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Problem Description
Animating realistic-looking snow is a complex and
computationally expensive task, and achieving it in real time an even further challenge.
Several subproblems need to be solved: A large number of snow particles have to be simulated, as
well as the wind
velocity field that will affect them. Build-up of snow
on objects also require computationally expensive collision detection since it needs to be done for
every snowflake.

This thesis will build upon work done previously[Saltvik06] where a parallel solution was
implemented on a dual core computer.
The focus this time will be to utilize modern GPUs to achieve a more realistic and larger-scale
simulation
compared to what was possible on just CPUs.

Techniques for solving the various subproblems across one
or several GPUs will be investigated using CUDA, NVIDIA´s
GPGPU compiler and set of development tools which enable
programming in a variation of C to code algorithms for
execution on the graphics processing unit (GPU).
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Abstract

In this thesis, we present a realistic snow simulation, utilizing modern GPUs
to achieve real-time performance. Our simulation of snowfall is a computa-
tionally expensive problem since each snowflake is simulated interacting with
a dynamic windfield.

Three main components come together to form the complete snow simulation:
The first is highly scalable particle simulation for simulating millions of indi-
vidual snowflakes. The second is a CFD implementation for simulating wind
phenomena which will affect the snow flakes. Finally, the third component is
a terrain height map model for the geometry which lets us create a rich high
resolution environment with which the snow and wind can interact, without
introducing performance-limiting complexity. We implement the buildup of
snow on this geometry is it collides with it, and provide a method for re-
distributing fallen snow, modelling sinking snow and the movement of snow
down-slope.

We show that the simulation really benefits from a parallel CUDA GPU
implementation, since it is able to maintain real-time frame rates on a modern
NVIDIA GPU with particle counts exceeding two million, all of which are
interacting both with the wind field and the ground.

The number of fluid cells simulated in the wind field can be scaled up beyond
four million while maintaining our real-time requirement. Finally, we show
that the performance hit of increasing geometry resolution to high values like
over one million vertices was not significant.
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Chapter 1

Introduction

Realistic simulation of snowfall is a computationally expensive problem. First
of all, a large number of snow particles are needed to achieve realism, each of
which must be updated individually, taking a variety of factors into account
including the air around it. Second, the air that affects all particles is also
a very dynamic and important part of the simulation, and it needs to be
modeled convincingly. This means that we have to model the turbulent flow
of air around and between objects in our scene. Lastly, the snow itself needs
to interact with the geometry of the scene. That is, we want snow to build
up where it hits the ground.

In our application we implement a real-time1 version of the above, utilizing
the power of modern GPUs to do the expensive calculations. We build upon
work by Mr. Ingar Saltvik[17] where a similar program was implemented for
multi-core CPUs. Parallelizing for the GPU both require and enable some-
what different techniques, but as we shall see, this computationally expensive
problem benefits much from a parallel GPU implementation.

By using a terrain height map model for the geometry we are able to create
a rich high resolution environment with which the snow and wind can inter-
act, without introducing performance-limiting complexity. This and the fact
that the GPU handles much lager particle counts and wind field resolutions
enables scenes that are more visually compelling than what was done in[17].

We also improve upon work done by Saltvik by making the built up snow on
the ground affect both wind and falling snow. A computationally inexpensive
method for redistributing and smoothing snow on the ground is introduced

1An often used criterion for real-time is over 25 FPS
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and implemented, to more closely mimic observable patterns in nature, and
avoid anomalous buildup. Finally, to make the simulation really come alive,
we implement support for stereo rendering, enabling the use of 3D monitors.

1.1 Outline

In Chapter 2 we examine the state of the art in parallel computing as it
relates to this thesis. We look at the mathematical models on which we will
build our simulation, such as fluid dynamics, and present previous work on
relevant topics.

Chapter 3 is a discussion of many of the details involved in the implementa-
tion of our application, and the techniques that are used. Important topics
here are rendering and the utilization of CUDA in our implementation.

Our results are presented in Chapter 4, where the performance characteristics
of the implementation are examined. We also present and evaluate the visuals
that are achieved in the application.

Finally, we summarise our findings and draw conclusions in Chapter 5.



Chapter 2

Background

2.1 Parallel Computing

Improvements in single-processor design has been the main cause of our per-
formance gains up until very recently. These improvements have been in
the form of increased clock frequency and instruction level parallelism[13],
and much complexity has been introduced in the process. Recent years have
seen diminishing gains in these areas, and while single-threaded performance
continues to increase, most gains come from increasing parallelism. Main-
stream computers are now symmetric multiprocessing(SMP) configurations
with two to four CPU cores. Saltvik’s implementation of real-time snow
simulation[18] utilized the parallelism yielded by this kind of system, with
good results. This is just one of the avenues that are being explored in the
search for more parallelism.

Taxonomies

Flynn introduced a taxonomy which can still encompass the entire design-
space of parallel computer design[13] (though it my be imprecise for some
purposes). It established categories basted on the presence of parallelism in
the instruction and data streams of the computer. These are the categories:

SISD(Single Instruction Single Data) This corresponds to the traditional
von Neuman architecture. The name implies that there is no paral-
lelism exhibited in the instruction or data streams.

3



4

SIMD(Single Instruction Multiple Data) A single instruction stream
operating on multiple independent data streams. The operations on
each data element may be parallelized. GPUs operate on a SIMD
principle.

MISD(Multiple Instruction Single Data) Mainly used for fault toler-
ance, where multiple different systems operate on the same data, and
compare results.

MIMD(Multiple Instruction Multiple Data) Most parallel computers
operate on this principle(for example SMP machines and cluster com-
puters).

As mentioned, SISD computers have come a long way but are now coming up
against something of a wall, and MIMD techniques have largely been respon-
sible for the gains of recent years. Most of the Top 500 supercomputers of the
last decade1 have been MIMD architectures(Figure 3.13). These are mostly
clusters of SMP machines, and they are exploited by partitioning problems
into chunks that are handled by each individual node(most problems also
require communication between nodes).

At the level of each physical chip, there is still a large design space. Current
CPU architectures are well suited to certain problem types, but far from
optimal for all. A SIMD architecture can sometimes improve performance
substantially. Many CPUs have SIMD instructions that can perform arith-
metic on small vectors(SSE in Intel processors), but for some problem types
it pays to go further. The GPU shows what can be achieved by venturing
far in this direction, and it may work well in conjuntion with the prevailing
MIMD paradigm.

2.2 The GPU Platform

Today we see graphics hardware beginning to supplant the CPU as the main
computational unit in many problem areas. We still know it by the name
GPU(Graphics Processing Unit), and it is still by this function that the
vendors are able to sell them in large numbers. Acceleration of graphics in
computer games is their Raison d’être, but games have placed a steadily in-
creasing demand on programmability. At the same time, researchers have

1http://www.top500.org/overtime/list/32/archtype
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Figure 2.1: Architecture share over time among the Top 500

increasingly been able to exploit their power for computation. Thus the
modern GPU is a very different beast to the GPU of just a few years ago,
and applicability to general computation may soon be vital to the commer-
cial success of a GPU. Much has been said of the history of GPUs and of
GPGPU. [6] provides a thorough investigation of the subject up to the types
of architectures that preceded the newest generation.

This generation however, deserves a more in-depth analysis here, since it’s the
platform we will be using for our program. More specifically we will be using
NVIDIA’s CUDA language which is a C-derived language that facilitates
programming of newer NVIDIA hardware. Because of this, only NVIDIA’s
current architecture will be investigated.

2.2.1 Direct3D 10

With the evolution of the programmable graphics pipline being the main
driving force behind GPU development, it is fitting to look more closely at the
its most recent incarnation. It is supported in Microsoft’s DirectX, through
the Direct3D 10 API. OpenGL supports roughly the equivalent functionality,
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though some of it requires the use of extensions which have yet to be included
in an official version of the standard. With most modern game developers
using Direct3D, it is the API in which most new developments have been
introduced. These are the components of the Direct3D pipeline[5]:

Input Assembler(IA) 3D rendering begins with geometry data. The In-
put Assembler gathers vertex data from up to 8 input streams bound
to vertex buffers, and assembling vertices to be sent to the following
stage.

Vertex Shader(VS) Normally used to transform vertices from object to
screen space, but it can perform arbitrary transformation. It has access
to a common featureset shared by all programmable shader stages.

Geometry Shader(GS) Transformed vertices pass through this stage, not
one by one, but as part of the geometric primitive they make up(point,
line or triangle). It may produce additional primitives, by outputting
more than the input primitive, or it may delete by refraining from
outputting. It can also add or modify attributes to the vertices of a
primitive.

Stream Output(SO) Produces new vertex buffers from the output of the
GS.

Set-up and Rasterization Stage(RS) This stage prapares the primitives
for rendering. This includes clipping, culling, perspective divide, view-
port transform, primitive set-up, scissoring, depth offset and fragment
generation.

Pixel Shader(PS) Reads input attributes for fragments, and produces out-
put fragments consisting of 1 to 8 attributes (which in most cases are
color components), as well as an optional depth value that will override
the one carried over from the RS stage. May discard fragments.

Output Merger(OM) Merges fragments from the PS stage into a set of
render buffers, while performing blending and depth/stencil testing.

The main new development that we saw in D3D10 was unified shaders. Ear-
lier we had vertex shading and pixel shading, each of which were performed by
dedicated processing units. However through the generations, these two types
of processing unit converged toward a similar featureset and toward high gen-
erality. D3D10 introduces a third type of shader(the geometry shader), and
executes all shaders on one type of stream processor.
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NVIDIA also supports compute kernels as a fourth program type. These
are programs that can do general purpose computation on the GPU. They
are made possible in part by the hardware required to support the unified
shaders of Direct3D 10. In addition to this they require the ability to do
random access writes to GPU memory, as well as explicit control of on-
chip memory. As such they are not supported as a direct consequence of
supporting D3D10, but were easily within reach, and the GPGPU support
was developed alongside the Direct3D 10 support[15].

2.2.2 The Tesla Architecture

NVIDIA’s newest generation cards are based on the scalable Tesla architecture[15],
which was introduced in November 2006 with the release of the Geforce 8.
It has subsequently been improved, but the basic design survives. It was
the first architecture from NVIDIA designed to support DirectX 10, and as
such an important goal was the required support for unified shaders. The
generality offered by a compliant design would be of tremendous benefit for
parallel-computing on the GPU.

Model 9400 GT 9800 GTX GTX 280
Stream Processors 16 128 240

Min. RAM 256 MB 512 MB 1 GB
Core freq. 550 MHz 676 MHz 600 MHz

RAM freq. 1600 MHz 2200 MHz 2600 MHz
Bus width 128 bit 256 bit 512 bit

Table 2.1: Example models based on the Tesla architecture[2]

As shown in Table 2.1, the available cards that use this architecture range
from the low-end to the very high-end. Importantly, the same base function-
ality is offered independent of computational power, so programs made for
this architecture will run on all cards provided they are scalable.

This last statement is actually a half-truth. NVIDIA has deviced a version-
ing scheme to indicate the capabilities supported by an architecture, called
compute capability [1]. The compute capability consists of a major an a mi-
nor revision number, where the major revision is the same for models that
share the same core architecture, and the minor revision number signifies just
that: Minor revision of the same core architecture. The base functionality
supported by all Tesla architecture models is defined under compute capa-
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bility 1.0, and revisions 1.1, 1.2 and 1.3 add support for a few select things
like atomics and double precision, as well as expanding some capacities.

Overall Architecture

Before going into details of its operation and how this affects the programmer,
we will give a high level overview of the architecture as seen in Figure 2.2.
Two main elements are responsible for the mentioned scalability. The first
is the streaming processor array(SPA) which is responsible for performing
all programmable calculations, and the second is is the memory architecture
which supports it. Both of these are designed from smaller units that can be
aggregated to facilitate higher performance.

The SPA is comprised of one or more texture/processing cluster(TPC, Fig-
ure 2.3). The TPCs in turn comprise the following components:

2+ Streaming Multiprocessors(SM) Each of which contains the follow-
ing:

• 8 stream processors(SP) which support general floating point and
integer instructions. The SMs and SFUs operate at twice the core
frequency.

• 2 special function units(SFU) that can do complex calculations
like trancendental functions and interpolation.

• 8192 registers(16384 for compute capability 1.2 devices).

• 16KB high-speed on-chip memory called shared memory. Succes-
sive words in this memory fall into one of 16 banks, each of which
can be accessed independently. When there are no bank conflicts
between simultaneously running threads access to this memory is
as fast as register access.

• 8KB constant cache which is as fast as registers when all threads
read the same value. This constant cache works against a 64KB
per-device constant memory.

• An multi-threaded instruction fetch and issue unit.

• An instruction cache.

1 Streaming Multiprocessor Controller(SMC) Controls multiple SMs,
arbitrating acces to shared texture unit, load/store and I/O path.



9

Figure 2.2: High level overview of the GeForce 8 architecture[15]

1 Texture Unit Inputs texture coordinates, and outputs filtered texture
samples. Can process 4 threads per cycle, producing a four-component
result. Caches samples to exploit filtering locality.

1 Geometry Controller This component replicates the functionality of
parts of the traditional graphics rendering pipeline. It has storage
space for input and output attributes, and manages vertices through
the vertex shader and geometry shader stages.

The global memory DRAM is partitioned, with one ROP(Raster Operations
Processor) unit responsible for each partition. They can handle hundreds
of in-flight memory access requests from the parallel threads, and has logic
to coalesce requests from threads running in the same warp accessing con-
secutive memory locations(subject to some restrictions). An interconnection
network connects the TPCs to the ROPs, and any TPC can access memory
governed by any ROP.

Operation

The SMs can process four different types of thread programs: Pixel shaders,
vertex shaders, geometry shaders and compute threads. To balance shifting
workloads the SM can concurrently execute different types of threads, and
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Figure 2.3: Detailed view of a TPC unit[15]

different programs[15]. It is hardware multithreaded to make this as efficient
as possible, and can manage up to 768(1024 for compute capability 1.2)
concurrent threads with zero scheduling overhead. The threads are executed
in groups of 32 called a warp, and multiple warps are grouped into one
block. This means that there can be a maximum of 24(or 32) active warps
per SM. Each thread has its own state and may execute its own code path.
All threads in a block running on a multiprocessor may synchronize using
a barrier instruction. This is essential because access to the on-chip shared
memory needs to be synchronized.

NVIDIA calls this SIMT(Single Instruction Multiple Thread), although it
sounds very much like SIMD(and it arguably is), but some details are differ-
ent. Each thread in a warp starts at the same instruction, but threads may
branch differently. However if there are divergent branches within a warp,
they have to be serialized, so it still operates in SIMD mode with some threads
doing nothing until they all return to the same execution path(Figyre 2.4).
With typical SIMD units the programmer works with vector types as big as
the SIMD width, and has to be careful how the data is packed into these
vectors to achieve full utilization. On the Tesla architecture, programmers
are only exposed to scalar operations and the hardware automatically fills
the execution units by exploiting thread parallelism, if possible. This means
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Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Active thread Inactive thread

Divergent
branch

Figure 2.4: SIMD execution and divergent branches

that the programmer may think about the threads as running independent
code-paths and forget about SIMD width and other concerns, as far as cor-
rectness is concerned. But to achieve good performance the actual execution
of threads in a warp and the consequences of branching should be kept in
mind.

2.2.3 CUDA

To be able to use the general computation capabilities of the new GPUs,
we need a suitable language. The traditional shader languages like Cg are
specialized toward graphics, and fail to expose some of the capabilities, while
also being cumbersome to use. Every problem needs to be framed as a
graphics rendering problem, and all data must be mapped to textures and
vertices.

The solution was CUDA[1], a language developed alongside the new compute
capable hardware. It is based on C++, with a set of syntax extensions and
library support needed to make it suitable to this new hardware platform.
Not all of the C++ language is supported, with exceptions being notable in
their absense(thus leaving out much of the Standard Template Library).

A function in CUDA may execute on the CPU or on the GPU, and therefore
new keywords were introduced to annotate this:

• __host__ This is the default classifier, and may therefore be omitted.
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These are our traditional C functions that run on the CPU, and ar only
callable from other host functions.

• __global__ Functions with this classifier are called kernels. They run
on the GPU and are callable only from host functions. Special syntax
is required for their invocation.

• __device__ These run on the GPU and are only callable from kernels
or other device functions.

While the execution on the CPU of a normal procedure is well defined by the
information given in the C language, more information is needed to invoke
a GPU kernel. Such an invocation is intended to spawn many execution
threads, and information is needed on just what the execution parameters
are. As mentioned in the section describing the Tesla architecture(page 7),
threads are grouped into blocks that are executed on a single SM. Blocks are
subdivided into warps(32 threads) which is the basic unit of execution as far
as the scheduler is concerned.

A block is a 1 to 3 dimensional domain, and for each point in this domain a
thread is created. It is up to the threads to decide how their block coordi-
nates will map to the data that they operate on. With the block dimensions
defined, a computational grid finally needs to be defined. This is a one to
three dimensional grid of blocks, that will cover the entire computation do-
main. An image processing kernel might for example define blocks that are
blockx × blocky, and given the image dimensions imagex × imagey we would
define the grid(Figure 2.5): gridx = imagex/blockx, gridy = imagey/blocky.

The syntax to support this is addid in the form of a parameter list between
triple angle brackeds just after the function name. This is an example kernel
invokation:

dim3 grid(IMAGE_X/BLOCK_X, IMAGE_Y/BLOCK_Y, 1);

dim3 block(BLOCK_X, BLOCK_Y, 1);

myKernel<<<grid, block>>>(param1, param2);

For an executin kernel thread, a few implicit parameters makes the grid
information available:

• gridDim is of type dim3, and contains the grid dimension.

• blockDim is of type dim3, and contains the block dimension.
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Figure 2.5: The composition of a 2D computation grid

• blockIdx is of type uint3, and contains the location of the current
block within the grid.

• threadIdx is of type uint3, and contains the location of the current
thread within the current block.

The invocation syntax supports two more optional parameters. One is the
amount of shared memory that is to be allocated to each kernel block(to
enable dynamic change of this setting), and the last one is the stream variable.
Kernel invocations and other asynchronous operations may specify a stream,
and all operations in a stream must be performed in order. Different streams
however, may execute concurrently. When omitted, the default null-stream
is assumed. To show the full kernel invocation syntax, for a kernel requiring
a float of shared mamory per thread, and running in a user specified stream:

cudaStream_t stream;

cudaCreateStream(&stream);

dim3 grid(IMAGE_X/BLOCK_X, IMAGE_Y/BLOCK_Y, 1);

dim3 block(BLOCK_X, BLOCK_Y, 1);

myKernel<<<grid, block, BLOCK_X*BLOCK_Y*sizeof(float), stream>>>(param1, param2);

Similar to how functions may be classified by their execution environment,
variable declarations may include an extra storage classifier.
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• __device__ Resides in global memory, and has the lifetime of the ap-
plication. Accessible from all threads, and from the host through the
API.

• __constant__ Resides in constant memory, and has the lifetime of the
application. Accessible from all threads, and from the host through the
API.

• __shared__ Resides in the shared memory of a block, and has the
lifetime of the block. Accessible from all threads within the block.

__shared__ declarations deserve some more discussion. One usage pattern
to declare it like this within the kernel function:

__shared__ float block[BLOCK_X*BLOCK_Y];

Doing this means that the shared memory available to the kernel block is
determined at compile time. To be able to specify this at runtime like in the
above example, the array can be defined like so:

extern __shared__ float block[];

Memory Model

When programming the CPU, we are used to dealing with one large memory
that is transparently backed by a high-speed cache on the processor. Access
to main memory is high latency, and access to the cache is very low latency.
All memory access is handled in a uniform manner, and for many problems
we do not even have to think to much about cache effects to achieve good
performance(although in scientific computing this is an entire reaserch topic
in itself).

The GPU also has a large high latency main memory called global memory,
as well as fast on-chip memory called shared memory for each SM. The latter
does not function like a cache, but is completely under programmer control.
Also achieveble bandwidth against global memory is determined by adher-
ence to a set of restrictions on access pattern by threads in a warp. These
things combine to make efficient memory access something the programmer
has to put considerable thought into.
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Shared Memory

The 16KB of shared memory available on each SM is divided into 16 separate
banks that can be accessed simultaneously by all threads in the active half-
warp. Successive 32-bit memory locations fall into separate banks. If care
is not taken when accessing this memory, bank conflicts can occur. A bank
conflict will occur any time more than one thread tries to access memory
within the same bank, and all such accesses will lead to serial execution. The
hardware will try to split accesses into into as few and big conflict-free sets as
possible, and these will be run serially. A simple way to ensure no conflicts
arise is to access memory in a pattern like array[BaseIndex + tid](where
tid is the thread ID, and the element type for array is four bytes).

A common access pattern is array[BaseIndex + s*tid], where s is a stride
value. This pattern will lead to conflict between threads tid and tid+1, if
s*n is a multiple of the number of banks(16). On all current devices(compute
capability 1.x) this will not happen as long as s is odd.

The following code will be checked for conflicts with Type substituted for
various values:

__shared__ Type shared[32];

float data = shared[BaseIndex + tid];

Type Conflict? Explanation
char Yes Each set of four consecutive

values belong to the same bank.
float3 No Base type 32 bits wide,

and odd stride(3).
float4 Yes Even stride.

Global Memory

To utilize as much as we can of the global memory bandwidth available to
us, we need to be aware of some details of its operation. As mentioned it is
uncached, and very high latency (400-600 cycles, equivalent to 100 floating
point MADD instructions). But it is also very high bandwidth, under the
right conditions.

Good bandwidth is achieved by a technique called coalescing. As all the
threads in an active half-warp requests a read or write operation against
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global memory, the memory controller may coalesce all these separate ac-
cesses into one single access, which will complete in about the same time as
any one single uncoalesced access. Coalescing is done automatically if a few
conditions are met. These conditions are relaxed for compute capability 1.2
and above, so they will be discussed for both cases.

For compute capability 1.0 and 1.1 cards:

• Threads must access words of size:

32-bit Results in one 64 byte transaction.

64-bit Results in one 128 byte transaction.

128-bit Results in two 128 byte transactions.

• All 16 words must lie in the segment equal to the transaction size(or
twice that for 128-bit words).

• The accesses must be in order: The kth thread must access the kth
word.

For compute capability 1.2 cards:

• Accesses will be coalesced when they fall into the same segment of size:

32 bytes When threads acces 8-bit words.

64 bytes When threads acces 16-bit words.

128 bytes When threads acces 32-bit words.

• When accesses fall into n segments, they will be coalesced into n trans-
actions. For access against 128-bit words this results in two transactions
for example.

We summarize that the major differences here is that for earlier cards we
need to access words in order, and also that an access pattern spanning more
than one segment would immediately result in 16 separate accesses, instead
of the two(if it spans two segments) that will result on newer cards.
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2.3 Computational Fluid Dynamics

Numerical simulation brings together the different worlds of theoretical sci-
ence and experimental science. Theoreticians develop mathematical models
that accurately describes phenomenons occuring in the physical world. By
discretisizing the equations that make up these models, we are able to find
approximate solutions to them. This, coupled with the use of modern com-
puters, allow us to perform simulations of physical phenomena. Simulation
may in many cases be used instead of physical experiment. This can be much
cheaper, and is often the only option available to us if we want to observe
the dynamics of certain processes[11].

2.3.1 The Navier-Stokes Equations

Incompressible flows can be described[11] by a set of partial differential equa-
tions called the Navier-Stokes equations(Eq. 2.1, 2.2). Eq. 2.1 is called the
momentum equation, and Eq. 2.2 is the continuity equation.

∂v

∂t
= −(v · ∇)v − 1

ρ
∇p+ ν∆v + f (2.1)

∇ · v = 0 (2.2)

where v is the velocity vector, p is pressure, ρ is density, ν is the kinematic
viscosity and f is the body forces acting on all particles in the fluid. Specifying
initial(t = 0) conditions v = v0 at all points in the domain, as well as
boundary conditions for t > 0, this forms and initial-boundary value problem.

Here is a short explanation[17] of each of the terms on the right hand side of
Eq. 2.1:

Advection, −(v · ∇)v: The v ·∇ part of this term is the advection operator
for the vector field v. This operator will transport a quantity along v,
and here it is being applied to itself. That is, the fluid is transported
along its own flow.

Pressure, −1
ρ
∇p: The velocity field also moves along the gradient of the

pressure field. The physical explanation of this is that the random
motion of fluid particles statistically favors motion from high to low
pressure areas.
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Diffusion, ν∆v: ∆ is the Laplace operator and is also written ∇2. ∆v is
equivalent to the second derivative of the vector field, and the diffusion
term acts to resist flow changes. Fluids with higher kinematic viscosity
factor ν will be more resistant, and fluids with ν = 0 are called inviscid.

External Forces, f : This is volumetric forces acting on the fluid, an exam-
ple of which is gravity.

In some fluid models, some of these terms fall out. There is no diffusion in
inviscid gases for example. The Navier-Stokes equations with the diffusion
term dropped are called the Euler equations(Eq. 2.3, 2.4).

∂v

∂t
= −(v · ∇)v − 1

ρ
∇p+ f (2.3)

∇ · v = 0 (2.4)

2.3.2 Discretization

To be able to compute solutions to these equations, we need to discretisize
them[11]. This is the process of moving the problem from a continous domain
to a discrete domain. By doing this we reduce the differential equation to a
system of algebraic equations, with the amount of unknowns and the amount
of equations equaling the number of discrete points in the domain. There
are many discretization methods, such as the finite element, finite volume
and the finite difference method. Here the finite difference method will be
explained.

The continous domain within which a solution is sought is divided into equal-
sized parts, and the solution will be sought on the points separating these.
For the one-dimensional case an interval Ω := [0, l] is divided into n subin-
tervals of length δx := l/n. We then have a grid comprised of the points
x0, x1, ..., xn at the boundaries of these subintervals.

Given a function u(xi) defined for all grid points, we approximate the deriva-
tive for a point xi by

[
du

dx

]
i

=
u(xi+1)− u(xi−1)

2δx
, (2.5)

and the second derivative by



19

[
d2u

dx2

]
i

=
u(xi+1)− 2u(xi) + u(xi−1)

δx2
. (2.6)

These approximations will be more accurate when the grid resolution is
higher.

The advection operator v · ∇ on the cartesian vector field v is defined as

v · ∇ = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
. (2.7)

Given this, the component form of Eq. 2.1 and 2.2 in cartesian coordinates
are as follows:

∂vx
∂t

= −
(
∂v2

x

∂x
+
∂vxvy
∂y

+
∂vxvz
∂z

)
− 1

ρ

∂p

∂x
+ ν

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
+ fx

(2.8)

∂vy
∂t

= −
(
∂vxvy
∂x

+
∂v2

y

∂y
+
∂vyvz
∂z

)
− 1

ρ

∂p

∂y
+ ν

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
+ fy

(2.9)

∂vz
∂t

= −
(
∂vxvz
∂x

+
∂vyvz
∂y

+
∂v2

z

∂z

)
− 1

ρ

∂p

∂z
+ ν

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
+ fz

(2.10)

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 (2.11)

All the terms can be approximated by finite-difference operators like those
in Eq. 2.5 and 2.6, or other methods with different tradeoffs.

2.3.3 Numerical Simulation

We want to facilitate a time stepping simulation of Eq. 2.8-2.10. We have just
the time derivative of the velocity field on the left-hand side of the equations,
and all spatial derivatives on other side. To obtain the value of v(n+1) at time
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tn+1 given v(n)we can compute ∂v
∂t

and then we can employ a simple Euler
integration scheme like

v(n+1) = v(n) + δt
∂v

∂t
, (2.12)

where n is the time step and δt is the time delta. We choose to evaluate
the velocity spatial derivatives at time tn which is called an explicit method
- the values at time tn+1 can be calculated directly from the velocity at tn.
The pressure derivative is evaluated at time tn+1, which is called an implicit
method, and it requires us to solve an equation involving both the current
and the next state of the system.

By calculating the explicit parts of v(n+1) we can obtain an intermediate
velocity field. We introduce an abbreviation F for this:

F(n) = v(n) + δt [−(v · ∇)v + ν∆v + f ] . (2.13)

We can now express the velocity at the next time step as a modification of
this intermediate field:

v(n+1) = F(n) − δt

ρ
∇p(n+1). (2.14)

When this final velocity is substituted into the continuity equation (Eq. 2.4)
we obtain the Poisson equation for pressure[11]:

∆p(n+1) =
ρ

δt
∇ · F(n). (2.15)

Using the continuity equation to arrive at this ensures that the resulting
velocity field will be divergence-free. What remains before we can calculate
v(n+1) is to solve this equation numerically to obtain the pressure field.

Solving the Poisson Equation

Here we will discuss the solution of systems of differential equations like
Eq. 2.15. Let us name the unknown solution(which is the pressure) of Eq. 2.15
u, and let us name the right-hand side f . We may then write the equation
like this:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= f (2.16)
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Using a central difference approximation this equation may then be dis-
cretized as

−ui+1,j,k + 2ui,j,k − ui−1,j,k

h2
+

−ui,j+1,k + 2ui,j,k − ui,j−1,k

h2
+

−ui,j,k+1 + 2ui,j,k − ui,j,k−1

h2
= fi,j,k,

where h is the point spacing of the discretization. Then we can solve this
equation for ui,j,k

ui,j,k =
1

6
(ui+1,j,k+ui−1,j,k+ui,j+1,k+ui,j−1,k+ui,j,k+1+ui,j,k−1+h2fi,j,k) (2.17)

Now that we have an expression for ui,j,k, we can use an iteration scheme
called the Jacobi method [7]. We will use the symbol v to denote an approx-
imation to the exact solution u. Here an improved approximation v(1) is
computed from the previous approximations v(0):

v
(1)
i,j,k =

1

6
(v

(0)
i+1,j,k + v

(0)
i−1,j,kv

(0)
i,j+1,k + v

(0)
i,j−1,kv

(0)
i,j,k+1 + v

(0)
i,j,k−1 + h2fi,j,k). (2.18)

This function is applied to all grid cells for each iteration. An initial guess
is used to start the iteration process. We see that this update function is
a function of all the neighboring approximations(Figure 2.6), as well as the
right-hand side f of the Poisson equation at that point.

This method will converge under certain conditions[20], but in many cases
it will require a large amounts of iterations. The Gauss-Seidel(GS) method
is a variation of this method that will boost convergence rates by as much
as 50%. This method utilizes updated approximations v(1) whenever they
are available, instead of always using v(0) values. If the order of update is
increasing x, y and z then for vi−1,j,k, vi,j−1,k and vi,j,k−1, the new approxima-
tions will be used. Other orderings such as red-black [11] may in some cases
lead to better convergence.

The Successive Over-Relaxation(SOR) method by Young[20] is a modifica-
tion of GS that can significantly improve convergence in certain cases. He
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i,j,k

i+1,j,k

i-1,j,k i,j+1,k

i,j-1,k

i,j,k+1

i,j,k-1

Figure 2.6: Stencil used for updating the approximation vi,j,k at each point

provides a rigorous analysis, but for our purposes a simple explanation of the
method will suffice.

Like with GS, new approximations are used when available, but each new
approximation i are set to a weighted sum of the old and the updated values:

v
(1)
i = (1− ω)v

(0)
i + ωvi (2.19)

where ω ∈ [0, 2] is the relaxation factor, and vi is the updated GS iterate.
With ω = 1 this method reduces to regular GS, while values above 1 helps
speed up convergence, and values below 1 may induce convergence in diver-
gent iterations.

2.4 Snow Modeling

Armed with the fluid dynamics of previous sections we can set out to describe
a complete snow model. The fluid dynamics will enable us to simulate wind
effects realistically, and in conjunction with the particle model described
below forms the basis for the snow simulation. To complete the model we
need some kind of geometry with which the wind and the snow will interact,
and a way for falling snow to build up on its surfaces.
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Fbuoyancy

liftF

gravityF

dragF

Figure 2.7: Forces influencing a snowflake

2.4.1 Snow Particle Simulation

The movement model used here for the falling snowflakes is the same as in
and [3], and we follow their descriptions. It is a particle-based approach that
keeps track of the position and velocity of each individual snowflake. Four
different forces(Figure 2.7) influencing the particles are identified:

Fgravity This is constant for each snow flake and is determined its mass m,
and the gravitational constant g. It is always directed down along the
negative z-axis and is of magnitude mg.

Fbuoyancy The buoyancy force is caused by density differences between objects
and their surrounding medium. For falling snow it is small enough that
we can ignore it.

Flift Vortices created by the snow flake and nearby snowflakes as they fall
through the air generate the chaotic looking lift force, which result in
the irregular motion of each snow flake.

Fdrag The drag force is born from the difference in velocity between a snow
flake and that of the air itself. Its magnitude varies according to some
properties of individual snow flakes.
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Symbol Description Initialization
p Position Randomly within the

scene boundaries
Vsnow Velocity ([−1, 1], [−1, 1], Vmax,z)
R Radius of circular movement (0, 2)
ω Angular velocity of circular [−π

4
,−π

3
] or [π

4
, π

3
]

movement
Vmax,z Vertical terminal velocity [0.5, 1.5] for wet snow,

[1, 2] for dry

Table 2.2: Properties of a snow flake[17]

Each snow flake has a series of properties2, as seen in Table 2.2, that define
it and give rise to its behavior in its environment. All of these attributes are
randomized at the beginning of the simulation, and then some of them are
continuously updated according to the equations that we describe below. The
mass m, by the way, is not included here since it drops out of our calculations
as we shall see, and its effect is otherwise incorporated in Vmax,z.

When a snow flake is moving just as fast and in the same direction as the
air around it we understand that the air will exert no force on it. Likewise if
it is moving in the opposite direction the force exerted will be greater than
if it was standing still. In this way we can intuitively understand that the
drag force is dependent on Vfluid, the velocity difference between the snow
flake en the wind:

Vfluid = Vwind −Vsnow (2.20)

The force has the direction of Vfluid, but its magnitude is Cdrag which is
defined for a snow flake as

Cdrag =
V2
fluidmg

V 2
max,z

(2.21)

where Vmax,z is its vertical terminal velocity under the influence of gravity.
The drag force is then

2X and Y coordinates of position are randomized to ensure they are a source of noise
at all times as explained on p. 44
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Fdrag =
Vfluid

|Vfluid|
· Cdrag. (2.22)

To see how this makes sense let’s define as per Newton’s second law, the
combined acceleration a caused by Fdrag and Fgravity as

a =
Fgravity + Fdrag

m
. (2.23)

If wind is zero a particle’s velocity will be increasing downwards under the
influence of gravity. And as it approaches Vmax,z the drag force will increase
until it matches that of gravity(in the opposite direction), after which accel-
eration will be zero.

As mentioned, the lift force is highly chaotic in nature, due to the chaotic
and complex nature of the turbulence phenomena that cause it. Because of
this it is difficult to model accurately. Instead we will use a simplified model,
where each snow flake follows a spiral path on descent. If spiral radius R and
angular velocity ω varies between individual snow particles their combined
motion looks fairly convincing. We define the velocity contribution of this
force at time t:

Vt
circ =

|Vfluid|
|Vsnow|

· ωR[− sinωt, cosωt, 0]. (2.24)

The first factor scales it so that it diminishes as Vfluid grows. We can now
write expressions for updated particle position and velocity at time t+ ∆t:

pt+∆t = pt + (Vt
snow + Vt

circ)∆t+
1

2
a∆t2 (2.25)

Vt+∆t
snow = Vt

snow + a∆t (2.26)

2.4.2 Wind Field Simulation

The wind field simulation will be based on the CFD model described in pre-
vious sections, also described by Saltvik[17]. We will assume a zero viscosity
fluid with density equal to 1. This reduces the Navier-Stokes equations to
the Euler equations.
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The first part of the Euler equations is repeated here with volume forces f
omitted:

∂v

∂t
= −(v · ∇)v −∇p (2.27)

We will assume that the force of gravity on air is negligible compared to
advection and pressure forces for the scenarios we will be modeling, thus f
may be omitted.

We recall that this equation is implicit in pressure, so for p we need to solve a
separate equation system. This was the Poisson equation for pressure(again
assuming density ρ = 1):

∆p(n+1) =
1

δt
∇ · F(n) (2.28)

where n is the time step at which the term is evaluated and F(n) for the Euler
equations is given by

F(n) = v(n) − δt(v · ∇)v. (2.29)

Looking at Eq. 2.27 we see that to compute the time derivative of v, we
need to calculate the advection forces, and then the pressure forces. Given
the time derivative we can compute an updated velocity field(as described
on page 20). This process will be divided into three steps:

1. Advection: Calculate advective forces, and update the current veloc-
ity field v(n), resulting in an intermediate field F(n).

2. Solve Poisson: Solve the Poisson equation, resulting in a pressure
field p(n+1).

3. Projection: Calculate pressure forces as per the second right-hand
term in Eq. 2.27, and modify the intermediate velocity field F(n) re-
sulting in a final divergence-free field v(n+1).

Advection Step

Eq. 2.8-2.10 show that the advection force is given by

−(v·∇)v = −
(
∂v2

x

∂x
+
∂vxvy
∂y

+
∂vxvz
∂z

,
∂vxvy
∂x

+
∂v2

y

∂y
+
∂vyvz
∂z

,
∂vxvz
∂x

+
∂vyvz
∂y

+
∂v2

z

∂z

)
.

(2.30)
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Solve Poisson

Figure 2.8: Calculating the updated velocity field

This may be computed by doing a finite difference approximation of the
partial derivatives as explained on p. 18. However this may lead to instability
unless great care is taken according to Stam in[19], and another approach
was described.

Let x be a grid point in the wind velocity field, and u(x, t) be the velocity at
this point. The intuition of this method is that to since the advection step
reflects the motion of fluid particles along the velocity of the fluid itself, we
can obtain the new velocity u(x, t+ ∆t) by backtracing through the velocity
as illustrated in Figure 2.9. We follow a path p from x from t to t−∆t, which
corresponds to a partial stream line in the velocity field. At the end-point of
p we can sample the velocity of the particle previously located there, which
will now have moved to x, and we update the velocity of field:

u(x, t+ ∆t) = u(p(x,−∆t), t). (2.31)

The velocity will change continously along path p, but we will make the
assumption that it will stay equal to u(x, t) all along its length. For small
time steps this approximation should prove adequate. This simplification
yields this expression for the updated velocities:

u(x, t+ ∆t) = u(x−∆tu(x, t), t). (2.32)

The point x−∆tu(x, t) is almost certainly off-grid, and the velocity at this
point will have to be linearly interpolated from the 8 nearest grid-points(for
a 3D field).
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x

p(x, s)

p(x, -Δt)

s0 -Δt

Figure 2.9: Tracing a path backward in time in the velocity field

Solve Poisson Step

To solve the poisson equation we first need the right-hand side 1
δt
∇ · F(n)

of Eq. 2.28. This expression says simply to calculate the divergence of the
intermediate velocity field scaled by the reciprocal of the timestep. The
discretization of this at each point is given by:(

1

δt
∇ · F(n)

)
i,j,k

=
(xi+1,j,k − xi−1,j,k) + (yi,j+1,k − yi,j−1,k) + (yi,j,k+1 − yi,j,k−1)

δt · h
(2.33)

where h is the point spacing and x, y and z refers to the components of the
intermediate velocity field.

When this is calculated we may proceed to solve the equation using the
methods outlined on p. 20.

Projection Step

Now that the pressure field p has been computed, we can perform the last
step of the calculation. The contribution of this step to the final updated
velocity field is −∇p. The discrete form for the point (i, j, k) is
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(−∇p)i,j,k = − 1

2h
(pi+1,j,k − pi−1,j,k , pi,j+1,k − pi,j−1,k , pi,j,k+1 − pi,j,k−1)

(2.34)

This step forces the velocity field to be divergence-free.

Boundary Conditions

Like Saltvik[17], we will use the Dirichlet boundary condition for the wind
velocity field, which is to specify the value that of the field at the boundary.
We will linearly interpolate this velocity between a set of predefined velocities
so that the wind field does not settle into a stable state.

For the internal boundaries(against obstacles) we will use a condition such
that no flow leaves or enters the domain, which we achieve by setting the
velocity component normal to the domain to zero.

The Von Neumann condition is used for the pressure field. This condition
dictates that the gradient is zero across the boundaries. This condition will
be fulfilled by setting the pressure value at the boundary equal to that of a
neighboring live(fluid) voxel[17].

2.4.3 Geometry and Snow Buildup

To make the wind and snow interesting we need scene geometry which they
can interact with. In reality all objects cause disturbances in the wind field,
which in turn make the movements of snow more interesting in their proxim-
ity. Many surfaces will ratain snow that impacts them, and this will slowly
build up and for a white carpet covering the objects.

To solve this problem Saltvik[17] used the method of overlaying snow matrices
from[12]. Here any surface that can receive snowfall is overlayed with a
triangle matrix that will represent the covering snow. It starts out invisible,
but as more snow hits it, it will gradually fade into whiteness and its vertices
slowly grow vertically. In [17] and [12] these matrices are used to cover planar
rectangular shaped objects, like a flat ground and rooftops. A modified
version will be adopted here that is simplified in some ways and further
develped in others.

Instead of useing planes and boxes for geometry we will be using a terrain
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Figure 2.10: A terrain height map

height map that spans the entire scene. A terrain height map is a triangle
matrix similar to what Saltvik used, but it will start out with its vertices
offset vertically to make it look like a piece of terrain. The offset values will
be read from an image such as the one in Figure 2.10. That particular height
map was generated using an application called Terragen3.

Figure 2.11 show an example4 of a height map visualization, and it shows
that very compelling scenes and landscape may be modeled using this simple
design.

By using this for our geometry, we will be able to make certain assumptions
that enable us to efficiently do some things that were not done in[17]:

• We know that the height map spans the whole scene, so for a par-
ticle within scene boundaries, collision detection reduces to an array
lookup in the vertex array, and we can easily take built-up snow into
account. This also lets us increase terrain resolution without running
into problematic scaling issues.

• For each vertex we know precisely what geometry neighbors it, so we

3www.planetside.co.uk/terragen/
4http://web.iiit.ac.in/ shiben/cgi-bin/site/projects/terrain.jpg
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Figure 2.11: Example height map visualization

are able to move snow that is located in steep areas, or allow a big pile
of snow to sink.

The second point is similar to Fearing’s stability criterion[10]. However the
implementation is tailored for real-time use, and will not resolve all instabil-
ities at each invocation. Instead an iterative, incremental approach is taken,
where snow is gradually moved from unstable positions to stable ones from
frame to frame. For each terrain vertice we compare the slope of the lines
to its neighbors to the angle of response of the snow(AOR). If it surpasses
it we move a fraction of it to neighbors that are located down-slope. The
AOR represents the static friction of the material, but unlike reality, when
this is surpassed it will not trigger an avalanche. Instead snow will contin-
uously be incrementally redistributed whenever the stability criterion is not
fulfilled, and the process will stop immediately when it is. The slopes con-
sidered will include both the slope of the underlying terrain, as well as the
slope introduced by unevenly distributed snow.
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Chapter 3

Implementation

In this chapter we describe specifics of how our snow model is implemented.
We begin by describing the libraries and languages forming platform on which
the application is built, and we proceed to explain what is done to achieve
good parallel performance on the GPU for each simulation component. We
also explain what is done to achieve convincing visual results.

3.1 Platform

We have chosen NVIDIA GPUs as target for the implementation due to
the availability of the featureful and mature CUDA language for performing
general purpose computation on them. It may have been possible to use the
Cg shader language but CUDA is specifically tailored for general computation
and is often more suitable[8]. Another alternative for writing data-parallel
programs for the GPU is the vendor independent OpenCL API, but at the
time of writing it is still very new and hardware support is somewhat lacking.
CUDA is based on C/C++ and the GPU kernels must be written in this
language. For easy interoperability, the rest of the application was written
in C++. In the end the choice of CUDA proved a successful one.

Preferring to stay platform independent we selected the OpenGL API for our
graphics rendering purposes. CUDA has an interface to both Direct3D and
OpenGL, but Direct3D is only available on the Windows operating system,
while OpenGL is also available on other systems like Linux and MacOS X,
both of which also support CUDA. OpenGL alone does not provide input
and window handling, so this handled by different libraries. A lightweight
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library called GLFW1 was used here, and it is portable to a wide variety of
platforms. It also provides threading primitives, but this has not been used,
since no computation is performed by the CPU.

The native OpenGL header files on most platforms only support older fea-
tures, and newer features need to be handled through the OpenGL extension
mechanism. It allows functions to be dynamically resolved at runtime from
name strings. A portable library called GLEW2 has been used to simplify
this.

Instead of using the OpenGL fixed function pipeline, the programmable
pipeline was used. This allows much more flexibility in determining how
rendering is to be performed. The OpenGL Shader Language(GLSL) is used
to program the vertex and fragment shaders.

3.2 Rendering

There are two components involved in the rendering of the scenes in this
simulation. The first is the geometry that shall represent both the ground
and the snow covering it. The second is the snow particles themselves. For
both of these, care has been taken to keep rendering overhead to a minimum
by making sure data is batched and located on the GPU[4].

3.2.1 Geometry and Ground Snow

Geometry in this simulation will be represented by a height map. It is imple-
mented in OpenGL as a simple Vertex Buffer Object(VBO), with a vertex
for each grid point in the height map, and an index buffer defining triangles
over these vertices.

VBO is the OpenGL term for a data buffer containing vertex data residing in
GPU memory. Using a VBO allows us to avoid costly transfers of geometry
data from system memory each frame, and rendering it is simply a matter
of a few function calls, even if it contains millions of vertices. This is very
advantageous if the data is static, and will not change from frame to frame.
In our case we actually want the terrain to be dynamic to facilitate snow
buildup, but as we shall see CUDA has a feature which combines with the

1http://glfw.sourceforge.net/
2http://glew.sourceforge.net/
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OpenGL VBO to make this very straight forward and fast by letting compute
kernels directly operate on VBOs.

For this part of the application we are able to significantly reduce overhead
compared to Saltvik[17], where geometry was recalculated on the CPU each
frame, and then transfered to the GPU for rendering. In comparison, once
our VBO has been created it is never again modified by the CPU, and so
we avoid expensive bus transfers. The geometry is also never recalculated
from scratch, but instead it is modified as snow impacts it. For shading we
use a precalculated normal map that is never updated. A normal map is a
texture that holds normal vectors in its RGB components. If the geometry is
significantly changed by snow-fall the normal map will not reflect this, and
this is considered a weakness in the implementation. However, we do not
estimate the cost of recalculating this per frame to be significant, and this is
a relatively small change that could feasibly be made. By switching to vertex
normals as in[17], it would also be possible to only modify normals that are
affected by changed snow depth, and in this case the cost would be close to
zero.

Representation of Snow Cover

The actual vertices are 4-component vectors, with the first 3 being the spa-
tial coordinates(x, y and z), and the fourth component(w) being the snow
depth at this location. Storing this in the position vertex allows us to leave
it entirely up to the vertex and fragment shaders how the snow will be visu-
alized. The strategy that is currently used to render the snow is to gradually
blend a snow texture over the ground texture as snow cover gets higher, and
then when it exceeds a certain threshold the vertical position of the vertices
will be modified(Figure 3.1). So the vertex shader produces a possibly mod-
ifed position vertex, and computes a blend factor α that will be interpolated
across the triangles. The fragment shaders then blend the two textures based
on this interpolated factor.

Vertex Indexing

One way of representing geometry data is to simply say that every triplet
of vertices in the vertex buffer defines a triangle. This however, will lead
to duplication of vertices that are shared by many triangles. Duplication is
unwanted because it means wasted space, and because it means modification



36

w
x,y,z

x,y,z+w

α2

α1

α3

Figure 3.1: Triangle with blend factors and a modified vertex

of any one terrain vertex has to touch many actual vertices in the array.

The alternative, as mentioned, is to use an auxiliary index buffer to define
triangles, by saying that every triplet of indices in this buffer defines a triangle
with the its vertices being the corresponding vertices in the vertex array. This
is the simplest indexing scheme, and may be improved upon.

An more attractive alternative is the triangle strip indexing scheme, wherein
a triangle is defined by one new index as well as the previous two indices(except
at the very beginning). This allows us to store approximately k + 2 indices
for k triangles instead of 3k indices. By using triangle strips in a straight
forward manner we can only cover one row of triangles for each strip. A trick
will enable us to glue row strips together and use one strip for the whole
terrain[9]: Duplicating the last index at the end of a row and the first index
at the beginning of the next row(Fig 3.2). This trick will generate four de-
generate(zero area) triangles which will move the strip to the beginning of
the next row. In the figure the extra indices are numbered 8 and 9, and they
have been moved from their actual locations(on top of 7 and 10) to show the
degenerate triangles(dotted lines), which of course would be invisible other-
wise. The index buffer can also be uploaded to GPU memory in the form of
a Vertex Element Buffer Object.

3.2.2 Snow Particles

The particle rendering routine utilizes an OpenGL feature called point sprites.
OpenGL has traditionally had support for points, that would be represented
with a single vertex and rendered as a single colored square(camera facing



37

0

1

2

3

4

5

6

7

8

9

10

11...

Figure 3.2: Triangle strip across multiple rows using degenerate triangles

quad) ranging from a pixel in size an upward. Point sprites is a a hardware
supported feature for rendering textured quads facing the camera, without
having to store its four corner vertices, and without manually having to
transform them to achieve correct orientation. This is just what’s needed for
the potentially millions of snow particles that we want to render. Another
name for this type of object is billboard. Figure 3.3 shows an example texture3

that might be used for texturing the billboards.

Using this, we can store all center positions in a large Vertex Buffer Object,
and render them with one draw call. This VBO may be directly manipulated
by a CUDA kernel, so like with the terrain geometry we are able to isolate
both particle update and rendering from the CPU, and do everything on the
GPU.

The use of point sprites results in snow flakes that look more realistic than
in[17], and they blend together in a better way when overlapping, due to
their alpha transparency. In contrast, Saltvik used three white intersecting
quads which were rendered using OpenGL’s immediate mode(where vertices
are submitted to OpenGL one at a time by the CPU). This resulted in both
appearance and performance suffering compared to our approach. Tests show
that our implementation is able to handle millions of snow particles.

3http://www.iayork.com/MysteryRays/2007/08/29/snowflakes-in-a-blizzard-
counting-t-cells/
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Figure 3.3: Snow particle texture example

3.2.3 Stereo Rendering

Some screens available today have the ability to display alternating rows of
pixels with light of opposite polarization. If we render two different images,
with one image on even rows and one displayed on odd rows, we can effectively
display a stereo image. 3D glasses only let light of one polarization through
to each eye, and thus each image will be seen by only one eye.

Our brains are able to estimate the distance to an object that our eyes focus
on. It can do this because of the parallax provided our pair of eyes’ different
positions. In short, faraway objects will have moved less than nearby objects
when comparing the image from one eye that of the other.

We can utilize the stereo functionality of a monitor to enable us to percieve
depth in 3D graphics. This can be done by rendering the scene at half vertical
resolution twice, each time from the position of each eye. Then interleaving
the rows of each image as we draw a frame to the screen, we end up with an
image in which we can percieve depth.

OpenGL makes this easy with its Frame Buffer Objects(FBO) which allow us
to set up textures as render targets. The scene is rendered twice as described,
to two different textures. To interleave their rows we render a fullscreen
quad using a GLSL shader which samples the two textures. It decides which
texture to sample based on the y-coordinate of the fragment. The modulo
operator or bitwise and is not supported in GLSL so we emulate if(y%2) by
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Figure 3.4: Example stereo rendering

writing if(int(y) * -2147483648 == 0). This exploits the fact that since
integers here are 32-bit, for an even y the expression overflows to zero, and
for an odd y it overflows to itself(-2147483648).

As we see in Figure 3.4 this results in two slightly different points of view
that are alternated. We see the same objects duplicated but seen from a
different angle on alternating lines. The effect can be seen to be strongest
closer to the camera, as expected(the two white dots on the bottom right are
actually the same snow flake).

3.3 Simulation Components

Here the implementation of the two major parts of the simulation is discussed:
The particle simulation, and the wind simulation. The particle simulation
includes the movement of particles, as well as the handling of collisions and
snow buildup. The wind simulation component covers everything required
to compute the velocity field, including obstacle management. In both parts
we will discuss some CUDA-specific issues that we face.
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3.3.1 Particle Simulation

Updating all the snow particles is an embarrassingly parallel problem; there
are no dependencies between any pairs of snowflakes. This is the ideal situa-
tion that we want to be facing when equipped with a GPU, which excels at
just this kind of operation. Note that while in reality there are dependencies
between snowflakes since they can collide, we ignore that possibility here.

The snow particles are represented by arrays in GPU memory which hold
all the properties of each particle. An interesting part of this is the position
property of the particles, which is also needed by OpenGL for rendering
purposes. We will exploit CUDA functionality which allows OpenGL and
CUDA to share a VBO located in device memory. Thus we can invoke the
render operation directly on the computed position vector, without having
to copy or modify any data.

We divide the job of updating the particles evenly between a number of
thread blocks, each handling a set of contiguous particles, and allocate one
thread per particle. The threads then load all required properties in a series
of coalesced reads from their respective arrays.

Not all per-particle properties in the mathematical model are really required
to be unique for each. Three examples are mass, rotation speed and rotation
radius. Instead of allocating storage for these on a per-particle basis, an
array of 32 different values is allocated in constant memory. Each thread
indexes these array by its global index modulo 32. This provides the needed
variation between individual snow flakes.

The position and the velocity are the only two properties that are allocated
their own space per particle. These were four-component vectors from the
beginning for alignment reasons. However only three components are needed,
so the fourth(w) component of each may hold one floating point attribute.
The position.w slots are used to hold the rotation angle that the particle has
reached in its circular movement. The velocity.w slots holds the the value of
the 1

V 2
max,z

expression for this particle(see p. 2.4.1).

A fixed number of particles will be simulated at all times. No particles are
actually removed even when they collide with the ground. Instead they are
moved to a random place in the sky, so as to resemble more incoming snowfall.
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Wind Field Lookup

To update each particle, we need know not only its attributes, but we also
need to sample the simulated wind velocity field at the position of the
snowflake. The velocity field is a discrete set of vectors, while the parti-
cle positions vary continuously in all three dimensions. Therefore we need to
perform a triliniear interpolation of the 8 nearest velocity vectors, based on
the particle position. Lookup will necessarily involve as much as 8 suboptimal
random access to device memory for each particle.

Instead of using a flat array to store the velocity field, we can use a 3D texture.
Texture sampling in CUDA is backed by the hardware texture units, which
basically gives us interpolation for free, as well a cached access. Access is
cached based on spatial locality. The particular implementations used in
modern cards are proprietary, but spatial locality is often achieved by use of
a special space-filling curve such as a Z-order curve, as opposed to ordinary
linear ordering(Fig. 3.5). In contrast the CPU implementation by Saltvik[17]
must perform the interpolation in software, and may also suffer from the fact
that system memory is cached based only on 1D spatial locality.

To exploit this maximally, we could sort the particles in lexicographic order
based on coordinates. The ordering can not be based on the unmodified
coordinates, because we can’t expect any particles to have the exact same
major coordinate. Instead we must divide each axis into segments and sort
based on which segment the particle’s coordinates fall into. A simple method
is to convert the coordinates to integers and mask out the lower bits. This
will divide the coordinate space into cubes, and particles falling into the
same cube will be grouped together in memory. Suitable segment sizes may
be determined empirically.

Tests with an initially sorted array show that this does indeed boost perfor-
mance of the particle update step by a not insignificant factor, but sorting
of the particles on the GPU has not yet been implemented here. Figure 3.6
shows the frame rate decline as the ordering of the presorted array more and
more fails to reflect the spatial relationship between the particles. This test
was done on a 256x256x32 wind field with 512K particles on an NVIDIA
8800 GT.

The repositioning of particles when they reach boundaries(either terrain or
scene edges) will have en impact on a sorting scheme like this. It may be
possible for a repositioning routine that is aware of the cube division to
minimize decay in the ordering, but it is unclear whether this would lead to
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(a) Z-order curves of order 1-4

(b) Linear ordering

Figure 3.5: Z-order curves vs. normal linear ordering for spatial locality
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Figure 3.6: FPS decline as spatial particle ordering diminishes

non-uniform looking spawn patterns. Th best solution may prove to be more
frequent sorting.

Geometry Collision

We also need to check for collision against the local geometry. Given that the
only geometry that will be collidable is a height map, we can do this quite
efficiently. Checking for collision in this case merely involves converting the
x and y coordinates of the particle position to indices into the terrain vertex
array, and then reading one vertex. If the particle’s height is lower than that
of the vertex, there is a collision(the height of the vertex is its z-coordinate
plus its w-coordinate which holds the snow depth). Now we need to respawn
the particle elsewhere, and increase the snow depth at this location.

Not all particles have to perform an uncoalesced read into the terrain vertex
buffer. One simple optimization we can do is to calculate the the height of
the highest terrain vertex, and the only do the collision check for particles
which fall below this value. This still leaves a lot of reads. A second pos-
sible optimization is to generate a 2D height map texture based on terrain
height values. Reading from this texture will be faster than the uncoalesced
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read. Especially if the particles are sorted, because then the texture cache
will be maximally exploited. The texture lookup optimization has not been
implemented.

Particle Repositioning

When ”dead” snowflakes need to be respawned we need to determine the
position to which they will be moved. Merely modifying their z-component
to move them to the top of the scene again will not be sufficient, as this will
result in unrealistic patterns in the appearance of new snow.

The obvious answer is to not only move the particles up again, but also
to randomize their planar(x and y) coordinates in a way that will produce
uniform snowfall across the scene. This is not entirely straight forward on
the GPU, as a random number generator is stateful in that it maintains
a seed variable, which is updated upon generating a number. This seems
highly incompatible with the GPU model where may have many threads
simultaneously requesting random numbers. This problem has actually been
solved[14], but we were looking for a more light-weight solution.

Instead of using a random number generator as a source of randomness, we
use inherent noise in the floating point representation of the position of each
particle. The method has no specific formal basis and was developed by trial
and error, but the resulting distribution appears uniform and pleasing to the
eye.

Here is the actual code used for repositioning a particle(note that in the code
the vertical axis is y and not z):

__device__ float4 reposition(float4 pos) {

int or_term = 0x3F000000 | ((*(int*)&pos.y & 0xFF) << 2);

float temp = 4.0f * (float)SCENE_X;

int ival = ((*(int*)&pos.x & 0xFFF) << 10) | or_term;

pos.x = (*(float*)&ival - 0.5f) * temp;

ival = ((*(int*)&pos.z & 0xFFF) << 10) | or_term;

pos.z = (*(float*)&ival - 0.5f) * temp;

pos.y = (float)(SCENE_Y - 2);

return pos;
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}

For this to work the velocity numbers must be a source of noise at all times,
and to ensure that this is the case the particles start with low non-zero
random velocities along all axes. If we don’t do this then initial collisions will
cause the particles to be repositioned in very obvious non-uniform patterns.

3.3.2 Managing Snow Buildup

When a collision is detected between a particle and an the terrain geometry,
an expected consequence is that there be deposited snow at the location of
impact. One solution is to simply increment the snow depth at the nearest
vertex by some fixed amount. For coarse terrain grid resolutions this produces
reasonable results, but for finer resolutions the density of collisions may not
be high enough that snow is distributed in a nice uniform manner across the
ground.

If snow buildup per collision is very low, snow levels will even out before
changes start to become visible, but a compromise will allow for higher
buildup rates without visual artifacts. Instead of only increasing the snow
depth at the nearest vertex, we may add snow to the nearest 9 for example
(with most buildup in the middle, and least for the corner vertices).

This works fairly well for cases where snowfall is distributed fairly uniformly
across the surface, but wind phenomena may often cause more snow in certain
areas. This will lead to a dramatic buildup of snow at these locations, which
will look unnatural after some time due to the absence of any mechanism for
redistributing snow.

A simple kernel was devised to avoid this problem. It is based on an idea
that resembles the stability criterion in[10]. Each frame the kernel will com-
pare the height and snow depth of each vertex with that of its neighbors,
and possibly adjust the snow depth value by some small amount. The first
precondition for adjustment is that the height difference ∆h between vertices
(where height includes snow depth) is greater than some threshold t. The
second is that the highest vertex(from which snow will be drawn) has more
snow than a threshold value m. If these hold true, then a certain fraction
k will be taken from the snow of the higher and added to the lower vertex.
Only the amount of snow s that is actually above the receiving vertex is
considered when calculating the amount to transfer.
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Figure 3.7: Snow transfer illustration

This is illustrated in Figure 3.7, where four case examples are shown where
snow transfer from four vertices to their right neighbor is considered:

1. No transfer because ∆r < t.

2. k · s transfered where s is less than the total amount of snow for the
vertex.

3. k · s transfered where s is the total amount of snow for the vertex.

4. No transfer because total amount of snow is less than m.

The ∆h threshold condition allows for some slope in build up snow, while
total snow > m condition ensures that the ground will not be stripped bare
by snow transfer. By transferring only a small amount per frame, we ensure
that the effect is virtually imperceptible, but across many frames snow will
slide downslope and build up in low points, which leads to an evening out of
the snow levels.

This method does not model all forms of migration for fallen snow, and what
it does model it merely approximates. Tweaking the thresholds t and m is
necessary in order to achieve a believable effect, and values for both have
been found by trial and error. A possible improvement would be to also take
wind into account to model wind-driven snow drift. It may also be feasible
to delay redistribution until a certain stability level is reached, whereupon
snow will be redistributed until it reaches some lower level. This might be
enough to model avalanches, but that remains speculative at this point.
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3.3.3 Wind Simulation

This is at the core of the simulation, and everything depends on a good
implementation. Many different components come together to make this
work. We need a way to handle obstacles in the scene, and we need to
implement many different kernels representing different parts of the fluid
simulation. Some of these are similar, and some are not.

The wind simulation operates on a set of core data structures that are 3D
arrays covering the domain volume:

Velocity field A vector field containing wind flow velocity, primarily rep-
resented by a 3D array of float4 values. For each frame this array is
copied into a 3D texture, to enable cheaper random-access lookup and
interpolation, but this can not be the main velocity data structure since
textures in CUDA are read-only(except the copy operation needed to
initialize them).

Pressure field A scalar field containing pressure values, represented by a
3D array of floats.

Solution vector A 3D array of float values representing the right-hand side
of the Poisson equation governing the pressure field. Calculated each
frame from the velocity field.

Obstacle map This is a 3D array of int values. The first bit of each int is
set when the cell is not a fluid cell(it is an obstacle cell). Each of the
next 26 bits represent whether or not the corresponding neighbor cell
is an obstacle or not. By storing the neighbor information in each cell
we avoid redundant loads when this information is needed.

Before development started on the kernels forming the simulation, a set of
functions for visualizing the information in these data structures were made.
This have both been used to facilitate debugging during development, and
as windows into the running simulation for no other reason than to see what
is happening. Figure 3.8 shows the pressure field visualized, with yellow
areas being high pressure, red areas low, and everything else something in
between. A CUDA kernel will generate an array of 4-component vectors,
one for each voxel cell, with the xyz-components holding position and the
w-component holding pressure. A GLSL shader colors the points based on
the pressure. In Figure 3.9 we see the velocity field which is also created
using a CUDA kernel and shaded in GLSL. Vectors pointing from low to
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Figure 3.8: Rendering the pressure field

high velocity cells are yellow, and for the opposite case they are red, with
a continuum in between. Finally we see in Figure 3.10 the obstacle field,
showing to us how the scene geometry have been voxelized.

Domain Decomposition in the Wind Field

Common to all steps involved in the wind simulation is that we need to
operate on individual values in three dimensional arrays representing the
domain of the simulation. The computation domain in CUDA is subdivided
into blocks, each of which runs on a single multiprocessor.

The decision of how to subdivide the domain rests on a variety of factors;
specifics of the problem at hand dictate how to handle the borders between
blocks; the dimensionality of the problem affects our choices for block shape.
In our case most of the kernels will for each voxel need the values of the six
directly neighboring voxels along the three axis lines.

An important consideration that we need to make is that memory access
is best organized into sequentially aligned batches of 16 individual 4, 8 or
16-byte values. This corresponds to the 16 threads that are simultaneously
active in a half-warp, whose memory accesses will be coalesced under these
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Figure 3.9: Rendering the wind velocity field

Figure 3.10: Rendering the obstacle field
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Figure 3.11: Borders across segment boundaries

conditions.

The restrictions posed mean that our blocks should be a minimum of 16 voxels
wide along the main X-axis where sequential coordinates map to sequential
memory locations. Another vital point is that one thread reading one voxel
will take approximately the same time as 16 consecutive threads doing a
coalesced read, due to the latencies involved. This has implications for how
we must handle borders between blocks. We note that we will need one
value from the neighboring block on each side. If our block size along the
major axis is a multiple of 16 and start and end at this boundary, we will
need to ”waste” one whole transaction for one value. If it starts at one
such boundary, we need one transaction for the one border value there also.
Having the blocks start and end in the middle of a segment will minimize the
”potential bandwidth” waste. These two scenarios are illustrated in Fig. 3.11.

One scheme which avoids this waste altogether involves storing the vertical
borders of each block sequentially in a separate array(Fig. 3.12). Since hori-
zontal borders can be read in one single coalesced read for each border, these
are given no special treatment. Given block dimensions of 16x8 as in the
figure, we can also read both the vertical borders in one coalesced read if
these are stored as described. That is, for each column of blocks we store
one row in an auxiliary border array. The width of this array needs to be
twice the combined height of blocks in a column, since two vertical borders
will be stored for each. The height must be the number of block columns.
This method necessitates that each thread block must write the values from
its interior vertical borders to its two neighbors’ slots in the border array, in
addition to storing its results back normally.

A compelling option is to designate one block to each whole row in the layered
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Figure 3.12: Auxiliary array for vertical borders

planes that constitute the volume. This is the first configuration that was
actually implemented. It is among the simplest, and while it may not be
optimal, it is attractive for several reasons. The first reason is, as mentioned,
simplicity: It allows us to entirely disregard complexity introduced by borders
along the major axis. Also, by reading the whole row into shared memory
it does still reduce memory overhead somewhat by making two of the six
surrounding voxels immediately available at each point. This means that
each cell is read 5 times instead of the full 7 times(once for the cell itself,
and once for each of the 6 direct neighbors). Now this is hardly efficient but
it works.

A modification of this scheme only allocates enough blocks to fill one single
plane, and then each one iterates from the bottom of the volume to the top.
While doing this we can retain immediately preceding voxels in registers,
and thus avoid duplicating reads to obtain neighbors in the vertical direc-
tion(without requiring more shared memory). This results in each voxel being
read a total of 3 times. Rewritten kernels using this iteration scheme caused
a 66% increase in wind simulation performance on a test with a 256x256x32
field. Variables other than memory access pattern may have varied between
the versions so this performance increase may not be wholly attributed to
the vertical iteration scheme.

Below is pseudo-code for thread i in a block running this vertical iteration
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Figure 3.13: Block distribution

scheme. Note that read reads from global memory and calcX does the
required calculation using the stencil values in the X directions.

shared[i] = read(x,y,0);

prev = shared[i];

shared[i] = read(x,y,1);

for(z = 1; z < Z_MAX-1; ++z) {

calcX(shared[i+1], shared[i-1]);

calcY(read(x,y+1,z), read(x,y-1,z));

temp = shared[i]

shared[i] = read(x,y,z+1);

calcZ(shared[i], prev);

prev = temp

}

Advection Step

The self-advection for the wind field involves using the velocity in each voxel
in the field to produce a new point that is transported along the negative
velocity vector. We do an interpolated sampling of the wind field at this new
point, and store the sampled vector in place of the original voxel value.

The velocity vectors at the grid points are read using coalesced reads from a
normal array in global memory. The block division employed is the simple
scheme outlined above, where one block is one full line along the X-axis. Since
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only the self voxel is needed here, this should be close to optimal. Vertical
iteration is unnecessary since we don’t depend on the value of neighbors.

Having produced new positions using the obtained vectors, we need to sam-
ple the field again to produce the updated velocity value. This time we are
sampling off-grid so we need to perform linear interpolation on the eight
nearest grid points. It would be quite costly to lookup these and then do
the interpolation manually. Instead we can use CUDAs support for 3D tex-
tures, which enables us to utilize hardware crafted to do this exact thing as
efficiently as possible. We have already created a 3D texture from the last
state of the wind field, for the purpose of updating the snow particles, and
we can reuse this same texture here. Now what remains is to to a series of
coalesced writes back to the original array.

It is worth noting that since we here write all the cells in the wind velocity
volume, we write the boundary values at the same time, in order to avoid a
separate stage for that. We also set the cells in the pressure field to zero(the
initial ”guess”) to prepare for SOR iteration.

Other Simulation Steps

The wind simulation requires a number of additional steps in addition to the
advection step:

Build solution This calculates the right-hand side of the Poisson equation.

Solve poisson Each iteration of this updates the pressure field according to
Eq. 2.19. Saltvik[17] used an ω value of 1.7 but this leads to instabil-
ity(like in Figure 3.14) here for reasons that are not clear. It has been
found that using a list of relaxation factors such as 1.7, 1.5, 1.2, 1.1 and
1.1 for over 5 iterations does lead to a stable simulation as opposed
to using something like 1.7 for all, and it results in a more responsive
wind simulation than using a low relaxation factor for all.

Set pressure boundaries Enforces the bondary condition of the pressure
field. Performed once per Poisson iteration.

Project velocities Modifies the velocity field using the gradient of the com-
puted pressure field.

All of these except Set pressure boundaries, access some of the array data
structures with a 5-point stencil per cell in order to perform its function.
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Figure 3.14: Numeric instability as seen in the pressure field

For these the domain decomposition and vertical iteration scheme explained
previously is used. Since Set pressure boundaries does not read neighboring
values(except at boundaries) it does not use vertical iteration.

Updating the Obstacle Field

The obstacle field conveys to the fluid simulation which cells are within ob-
stacles and which are not. The simulation kernels will only run on cells that
are outside of obstacles. Since the geometry of the scene is subject to change
due to the buildup of snow, this field has to be updated to reflect this (this
is not done by Saltvik). This may be done periodically since snow buildup
is slow compared to typical voxel cell dimensions.

Right now it is done in the CPU, and it is in fact the only simulation com-
ponent that CPU handles. We do this in a way that does not impact frame
rate at all. One update cycle is divided into a series of steps:

1. Copy terrain geometry from GPU
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2. Zero local obstacle map memory

3. Set self bit of each cell to 1 if below terrain(plus snow), 0 otherwise.

4. Set the remaining 26 bits to 1 or 0, according to which neighbors are
obstacles.

5. Copy obstacle map to GPU

In addition to this step division, step 3 and 4 are divided into substeps with
one layer in the volume computed per substep. The implementation currently
performs one step per 0.1 seconds. This means that for a wind field 16 voxels
high, there are 35 steps per cycle(the obstacle map is updated once per 3.5
seconds).

3.4 Performance Tuning with CUDA

The GPU multiprocessors provide limited resources that have to be shared
among all active threads that are executing on them. There is much to be
gained by controlling our usage of these resources, so that more threads may
run simultaneously. We will here explore some techniques that we use when
profiling and optimizing CUDA code.

If we invoke the compiler with the parameter ’-cubin’ when compiling our
CUDA code the compiler creates a file with the cubin extension that contains
some useful information on GPU program. Especially of interest are the
sections for each compute kernels, where three values are of great importance.
Here is part of an entry for a kernel:

code {

name = __globfunc__Z11wind_advect14cudaPitchedPtr4dim3f6float4

lmem = 16

smem = 64

reg = 8

...

}

The values to watch are lmem, smem and reg. These list the amount of
local memory, shared memory and register space that is in use by the kernel.
Ideally we want to use zero local memory, because of its slowness and it is



56

easily achievable most of the time, but sometimes, like here, the compiler
insists on generating code using it.

An important concept that we must consider when writing kernels is occu-
pancy. Occupancy is the ratio of active warps to the maximum supported
number of warps per multiprocessor. We want this number to be as close to 1
as we can. Factors that limit occupancy is the amount of shared memory and
register space used. The number of active warps will be determined by the
number of blocks that can be scheduled simultaneously, and this is directly
determined by the resource use of each block. One block will use a specific
amount of the total available shared memory, as well as a specific number of
registers which will be split evenly among its constituent threads. Achieving
hight occupancy then becomes an exercise in getting shared memory and
register use as low as possible, and also keeping them balanced. It will not
matter that register use is low if one block uses all available shared memory
and vice versa[16].

To reduce register use we can evaluate our code to see if we need to use all
the variables that we are using. This should be the first step, but we may
not always be able to rewrite in ways that lower register use. It is useful to
experiment, and watch for changes in the cubin output. If we are register
constrained and no redundant variables are found we can move one or more
variables to shared memory, which is just as fast. We can do this by simply
allocating for each block a shared memory array of the type needed with as
many elements as there are threads in the block.

It is not always easy to predict whether we are register or shared memory
constrained just by looking at the numbers. To make this easier NVIDIA
has released an Excel spreadsheet(Fig. 3.15) that will calculate occupancy,
and display graphs of how occupancy will develop with changing resource
use. A quick glance at this will tell us what we are constrained by. To
use it one has to fill in the number of threads per block, as well as shared
memory and register use per block. It also has an option to view occupancy
for different compute capabilities, since maximum warp limit and register
count has increased in newer revisions.

Also of tremendous use is the CUDA Visual Profiler application. Using this
we can run our CUDA programs and get a precise account of the time use
of all our kernels, as well as other statistics. Profile-guided optimization is
always the best way to go, because then we can be sure of how much the
problems we are addressing are actually contributing to computation time.

The profiler allows us to enable counters for certain events that are of interest
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CUDA GPU Occupancy Calculator

1.) Select Compute Capability (click): 1,2 (Help)

2.) Enter your resource usage:
Threads Per Block 256 (Help)

Registers Per Thread 8
Shared Memory Per Block (bytes) 2048

(Don't edit anything below this line)

3.) GPU Occupancy Data is displayed here and in the graphs:
Active Threads per Multiprocessor 1024 (Help)

Active Warps per Multiprocessor 32
Active Thread Blocks per Multiprocessor 4
Occupancy of each Multiprocessor 100 %

Physical Limits for GPU: 1,2
Threads / Warp 32
Warps / Multiprocessor 32
Threads / Multiprocessor 1024
Thread Blocks / Multiprocessor 8
Total # of 32-bit registers / Multiprocessor 16384
Register allocation unit size 512
Shared Memory / Multiprocessor (bytes) 16384

Allocation Per Thread Block
Warps 8

Registers 2048
Shared Memory 2048
These data are used in computing the occupancy data in blue

Maximum Thread Blocks Per Multiprocessor Blocks
Limited by Max Warps / Multiprocessor 4

Limited by Registers / Multiprocessor 8
Limited by Shared Memory / Multiprocessor 8
Thread Block Limit Per Multiprocessor highlighted RED

CUDA Occupancy Calculator
Version: 1,4

Copyright and License

Just follow steps 1, 2, and 3 below! (or click here for help)

Click Here for detailed instructions on how to use this occupancy calculator.

For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.
Your chosen resource usage is indicated by the red triangle on the graphs.
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Figure 3.15: Occupancy calculator spreadsheet

Figure 3.16: Example profiler session
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to us:

• Coalesced load

• Coalesced store

• Uncoalesced load

• Uncoalesced store

• Local load

• Local store

• Branch

• Divergent branch

• Instructions

• Warp serialize

• CTA launched(executed thread blocks per multiprocessor)

Of these the most interesting ones are those that pertain to uncoalesced
memory access, local memory access, divergent branches and warp serializing.
All of these should be kept at a minimum, or else performance will suffer.

We have attempted to optimize all of our simulation kernels according to
the above techiques and guidelines. Table 3.4 lists the occupancy that was
achieved on each kernel, on compute capability 1.1 and 1.2 cards. For all the
kernels which on 1.1 cards achieve 67% occupancy, we are register constrained
and unable to optimize further.
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Kernel 1.1 1.2
Advect 67% 67%
Build solution 67% 100%
Solve poisson 67% 100%
Set pressure boundary 100% 100%
Project 67% 100%
Smooth snow 67% 100%
Update particles 67% 100%

Table 3.1: Occupancy achieved for all kernels on different compute capability
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Chapter 4

Results

In this chapter we will evaluate several aspects of our implementation. We
will examine its performance characteristics and scaling properties, under
various different configurations, and running on different systems. Visual
results will also be presented and evaluated.

4.1 Test Setup

To test the performance of the simulation, four test systems were selected(Table 4.1).
They were selected for their wide range of GPU power while other factors
are similar.

Three of the four GPUs in the test are consumer graphics cards, while one(the
Tesla c1060) is targeted at the HPC market. It does not have a video output,
and another graphics card is needed for output. System 1 and 2 are in reality
the same system. It has two graphics cards: the Tesla and the GTX 280. For
all tests involving those systems, the GTX 280 was used for graphics output,
and for System 1 computation was also performed on this card, while for
System 2 it was performed on the Tesla. For all tests the number of SOR
iterations performed will be 5, as this has proved to strike a good balance
between visual results and performance.
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System 1 System 2 System 3 System 4
CPU 2.83 GHz 2.83 GHz 2.83 GHz 2.5 GHz
RAM 4 GB 4 GB 2 GB 8 GB
GPU GTX 280 Tesla c1060 8600 GT 9800 GTX

GPU RAM 1 GB 1 GB 256 MB 512 MB
Chipset nForce 790i nForce 790i nForce 790i Intel X48

OS Ubuntu Ubuntu Ubuntu Ubuntu
Driver 180.22 180.22 180.22 180.22

Table 4.1: Test systems(all CPUs are Intel Core 2 Quads)

4.2 Kernel Profiling

The Cuda Visual Profiler was used to examine the time distribution per frame
of the different kernel functions involved in the simulation. For this test a
256x256x32 wind field was used, a particle count of 512K, and a 512x512
height map. Figure 4.1 shows the results, with the different kernels listed
in descending order on the right. We see that the particle update kernel
grabs the most time here, and this may be explained by the large amount
of uncoalesced memory reads that are performed against the terrain vertex
array, as well as non-coherent texture lookups in a large 3D texture.

We see that the major kernels involved with the wind field simulation fill
most of the remaining time. Predictably the solve Poisson kernel is the most
resource demanding among these, considering the fact that it is executed
several time. In fact, we may have expected it to more expensive than it is
in comparison to some other functions that are only called once per frame,
particularly the build solution kernel, and the advect kernel. We explain
the performance characteristics of the advect kernel by the fact that it per-
forms a filtered texture sampling per voxel, which is less efficient than normal
coalesced reads. The build solution kernel suffers from the inefficiency of op-
erating on float4 values compared to the 32-bit float values the solver
works on.

The snow smoothing kernel, which is responsible for managing redistribution
of fallen snow is shown to have an insignificant footprint compared to the
rest.

We are motivated to examine the impacts on performance of varying the
parameters that were fixed in this test. In particular, we want to see how
performance scales when each is gradually increased.
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Update particles

Solve poisson

Build solution

Advect

Project

Smooth snow

Pressure boundary

Memcopy

Figure 4.1: Time distribution of simulation kernels per frame

4.3 Benchmarks

4.3.1 Scaling Wind Field Resolution

Two scenarios were considered with respect to investigating scaling the wind
field. In the first scenario(Figure 4.2 and 4.3) the particle count was zero,
while the size of the wind field is scaled from low to high resolutions. This
will let us observe how the different systems behave with regard to increasing
amounts of pure computation. In particular, the computations on the wind
field will not affect screen output.

No Particles

Fig. 4.2 shows the frame rate results of the first test. Here we see the powerful
Tesla card leading. It is perhaps surprising that is leads by such a high margin
over the equally powerful GTX 280. The key to understanding this lies in
remembering the fact that since there are absolutely zero particles present.
This means that nothing that is rendered depends on what is computed, and
therefore the runtime system does not need to transfer data from the Tesla to
the 280(which is doing the rendering). The same is true of the 280 when it is
doing the simulation, but unlike the Tesla it has to perform rendering tasks
simultaneously. It seems reasonable that this is the cause of this gap, and
indeed we see that this gap is reduced as the computation overhead increases:
Where the Tesla performs twice as good as the 280 for the lowest resolutions
we see that the difference tends to zero with higher resolutions. The Tesla’s
initial flat curve is likely to be caused by the fact that for the two lowest
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Figure 4.2: Scaling wind field with no snow(frame rate)
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Figure 4.3: Scaling wind field with no snow(frame time)
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problem sizes other factors than computation time limit its frame rate.

An explanation is also called for regarding the 9800 GTX’s frame rate in
comparison to the much more powerful GTX 280 on the lowest problem
sizes. As was just mentioned the lower problem sizes seem not to be able
to stretch computation time to the point where it overtakes other factors.
Recall from Table 4.1 that these two systems have different chipsets, and we
theorize that particulars in the operation of the system bus may affect the
results when computation load is negligible, as was the case here.

Figure 4.3 is perhaps more interesting, because it shows us how frame time(as
opposed to frame rate) scales with respect to increaseing voxel count. This
is because frame time should increase linearly given a linear increase in com-
putation(all else being equal). This is also what we see happening, at least
for the Tesla and the GTX 280. The 280 and the Tesla scales very similary,
while the 9800 GTX scales somewhat worse and the 8600 GT is worst, as
expected. The latter two experiences a deterioration after about 1 million
voxels, but their slopes recover their previous characteristics after this point.

Balanced Particle Count

In the second scenario(Figure 4.4) the particle count was set at what was
considered a balanced number(512K), while the wind field was scaled like
before. This is a more interesting case since it lets us see how the wind
simulation scales in a normal situation where the particle simulation will run
simultaneously. The particle count was chosen because it is not unreasonably
high while it results in convincing visuals.

When we add the snow simulation(Figure 4.4) we see the comparative power
differences between the cards reflected in the graphs, since now, even at low
resolutions, there is still a significant amount of computation to do. We see
that the Tesla is very much held back by the fact that for each frame, the
updated particles need to be transfered across the system bus to the 280 card
doing the rendering. This holds it back to such a degree that we don’t see
performance decreases until the problem size reaches 192x192x16.

All the cards except the 8600 GT seem to have similar scaling characteristics
here, being separated only by a constant. It seems to be the case that the
wind simulation is memory bound and that the more powerful cards are not
able to fulle utilize their execution units, because if that were the case they
would not scale so similarly. This may indicate to us that improvements
could be made in the domain decomposition of the wind kernels, to reduce
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Figure 4.4: Scaling wind field with snow count = 512K

bandwidth use.

4.3.2 Scaling Particle Count

When considering the scaling of the particle counts, the opposite two scenar-
ios of the previous test were considered, namely scaling particle count with
either no wind field1 or a balanced wind field(192x192x16). Again the choice
for fixed parameter in the second scenario was based on finding a reason-
able but not too high value, such that the scaling properties of the other
parameter may be examined under realistic circumstances.

No Wind Field

In Figure 4.5 we see fairly similar shapes for all four graphs, with some minor
differences. The GTX 280 and the 9800 start out at the same level, suggesting
that they are not compute bound and with other system factors(perhaps
differing motherboards) putting them on an even level. The Tesla follows

1This is slightly inaccurate; there is a tiny 32x32x4 wind field, but it is static.
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Figure 4.5: Scaling snow particle count with no wind

the curve of the comparatively very weak 8600 GT very closely. This is a
bad scenario for the Tesla since absolutely all compute work is directly tied
to display output and the amount of computations per particle nowhere near
justifies the cost of going through the system bus. It seems to be the case
here that the overhead for transferring the particle positions over the bus for
the Tesla grows about as fast as the 8600 is slowed by its increasing compute
load. At the highest particle count the frame time on the 9800 GTX is 43%
higher than on the GTX 280. This is significantly faster, but it does not
reflect the almost twice as numerous Stream Processors on the latter.

Balanced Wind Field

Figure 4.6 shows the Tesla doing much better than it did in the previous
test, in comparison with the other cards. This is because now that the
wind field is also simulated the amount of computation per particle increases
dramatically. Not only do we have an increase in computation, but the cost of
updating each particle increases to since we now have to do a texture lookup
in a large 3D texture. All of this helps to amortize the cost of the needed
data transfers. Here we do see the 280 perform as expected in relation to
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Figure 4.6: Scaling snow particle count with wind field = 192x192x16

the 9800 GTX, with each frame taking almost half the time. This indicates
that the simulation scale well with increasing compute power, and that the
computation required for the particle update alone is not enough to fully
utilize the hardware.

4.3.3 Scaling Terrain Resolution

All colliding particles modify the terrain, and the snow redistribution kernel
reads and writes each vertex in the terrain every frame. The former should
not suffer from increasing terrain resolution since collisions happen fairly
seldom, but the latter should make an FPS impact when resolution increases.
In addition we note that the largest resolution(1024x1024) will cause 2M
triangles to be rendered each frame. The test will run a reasonably heavy
simulation with a 256x256x30 wind field and 512K particles.

The results(Figure 4.7) show that even with this large a problem size, scal-
ing the terrain resolution still has a non-negligible impact. The 8600 GT
is predictably paralyzed by the load even at the lowest terrain resolution,
due to the field resolution and particle count. However, while impact is
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Figure 4.7: Scaling terrain resolution with particle count = 512K and wind
field = 256x256x32

non-negligible it is very small compared to the impact we have seen from in-
creasing particle count and field resolution, and as a result we may use very
high resolution terrains to simulate snow phenomena over large landscapes.

4.4 Visuals

A very large number of particles can be simulated while maintaining real
time performance in this application. Even in a large scenes this enables
high particle densities in all spaces. This enables believable visualisations of
dramatic snow storms, with snow seriously impairing visibility. High densi-
ties in itself would of course not be very interesting if the snowflakes did not
behave realistically in scenarios with no wind, with violent gusts of wind, and
everything in between. Reasonably detailed and realistic wind simulations
are also achieved, while still maintaining real time frame rates.

In Figure 4.8 we can see a scene where the snowflake count is at a medium
level, and where the wind acting upon the snow is obvious. Streaks composed
of denser snow may be seen following the field lines. The streaks are formed
by wind forcing the snow against hillsides which causes it to be compressed
to the form seen as it passes over the hills.

Figure 4.9 shows the really dense scenario, where long distance visibility is
effectively zero. This is possible to fake, but here it is achieved through sheer
mass of particle density. The wind force is lesser here and this leaves a more
uniform distribution of snow in the air, but details of wind interaction is also
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Figure 4.8: High wind speeds, medium particle count

hidden by the pure whiteness that results.

A simple test of the snow redistribution kernel is shown in Figure 4.10. Here
the entire heightmap was flattened, except for a square box in the middle.
What the figure shows is the result of snow being carried by high winds from
the right impacting its side and on top of it. The snow hitting the wall in-
creases the snow depth on the wall forming vertices, and this is redistributed
to the lower neigboring vertices, eventually resulting in the buildup of snow
at the base as shown. We also see a buildup on the flat top, that is deepest
in the middle as we often see in reality.
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Figure 4.9: Medium wind speeds, high particle count

Figure 4.10: Snow buildup on top of and against square block shape
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Chapter 5

Conclusions

The goal of this thesis was to investigate using modern GPUs for the purpose
of realizing a real-time computationally intensive snow simulation. Snow was
here interpreted to mean the behavior of airborne snow as it falls, as well as
the buildup on snow on the ground.

Our simulation was capable of simulating complex air flows over and around
the features of large landscapes, with very numerous snow particles carried
on these winds. The snow particles behaved realistically, with respect to
both air flow and geometry collision. We were able to model the dynamic
buildup and distribution of snow over varied geometry.

With respect to our main goal, we feel out final snow simulation implemen-
tation was very successful. We implemented a simulation using the NVIDIA
CUDA programming environment. This allowed us to implement the simu-
lation in high level abstractions that older Cg-style implementations that are
more graphics specific.

Our implementation was able to maintain real-time frame rates on a modern
NVIDIA GPU with particle counts exceeding two million, all of which are
interacting both with the wind field and the ground.

The number of fluid cells simulated in the wind field could be scaled up
beyond four million while maintaining our real-time requirement. Finally,
we showed that the performance hit of increasing geometry resolution to
over to high values like over one million vertices was not significant.

The high particle counts that we achieve, in combination with the high res-
olution landscapes provide for very convincing visuals.
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5.1 Future Work

The implementation provided here while illustrative of what can be done
with regards to simulation of snow phenomena on a modern GPU, can, like
most implementations, be improved even further.

One area where it could be significantly improved is in support for more
complex geometry. The height map model does support fairly realistic scenes
from the natural world, but it does not support objects like buildings well.

It may also prove useful to look at providing an even better performing fluid
simulation, or to investigate alternative fluid models, such as Lattice Bolzman
methods.
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