable events: a) Start-up and shutdown of the audit functions; b) All
auditable events for the [selection, choose one of: minimum, basic, detailed,
not specified] level of audit; and c) [assignment: other specifically defined
auditable events].

SR:7718 For audit events resulting from actions of identified users, the sys-
tem shall be able to associate each auditable event with the identity of the
user that caused the event.

Suggested Security Design Patterns

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Security audit analysis (FAU SAA)

Define requirements for automated means that analyse system activity and
audit data looking for possible or real security violations. This analysis may
work in support of intrusion detection, or automatic response to a potential
security violation.

SR:7719 The system shall be able to apply a set of rules in monitoring the
audited events and based upon these rules indicate a potential violation of
the enforcement of the security requirement.

SR:7720 The system shall be able to maintain profiles of system usage, where
an individual profile represents the historical patterns of usage performed
by the member(s) of [assignment: the profile target group].

E.10. SECURITY AUDIT 195

SR:7721 The system shall be able to maintain a suspicion rating associated
with each user whose activity is recorded in a profile, where the suspicion
rating represents the degree to which the user’s current activity is found
inconsistent with the established patterns of usage represented in the profile.

SR:7722 The system shall be able to indicate a possible violation of the
enforcement of the SFRs when a user’s suspicion rating exceeds the follow-
ing threshold conditions [assignment: conditions under which anomalous
activity is reported by the system].

SR:7723 The system shall be able to maintain an internal representation of
the following signature events [assignment: a subset of system events] that
may indicate a violation of the enforcement of the SFRs.

SR:7724 The system shall be able to compare the signature events against
the record of system activity discernible from an examination of [assignment:
the information to be used to determine system activity].

SR:7725 The system shall be able to indicate a potential violation of the
enforcement of the SFRs when a system event is found to match a signature
event that indicates a potential violation of the enforcement of the SFRs.

Suggested Security Design Patterns

Account Lockout

Passwords are the only approach to remote user authentication that has
gained widespread user acceptance. However, password-guessing attacks
have proven to be very successful at discovering poorly chosen, weak pass-
words. Worse, the Web environment lends itself to high- speed, anony-
mous guessing attacks. Account lockout protects customer accounts from
automated password-guessing attacks, by implementing a limit on incorrect
password attempts before further attempts are disallowed.

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

Network Address Blacklist

A network address blacklist is used to keep track of network addresses (IP
addresses) that are the sources of hacking attempts and other mischief. Any

196 APPENDIX E. APPLICATION DATA

requests originating from an address on the blacklist are simply ignored.
Ideally, breaking attempts should be investigated and prosecuted, but there
are simply too many such events to address them all. The Network Address
Blacklist pattern represents a pragmatic alternative.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

Security audit review (FAU SAR)

Define the requirements for audit tools that should be available to authorised
users to assist in the review of audit data.

SR:7729 The system shall provide [assignment: authorised users] with the
capability to read [assignment: list of audit information] from the audit
records.

SR:7730 The system shall provide the audit records in a manner suitable for
the user to interpret the information.

SR:7731 The system shall prohibit all users read access to the audit records,
except those users that have been granted explicit read-access.

SR:7732 The system shall provide the ability to apply [assignment: methods
of selection and/or ordering] of audit data based on [assignment: criteria
with logical relations].

Suggested Security Design Patterns

Security audit event selection (FAU SEL)

Define requirements to select the set of events to be audited during operation
from the set of all auditable events.

SR:7733 The system shall be able to select the set of audited events from the
set of all auditable events based on the following attributes: a) [selection:
object identity, user identity, subject identity, host identity, event type] b)

E.10. SECURITY AUDIT 197

[assignment: list of additional attributes that audit selectivity is based upon]

Suggested Security Design Patterns

Security audit event storage (FAU STG)

Define the requirements for the system to be able to create and maintain
a secure audit trail. Stored audit records refers to those records within the
audit trail, and not the audit records that have been retrieved (to temporary
storage) through selection.

SR:7734 The system shall protect the stored audit records in the audit trail
from unauthorised deletion.

SR:7735 The system shall be able to [selection, choose one of: prevent,
detect] unauthorised modifications to the stored audit records in the audit
trail.

SR:7736 The system shall [assignment: actions to be taken in case of possi-
ble audit storage failure] if the audit trail exceeds [assignment: pre-defined
limit].

Suggested Security Design Patterns

Minefield

The Minefield pattern will trick, detect, and block attackers during a break-
in attempt. Attackers often know more than the developers about the secu-
rity aspects of standard components. This pattern aggressively introduces
variations that will counter this advantage and aid in detection of an at-
tacker.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity checks
throughout the system. These take the form of assertions ? a popular
technique for checking programmer assumptions about the environment and
proper program behavior. A secure assert maps conventional assertions to a
system-wide intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts to misuse
the system.

198 APPENDIX E. APPLICATION DATA

E.11 Trusted path/channels

This group provides elements for a trusted communication path between
users and the system, and for a trusted communication channel between the
system and other trusted IT products.

Inter-system trusted channel (FTP ITC)

Define requirements for the creation of a trusted channel between the system
and other trusted IT products for the performance of security critical oper-
ations. This family should be included whenever there are requirements for
the secure communication of user or system data between the system and
other trusted IT products.

SR:7908 The system shall provide a communication channel between itself
and another trusted IT product that is logically distinct from other commu-
nication channels and provides assured identification of its end points and
protection of the channel data from modification or disclosure.

SR:7909 The system shall permit [selection: the system, another trusted IT
product] to initiate communication via the trusted channel.

SR:7910 The system shall initiate communication via the trusted channel
for [assignment: list of functions for which a trusted channel is required].

Suggested Security Design Patterns

Trusted path (FTP TRP)

Define the requirements to establish and maintain trusted communication
to or from users and the system. A trusted path may be required for any
security-relevant interaction. Trusted path exchanges may be initiated by
a user during an interaction with the system, or the system may establish
communication with the user via a trusted path.

SR:7911 The system shall provide a communication path between itself and
[selection: remote, local] users that is logically distinct from other com-
munication paths and provides assured identification of its end points and
protection of the communicated data from [selection: modification, disclo-
sure, [assignment: other types of integrity or confidentiality violation]].

SR:7912 The system shall permit [selection: the system, local users, remote
users] to initiate communication via the trusted path.

E.11. TRUSTED PATH/CHANNELS 199

SR:7913 The system shall require the use of the trusted path for [selection:
initial user authentication, [assignment: other services for which trusted
path is required]].

	Title Page
	masteroppgave.pdf

