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ABSTRACT

This thesis describes novel techniques and test implementations for
optimizing numerically intensive codes. Our main focus is on how given
algorithms can be adapted to run efficiently on modern microprocessor
exploring several architectural features including, instruction selection, and
access patterns related to having several levels of cache.

Our approach is also shown to be relevant for multicore architectures.
Our primary target applications are linear algebra routines in the form of
matrix multiply with dense matrices. We analyze how current compilers,
microprocessor and common optimization techniques (like loop tiling and
date relocation) interact. A tunable assembly code generator is developed,
built, and tested on a basic BLAS level-3 routine to side-step some of the
performance issues of modern compilers.

Our generator has been test on both the Intel Pentium 4 and Intel’s Core 2
processors. For the Pentium 4, a 10.8 % speed-up is achieved over ATLAS’s
rank2k, and a 17% speed-up is achieved over MKL’s implementation for
4000-by-4032 matrices.

On the Core 2 we optimize our code for 2000-by-2000 matrices and achieved
a 24% and 5% speed-up over ATLAS and MKL, respectively with our multi-
threaded implementation. Also for other matrix sizes, descent speed-ups are
shown. Considering that our implementation is far from fully tuned, we
consider these result very respectable.
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Chapter 1

Introduction

A large part of the workload on present day computers involves solving vari-
ous linear algebra problems, both within HPC and consumer class products.

“. . . In modern treatments of linear algebra, matrices are considered
first. Matrices provide a theoretically and practically useful way
of approaching many types of problems including: Solution of
Systems of Linear Equations, Equilibrium of Rigid Bodies (in
physics), Graph Theory, Theory of Games, The Leontief Model in
Economics, Forest Management, Computer Graphics, and Computer
assisted Tomography, Genetics, Cryptography, Electrical Networks,
and Fractals1” — Joseph Khoury, University of Ottawa.

Optimizing this subset of problems will not only give faster solutions, but
might enable solving larger problems or saving money on power usage.

Modern CPU’s are so complex that a simple model is lacking. The
documentation from the manufacturer is often incomplete, and does not
deal or explain precisely how various subsystems interact. This makes a
complete or accurate model hard or practically impossible to design. Also,
since different computer systems have many different sub parts, like those
associated with memory speed and technology, the motherboard and chipset
used, processor type and features includes, model, stepping, frequency and

1http://aix1.uottawa.ca/~jkhoury/matrices.html

1
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cache sizes. Finally, the operating system can have a major impact on
performance. All of these parts makes the design of optimal code very hard.

For compilers, the task of instruction generation becomes even harder. They
currently lack any information on how to generate code with respect to the
sub parts in the target computer. In order to ensure compatibility, they can
not freely select instructions or optimizations, unless target architecture is
specified. As compilers often are updated after the CPU architecture arrives
at the market, the most modern CPU may not even have compilers optimized
for their features.

In order to avoid these problems, an idea on how to make a simple code
generator that will be capable of coming around some of these problems,
was formulated. By making a low level code generator system, that use
empirically gathered information from dynamically designed benchmarks,
allows the code generator to build/evolve code that is near optimal.

Because of their importance, most of the underlying functionality have been
standardised into a set of key libraries. This have been done to ensure that
stable and error free implementations of these important functions are easily
accessible. One of these libraries is the Basic Linear Algebra Subprograms
(BLAS) library. The BLAS library performs fundamental operations such as
multiplication on vectors and matrices, and therefore implements the basis
for more advanced linear algebra tools such as MATLAB.

Note that the BLAS library standards main goal is to describe a
platform independent interface for these routines. It is left up to library
implementations, including computer vendors, to implement optimal versions
of these routines.

Much work has been done to improve performance both from a low level
computer aspect and from a high level algorithmic position. Current
implementations are often carefully tuned by the microprocessor vendors,
in order to extract every drop of performance.

How this work started: My Personal Motivation

Because these key libraries are highly optimized, they are good candidates
for student competitions when they learn about how to optimize code for

2



performance. This task is hard since there are many aspects that must be
successfully addressed. This was also the outline for an exercise in parallel
programing course taught by Dr. Elster that the author took in 2007. The
challenge was to achieve at least a certain fraction of the speed of a good
implementation (e.g. ATLAS [20]), on a single given BLAS function.

I have always considered myself somewhat capable of performing optimiza-
tion, however, this turned out to be a challenge like never before. All my
attempts seemed to only marginally improve speed, and it was less than half
of what was obviously possible, so continually increasing systematic analysis
was done and tests performed. This culminated in a version of rank2k that
managed to beat the best implementation available by several percent, most
of these percents was gained on the last day before delivery. The competition
was won, without reading any papers or research on what others had done
before. Only the processor documentation and analysis on how the given
processor worked was used.

Beating ATLAS was considered to be important, and Dr. Anne C. Elster
(later my supervisor) suggested a master thesis was appropriate for analysing
and explaining how this performance was achieved, and for further research.

1.1 Goal

As mentioned this thesis will look at techniques for optimizing memory and
numerically intensive code. The main focus is not on designing optimal
algorithms, but on how algorithms can be adapted to run efficiently on
modern microprocessor. The thesis will primarily focus on linear algebra
algorithms, in the form of matrix multiply with dense matrices. It also
looks at how current compilers, microprocessor and common optimization
techniques (like loop tiling) interact with each other.

Personal Goal

Some of the issues I had notice early on, was that utilising only official
guidelines and known techniques did not give an implementation that
approached the performance of ATLAS archives. While writing the original

3



implementation, several of the improvements was found only by going against
the recommendations in the processor documentation. Moreover, several
parts of that documentation was contradicting itself. I therefore felt that
if decades of research could not beat a month’s work, by someone that
never even heard about BLAS before, then it was less important to learn
precisely how they implemented their code. Even the very detailed processor
documentation was inconsistent with the real-world processor behaviour I
was seeing. When working on speeding up my code, novel techniques were
found that seemed contrary to the processor documentations. This thesis
will attempt to document some of these findings.

I chose to deliberately avoid looking at the implementation details of what
other BLAS library developers had specifically done, to avoid falling into
their pattern of thought — at least until I had a good understanding of what
made my implementation fast. In the end, this turned out to be both a
blessing and a curse, as expected but not quite in the way I envisioned.

1.2 Outline

The rest of this thesis is organized as follows:

Chapter 2 includes some more background details, as well as related work
on this topic. The competing implementations are also introduced.

Chapter 3 describes the key features impacting performance in modern
microprocessors. Several known optimization techniques will also be
presented. Some of the tools that are needed or used are also described
here.

Chapter 4 consists of the first of two parts. Each part contains a model,
implementation, benchmarks and a short evaluation. The first part looks
on the old implementation made before the thesis, and the early work done
with it during the thesis. Fundamental concepts and framework is made and
tested, so that important findings can be included in the later implementation
designs.

4



Chapter 5 contains the second part of our work, which looks at a new
implementation done for a newer processor (Intel R© Core 2), using what was
found in the first part (Intel R© Pentium 4). Additional key concepts and
theories are also explored.

Chapter 6 presents an overall summary of the results we achieved. It also
discusses further improvements of our implementation and looks at possible
future work, with known microprocessor changes that are approaching in the
next few years.

Appendix A Code Example showing the assembly code for one minimal
core function.

Appendix B A description of the cache simulator developed.

Appendix C the Perl script that reformats the assembly code from the
core code generator, into the GCC assembly in-line style.

Appendix D NOTUR 08 Poster, showing more issues with compilers.

In addition, a zipped file with additional code and benchmarks is available
upon request.

5



6



Chapter 2

Background and Previous Work

Numerous articles concerning almost every aspect of matrix multiplication
have been published, so any attempt at a complete overview is impossible
within the scope of this thesis. However, we discuss a small number of
selected articles we feel are central to our work and which are some of the
better ones we are aware of.

Micro Processors and x86 Programing

A good basis of processor design and inner working can be found in Computer
Organization and Design, the hardware/software interface[17], this book go
into the really low level aspects and all the way up to compilers. Appendix A
have an excellent overview on assembly writing and the assembler, although
its for the MIPS processor.

An guide for using SIMD (MMX and SSE) in C and C++ is the Intel R© C++
Intrinsic Reference[3], good as a start if one are new to programing with this
technology.

The Intel R© 64 and IA-32 Architectures Software Developer’s Manual [5]
contain documentation on instructions and general processor functionality,
Volume 1 have a detailed guide on how to program x86 processors.
Recommends in order to get the intermediate understanding into place.

7



The Intel R© 64 and IA-32 Architectures Optimization Reference Manual [4]
contains massive amounts of details and suggestions for how to achieve good
performance on their processors. Because of the proprietary nature of the
inner processor design much information is missing. Chapter 2.1 give nice
overview of the Core 2, and 2.3 the same for Pentium 4.

Chapter 3, 4, 6 and 7 contains a huge list of optimizations and rules that
have been used, recommended reading (although contradictions exists). This
is advanced level, for compilers and assembly writers.

Appendix B.5 contains an explanation on performance counters while B.6
and B.7 points out how to understand the values obtained and which exists.
This a good source of complex information on the inner workings of the Core
2, even while it has not been studied nearly enough it seems imperative to
understand what is written between the lines. This hidden information was
found too late for being useful unfortunately.

A source of what the future x86 architecture and instruction set brings is
the Intel R© Advanced Vector Extensions Programming Reference[11], good
reading in order to be prepared for the change.

Memory and Locality

Some insight into DRAM and memory bottlenecks beyond simple bandwidth
issues can be found in A Case for Studying DRAM Issues at the System
Level [12].

Cache reuse by loop transformations are described by The Cache Perfor-
mance and Optimizations of Blocked Algorithms [15], good insight to conflict
misses and how to deal with them.

Virtual memory plays tricks behind the scene, as shown in Page Placement
Algorithms for Large Real-Indexed Caches [13]. Although it deals with caches
with less associativity than currently available it highlights the fundamental
problem. The Effect Of Page Allocation On Caches [16] looks the same effect
on somewhat smaller caches, useful reference for the small L2 caches in new
processors.

Data layout transformations are beneficial and might (finally) also be done
guided by the compiler as shown in Refactoring for Data Locality [1].

8



2.1 BLAS

The standard framework for fundamental linear algebra is Basic Linear
Algebra Subprograms (BLAS1). With a stable reference implementation, it is
often used as the main library for many projects. However it is not designed
for being very fast or optimal. In order to come around this, a number of
high speed implementations exist. Some are highly specialized (and costly),
made by the maker of the CPU itself, other are general and free. There
have been, and is continual research into how to achieve best performance
on numerous hardware platforms. Only a few will be looked into here.

Rank2k

The first problem considered was optimization of the BLAS function
cblas dsyr2k, or Double precision Symmetrical Rank2k shown in Equation
2.1.

C = xAB′ + xBA′ + yC (2.1)

The A, B, C are matrices and x and y are scalar values. The size of the
matrices can be described by two parameters, N and K. With A and B of
size N*K, and C being an N*N matrix. In order to make the initial exercise
somewhat easier, the scalar values x and y were fixed to 1.0 and 0.0. This
reduced the problem to the slightly simpler Equation 2.2 (note that ATLAS
tests for this special case as well).

C = AB′ +BA′ (2.2)

This thesis will tune on this simpler version. However, how to extend this
work back to the full Rank2k Equation 2.1 will be included in the discussion.

One free library implementation for doing BLAS in an efficient way is
Automatically Tuned Linear Algebra Software (ATLAS) [20]. Intel’s Math
Kernel Library MKL [6] math library is an commercial implementation that
is made specially for Intel c© processors. We will test our generated code
against these two libraries. A discussion of Goto’s [9] more hand-optimized
approach is also discussed.

1http://www.netlib.org/blas/
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2.1.1 ATLAS

A recent efficient implementation of the BLAS library is ATLAS [20]. Its
capable of finding near optimal implementations of the BLAS functions, by
testing a large number of implementations and/or condition parameters. This
approach is supplemented with handwritten high performance assembly code,
contributed by many people. It is used on many systems, and often beats
many commercial vendor-specific implementations.

An analysis on how ATLAS works, and tests replacing the searching with
an analytical model is done in Is Search Really Necessary to Generate High-
Performance BLAS? [21]. The same authors also go into more details An
Experimental Study of Self-Optimizing Dense Linear Algebra Software [14],
where multiple low level issues are evaluated.

The project started as an small unfunded project, maintained by a few
people. Later it have been funded several governmental agencies. The latest
stable version2 (3.8.3) have received major speed improvements on the Core
2 processor.

2.1.2 MKL

MKL is an proprietary math library made by Intel R© containing extensive
mathematical functionality, and one important part of this functionality is
BLAS compatibility.

“The Flagship for High-Performance Computing Math Software”3

— Intel R©

MKL is highly optimized for Intel R© processors, and actively attempts to be
the fastest implementation available for their own processors. It appears to
be in an constant armsrace against ATLAS regarding performance, where
they have alternated on having the fastest code. Its inner workings is not
known.

2As of May 6 2009.
3http://software.intel.com/en-us/intel-mkl/ contains in depth information and

comparisons with ATLAS. As of April 22 2009 the ATLAS version used there is not
the newest, and the newer version include heavy speedups on the platforms used in the
comparisons.
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2.1.3 Goto BLAS

A well-known more hand-optimzed versions of the BLAS have been developed
by Goto [9] who focuses a lot on optimizing TLB (translation look-ahead
buffer) misses. On the Pentium 4, we experienced that we also got more
speed-up when added optimizations for TLB misses, using huge pages. Doing
these optimizations, required extra operating system kernal support. Note,
however, that several of the TLB issues are indirectly addresses by our data
reordering schemes. Some additional TLB comments are added at the end
of Chapter 3. Note also that the Intel Core 2 can handle many more TLB
misses, so these issues are less relevant on this newer architecture.

2.2 Issues Not Considered

There are a couple of important issues that are considered outside the scope of
this thesis. However, both these topics may imply speedups and correctness
of the answer.

Algorithmic Improvements

There exist several way to calculate matrix multiplications faster than
the basic triple for loop. Finding such an algorithm is therefor of great
importance to performance. The Strassen matrix multiplication algorithm
[2], and other algorithms with better asymptotic complexity are not
considered for two reasons: The first reason is that they might give numerical
stability problems (or precision loss), and handling this in a good way
might require extensive mathematical knowledge. The other is that code
optimization techniques rather than finding the algorithm itself, is the focus
in this thesis, so selecting a simpler algorithm is advantageous.

Numerical Stability

Numerical stability is an issue related to the way processors implement
floating point arithmetic. Limited precision imposed by what can be
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encoded in the available data size is normally the only point taken into
consideration, however precision loss can be amplified based on the sequence
math operations are ordered. This is of great concern with algorithms like
Strassen’s, while for the algorithm implemented here there are no such issues.
An evaluation of precision loss for both algorithms, and other similar ones
can be found in [10]. While it is possible to enhance the precision by careful
analysis, it’s not taken into consideration in this thesis.

2.2.1 Hardware Test Beds

Custom hardware that will solve this kind of problems in a known optimal
way (from a software/algorithmic perspective) often cost too much to be
justified. The trend of using clusters of low cost ‘home’ computers, typically
with an x86 processor, have been going on for several years. The older Intel
Pentium 4 R© and the new Intel Core 2 R© series were chosen as our main
testbeds due to both availability and popularity (and thus importance).

Clustis2

Clustis2 was the old Pentium 4 cluster at Department of Computer and
Information Science at NTNU. The Clustis2 nodes used for testing consists
of a single Xeon R©Pentium 4 R© processor, with hyper threading disabled. Its
processor details is shown in Table 2.1.

Table 2.1: Clustis2 processor details.

Cpu family 15
Model 2
Model name Intel R© Pentium R© 4 CPU 3.40GHz
Stepping 9
L1 cache size 8 KB
L2 cache size 512 KB

Clustis3

Clustis3 is the new Core 2 based cluster at Department of Computer and
Information Science at NTNU. It is used primarily for teaching parallel
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computing, and was installed in January 2009. The Clustis3 nodes used for
testing consists of two quad core Intel R© Xeon R© E5405 processors running
at 2 GHz. This allows scalability testing up to 8 threads. Each node have
9 GB of main memory, physically configured in a 1 GB + 8 GB layout. Its
processor details is shown in Table 2.2.

Table 2.2: Clustis3 processor details.

Cpu family 6
Model 23
Model name Intel R© Xeon R© CPU, E5405 @ 2.00GHz
Stepping 10
L1 cache size 32 KB
L2 cache size 6144 KB
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Chapter 3

Technical Background &
Concepts

In order to highlight the details of the implementations later on, a number
of key concepts are presented in this chapter. First, a number of well
known features related to how new processors works will be presented. This
is important to include since some of these parts contain details that are
often overlooked, while potentially representing major performance issues.
Details of the processor family used in the implementation and the specific
processors used will also be presented, as several of their particular abilities
are relatively unknown. A number of known programing techniques for
optimizing performance are then presented. These are included as they
are often used to address various processor features, and are necessary for
the best performance. Finally, a few essential tools will be mentioned for
completeness.

3.1 Operating systems - Virtual Memory and

Paging

Virtual Memory is a central aspect of operating systems. Most of the features
associated with this topic is beyond the scope of this thesis, one feature (or
lack of) must be pointed out however. In order for cache the techniques
used the physical memory layout must be similar to the virtual layout,
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namely linear arrays must be linear physically in the memory for the cache
system. If this is not the case one might get conflict misses in the cache,
on seemingly linear data. When a program asks for memory the operating
system opportunistically allocate only the pages written too. This can cause
fragmentation of physical memory, if its not already fragmented. Kessler [13]
shows that this effect can give up to 30% unnecessary cache misses in large
caches with low associativity.

In order to avoid unexpected conflict misses and maintain cache effectiveness
some (few) operating systems use a technique called Page Coloring1. Page
Coloring keeps track of physical layout, and selects pages such that conflict
misses are avoided. The operating systems used for testing do not have this
feature. This might lead to lower performance and potentially random speed
variations between otherwise equal runs. Finding out if the physical layout is
bad or good is impossible without low level operating system support, none
of the systems used for testing seem to have this support either.

3.2 Modern Architectures

The modern era of microprocessor design, with nearly a billion transistors,
have lead to many complex processor designs. At the same time, several
of the most used processor families are based on very old designs. This
has lead to many solutions that can be considered to be suboptimal, and
this is very true for the x86 processor family that is used in this thesis.
Although many of these solutions only play a minor practical role, some of
the most relevant issues will be mentioned. First, some of the key concepts
of modern processor architectures will be briefly explained, with less focus
on well known concepts and more on some less known issues. Among the
concepts explained are the Cache and some of its features, pipelining and
Out of Order Execution (OoOE). Then a number of the features of the used
microprocessors are presented.

3.2.1 Cache System

Caches are designed to reduce the impact of today’s main memory issues
of long latency and limited bandwidth. The two fundamental ideas used in

1http://www.freebsd.org/doc/en/articles/vm-design/
page-coloring-optimizations.html verified on April 27. 2009.
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caches is that most memory accesses has close temporal and spatial locality.
An memory location used once is often used again after a relatively short
time, so caches exploit this temporal pattern. Also, if one use a memory
location, then it is likely that the nearby memory locations will be used as
well. This spatial pattern is also captured by the cache.

Today’s caches are organized into several layers. The first are the two Level
1 caches, one for instructions and one for data. They are designed for high
speed, minimizing latency and having very good bandwidth. This design
limits their size to somewhere in the low KB range, normally around 8–64
KB.

In order to handle larger data sets, an Level 2 cache is used. The L2 cache
is typically designed for being large, preventing as many memory accesses as
possible from hitting the slow main memory. This gives a cache optimized
primarily for large size first and only somewhat for bandwidth and latency,
with sizes currently around 1–6 MB. Finally, Level 3 caches are starting
to become normal2, with sizes in the multi-megabyte range. It normally
takes the place of L2 cache as a large but slow cache, shared between several
processor cores. In this case, the L2 cache will be optimized more towards
a balance of size, latency and bandwidth, often being dedicated to a single
processor core.

Cache Organization

Internally caches are organized into ways and sets. In Figure 3.1 a cache
with 4 ways and N sets are shown. Each set have 4 ways where data can
be stored, and each way can hold a small amount of data called a cache
line. The cache line is the minimum block size that the cache operates on,
irrespective of the actual data size used. Moreover, for any given memory
location data can only be cached in a single set.

Figure 3.1: 4 way cache with N sets.

2For the more common processor versions in the x86 family.
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For a simple cache with 4 ways, 8 sets and a cache line of 1 element this can be
illustrated as in Figure 3.2. Every 8’th memory addresses can only be stored
into a single set. If data is read sequentially with a stride of 8, this will fill
one set while the others are unused. An cache miss generated in this fashion
is called an conflict misses. They are a consequence of the set-associative
design, where data competes for the space inside a given set. These stand in
sharp contrast to the normal capacity misses, that can be expected to occur
when the cache have been overfilled with data. More details can be found in
[17, Chapter 7], if desired.

Figure 3.2: 4 way cache with 8 sets.

For a physically addressed cache the memory location determining which set
to use is based on the physical memory location of the data. This is normally
the method used in L2 and L3 caches. For a virtually addressed cache, one
uses the memory location after the address have been translated into the vir-
tual address space of the running application. This is normal in L1 caches,
avoiding the translation cost.

Cache Replacement Policies

When a cache line is replaced by a new, one of the cache lines in the set
must be replaced. In order to select which one to remove one useful Cache
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replacement policy is Least recently used (LRU). It replaces the line that
have remained unused for the longest time frame. An simpler scheme is just
to select a random one. Because of high hardware costs, even LRU might be
both too costly and too slow.

Nonblocking Cache

When a memory request results in a cache miss this will halt all further
memory requests, unless the cache supports hit under miss or similar
techniques. An cache with this support can continue to accept memory
requests, while the first miss is being loaded. In order to achieve this, the
cache system has a number of Miss Status Holding Registers (MSHR) that
handles outstanding misses. Typically, one MSHR is needed for every miss
that needs to be handled at the same time. This technique is often used
to create more memory level parallelism, that is needed by out of order
processors.

Pipelining and Throughput

Pipelining is a well known technique [17, Chapter 6] where the processor
divide the execution of every instruction into several smaller stages. This
means that there is a possibly long latency from the instruction starts until
it is completed. When many instructions that depend on each other are
stacked up in a long sequence, the execution time will be limited by latency,
also called pipeline stalls.

The other effect of pipelining is that many instructions can be executed at
the same time, each in different pipe stages. This gives a high throughput,
even while each take a long time to complete. For sequence of instructions
that do not closely depend on each other the execution time will depend on
throughput. Most newer processors are also super-scalar, a technique where
several instructions can be started at the same time.
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Out of Order Execution

Large and more complex processors use Out-of-order Execution (OoOE) in
order to reduce the effects of long latency. When an instruction that either
depend on data from instructions that are not available (or on memory
not in L1 cache), it is put into a queue waiting for the data to become
available. The processor then continues with the next instructions, queuing
instructions until it finds an instruction where all the needed data is available.
Instructions will therefor be executed in a different sequence than intended,
using possibly incorrect data or overwriting later needed data. In order to
do this the processor use rename registers to create several versions of the
same register, each containing data from different time frames. Several other
techniques are also used to avoid these data hazards (false dependencies),
and keeping the impression that all instructions are executed in a sequential
manner. Doing this improves effective throughput, at the cost of greatly
increased design complexity. Out-of-order execution is normally combined
with nonblocking caches.

Branch Prediction

Branch prediction is used in modern processors in order to try to guess which
way an branch will take. In order to mask the long latencies associated with
pipelining, which instructions to execute after a branch are guessed. For
numerically intensive HPC code, this is of less importance. However, it is
extremely important for most other code. A related feature that is more
useful here is loop prediction, where the processor try to guess the number of
times a loop will be iterated. This avoids the same latencies associated with
branches.

System Memory: DRAM

Dynamic Random Access Memory (DRAM) issues can also contribute to
a significant performance hit, if it is not taken into account. While not a
processor specific feature, it is still an essential aspect that is closely related
to the processor design, its inner working, and efficiency. By just changing
the internal bank, burst size and channel layout, without changing theoretical
bandwidth, it has been shown (by [12]) to give a factor 2 speed difference on
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certain SPEC 2000 benchmarks. While the issues relating to this huge speed
difference are relevant, only the two most important aspects are pointed out
here:

Essentially the effective DRAM bandwidth varies based on access pattern.
The first read costs more than followup reads within the same region[17,
p. 490] (size varies from manufactures and memory modules). Second,
changing between reading and writing costs extra time. Other costs and
effects are beyond the scope if this thesis for two reasons: First, DRAM
configuration information is currently not available in the same manner as
corresponding information for CPU’s. Second, taking more of the DRAM
details into account when constructing algorithms is somewhat problematic.

3.3 The Intel R© x86 Processor Family

The Intel R© x86 processor family is defined by its instruction set. Its
legacy from the late 1970’s heavily affect most aspects of the modern
implementations of family. Every generation typically adds some new
features to the growing feature set, and only the most relevant issues and
features will pointed out in some detail. Some general overview is presented
first. Then some details of the instruction set are explained, as this plays a
large role later on. Finally the features of the processors uses for testing is
explained.

List of Extensions in x86

The list of extensions to the x86 family is long and uneven. Some of the
enhancements have been successful, some just unsuccessful and other best
forgotten. A few are even in conflict, and incompatible with each other. A
short and simple list of the names of well known extensions is as follows:
MMX, MMX2, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4a, SSE4.1, SSE4.2,
3DNow, Enhanced 3dNow.
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Instruction Decoding

The x86 family is a complex instruction set computer (CISC) from an
instruction-set point of view, while recent hardware is implemented as
a reduced instruction set computer (RISC) processor. This affects how
instructions are handled, because they are first decoded, then they are broken
up into micro-instructions. These micro-instructions are then executed by
the RISC processor core, with the OoOE engine reordering these partial
instructions.

Instruction Set

The x86 family is an old design, keeping most compatibility with the first
versions dating back to Intel R© 8086 introduced in 1978. Most instructions
have only one or two operands, some even with fixed destination and/or
source. The answer of most operations must therefore be stored in one of the
same operands as the input operand, overwriting it. In addition, to reduce
memory requirement, each instruction have variable size based on operation
and operand type (ranging from 1-15 bytes). Since the complexity of the
instruction set is quite high, only the relevant parts to our optimization
work is described.

SSE

One of the main extensions to the instruction set is the Streaming SIMD
Extensions (SSE/SSE2). This brings in a Single Instruction, Multiple Data
(SIMD) class of instructions, with their own set of registers. These vector
like instructions work on several data elements at the same time, for floating
point this is either 4 32-byte values or 2 64-bit values. The old operand
format, where one of the source operands are overwritten is kept.
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x86-64

All new x86 CPU’s use an extension called x86-64, bringing a number of
enhancements3. The main (relevant) changes are: General register size have
been extended to 64-bit. Support for 64-bit memory pointers. 8 extra general
registers and 8 extra SSE registers, giving a total of 16 of each type. No
MMX or FPU registers where added however. The other enhancements are
not described here.

Instruction Properties

The three key instructions used in the math kernel are addition (addpd),
multiplication (mulpd) and load (movapd). Since the size and address
encoding of instructions are important to good performance, some detailed
information is needed. The instruction size calculation and some encoding’s
details are as follows, again only the relevant parts will be explained.

The instruction size is calculated as follows: The first part is an optional 1
byte prefix needed if the instruction is an SSE type. Second is the opcode
itself (operation type: add, mult, load, ...), the size is typically 1 − 3 bytes
depending on the operation. Third is an optional 1 byte of register operand
info that encodes which registers are used in the instruction. An optional
’REX’ byte is added if one or more of the operand register(s) belong to the
additional ones added in x86-64.

If a memory load/write is included then no extra bytes are needed, unless
a constant offset is used. If so, an additional 1 byte is needed if the offset
(constOffset) is in the range of −128 to 127. For an offset (constOffset)
outside the range −128 to 127 an total of 4 bytes are needed for the offset. If
the memory operation use an additional register offset (offsetReg) an extra
byte is also added.

This gives a (non-complete) size calculation of prefix+ opcode+ operand+
REX + constOffset + offsetReg where the parts not used contribute 0
bytes. Some of the instructions can therefore be only 1 byte long, like simple
stack manipulation, simple flow control and nop (no operation). An quick
overview and some examples are included for convenience.

3An overview can be found at http://en.wikipedia.org/wiki/X86-64, verified 12.
May 2009

23

http://en.wikipedia.org/wiki/X86-64


opcode
opcode sourceReg, destinationReg
opcode (pointerBaseReg), destinationReg
opcode constOffset(pointerBaseReg), destinationReg
opcode (pointerBaseReg, offsetReg, multiplyer), destinationReg
opcode constOffset(pointerBaseReg, offsetReg, multiplyer), destinationReg
opcode sourceReg, constOffset(pointerBaseReg, offsetReg, multiplyer)

Figure 3.3: Sample instruction formats.

A set of examples of the instruction format can be found in Figure 3.3, where
the basic layout is shown. The ( ) are memory accesses, and the destinations
are always at the right (note that other format standards exists). Some more
concrete examples are as follows. In Figure 3.4 a SSE2 multiplication with the
registers xmm3 and xmm4 as sources, while xmm4 is acting as destination
as well. This instruction becomes 4 bytes large (prefix:1B + opcode:2B +
operand:1B + REX:0B + constOffset:0B + offsetReg:0B).

For the multiplication in Figure 3.5 one source is the memory located 128
bytes before the position register rax points at. The xmm4 register is a
combined source and destination. Five bytes are needed here (prefix:1B +
opcode:2B + operand:1B + REX:0B + constOffset:1B + offsetReg:0B).

Finally in Figure 3.6 the change is that the offset is 128 bytes after the
pointer. An extra offset register rsi is multiplied by 4, and added to the
address rax points at. Finally, the source/destination register name used
is xmm12. All changes increases the instruction size, to a total of 10
bytes (prefix:1B + opcode:2B + operand:1B + REX:1B + constOffset:4B
+ offsetReg:1B).

mulpd %xmm3, %xmm4

Figure 3.4: A multiplication instruction, size 4 bytes.

mulpd − 0x80(%rax), %xmm4

Figure 3.5: Multiplication and memory load, size 5 bytes.

mulpd 0x80(%rax, %rsi, 4), %xmm12

Figure 3.6: Multiplication and complex memory load, size 10 bytes.
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Cycle Exact Timing

All newer x86 processors have a functionality for obtaining cycle exact
timings. Using the rdtsc instruction one retrieves a 64 bit integer containing
a current cycle counter value. This cycle counter is normally incremented
by one every single cycle the processor is active (including being idle). By
using this counter it is therefore possible to do effective perfect benchmarks,
as long as the operative system and other tasks are not running at the same
time as the benchmark.

3.4 Intel R© Pentium 4 Architecture

The Intel R© Pentium 4 Family (Intel NETBURST R© microarchitecture)
consists of several processor versions, with a range of abilities. Each
revision have brought improvements and bug fixes, thus each version behaves
somewhat differently. This processor is not extensively described because of
its age, and that our implementation for it is not based on deeper low level
features.

For the used version, the L1 cache data cache is 8 KB having 4 ways. It can
handle one read and one write every cycle, while supporting up to 4 misses
at the same time (later extended to 8). Each cache line is 64 byte, or 8
floating point doubles.

The instruction cache called trace cache is quite special, it stores 12k pre-
decoded micro instructions (µops). Its effective size can be almost 100 KB,
but it depends on the actual instructions size. A maximum of one instruction
can be decoded every cycle, this means that code not in the instruction cache
is executed at about 1/3 speed.

The L2 cache is 512 KB with 8 ways, with a cache line size of 128 byte. Several
hardware prefetchers are also used, the data prefetchers detect sequential
misses in the L2 cache and preloads data according to the found pattern. All
caches use a pseudo-LRU replacement scheme.

The processor use OoOE to improve throughput, issuing up to 3 micro
instructions every cycle into 4 different issue ports. Only one of the ports can
do SSE/SSE2 additions and multiplications, while there are separate ports

25



for loading and storing data to memory. Table 3.1 shows the throughput
and latency, without memory references. Additional latency is required
if for memory accesses, unfortunately available documentation is lacking
any specifics. The throughput in the table indicates how many cycles
between each can be started in that execution unit. Note that addition
and multiplication are located in different execution units and can therefore
be performed independently of each other, but not started at the same time
since they share issue port. The details are summarised from [4].

Table 3.1: Pentium 4 (model 2) instruction details.

Latency Throughput Issue Port Execution unit
addpd 4 2 FP Execute FP ADD
mulpd 6 2 FP Execute FP MUL
moveapd 6 1 FP Move FP MOVE

3.5 Intel Core 2 Architecture

The Intel R© Coretm Family (Intel R© Coretm microarchitecture) consists of
several processor versions. The one used here belongs to the Enhanced Intel
Core microarchitecture family.

In the Enhanced Code 2 architecture, each processor is physically a dual core,
with shared L2 cache. The quad-core variants have two of these dual cores
located inside one chip package, where each pair communicate over a shared
front side bus. Each core have separate L1 caches, one for instructions and
one for data. Both L1 caches are 32 KB with 8 ways, the precise replacement
policy used is unknown.

The shared L2 cache is 6 MB with 24 ways, with cache lines of 64 byte. It have
very high bandwidth capable of moving a cacheline to L1 cache every 2 cycles,
with varying latency. There are several prefetchers that work on moving data.
There is one that prefetch data from L2 into L1 cache based on detected
access patterns in the L1 cache, its described as a “streaming prefetcher”.
A different prefetcher is the instruction pointer — based stride prefetcher,
which analyses individual load instructions and try to predict what each will
load in the future. This prefetcher assumes that load instructions that are
stored in memory, with the 8 lower order address bits equal, are the same
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instruction. Finally, there is a prefetcher that detect misses in L2 cache and
preloads expected data from memory. All three prefetchers work on several
data streams at the same time, although several special rules apply. There are
numerous restrictions where the prefetchers do not work. The most limiting
is that accesses that will cross a 4 KB page are not handled.

Instruction Decoding

The Intel R© Core 2 processor can load 16 bytes of instructions each cycle
(from L1 cache), and prepare them for decoding. Up to 6 instructions are
pre-decoded from the 16 byte block, if there are more instructions in the block
the loading must halt. This is only a problem if the instructions are short,
and this is not a problem here as the SSE instructions used are relatively
large.

The pre-decoded instructions are then pushed into a 18 instruction deep
queue. This queue act like a small cache in a similar way to the instruction
cache on the Pentium 4. The queue can send up to 5 instructions to the
decoders, however in 64 bit mode this is effectively only 4 (in 32 bit mode
some instructions can be merged into one). The decoders can accept up to 4
instructions each cycle, where one decoder can handle complex instructions
and 3 can do simple ones. All the SSE type instructions are considered simple
on this architecture, and all 4 is therefore considered equal here.

For more complex instructions that involve both memory access and some
logical/math operation a technique called Micro-fusion[4, 2-9] is used, so
that both operations are handled as one single operation. This means that
instructions of this format is more effective for the decoders in addition to
other effects 3.3. One unknown is instructions that span two 16 byte blocks,
and how the pre-decoder handles them.

Table 3.2: Enhanced Core 2 instruction details.

Latency Throughput Issue Port Execution unit
addpd 3 1 Issue port 1 FP ADD
mulpd 5 1 Issue port 0 FP MUL
moveapd 1 0.33 Issue port 0, 1, 5 —

The speculative OoOE engine have a large number of rename registers, and
can handle 96 in-flight micro instructions (µops). In addition 32 instructions
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can be held back if they depend on data that is not available yet. Numerous
other features that are not mentioned here also play a key role in the OoOE
engine. Instruction latencies and throughput are shown in Table 3.2, the
throughput of 0.33 means that 3 can be executed every cycle. Since the 3
key instructions go to different ports at only one of each can be performed
each cycle, even while more can be decoded. The details are summarised
from [4].

3.6 Current Optimization Techniques

The three most central optimization techniques used, that are well known,
is presented here. First loop tiling is described and illustrated. Then the use
of data relocation and code unrolling is explained.

3.6.1 Loop Tiling

Loop Tiling or blocking is designed to improve cache reuse [15]. This is
done by partitioning the data set into blocks that fit into the processor
caches. One can then perform more operations on the data, while it is still
available in the faster cache system. An code example of how this is done is
shown in program 2 based on the original code in Program 1, code is from
http://en.wikipedia.org/wiki/Loop_tiling verified on 26. April 2009.

Program 1 Basic code for the matrix multiplication Z = Z +XY .
DO I = 1, M

DO K = 1, M

DO J = 1, M

Z(J,I) = Z(J,I) + X(K,I) * Y(J,K)

Program 2 Loop tiled (blocked) code for the matrix multiplication Z =
Z +XY .
DO K2 = 1, M, B

DO J2 = 1, M, B

DO I = 1, M

DO K1 = K2, MIN(K2+B-1,M)

DO J1 = J2, MIN(J2+B-1,M)

Z(J1,I) = Z(J1,I) + X(K1,I) * Y(J1,K1)
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How the cache reuse works is further illustrated in Figure 3.7, 3.8, 3.9 and
3.10. Note that only the partial C = AB′ part is illustrated. Figure 3.7
(a) show the first step, were all the data generate cache misses. In step 2-
4 (Figure 3.7 (b-d)), the block of the A matrix that is located in cache is
reused, while the next blocks of the B matrix generate cache misses. At step
5 (e) the next block of the A matrix is used, while the first block of B reused.
The next 3 steps (6-8) reuse data from both A and B matrices. This pattern
continues through Figure 3.7 and 3.8, showing the steps of two of the loop
tiling stages in the matrix multiplication.
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(a) Cold start (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8 (i) Step 9

Figure 3.7: Block division and cache illustrated.
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(a) Step 10 (b) Step 11 (c) Step 12

(d) Step 13 (e) Step 14 (f) Step 15

Figure 3.8: Block division and cache illustrated.

Figure 3.9 is showing the last step, and illustrates how the performed blocking
might just a step in a recursive blocking algorithm. In this illustration, the
calculations stored are only partial answers, requiring 4 more passes until the
final answer is completed in the C matrix. This is the third loop tiling level,
and is performed in the K dimension. The first step in pass 2 is shown in
Figure 3.10, with the completed first pass indicated.
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Figure 3.9: Step 16, with an added illustration of another blocking layer.

Figure 3.10: Step 17. Shows the completed part of the calculation, and how
the algorithm continues.

Various block shapes also play an important role for how effective loop tiling
might be. This is illustrated in Figure 3.11 where 4 possible shapes are shown.
Getting the best ratio between cache usage and number of calculations
should give best performance, since this will reduce the required memory
bandwidth. Note that the illustration(s) and associated calculations are
simplified, particular the cache required by the C matrix.
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(a) (b)

(c) (d)

Figure 3.11: Various block shapes and how cache efficient they might seem
to be.
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Data Relocation

Data relocation is a technique where one transform, or move key data to a
layout that is more effective for the processor to work with. Normally this
targets the spatial properties of caches, by moving different data elements
that is accessed at almost the same time, to a sequential block in memory.
This relocation can therefore reduce latency, since the first access loads
all (or some) of the other data elements needed at the same time. If the
data was separated into different logical or conceptual arrays, every data
structure would get its own latency slowdown when accessed. The use of
data relocation is shown in Figure 3.12, where the data from pass one (in
section 3.6.1) is relocated into two dedicated arrays.

Figure 3.12: Illustration of data relocation, where selected parts of A and B′

are moved into two different data arrays.

There are also several other properties that can contribute to performance
gains from a good relocation, while they are not as common. Reducing the
number of separate data streams (memory arrays/working regions) can lead
to improved prefetching by newer processors, if the accesses are somewhat
predictable. Fewer data streams also match the internal organisation
properties of caches with few ways, especially AMD processors that only
have a 2-way L1 cache.
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Unrolling

In order to avoid extra calculations and branches a critically important
technique is loop unrolling. In program 2 the innermost loop requires several
integer calculations to update address pointers, update the loop counter and
check if the loop is completed. By unrolling the loop by hand one can
eliminate some of the calculation by only doing them once at the start of
the loop.

3.7 Tools

A number of tools are needed to write efficient programs. Only a few will be
briefly described, with some more details on the compiler.

3.7.1 Compilers

The single most important programing tool is the compiler. High level
programing languages enable significantly higher productivity, and are
critical for large and complex programs. The compiler translates the high
level code into low level machine code, using a number of advanced rules and
algorithms. One of the tasks compilers are supposed to be good at is analysis
of code, and reformulating it to assembly that can be performed quickly by
the microprocessor. Some of the techniques used are loop detection linked
to automatic loop unrolling. Data dependency analysis for reordering and
removal of calculations. Automatic vectorization of calculations that can be
performed in parallel, using SIMD instructions (SSE). And optimal register
choice and data dependencies are found using graph analysis.

An extensive model of the inner workings of target processors is used to tune
both instruction selection and sequential ordering. Using both throughput
and latency of instructions, combined with pipeline and execution unit
information. This gives an analytical approach to optimal code. It is
also possible to specify the degree of complex optimizations the compiler
performs, using numerous flags. Selecting the right flags can be important,
as they can greatly affect performance or even numerical accuracy. For
simplicity, performance can be selected using the flags -O0 -O1 -O2 and -
O3, selecting a large set of flags. The fewest optimizations are performed
with -O0, and the most extensive with -O3.
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3.7.2 Valgrind

Valgrind [18] is a tool for both bug testing and optimizing code. Useful for
identifying bottlenecks and getting run time analysis of program flow. It
is a plugin based system, where tools can be added/selected for gathering
of various data. The core is a CPU emulator that can do, test and record
almost anything (depending on available plugins). This means that one can
take a binary program and do analysis on it without adding any extra code
for instrumentation, so the program to be tested do not need any changes at
all.

There are a few changes that will improve feedback. Having the program
source code allows partial linking between Valgrind’s output, and where in
the code performance issues exist or the program fails. Compiling with debug
data (even with -O3) gives good linking up against the source code. One can
also add hints and instructions to Valgring in the source code for aiding or
speeding up the analysis. While it it mainly intended for single thread/CPU
usage, it have support for running multithreaded programs, but the type of
feedback is currently lacking (some new tools for multithreaded support is in
beta state).

3.7.3 Objdump

The objdump program in linux can be used to analyse the assembly
instructions inside binary programs. This allows verification of instruction
choice and several other properties that can not be controlled from program
code or even inline assembly. Checking the actual size of each instruction
is reasonably easy, and it is possible to analyse how both loops and single
instructions are aligned (see section 3.5 why this matters).

3.8 Topics Not Covered

A number of other important concepts and techniques are not explained,
even while they have been analysed and tested extensively. These details
are not included in this thesis since adding a lot of these details would take
too much time, and go beyond the main scope of this thesis. The issues
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relating to them require relatively complex explanations, while they wont be
discussed much later on. This comes partly from their gains are either small,
have been partially worked around, or are not included in the code used for
testing. Of all the concepts not explained are issues related to the Translation
lookaside buffer (TLB) one of the most important. Numerous TLB problems
exists from a performance perspective, and combined with paging it must be
handled carefully. Because of bugs and limitations in the available operating
systems, TLB and paging became too problematic to cover in an acceptable
way.

Multiprocessor support and theory is only briefly explained as this is
achieved by using OpenMP. This reduced the visible parallellisation in our
implementation to one line of program code, while still requiring much
work and redesign. In order to use OpenMP several complex translation
functions have been made, and these were intended to form the basis of our
currently incomplete pthread implementation. Lacking a pthread version, the
theoretical issues relating to affinity and multi-processor cache layout have
been excluded.

Optimal data copying and relocation, using software prefetching instructions
and special non-temporal write instructions are not mentioned. Our latest
C implementation fail to utilise both instructions in the correct way, as
the compiler do not handle that code correctly. Because employing these
instructions require code to be dynamically generated in assembly language,
the issue is excluded in the evaluated implementation, and thus considered
beyond the main scope of this thesis. Cache bandwidth and associated
latencies have also been excluded from the scope of the thesis, even while
they are critical for performance. The theoretical considerations related to
cache bandwidth calculations are well known, but play a lesser role because
of our implementation design.
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Chapter 4

Optimizing codes on the
Pentium 4

In this chapter the core issues of our optimization work will be presented
and discussed. We start by looking at based on the Pentium 4, since
the work on this platform also forms the basis for our later work on the
Intel R© Core 2 architecture, which will be implemented in Chapter 5. This
part begins with theoretical considerations on how to implement the matrix
multiplication in an efficient way. Then our implementation will be explained,
with some details on how it works. A short analysis on how the reduced
case implemented can be extended to the full case is also presented. A few
other unrelated programs are also included, in order for them to be analyzed
before the Core 2 implementation in Chapter 5. Finally, an evaluation of the
implementation with a short conclusion at the end of the chapter.

4.1 Theoretical Issues

The main theory and techniques used in our implementation is explained in
the following sections. First the symmetrical properties will be explained,
and how to combine it with loop tilling. Issues with prefetching and memory
access patterns are covered also covered. Issues related to the calculation
order, and how changing it affects performance. For clarity the techniques
are explained either separately and/or on the simpler C = AB′ case. The
techniques will later be shown merged together in Chapter 4.3.
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4.1.1 Symmetrical Considerations

Exploiting the symmetry of our target numerical algorithm, the symmetrical
rank2k, is essential for the good performance. and will give a factor of 2
speedup. This is well known, and can be performed in two ways. The
common way, used by ATLAS, is to employ a General Matrix Multiplication
(GEMM) for calculating only C = AB′. With C = AB′ calculated,
summing the lower left triangle of the C matrix with the upper right triangle
forms C = AB′ + BA′ (in the upper right triangle). Because having both
triangles are redundant, only one of the triangles need to be calculated. Our
implemented method is to calculate only one triangle in C, performing the
calculation AB′ +BA′ directly.

The calculation of C = AB′ + BA′ is shown in Figure 4.1. On the left we
have C = AB′ illustrated with some of the values needed to calculate x in
the C matrix filled in. The colors in the C matrix indicate which rows and
columns from A and B′ are needed in the calculation. On the right C = BA′

is shown with solid colors, with the C = AB′ part overlapped in C with weak
colors. Note that the same numbers are used to calculate x value in both
parts, while the location it’s written to is different. The symmetry axis is
also shown.

An practical view on how the symmetry works, and what is useless to do is
illustrated in Figure 4.2. The X part of the calculation comes from C = AB′

and the Y part from C = BA′. The lower left triangle is a mirror image of
the upper right, both having the same data.
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Figure 4.1: The two calculation parts merged at the right with the AB′ part
faded. The symmetry is also shown.

Figure 4.2: The symmetry illustrated.
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4.1.2 Loop Tiling and Symmetry

Combining loop tiling and symmetry is useful, as this can reduce the number
of read and writes to the C matrix. This is done by calculating rows and
columns in both the AB′ and BA′ parts at the same time. This is shown in
Figure 4.3 (a). Both X and Y are calculated at the same time, being stored
to the same location around the symmetry axis. By adding them together
and storing both to only one side, half memory accesses to the C matrix is
avoided1. The accesses into C are also more expensive as both a read and
a write is needed, requiring double the bandwidth. In addition changing
between reading and writing cost extra time for DRAM, so avoiding 50% of
them helps.

This requires having 4 data blocks in cache, shown in 4.3 (a). Two blocks
are needed for the calculation of X, marked ‘Direct usage’. With two other
blocks for the calculation of Y , marked ‘Symmetry usage’. Calculating the
values of one row in C, shown in Figure 4.3 (b), requires calculating values
of a column in C as well. A pattern of which data that is reused most and
least is shown in 4.3 (c). Two data blocks remains constant while calculating
a row/column in C, highlighted as ‘Slow change’. The data marked ‘Fast
change’ need to be replaced rapidly, and therefore less effective for caching.
In order to gain most from the caches, one need to make the ‘Slow change’
blocks pointed out in 4.3 (d) larger. This will be explained in more details
later.

1Note that the lower left part of C do not need to be used or touched in any way,
including reading it.
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(a) (b)

(c) (d)

Figure 4.3: Blocking and symmetry combined.

43



4.1.3 Optimal Loop Tiling and Prefetching

The selection of dimensions sizes is important so that the cache is utilized
in an optimal way. To utilize the pattern with the data marked as ‘Slow
change’ (Figure 4.3), one makes this region(s) large to occupy most of the
cache. At the same time the ‘Fast change’ region becomes very small, only a
single row/column. When calculating one ‘Fast change’ block this will still
take some time, as that single row/column must be multiplied with all the
rows/columns in cache. This allows enough time to prefetch the next row/
column in the ‘Fast change’ region. This is illustrated in Figure 4.4. In (a)
no prefetching is performed, giving a low cache utilization. While in (b) both
the ‘Fast change’ region and the data needed from the C matrix is not stored
in cache. Instead, the data is just streamed in and leaves the cache soon
after use. In effect, both the cache and the memory bandwidth is utilized at
the same time.
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(a) Only blocking

(b) Blocking and streaming

Figure 4.4: Combining blocking and streaming for better cache usage.
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4.1.4 Write Pattern

Because of the loop tiling performed, the order data values in the C matrix
becomes somewhat irregular. In Figure 4.5, the blue circle in A is the
‘Slow changing’ data block, while the blue wave like line in B′ are the ‘Fast
changing’ rows/columns. The corresponding write pattern into C is shown
as well. When all the partial rows/columns in B′ have been iterated over
once, the ‘Slow changing’ block is replaced. All the partial rows/columns in
B′ are then reread in the reverse direction, in order to exploit the parts of it
still in cache. Note that the pattern is only an illustration, multiple recursive
like levels exists (in order to exploit both L1 and L2 caches).

Figure 4.5: Illustration of a worm like access pattern.

The usage pattern in the C matrix is very unsuitable for many of the different
processor features. Using only a single value in a stride’ed pattern goes
against the spatial cache design, using only a single value in each cache line2.
The hardware prefetchers also fails to detect anything but small strides, and
only works inside small 4 KB blocks when they are successful. Hardware
prefetchers therefor becomes totally useless, or at best occasionally effective.

2Depending on the layout of the C matrix and calculation sequence, this can be changed
to many short but sequential accesses.
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This same effect also occurs for the memory bandwidth usage, as entire cache
lines must be loaded every time. Finally, DRAM access becomes slower and
less efficient when loads are located far from each other.

In order to handle this, the actual write pattern is changed to a completely
linear one, illustrated in Figure 4.6. Here, both the correct and the real
write pattern is indicated. With this strictly linear pattern, all the previous
mentioned processor features act in the most efficient way. After the
calculation is completed, the original (correct) pattern must be restored.
This is done by relocating the data in C.

Figure 4.6: Linear writing of C while using worm like calculation pattern
gives better hardware prefetch.
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4.1.5 Data relocation and Prefetching

Data relocation is often used in matrix multiplications. For the calculation
C = AB the memory layout and calculation order do not match (note that
the B matrix is not transposed). One row of A and one column of B is
needed to form a single value in C. The memory layout of matrices are
typically stored in Row-major order 3, meaning that all values in one row
lays sequentially in memory. This implicitly require that one of the matrices
(A or B) must be accessed in a non-sequential way, relative to the memory
layout. In the same way as explained in Section 4.1.4 this is suboptimal.

For the C = AB′ case the B matrix is transposed, so every column becomes
a row. Therefore, calculating one value of C needs one row from A, and one
row of B. Both lay sequential in memory, matching the processor design.
Combined with loop tiling this becomes somewhat less efficient however, as
shown in Figure 4.7. The hardware prefetcher will fail every time a new
section of a row is needed. After the first parts of the row is requested, the
prefetching will start for the later parts of the row. Since only a small part
of every row is needed, the prefetcher will load too much into cache. This
wastes both cache and memory bandwidth.

By using data relocation, one can avoid these problems. In Figure 4.8 all
the partial rows in A and B′ have been copied into new arrays, shown on
the right. This means that the entire length of the rows are used. When the
first access into a new row performed, it will still fail to be predicted. The
excess prefetch at the end of each row spills over into the next row, however.
So when the next row is needed soon after, it has been prefetched. The
prefetcher will also continue to load the rest of that row, since it continues
to predicting the linear read pattern. Note that Figure 4.8 illustrates this
independently of the previously explained concepts. As a side effect the
number of TLB pages used is minimized, thus most of the same issues which
Goto [9] addresses, are avoided.

3http://en.wikipedia.org/wiki/Row-major_order contains a simple overview with
examples. Verified on April 27. 2009
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Figure 4.7: Illustration of the hardware prefetcher problems. The first values
in each row/column are not preloaded, while too many are loaded at the end.

Figure 4.8: Illustration of the hardware prefetcher with data relocation. The
only the first values of a single row/column are not preloaded, while all the
following ones are prefetched.
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4.1.6 Calculation Order

The ordering of execution have received extensive analysis. The basic and
normal sequence to do calculations is completely linear. One loads and
calculate every value, starting with the first and continues with the next.
On a processor this can be illustrated, by looking at its inner state. After 4
cycles the state might be like what is shown in Figure 4.9. Four loads have
been issued, but the data was not in L1 cache. The OoOE engine handles
the lack of data, an continues to queue up work. In parallel the needed cache
line is being moved to into L1 cache.

Figure 4.9: Out of Order Execution. The processor state after 4 clock cycles.

Figure 4.10 illustrates the state after 9 cycles. At cycle 5 the next cache
line receives a miss, and the fetching process starts. Nine cycles after the
first access, all the data in the first cache line becomes available (ignoring
‘critical word first’). Work starts on the first data element (two values as the
operation is SIMD), and all the work unblocks in the rest of the cache line.
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Figure 4.10: The processor state after 9 clock cycles.

Twelve cycles after the start, a pattern can be seen. Figure 4.11 show how
this pattern looks like, where the calculations are simply delayed. Since
the latency is negligible compared to the large number of calculations,
throughput is thus unaffected. Unfortunately, there are limits to how much
the processor can do out of order.

Figure 4.11: The processor state after 12 clock cycles. The last piece of work
in the first cache line being processed. A stable pattern where all calculations
are delayed emerges. Every load is a cache miss.
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Every cache miss consume resources in the cache system (MSHR). The
processor’s Out of Order queue is also limited, and multiple versions of
the same named register are required. This eventually generates a stall,
as illustrated in Figure 4.12. Here, a stall in the pipeline occurs at cycle
7 (caused by internal resource limitation) is disrupting the stable pattern.
Instruction queueing resumes at cycle 10, as an instruction leave the pipeline.
Every few cycles this stalling will occur, limiting throughput. Note that in
the Pentium 4 used, only 4 cache misses can be handled at the same time.

Looking at the basic access pattern, Figure 4.13 show that several memory
loads have no extra side effects. They are essentially useless, requiring many
types of OoOE resources. The first access to a cache line need OoOE
resources, but it also initiates the loading of the entire cache line. By
temporarily delaying all but a single access to every cache line, better OoOE
utilisation is achieved. Figure 4.14 show this, where every cycle an load
initiates an entire cache line load. When all cache misses have been taken,
all the skipped work is performed. This is illustrated in Figure 4.15 The first
1/4 of the work is misses (with stalls), the last 3/4 have no misses and no
pipeline stalls. Here one will reduce pipeline stalls to only 75% of the time.

Figure 4.12: A more real processor state after 12 clock cycles.
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Figure 4.13: Data misses that do not carry any side effects highlighted. These
consume OoOE resources.

Figure 4.14: The issuing of all loads that generate cache misses first.
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Figure 4.15: The skipped work performed, after all the L1 cache misses are
done.
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4.2 Implementation Issues

The current implementation have a number of limitations that need to be
addressed. Because of the way x86 processors handles SSE memory loads,
data must follow certain alignment rules. If this alignment is not correct the
processor will crash. Alternatively, one can use specially dedicated memory
load instructions with lower performance. A guaranteed correctly aligned
memory is hence needed. For matrices that have a odd number (2n+ 1) size
in either direction, this alignment requirement will be broken.

While we have not implemented this, it should be fairly straight forward to to.
Since it is beneficial to relocate the data in A and B′ matrices, the alignment
can corrected during the copy. This will not cost much extra execution time,
if any. The same problem exists for the C matrix, but using a linear write
pattern will solve the issue.

In order to simplify the implementation of restoring the correct layout inside
the C matrix, the calculated values are stored in a temporary array. This
array requires about half the storage space of C, as only one half is needed
for the calculation. In addition, a smaller array is needed for the partial rows
copied out of A and B′. An explanation on how to avoid this extra storage
space requirement will be given in Chapter 5.

4.3 Pentium 4 Issues

This section will explain in detail parts of how the Pentium 4 version works.
The implementation contains an setup part, that allocates buffer memory and
calculates control parameters. This will not be explained as it’s not critical
to the performance4 here. After the setup, the main kernel calculates the
values of the temporary C array. Finally, the values in the temporary array
are copied into the C matrix.

Also, because the current implementation has fully unrolled loops in the
K direction, the K dimension must be divisible by the length of unrolling.
When this is not the case performance drops. In order to avoid this cost,
several versions of the core functions can be created. This must be done
manually, each with a different unroll factor, and is considered beyond the
scope of this thesis.

4The memory allocation of the buffer do effect performance however.
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4.3.1 Main Kernel

The main kernel works by alternating between two phases. The first is data
layout optimization, where sections of data from the A and B matrix are
copied into a single new matrix. The other phase is calculation by the core
kernel. This alternation is performed until every section A and B have been
copied once, with the calculation completed.

4.3.2 Data Layout

In the layout optimization phase, parts of A and B matrices are relocated.
The basic improved data relocation concept will be explained first. Here, the
relocated data is copied into a new data matrix, called AB later on. AB is
constructed such that each row is made by a mix of a partial row from A,
and a partial row from B. This is shown in Figure 4.16. Rows/columns5 with
equal index from A and B, become a column in AB. Figure 4.16 (a) and (b)
highlights this. This also acts as the first level of loop tiling, as it eliminates
data blocking in the row dimension from the core kernel.

The length of the rows/columns from A and B are 112 doubles each, making
each row of AB 224 elements. This size was chosen empirically during the
original delivery in the parallel course exercise, and were not modified in the
later implementations. The number of columns in AB is equal to the rows
in A and B. This is imposed by the symmetry. Every time this phase is
performed, a new section of rows/columns from A and B are copied. If the
final row/column in A and B have fewer than 112 values left, 0.0 values are
substituted into AB. This is required as the length of AB is absolute. Using
0.0 values will not affect the calculation, as it does not alter to the answer
numerically.

An improved data layout is also used. Inside each row of AB one alternate
between storing two values of A and two values of B, in a sequential pattern.
Figure 4.17 (a) illustrates this. The layout of a single value inside a cache
line is pointed out, where the letter indicate which matrix the value came
from. This tight integration is also highlighted in A, B and AB. Colour
coding also show where data originates from, and where its stored in AB.

5Note that the columns of B′ are equal to the rows of B. The naming of rows and
columns do not really matter, since they are always translated into a linear memory layout.
The notation try to be consistent with the illustrations however.
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(a) (b)

Figure 4.16: Illustration of the partially improved data relocation, where
selected parts of A and B′ are moved to a single array AB.

This double pairing of values play two roles. First, grouping two and two
sequential values from the same matrix match the SSE register size. Shown
in Figure 4.17 (b). Every load instruction can thus fetch two A values or two
B values. When calculating C = AB′ + BA′, it was shown in Section 4.1.3
that 4 blocks was needed by the loop tiling. With the merged layout only
two data blocks are needed, this is shown in Figure 4.18. Both the ‘Slow
changing’ parts are grouped into a single sequential memory block. Same
with the ‘Fast changing’ data.

The effect of the layout is that the probability of unintended conflict misses
are avoided. On the Pentium 4, with only 4 ways in the L1 cache this is
critical. With 4 blocks, any extra data usage will increase miss rates. Like
the one needed by accessing C, the program stack or simply that the pseudo-
LRU replacement policy replaces the ‘wrong’ data.

Additionally, this layout enables better control of the cache layout, as we get
only two sequential blocks to work with in the math kernel. Both reducing
the number of memory pointers needed, and the number of data streams that
the hardware prefetcher need to detect. Most of the same considerations as in
Section 4.1.4, regarding DRAM is true as well. A side effect of the relocation
is that the code implementation becomes cleaner, as the first loop tiling step
DOK2 = 1,M,B is factored away. This is the outermost level of loop tiling.
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(a)

(b)

Figure 4.17: Illustration of the improved data layout inside the combined
AB array. (a) Two and two values from A and B are interleaved. (b) SSE
Register size highlighted.

58



Figure 4.18: The old basic layout is on the left. Blocking, symmetry,
improved data relocation and improved data layout combined on the right.
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4.3.3 The Math Kernel

The second phase is the math kernel, it is constructed so that it performs
loop tiling on the columns of AB. There are several levels of loop tiling, and
only a simplified explanation will be given.

The kernel is factored into a main section of two for loops, performing
loop tiling. Each iteration step is a function call, to a new level of loop
tiling. There are 4 types of functions, 3 dealing with special cases. These
special cases deal with edge calculations of various shapes, and will not be
described. The last function is the optimal base case, and performs most of
the calculations.

Base Case Function

Inside the optimal base case function, blocks of 128*128 AB columns are
calculated. Program 3 show an slightly inaccurate, but conceptually correct
implementation. The inconsistency relates to the mixed data layout inside
AB, that both AB′ and BA′ is calculated at the same time, and that the
calculation order differ. Those details will be shown correctly later in Section
4.3.5.

Program 3 Illustration code for the optimal base case function.

DO I = 1 , 128
DO J = 1 , 128

DO K = 1 , 224
C(J , I ) = C(J , I ) + AB I (K, I ) ∗ AB J(K, J )
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In the actual implementation, the innermost loop over K is totally unrolled.
In addition the second innermost loop unrolled once, and the two iterations
steps are interleaved. This gives an unrolled block of 1 column * 2 columns
* 224 values = 448 calculations. Note that each calculation needs 1 addition
and 1 multiplication, the SSE2 instructions perform 2 operations each, giving
a ∗2/2 contribution.

The innermost level of loop tiling is also inside the base case function. This
function is designed both for L1 and L2 cache data reuse. A single ‘fast
changing’ column of AB is kept in L1, while iterating over pairs of two
‘slow changing’ columns. For every iteration of the unrolled loop, a few
values of the next ‘fast changing’ column is prefetched using a single prefetch
instruction. When 128 ‘slow changing’ columns have been paired with the
single ‘fast changing’ column, a new ‘fast changing’ column is taken. This new
‘fast changing’ column have been totally prefetched, during the calculations
with the last column. Essentially, the 128 ‘slow changing’ columns are rapidly
iterated over — but they are replaced slowly. The (empirically tuned) size of
this ‘slow changing’ block take 128∗224∗8 bytes (224 KB, same as found by
Goto in [9]) of the L2 cache, or slightly less than half of the total L2 cache
size.

Main section

The main section, calling the base case function, iterates in steps of 128
columns blocks. This is illustrated in Program 4 (again slightly inaccurate).
The ‘slow changing’ block j is located in L2 cache, while the ‘fast changing’
block is i. Note that the ‘fast changing’ block of 128 columns change for
every call to the base case function, effectively streaming over the entire AB
in one go.

Program 4 Illustration code for the main section.

counter = 0
DO J = 1 , N, 128

DO I = J , N, 128

c a l l baseCaseFunction(&C temp ( counter ) , &AB( I , 0 ) , &AB(J , 0 ) )
counter = counter + 128 ∗ 128
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In the actual implementation, the direction i is iterated in alternates for every
iteration of j. This is similar to whats done back in Figure 4.5, although in
a different context. For reference, the entire math kernel without the data
copying is shown in Program 5. While its cleaned up, readability is still low.
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Program 5 The math kernel code.

for ( int bk = 0 ; bk < num block k ; bk++) {
const int s t a r t k = bk ∗ k l ength ;
int f l i p c y = 0 ;
int pos c = 0 ;

// Make a smart mixed data s t r u c t u r e
copyAB(n , k , s t a r t k , a , b , ab ) ;

// Do k l e n g t h o f a l l the rows o f A and B, now in s i d e ab
for ( int c x = 0 ; c x < num blocks x ; c x++) {

for ( int c y = c x ; c y < num blocks x ; c y++) {
// Change access d i r e c t i on o f i
i f ( f l i p c y )
{

c y o rg = c y ;
c y = num blocks x + c x − c y −1;

}
// Get the s t a r t address o f c f o r t h i s b l o c k
double ∗ r e s t r i c t c i nn e r = &c temp [ pos c ] ;
pos c += b l o c k s i z e x ∗ b l o c k s i z e x ;

// Get the s t a r t address o f row i in ab f o r t h i s b l o c k
const double ∗ r e s t r i c t ab i i nn e r = &ab [ c y ∗ b l o c k s i z e x ∗ k l eng th ∗ 2 ] ;
// Get the s t a r t address o f row j in ab f o r t h i s b l o c k
const double ∗ r e s t r i c t ab j i nn e r = &ab [ c x ∗ b l o c k s i z e x ∗ k l eng th ∗ 2 ] ;

// Do the math
i f ( c y == c x && ( c y == num blocks x −1) && b l o c k s i z e x l a s t p a r t )
{

// Do the diagonal , wi th a p a r t i a l b l o c k
doDiagona l endpar t in t e r ( c inne r , ab i i nne r , ab j inne r ,

b l o c k s i z e x l a s t p a r t ) ;
}
else i f ( c y == c x )
{

// Do the diagonal , wi th a f u l l b l o c k
doDiagona l in t e r ( c inne r , ab i i nne r , ab j i nn e r ) ;

}
else i f ( b l o c k s i z e x l a s t p a r t && ( c y == num blocks x −1) )
{

// Do a p a r t i a l b l o c k at the end
doB l o c k Pa r t i a l i n t e r ( c inne r , ab i i nne r , ab j inne r ,

b l o c k s i z e x l a s t p a r t ) ;

} else {
// Do a f u l l b l o c k
doBlock in t e r ( c inne r , ab i i nne r , ab j i nn e r ) ;

}

i f ( f l i p c y )
{

c y = c y o rg ;
}

}
// Change access d i r e c t i on
i f ( f l i p c y ) f l i p c y = 0 ;
else f l i p c y = 1 ;

}
}
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4.3.4 Improved Calculation Order

The concept of rapidly taking L1 misses described earlier, is not entirely
new and is described by the ATLAS implementers in [20]. However, they
assume that it is too hard in practise to create such a code pattern. Here,
an improved calculation order is presented and implemented. Earlier, the
technique of rapidly taking L1 misses, and then doing calculations without
any misses was presented. The actual implementation modifies this. During
the phase where L1 misses are taken, stalls still slow down the throughput.
Eliminating this is possible, and illustrated in Figure 4.19. Some time after a
planed L1 cache miss have been issued, the cache line becomes available.
When this happens, the other calculations needing data from this cache
line is performed. Interleaving calculations that generates L1 misses, with
calculations that will hit L1. By doing this one can avoid overtaxing the
bandwidth, number of cache misses, and other OoOE resources.

Figure 4.19: Some cache misses are issued first, later start working with the
cache lines as they become available.

A balance of planed L1 cache misses and hits can be designed, illustrated in
Figure 4.20. Work is divided into two parts that are interleaved. First, the
combined calculations and cache misses, performing both useful work and
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actively moves data into the cache. This early workload builds up as a queue
consuming many OoOE resources. The later part is only calculations that
never misses L1 cache. Calculations that never misses do not consume many
OoOE resources, as it can be started and completed at once. This avoids
both overtaxing the cache bandwidth, keeps OoOE resource usage in check,
and therefore preventing pipeline stalls. Note that unlike normal memory,
the L2 cache do not take any speed hit from non-sequential access. And the
base case function prefetches all data to L2 cache before use.

Figure 4.20: Misses and hits interleaved. Cache misses acting both as
preloads for later calculations, and performs normal calculations.

4.3.5 Calculation Order Design

Implementing the improved calculation order can be challenging, as many
factors affect its performance. First, the prefetch distance must be big enough
to mask the latency of moving data into L1. Control and limitations of
bandwidth must be correct. The OoOE engine might also operate differently
at the start of a loop, compared to later on. When reading the first values
of a column, the miss/hit ratio will also be higher. Finally, the data in AB
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contains A and B values interleaved. In order to handle this, the unrolled
base case function must be very flexible.

An implementation made by hand is likely both inefficient and time
consuming. To avoid this, our code is made so that the sequence the AB
matrix is accessed can be changed in an easy way, at compile time. In order
to avoid extensive rewrites to test different calculation sequences, the access
pattern is stored in an enumerated C list. Program 6 show an implementation
of the base case function, where LOAD I n and LOAD J n encapsulated
the calculation sequence. This code example show 4 accumulator registers,
providing 4 independent data dependency chains for the OoOE engine. Two
columns are calculated at the same time, and at the end the partial answers
is written to C.

By encoding the offsets used when reading AB into an enumerator, the
loading pattern can be generated by a script. After generation it can be
added to the source code. To create the base case of normal linear data
access, the Perl script in Program 8 will create the pattern. This pattern
takes the interleaved storage of AB into account. This linear pattern is
suboptimal however, as explained earlier.
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Program 6 The innermost loop, unrolled using the enumerations. v1, v3
and v2, v4 accumulate data from two different columns respectively.

// A s i n g l e c a l c u l a t i o n s t ep o f AB ’ . Performed on two columns .

// Load a va lue from column i , wi th data o r i g i n a t i n g from A
// This load i s a p laned L1 h i t .
temp = abi [ LOAD I 1 ] ;

// Load a va lue from column j , wi th data o r i g i n a t i n g from B
// This load i s a p laned L1 miss , and L2 h i t .
// Mul t ip ly , and add the answer to an accumulator r e g i s t e r : v1 .
v1 = v1 + temp ∗ abj [ LOAD J 1 ] ;

// Load a va lue from column j +1, wi th data o r i g i n a t i n g from B
// This load i s a p laned L1 miss , and L2 h i t .
// Mul t ip ly , and add the answer to an accumulator r e g i s t e r : v2 .
v2 = v2 + temp ∗ abj [ LOAD J 1 + K LENGTH∗ 2 ] ;

// A s i n g l e c a l c u l a t i o n s t ep o f BA ’ . Performed on two columns .

// Load a va lue from column i , wi th data o r i g i n a t i n g from B
// This load i s a p laned L1 h i t .
temp = abi [ LOAD I 2 ] ;

// Load a va lue from column j , wi th data o r i g i n a t i n g from A
// This load i s a p laned L1 miss , and L2 h i t .
// Mul t ip ly , and add the answer to an accumulator r e g i s t e r : v3 .
v3 = v3 + temp ∗ abj [ LOAD J 2 ] ;

// Load a va lue from column j +1, wi th data o r i g i n a t i n g from A
// This load i s a p laned L1 miss , and L2 h i t .
// Mul t ip ly , and add the answer to an accumulator r e g i s t e r : v4 .
v4 = v4 + temp ∗ abj [ LOAD J 2 + K LENGTH∗ 2 ] ;

temp = abi [ LOAD I 3 ] ;
v1 = v1 + temp ∗ abj [ LOAD J 3 ] ;

. . .

temp = abi [ LOAD I 112 ] ;
v3 = v3 + temp ∗ abj [ LOAD J 112 ] ;
v4 = v4 + temp ∗ abj [ LOAD J 112 + K LENGTH∗ 2 ] ;

C[ c u r r e n t c p o s i t i o n ] += v1 + v3 ;
C[ c u r r e n t c p o s i t i o n +2] += v2 + v4 ;
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Program 7 The linear access pattern, enumerated in C.

enum cache pat t e rn {
LOAD I 1 = 0 ,
LOAD J 1 = 2 ,

LOAD I 2 = 2 ,
LOAD J 2 = 0 ,

LOAD I 3 = 4 ,
LOAD J 3 = 6 ,

LOAD I 4 = 6 ,
LOAD J 4 = 4 ,

LOAD I 5 = 8 ,
LOAD J 5 = 10 ,

LOAD I 6 = 10 ,
LOAD J 6 = 8 ,

LOAD I 7 = 12 ,
LOAD J 7 = 14 ,

. . .

LOAD I 109 = 216 ,
LOAD J 109 = 218 ,

LOAD I 110 = 218 ,
LOAD J 110 = 216 ,

LOAD I 111 = 220 ,
LOAD J 111 = 222 ,

LOAD I 112 = 222 ,
LOAD J 112 = 220
}

Program 8 Generation of C enumerations.

$counter = 0 ;
while ( $counter < 112)
{

#base case :
$ i = $counter ∗ 2 ;
$ j = $ i − ( $ i % 4) ∗ 2 + 2 ;
print ”LOAD I ” . ( $counter + 1) . ” = ” . $ i . ” ,\n” ;
print ”LOAD J ” . ( $counter + 1) . ” = ” . $ j . ” ,\n” ;
$counter = $counter + 1 ;

}
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4.3.6 Calculation Order Generation

Finding an optimal calculation order can be difficult, and only a few hand
made sequences have been made. The implemented pattern generator
can either be given a sequence, or create one from scratch. Designing
both random, and various logical patterns have been implemented. When
generating a logical pattern two helper functions are utilised. Both returns
AB column indexes, for calculations that have not been performed yet. The
first, getNextMiss(), locates an index inside a cache line that has not been
accessed. Similar, getNextNonMiss(), finds one that is in a cache line that
has been accessed before.

Arbitrary sequences of miss/hit ratios can then be constructed easily. An
pattern with two groups of 1 miss and 2 hits, followed by a single group of
1 miss and 3 hits is created in Program 9. First the 3-3-4 pattern is used,
while at the end all data is expected to be in L1 cache. The functions ensure
that all values ends up included in the calculation, and will return either
hits/misses to guarantee this.

Program 9 Generation of a miss/hit sequence.

my $counter2 = 0 ;
while ( $counter2 < 100)
{

$sequence [ $counter2 ] = getNextMiss ( ) ;
$sequence [ $counter2 +1] = getNextNonMiss ( ) ;
$sequence [ $counter2 +2] = getNextNonMiss ( ) ;
$sequence [ $counter2 +3] = getNextMiss ( ) ;
$sequence [ $counter2 +4] = getNextNonMiss ( ) ;
$sequence [ $counter2 +5] = getNextNonMiss ( ) ;
$sequence [ $counter2 +6] = getNextMiss ( ) ;
$sequence [ $counter2 +7] = getNextNonMiss ( ) ;
$sequence [ $counter2 +8] = getNextNonMiss ( ) ;
$sequence [ $counter2 +9] = getNextNonMiss ( ) ;
$counter2 += 10 ;

}

while ( $counter2 < 112)
{

$sequence [ $counter2 ] = getNextNonMiss ( ) ;
$counter2++;

}
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4.4 Compiler Test Case

Understanding how the compiler works is useful, because of its central role
transforming the C code used into assembly code. Construction of a number
of simple programs, that can be easily understood on a high and low-level is
therefor beneficial. This ease the evaluation of how its internal logic performs
loop unrolling, loop flow control and manage register allocation. These are
central concepts to understand, from a purely practical point of view. Doing
this might help deciding if an assembly language implementation can be
beneficial.

To do this several simple test cases were made, and the assembly code
generated could be analyzed. Only two of them are presented, for illustration.
Program 10 makes an array of 1024 floats, and then loops over each, setting
them to zero. This is an easy to understand high level program, and the code
have a simple mapping to low-level instructions. The translation performed
by the compiler logic should then be easy to evaluate. To prevent the compiler
from optimizing away the code, one element must be used. By printing the
first element, all the code is preserved.

Program 10 A simple C program: 1024 floats are allocated on the stack,
then 0.0 is written all of them.

int main ( int argc , const char ∗ argv [ ] )
{

f l o a t data [ 1 0 2 4 ] ;
for ( int i = 0 ; i <1024; ++i )
{

data [ i ] = 0 .0 f ;
}

printf ( ”%f \n” , data [ 0 ] ) ;
return 0 ;

}

The second test case is Program 11. This is an basic implementation of
C = AB′ + BA′, implemented by Thorvald Natvig. Neither loop tiling
nor symmetry is utilized. [21] evaluated ATLAS and claims that it do not
utilize any techniques that are unknown to compiler authors. They also
found that compiler authors have focused on those techniques for a long
time. This makes this program an acceptable candidate to evaluate compiler
effectiveness, comparing it with the performance achieved by more complex
implementations.
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Program 11 A simple implementation of dsyr2k.

#de f i n e A( i , j ) a [ i ∗k+j ]
#de f i n e B( i , j ) b [ i ∗k+j ]
#de f i n e C( i , j ) c [ i ∗n+j ]
#de f i n e V( i , j ) v [ i ∗n+j ]

void rank2k ( double ∗c , const double ∗a , const double ∗b , const
int n , const int k )

{
int i , j , t ;

for ( i = 0 ; i < n ∗ n ; i++)
c [ i ] = 0 . 0 ;

/∗ C := a ∗ b ’ ∗/

f o r ( i = 0 ; i < n ; i++)
f o r ( j = 0 ; j < n ; j++)

f o r ( t = 0 ; t < k ; t++)
C( i , j ) += A( i , t ) ∗ B( j , t ) ;

/∗ . . . + b ∗ a ’ ∗/

for ( i = 0 ; i < n ; i++)
for ( j = 0 ; j < n ; j++)

for ( t = 0 ; t < k ; t++)
C( i , j ) += B( i , t ) ∗ A( j , t ) ;

}

4.5 Method

In order to test our implementation and obtain benchmarks, a framework
provided by Thorvald Natvig was used. The framework accepts 3 parameters,
with the two first being the matrix dimensions N and K. The last parameter
is the name of a dynamically loaded library, containing a single dsyr2k
function that will be benchmarked. In this way it is very easy to change
the implementation being analyzed.

Internally, the framework creates a set of matrices A, B, C, and C ref . It
then fills A and B with various values, and use a reference implementation6

to calculate C ref . After this is done, the function it is evaluating is used

6ATLAS or MKL, depending on build rules.
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to calculate C. A high precision timer using the rdtsc instruction, is used
to time the function and obtain the cycle count. Then C ref and C are
compared, and any differences are printed out. The formula used by the
framework to obtain the theoretical number is shown in Equation 4.1.

ftotal flop count(N,K) = 4flop ∗K ∗N2 (4.1)

Finally, the performance is calculated using the Equation 4.2. Performance
is reported in flop/cycle, with 4 decimals of precision. No assumptions are
made regarding the calculation, so no work is considered needless. This
means that the framework reports up to twice the performance of what the
processor is capable of.

fflop/cycle(N,K) =
ftotal flop count(N,K)

cycle count
(4.2)

In order to generate benchmarks, 25 runs of several implementations have
been performed. This number of samples is sufficient to obtain results with
a clear and stable tendency. Two metrics for central tendency have been
used, arithmetic mean and median. As mean is influenced by possible single
outliers, it is included only for completeness. In order to remove outliers,
median provides more robust measurements. Thus, all comparisons use
median as basis. To show variability between runs both standard deviation
and absolute median deviation are included. As with mean, standard
deviation is affected by outliers. The more robust absolute median deviation
uses median as basis, and avoids outliers in its calculation. Maximum and
minimum values are also included for completeness.

Speedup is used to compare the performance achieved by different
implementations. Equation 4.3 shows how it is used in this context. Speedup
relative to a theoretically perfect implementation is also shown.

Sspeedup =
ttest implementation

tbase implementation

(4.3)
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4.5.1 Setup

All the benchmarks are performed on the compute nodes of Clustis2,
described in Section 2.2.1. On this platform a maximum of 2.0 flop/cycle
is possible using double precision. As half of the calculation can be skipped,
4.0 flop/cycle will be the maximum reported by the framework. The compiler
used is GCC version 4.3.0.

Three external implementation are included to form a comparison basis.

Simple — This is the basic implementation that do all of the calculations,
without any loop tiling. Its speed can be doubled easily, as it does not use
symmetry. The code is written by Thorvald Natvig, and is only intended for
illustration and comparison. Its C code can be found in Program 11.

ATLAS — The ATLAS version used is 3.8.2 (3.8.3 is the current), tuned to
the compute nodes.

MKL — The exact MKL version used is not known, and only a single sample
of MKL was performed. It was obtained long before the other benchmarks,
and new tests are not possible anymore. This is because Clustis2 is retired,
and no longer maintained.

The following runs use the designed base implementation, with the loading
enumeration being different. Only the data loading sequence from L2 cache
to L1 cache differ.

Sequence — All memory accesses done in a sequential pattern.

Bit Rev — Memory accesses are performed in a bit-reversed sequence, similar
to the ones used in Fast Fourier Transforms. It is included as it gives a very
common access pattern, being a natural optimization target for processor
designers.

Miss First — Here, all the L1 cache misses are performed as fast as possible
at the start. Similar to what is described as optimal in ATLAS [20], and
illustrated in Figure 4.14 and 4.15.

Best12 — The ‘3-3-4’ memory accesses pattern described in chapter 4.3.6 is
employed. This pattern is used for the base case function, and one of the
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special functions. The other two special functions use a similar pattern, that
generates the misses somewhat faster.

Random — The access pattern in the base case function is randomly
generated for every benchmark sample. All 3 special case functions use a
fixed, but suboptimal pattern. New patterns are generated before compiling,
and compiled into the program. This approach avoids any extra overhead
during benchmarking, but require a recompile before every run.

Partial Random —Similar to Random. The access patterns in the base case
function, and one of the special functions is generated by random. The
same pattern is shared between both functions. The two other special
functions use the same pattern as they have in Best12, having somewhat
better performance.

Two matrix sizes have been used in testing, as this is sufficient to illustrate
the performance obtained. The first test case is with N=2000 and K=2016,
representing medium sized matrices. For the second case, large7 matrices
with dimensions N=4000 and K=4032 are used. Note that the K dimension
is also selected to be divisible by 112, enabling the full performance potential
of our implementation.

4.6 Results

Our results with the medium sized matrices N=2000 and K=2016 are shown
in Figure 4.21. Simple performs poorly, indicating that the compiler is
not utilizing known optimization techniques. Using a linear access pattern,
Sequence is the lowest performing implementation. ATLAS is beaten by all
other access patterns. Table 4.1 contains more detailed statistical information
of the data.

7Limited by available memory.
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Figure 4.21: N=2000 and K=2016, median performance on Clustis2. Speed
is in flop/cycle.

Table 4.1: 25 samples with N=2000 and K=2016, performed on Clustis2.
Speed is in flop/cycle.

Data Simple Sequence Bit Rev ATLAS Miss First Best12
Average 0.2345 2.7761 3.0603 3.0297 3.1487 3.3973
Minimum 0.2344 2.7697 3.0536 3.0189 3.1344 3.3851
Maximum 0.2346 2.7791 3.0620 3.0345 3.1512 3.3995
Median 0.2345 2.7771 3.0608 3.0306 3.1498 3.3980
Std. Dev. 0.00006 0.00297 0.00209 0.00379 0.00349 0.00323
Median A. D. 0.00000 0.00080 0.00050 0.00220 0.00050 0.00060
% of Simple 100.0% 1184.3% 1305.2% 1292.4% 1343.2% 1449.0%
% of ATLAS 7.738% 91.635% 100.997% 100.000% 103.933% 112.123%
% of Max 5.863% 69.428% 76.520% 75.765% 78.745% 84.950%

The results with the large sized matrices are shown in Figure 4.22. Simple
performs poorly again, showing no efficiency improvements in the larger case.
Detailed statistics are included in Table 4.2.
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Table 4.2: 25 samples N=4000 and K=4032, performed on Clustis2. Speed
is in flop/cycle.

Data Simple Sequence Bit Rev ATLAS Miss First Best12 MKL
Average 0.2346 2.8299 3.1135 3.1387 3.2060 3.4772 -
Minimum 0.2344 2.8280 3.1115 3.1337 3.2042 3.4747 -
Maximum 0.2347 2.8318 3.1152 3.1418 3.2075 3.4791 -
Median 0.2346 2.8299 3.1138 3.1387 3.2061 3.4772 2.9608
Std. Dev. 0.00007 0.00098 0.00110 0.00205 0.00092 0.00121 -
Median A. D. 0.00000 0.00070 0.00090 0.00180 0.00080 0.00070 -
% of Simple 100.0% 1206.3% 1327.3% 1337.9% 1366.6% 1482.2% 1262.1%
% of ATLAS 7.474% 90.162% 99.207% 100.0% 102.147% 110.785% 94.332%
% of Max 5.865% 70.748% 77.845% 78.468% 80.153% 86.930% 74.020%

Figure 4.22: Median performance of N=4000 and K=4032, on Clustis2.
Speed is in flop/cycle.

Both random based implementations require a larger number of runs, in
order to obtain useful statistics. Only the larges matrix size of N=4000 and
K=4032, have been tested. Table 4.3 show 1000 runs of Random and 500 of
Partial Random. For comparison the performance of both ATLAS and Miss
First are included. Figure 4.23 show the performance of every sample, sorted
on performance. This implies that using almost any form of reordering helps,
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even if the patterns are not selected in a logical way. Still, certain access
patterns give low performance.

Table 4.3: A number of random pattern runs with N=4000 and K=4032,
performed on Clustis2. Speed is in flop/cycle.

Random Partial Random ATLAS Miss First
Sample Count 1000 500 25 25
Average 3.2130 3.2624 3.1387 3.2060
Minimum 2.7779 2.9948 3.1337 3.2042
Maximum 3.3118 3.3584 3.1418 3.2075
Median 3.2158 3.2654 3.1387 3.2061
Std. Dev. 0.03532 0.03707 0.00205 0.00092
Median A. D. 0.02050 0.02315 0.00180 0.00080
Faster than ATLAS 977 496 - 25
Slower than ATLAS 23 4 - 0
Faster than Miss First 617 471 0 -
Slower than Miss First 383 29 25 -

Figure 4.23: Performance of Random patterns, sorted on performance.
N=4000 and K=4032, speed is in flop/cycle.
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4.6.1 Compiler Test Case

To further analyze the compiler abilities, the compiler generated code of
Program 10 is evaluated.

Figure 4.24 shows a graph of the compiler created assembly code. Every
edge represents a unique piece of assembly code, with associated branch
instructions. When the program is executed only a single path is possible, as
the code is static. This information is also clearly available to the compiler,
yet it fails to utilise this. A total of 60 code paths are created, where only 13
will ever be executed. The rest are partially generated to handle impossible
cases, like if the loop does not start at 0, or end prematurely. Numerous
other similar problems are also present. The red line shows the unique path
taken during program execution.

In addition, various versions of GCC create vastly different code. Both GCC
4.3.0-1ubuntu1 (Ubuntu) and GCC 4.2.3 p1.0 (Gentoo) creates this code
flow. However GCC 4.2.3-2ubuntu7 (Ubuntu) successfully detects the code
structure, generating only a single branch used for the loop. Some more
information on this issue is shown in Appendix D, further analysis is beyond
the scope of this thesis.

Secondary Compilers Issues

While evaluating the compiler generated assembly code, other problems with
the GCC code became apparent. GCC does not fully preserve the sequence in
the access pattern through translation. Some of the independent operations
were reordered between each code block. This introduced unintended and
unneeded dependencies, that the OoOE system had to handle in order
to avoid stalls. Moreover, prefetching instructions seemed to lack any
dependencies with respect to the code they where in. All were grouped
all together in a block at the end, dislocated from their positions specified
in C code. This can potentially render software prefetching useless, or even
counterproductive.
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4.7 Evaluation of Pentium 4 Optimizations

We showwd that the sequence in which memory intensive calculations are
performed, can greatly affect performance. This seems not to have been taken
into account in an appropriate manner, at least not in ATLAS and MKL.
These performance differences might not be well known within scientific
literature, else both ATLAS and MKL would utilize them to achieve the
highest performance. There exists numerous papers and articles, which
attempts to improve both ATLAS and matrix multiply in general. From the
performance achieved by the randomly generated patterns, it might seem
as it is somewhat easy to beat ATLAS. This might result in many papers
describing a performance improvement, caused by other factors than what is
believed by their authors.

There are, however, several issues that make the benchmarks we obtained
somewhat incomplete. Only a limited set of matrix sizes have been
presented here, and they are not obtained using the most recent versions of
ATLAS and MKL. This limits the speedup results obtained relative to those
implementations. However, the analysis of how the kernel works, and the
other issues found stands unaffected. Therefore further benchmarks would
be of minor interest.

Our performance results were better than ATLAS and MKL, yet many of the
issues we found were not taken into account in our implementation. The C-
language implementation requires that the compiler respects layout, which is
not the case. Still, enough of the access patterns survives to clearly illustrate
substantial performance differences. Designing an optimal implementation
will be possible, using handwritten assembly code. This is needed to avoid
possible compiler problems.

4.8 Modeling Using Virtual Multi-Threading

In order to prepare for Chapter 5 of the thesis, a basic model encapsulating
the found issues has been created to highlight some details. The simplified
model presents a set of guidelines for how to design an implementation, that
should be optimal. The main idea comes from the possibility of creating
several threads, exploiting simultaneous multi-threading (SMT). A way to
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perform this, even while the processor does not have this kind of support in
hardware, is presented. The only requirement is that it supports OoOE, and
that it has a lockup-free cache. Both are standard features on modern high
performance processors. A slightly related implementation is also explored
in [19], but the implementation used there require designing new processor
instructions.

This article [19] implements ’fly-weight’ threads that is used to prefetch data
into cache. The threads are less fine grained, so that one cannot utilize the
floating point pipelines while running the helper thread. The helper threads
are spawned dynamically either on a last level cache miss, or before a load
that might generate a miss. It does this by creating two new instructions
in the CPU, and as such needs a special processor with programmable
debugging hardware (or a native implementation). Therefore, this present a
mayor obstacle for normal use.

First an evaluation of using known techniques, implemented in hardware is
presented. Later a more efficient approach is presented.

Basic Model

First we evaluate an implementation using two threads on a single core.
One thread is designed to perform all the math (the math kernel). While
the other thread is pre-fetching data into L1 cache. This will ensure that
the math thread is never slowed by L1 data misses, if one can keep the
two threads synchronized. In practice the threads will either need some
communication and control that will slow down both, or they will quickly
lose synchronization. If the pre-fetch thread uses only specialized prefetch
instructions, the processor can ignore them if the memory/cache system is
out of resources. This will be the case after only a few instructions if the
prefetch thread runs at full speed (or 50% with hyper-threading). In order to
ensure that all data is prefetched one can use normal loads, as the processor
cannot ignore them. This will make the prefetch thread consume cache Miss
Status Holding Registers (MSHR). If all MSHR’s are consumed, the math
thread cannot access any data from L1 cache, even if the data is there.
Both implementations will, however, steal resources, reducing the number of
instructions pr. second that can be performed by the math thread.

The prefetch thread must not slow the execution speed of the math thread,
i.e.:
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• The prefetch thread must run with a guaranteed speed relative to the
math kernel thread.

• The prefetch thread must not block the cache.

• The prefetch thread must issue so few instructions, that the math kernel
thread can work without slowdown.

Efficient Implementation

The following approach is used in order to circumvent the limitations
described above, having two normal threads running in sync, and SMT
hardware support.

By creating a number of imaginary threads, inside a single thread running
on one core, one can schedule cache misses and hits to different threads. A
thread is created by isolating calculations with data dependencies, allowing
the OoOE engine to treat them separately. Creating the multi-threading is
done explicitly inside the math kernel, with both prefetch and math threads
interleaved in the same code. By using the OoOE capabilities to simulate
virtual threads, we can thus introduce a type of simulated SMT. This gives
full control over what every virtual thread is preforming at all times. Thus,
a virtual thread does not have any data-dependencies between other virtual
threads, so a stalled thread will not affect other threads.

Using load instructions as prefetch instructions, they can also act as the
loads used by the math kernel. This means that prefetching does not require
extra instructions. A virtual thread will, however, stall as it generates an L1
miss. The other virtual threads will not stall, and are free to perform both
data loading (from L1) and math operations. From the design of the data
access pattern, it is possible to decide when each thread stalls. These stalls
always come from reading data that is known to be in L2 cache, or the slower
main memory. This makes it possible to make a set of virtual threads, that
take turns on making L1 misses. At the same time, the non-blocked threads
perform work on data in L1 cache. Note that all the threads can (and will)
work on any data in L1 cache, irrespective of which thread was used to fetch
the cache line to L1. This is possible as data known to be in L1 will not
introduce any dependencies between threads, and the order of the matrix
multiplication calculations does not affect the result.
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Chapter 5

Low-Level Optimization on the
Intel R© Core 2

This chapter will look at low-level optimization techniques, using the Intel R©
Core 2 processor as a test case. First, the hardware limitations and
possibilities will be presented, with theoretical considerations on how they
affect performance. How our rank2k implementation can be extended from
the reduced case to the full case, is also explained. A number of auxiliary tools
used for testing, debugging and parallellization are then presented. Details
of our implementation are then presented and discussed. The method used
when obtaining benchmarks, and various problems encountered are pointed
out before the benchmarks are presented. Finally, the implementation and
the problems discovered are evaluated and discussed.

5.1 Theoretical issues

The model presented at the end of the previous chapter , using low-level
assembly code, requires a matching low-level analysis. First, instruction
selection and how it affects the Core 2 processor is presented. Issues regarding
the L1 cache, loop tiling and block size selection are then evaluated.
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5.1.1 Low-Level Instruction Selection

Looking at the smallest operation performed, one calculation step of Ci,j+ =
ABi,k ∗ ABj,k, one can create low-level comparisons for evaluating code
efficiency. At this level, each iteration step (k = k + 2) in the innermost
unrolled loop will behave identically. Because of the L1 cache loop tilling
performed, several separate Ci,j are calculated at the same time for each
iteration step. One iteration step with several Ci,j updates are later called a
code block. These code blocks are used for comparing various designs.

First, the theoretical limit of the processor will be presented, in order to
create a theoretical basis for the maximum possible performance. Then
several designs will be presented. With the Core 2 processor, the execution
throughput may be limited by several factors. For SSE code, only 3
instructions can be decoded every cycle. To enable full execution speed,
one of the instructions must be an addition (addpd) and one must be a
multiplication (mulpd). This leaves only a single instruction every cycle for
loading data from memory, or moving data between registers. Also, the
x86 instruction set uses only two-operand instructions, so one of the values
taking part in addition or multiplication is lost. To avoid losing values in
calculations like this, a copy must be made before the value is overwritten.

In practice, when updating/calculating the value of Ci,j for each calculation
step, the following set of resource limitations is present:

• max 16 simultaneous SSE registers used

• max 16 bytes of instructions every cycle

• max 1 memory load every cycle

• max 3 SSE instructions every cycle, with the following requirements:

– max 1 addition (addpd) every cycle

– max 1 multiplication (mulpd) every cycle

– max 1 load/copy (moveapd) every cycle

Since the Core 2 processor is capable of OoOE, these limitations must
be maintained over several cycles only, and not every single cycle. When
calculating Ci,j+ = ABi,k ∗ ABj,k we find that one multiplication and one
addition is unavoidably needed. For the Core 2 an instruction layout design
capable of performing one SSE multiplication and one SSE addition every
cycle is the optimum.
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Pentium 4 Instruction Selection

Evaluating the unrolling in the Pentium 4 base case function (Section 4.3.3,
page. 60), that calculates 1 column by 2 columns at the same time, this might
(ideally) be translated by the compiler into the instruction sequence (code
block) shown in Table 5.1. The notation style used to define instructions are
taken from [8], however, register names are selected based on their content.
On the borders of Table 5.1 the column name and index from AB is indicated.
In the intersection of two AB columns, the instructions performed in order
to calculate the iteration step Ci,j+ = ABi,k ∗ ABj,k is shown. Instructions
located on the top (and left) borders of the table are memory loads that are
performed once, but the data is required in the entire row/column.

The instruction execution sequence begins at the top of the table, and iterates
down sequentially. First, a single memory load from AB column J+1 occurs
(Rj1 ← Mem[ABj1]), this value is then used in two calculations. At the
intersection of AB column I + 1 and AB column J + 1 three instructions
are located. The first is a register–register copy, to make a temporary copy
(Rtmp) of Rj1. Then the second instruction performs the multiplication,
loading AB column I + 1 directly from memory as one operand, with the
other operand Rtmp overwritten. The third instruction adds the answer of
the multiplication (Rtmp) into a accumulator register Racc1,1. The second
calculation is performed in the intersection of AB column I + 2 and AB
column J+1. In this case no temporary copy of Rj1 is needed, as its content
will not be needed anymore.

Table 5.1: Pentium 4 instruction layout.

AB Column J
1
Rj1 ← Mem[ABj1]

AB
Column I

1 Rtmp ← Rj1

Rtmp ← Rtmp∗ Mem[ABi1]
Racc1,1 ← Racc1,1 +Rtmp

2 Rj1 ← Rj1∗ Mem[ABi2]
Racc2,1 ← Racc2,1 +Rj1

From Table 5.1 we find that 6 instructions are used in this code block,
performing two additions and two multiplications. Those instructions
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satisfies the requirements presented for the Core 2, performing two
calculation step of Ci,j in two cycles. However, a total of three memory
loads are performed, reducing the throughput to 2

3
= 66.67% of theoretical

maximum.

Extended Pentium 4 Instruction Selection

In order to improve throughput efficiency, more extensive unrolling can
be attempted. By extended the previous Pentium 4 design into one that
calculates 1 ∗ 8 columns at the same time, the instruction layout shown in
Table 5.2 results. We find that 1 + 3∗7 + 2 = 24 instructions are used in this
code block, performing 8 additions and 8 multiplications. 8 cycles are needed
to execute the calculations, while requiring a total of 9 memory loads. Thus,
efficiency becomes 8

9
= 88.89% of theoretical maximum.
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Table 5.2: Extended Pentium 4 instruction layout.

AB Column J
1
Rj1 ← Mem[ABj1]

AB Column I

1 Rtmp ← Rj1

Rtmp ← Rtmp∗ Mem[ABi1]
Racc1,1 ← Racc1,1 +Rtmp

2 Rtmp ← Rj1

Rtmp ← Rtmp∗ Mem[ABi2]
Racc2,1 ← Racc2,1 +Rtmp

3 Rtmp ← Rj1

Rtmp ← Rtmp∗ Mem[ABi3]
Racc3,1 ← Racc3,1 +Rtmp

4 Rtmp ← Rj1

Rtmp ← Rtmp∗ Mem[ABi4]
Racc4,1 ← Racc4,1 +Rtmp

5 Rtmp ← Rj1

Rtmp ← Rtmp∗ Mem[ABi5]
Racc5,1 ← Racc5,1 +Rtmp

6 Rtmp ← Rj1

Rtmp ← Rtmp∗ Mem[ABi6]
Racc6,1 ← Racc6,1 +Rtmp

7 Rtmp ← Rj1

Rtmp ← Rtmp∗ Mem[ABi7]
Racc7,1 ← Racc7,1 +Rtmp

8 Rj1 ← Rj1∗ Mem[ABi8]
Racc8,1 ← Racc8,1 +Rj1

The design in Table 5.2 requires 8 accumulation registers, one register for AB
Column J (Rj1) and one for the temporary register (Rtmp). Only 10 registers
of the 16 available are used, so more unrolling is possible. Extending that
layout, using 14 registers as accumulator registers, efficiency can be increased
to 14

15
= 93.33% of theoretical maximum.

Register Level Loop Tiling

In order to remove the memory load limitation in the earlier designs, register
level loop tiling can be utilised. This works in the same way as when loop
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tiling is used to reduce main memory bandwidth, by utilizing the cache. On
this level of loop tiling, single registers take the place of the cache. Table 5.3
show how this can be performed. By calculating block of 2 by 2 columns at
the same time, a total of 4 memory load operations are required. At the same
time 4 additions and 4 multiplications are performed, taking 4 cycles — the
same number as memory loads. Execution begins at the top left, iterating
left to right for every row. Unfortunately, 13 instructions are required while
only 12 can be performed in 4 cycles. Throughput is thus limited by a single
register copy instruction, reducing the efficiency to 12

13
= 92.31%.

Table 5.3: Instruction layout for a 2 by 2 column loop tiling.

AB Column J
1 2
Rj1 ← Mem[ABj1] Rj2 ← Mem[ABj2]

AB
C
o
l
u
m
n
I

1 Ri1 ← Mem[ABi1] Rtmp ← Ri1

Rtmp ← Rtmp ∗Rj1

Racc1,1 ← Racc1,1 +Rtmp

Ri1 ← Ri1 ∗Rj2

Racc1,2 ← Racc1,2 +Ri1

2 Ri2 ← Mem[ABi2] Rj1 ← Rj1 ∗Ri2

Racc2,1 ← Racc2,1 +Rj1

Ri2 ← Ri2 ∗Rj2

Racc2,2 ← Racc2,2 +Ri2

Note that the single register copy instruction in Table 5.3 (Rtmp ← Ri1)
is located on the intersection (I=1, J=1), while no copy instruction are
required at the borders. This is because of the destructive properties of
the two operand format. Simply enlarging the code block will require 3
extra instructions at every additional non-border intersection, leading to an
efficiency of the form x

x+1
, which cannot reach 100%.

Final Core 2 Instruction Layout

In order to design the best pattern possible for the Core 2 processor,
numerous instruction layouts were made. While the consideration going
into those patterns were important, most are extremely low-level, and thus
considered beyond the main scope of the thesis. Only the final instruction
layout is included, although other layouts have promising qualities. Table 5.4
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shows what this final pattern looks like. For this pattern, a total of 7 memory
loads are performed, but only 6 are strictly needed. The extra memory load
is performed on AB column I+4, reading the same data from memory twice.
Doing this reduces the number of register–register copy instructions. A total
of 8 additions and 8 multiplications are performed, using 8 cycles. Counting
the number of instructions reveal that 24 are needed, matching the 24 possible
in 8 cycles. Looking at the register usage we find that 8 accumulator registers
needed, 5 for data loaded from memory and one temporary register, giving
a total usage of 14 registers. From the presented considerations an efficiency
of 8

8
= 100% is possible.

Table 5.4: Final Core 2 instruction layout.

AB Column J
1 2
Rj1 ← Mem[ABj1] Rj2 ← Mem[ABj2]

AB
C
o
l
u
m
n
I

1 Ri1 ← Mem[ABi1] Rtmp ← Ri1

Rtmp ← Rtmp ∗Rj1

Racc1,1 ← Racc1,1 +Rtmp

Ri1 ← Ri1 ∗Rj2

Racc1,2 ← Racc1,2 +Ri1

2 Ri2 ← Mem[ABi2] Rtmp ← Ri2

Rtmp ← Rtmp ∗Rj1

Racc2,1 ← Racc2,1 +Rtmp

Ri2 ← Ri2 ∗Rj2

Racc2,2 ← Racc2,2 +Ri2

3 Ri3 ← Mem[ABi3] Rtmp ← Ri3

Rtmp ← Rtmp ∗Rj1

Racc3,1 ← Racc3,1 +Rtmp

Ri3 ← Ri3 ∗Rj2

Racc3,2 ← Racc3,2 +Ri3

4 Rj1 ← Rj1∗Mem[ABi4]
Racc4,1 ← Racc4,1 +Rj1

Rj2 ← Rj2∗Mem[ABi4]
Racc4,2 ← Racc4,2 +Rj2

When looking at the very lowest level of the instruction selection, the
limitation of 16 bytes/cycle becomes a problem as well. The instructions in
the code block is replicated numerous times in the actual implementation as a
consequence of unrolling, necessitating large or complex memory instructions.
Since these instructions can be up to 10 bytes each, the decoding bandwidth
of 16 bytes/cycle can potentially lead to a new bottleneck. Because
instructions change size based on the complex rules presented in Section 3.3
(p. 22), careful construction is required. With those instructions size rules
taken into account, the byte size of the code block has been reduced to 128
bytes — the same number of bytes it is possible to decode in 8 cycles by the
Core 2 processor. Thus, every hard requirement needed to achieve maximum
throughput has been satisfied. Unfortunately, the Core 2 OoOE engine is
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not perfect, necessitating more tuning. To further improve performance, the
number of simultaneous registers required have been lowered to 12, while
maintaining a reasonable balance of every processor resource used at all
times inside the entire code block. To reduce the cost associated with the
latency of (occasional) L1 cache misses, the load instructions are partially
relocated between code blocks. This relocation moves them before their code
block, increasing the probability that their data is available when required
by calculations. For reference, a sample of the disassembled code block can
be found in Figure 5.1, generated by objdump.

Still, the instruction pattern is not perfect for the OoOE engine, and
performance is limited by additional internal issues. Both the performance
limitation and this part of the code block design process is considered beyond
the main scope of this thesis, and is hence left out as future work.

5.1.2 Cache Evaluation

For the Core 2 processor with 32 KB L1 cache, more extensive loop tiling
than on the Pentium 4 is possible. Designing a core function that both
utilise the L1 cache and incorporates the final Core 2 code block pattern is
thus required.

From the low-level code block pattern found effective for the Core 2 processor,
the fundamental L1 cache loop tiling block becomes 2 J columns by 4 AB I
columns. In the Pentium 4 design, the AB columns contained 224 doubles,
112 from each of the A and B matrices. This means that each AB column
requires 224 ∗ 8B = 1792B = 1.75KB (note that one double is 8 byte). By
using loop tiling to make a 2 by 4 AB column block, a total of two J columns
and 4 I columns are needed, requiring 1.75KB ∗ (2 + 4) = 10.5KB. Because
the 10.5KB is well within the capacity of the L1 cache, a larger loop tiling
block can be constructed from the minimal 2 by 4 block.

By using 2 by 4 blocks to construct a larger 2 by 12 block, the cache cost
becomes 12 + 2 columns, or (12 + 2)∗1.75KB = 24.5KB. When one 2 by 12
block is complete, the most cache effective approach is to replace the two J
columns with the next two, reusing 12 I columns. While 24.5KB is the cache
needed to store the data at the same time, more data is stored in the cache,
however, as data is replaced by LRU rules. This brings the requirement up to
12+2 columns with 2 extra columns that contain the previous two J columns,
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4025f5: 66 0f 28 90 a0 0b 00 movapd 0xba0(%rax),%xmm2
4025fc: 00
4025fd: 66 0f 59 cd mulpd %xmm5,%xmm1
402601: 66 44 0f 58 c1 addpd %xmm1,%xmm8
402606: 66 0f 28 ca movapd %xmm2,%xmm1
40260a: 66 0f 59 d0 mulpd %xmm0,%xmm2
40260e: 66 44 0f 58 d2 addpd %xmm2,%xmm10
402613: 66 0f 59 80 a0 0f 00 mulpd 0xfa0(%rax),%xmm0
40261a: 00
40261b: 66 0f 58 e0 addpd %xmm0,%xmm4
40261f: 66 0f 28 86 40 03 00 movapd 0x340(%rsi),%xmm0
402626: 00
402627: 66 0f 59 cd mulpd %xmm5,%xmm1
40262b: 66 0f 58 f9 addpd %xmm1,%xmm7
40262f: 66 0f 59 a8 a0 0f 00 mulpd 0xfa0(%rax),%xmm5
402636: 00
402637: 66 44 0f 58 cd addpd %xmm5,%xmm9
40263c: 66 0f 28 90 d0 03 00 movapd 0x3d0(%rax),%xmm2
402643: 00
402644: 66 0f 28 ca movapd %xmm2,%xmm1
402648: 66 0f 59 d0 mulpd %xmm0,%xmm2
40264c: 66 0f 58 da addpd %xmm2,%xmm3
402650: 66 0f 28 ae 40 07 00 movapd 0x740(%rsi),%xmm5
402657: 00
402658: 66 0f 59 cd mulpd %xmm5,%xmm1
40265c: 66 0f 58 f1 addpd %xmm1,%xmm6
402660: 66 0f 28 90 d0 07 00 movapd 0x7d0(%rax),%xmm2
402667: 00
402668: 66 0f 28 ca movapd %xmm2,%xmm1
40266c: 66 0f 59 d0 mulpd %xmm0,%xmm2
402670: 66 44 0f 58 da addpd %xmm2,%xmm11
402675: 66 0f 28 90 d0 0b 00 movapd 0xbd0(%rax),%xmm2
40267c: 00

Figure 5.1: Final Core 2 instruction assembly code block, showing the 24
instructions in the correct sequence.
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giving a total cost of (12 + 4) ∗ 1.75KB = 28KB for data alone. Note that
28KB is the maximum usable data size (at this level of analysis), as some
extra data is required by the C matrix and from stack usage in the support
code. Note that in order to make the base case function more effective,
multiple 2 by 4 blocks calculated after each other, calculating square blocks
(of 12 by 12 columns) when called. The calculation order in the base case
function reuse cache as described above.

When taking into account the set associatively (described in Section 3.2.1) of
the cache, an extra set of rules must be considered. The data layout ensures
that the 12 I columns are sequential in memory using 21KB, or 5 full ways
and 1/4 of another way. The in the other direction 4 J columns (2 in use,
2 old) are are sequential taking 7KB, 1 full way and 3/4 of another way.
This gives a total cost of 6 full ways and two partial ways. The possibility
of the two sequential data blocks overlapping, causing conflict misses, must
be avoided.

When two 2 by 12 blocks are calculated after each other, its possible that
the 4 J columns and 12 I columns do not overlap, as shown in Table 5.5.

Table 5.5: 4 J columns and 12 I columns without overlap.

Way AB Column data
1 i i i i i i i i
2 i i i i i i i i
3 i i i i i i i i
4 i i i i i i i i
5 i i i i i i i i
6 i i j j j j j j
7 j x x x x x x x
8 - - - - - - - -

Here the size of each cache line is scaled down as much as possible, without
introducing inaccuracies. A single I/J column occupy 7 scaled cache lines.
The cache way 1-7 contain both 12 I columns, 2 current J columns, and the
two last J columns. Other data can then be located in the last (8th) way.
However, a different layout is also possible where overlapping occurs.

In Table 5.6, the 5 and one quarter ways of I columns line up with the 1
and three quarter ways needed by J columns. In this case a section of all
8 ways is used, leaving no space for data belonging to the C matrix (and
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Table 5.6: 4 J columns and 12 I columns with overlap.

Way AB Column data
1 i i i i i i i i
2 i i i i i i i i
3 i i i i i i i i
4 i i i i i i i i
5 i i i i i i i i
6 i i j j j j j x
7 j j x x x x - -
8 x x - - - - - -

other potential data). Both cases also assumes that the cache have a perfect
LRU policy, while the available documentation lack that information (the
Pentium 4 used a ‘pseudo LRU’ policy, however).

This partial analysis show that the complexity involved in controlling cache
usage is too high for easy manual evaluation, and thus too problematic
to handle without some more refined tool. In order to solve this problem
a simple cache simulator was needed, in order to test and possibly verify
the cache layout problem(s). This cache simulator is briefly explained in
Appendix B. By using this cache simulator tracking the cache lines containing
J and I columns was possible, and identifying which were thrown out too
early. Also, the replacement reason and simple statistics can be gathered by
the simulator. Unfortunately, the cache simulator is not integrated into code
generator in the current implementation, and is not actively used. Thus, it is
considered outside the scope of this thesis. Based on the presented analysis,
it is necessary that both the length of the AB columns, and the number
of 2 by 4 blocks to calculate in the base case function must be dynamically
tunable.

5.1.3 L1 Cache and Prefetching

An important feature in the Core 2 processor, unlike the Pentium 4, is the
complex prefetchers working on the L1 cache. When data can be prefetched
into L1 cache from the L2 cache, this will affect the model presented at
the end of Chapter 4. As a consequence, the access pattern might be more
efficient if these prefetchers are exploited as well. The IP-prefetcher working
single instructions, based on the memory address of the instruction, might
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be beneficial to utilize — yet excessively hard predict, requiring detailed
knowledge of both processor state and global overview of all the memory
load instructions in the core function. This analysis have not been performed
in the current implementation. The more manageable streaming prefetchers
require sequential accesses, and thus can be assumed to work best with very
simple accesses patterns.

5.2 Implementation Details

First, because the Core 2 base case function calculates relatively small blocks,
all the special cases functions designed for the Pentium 4 is not used. As
such, the base case function is the only math kernel function, and it will be
notated as the core function (CF) later on.

The same restrictions from the implementation on the Pentium 4 (Section
4.2, p. 55) is also imposed on the Core 2 implementation. However, here
the fully unrolled loops in the K direction have different sizes. In order to
achieve maximum performance, the K dimension must be divisible by length
of unrolling, and this size can be changed at compile time. In the Pentium
4 implementation, different K direction loops unrolling designs has to be
hand coded, while here the code can be auto generated. This enables the
design of multiple unroll versions, so that an optimal set of core functions
can be chosen at run time, matching the dimensions of the given matrices.
Implementing this dynamic core function selection is considered beyond the
scope of the thesis.

5.2.1 Extending to Full Rank2k (dsyr2k)

In order to extend the implementation from the Cbuf = AB′ + BA′ to the
full dsyr2k version (C = xAB′ + xBA′ + yC), at least two design routes are
possible. An stepwise approach is presented, evaluating the different sections
of the dsyr2k functionality, before all are combined.
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Extending To C = xAB′ + xBA′

In order to include the scalar x in the computation two solutions are possible.
First, by calculating C = AB′ + BA′, then performing C = xC at the end.
This solution will adds a O(n2) step, however, it can be masked because of the
buffering employed on the C matrix. This step then becomes Cans = xCbuf ,
since this code part is bandwidth limited, the extra calculation should be
masked completely. The other alternative approach is to factor in the x
scalar in the core function, performing Cbuf = xAB′+xBA′ directly. Having
the x scalar inside the core function requires one extra SSE register, and 1
extra multiplication for each Ci,j calculated. From before, when one Raccj,i

has been calculated in the core function, an extra addition is required for
adding the accumulator into Ci,j. During the cycle spent on adding the
accumulator into Ci,j, the Core 2 processors multiplication execution unit is
idle. Thus, the extra cost of the multiplication can be masked.

Extending To C = AB′ +BA′ + yC

Including the scalar y and maintaining the old data of C (Corg) can be
merged. By using the buffer Cbuf for the AB′ + BA′ answer calculation,
implies that the old C data is still available. This enables the calculation
step Cans = Cbuf + yCorg, adding some more computations to the existing
O(n2) copy step.

Extending To C = xAB′ + xBA′ + yC

The full case can be performed in essentially two ways. Using the C buffer
one can simply combine the techniques described, with low extra cost. The
copy step then becomes Cans = xCbuf + yCorg. This technique requires the
use of the buffer Cbuf , increasing memory usage. In order to avoid using
this buffer, one must perform the calculation in-place. While this is critical
where memory usage is high it will also increase the execution time. An
mixed approach where both features are combined is also possible. This can
be implemented in three steps. First, rearranging the C matrix into the
same pattern used natively by the inner kernel. Second, normal execution of
the core function. And finally, rearranging the C matrix back to its original
pattern. With this strategy no extra space is needed. A basic implementation
of this mixed approach has been created in a separate code base, as a proof
of concept. This code base is intended for debugging and correctness control,
and is not migrated into our implementation.

95



5.3 Tools and Their Motivation

A number of tools have been used and created, in order to evaluate, bug
test, ensure correctness and optimize our implementation. This has been
done to handle, and perform, practical management/control of the complex
interaction in the code. There are three sets of tools that will be presented.
First, the internal support code used will be briefly explained. Then the core
of our implementation is presented. Last, parallelization issues and Open
Multi-Processing (OpenMP) will be mentioned.

5.3.1 Core Tester — Benchmarker

The Core Tester program is used to benchmark candidate core function,
without the overhead of the support code or framework. Only a minimal
code base surrounds the core function, enabling quick performance feedback.
Zero data (0.0 doubles) is generated for the data block substituting the AB
matrix and the C buffer. In order to avoid start-up issues, the kernel is
run once before timing, so that the instruction caches are primed before
measurement. A basic form of loop tilling is also used on the (simulated)
AB matrix, so that the effects of both L1 cache, L2 cache and main memory
can be evaluated. In order to isolate each memory related effect, the size
of the data block being iterated over can be controlled by a command line
parameter. For instance, this enables benchmarking of the core function
with all data permanently located in L1 cache. The number of times the
core function is called depends on the K unrolling, and how big blocks are
used in the loop tilling, ensuring the same number of flop’s are performed. By
altering the number of times the core function in this fashion, the execution
time can be kept fairly constant. The same measurement method used by
the framework in Section 4.5 is employed, easing later comparisons with the
results from the full test framework.

5.4 Prefetching Access Pattern

In order to effectively exploit and use the high speed core function (Section
5.5.2), all data and computational layout has been changed to match it. The
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same design as employed in the Pentium 4 implementation is used, with one
major exception. For the large L2 cache in the Core 2 processor, a better
loop tiling design was needed. The overall data access pattern must ensure
that no bottlenecks are introduced, either from accessing memory in a non
cache friendly way, or from not prefetching data into L2 cache before it is
used in the core function.

The designed top level AB access pattern enable a large amount of data
reuse, in order to effectively utilize caches. Without any special sequence
the performance drops once the problem becomes to large, as the bandwidth
requirement will too high for the main memory. Even with a normal loop
tiling, the replacement of each block causes a short bandwidth spike, lowering
performance. Multiple variations of L2 access pattern designs has been
explored and benchmarked, even while only one will be presented.

The final L2 loop tilling access pattern is optimal from a theoretical/practical
point of view. This pattern use a similar technique as in Section 4.1.2, having
two blocks with different access speeds. Essentially, the pattern it will always
access data slowly (requiring low bandwidth) before it uses fast accesses on
the same data (high bandwidth), this allows efficient reuse of data in cache
while keeping the bandwidth requirements low. Put differently, the high and
slow access speed blocks alternated on using the same data, with the slow
access speed blocks acting as a prefetcher for the high access speed blocks.
Since the calculation is of a diagonal matrix, the iteration sequence in the
loop tiling can be shown in a triangle.

An example of this iteration sequence is shown in Figure 5.2, on a 17x17
matrix. Here, the loop tiling iterates on 5 by 5 blocks. The first 5 by 5 block
is inside the top left green box, performing calculations on column 1-5 of AB.
Then 5 columns are skipped, and the calculations begins in the top blue box,
before it iterates over the top red box.

5.5 Assembly Code Design: Core Code

Generator

In order to avoids the problems introduced by the compiler, a direct assembly
code generator has been implemented. This code generator created the
entire core function, including all internal register usage and setup, using x86
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Figure 5.2: The final L2 loop tilling access pattern.

instructions. The design of the core function, incorporating all the properties
mentioned so far will be presented. First the overall implementation choices
and general overview of the assembly generator program, later called the
Core Code Generator (CCG), is described. Then the hand tuning of the
instruction sequence is briefly presented. The direct usage, and how its
output is merged into C code is explained. Followed by a somewhat detailed
description of its inner working. Some of the alternative code generation
features will conclude the CCG explanation.

5.5.1 Core Code Generator

The implementation chosen is a Perl script, that generates assembly directly.
Taking a phased approach to generating the code, the Core Code Generator
is feed with two types of information on how to generate the assembly. The
first type are the externally visible parameter choices, such as L1 block tile
size and the K Length. These parameters are chosen at a global level since
the C setup/support code use them, and are compiled with them as fixed
sizes. The other type of parameters are only internally visible, relative to
the setup/support parts of the code. This include things like instruction
choice, local memory access sequence, address format, register naming and
code size control.
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5.5.2 Core Code Generator Tuning

The generated instruction pattern structure is quite optimal, but hard-coded
so that auto tuning of some parts of the instruction layout is not currently
possible. While its likely that performance can be improved by changing
the pattern structure, making it so that it can be a parameter will require
major design changes and extensions, and is considered beyond the scope of
this thesis. In order to tune the assembly core function a simple approach
was used. By moving instructions and/or changing the Perl script, by
subsequently benchmarking the new code better designs was evolved. The
tuning was performed using the Core Tester. First, tuning was performed
using the approach of ignoring all cache effects, using only tiny blocks that
fit L1 cache. Also, at this stage the correctness of the computations was
ignored. Then more and more computational correctness was iteratively
included, until the code was performing the correct calculations. In the same
way the size of the blocks were increased until they approached the L2 cache
size. This gave a instruction layout that gave high performance, as long as
all the data iterated over is in L2 cache.

5.5.3 Using the Core Code Generator

When the CCG is executed with a set of parameters, the output (CF) is
redirected into as a temporary .asm file. The .asm file also contains the
parameter choices and internal build selections, included as comments. This
.asm file can either be manually merged with the rank2k assembly source
file, or it can be processed by a second Perl script (included in Appendix C).
The second Perl script reformat the raw assembly to match the GCC in-line
assembly style. In this way one can construct a complete C style function
that contains only assembly code. Hence, the compiler can do the hard work
of merging all the C setup/support code and the generated assembly CF.
The C style ’function inline’ directive can also be used so that the function
calls can be eliminated. As a side effect the compiler can perform more
optimizations as it can in-line (merge) the assembly with the setup/support
code. This works, as it will not touch or include any of its own instructions
inside the in-lined assembly section, instead it may/will exploit registers that
are not used in the CF for it self. With this approach the entire code building
process can be automated, without any manual intervention, and the result
will be near optimal. Appendix A show an short, but complete core function
in GCC in-line assembly style.
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5.5.4 CCG Inner Working

The CCG currently accepts a number of parameters that depend on the data
layout generated by support code. First the number of elements in one AB
column, and secondly the number of columns to calculate. In addition an
alternative linear layout of AB can requested. The write pattern layout of
C can also be changed, from fully sequential to partially correct for each L1
block.

A number of internal control parameter are also available. The constant
offsets used when calculating memory addresses can be shifted individually
for ABI and ABJ pointers. The only effect of this change is the size of
the instructions (see Section 3.5 and 3.3), and their placement relative to
memory addresses (see Section 3.5). Prefetch size and length can be changed
somewhat, both in how much and fast to prefetch, and in what type of
prefetch instructions to use. An alternative memory operand model can
be requested, this changes the instruction generation to opportunistically
select shorter instructions of the format const offset(pointer, offset register,
const offset size) (see Section 3.3) instead of the simple const offset(pointer)
format. This effectively makes the code shorter in bytes, while no extra
cost in the form of new instructions is added. However there can be an
extra cost as one register is used for the offset, in theory this cost is none as
numerous register are unused. In practise the this format puts more strain
on the load ports of the register file, and might introduce extra stalls dude to
register load starvation. In order to remove the longest instructions3.3 one
can periodically update the pointer registers so that large offsets are avoided.
This type of update (using lea instructions) can be turned on independently
for both ABI and ABJ pointers.

Finally, the register choice can be changed so that registers that alter
instruction size, can be relocated between instructions. Potentially this will
change their placement relative to memory addresses, and/or the total size of
all the instructions. In addition numerous other small changes are available
internally. Different memory access patterns can also be generated, in the
same way as our Pentium 4 implementation.

5.5.5 Linear Layout of AB

The normal storage pattern in AB is such that only columns from A
and B are interleaved. With the linear storage pattern two and two
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AB columns are interleaved in a tight way. Lines of 4 pairs are formed,
where each pair consists of two sequential values from either A or B.
The 4 pairs are selected using two base indexes, the first is a K position
index ’k’ and the other is a column index ’c’. Illustrating the linear AB
matrix pattern: Ak,cAk+1,cBk,cBk+1,cAk,c+1Ak+1,c+1Bk,c+1Bk+1,c+1, with c =
0, NUM COLUMNS and k = K START, K START + K LENGTH. The
design and testing of the C support code for the linear layout of AB
considered beyond the scope of the thesis.

5.5.6 Writing of C

Two write patterns are supported, fully linear and L1 block based. The
linear write pattern means that every value calculated in the CF is written
in a strictly linear fashion, as described in Section 4.1.4. With the L1 block
based write pattern, each C value inside a single block calculated by a call to
the CF, will be written in the correct sequence relative to each other. This
reduce the complexity of support code, and is currently used exclusively. The
design and testing of the support code for the fully linear write pattern is
thus considered beyond the scope of the thesis.

5.5.7 Prefetching

Instruction generation for prefetching may be optionally turned on or off.
Turning prefetching off can be beneficial when the AB matrix is small enough
for laying permanently in the cache(s). With larger matrices, prefetching is
needed to fill the cache, else the CF will repeatedly stall while generating
short high bandwidth spikes. Since the processor cache size might vary
and the optimal loop tiling size is somewhat unknown, controlling the rate
of prefetching is important. Various processors also handle the prefetch
instruction(s) in different ways, both where in the cache hierarchy to store the
prefetched data, and how many bytes are loaded for each prefetch instruction.
For the Core 2 processor the hardware prefetchers will also use the software
prefetching as basis for additional prefetching. In order to handle these issues,
the CCG can tune the number of prefetch instructions and how quickly to
increment the prefetch address. The prefetch instruction type may also be
changed, but this is currently disabled for practical reasons.
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5.6 Parallelization

Scaling up from one core is becoming important, as multicore processors
have become standard. While not the primary goal of the thesis, a
simple multicore version of our implementation has been made. There are
numerous potential problems with timing and thread control (affinity), this
will be briefly presented first. The technique used for parallelization of our
implementation is then presented.

Multicore Timing

With the advent of multicore processors, the rdtsc instruction became
problematic as each core have their own counter. Over time, especially with
speedstep, the value of their counters start to drift apart. This, combined
with operative systems poor affinity control, leads to situations where one
samples the counter on one core at the start and then on a different core at
the end. Hence, the counter difference might be wildly wrong and possibly
negative, as described in [7]. Later processors do not have this issues in the
same way, constantly increasing the counter at full speed independently of
actual frequency (and most sleep states). On the available test platforms
this was not identified as a major problem.

5.6.1 OpenMP

A quick implementation for multicore support has been added using the Open
Multi-Processing (OpenMP) compiler directives. The iterated sequence used
in Section 5.4 have two iteration components (I and J), and both iterators
change in ”jumpy” patterns, being generated by a loop containing several
if-else ladders controlling both I and J . Because basic parallelization with
OpenMP requires a single loop iterator, a new support function capable
of directly calculation the two iteration components has been constructed.
This function does not have a linear run-time cost, however. A small
logN component together with a memory accesses to a precalculated lockup
table, lowers the overall implementation efficiency. Finally, software prefetch
address calculation is not working correctly in the current multithread
implementation. As the wrong prefetch address is given to the core function,
this reduces the performance somewhat for large matrices.
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To achieve high performance in a multicore setting, several general issues
must be addressed, especially how to handle and avoid cache trashing and
saving memory bandwidth. With our implementation, using OpenMP this
is not handled at all. Also, order to have a good multicore implementation,
affinity control must work correctly, so that therads do not migrate between
processor cores. If threads do migrate between processor cores, the entire
cache is temporary lost, as cache do not migrate with the program. These
problems can be corrected by a more refined pthread implementation, this is
considered beyond the scope of the thesis, however.

5.7 Method

The same method used in Section 4.5 is also employed here, with some
exceptions. Numerous issues have been encountered during benchmarking,
so the number of samples (test-case runs) is increased to account for those
problems. Most benchmarks with ATLAS and MKL include 100 samples,
except for the tests with large matrices.

For the benchmarks of the Core Tester only a small number of samples have
been used, as its measurements are very stable. The only runs shown of the
core tester is in the nop instruction test, described later.

Also, the framework used have been compiled twice, one version for the
benchmarks obtained with ATLAS, and one for all the others. The reason
ATLAS is benchmarked with a different version of the framework, is that the
installed version of MKL actively intercepts BLAS function calls, and replaces
them with calls to MKL. After the BLAS calls are replaced, all the ATLAS
function calls effectively becomes MKL function calls. This behavior was not
present on the Clustis2 nodes used in Chapter 4. Our implementation is not
affected by this problem, as the internal function name is different than used
by BLAS. The other implementations are not affected for the same reason.

At the first use of OpenMP in a program, a setup stage is performed
by OpenMP. This setup create a temporary slowdown, that can affects
benchmarks. In order to avoid the setup cost inside the timed code section,
OpenMP is initialised by MKL in the framework. The ATLAS version
do not perform the setup, as it is useless because ATLAS have a pthread
implementation. To negate possible startup costs related to ATLAS, the
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framework also initialises ATLAS before timing, by employing ATLAS as
reference implementation.

Our support code wrapped around the core function, have several build
parameters (5 with debug timing printing). These affect how memory
is allocated and what code paths are used to support the core function.
The most important parameter control the block size of the Prefetching
Access Pattern, as this block size must be tuned to the L2 cache size. The
second most important parameter selects if the OpenMP path or the single-
thread implementation is used. It is also possible to control if extra timing
information is to be printed. This timing information is obtained using
several rdtsc instructions, timing every internal code section. The timers
can currently not be disabled, however, so a tiny performance hit is taken in
all measurements of our implementation.

A large number of implementations have been created, both by hand and
by numerous versions of the Core Code Generator. Only a small selection
is presented, for several reasons. First, the possible design space of the
CCG contains multiple variables (7 directly available), the support also have
several build variables, this represents too many independent factors for
compact presentation. Second, because of numerous issues with the setup,
all the benchmarks have been rendered useless several times. We prioritized
obtaining and presenting valid comparison data, where both ATLAS and
MKL have a correct and optimal setup as possible. Because of the nature of
the issues found, all benchmarks of our implementation had to be redone as
well (several times). Unfortunately, this limits the presented data to contain
only a chosen selection of parameters for our implementation.

Tuning Test

Some evaluation on how precise benchmark measurements can be performed
is necessary, since the approach of using empirical data to guide optimization
is an important part of the method used. Therefore, in order to test how
precise measurements that is possible, and look for potential side effects, a
simple test was performed. One core function was taken and modified slightly
by hand. A single nop (no operation) instruction was added to the start of
the innermost loop. The binaries was inspected to verify the changes, and
check for possible side-effects. The size of this instruction was verified to be
a single byte in binary format, and that this byte did not cause the inner
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loop to spill over a 16-byte boundary at the end (see Section 3.3). Note that
the loop started at the same memory address in all three cases, and it was
aligned every time (see Section 3.5). The processor documentation states
that this instruction does not consume resources in the pipeline, and its only
decoded and ignored. Testing was performed on a base version generated
with K Length of 64, with a 16 by 16 block size. Its (base) innermost loop
was 8209 bytes large and consisted of 1550 instructions. Since automatic
tuning must be performed without using excessive time, it is important to
find speed differences without a large number of reruns. A modest number
of 20 runs was chosen, using the core tester program. Both the variability
measures, standard deviation and absolute median deviation, need to be low
and reasonable equal in order to use both few and short benchmark-runs as
basis for automatic tuning. If only the absolute median deviation is low, then
several samples are needed, because of interference from other sources.

5.7.1 Setup

All the benchmarks are performed on the compute nodes of Clustis3,
described in Section 2.2.1. On this platform a maximum of 4.0 flop/cycle is
possible using double precision. As half of the calculation can be skipped, 8.0
flop/cycle will be the maximum reported by the framework on single-thread
code. For multicore implementations, 8 times higher values are possible
(64.0 flop/cycle in the framework) from the dual quad-processors in the
compute nodes. The compiler used is GCC version 4.1.2 (Red Hat 4.1.2-
42), as no newer version was available (and functioning correctly) at the
time of benchmarking.

Also, the Clustis3 nodes have 9GB memory, configured as 4x2GB + 2x512MB
with somewhat different speed grades. Because of this issue, all benchmarks
gave systematic different performance between different compute nodes, as
they used various amounts of physical memory for file buffering (based on
their previous work load). In order to map out the slower memory, a separate
program is used to allocate this memory, as it is often the first memory
utilised by the operating system (in practice).

A second issue requiring special attention relate to numerous affinity
problems, causing huge variance between sequential executions of the same
program. In order to minimize the problem a single compute node was given
the most recent Linux kernel available, having better affinity support.
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Finally, a set of special environment variables (KMP AFFINITY) is used,
controlling both the Intel OpenMP affinity support, and the thread affinity
of MKL itself.

The following implementations are used in the benchmarks:

ATLAS — The latest ATLAS version (3.8.3 at the time of benchmarking) is
used, tuned to the compute nodes. In addition the source code base was
hand tuned according to the ATLAS documentation, to correct possible
performance issues for multicore platforms. After the setup, its performance
was verified against benchmarks of known ‘good’ builds for the same
processor. Two slightly different versions have been used, one compiled with
multithread support using pthreads, and one for singlethread. No control of
thread affinity where found to be effective for the multithread version.

MKL — MKL version 10.0.3.020 is used. This is not the very latest version.
Unfortunately, the slightly newer (available) version failed to build into the
framework used, apparently being replaced by the older MKL version at
runtime. The newest version ‘11’ was not available for the operating system
(Linux) used on Clustis3. For the multithread benchmarks the environment
variable KMP AFFINITY=scatter was also used, as this improved its
performance. With the singlethread benchmarks the environment variable
OMP NUM THREADS=1 were used.

Choice — A single configuration of our implementation, with its detailed
build parameters described below.

Our Choice version gave acceptable performance on the matrix size
N=K=2000 compiled with OpenMP support, and was chosen by hand after
the following large (but still limited) set of candidates where tested: The fixed
parameters are abiStartOffset = (1024) and abjStartOffset = (1024),
linear layout of AB columns enabled, linear write pattern of C disabled,
prefetching instructions is also enabled. The tested parameter space were AB
columns containing 8 to 192 elements from the A and B matrices, increased
in steps of 8. For the core function, the block sizes of 4 to 32 AB columns
where tested in steps of 4.

From the candidate set a version giving acceptable performance on the
matrix size N=K=2000 (compiled with multithread support), was chosen
by hand. Two versions of this parameter configuration were the compiled,
one with OpenMP support, and one using the singlethread code. The
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Intel based OpenMP library were used, with the environment variable
KMP AFFINITY=compact. Other configurations of our implementation
have higher performance with different matrix sizes and in singlethread
configuration, but they are not included in the benchmarks.

The Choice configuration have a AB column length of 80 elements from each
of A and B, with blocks of 16 by 16 columns in the core function. A L2
cache loop tile block size of 64 core function blocks, were used. Also an
simple parallel memory copy (using OpenMP) is employed for copying the
A and B matrices into AB. Internal debug timings were also enabled. Note
that for the the K dimension of 2000 is directly divisible by 80, enabling
full performance potential for this matrix size. For the smallest matrix size
of 1000 elements in the K dimension, a slight performance hit will occur.
This effect is also true for for the N dimension of 1000, not being divisible
by the block factor (16) in the core function. Finally, software prefetch
address calculation is not working correctly in the current multithread
implementation, this reduces the performance somewhat for large matrices.

5.8 Results

The results with the single-thread implementations can be seen in Figure
5.5, for a selection of matrix sizes. Our implementation performance is
low with small matrices, which can be expected as the C based support
code overhead play a greater effect. Also, both matrix dimensions are not
divisible by the internal block sizes in the Choise configuration. Note that
our implementation was not selected for its performance on this matrix size.
MKL have relatively stable performance for all the matrix sizes, indicating
that it have low overhead in its support code coupled with a somewhat
slower GEMM implantation. For ATLAS, the trend is that larger matrices
give better performance, possibly from a mix of support code overhead and
a somewhat better GEMM implantation than MKL. For larger matrices,
our implementations beat both ATLAS and MKL indicating that our core
function have a high performance. Both MKL and ATLAS show a slight
performance drop for the largest matrices, most likely this comes from the
operating system begins to (re)use some of the memory with lower speed
grade for this problem size.
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Figure 5.3: Median single-thread performance on Clustis3.

More details of the performance obtained can be found in Tables 5.7, 5.8, 5.9
and 5.10. For all implementations the variance indicated by median absolute
deviation is low, showing that no major performance issues contaminate the
benchmarks. A speedup of almost 105.8% relative to ATLAS is achieved
by our implementation, and an impressive 109.5% relative to MKL, on the
largest matrix size.
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Table 5.7: Single-thread performance, N=1000 and K=1000, on Clustis3.

ATLAS MKL Choice
Samples 100 100 100
Average 6.6312 6.8913 6.6279
Minimum 6.4482 6.8736 6.6168
Maximum 6.6807 6.9023 6.6353
Median 6.6461 6.8915 6.6289
Std. Dev. 0.05819 0.00426 0.00416
Median Absolute Deviation 0.00330 0.00210 0.00280
% of ATLAS 100.000% 103.692% 99.741%
% of MKL 96.439% 100.000% 96.190%
% of max 83.076% 86.144% 82.861%

Table 5.8: Single-thread performance, N=2000 and K=2000, on Clustis3.

ATLAS MKL Choice
Samples 25 25 25
Average 6.9606 6.9226 7.2865
Minimum 6.8738 6.9142 7.2823
Maximum 6.9975 6.9285 7.2901
Median 6.9838 6.9225 7.2864
Std. Dev. 0.03924 0.00295 0.00169
Median Absolute Deviation 0.01160 0.00120 0.00105
% of ATLAS 100.000% 99.122% 104.333%
% of MKL 100.886% 100.000% 105.257%
% of max 87.298% 86.531% 91.080%

Table 5.9: Single-thread performance, N=4000 and K=4000, on Clustis3.

ATLAS MKL Choice
Samples 25 25 25
Average 7.1202 6.9318 7.4538
Minimum 7.0536 6.8675 7.3902
Maximum 7.1494 6.9465 7.4629
Median 7.1424 6.9328 7.4605
Std. Dev. 0.03721 0.01495 0.01957
Median Absolute Deviation 0.00570 0.00540 0.00055
% of ATLAS 100.000% 97.065% 104.454%
% of MKL 103.023% 100.000% 107.612%
% of max 89.280% 86.660% 93.256%
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Table 5.10: Single-thread performance, N=8000 and K=8000, on Clustis3.

ATLAS MKL Choice
Samples 5 5 5
Average 7.1179 6.8845 7.5413
Minimum 7.0659 6.8624 7.5392
Maximum 7.1363 6.9030 7.5432
Median 7.1276 6.8845 7.5409
Std. Dev. 0.02945 0.01563 0.00154
Median Absolute Deviation 0.00700 0.01010 0.00140
% of ATLAS 100.000% 96.589% 105.799%
% of MKL 103.531% 100.000% 109.534%
% of max 89.095% 86.056% 94.261%

Figure 5.4: Median multithread performance on Clustis3.

With the multithread performance, shown in Figure 5.4 a more complex
picture emerges. Here ATLAS starts with low performance for the smallest
matrix size, then it display a good performance improvement up to the next
matrix size. This trend is then lost for the 4000 by 4000 matrix size, before
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performance drops in the largest matrix size. The ATLAS configuration
documentation describes this phenomena, and ATLAS were rebuilt with
recommendations described there, still performance is low. It might therefore
be a secondary configuration problem, causing this performance drop. MKL
display stable performance improvement as the matrix size increases, with
a median close to its peak. Our implementation show a reasonably stable
speedup relative to MKL, for all the matrix sizes evaluated, even the less
optimal 1000 by 1000 matrix size.

Because of the problematic behaviour of ATLAS, it needs to be evaluated in
some more details. The median performance of ATLAS is only 22.58 flop/
cycle on the small matrix size, much below its peak on that size. Table 5.11
show that both variance measures are very high, where the performance span
go from 16 to 28 flop/cycle, indicating that its pthread performance most
likely is heavily affected by startup or affinity issues. Our implementation
show the same tendency to a minor extent in the form of some outliers, but its
median performance is still acceptable with a low variance (median absolute
deviation).

Table 5.11: Multithread performance, N=1000 and K=1000, on Clustis3.

ATLAS MKL Choice
Samples 100 100 100
Average 22.0700 33.3872 37.6146
Minimum 16.1146 25.0962 32.3485
Maximum 28.1487 33.8897 38.0892
Median 22.5808 33.7486 38.0043
Std. Dev. 2.16803 1.32016 1.29848
Median Absolute Deviation 1.30595 0.03775 0.03820
% of ATLAS 100.000% 149.456% 168.304%
% of MKL 66.909% 100.000% 112.611%
% of max 35.283% 52.732% 59.382%

More details of the performance obtained can be found in Tables 5.11, 5.12,
5.13 and 5.14. A speedup of almost 168.3% relative to ATLAS is achieved
by our implementation, and an 112.6% relative to MKL, on the small matrix
size. For the matrix size our implementation was tuned for the, speedup
relative to MKL were almost 105.1%.
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Table 5.12: Multithread performance, N=2000 and K=2000, on Clustis3.

ATLAS MKL Choice
Samples 100 100 100
Average 36.4596 43.1869 45.3130
Minimum 29.8238 41.2121 41.4679
Maximum 39.7383 43.7262 46.5322
Median 36.8211 43.4585 45.6610
Std. Dev. 1.57108 0.50562 1.21828
Median Absolute Deviation 0.86670 0.14940 0.62805
% of ATLAS 100.000% 118.026% 124.008%
% of MKL 84.727% 100.000% 105.068%
% of max 57.533% 67.904% 71.345%

Table 5.13: Multithread performance, N=4000 and K=4000, on Clustis3.

ATLAS MKL Choice
Samples 100 100 100
Average 41.7368 49.9278 50.9634
Minimum 41.0320 49.4391 48.4412
Maximum 42.1875 50.2467 51.3377
Median 41.7429 49.9370 51.0810
Std. Dev. 0.24582 0.16091 0.47134
Median Absolute Deviation 0.16845 0.09030 0.11035
% of ATLAS 100.000% 119.630% 122.370%
% of MKL 83.591% 100.000% 102.291%
% of max 65.223% 78.027% 79.814%

Table 5.14: Multithread performance, N=8000 and K=8000, on Clustis3.

Data ATLAS MKL Choice
Samples 15 15 15
Average 34.6204 53.2494 55.0317
Minimum 34.4507 53.0357 54.7631
Maximum 34.8726 53.4151 55.1239
Median 34.6220 53.2249 55.0725
Std. Dev. 0.11584 0.10851 0.09386
Median Absolute Deviation 0.08770 0.06480 0.03630
% of ATLAS 100.000% 153.731% 159.068%
% of MKL 65.049% 100.000% 103.471%
% of max 54.097% 83.164% 86.051%
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One to note in Tables 5.10 and Table 5.14 is that the efficiency of MKL
drops from 86.051% in single-thread to 83.164% when using 8 threads. Our
implementation goes from 94.261% to 86.051% on the largest matrix size,
displaying a much larger performance hit. This clearly indicates that the
multithread implementation we use is inefficient.

Finally, in order to indicate the performance obtained on Clustis3, when
the affinity and memory issues were not handled in any way, Figure 5.5
shows 100 samples from three sample series. The first MKL Tuned, is the
same series as used as basis in Table 5.11, with memory and affinity handled
manually. That series was performed with a very recent Linux kernel, on
compute node 0. Both other series where obtained with the default Linux
kernel, on two different compute nodes. MKL Untuned, node 0 show large
variations between each run, partially caused by lack of affinity control. This
same issue is also present on MKL Untuned, node 4. However, there are no
hardware differences between any of the nodes, yet they have clearly different
performance. This large differences were found to change from day to day,
randomly alternating which nodes where faster and slower. The reason being
that the slow memory sometimes were used as file cache, by previous batch
jobs, and other times they had been flushed.

Figure 5.5: 100 samples of multithreaded MKL on N=1000 K=1000 matrices,
on Clustis3.
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5.8.1 Tuning Test: nop

Table 5.15: 20 runs performed on Clustis3 with the core tester. Base is
unmodified, 1 Nop is with one nop added, 2 Nop is with two nop’s added.

Base 1 Nop 2 Nops
Median 7.6502 7.6659 7.65275
Median Absolute Deviation 0.0006 0.0006 0.0012
Minimun 7.6429 7.6635 7.6464
Maximum 7.6518 7.6671 7.6547
Average 7.64971 7.66594 7.65213
Std. Dev. 0.002 0.00098 0.00236
% of Base 100.000% 100.205% 100.033%

The median speed in Table 5.15 show that adding a nop instruction gave
a speedup of 100.205%, while slowdown was expected. This speedup is
equivalent of 1550*0.205% = 3.18 instructions. Adding a second nop most
of the speedup gained by the first is lost, while still showing a small speedup
compared to the base. The slowest run with one nop was faster than the
fastest run without it, showing a robust speedup that is easy to measure.
The standard deviation is also somewhat high in the base runs, compared to
ones with 1 nop version.

The cause of this probably requires extensive analysis to understand, and
is likely linked to the speedup shown. Some possible candidates might be:
1. The addresses of the load instructions change, so that the IP-Prefetcher
becomes more efficient. 2. Favorable alterations to how the Out Of Order
execution hardware ends up scheduling some or all the later instructions.
Both will effect the data cache by changing which cache lines are evicted
and loaded, and the number of outstanding misses. There can be several
other less likely causes as well. However, this simple example illustrates the
somewhat chaotic optimization searching needed (or possible), and including
this in a normal compiler seems hard.

5.9 Evaluation of Core 2 Results

Numerous tests have been made, issues tested and theories evaluated, in order
to try to understand how the processor(s) work. Since the documentation
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often lacked important information or turned out to be directly wrong,
excessive amounts of time was spent on wrong or useless optimizations.
1000’s of handmade versions designed during development gave insights that
are very hard to express in benchmarks or effectively document, if for no
other reason that it would take way to much space to describe in a thesis.

Only a single nop instruction test of an arbitrary chosen parameter setup is
included from the tuning process. The selection is therefore not as good a
guide on what to try out in order to optimize, but gives a hint or taste of the
process itself. Most importantly, even the current ‘best’ code used in the final
version has been outperformed by several earlier test versions. The reason
these versions are not used (or benchmarked) is that they were hand-tuned
in assembly after they were generated, often with a somewhat modified code
generator. The time needed to extend the code generator to include these
improvements would require a complete redesign of the code generator. It is
clear that more performance can be harnessed from changing the instruction
layout parts that are still hard-coded, and that this performance is (partially)
independent of the tuning already performed. However, we found such details
to be beyond the scope of a master thesis.

The MKL interception of BLAS function calls was only identified after
extensive testing, as the performance of ATLAS and MKL was very after all
other problems affecting performance was identified (and corrected). Why
MKL functions like this was not found, but it might be an interaction between
the Make-script, runtime linking and system configuration, and not a directly
MKL related issue.

5.9.1 Code Issues from the Pentium 4 implementation

One outstanding issue is the K length choice in the AB matrix in Section
4.3.2, there have been no parameter search of this parameter except during
the original code development. From the findings in this chapter, it is
likely that it might be better choices of this and possibly other parameters.
Modifications and corrections was not attempted as this old processor
architecture is approaching the end of its lifetime.

115



116



Chapter 6

Conclusions, Current & Future
Work

This thesis project turned out to much more complex than expected and
documenting all our results rather overwhelming. The original goals of this
thesis, which was to maximize performance on BLAS-like algorithms and
develop a general theory for how to achieve this, lead to an iterative process
that was very hard to describe. In addition, there was too much empirical
information that did not match the expected model. These inconsistencies
were encountered at almost every iteration, and required time-consuming
verification and numerous additional concepts too look into. Finally, our
original goal of developing a general theory for optimizing these kinds of
algorithms for modern architectures, turned out to be too ambitious. Too
much time was spent on empirical work early on, so in the end we did not
have time to make a better model and test it.

We chose the Intel Pentium 4 and Intel Core 2 as our testbeds for our
optimized codes. A simplified version of the BLAS rank2k (dsyr2k) was
implemented on these platforms, and numerous patterns of data layout and
access patterns for the A and B matrices were generated and tested in order
to create an near-optimal version. In order to achieve this, we developed a
pattern generator for both the Pentium 4 and the Core 2 processors, and an
assembly code generator for Core 2, both in Perl.

We discovered two main issues: The memory access pattern is extremely
important when it come to performance on the Pentium 4. In addition,
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extremely low-level details such as the memory location of each instruction
and how the Core to Out of Order execution engine (OoOE) responds to tiny
code modification, were found to make major impact on achieving optimal
performance.

In the end, we nevertheless were able to outperform both ATLAS and MKL
on our test case, even though we limited ourselves to not exploring all the
issues encountered and the possible parameter space of the code generator.
Note that ATLAS has several code sections that are hand-coded. Details
of the MKL library are proprietary, but we suspect some of their code of
their code is also hand-optimized in assembly language, whereas our Pentium
4 implementations relied on C-language code. Our Core 2 codes is Perl-
generated assembly code, as was mentioned earlier.

For the Pentium 4, a 10.8 % speed-up was achieved over ATLAS’s rank2k,
and we achieved 17% speed-up over MKL’s implementation, for 4000-by-4032
matrices. On the Core 2 we optimized our code for 2000-by-2000 matrices
and achieved a 24% and 5% speed-up over ATLAS and MKL, respectively
with our multi-threaded implementation. However, for the 8000x8000 our
implementations beat ATLAS by 59% indicating ATLAS had problems on
this test case. MKL was here only beaten by 3%. In the single-threaded
case for Core 2, we achieved a 5.7% and a 9.5% speed-up over ATLAS’s and
MKL’s implementations, respectively, for 8000 x 8000 matrices. Considering
that our implementation was far from fully tuned, we consider these result
very respectable.

A couple of the parameters used in our Pentium 4 implementation, for
instance the loop tiling parameter, were found to be identical to the ones
found in the hand-tuned assembly coded work by Goto in [9]. Their
implementation details were only checked two days before the thesis was
delivered, and were not used in any way during implementation. While the
similarities in our implementations are striking, they confirm that certain
optimal parameters can likely be found. We picked out parameters based
on some empirical benchmarks during our original Pentium 4 development
(when taking the Parallel Programming course that lead to this work). This
is, however, an issue that should be further looked into.

6.1 Current and Future Work

The architecture of modern processors keep changing at a rapid pace. New
enhancements to the instruction set are hard to keep up with or time
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consuming to include in both compilers and code libraries. Some of the
newer architectural features are also hidden from the public. The issues
that were shown to be lack of affinity control, seem to fixed in the new
Intel Core i7, with its inclusion of the new RDTSCP instruction which gives
both timing and core ID in one atomic operation. A pthread version of our
implementations is left as future work.

6.1.1 Future Scalability

Two new extensions to the x86 family have already been announced, one
by AMD c© (SSE5) and one by Intel c© Advanced Vector Extensions (AVX).
Both will require major changes to the instruction selection in the kernel. In
order to handle this type of evaluation, one traditionally either relies on the
compiler to do the job, or are forced to write new code in assembly by hand.

6.1.2 SSE5

AMD c© have announced an extension called SSE51, that is believed to be
made available around 2011. There are two main enhancements that are
relevant here. The first is that the new instructions can take 3 operands,
2 source and 1 destination. This eliminates a number of register—register
copy instructions. The other enhancement is that a new combined multiply
and add instruction (fused multiply-accumulate or FMAC) is included. This
will further reduce the number of instructions needed. Combined they allow
for several kernel layouts that are not currently considered, that may (most
likely) give better performance.

6.1.3 AVX - Advanced Vector Extensions

Intel c© have (also) announced an new extension called AVX2 [11]. The
enhancements are similar to the ones in SSE5 with one major difference,
the register size is extended to 256-bit. This allows for 8 32-bit floats or 4
64-bit doubles to be calculated by a single instruction. A similar 3 (or 4)
operand format is also used. The fused multiply-add instruction(s) will also
be available in a later processor generation.

1http://developer.amd.com/cpu/SSE5/Pages/default.aspx
2http://software.intel.com/en-us/avx/
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6.2 Remaining Issues

Our original plan was to develop an auto-generator planning tool. For
each processor feature or design choice (domain) we wanted to generate
a set of candidate designs (solutions) that are optimal in that domain.
Various domains exchange data for re-tuning, and the exploration of more
solutions based on constraints/hints from other domains. This would create
a multidimensional solution space of partially orthogonal directions, forming
an overdetermined system. A search should then be performed independently
in each orthogonal direction (or subspace), so that a set of good candidate
solutions are found. In the partially dependent directions, the most inflexible
properties are used as constraints for searching the solution space. The
more expensive the domain is to search in, the later in the search it should
be explored. Basically, each domain would use a number of fixed search
parameters that comes either from known basic facts (like size of caches,
maximum throughput of computation, or bandwidth), or from constraints
found in other domains.

Her are some of the design choices that were meant to be explored by different
tools, in various domains:

• Cache block shapes from bandwidth/compute ratio.

• Cache block sizes from a CPU analyzer (L1, L2 data).

• Usable instruction set from a CPU Analyzer (SSE, SIMD, 32/64 bit).

• Inner loop block shapes from a Instruction Selector.

• Inner loop block size from a Instruction Selector.

• Data access pattern from a Inner Loop Generator.

• Inner loop instruction layout from a Pipeline/Execution Unit Simulator.

• Cache block size and shape from our Cache Simulator.

• Data access pattern cache efficiency from a Data Access Compiler and
benchmarks.
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• Native processor instruction layout, (discovering total instruction size,
performing register choice) from a Low-Level Compiler.

• Inner loop instruction layout efficiency from the Core Tester.

• Large block access pattern from a Outer Loop Generator/Access
Pattern Generator.

• Actual L1 cache block size and access pattern efficiency from the Core
Tester.

• Actual L2 cache block size, access pattern and prefetch efficiency from
an Extended Core Tester

Modern CPU’s also contain a large number of unexpected rules that affect
performance. This makes the task both hard and time consuming, and
typically leads to sub optimal code, even when hand optimized in assembler.

A key problem during our development was how to structure and coordinate
our design, so that it was possible to achieve both future flexibility and
maintaining a realizable (or practical) system.

The speedup possible from improving layout can be substantial, and making
the calculation pattern structure more flexible will also be useful for a GEMM
implementation. This thesis should, however, provide several hints of the
possibilities for developing future code generators.
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Appendix A

GCC In-line Assembly Code
Sample

The entire core function GCC in-line assembly code of our Choice
implementation occupies 35 pages, so an reduced version was built with the
same parameters, except that the AB column size (named K in the code)
was reduced to one tenth (8 elements from each of A and B matrices). The
full version is available on request.

#de f ine K LENGTH 8
#de f ine Block SIZE X L2 16
s t a t i c void i n l i n e doB lock in t e r ( double ∗ r e s t r i c t c , const double ∗ r e s t r i c t

ab i , const double ∗ r e s t r i c t abj , const double ∗ r e s t r i c t p r e f e t c h )
{

// Add the asm in here , d i r e c t l y
asm ( ”# K:8 , blockSizeX : 16 , ab i S t a r tO f f s e t : 1024 , ab j S t a r tO f f s e t :1024\n\ t ”

”# addPrefetch : 1 , pre fe tchIncrementBytes : 6 4 , p r e f e t chD iv i s o r : 2\n\ t ”
”# useOf f s e tCounte rReg i s t e r : 0 , o f f s e tCounte rReg i s t e rVa lue :128\n\ t ”
”# useLeaOffsetABJ : 0 , useLeaOffsetABI :0\n\ t ”
”# interleavedTwoABLines : 0 , skipFirstSumup :1\n\ t ”
”# makeEntryFullBlock\n\ t ”
”xorpd %%xmm2, %%xmm2\n\ t ”
”movq %%rcx , %%r8 # Copy pr e f e t ch po in t e r to i t s l o c a l home r e g i s t e r \n

\ t ”
”movq %%rdi , %%rcx \n\ t ”
”subq $1024 , %%rdx\n\ t ”
”movq %%rdx , %%rax\n\ t ”
”addq $1888 , %%rd i \n\ t ”
”movapd %%xmm2, %%xmm6\n\ t ”
”movapd %%xmm2, %%xmm3\n\ t ”
”movapd %%xmm2, %%xmm7\n\ t ”
”movapd %%xmm2, %%xmm4\n\ t ”
”movapd %%xmm2, %%xmm8\n\ t ”
”movapd %%xmm2, %%xmm5\n\ t ”
”movapd %%xmm2, %%xmm10\n\ t ”
”movapd %%xmm2, %%xmm11\n\ t ”
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”movapd %%xmm2, %%xmm9\n\ t ”
”subq $1024 , %%r s i \n\ t ”
”movl $3 , %%r9d\n\ t ”
”movq $32 , %%r10 \n\ t ”
”jmp 2 f \n\ t ”
” . p2a l i gn 4\n\ t ”
”# makeFirstLoopStart \n\ t ”
”# makeSecondLoopStart\n\ t ”
” 1 :\n\ t ”
”haddpd %%xmm11, %%xmm3\n\ t ”
”addpd (%%rcx ) , %%xmm3\n\ t ”
”haddpd %%xmm4, %%xmm10\n\ t ”
”addpd 16(%%rcx ) , %%xmm10\n\ t ”
”haddpd %%xmm8, %%xmm6\n\ t ”
”addpd 128(%%rcx ) , %%xmm6\n\ t ”
”haddpd %%xmm9, %%xmm7\n\ t ”
”addpd 144(%%rcx ) , %%xmm7\n\ t ”
”movapd %%xmm3, (%%rcx ) \n\ t ”
”movapd %%xmm10, 16(%%rcx ) \n\ t ”
”movapd %%xmm6, 128(%%rcx ) \n\ t ”
”movapd %%xmm7, 144(%%rcx ) \n\ t ”
”addq %%r10 , %%rcx \n\ t ”
”movq $32 , %%r10 \n\ t ”
” sub l $1 , %%r9d\n\ t ”
”# makeCoreStartupBlock\n\ t ”
” 2 :\n\ t ”
”movapd 1024(%% r s i ) , %%xmm0\n\ t ”
”movapd 1152(%% r s i ) , %%xmm5\n\ t ”
”movapd 1040(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm3\n\ t ”
”mulpd %%xmm0, %%xmm3\n\ t ”
”movapd %%xmm2, %%xmm6\n\ t ”
”mulpd %%xmm5, %%xmm6\n\ t ”
”movapd 1168(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm11\n\ t ”
”mulpd %%xmm0, %%xmm11\n\ t ”
”movapd %%xmm2, %%xmm8\n\ t ”
”mulpd %%xmm5, %%xmm8\n\ t ”
”movapd 1296(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm10\n\ t ”
”mulpd %%xmm0, %%xmm10\n\ t ”
”movapd %%xmm2, %%xmm7\n\ t ”
”mulpd %%xmm5, %%xmm7\n\ t ”
”movapd %%xmm0, %%xmm4\n\ t ”
”mulpd 1424(%%rax ) , %%xmm4\n\ t ”
”movapd %%xmm5, %%xmm9\n\ t ”
”mulpd 1424(%%rax ) , %%xmm9\n\ t ”
”movapd 1040(%% r s i ) , %%xmm0\n\ t ”
”# makeCoreFullBlock\n\ t ”
”#makeCoreInnerBlock : 1\n\ t ”
”movapd 1024(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm3\n\ t ”
”movapd 1168(%% r s i ) , %%xmm5\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm6\n\ t ”
”movapd 1152(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm11\n\ t ”
”movapd 1280(%%rax ) , %%xmm2\n\ t ”
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”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm8\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm10\n\ t ”
”mulpd 1408(%%rax ) , %%xmm0\n\ t ”
”addpd %%xmm0, %%xmm4\n\ t ”
”movapd 1056(%% r s i ) , %%xmm0\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm7\n\ t ”
”mulpd 1408(%%rax ) , %%xmm5\n\ t ”
”addpd %%xmm5, %%xmm9\n\ t ”
”#makeCoreInnerBlock : 2\n\ t ”
”movapd 1072(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm3\n\ t ”
”movapd 1184(%% r s i ) , %%xmm5\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm6\n\ t ”
”movapd 1200(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm11\n\ t ”
”movapd 1328(%%rax ) , %%xmm2\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm8\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm10\n\ t ”
”mulpd 1456(%%rax ) , %%xmm0\n\ t ”
”addpd %%xmm0, %%xmm4\n\ t ”
”movapd 1072(%% r s i ) , %%xmm0\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm7\n\ t ”
”mulpd 1456(%%rax ) , %%xmm5\n\ t ”
”addpd %%xmm5, %%xmm9\n\ t ”
”#makeCoreInnerBlock : 3\n\ t ”
”movapd 1056(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm3\n\ t ”
”movapd 1200(%% r s i ) , %%xmm5\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm6\n\ t ”
”movapd 1184(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm11\n\ t ”
”movapd 1312(%%rax ) , %%xmm2\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm8\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm10\n\ t ”
”mulpd 1440(%%rax ) , %%xmm0\n\ t ”
”addpd %%xmm0, %%xmm4\n\ t ”
”movapd 1088(%% r s i ) , %%xmm0\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm7\n\ t ”
”mulpd 1440(%%rax ) , %%xmm5\n\ t ”
”addpd %%xmm5, %%xmm9\n\ t ”
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”#makeCoreInnerBlock : 4\n\ t ”
”movapd 1104(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm3\n\ t ”
”movapd 1216(%% r s i ) , %%xmm5\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm6\n\ t ”
”movapd 1232(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm11\n\ t ”
”movapd 1360(%%rax ) , %%xmm2\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm8\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm10\n\ t ”
”mulpd 1488(%%rax ) , %%xmm0\n\ t ”
”addpd %%xmm0, %%xmm4\n\ t ”
”movapd 1104(%% r s i ) , %%xmm0\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm7\n\ t ”
”mulpd 1488(%%rax ) , %%xmm5\n\ t ”
”addpd %%xmm5, %%xmm9\n\ t ”
”#makeCoreInnerBlock : 5\n\ t ”
”movapd 1088(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm3\n\ t ”
”movapd 1232(%% r s i ) , %%xmm5\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm6\n\ t ”
”movapd 1216(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm11\n\ t ”
”movapd 1344(%%rax ) , %%xmm2\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm8\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm10\n\ t ”
”mulpd 1472(%%rax ) , %%xmm0\n\ t ”
”addpd %%xmm0, %%xmm4\n\ t ”
”movapd 1120(%% r s i ) , %%xmm0\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm7\n\ t ”
”mulpd 1472(%%rax ) , %%xmm5\n\ t ”
”addpd %%xmm5, %%xmm9\n\ t ”
”#makeCoreInnerBlock : 6\n\ t ”
”movapd 1136(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm3\n\ t ”
”movapd 1248(%% r s i ) , %%xmm5\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm6\n\ t ”
”movapd 1264(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm11\n\ t ”
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”movapd 1392(%%rax ) , %%xmm2\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm8\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm10\n\ t ”
”mulpd 1520(%%rax ) , %%xmm0\n\ t ”
”addpd %%xmm0, %%xmm4\n\ t ”
”movapd 1136(%% r s i ) , %%xmm0\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm7\n\ t ”
”mulpd 1520(%%rax ) , %%xmm5\n\ t ”
”addpd %%xmm5, %%xmm9\n\ t ”
”#makeCoreFinalBlock\n\ t ”
”movapd 1120(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm3\n\ t ”
”movapd 1264(%% r s i ) , %%xmm5\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm6\n\ t ”
”movapd 1248(%%rax ) , %%xmm2\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm11\n\ t ”
”movapd 1376(%%rax ) , %%xmm2\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm8\n\ t ”
”movapd %%xmm2, %%xmm1\n\ t ”
”mulpd %%xmm0, %%xmm2\n\ t ”
”addpd %%xmm2, %%xmm10\n\ t ”
”mulpd 1504(%%rax ) , %%xmm0\n\ t ”
”addpd %%xmm0, %%xmm4\n\ t ”
”mulpd %%xmm5, %%xmm1\n\ t ”
”addpd %%xmm1, %%xmm7\n\ t ”
”mulpd 1504(%%rax ) , %%xmm5\n\ t ”
”addpd %%xmm5, %%xmm9\n\ t ”
”# makeFirstLoopEnd\n\ t ”
” l eaq 512(%%rax ) , %%rax\n\ t ”
” jne 1b\n\ t ”
”# makeSecondLoopEnd\n\ t ”
” addl $4 , %%r9d\n\ t ”
” p r e f e t ch t 0 (%%r8 ) # F i r s t p r e f e t ch \n\ t ”
”movq %%rdx , %%rax\n\ t ”
”movq $160 , %%r10 \n\ t ”
”addq $256 , %%r s i \n\ t ”
”addq $64 , %%r8 # Update p r e f e t ch r e g i s t e r \n\ t ”
”cmpq %%rdi , %%rcx \n\ t ”
” jne 1b\n\ t ”
”# makeExitFullBlock\n\ t ”
”haddpd %%xmm11, %%xmm3\n\ t ”
”haddpd %%xmm4, %%xmm10\n\ t ”
”haddpd %%xmm8, %%xmm6\n\ t ”
”haddpd %%xmm9, %%xmm7\n\ t ”
”addpd (%%rcx ) , %%xmm3\n\ t ”
”addpd 16(%%rcx ) , %%xmm10\n\ t ”
”addpd 128(%%rcx ) , %%xmm6\n\ t ”
”addpd 144(%%rcx ) , %%xmm7\n\ t ”
”movapd %%xmm3, (%%rcx ) \n\ t ”
”movapd %%xmm10, 16(%%rcx ) \n\ t ”
”movapd %%xmm6, 128(%%rcx ) \n\ t ”
”movapd %%xmm7, 144(%%rcx ) \n\ t ”
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”# End o f generated assembly .\n\ t ”
:
: ”D” ( c ) , ”S” ( ab i ) , ”d” ( ab j ) , ”c” ( p r e f e t c h )
: ”%cc ” , ”%rax” , ”%rbx” , ”%r8 ” , ”%r9 ” , ”%r10 ” , ”%xmm0” , ”%xmm1” , ”%xmm2” ,

”%xmm3” , ”%xmm4” , ”%xmm5” , ”%xmm6” , ”%xmm7” , ”%xmm8” , ”%xmm9” , ”%
xmm10” , ”%xmm11”

) ;
}
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Appendix B

Cache Simulator Description

The Cache simulator was designed to evaluate the LRU and set properties
of candidate core functions, and to help understanding how the L1 cache
was utilised. While it was easy to calculate the theoretical filling degree to
get capacity misses, understanding where and when one might get conflict
misses turned out to be more complex. Using normal tools like Valgrind
would not give information on why misses occurred, the type of miss or
which unintended data was filling the cache in the first place.

Since the cache simulator is currently not integrated into any of the other
parts of the implementation the description will not no into details. In
order to solve the issues listed above the cache simulator need to support
several uncommon features. The first feature is the use of non power of 2 set
sizes. This allows testing of how many ways are left unused, so that they are
available for other data like stack, HW prefetching or side effects from the
replacement policies used.

An extra tag is used to label every cache line with information on the reason
it was accessed. This allow tracking on how which accesses is causing data
to be flushed, and the type of data that is flushed. By using time stamps it
is possible to filter out accesses that will cause later conflict misses from the
ones that will not. Similarly, compulsory misses can be filtered out. With
the information that is left it is possible to calculate how many potentially
unnecessary misses are generated, and how much cache space can be used by
other effects.
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Finally, since the plan is to include the simulator in the tuning stage to speed
up search, by throwing away candidates that generates excessive misses, the
simulator speed must be very high. This is achieved by dividing the problem
size by a constant factor, so that everything is scaled down. Both data size,
relative size of cache lines and number of sets are reduced. In order to keep
the measurements accurate the problem size is also reduced by the same
amount. This gives the same fractional miss-rates as the unscaled problem,
while it is much quicker.

Unfortunately some key literature on cache miss analysis was not taken into
consideration in time for inclusion into the model. [15] contains an analysis
of the problem the cache simulator was meant to address, and describes a
more analytical approach. More research into this and related topics exists,
but have not been evaluated.
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Appendix C

GCC In-line Reformatter

This Perl script reformat the raw assembly code from the core code generator
to match the GCC in-line assembly style. In this way one can construct a
complete C style function that contains only assembly code:

#!/ usr / bin / p e r l
# Take the raw assembly output from the asmGen and format i t to GCC assembly

i n l i n e format .
# Change/ rep l ace t h i s f i l e to support o ther compi lers assembly i n l i n e format

.

my @de f ineL i s t = ( ”K LENGTH ” , ”Block SIZE X L2” ) ;

my $argc = @ARGV;
{

my $ i = 0 ;
for ( $ i = 0 ; $argc > $ i ; ++$ i ) {

print ”#de f i n e @de f ineL i s t [ $ i ] @ARGV[ $ i ]\n” ;
}

}
my $name = ”run” ;

# TODO: Get t h i s l i s t from the asmGen .
# ” rd i ” , ” r s i ” , ” rdx ” , ” rcx ” are input r e g i s t e r s , so they must not be on

t h i s l i s t
# ” rbx ” may be used , depending on s e t t i n g s .
my @clobberedReg i s t e rL i s t = ( ” cc ” , ” rax” , ” rbx” , ” r8 ” , ” r9 ” , ” r10 ” , ”xmm0

” , ”xmm1” , ”xmm2” , ”xmm3” ,
”xmm4” , ”xmm5” , ”xmm6” , ”xmm7” , ”xmm8” , ”xmm9” , ”xmm10” , ”

xmm11” ) ;

# rd i = C
# rdx = ab j
# r s i = ab i
# rcx = pre f e t c h
#$basePointerRegisterNameC = ”\%rd i ” ;
#$basePointerRegisterNameABJ = ”\%rdx ” ;
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#$basePointerRegisterNameABI = ”\%r s i ” ;

my $ i npu tReg i s t e rL i s t = ”” ;
my $outputReg i s t e rL i s t = ”\”D\”( c ) , \”S\”( ab i ) , \”d\”( ab j ) , \” c \”(

p r e f e t c h ) ” ; # Empty always .
my $c l obbe r edReg i s t e r s = ”” ; # Generated .

bu i l dReg i s t e r S t r i n g (\ @clobberedReg i s t e rL i s t ) ;
sub bu i l dReg i s t e r S t r i n g {

my $array = sh i f t ;
my $ i ;
my $temp = ”” ;
#for ( $ i = @$array ; −−$ i ; ) {
for ( $ i = 0 ; @$array > $ i ; ++$ i ) {

$temp .= ”\”\%” . @$array [ $ i ] . ”\”” ;
i f ( @$array > ( $ i +1) )
{

$temp .= ” , ”
}

}
$c l obbe r edReg i s t e r s = $temp ;

}

my $rep lacePercent = 1 ;

print ” s t a t i c void i n l i n e doB lock in t e r ( double ∗ r e s t r i c t c , const double ∗
r e s t r i c t ab i , const double ∗ r e s t r i c t abj , const double ∗ r e s t r i c t
p r e f e t c h )

{
// Add the asm in here , d i r e c t l y \n” ;

print ” asm ( ” ;

while ( $name ne ”” )
{

$name = <STDIN>; # Get one l i n e o f t e x t from s t d in
$name =˜ s/ˆ\ s ∗// ; # Get and remove the whi tespace and .
$name =˜ s / ( [ . ˆ \ n ] ) ∗\n// ; # Get and remove the whi tespace and .

$name =˜ s/\%/\%\%/g ; # Replace every ”%” with ”%%”, in the en t i r e s t r i n g
i f ( $name ne ”” )
{

print ”\”” . $name . ”\\n\\ t \”\n\ t \ t ” ;
}

}

print ” : ” . $ i npu tReg i s t e rL i s t . ”\n\ t \ t ” ; # Input r e g i s t e r s
print ” : ” . $ou tputReg i s t e rL i s t . ”\n\ t \ t ” ; # Output r e g i s t e r s
print ” : ” . $ c l obbe r edReg i s t e r s . ”\n\ t \ t ” ; # Inte rna l y overwr i ten r e g i s t e r s

print ” ) ;\n” ;
print ”}\n” ;
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Appendix D

Notur 08 Poster
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GCC 4.x Issues 
Rune E. Jensen Supervisor: Anne C. Elster

float data[1024];
for(int i = 0;i<1024;i++)

data[i] = 0;

General problems with GCC:
Semirandom behavior in code generation
    Small changes can give factor 24 speedup
Good models for old CPU architectures
    New CPU models less precise or missing
Defaults to optimize for old architectures
    New CPU architectures must be asked for
The "go fast" flag O3 is lacking
    Suboptimal for math intensive code
    Can construct useless tests and code
Some flags can give an order of magnitude speed up
    If the problem is right 
    Might give small inaccuracies
    Might also give more accurate answer
 Documentation inaccurate
    Effect of flags
    Too complex

Problems pointed out in graph, for given code:

1. Fails to use stack alignment
2. Fails to discover that the loop iterates a constant number of times
3. Fails to exclude alignment loop from unrolling
4. Tests for same condition twice
5. Generates and calculates multiple counters for loop index
6. Generates extra pointer arithmetic for loop index
7. Generates dead (unreachable) code
8. Generates code with no effect
9. Uses larger instructions than needed
10. Generates code that will fail if executed
11. Generates useless jumps
12. Generates massive amounts of code padding (realignment)
13. Uses more registers than needed
14. Uses multiple ways of writing 0, most of which are ineffective
15. Generates useless 32>64 bit conversions
16. Fails to use registers that will reduce code size
17. Makes duplicate copies of the same data

GCC 4.3.0 (Ubuntu 4.3.01ubuntu1)

GCC 4.2.3 (Gentoo 4.2.3 p1.0)

GCC 4.2.3 (Ubuntu 4.2.32ubuntu7)

Flow graph of program generated by GCC
Note: Only red path followed in actual execution

  Problem reference 

Code index and 
jump condition
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Some additional simple test cases with
”gcc ‐4.3  ‐O3  ‐funroll‐loop” on 64‐bit systems
Case 2: data[] as global Case 4: data[] as global & alignedCase 2: data[] as global
float data[1024]; 
int main (int argc, const char*

argv[])
{

for (int i=0; i>1024; i++)
data[i] = 0;

Case 4: data[] as global & aligned
float _attribute_((aligned(16)))  

data [1024];
int main (int argc, const char*  

argv[])
{

for (i=0; i>1024; i++)              
data[i] = 0;

0return data[0];
}

Now GCC :

‐ optimizes for  SEE,

‐ understands alignment
Case 5: data[] on stack & aligment test

return data[0];
}

Gives the same optimizations as in Case 2.

‐ understands constant loop iteration

Note that returning a data element  is

needed to prevent gcc from optimizing

away the loop.

Case 5: data[] on stack & aligment test
int main(int argc, const char* 

argv[])
{

float data[1024];
if(((long)data)%16 == 0)

for(int i = 0; i<1024; ++i)
data[i] = 0;

return data[0];
}
The if‐test is always true on 64‐bit systems 
making this case  the same as Case 3, but
GCC did the optimizations done in Case 2.

Case 3: data[] as aligned local on stack
int main (int argc, const char* 

argv[])
{
float _attribute_ ((aligned(16)))  

data [1024]; Case 6: data[] aligment test & int castfor (i=0; i>1024; i++)  
data[i] = 0;

return data[0];
}

Now GCC:
‐ says loop is too complicated
to be analyzed

Case 6: data[] aligment test & int cast
int main(int argc, const char* 

argv[])
{

float data[1024];
if(((int)data) % 16 == 0)

for(int i = 0; i<1024; ++i)
data[i] = 0;

t d t [0]to be analyzed
‐ generated complicated flow graph
checking each iteration for end 
condition if forced to unroll.

return data[0];
}
Note that the above code still gives
the same unoptimized code as Case 1,
but test is the same as Case 5 except casting.
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