@ NTNU

Norwegian University of
Science and Technology

Using the Geographical Location of
Photos in Mobile Phones

Jon Anders Amundsen

Master of Science in Computer Science
Submission date: July 2008
Supervisor: Svein-0laf Hvasshovd, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

The task is to explore different usages of geotagged photos and investigate how suitable they are
for mobile devices. The new Android mobile platform should be examined to see how suitable it is
as a platform for applications that involve geotagging. Prototypes of applications using geotagged
photos should be implemented using the Android platform. A small user study should preferably
be carried out using the prototypes to examine if people find it interesting to use location for
enhancing the functionality when browsing photo collections on mobile phones.

Assignment given: 15. January 2008
Supervisor: Svein-0laf Hvasshovd, IDI

Abstract

Digital cameras in mobile phones have become vepylar in the recent years, and it is
common to have large photo collections stored engiione. Organizing these photos on the
phone is still a big problem though. This studylergs different ways of utilizing the
location of where the photos were taken to makasier to manage a large photo collection.
Several different positioning technologies that barused to obtain the location of where a
photo was taken are presented.

Three of the application suggestions for usingtiocanformation of photos were

implemented as prototypes on the Android platfokmdroid is a new platform for mobile
phones developed by Google and the Open Handsahéd, which has been made available
as a preview release for developers. A part ofgtudy was to investigate how suitable this
platform is for developing location-based softwdtevas found that it is very suitable,
although there still are some bugs and missingifeatthat are expected to be fixed before the
final release.

The three application prototypes that were implelegmere called “From Photo to Map”,
“From Map to Photos” and “Who Lives Here?” The “Rré*hoto to Map” application lets the
user see a map where the location of a selected pheisualized with a marker. The “From
Map to Photos” application shows a map with markell of the locations where the user
has taken photos. When one of the markers is selgitte photos taken at that location is
shown. The “Who Lives Here?” application lets tlseruknow which of the persons in his
contact list that lives where the photo was taken.

A small user survey showed that the participarasight all of the applications could be
useful, but they were not so sure if they would thesn themselves. The survey also showed
that most of the users were able to find photo®faghen using map-based browsing in the
“From Map to Photos” application than when browsingpugh a photo collection linearly,
but several concerns about the implementationldetad the use of an emulator make the
exact efficiency gain very uncertain.

I would like to thank my supervisor Svein-Olaf Hghevd for his cooperation while working
on this study. | would also like to thank the papants of the user survey for their
cooperation.

Jon Anders Amundsen
Trondheim, 11 July, 2008

Contents

1
2

Ta11goTo [U o110] o PP PPPPPPPI 4
StAte OF the Al ... e e e et e ettt ettt bbb e nnaas et bb e e e e e e e eeeaaas 5
P20 R =T) - Yo o LoV [5
2.2 Reference Systems for Coordinates on Eartho..........cccoooiiiiiiiiiiiiieeee 5
2.3 Methods for Obtaining Location INformatioN.eeee......cooeeeeiviiiiiieiiicee e 6
231 IMTANUAL ... ettt eeeeeeeeeeerrnanae 7
2.3.2 CIIFID e et a e 7
2.3.3 1 TSP 8
2.3.4 AG P S e 9
2.3.5 WWLAN Lttt et e e e e e e e e e e e e e e e e bbb bbb n e e et e eaaeaaenanannnnnes 11
2.4 Related Research on Geotagged PhOtOS..ccuueeeeeiiiiiiiiiiciiiieeeee e 12
241 World Wide Media eXChange............uueeemeeiiiiiiiiiiiiiiiir e 12
2.4.2 [101 (0] 0] 1] o 7= 1P 13
2.4.3 LT LT] S 14
244 (T =T 0] 0] (o PP PPPPI 14
2.5 PC Software for Geotaggingoutcccmmmerrunniiiaaae e e e e e eeeeeeeeeeeeereeeesnnnnnreenee 15
25.1 FIICKE et e e e 15
252 ServiCes fromM GOOGIE.......uuuuuuu sttt 15
2.5.3 Microsoft Pro Photo TOOISoooi i 16
2.6 Mobile Phone Software for Geotagging.... e coairieeeeeeeeiieeeeeeeiiiiiii e 16
2.7 SUIMIMITY <.ttt e e et e e e e e e et e e e e e et e e e et s e e e nnas e e esan e eeennns 16
Y T [(o] Lo SRR PPPPPTPUPTRRI 18
3.1 [111 (0 Y2 18
3.2 Android Developer Challenge......... oo 19
3.3 SYStEM AICHILECIUIEo e e e e e e e e e e e e e e e e eeaeeanne 19
3.4 Developing Applications for ANAroid.......ccccceieieeiiiiiiiiiiiiie e 21
3 D SR Lttt e e ———————aaa et e e e e e e e 23
3.6 Dalvik Virtual Machine...........oooi e 25
S 1Yo 1 | 26
3.8 TRE EMUIALOT ...t ee e e e e e e e e e eeeeenenne 26
3.9 SUIMIMITY L.ttt e et e e e e e e e et e e e e e e e et ta s e e e nnas e e essn e aeennss 28
Applications of Geotagged PhOTOS..........ciieiriiiiiiiieieeiii e 29
4.1 [o] 0T o a0 1 (o IR (0 TN 1Y/ T o 29
4.2 From Map t0 PROTOSuuuiiiiiii ettt n e 30
4.3 WRO LIVES HEIB? ..ottt 33
4.3.1 PRONE DIFECIONY ... 34
4.3.2 Social Networking WebSItEScooiiccceeeeiciee e 34
4.4 From Contact LiSt t0 PROLOS............c e 35
4.5 Social Gathering PlacCesS..........coiiiiiiei it a e 35
4.6 CUITENE LOCALION ...ttt e ettt s e e e e e e e e e e e e e e eeeeaeeeeeeeeeesenennnnns 36
4.7 Same Location as Other PROLOScoovviiiiiiiiiiiiiiieeee e 36
4.8 Related Geotagged Informationccccoeeiiiiiiiiiciccce e, 36
4.9 Navigation to Photo LOCALIONuuueeeeeeiiiiiiiiiiiiie e 37
O T YU [110 0 = U PPN 38
\Y{[=]1 g ToTe (o] (0o |V PP TTTPPPPP 39
51 Problem Elaboration...............uuuuiiieeeieiie e 39
5.2 Implementation Of ProtOtyPesooui oo 39
5.2.1 Challenges of Mobile Development...... . ceeeeeeeiiiiiiiiiiieieeeeeeeeeeeeee 39

Page 1 of 108

5.2.2 Using the Android EMUIAtOroccceeeveeeeceee e 40

5.2.3 Storing and Accessing Location Informatiomnrage Files........................... 41
5.2.4 Creation of a Geotagged Photo ColleCtioN....cccovveeeeeeeeeeeeiiieieeiiiinnnnn 44
5.25 Implementation of a Location-Aware Image Bsew..............cccccvvvvvvneiennnnnn. 44
5.2.6 Implementation Details of “From Photo to Map’........cccceeviveiiiiiiiiiieeeeiinn, a7
5.2.7 Implementation Details of “From Map to PhOtoS...........coooeieiiiiiiviiiiiiiinns 49
5.2.8 Implementation Details of “Who Lives Here?..........cccccovvvvvvvvvvvvinccieeeenn. 52
5.3 USEBIE SUMVEY ...ttt ettt e e e e et e et s e e e e eesta e e aeeenneeebnnn e aeaeennes 54
54 SUIMIMIBTY <.ttt e et e et e e e et e e e e e e e e et e e e e nnasn e e esnn e eeennes 55
B RESUILS .o ————————aaaaaaaaaaaaaaa s 56
6.1 Experiences from Using the Android SDK....cccoeiiiiiiiiiiiiiiiiiiiieeccee e 56
6.2 ANSWETrS from the USEr SUIVEYoiii e ena e e 57
6.3 Efficiency of Map-Based BroWSINg.........ceeeeeeeeeiiiiiiieeeaaeaiaisssiiiieeeeess 57
B o] Tl [1 13 o o 1RO PPPPPPUPRRRPPR 60
S I U 1 1 =T VAo T ¢ PP 61
O RETEIBNCES ettt s 62
Appendix A: User Survey — Original NOrwegian Versi0.........cccccuveeeeeieiiiisiisciiiieeens 65
Appendix B: User Survey — English translationcccccooiiiiiiiiiiiiiiieeeeeeeeeeas 67
Appendix C: User SUIVEY — RESUILS.........ui e 69
Appendix D: Source Code Of IMAagEBIrOWSETceiiiiiieeeiiiiieeeeeee e eeeee e 71
Appendix E: Source Code of IMageProvider...........cccuiviiiiiiiiiiiiiieeeeeeee e 95

Page 2 of 108

List of figures

Figure 3.1: The layered architecture of the Andgatform.ccccceveiiiiiiiii e, 20
Figure 3.2: Client/server model in the same CONMMPULE...........uuuuiiiiiereeeeeeieeeeeeeeiiiiiinees 24
Figure 3.3: Client/server model using two differeamputers............cccccceeeiiiiieeeeeeeeeeennn. 24
Figure 3.4: The embedded model, used by SQLIte..ccc.uuuiiiiiiiiei e 24
Figure 3.5: The GUI of the Android emulator runnmmgWindows XP.ccccoeevvvvvveeinnnns 27
Figure 3.6: The image returned by the camera dimvére Android emulator. 28
Figure 4.1: 12 objects clustered into three clgsbgrusing two parameters.................... 31..
Figure 4.2: Hierarchical clustering of four objects............ooooiiii e 32
Figure 5.1: Execution time for reading coordinaie$00 geotagged photos.cccceeennn... 42
Figure 5.2: Database table used to store locatifmmmation of geotagged photos. 43
Figure 5.3: Screenshot of the image browser...............oieiiiii e, 45
Figure 5.4: Screenshot showing the context menbeoimage browser. ... 46
Figure 5.5: Screenshot of the map with a point mark..............cccceeeeeeiiiiiiiiiiieveeeeees a7
Figure 5.6: Screenshot showing the zoom controfiéhe map.............ccoveiiiiiiiiiiiiinieeee 48
Figure 5.7: From Map to Photos, showing the whabel@v..................ccoeeviiiiiiiiiiiiiiinnnnn. 49
Figure 5.8: From Map to Photos, Showing @ CoOUNtry.........cccoooeeiiiiiiiiiiiiiiiieeees 50
Figure 5.9: From Map to Photos, ShOWING @ CltYaeeeeivvvevviiiiiiiiiee e 51
Figure 5.10: Who Lives Here?, showing two CONtactS.............coovvvveiiiiiiiiniiiinine e, 53
Figure 6.1: Search time by using map-based vsHiDEBRVSING.ccccvciiiiiiiiiiieee e 58
Figure 6.2: Average search times for map-basediaear browsing.ccceeevivnnne 59.

Page 3 of 108

1 Introduction

Digital cameras built into mobile phones have bee®ery popular in the recent years. A lot
of mobile phone users have built up large phottectibns on their phones, since they always
carry this camera with them. These photos willothe uploaded to a PC for viewing and
sometimes archiving, but they may also be viewebstored on the phone itself. The storage
space and screen size of mobile phones are cdgstareasing and opens new possibilities
for what can be done on a mobile phone. Photoaadles may be browsed by time and date
or other metadata, they may be sorted into evertategorized into other kinds of groups.
This kind of manual categorization is a very labas task though, especially for large photo
collections. It is also even harder to do on a teginone than on a regular PC. It is therefore
desirable to have the photo collection automatiaaigjanized, so the manual categorization is
less needed.

Until the last couple of years, map-based navigadiod other uses of location-based data
have not been practical on mobile phones, butshsbanging. Larger screens, more powerful
processors, better network connectivity and otlhét-m sensors are moving the limits of
which kinds of applications that are feasible anabile phone. This can also be used to find
new ways of interacting with photo collections be phone. The focus of this study has been
to explore different ways in which the locationvdiere a photo was taken can be utilized to
aid the mobile phone user in browsing a photo ctbtla. This was stated more specific in the
following problem definition for this study:

“The task is to explore different usages of geo&hghotos and investigate how
suitable they are for mobile devices. The new Aiddrmbile platform should be
examined to see how suitable it is as a platfonmapplications that involve
geotagging. Prototypes of applications using gegéagphotos should be implemented
using the Android platform. A small user study stiqueferably be carried out using
the prototypes to examine if people find it inténgsto use location for enhancing the
functionality when browsing photo collections onbfephones.”

Some background and related research on using¢h&dn information of photos will be
presented in chapter 2. The Android platform wdldescribed in detail in chapter 3. Chapter
4 will cover several different ways of utilizingetocation information of photos, while
chapter 5 will describe how some of these waysimasemented, as well as describe the user
study that was carried out. The results of theystutl be discussed in chapter 6, and the
conclusion is presented in chapter 7. There aesame suggestions of more research that
should be done on the basis of this study presenteldhpter 8.

Page 4 of 108

2 State of the Art

The usage of the location information in photoansarea that has received an increasing
amount of attention in the recent years. This adragitves an introduction to the concept of
geotagging and the most relevant technology invthlpeesent the main research on the topic
and review some of the available software for gggitag.

2.1 Geotagging

A geotagged object is an entity that has some ratdattached to it which describes the
object’s geographic location. In the case of aagged photo, the metadata describes the
location of where the picture was taken. In its ni@sic form geotagging is not a new
concept. Something as simple as writing “VacatoRaris” or “At the family cabin” next to

a photo in an old fashioned photo album can berdegbas a kind of geotagging. The idea of
geotagging is therefore almost as old as photograpélf, even though the word geotagging
is relatively new. This very simple form of geotagpis of course useful, but with the help of
modern technology a whole new world of opportusiéeises.

The description of a location may be given in sabdifferent ways. As mentioned in [2],
these may include commonly understood place naike®aris or the Nidaros cathedral. It
may be personal place names like “the family cabim®my house”, or it may be an address
or a zip code. A location may also be describecbasdinates. The most common kind of
coordinates used to describe locations on the sudathe earth is latitude and longitude, and
altitude above mean sea level is also often add#wter coordinate systems, like the (x, y, z)
coordinates of a three dimensional Cartesian coatdisystem relative to a specified origin
may also be used. These kinds of coordinates adlysot as useful though, and therefore
not as common. There are other ways of descrilmiogtion also, but these are the most
common.

Place names are often the easiest way of descmbliocation when humans are
communicating with each other. If you ask yourride to meet you at “Marinen” to have a
barbeque, it will be easy for them to understandmelit is, given that they are familiar with
the Trondheim area. For computers, on the othed,hdace names may be difficult to
interpret, so a numerical description like latitizael longitude would be much more useful.
But if you asked your friends to meet you at 63°3B’' N, 10° 23’ 45” E you might easily
end up eating alone.

In the rest of this study the latitude and longitwepresentation of a location is being used,
since the study concerns the usage of locatiomnrdton on a mobile device, which is a kind
of portable computer.

2.2 Reference Systems for Coordinates on Earth

The use of latitude and longitude may seem likerg unambiguous way of describing a
location, but it may in fact not be. Several diffiet reference systems have been used
throughout the world to define coordinates, ang #re not completely compatible with each
other. The reason for this is that until the latest decades accurate maps were mostly made
for a small area of the earth, and therefore moafetise earth that best approximated that
specific area was used. The earth is an irreghkpes so a model that is very accurate for one

Page 5 of 108

part may be less accurate for other parts. Exangflssch models that have been in use are
the North American Datum, European Datum and TdBgitum. The difference between
locations described using the different models b@as much as a kilometer. Eventually the
need for a global reference system for coordingitew, and in 1966 the first version of the
World Geodetic system was defined. The latest @arsf this system is currently the World
Geodetic system 1984 (WGS84). This is the referegstem currently used by the GPS
system.

WGS84 [3] is a model of the earth, published byNla¢ional Imagery and Mapping Agency,
which is a part of the US Department of Defencee irfodel defines a reference frame for a
coordinate system for describing positions on #d¢he It defines the shape of the earth as an
approximation of an ellipsoid with a semi-majorsagequatorial radius) of 6378137.0 meters
and a semi-minor axis (polar radius) of 635675223hters.

The GPS system uses the WGS84 reference systegfine thtitude and longitude. Since this
is the most common way of getting the coordinateslocation, this have also become the
most common way of describing a location numelycéih most new maps and in

Geographic Information Systems (GIS) applicatidrtsan be expected that WGS84 is used as
the reference system for coordinates, unless otberstated. Thus, WGS84 is also the
reference system used in this study.

2.3 Methods for Obtaining Location Information

There are a number of different methods for obtgjthe location information that is needed
when a photo is to be geotagged. It can be doneaflignand it can be done automatically
using several different technologies. Most of tbemmon technologies used for automatically
obtaining location can be described as either stdoike, satellite-based, or terrestrial radio-
based (Mobile Phone Location Determination andntigact on Intelligent Transportation
Systems). A common example of a stand-alone syistel@ad reckoning, i.e. using sensors to
track movement. An example of a dead reckoningesyss to estimate the position of a
vehicle moving from a known starting point usingatometer and a compass. The most
common satellite-based system for obtaining locaahe Global Positioning System (GPS),
which is described in section 2.3.3. An exampla tdrrestrial radio-based system is
LORAN-C [4], which consists of radio-towers tran#imig navigation signals to ships,
aircrafts and others. It is an old system, whick h@come less popular because of GPS.
Although there are lots of different systems fotaiting location, only the ones that are
applicable for mobile phones will be discussecdis study.

One of the aspects of geotagging that must be etkfsnwhether to store the location of
where the camera was when taking the picture olottaion of what you can see in the
picture. If a vague description of location wasdjdike the name of the city where the photo
was taken, this is usually not an issue. But whengucoordinates like latitude and longitude
the distance between the camera and the objettie photo may be much greater than the
precision of the location information, and the ghotay also cover a large area with several
objects far away from each other. If the photogetggged manually, then it would usually be
easy to define the location of one single objeenhsa a photo, but when there are several
significant objects in a photo it might be hardleride which object to choose. There is also
currently no good way of doing this kind of geotemggautomatically. Therefore, because of
these complications, only the location of the caweitl be considered in this study. The
location of the camera can relatively easy be aatmaily obtained from a positioning

Page 6 of 108

system built into the camera or located close ¢ocimera. Manually deciding the location of
the camera is also usually not much harder thaiditgcthe location of an object that you
can see in the photo.

2.3.1 Manual

Probably the most basic way of determining theud#& and longitude of where a photo was
taken is to find the location on a map and manualhd off the latitude and longitude. This
can be done using an old fashioned printed mapsiog an electronic map. There are several
computer programs available to help in this proces®re you can browse through your
photo collection and click on a map to indicate vehthe photo was taken, or even just drag
and drop the photo onto a map. The software walhtktore the location information for later
use. Some applications that can be used for thisisadescribed later in this chapter.

Even though this is the simplest approach to geiag it has several disadvantages. Firstly,
it is a very laborious task that may take a ldtik if the photo collection is large. It is
unlikely that most users will think that it is wbrthe time and effort required to do this work,
at least not over time. There is also likely thatian errors will occur from time to time, for
instance reading the map wrong or not being abfmtbthe location on a map at all. Another
problem is that people may forget where a pictuas taken, especially if there is a long time
between taking the picture and geotagging it. kan®le if a user has been on a long trip,
e.g. a round trip in China, and has been takiray aflpictures during the trip, the
photographer may not remember the exact locatiavheie all of the pictures was taken
when he comes back home.

2.3.2 Cell-ID

One of the least accurate ways of automaticallgiobtg the location of a mobile phone is to
use the cell-ID of the base station the phonetigeatly connected to. This location technique
has been reviewed in [5]. The idea is to use tbation of the base station as an
approximation of the phone’s actual location, iadtef finding the exact location of the
phone itself. The accuracy of this approximatioprigportional to the size of the network
cells, i.e. the reach of each base station in gteark. The cell size varies wildly as it
depends on the population density in the area.rda with lots of people needs more base
stations than areas with few people, and thereaf@eell size is much smaller in urban than
in rural areas. The accuracy in urban areas caowe to a few hundred meters, while the
accuracy in rural areas will often be as high assd kilometers.

The biggest problem of implementing a positioniggtem based on cell-ID is that there is no
public database that describes the location dhalbase stations available. All base stations
have a globally unique identifier, and it is avaitato software running on mobile phones, but
only the mobile operators have access to datallasesap these identifiers to the exact
location of their own base stations. Some operatansprovide location based on cell-ID as a
service to customers, but it is usually not a fervice. It would be a lot of work and
probably very expensive to gain access to thesécssrfor applications that are meant to be
deployed globally, since a very high amount of epans would have to be involved. These
services are probably not available from all opmsaeither. Another method of obtaining the
locations of the base stations is to use publichilable databases that are being maintained
by companies and organizations that see the bgméfet cheap positioning system being
available all over the world. Using these databaskschieve lower coverage and accuracy,

Page 7 of 108

but they are available for free. The databasebuateby a community of users who have both
mobile phones and GPS receivers. Areas are thepadajut by uploading GPS positions of
where they are located together with the cell-IDhaf base station that their mobile phone is
currently connected to. The approximation of eaa$elstation’s location gets better as the
number of observations grow. This kind of commuhityit databases are available in Google
Maps Mobile, in a service called My Location [6},the Yahoo! ZoneTag Cell Location API
[7], in CellDB [8], GSMLoc [9] and CellSpotting.coftO].

The element that makes this positioning methodetitre is that it does not require any
additional hardware at neither the mobile phoneagt nor the phone itself, and it can
therefore be very cheap to deploy. Unfortunatélg,accuracy is very low and unpredictable,
so this is not an ideal location technology for ursa geotagging application.

2.3.3 GPS

The Global Positioning System (GPS) [11][12][13hisatellite-based positioning system that
provides three-dimensional positioning and accuiate to GPS users all over the world at
all times. The system was developed by the UnitateS Department of Defense, and is
currently being maintained by the Global Positign8ystems Wing in the US Air Force.

The US Department of Defense started the researehsatellite-based positioning system
already in the late 1950s, but getting from thera fully functional system took a long time.
The first GPS satellite was launched in 1978. Bglerational Capability was not declared
until 1995 [14].

The system was designed to need at least 24 apeahtiatellites to be functional all over the
globe at all times. There are currently 31 operai&PS satellites in orbit, which provides
for better accuracy and better fault tolerancénefdystem in case of failing satellites. All the
GPS satellites contain atomic clocks that are symshed to be able to keep time as accurate
as possible. Each satellite is constantly transmiits current time and information about its
orbit in addition to other information about theedite towards the earth.

A GPS receiver will calculate its own position bée@ the radio signals it receives from the
satellites. Even though the clocks on all the Btglare synchronized, the GPS receiver will
still see small differences in the timing infornaatireceived from the different satellites. This
is because the time that the signal needs to tfeval a satellite to a GPS receiver is
dependant on the distance between the satellitéh@neceiver. The exact position of the
GPS receiver can be calculated using trigonometnathe positions of the satellites are
known in addition to the distances between thdlgageand the receiver. The clock of a GPS
receiver can not be expected to be accurate amthgymzed with the GPS satellites. It is
therefore necessary to solve a set of equatiofisdaot only the three dimensional position
of the receiver, but also the exact time. The pwsitan not be calculated accurately without
the time also being accurate. A GPS receiver ngigdsls from at least four different GPS
satellites to be able to calculate the three dimeas position plus the time dimension. If
signals from more satellites are available, theileoe used to achieve better accuracy.

The GPS satellites broadcast navigation signatsvordifferent frequencies. One is publicly
available to anyone who buys a GPS receiver. Therane is encrypted and only available
to the US military.

Page 8 of 108

Better and more accurate GPS receivers are colyshbeiig developed. Some of the newer
receivers, like the SiRFstarlll GSC3e/LP chip [1&dn achieve an accuracy of less than 2.5
meters. According to [16], the theoretical limit the accuracy of GPS is just a few
centimeters.

The GPS system is a good system for obtaining $eeswcurrent location, but it also has
several drawbacks. One significant drawback isttiasignals sent from the satellites are not
very strong. Therefore the GPS receiver needs fyngaar view to the area of the sky where
the satellite is located to be able to receivestgral. This means that GPS receivers will
usually not work inside buildings. When used insddwey have to be placed in one of the
windows or use an external antenna, and they dwoik inside tunnels. A work-around for
car navigation systems in tunnels is to estimateattiual position inside tunnels based on the
speed of the car before going into the tunnel Aedime since the signal was lost. This is a
kind of dead reckoning system. Another drawbadkas GPS receivers have been known for
giving wrong positions or no position at all whesed in urban areas with lots of tall

buildings or close to a tall rock wall. There amdtreasons for this. The first is because a very
small area of the sky is visible. It is therefoexchfor the GPS receiver to receive any signals.
The other reason is that the signal from the steelfjets bounced off the walls of the tall
buildings before reaching the GPS receiver. THesceis called multipath. It causes the time
measured for the signal traveling from the satetlitthe receiver to be a bit longer than it
would be if it went in a straight line. The GPSe®er may also receive the same signal more
than once in this situation. Newer GPS receivevg lteecome much better at tackling such
difficult conditions, but some areas still causeljems.

A problem with GPS that is particularly importarfien the receiver is embedded in mobile
phones is that the time it takes before the systmdetermine its location the first time after
starting the receiver, called time-to-first-fix,.che very long. This can be from around 30
seconds to as much as several minutes [17]. WeGHBS receiver knows nothing about
which satellites are visible, it has to scan addrgquency range before actually finding a
valid signal. It then has to download a descriptbrach satellites orbit and position, called
the ephemeris. This is a very slow transmissioty, 5@ bits/second. When this first
initialization is done, the calculation of new Itioas can be done continually. The problem
for mobile phones is that if the GPS receiver ring constantly, it would drain the battery
very fast. The receiver therefore usually has tetheed and re-initialized each time the user
requires the location.

Two different kinds of GPS receivers may be useafdomatic geotagging of photos: stand-
alone or integrated in the camera device, which beag mobile phone. A stand-alone GPS
receiver can be used to record a timestamped kogosf where the photographer has been
while taking the photos. Most digital cameras stteanestamp integrated in the image files.
Therefore when the images are transferred to a stanpghe timestamps can be compared to
the timestamps in the track log from the GPS td thre photo location. If the GPS receiver is
integrated in the camera device, the location datebe stored directly in the EXIF header of
the image file, and no post processing is necessary

2.3.4 AGPS

Assisted GPS (AGPS) is a system that has beenapmato solve some of the problems with
integrating GPS receivers in mobile phones. Thetngsortant task of AGPS is to reduce
the time-to-first-fix. This is both necessary tokaan location aware system more user

Page 9 of 108

friendly, but also to reduce the battery consunmtiche system is based on GPS, but it
utilizes the mobile phone network to enhance thiéop@ance.

The orbital positions of the navigation satelliégge described in two different ways in the
GPS system, called almanac and ephemeris. The atnpaiavides a very rough description

of the position, whereas the ephemeris is usedltulate the exact satellite position. If an
updated almanac is available when the GPS recsiags up, it can instantly start receiving
on the correct frequency. However the exact frequéimat the GPS signals can be received
on is dependent on the satellites positions, sbdrabsence of an updated almanac a
frequency range of +/- 4.2 kHz must be scanned 8Jen the exact frequency is found, the
ephemeris data has to be downloaded from one &fatadlites on a 50 bits/second rate before
the receivers exact location can be calculated.

In AGPS there are stationary GPS receivers thadlar@ys on and therefore always have
updated information of the GPS satellites exaction. These receivers are connected to
location servers, which are also connected to thieilsnphone network. When an AGPS
receiver is turned on it does not have to scarrédggiency range and download the orbital
positions from the satellites, instead this datalwa downloaded from one of the location
servers in the mobile phone network. There areraédédferent standards for mobile phone
networks, with a wide variety of transmission ratas all mobile phone networks provides
transmission rates that are much higher than tH&tS&econd received from the GPS
satellites. Using this method can reduce the tioatxs$t-fix to just a second or less [19].

The AGPS system has two modes of operation. Ititdrature about AGPS the mobile
phones are called Mobile Station (MS), and the twamles of operation are called MS-based
and MS-assisted. The two modes have different aseksboth have their pros and cons.

An MS-based AGPS receiver will normally work justaregular GPS receiver. It uses the
mobile phone network to reduce the time-to-firg{-but after that there is nothing different.
The main advantage of an MS-based AGPS receivepaad to an MS-assisted one is that if
a mobile phone network is not available, or if thexno location server available in the
current network, the MS-based AGPS receiver cédlrfutiction as a normal GPS receiver. In
such cases it will have the same time-to-firstafixregular GPS receivers.

An MS-assisted AGPS receiver, on the other hanitlpffioad much of the location
calculation to a server in the network. The requiats of memory and processing power in
the mobile phone is therefore lower, and thus tieef implementing an MS-assisted
AGPS receiver in a phone is less than an MS-basedlbwill also not drain the phones
battery as much. The downside of MS-assisted receig that they transmit a lot more data
over the mobile phone network. Each time the lotatieeds to be updated, the phone must
transmit data from the AGPS receiver to a locasierver that calculates the position. If the
location information is to be used by the mobilep itself, and not by a service in the
network, the position must be transferred backéophone.

For applications that constantly need updated im&tion of the phones location on the phone
itself, such as navigation applications, an MS-taseeiver will be the best choice, since it
will calculate the location on the phone and notegate any network traffic. If only seldom
updates of the location are required, and the ilmeatformation is not to be used on the
phone itself, then an MS-assisted receiver willmheaper choice. This can for instance be

Page 10 of 108

very useful for operators at emergency call ceriteasneed to know where the caller is
located.

In the context of a geotagging application, an MSdul AGPS receiver will be preferred,
since the location information is needed on thenghitself.

2.3.5 WLAN

The availability of Wireless Local Area Networks MNS) have increased at an enormous
rate in the recent years. They are now widespmeéats of corporations, schools and
universities, in addition to people’s homes. Fiotaf people, WLAN is the preferred way of
accessing the internet. It is available on both Rifisa WLAN adapter, as well as some of
the newer and more advanced mobile phones. Théegsraetwork clients connect to a
wireless Access Point (AP) that relays connectiortbe regular wired network. The range of
an AP is greatly influenced by the kind and sizamienna and the obstructions between the
AP and the client. According to [20], the rangaitypical office environment is less than 70
meters, but the range can be several times largenwhere are no obstructions.

The high availability of WLANSs has fostered theadaf using these networks as a positioning
system for mobile network clients. The WLAN-basedifioning systems can be divided into
two research areas: Indoor positiong systems cestrio a small area, for instance a hospital,
mall or university, and systems with wide area cage. Most of the formal research on this
kind of positioning systems has focused on indgstesns.

[21], [22] and [22] provides good descriptions ofihan indoor positioning system based on
WLAN APs can be realized. The basis for these syste that the area of interest needs to
have a very good WLAN coverage, and the exactimeatof all the APs must be known to
the system. Since the range of WLAN APs is lowséhgystems are only useful in relatively
small areas where the WLAN coverage and AP locatt@m be controlled. This kind of
systems can give a mean distance error as lowbasédters under good conditions. Because
these systems are restricted to small areas dwy,are not applicable in most general
geotagging applications.

Wide area WLAN positioning, on the other hand, iscmmore suitable for geotagging.

There has not been much formal research on thighbre are several providers of WLAN
positioning systems available on the internet. €l®stems are made possible by creating
large databases of the location of WLAN APs allrabe world. The databases are created by
traveling around in urban areas with a laptop Wwitth WLAN adapter and GPS, constantly
scanning for new WLANS, and recording the GPS locafior each AP. It is not possible to
know the exact location of each AP, as requirethbyindoor systems, but the approximate
location can be estimated based on several obsmsaif the same AP from different
locations.

The Boston-based company Skyhook Wireless, Ing.Had built one of the most
comprehensive WLAN AP location databases availabid,is constantly expanding it. Since
it is a commercial company, they are able to payeds to scan urban areas all over the
world. They claim to have tens of millions of APstheir database, have 20 meter accuracy,
and cover 70% of the population in the US, Canadatralia, Germany, France and the UK.
The time-to-first-fix is less than one second. WE5[25] is an organization that also are
creating a database of WLAN AP locations, but ihisot a commercial company, and

Page 11 of 108

therefore all the scanning has to be done by vetrstfor free. WiGLE has currently
collected the location of more than 14 million ABg,more than 800 million unique
observations, since the start in 2001.

These WLAN positioning systems with wide area cagerhave at least as good coverage
indoors as outdoors, or maybe even better, andftiverthey may be a very good addition to
GPS, which has poor indoor coverage. The accusalsdo much better than systems based
on the mobile phone networks cell-ID. However, GRa8 not be replaced with a WLAN-
based system, since these systems only work imwateas, and the coverage in rural areas is
very poor or non-existent.

2.4 Related Research on Geotagged Photos

There have been several research papers publisheohoto utilize the information from
geotagged photos, but most of this research hasdre®Cs, and not mobile phones. Some
research regarding mobile phones is available thotige publications that are most relevant
to this study are presented here.

2.4.1 World Wide Media eXchange

The World Wide Media eXchange (WWMX) is a databafkgeotagged photos developed by
Microsoft Research. [2] describes this databasel@development of a location-aware
image browsing client for PCs, and also brieflyaduces some other possible applications of
geotagged photos. The WWMX is a client/server systehere the server-side consists of
both a central server and peer PCs. The full résalphotos are only stored on the
contributor’'s PC, whereas the central server stitn@sibnails and metadata for all the users’
photos, as well as pointers to the peer PC wheréuthresolution photo can be obtained. The
location-aware image browsing client enables tle tesbrowse the photos in this database
using a map. This systems uses an equirectangwi@cpon of the positions, also known as
unprojected latitude/longitude, which means thatl#titude and longitude values of each
photo are treated as (x,y)-coordinates on a 2-diad plane. This is a simple solution, but
not the most accurate.

The paper explores several different ways of viging the location of geotagged photos on a
map. The five visualizations described are calheohtbnails, point markers, isopleths, border-
dependent and media dots. The thumbnail visuadizagfers to showing small thumbnails of
the geotagged photos at the positions where they ta&en on the map. The technique is
very visually appealing when the number of phosdew, but it does not scale. When the
number of photos increases, it eventually becomgsssible to see the map because of all
the photos in front of it, and several photos taiketlhe same location is impossible to
separate. Thumbnail visualization also makes ficdilt to read off the position of a photo
accurately.

The use of point markers is, according to the papermost popular way of showing the
location of a photo in a map. It consists of drayvinsmall dot or icon on the map at the
location where each of the photos was taken. Theityeof dots on the map represents the
number of images in that area, and the exact lmcati each photo can easily be seen.
Unfortunately, this has the same problem with sgadis the thumbnail approach, so when the
photo collection is large, the map becomes comlyletevered in markers, and photos taken
in the same location will look just like one phottowever, the number of photos that can be

Page 12 of 108

visualized before the map is covered in point makemuch higher than with the
thumbnails.

The method called isopleth involves applying aipfiyttransparent overlay on the map. The
overlay is colored in different colors representihg varying image densities in the different
areas. Isopleth solves the scaling problem, andeangood visualization for very large
image collections, but it is not good when the nandf images is low. It also does not
convey the fundamental discreteness of the photos.

Another method is to divide the photo collectiotoiseparate groups by using borders such
as the ones between countries, cities and so @nidimber of photos in each area can be
visualized by an icon which is scaled accordinthtophoto count. The drawbacks of this
method are that it requires a lot of interactiothwihe underlying geographical map data. It is
also a potential problem and that the bordersatatelevant at one zoom level may not be
relevant at other zoom levels.

The final visualization technique chosen by thihars of this paper is called media dots.
The method consists of dividing the map into a gfid0x10 pixel cells. The number of
photos within each area is counted, and a dotavittze logarithmically proportional to the
photo count is drawn in each cell. This solutioalss relatively well, since several photos are
aggregated into one dot. If the photo collectioodmees very large, and the photo locations
are uniformly geographically distributed, then prtions of the map may be covered, but
it will never get as bad as with the regular ponatrkers.

2.4.2 PhotoCompas

PhotoCompas is a photo retrieval system develogeddearchers at Stanford University.
Several papers describing the research and devetdphthe system have been published.
The most interesting papers for this study are &%} [27]. The papers describe a method to
automatically generate meaningful organizationgesftagged photo collections, based on
location clustering and event clustering, wheren&vare described as a combination of
location and time. It is a method consisting ofesal/steps, and the processing of both time
and location data are integrated into the sameadeffhe geotagged photos are first divided
based on country borders, because of the assuntptibpeople usually know which country
they are in when taking photos. It has been obseha photos are usually taken in bursts
[28][29], and therefore the next step in the aldyoni is to process the photo collection of each
country sequentially and split them into segmenit® splitting is done where the
geographical or temporal distance between two autise photos is larger than a threshold
value. A geographical clustering algorithm is tiesecuted to find several different segments
of photos that are taken in the same location.llyineonsecutive segments that are located in
the same place are merged. The two outputs frosratgorithm are the list of geographical
clusters from the penultimate step, and the lisegiments from the last step representing
events. The researchers wanted to eliminate the: foe@ising a map to present the
geographical clusters, and therefore an intricatg @f naming these has been developed. The
naming is based on a geographical dataset of asinative regions in the US. User surveys
have shown that the results of this algorithm aeammgful ways of organizing photos.

The researchers behind PhotoCompas have also egpitrer context data that can be
derived from the basic information about locatiow &ime. The location data can be used to
find the time zone which a photo was taken in, @mibined with the timestamp from the

Page 13 of 108

camera the local time of the day can be calculdtki information can then be used to
calculate the daylight status, such as day, ndiigk and dawn, and to find out which season
it is. The logs from thousands of weather statemasind the world are available on the
internet, and so the location and time may be tseitain the weather conditions and
temperature for the time when a photo was takemeSather context data was also explored,
and a user survey was conducted to see which kincisntext data users would find valuable
to use when searching for specific photos. Theltseshowed that time of day, daylight status
and season are elements of a photo that peoplemeenevell, but data such as temperature
and elevation did not turn out to be very interestiThey also found that information about
location is a very important aspect of remembephgtos, and that it is as important as the
people in the photos.

2.4.3 MediAssist

[30] describes a system for browsing personal pholiections on mobile phones utilizing

the context of the photos. The photo collectioredus this paper are taken using regular
stand-alone digital cameras. The photos are geethgging separate GPS devices which logs
timestamped location data to a track file while olgoaphing. This data is then integrated
with the photos when they are uploaded to a P@dttition to the context data describing
time, date and GPS position, which is directly klde, several other kinds of information is
also derived from this. Most importantly, the laoatdata is used to obtain human readable
descriptions of the location. A gazetteer is ugetlanslate the coordinates into descriptions
on three levels: country, city/state and town. Tdoation information of the photos is also
combined with the timestamp to calculate the dawylgiatus and the season in which each
photo was taken. Thousands of weather station®eaged all over the world, and both the
historical and current data from many of theseaaglable on the internet. The weather
condition of each photo can therefore also be nbthby providing location, time and date.
This paper describes a system which enables tmeéaisearch for photos based on time, date,
country, city/state, town, daylight status, seamath weather. The photos and context data are
made available for mobile phones through a welrfate specially designed to be used on
mobile phones. The most interesting result frora gdaper is the small user survey that was
performed to see how long it would take the usefstl a specified photo from their own
photo collection using the location-based searadomparison to finding the photos only by
the time they were taken. The results showed Heatiine-based approach took 31.2 seconds
on average, while the location-based search todkdétonds, i.e. using location was
approximately twice as fast. The test group coedisf only 7 persons, but it still indicates
that using the information of location may dradticeeduce the time it takes to find photos in
a large collection.

2.4.4 GeoFoto

Much of the research on the usage areas of geataujgeos revolves around productivity
concerns, such as finding specific photos as fapbasible. GeoFoto [30], on the other hand,
is an application for recreational use of othergbe&'s geotagged photos. The idea is to use a
mobile phone to explore the area around you thrgucfiures. The GeoFoto application starts
by finding the user’s current location from a GRS8aiver, and retrieves photos that are
geotagged close to that location. The user candkplore other photos by moving north,
south, east or west using the navigation keys epkione. This can be used to explore areas
close to where the user is located, before actgaliyg there physically. There is no limit to

Page 14 of 108

how far the user can navigate using the applicationgh, so photos from all over the world
may be found using GeoFoto, if it is connected piato collection that is large enough.

2.5 PC Software for Geotagging

Several software solutions that utilize geotagdiage become available over the last few
years, in addition to the scientific research pygies. There are two kinds of applications that
are needed for geotagging to be useful. Firsteremeed to be a mechanism that generates
and stores the location of the images. This mayay not be the same program or device that
captures the picture. Secondly, one or more prograed to use this data and presentitin a
useful manner. This section presents some of threrttly available software that involves
geotagged photos. There are several applicatiansiie geotagged photos on PCs, but not on
mobile phones. The mobile phone software that @lable is mostly for producing

geotagged photos, only very few for managing them.

2.5.1 Flickr

Flickr [31] is currently one of the most popularopbsharing websites on the internet. Users
of Flickr can upload their photos to make them ladé on the website for other people to
see. Restrictions may be applied to the photobatconly your friends and family may view
them, or they can be made available for everyohe.uBers can browse other people’s photos
by several different kinds of metadata, such aseswehate, category, and so on. The most
interesting feature of Flickr in regard to thisdstus that it supports geotagging. The users can
browse a map of the world which shows markers whergagged photos are taken.
Geotagged photos may also be found by searchingdoes like the name of a city or

country, or by browsing photos taken nearby otleetagged photos. When a user has
uploaded a photo to flickr, he can choose to vianag where the location of the photo can

be indicated by placing a marker. When a photdoeas geotagged, it can be found by other
users who are browsing the map.

2.5.2 Services from Google

Google has released a plethora of different ses\vacel applications for many different
aspects of digital life the recent years. Manyhafse are connected to each other in an
intricate and chaotic web. Some of these servindsagplications involve geotagging of
photos.

Panoramio [32] is a website owned by Google thatusers upload photos to be shared with
other users and geotag these photos using Googie [d3]. The photos can then be browsed
geographically using either Google Maps or Goo@elHE[34].

Picasa [35] is a desktop application for organigpegsonal photo collections, which is also
provided by Google. It supports geotagging throtinghuse of Google Earth. Geotagged
images may be browsed using Google Earth, andyitais® be used to geotag photos without
location information by simply dragging the photogo the map and dropping them on the
correct location. A web-version of Picasa, callesh®Pa Web Albums, is also available, and
enables the user to share photos with othersplissible to browse geotagged photos in the
web version also, but then Google Maps is usetemdsof Google Earth. The photos are
shown as thumbnails on the maps both in Google MagsGoogle Earth.

Page 15 of 108

Photos that have previously been geotagged, atitematically or using other software, will
usually have the location information stored in E¥dF header in the image file. Both Picasa
and Panoramio are able to import the location ftioisheader so that it is not necessary to
apply new geotags in this software.

2.5.3 Microsoft Pro Photo Tools

Microsoft Pro Photo Tools [36] is a desktop applmafor managing the metadata of image
files. When images are loaded into the applicasewgeral different kinds of metadata are also
loaded from the files and presented to the uséds. Mietadata can then be viewed and, if
desired, it can be changed and written back irgditbs. The kinds of metadata supported
includes a description of the camera and cametiagetuch as shutter speed, ISO-value and
flash mode, a list of the people in the photo, dpson of the photographer, different
categories, a title, rating and keywords, as weh éonger textual description of the image. It
also supports date and time from several diffeheaters in the image files, and most
importantly for this study, it supports geotaggimpe geotags can be read from and written to
the EXIF header in the image files, they can beegggird from a GPS track file or they can be
created by locating the photos on a map embeddin iapplication. The application can be
used to obtain human readable location data sucbiagry, state/region, city and street
address for images where a GPS position is availéibthe absence of a GPS position, the
human readable location data can be used to dbiailatitude and longitude. The collection
of geotagged photos can be visualized in a magymimt markers. As described in [2], the
use of one point marker for each photo does nd¢ seay well, and is bad for representing
several photos taken at the same location.

2.6 Mobile Phone Software for Geotagging

Most geotagging applications for mobile phones hatite task of geotagging photos taken
with the built-in camera and uploading them to@ith PC or a website. There are several
applications available for this, and some of theithlve presented here.

Shozu [37] is an application for using social weksssuch as YouTube [38], Facebook [39],
flickr [31], blogger [40], picasa [35] and more finca mobile phone. One of the features of
Shozu is that mobile phones with GPS receiverseamsed to geotag photos and
automatically upload them to relevant websites.

Locr [41] is a mobile application specifically foapturing geotagged photos and uploading
them to the locr website. Users of the locr welsiggy browse the photos on a map, where
each photo is represented by a point marker.

Some of the newer GPS-enabled Nokia phones, sudB2shave native support for
geotagging. The geotagged photos can be uploadédkia’s own website for sharing
mobile media called Share on Ovi [42], or they rhayiewed on the phone using Nokia
Maps 2.0. This is one of the very few possibilitdsctually using the location information
on the phone itself.

2.7 Summary

This chapter have introduced the concept of geatgggresented the WGS84 reference
system for representing locations and describedraedifferent technologies for obtaining

Page 16 of 108

information about location. GPS and AGPS are thetmpractical solutions to use for
automatic geotagging, although others systems asiciell-ID or WLAN-positioning are also
possible.

The related research presented here indicatethihase of location information can be very
helpful when trying to find photos in large collects. It has been shown that searching for
photos in large collections using location termshsas country and city may be

approximately twice as fast as traditional timedshbrowsing. Researchers from Microsoft
Research reviewed several different ways of vigurajiphoto locations in a map, such as
thumbnails, point markers, isopleth, border-depahdad media dots, and their pros and cons
have been described.

Several different software solutions for geotaggimgih for creating, manipulating and
visualizing location information, which is currgntivailable, have been described. Desktop
applications and websites, as well as mobile agptins have been covered.

Page 17 of 108

3 Android

Android [1] is a new platform for mobile phones,iethis currently in the last stages of initial
development. It is likely to gain popularity in thegh-end market when the phones are
released. Phones in this market segment are daitisdsmartphones, to indicate that they are
capable of much more than just a regular mobilenphsuch as reading and writing e-mails,
browsing web-pages, using office applications amhing different kinds of third party
applications. The currently dominant platformsgorartphones are Symbian OS [43],
Microsoft Windows Mobile [44] and RIM BlackBerry $. The Android platform is being
developed by Google and their partners in the Gpamdset Alliance (OHA) [46] as a free
and open alternative to these other proprietarieays

The Android platform is a good platform for geotagpapplications, as it includes both a
customizable version of Google Maps that can bd tmevisualizing locations, a Location
API for obtaining the phone’s current location a@nd a very open system with few
limitations. Android is being developed to nativelypport mobile phones with a touch
screen, which makes it much easier to handle a mat can also run on more regular
phones without touch screen.

3.1 History

It is just a few months since the Android platfonas first announced to the public.
However, there have been speculations of Googkriagtthe mobile phone market for
several years. It all started when Google’s viaesjatent of operations Urs Hoelzle did an
interview with Siliconrepublic [47] in December 200vhere he stated that “the mobile
phone market is failing to grasp the potentialhef internet.” One of the first reactions to this
interview was by blogger Gary Price [48], writingWwonder if GPhone is in the works.”

The rumor of Google looking into the mobile phonsibess soon spread throughout the
computer press, and the nickname GPhone was wadielgted. Several events in the coming
years caused the rumors to re-appear in the gres§oogle refused to say much about it.
One of these events was that Google acquired d stagtup company named Android Inc.
in August 2005 [49]. Not much was known about tompany, other than that they were
making software for mobile phones, but there warears that they were making an
operating system for mobile phones. Other eventd) as Google filing patents for mobile
technologies and making business deals with corepanithe mobile industry, all lead to
speculations in the press of whether a GPhone wasg.

Although there were a lot of news articles writtdaout Google’s role in the future of mobile
phones, it was all mostly speculations until 5 Naber, 2007. At that date the Open Handset
Alliance (OHA) and the Android platform were annoad [50]. The OHA is a group of 34
companies, including Google, T-Mobile, HTC, QualeconMotorola and other companies in
the mobile industry. Both software and hardware ufecturers, as well as mobile operators
and commercialization companies are representezlsiited goal of the group is to “foster
innovation on mobile devices and bring consumansvative new mobile experiences.” This
group works together to bring Android-based mopiienes to the market.

At 12 November, 2007 the OHA released an early miake Android Software Development
Kit (SDK) [51]. This included an emulator for tesgi Android applications on a PC, which
was made available for Windows, Mac and Linux. $aivepdates to this SDK has since been

Page 18 of 108

released and made available for download from theal Android website [1]. There has
currently not yet been released any mobile phoassdon the Android platform. Therefore
all the applications that are being developed fodWid by programmers all over the world
are still based on the emulator. According to [524, first Android phones will be released in
the fourth quarter of 2008.

3.2 Android Developer Challenge

One of the most important aspects of Android, wisckupposed to set this platform apart
from all the other mobile platforms available,hst it is very open and free from restrictions.
This is supposed to make Android a platform folowvative solutions, and the availability of
many third party applications is necessary to ptbigpoint. It is therefore important for the
OHA that there already are lots of third party &gilons ready when the first Android-based
phones are released in the market. The early pvaékease of the SDK and the emulator was
supposed to give people good time to get startedaling Android applications well before
the first phones are out.

Writing mobile applications that can only be runamemulator might be a bit boring, so to
further spark the enthusiasm for the Android platféhe OHA announced the Android
Developer Challenge (ADC) [53]. ADC is a competitim make the best software for
Android phones, with a total of 10 million USD inige money to be split between all the
winners. The ADC is split into two competitions:eocompetition for applications developed
on the emulator, called ADC1, and another competjtcalled ADC2, which will be held
after the first Android phones are available. Thpli@ations submitted to the ADC are
examined by a total of more than 100 judges chbgahe OHA, most of which are
employees of the OHA member organizations. Theiaffjudging criteria are originality,
effective use of the Android platform, polish ampeal and indispensability. ADC1 opened
for submissions 3 January, 2008. The deadline wasptil, 2008. A total of 1788
applications were submitted. On 12 May, 2008 adlisthat the judges thought was the 50
best applications were published at the officiatAod Developers Blog [54]. These 50
competitors got a little bit of the price money dhd chance to further develop their
application before the grand price winner is anmeagnJuly 2008.

3.3 System Architecture

The Android platform is a complete software staelaching from the most low level modules
that controls the hardware and up to the user egpins. It has been described at the
Android website [1], and further detailed in a grnetstion held at the Google 1/0 conference
in May 2008 [55]. The platform is based on the ikernel and incorporates several open
source software packages, in addition to libraausd applications developed specifically for
Android. All the Android-specific code is plannexlie released under the open source
Apache License, Version 2.0 [56] when the firstqpd®are released to the market. The
system architecture has been divided into sevayat$, going from the operating system
kernel at the bottom, to the user applicationdatop, as shown in Figure 3.1.

Page 19 of 108

Applications

Application Framework

Libraries (Android Runtime

Linux Kernel

N T Y Y Y
AN A A

Tn

igure 3.1: The layered architecture of the Androidplatform.

As mentioned, the Android platform is based onraukikernel, with a few enhancements that
makes it more suitable for Android devices. Thenképrovides basic capabilities such as
memory management, process management, secutitlydeand a driver model. Although
the Linux kernel has many features that fit petjeeith the needs of Android, there are
some elements that are more optimized for PCs enveéis than mobile devices. Mobile
devices generally have slower CPUs and less metharyPCs and servers, and they have a
limited battery capacity. One of the enhancemdrdtstiave been made for Android is the
power management. It is based on the standard lpower management, but has been made
more aggressive in Android. For instance, the Cturined off when not needed to avoid
draining the battery. It is possible to overrides tihough, when applications need the device
to be always on. Applications can obtain eitheadipl WakeLock for certain parts of the
device, such as the CPU or LCD screen, or a fuké&llack for the complete device. Another
thing that had to be changed for Android has tevidb the low amount of memory that

mobile devices usually has. The system designerkasdlavith a design criterion of low-end
Android devices having approximately 64MB RAM, aomdy 20MB being available to
applications after the system is loaded. In additito this, there is no swap space available,
so the physical RAM is all that there is. It wasrfore necessary to include a module that
has been called the Low Memory Killer. The taskhid module is to kill the least necessary
processes when the system is low on memory. THisypically be applications the user is

no longer actively using, but are still runninghe background. The constraints of having
littte memory and a slow processor also showead#es for the development of a new
InterProcess Communication (IPC) system that has balled the Binder. It is a lightweight
IPC solution that maintains high performance by\gshared memory instead of passing data
around. There are also a few other smaller enhagwsnthat has been done on the Linux
kernel, all of which are available at the Androgtikel Git repository [57].

On top of the Linux kernel sits the low level lines, which are usually written in C or C++.
These include a surface manager for the displagudio manager and an implementation of
the standard C library. A media framework is au@éahat supports processing of standard
video, audio and image formats in addition to cqoleg-ins. OpenGL|ES is included for
creating 3D graphics. The transactional databagmermralled SQLite is included, and will be
covered in more detail in section 3.5. The Weblkijiae for processing web pages is also a
part of the library layer, as well as several olitearies. These libraries will not be used
directly by the applications, but through other enbrgh level libraries in the application
framework.

The part of the platform that is called the Andraidtime consists of the core libraries and
the Dalvik Virtual Machine (Dalvik VM). The corebliaries are an implementation of most of
the functionality in Java Standard Edition (Java [58]. The main things that are missing are

Page 20 of 108

all the GUI components, since Android provideits libraries for this. A few other smaller
features are also missing. The Dalvik VM is a aftmachine, developed specifically for
Android, which executes bytecode in the Dalvik Exable format. The Dalvik VM is
described in more detail in section 3.6.

The application framework is the collection ofthk Android-specific libraries that are
available for the applications. These come in &oldito the standard Java libraries in the core
libraries. The application framework contains liteea for building an Android GUI. It

contains libraries for all sorts of telephony-rethbperations. It has a Package Manager for
managing the installation of software packagesMiPP Service for sending messages over
the internet and ContentProviders for sharing tiffié kinds of data between applications. It
also provides several hardware services for cdimtgohardware such as Bluetooth, WiFi and
USB, and special sensors such as compass andracceders. It also has a LocationManager,
which provides a unified interface for obtaining fhone’s current location from different
technologies. The location may be obtained by drlgetechnologies described in the
previous chapter, or by some new technology, afighed to the application through the
same LocationManager interface.

On the top of the Android software stack are thaiegtions. These include everything that is
visible to the users on the screen of the phonaddition to background services that will
only be accessed through other applications. Sdrtieeanost basic applications will be part
of Android, such as the home screen, the contaateger and the phone application, but the
real power of Android is the great support fordhparty applications. The applications that
are included uses the exact same API as the thitgl ppplications have access to, and even
the built-in applications may be replaced to cresienhanced and more customized user
experience.

3.4 Developing Applications for Android

Android is intended to be an open platform, wheeeusers can run any applications they
want. The great support for third party applicasismone of the most important aspects the
OHA is talking about when they presented Androide Bpplications that are developed for
the Android platform are written in the Java pragnaing language, but it is not a limited
version such as Java Micro Edition (Java ME) [88]ich is available on most mobile phones
today. It does not adhere to any of the common Stralards, but it implements most of the
functionality in Java SE. The standard GUI compdsenJava SE are missing, as well as
some other minor features. Instead Android provitteeswn set of library functions for
creating GUIs, in addition to lots of other usdiatures.

The Android Software Development Kit (SDK) provideplug-in for developing Android
applications in the Eclipse Integrated Developntemtironment (IDE) [60], a toolchain
consisting of all the tools necessary for buildkgdroid applications without using Eclipse,

an emulator for testing the applications on a @, some other tools. Eclipse is one of the
most popular IDEs for developing Java applicatidms,it also supports a lot of other
languages. It is an open source project, releaseédruhe Eclipse Public License, so everyone
can download the software and use it for free. &lierlso a plethora of plug-ins available for
Eclipse, which helps the developers to be moreumrtiek. Eclipse is written in Java, and is
therefore available for most popular PC operatysiesns. The Android SDK is available for
Windows XP and Vista, Linux and Mac OS X (on x86qassors only).

Page 21 of 108

The Android applications are compiled into Javeebgtle with a standard Java compiler, but
there are more steps necessary to make them iatuible Android applications. First, the
.Class-files created by the Java-compiler neetie tronverted into Dalvik Executables, called
.dex-files. This is a special bytecode format fatbife devices. Then, the .dex-files have to be
packaged into Android Packages, called .apk-fitasally, the .apk-files have to be
transferred to the Android device, or the emulatdinen using Eclipse, all of this happens
automatically, but the SDK also provides sepam@stfor each of these steps. The
developers are therefore able to perform these stemually, or use other IDEs than Eclipse
by integrating the Android toolchain.

All development of third party Android applicatioisscurrently done on a PC-based
emulator, since there are no actual mobile phamasimg Android available yet. The
emulator is described in more detail in section 3.8

Android applications are built up using severaletént basic elements. These are Activities,
IntentReceivers, Services and ContentProvidersapgylications must use at least one of
these elements.

The most basic element is the Activity. An ActivityAndroid corresponds to what usually
would be called a screen in an application. It ddag something like “Write an SMS”, “Pick

a contact from the contact list” or “Show the videith filename xyz.avi”. All applications

with a user interface that is visible on the screeed to have one or more Activities. The user
interfaces of Activities consist of one or more W& which roughly corresponds to what
might be called user controls in other programngngironments. There is for instance a
TextView for showing text, a ListView for showindiat and an ImageView for showing
images. How the Views are arranged on the screemnisolled by a Layout, which can be
specified either in Java code or in XML. More inf@ation on how to create the layouts for
the activities can be found in the Android refeeedocumentation.

An Intent is a statement of what the applicatiomtsdo do. For instance “l want to write an
SMS”, “I want to pick a contact from the contast’lior “I want to show the video with
filename xyz.avi”. Most Activities are started by btent, and user actions in an Activity can
trigger other Activities in the same applicationjroother applications. An Intent can either
be explicit, i.e. directed to one specific softwaredule, or it can be implicit, i.e. broadcasted
to the whole system. The implicit events are fdtethrough a set of intent-filters, which will
in turn trigger a set of IntentReceivers. Intentieers are entry-points into the different
software packages for handling broadcasted Intértents and IntentReceivers are somewhat
similar to events and event handlers, but IntentslatentReceivers captures the concept of
“I want xyz to happen”, instead of “Xyz has happd#h@&y changing the intent-filters, the
Activities that are launched to handle certainritdecan be replaced. Even the built-in
Activities, such as browsing for a contact in tleatact list, can be switched for a more
customized application.

Some applications need to run in the backgrounddarttieir work, without any screen
interaction. This can be e.g. music players oriagpbns that need to periodically look for
updates over the network. This sort of behaviortmamplemented by creating a Service.
Services will typically be invoked and configuréadugh an Activity.

The security features of the Android platform, d#dse in more detail in section 3.7,
prevents applications from accessing the filesalsges and other resources belonging to

Page 22 of 108

other applications. Instead, the concept of usiogténtProviders to share data between
applications has been introduced. By implementi@patentProvider the applications can
share specific parts of their data with the othggliaations and control the access to it.
ContentProviders can be built on top of databdges,or any other resource that the
providing application has available. Other applmad can access the data by using a URI on
the form content://<authority>/<path>/<ID>. The Haarity> part is the fully qualified class
name of the ContentProvider being accessed. Thinxpart specifies what kind of data that
is being requested. The <ID> part, which is optipisaused to specify one single item, as
opposed to accessing the whole data collectionteTéuie several built-in ContentProviders in
the Android platform, for instance for accessing tlata in the contact list. These are accessed
in the same way as third party ContentProvidersgpixthat the <authority> part is not a fully
qualified class name, but rather a short and deseginame, like “contacts”. One small
problem with using ContentProviders comes up whgng to combine data from different
ContentProviders. If the application that consuthesContentProvider had direct access to
database tables instead, this could be done byesjoin operation, but with
ContentProviders this has to be done in the agitaode.

3.5 SQLite

Android has a built-in relational database engeléed SQLite [61]. This is available for any
software installed on the device, and is one ofptiederred ways of storing user data in
Android. It is also used by several internal segsim Android, for instance the address book.
A SQLite database created on an Android devicalis available to the application that
created it, because of the security mechanismsimghted in the platform, as described in
section 3.7. If the data is made available to o#ipglications on the device, it has to be
published through a ContentProvider.

Most of the database systems people are useday &vd using the client/server model, as
shown in Figure 3.2 and Figure 3.3. Examples af kind of systems are Oracle Database

[62], Microsoft SQL Server [63] and MySQL [64]. these systems the database management
system is running as a separate process, andi¢hé applications connect to this database
server either locally on the same computer or thinca network connection. SQLite is instead
embedded as a module in the application that igusie database, as shown in Figure 3.4, so
it reads and writes directly from the databasesfitethe file system. SQLite is embedded in
several widely adopted software applications sischlazilla Firefox, Skype, McAfee

antivirus, Sun Solaris 10, Mac OS, the iPhone awlen versions of Symbian smartphones.

Page 23 of 108

Computer

Application process Database sarver process

Interprocess communication (IPC)

il
-

.
Figure 3.2: Client/server model in the same computer

g s
Client computar Sarver computer

Application procass Dalabase servar process

MNetwork connection

A
Y

"y
Figure 3.3: Client/server model using two differencomputers.

Computer

Process

S0Lite module

Figure 3.4: The embedded model, used by SQLite.

Page 24 of 108

SQLite is a software library that can be embeddethy software that needs to store
structured data. The source code of SQLite iserpiblic domain, so anyone can use it for
whatever they want. The system is programmed in IABI&nd does not depend on any
external libraries. It can easily be recompileduio on any platform that has a C compiler
available. This is probably the most important ogefor why SQLite is believed to be the
most widely deployed SQL database system [65].

The four basic features that any transactionalbdesta system should have are Atomicity,
Consistency, Isolation and Durability (ACID). Althgh SQLite is considered a transactional
database system, it only supports three of thageféatures. Atomicity, Isolation and
Durability are supported. SQLite does not enfoareifjn keys, and therefore the Consistency
feature is not supported. Foreign keys must bereafbby the application that SQLite is
embedded in, if they are needed.

The query language used in SQLite is mostly compliathe SQL92 standard [66], but there
are a few missing pieces. The most important misf@ature is probably that views in SQLite
are read-only, therefore all updates and insedgdae done directly to the tables, but there
are also a few others in addition to this. Foranst the ALTER TABLE command can only
be used to rename tables and add columns, anerefdine incomplete. Another problem is
that the support for foreign key constraints isgimg. There is also no support for nested
transactions, and right and full outer join is rmgs even though left outer join is
implemented. There are a few other small shortcgaihat also prevent SQLite from being
fully SQL92 compliant, but these are the most intgatr ones.

3.6 Dalvik Virtual Machine

The details of the Dalvik Virtual Machine (Dalvik\W) were presented at the Google 1/0
conference in May 2008 [67]. It is a bytecode ipteter written exclusively for Android that
executes all the Android applications written ia flava programming language. It does not
execute Java bytecode though, but a special bygefooohat optimized for mobile phones.
The Java code first has to be compiled into regldan bytecode, and then the .class- and
Jar-files can be converted into Dalvik Executablesown as .dex-files, with a tool included
in the SDK.

The Dalvik Executables are created to work in anrenment with low system resources.
The system memory may be as low as 64MB, and tféeAndroid system is loaded, as little
as 20MB might be available for the applicationserEhis also no swap space. The processor
in these devices are usually slow, the operatieguency may be approximately 250 — 500
MHz. All mobile phones have limited battery powand every processor instruction
consumes power, so the number of instructions nieelols minimized. These requirements
are different than on a PC, and therefore the egglalva bytecode is not optimized for this.

The Dalvik VM on the other hand, optimizes the logide to make it more suitable for the
limitations of low system resources. The resulh&t a .dex-file takes less than half as much
memory as the corresponding .class-file and hasf@é@#r processor instructions, according
to the developers own numbers, published in thegoation.

For the curious: The Dalvik VM is named after acgl@alled Dalvik on Iceland.

Page 25 of 108

3.7 Security

At first glance, the Android platform might looko#t insecure. The openness of the platform
has been emphasized, and it has been pointedaiuidérs are supposed to be able to run
whatever software they want. Therefore, there isertification process for Android
applications, which exists for most other populabite platforms, to make sure that the
applications do no harm to the system. When yok &bit closer under the covers, though,
there are several security mechanisms that areosadfo prevent third party applications
from doing too much damage to the system and ter @atpplications.

First of all, Android applies the traditional Linuser model in a creative way. The
developers realized that there is no need for skgeparate users on a mobile phone, since it
Is mostly used by just one person anyway. Instéedyuser model could be used for
sandboxing each application on the system. Eaahdimew application is installed on an
Android system, a new Linux user is created foflite underlying Linux file system
permissions make sure that all the files and datbbelonging to one application are kept
private and inaccessible for anyone else. If data be shared between applications, this has
to be done explicitly, for instance by implementa@ontentProvider.

Another security feature is the permissions systdost of the critical features in the system
are protected by this, so that all applicationgdrteeobtain permission before accessing them.
Examples of actions that the applications need gsian to do are making phone calls,
accessing a GPS receiver and deleting installed/aé packages. An application’s
permissions are requested at install-time, andisiee will be prompted to grant or reject each
permission request separately. The idea is thanthi@le phone user is supposed to use some
common sense when granting permissions to avoidianalon the phone. For instance, it
would be weird if a calculator application requeastie access to the contacts list. Once an
application is installed, it will have the granteermissions until uninstalled, without any
further user interaction.

3.8 The Emulator

There are currently not being sold any devicesinghAndroid. As mentioned earlier, the
first Android-based mobile phones are expecteceteebeased in the fourth quarter of 2008.
Android has been hacked onto a few devices thatwarently in the market, but this is not
supported by the handset manufacturers. All devedop of Android applications is therefore
still based solely on using the emulator on a ragRIC.

Most mobile phones today are based on a procesdoARM architecture, but most PCs
have a processor with x86 architecture. The Andptatform is naturally targeted to the
ARM architecture, so to be able to run Android aregular PC an ARM processor has to be
emulated. The Android emulator is based on the gpence processor emulator QEMU [68],
which is released under the GNU General Publicisee QEMU supports several different
processor arcitectures, including ARM. The Andrdévelopers have used QEMU as a base
and added a nice GUI for it, as shown in Figure Btey have also provided a set of tools for
making it easy to deploy, run and debug Androidiappons on it. The developers can
interact with the emulator by using the PC keybpardy clicking on the virtual keyboard or
phone buttons in the emulator GUI. Android hasthnisupport for touch-screens, so the
virtual phone screen in the emulator can be intechwith by using the mouse.

Page 26 of 108

EEX)

@ Android Emulator

@l (1D 10:07 PM

18 20 3 14 5 et il /8t gt [
QW E R T'Y U I 0P
A0 57 D0 et et T I e g e
1 Z X €V BN M -
syM @ — i

Figure 3.5: The GUI of the Android emulator running on Windows XP.

Although the API in the emulator is the same a®al phones, the results of interacting with
anything outside of the phone are different frorea phone. For instance, images from the
camera only shows a square in front of a chesempatis shown in Figure 3.6, and the
location data obtained from GPS will always behia $an Francisco Bay Area.

The emulator is available for Windows XP and Vistamux and Mac OS X, just like the rest
of the SDK.

Page 27 of 108

Figure 3.6: The image returned by the camera drivein the Android emulator.

3.9 Summary

Android is a mobile platform for smartphones, beileyeloped by Google and the Open
Handset Alliance (OHA). There were rumors of Goagiéering the mobile phone market for
several years, but they remained silent until Ndven2007 when the OHA released an early
look on the SDK. A programming contest involvingge prices was also launched to gain the
interest and attention from developers.

The Android platform is based on a Linux kernelj arcorporates several other open source
systems, such as the 3D graphics library OpenGhafEShe database engine SQLite. It has a
virtual machine called Dalvik, which executes Dhliixecutables. These can be created from
regular Java class files. The Core Libraries insidlimplements most of the functionality

in Java SE, but not the GUI components. The ApptioaFramework of Android provides all
the Android-specific libraries, such as GUI-libeswiand the Location API, as well as libraries
for accessing the underlying native libraries nmmgd earlier. The Android applications are
written in Java, and use both the Core Librariesyell as the Application Framework.

There are currently no phones available for therAidplatform, so all development is done
on the emulator that has been released as a pag 8&DK. The emulator is available for
Windows XP and Vista, Linux and Mac OS X. It isaneenient way of testing applications,
but it has shortcomings with most of the functidlyathat involves the world outside the
phone itself.

Page 28 of 108

4 Applications of Geotagged Photos

The location information attached to a geotaggextgban be used in a lot of different ways,
only limited by the developer’s imagination. Sonpplécations are very obvious, others are
more sophisticated. The most interesting applicatiwill probably emerge from combining
different sources of information.

Several different ideas for mobile applicationsigdihe location information in a geotagged
photo will be explored and described in this sect®ome of them are well tested concepts
that are widely available throughout the interbet, may not be as widespread in the context
of a mobile phone. Others are more original id®b&sst of the concepts discussed here are
applicable both for personal photo collections, fomrowsing other people’s photo
collections. How the photo collections are retrati®not discussed here.

4.1 From Photo to Map

Let’s start with one of the most basic uses of@agged photo: Show the location of where
the photo was taken in a map. This scenario stattw/ith the user browsing through either

all or a subset of the photos on the device. Wheruser has selected a specific photo, he can
choose to view a map where the exact location @re/the photo was taken is visualized by

a marker. This function can be available by thesg a button, or via a choice in a context
menu.

The usefulness of this feature will vary largelgéa on the user’s pattern of photography. It
is probably most useful when browsing photos tloat ¢id not take yourself, but it can also

be valuable when the user do not know or rememberevhe took the picture. If the user
only takes very few pictures, always uploads thetghto his PC and organizes them soon
after taking them, then this kind of applicatiorlwe mostly useless since he will most likely
remember where his photos were taken. A very diffeexample may be a user that has been
on a long trip, taking lots of pictures along theyw\When he comes back home he might not
remember where all of the pictures were takengstng this in a map would probably be
rather helpful to him. Another useful scenarid ighe picture was taken a long time ago, so
the photographer might have forgotten where it was.

The high-level steps of the algorithm needed td@ément this functionality are not very
advanced. The algorithm is as follows:

Read the coordinates of the photo into memory.

Translate the latitude and longitude into (x,y)4coates of the map.

Center the map at the (x,y)-coordinates.

Adjust to an appropriate zoom level.

Draw the marker indicating the (x,y)-coordinates.

ogrwbR

How difficult each step is to implement dependstendevelopment platform. Some
platforms may have lots of supporting library fuons that can be used, while others may
provide little support for this. The details on htmimplement this on the Android platform
is described in section 5.2.6.

Page 29 of 108

4.2 From Map to Photos

A more sophisticated way of visualizing the phatoa map is to show a marker for all the
places where the user has been taking photos. Sdrecan then select a specific marker either
by clicking on it if the phone has a touch screenthe emulator has, or by navigating to the
marker by using the d-pad or joystick on the phasealmost all newer phones has. When the
user selects a specific marker, he can chooseto and browse through the subset of his
photo collection that is taken in that specificdbion.

The primary use of this application is when therissearching for a photo from a specific
place where he knows that he took a picture oreaiBp picture that he knows where he took.
If the photo collection is large and not well orgaea, this way of finding a photo might be
much faster than browsing through the whole cabbecsequentially.

As described in section 2.4.1, [2] discusses séwagthods for visualizing photo locations on
a map. A quick recap of these and an evaluatidroof well they will work in the context of

a mobile phone are necessary here. The thumbsaghzation, where a thumbnail of each
photo is drawn on the map in the location wheresis taken, was considered not scalable
when used on a PC. This effect is drastically iaseel when used on a mobile phone with a
much smaller screen than a PC, since each thumisoaltl have to take up a large portion of
the screen if it were to be viewable at all. Uspognt markers, i.e. drawing small dots or
icons on the map where each photo was taken, wésoshe the most popular visualization
technique. The problems with this were that phta&en at the same place would be rendered
indistinguishable, and it also does not scalepalgh it can handle larger photo densities than
the thumbnail approach. These problems may be sbatancreased on a smaller mobile
phone screen, but not nearly as much as when trsimgpnails. The paper describes a
method of applying a partially transparent ovedaythe map, with varying color to indicate
the different photo densities in different areasisTnmethod is not applicable for this
application, as it would be very hard to implemenitsable interface for selecting photos from
a map with no markers. Dividing the photos by madeborders is discussed, but it has the
drawbacks of requiring much interaction with thelerlying map data, and that which
borders that are relevant will vary between thé&dnt zoom levels. The authors of [2] ended
up using what they called media dots. The methadiues dividing the map into 10x10 pixel
cells, and drawing a dot in each cell which is hidganically scaled to match the number of
photos taken in that area.

Even though [2] sees media dots as the best sojdlis approach still has some problems.
The 10x10 pixel cells are a very artificial waydividing the photos, and do not represent the
inherent structure of the locations in the photilection. Photos taken at approximately the
same place, but with small variations may be aqiitt several adjacent cells, and mixed with
photos taken further away. The use of dots in diffesizes may also not be a good fit for
small mobile phone screens, where it may be difftcusee the differences.

Instead, the method used in this study takes adgardf the fact that photos are usually taken
in bursts, see [28][29]. Several photos taken duaimelatively short time span, will usually
also have to be in a relatively restricted arede@sthey are taken while traveling in a car,
train, plane or something similar). This structoa@ be taken advantage of by grouping
photos taken close to each other together. A singilet marker can then be used to indicate
the average location of a whole group. This apgra@ti mitigate the problem with scaling

in the other methods, since there is no need flmdicated pointer for each photo.

Page 30 of 108

One important challenge in creating this applicai®to automatically divide the photo
collection into groups of pictures that are takengyaphically close to each other. This is a
kind of problem that in computer science is usuadhgrred to as data clustering. It is a very
generic method that can basically be describedvadirth a set of objects into groups of
objects that have something in common. The prop®rpyroperties that the objects in a group
have in common may be any kind of measurable at&ibrhe value of this property does not
necessarily have to be exactly the same for albbjects in a group, but it must be close
enough so that any group may be distinctively sepdrfrom all the others. An example of
12 objects divided into three clusters, determimgdivo different properties, is shown in
Figure 4.1. The threshold for how much variance ihaccepted within a group is
determined by the context. The difference in vddagveen any two objects is calculated
using a function called the distance function. Thisction is defined explicitly for each new
problem to fit the particular needs of the applaat Thus, a very generic clustering
algorithm may be used on any kind of data by simeptacing the distance function.

A

-
Figure 4.1: 12 objects clustered into three clustengy using two parameters.

The most common clustering algorithms can roughklylivided into hierarchical clustering
and partitional clustering. There are other, mpexglized clustering algorithms that don’t
fit into these categories, but they are not relef@nthis study. The main difference between
hierarchical and partitional is that the partitibalgorithms try to divide the data set into a
pre-defined number of partitions, whereas withhtezarchical algorithms the number of
clusters may be decided after executing the alyoriir determined based on a threshold on
the distance function. Hierarchical clustering \iest described by in [69].

Hierarchical and partitional clustering are botimywaseful algorithms, but they are used to
solve different kinds of problems. In this applioat the number of places where the user has
taken photos can not be determined before actuallying the algorithm, and therefore a
hierarchical clustering algorithm must be used. fitmnber of clusters returned by a
hierarchical clustering algorithm can, as mentioeadier, either be decided directly by
cutting the tree at a specified level, as showrigure 4.2, or it can be determined by a
threshold on the value returned by the distancetiom. In this application the method of
using a threshold on the distance is the methatoice, since the actual number of clusters
iS not important.

Page 31 of 108

Clustering tree

Data o o o o
Figure 4.2: Hierarchical clustering of four objects.

The threshold value used on the distance functighis application must not be a static
value, but determined by the current zoom levehefmap. When the map is zoomed all the
way out, so that the whole world is visible, it idibe very counter-productive to have one
marker for each photo. It would be impossible tecehe correct marker unless the photo
collection consists of just one photo for each ¢guror this zoom level, a very high
threshold value must be used to make sure thatuhmoer of groups is not too high. When
the map is zoomed further in, so that e.g. justaityes visible, the threshold value must be
much smaller, so that pictures taken in differeartgof the city can be divided into different
groups. The composition of the groups must theegi@r computed for each zoom level.

The algorithm of agglomerative (bottom-up) hieracahclustering used in this application
can basically be described as follows:

1. Create a separate group for each single poinem#ta collection.

2. Merge the two groups with the shortest distance/den them.

3. Repeat step 2 until there is only one group orestiold on the distance is reached.

The most important step in customizing a clustealyprithm to a specific problem is to

define the distance function. In some situatioms ¢hn be easy, but it can be harder or almost
impossible in other situations where several défeproperties which are not directly
comparable are involved. In this application, whibeeonly two parameters are the latitude
and longitude of the geographical coordinates, fielatively easy, but some care must still be
taken. The easiest and most inaccurate way of legilog the distance is the naive Euclidean
interpretation of the coordinates. The latitude Emgjitude are simply seen as coordinates in
a 2-dimensional Cartesian coordinate system, s&ticédean distance between two points is
trivial to calculate. Because of the curvaturehaf mmeridians, which meet each other at the
poles, this is an inappropriate way of calculatingjance. It will be fairly accurate for small
distances near the equator, where the curvaturbeaegligible, but can not be used as a
general distance measure. [70] tested the naivieEdean method to calculate the distance
between two points in Colorado which was knowned’81.7 km apart. The naive Euclidean
method yielded a distance of 933.8 km, approxinge28P6 more than the actual distance.
Another simplified way of calculating the distarm®ween two points is to treat the earth as a
sphere, and use the method of great circle distiancalculate the destination, but this is not
accurate either. To accurately calculate the distdetween two points on earth, the WGS84
ellipsoid, which was described in section 2.2, tedlse used.

Page 32 of 108

When the groups for the current zoom level has lbeéned, they must be visualized on the
map in some way. The easiest way of doing this draw a dot or a small icon at the average
location for each group. Since the photos have bggregated into groups, this will not pose
any major problem with scaling. The method descrigarlier of using different sizes of the
dots to indicate the number of photos in each greygst as applicable to this way of

creating the groups as it is for the 10x10 pixdksagsed with media dots, but it may still be
hard to distinguish between the different sizes.@mall mobile phone screen. Another
method of showing the number of photos in a graugdbe to draw a small circle with the
number written inside on the average location efgloup. The circles might have to be
relatively large though, for the user to be ablestid the number.

When the groups are created and a marker is dravilmeomap, it is relatively easy to make
the application show all the photos in the grougmwthe user selects a marker on the map. If
the user zooms close enough, the markers may tedicst one single photo, since small
variations in coordinates is likely to occur. Theeowill then be presented with only that
single photo when the marker is selected.

4.3 Who Lives Here?

The use of maps is probably the most obvious waytitizing location information, but there
are a lot of other ways of using this informati@weell, that may be even more interesting
and useful. One such application is to show the whéh of his contacts that lives where his
photos were taken. When the user can’t rememberendhphoto was taken, and it's not
possible to find out by looking at the photo, ha easily find out if it was taken where some
of his contacts live by the press of a button ohaice in the context menu. This serves the
same purpose as showing the location of where toptas taken in a map, so both
applications may be used when the user wants dooiih where a photo was taken.

Even though this application covers the same nsedeamap application described in section
4.1, the format of the answer that the user gedigyisficantly different. Which of these
applications that is most useful for the user teeined by the situation. The application
described here is completely useless for photantakile hiking in the woods, but in that
situation the map application is an appropriatsg@néation of the location. Photos that are
taken while visiting one of your friends, on thé@@t hand, are the ones that will be suitable
for this application, and the name of the person Wes there is expected to be much faster
and easier to interpret for the user than a ma avinarker on it. The situation where this
application will be most useful though, is probabyen looking at pictures taken by
someone else, since the user then will have nooivkgowing where the photo was taken.

The location of where a geotagged picture was takiie stored as latitude and longitude,
but it can not be expected that the user will botbestore the coordinates of where his
contacts lives manually. The location of where yoamtacts live must in some way be
automatically translated into latitude and long&wordinates that can be compared to the
coordinates of the photos. The most basic way t&rdening the coordinates of the contacts
will be to start out by requiring the user to mdtustore the address of each contact in the
contact list. There exist several web servicesherirternet that are able to translate addresses
into coordinates [71][72]. When the addressesldhalcontacts are known, one of these web
services can be used to retrieve the coordinates.

Page 33 of 108

There will usually be a slight variance betweendberdinates stored in a geotagged photo
and the coordinates retrieved for an address, $iveceoordinates can be given with higher
accuracy than the size of a building. Small desraimust therefore be accepted when
comparing the locations of photos to the addreskesntacts. To compare the photo location
to the contact locations, the distance from the@tmeach of the addresses must be
calculated. As discussed in the last section, tl&ES84 ellipsoid must be used to get an
accurate answer. Each of the distances must beazechfo a threshold value to decide if the
photo was taken at that address or not.

The algorithm for finding which of the contactstthaes where a specific photo was taken
can be described as follows:
1. Read the location of the photo into memory.
2. Retrieve the coordinates of the address for eatiheofontacts in the contact list.
3. For each of the addresses, calculate the distateebn the photo and the address.
4. If the distance is less than the threshold, adddmeact to the list of matches.

This algorithm will cover the case where severataots live together. There are however
some problems with it. The fixed size thresholdieatan be really problematic, since the size
of people’s properties varies wildly. A very lowéishold value of 20-50 meters would be
appropriate for people living in small apartmemtbereas a much larger value would be
needed for people living at farms. Unfortunatefhg web services that convert addresses to
coordinates have no information about the siz&éefgroperties, so there is no good way of
determining this. Geographical data that descnitd@sh areas are considered urban and
which are considered rural might be used to madpeess on property size, but it would be
very inaccurate. Another problem is that peoplmgwat different floors in the same
apartment building can not be distinguished frocheather.

4.3.1 Phone Directory

The biggest problem with the “Who Lives Here?” apgaion is that it requires the user to
manually store the home address of all the contadtse contact list. A typical mobile phone
user will usually just store the name and phonebrrof his contacts. Other information,

like home address, is currently not very usefid mobile phone, and it is therefore expected
that very few people will take the time to entastimanually. This problem can be mitigated
by the use of a public phone directory availabla agb service, since most phone directories
usually also contains the address of the phone owhe problem of several people having
the same name can be avoided, since the phone nisydeady available on the phone. The
name and phone number pair will uniquely identife @pecific person. The address of this
contact can then be returned to the mobile phodeuaed in the same way as if it was stored
manually.

4.3.2 Social Networking Websites

The popularity of websites for social networking lexploded the last few years. Examples
are Facebook [39], MySpace [73] and LinkedIn [Ad]arge portion of the population use
one or more of these services, and many have nootects on these sites than they have on
their mobile phone. Most of the social networkiitgslet the user publish a profile with
personal information, such as address, phone nuamtzeso on. Most of the sites also provide
some sort of API that lets developers integratesites into other applications. The data from
these sites could therefore potentially be usezht@ance the functionality of the “Who Lives

Page 34 of 108

Here?” application. Instead of just looking throubgk contact list on the phone, the
application could retrieve the user’s contactflistn the social networking websites and use
these in the exact same way. If a contact on akoetworking site has published an address,
this can be used directly with the web servicesttiaaslate to coordinates, just like with a
regular phone contact. If only a phone number &lable, and no address, the phone
directory can be used, just like described abowés addition could increase the portion of a
photo collection that matches a contact’s address.

4.4 From Contact List to Photos

The “Who Lives Here?” application described in It section can be just as interesting if it
is reversed. Instead of finding which contacts tivetwhere a specific photo was taken, it
can be useful to find all photos taken where aifipaontact lives. It can be used for the
same basic problem as finding a photo with a mamety to find a photo that the user knows
where was taken. If the user remembers taking llogopwvhere one of his friends lives, it
would be much easier to just browse through theéamitist to find his friend, than navigating
to the right location on a map. Photos that argalen where anyone in the contact list lives
are not accessible at all using this approach ttoug

4.5 Social Gathering Places

A lot of the places where people meet to sociarzeprovided and taken care of by
companies. This may be pubs, bars, restaurants,aancert scenes, schools and many
others. When people describe these places to ¢laeh @ will usually be by the name of the
company. Given that the person is familiar with ptece, this is the easiest way of describing
the location. Using address, coordinates or angrathascription of location will be less
intuitive.

When a picture is taken at one of these placekdgion will therefore also most intuitively
be described by the name of the company. If thaa id taken into the domain of an image
browsing application, it might be useful if the &pgtion could tell the user for instance that
“This photo was taken at Rick’s café in Trondheimt % often dark and very crowded at
some of these locations, and it may therefore fiiewlt to recognize where it was taken. The
use of a company name can be much faster and éasieerpret for the user than for
instance a map, as described in section 4.1.

A comprehensive database of companies and theitidms is needed to implement this
application. It is hard to find such a database llaa global coverage, but databases for
specific countries are possible to obtain. Fortafaountries, this information is made
available on the web by companies such as YELLOWRPB8GOM LLC [75] for the US and
Gule Sider by Eniro Norge AS [76] for Norway. A loitthe companies in such databases will
not be relevant for this kind of application, switl have to be filtered to obtain only the
most interesting categories. When a list of adeé®&sr the relevant companies is available,
the exact location for these companies, descrilgddtibude and longitude, may be obtained
and used in the same way as for the contacts,sasiloed in section 4.3. The same web
services for translating addresses into coordiraase used, and the same general
algorithm as used with the contact list to find gphical matches can be used, by just
replacing the contact location by company locatistead. The usage of a threshold on the
distances also still holds. The algorithm for #yplication would then be as follows:

1. Read the location of the photo into memory.

Page 35 of 108

2. Retrieve the coordinates of the address for eatheofompanies in the database.
3. For each of the addresses, calculate the distataebn the photo and the address.
4. If the distance is less than the threshold, adddmepany to the list of matches.

This of course has the same pros and cons as vgeeinom contacts. If several companies are
located at the same place, all of them will be thurhe problem of using a static threshold
value for all companies is still problematic, so é@ample large outdoor concert scenes will
cause problems.

4.6 Current Location

The goal of this application is to use the coortinaf where the user is currently located as a
basis for browsing a subset of the photo collect®me times a user may be at a place
where he remembers having taken pictures someaifyjoeBy utilizing the user’s current
position, obtained by some kind of positioning systin the mobile phone, the geotagged
photos that were taken in this location can beewtd. The same algorithm as used earlier for
retrieving objects that are within a certain diseathreshold can be used here too, but in this
case it might be beneficial for the user to maryuadljusting the threshold value through the
user interface, instead of using a predefinedcstatiue. If the user is not exactly at the place
where a certain photo was taken, the thresholdevedim be increased until the correct photo
is found. When the algorithm returns too many photioe user can lower the threshold value
if he is in the exact same place where the photaken. It is important to be careful when
adding more adjustable parameters to the usefantethough, as this might often confuse
the user. This is especially true on a mobile phamere the space on the screen is limited. It
is probably not a problem in this case thoughheswill be the only adjustable value.

4.7 Same Location as Other Photos

This feature is about finding more photos thattaken in the same location as the photo the
user is currently viewing. This can be used to 8ederal photos of the same object, possibly
from different view angels, different seasons aifi@icnt weather. For instance, if the user is
viewing a photo of the Nidaros cathedral, thisdeaican be used to find other photos of the
cathedral. Since the photos may be taken at differeents, with a long time span separating
them, the traditional way of sorting photos by date time is of little help. Photos taken at
the same location can be found using a map, asibleddn section 4.2, but it would be a lot
of unnecessary extra work to use this approach whesfocation is already available. If the
result set of this location-based search is vagelait can be beneficial to list the photos by
event, using a time-based clustering algorithm.[29]

The same algorithm as described earlier can betosetd determine the photos which are
taken close to the currently viewed photo. Theitgltib choose threshold value for the
distance might be interesting in this applicatitoabut the concern of reduced usability still
prevails.

4.8 Related Geotagged Information

Even though a picture is supposed to tell more ghousand words, it is still often
interesting to get more information about the contd the photo. For instance, when the user
Is viewing a photo of the Nidaros cathedral, hehnlge interested in obtaining more

Page 36 of 108

information about the cathedral. Unfortunately, thgearch on image recognition techniques
has not come so far as to be able to recognizeljeyt in a picture. Instead, the location of
where the photo was taken can be used for makiog goesses, if a database of geotagged
information is available. This is of course noteafpct solution, for instance a close-up photo
of a bird, which was incidentally taken outside Midaros cathedral, would be recognized as
the cathedral and not the bird. Even though theblem exists, it might be a good enough
approximation in many cases.

The database of geotagged information could coora fnany different sources. For

instance, news articles from a news archive mighhteresting, as well as articles from an
encyclopaedia. Unfortunately, there are not manycas of information that currently geotag
their content. The most interesting exception i&iédia [77], the currently largest and most
popular encyclopaedia with user-generated conéemailable for free on the internet. The
number of articles that have been geotagged idaaihg growing, and has currently reached
more than 200 000. Unfortunately Wikipedia does abteast not yet, provide any way of
searching for articles based on coordinates. ldstea database of geotagged articles is made
available for download from the project webpag&\bkipedia-World [78]. This can be used

by interested developers to create applicatiornsutiiize the geotagged information.

One big obstacle for making this a user friendigtegn has to do with the size of the object
being described in the article. For instance, ghihbe important to distinguish between
articles describing countries, cities and buildirggen though the coordinates for these might
be the same, the scale is not. If a user is viewipgoto of the Nidaros cathedral, he is
probably not interested in an article about Norwihye databases of geotagged information
might contain information about scale, such astildpedia database does, but this is not
available for photos that have been automaticadtyt@agged. It might be reasonable to assume
though, that most private photos, at least thasentavith a mobile phone camera, will usually
show just a small area, and not large regionsvikele cities or countries. Thus, removing or
filtering out articles about large-scale objectsrirthe database before doing a location-based
search might be favorable. The method for identdygeotagged articles that are close
enough to be relevant for a specified photo will/bey similar to the one described for the
earlier applications.

4.9 Navigation to Photo Location

Sometimes a user might look at a photo and recegmiere it was taken, but not know how
to get there. This can happen if the photo wastakan area that the user is not familiar
with, or if the user is viewing photos that werkea by someone else. In these cases, the user
might want to get to the location of the photo,exsally if the photo shows a sight or
landmark that is usually visited by tourists. Tt@s be made possible by combining the
geotagged photos with a navigation applicationhwimilar functionality as the GPS
navigation units that has become extremely popaolaars and boats. It can either be a stand-
alone navigation application that just receivestéinget coordinates from the geotagged
photo, or the navigational data can be an intedna&et of an image browsing application.
The Android platform has support navigation asra pithe integrated Google Maps
application and framework.

One of the most interesting scenarios where timd ki functionality can be useful is
providing services for tourists. A tourist inforrmat office or website might provide a
collection of geotagged photos of the most intangglaces for tourists to visit in the area.

Page 37 of 108

When the collection is loaded into the phone, ther @an request directions to each of the
places while browsing the photos.

4.10Summary

Several different usages of geotagged photos hese thiscussed in this chapter. Mobile
phones have until the recent years not been a goodgh platform for these kinds of
applications, but this is currently changing. Sarhthe application suggestions described
here are well tested on PCs, others are not. Mdkem have not spread to mobile phones
yet. The concept of visualizing geotagged photasgua map is well known in the PC world,
as described in section 2.5. Connecting the logatfghotos to contacts or social gathering
places, as well as other geotagged informatiombabeen well explored.

Page 38 of 108

5 Methodology

To be able to answer what was stated in the probdigimition, several of the application
suggestions described in the previous chapterdbd tmplemented. This was necessary both
to gain a better understanding of the capabildfete Android platform, and to be able to
carry out a realistic user survey. Unfortunatehgrée was not enough time to implement them
all, so three applications that were regarded ast mteresting was chosen. They have not
been developed to a level where they are readg telbased to the public, but only as proofs
of concepts to be able to answer the fundamengstans of this study. This chapter will
elaborate further on what the study is about, gi®details on how the application
suggestions were implemented, and describe howsttlesurvey was carried out.

5.1 Problem Elaboration

As stated in the problem definition, the objectieéshis study is to explore different usages
of geotagged photos, assess how suitable the Ahglaiform is for applications involving
geotagged photos, and to carry out a small usgeguo investigate if mobile phone users
find these kinds of applications interesting to.&everal concepts for how geotagged photos
can be used were explored in the previous chagmersome of these have been investigated
further to gain a deeper understanding of how tiaaybe implemented on the Android
platform. The platform has several built-in featutleat are concerned with the location of the
mobile phone, and therefore fits perfectly intotggging applications. These features had to
be studied to find out how they could be used tol@ment the different prototypes.

A very interesting part of this study though, ie tiser survey. A small user group is asked to
try the different prototypes that are implemengat to answer some questions about them.
This is important to not only find out how the apptions can be implemented, but also if
people find these kinds of applications useful sbaitive.

5.2 Implementation of Prototypes

As mentioned earlier, there was not enough timenfdement all of the application
suggestions described. Therefore, only the thrpicapions that were regarded most
interesting were chosen for prototype implementatithese are the applications called
“From Photo to Map”, “From Map to Photos” and “Whives Here?”, as described in the
previous chapter. The details of how these protsypere implemented are described here,
as well as how the underlying data is created toré@. Some general concerns regarding
development for mobile phones, not specific forAlmelroid platform, are also discussed
here.

5.2.1 Challenges of Mobile Development

Although the recent years have shown huge improwésne the technology of mobile
phones, they are still very limited devices comgdeeregular PCs. This has to be considered
when developing mobile applications. Mobile photaglay still have limited resources such
as slow processors and little memory, even thohgh are much better than they were just a
few years ago. Unlike desktop computers, mobilaagsvare powered by batteries, so more
work for the processor means that the battery driaister. Mobile devices also have much
smaller screens and more awkward input methodsRia) which makes it much more

Page 39 of 108

important to focus on implementing simple userriiatees that are easy to use and have only
as many user choices as absolutely necessary.

The popularity of fast and always-on internet catioas for PCs has strongly influenced the
way software is developed, and software develoelay can usually assume that most PCs
have a good quality connection to the internet rob#ite time. The situation for mobile
phones, on the other hand, is varies a lot. Higledwonnections are available in some areas,
but in other areas only slow connections are abigaalthough this is constantly being
improved. The cost of transferring data to and feomobile phone has also been high.
Mobile subscriptions that allow unlimited data stars for a fixed price have recently
become available, but are not very widespreadaytough the popularity is rising. Some
newer and more advanced mobile phones also hawit-#bWLAN adapter, which can
provide free internet access where this is avaldbl this study, it is assumed that a high
quality internet connection is available.

Software development on mobile phones has traditipmeant using Java ME, which is
available on most mobile phones. This is a verytéichversion of Java, and the kinds of
applications that can be implemented using thigesticted. There is a long list of
standardized extensions to Java ME called Javaifttj¢ion Requests (JSRs), but the
support for these varies a lot between the diffepione models. The more advanced mobile
phones available that goes in the category smangshosually does not have so much
restrictions though, as applications for thesef@iats can be developed using other
technologies than Java ME. For instance, applicatior Symbian OS can be programmed in
C++ or Python, and Windows Mobile applications barprogrammed using either native
C++ or any language supporting the .net framewsukh as C#. The customized Java-
support in the Android platform is no where near limited Java ME, but closely resembles
Java SE, and does not put a lot of restrictiontherkinds of applications that can be
implemented.

5.2.2 Using the Android Emulator

An emulator that makes it possible to run applaraifor mobile phones on the development
PC is available for most mobile platforms suppaytinird party applications. It makes
development and debugging of mobile software madhee, as there is no need to deploy the
application to the phone each time a minor chasg®ne. The developers don’t even need
access to the phones they are developing applsatoy. Although the applications should
always be tested on real hardware before theyeteaged, of course.

The Android emulator is very well integrated witietEclipse IDE plug-in, and it is very easy
to test and debug Android applications on the etaufsom within the IDE. For the user
survey, on the other hand, the use of an emulaigintrhave some drawbacks. The experience
of using the mobile applications by manipulating tirtual phone with the mouse and
keyboard is fundamentally different than havingaatual phone in the hand. This might
influence the results of the user survey. The cptscef the applications are the most
important thing to investigate here though, saghsbwkwardness in the usability might not
be that important.

Other problems with the Android emulator is, as tieered in section 3.8, that the camera
only shows a square in front of a background withessboard pattern, and that the GPS in
the emulator only simulates that the phone is tiagdoack and forth on a predefined route in

Page 40 of 108

the San Francisco Bay area. There are other lionstoo, but they are not relevant for the
applications described here.

5.2.3 Storing and Accessing Location Information in Image Files

The first step to implementing these geotaggindiegjons is to find a good way of storing
the location information. The Android developersmdo be planning to implement a way to
store geotagged photos in the platform itself, @®atentProvider for this has been defined in
the class android.provider.MediaStore.Images. Uaf@tely, the ContentProvider does not
work yet, and there is no information availablehonv it will work or when it will be done. A
way of storing the location information must theref be created by the application
developer. The solution must be fast and effeceahat retrieving the location information
from all the photos in large collections, as neeabdn the location of all photos is to be
visualized in a map, does not cause too much délaglocation information can be stored in
several different ways, but the two most promisirays are either to store the information in
the Exchangeable Image File Format (EXIF) [79] leead the image file itself or to use a
separate database in the mobile phone to stotedagons.

The EXIF header is a standardized format for stpnrany different types of metadata about
a photo inside the image file itself. This can ti@imation such as the time and date, the
camera model, the camera settings used to capiisrexact picture, and most importantly for
this study, the geographical location for wheregheto was taken. The information in the
EXIF headers in the image files can be read antlemrusing a third-party Java library called
Sanselan [80], which is an open-source projecaseld under the Apache Licence, Version
2.0 [56]. There are two main advantages of usiegdKIF header. The first is that since the
location information is stored in the file itsatfwill follow the file wherever it is copied tof |
the file is transferred from the mobile phone ®G&or uploaded to a server, the location
information will be available there too. The otlagivantage is that it is a standardized format,
supported by a large portion of applications tlatdie geotagged photos. The location
information can therefore also be easily used bgroapplications when the photos are
transferred out of the phone. The main disadvantatieusing the EXIF header is speed. As
long as the location information for only singleopds is requested, there is no problem.
When the location information from a large numbigplootos are to be aggregated, on the
other hand, the application might get very slothd information must be read from a large
number of different files.

The other alternative is to store the location iinfation for each of the photos in a database,
separated from the image files. The photos coulstdaed as regular files, and the database
would store the filename of each file to be abledonect the location information to the
correct photos. As described in section 3.5, thdréid platform has the SQLite database
engine built in, and it could be utilized for tlpsrpose. Databases are made for handling
large datasets, so the main advantage of usintphake for storing the location information
would be speed. There is unfortunately no standaddivay of storing the location

information of a geotagged photo in a databasetl@dnage files themselves would have no
information about the location. If the images werée transferred to another device, the
location information would be lost. A system cobklmade to interface between the database
and the receiving system, but there is no stanzieddivay of doing this.

The portability problems of using a database isagpnconcern, but the performance of
storing the location information distributed intach separate file might also be problematic.

Page 41 of 108

To be able to make a decision, a benchmark tespaong the performance of the two
methods had to be performed. The scenario beitedtess to read the location information
for 100 photos. There were created 100 image s the location information embedded in
the EXIF header, and a simple database table wasect in SQLite that contained 100
coordinates. First the image files were tested.t€beprogram looped through all the image
files, reading all the coordinates into an arrapgishe Sanselan library. The test was run five
times while the execution time was measured. Tleeaae result was 27.8 seconds, with very
low variance. Then the database method was teBtedtest program used the built-in library
from the Android Application Framework to read tt@0 coordinates from the database table
into an array. This test was also run five times] the execution times were measured. The
result was 0.2 seconds, also with very low variakseexpected, the database solution was
extremely much more efficient than using the filesshown in Figure 5.1. The point of this
test was to see how big the difference is, anarited out to be major. The difference is also
expected to grow larger as the size of the phaotecatmn increases.

30

25

20

15

10

Execution time [seconds]

SQLite EXF Header

Figure 5.1: Execution time for reading coordinates 100 geotagged photos.

Although the database storage is superior in padoce, the portability of the geotagged
photos is still a big concern. A possible soluti®to combine the two methods, by storing the
location information both in the EXIF header in theage files and in a database table. The
database can thereby be used as a fast cachingunigohof the metadata in the files. This
combined solution has the advantages of both tbeotwginal suggestions, and none of the
disadvantages. If the image file is transferredth@r devices, the location information will

still be intact, at the same time as the databaséde used to get high performance when the
location of many photos is needed. When the londto just a single photo is needed, both
methods can be used. The delay will be negligibienay, so the method that is considered
easiest to implement in the current context candael.

Page 42 of 108

The combined storage solution has been used tteaigaontentProvider for geotagged
photos, to make the geotagged photos availableetapplications on the mobile phone that
will use them. It is simply named ImageProvidern@mtProviders will usually contain
methods to query, insert, update and delete therlymalg data. Only the method for querying
data was needed for the prototypes implemented beithe other three methods were
omitted. If the ImageProvider was to be releasegabusers, and not just used as a proof of
concept in a user survey, the methods for inspdate and delete would also have to be
implemented. This would be trivial though. When yurgg the ImageProvider, both the
metadata and the actual image file data is madéhiato the application consuming the
data from the provider. How the data is furthelizéd is completely up to the consumer
application. The source code of the ImageProvisignien in appendix E.

The database table created for the ImageProvidggrown in Figure 5.2. The fields for
filename, latitude and longitude do not need amth&r explanation, but the fields
image_original, image_screensize and image_thurhimibbe described in the following
sections. Other fields for storing other partshef netadata from the EXIF header, such as
time and date, may be desirable to store in thebdae for other applications than the ones
described here. This has not been implementedt Wwolld be an easy extension.

image

_id

filename
image_original
image_screensize
image_thurmbnail
latitude

longitude
Figure 5.2: Database table used to store locationformation of geotagged photos.

An Activity was added to the ImageProvider applmato make it possible to read metadata
from image files in a specified folder and stormithe database. The activity was called
ProviderController. It uses the Sanselan librargetrd the EXIF header in the files, and the
SQLite library in the Android Application Framewottx store the data directly in the
database. Since this activity is a part of the sappdication package as the ImageProvider,
they both have direct access to the database.

The algorithm for importing the location informatiéerom the EXIF headers is as follows:

Retrieve a list of all the files in the image falde

Retrieve a list of all the records in the database.

Compare the list of image files to the list of et

If an image file is not in the database, read te¢afata from the file, create a

thumbnail in the thumbnail folder and store theiniation as a new row in the

database.

5. If arow in the database points to a file that doatsexist, delete the row from the
database.

PR

In the future, the earlier mentioned built-in Coriterovider described in
android.provider.MediaStore.Images might be usstéad of this ImageProvider, but it is
currently not implemented in Android yet. It sedike the plan is for the provider to be able
to store the location of images, but it is notkmbwn how the location data will be stored. A
new benchmark will therefore have to be perfornielda provider becomes available to see if

Page 43 of 108

it is fast enough for the uses specified earlierf thhe custom ImageProvider developed in
this study must still be used.

5.2.4 Creation of a Geotagged Photo Collection

An important aspect of geotagging, although notntlaén focus of this study, is how to create
geotagged photos. Several different positioningrietogies and software for geotagging
were presented in chapter 2. There are applicati@isautomatically geotag photos taken
with a mobile phone available for other mobile fdemns, but none is available for Android
yet.

The first approach of this study was to create adraid application that could capture an
image from the camera, retrieve the location ofpthene from the GPS receiver and store the
location in the EXIF header of the image file. Benselan library was used to write the

EXIF header. Unfortunately, as described in seci@)the data retrieved from the camera
and GPS in the emulator is not very interestinge &mulator is able to access web services
on the internet, and therefore it would be posdibleonnect a webcam and a GPS receiver to
the host computer, and publish the data from thesees through a local web server. It
would be very awkward though, to run around wita@op, webcam and GPS receiver to
create a collection of geotagged photos. It woldd take a lot of time to create a collection
of a reasonable size for use in the user survey stilvey also would be most interesting if
the collection had photos from several differenirddes and continents, which would not
have been possible if they were to be created ubmgmulator. It was therefore decided to
not use the Android geotagging application.

Instead of creating geotagged photos using theaomitwo photo collections were created

in two different ways. First, a small collectionnsisting of only seven photos was made for
testing the concept. It was created by selectirggzhfrom a private photo collection and
manually geotagging them by using PC software easnibed in section 2.5. The collection
was then transferred to the emulator and storéaeiimageProvider. For some of the tests in
the user survey though, a much larger photo cadleevas needed. It was therefore created an
Android application that downloaded publicly avallageotagged photos from flickr and
stored them in the ImageProvider. A photo collectd 176 photos taken all over the world
was created using this tool.

5.2.5 Implementation of a Location-Aware Image Brow ser

The three application suggestions that were seldoteprototype implementation have been
combined into one integrated location-aware imagavber. The application’s main layout,
as shown in Figure 5.3, has been based on the éxaoge of an image gallery that comes
with the Android SDK. The photos used in the exangade were hard-coded resource files
that were compiled into the application. For theakion-aware image browser the photos
instead had to be retrieved from the ImageProvatlenntime. The user can switch between
the different photos using the directional keydtmphone. A context menu was added to
provide access to the three new functionalitieeddds shown in Figure 5.4.

In the first attempt, the original full-size imadata was used directly both for the large-scale
view of the selected photo and for the small thuailbsized photos near the bottom of the
screen. This caused two big problems that madaghkcation unusable. The first problem
was that the image browser was extremely slowedk & long time to start up, and switching

Page 44 of 108

from one photo to the next took several seconds.ofher problem is related to the current
version of the Android platform. The garbage cdltat mechanism in the Dalvik VM does
not work very well yet. If a series of large obgate created in the Java code, and the
reference to each object is removed before thearexis created, the garbage collector is
expected to delete each of the unreferenced ohéwta necessary. When the memory
available to the applications fills up with unrefeced data, the garbage collector should
remove this to make space for new data. Unfortiymatee garbage collector in Dalvik seems
to just work periodically and not kick in when thremory fills up. Instead, the whole
application is simply killed, without any warning error messages. This issue must be
expected to be fixed in the final release of thelwid platform though, so the main problem
of using the original full-size image data is speed

@ () 12:27 PM

ImageBrowser

Figure 5.3: Screenshot of the image browser.

Page 45 of 108

@l 0 12:32PM

ImageBrowser

Who lives show a map
here? with all photos

Figure 5.4: Screenshot showing the context menu dfd image browser.

To avoid both the performance problem and the agfin crash, the size of the image data
used had to be reduced. A photo taken by most kahdgital cameras, both integrated in
mobile phones and stand-alone cameras, will usaaligist of significantly more pixels than
the screen of a mobile phone can show. It is nobommon today that mobile phone cameras
produce pictures of 2-3 megapixels. The resolutiomobile phone screens is of course
varying, but the resolution of the emulator screan be used as an indicator. The default
emulator resolution is 320x480 pixels, approximatell5 megapixels. The thumbnail-sized
photos at the bottom of the screen in the image$eo are much smaller than this too. It was
therefore decided that when the photos are impantedhe ImageProvider, two image
copies with lower resolution should be created. @itle a maximum width of 320 pixels and
another with a maximum width of 60 pixels were regktb fit the full-screen view and the
thumbnail view. The heights of these low-resoluiimages had to be calculated from the
aspect ratio of the original image. Using these itwage files instead of the original full-
sized image resolved both the described problefms.imiage browser became very
responsive, and the garbage collector got timetidssdob before the memory filled up.

Storing two copies of each photo will of coursedha®re storage space than just storing the
original, but this is considered a minor problemewltompared to the advantage gained.
Most new and advanced mobile phones have largagaarapacities, provided by the support
of memory cards. Currently the memory cards for ilegthones are available in sizes up to
8GB. A JPEG compressed photo taken with a mobitmeltamera will vary in size, but

Page 46 of 108

usually take up somewhere between 200kB and 2MB.twb low-resolution image files
combined will need approximately 5-10% of the sgerapace needed by the original image,
which is considered to be negligible.

The next sections will describe the implementatibthe three different usages of the
location information in the geotagged photo coltatt The source code of the complete
location-aware image browser is provided in appeidi

5.2.6 Implementation Details of “From Photo to Map”

The first feature that has been implemented i®tieecalled “From Photo to Map”, which
enables the user to see a marker on a map wheeeiied photo was taken. The feature was
described in section 4.1. The user starts by braywie photos in the location-aware image
browser. When he has found a photo that he warfisddhe location of, he can open the
context menu shown in Figure 5.4 and select “Shosvghoto in a map” to open the map
Activity. The map activity shows a map of the andeere the photo was taken, with the exact
location indicated by a marker, and the zoom adfugd a suitable level. The zoom level has
been hard-coded and will therefore be the samalfg@hotos. An example of a map with a
marker is shown in Figure 5.5. The circle showrttanend of the marker is not a part of the
marker, but simply indicates the center of theextt® make it easier to aim when zooming.

E @l (7 3:33PM

Erfing Skakheg gate

B"\SPJB

Bispegata o

5?3

L

£
£
T

o &

'Sy

gy gﬁ% 4

i ’(erb

N Elqnsete

& Elgesefer

[park

Elgeseter. %
ST. Olavs S

MENU

Figure 5.5: Screenshot of the map with a point marke

Page 47 of 108

On the emulator the map can be panned around byngtwe mouse pointer around on the
screen while holding the left mouse button dowrisThequivalent to moving the finger
around on the screen on a real phone. By clickimgheolding the mouse button down without
moving the mouse, or by holding the finger stillareal phone, the partially transparent
zoom controller appears. It was decided not to tasenstantly visible in order to save space
on the screen for the map. This is not a problera megular PC, but on the small screen of a
mobile phone the space on the screen needs tebdemme carefully. The zoom controller is
shown in Figure 5.6.

Elgeseter,

ST. Clavs

Figure 5.6: Screenshot showing the zoom controlleff the map.

As described in the Android chapter, the ActivitiegAndroid applications are built up by
Views. It was also mentioned that Google Maps hasve in these screenshots, are a built-in
part of the Android platform. Google Maps is magaikable to the developers as a View,
simply called MapView. Features of the MapView, ls@as panning and zooming, can be
controlled programmatically by calling methods oMapController obtained from the
MapView.

The web-based version of Google Maps used on P£a bailt-in feature for placing a
marker onto the map in a specified coordinate. Tdasure is unfortunately not available in
the Android implementation of Google maps. Whatvailable though is an
OverlayController, which can be obtained from thagMiew. The OverlayController can be

Page 48 of 108

used to draw any kind of graphics onto the map. déhesloper does not need to worry about
the screen coordinates of where the overlays awrdras the framework contains
functionality for converting from latitude and latgde. In this application, the
OverlayController has been used to draw a poinkerdcon stored in a resource file, which
is compiled into the application package.

5.2.7 Implementation Details of “From Map to Photos

The second implemented feature is the one callealfifMap to Photos”, described in section
4.2. It lets the user start with a map where @lfglaces where photos have been taken are
shown with a point marker. If the user clicks o @f the point markers, he is shown all the
photos taken at that location. Photos taken clmsath other are aggregated into single point
markers. How close the photos have to be to bepgiinto one marker depends on the
current zoom level of the map. When the map is zaball the way out so that the whole
world is visible, photos from large areas, oftearspng several countries, will be grouped
together. When the map is zoomed close in, onlygshtaken at the exact same location will
be grouped together. Three different zoom levedssapwn in Figure 5.7, Figure 5.8 and
Figure 5.9, illustrating that the number of groaps different when the whole world, a
country and just a city is visible. The featuravsilable via the context menu in the image
browsing application, as shown in Figure 5.4, dgdeng “Show a map with all photos”.

MENU

Figure 5.7: From Map to Photos, showing the whole wadll

Page 49 of 108

Suomi

Sverige Finland

[
Stockholm

Gatahor,
 Goteborg

MENU

Figure 5.8: From Map to Photos, showing a country.

Page 50 of 108

all I 7:34PM

Ringve

Devle]

snherredsveiet

Trondheim

e Riosenbaorg A
m‘ 2 Persaumet

= Tyhott

Tunga
Eﬂ Grans
&

Strinda ;
Mobalt— .

ey Dragvoll
MNardo O“cﬁ
Crthilienbarg

Steinan

S-:nr'g enf
N Sluppen

Stubban

Risvellen

MENU

Figure 5.9: From Map to Photos, showing a city.

When the application is started, the map will awtboally be adjusted to show all the photo
locations. If photos in the collection are takdroaker the world, the whole world will be
visible. If the collection consists of photos framly one city, then just that city will be
visible. The pan and zoom controls that the useds¢o navigate the map are the same as
described in the previous section.

The hardest implementation challenge here is ti&taling algorithm. An overview of the
steps in the algorithm as defined by [69] was givesection 4.2. A more detailed description
of the implementation is given here. At the begignieach photo is given its own cluster, so
the number of photos, N, equals the number of etasThen, the distances between each of
the clusters need to be calculated. As describgidredahe WGS84 ellipsoid has to be used to
accurately calculate the distance between two coates. Fortunately for Android
developers, this distance calculation is incluaethe Location API, so using it is as easy as
simple function call. The distances are storechifN&aN matrix, so that the value placed in (X,
y) is the distance between photo x and photo y.rfagix is then traversed to find the
shortest distance between any two clusters, arsgttweo clusters are merged. In the matrix,
the corresponding rows and columns are deletedaamev row and column are added for the
new cluster. The distance from the new clustetltother clusters must be calculated and
inserted into the matrix. The distance betweendlusters consisting of more than one photo
can be defined in several ways, the most impotiairg single-linkage and complete-
linkage. Single-linkage means using the shortestadce from any photo in the first cluster to

Page 51 of 108

any photo in the other, while complete-linkage nseasing the greatest distance. If complete-
linkage was used, all the photos in one clusteravbave to be very close to each other.
Single-linkage was chosen, to be able to catclatitas such as a series of photos taken
alongside a road. When the new distances are dddkd matrix, a new minimum must be
found. The process of merging clusters, removinigrols and columns and adding new,
calculating new distances and finding a new minimsimepeated until either all photos are
merged into the same cluster or a threshold vatub® minimum distance is met.

In the first attempt of using this algorithm, a ndistance threshold was calculated each time
the zoom level changed, and the clustering algorittas executed until this threshold was
met. This worked smoothly on the small test coitecbf only seven photos, but when a
larger collection was used the inherent scalabjilityblems in the clustering algorithm
became very obvious. The clustering algorithm hasa complexity of O(f), which means
that each time the number of photos doubled, tieewion time is multiplied by four, and
this was confirmed by testing the algorithm witlofuhcollections of different sizes. It was
hoped that this effect would be negligible for thkatively small size of an average photo
collection, but this was proven wrong. For the phadllection of 176 photos, it took
approximately five minutes to generate the clusteis of course totally unacceptable to
have a delay of five minutes each time the zooralle’za map is changed.

It was realized that there is no need to regendhnatelustering tree for each time the zoom
level is changed. Instead, the clustering algoritiam be executed once until all photos are
merged into the same cluster. This clustering¢esethen be kept in memory together with
an array containing the minimum distances thatedtise cluster merges for each level.
When the zoom level of the map changes, the caynepg composition of clusters can be
obtained by going into the correct level in thestduwing tree. This was used to enhance the
performance of the application, so that no notitedkelay from calculating clusters occurs
when changing zoom levels, although the cluster $tdl takes five minutes to build when the
application is started. This was not consideretbalpm for using the application as a proof
of concept in the user survey though, so this Wwasrethod used. If the application were to
be released to normal users, the loading time probVould have to be mitigated somehow.
Suggestions for how this could be done are disclissehapter 8.

5.2.8 Implementation Details of “Who Lives Here?”

The third and last application suggestion that wggemented was the one called “Who
Lives Here?” It is described in section 4.3. laiailable from the context menu in the image
browser, shown in Figure 5.4, by selecting “Whea$i\here?” If any of the contacts lives
where the currently selected photo was taken, $keig shown a list of these, as shown in
Figure 5.10. Otherwise a message telling the s¢mione of the contacts lives where the
photo was taken is shown. The two possible extessiescribed in the sub-sections 4.3.1
and 4.3.2 has not been implemented, so this apipliceequires the user to store the address
of each of the contacts manually.

Page 52 of 108

Mr. X

Mr. Y

MENU

Figure 5.10: Who Lives Here?, showing two contacts.

The developers of Android plan to include the fior@lity of translating street addresses into
coordinates as a part of the Android platform. Tlass has been created as
android.location.Geocoder, but the functionalitpat implemented yet. As mentioned in
section 4.3, there exist several web servicesatgaable to perform this task. The one
provided by Google was used in this prototype inm@etation.

As explained in section 4.2, the distance fromstilected photo to the address of each of the
contacts must be calculated. Therefore, the coatelinfor every contact in the contact list
must be retrieved. To use a web service is a velgtslow process, especially when it has to
be called many times in a row. If the coordinatesall the contacts were to be obtained from
the web service each time the application needem tit would induce a huge delay and the
application would feel extremely unresponsive. Thie coordinates need to be cached
locally at the phone. The contact list in Androadhich can be access through a
ContentProvider, is an extensible data structuaegbpports many other kinds of data than
the ones available through the built-in contadtdgplication. One of the possibilities is to
store the location for each contact. This is culyamt in use by the Android platform, and
can therefore be used to store the cached cooediohthe address. There is no
documentation on how the location field in the emttist is supposed to be used though, so
for an application released to users it would b&evio store the cached coordinates in a
separate database and use foreign key referenttes ¢ontact list for the other contact
information. Otherwise there might be a conflictwbther applications or services using the

Page 53 of 108

same data fields in another way. This is not a eontor this prototype implementation
though, so the coordinates are stored directlizéncontact list. The current address of each
contact is also copied to a field assigned foreegtta in the location structure, so that it can
be detected if the address is changed manually.

The algorithm to retrieve all the contacts thag¢éwhere a photo was taken, including the
caching mechanism, can be summed up as follows:
1. Retrieve a list of all contacts that does not hieecoordinates cached.
2. Obtain the coordinates for each of these contaots the web service and store them
locally in the contact list ContentProvider.
3. Retrieve a list of all coordinates stored in thateot list ContentProvider.
4. Loop through all the coordinates.
5. If a coordinate is within a specified distance #fwa@d from the current photo, add the
ID to a match list.
6. Loop through the match list of IDs and retrieve ¢batact information for each of
them.

The question of how large the distance threshabdilshbe, and if a static threshold is
appropriate, was discussed in section 4.3. Inpfutotype a static threshold of 100 meters
was used. Not much work has been done in detergiimivat a good value for this would be.
100 meters is just a guess that works well withtéise data, but more tests must be done to
find a value that will make the application more@ate.

5.3 User Survey

In order to answer some of the core questionsisfstindy, a small user survey had to be
carried out. A small user group of 10 volunteers waated for this. The user group consisted
of people between 19 and 27 years old, who are atatfie with using new and mobile
technology in everyday life. Both sexes were regméesd in the group.

The persons in the group were first given a brigiduction to Android before being showed
the location-aware image browser. This was domaake sure that the general user interface
and navigation in Android was not an obstacle tdenstanding the application. The users
were then given just a short introduction to wia study is about, before being asked to
play around and explore the application themsefiwea little while. In the end a detailed
explanation of the application was given. The usene then asked to fill out a form with
some questions, both regarding the three implerddatdures and some of the other
application suggestions that were not implementéd. original Norwegian form given to the
users can be seen in appendix A, and an Englisblation is given in appendix B. Each
question was to be answered by a number betwend %,avhere 1 means completely
disagree and 5 means completely agree. The questieolve how useful they think each of
the features is and how easy they are to use.

In addition to the questions, the users were akedto participate in an efficiency test to see
how fast they could find a specified photo using tilap interface compared to browsing
through all the photos linearly. The large phottbemtion of 176 photos was used in this test.
The users were asked to find a photo of the Noravregarliament building as fast as possible,
first by using the map, then by browsing through photo collection linearly. The parliament
building was chosen because everyone knows wheraiitd most people can locate it on a
map. If they don’t know the exact location on thapnat least they know that it is in Oslo and

Page 54 of 108

can find that city on the map. For the linear briogsthe photo was placed in the middle of
the collection, so that half of the pictures hatdédorowsed through before finding the correct
one. This was based on the assumption that thagegosition of all the photos is in the
middle, and this would therefore represent theayecase.

5.4 Summary

The most important steps that had to be performeshswer the questions of the problem
definition was described in this chapter. Threeliappons called “From Photo to Map”,
From Map to Photos” and “Who Lives Here?” was selédor prototype implementation. A
method for creating a geotagged photo collectios evaated, as well as a ContentProvider
for storing and accessing the geotagged photogc#tibn-aware image browser was
developed, which includes and implementation oftalthree application prototypes
described. A user survey also had to be carriediodfirtd out how mobile phone users
respond to the ability of using the extra inforraatof location when interacting with a photo
collection.

Page 55 of 108

6 Results

The prototypes described in the previous chaptee baen implemented, and the user survey
has been conducted. This chapter presents sorhe ekperiences acquired from working
with the Android SDK, an analysis of the answeawsrfithe user survey and the results of the
efficiency test of the map-based browsing.

6.1 Experiences from Using the Android SDK

The implementation of the prototype applicationsaidied in this study has required the
developer to acquire a firm understanding of theemnily available SDK for the Android
platform. There have been both good and bad experse The most important aspects are
described here.

In general, Android seems like a very good platfdomdeveloping both applications for
geotagged photos and other location-aware apitsitilThe platform includes a mapping
solution and the Location API for easily acquirthg current location of the phone.
Throughout the Android API there are many hintg thake it obvious that location-
awareness has been an important thing on the roirttie developers. Much of the
functionality that involves location has not bempiemented yet, but it is important to
remember that the currently available SDK is désctias a preview release, and that the
platform is not finished yet. Most of the problearountered with Android are things that
most likely will be changed before the final releas

The biggest problem encountered was the garba@getmwlin the Dalvik VM that did not
kick in before the whole process was killed whemsiéd too much memory. This made the
prototype development much more difficult. Thisdnething that must be expected to be
fixed before the final version is released though.

Another problem has been with the Android emulatametimes crashing and hanging during
startup. All the settings and user files for theutator then had to be deleted before the
emulator would start again. This might not be a@ueswith the Android platform itself

though, as it might just as well be an issue withémulator. This is also something that
could be fixed before the final release.

A major annoyance that is unlikely to be changesltbado with the combination of data from
more than one ContentProvider. Often times the &dRroviders are just an interface layer
on top of a database table. An example of thisescbntact list system, where several
different ContentProviders grants access to diffekends of data about a contact stored in
different database tables. The underlying datatzsdes, and therefore also the data available
through the ContentProviders, follows ordinary Base design guidelines and uses foreign
key constraints to connect the data in differebletato each other. When the database is
queried directly, the data from different tables ba combined using simple join operators.
When the only possible access is through the Ctteviders, on the other hand, the
combination of data from different sources mustbee in the Java code. This may in some
cases be much more complex than combining directy SQL query.

There have also been some other smaller annoyanddsugs, but several features have been
fixed by SDK updates, and much can still be charigpfdre the platform is finished.

Page 56 of 108

6.2 Answers from the User Survey

All the users in the survey group seemed very @stiexd in the system developed, and they all
eagerly answered all the questions they were gillea.raw numbers are provided in
appendix C, so only an analysis of them is appabgiere. Some of the results were very
conclusive, while others were not so clear. Fothalquestions, the median of the ten
answers has been used as a basis for the analysis.

For the application called “From Photos to Map¥# tisers mostly think it is useful, and they
definitely agree that it is very intuitive to uSéhey generally do not think it would have been
much easier to use on a PC, and they think thagp&cation is suitable in the context of a
mobile phone. Some think that they would use th@iaation themselves, others do not. The
median of the scores on this is 4, so the usem séghtly positive to using this kind of
application.

When it comes to the application “From Map to PBbthe users are a bit more skeptical.
The answers of the usefulness and intuitivenefilsi®application are positive, but not as
enthusiastic as with the previous one. The usemssaly that it would have been easier to use
on a PC. When asked if they would use this applinghemselves, the median score was 3.5,
which must be regarded as inconclusive.

The “Who Lives Here?” application was regarded vatyitive to use, and also relatively
useful. They also mostly agreed that it would reebsier to use on a PC, and that the
application was suitable for a mobile phone. Tipiglization received the highest score of the
three implemented ones when asked if they would veanse the application themselves.
Both the suggested extensions to this applicatienpbtaining addresses from a phone
directory and using the contact list from sociabsgites, was considered very useful additions
to this application.

When asked about the reversed kind of the “Whod. Were?” application, i.e. obtaining all
the photos taken where a specified contact livesusers mostly agreed that it was useful,
but was not so sure if they would use it themselvas same results are also received when
they are asked about getting help to navigated@lhce where a photo was taken and to get
information from Wikipedia regarding the photo ltoa.

In general, the users answered more positively vas&ed about the usefulness of a feature
than they did when asked if they would use it theliess. Some of the reason for this might
be that only the technology was presented to teesubut not much was said about possible
usage scenarios. People that are interested indkayy might think that a feature is cool and
that it might be useful, without being able to thof situations where it would be useful to
them.

6.3 Efficiency of Map-Based Browsing

A very interesting part of the user survey wasa® i§ the users could find photos faster by
using a map instead of browsing for the photosalitye The results are shown in Figure 6.1.

It can be seen that the efficiency of using the naes a lot between the different users. The
overall results though, indicate that photos cafobad faster using a map for most people.

Page 57 of 108

120

100

/
]
/
N

—e—Browse
—=— Map

Search time [Seconds]
5
R
\
T
\
4
|

20

User

Figure 6.1: Search time by using map-based vs lineérowsing.

Out of the ten users in the survey, seven foundgpleeified photo faster by using the map
than when using linear browsing. It should be nobed when user 6 performed this test,

Google Maps was loading very slow on the emuldthrs was caused by problems with the
internet connection or the Google servers, notthalator or the application. Because of this,

the result of user 6 should be disregarded, anéfibre seven out of nine users found the

photo faster with a map. It is also interestingée the difference in the average search time
for the two methods. The results of user 6 is diflfegarded, therefore the average search

time using a map is 50 seconds, while using lilkeawsing takes 66 seconds, i.e. it takes

32% longer to use the linear browsing. This issiitated in Figure 6.2.

Page 58 of 108

70

60 -

a1
o
|

Average search time [Seconds]
N w S
o o o

=
o

Browse Map

Figure 6.2: Average search times for map-based anahéar browsing.

It was observed during the user survey that sontieeofisers found both the application itself
as well as the interface of the emulator easiestthan other users. This also affected how
efficient their map-based browsing was. Most ofukers pointed out that it was a bit
awkward to navigate the map, especially the zoontrobler. It was chosen not to have the
zoom dialog always visible because of space cdanttran the mobile screen, but usability
concerns may require the zoom dialog to alway$beet If the zoom controller was easier to
use, some of the users would have found the plasterf.

Some users noted that it was impossible to know ¢loge it was necessary to zoom, since
the markers did not convey any information of thenber of images they represent. This
could have been solved by the suggestion mentieadukr, of replacing the marker icon with
a circle with the number of photos written insidlais also would have made some of the
users find the photo faster, as they zoomed in rmuate than actually needed before clicking
on the marker.

It should also be noted that the map-based approagiit have been more effective on an
even larger photo collection. The search time uiieginear browsing is expected to increase
linearly with the number of photos, while the séatime using the map is expected to grow
much slower. Finally, it should be pointed out tthegre are more effective ways of linearly
browsing a photo collection than going one by onetp, as in this application. Showing a
grid of thumbnails on the screen might be enougkviduate the content of the photos, even
on a small mobile phone screen.

Page 59 of 108

7 Conclusion

This study has explored different uses of geotagpipedtos on mobile phones based on the
Android platform. Three of the application suggests, namely “From Photos to Map”,
“From Map to Photos” and “Who Lives Here?” havermeaplemented prototypes of. Both
these and some of the other suggestions were egdrhingiving them to a group of
volunteers, who answered some questions after.

It was found that Android is a very good platforon implementing applications that involve
geotagged photos. The platform still has some prab] but most of these are expected to be
fixed before the final release.

The users in the user group turned out to haveyapasitive response to applications using
location information and thought that the applicas in the survey were useful. They were a
little bit more skeptical towards using the appiieas themselves though.

In the efficiency test between map-based and libeawsing, the results were in favor of the
map-based approach. On average, the users spset&dds on finding a photo using the
map, while it took 66 seconds if they were to brewwough the photo collection linearly.
Several points that could affect the efficiencypoth the map-based approach as well as the
linear browsing were discussed, so the resultepted here are not conclusive.

Page 60 of 108

8 Further Work

This study explored several possible applicatidrgeotagged photos on mobile phones, but
unfortunately, there was only enough time to immatra few of them. All the other
application suggestions are also interesting, @seye to be studied in more detalil.

Some of the users participating in the survey iai@id that navigating the map was awkward,
and would be easier on a regular PC with keyboaddnaouse. This was only a simple
prototype, and the map navigation could probablyeH@een made much easier if there was
time for it. It might also be easier if there wasatual mobile phone, and not just the
emulator. In a real phone, hardware buttons coelddgd to zoom and pan the map, instead
of using the touch screen.

The implementation of the “From Map to Photos” @gadion has a big problem with the time
it takes to generate the cluster tree. The creatiooedure of the tree was moved from each
time the zoom level changes to the start of thdiegipn. This was a acceptable solution for
the user survey, but not for a real product. ligthdve investigated further if other, more
lightweight clustering algorithms can handle thisldem more efficiently without too large
side effects. The cluster tree generation procecamealso be moved further, so that the user
does not have to wait each time the applicatiataged. The simplest solution would be for
the application to store the cluster tree in g filed reload the file each time the application is
restarted. When the photo collection is changesicthster tree would have to be regenerated,
which would still force the user to wait. A moresugriendly solution might be to integrate
the generation of the cluster tree into the ImageBer, so that each time a new photo is
added to the collection, parts of the cluster t@ad be rebuilt in a low-priority background
thread. This might be a bit messy though, as thetet tree can not be regarded as a
fundamental part of a geotagged photo collectiohydéther an application specific database
of metadata.

Page 61 of 108

9 References

[1] http://code.google.com/android
[2] Geographic Location Tags on Digital Images.
Kentaro Toyama, Ron Logan, Asta Roseway.
Proceedings of the eleventh ACM international caeriee on Multimedia.

[3] NIMA Technical Report TR8350.2, "Department of beéeWorld Geodetic System
1984, Its Definition and Relationships With Locadéetic Systems", Third Edition.
http://earth-info.nga.mil/GandG/publications/tr835®r8350 2.html

[4] http://www.navcen.uscg.gov/loran/Default.htm

[5] Cell-ID location technique, limits and benefits: experimental study.

Emiliano Trevisani, Andrea Vitaletti.
Sixth IEEE Workshop on Mobile Computing Systems Apglications (WMCSA'04).

[6] http://www.google.com/mobile/gmm/mylocation/

[7] http://developer.yahoo.com/yrb/zonetag/locatedmtilh

[8] http://www.celldb.org/

[9] http://gsmloc.org/

[10] http://www.cellspotting.com/

[11] http://www.losangeles.af.mil/library/factsheetstieet.asp?id=5311

[12] http://www.losangeles.af.mil/library/factsheetstieet.asp?id=5325

[13] http://www.navcen.uscg.gov/gps/default.htm

[14] http://www.navcen.uscg.gov/gps/geninfo/global.htm

[15] http://www.sirf.com/products/gps_chip3e.html

[16] Navstar GPS and GLONASS: global satellite navigasigstems.

Professor P. Daly.
Electronics & Communication Engineering Journal|Woe: 5, Issue: 6

[17] Standardization of Mobile Phone Positioning for S¢&stems.

Yilin Zhao.
IEEE Communications Magazine, Volume: 40, Issue: 7

[18] Mobile Phone Location Determination and Its Impawtintelligent Transportation

Systems.
Yilin Zhao.
IEEE Transactions on Intelligent Transportationt8ys, Volume: 1, Issue: 1

[19] Geolocation and Assisted GPS.

Goran M. Djuknic, Robert E. Richton.
Computer, vol. 34, no. 2
[20] Measured Performance of 5-GHz 802.11a Wireless Spdlems.
James C. Chen, Jeffrey M. Gilbert.
White paper, Atheros Communications
[21] Positioning with IEEE 802.1lb Wireless LAN.
A. Kotanen, M. Hannikainen, H. Leppakoski, T.D. Hdainen.
14th IEEE Proceedings on Personal, Indoor and Md®édio Communications, 2003.
PIMRC 2003. Volume: 3

[22] Indoor Positioning Techniques Based on Wireless.LAN
Binghao Li, James Salter, Andrew G. Dempster, CRiz®s.
1st IEEE International Conference on Wireless Bbaad and Ultra Wideband
Communications

Page 62 of 108

[23] LOCADIO: Inferring Motion and Location from Wi-Fighal Strengths.
John Krumm, Eric Horvitz.
First Annual International Conference on Mobile aHaquitous Systems: Networking
and Services (MobiQuitous'04)

[24] http://www.skyhookwireless.com/

[25] http://www.wigle.net/

[26] Automatic Organization for Digital Photographs wiBeographic Coordinates.
Mor Naaman, Yee Jiun Song, Andreas Paepcke, HEama-Molina.
International Conference on Digital Libraries. ICR004

[27] Context Data in Geo-Referenced Digital Photo Cditets.
Mor Naaman, Susumu Harada, QianYing Wang, Hectoci&&olina, Andreas
Paepcke.
Proceedings of the 12th annual ACM internationaifecence on Multimedia

[28] Temporal event clustering for digital photo coliecs.
Matthew Cooper, Jonathan Foote, Andreas Girgendgmm Wilcox.
ACM Transactions on Multimedia Computing, Commutiaas, and Applications
(TOMCCAP), Volume 1, Issue 3

[29] Time as essence for photo browsing through persdigéhl libraries.

Adrian Graham, Hector Garcia-Molina, Andreas Paepd@lerry Winograd.
Proceedings of the 2nd ACM/IEEE-CS joint confereaneDigital libraries

[30] Mobile Access to Personal Digital Photograph Arasy
Cathal Gurrin, Gareth J. F. Jones, Hyowon Lee, Q#ilare, Alan F. Smeaton, Noel
Murphy.

Proceedings of the 7th international conferenceleman computer interaction with
mobile devices & services

[31] http:/flickr.com/

[32] http://www.panoramio.com/

[33] http://maps.google.com/

[34] http://earth.google.com/

[35] http://picasa.google.com/

[36] http://www.microsoft.com/prophoto/

[37] http://www.shozu.com/

[38] http://youtube.com/

[39] http://www.facebook.com/

[40] http://www.blogger.com/

[41] http://locr.com/

[42] http://share.ovi.com/

[43] http://www.symbian.com/

[44] http://www.microsoft.com/Windowsmobile/

[45] http://www.blackberry.com/

[46] http://www.openhandsetalliance.com/

[47] http://www.siliconrepublic.com/news/news.nv?stonsgle4143

[48] http://blog.searchenginewatch.com/blog/041201-13014

[49] http://www.businessweek.com/technology/content/@0§2c20050817 0949 tc024.ht
m

[50] http://www.openhandsetalliance.com/press_11050T.htm

[51] http://www.openhandsetalliance.com/press_11120T.htm

[52] http://online.wsj.com/article/SB12141883770789584mI?mod=googlenews_wsj

[53] http://code.google.com/android/adc.html

[54] http://android-developers.blogspot.com/

Page 63 of 108

[55]

[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]
[69]

[70]

[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]

[79]
[80]

Anatomy & Physiology of an Android.

Patrick Brady.

Google 1/0 2008
http://www.apache.org/licenses/LICENSE-2.0
http://git.android.com/

http://java.sun.com/javase/
http://java.sun.com/javame/

http://www.eclipse.org/

http://www.sqlite.org/

http://www.oracle.com/database/
http://www.microsoft.com/sqgl/

http://www.mysql.com/
http://sglite.org/mostdeployed.html
http://www.contrib.andrew.cmu.edu/~shadow/sql/sPL&t
Dalvik VM Internals.

Dan Bornstein.

Google 1/0 2008

http://bellard.org/gemu/

Hierarchical clustering schemes.

Stephen C. Johnson.

Psychometrika, Volume 32, Number 3

On Geodetic Distance Computations in Spatial Modgli
Sudipto Banerjee.

Biometrics, Volume 61, Number 2
http://code.google.com/apis/maps/documentationisesshtml#Geocoding_Direct
http://developer.yahoo.com/maps/rest/V1/geocodé.htm
http://www.myspace.com/

http://www.linkedin.com/

http://www.yellowpages.com/

http://www.qulesider.no/

http://wikipedia.org/
http://de.wikipedia.org/wiki/Wikipedia:WikiProjekGeoreferenzierung/Wikipedia-
World/en

http://www.exif.org/
http://www.fightingquaker.com/sanselan/

Page 64 of 108

Appendix A: User Survey — Original Norwegian versio n

Alle spgrsmal skal besvares med tallene 1 — 5] dehelt uenig og 5 = helt enig.
Del 1: Implementerte funksjoner

Funksjon 1: Se posisjonen til hvor et bilde ble tati et kart Svar:
Denne funksjonen er nyttig.

Denne funksjonen er intuitiv & bruke.

Denne funksjonen hadde veert enklere & bruke p&en P
med stagrre skjerm, samt tastatur og mus.

Denne funksjonen passer godt for bruk pa en madiite.

Jeg ville benyttet denne funksjonen dersom jeg @astdAndroid-telefon.

Funksjon 2: Kart som viser posisjon for alle bilder
Denne funksjonen er nyttig.
Denne funksjonen er intuitiv & bruke.

Denne funksjonen hadde veert enklere & bruke p&en P
med stgrre skjerm, samt tastatur og mus.

Denne funksjonen passer godt for bruk pa en mddftte.

Jeg ville benyttet denne funksjonen dersom jeg @astdAndroid-telefon.

Funksjon 3: Hvem bor her?
Denne funksjonen er nyttig.
Denne funksjonen er intuitiv & bruke.

Denne funksjonen hadde veert enklere & bruke p&en P
med starre skjerm, samt tastatur og mus.

Denne funksjonen passer godt for bruk pa en mddftte.

Jeg ville benyttet denne funksjonen dersom jeg @astdAndroid-telefon.

Page 65 of 108

Del 2: Ikke-implementerte funksjoner

Funksjon 4: Samme som funksjon 3, men kobler sed telefonkatalogen pa internett for
a sla opp adressen til kontakter man ikke har lagreadressen for.

Denne funksjonen ville gjort funksjon 3 mer nyttig.

Jeg ville benyttet denne funksjonen dersom jeg bgsgttet funksjon 3.
Funksjon 5: Samme som funksjon 3, men i tillegg tkontaktlisten p& mobiltelefonen
hentes ogsa adresser fra vennelisten pa nettsider fsosiale nettverk (f.eks. Facebook).
Denne funksjonen ville gjort funksjon 3 mer nyttig.

Jeg ville benyttet denne funksjonen dersom jeg bgsgttet funksjon 3.
Funksjon 6: Brukeren ser gjennom kontaktlisten sinog ber om & fa opp alle bilder som
er tatt hjemme hos en spesifikk kontakt.

Denne funksjonen virker nyttig.

Denne funksjonen passer godt for bruk pa en mdditte.

Jeg ville benyttet denne funksjonen dersom jeg @asdAndroid-telefon.
Funksjon 7: Nar man har valgt et bilde, sa kan marfa hjelp til & navigere til stedet der
bildet ble tatt (slik som navigasjonssystemer for ibfungerer i dag).
Denne funksjonen virker nyttig.

Denne funksjonen passer godt for bruk pa en mdditte.

Jeg ville benyttet denne funksjonen dersom jeg @asdAndroid-telefon.
Funksjon 8: Wikipedia har lagret posisjon for en deé artikler. Nar man ser pa et bilde sa
kan man fa opp link til artikler som omhandler noesom er i naerheten av der bildet ble
Elzit.téks. et bilde av Nidarosdomen kan gi link til Wkipedia-artikkel om Nidarosdomen)
Denne funksjonen virker nyttig.

Denne funksjonen passer godt for bruk pa en mdditte.

Jeg ville benyttet denne funksjonen dersom jeg @asdAndroid-telefon.

Page 66 of 108

Appendix B: User Survey — English translation

All questions must be answered by the numbers ,lwhBre 1 = completely agree and 5 =
completely disagree.

Part 1. Implemented functions

Function 1: See the position of where a photo waaken in a map Answer:
This function is useful.

This function is intuitive to use.

This function would be easier to use on a PC with
larger screen, a keyboard and mouse.

This function is a good fit for use on a mobile pbao

| would use this function if I had an Android phone

Function 2: Map that shows position for all photos
This function is useful.
This function is intuitive to use.

This function would be easier to use on a PC with
larger screen, a keyboard and mouse.

This function is a good fit for use on a mobile pbao

| would use this function if I had an Android phone

Function 3: Who lives here?
This function is useful.
This function is intuitive to use.

This function would be easier to use on a PC with
larger screen, a keyboard and mouse.

This function is a good fit for use on a mobile pbao

| would use this function if I had an Android phone

Page 67 of 108

Part 2: Non-implemented functions

Function 4: Same as function 3, but connects to thghone directory on the internet to
look up the address of contacts which does not hatlee address stored.

This function would have made function 3 more ukefu
| would use this function if | also used function 3
Function 5: Same as function 3, but in addition tdhe contact list on the phone addresses
are also collected from the friends list on socialetworking websites (e.g. Facebook).
This function would have made function 3 more ukefu

| would use this function if | also used function 3

Function 6: The user looks through the contact lisand requests to bring up all photos
taken at the home of a specific contact.

This function seems useful.

This function is a good fit for use on a mobile pbao

I would have used this function if | had an Andrpitbne.
Function 7: When you have selected a photo, you cget help to navigate to the place
where the photo was taken (like navigation systenier cars currently work).
This function seems useful.

This function is a good fit for use on a mobile pbo

I would have used this function if | had an Andrpitbne.

Function 8: Wikipedia have stored the position forsome articles. While looking at a
photo you can get a link to articles dealing with@mething close to where the photo was
taken. (For instance a photo of the Nidaros catheadt may give you a link to a Wikipedia
article concerning the cathedral)

This function seems useful.

This function is a good fit for use on a mobile pbo

I would have used this function if | had an Andrpitbne.

Page 68 of 108

Appendix C: User Survey — Results

Function 1
Question
1.1

User User User User User User User User User User
1 2 3 4 5 6 7 8 9 10

Average Median

4,1

4,5

Question
1.2

4,7

5

Question
1.3

2,8

2,5

Question
1.4

4,7

Question
15

Function 2
Question
2.1

3,8

Question
2.2

4,1

Question
2.3

3,9

Question
2.4

3,7

3,5

Question
25

Function 3
Question
3.1

3,6

3,5

3,5

Question
3.2

4,7

Question
3.3

2,3

Question
3.4

4,8

Question
3.5

Function 4
Question
4.2

3,9

4,7

4,5

Question
4.2

Function 5
Question
5.1

4,6

4,4

Question
5.2

4,2

Page 69 of 108

Function 6
Question
6.1

4,1

4,5

Question
6.2

4,1

4,5

Question
6.3

Function 7
Question
7.1

3,5

4,1

3,5

4,5

Question
7.2

4,2

4,5

Question
7.3

Function 8
Question
8.1

3,7

4,4

4,5

Question
8.2

3,9

Question
8.3

3 5 5
3 4 3
2 4 4
4 5 3
5 5 4
3 5 3
4 5 3
5 3 2
2 3 1

3,6

3,5

Page 70 of 108

Appendix D: Source Code of ImageBrowser

ContactList.java

package no.ntnu.idi.android.imagebrowser;

i mport android.app.ListActivity;

i mpor t android.content.Intent;

i mport android.database.Cursor;

i mport android.net.Uri;

i mport android.os.Bundle;

i mport android.provider.BaseColumns;
i mport android.provider.Contacts;

i mport android.view.View;

i mport android.widget.ListAdapter;

i mport android.widget.ListView;

i mport android.widget.SimpleCursorAdapter;
i mport android.widget.Toast;

publ i c cl ass ContactList ext ends ListActivity {

public static final String PERSON_ID_LIST = "personldList"
pri vat e ListAdapter adapter = nul | ;

@verride
prot ect ed voi d onCreate(Bundle icicle) {
super .onCreate(icicle);

Bundle extras = getintent().getExtras();

i nt [] personIDs = (extras == nul1)? null :
(i nt [[extras.getSerializable(PERSON_ID_LIST);
i f (personIDs == nul | || personiDs.length == 0) {
Toast.makeText(thi's, "No matching contacts." ,
Toast.LENGTH_SHORT).show();
return;
} el se{

Uri peopleUri = Contacts.People. CONTENT_URI;

StringBuilder sb = new StringBuilder();

/I The "people.” is an ugly hack to get around a bu
/I version of Android.
sh.append("people." + BaseColumns._ID);
sh.append(=",
sb.append(personiDs|[0]);

for (inti=1;i<personlDs.length;i++) {

sh.append("OR"),
sh.append("people." + BaseColumns._ID);
sh.append("=");

sb.append(personlIDsJi]);
String selection = sh.toString();

String[] projection = new String[][{BaseColumns._ID,
Contacts.People.NAME};

Cursor cursor = t hi s.managedQuery(peopleUri, projection,
selection, nul 1);
i f (cursor== nul 1) {

g in the current

Page 71 of 108

Toast.makeText(this, "Query error." , Toast.LENGTH_SHORT).show();

return;
}
adapter = new SimpleCursorAdapter(this,
android.R.layout.simple_list_item_1,
cursor, new String[]{Contacts.People.NAME},

new i nt [{android.R.id.text1});
setListAdapter(adapter);

}
}
@verride
prot ect ed voi d onListitemClick(ListView |, View v, i nt position,
{
i f (adapter != nul 1) {
Cursor cursor = (Cursor)adapter.getltem(posit ion);

i nt idColumn = cursor.getColumnindex(BaseColumns._ID);
i nt personID = cursor.getint(idColumn);

Uri peopleUri = Contacts.People. CONTENT_URI;
peopleUri =
peopleUri.buildUpon().appendPath(Integer.toString(p ersonliD)).build();
Intenti = new Intent(Intent. VIEW_ACTION);
i.setData(peopleUri);
startActivity(i);
}
}

| ong id)

Page 72 of 108

EnhancedMapView.java

package no.ntnu.idi.android.imagebrowser;

i mpor t android.content.Context;
i mport android.view.MotionEvent;

i mport com.google.android.maps.MapView;

public cl ass EnhancedMapView ext ends MapView {
pri vat e OnTouchEventListener listener = nul | ;
publ i ¢ EnhancedMapView(Context context) {

super (context);

publ i c voi d setOnTouchEventListener(OnTouchEventListener liste
t hi s.listener = listener;

}
@verride
publ i ¢ bool ean onTouchEvent(MotionEvent ev) {
i f (listener!= nul 1) {
i f (listener.onTouchEvent(ev)) {
return true;
} el se{
return super.onTouchEvent(ev);
}
}
return super.onTouchEvent(ev);
}

public interface OnTouchEventListener {
publ i ¢ bool ean onTouchEvent(MotionEvent ev);

ner) {

Page 73 of 108

Geocoder.java

package no.ntnu.idi.android.imagebrowser;

i mport java.io.BufferedReader;

i mport java.io.BufferedWriter;

i mport java.io.lOException;

i mport java.io.lnputStream;

i mport java.io.lnputStreamReader;

i mport java.io.OutputStream;

i mport java.io.OutputStreamWriter;

i mport java.net.HttpURLConnection;

i mport java.net.InetSocketAddress;

i mport java.net.MalformedURLException;
i mport java.net.Socket;

i mport java.net.URL;

i mport java.net.URLEncoder;

i mport java.net.UnknownHostException;
i mport java.util.ArrayList;

i mport java.util.List;

i mport android.app.Activity;

i mport android.content.ContentValues;
i mport android.database.Cursor;

i mport android.location.Location;

i mport android.net.Uri;

i mport android.provider.BaseColumns;
i mport android.provider.Contacts;

public cl ass Geocoder {

private static final String API_KEY = "INSERT PRIVATE API KEY HERE"
pri vat e String partialUrl =

"http://maps.google.com/maps/geo?output=csv&key=" + API_KEY + "&Qg=";
pri vat e Activity activity = nul I ;

publ i ¢ Geocoder(Activity activity) {
t hi s.activity = activity;

}
publ i ¢ Location getLocationFromAddress(String address) {
try{
Socket socket = new Socket();
socket.connect(new InetSocketAddress("maps.google.com” , 80));

OutputStream os = socket.getOutputStream();

BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(0s));
String encodedAddress = URLEncoder.encode(add ress, "UTF-8");
bw.write("GET /maps/geo?output=csv&key=" + API_KEY

+ "&Qg=" + encodedAddress);
bw.write("\nHost: maps.google.com\n\n");
bw.flush();

InputStream is = socket.getinputStream();
BufferedReader br = new BufferedReader(new InputStreamReader(is));
String s = br.readLine();

socket.close();

String[] lineParts = s.split(")
i f (lineParts[0].equals("200") && lineParts[1].equals("8") {

Page 74 of 108

L S w)

Location location = new Location();

location.setLatitude(Double.parseDouble(lin eParts[2]));
location.setLongitude(Double.parseDouble(li neParts[3]));
r et ur n location;
el se{
return null;

cat ch (UnknownHostException uhe) {
return null;

cat ch (IOException ioe) {

return null;

cat ch (Exception e) {

return null;

publ i ¢ List<Integer> findContactsNearLocation(Location lo cation,

i nt maxDistance) {

List<Integer> matchingContacts = new ArrayList<Integer>();

/I Retrieve all contacts

Uri peopleUri = Contacts.People. CONTENT_URI;

Cursor peopleCursor = activity.managedQuery(peo pleUri,
new String[]{BaseColumns._ID}, null, null);
i f (peopleCursor != nul | && peopleCursor.first()) {
i nt idColumn = peopleCursor.getColumnindex(BaseColumns ._ID);
do {
i nt personID = peopleCursor.getint(idColumn);
Uri contactMethodsUri = peopleUri.buildUpon 0
.appendPath(Integer.toString(personiD))
.appendPath("contact_methods").build();
Cursor contactMethodsCursor = activity.mana gedQuery(
contactMethodsUri, new String[J{Contacts.ContactMethods.KIND,

Contacts.ContactMethods.DATA,
Contacts.ContactMethods.AUX_DATA},
Contacts.ContactMethods.KIND + n="
+ Contacts.ContactMethods.LOCATION_KIND

+ "OR (" + Contacts.ContactMethods.KIND + ="
+ Contacts.ContactMethods.POSTAL_KIND
+ "AND" + Contacts.ContactMethods.TYPE + ="
+ Contacts.ContactMethods.POSTAL_KIND_HOM E TYPE+ ") ,
nul 1);
i f (contactMethodsCursor != nul 1) {

i f (contactMethodsCursor.first()) {
i nt kindColumn = contactMethodsCursor

.getColumnindex(Contacts.ContactMetho ds.KIND);
i nt dataColumn = contactMethodsCursor
.getColumnindex(Contacts.ContactMetho ds.DATA);
i nt auxDataColumn = contactMethodsCursor
.getColumnindex(Contacts.ContactMetho ds.AUX_DATA);
Location cachedLocation = nul | ;
String cachedAddress = nul | ;
String currentAddress = nul | ;
do {

i nt kind = contactMethodsCursor.getint(kindColumn);
i f (kind == Contacts.ContactMethods.POSTAL_KIND) {
currentAddress =
contactMethodsCursor.getString(da taColumn);

Page 75 of 108

} el se if (kind == Contacts.ContactMethods.LOCATION_KIND) {

String locationString = contactMeth odsCursor
.getString(dataColumn);
String[] locationParts = locationSt ring.split("),
i f (locationParts.length == 2) {
cachedLocation = new Location();
cachedLocation.setLatitude(
Double.parseDouble(locationPart s[O]));
cachedLocation.setLongitude(
Double.parseDouble(locationPart s[1]));
cachedAddress = contactMethodsCurso r

.getString(auxDataColumn);
} whi | e (contactMethodsCursor.next());
i f (currentAddress != nul 1) {

i f (cachedAddress != nul | &&
IcachedAddress.equals(currentAddr ess)) {
/I Retrieve new location
Location newLocation =
getLocationFromAddress(currentAdd ress);
cachedLocation = newLocation;
} el se if (cachedAddress == nul 1) {
/I Retrieve new location
Location newLocation =
getLocationFromAddress(currentAdd ress);

/I Insert new location

ContentValues values = new ContentValues();
values.put(Contacts.ContactMethods. PERSON_ID, personiD);
values.put(Contacts.ContactMethods. KIND,
Contacts.ContactMethods.LOCATION_ KIND);
values.put(Contacts.ContactMethods. DATA,

newLocation.getLatitude() + ,
+ newLocation.getLongitude());

values.put(Contacts.ContactMethods. AUX_DATA,
currentAddress);

activity.getContentResolver().inser t(contactMethodsUri,
values);

cachedLocation = newlLocation;

}
/I check if the person lives near the given locatio n
i f (location.distanceTo(cachedLocation) <= maxDistanc e){

matchingContacts.add(personID);
}
}
}
}

} whi | e (peopleCursor.next());

r et ur n matchingContacts;

Page 76 of 108

GeotaggedBitmap.java

package no.ntnu.idi.android.imagebrowser;

i mport android.graphics.Bitmap;
i mport android.location.Location;

publ i c cl ass GeotaggedBitmap {
pri vat e Bitmap bitmap;
pri vat e Location location;

publ i ¢ GeotaggedBitmap(Bitmap bitmap, Location location)
t hi s.bitmap = bitmap;
t hi s.location = location;

}
publ i ¢ GeotaggedBitmap(Bitmap bitmap, doubl e latitude,
t hi s.bitmap = bitmap;
Location location = new Location();

location.setLatitude(latitude);
location.setLongitude(longitude);
t hi s.location = location;

publ i ¢ Bitmap getBitmap() {
r et ur n bitmap;

publ i c voi d setBitmap(Bitmap bitmap) {
t hi s.bitmap = bitmap;

publ i ¢ Location getLocation() {
r et ur n location;

publ i ¢ voi d setLocation(Location location) {
t hi s.location = location;

doubl e longitude){

Page 77 of 108

GeotaggedimageGroup.java

package no.ntnu.idi.android.imagebrowser;

i mport java.util.ArrayList;
i mport java.util.List;

i mport android.location.Location;

public cl ass GeotaggedimageGroup {
pri vat e List<GeotaggedimagelD> imagelDs = nul | ;

publ i ¢ GeotaggedimageGroup() {

imagelDs = new ArraylList<GeotaggedimagelD>();
}
publ i ¢ GeotaggedimageGroup(GeotaggedimagelD imagelD) {
t hi s();
add(imagelD);
}

publ i c voi d add(GeotaggedimagelD imagelD) {
imagelDs.add(imagelD);
}

publ i ¢ voi d add(GeotaggedimageGroup images) {
f or (GeotaggedimagelD image : images.getimagelDs()) {
add(image);

publ i ¢ Location getAveragelLocation() {
Location averagelLocation = new Location();

Location location;
doubl e latitudeSum = 0.0;
doubl e longitudeSum = 0.0;
f or (GeotaggedimagelD image : imagelDs) {
location = image.getLocation();
latitudeSum += location.getLatitude();
longitudeSum += location.getLongitude();

}
averagelocation.setlLatitude(latitudeSum / image IDs.size());
averagelocation.setLongitude(longitudeSum / ima gelDs.size());

r et ur n averagelLocation;

publ i ¢ List<GeotaggedimagelD> getimagelDs() {
r et ur n imagelDs;

publ i ¢ doubl e calculateMinDistanceTo(GeotaggedimageGroup otherGr oup) {
List<GeotaggedimagelD> otherimagelDs = otherGro up.getimagelDs();

doubl e minDistance = Double.MAX_VALUE;
Location locationl, location2;

doubl e distance;

f or (GeotaggedimagelD imagelD : imagelDs) {

locationl = imagelD.getLocation();
f or (GeotaggedimagelD otherlmagelD : otherimagelDs) {

Page 78 of 108

location2 = otherimagelD.getLocation();
distance = locationl.distanceTo(location2);

i f (distance < minDistance)
minDistance = distance;

}
}

r et ur n minDistance;

Page 79 of 108

GeotaggedimagelD.java

package no.ntnu.idi.android.imagebrowser;
i mport android.location.Location;

public cl ass GeotaggedimagelD {
private int imagelD;
pri vat e Location location;

publ i ¢ GeotaggedimagelD(i nt imagelD, Location location) {
t hi s.imagelD = imagelD;
t hi s.location = location;

public int getimagelD() {
r et ur n imagelD;

publ i c voi d setimagelD(i nt imagelD) {
t hi s.imagelD = imagelD;

publ i ¢ Location getLocation() {
r et ur n location;

publ i ¢ voi d setLocation(Location location) {
t hi s.location = location;

Page 80 of 108

ImageAdapter.java

package no.ntnu.idi.android.imagebrowser;

i mport java.io.FileNotFoundException;

i mport java.io.lOException;

i mport java.io.lnputStream;

i mport no.ntnu.idi.android.imageprovider.ImageProvider;
i mport android.app.Activity;

i mpor t android.content.ContentUris;

i mport android.database.Cursor;

i mport android.graphics.Bitmap;

i mport android.graphics.BitmapFactory;

i mport android.graphics.Matrix;

i mport android.net.Uri;

i mport android.provider.BaseColumns;

i mport android.view.View;

i mport android.view.ViewGroup;

i mport android.view.ViewGroup.LayoutParams;
i mport android.widget.BaseAdapter;

i mport android.widget.Gallery;

i mport android.widget.ImageView;

publ i c cl ass ImageAdapter ext ends BaseAdapter {

pri vat e Activity activity;
pri vat e ImageConsumer imageConsumer;

publ i ¢ ImageAdapter(Activity activity, ImageConsumer imag eConsumer) {
t hi s.activity = activity;
t hi s.imageConsumer = imageConsumetr;

}
public int getCount() {
r et ur n (imageConsumer == nul 1) ? 0 : imageConsumer.getCount();
}
publ i ¢ Object getltem(i nt position) { r et ur n position; }
public | ong getltemid(i nt position) { r et ur n position; }
publ i c View getView(i nt position, View convertView, ViewGroup parent) {
ImageView i = new ImageView(activity);
i.setimageBitmap(imageConsumer.loadBitmap(posit ion,
ImageConsumer.ImageSize. THUMBNAIL));
i.setAdjustViewBounds(true);
i.setLayoutParams(new Gallery.LayoutParams(
LayoutParams.WRAP_CONTENT, LayoutParams.WRA P_CONTENT));
i.setBackground(android.R.drawable.picture_fram e);
returni;
}
public fl oat getAlpha(bool ean focused, i nt offset) {
r et ur n Math.max(0.2f, 1.0f - (0.2f * Math.abs(offset)));
}
public float getScale(bool ean focused, i nt offset) {
r et ur n Math.max(0, offset == 0 ? 1.0f : 0.6f);
}
}

Page 81 of 108

ImageBrowser.java

package no.ntnu.idi.android.imagebrowser;

i mport java.util.List;

i mport android.app.Activity;

i mport android.content.Intent;

i mport android.graphics.drawable.BitmapDrawable;
i mport android.location.Location;

i mport android.os.Bundle;

i mport android.view.Menu;

i mport android.view.View;

i mport android.view.Menu.ltem;

i mport android.view.ViewGroup.LayoutParams;
i mpor t android.widget.AdapterView;

i mport android.widget.Gallery;

i mpor t android.widget.ImageSwitcher;

i mport android.widget.ImageView;

i mport android.widget.Toast;

i mport android.widget.ViewSwitcher;

public cl ass ImageBrowser extends Activity
i mpl enent s ViewSwitcher.ViewFactory, AdapterView.OnltemSelect edListener {

public static final String IMAGE_IDS = "image_ids" ;

pri vat e ImageSwitcher imageSwitcher = nul | ;

pri vat e ImageConsumer imageConsumer = nul | ;

pri vat e Location currentLocation = nul | ;

private static final int MENU_MAP = Menu.FIRST;

private static final int MENU_LIVES HERE = Menu.FIRST + 1;
private static final int MENU MAP_ALL = Menu.FIRST + 2;

@verride
publ i ¢ voi d onCreate(Bundle icicle) {
super .onCreate(icicle);
setContentView(R.layout.imageswitcher);

imageSwitcher = (ImageSwitcher)findViewByld(R .id.imageSwitcher);
imageSwitcher.setFactory(thi s);
Bundle extras = getintent().getExtras();
i nt [] imagelDs = (extras == nul1)? null :
(i nt [)extras.getSerializable(IMAGE_IDS);
i f (imagelDs != nul 1) {
imageConsumer = new ImageConsumer(t hi s, imagelDs);
} el se{
imageConsumer = new ImageConsumer(t hi s);
}
Gallery gallery = (Gallery)findViewByld(R.id. gallery);
gallery.setAdapter(new IlmageAdapter(t hi s, imageConsumer));
gallery.setOnltemSelectedListener(thi s);
}
@verride
publ i ¢ voi d onltemSelected(AdapterView parent, View view,
i nt position, I ong id) {

/I Load the new image into the ImageSwitcher
GeotaggedBitmap geotaggedBitmap =
imageConsumer.loadGeotaggedBitmap(position,
ImageConsumer.ImageSize. SCREENSIZE);
currentLocation = geotaggedBitmap.getLocation() ;
imageSwitcher.setimageDrawable(

Page 82 of 108

new BitmapDrawable(geotaggedBitmap.getBitmap()));

@verride

publ i ¢ voi d onNothingSelected(AdapterView arg0) { }

@verride

publ i ¢ bool ean onCreateOptionsMenu(Menu menu) {

menu.add(0, MENU_MAP, "Show this photo in a map");
menu.add(0, MENU_LIVES HERE, "Who lives here?");
menu.add(0, MENU_MAP_ALL, "Show a map with all photos”);

return super.onCreateOptionsMenu(menu);

@verride
publ i ¢ bool ean onOptionsitemSelected(ltem item) {

swi t ch (item.getld()) {
case MENU_MAP:

Intent maplintent = newlintent(this, ImageMap. cl ass);
maplntent.putExtra(lmageMap.LOCATION, current Location);
startActivity(maplntent);
br eak;
case MENU_LIVES HERE:
Geocoder geocoder = new Geocoder(t hi s);
List<Integer> contactList =
geocoder.findContactsNearLocation(currentLo cation, 100);
i f (contactList.size() <=0) {
Toast.makeText(thi's, "None of your contacts lives here." ,
Toast.LENGTH_SHORT).show();
} el se{
i nt] contactlDs = new i nt [contactList.size()];
inti=0;

f or (Integer contactID : contactList) {
contactlDs[i++] = contactlD;

Intent contactListintent = newlIntent(t hi s, ContactList. cl ass);
contactListintent.putExtra(ContactList. PERS ON_ID_LIST, contactIDs);
startActivity(contactListintent);

br eak;
case MENU_MAP_ALL:
Intent mapAllintent = newlintent(this, ImageMap. cl ass);
startActivity(mapAllintent);
br eak;

return super.onOptionsitemSelected(item);

@verride

publ i ¢ View makeView() {

ImageView i = new ImageView(thi s);
i.setBackgroundColor(OxFF000000);
i.setScaleType(ImageView.ScaleType.FIT_CENT ER);
i.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.FILL_PARENT));
returni;

Page 83 of 108

ImageConsumer.java

package no.ntnu.idi.android.imagebrowser;

i mport java.io.FileNotFoundException;
i mport java.io.lOException;
i mport java.io.lnputStream;

i mport no.ntnu.idi.android.imageprovider.ImageProvider;
i mport android.app.Activity;

i mport android.content.ContentUris;

i nport android.database.Cursor;

i mport android.graphics.Bitmap;

i mport android.graphics.BitmapFactory;

i mport android.location.Location;

i mport android.net.Uri;

i mport android.provider.BaseColumns;

public cl ass ImageConsumer {

publ i ¢ enumlmageSize {
ORIGINAL,

SCREENSIZE,
THUMBNAIL

pri vat e Activity activity;
privat e int[]imagelDs;

[lprivate Uri imageUri = ImageProvider. CONTENT_URI,
pri vat e Uri imageUri = ImageProvider.FLICKR_CONTENT_URI;

publ i ¢ ImageConsumer(Activity activity) {
t hi s.activity = activity;
t hi s.imagelDs = retrievelmagelDs();

}
publ i ¢ ImageConsumer(Activity activity, i nt [] imagelDs) {
t hi s.activity = activity;
t hi s.imagelDs = imagelDs;
}
public int getCount() {
return (imagelDs == nul I') ? 0 : imagelDs.length;
}

private int[] retrievelmagelDs() {
Cursor cursor = activity.managedQuery(imageUr i
new String[J{BaseColumns._ID}, nul I, null, BaseColumns._ID);
i f (cursor == nul 1'){
return new int[O];

i nt [] imagelDs = new i nt [cursor.count()];

i nt idColumn = cursor.getColumnindex(BaseColumns._ID);
inti=0;

i f (cursor.first()) {
do {
// put id into correct position in array

Page 84 of 108

imagelDs[i++] = cursor.getint(idColumn);

} whi | e (cursor.next());
}
r et ur n imagelDs;
}
publ i ¢ GeotaggedimagelDJ] retrieveGeotaggedimagelDs() {
r et ur n retrieveGeotaggedimagelDs(null, null, null, null);
publ i ¢ GeotaggedimagelDJ] retrieveGeotaggedimagelDs(Doubl e minLatitude,
Double maxLatitude, Double minLongitude, Doub le maxLongitude) {

Cursor cursor;
i f (minLatitude != nul I && maxLatitude != nul I && minLongitude != nul |
&& maxLongitude != nul 1) {
cursor = activity.managedQuery(imageUri,
new String[]{BaseColumns._ID,
ImageProvider.LATITUDE, ImageProvider.LON GITUDE},
"latitude > ? AND latitude < ? "
+ " AND longitude > ? AND longitude < ?" ,
new String[J[{minLatitude.toString(), maxLatitude.toStr ing(),
minLongitude.toString(), maxLongitude.toS tring()},
BaseColumns._ID);
} el se{
cursor = activity.managedQuery(imageUri,
new String[J{BaseColumns._|ID,
ImageProvider.LATITUDE, ImageProvider.LON GITUDE},
nul |, null, BaseColumns. ID);

i f (cursor == nul 1'){
ret urn new GeotaggedimagelD[0];

}

GeotaggedimagelD[] imagelDs = new GeotaggedimagelD[cursor.count()];

i nt idColumn = cursor.getColumnindex(BaseColumns._ID);

i nt latitudeColumn = cursor.getColumnindex(ImageProvid er.LATITUDE);

i nt longitudeColumn = cursor.getColumnindex(ImageProvi der.LONGITUDE);
inti=0;

i f (cursor.first()) {
do {
[/l put id into correct position in array
i nt imagelD = cursor.getint(idColumn);
doubl e latitude = cursor.getDouble(latitudeColumn);
doubl e longitude = cursor.getDouble(longitudeColumn);
Location location = new Location();
location.setLatitude(latitude);
location.setLongitude(longitude);
imagelDs[i++] = new GeotaggedimagelD(imagelD, location);
} whi | e (cursor.next());

}

r et ur n imagelDs;

publ i ¢ Bitmap loadBitmap(i nt position, ImageSize imageSize) {

Page 85 of 108

Uri specificilmageUri = ContentUris.appendld(ima geUri.buildUpon(),
imagelDs[position]).build();
Cursor cursor = activity.managedQuery(specificl mageUri,
null, null, null);

i f (cursor.first()) {
i nt imageColumn;
i f (imageSize == ImageSize. THUMBNAIL) {
imageColumn = cursor.getColumnindex(ImagePr ovider.IMAGE_THUMBNAIL);
} el se i f (imageSize == ImageSize.SCREENSIZE) {
imageColumn =
cursor.getColumnindex(ImageProvider.IMAGE _SCREENSIZE);
} el se{
imageColumn = cursor.getColumnindex(ImagePr ovider.IMAGE_ORIGINAL);

}

String path = cursor.getString(imageColumn);

try{
InputStream is = activity.getContentResolve r()
.openinputStream(Uri.parse("file:" + path));
Bitmap bitmap = BitmapFactory.decodeStream(is);
is.close();
r et ur n bitmap;
} cat ch (FileNotFoundException e) {
return null;
} cat ch (IOException ioe) {
return null;

return null;

}

publ i ¢ GeotaggedBitmap loadGeotaggedBitmap(i nt position,
ImageSize imageSize) {
Uri specificilmageUri = ContentUris.appendld(ima geUri.buildUpon(),
imagelDs[position]).build();
Cursor cursor = activity.managedQuery(specificl mageUri,
null, null, null);

i f (cursor.first()) {
i nt imageColumn;
i f (imageSize == ImageSize. THUMBNAIL) {
imageColumn = cursor.getColumnindex(ImagePr ovider.IMAGE_THUMBNAIL);
} el se if (imageSize == ImageSize.SCREENSIZE) {
imageColumn =
cursor.getColumnindex(ImageProvider.IMAGE _SCREENSIZE);
} el se{
imageColumn = cursor.getColumnindex(ImagePr ovider.IMAGE_ORIGINAL);

i nt latitudeColumn = cursor.getColumnindex(ImageProvid er.LATITUDE);
i nt longitudeColumn = cursor.getColumnindex(ImageProvi der.LONGITUDE);

String path = cursor.getString(imageColumn);
doubl e latitude = cursor.getDouble(latitudeColumn);
doubl e longitude = cursor.getDouble(longitudeColumn);

try{
InputStream is = activity.getContentResolve r()
.openinputStream(Uri.parse("file:" + path));

Page 86 of 108

Bitmap bitmap = BitmapFactory.decodeStream(is);
is.close();
ret urn new GeotaggedBitmap(bitmap, latitude, longitude);
} cat ch (FileNotFoundException e) {
return null;
} cat ch (IOException ioe) {
return null;

return nul | ;

}
}

Page 87 of 108

ImageMap.java
package no.ntnu.idi.android.imagebrowser;

i mport java.util.ArrayList;
i mport java.util.Collection;
i mport java.util.HashMap;

i mport android.content.Intent;

i mport android.location.Location;

i mport android.os.Bundle;

i mport android.util.Log;

i mport android.view.MotionEvent;

i mport android.view.View;

i mport android.widget.Toast;

i mport android.widget.ZoomDialog;
i mport android.widget.ZoomSlider;

i mport com.google.android.maps.MapActivity;

i mport com.google.android.maps.MapController;

i mport com.google.android.maps.MapView;

i mport com.google.android.maps.OverlayController;
i mport com.google.android.maps.Point;

public class ImageMap extends MapActivity i mpl ement s
MapView.OnLongPressListener, EnhancedMapView.OnTouc hEventListener,
ZoomSlider.OnZoomChangedListener {

public static final String LOCATION = "location” ;
private static final int MIN_SPACING = 25;

privat e MapView mapView = nul | ;

pri vat e MapController controller = nul | ;

pri vat e OverlayController overlayController = nul | ;

pri vat e Location location = nul | ;

pri vat e ImageConsumer imageConsumer;

pri vat e GeotaggedimagelD[] imagelDs = nul | ;

pri vat e Collection<GeotaggedimageGroup> currentGroups = nul | ;
pri vat e MapPinOverlay[] overlays = nul I ;

private bool ean initialized = fal se;

pri vat e ArrayList<ArrayList<GeotaggedimageGroup>> clusterT ree =
pri vat e ArrayList<Double> levelMinimums;

@verride
prot ect ed voi d onCreate(Bundle icicle) {
super .onCreate(icicle);

mapView = new EnhancedMapView(t hi s);
mapView.setOnLongPressListener(t hi s);
((EnhancedMapView)mapView).setOnTouchEventListe ner(t his);
controller = mapView.getController();

overlayController = mapView.createOverlayContro ller();

setContentView(mapView);

Bundle extras = getintent().getExtras();
location = (extras == null)? null :
(Location)extras.getParcelable(LOCATION);

i f (location != nul 1'){
float lat=(f | oat)location.getLatitude();
float lon=(fl oat)location.getLongitude();

nul | ;

Page 88 of 108

controller.animateTo(new Point((i nt)(lat * 21000000),

(i nt)(lon * 1000000)));
controller.zoomTo(15);
overlayController.add(new MapPinOverlay(t hi s, location.getLatitude(),
location.getLongitude()), fal se);
} el se {
/I Retrieve list of all images
imageConsumer = new ImageConsumer(t hi s);
imagelDs = imageConsumer.retrieveGeotaggedima gelDs();

/I Find zoom span
doubl e minLatitude = Double.MAX_VALUE;

doubl e maxLatitude = Double.MIN_VALUE;
doubl e minLongitude = Double.MAX_VALUE;
doubl e maxLongitude = Double.MIN_VALUE;

Location location;
f or (GeotaggedimagelD imagelD : imagelDs) {
location = imagelD.getLocation();

i f (location.getLatitude() > maxLatitude)
maxLatitude = location.getLatitude();

i f (location.getLatitude() < minLatitude)
minLatitude = location.getLatitude();

i f (location.getLongitude() > maxLongitude)
maxLongitude = location.getLongitude();

i f (location.getLongitude() < minLongitude)
minLongitude = location.getLongitude();

}

Point averagelLocation =
new Point((i nt)(((minLatitude + maxLatitude) / 2) * 1000000),

(i nt)(((minLongitude + maxLongitude) / 2) * 1000000));

controller.animateTo(averageLocation);
controller.zoomToSpan((i nt)((maxLatitude - minLatitude) * 1000000),

(i nt)((maxLongitude - minLongitude) * 1000000));

I/l Group locations
generateClusterTree(imagelDs);

}
}

@verride
public voi d onWindowFocusChanged(bool ean hasFocus) {

super .onWindowFocusChanged(hasFocus);

i f (location == nul I && hasFocus && linitialized) {
generateOverlays();
initialized = true,;
}
}
@verride
publ i ¢ bool ean onLongPress(View v, float x, float y){
ZoomDialog zoomDialog = new ZoomDialog(t hi s);
zoomDialog.setParams(0, mapView.getMaxZoomLevel 0,
mapView.getZoomLevel(), this, true);

zoomDialog.show();

return true;

Page 89 of 108

@verride
publ i ¢ bool ean onTouchEvent(MotionEvent event) {

i f (event.getAction() == MotionEvent. ACTION_UP && ove rlays 1= nul 1'){
for (inti=0;i<overlays.length; i++) {
i f (overlays[i].coversPixelCoordinate((i nt)event.getX(),
(i nt)event.getY())) {
GeotaggedimageGroup group =
(GeotaggedimageGroup)currentGroups.toAr ray(l[i];
Intent browselntent = newlintent(this, ImageBrowser. cl ass);
i nt [] imagelDs = new i nt [group.getimagelDs().size()];
int j=0;

f or (GeotaggedimagelD imagelD : group.getimagelDs()) {
imagelDs[j++] = imagelD.getimagelD();

browselntent.putExtra(ImageBrowser.IMAGE _ IDS, imagelDs);

startActivity(browselntent);
return true;

}
}
}
return fal se;
}
publ i ¢ voi d onZoomChanged(ZoomSlider zoomSilider,

i nt oldZoom, i nt newZoom){}
publ i c voi d onZoomCompleted() { }

publ i ¢ voi d onZoomIn(ZoomSlider zoomSlider, i nt oldZoom,
controller.zoomTo(newZoom);

i f (location == nul 1'){
generateOverlays();
}
}
publ i c voi d onZoomOut(ZoomSlider zoomSlider, i nt oldZoom,

controller.zoomTo(newZoom);

i f (location == nul 1) {
generateOverlays();
}
}

privat e voi d generateOverlays() {
overlayController.clear();

doubl e metersPerPixel = calculateMetersPerPixel();
doubl e threshold = metersPerPixel * MIN_SPACING;
currentGroups = findGroupsCached(threshold);

overlays = new MapPinOverlay[currentGroups.size()];
inti=0;
f or (GeotaggedimageGroup group : currentGroups) {
Location location = group.getAveragelLocation(

MapPinOverlay overlay = new MapPinOverlay(t hi s,
new Point((i nt)(location.getLatitude() * 1000000),
(i nt)(location.getLongitude() * 1000000)));
overlayController.add(overlay, fal se);

overlays[i++] = overlay;

i nt newZoom) {

i nt newZoom) {

Page 90 of 108

privat e doubl e calculateMetersPerPixel() {

/I Must use width, since the height of the View is not fully utilized
/I when zoomed out all the way. Height would be easier since 1 minute
/I of arc is defined as 1852 meters

Point mapCenter = mapView.getMapCenter();

[/ Work-around for bug in MapView
/I Reported as Android issue #736
i nt longitudeSpan;
i f (mapView.getZoomLevel() == 1) {
longitudeSpan = 360000000;
} el se{
longitudeSpan = mapView.getLongitudeSpan();

Location westBoarderLocation = new Location();
westBoarderLocation.setLatitude((doubl e)mapCenter.getLatitudeE6()
/1000000);
westBoarderLocation.setLongitude(((mapCenter.ge tLongitudeE6()
- (longitudeSpan / 2)) % 180000000) / 1000000);
Location eastBoarderLocation = new Location();
eastBoarderLocation.setLatitude((doubl e)mapCenter.getLatitudeE6()
/1000000);
eastBoarderLocation.setLongitude(((mapCenter.ge tLongitudeE6()
+ (longitudeSpan / 2)) % 180000000) / 1000000);
doubl e distance = westBoarderLocation.distanceTo(eastBoar derLocation);

doubl e metersPerPixel = distance / mapView.getWidth();

r et ur n metersPerPixel;

privat e voi d generateClusterTree(GeotaggedimagelD[] imagelDs) {

clusterTree = new ArrayList<ArrayList<GeotaggedimageGroup>>();
levelMinimums = new ArrayList<Double>();
HashMap<Integer, GeotaggedimageGroup> imagelDMa p=

new HashMap<Integer, GeotaggedimageGroup>();
i nt numimages = imagelDs.length;
doubl e[][] distanceMatrix = new doubl e[numimages][numimages];

doubl e distance;
Location locationl, location2;
ArrayList<GeotaggedlmageGroup> clusterList =
new ArrayList<GeotaggedimageGroup>();

GeotaggedimageGroup groupToCache = new GeotaggedimageGroup();
for (inti=0;i<numlmages;i++) {
imagelDMap.put(i, new GeotaggedimageGroup(imagelDsJi]));
clusterList.add(new GeotaggedimageGroup(imagelDsli]));

locationl = imagelDs]i].getLocation();
for (intj=i+1;j<numimages;j++){
location2 = imagelDs][j].getLocation();

distance = locationl.distanceTo(location2);

distanceMatrix([i][j] = distance;
distanceMatrix[j][i] = distance;

Page 91 of 108

}

clusterTree.add(clusterList);

doubl e minDistance;
i nt minDistancelD1, minDistancelD2;
do {
/I find min distance
minDistancelD1 = -1;
minDistancelD2 = -1;
minDistance = Double.MAX_VALUE;
for (inti=0;i<numimages;i++){
for (intj=i+1;j<numimages;j++){
i f (distanceMatrix[i][j] < minDistance) {
minDistance = distanceMatrix{i][j];
minDistancelD1 = i;
minDistancelD2 = j;

}
}
}
i f (minDistancelD1 >= 0 && minDistancelD2 >= 0) {
/I put content of group minDistancelD1 into group minDistancelD2
((GeotaggedimageGroup)imagelDMap.get(minDis tancelD2))
.add((GeotaggedimageGroup)imagelDMap.get(minDistancelD1));

/I remove group minDistancelD1
imagelDMap.remove(minDistancelD1);

/I set row and column minDistancelD1 to Double.MA X _VALUE
for (inti=0;i<numimages;i++){
distanceMatrix[i][minDistancelD1] = Doubl e.MAX_VALUE;
distanceMatrix[minDistancelD1][i] = Doubl e.MAX_ VALUE;
}
/I recalculate row and column minDistancelD2
for (inti=0;i<numimages;i++){
i f (i '= minDistancelD2 && distanceMatrix[i][0]
I= Double.MAX_VALUE) {
distance = ((GeotaggedimageGroup)imagel DMap
.get(minDistancelD2)).calculateMinDis tanceTo(
(GeotaggedimageGroup)imagelDMap.get M);
distanceMatrix[i][minDistancelD2] = dis tance;
distanceMatrix[minDistancelD2][i] = dis tance;
}
}
/I Loop through all groups to store in cached tree
clusterList = new ArrayList<GeotaggedimageGroup>();
f or (GeotaggedimageGroup group : imagelDMap.values()) {
groupToCache = new GeotaggedimageGroup();

f or (GeotaggedimagelD imagelD : group.getimagelDs()) {
groupToCache.add(imagelD);

}
clusterList.add(groupToCache);

clusterTree.add(clusterList);
levelMinimums.add(minDistance);
}
} whi | e (minDistancelD1 >= 0 && minDistancelD2 >= 0);

}

Page 92 of 108

pri vat e Collection<GeotaggedimageGroup> findGroupsCached(
doubl e threshold) {
i nt level;
for (level = 0; level < levelMinimums.size(); level++)
i f (threshold < levelMinimums.get(level)) {
level++;
br eak;

r et ur n clusterTree.get(level);

Page 93 of 108

MapPinOverlay.java

package no.ntnu.idi.android.imagebrowser;
i mport android.content.Context;

i mport android.graphics.Bitmap;

i mport android.graphics.BitmapFactory;

i mport android.graphics.Canvas;

i mport android.graphics.Paint;

i mport com.google.android.maps.Overlay;
i mport com.google.android.maps.Point;

publ i c cl ass MapPinOverlay ext ends Overlay {

private final android.graphics.Point PIN_HOTSPOT =
new android.graphics.Point(5,29);

pri vat e Bitmap mapPin = nul | ;
pri vat e Paint paint = nul | ;
pri vat e Point location = nul | ;

private int x=0;
private int y=0;
pri vat e android.graphics.Point screenCoord;

publ i ¢ MapPinOverlay(Context context, doubl e latitude, doubl e longitude){
mapPin = BitmapFactory.decodeResource(context.g etResources(),
R.drawable.mappin_red);
paint = new Paint();
location = new Point((i nt)(latitude * 1000000),
(i nt)(longitude * 1000000));
}
publ i ¢ MapPinOverlay(Context context, Point location) {
mapPin = BitmapFactory.decodeResource(context.g etResources(),
R.drawable.mappin_red);
paint = new Paint();
t hi s.location = location;
}
@verride

publ i ¢ voi d draw(Canvas canvas, PixelCalculator calculator,
bool ean shadow) {

super .draw(canvas, calculator, shadow);

i nt [] pixelCoord = new i nt [2];
calculator.getPointXY (location, pixelCoord);
screenCoord = new android.graphics.Point(pixelCoord[0] - PIN_HOTSPOT

pixelCoord[1] - PIN_HOTSPOT.y);

x = pixelCoord[0] - PIN_HOTSPOT.x;
y = pixelCoord[1] - PIN_HOTSPOT.y;
canvas.drawBitmap(mapPin, X, y, paint);

}
publ i ¢ bool ean coversPixelCoordinate(intx, inty){
i f (x> screenCoord.x && x < screenCoord.x + mapPin.g etWidth()
&& y > screenCoord.y && y < screenCoord.y + mapPin.getHeight()) {
return true;
}
return fal se;
}
}

Page 94 of 108

Appendix E: Source Code of ImageProvider

BitmapHelper.java

package no.ntnu.idi.android.imageprovider;

i mport android.graphics.Bitmap;
i mport android.graphics.Matrix;

public final class BitmapHelper {

/*
* Resize a bitmap to the specified scale.
* Values < 1 makes the bitmap smaller, values >
*/
publ i c static Bitmap resizeBitmap(Bitmap bitmapOrg,
i nt width = bitmapOrg.width();
i nt height = bitmapOrg.height();

Matrix matrix = new Matrix();
matrix.postScale(scale, scale);

Bitmap resizedBitmap = Bitmap.createBitmap(
width, height, matrix, true);
r et ur n resizedBitmap;

/*

* Resizes a bitmap to the specified width.

* The aspect ratio is not changed, so the new he

* pe calculated based on the provided width.

*/

publ i c static Bitmap resizeBitmap(Bitmap bitmapOrg,
i nt width = bitmapOrg.width();
i nt height = bitmapOrg.height();

fl oat scale = ((f I oat) newWidth) / width;

Matrix matrix = new Matrix();
matrix.postScale(scale, scale);

Bitmap resizedBitmap = Bitmap.createBitmap(bitm
height, matrix, true);
r et ur n resizedBitmap;

1 makes it bigger.

fl oat scale){

bitmapOrg, 0, 0,

ight will

i nt newWidth) {

apOrg, 0, 0, width,

Page 95 of 108

DatabaseHelper.java
package no.ntnu.idi.android.imageprovider;

i mpor t android.content.Context;
i mport android.database.sqlite.SQLiteDatabase;
i mport android.database.sqlite.SQLiteOpenHelper;

publ i c cl ass DatabaseHelper ext ends SQLiteOpenHelper {

private static final String DATABASE NAME = ‘"images" ;
private static final int DATABASE_VERSION = 6;

@verride
publ i ¢ voi d onCreate(SQLiteDatabase db) {

db.execSQL("CREATE TABLE images ("

"_id INTEGER PRIMARY KEY AUTOINCREMENT,"
"filename TEXT UNIQUE,"

"image_original TEXT,"

"image_screensize TEXT,"

"image_thumbnail TEXT,"

"latitude REAL,"

"longitude REAL);");

+ 4+ 4+ 4+ + + +

db.execSQL("CREATE TABLE flickr_images ("

"_id INTEGER PRIMARY KEY AUTOINCREMENT,"
"filename TEXT UNIQUE,"

"image_original TEXT,"

"image_screensize TEXT,"

"image_thumbnail TEXT,"

"latitude REAL,"

"longitude REAL);");

+ 4+ 4+ + + + +

@verride

publ i ¢ voi d onUpgrade(SQLiteDatabase db, i nt oldVersion, i nt newVersion){
db.execSQL("DROP TABLE IF EXISTS images");

db.execSQL("DROP TABLE IF EXISTS flickr_images");

onCreate(db);

publ i ¢ SQLiteDatabase openDatabase(Context context) {
r et ur n openDatabase(context, DATABASE_NAME, nul | , DATABASE_VERSION);

Page 96 of 108

FlickrPhotoHandler.java

package no.ntnu.idi.android.imageprovider;

i mport java.util.ArrayList;
i mport java.util.List;

i mport org.xml.sax.Attributes;
i mport org.xml.sax.Locator;

i mport android.location.Location;
publ i c cl ass FlickrPhotoHandler
pri vat e List<String> filenames =

pri vat e List<String> urls =
pri vat e List<Location> locations =

i mpl enent s org.xml.sax.ContentHandler {

new ArrayList<String>();
new ArrayList<String>();
new ArrayList<Location>();

publ i c voi d startElement(String uri, String localName,

String gName, Attributes atts) {
i f (gQName == "photo"){

String id = atts.getValue("id");
String secret = atts.getValue("secret");
String server = atts.getValue("server"),
String farm = atts.getValue("farm"),
String isPublic = atts.getValue("ispublic");
String latitude = atts.getValue("latitude”);
String longitude = atts.getValue("longitude”);
i f (isPublic.equals("1")N {
i f (Matitude.equals("0") && !longitude.equals("0") {
String baseUrl = "http://farm" + farm + " static.flickr.com/"
+ server + "
String filename =id + " " +secret + "jpg"
filenames.add(filename);
urls.add(baseUrl + filename);
Location location = new Location();
location.setLatitude(Double.parseDouble(l atitude));
location.setLongitude(Double.parseDouble(longitude));
locations.add(location);
}
}
}
}
publ i ¢ List<String> getFilenames() {
r et ur n filenames;
}
publ i ¢ List<String> getUrls() {
return urls;
}
publ i ¢ List<Location> getLocations() {
r et ur n locations;
}
/I Required to implement interface
public void characters(char[] ch, i nt start, i nt length){}

public void endDocument(){}

public void endElement(String uri, String localName, String

aName){}

Page 97 of 108

publ i
publ i
publ i
publ i
publ i
publ i
publ i

OO0OO0O0O00O0

voi d
voi d
voi d
voi d
voi d
voi d
voi d

endPrefixMapping(String prefix){}
ignorableWhitespace(char[] ch, i nt start,
processinglnstruction(String target, String data
setDocumentLocator(Locator locator){}
skippedEntity(String name){}

startDocument(){}

startPrefixMapping(String prefix, String uri){}

i nt length){}
It

Page 98 of 108

ImageProvider.java

package no.ntnu.idi.android.imageprovider;

i mport java.io.File;

i mport java.io.FileNotFoundException;

i mport java.io.lOException;
i mport java.io.lnputStream;

i mport java.io.OutputStream;

i mport android.content.ContentProvider;

i mpor t android.content.ContentValues;

i mport android.content.Context;

i mport android.content.Resources;

i mport android.content.UriMatcher;

i mport android.database.Cursor;

i mport android.database.sqlite.SQLiteDatabase;

i mport android.database.sqlite.SQLiteQueryBuilder;
i mport android.graphics.Bitmap;

i mport android.graphics.BitmapFactory;

i mport android.net.Uri;

public cl ass ImageProvider ext ends ContentProvider {

private static final String URI_AUTHORITY =
"no.ntnu.idi.android.imageprovider" ;

private static final

private static final
private static final
private static final
private static final
private static final

public static final
+ URI_AUTHORITY +

public static final
+ URI_AUTHORITY +

public static final
public static final
public static final
public static final
public static final

String URI_PATH = "images" ;

String FLICKR_URI_PATH = "flickr" ;
i nt URI_IMAGES = 1;

i nt URI_IMAGE_ID = 2;

i nt FLICKR_URI_IMAGES = 3;

i nt FLICKR_URI_IMAGE_ID = 4;

Uri CONTENT_URI = Uri.parse("content://"

"I" + URI_PATH);

Uri FLICKR_CONTENT_URI = Uri.parse("content://"
"I" + FLICKR_URI_PATH);

String IMAGE_ORIGINAL = "image_original" ;
String IMAGE_SCREENSIZE = "image_screensize" ;
String IMAGE_THUMBNAIL = "image_thumbnail" ;
String LATITUDE = "latitude" ;

String LONGITUDE = "longitude” ;

pri vat e UriMatcher uriMatcher;
pri vat e SQLiteDatabase db;

/*

* @returns true if the provider was successfully loaded, false otherwise

*/

@verride

publ i ¢ bool ean onCreate() {

uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
uriMatcher.addURI(URI_AUTHORITY, URI_PATH, URI_ IMAGES);
uriMatcher.addURI(URI_AUTHORITY, URI_PATH + "I#" , URIL_IMAGE_ID);
uriMatcher.addURI(URI_AUTHORITY, FLICKR_URI_PAT H, FLICKR_URI_IMAGES);
uriMatcher.addURI(URI_AUTHORITY, FLICKR_URI_PAT H+ ",

FLICKR_URI_IMAGE_ID);

DatabaseHelper dbHelper = new DatabaseHelper();
db = dbHelper.openDatabase(getContext());

Page 99 of 108

return(db==null)? false: true;

@verride
publ i c int delete(Uri uri, String selection, String[] selecti onArgs) {
returnO;

@verride
publ i ¢ String getType(Uri uri) {
swi t ch (uriMatcher.match(uri)) {
case URI_IMAGES:
ret urn "vnd.android.cursor.dir/vnd.ntnu.image" ;
case URI_IMAGE_ID:
ret urn "vnd.android.cursor.item/vnd.ntnu.image” ;
defaul t:
t hr ow new lllegalArgumentException("Unknown URI: " + uri);

@verride
publ i ¢ Uriinsert(Uri uri, ContentValues values) {
return null;

@verride
publ i ¢ Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();

swi t ch (uriMatcher.match(uri)) {
case URI_IMAGES:
gueryBuilder.setTables((String)getContext()
.getResources().getText(R.string.db_table)) ;
br eak;
case URI_IMAGE_ID:
gueryBuilder.setTables((String)getContext()
.getResources().getText(R.string.db_table)) ;
gueryBuilder.appendWhere(" id=" + uri.getPathSegments().get(1));
br eak;
case FLICKR_URI_IMAGES:
gueryBuilder.setTables((String)getContext()
.getResources().getText(R.string.flickr_db_ table));
br eak;
case FLICKR_URI_IMAGE_ID:
gueryBuilder.setTables((String)getContext()

.getResources().getText(R.string.flickr_db_ table));
gueryBuilder.appendWhere(" id=" + uri.getPathSegments().get(1));
br eak;
defaul t:
t hr ow new lllegalArgumentException("Unknown URI: " + uri);
}
Cursor cursor = queryBuilder.query(db, projecti on, selection,
selectionArgs, nul |, null, sortOrder);

ret urn cursor;

@verride
publ i c i nt update(Uri uri, ContentValues values, String selec tion,

Page 100 of 108

String[] selectionArgs) {
returnQO;

Page 101 of 108

ProviderController.java

package no.ntnu.idi.android.imageprovider;

i mport
i mport
i nport
i mport
i mport
i mport
i mport
i nport
i mport
i mport
i mport
i mport
i nport
i mport
i mport

i mport
i nport
i mport
i mport
i mport
i mport
i nport
i mport

i mport
i mport
i nport
i mport
i mport
i mport
i mport
i nport
i mport
i mport
i mport
i mport
i nport

java.io.BufferedOutputStream;
java.io.BufferedReader;
java.io.ByteArrayOutputStream;
java.io.File;
java.io.FilelnputStream;
java.io.FileNotFoundException;
java.io.FileOutputStream;
java.io.|OException;
java.io.InputStream;
java.io.InputStreamReader;
java.io.OutputStream;
java.net.HttpURLConnection;
java.net.MalformedURLEXxception;
java.net.URL;

java.util.List;

org.cmc.sanselan.ImageReadException;
org.cmc.sanselan.ImageWriteException;
org.cmc.sanselan.Sanselan;
org.cmc.sanselan.formats.jpeg.JpeglmageMetadata;
org.cmc.sanselan.formats.jpeg.exifRewrite.ExifRewr
org.cmc.sanselan.formats.tiff. TiffmageMetadata;
org.cmc.sanselan.formats.tiff.write. TiffOutputSet;
org.xml.sax.SAXException;

android.app.Activity;
android.content.Context;
android.database.Cursor;
android.database.sqlite.SQLiteDatabase;
android.graphics.Bitmap;
android.graphics.BitmapFactory;
android.location.Location;
android.os.Bundle;
android.util.Xml;
android.view.Menu;
android.view.Menu.ltem;
android.widget. TextView;
android.widget.Toast;

publ i c cl ass ProviderController ext ends Activity {

private static final int MENU_RESCAN =1,
private static final int MENU_FLICKR =2;

private static final int THUMBNAIL WIDTH = 60;
private static final int SCREENSIZE_WIDTH = 320;

pri vat e SQLiteDatabase db;
TextView counterTextView;

@verride
prot ect ed voi d onCreate(Bundle icicle) {
super .onCreate(icicle);

DatabaseHelper dbHelper = new DatabaseHelper();
db = dbHelper.openDatabase(thi s);
counterTextView = new TextView(this);

iter;

Page 102 of 108

setContentView(counterTextView);

updateCounter();

}
@verride
publ i ¢ bool ean onCreateOptionsMenu(Menu menu) {
menu.add(0, MENU_RESCAN, "Rescan image folder");
menu.add(0, MENU_FLICKR, "Rescan flickr");

return super.onCreateOptionsMenu(menu);

}

@verride

publ i ¢ bool ean onOptionsltemSelected(ltem item) {
i f (item.getld() == MENU_RESCAN) {
loadimagesFromFile();

updateCounter();
Toast.makeText(this, "Done!" , Toast.LENGTH_SHORT).show();

} el se if (item.getld() == MENU_FLICKR) {
loadimagesFromFlickr();

Toast.makeText(this, "Done!" |, Toast.LENGTH_SHORT).show();
}
return super .onOptionsltemSelected(item);
}
privat e voi d updateCounter() {
Cursor cursor = db.query("images" , new String[|{ "id" }, null,
null, null, null, null);
counterTextView.setText("Number of images in DB: " + cursor.count());
}
privat e voi d loadimagesFromFile() {
/I Get a list of all files in the subdirectory call ed images
File imagesDirectory = t hi s.getDir((String)getResources()
.getText(R.string.images_directory), Context. MODE_PRIVATE);
File thumbnailsDirectory = t hi s.getDir((String)getResources()
.getText(R.string.thumbnails_directory), Cont ext.MODE_PRIVATE);

File[] dirFiles = imagesDirectory.listFiles();

/I Get a list of all images in db
Cursor cursor =

db.query((String)getResources().getText(R.str ing.db_table),
new String[|{ "filename" '}, null, null, null, null, null);
i nt numRows = cursor.count();
String[] dbFilenames = new String[numRows];
i nt filenameColumn = cursor.getColumnindex("filename");
i f (cursor.first()) {
inti=0;
do {
dbFilenames[i++] = cursor.getString(filenam eColumn);
} whi | e (cursor.next());
}

bool ean found;
/I For each file in the subdirectory called images
for (File file : dirFiles) {
found = fal se;
for (inti=0;i<numRows;i++){
/it (filename.equals(dbFilenames]i])) {

Page 103 of 108

i f (file.getName().equals(dbFilenames]i])) {
found = true;
br eak;

/I if file doesn't exist in db

i f (ffound) {
/I Make thumbnail and store in a subdirectory calle d thumbnails
try{
String filename = file.getName();
String thumbnailFilename = filename.subst ring(O0,
filename.lastindexOf(o)+ " _thumb.jpg"
String screensizeFilename = filename.subs tring(0,
filename.lastindexOf("))+ " _screen.jpg" ;
InputStream inputStream = new FilelnputStream(file);
Bitmap bitmap = BitmapFactory.decodeStrea m(inputStream);
inputStream.close();
inputStream = new FilelnputStream(file);
Double latitude = nul | ;
Double longitude = nul | ;
try{
JpeglmageMetadata metadata = (Jpeglmage Metadata)Sanselan
.getMetadata(inputStream, filename);
i f (metadata != nul 1) {
TifflmageMetadata exif = metadata.get Exif();
i f (exif!= nul 1) {
TifflmageMetadata.GPSInfo gpsinfo = exif.getGPS();
i f (gpsinfo != nul 1) {
latitude = gpsinfo.getLatitudeAsD egreesNorth();
longitude = gpsinfo.getLongitudeA sDegreesEast();
}
}
}

cat ch (ImageReadException ire) {
cat ch (IOException ioe) {

e

nputStream.close();

Bitmap thumbnail = BitmapHelper.resizeBit map(bitmap,
THUMBNAIL_WIDTH);

File thumbnailFile = new File(thumbnailsDirectory,
thumbnailFilename);

OutputStream outputStream = new FileOutputStream(thumbnailFile);

thumbnail.compress(Bitmap.CompressFormat. JPEG, 100,
outputStream);

outputStream.close();

thumbnail = nul | ;

Bitmap screensize = BitmapHelper.resizeBi tmap(bitmap,
SCREENSIZE_WIDTH);

File screensizeFile = new File(thumbnailsDirectory,
screensizeFilename);

outputStream = new FileOutputStream(screensizeFile);

screensize.compress(Bitmap.CompressFormat JPEG, 100,
outputStream);

outputStream.close();

screensize = nul | ;

Page 104 of 108

bitmap = nul | ;

/I Add new row to db
db.execSQL("INSERT INTO "
+ (String)getResources().getText(R.stri
+ "(filename, "

+ ImageProvider.IMAGE_ORIGINAL + "

+ ImageProvider.IMAGE_SCREENSIZE +

+ ImageProvider.IMAGE_THUMBNAIL + o

+ ImageProvider.LATITUDE + "

+ ImageProvider.LONGITUDE + ") VALUES(™

ng.db_table)

+ filename + , + imagesDirectory.getAbsolutePath() +

+ filename + ,
+ thumbnailsDirectory.getAbsolutePath()
+ screensizeFilename + ,
+ thumbnailsDirectory.getAbsolutePath()
+ thumbnailFilename + "

+ ((latitude == null)? “nul™ : ™

+ ((longitude == nul 1)? "null"

+)

} cat ch (FileNotFoundException e) {
conti nue;

} cat ch (IOException ioe) {
conti nue;

privat e voi d loadimagesFromFlickr() {

+ o

+ "M

+ latitude + ™)+
+ longitude + ")

File imagesDirectory = t hi s.getDir((String)getResources()

.getText(R.string.flickr_images_directory),
Context. MODE_PRIVATE);

File thumbnailsDirectory = t hi s.getDir((String)getResources()

.getText(R.string.flickr_thumbnails_directory
Context. MODE_PRIVATE);

String urlString =
"http://api.flickr.com/services/rest/?method=flickr
&per_page=500&extras=geo&date=2008-05-26&api_key="

+ getResources().getText(R.string.flickr_API_

try{
URL url = new URL(urlString);

HttpURLConnection connection =
(HttpURLConnection)url.openConnection();
i f (connection.getDolnput()) {
InputStream is = connection.getinputStream(

BufferedReader br = new BufferedReader(new InputStreamReader(is));

StringBuilder sb = new StringBuilder();
String line;
whi | e ((line = br.readLine()) != nul 1'){
sh.append(line);
}

br.close();

Xml result = new Xml();

),

.interestingness.getList

key);

);

FlickrPhotoHandler handler = new FlickrPhotoHandler();

result.parse(sb.toString(), handler);

||/u

Page 105 of 108

List<String> filenames = handler.getFilenam
List<String> urls = handler.getUrls();
List<Location> locations = handler.getLocat

i f (urls.size() = locations.size())
return;

for (inti=0;i<urls.size();i++) {
String filename = filenames.get(i);
String imageUrl = urls.get(i);
Location location = locations.get(i);

String thumbnailFilename = filename.subst
filename.lastindexOf()+

String screensizeFilename = filename.subs
filename.lastindexOf()+

url = new URL(imageUrl);
connection = (HttpURLConnection)url.openC
i f (connection.getDolnput()) {
is = connection.getlinputStream();

es();

ions();

ring(0,
"_thumb.jpg" ;
tring(0,
_screen.jpg” ;

onnection();

TiffOutputSet outputSet = new TiffOutputSet();

outputSet.setGPSInDegrees(location.getL
location.getLatitude());
ByteArrayOutputStream baos =

ongitude(),

new ByteArrayOutputStream();

new ExifRewriter().updateExifMetadatalL ossless(is, baos ,

outputSet);
is.close();

File imageFile = new File(imagesDirectory, filename);

OutputStream outputStream =

new FileOutputStream(imageFile);

byt e[] imageBytes = baos.toByteArray();

baos = nul | ;
outputStream.write(imageBytes);
outputStream.close();

Bitmap bitmap = BitmapFactory.decodeByt
imageBytes.length);
imageBytes = nul | ;

Bitmap thumbnail = BitmapHelper.resizeB
THUMBNAIL_WIDTH);

eArray(imageBytes, 0,

itmap(bitmap,

File thumbnailFile = new File(thumbnailsDirectory,

thumbnailFilename);

outputStream = new FileOutputStream(thumbnailFile);

thumbnail.compress(Bitmap.CompressForma

outputStream);
outputStream.close();
thumbnail = nul | ;

Bitmap screensize = BitmapHelper.resize
SCREENSIZE_WIDTH);

t.JPEG, 100,

Bitmap(bitmap,

File screensizeFile = new File(thumbnailsDirectory,

screensizeFilename);

outputStream = new FileOutputStream(screensizeFile);

screensize.compress(Bitmap.CompressForm
outputStream);

outputStream.close();

screensize = nul | ;

at.JPEG, 100,

Page 106 of 108

(S N S W W)

bitmap = nul | ;

db.execSQL("INSERT INTO "
+ (String)getResources().getText(R.st ring.flickr_db_table)
+ "(filename, "
+ ImageProvider.IMAGE_ORIGINAL + "
+ ImageProvider.IMAGE_SCREENSIZE + "
+ ImageProvider.IMAGE_THUMBNAIL + "o
+ ImageProvider.LATITUDE + "

+ ImageProvider. LONGITUDE + ") VALUES(™

+ filename + + imagesDirectory.getAbsolutePath()
+ "I" + filename +

+ thumbnailsDirectory.getAbsolutePath o+ "M

+ screensizeFilename +

+ thumbnailsDirectory.getAbsolutePath o+ "M

+ thumbnailFilename + "

+ ((location == nul1)? "null "+ location.getLatitude()
+)+ N

+ ((location == null)? "null"

+ location.getLongitude() + Y+)

cat ch (MalformedURLException mue) {
cat ch (IOException ioe) {

cat ch (SAXException se) {

cat ch (ImageReadException ire) {

cat ch (ImageWriteException iwe) {

Page 107 of 108

	Title Page
	Problem Description
	Report

