
February 2009
Øystein Nytrø, IDI
Carl-Fredrik Bassøe, INM
Ole Edsberg, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Early warnings of critical diagnoses

Stig Alvestad

Problem Description
For many medical conditions, early diagnosis is very important in order to improve prospects and
prevent unnecessary damage. Sometimes, signs occur that in hindsight should have allowed a
physician to suspect and diagnose the condition at an earlier stage. Since patient records in
general practice contain long and relatively rich descriptions of the patient history, it should be
possible to automatically discover such signs and alert the physician when there might be a
reason to suspect the presence of the condition. This can be formulated as a machine learning
problem. We have access to data extracted from general practice patient records, and we have
identified three promising target diagnoses: Asthma, Diabetes and Hypothyroidism. The goals of
this project are to develop methods that with basis in a training data set can:
 * Given a partial patient history, predict whether or not the target diagnosis will occur in the
near future.
 * Discover rules, patterns, decision trees etc that give insight into the warning signs that
precede a target diagnosis.

The student can focus on one or both of these goals. The students should develop several
candidate methods and perform a throrough experimental evaluation.

 The challenges of the problem include class imbalance, heterogeneity and sparsity of the data,
temporal feature extraction and ensuring validity of evaluation. For a predictor to be clinically
useful, it must have reasonable sensitivity and very low specificity, since clinicians will not tolerate
many false alarms. We do not expect to achieve clinical-grade performance in this project, but
even a weak predictor would be interesting, as a starting point for further research and a
motivator for higher availability and quality of data. A negative result, if founded on systematic
experiments, would also be interesting.

Assignment given: 17. September 2008
Supervisor: Øystein Nytrø, IDI

Abstract

Background: A disease which is left untreated for a longer period is more likely to cause
negative consequents for the patient. Even though the general practitioner is able to discover
the disease quickly in most cases, there are patients who should have been discovered earlier.
Electronic patient records store time-stamped health information about patients, recorded by
the health personnel treating the patient. This makes it possible to do a retrospective analysis
in order to determine whether there was sufficient information to give the diagnose earlier
than the general practitioner actually did. Classification algorithms from the machine learning
domain can utilise large collections of electronic patient records to build models which can
predict whether a patient will get the disease or not. These models could be used to get more
knowledge about these diseases and in a long-term perspective they could become a support
for the general practitioner in daily practice.

Purpose: The purpose of this thesis is to design and implement a software system which
can predict whether a patient will get a disease in the near future or not. The system should
attempt to predict the disease before the general practitioner even suspects that the patient
might have the disease. Further the objective is to use this system to identify warning signs
which are used to make the predictions, and to analyse the usefulness of the predictions and
the warning signs. The diseases asthma, diabetes 2 and hypothyroidism have been selected to
be the test cases for our methodology.

Methods: A set of suspicion-indicators which indicates that the general practitioner has sus-
pected the disease are identified in an iterative process. These suspicion-indicators are subse-
quently used to limit the information available for the classification algorithms. This informa-
tion is subsequently used to build prediction models, using different classification algoritms.
The prediction models are evaluated in terms of various performance measures and the mod-
els themselves are analysed manually. Experiments are conducted in order to find favourable
parameter values for the information extraction process. Because there are relatively few pa-
tients who have the disease test cases, the oversampling technique SMOTE is used to generate
additional synthetical patients with the test cases.

Results: A set of suspicion-indicators has been identified in cooperation with domain experts.
The availability of warning signs decreases as the information available for the classifier dimin-
ishes, while the performance of the classifiers is not affected to such a large degree. Applying
the SMOTE oversampling technique improves the results for the prediction models. There is
not much difference between the performance of the various classification algorithms.

Conclusions: The improved problem formulation results in models which are more valid
than before. A number of events which are used to predict the test cases have been identified,
but their real-world importance remains to be evaluated by domain experts. The performance
of the prediction models can be misguiding in terms of practical usefulness. SMOTE is a
promising technique for generating additional data, but the evaluation techniques used here
are not good enough to make any conclusions.

i

ii

Preface

This is a Master’s thesis written at the Department of Computer and Information Science
(IDI) at the Norwegian University of Science and Technology (NTNU) from September 2008
to February 2009. The work is a continuation of the work started in an in-depth health
informatics project [4] from autumn 2007. It is a cooperation between IDI and the Norwegian
Electronic Health Record Centre (NSEP). The supervisor has been Øystein Nytrø, the main
advisor was Ole Edsberg and Carl-Fredrik Bassøe has been co-advisor.

I would like to thank Øystein Nytrø for introducing me to the field of health informatics
and encouraging me to write my master’s within this young and interesting domain. Ole
Edsberg has been a great resource for me during the whole process and I have learned much
under his guidance, I am very grateful for his help. I would also like to thank Carl-Fredrik
Bassøe who contributed with both data (Promed) for the experiments and good advice from a
medical perspective. My thanks goes to Anders Grimsmo for providing the second data source
(Profdoc) used in the experiments. I thank Arild Faxvaag and Vebjørn Remen who took time
to evaluate part of the results from a medical perspective. Finally I would like to thank the
people at NSEP for an inspiring environment to work in.

iii

iv

Contents

List of Tables viii

List of Figures x

I Project report 1

1 Introduction 2

2 Background and related work 3
2.1 Definition of relevant concepts . 3

2.1.1 Terms used in supervised learning . 3
2.1.2 Special events and periods in time . 4
2.1.3 Graphical introduction to how FVs are created in this experiment . . . 5

2.2 Strategies to solve main problems . 6
2.2.1 Solving MP1 . 7
2.2.2 Solving MP2 and MP3 . 8

2.3 The three test cases . 10
2.3.1 Asthma . 10
2.3.2 Diabetes . 11
2.3.3 Hypothyroidism . 11

2.4 Methods used in machine learning . 12
2.4.1 Preprocessing . 12
2.4.2 Classification . 16
2.4.3 Evaluation . 21

2.5 Data mining tools . 25
2.5.1 Intellectual property rights and software 25
2.5.2 Weka classes used in this work . 26

2.6 Related work . 26

3 Materials and Methods 29
3.1 Materials . 29

3.1.1 Sensitivity of data . 29
3.1.2 Data set: PD-B . 30
3.1.3 Data set: PM-B . 31

3.2 Overview of general experiment . 31
3.2.1 Data flow diagrams for DAS . 31

3.3 Experiment overview . 37
3.4 E1: Determine time of suspicion . 38

v

3.4.1 Constraints . 39
3.4.2 Pseudocode PH selection . 40
3.4.3 Calculating the attribute worth . 40
3.4.4 Experiment settings . 41

3.5 E2: Varying settings when APP ≤ PP . 41
3.5.1 Constraints on FV creation . 42
3.5.2 Deciding the values of the settings . 42
3.5.3 Feature selection method . 44
3.5.4 Pseudocode PH selection . 44
3.5.5 Experiment settings . 44

3.6 E3: Increasing positives when APP ≤ PP . 44
3.6.1 Experiment settings . 46

3.7 E4: Comparing all classifiers when APP ≤ PP 46
3.8 E5 and E6 . 46

4 Results 48
4.1 Understanding the RIPPER model . 48
4.2 E1: Determine time of suspicion . 49

4.2.1 Examining the suspicion-indicators . 49
4.2.2 Time to suspicion and diagnose . 50
4.2.3 Model analysis . 59

4.3 E2: Varying settings when APP ≤ PP . 63
4.3.1 Effect of varying PP . 63
4.3.2 Effect of varying WT . 66
4.3.3 Effect of varying NN . 69
4.3.4 Effect of varying NA . 72

4.4 E3: Increasing positives when APP ≤ PP . 75
4.4.1 Increased complexity . 75
4.4.2 Too few attributes . 75

4.5 E4: Comparing all classifiers when APP ≤ PP 78
4.5.1 Performance . 78
4.5.2 Time to build . 78

4.6 E5: Varying settings when APP = PP . 79
4.6.1 The number of training examples in E2 and E5 80
4.6.2 Positive indicators for different PP values 81
4.6.3 Positive indicators for different NA values 81

4.7 E6: Increasing positives when APP = PP . 84

5 Discussion 87
5.1 Positive indicators . 87

5.1.1 Why are positive indicators interesting? 87
5.1.2 Where do the positive indicators occur? 88
5.1.3 Do positive indicators affect performance? 89
5.1.4 Determining the validness of positive indicators 90

5.2 Invalid SMOTE results because of circular reasoning 90
5.2.1 Methods to ensure valid results for SMOTE 90

5.3 Limitations of data sets . 91
5.3.1 Potential value of additional information 91
5.3.2 Reasons for not including additional information 91

5.4 The potential usefulness of good prediction models 92
5.5 What kind of information do we retain? . 93

vi

5.5.1 Extracting different information from different periods 93
5.5.2 Dominant periods . 94
5.5.3 The information retained in the experiments 94

5.6 Rich FVs and few examples or sparse FVs and many examples? 95
5.7 Choosing evaluation metric for skewed class distributions 95

6 Conclusion 99

Bibliography 99

Appendix 102

A Experimental settings 103

B Additional results 105
B.1 E5: Varying settings when APP = PP . 105
B.2 E6: Increasing positives when APP = PP . 114
B.3 E1: Additional scatter plots . 119

C Abbreviations 122

vii

List of Tables

2.1 Example of inconsistent naming of events, based on PM-B. Frequency: how
many events contain the name in PM-B. Original: original name. Normalised:
the name after merging. 13

2.2 The confusion matrix. 22
2.3 Presentation of the most important classes used from Weka. 27

3.1 The data sets used in the experiments. 30
3.2 The event types and their elements for the data set PD-B. 30
3.3 The event types and their elements for the data set PM-B. 31
3.4 The experiment plan, presenting an overview of what each experiment tries to

accomplish. 38
3.5 Relevant experiment settings for E1. 43
3.6 Each row shows the values used for the variables in one sub experiment, which

is part of E2. 45
3.7 Constant experiment settings for E2. 46
3.8 E3 required only one run with the following settings. 47

4.1 The candidates which were marked as strongest suspicion-indicators for asthma. 50
4.2 The candidates which were marked as strongest suspicion-indicators for diabetes. 51
4.3 The candidates which were marked as strongest suspicion-indicators for hypothy-

roidism. 52
4.4 The number of patients who were suspected of TD on their first visit to the GP. 52
4.5 Positive indicators and their frequency from RIPPER models for all iterations,

with respect to asthma and PD-B. 59
4.6 Positive indicators and their frequency from RIPPER models, with respect to

asthma and PM-B. Attributes marked with * are suspicion indicators. 60
4.7 Positive indicators and their frequency from RIPPER models, with respect to

diabetes and PD-B. Attributes marked with * are suspicion indicators. 60
4.8 Positive indicators and their frequency from RIPPER models, with respect to

diabetes and PM-B. Attributes marked with * are suspicion indicators. 61
4.9 Positive indicators and their frequency from RIPPER models, with respect to

hypothyroidism and PD-B. Attributes marked with * are suspicion indicators. . 62
4.10 Positive indicators and their frequency from RIPPER models, with respect to

hypothyroidism and PM-B. Attributes marked with * are suspicion indicators. 62
4.11 The number of rules, with antecedents in paranthesis, for the RIPPER classifier

as the number of positives is increased. 75
4.12 Comparison of classifiers for asthma using PD-B. 79
4.13 Comparison of classifiers for asthma using PM-B. 80

viii

4.14 Positive indicators from E5 and their frequency from RIPPER models for dif-
ferent dataset-disease combinations and PP-values. WT = 31, iteration 3. . . . 82

4.15 Positive indicators from E2 and their frequency from RIPPER models for dif-
ferent dataset-disease combinations and PP-values. WT = 31, iteration 3. . . . 82

4.16 Positive indicators from E5 and their frequency from RIPPER models for dif-
ferent dataset-disease combinations and NA-values. NN = 1, WT = 300, PP =
913 and iteration 3. 83

4.17 Positive indicators from E2 and their frequency from RIPPER models for dif-
ferent dataset-disease combinations and NA-values. NN = 1, WT = 300, PP =
913 iteration 3. 83

5.1 Comparison of RIPPER models in terms of TP, FP, TN and FN. 89
5.2 DR is dominance rank, DOB is date of birth. 94

A.1 The variables in the settings file and what they control. 104

ix

List of Figures

2.1 tsus related to the tTD. 4
2.2 Illustration of how the prediction period and warning time relate to each other

and tsus. 4
2.3 Two scenarios which show what the possible relations between actual prediction

period (APP) and prediction period (PP). 5
2.4 Simplified overview of process prior to creation of FVs. 6
2.5 Illustration of how a FV is created. 6
2.6 Comparison of the general iterative development model and how it is realised in

S1. 9
2.7 The approximation of tsus should improve with each iteration. 9
2.8 Two clusters of minority examples and the k=3 nearest neighbours of example a. 16
2.10 The maximum-margin hyperplane in the middle and the two separated hyper-

planes on each side. Picture from Wikipedia. 20
2.9 Instances from two classes are separated by three different hyperplanes repre-

senting different classifiers. Picture from Wikipedia. 20
2.11 ROC plot illustrating ROC curve of random guessing and some example points.

Picture from Wikipedia. 24

3.1 DFD context level of DAS (called system in figure). 32
3.2 DFD level 1, top level processes in DAS. 33
3.3 DFD, process 2, preprocess and analyse data, decomposed. 34
3.4 DFD process 3, make FVs, decomposed. 35
3.5 DFD process 5, preprocess Instances, decomposed. 36
3.6 DFD, process 6, build and evaluate model, decomposed. 37
3.7 A pair of one positive (p) and negative (n) PH. The part of the PH used to

make the FV in E1 is marked with grey. 39
3.8 The grey parts of the PH are used to make FV in E2. The two subfigures show

how the positive p decides the length of the period from which the features are
extracted. 43

4.1 Scatter plots of how quickly GP suspects the TD, iteration 1. 54
4.2 Scatter plots of how quickly GP suspects and diagnoses patients, using data

from PD-B, iteration 3. 55
4.3 Scatter plots of how quickly GP suspects and diagnoses patients, using data

from PM-B, iteration 3. 56
4.4 The ratio of positives remaining as we require the period start - tsus to be greater

than a given number of days. X-axis: number of days, Y-axis: ratio of positives
remaining. 57

x

4.5 The number of positives remaining as we require the period start - tsus to be
greater than a given number of visits. X-axis: number of visits, Y-axis: number
of positives remaining. 58

4.6 Performance of classifiers for iteration 1. Classifier is evaluated using geometric
mean, and it is the PP which varies in each plot. 64

4.7 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the PP which varies in each plot. 65

4.8 Performance of classifiers for iteration 1. Classifier is evaluated using geometric
mean, and it is the WT which varies in each plot. 67

4.9 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the WT which varies in each plot. 68

4.10 Performance of classifiers for iteration 1. Classifier is evaluated using geometric
mean, and it is the NN which varies in each plot. 70

4.11 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NN which varies in each plot. 71

4.12 Performance of classifiers for iteration 1. Classifier is evaluated using geometric
mean, and it is the NA which varies in each plot. 73

4.13 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NA which varies in each plot. 74

4.14 Performance of classifiers when using SMOTE. Evaluation metric: geometric
mean, NA is max, NN varies. 76

4.15 Performance of classifiers when using SMOTE. Evaluation metric: geometric
mean, NA varies, NN is 8. 77

5.1 Performance of classifiers using different evaluation metrices when NN varies.
All figures are for iteration 3, PM-B and asthma. 97

5.2 Performance of classifiers using different evaluation metrices when NN varies.
All figures are for iteration 3, PM-B and asthma. 98

B.1 Comparing the results when APP = PP with APP ≤ PP. PD-B, Iteration 3,
PP varies and evaluation metric is geometric mean. 106

B.2 Comparing the results when APP = PP with APP ≤ PP. PD-B, Iteration 3,
PP varies and evaluation metric is geometric mean. 107

B.3 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the WT which varies in each plot. 108

B.4 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the WT which varies in each plot. 109

B.5 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NN which varies in each plot. 110

B.6 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NN which varies in each plot. 111

B.7 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NA which varies in each plot. 112

B.8 Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NA which varies in each plot. 113

B.9 Comparing the results when APP = PP (E6) with APP ≤ PP (E3) when using
SMOTE. Evaluation metric: geometric mean, NA = All, WT = 300, PP = 913,
NN varies. 115

B.10 Comparing the results when APP = PP (E6) with APP ≤ PP (E3) when using
SMOTE. Evaluation metric: geometric mean, NA varies, WT = 300, PP = 913,
NN is 8. 116

xi

B.11 Comparing the results when APP = PP (E6) with APP ≤ PP (E3) when using
SMOTE. Evaluation metric: geometric mean, NA is max, NN varies. 117

B.12 Comparing the results when APP = PP (E6) with APP ≤ PP (E3) when using
SMOTE. Evaluation metric: geometric mean, NA varies, NN is 8. 118

B.13 Scatter plots of how quickly GP suspects and diagnoses patients, using data
from PD-B, iteration 2. 120

B.14 Scatter plots of how quickly GP suspects and diagnoses patients, using data
from PM-B, iteration 2. 121

xii

Part I

Project report

1

Chapter 1

Introduction

A disease which is left untreated for a longer period is more likely to cause negative conse-
quents for the patient. Even though the general practitioner is able to discover the disease
quickly in most cases, there are patients who should have been discovered earlier. Electronic
patient records store time-stamped health information about patients, recorded by the health
personnel treating the patient. This makes it possible to do a retrospective analysis in order to
determine whether there was sufficient information to give the diagnose earlier than the gen-
eral practitioner actually did. Classification algorithms from the machine learning domain can
utilise large collections of electronic patient records to build models which can predict whether
a patient will get the disease or not. These models could be used to get more knowledge about
these diseases and in a long-term perspective they could become a support for the general
practitioner in daily practice.

Trying to identify signs which a GP have missed is not an easy task, thus we do not expect
very good results in terms of performance measures. Identifying some warning signs could be
enough to motivate further research. This thesis is written mainly from a computer science
perspective, which have affected the prioritisations in this report. This introduction finishes
with a brief presentation of the main problems this project will focus on. They are further
elaborated in section 2.2.

• MP1: When does a general practitioner first suspect that a patient might have a certain
disease?

• MP2: Is it possible to build models which can identify the patients who later are diagnosed
with a disease, by using data which precedes the time of suspicion defined in MP1?

• MP3: Which methods are most suitable for identifying these patients?

2

Chapter 2

Background and related work

This chapter presents background knowledge and previous work done by researchers in the
field. Some of the topics which are presented in the background section are the target diseases,
the classifiers used and methods which can be used to solve well-known difficulties related to
this problem setting.

2.1 Definition of relevant concepts

Names used to describe different concepts used in this report are presented in this section. The
terms which are defined in this section do not attempt to describe all the possible terms which
occur in the report, but provides the most important ones so that it is possible to understand
new terms. We also encourage the reader to use the list of abbreviations in appendix C.

This report is a continuation of the work done in a previous project, described in [4]. It is
often necessary to refer to this report. Instead of citing it formally every time, we refer to it
as preceding project or similar expressions like; the work preceding this study.

2.1.1 Terms used in supervised learning

Supervised learning is one field within the machine learning paradigm. Machine learning is
about how machines can extract knowledge from data1. The task in supervised learning is to
learn a mapping function, which maps input objects to correct output. The correct mapping
is attached to each input object, so it is possible to evaluate the learned mapping function.
These pairs of input objects and correct output form what is termed the examples, instances or
cases. Depending on whether the output is a continuous value or discrete categories, supervised
learning is divided into regression or classification, respectively.

In this work we perform binary classification, classification where there are only two categories
or classes. Since it is very common that one wishes to build classifiers which separate a special
group from the rest, the special group is denoted the positive class, while the other class is the
negative class. The examples which belong to these two classes can be specified by the names
positives and negatives, respectively. In the case where there is a class imbalance, such that

1The terms knowledge and data should be interpreted according to the Data Information Knowledge Wisdom
(DIKW) chain, presented by Ackoff [3].

3

4 2. Background and related work

Figure 2.1: tsus related to the tTD.

Figure 2.2: Illustration of how the prediction period and warning time relate to each other and
tsus.

the number of examples in one class outweights the other, we use majority and minority class
to emphasise this fact.

Each case can be viewed as a structured array which consists of feature/attribute-value pairs.
Each feature is a variable which describes the case, the value represents how this specific case
evaluates with respect to the feature. Features can have values which are continuous, discrete
or binary. In this project, we only have binary attributes, thus the possible values are true
or false. Every case has a class attribute, which contains the information about which class
this case belongs to. The set of all feature-value pairs which represents one case, is denoted a
feature vector.

A set of feature vectors, the training examples, are given to a learning algorithm with the more
specific name classifier in the classification setting. The classifier can use the examples to build
a model which is the manifestation of the mapping function; it maps examples to classes.

2.1.2 Special events and periods in time

Throughout this report, there are a few concepts which need a clear definition. Target diag-
nosis or target diseases denote the diseases we focus on in this work and one target disease is
abbreviated TD. The first time a TD is given by a general practitioner (GP) is denoted tTD,
time of TD or ToTD. The TDs are described in section 2.3. The time of suspicion, tsus, is
the time when the GP suspects the TD for the first time. Figure 2.1 illustrates the time axis
for a patient history (PH) with tsus and tTD marked, showing their relative positions to each
other. The beginning of the PH has always time = zero. A PH for a patient who has the TD
is denoted a positive PH, while a patient without the TD is a negative PH.

The task of making predictions and giving warnings before the target event occurs is a general
problem which must be handled regardless of the specific problem domain. It is therefore not
surprising that terms have been made for this problem already. Weiss and Hirsh describe the
event prediction problem [43] in practically the same way as we have done. They speak of a
prediction period (PP) preceding the target event and a warning time (WT), which is the time
from the end of the prediction period to the time when the target event occurs. In this case
the target event is one of the TDs.

They argue that the WT is used to ensure that the prediction is made in time to be of use, while
the size of the PP must be constrained in order to make correct predictions. It is necessary to

Early warnings of critical diagnoses

2.1. Definition of relevant concepts 5

(a) APP = PP. (b) APP < PP.

Figure 2.3: Two scenarios which show what the possible relations between actual prediction
period (APP) and prediction period (PP).

have a WT; there is no point in predicting something which has already happened. They also
state that length of the WT and the size of the PP depend on the problem domain.

Figure 2.2 shows how the PP and WT relate to each other. The PP defines the interval of the
PH which is used to build a representation/ feature vector for this patient. All events within
a PP are used. The WT is defined to be the interval between the end of the data window
and TD. The start and endpoints of these two periods are always located on a day, since the
granularity of the PH is days. The end point for a WT is inclusive. The start point of a PP is
inclusive, while the end point is exclusive. This can be seen from the figure as well.

In situations where the beginning of the PP is outside the PH, the full capacity of the PP is
not used. This scenario is shown in figure 2.3b; there is only a partial overlap between the PH
p and the PP. We introduce the term actual prediction period (APP) which is the period in
the PH which is overlapped by the PP. APP is maximised when there is full overlap, APP =
PP (figure 2.3a), and minimised when there is no overlap, APP = 0. APP can also be between
0 and PP as has already been shown in figure 2.3b.

We also define a term which will be used when discussing negative PHs; the quarantine period
(QP). The QP is anchored at the end of the PH for negative PHs. The events within the QP
cannot be used when building a feature vector. The motivation for this is that the patient
could develop the TD in the time shortly after the PH ends, thus it should have been treated
as a positive PH. By only using the part of the PH which is prior to the QP, we reduce the
risk of false negatives being used as training examples.

Since the WT and the QP seem very similar, we will point out the main differences to distin-
guish the concepts. WT are always used with respect to positive PHs, while QP is only used
for negative PHs. WT is used to make the problem of building a good model harder, while the
QP reduces the risk of including patients who might get the TD in the future.

2.1.3 Graphical introduction to how FVs are created in this experi-
ment

A feature vector is the representation of one training example, which is used by a learning
algorithm. It consists of a set of attributes-value pairs, which describes properties of each
unique training example. In this setting, each feature vector describes whole or part of one
patient history (PH). The data sets described in section 3.1 contain many PHs, where each PH
consists of one or more time-stamped events. Figure 2.4 shows that the PHs are first labelled
as positive or negative in b), then the major events tsus and tTD are identified for the positives
in c), subsequently the prediction period (grey area) is defined according to WT and PP for
the positives in d). The final subfigure shows how the positives are paired up with one or more

TDT4900 - Master thesis

6 2. Background and related work

Figure 2.4: Simplified overview of process prior to creation of FVs.

Figure 2.5: Illustration of how a FV is created.

negative examples and the prediction period is defined for the negative examples depending
on which positive they are paired up with.

Figure 2.5 shows how a prediction period (PP) is used to create a feature vector (FV). Notice
that event B occurs two times in the PP, but it is marked the same in the FV as event C which
occurs only one time. We are only interested in knowing if the event occurs in the PP or not.

2.2 Strategies to solve main problems

This section gives a rough explanation of how we attempt to solve the main problems in this
project and why it is important to solve them. Even though they were stated in chapter 1,
they are repeated in the list below. The strategy to solve main problem 1 (MP1) is presented
separately in section 2.2.1, while we collect the strategies for solving MP2 and MP3 in section
2.2.2. These strategies are implemented as experiments which are presented in chapter 3.

• MP1: When does a general practitioner first suspect that a patient might have a certain
disease?

• MP2: Is it possible to build models which can identify the patients who later are diagnosed
with a disease, by using data which precedes the time of suspicion defined in MP1?

• MP3: Which methods are most suitable for identifying these patients?

Early warnings of critical diagnoses

2.2. Strategies to solve main problems 7

2.2.1 Solving MP1

The ambition of this strategy is to estimate tsus, the time of suspicion. Given tsus, it is possible
to build more valid models based on the historical data prior to tsus.

Motivation for determining the time of suspicion

The main motivation for knowing the time of the first suspicion, is that the usefulness of a
predictive model is to a large degree dependent on how early it can alert the GP. A trivial
example is that it is not much use in alerting the GP about a disease, if the GP already has
diagnosed the patient with this disease. It would be better if a model could give an alert before
the GP is certain. Perhaps it would be even better if the alert is fired before the GP even
suspects the disease? Solving MP1 is therefore a prerequisite for solving MP2.

There are important distinctions between giving alerts before or after the GP has a suspicion.
The project [4] preceding this study found that GPs start the treatment of symptoms which
are highly correlated with the disease before they set the diagnosis. This treatment includes
giving special medication and taking laboratory tests which are relevant for the disease. The
models which were built to predict the disease used these medications and tests as its most
predictive features. However, the model only captured knowledge which the GP already had,
thus it did not contribute with new information. One could use such a model to see if it agrees
with the hypothesis which the GP has. This would be useful if the GP is uncertain and ready
to accept advice based on similar cases.

If a model could give the alert before the GP suspects, the alert would convey new information.
The GP could then direct his attention toward the disease pointed out by the model, in order
to see how the hypothesis given by the model can be confirmed or dismissed. The consequence
is that the medical treatment of the patient can start earlier.

Since the ambition of the project was to give warning to the GP about a possible condition
before she suspected it, these models were not valid in that context. The initial assumption
about when a GP first suspects the condition must therefore be revised, in order to accommo-
date the fact that the GP has a suspicion prior to the time when she sets the TD. In order to
formulate this assumption, we must determine a good approximation of tsus.

Iterative approach to estimate the time of suspicion

We present Figure 2.6b, which shows the iterative process used in this project. tsus is estimated
by iteratively identifying the events which are suspicion-indicators; events that indicate that
the GP has suspected the TD for a patient. Initially, the set of suspicion-indicators (sus-ind. in
the figure) is empty. Process 1 uses the suspicion-indicators to define t∗sus, which is the current
estimate of tsus. Recall from the concept definitions in section 2.1.2 that tsus is the first day
in PH when an event in suspicion-indicators occur. t∗sus is found separately for each patient.
t∗sus is used to constrain the scope of PP in process 2, which is all events from the PH prior to
t∗sus. In the same process, we compute the correlation between each distinct event and the TD.
The result is a ranked list of events with respect to correlation. The most correlated events, a
candidate set, is given to a group of field experts (GoFE) in process 3. They decide to which
degree the candidates are well-known suspicion-indicators based on their medical experience.
The filter in process 4 only allows candidates which are graded as most certain indicators to
pass through the filter and are subsequently added to the set of suspicion-indicators.

TDT4900 - Master thesis

8 2. Background and related work

Figure 2.7 shows the expected effect on t∗sus as we iterate through this cycle. Since the set
of suspicion indicators is initially empty, t∗sus will be at tTD in the first iteration. When the
first iteration is completed, we assume that some candidates were accepted into the set of
suspicion-indicators. Given that a patient has at least one event which is a member of the
suspicion-indicator, t∗sus will be shifted to an earlier time in the PH. Eventually, no candidates
will be accepted into the set of suspicion-indicators and this will terminate the iterative process.
The set of suspicion-indicators will then indirectly provide the best possible estimation of tsus
which we can get using this method.

By comparing our specific iterative model to the more general model2 shown in Figure 2.6a,
one difference is that there is not any requirements-, analysis & design- and implementation
processes in our specific model. Process 1 and 2 can be mapped to the testing process as they
are controlled by the existing set of suspicion-indicators. The evaluation process corresponds
to process 3; the candidates are scrutinized by a group of experts which uses their domain
specific knowledge to categorise the strength of the suspicion-indicators. The planning step
could be mapped to process 4, as it makes a plan for the next iteration by making a final
decision as to which candidates should be included.

Section 3.4 gives a more detailed explanation of how tsus is estimated.

2.2.2 Solving MP2 and MP3

MP2 and MP3 are closely related; in order to determine the best methods for identifying
patients with TD (MP3), it must be possible (MP2). To determine if it is possible to identify
these patients at all, more results from different methods give us a better foundation to answer
the question. Therefore we use the same strategies to handle these problems.

It is important to remember that any conclusions we make with respect to MP2 and MP3,
depend on the correctness of our estimate of tsus, which is the answer to MP1.

Motivation for MP2 and MP3

Giving an anwer to MP2 is important in determining whether one should continue research
on the topic or not. If we could answer yes, it is possible to build models which can identify
the patients who will get a given disease before the GP, it is much easier to motivate further
research. There would also be better chances that one could make a decision support system
which could assist the GP some time in the future. On the contrary, a negative answer would
not necessarily mean that further research would be futile, but one might consider doing things
differently the next time.

Determining the best methods for building prediction models in our setting is also an important
problem to solve. Even though there are claims that one method is better than the other, one
must always consider the context; what is best in our case? In addition, different methods
perform differently depending on the data, thus the choice of methods should be data-driven
[23]. In addition to evaluating different methods, we also must evaluate how to best represent
the problem to the methods which build the models. This might be a far more important task
than choosing one classification algorithm instead of another; if the problem representation is
not representative, there might not be any information to build models on.

2Based on figure used in Wikipedia article about iterative and incremental development:
http://en.wikipedia.org/wiki/Iterative_and_incremental_development

Early warnings of critical diagnoses

2.2. Strategies to solve main problems 9

(a) The general model.

(b) The specific model used to estimate tsus.

Figure 2.6: Comparison of the general iterative development model and how it is realised in
S1.

Figure 2.7: The approximation of tsus should improve with each iteration.

TDT4900 - Master thesis

10 2. Background and related work

We use different algorithms for classification, in order to see whether there are certain classifiers
which are well suited for the task. It is not prioritised to optimise the performance of each
classifier by tuning settings, we assume that standard settings are good enough. Variables
which we will investigate are the sizes of the different periods described in section 2.1.2, in
order to find out whether there are certain periods in the patient histories which are more
relevant than others. It is also interesting to examine how much information we should include
in the representation of each patient, therefore we will investigate the effect of varying the
amount of information about each patient.

Two strategies will be used in the evaluation; evaluation based on different performance metrics
and manual evaluation of the models themselves. The last strategy is more laborsome than
the first, but it provides a way to see how the classifiers “think“, which we cannot see from
numbers. Both strategies are necessary in order to get overview and understanding of the
results.

In short, the overall strategy to solve MP2 and MP3 is to analyse the problem as broadly as
possible, since we do not have any grounded assumptions about what is the optimal way to do
it.

2.3 The three test cases

We have chosen to use three diagnoses as test cases for our methodology. All diseases have
in common that early treatment can reduce the negative effect of the disease on the patient,
because the diseases themselves evolve gradually. In addition there were enough data on these
patient groups in our data sources. We will give a short introduction to the characteristics of
each disease below. All information is from the Norwegian Electronic Handbook for Physicians
[22], unless it is stated otherwise. Part of the text about diabetes is reused from last years
project [4].

2.3.1 Asthma

Asthma is defined to be a chronical inflammatory disease [5]. The airways are inflamed and are
hypersensitive to certain substances. When these substances are inhaled, the muscles around
the airways constrict, narrowing the passage where the air flows. In addition, excessive amounts
of mucus line the inside of the airways, making the airway channel even narrower.

Current estimates are that 6-10% of the Norwegian population have symptoms of asthma,
while the number of patients who have gotten a diagnose is 2-5%. These numbers are rising in
all of Scandinavia [2]. The most important risk factors are atopic diseases in family [42], the
working environment and bad air quality, for example caused by smoking [24]. Physical strain,
viral infections, animals, chemicals are other factors which can provoke the disease [31]. Thus
there are both genetic and environmental factors which affect the development of the disease.

The hygiene hypothesis claims that asthma and other allergic reactions are indirectly caused by
a lack of exposure to infectious agents, microorganisms and parasites during childhood. This
prevents the immune system from developing the normal defence mechanisms, thus making
the person more susceptible to this class of diseases [17]. The increase in persons with asthma
in Scandinavia fits nicely into this hypothesis, since focus on better hygiene has been a part of
the development.

Early warnings of critical diagnoses

2.3. The three test cases 11

Many of the relevant medicines are drugs from the ATC-group R03: drugs for obstructive
airway diseases. It is essential to educate the patient so that she can take proactive measures
in order to prevent asthma attacks.

2.3.2 Diabetes

There are two main categories of diabetes patients; those who need regular intake of insulin
(type I), and those who do not (type II). In this study, we focus on the type II patients. We will
use the term diabetes, meaning type II diabetes unless specified otherwise. Diabetes patients
suffer from chronic hyperglycemia, which means their levels of glucose in the blood is too high.
The cause of this state is a combination of insufficient insulin production and insulin resistance
[6]. The risk of getting diabetes increases with high age, overweight [37] and physical inactivity
[32]. People with a body mass index above 35 increases the risk of getting diabetes with 93%
[15]. If close family members have the disease, the risk of getting diabetes during life is 40%.
But it is still mainly the life style which decides whether one gets the disease or not.

Patients with type I diabetes may experience dangerous situations with too much or too little
glucose in the blood, called hyperglycemia and hypoglycemia, respectively. Type II patients
are in a state of chronically hyperglycemia because of insulin resistance and reduced production
of insulin.

The diagnosis is set if glucose tests show results above the given thresholds and if symptoms
are present. If the symptoms are not present, two consecutive tests must give values above the
threshold.

The treatment is mainly to alter the lifestyle of the patient, through more physical activity
and eating healthier food. This is typically food with lower glycemic index, that is food which
does not result in a fast increase in the blood glucose level. Medication should not be given
immediately. Most of the drugs in the ATC-group A10A and A10B can be applied in the
treatment of diabetes. Both groups aim at controlling the glucose level in the blood. A10A
contains insulin- and insulin analogs drugs. Insulin analogs are insulin drugs which have been
altered using genetic engineering techniques, resulting in insulin drugs which have specialized
absorption rates in the body. A10B contains drugs which lower the glucose level in the body,
with the exception of insulin drugs which are placed in A10A.

2.3.3 Hypothyroidism

The definition of the disease is a condition with low production of the thyroid hormones thy-
roxine (T4) and triiodothyronine (T3) in addition to low concentration of these hormones in
the blood. There are three organs which work together in order to accomplish this; the hy-
pothalamus produces thyrotropin-releasing hormone (TRH) which causes the pituitary gland
to produce thyroid stimulating hormone (TSH), which finally stimulates the thyroid gland to
produce T4 and T3. A malfunction in any of these organs could result in hypothyroidism, and
the disease is divided into two variants depending on which organ failed; primary- or secondary
hypothyroidism. If the thyroid gland fails it is called primary hypothyroidism, while a mal-
function in the pituitary gland or the hypothalamus are labelled secondary hypothyroidism.
The primary variant is far more frequent than the secondary, as it accounts for 98% of the
cases.

The main causes for primary hypothyroidism include autoimmune thyroiditis[12], treatment
with radioiodine[18] and external radiotherapy [7]. Autoimmune thyroiditis is an inflammation

TDT4900 - Master thesis

12 2. Background and related work

of the thyroid gland (thyroiditis), caused by the immune system of the body itself (autoim-
mune). This is a property which often is inherited [16], thus genes and close family play an
important role[26]. Radioiodine is used in medical therapy in order to treat cancer in the thy-
roid gland, but the treatment can damage the organ to the extent that it affects the production
of thyroid hormones negatively. External radiotherapy could also damage the thyroid gland
with the same consequences.

Important risk factors for the primary variant are other autoimmune diseases such as diabetes
and coeliac disease, during and after pregnancy, Down’s syndrome, multiple sclerosis and
certain medicament such as Amiodaron.

The disease often develops gradually over long time. Since there are no distinct symptoms in
the early phase it can be difficult to diagnose it. The levels of TSH and free levels of T4 in the
blood are measured in order to set a diagnose. Primary hypothyroidism can be temporary [8],
thus it can be necessary to take several measurements over time to rule out that possibility.
Some patient groups are monitored more closely than others. Newborn can have the disease,
most often because of iodine deficiency [21]. If left untreated, the disease causes serious damage
on the central neural system, thus newborn are screened for the disease in Norway. Patients
which have had radioiodine- or radio therapy are also screened after therapy because of the
increased risk for hypothyroidism.

2.4 Methods used in machine learning

Machine learning can be divided into three phases; preprocessing, classification and evaluation.
This section describes the most important methods used in this project.

2.4.1 Preprocessing

The preprocessing phase focuses on preparing the data for the classification. We describe a
method for feature aggregation, several methods for evaluating single attributes which are used
to do feature selection and a technique for generating synthetical examples called SMOTE.

Feature aggregation

During the first iteration of experiment 1 (see section 3.4 it was discovered that there was more
than one name for a large amount of events. This section explains the problem and the action
taken to resolve it.

Problem of inconsistent naming The data can be said to be structured as it is extracted
from the data base of the PROFDOC- and PROMED journal systems. There is still a problem
with inconsistencies, because the same event has different names in the same data set. Table
2.1 illustrates the problem; in the original-column there are many different ways of expressing
that some kind of glucose-test has been taken. Some of these names are remarkably similar;
s GLUKOSE I.F. and GLUKOSE ikke.f. are most likely denoting the same medical test. On
the other hand, s Glukose FAST and GLUKOSE ikke.f. are not identical, but they are both
some kind of glucose-test.

The origin of the inconsistencies is most probably caused by different persons interacting with
the journal systems, using slightly different names for the same event. These inconsistencies

Early warnings of critical diagnoses

2.4. Methods used in machine learning 13

Frequency Original Normalised

23500 s Glukose 2 glucose
21561 s Glukose 1 glucose
17644 U-GLUKOSE glucose
16100 S-GLUKOSE 2 glucose
13669 S-GLUKOSE FAST glucose
11068 s Glukose FAST glucose
10848 eb Glukose KL. glucose
9931 s GLUKOSE glucose
6036 GLUKOSE glucose
4454 s GLUKOSE I.F. glucose
4132 GLUKOSE ikke.f. glucose
3636 s GLUKOSE FAST. glucose

Table 2.1: Example of inconsistent naming of events, based on PM-B. Frequency: how many
events contain the name in PM-B. Original: original name. Normalised: the name after
merging.

occur in both the PROFDOC and PROMED data sources, but the problem is much larger for
the PROMED data. This is not surprising, since the data is collected from 19 different GP
offices. In other words, the number of people who have interacted with the PROMED system
is much larger, compared to the same number with respect to the PROFDOC system.

By merging names which are believed to denote the same event, there are both positive and
negative effects. Since each distinct event is transformed into an attribute, a reduction in
distinct events will also reduce the number of attributes. This is advantageous because it will
reduce the computational load when building the prediction models. It is also possible to
argue that the merge operations will increase the quality of the models. Imagine that a real
world event E is denoted E1, E2, E3 ... En by n different persons. The event is therefore split
into n different attributes A1, A2, A3, ..., An which is given to a machine learning algorithm
MLA. Each attribute Ai in itself is not frequent enough to be utilised by MLA, but if all the
attributes had been represented by a single attribute, the probability that the MLA would use
the attribute would increase.

However, this is based on the assumption that we merge events which denote the same real-
world event. If this assumption does not hold, the merge operation will introduce noise to the
data. This knowledge advocates that one should be conservative when merging events. Still,
we argue that one can merge events which do not denote the same real-world event, as long as
we adjust the granularity of the event. In table 2.1 s Glukose 1 and s Glukose 2 are most likely
different events, but on a higher level, they are both glucose events. By merging them, we
get an event which subsumes both events, thus it is acceptable to do it. We denote the name
which results from this operation as the normalised name. In machine learning terminology,
this is called feature aggregation.

Resolving the inconsistency problem We decided to group names which we assumed
denoted the same real-world event. The process of grouping or merging the names was done
semi-automatically. The original event-file was the input to the process, we call it EventFile.
First of all, a script which counted the frequency of each event name was applied to EventFile.

TDT4900 - Master thesis

14 2. Background and related work

The resulting event-frequencies were given as input to another script, which made a copy of
each name and modified the copy by removing common prefixes, retaining only the first word
in each event name, and finally converting the result to lowercase. An example; original: s
GLUKOSE I.F., removing prefix: GLUKOSE I.F., retain the first word GLUKOSE, convert
to lowercase glucose. The result was written to a file which was imported into a spreadsheet
program (like Open Office Calc), and manual work was done to merge logical equivalent events.
The result of this process was a conversion table which was custom made for EventFile. A
script used the conversion table and EventFile as inputs and replaced all names in EventFile
according to the conversion table. The automatic modification operations done prior to the
manual part, made sure many events were already merged. However, the manual part was
necessary since the automatic process was not perfect.

Experiments affected by inconsistency problem The issue of inconsistent naming de-
scribed in section 2.4.1 was discovered based on feedback from the field experts who evaluated
iteration 1 in experiment 1: determine time of suspicion. The data set was subsequently mod-
ified in order to reduce the problem. Thus the issue with inconsistent naming did not affect
any other experiments.

Single-attribute evaluation

The typical machine learning approach is to build a predictive model based on the available
training data and then evaluate this model with qualitative and quantitative measures. Knowl-
edge is extracted from the model. However, there are other ways to extract knowledge from
training data, without constructing a model first. One can evaluate features with respect to
the class feature directly by using attribute subset evaluators. A subset consists of one or more
attributes of the entire set of attributes used in the feature vectors. The special case where
the subset only has one single attribute is termed single-attribute evaluation.

These evaluators can give information about which attributes are relevant with respect to the
class attribute. In settings where the number of attributes is high relative to the number of
training examples, it can be advantageous to reduce the number of attributes. Each attribute
increases the dimensionality of the space containing possible training examples, making it
harder for the classification algorithm to find the common properties of each class. Irrelevant
attributes results in longer time to build the predictive model and greater risk of missing
important similarities which should have been in the models.

Thus a single-attribute evaluator can aid us in the task of removing irrelevant attributes prior
to the process of building classification models. In this study, it is necessary to remove some of
the attributes which are highly correlated with the class feature. The methods used to calculate
the worth of a single attribute with respect to the class attribute are presented below.

The chi-squared statistic The chi-squared statistic tests whether a null hypothesis holds
or not. The null hypothesis in our setting is that the occurrence of an attribute is independent
of the class attribute. Equation 2.1 shows how the chi-squared statistic is calculated. The
number n denotes the number of possible outcomes for the class variable, which in the binary
classification setting is 2. Thus the equation results in a sum of two terms. Each term de-
termines how closely related the value of an attribute is to each of the possible outcomes of
the class variable. Ai, is is the observed frequency of a given attribute and Ei is the expected

Early warnings of critical diagnoses

2.4. Methods used in machine learning 15

frequency of this attribute, given by the null hypothesis.

X2 =
n∑
i=1

(Ai − Ei)2

Ei
(2.1)

Information gain Computes the difference in entropy between the class attribute itself and
the class attribute, given the occurrence of the attribute A. Equation 2.2 shows how information
gain is computed using the entropy metric.

InformationGain(C,A) = Entropy(C)− Entropy(C‖A) (2.2)

Symmetrical uncertainty Computes the correlation between the class attribute and a
given attribute. It is very similar to Information gain, but it normalises the result, so it is
always between 0 and 1. Equation 2.3 presents how the Symmetrical uncertainty is computed.

SymmetricalUncertainty(C,A) = 2 · Entropy(C)− Entropy(C‖A)
Entropy(C) + Entropy(A)

(2.3)

SVM classifier This method uses a linear support vector machine to rank attributes based
on their weight coefficients [25]. It iteratively produces the list of the best features, picking
the worst attributes first, and finishes with the best attribute. For each iteration, it builds a
model using the linear SVM and the remaining attributes. It then removes the k attributes
which are ranked lowest.

SMOTE - generating synthetic positives

Synthetic Minority Over Sampling Technique (SMOTE) is an algorithm which is used to gen-
erate new synthetic examples in order to increase the number of examples belonging to the
minority class. It was first presented in a paper by Chawla et al. [20] in 2002. The synthetic
examples are generated from existing examples, originals, which are not synthetic themselves.
Depending on the desired amount of oversampling, the algorithm determines how many origi-
nals it should use in the process and randomly selects these. The next step is to compute the
k nearest neighbours for each of the originals. In order to create a synthetic example, SMOTE
computes the difference between the original and one of its nearest neighbours with respect to
each feature, then multiplies this difference with a random number between 0 and 1 and adds
the result to the original. Equation 2.4 shows the equation used to compute the new feature
value for the synthetic example.

fnew = foriginal + rand(0.0− 1.0) · (fneighbour − foriginal) (2.4)

Imagining that the examples only have two features, the synthetic example will be placed
somewhere along the straight line connecting the original and its neighbour. With n features,
the synthetic example will end up somewhere between the original and the neighbour in the
(n-1)th dimension. Since SMOTE always adds new synthetic examples between originals, the
clusters with minority examples will become denser. However, if one allows the algorithm to
use more neighbours than there are originals in one cluster, there is a risk that SMOTE will

TDT4900 - Master thesis

16 2. Background and related work

Figure 2.8: Two clusters of minority examples and the k=3 nearest neighbours of example a.

create synthetic examples which lie between clusters. Figure 2.8 illustrates this situation; there
are two clusters of minority examples (majority class examples omitted for clarity), but the
k-value is greater than the number of minority examples in the smallest cluster. Thus the
3rd nearest neighbour for the example a belongs to the other cluster. Since there is equal
probability of picking any one of the neighbours, there is 33% risk that an example will be
added between the two clusters. This would have a negative effect on the classification. Thus
it is important to not choose too high k-value in order to avoid the problem.

2.4.2 Classification

This section presents the classifiers which were used in the experiments. The text describing
RIPPER, HyperPipes, C4.5, NaiveBayes and SVM was reused from the project [4], since it
was written for the same purpose.

RIPPER - a rule learner

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) was developed by Cohen
[14]. Tan et. al. [40] describes it is a rule-based inductive learner which is very well suited for
use in situations with skewed class distributions. In the binary classification setting, it sets the
default class to be the majority class and tries to learn rules for identifying the minority class.

Rules are added to the rule set as long as none of the stopping conditions occur. One of these
is that adding the new rule, must not increase the total description length of the rule set by
more than d bits. Another is that the error of the rule added, must not exceed 50% when
evaluated on RIPPER’s own validation set.

The rule-growing process itself uses a general-to-specific strategy. It adds conjuncts to the
rule antecedent by selecting the conjunct which maximises FOIL’s information gain. When
the process of adding conjuncts stop, the rule is pruned if it improves a metric related to the
accuracy of the rule.

After the rule set has been grown, k optimisation iterations are performed on the rule set.
Each rule is optimised in turn. Two new rules, a replacement rule and a revision rule are made
from the current rule to be optimised. The replacement rule is grown and then pruned so as to
minimise the total error of the entire rule set with the replacement rule instead of the rule to be

Early warnings of critical diagnoses

2.4. Methods used in machine learning 17

optimised. The revision uses the current rule as a starting point, and extends it greedily with
more conditions. Using the MDL heuristics, a decision is made whether to keep the original
rule or to use the replacement or revision rule instead.

The if-then-rules extracted by the RIPPER algorithm does not always define a consistent and
precise model. This can largely be explained by the incremental way the model is built, adding
rules iteratively. The extracted rules are highly similar to rules-of-thumb, simple generali-
sations which often are correct. These rules may represent much experience in a short and
comprehensible way, and domain experts often represent their knowledge similarly. As a con-
sequence, most people do not have any difficulties in understanding one rule or small sets of
rules. As the number of rules grows, this task grows more difficult, since rule i assumes the
negation of all i-1 rules before it. This dependence on the context can make it difficult to
comprehend large rule-sets.

The algorithm scales linearly with the number of training instances, and is able to show its
internal knowledge similarly to other rule-based systems. Together with its ability to handle
the class imbalance problem well, it is a well suited classifier in this project. JRip is a WEKA
implementation of the RIPPER algorithm, which is used in this project.

HyperPipes - extremely fast and simple

The Hyperpipes classifier [44] is a very simple classifier. For each class in the training set, it
makes a Hyperpipe which contains each attribute and the bounds for the values of the attribute.
As an example, picture a nominal attribute with four possible values (red, green, blue, black).
If we have a class RedAndBlueFlowers where all the training examples have values red or blue
for this attribute, the RedAndBlueFlowers-Hyperpipe’s boundaries for this attribute will be
(red, blue). When determining which class a new example should be classified into, it takes the
class that most contains the example. Definition of most contains is the class which has the
highest value for the expression count

nofAttributes , where count is the number of times the value of
the example’s attribute was within the class-specific Hyperpipe’s boundaries for this attribute.
nofAttributes is the number of attributes used to represent each example.

The reason to include the Hyperpipes classifier in the experiments is two-fold. Firstly, it is a
very fast classifier, using very little time to build a model. The cost of including it is therefore
not high in terms of time spent on building models, and it gives a picture of how fast it is
possible to build a model when comparing to the more sophisticated classifiers. Secondly, it is a
classifier which is able to get rather high sensitivity values, even though the data is imbalanced.
Its transparency is limited to the possibility of displaying the attribute boundaries for each
class Hyperpipe.

C4.5 - a decision tree

J48 is a decision tree algorithm which is a WEKA implementation of the C4.5 algorithm
developed by Quinlan [35]. The C4.5 is an extension of his earlier algorithm ID3. It is biased
to make the smallest decision trees possible. The algorithm works by iteratively selecting the
attribute which maximises the information gain as the next decision node. The information
gain is the difference in entropy before and after a split. Entropy is an impurity measure, which
tells us something about the class distribution at a specific node. Low entropy indicates that
there are very many of one class compared to the other class at a specific node, the instances
are more ordered.

TDT4900 - Master thesis

18 2. Background and related work

One of the improvements in C4.5 compared to ID3 is post-pruning. After the tree is built, the
algorithm replaces less useful branches with leafs. This is a good way of making the tree more
general, reducing the risk of overfitting the model.

A tree can be converted to if-then-rules, making its transparency the same as RIPPER. But
the graph structure of trees is also easily comprehensible for most people, resulting in two good
alternatives for presenting the knowledge to a human. The specific output from WEKA is a
bit difficult to read, but this can easily be fixed by attaching a module which can draw more
visually appealing trees.

The choice between the two alternatives will often depend on the graphical output devices
available at the terminal. Rules are more compact and does not require so much space as trees.
However, most terminals today have screens with high resolution, so this is a less important
problem today.

K-star - an instance-based classifier

While all the other classifiers which are used in this project spend most of their time building
a model in the training phase, K-star [11] is a lazy classifier which does little work until it
is time to classify a new example/instance, thus it is categorised lazy. Non-lazy classifiers
build models which are based on all training examples, a lazy instance-based classifier uses the
training examples which are most similar to the instance it is going to classify. The general
idea is that examples which are similar to the new instance will belong to the same class. The
quality of the similarity metric which determines how similar two instances are, is therefore
very important.

K-star uses information theory to determine the distance between two examples a and b.
Example a can be transformed into b by applying a finite number of transformations. A
transformation is a change of one value for one of the features. Unless the two examples differ
at only one feature, there will be more than one way to transform a to b, thus we have several
transformation paths t̄ which give the same result. K-star defines the difference between a and
b to be the sum of probabilities for all transformation paths which lead from a to b. Equation
2.5 presents this sum of probabilities P ∗(b|a). When the algorithm is to decide what class label
to put on a new instance a, it computes the probability that the instance belongs to each class
C, P (C|a). In order to find the probability P (C|a), the sum of all P ∗(b|a) is calculated for all
instances b which belong to C. This is shown formally in equation 2.6. In order to get a deeper
understanding of K-star, see Cleary & Trigg [11].

P ∗(b|a) =
∑

t̄∈P :t̄(a)=b

p(t̄) (2.5)

P ∗(C|a) =
∑
b∈C

P ∗(b|a) (2.6)

NaiveBayes - the benchmark classifier

The Naive Bayes classifier has been used successfully in medical diagnostics for a long time,
and is considered a benchmark algorithm which should be tested before attempting to solve
the problem with more complex algorithms [30]. It is a statistical method, which makes the

Early warnings of critical diagnoses

2.4. Methods used in machine learning 19

assumption that all attributes are conditionally independent, given the class label. This is
written formally in equation 2.7, where Y is the class and X is an attribute vector.

P (X|Y = y) =
d∏
i=1

P (Xi|Y), whereallX = X1, X2, ..., Xd (2.7)

The algorithm calculates the posterior probability for each class, given the example to classify.
The class which has the highest posterior probability is chosen as the class label for the example,
see equation 2.8.

P (Y |X) =
P (Y)

∏d
i=1 P (Xi|Y)
P (X)

(2.8)

Since P(X) is a constant term, it is the numerator which determines which class will be chosen.
To compute the value

∏d
i=1 P (Xi|Y), one must estimate the values P (Xi|Y). For categorical

values, this is estimated as the fraction of training examples in class Y = y that has the
value Xi. Thus the learning process estimates all these conditional probabilities. Estimating
continuous attributes is not so relevant in this project, since there are currently no continuous
attributes at all. To learn about estimating continuous attributes, see [28].

The independence assumption is often not true, but the algorithm performs very well despite
this false assumption. It is also extremely fast, and scales well as the number of attributes
increases.

The textual representation of Naive Bayes which is output from WEKA, gives all the infor-
mation needed to compute the most probable class. But to do so you need knowledge of the
algorithm itself, the mathematical skills to do so and lots of time because of the high number
of attributes. As a result, the physician will not be able to understand the knowledge as is
without the help of expertise.

However, Kononenko has previously shown simple techniques that make the knowledge of
Naive Bayes comprehensible [29]. It is possible to show how much each feature contribute to
the decision of classifying a new sample to a specific class. Using this method, one can show
the influence of individual features for and against the decision of classifying a new sample into
a specific class. This way of arguing was similar to the way physicians reasoned when they
worked. Thus one can visualise the knowledge in the Naive Bayes model.

SVM -

The advantage with SVMs compared to most classifiers is that they try to minimise an upper
bound on the generalisation error instead of focusing too much on the training error. The
theory behind this technique is a statistical learning theory called structural risk minimisation.

SVM is a classifier which has proven its usefulness in handling imbalanced classes and this is
the main reason that it is included in the baseline approach. The success of the SVM depends
on a number of settings which should be chosen with care in order to give the best results.
In the baseline approach, SVM is applied with the standard settings of WEKA, without any
tuning phase. Thus there is no guarantee that the SVM will perform optimally in the baseline
approach.

TDT4900 - Master thesis

20 2. Background and related work

Figure 2.10: The maximum-margin hyperplane in the middle and the two separated hyper-
planes on each side. Picture from Wikipedia.

SVMs were first introduced at the COLT conference in 1992 by Vapnik et al and is therefore
a relatively young classifier. But most of the principles behind it had existed since the 1960s
and it was therefore the idea of putting them all together which was new [38]. Below is an
explanation of the basics behind SVMs, starting with SVM for the separable case and ending
with the asymmetrical margin SVMs.

Figure 2.9: Instances from two classes
are separated by three different hy-
perplanes representing different clas-
sifiers. Picture from Wikipedia.

Separable data points Figure 2.9 shows a scenario
where the instances from the classes are separable and
three different hyperplanes which all performs well on
the instances shown in the figure. But if the instances
shown are only training examples, the three hyper-
planes will most likely perform differently on the set
of all instances. A SVM classifier constructs a separat-
ing hyperplane which tries to maximise the distance
to the closest instance from each class, also called the
maximum-margin hyperplane. As a part of this pro-
cess, two parallel hyperplanes are constructed along
the frontier of each class, see Figure 2.10. Training ex-
amples lying on these separated hyperplanes are called
support vectors.

Inseparable data points In many cases, the data
is almost linearly separable. It is still possible to use
much of the same strategy as above, with the use of
slack variables. These variables allow some instances
to be misclassified and measure the degree of misclas-
sification. There is one slack variable ξi for each class i. In addition, there are two penalty
weights Ci, which regulates the trade-off between maximising the margin and minimising the

Early warnings of critical diagnoses

2.4. Methods used in machine learning 21

error for each class i.

A clean cut between the two classes is impossible, but a hyperplane that separates most of the
instances in the two classes can still be built. However, it is now subject to two constraints.
The first one is the same as before; maximise the margin to the two separated hyperplanes,
the second is to minimise the weighted sum of the slack variables which denote the degree
of error connected to misclassified instances. The resulting hyperplane is not the maximum-
margin hyperplane, since the hyperplane is adjusted to accommodate the instances which were
misclassified.

When SVM the error-weights used with respect to the two classes are equal, Cminority =
Cmajority, the approach uses symmetrical margins. Both classes are penalised equally for
misclassified instances. If the classes are unbalanced, one might want to penalise errors of one
class more than the other, in order to increase the sensitivity with respect to the minority class.
The solution is to increase the error-weight for the minority class, which will cause the decision
boundary to be closer to the majority class, allowing more examples from the minority class to
be classified correctly. When the error-weights are unequal, Cminority 6= Cmajority, it is called
asymmetrical margin support vector classification.

The mathematics required to find the classifier decision function includes solving the Wolfe
dual problem and finding Lagrange multipliers for each training example. For details, see
Cohen et al. for a compact presentation [13] or the book authored by Shawe-Taylor and Nello
Cristianini [38] for a more elaborated approach.

2.4.3 Evaluation

Evaluation is a key in understanding the quality of the models which are built by the classifiers.
Section 2.4.3 presents the methods used for evaluation, while Section 2.4.3 explains the four
categories where we put the examples used in testing. Finally, different performance metrics
are presented in section 2.4.3. The text in section 2.4.3 is from the project [4] last year.

Evaluation methods

Since most classifiers try to build models which minimises the error over the training examples,
it is a requirement to use examples it has not used in the training process when doing the
evaluation. The aim of the evaluation is to determine whether the classifier has been able to
generalise or whether it has overfitted the model to the training data. Two evaluation strategies
which fulfil the requirement of not reusing training examples in the testing are presented below;
the holdout method and cross-validation.

The holdout method divides the data in two disjoint sets; a training set and a test set. The
classifier builds its model using the examples in the training set and is evaluated on the examples
in the test set. The test set could consist of 50 - 10 % of all examples and these are not
available in the training process. This could have a negative effect on the model quality,
since the performance of a classifier usually increases with the number of training examples.
Another problem is that there can be large variations in the test result, depending on which
examples are in the test set and vice versa. One can circumvent this problem by using random
subsampling and average the results. The holdout method is then repeated several times, and
each time examples are assigned randomly to the two sets.

Cross-validation remedies the weakness of the previous strategy; it is able to use all examples
for both training and testing. The method randomly partitions the data into k subsets in the

TDT4900 - Master thesis

22 2. Background and related work

Actual value
P N

Prediction outcome P TP FP
N FN TN

Table 2.2: The confusion matrix.

first step. One subset is used for testing and the examples in the remaining k-1 subsets are
used for training. The results are collected and the process is repeated, this time with a new
subset as the test set. In turn, all subsets are used exactly once for testing and k-1 times for
training. By summing the results of all k tests, we have an approximation of the quality of a
classifier which had used all data for training.

A challenge with cross-validation is that we cannot view the representation of the model we
have evaluated, because it is actually k models. In the experiments conducted in this work,
each classifier was evaluated with cross-validation, but the representation of the corresponding
model was derived from a classifier which used all data in the training. For practical purposes,
we assume that the model which is presented is the average of the k models which were used
in the evaluation.

TP, TN, FP and FN

A test case which is used to evaluate the quality of a trained model can be classified as
either belonging to the target class (positive) or not belonging (negative), this is the prediction
outcome. Since we perform supervised learning, the actual value of the case is known, thus it
is straightforward to determine if the decision of the model was correct (true) or not (false).
Each test case is therefore labelled as one of the following; true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). The count of all cases which are true positive
is also denoted TP and similarly for the other categories.

The confusion matrix shown in table 2.2 shows how the combination of prediction outcome and
actual value decides which category a test case belongs to. As an example, if the prediction
outcome is positive (P) and the actual value is negative (N), the case is a false positive. When
evaluating the quality of a model, it is counted how many test cases fall into each of these four
categories and these sums are presented in the confusion matrix. These categories form the
building blocks when defining other evaluation metrics such as accuracy and sensitivity.

Performance metrics

The sensitivity and specificity of a classifier is how good it is at identifying positives and
negatives, respectively. If the specificity is 1.0, it means that all negatives were correctly
classified as such.

Sensitivity = TP

TP + FN
(2.9)

Specificity = TN

TN + FP
(2.10)

Early warnings of critical diagnoses

2.4. Methods used in machine learning 23

Positive predictive value (PPV) gives the proportion of correctly classified positive cases, while
the Negative Predictive Value (NPV) is the proportion of correctly classified negative cases.

PPV = TP

TP + FP
(2.11)

NPV = TN

TN + FN
(2.12)

Equation 2.16 presents the evaluation metrics used in this project. Accuracy is a metric which
is the ration of correctly classified cases. When the number of test cases from each class is quite
equal, this metric can give a fairly good picture of the performance of the classifier. However,
it is not well suited for situations where there are far more cases from one class with respect
to the other. If there were 10 000 test cases and the number of positives and negatives was
100 and 9 900 respectively, a simple classifier could say that all cases are negative. In terms of
accuracy, it would be correct in 99% of the cases. The classifier would still be useless, since it
is not able to find a single positive example.

The metric geometric mean uses both sensitivity and specificity to calculate the quality. It
gives them equal importance and as such it rewards models which are quite balanced in their
performance on both positives and negatives. A concrete example; two models A and B has
the same sum of sensitivity and specificity, model A has a sensitivity which is much greater
than its specificity, while these two values are equal for model B. Then model B will get a
higher geometric mean value than A.

F-measure makes it possible to give higher priority to the positive cases, which is useful when
the positive class is greatly outnumbered. But it does not take the negative class into account
in the evaluation, which makes it less suited to give a overall performance metric for the
classifier. α is a number between 0 and 1 used to decide the relative importance between PPV
and sensitivity. If α = 0, F-measure simplifies to sensitivity, while if α = 1 it becomes PPV.

Accuracy = TP + TN

TP + FP + TN + FN
(2.13)

GeometricMean =
√
sensitivity × specificity (2.14)

F −measureα = PPV × sensitivity
αsensitivity + (1− α)PPV

(2.15)

CWA = weight× sensitivity + (1− weight)× specificity (2.16)

Cohen et al. proposed the mean class-weighted accuracy (CWA) [13] as a metric which com-
bined the best of the geometric mean accuracy and F-measure. It uses sensitivity and specificity
like geometric mean, and adds weights which are used to regulate the importance of each class.
The formulas used for F-measure and CWA in Equation 2.16 are simplifications of the more
general formula (not presented), made for the binary classification problem. This approach
allows us to control the relative influence of sensitivity and specificity on the evaluation metric,
making it possible to customise the weights to the problem at hand.

ROC curves and ROC AUC This section about ROC AUC is from last years project
[4]. Receiver operating characteristic (ROC) curve has become a popular visualisation of a
classifier’s quality. It is a graphical plot of the classifier’s sensitivity along the y-axis versus (1

TDT4900 - Master thesis

24 2. Background and related work

Figure 2.11: ROC plot illustrating ROC curve of random guessing and some example points.
Picture from Wikipedia.

- specificity) as the x-axis. Integrating the area under the curve (AUC) gives the ROC AUC
which is often used to evaluate the performance of a classifier.

One trained model of a classifier results in a single point in the ROC space. One way of
obtaining a ROC curve, is to vary one of the parameters of the classifier. A typical parameter
which is used, is the discrimination threshold. This threshold determines when a case should
be classified as positive or negative, in the setting where we perform binary classification. A
classifier like Naive Bayes calculates the probability that a case belongs to a certain class, then
it uses a discrimination threshold to determine if this class should be classified as a positive
or negative example. Varying such a parameter makes it possible to draw a ROC-curve using
only one model. However, not all classifiers use probability values to determine the class. Then
it is necessary to vary other parameters in order to get a ROC curve.

Figure 2.11 shows a ROC plot which can be used to explain some of its basic properties.
The y-axis is labelled TPR or sensitivity, while the x-axis is labelled FPR or (1 - specificity).
True Positive Rate (TPR) is a different name for sensitivity, while False Positive Rate is the
number of False Positives divided by the number of True Negatives, which is equivalent to (1
- specificity). A perfect classifier with 100% accuracy, that is 1.0 in sensitivity and specificity,
would have coordinate (0,1), which is shown by a blue dot in the upper left corner. The
diagonal line through the plot is the ROC curve of a classifier which is doing classification
through guessing, the line of no discrimination. Classifiers above this diagonal are better than
random guessers, while classifiers below are worse. It should be noted that by taking the
negation of a classifier’s decisions, its ROC coordinate is mirrored across the diagonal. The
four blue dots labelled A, B, C and C’ denote the coordinates of four classifiers, where the
classifier C’ is the negation of classifier C.

Making a ROC curve by varying a parameter, is a good way of visualising which is the best
value for it, with respect to the costs (specificity) and benefits (sensitivity). In the case of
medical diagnosis, the physicians might require that the specificity of the classifier be above
95% and then one can use the ROC curve to find the model which gives the highest sensitivity

Early warnings of critical diagnoses

2.5. Data mining tools 25

given this constraint.

2.5 Data mining tools

There exists several learning environments which provide algorithms from the ML domain,
which eases the task of programming the code needed for the experiments. Weka [44] and
RapidMiner (formerly known as YALE [33]) are two of the most popular ones, both imple-
mented in Java. They are very similar in many aspects, but have different aims and thus they
have different approaches to managing their intellectual property rights (IPR) as described
below. In the end of this section we explain why Weka was chosen in this work and the most
important tools which were used from the Weka toolkit.

2.5.1 Intellectual property rights and software

IPR is about protecting intangible assets such as creations of the mind, both artistic and com-
mercial, providing legal rights exclusively to the creators. Copyrights, trademarks, patents
and trade secrets are all different types of IPR, giving the creator alternative ways of pro-
tecting their creation. These rights have different applications; copyright is typically used for
artistic creations, while patents and trademarks are more common with respect to commer-
cial creations, thus they are called industrial properties. A patent gives the patent holder the
right to prevent or exclude others from making, using, selling, offering to sell or importing the
invention3.

This paragraph gives a short version of how software has been protected, gathered from [1].
When software was defined as separate from hardware in USA in the 1970s, it was defined
to be mathematical algorithms, which cannot be patented. Copyright was seen as the best
protection for software, which was formalised in 1980 when software was included in copyright
law. In 1981, the Diamond v. Diehr case opened up for patenting software, since the software
was part of a physical process which was judged patentable. But the software in itself was
still not patentable. But in the Alappat case in 1994, a physical machine with software was
stated to be different from a machine without the software. This ruling together with the
State Street Bank v. Signature Financial Group decision (1998), which decided that business
methods can be patented, finally opened up for patenting software. During the same period,
copyright protection had lost most of its power since it only protects the exact code as it is
originally. A rewrite of the program would in many cases circumvent the copyright protection.

Anyone who writes a software program gets the copyright to it4. The owner can grant a user
the license to a copy of the program if the user accepts the terms of the license agreement.
Software licenses are divided into proprietary and open/free software licenses. The proprietary
licenses only grant a few well defined rights to the end user, most of the rights remain with
the owner. Free licenses give the user more rights; access to the source code and the right to
modify it. But in order to distribute work built on freely licensed work, one must attach the
source code and use the same license conditions as the original work. GNU General Public
License (GPL)5 is a popular standard license agreement which is often used with open source
code.

3Definition from Wikipedia: Patent, accessed 20th of January 2009.
4Norwegian law on copyright; Åndsverkloven, Â§1
5Current version of GPL is 3; http://www.gnu.org/licenses/gpl-3.0.txt

TDT4900 - Master thesis

26 2. Background and related work

Comparison of license terms for Weka and RapidMiner

Weka has been developed by the University of Waikato in New Zealand since 1993 and is
freeware released under the GPL. The source code is open and free to change by anyone who
wants to, but the license requires you to make derived works of Weka available to others under
the GPL.

The work on YALE (Yet Another Learning Environment) was begun by the Artificial Intelli-
gence Unit of University of Dortmund in 2001 and has now evolved into RapidMiner which is
a commercial company which provides both software and additional services to its customers.
There are two versions of RapidMiner; the Enterprise edition which is for the commercial mar-
ket and the Community edition which is free to use in contrary to the other version. Both edi-
tions are available as open source code under the GNU Affero General Public License (AGPL).
The AGPL is similar to the GPL in the way that any developer can obtain RapidMiner and
modify the code, as long as they make the full source code of their own application available
for users to modify and redistribute under the AGPL. In addition RapidMiner provides a pro-
prietary license for those who wish to embed RapidMiner in their work without making the
source code for their work publicly available. Thus they have a dual licensing system.

2.5.2 Weka classes used in this work

Weka was chosen as the learning environment for this project. It had the desired methods
available, in addition to the fact that the code from last year’s project also was accommodated
to Weka. Since RapidMiner offers most of the methods found in Weka, it is most likely that
it has more to offer than Weka. There was, however, no need for this extra functionality. This
project uses Weka 3.6 and the most important classes which are shown in Table 2.3.

2.6 Related work

This section presents some articles documenting work which can be related to this project. We
have not been able to find articles describing exactly the same setting as our project. Thus it
could be that our iterative approach to define tsus ,and require that we only use information
prior to this time, is a novel approach.

There are numerous ways to predict a disease using data mining techniques. Certain problems
reappear in several of the articles which is about predicting diagnoses, one of them is how
to select the best subset of features. There are two good reasons for reducing the number
of features; increasing the predictive performance and reducing the computational load [45].
11 different methods for feature selection were examined in [23], among them were 3 based
on mutual correlation and 7 methods previously used to select genes. Based on their results
from predicting women with breast cancer, the best feature selection algorithm was a mutual
correlation based filter made by Tsai and Chiu [41]. But even though this algorithm performed
best in this case, it was concluded that the best combination of feature selection and modeling
method depends on the data. This project uses a simple feature selection scheme, which is
described in section 3.5.3. Since our feature selection method is considerably more simple than
the ones used in [23], our project would most probably benefit from using more sophisticated
feature selection methods.

A strategy for countering imbalanced data sets is to oversample the minority class, and possibly
downsample the negative class at the same time. Even though these methods are simple, they

Early warnings of critical diagnoses

2.6. Related work 27

Class Type Comment

HyperPipes Classifier Extremely fast classifier, no doc-
umentation on origin.

JRip Classifier The RIPPER algorithm [14].
J48 Classifier The C4.5 algorithm [35].
NaiveBayes Classifier The NaiveBayes algorithm [28].
LibSVM Classifier A wrapper class [19] for the lib-

svm tools [9] .
KStar Classifier The K* algorithm [11].

Randomize Filter Randomizes the training exam-
ples.

Remove Filter Removes a range of attributes
from the data set.

SMOTE Filter The SMOTE algorithm [20].

ChiSquaredAttributeEval Att. eval. see section 2.4.1.
InfoGainAttributeEval Att. eval. see section 2.4.1.
SVMAttributeEval Att. eval. see section 2.4.1.
SymmetricalUncertAttributeEval Att. eval. Calculates the symmetrical un-

certainty, see section 2.4.1.

Table 2.3: Presentation of the most important classes used from Weka.

can improve the situation considerably. In the preceding project it was shown that resampling
the distribution of positives and negatives improved the overall performance as the distribution
became more balanced. However, when oversampling the positive training examples, there is
a risk that the models are overfitted to the training data.

One approach which increases the number of positives by creating synthetic cases, SMOTE
(see section 2.4.1 is presented by Chawla et al. [20]. An article which presents the application
of SMOTE is Taft et al. [39]. Their task was to improve models which predicted events of
adverse drug reactions (ADEs) in an emergency care unit at a hospital. The problem was
that there were only 0.348 examples with ADE per 100 examples without it, thus they had
a typical case of class imbalance. They tried other sampling techniques such as oversampling
using AdaBoost, but these attempts did not improve the results of the base classifier. By
using SMOTE to increase the number of positives, they got results for C4.5 which showed
an improvement in the true positive rate from 0.32 without SMOTE to 0.62 when adding
200% extra synthetical positives generated using SMOTE. The effect on the decision tree
models was a greater granularity than before, with more branches and leaves. This made
it possible to find other risk factors for ADE, which could be verified by domain experts.
An important contribution in the study was that they showed that using SMOTE avoids the
overfitting problem which is typically encountered in oversampling techniques, by showing that
the distribution of features was unchanged by SMOTE.

Park et al. claims that case-based reasoning (CBR) has been less used in medical research
than other AI methods [34]. Case-based reasoning does not try to generalise over all training
examples (cases) by building a model; it is an instance-based learning paradigm which tries to
find similar cases when determining the class of a new case. One of the simplest algorithms

TDT4900 - Master thesis

28 2. Background and related work

within this paradigm is k-nearest neighbours. Given an unknown case to classify, it uses
a distance metric to find the k cases which are most similar, then the class which is most
frequent among its neighbours is given to the new case. Even though CBR has not been used
much in the medical domain, it should be well suited for the area since clinical problem solving
is often case-specific and there are many examples available [36].

A study in Estonia by Remm & Remm [36] showed the usefulness of a case-based machine
learning and prediction system for estimating the risk of enterobiasis. Estimating the risk for
belonging to a class is closely related to predicting the class, as most classification algorithms
calculates the probability that a case belongs to the different classes. The other methods in the
study were quite different from ours, but we include it because it helps illustrate the alternatives
we did not or could not use. The data for the study was collected using questionnairies, an
approach which involves more work than using data which is already collected which is the case
in our project. An advantage of collecting the data yourself is that it is possible to gather the
information which is believed to be relevant. We had no say in how and what data should be
collected and as a result there is more irrelevant data and the data is not so fine-grained. Their
approach of using a case-based learner is very different from the learning algorithms we use,
except K-star. While our classifiers builds a model which tries to incorporate the information
from all examples, case-based learning and the K-star algorithm do not make a model to cover
all examples. K-star is a very simple case-based learning method

[27] has made the MUTARC algorithm, mining unexpected temporal association rules (UTARs).
They are trying to identify unexpected, infrequent episodes (UIE) which could cause adverse
drug reactions (ADE) of the simplified form UIE -> ADE. They use a brand new interist-
ingness measure for events called residual-leverage and use case-based exclusion to eliminate
frequent events which are assumed irrelevant for the task. They get a ranked list based on this
interstingness-measure, showing which events are the most important with respect to special
events. This is related to thir project, since one could picture the diagnose we’re trying to
predict as an ADE, and then we could try to find UIE which could cause ADE. One prob-
lem is that this assumes that the diagnose is caused by single events, while we don’t know if
several events act together. We also do not know if the causes for diseases are infrequent and
unexpected.

Early warnings of critical diagnoses

Chapter 3

Materials and Methods

This study has utilised information from different sources and these are presented in the begin-
ning of this chapter. The following sections are used to describe data sets, data mining tools
and the experiments themselves.

3.1 Materials

The data for this study originates from the electronic journal-systems used at different GP
offices in Norway. More specifically, the data originates from two different commercial journal-
systems; PROFDOC and PROMED, thus the two main data sources are named PROFDOC-
and PROMED-data. The PROFDOC data originates from a single GP office, while the
PROMED data is collected from 19 different offices. It is therefore not unexpected that there
is roughly five times as many events in PROMED as in PROFDOC, see table 3.1. However,
the extra data comes with a cost; the inconsistency problem is much greater for the PROMED
data than PROFDOC.

Since the data is from real patients, the sensitivity of the data is described in section 3.1.1, while
the two data sets are presented in section 3.1.2 and 3.1.3. In section 2.4.1 the inconsistency
problem is presented and it is explained how it was handled.

3.1.1 Sensitivity of data

Access to the data is granted through The Norwegian EHR Research Centre (NSEP), where
this study is conducted. The data which is considered sensitive is kept on servers which are only
connected to a secure, isolated LAN (SIL). Isolated means that it is not in any way connected
to the Internet, thus one can only access the data when physically connected to the SIL.

The list below presents a categorisation of data based on the sensitivity, the definitions were
copied from the internal guideline on NSEP. According to these guidelines, only SG0 data can
be copied or stored outside SIL. As table 3.1 shows, the data sets used in this study were
classified as SG1 data, thus all data handling was done while connected to the SIL at NSEP.

1. SG0 Anonymous: data cannot be used to indirectly identify patients.

2. SG1 De-identified: data can be used to identify patients indirectly.

29

30 3. Materials and Methods

ID Source SG # data rows # patients AST DIA HYP

PD-B PROFDOC SG1 1,225,385 11,853 645 434 254
PM-B PROMED SG1 6,889,655 112,420 3,165 1,793 1,217

Table 3.1: The data sets used in the experiments.

Event types

El. no. El. name Diagnosis Prescription Test

1 PatientID x x x
2 Time of event x x x
3 Type of event x x x
4 Type-specific el. ICPC2-code ATC-code Test name
5 Test result 1.0 or 0.0

Table 3.2: The event types and their elements for the data set PD-B.

3. SG2 (unnamed): data contains free-text fields which have been subject to an imperfect,
automatic process of removing direct identifiers.

4. SG3 (unnamed): data contains free-text fields which have not been subject to any auto-
matic deidentification process.

There are mainly two laws in Norway which are relevant when using data extracted from
EHR; The Personal Data Act (Personopplysningsloven) and The Personal Health Data Filing
System Act (Helseregisterloven). Personopplysningsloven regulates the use of personal data
while Helseregisterloven states how personal health data should be stored and dealt with.

One data set is extracted from each data source. Table 3.1 shows basic information about each
data set. The extracted data originates from well-defined fields in the data sources, thus there
is no free text data. The table also shows how many rows are in each data set and the number
of distinct patients which are described. There is one difference between the two sets, which is
that PD-B provides information whether the test result was abnormal or non-abnormal, PM-B
does not.

3.1.2 Data set: PD-B

This is the same data set which was used in the preceding project [4]. It is presented again,
in order to make this report more self-contained. It is a collection of events, where each event
is one of three types; diagnosis, prescription or test. Each event has a number of fields, some
are common and some are specific for each event. Table 3.2 shows the structure of the events.
The name of the data set is an acronym for ProfDoc Basic.

The first element, patientID, is a unique identifier for each patient in the data set. It is
generated for the data set and is not an identifier which originates from the EPR. Time of
event describes the time this event occurred, relative to the first event this patient has in the
data set. The first event for every patient occurs at time 0. Type of event is one of the three
event types; diagnosis, prescription or test. Element four is context-sensitive, meaning that

Early warnings of critical diagnoses

3.2. Overview of general experiment 31

Event types

El. no. El. name Diagnosis Prescription Test

1 PatientID x x x
2 Time of event x x x
3 Type of event x x x
4 Type-specific el. ICPC2-code ATC-code Test name

Table 3.3: The event types and their elements for the data set PM-B.

the content depends on the type of the event. It is essentially a name for the event. Diagnosis-
events are named using ICPC2-codes, prescription-events use ATC-codes, while the test names
are not standardised. Only test events have a fifth element, and that is the test result which
is either 1.0 (abnormal result) or 0.0 (non-abnormal result).

3.1.3 Data set: PM-B

The name of the data set is an acronym for ProMed Basic. The fields describing each event
are identical to PD-B, with the following exceptions. The patient ID of PM-B is the result
concatenating the institution with a patient number. The patient number is not unique across
institutions, thus these two must be concatenated to give a unique patient ID. In addition
there is no field describing the test results for PM-B, in contrast to PD-B.

3.2 Overview of general experiment

All experiments are conducted using the Disease Analyser System (DAS) which is programmed
in Java, using the machine learning environment Weka (see section 2.5.2 for more information).
This section describes DAS using data flow diagrams (DFDs) to describe the data flows and
the processes which modify these in DAS. DAS is only used as term in this section, other
sections only refer to DAS as system or similarly.

There exists different notations for making DFDs, we have chosen to follow the Yourdon and
Coad notation. There are only four symbols which are used; external entities are marked with
rectangular boxes, a file or a database is marked with two horizontal lines, processes that
takes data as input, modifies it and outputs data are marked with circles and the data flows
themselves are arrows indicating the direction of the data flow. We interpret objects which
hold frequently used data as databases in the following figures.

3.2.1 Data flow diagrams for DAS

Figure 3.1 shows the context of DAS; inputs are the data set(s) and the configuration which
control the experiment. The evaluation results, the actual models and properties of the patient
histories (PHs) is written to files which are put in the results folder. The information in the
configuration file controls the dynamic properties of the experiment such as the size of the
PP, WT and QP, how many attributes should be used to describe each patient, whether to
generate additional positive examples synthetically and many other parameters. All of these

TDT4900 - Master thesis

32 3. Materials and Methods

Figure 3.1: DFD context level of DAS (called system in figure).

settings are described in section A, while the data sets which are used are presented in section
3.1.

By decomposing the system-process in figure 3.1, the top level processes of DAS emerge. Each
process has a unique number which indicates the order of the processes in time. Processes 1, 2
and 3 are performed without the use of Weka, while 4, 5 and 6 are carried out with assistance
from Weka. DAS creates all the arff-files first, then it processes them one by one.

First of all the configuration file is read and the parsed settings are stored in memory. The
events from the data set are read in process 2, preprocessed and analysed. The preprocessing
collects the events for each patient into a patient history object (PH) and all PHs are stored
in the Patient data object. In the analysis step, the PHs are fetched from Patient data and
metadata about each PH is collected, then the metadata is written to the PH and put back in
the store. Process 3 uses the PHs and metadata in order to make the feature vectors (FVs),
according to the constraints from the experiment settings. The created FVs are stored as
arff-files, a file format defined by Weka.

Since arff-files can be imported into the Weka environment, it is now possible to use the tools
made available through Weka. Process 4 imports an arff-file into an Instances-object, which
holds the collection of all training/test examples. It is necessary with a second preprocessing
step in 5; settings from the experiment settings controls the actions of this step. Finally, the
preprocessed Instances are used to train and evaluate classifiers in process 6. The results from
this process, together with results extracted in processes 2 and 3, are put into the results folder.

In order to get a better view of the more complex processes 2, 3, 5 and 6, they are decomposed
into sub processes which are shown in figures 3.3, 3.4, 3.5 and 3.6 respectively.

Sub process 2.1 in figure 3.3 transforms the patient events into patient histories, while 2.2
identifies and analyses all patients with respect to which diagnoses, tests and prescriptions
they have taken, whether they have had one of the target diagnoses and if so; when did it
occur the first time and when did the first event indicating suspicion occur? This information
is denoted metadata and is coupled to the PHs and put back into the patient data repository.
It is reused in process 3 and in sub process 2.3, which finds the lengths between the major
events for each patient. The periods which are measured are between the following events; PH
beginning and end, in addition to tsus and tTD for each of the TDs the patient has. These
periods are measured in days and the number of visits and the results are written to file and
stored in the results folder.

The decomposition of process 3 in figure 3.4 shows how the PHs are filtered in sub process 3.1.

Early warnings of critical diagnoses

3.2. Overview of general experiment 33

Figure 3.2: DFD level 1, top level processes in DAS.

TDT4900 - Master thesis

34 3. Materials and Methods

Figure 3.3: DFD, process 2, preprocess and analyse data, decomposed.

Early warnings of critical diagnoses

3.2. Overview of general experiment 35

Figure 3.4: DFD process 3, make FVs, decomposed.

The selection constraints regulate which PHs are selected and which part of each PH which
should be used. More details about the selection process is given in section 3.3 under each
experiment description. The selected PHs are input to sub processes 3.2, where the feature
vectors (FVs) are created. A FV template with all possible events (diagnoses, prescriptions and
tests) is compared with the events occurring in the PP of the PH; if an event occurs in the PP,
it is checked off in the template. The resulting FV holds the information about which events
this patient has had in the PP. These FVs are not in a format which can be read by Weka,
so it is necessary to convert them into the arff-format. This task is performed in sub process
3.3 and the arff-file is written to a separate folder for arff-files. Sub process 3.4 calculates the
length of the PHs and writes the information to the results folder.

The details of the preprocessing which is done after the Instances have been illustrated in
figure 3.5. A number of actions are listed; applying SMOTE, randomising, attribute ranking
and selection. Not every experiment performs all these preprocessing tasks. The SMOTE flag
can turn SMOTE functionality on or off, the pipe flag decides whether the experiment should
terminate by storing the ranked list of attributes in the results folder, or pipe instances and
the ranked list of attribute to 5.4. The number of attributes which are retained in 5.4 is also
controlled. The randomisation step is the only preprocessing step which is conducted in every
possible scenario.

The final part of the experiment is the process where the models are built and evaluated,

TDT4900 - Master thesis

36 3. Materials and Methods

Figure 3.5: DFD process 5, preprocess Instances, decomposed.

Early warnings of critical diagnoses

3.3. Experiment overview 37

Figure 3.6: DFD, process 6, build and evaluate model, decomposed.

which is presented in detail in figure 3.6. The experimental settings are used to control which
classifiers should be initialised in sub process 6.1 and these classifiers are input to sub process
6.2 together with the preprocessed Instances from process 5. Each classifier builds one model
on all Instances available, and the representation of this model is stored in the results folder.
The next step is to use cross-validation to evaluate the quality of the model in sub process
6.3. We use cross-validation with 5 folds. It is not the model which is built in 6.2 which is
evaluated, but a set of models which together are approximately the same. See section 2.4.3 for
a more detailed explanation of the cross-validation procedure. The different evaluation metrics
are extracted in sub process 6.4 and these are structured and stored in the results folder.

3.3 Experiment overview

This section presents the experiments and their details, a rough overview of all experiments is
given in table 3.4. All experiments are given an identifier E(xperiment) + number, and these
identifiers are used when referring to the experiments in the rest of the report. Each experiment
has a purpose which is linked to the main problems (MPs) presented in the introduction 1.
E1 is conducted in order to estimate tsus while the other experiments focus on how the most
optimal model can be built.

TDT4900 - Master thesis

38 3. Materials and Methods

The experiments are also divided with respect to the actual prediction period (APP) used. In
E1, E5 and E6, we require that APP must be equal to PP. This is the only difference between
E2 and E5, and E3 and E6. APP was described in section 2.1.2.

All experiments except E4 use the classifiers Hyperpipes, NaiveBayes and Ripper to build
models. This standard set of classifiers are used because the time needed to build them
is relatively fast compared to the other classifiers presented in section 2.4.2. The Ripper
algorithm makes rules which enables us to easily inspect how it classifies examples. The model
of NaiveBayes is a bit more tedious to analyse, while Weka does not output a representation
of the Hyperpipes model. In E4 we use both the standard classifiers and the remaining ones,
in order to see if there are great differences.

3.4 E1: Determine time of suspicion

As described in section 2.2, the aim is to determine t∗sus, which is an approximation of tsus.
The list below gives a formal description of how the entire experiment is conducted (ToSus-star
is t∗sus, ToSus is tsus). Figure 2.6b illustrates this process while figure 2.7 shows the expected
result of this iterative approach.

1. Initial condition: The set of suspicion-indicators is empty, thus the initial approxima-
tion of ToSUS, ToSUS-star, is equal to ToTD.

2. Iteration i begins: Adjust ToSus-star based on the current suspicion-indicators; ToSus-
star is the time when the first event from suspicion-indicators occurs.

3. Calculate the worth of each attribute with respect to the class attribute, using a set of
attribute evaluation metrics.

4. Compute the average ranking of the attributes across the results from the different eval-
uation metrics.

5. Select the X attributes which have the highest average ranking.

6. Sort these attributes firstly by type of event, then name. Remove diagnosis-events.

7. Present these X attributes for a GoFE. For each attribute, the GoFE must answer the
following question; How probable is it that the presence of this event (test/prescription)
is an indication that the GP has suspected the target disease?. The alternatives are; very
unlikely, unlikely, neutral, likely, very likely.

ID MP APP Description

E1 MP1 = PP Estimate tsus.
E2 MP2, MP3 ≤ PP Observe effect of varying parameters.
E3 MP2, MP3 ≤ PP Observe effect of adding positives using SMOTE.
E4 MP3 ≤ PP Compare different classifiers.
E5 MP2, MP3 = PP Observe effect of varying parameters.
E6 MP2, MP3 = PP Observe effect of adding positives using SMOTE.

Table 3.4: The experiment plan, presenting an overview of what each experiment tries to
accomplish.

Early warnings of critical diagnoses

3.4. E1: Determine time of suspicion 39

Figure 3.7: A pair of one positive (p) and negative (n) PH. The part of the PH used to make
the FV in E1 is marked with grey.

8. If the GoFE answered very likely to one or more features, proceed with task 10.

9. If the GoFE did not answer very likely for any features, this is a strong indication that
we have a set of suspicion indicators which gives an accurate estimate of ToSus, thus the
loop can be terminated.

10. Put the features where the GoFE answered very likely in the set called suspicion-
indicators.

11. Iteration i ends: Go to step 2.

Steps 2 - 4 are carried out using the automated experimental process described in section
3.2, the remaining steps are manual tasks. We will continue this experiment description with
explaining how the automatic part of the process is done.

Process 1 in figure 3.2 imports the settings which control the experiment, these settings are
described and defined in section 3.4.4. The second process illustrated in figure 3.3 reads the
patient histories (PHs) and analyses the PHs in order to determine t∗sus for each patient. This
process corresponds to step 2 in the list. A subtask in the next process, making the FVs (see
figure 3.4), is to select the subset of PHs which are to be represented as FVs. Section 3.4.1
describes the constraints under which the PHs are selected. Pseudocode for the PH selection
process itself is described in section 3.4.2. The PHs are now selected and one FV is created
for each selected PH, the set of FVs is stored as an arff-file. Step 3 - 4 computes the average
correlation between each attribute and the class, using the method described in 3.4.3. These
steps correspond to process 5.3 in figure 3.5. SMOTE is not applied and the ranked attributes
are written to file and put in the results folder, thus no models are built.

3.4.1 Constraints

In this experiment, we use all information available in the positives, which is prior to tsus. This
is shown in figure 3.7, where the prediction period covers the positive PH p from beginning to
tsus. The PP does not have a fixed value and its length will depend on each patient. Note
that there is no WT between the end of PP and tsus, thus WT = 0. The PP cannot be empty,
which is specified in constraint 3.4.1. The positives which fulfill this constraint are added to
the set ~P ∗E1. We could have removed those positives which have very short PH prior to the
tTD, but they might include information which could identify suspicious events, so we keep
them.

Constraint 3.4.1 There must be at least one event in each positive PH prior to tsus.

TDT4900 - Master thesis

40 3. Materials and Methods

In order to control the balance between the number of positives and negatives which are
selected, we find one negative PH n for each positive PH p in ~P ∗E1, see Constraint 3.4.4.
Furthermore, to make sure that the average length of the PP for the positives does not differ
from the average length for negatives, we pose Constraint 3.4.2 on n. Figure 3.7 shows the
n which has been selected with respect to p. If n fulfils Constraint 3.4.2, it must also fulfill
Constraint 3.4.3.

Constraint 3.4.2 Each negative which is paired with a positive must adjust its PP so it has
the same length as the PP of the positive.

Constraint 3.4.3 Length of negative PH must be greater than or equal to length of corre-
sponding positive PH plus the size of the QP.

Negatives which have been successfully paired with a positive are added to the set of selected
negatives; ~N∗E1. NN = 1 of the selected negatives is duplicated, in order to make sure there
are more negatives than positives. The reason is that the Ripper algorithm makes rules for the
class with least examples, thus we make it to focus on the positive class.

Constraint 3.4.4 NofNegPHs = NN * (NofPosPHs + 1), where NN = 1 in E1.

3.4.2 Pseudocode PH selection

The task of selecting PHs is carried out in processes 2 and 3 in figure 3.2. Algorithm 1 is the
high-level pseudocode for this task. Reading section 3.4.1 is a prerequisite in order to get the
definitions of the sets used in the algorithm. The functions used in the algorithm are described
below.

findAllPositive and findAllNegative returns the collection of all positive and negative PHs in
the data set, respectively. Functions remove and add removes and adds the desired PH to the
specified COLLECTION. maskEventsAfter(EVENTS, COLLECTION) iterates through each
PH in the COLLECTION and determines t∗sus using the EVENTS as suspicion-indicators.
The events after t∗sus in the PH are masked, thus they are treated as if they were non-existant
in the remainder of the experiment. lengthDays(PH) returns the length of the unmasked
part of the PH, measured in days. findRandom(COLLECTION) picks a PH at random from
the COLLECTION. The probability of selecting a PH depends on the length in days; the
probability of selecting a PH, A, is twice as much as selecting another PH, B, if B is half the
length of A. randomCrop(PH, DISTANCE) randomly chooses a time interval within PH with
length DISTANCE (in days) and masks all events outside this interval.

3.4.3 Calculating the attribute worth

The attribute worth is calculated in order to identify which attributes are most closely related
to the class attribute. A list of the most related attributes is then given to a GoFE for them
to evaluate which events indicate that the GP suspects the TD. This section describes how the
ranked list of attributes with respect to attribute worth is made.

We have decided to use compute three single-attribute evaluation metrics, and make the ranked
list based on an average of the results. The evaluation metrics used are the chi-squared statistic,
information gain and symmetrical uncertainty. They have already been presented in section
2.4.1. Each of these produce a ranking of the attributes. The final rank of each attribute is

Early warnings of critical diagnoses

3.5. E2: Varying settings when APP ≤ PP 41

Algorithm 1 Pseudocode for PH selection in E1.
{Find all positive PHs and remove part of PH after ToTD}
~P = findAllPositivePH()
~P ∗E1 = maskEventsAfter(sus− ind, ~P)

{Find all negative PHs and remove those that are too short}
~N = findAllNegativePH()
for all n in ~N do
if lengthDays(n)−Quarantine < 1 then
remove(n, ~N)

end if
end for
{Match each positive PH with a random negative one}
~N∗E1 = newCollection()

for all p in ~P ∗ do
{Picks a negative PH at random}
n = findRandom(~N) {Make sure negative PH is at least as long as positive one}
while lengthDays(n) < lengthDays(p) do
n = findRandom(~N)

end while{Crop negative PH so it has same length as positive one}
n∗ = randomCrop(n, lengthDays(p))
add(n∗, ~N∗E1)

end for

calculated using Equation 3.1. Since we use three different metrics, there is less risk that the
bias of one metric will favour special types of attributes.

Rank(A) = RankSymU (A) +RankX2(A) +RankInfG(A)
3

(3.1)

RankSymU (A) is the rank of attribute A using the metric symmetrical uncertainty. If this rank
is 2, there is only one other attribute which is more closely related to the class attribute than
A.

3.4.4 Experiment settings

The relevant settings which were used to control E1 are shown in table 3.5. The entire PH prior
to tsus is used since WT is 0 and PP is not constrained. The suspicion-indicators for the three
diseases varies through the iterations. Iteration 1 is with no suspicion-indicators, iteration 2
uses the suspicion-indicators found in iteration 1, while iteration 3 uses the suspicion-indicators
found in iteration 1 and 2. For a more detailed description of each setting, see table A.1.

3.5 E2: Varying settings when APP ≤ PP

In the experimental setup described in section 3.2, a core of settings together decide which
information is given to the classifiers. The aim of this experiment is to see the effect each of
these have on the classifiers. The settings we are going to analyse are the iteration (It.), PP,

TDT4900 - Master thesis

42 3. Materials and Methods

WT, NN and NA. PP and WT have previously been described in section 2.1.2; they control
which part of the PH we include events, given tsus. tsus is controlled by the suspicion-indicators
and each iteration has a single set of suspicion-indicators per TD associated with it. Therefore
It. represents the different sets of suspicion-indicators. NN is short for the number of negatives
per positive example, as defined in Constraint 3.4.4.

The remaining settings which control the experiment are presented in table 3.7. It might seem
trivial to include which diseases and data sets to make models for, but they are included for
completeness.

3.5.1 Constraints on FV creation

Where E1 consequently used all information prior to tsus when making the FVs, E2 constrains
the length of both PP and WT. The difference is evident if one compare figure 3.7 with 3.8a.
In the latter case, the WT forces the PP further back in time, this affects how long the positive
PH should be prior to tsus. Constraint 3.5.1 states this formally.

Constraint 3.5.1 Length of positive PH prior to tsus must be greater than WT.

Note that the PP does not necessarily cover the remainder of the positive PH as it always did
in E1, thus APP ≤ PP. Figure 3.8b shows an example this situation. Constraint 3.5.2 makes
sure that each negative which is coupled to a positive, has the same APP as the positive.
Thus it is the APP which controls the size of the period from which we extract data from the
negative.

Constraint 3.5.2 Each negative is to have the same length of APP as its corresponding pos-
itive.

From Constraint 3.5.2 we can derive Constraint 3.5.3; given that APP = PP for the positive,
the negative must at least be of length QP + PP in order satisfy Constraint 3.5.2.

Constraint 3.5.3 Length of negative PH must be greater than or equal to PP + QP

E2 controls the balance between positives and negatives in the same way as E1, thus Constraint
3.4.4 also applies to E2. Since there are few positives available, this experiment tries to use as
many positives as possible. Constraint 3.5.1 is the only requirement which positives must fulfill
in order to be included as training examples. This constraint follows from the definition of WT,
which is a period from which we are not allowed to extract information. As a consequence, the
APP (actual prediction period, see section 2.1.2) can vary from 1 day to the maximum value
which is PP. The positives not fulfilling this constraint are excluded from the experiment, while
the rest are included in the set named ~P ∗E1.

3.5.2 Deciding the values of the settings

Each row in table 3.6 shows the values for each setting used for one sub experiment and all
rows together collect the information we assume is needed to see the effect of each setting.
An alternative to this set of sub experiments is to do only one experiment where all values of
each variable are included. The problem with the latter approach, is that it generates a larger
number of models, thus it takes longer time to complete. Equation 3.2 computes the number
of models which is generated in each sub experiment. The function l(X) returns the number

Early warnings of critical diagnoses

3.5. E2: Varying settings when APP ≤ PP 43

Setting Value

PP All
WT 0
QP 730
NN 1
NA All
SUS_IND_AST <dynamic>
SUS_IND_DIA <dynamic>
SUS_IND_HYP <dynamic>
USE_SMOTE False
PIPE_CORR_BM False

Table 3.5: Relevant experiment settings for E1.

(a) A pair of one positive (p) and negative (n) PH. The
part of the PH used to make the FV in E2 is marked
with grey.

(b) The same amount of data is extracted from both the
positive and negative example, even when APP is less
than PP for the positive.

Figure 3.8: The grey parts of the PH are used to make FV in E2. The two subfigures show
how the positive p decides the length of the period from which the features are extracted.

TDT4900 - Master thesis

44 3. Materials and Methods

of values X has in the experiment, l(Dis), l(Set) and l(C) are the numbers of TDs, data sets
and classifiers respectively.

NumModels = l(It)l(PP)l(WT)l(QP)l(NN)l(NA)l(Dis)l(Set)l(C) (3.2)

We apply Equation 3.2 to the case where all values are to be computed in one single experiment
(using the values from table 3.6); NumModels = 3 · 6 · 4 · 1 · 4 · 5 · 3 · 2 · 3 = 25920. If we
compare this with the sub experiments approach, the number of models for each row is 360,
432, 360, 432, 360, 432, summing to 2 376 models. This is approximately 10% as many models
as if we were to compute models for all combinations of the variables. A potential problem is
that we might have rejected combinations of settings which would produce better models than
our chosen set of combinations. However, this experiment will hopefully give results which
can aid us in finding the optimal combination which gives the best classifier with respect to
performance.

3.5.3 Feature selection method

A very simple method is used to select a set of features with a desired size. The first step is to
generate a list of ranked features using the procedure described in E1, section 3.4.3. The final
step is to retain the number of features we need from the top of the list.

3.5.4 Pseudocode PH selection

Algorithm 2 presents pseudocode for the PH selection in E2. It is similar to that of E1, but
the different constraints cause some differences. The conditions in the if-statements have been
altered, and there is an extra for-loop with a function maskEventsOutside(PH, LENGTH-PP,
LENGTH-WT), which masks the events in the PH which are outside the PP, resulting in a
PH where all unmasked events can be used to create a FV. The other functions are the same
as the ones described in section 3.4.2. There is also one difference in the final for-loop, where
each positive can be matched with more than one negative example.

3.5.5 Experiment settings

We divide the settings into two tables; table 3.7 shows the settings which are constant through-
out the sub experiments, while table 3.6 shows the values for the setting which vary throughout
each sub experiment.

3.6 E3: Increasing positives when APP ≤ PP

SMOTE was presented in section 2.4.1 as a sampling technique which generates synthetical
positives. This experiment will apply SMOTE in order to see if it has a positive effect on the
classifier performance. This experiment is the same as E2, the only difference is the experiment
settings.

Recall that SMOTE is used to generate new synthetical positives as described in section 2.4.1.
In order to maintain balance between the positives and negatives, we use SMOTE to add
synthetical positives until the two classes have the same number of examples. Applying SMOTE

Early warnings of critical diagnoses

3.6. E3: Increasing positives when APP ≤ PP 45

Algorithm 2 Pseudocode for PH selection in E2.
{Find all positive PHs and remove those that are too short}
~P = findAllPositivePH()
~P ∗E1 = maskEventsAfter(sus− ind, ~P)
for all p in ~P ∗ do
if lengthDays(p) < WT then
remove(p, ~P ∗E1)

end if
end for
{Mask events outside PP}
for all p in ~P ∗ do
maskEventsOutside(p, PP,WT)

end for
{Find all negative PHs and remove those that are too short}
~N = findAllNegativePH()
for all n in ~N do
if lengthDays(n)−Quarantine < PP then
remove(n, ~N)

end if
end for
{Match each positive PH with NN random negative ones}
~N∗E1 = newCollection()

for all p in ~P ∗ do
for i = 0 to NN do
{Picks a negative PH at random}
n = findRandom(~N) {Crop negative PH so it has same length as positive one}
n∗ = randomCrop(n, lengthDays(p))
add(n∗, ~N∗E1)

end for
end for

It. PP WT NN NA

1 913 300 1, 2, 4, 8 All, 1000, 100, 50, 10
1 31, 183, 365, 913, 1825, All 0, 31, 100, 400 1 All
2 913 300 1, 2, 4, 8 All, 1000, 100, 50, 10
2 31, 183, 365, 913, 1825, All 0, 31, 100, 400 1 All
3 913 300 1, 2, 4, 8 All, 1000, 100, 50, 10
3 31, 183, 365, 913, 1825, All 0, 31, 100, 400 1 All

Table 3.6: Each row shows the values used for the variables in one sub experiment, which is
part of E2.

TDT4900 - Master thesis

46 3. Materials and Methods

in a situation where the classes are balanced have no effect in this system. Thus we must create
the class imbalance before we apply SMOTE. Class imbalance is achieved by using NN > 1
when selecting the PHs should be used to make FVs. The FVs are made in process 3 in figure
3.2, while SMOTE is applied after this in process 5. As a result, we increase the number of
positives and negatives synchronously.

3.6.1 Experiment settings

In order to observe the effect of SMOTE, it is enough to vary NN. We also choose to vary
NA, in order to see if the classifiers perform differently with an increased amount of training
examples and varying NA. The other variables in table 3.8 are constant. In addition we reuse
the settings for E2 which were presented in table 3.7, except that USE_SMOTE = True.

3.7 E4: Comparing all classifiers when APP ≤ PP

This experiment compares the performance of all classifiers presented in section 2.4.2, using the
same procedure as E2. The experimental settings of E4 are very similar to E3, the differences
are listed below.

• USE_SMOTE = False.

• NA values are 1000, 100, 50, 10.

• Classifiers used are Ripper, Hyperpipes, NaiveBayes, C4.5, SVM and K-star.

The maximum number of attributes used in this experiment is 1000. The reason we do not
use all attributes is to speed up the time it takes to build these classifiers. We assume that the
attributes which are not used are irrelevant.

3.8 E5 and E6

The remaining experiments descriptions of E5 and E6 can be defined shortly, since they build
on the previous experiments to a large extent. E5 is nearly identical to E2 and E6 is nearly
identical to E3. The difference is that E5 and E6 require that APP must equal PP, while E2
and E3 only state that APP must be greater than 0. By replacing Constraint 3.5.1 with the

Setting Value

CLASSES_TO_PREDICT AST, DIA, HYP
CLASSIFIERS HyperPipes, NaiveBayes, Ripper
DATA_SET PD-B, PM-B
MIN_NUM_EVENTS 1
QP 730
USE_SMOTE False
PIPE_CORR_BM True

Table 3.7: Constant experiment settings for E2.

Early warnings of critical diagnoses

3.8. E5 and E6 47

more strict Constraint 3.8.1, E5 is identical to E2 and E6 is identical to E3. A consequence is
that each positive must at least be of length WT + PP in the period which is prior to tsus.

Constraint 3.8.1 APP must equal PP for all selected positives.

It. PP WT NN NA

3 913 300 1, 2, 4, 8 All, 1000, 100, 50, 10

Table 3.8: E3 required only one run with the following settings.

TDT4900 - Master thesis

Chapter 4

Results

The experiments conducted have generated a large amount of results which can be presented
in many different ways. It has therefore been a laborsome and difficult task to determine which
results to present and how. Experiment E5 was closely related to E2, thus section 4.6 compares
the results of E2 and E5, while E2 focuses on how the different parameters affected the quality
of the models. The same approach is chosen for experiment E3 and E6 which also are closely
related.

We use RIPPER models to investigate what kind of information this classifier uses. In order to
have a more precise language, we begin this chapter with a description of how to understand
RIPPER models in section 4.1. A last remark is that we did not have time to explain what all
the different attributes which occur in the models mean.

4.1 Understanding the RIPPER model

Because RIPPER is one of the models which is most easily understood, it will be used to
investigate what information the model utilises. Model 4.1.1 is an example of a RIPPER
model. Each line is one rule and each rule consists of 0 or more antecedents. (ALAT = f) is
the first antecedent in rule 1. It requires that the ALAT attribute must be false in order to be
satisfied, while (NONE = t) requires that the NONE-attribute must be true. All antecedents
in a rule must be satisfied, in order to trigger the conclusion. If all antecedents are satisfied
in the first rule, the rule concludes that the patient has diabetes. The quality of each rule
is presented at the end of each line with two numbers inside parantheses. The first number
is how frequently the rule concludes if it is applied to the examples used to build the model,
while the second number is how many times the conclusion is wrong. Rule 1 concludes 402
times and it is wrong in 105 cases, thus it is correct in 297 cases.

Model 4.1.1 Example:
(ALAT = f) and (NONE = t) => Diabetes=t (402.0/105.0)
(ALAT = f) and (FERRITIN = f) => Diabetes=t (646.0/294.0)
(HEMOGLOBIN = f) and (URAT = f) and (HB = f) => Diabetes=t (21.0/5.0)
(FOSFOLIPIDER = t) => Diabetes=t (8.0/3.0)
=> Diabetes=f (293.0/14.0)

48

4.2. E1: Determine time of suspicion 49

When the model is used to classify a new example, it tests each rule in top-down sequence.
Rule 3 is tested after rule 1 and 2. All rules but the last one conlude that the example has
diabetes, while the last rule states that if none of the rules above matched, the example is
labeled with the default class. The default class is that the example does not have diabetes.

We introduce some terminology for speaking of RIPPER models. A condition which require
that an attribute should be true, is called a positive indicator, while the opposite is a negative
indicator. If a model only has negative indicators, we call it a negation-model. That is, it has
not any conditions of the form (Attribute = t). Model 4.1.2 is an example of a negation-model.

Model 4.1.2 Example:
(ALAT = f) and (FERRITIN = f) => Diabetes=t (646.0/294.0)
(HEMOGLOBIN = f) and (URAT = f) and (HB = f) => Diabetes=t (21.0/5.0)
=> Diabetes=f (293.0/14.0)

4.2 E1: Determine time of suspicion

This section focuses on the events which were identified as the strongest suspicion-indicators,
since they indirectly define tsus. Tables 4.1, 4.2 and 4.3 presents the candidates which were
identified as the strongest suspicion-indicators by the group of field experts (GoFE). The
tables are sorted by iteration, then data set. Recall from Section 2.4.1 that there was an
issue with inconsistent naming of events which affected iteration 1 of E1. As a consequence,
the suspicion-indicators found in iteration 1 had to be converted to normalised versions. For
the remaining iterations, the data set had been modified, thus the suspicion-indicators were
already normalised.

4.2.1 Examining the suspicion-indicators

Even though the names of the suspicion-indicators from the two data sets PD-B and PM-B
appear different in Table 4.1, one should note that the prescriptions from PD-B are named
using the name of the drug in the medication, while PM-B uses the name of the medication. By
looking up1 the drugs used in the medications for asthma, we found that Bricanyl, Ventoline
and Efedrin all have drugs from the R03-category in the ATC-register; drugs for obstructive
airway diseases. More exactly, Bricanyl contains R03AC03, Ventoline contains R03AC02 and
R03CC02 while Efedring contains R03CA02. 5 of the 6 suspicion-indicators from the R03-
category are adrenergics, more specifically they are beta-2- or beta-adrenoreceptor agonists; a
class of drugs which is used to treat asthma [5]. Tuxi is a medicine used to treat cough and
since asthma irritates the airways, there is a possible connection.

The suspicion-indicators found for diabetes are mostly tests, especially PM-B which has only
tests as its suspicion-indicators. Four drugs from the A10-category are found in the PD-B data
set, the name of this category is simply drugs used in diabetes. The connection to the disease
is therefore obvious. The test HBA1C measures the amount of glucose bound to hemoglobin
proteins. Increased amounts of bound glucose indicates a longer period of elevated blood
sugar levels, which could be related to diabetes [5]. Measurements of glucose in the blood is
another test which is typical in relation with diabetes [5], and Table 4.2 shows that glucose is
a suspicion-indicator. Creatinine and diabetes strips do also occurr in the table and they are
also related to diabetes.

1From information found on Felleskatalogen; www.felleskatalogen.no

TDT4900 - Master thesis

50 4. Results

Set It. Name Normalised Type

PD-B 1 R03AC02 r03ac02 pres.
PD-B 1 R03AC03 r03ac03 pres.
PD-B 1 R03BA02 r03ba02 pres.
PM-B 1 BRICANYL-TURBOHALER bricanyl pres.
PM-B 1 VENTOLINE ventoline pres.

PM-B 2 - efedrin pres.
PM-B 2 - tuxi pres.

Table 4.1: The candidates which were marked as strongest suspicion-indicators for asthma.

Table 4.3 shows that it is mostly tests for different variants of thyroid hormones which are
suspicion-indicators for hypothyroidism. T3 and T4 are both thyroid hormones as described
in Section 2.3.3, while TSH is the hormone which stimulates production of T3 and T4. These
hormones are bound or free in the body, FT4 thus means free T4. H03AA01 is a kind of
thyroid hormone, and since it is a prescription it is likely that it is used in the treatment of the
disease. The C-reactive protein (CRP) test is taken when bacterial infections are suspected.

4.2.2 Time to suspicion and diagnose

As part of E1 it was noted when tsus and tTD occurred for each patient who had a TD. We
counted the number of (NOF) days from the start of PH to tsus, and from tsus to tTD. In
addition we also counted the NOF visits for the same periods. For each patient in each period,
we have a pair (NOF days, NOF visits) which contains the information that tells us the lengths
of these periods using two perspectives on time. All pairs for the same TD, iteration and data
set were plotted together, giving an overview of the lengths of these periods.

Figure 4.1 shows the plots for iteration 1, using data from PD-B and PM-B. They only have
points in the period start - tsus, the plots for tsus - tTD are not shown since they are empty.
This is understandable, since tsus − tTD = 0 because tsus was defined to equal tTD at this
iteration. One can clearly see the difference between the two data sets with respect to the
number of positives, PM-B contains far more data than PD-B. The subfigures provide useful
information about when tTD is, relative to the first time each patient visited the GP. Very few
positives in PD-B are diagnosed more than 5000 days after their first visit to the GP, while
this number is considerably larger for PM-B.

It is more interesting to see the situation after tsus has been adjusted in iteration 2 and 3; the
figures for iteration 3 are 4.2 and 4.3 (figures B.13 and B.14 for iteration 2 are in Appendix).
We have included the period tsus - tTD which shows how long time the GP uses from suspicion
till the diagnosis is set. There are some differences between asthma on one side and diabetes
and hypothyroidism on the other; the GP suspects the presence of diabetes and hypothyroidism
earlier than asthma, but the time from suspicion to diagnosis is shorter for asthma patients
compared to the other two diseases. This is most easily seen in Figure 4.2 which shows data
from PD-B.

Table 4.4 strengthens this observation, as it presents the number of patients who were suspected
of having a TD on their first visit to the GP. For PM-B, almost half of the patients with diabetes
or hypothyroidism were suspected of having the TD on their first visit, while the number is

Early warnings of critical diagnoses

4.2. E1: Determine time of suspicion 51

Set It. Name Normalised Type

PD-B 1 A10AB01 a10ab01 pres.
PD-B 1 A10AC01 a10ac01 pres.
PD-B 1 A10BB07 a10bb07 pres.
PD-B 1 A10BB12 a10bb12 pres.
PD-B 1 B-GLYKO b-glyko test
PD-B 1 GLUCOSE glucose test
PD-B 1 HBA1C hba1c test
PM-B 1 eb HbA1c hba1c test
PM-B 1 s Glukose 1 glucose test
PM-B 1 s Glukose 2 glucose test
PM-B 1 s Glukose FAST glucose test
PM-B 1 S-GLUKOSE FAST glucose test
PM-B 1 s Kreatinin kreatinin test
PM-B 1 s Natrium natrium test
PM-B 1 Testtape testtape test
PM-B 1 u Strimmel Glukose strimlerGlukose test

PD-B 2 - Ustix test
PM-B 2 - Diabetes-str. test
PM-B 2 - Strimler test
PM-B 2 - Ketoner test

Table 4.2: The candidates which were marked as strongest suspicion-indicators for diabetes.

TDT4900 - Master thesis

52 4. Results

Set It. Name Normalised Type

PD-B 1 H03AA01 h03aa01 pres.
PD-B 1 R05CB01 r05cb01 pres.
PD-B 1 HB hb test
PD-B 1 CRP crp test
PD-B 1 S-CRP crp test
PD-B 1 S-FT4 ft4 test
PD-B 1 S-T3 t3 test
PD-B 1 S-TSH tsh test
PD-B 1 T4 t4 test
PM-B 1 THYROXIN-NATRIUM thyroxin-natrium test
PM-B 1 s Thyroxin, fritt T4 ft4 test
PM-B 1 S-FRITT T4 ft4 test
PM-B 1 s Thyroxin, total T4 t4 test
PM-B 1 S-T4 t4 test
PM-B 1 s TSH tsh test
PM-B 1 S-TSH tsh test
PM-B 1 s Trĳodothyronin T3 t3 test

PM-B 2 - Thyroxin test

Table 4.3: The candidates which were marked as strongest suspicion-indicators for hypothy-
roidism.

PD-B PM-B
TD Freq. % Freq. %

AST 98 15 797 26
DIA 173 41 810 46
HYP 97 38 567 47

Table 4.4: The number of patients who were suspected of TD on their first visit to the GP.

Early warnings of critical diagnoses

4.2. E1: Determine time of suspicion 53

only 26% for asthma.

Since the overall task is to give warning prior to the suspicion, we constrain ourselves to only
use data from the start of PH until tsus (we use the best approximation of tsus which was found
in iteration 3 of E1). Thus we depend on the events which occurred in this period to make a
prediction. If there are no events or the events which exist are irrelevant, the task of making
predictions based on this data will be impossible. In order to get a better picture of how much
information is available in this period, we have documented how many positives would remain
if we required that the period start - tsus was at least X days. This is shown in Figure 4.4 for
the two data sets PD-B and PM-B. Figure 4.5 is similar, but its x-axis is the number of visits
instead of days.

The curves for diabetes and hypothyroidism are very close in these figures, always lying below
the curve for asthma. From Figure 4.4a we can see that if we required that start - tsus was at
least 500 days, approximately 60% of the patients with asthma would fulfill this requirement,
while the corresponding number for the patients with diabetes and hypothyroidism would be
only 30%.

TDT4900 - Master thesis

54 4. Results

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(a) Start - Sus, AST, PD-B.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000
N

O
F

 v
is

its
NOF days

(b) Start - Sus, AST, PM-B.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(c) Start - Sus, DIA, PD-B.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(d) Start - Sus, DIA, PM-B.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(e) Start - Sus, HYP, PD-B.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(f) Start - Sus, HYP, PM-B.

Figure 4.1: Scatter plots of how quickly GP suspects the TD, iteration 1.

Early warnings of critical diagnoses

4.2. E1: Determine time of suspicion 55

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(a) Start - Sus, AST.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(b) Sus - Dia, AST.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(c) Start - Sus, DIA.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(d) Sus - Dia, DIA.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(e) Start - Sus, HYP.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(f) Sus - Dia, HYP.

Figure 4.2: Scatter plots of how quickly GP suspects and diagnoses patients, using data from
PD-B, iteration 3.

TDT4900 - Master thesis

56 4. Results

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(a) Start - Sus, AST.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(b) Sus - Dia, AST.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(c) Start - Sus, DIA.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(d) Sus - Dia, DIA.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(e) Start - Sus, HYP.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(f) Sus - Dia, HYP.

Figure 4.3: Scatter plots of how quickly GP suspects and diagnoses patients, using data from
PM-B, iteration 3.

Early warnings of critical diagnoses

4.2. E1: Determine time of suspicion 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

AST
DIA

HYP

(a) PD-B, iteration 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

AST
DIA

HYP

(b) PM-B, iteration 3.

Figure 4.4: The ratio of positives remaining as we require the period start - tsus to be greater
than a given number of days. X-axis: number of days, Y-axis: ratio of positives remaining.

TDT4900 - Master thesis

58 4. Results

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140

AST
DIA

HYP

(a) PD-B, iteration 3.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140

AST
DIA

HYP

(b) PM-B, iteration 3.

Figure 4.5: The number of positives remaining as we require the period start - tsus to be
greater than a given number of visits. X-axis: number of visits, Y-axis: number of positives
remaining.

Early warnings of critical diagnoses

4.2. E1: Determine time of suspicion 59

It. 1 It. 2 It. 3

1 R81 1 R78 1 R83
1 R78 1 R05 1 R78
1 R74 1 R02 1 R74
1 R02 1 H71 1 R02
1 H71 1 H71

Table 4.5: Positive indicators and their frequency from RIPPER models for all iterations, with
respect to asthma and PD-B.

4.2.3 Model analysis

The previous section gave an overview of the results in E1 from a performance-oriented per-
spective. This section investigates how the RIPPER models are altered for each iteration. We
choose to focus our attention on the positive indicators which occur in the models for different
iterations. If an antecedent in a rule requires an attribute to be true, the attribute is a positive
indicator (described in section 4.1). Tables 4.5 to 4.10 present the positive indicators for each
disease-dataset combination. The tables present the positive indicators and their frequency for
each iteration.

One common trend for all these tables is that the number of positive indicators diminish for
each iteration. This is not unexpected, since information is retained further away from the
diagnosis is set for each iteration.

Positive indicators for asthma

The positive indicators for asthma are shown in table 4.5 and 4.6. For the PD-B data set, it
is mainly diagnosis codes from the R-group which are used. Note that none of the suspicion-
indicators are positive indicators. H71, R02 and R78 are used in all iterations. The correspond-
ing diagnoses titles for these codes are acute otitis media/myringitis, shortness of breath/dysp-
noea and acute bronchitis/bronchiolitis. These are all diseases which are related to the airways,
thus it seems likely that they could have a connection to asthma.

There are no positive indicators remaining in iteration 3 when using the PM-B data set, which
indicates that the model did not find anything particularly useful.

Positive indicators for diabetes

The models which are built to predict diabetes, use the positive indicators presented in tables
4.7 and 4.8. In the first table there are three positive indicators which remain in iteration 3;
HSTAT, GLYKO and EVF. These are medical tests, the GLYKO test is probably some kind
of glycogen test.

In the PM-B data set, the positive indicators in iteration 3 (see table 4.8) include tests for
hemoglobin, FT4 and kalium. The diagnosis K86, hypertension uncomplicated is a condition
of chronically elevated blood pressure which is especially dangerous for diabetes patients [10].
We ignore the positive indicator NONE, as we believe it is irrelevant based on its name.

TDT4900 - Master thesis

60 4. Results

It. 1 It. 2 It. 3

2 *VENTOLINE 2 CRP
2 *BRICANYL 1 NONE
1 T4 1 KATT
1 R81 1 IGE
1 R74
1 PULMICORT
1 NONE
1 IGE
1 G6
1 D2
1 CRP

Table 4.6: Positive indicators and their frequency from RIPPER models, with respect to
asthma and PM-B. Attributes marked with * are suspicion indicators.

It. 1 It. 2 It. 3

3 GLUCOSE* 1 K86 1 HSTAT
1 R78 1 HB 1 GLYKO
1 MCV 1 GLYKO 1 EVF
1 L13 1 FRUKT
1 K86 1 ERYTROCYTTER
1 K07 1 ALAT
1 HBA1C*
1 GLYKO
1 FRUKT
1 CL

Table 4.7: Positive indicators and their frequency from RIPPER models, with respect to
diabetes and PD-B. Attributes marked with * are suspicion indicators.

Early warnings of critical diagnoses

4.2. E1: Determine time of suspicion 61

It. 1 It. 2 It. 3

10 *GLUCOSE 4 NONE 1 NONE
4 NONE 2 HEMOGLOBIN 1 KALIUM
4 *HBA1C 1 SYSTOLISK 1 K86
4 ALBUMIN 1 KALIUM 1 HEMOGLOBIN
2 TRĲODOTHYRONIN 1 K86 1 HB
2 *TESTTAPE 1 HB 1 FT4
2 FERRITIN 1 FT4 1 ALAT
2 ASAT 1 FOSFOLIPIDER
1 URINSYRE 1 DIASTOLISK
1 TROMBOCYTTER 1 BLODTRYKK
1 PH 1 ALP
1 KOLESTEROL 1 ALAT
1 K86
1 HB
1 GLYKOS.HEMOGLO.
1 GLUKOSEBELASTNING
1 GLUCOPHAGE
1 GAMMA
1 CRP
1 CK
1 AMYLASE

Table 4.8: Positive indicators and their frequency from RIPPER models, with respect to
diabetes and PM-B. Attributes marked with * are suspicion indicators.

TDT4900 - Master thesis

62 4. Results

It. 1 It. 2 It. 3

1 *FT4 1 ERYTROCYTTER 1 EVF
1 ALAT 1 ALAT

Table 4.9: Positive indicators and their frequency from RIPPER models, with respect to
hypothyroidism and PD-B. Attributes marked with * are suspicion indicators.

It. 1 It. 2 It. 3

7 *FT4 2 NONE 1 NONE
2 *THYROXIN 1 *THYROXIN 1 GLUCOSE
1 TRĲODOTHYRONIN 1 TESTTAPE 1 ALP
1 THYROGLOBULIN 1 HEMOGLOBIN 1 ALAT
1 SR 1 GLUCOSE
1 NONE 1 FERRITIN
1 *HB 1 DIASTOLISK

1 ALP
1 ALAT

Table 4.10: Positive indicators and their frequency from RIPPER models, with respect to
hypothyroidism and PM-B. Attributes marked with * are suspicion indicators.

Positive indicators for hypothyroidism

The average of positive indicators for the PD-B dataset is low compared to the other diseases.
Table 4.9 show that EVF and ALAT (alanine aminotransferase) remain in iteration 3. ALAT
can also be found in iteration 3 for the PM-B data set as well, as can be seen in table 4.10. In
addition we find the attributes NONE, GLUCOSE and ALP. NONE could indicate a missing
value in the journal system, ALP (alkaline phosphatase) is a medical test which measures
the level of a protein in the blood. It is done to diagnose liver or bone disease, or to see if
treatments for those diseases are working.

Early warnings of critical diagnoses

4.3. E2: Varying settings when APP ≤ PP 63

4.3 E2: Varying settings when APP ≤ PP

This section presents the results from experiment 2, which aims at documenting how the
different parameters such as prediction period (PP), warning time (WT), number of negatives
(NN) and number of attributes (NA) affect the classifiers which build the predictive models.
We present the variation of each setting in the context of the the three different TDs, the
two data sets and the three iterations in order to capture any patterns if they exist. We have
chosen to use geometric mean as the evaluation measure, the rationale behind this choice is
described in Section 5.7. In short, it gives a reasonably good picture of the classifiers, even in
situations with class imbalance.

We denote maximum PP (PP = All) with the value 3000 in the figures. In fact, the value of
PP will vary depending on each patient, but since the models are built using many patients,
we must assign a static value to PP in the figures.

4.3.1 Effect of varying PP

Figure 4.6 and 4.7 show the quality of the models with respect to accuracy, when we vary the
size of the PP. As the PP grows in size, events are collected from a longer period, increasing
the chance that more events will be included in the FVs. Constant values for this experiment
were; WT = 100, NN = 1, NA = All.

The sub figures from iteration 1 shows that Ripper and Naive Bayes has a gentle improvement
from PP = 100 to PP = All. This improvement is absent in iteration 3. By comparing
the classifiers, Naive Bayes and Ripper outperforms HyperPipes in practically all figures for
iteration 1, while the situation is not so clear-cut in iteration 3. Hyperpipes is still worse for
asthma, but for the other two diseases it is just as good or better. For PP = [31, 365], the
figures do not show much similarity. Since it is a quite short period to collect data from, the
classifiers are more susceptible to noise, which could explain these variations.

TDT4900 - Master thesis

64 4. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.6: Performance of classifiers for iteration 1. Classifier is evaluated using geometric
mean, and it is the PP which varies in each plot.

Early warnings of critical diagnoses

4.3. E2: Varying settings when APP ≤ PP 65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.7: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the PP which varies in each plot.

TDT4900 - Master thesis

66 4. Results

4.3.2 Effect of varying WT

Figure 4.8 and 4.9 show the quality of the models with respect to geometric mean, when we
vary the size of the WT. As the size of the WT increases, it makes the learning problem harder,
since we cannot collect the events which are immideately prior to tsus. Constant values for
this experiment were; PP = 913, NN = 1, NA = All.

The Ripper classifier performs very well in iteration 1 when WT = 0, compared to the cases
where WT > 0. This could mean that it was able to use information which occurred im-
mideately prior to tsus, which is actually tTD for iteration 1. The other two classifiers do not
seem to capture this information to the same extent. Whether WT = 31 or greater does not
have much effect on the classifiers in iteration 1. One possible explanation would be that the
information which is particularly useful in classification is less than 31 days prior to tTD.

One would expect that the results of iteration 3 could not match those of iteration 1, since the
tsus used in iteration 3 is much earlier than tsus in iteration 1. However, the Ripper algorithm
gives a score which is comparable to the best from iteration 1 for hypothyroidism (PD-B) and
diabetes (PM-B).

Early warnings of critical diagnoses

4.3. E2: Varying settings when APP ≤ PP 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.8: Performance of classifiers for iteration 1. Classifier is evaluated using geometric
mean, and it is the WT which varies in each plot.

TDT4900 - Master thesis

68 4. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.9: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the WT which varies in each plot.

Early warnings of critical diagnoses

4.3. E2: Varying settings when APP ≤ PP 69

4.3.3 Effect of varying NN

In this experiment, the class distribution is altered from having practically equal numbers
of positives and negatives at NN = 1, to the situation where there is approximately 8 times
as many negatives as positives at NN = 8. Thus the distribution becomes more and more
imbalanced with respect to the two classes. Figures 4.10 and 4.11 show the quality of the
models with respect to GM, when we vary NN. NN decides how many negative examples
are added to the training set for each positive. Increasing NN will affect the distribution of
positives and negatives in the training set, by increasing the number of negatives compared to
the positives. This makes it harder to learn a good model for both classes, because the class
imbalance induced by larger NN often have a negative effect on the ability of the classifier to
make a model which generalises over both classes. Constant values for this experiment were;
PP = 913, WT = 300, NA = All.

The Ripper classifier shows poor performance as NN increases, Naive Bayes and Hyperpipes are
not affected particularly much. The last two classifiers show markedly improved performance
in iteration 3 compared to iteration 1.

TDT4900 - Master thesis

70 4. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.10: Performance of classifiers for iteration 1. Classifier is evaluated using geometric
mean, and it is the NN which varies in each plot.

Early warnings of critical diagnoses

4.3. E2: Varying settings when APP ≤ PP 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.11: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NN which varies in each plot.

TDT4900 - Master thesis

72 4. Results

4.3.4 Effect of varying NA

Figures 4.12 and 4.13 show the quality of the models with respect to GM, when we vary NA.
NA controls the number of attributes which are used in each FV. They contain information
which can be used by the classifiers. The question is how much of this information is relevant
with respect to the TDs. Information which is not relevant makes the task of predicting harder,
becase of the curse of dimensionality which is part of the discussion in Section 5.6. Constant
values for this experiment were; PP = 913, WT = 300, NN = 1.

The Hyperpipes classifier shows a sharp decline for the smallest values of NA in 10 of 12 sub
figures. One possible explanation is that the remaining features does not discriminate between
the two classes any longer. Naive Bayes and Ripper are basically unaffected by the variation
in NA. One difference between the iterations 1 and 3 is that the Naive Bayes and Ripper have
slightly better performance in iteration 3 than in 1.

Early warnings of critical diagnoses

4.3. E2: Varying settings when APP ≤ PP 73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.12: Performance of classifiers for iteration 1. Classifier is evaluated using geometric
mean, and it is the NA which varies in each plot.

TDT4900 - Master thesis

74 4. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.13: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NA which varies in each plot.

Early warnings of critical diagnoses

4.4. E3: Increasing positives when APP ≤ PP 75

NN

Model 1 2 4 8

AST, PD-B 4 (8) 8 (24) 12 (81) 13 (94)
AST, PM-B 2 (3) 2 (4) 8 (43) 49 (518)
DIA, PD-B 4 (6) 4 (10) 3 (10) 13 (146)
DIA, PM-B 3 (7) 7 (31) 8 (46) 4 (11)
HYP, PD-B 2 (3) 3 (31) 3 (34) 7 (93)
HYP, PM-B 3 (7) 5 (27) 8 (22) 13 (111)

Table 4.11: The number of rules, with antecedents in paranthesis, for the RIPPER classifier
as the number of positives is increased.

4.4 E3: Increasing positives when APP ≤ PP

Figure 4.14 shows what happens when we add extra positives which are generated using
SMOTE. The x-axis denotes NN and increasing NN will increase the number of negative
examples per non-synthetic positive. SMOTE generates enough synthetic positives so that
there are equal numbers of positives and negatives. Thus if NN = 4, there are four times as
many negatives as non-synthetic positives, but SMOTE adds extra synthetic positives so the
total number of positives is the same as negatives. 75% of the positives are synthetic in that
case.

We do not have to create synthetical negatives, because there is an abundancy of negative
patient histories available in both PD-B and PM-B.

4.4.1 Increased complexity

In all the subfigures shown in figure 4.14, the performance of the classifiers increase as we add
more positives. Table 4.11 shows the complexity of the models for the subfigures, using the
models of RIPPER. The trend is that with increasing number of examples, the model has more
rules and especially antecedents. Thus the models become more fine-grained and complex. The
same trend was seen in the decision trees models presented by Taft et al. [39], as a consequence
of increasing the number of positives with SMOTE.

4.4.2 Too few attributes

Figure 4.15 shows the effects of varying the number of attributes after we increase the number
of negatives with NN = 8 and add the corresponding number of synthetical positives. The
results show that there is not much difference between using 1000 instead of all attributes.
The performance drops as NA diminishes, but there are great differences among the classifiers.
100 attributes is apparently not enough for Hyperpipes, as its performance drops drastically
from 1000 to 100 attributes compared to the other two classifiers. As NA drops from 100 to
50 and 10 attributes, all classifiers decrease in performance.

From these results, it seems like the optimal number of attributes is between 100 and 1000
attributes.

TDT4900 - Master thesis

76 4. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.14: Performance of classifiers when using SMOTE. Evaluation metric: geometric
mean, NA is max, NN varies.

Early warnings of critical diagnoses

4.4. E3: Increasing positives when APP ≤ PP 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(a) AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(b) AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(c) DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(d) DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(e) HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(f) HYP, PM-B.

Figure 4.15: Performance of classifiers when using SMOTE. Evaluation metric: geometric
mean, NA varies, NN is 8.

TDT4900 - Master thesis

78 4. Results

4.5 E4: Comparing all classifiers when APP ≤ PP

Tables 4.12 and 4.13 compares the results of the six different classifiers used in this experiment.
The results are only for asthma, using the two data sets. Since we focus on the classifiers and
not the disease, we believe that important information is not lost by ignoring the results for
diabetes and hypothyroidism.

The classifiers are sorted firstly by the number of attributes used (NA), then by their geometric
mean (GM). We also present additional information for each classifier; the time necessary to
build the model in seconds (time), the area under the curve (AUC) for the receiver operating
charachteristics, sensitivity and specificity. Recall from the experiment description in section
3.7 that the results were obtained using iteration 3, NN = 1, PP = 913 and WT = 300.

We have not inspected the models for any of these classifiers in this experiment, as it is only
RIPPER, C4.5 and to a certain extent NaiveBayes, which has transparent models. It is also
considered too time consuming. Even though, it should definitely be done in order to verify
that the models are useful. As it is, we can only present the results with respect to evaluation
metrices.

4.5.1 Performance

The results for the PD-B data given in table 4.12, do not show that one classifier is definitely
better than the others. SVM and C4.5 share the top position when NA = 100 with GM = 0.64,
while K-Star and C4.5 are the best classifiers measured in GM when NA = 1000. We can say
that C4.5 is the best classifier on average when the number of attributes varies. The algorithm
has relatively higher sensitivity (0.78) than specificity (0.53), making it better at identifying
positives than negatives. In terms of AUC, NaiveBayes is the best classifier, regardless of NA
value. It is not much difference between C4.5 and NaiveBayes in terms of AUC when NA = 100,
but NaiveBayes is judged considerably better when NA = 1000. HyperPipes is the classifier
with highest sensitivity, but it has very poor performance in terms of specificity, thus it is
ranked as the worst classifier. It is worth noting that SVM has the opposite charachteristics
of HyperPipes; it is much better at identifying negatives than positives.

If we shift our attention to table 4.13, HyperPipes is still the worst classifier. It is apparent
that 100 attributes is not enough to distinguish the classes, as HyperPipes has a GM of 0.18
because of low specificity. There is not much difference between the other classifiers in terms
of GM, while AUC favours NaiveBayes as the best classifier. Finally, we note that there is not
any consistent difference between classifiers if we compare the two data sets.

4.5.2 Time to build

From table 4.12 one can see that the cost of building each model with respect to time is highly
dependent on the number of attributes. SVM uses 1.93 seconds to build its model when NA
= 100, a number which increases to 18.07 when NA = 1000. The time increases with 836%,
when the NA increases with 1000%, thus the time scales almost linearly with the number of
attributes. The C4.5 algorithm scales even worse than SVM, the time increases with exactly
2000%, while RIPPER increases with 844%. Thus it is obvious that there is much time to save
if one can use a subet of the features instead of the full set.

NaiveBayes and HyperPipes are extremely fast compared to the other classifiers. We do not
have enough decimal places in order to see how long time they use when NA = 100, so we

Early warnings of critical diagnoses

4.6. E5: Varying settings when APP = PP 79

Classifier Time (sec.) AUC Sens Spec GM NA

SVM 1.93 0.64 0.60 0.69 0.64 100
C4.5 0.42 0.67 0.78 0.53 0.64 100
NaiveBayes 0.00 0.69 0.73 0.49 0.60 100
K-star 0.00 0.62 0.73 0.49 0.59 100
RIPPER 0.09 0.56 0.69 0.45 0.55 100
HyperPipes 0.00 0.62 0.98 0.20 0.45 100

K-star 0.00 0.61 0.48 0.71 0.58 1000
C4.5 8.82 0.59 0.66 0.50 0.58 1000
NaiveBayes 0.03 0.67 0.71 0.46 0.57 1000
RIPPER 0.85 0.57 0.54 0.57 0.56 1000
HyperPipes 0.01 0.61 0.81 0.34 0.52 1000
SVM 18.07 0.57 0.24 0.91 0.46 1000

Table 4.12: Comparison of classifiers for asthma using PD-B.

cannot say anything about how well they scale with the number of attributes. K-star is the
classifier which uses least time building a model. The reason is that it does not build any
model at all. It is first when it is going to classify a new case that it does any work, see section
2.4.2.

However, if we look at how long time it takes to cross-validate each classifier, the picture is
quite different for K-star. Cross-validation is used to evaluate the performance of a classifier
(see section 2.4.3), by training and testing the classifier five times. The time it takes to cross-
validate each classifier combines the time to build models and the time spent classifying, thus
we get the total picture of how fast the classifier is. It takes 1151.94 seconds to cross-validate
K-star when NA = 1000, the corresponding times for SVM, NaiveBayes, C4.5, RIPPER and
HyperPipes are 902.12, 0.45, 1102.82, 18.49 and 0.12 seconds. Thus we see that K-star needs
most time, because it takes much longer time to classify examples than the other classifiers.

A brief check on table 4.13 show that it takes considerably longer time to build a model, when
using PM-B instead of PD-B. The C4.5 algorithm needs 520.26 seconds to build a model when
NA = 1000, the corresponding time in table 4.12 was 8.82. The algorithm uses 5800% more
time on building the model for PM-B than PD-B. Since the number of attributes is the same in
both cases, the difference here is because PM-B provides more training examples than PD-B.
PM-B has 3216 examples, while PD-B has 802 examples, thus PM-B has 301% more examples
than PD-B. The time needed to build a C4.5 model grows exponentially.

4.6 E5: Varying settings when APP = PP

The only difference between E2 and this experiment is that APP ≤ PP for E2, while APP
= PP in E5. It is therefore interesting to compare the results of E5 with E2. Comparing
corresponding figures from the two experiments did not show any distinctive trends, it proved
to be more interesting to compare the models themselves. For this reason, the figures which
compare results from E2 and E5 have been placed in Appendix B.1.

TDT4900 - Master thesis

80 4. Results

Classifier Time (sec.) AUC Sens Spec GM NA

SVM 29.24 0.63 0.60 0.67 0.63 100
RIPPER 0.78 0.62 0.68 0.56 0.62 100
K-star 0.00 0.64 0.77 0.50 0.62 100
C4.5 1.17 0.61 0.76 0.50 0.62 100
NaiveBayes 0.01 0.66 0.73 0.51 0.61 100
HyperPipes 0.00 0.52 1.00 0.03 0.18 100

C4.5 520.26 0.63 0.69 0.56 0.62 1000
RIPPER 3.89 0.61 0.65 0.59 0.62 1000
NaiveBayes 0.05 0.69 0.74 0.51 0.61 1000
K-star 0.00 0.63 0.69 0.55 0.61 1000
SVM 294.40 0.60 0.39 0.81 0.56 1000
HyperPipes 0.02 0.62 0.97 0.20 0.44 1000

Table 4.13: Comparison of classifiers for asthma using PM-B.

4.6.1 The number of training examples in E2 and E5

Figure B.1 shows results from the PD-B data set. There are only small variations when
comparing E5 results with E2, there are no distinct trends which repeat themselves. Figure
B.2 which has the results for PM-B shows even less variation. There are occasional deviations,
for example sub figure B.2c shows that at PP = 1825, both RIPPER and NaiveBayes had a
distinct improvement compared to the same situation in E2. The models for RIPPER in E2
and E5 for this case are presented in Model 4.6.1 and 4.6.2 respectively.

Model 4.6.1 E2:
(ALAT = f) and (NONE = t) => Diabetes=t (402.0/105.0)
(ALAT = f) and (FERRITIN = f) => Diabetes=t (646.0/294.0)
(HEMOGLOBIN = f) and (URAT = f) and (HB = f) => Diabetes=t (21.0/5.0)
(FOSFOLIPIDER = t) => Diabetes=t (8.0/3.0)
=> Diabetes=f (293.0/14.0)

Model 4.6.2 E5:
(HEMOGLOBIN = f) and (ASAT = f) => Diabetes=t (157.0/37.0)
=> Diabetes=f (99.0/7.0)

From these models, we can see that in E2, there were 686 negatives and 684 positives, while in
E5 the corresponding numbers were 129 and 127. The E2 model has more rules than E5. The
great difference in the number of training examples can explain why the E5 model is simpler,
fewer examples give less information to generalise over. Even though E5 has higher score than
E2 for this case, the E5 model is too simple to be of any real use. The only rule which is used
to identify diabetes-patients requires that the patient must not have taken the hemoglobin and
asat-tests. This might make sense in the training set, but not in a real-world situation.

We compare these models with similar models at PP = 183 instead of 1825 in Model 4.6.3 and
4.6.4. Counting the number of examples show that there are 684 positives and 686 negatives
in E2, while E5 has 421 positives and 423 negatives. Thus the number of examples does not
change for E2 from PP = 1825 to PP = 183, but there are more than three times as many
positives when PP = 183 compared to PP = 1825. This is expected, since the requirement

Early warnings of critical diagnoses

4.6. E5: Varying settings when APP = PP 81

that APP = PP will cause fewer positives to be accepted as training examples.

Model 4.6.3 E2:
(ALAT = f) and (FERRITIN = f) and (NONE = t) and (SYSTOLISK = t) => Diabetes=t
(69.0/13.0)
(SR = f) and (HEMOGLOBIN = f) and (CRP = f) and (DIASTOLISK = t) => Diabetes=t
(51.0/11.0)
(FERRITIN = f) and (ALAT = f) and (KOLESTEROL = f) and (D01 = f) and (CRP = f)
and (TRIMETOPRIM = f) => Diabetes=t (797.0/290.0)
=> Diabetes=f (453.0/81.0)

Model 4.6.4 E5:
(HEMOGLOBIN = f) and (HB = f) and (CRP = f) => Diabetes=t (534.0/184.0)
=> Diabetes=f (310.0/71.0)

By examining the models, we see that both E5 models are negation-models, they do not require
that any of the attributes should be true. The E2 models both use the positive indicator NONE,
while FOSFOLIPIDER, SYSTOLISK and DIASTOLISK occur in one of the models, but not
both.

4.6.2 Positive indicators for different PP values

The results presented in this section shows how different sizes of the prediction period affects
the positive indicators used in the RIPPER models for E2 and E5. We choose to extract the
results from the situation where WT = 31, since there is an indication that E5 gives slightly
better results when WT is 31 and 100 days long, as can be seen in figures B.3c, B.3e and B.4d.

Table 4.14 summarises the positive indicators for all combinations of dataset and diseases
with respect to different PP-sizes. The event R78 (acute bronchitis/bronchiolitis) is a positive
indicator for asthma in PD-B in all sizes of PP. From this we can say that it is an indicator
which is present within 1 - 2 months prior to tsus. Its presense when PP = 1825 means that
patients who have this event also have a patient history which is at least 1856 days (PP + WT)
prior to tsus. With the exception of NONE and R78, there are no other positive indicators
which occur in more than one of the PP-sizes. Also note that there are many PP-sizes which
do not have any positive indicators at all. In those cases the RIPPER model only use negative
indicators to determine if the patient has the disease or not.

If we compare the results from E5 in table 4.14 with the E2 results in table 4.15, one big
difference is that there are more positive indicators in E2 than in E5 when PP = 1825. If we
exclude the NONE attribute, there are 9 positive indicators for E2 and 4 for E5.

4.6.3 Positive indicators for different NA values

We present the positive indicators for different NA values in table 4.16 for E5 and table 4.17
for E2. WT = 300 for these results, which is 10 times as long WT as for the results showed in
section 4.6.2. It would have been an advantage to use the same value for WT in both cases,
but we did not have results for the combination WT = 31 and varying values for NA.

From table 4.16 one can see that there are no positive indicators for the diseases when the
data was extracted from PD-B. This indicates that WT = 300 hides the positive indicators
which were found in section 4.6.2, or that it hides the majority of them. Another remark is
that for PM-B, AST, there are positive indicators when NA = 100 and 1000, but not when all

TDT4900 - Master thesis

82 4. Results

PP = 31 PP = 365 PP = 1825

PD-B, AST 1 R78 1 R78 1 USTIX
1 R78

PM-B, AST 1 FOSFAT 1 SERETIDE
1 IGE

PD-B, DIA
PM-B, DIA 1 SYSTOLISK 1 ALKALISK

1 NONE
PD-B, HYP 1 CYTOLOGI
PM-B, HYP 1 NONE

Table 4.14: Positive indicators from E5 and their frequency from RIPPER models for different
dataset-disease combinations and PP-values. WT = 31, iteration 3.

PP = 31 PP = 365 PP = 1825

PD-B, AST 1 R78 1 R78 1 R81
1 EVF 1 R74 1 R78

1 R74
1 R05

PM-B, AST
PD-B, DIA 1 HSTAT
PM-B, DIA 1 NONE 1 NONE

1 K86 1 K86
1 DIASTOLISK

PD-B, HYP
PM-B, HYP 1 NONE 1 TESTTAPE 1 TESTTAPE

1 NONE 1 NONE
1 KOMBINERT VAG-CERV
1 DIASTOLISK

Table 4.15: Positive indicators from E2 and their frequency from RIPPER models for different
dataset-disease combinations and PP-values. WT = 31, iteration 3.

Early warnings of critical diagnoses

4.6. E5: Varying settings when APP = PP 83

NA = 100 NA = 1000 NA = All

PD-B, AST
PM-B, AST 1 FE 1 FE

1 A29 1 A29
1 HB

PD-B, DIA
PM-B, DIA 1 -30 1 SYSTOLISK 1 SYSTOLISK
PD-B, HYP
PM-B, HYP 1 NONE 1 NONE 1 NONE

1 KOLESTEROL

Table 4.16: Positive indicators from E5 and their frequency from RIPPER models for different
dataset-disease combinations and NA-values. NN = 1, WT = 300, PP = 913 and iteration 3.

NA = 100 NA = 1000 NA = All

PD-B, AST
PM-B, AST
PD-B, DIA 1 SR
PM-B, DIA 1 NONE 1 NONE 1 NONE

1 DIASTOLISK
PD-B, HYP
PM-B, HYP 1 NONE 1 NONE 1 NONE

Table 4.17: Positive indicators from E2 and their frequency from RIPPER models for different
dataset-disease combinations and NA-values. NN = 1, WT = 300, PP = 913 iteration 3.

attributes are included. The reason could be that the extra number of attributes in NA = All
is noise which masks these suspicion indicators. A29 (general symptom/complaint, other) is
a very general disease description which could be used for very many conditions. The second
diagnosis code -30 (medical examin/health eval complete) is at best a weak connection to
diabetes, thus neither of these two are of any great value alone.

Table 4.17 consists of many models without any positive indicators and there are only two of
them in total if we ignore NONE. As in the previous table, there is reason to believe that the
WT is too large.

TDT4900 - Master thesis

84 4. Results

4.7 E6: Increasing positives when APP = PP

The figures which compare the performance of classifiers from E6 with E3 have been placed
in appendix B.2. This section presents 12 lists which contain positive indicators for E6 (List
1-6) and E3 (List 7-12) for different NN-values. We use lists instead of tables because there
were too many indicators. Recall that we use SMOTE in both E3 and E6, thus there are equal
numbers of positives and negatives. If NN = 2, 50% of the positives are synthetical examples,
NN = 4, 75% are synthetical examples and so on.

The tendency is that we find more positive indicators in E3 than E6.

List 1: Asthma, PD-B. Positive indicators from E6 and their frequency from RIPPER models
for asthma and PD-B, with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000,
iteration 3.

• NN = 1:

• NN = 2: S87 (1), R91, R81, R78, MCV, CRP, ALP.

• NN = 3: GLUCOSE (2). R95 (1), R91, R78, NATRIUM, MCV, HB, H71, FE, CRP,
ALBUMIN, ALAT.

• NN = 4: MCV (5). FT4 (3). R74 (2), L79, HB, E-MCV, ALP. X05 (1), URAT, S87, S08,
R95, R91, R81, R78, N01, LD, K, H71, GLUCOSE, G-GT, FEMET, F71, F13, EVF,
D82, CYTOLOGI, ASAT, AMYLASE, ALAT, ACHYM, A04.

List 7: Asthma, PD-B. Positive indicators from E3 and their frequency from RIPPER models,
with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1: S87 (1), R78.

• NN = 2: R78 (2), MCV. S87 (1), R81, GLUCOSE, CRP, ALBUMIN.

• NN = 3: MCV (4), CRP. USTIX (3). R78 (2), R74. TSH (1), SR, S87, R91, R77, PSA,
NATRIUM, MCH, H71, FT4, F71.

• NN = 4: USTIX (3), R78, CRP. R74 (2), MCV, MCH, E-MCV. URIN/TRANSPORTA-
GAR (1), TOTPR, S87, S18, R91, R81, R77, R75, NATRIUM, KREATININ, FT4,
AMYLASE, A12.

List 2: Asthma, PM-B. Positive indicators from E6 and their frequency from RIPPER models,
with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1:

• NN = 2: SR (1), R74, HB, GT, G6, FE.

• NN = 3: GT (2), FOSFAT, A29. STRIMLER (1), R74, LEUCOCYTTER, KATT, K+,
HB, FT4, BILIRUBIN.

• NN = 4: X27 (1), KOBALAMINER, FOSFAT, DIASTOLISK.

List 8: Asthma, PM-B. Positive indicators from E3 and their frequency from RIPPER models,
with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1:

• NN = 2: NONE (2). SYSTOLISK (1), SR, R05, LIVOSTIN, BILIRUBIN.

Early warnings of critical diagnoses

4.7. E6: Increasing positives when APP = PP 85

• NN = 3: NONE (4). HB (2), FT4, FOSFAT, BILIRUBIN. SYSTOLISK (1), SR, NA-
TRIUM, KOBALAMINER, KALSIUM, HEMOGLOBIN, GLUCOSE, DIASTOLISK,
BLOD, ANTI-TPO.

• NN = 4: CRP (4). SR (3), KOLESTEROL, FT4. TRIGLYCERIDER (2), NONE,
KOBALAMINER, FOSFAT, ASAT, ALBUMIN. X27 (1), TRĲODOTHYRONIN, SYS-
TOLISK, SOLBÆRSIRUP/EFEDRIN, R74, R05, M2, LEUCOCYTTER, KREATININ,
KETONER, KALSIUM, IGE, HEMOGLOBIN, GLUCOSE, FERRITIN, DIASTOLISK,
ALP, ALAT, A29, A03.

List 3: Diabetes, PD-B. Positive indicators from E6 and their frequency from RIPPER models,
with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1:

• NN = 2:

• NN = 3: L76 (1).

• NN = 4:

List 9: Diabetes, PD-B. Positive indicators from E3 and their frequency from RIPPER models,
with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1: L81 (1), HSTAT.

• NN = 2: L81 (1), HSTAT.

• NN = 3: HSTAT (1).

• NN = 4: SR (2), L81, L79, HB. R78 (1), P76, L84, L76, H71, ERYTROCYTTER,
CYTOLOGI.

List 4: Diabetes, PM-B. Positive indicators from E6 and their frequency from RIPPERmodels,
with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1: SYSTOLISK (1).

• NN = 2: NONE (2). SYSTOLISK (1).

• NN = 3:

• NN = 4: NONE (3). HEMOGLOBIN (2), CRP. TSH (1), SYSTOLISK, SR, -30.

List 10: Diabetes, PM-B. Positive indicators from E3 and their frequency from RIPPER
models, with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1: SYSTOLISK (1), NONE.

• NN = 2: SR (2), NONE. SYSTOLISK (1).

• NN = 3: KOLESTEROL (1).

• NN = 4: SYSTOLISK (1), HDL.

List 5: Hypothyroidism, PD-B. Positive indicators from E6 and their frequency from RIPPER
models, with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1:

• NN = 2:

• NN = 3:

TDT4900 - Master thesis

86 4. Results

• NN = 4:

List 11: Hypothyroidism, PD-B. Positive indicators from E3 and their frequency from RIP-
PER models, with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration
3.

• NN = 1:

• NN = 2: UD (1).

• NN = 3: UM (1).

• NN = 4: X87 (1), USTIX, UM, UD, G01AF02.

List 6: Hypothyroidism, PM-B. Positive indicators from E6 and their frequency from RIPPER
models, with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration 3.

• NN = 1: NONE (1).

• NN = 2: TESTTAPE (1), NONE.

• NN = 3: NONE (2). TESTTAPE (1), LD, DIASTOLISK, CERVIX, NONE, TEST-
TAPE, LD, DIASTOLISK, CERVIX.

• NN = 4: NONE (3). HEMOGLOBIN (2). TESTTAPE (1), SOPP, KOLESTEROL,
DIASTOLISK.

List 12: Hypothyroidism, PM-B. Positive indicators from E3 and their frequency from RIP-
PER models, with varying NN and SMOTE. PP = 913, WT = 300, NA = 1000, iteration
3.

• NN = 1: TESTTAPE (1), SYSTOLISK, NONE.

• NN= 2: NONE (3). SYSTOLISK (2). SR (1), KOMBINERT VAG-CERV, HEMOGLOBIN,
ALP.

• NN = 3: NONE (6). TESTTAPE (1), SYSTOLISK, LOBAC, KOMBINERT VAG-
CERV, KOLESTEROL, KALIUM, HEMOGLOBIN, GLUCOSE, FLUANXOL, DIAS-
TOLISK.

• NN = 4: NONE (7). HEMOGLOBIN (6). SYSTOLISK (4). URAT (2), TEST-
TAPE, GLUCOSE. URINMIKROSKOPI (1), SR, LD, KALIUM, FERRITIN, CERVIX,
BLODTRYKK, ALP.

Early warnings of critical diagnoses

Chapter 5

Discussion

This chapter presents seven sections, which discuss positive indicators found in the models
(section 5.1), problems concerning the way SMOTE is evaluated (section 5.2), the limitations
imposed by the data sets (section 5.3), the potential usefulness of the prediction models (section
5.4), the information we can retain from the models (section 5.5), the choice between rich FVs
or many examples (section 5.6) and a discussion of how to select the best evaluation metric for
a skewed class distribution (section 5.7).

5.1 Positive indicators

In the results we introduced the term positive indicators as an attribute which is required
to be true in order to conclude that the patient has the target disease (TD). These positive
indicators were extracted from the RIPPER models, since such models consist of rules which are
easily understood by humans. Section 5.1.1 will argue why positive indicators are interesting,
section 5.1.2 discuss where they occur in the patient history and finally we look at how one
can determine the validness of positive indicators.

5.1.1 Why are positive indicators interesting?

We begin by repeating part of the information about RIPPER models given in 4.1 as part of
the discussion. In this project, a RIPPER model consists of rules where all but the last rule
conclude that the patient has the TD. In the example model 5.1.1, the TD is diabetes and
there are three rules which conclude that the patient has diabetes. If none of these three rules
match the patient we are going to classify, the model concludes that the patient does not have
diabetes. There are two positive indicators in this model, ALKALISK and FOSFOLIPIDER,
while the remaining attributes are negative indicators.

Model 5.1.1 Example:
(ALAT = f) and (FERRITIN = f) => Diabetes=t
(ALAT = f) and (ALKALISK = t) => Diabetes=t
(FOSFOLIPIDER = t) => Diabetes=t
=> Diabetes=f

87

88 5. Discussion

A model which has no positive indicators was termed a negation-model in 4.1. Assume that
ALKALISK and FOSFOLIPIDER were negative indicators in model 5.1.1, it would then be
a negation-model. If a negation-model was applied in a real-world situation, all patients who
visited the GP for the first time would be classified as diabetes patients. Their patient history
is without events, thus all attributes in their feature vector will be false and then all rules
consisting of only negative indicators will match the patient. Negation-models are strongly
biased to say that perfectly healthy people are sick, thus they are illogical and we regard them
as invalid models.

The class of invalid models can be extended further. Since rules in a RIPPER model are applied
in a top-down fashion, it is actually enough to look at the first rule in order to determine if
the model will be invalid. If the first rule only consists of negative indicators, it will have the
same effect on patients without events in their patient history as described in the previous
paragraph. If we apply this new definition of an invalid RIPPER model to example model
5.1.1, it is now considered invalid, whereas the old definition judged it as valid since it had two
positive indicators.

As a consequence, positive indicators which appear in the first rule of a model are deemed
most interesting, because they occurred in a model which is valid. Positive indicators which
occur in an invalid model may still represent useful knowledge, thus they are also interesting.
We claim that all RIPPER models must have at least one or more positive indicators in
order to be considered interesting at all. For this reason, we believe that positive indicators
are more important than negative indicators in general. Negative indicators can be used to
refine a group of patients which share a positive indicator, so the negative indicators are not
necessarily irrelevant, but less important.

From now on, we term positive indicators which appear in a valid model to be strong positive
indicators, while positive indicators occurring in invalid models are weak positive indicators.

5.1.2 Where do the positive indicators occur?

The results from the experiments were analysed with respect to which positive indicators
occurred in the RIPPER models in a variety of situations. The positive indicators presented
in the results did not distinguish between strong and weak positive indicators. In this section,
we present the most prominent trends which show in which situations the positive indicators
occur.

A trend which was shown in E1 was that the positive indicators decreased in number when
analysing the models from iteration 1 - 3 (see section 4.2.3). In addition, the positive indicators
changed from one iteration to the next. The decrease is understandable since the task of
identifying patients with the TD becomes more challenging as the estimate of tsus is moved
further and further away from tTD. It is also natural that the classifiers must use other positive
indicators in the different iterations. A good example is that some of the positive indicators
in iteration 1 and 2 are also suspicion indicators and since we have decided to use information
from the time before they appear, it is obvious that they do not appear in iteration 3.

In section 4.6.2 we examined which positive indicators were found when varying the size of PP.
The results were not conclusive, but there was an indication that longer PP resulted in more
positive indicators. This trend could be seen both when APP = PP and APP ≤ PP. The main
difference between the two variants was that APP ≤ PP resulted in models with more positive
indicators. The advantages and disadvantages of these two variants are discussed further in
section 5.6. Even though longer PP results in more positive indicators, the size of the PP

Early warnings of critical diagnoses

5.1. Positive indicators 89

NA TP FP TN FN Sens Spec GM

100 619 343 601 323 0.66 0.64 0.65
1000 635 360 584 307 0.67 0.62 0.64
All 690 455 489 252 0.73 0.52 0.61

Table 5.1: Comparison of RIPPER models in terms of TP, FP, TN and FN.

should be limited, since we assume that the probability that two events are related decreases
with increasing distance between the events. Even though there might exist events which are
early positive indicators for the TD, a PP long enough to include this event will also include
more irrelevant events. The irrelevant events are noise which makes it harder to identify the
indicators which are truly relevant.

The tables presented in section 4.6.3 showed which positive indicators were found when analysing
models with 100, 1000 and all attributes. Given that the attributes selected for these models
were the most relevant attributes, one might expect the models to be more valid, thus con-
taining more positive indicators. The number of positive indicators was at a minimum when
all attributes were used, in most cases no positive indicators were present at all. Reducing
the number of attributes to 1000 and 100 yielded a few more positive indicators. From these
results it seems that the feature selection process has removed irrelevant attributes, thus it has
made the task of finding positive indicators easier for the RIPPER algorithm.

5.1.3 Do positive indicators affect performance?

-even though there is little change in performance, models change, and contain fewer or none
positive indicators)RIPPER

In section 5.1.1 we argued why positive indicators are more useful than negative indicators,
but we have not discussed how positive indicators affect performance. Table 4.16 shows that
the models for asthma, built from PM-B, have 3, 2 and 0 positive indicators for the NA-values
100, 1000 and all. Figure B.8a shows that the performance for these three models is practically
the same with respect to geometric mean. The rules of the models are presented below.

Model 5.1.2 NA = 100:
(HEMOGLOBIN = f) and (TRIGLYCERIDER = f) and (A29 = t) => Asthma=t (114.0/29.0)
(HEMOGLOBIN = f) and (KOLESTEROL = f) and (PINEX = f) => Asthma=t (780.0/296.0)
(HB = t) and (FE = t) => Asthma=t (68.0/18.0)
=> Asthma=f (924.0/323.0)

Model 5.1.3 NA = 1000:
(HEMOGLOBIN = f) and (A29 = t) => Asthma=t (141.0/39.0)
(HEMOGLOBIN = f) and (FE = t) => Asthma=t (84.0/21.0)
(KOLESTEROL = f) and (HEMOGLOBIN = f) => Asthma=t (770.0/300.0)
=> Asthma=f (891.0/307.0)

Model 5.1.4 NA = All:
(HEMOGLOBIN = f) => Asthma=t (1145.0/455.0)
=> Asthma=f (741.0/252.0)

Model 5.1.2 and 5.1.3 both has A29 as a strong positive indicator, while model 5.1.4 has no
positive indicators, thus it is an invalid model according to our definition in section 5.1.1. It

TDT4900 - Master thesis

90 5. Discussion

is also a less complex model, with only one rule and one antecedent. Despite the differences,
these models are deemed practically even by the performance metric geometric mean as can
be seen in table 5.1.

This example shows that it is not enough to use only the evaluation metric when evaluating
models with respect to practical use. It is necessary to analyse the models in order to validate
that they do not make decisions based on nonsense. In situations where the models cannot be
manually inspected, for example support vector machines (SVM) or K-star, the models must
be subjected to a more thorough test procedure.

5.1.4 Determining the validness of positive indicators

In order to determine the validity of the positive indicators found in the results section, it is
necessary to use domain experts which are knowledgable with respect to the three TDs. This
project has identified a number of positive indicators, but it is outside the scope of this project
to determine if they are relevant from a medical point of view.

5.2 Invalid SMOTE results because of circular reasoning

It is currently problematic to evaluate the validitiy of the results from the experiments using
SMOTE. The reason is that SMOTE is applied to the examples before the cross validation
procedure begins. This means that all folds will contain synthetic positives. Since each fold
is used as a test set once, all test sets will contain synthetic positives. We do not know how
succesful SMOTE is in generating true positive examples, they could in fact be examples which
belong to the negative class. This is something a test should reveal. Since the test set contains
synthetic positives, it is not an objective test set, because we are assuming that the synthetic
positives are correct by using them in the test set. This is called circular reasoning; SMOTE
is used to prove itself. Thus we cannot draw any conclusions from these results.

This problem was not realised early enough to alter the experimental setup, thus we do not
have any valid results in the experiments where SMOTE was used. It is difficult to determine
whether the experiments conducted in [39] did the same mistake, they also used cross validation
to evaluate their suite of classifiers. The SMOTE results were not excluded from this report,
because the results were promising and we want to put focus on this sampling method as we
believe it can be useful in this setting. We describe two alternative methods which can be
applied to get valid results in the subsection below.

5.2.1 Methods to ensure valid results for SMOTE

SMOTE might do a good job of creating true positives, but in order to have valid test results
we must use a test set with non-synthetic examples. One way to do it, is to postpone the
generation of synthetic positives until the step before the classifier is built for each fold in cross
validation. This procedure is described in more detail in the list below.

1. original examples are partitioned into n folds

2. one fold x is selected as test set, the remaining n-1 folds is the training set

3. SMOTE uses the positives from the training set to create synthetical positives which are
added to the training set

Early warnings of critical diagnoses

5.3. Limitations of data sets 91

4. a classifier is built using the training set, and tested with the test set

An alternative way is to partition the original positives into a training and test set, use SMOTE
to increase the number of positives in the training set, build classifiers and evaluate them with
the test set. This approach applies SMOTE only once, compared to the n times it is applied
in the procedure described in the list. But the last approach suffers from the same problems
as standard use of only one training and test set, as described in section 2.4.3; the test result
is too dependant on which examples end up in the training and test sets.

5.3 Limitations of data sets

There is a lot of potentially useful information which is not in the data sets. General information
about patients such as age and gender is not included in the data sets. The information detail
with respect to medical tests is also very rough; a test event from PD-B provides information
whether it was abnormal or not, while PM-B does not even provide the result. It only states
that a test has been taken. The journal notes which the GP writes at each visit could also
have been used. In the rest of this section we discuss what how additional information could
have been useful and why it was not included.

5.3.1 Potential value of additional information

Grouping patients based on age and gender is useful, because there are often large variations
between groups. It would be possible to determine if there are differences between groups with
respect to frequency and difficulty in diagnosing them correctly. Another aspect is that there
might be different reasons which causes a disease for different groups, diabetes was traditionally
known as a disease which was typical for old people; today the disease is an increasing problem
for people under 40 years. When there is no way to separate these two groups, we cannot
investigate these more specific questions.

More fine-grained information about the tests would also give more possibilities. Laboratory
tests are ordered for different reasons and in different situations, presumably most of them
show that everything is in order. These tests are not as interesting as the tests which return
with an abnormal result, because abnormal results indicates that some part of the body is not
as it should be. Especially tests which are used for screening purposes have little value if we
do not remove the tests with normal results. Abnormal results are more rare, thus they are
more likely to be of use when building a predictive model. One could go one step further and
use the values from the test itself, then let the classifiers determine which values are abnormal
themselves. This means more data and processing, thus there are negative consequences.

The journal notes is another important source of information, it contains the GP’s comments
from the patient visits as unstructured text. The text might contain symptoms which are too
vague or for other reasons are not written into the EHR as separate events. The GP can also
have hypotheses with respect to what the problem is; information which is less formal, but still
with potential value.

5.3.2 Reasons for not including additional information

The additional information could have been useful, but it was not included, even though
it existed in the data sources. A general issue is that with increasing amount of patient

TDT4900 - Master thesis

92 5. Discussion

information, it becomes less hard to identify the true identity of the patient. This was certainly
one of the most important reasons for not including age and gender. Even though the data
does not contain any direct identifiers such as name or address, each patient history is unique.
It is therefore theoretically possible to find the patient history of a real person, given that one
knows some of the diseases this person has had and that the person is in the data set. With age
and gender this is even easier. However, researchers who have access to such data are bound
by moral and legal laws, which forbids them to use data sets for such purpose.

The reason that the PM-B data set did not contain test results, was that the cost of extracting
the data was too high. The structures of the two data sources were not the same, and these
technical barriers blocked that information from reaching the data set. This was not the case
with the journal notes, they were available but it was not enough time to utilise them in the
experiments.

Determining how much information should be available for a research project has no correct
answer. A golden guideline is to include as much information which is necessary in order to
accomplish the research task. One could then iteratively use more and more information until
the goal is met. The claim that additional information will always lead to improvement is not
nuanced enough. One cannot say for sure until one has evaluated the results with and without
the information. New kinds of information must be incorporated into the model, adding to the
complexity of the system, thus increasing the time needed to implement it.

5.4 The potential usefulness of good prediction models

The main purpose of E1 was to identify the events which were used to estimate tsus for each
patient. In addition it served another purpose, which was to give an overview of how quickly
the patients were suspected and diagnosed by the GP. This overview is vital when evaluating
the assumption that there are patients who should have been treated earlier. If this assumption
is false, a system which predicts diseases earlier than the GP would have no chance of success,
because the GP treated all patients at the earliest time possible. As a result there would be
no data in the EHR prior to tsus which would be relevant in making predictions.

The results presented in Table 4.4, Section 4.2.2, showed that the GP is able to correctly
suspect the TD at the first visit in 47% of the cases where a patient had hypothyroidism
(PM-B data set). We do not know what has happened prior to this event since it is the first
event recorded in the EHR for this patient in this GP office. A patient could have gotten the
diagnose at her previous GP (GP A), then the patient started seeing a new GP (GP B) and
told about her diagnoses on the first visit to GP B. Even though patients change GPs, one can
assume that it does not explain all the patients who were discovered on their first visit.

If 47% of the hypothyroidism patients were suspected on their first visit, 53% were not sus-
pected. This does not necessarily imply that the GP should have suspected them. Since
hypothyroidism often evolves over a period of time, it is most likely that a large part of these
53% did not have the disease at the time of their first visit. They might visit the GP for many
years because of other diseases, but at some point in time the patient would go from a state
which does not fulfill the definition of hypothyroidism to a state where these requirements are
fulfilled. We denote this time tdis and give a definition; tdis is the earliest time when it is
possible to identify the disease with present medical knowledge.

Knowing tdis would be useful since that would allow us to give an exact measure of how quickly
the GP suspects the condition. Unfortunately we do not know tdis and the best estimates we

Early warnings of critical diagnoses

5.5. What kind of information do we retain? 93

can make are quite rough. Therefore we will use the estimate that tdis is at the start of the
PH.

With this estimate of tdis, figure 4.5 shows that within 10 visits to the GP, only 16% of the
patients with hypothyroidism have not been suspected by the GP (with respect to the PD-B
data set). The corresponding numbers for asthma and diabetes are 52% and 14% respectively.
The same tendency is seen for the PM-B dataset. The GP is much faster at finding patients
with diabetes and hypothyroidism than asthma. It also means that there is less data available
for diabetes and hypothyroidism patients, because most of them are discovered so quickly that
their patient histories are practically empty. This makes it relatively harder to build good
prediction models for diabetes and hypothyroidism, compared to asthma. It also weakens the
potential usefulness of a prediction model for diabetes and hypothyroidism, because there are
not many patients who are not discovered by the general practitioner.

5.5 What kind of information do we retain?

This section has a theoretical perspective, discussing what kind of information we can get from
the different periods in the patient history/ electronic patient record, how certain periods are
more dominant than others and the type of information we have extracted in our experiments.

5.5.1 Extracting different information from different periods

Section 2.1.2 introduced the terms tsus and tTD and have been used throughout the report.
From the discussion in Section 5.4 a new term emerged; tdis is the earliest time when it is
possible to identify the disease with present medical knowledge. In this section we wish to say
something about what a learning algorithm (LA) can learn from the different periods we get
by splitting the timeline at these three events. In the rest of this section, the LA is trying to
learn how to predict the TD using data from different periods. We begin with the period after
tTD and continue backwards in time.

When the diagnosis has been set at tTD, the GP is certain that the patient has the TD. The
GP must then decide how to treat the disease by making a treatment plan. Typical elements
in such a plan which can be tracked in the EHR include prescriptions for medication, tests
which can monitor the development of the disease together with regular visits to the GP. A LA
which is applied on data from the period of EHR which is after tTD, with the aim of learning
which patients have the TD, will most probably use the disease specific medication and tests
(assuming that we ignore the diagnosis event which states that the patient has TD).

In the period from tsus to tTD the GP suspects that the patient might have TD. As Project07
found out, the GP gives the patient medication for symptoms, which strongly implies certain
diseases if they have a positive effect on the patient. Laboratory tests which can narrow down
which disease the patient has are also taken. Thus, if the LA uses data solely from tsus to tTD,
it would capture these tests and prescriptions for medication which is relevant for the disease.
For many diseases, these events are the same as in the period after tTD.

Prior to suspicion is the period from tdis to tsus. The disease is present in this period, but
the GP has not suspected anything yet. If the patient visits the GP in this period, it is most
likely that the events which are most correlated with the disease, are signs observed by the
GP. Unless the sign can be classified as a disease itself, the sign might be recorded as a part of

TDT4900 - Master thesis

94 5. Discussion

DR Period Information used

1 tTD - Prescriptions and medical tests
2 tsus - tTD Symptoms, prescriptions and medical tests
3 tdis - tsus Symptoms
4 - tdis Causes

Table 5.2: DR is dominance rank, DOB is date of birth.

the journal note which the GP writes about the visit. But there is a risk that the sign is not
recorded in the EHR at all.

The earliest period is the time prior to tdis. If the research question is why the TD developed,
data should be collected from this period. A disease can develop for a number of reasons; acute
damage, inheritance, environment. Some of these reasons can lead to other diseases, which
might develop earlier than the TD. The genome of the patient is not available through the
EHR, thus a LA would not be able to use such data. There might be information about the
environment of the patient in the journal notes, but not in the structured EHR. If the LA is
able to find any connection between positives using data from this period, it will most probably
be other diseases which occur because of the same underlying reason.

5.5.2 Dominant periods

In the previous description of the different periods, we ignored the fact that information which
is found to be useful in one period, might occur in a later period. A disease D which is found
to correlate with TD in the time prior to tdis might show up in a later period as well, for
example the period tsus to tTD. However, D will most likely be ignored by LA, because the
other events in the suspicion period are more likely to have stronger correlation with the TD.

One reason later events correlate stronger with the TD is that there is more data available
the closer we get to the TD, because it varies how quickly patients go to the GP with their
problems. Since many patients are suspected on their first visit to the GP (see Table 4.4), they
must have had the disease before they came on the visit. Thus we do not get any events from
these patients for the periods preceding tsus.

The claim is therefore that if data is collected from two periods, it is most likely that a LA
will build its model based on information from the period which is most recent.

5.5.3 The information retained in the experiments

Based on the theoretical discussion in the two previous sections 5.5.2 and 5.5.1, what kind
of information should we expect from the models made in the experiments? Assuming that
we managed to find a good estimation of tsus in E1, the models which were built using this
estimate should collect their events from the period prior to suspicion.

siden jeg bruker en miks av hendelser fra flere perioder, er det mest sannsynlig at jeg sitter
igjen med hendelser fra den seneste perioden, siden disse dominerer over eldre

From the machine learning perspective tdis would enable us to choose more specific learning
tasks. One could use the data from tdis to tsus in order to build models, knowing that we have

Early warnings of critical diagnoses

5.6. Rich FVs and few examples or sparse FVs and many examples? 95

events from the period where the disease is present. This learning situation would be extra
focused on symptoms that indicate the presence of the disease. This is different from trying to
identify the causes which say why the disease occurred. In order to focus solely on causality,
one needs to focus on the period prior to tdis. Since we do not know tdis, there are good
chances that we use events before and after tdis for many patients. Thus the models might
discover both symptoms and causes for the disease.

5.6 Rich FVs and few examples or sparse FVs and many
examples?

One of the most difficult tasks in this work, has been to balance the average number of non-
zero features in FVs against the number of positives used for training. Recall that the problem
definition constrains us to only use data from the period prior to tsus. In order to use all
positives, the WT must be 0 and we include all positives regardless of their length in this
period. It is problematic to use the shortest positives for training, because they have very
few events, resulting in only a handfull of non-zero features. Comparing to the number of
features which are zero, the difference can be as large as three orders of magnitude in favor of
the zero-valued features. Furthermore, we constrain the lengths of the negatives to equal the
length of a positive (see Constraint 3.4.3 in Section 3.4.1), thus the FVs of the negatives also
become very sparse with respect to non-zero features.

These sparse FVs make the task of learning harder, a phenomenon termed the curse of di-
mensionality[40]. Since each feature represents one dimension, each training example can be
visualised as a data point in the multidimensional space of features. With an increasing num-
ber of dimensions, the distance between the data points increases and it becomes harder for
the classification algorithm to build a good model.

An alternative approach which seeks to increase the number of non-zero features, is to require
that the period prior to tsus must be greater than or equal to the size of the PP. Positives
which do not fulfill this requirement are not used. Thus we get richer FVs but fewer positives.
Figure 4.4 shows how many positives will be left for training as we increase the PP. Note that
if we have a non-zero WT, we must add the sizes of WT and PP in order to get the minimum
length of the period start - tsus. If WT = 400 and PP = 600, the period must be at least 1000
days long. Looking up how many positives fulfill this requirement for the three TDs, we are
left with 15% of the patients with diabetes and hypothyroidism, and 45% of the patients with
asthma.

Both these approaches have been tested in the experiments. Experiment 1, 2, 3 and 4 used
the first method which prioritises many examples and sparse FVs, while experiments 5 and 6
prioritised few examples and rich FVs.

5.7 Choosing evaluation metric for skewed class distribu-
tions

Figures 5.1 and 5.2 presents nine different evaluation metrices which evaluate the same clas-
sifiers. One can immideately state that these figures give very different views of the results.
According to the view of accuracy in Figure 5.1a, Ripper performs very well with increasing
NN, while Naive Bayes is relatively unaffected and Hyperpipes is negatively affected.

TDT4900 - Master thesis

96 5. Discussion

We continue by looking at the two sub figures at the bottom of Figure 5.2; sensitivity and
specificity. They measure how well the classifiers are at classifying the positives and negatives
respectively. They show huge differences among the classifiers; Hyperpipes is absolutely best
at finding most positives, with Naive Bayes being quite good as well. The Ripper algorithm
begins well for NN = 1, but subsequently drops drastically and for NN = 4 and 8, it is not
able to identify a single positive. The reason it still performs so well in terms of accuracy, is
its high specificity; for NN = 4 and 8 it correctly labels all negatives. Hyperpipes shares the
problem Ripper has; it only does well on one class when class distributions are imbalanced. It
is very poor at classifying negatives correctly, but not as bad as Ripper is at finding positives.
Naive Bayes is again second in terms of specificity and climbs from 0.5 to 0.6 with increasing
NN.

Having described the views of sensitivity and specificity, we present the views of positive predic-
tive value (PPV), negative predictive value (NPV), area under the curve (AUC), class-weighted
mean accuracy (CWA), F-measure and Geometric mean (GM). These metrices have already
been described in Section 2.4.3, page 63. F-measure is the most pessimistic view in this situa-
tion, since the performance of all classifiers degrade with increasing NN.

F-measure depends on the PPV, sensitivity and a α value which decided the relative importance
of these two. It does not take the negative class into account. The figure in this plot was made
with an α value of 0.8, meaning that it emphasises sensitivity more heavily than PPV. This
view would not improve much by shifting the weight over on PPV, because it is actually the
PPV which contributes most to the low values for F-measure as seen in Figure 5.1b.

The views of PPV and NPV show opposite trends; PPV decreases with increasing NN, while
NPV increases. This means that FP grows faster than TP and TN grows faster than FN. This
is natural becuse we add extra negatives without increasing the number of positives. These
are highly class-specific metrices which do not capture the whole picture.

Geometric mean and CWA are closely related since both use sensitivity and specificity, and one
can see from their figures that they resemble each other. GM punishes Ripper and Hyperpipes
harder than CWA for having so poor ability on the positives and negatives respectively. CWA
is useful in those situations where the cost of misclassifying the two classes differ. In this case
we have weighted the relative importancy of the positive class with 0.7, giving the negative
class a weight of 0.3. This weighting-scheme will favour classifiers who are good at correctly
identifying positives.

In this experiment, we have chosen to weigh the two classes with equal importance. The
accuracy metric we have used up till now does not discriminate with respect to class. The
natural choice is therefore geometric mean, which we will use whenever the class distributions
are not equal.

Early warnings of critical diagnoses

5.7. Choosing evaluation metric for skewed class distributions 97

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

A
cc

ur
ac

y

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) Accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
P

V

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) PPV.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

N
P

V

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) NPV.

Figure 5.1: Performance of classifiers using different evaluation metrices when NN varies. All
figures are for iteration 3, PM-B and asthma.

TDT4900 - Master thesis

98 5. Discussion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

A
U

C

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) AUC.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
W

A
Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) CWA.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

F
-m

ea
su

re

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) F-measure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(d) Geometric mean.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

S
en

si
tiv

ity

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(e) Sensitivity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

S
pe

ci
fic

ity

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(f) Specificity.

Figure 5.2: Performance of classifiers using different evaluation metrices when NN varies. All
figures are for iteration 3, PM-B and asthma.

Early warnings of critical diagnoses

Chapter 6

Conclusion

The aim of this project was to find out if it is possible to warn the general practitioner about
patients who might get a disease in the future. In order to improve the usefulness of our method,
we have accounted for the situation where the general practitioner suspects the disease before
the diagnosis is set. This has resulted in an improved formulation of the learning task, which
leads to more useful models than before.

A set of variables has controlled the information which has represented each patient history.
Predictive models have been built for different values of each variable, in order to find the more
favourable values. The results are not conclusive, but they indicate that

• the warning time should be less than 300 days

• the number of attributes should be between 100 and 1000

• the class distribution should be balanced

We have manually analysed a subset of the models made by the RIPPER algorithm, and have
identified the events we believe could be used to predict the target diseases. These should be
scrutinised by domain experts in order to determine whether they are of any real value or not.
Our manual analysis revealed that many of the models are practically useless, but this does
not show when evaluating the models in terms of geometric mean. This advocates that models
should always be manually inspected if possible.

Our comparison of six different classifier algorithms showed that there were no major difference
among the five best classifiers.

Experiments which added extra positive examples using SMOTE show promising results, but
the current evaluation method is deemed invalid, thus a more reliable evaluation methodology
is required to make conclusions about the SMOTE method in this problem setting.

99

Bibliography

[1] Intellectual Property Rights in Frontier Industries: Software and Biotechnology. AEI
Press, 2005.

[2] Linneberg A. Forekomst af allergisk luftvejssygdom i danmark. Ugeskr LÃ¦ger, 2004.

[3] Russell Ackoff. From data to wisdom. Journal of Applies Systems Analysis, 1989.

[4] Stig Alvestad, Øystein Nytrø, and Ole Edsberg. Early warnings of critical diagnosis, 2007.

[5] Norsk Helseinformatikk AS. Astma - norsk elektronisk legehåndbok. http://www.
legehandboka.no/, Version of 12th of December 2008.

[6] Thorsby P et al Birkeland KI, Kilhovd B. Heterogeneity of non-insulin-dependent diabetes
expressed as variability in insulin sensitivity, beta-cell function and cardiovascular risk
profile. Diabet Med, 2003.

[7] Sklar C, Whitton J, and Mertens A et al. Abnormalities of the thyroid in survivors of
hodgkin’s disease: data from the childhood cancer survivor study. J Clin Endocrinol
Metab, 2000.

[8] Roberts CGP and Ladenson PW. Hypothyroidism. Lancet, 2004.

[9] Chih-Chung Chang and Chih-Jen Lin. Libsvm - a library for support vector machines,
2001. The Weka classifier works with version 2.82 of LIBSVM.

[10] Aram V. Chobanian, George L. Bakris, and Henry R. Black et al. Seventh report of the
joint national committee on prevention, detection, evaluation, and treatment of high blood
pressure. Journal of Applies Systems Analysis, 2003.

[11] John G. Cleary and Leonard E. Trigg. K*: An instance-based learner using an entropic
distance measure. In 12th International Conference on Machine Learning, pages 108–114,
1995.

[12] Dayan CM and Daniels GH. Chronic autoimmune thyroiditis. N Engl J Med, 1996.

[13] Gilles Cohen, Melanie Hilario, Hugo Sax, Stephane Hugonnet, and Antoine Geissbuhler.
Learning from imbalanced data in surveillance of nosocomial infection. Artificial Intelli-
gence in Medicine- 2006 May (Vol. 37, Issue 1), 2006.

[14] William W. Cohen. Fast effective rule induction. In Twelfth International Conference on
Machine Learning, pages 115–123, 1995.

[15] Stampfer MJ Manson JE Hennekens CH Arky RA et al Colditz GA, Willett WC. Weight
as a risk factor for clinical diabetes in women. Am J Epidemiol, 2000.

100

http://www.legehandboka.no/
http://www.legehandboka.no/

BIBLIOGRAPHY 101

[16] Phillips D, McLachlan S, and Stephenson A et al. Autosomal dominant transmission of
autoantibodies to thyroglobulin and thyroid peroxidase. J Clin Endocrinol Metab, 1990.

[17] Strachan DP. Family size, infection and atopy: the first decade of the "hygiene hypothesis".
Thorax, 2000.

[18] Becker DV and Hurley JR. Complications of radioiodine treatment of hyperthyroidism.
Semin Nucl Med, 1971.

[19] Yasser EL-Manzalawy. Wlsvm, 2005. You don’t need to include the WLSVM package in
the CLASSPATH.

[20] Nitesh V. Chawla et. al. Synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research, 16:321–357, 2002.

[21] Delange F, de Benoist B, Pretell E, and Dunn JT. Iodine deficiency in the world: where
do we stand at the turn of the century? Thyroid, 2001.

[22] Foreningen for utgivelse av Norsk legemiddelhåndbok. Norsk legemiddelhåndbok. http:
//www.legemiddelhandboka.no/xml/, Date: 9th of January 2009.

[23] Sean N. Ghazavi and Thunsun W. Liao. Medical data mining by fuzzy modeling with
selected features. Artificial intelligence in medicine, 2008.

[24] Wright R Gold DR. Population disparities in asthma. Annu Rev Public Health, 2005.

[25] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Machine Learning, 46:389–422, 2002.

[26] Tamai H, Ohsako N, and Takeno K et al. Changes in thyroid function in euthyroid subjects
with a family history of graves disease: a follow-up study of 69 patients. J Clin Endocrinol
Metab, 1980.

[27] Huidong Jin, Jie Chen, Hongxing He, Graham J. Williams, Chris Kelman, and Chris-
tine M. O’Keefe. Mining unexpected temporal associations: Applications in detecting
adverse drug reactions. IEEE Transactions on information tech. in biom., 12(4), 2008.

[28] George H. John and Pat Langley. Estimating continuous distributions in bayesian classi-
fiers. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages 338–345, San
Mateo, 1995. Morgan Kaufmann.

[29] Igor Kononenko. Inductive and bayesian learning in medical diagnosis. Applied Artificial
Intelligence, 1993.

[30] Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and
perspective. Artificial Intelligence in Medicine, 23:89–109, 2001.

[31] Mintz M. Asthma update: Part i. diagnosis, monitoring, and prevention of disease pro-
gression. Am Fam Physician, 2004.

[32] Stampfer MJ Colditz GA Willett WC Krolewski AS et al Manson JE, Rimm EB. Physical
activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet, 1991.

[33] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler. Yale:
Rapid prototyping for complex data mining tasks. In Lyle Ungar, Mark Craven, Dim-
itrios Gunopulos, and Tina Eliassi-Rad, editors, KDD ’06: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 935–
940, New York, NY, USA, August 2006. ACM.

TDT4900 - Master thesis

http://www.legemiddelhandboka.no/xml/
http://www.legemiddelhandboka.no/xml/

102 BIBLIOGRAPHY

[34] Yoon-Joo Park, Byung-Chun Kim, and Se-Hak Chun. New knowledge extraction tech-
nique using probability for case-based reasoning: application to medical diagnosis. Expert
Systems, 2006.

[35] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
1993.

[36] Mare Remm and Kalle Remm. Case-based estimation of the risk of enterobiasis. Artificial
Intelligence in Medicine, 2008.

[37] Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes. JAMA, 2002.

[38] John Shawe-Taylor and Nello Cristianini. Support Vector Machines and other kernel-based
learning methods. Cambridge University Press, 2000.

[39] L.M. Taft, R.S. Evans, C.R. Shyu, M.J. Egger, N. Chawla, J.A. Mitchell, S.N. Thornton,
B. Bray, and M. Varner. Countering imbalanced datasets to improve adverse drug event
predictive models in labor and delivery. Journal of Biomedical Informatics, In Press,
Corrected Proof:–, 2008.

[40] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.
Addison-Wesley, 2006.

[41] Chieh-Yuan Tsai and Chuang-Cheng Chiu. A case-based reasoning system for pcb princi-
pal process parameter identification. Expert Systems with Applications, 32(4):1183 – 1193,
2007.

[42] McSharry C Hart CL et al. Upton MN, McConnachie A. Intergenerational 20 year trends
in the prevalence of asthma and hay fever in adults: the midspan family study surveys of
parents and offspring. BMJ, 2000.

[43] Gary M. Weiss and Haym Hirsh. Learning to predict rare events in event sequences. In
Proceedings of the 4 International Conference on Knowledge Discovery and Data Mining.

[44] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, 2nd edition, 2005.

[45] G.P. Zhang. Neural networks for classification: a survey. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 30(4):451–462, Nov 2000.

Early warnings of critical diagnoses

Appendix A

Experimental settings

The experimental settings which controls the behaviour of the system are given to the system
as a configuration-file. This file should set the variables presented in Table A.1. The syntax of
the configuration file must follow the rules below.

1. One variable per line

2. Each variable must be stated: <Name>#<Value>

3. List variables must be stated: <Name>#<Value> [, <Value>]

4. The right hand part may be empty, but it must contain one or more space-charachters

5. It is possible to add a comment after a variable, then it must be stated after a %-symbol,
like this; <Name>#<Value>%<Comment>

6. The order of the variables are irrelevant

7. All variables in Table A.1 must be included

8. Spaces are allowed between separators like # and %.

One example: IN_ENCODING#ASCII %OK: UTF-8, Unicode, ASCII IKKE OK: ANSI.

103

104 A. Experimental settings

Name Type Description

CLASSES_TO_PREDICT boolean[] Which classes should be predicted.
DATA_SOURCE String[] Names of data sets to be used.
DEBUG_MODE boolean Whether to display extra information

to screen.
DEL_CENTRAL boolean Whether to delete the central object or

not.
DEL_FVS boolean Whether to delete the FVset object or

not.
ITERATION int Which iteration this is.
FVS_TO_CREATE String[] Which FV-types to create.
IN_ENCODING String The encoding of the data which is read

in.
MIN_NUM_EVENTS int The minimum number of events a FV

must contain.
MAX_NOF_EVENTS_TO_READ int The maximum number of events to read

from the data set. Can be empty.
NOF_INTERVALS_FREQ int
NUM_NEG int[] The number of negatives per positive

example.
NUM_ATTS int[] The number of attributes to use.
OUTPUT_FREQUENCY int How often output should be written to

screen.
OUTPUT_PH_GRAP boolean If true, a PH representation of ran-

domly selected PHs is output.
PERIOD_SIZE int The granlurity of the PH representation

in days.
PIPE_CORR_BM boolean Must be true in order to control

NUM_ATTS.
PREDICTION_PERIOD int[] The size of PP in days.
QUARANTINE_PERIOD int[] The size of QP in days.
REQUIRE_PATHOLOGICAL boolean Require that the test result was abnor-

mal.
SUS_IND_AST String[] Suspicion-indicators for asthma.
SUS_IND_DIA String[] Suspicion-indicators for diabetes.
SUS_IND_HYP String[] Suspicion-indicators for hypothy-

roidism.
USE_ALL_EXAMPLES boolean Include all examples in FV. Overrides

NUM_NEG.
USE_SMOTE boolean Use SMOTE or not.
WARNING_TIME int[] The size of WT in days.
WRITE_ARFF_BATCH boolean If true, all Instances are written in

batch to arff-file, else they are written
one by one.

Table A.1: The variables in the settings file and what they control.

Early warnings of critical diagnoses

Appendix B

Additional results

This chapter contains additional results which were omitted in the main report, because the
results were considered less important or took to much space in the report.

B.1 E5: Varying settings when APP = PP

The only difference between E2 and this experiment is that APP ≤ PP for E2, while APP =
PP in E5. It is therefore interesting to compare the results of E5 with E2. We compare them
by aligning figures from E5 in the first column, while the second column has the corresponding
figures from E2.

105

106 B. Additional results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PD-B.

Figure B.1: Comparing the results when APP = PP with APP ≤ PP. PD-B, Iteration 3, PP
varies and evaluation metric is geometric mean.

Early warnings of critical diagnoses

B.1. E5: Varying settings when APP = PP 107

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

G
M

Prediction period

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PM-B.

Figure B.2: Comparing the results when APP = PP with APP ≤ PP. PD-B, Iteration 3, PP
varies and evaluation metric is geometric mean.

TDT4900 - Master thesis

108 B. Additional results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PD-B.

Figure B.3: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the WT which varies in each plot.

Early warnings of critical diagnoses

B.1. E5: Varying settings when APP = PP 109

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

G
M

Warning time

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PM-B.

Figure B.4: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the WT which varies in each plot.

TDT4900 - Master thesis

110 B. Additional results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PD-B.

Figure B.5: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NN which varies in each plot.

Early warnings of critical diagnoses

B.1. E5: Varying settings when APP = PP 111

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PM-B.

Figure B.6: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NN which varies in each plot.

TDT4900 - Master thesis

112 B. Additional results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PD-B.

Figure B.7: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NA which varies in each plot.

Early warnings of critical diagnoses

B.1. E5: Varying settings when APP = PP 113

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PM-B.

Figure B.8: Performance of classifiers for iteration 3. Classifier is evaluated using geometric
mean, and it is the NA which varies in each plot.

TDT4900 - Master thesis

114 B. Additional results

B.2 E6: Increasing positives when APP = PP

This section provides extra figures which compares the performance of E3 and E6. APP ≤ PP
in E3, while E6 required APP = PP.

Early warnings of critical diagnoses

B.2. E6: Increasing positives when APP = PP 115

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PD-B.

Figure B.9: Comparing the results when APP = PP (E6) with APP ≤ PP (E3) when using
SMOTE. Evaluation metric: geometric mean, NA = All, WT = 300, PP = 913, NN varies.

TDT4900 - Master thesis

116 B. Additional results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PD-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PD-B.

Figure B.10: Comparing the results when APP = PP (E6) with APP ≤ PP (E3) when using
SMOTE. Evaluation metric: geometric mean, NA varies, WT = 300, PP = 913, NN is 8.

Early warnings of critical diagnoses

B.2. E6: Increasing positives when APP = PP 117

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

G
M

Relative number of negatives

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PM-B.

Figure B.11: Comparing the results when APP = PP (E6) with APP ≤ PP (E3) when using
SMOTE. Evaluation metric: geometric mean, NA is max, NN varies.

TDT4900 - Master thesis

118 B. Additional results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(a) APP = PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(b) APP ≤ PP, AST, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(c) APP = PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(d) APP ≤ PP, DIA, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(e) APP = PP, HYP, PM-B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

G
M

Number of attributes

NaiveBayes
Ripper

HyperPipes

(f) APP ≤ PP, HYP, PM-B.

Figure B.12: Comparing the results when APP = PP (E6) with APP ≤ PP (E3) when using
SMOTE. Evaluation metric: geometric mean, NA varies, NN is 8.

Early warnings of critical diagnoses

B.3. E1: Additional scatter plots 119

B.3 E1: Additional scatter plots

This section has the scatter plots for iteration 2 in E1.

TDT4900 - Master thesis

120 B. Additional results

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(a) Start - Sus, AST.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(b) Sus - Dia, AST.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(c) Start - Sus, DIA.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(d) Sus - Dia, DIA.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(e) Start - Sus, HYP.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(f) Sus - Dia, HYP.

Figure B.13: Scatter plots of how quickly GP suspects and diagnoses patients, using data from
PD-B, iteration 2.

Early warnings of critical diagnoses

B.3. E1: Additional scatter plots 121

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(a) Start - Sus, AST.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(b) Sus - Dia, AST.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(c) Start - Sus, DIA.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(d) Sus - Dia, DIA.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(e) Start - Sus, HYP.

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000

N
O

F
 v

is
its

NOF days

(f) Sus - Dia, HYP.

Figure B.14: Scatter plots of how quickly GP suspects and diagnoses patients, using data from
PM-B, iteration 2.

TDT4900 - Master thesis

Appendix C

Abbreviations

APP, Actual Prediction Period
AST, Asthma
ATC, Anatomical Therapeutic Chemical, A WHO drug classification system
C45, Tree learning algorithm
CWA, Mean Class-Weighted Accuracy, see section 2.4.3
DIA, Diabetes 2
DAS, Disease Analyser System, Name of the system which is used to conduct the experiments
in this project
FV, Feature Vector
GM, Geometric Mean, see section 2.4.3
GP, General Practitioner
HYP, Hypothyroidism
ICPC , International Classification of Primary Care, C classification method for primary care
encounter classification
MPX, Main problem X
NA, Number of attributes
NN, Number of negatives
NPV, Negative Prediction Value, see section 2.4.3
PH, Patient History
PP, Prediction Period
PPV, Positive Predictive Value, see section 2.4.3
QP, Quarantine Period
RIPPER, Repeated Incremental Pruning to Produce Error Reduction, see section 2.4.2
SMOTE, Synthetic Minority Over Sampling Technique
SVM, Support Vector Machine, see section 2.4.2
t∗sus, Estimate of tsus
tsus, Time of suspicion
tTD, Time when target diagnosis is set
ToSussee tsus
ToTDsee tTD
WT, Warning Time

122

	Title Page
	Problem Description
	List of Tables
	List of Figures
	I Project report
	1 Introduction
	2 Background and related work
	2.1 Definition of relevant concepts
	2.1.1 Terms used in supervised learning
	2.1.2 Special events and periods in time
	2.1.3 Graphical introduction to how FVs are created in this experiment

	2.2 Strategies to solve main problems
	2.2.1 Solving MP1
	2.2.2 Solving MP2 and MP3

	2.3 The three test cases
	2.3.1 Asthma
	2.3.2 Diabetes
	2.3.3 Hypothyroidism

	2.4 Methods used in machine learning
	2.4.1 Preprocessing
	2.4.2 Classification
	2.4.3 Evaluation

	2.5 Data mining tools
	2.5.1 Intellectual property rights and software
	2.5.2 Weka classes used in this work

	2.6 Related work

	3 Materials and Methods
	3.1 Materials
	3.1.1 Sensitivity of data
	3.1.2 Data set: PD-B
	3.1.3 Data set: PM-B

	3.2 Overview of general experiment
	3.2.1 Data flow diagrams for DAS

	3.3 Experiment overview
	3.4 E1: Determine time of suspicion
	3.4.1 Constraints
	3.4.2 Pseudocode PH selection
	3.4.3 Calculating the attribute worth
	3.4.4 Experiment settings

	3.5 E2: Varying settings when APP PP
	3.5.1 Constraints on FV creation
	3.5.2 Deciding the values of the settings
	3.5.3 Feature selection method
	3.5.4 Pseudocode PH selection
	3.5.5 Experiment settings

	3.6 E3: Increasing positives when APP PP
	3.6.1 Experiment settings

	3.7 E4: Comparing all classifiers when APP PP
	3.8 E5 and E6

	4 Results
	4.1 Understanding the RIPPER model
	4.2 E1: Determine time of suspicion
	4.2.1 Examining the suspicion-indicators
	4.2.2 Time to suspicion and diagnose
	4.2.3 Model analysis

	4.3 E2: Varying settings when APP PP
	4.3.1 Effect of varying PP
	4.3.2 Effect of varying WT
	4.3.3 Effect of varying NN
	4.3.4 Effect of varying NA

	4.4 E3: Increasing positives when APP PP
	4.4.1 Increased complexity
	4.4.2 Too few attributes

	4.5 E4: Comparing all classifiers when APP PP
	4.5.1 Performance
	4.5.2 Time to build

	4.6 E5: Varying settings when APP = PP
	4.6.1 The number of training examples in E2 and E5
	4.6.2 Positive indicators for different PP values
	4.6.3 Positive indicators for different NA values

	4.7 E6: Increasing positives when APP = PP

	5 Discussion
	5.1 Positive indicators
	5.1.1 Why are positive indicators interesting?
	5.1.2 Where do the positive indicators occur?
	5.1.3 Do positive indicators affect performance?
	5.1.4 Determining the validness of positive indicators

	5.2 Invalid SMOTE results because of circular reasoning
	5.2.1 Methods to ensure valid results for SMOTE

	5.3 Limitations of data sets
	5.3.1 Potential value of additional information
	5.3.2 Reasons for not including additional information

	5.4 The potential usefulness of good prediction models
	5.5 What kind of information do we retain?
	5.5.1 Extracting different information from different periods
	5.5.2 Dominant periods
	5.5.3 The information retained in the experiments

	5.6 Rich FVs and few examples or sparse FVs and many examples?
	5.7 Choosing evaluation metric for skewed class distributions

	6 Conclusion
	Bibliography

	Appendix
	A Experimental settings
	B Additional results
	B.1 E5: Varying settings when APP = PP
	B.2 E6: Increasing positives when APP = PP
	B.3 E1: Additional scatter plots

	C Abbreviations

