
July 2008
Svein-Olaf Hvasshovd, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Using the Geographical Location of
Photos in Mobile Phones

Jon Anders Amundsen

Problem Description
The task is to explore different usages of geotagged photos and investigate how suitable they are
for mobile devices. The new Android mobile platform should be examined to see how suitable it is
as a platform for applications that involve geotagging. Prototypes of applications using geotagged
photos should be implemented using the Android platform. A small user study should preferably
be carried out using the prototypes to examine if people find it interesting to use location for
enhancing the functionality when browsing photo collections on mobile phones.

Assignment given: 15. January 2008
Supervisor: Svein-Olaf Hvasshovd, IDI

Abstract
Digital cameras in mobile phones have become very popular in the recent years, and it is
common to have large photo collections stored in the phone. Organizing these photos on the
phone is still a big problem though. This study explores different ways of utilizing the
location of where the photos were taken to make it easier to manage a large photo collection.
Several different positioning technologies that can be used to obtain the location of where a
photo was taken are presented.

Three of the application suggestions for using location information of photos were
implemented as prototypes on the Android platform. Android is a new platform for mobile
phones developed by Google and the Open Handset Alliance, which has been made available
as a preview release for developers. A part of this study was to investigate how suitable this
platform is for developing location-based software. It was found that it is very suitable,
although there still are some bugs and missing features that are expected to be fixed before the
final release.

The three application prototypes that were implemented were called “From Photo to Map”,
“From Map to Photos” and “Who Lives Here?” The “From Photo to Map” application lets the
user see a map where the location of a selected photo is visualized with a marker. The “From
Map to Photos” application shows a map with markers at all of the locations where the user
has taken photos. When one of the markers is selected, the photos taken at that location is
shown. The “Who Lives Here?” application lets the user know which of the persons in his
contact list that lives where the photo was taken.

A small user survey showed that the participants thought all of the applications could be
useful, but they were not so sure if they would use them themselves. The survey also showed
that most of the users were able to find photos faster when using map-based browsing in the
“From Map to Photos” application than when browsing through a photo collection linearly,
but several concerns about the implementation details and the use of an emulator make the
exact efficiency gain very uncertain.

I would like to thank my supervisor Svein-Olaf Hvasshovd for his cooperation while working
on this study. I would also like to thank the participants of the user survey for their
cooperation.

Jon Anders Amundsen
Trondheim, 11 July, 2008

 Page 1 of 108

Contents

1 Introduction .. 4
2 State of the Art ... 5

2.1 Geotagging ... 5
2.2 Reference Systems for Coordinates on Earth... 5
2.3 Methods for Obtaining Location Information.. 6

2.3.1 Manual.. 7
2.3.2 Cell-ID.. 7
2.3.3 GPS... 8
2.3.4 AGPS.. 9
2.3.5 WLAN.. 11

2.4 Related Research on Geotagged Photos... 12
2.4.1 World Wide Media eXchange.. 12
2.4.2 PhotoCompas ... 13
2.4.3 MediAssist.. 14
2.4.4 GeoFoto.. 14

2.5 PC Software for Geotagging .. 15
2.5.1 Flickr .. 15
2.5.2 Services from Google... 15
2.5.3 Microsoft Pro Photo Tools ... 16

2.6 Mobile Phone Software for Geotagging... 16
2.7 Summary .. 16

3 Android... 18
3.1 History.. 18
3.2 Android Developer Challenge.. 19
3.3 System Architecture ... 19
3.4 Developing Applications for Android.. 21
3.5 SQLite .. 23
3.6 Dalvik Virtual Machine.. 25
3.7 Security... 26
3.8 The Emulator.. 26
3.9 Summary .. 28

4 Applications of Geotagged Photos... 29
4.1 From Photo to Map .. 29
4.2 From Map to Photos... 30
4.3 Who Lives Here?.. 33

4.3.1 Phone Directory.. 34
4.3.2 Social Networking Websites .. 34

4.4 From Contact List to Photos... 35
4.5 Social Gathering Places.. 35
4.6 Current Location .. 36
4.7 Same Location as Other Photos ... 36
4.8 Related Geotagged Information ... 36
4.9 Navigation to Photo Location .. 37
4.10 Summary .. 38

5 Methodology .. 39
5.1 Problem Elaboration... 39
5.2 Implementation of Prototypes .. 39

5.2.1 Challenges of Mobile Development... 39

 Page 2 of 108

5.2.2 Using the Android Emulator .. 40
5.2.3 Storing and Accessing Location Information in Image Files........................... 41
5.2.4 Creation of a Geotagged Photo Collection... 44
5.2.5 Implementation of a Location-Aware Image Browser..................................... 44
5.2.6 Implementation Details of “From Photo to Map”.. 47
5.2.7 Implementation Details of “From Map to Photos” .. 49
5.2.8 Implementation Details of “Who Lives Here?” ... 52

5.3 User Survey.. 54
5.4 Summary .. 55

6 Results .. 56
6.1 Experiences from Using the Android SDK.. 56
6.2 Answers from the User Survey .. 57
6.3 Efficiency of Map-Based Browsing... 57

7 Conclusion.. 60
8 Further Work .. 61
9 References .. 62
Appendix A: User Survey – Original Norwegian version ... 65
Appendix B: User Survey – English translation .. 67
Appendix C: User Survey – Results... 69
Appendix D: Source Code of ImageBrowser... 71
Appendix E: Source Code of ImageProvider... 95

 Page 3 of 108

List of figures

Figure 3.1: The layered architecture of the Android platform. .. 20
Figure 3.2: Client/server model in the same computer. ... 24
Figure 3.3: Client/server model using two different computers... 24
Figure 3.4: The embedded model, used by SQLite.. 24
Figure 3.5: The GUI of the Android emulator running on Windows XP. 27
Figure 3.6: The image returned by the camera driver in the Android emulator. 28
Figure 4.1: 12 objects clustered into three clusters by using two parameters..........................31
Figure 4.2: Hierarchical clustering of four objects. ... 32
Figure 5.1: Execution time for reading coordinates of 100 geotagged photos. 42
Figure 5.2: Database table used to store location information of geotagged photos. 43
Figure 5.3: Screenshot of the image browser... 45
Figure 5.4: Screenshot showing the context menu of the image browser................................ 46
Figure 5.5: Screenshot of the map with a point marker. .. 47
Figure 5.6: Screenshot showing the zoom controller of the map... 48
Figure 5.7: From Map to Photos, showing the whole world.. 49
Figure 5.8: From Map to Photos, showing a country... 50
Figure 5.9: From Map to Photos, showing a city. .. 51
Figure 5.10: Who Lives Here?, showing two contacts.. 53
Figure 6.1: Search time by using map-based vs linear browsing... 58
Figure 6.2: Average search times for map-based and linear browsing.59

 Page 4 of 108

1 Introduction
Digital cameras built into mobile phones have become very popular in the recent years. A lot
of mobile phone users have built up large photo collections on their phones, since they always
carry this camera with them. These photos will often be uploaded to a PC for viewing and
sometimes archiving, but they may also be viewed and stored on the phone itself. The storage
space and screen size of mobile phones are constantly increasing and opens new possibilities
for what can be done on a mobile phone. Photo collections may be browsed by time and date
or other metadata, they may be sorted into events or categorized into other kinds of groups.
This kind of manual categorization is a very laborious task though, especially for large photo
collections. It is also even harder to do on a mobile phone than on a regular PC. It is therefore
desirable to have the photo collection automatically organized, so the manual categorization is
less needed.

Until the last couple of years, map-based navigation and other uses of location-based data
have not been practical on mobile phones, but this is changing. Larger screens, more powerful
processors, better network connectivity and other built-in sensors are moving the limits of
which kinds of applications that are feasible on a mobile phone. This can also be used to find
new ways of interacting with photo collections on the phone. The focus of this study has been
to explore different ways in which the location of where a photo was taken can be utilized to
aid the mobile phone user in browsing a photo collection. This was stated more specific in the
following problem definition for this study:

“The task is to explore different usages of geotagged photos and investigate how
suitable they are for mobile devices. The new Android mobile platform should be
examined to see how suitable it is as a platform for applications that involve
geotagging. Prototypes of applications using geotagged photos should be implemented
using the Android platform. A small user study should preferably be carried out using
the prototypes to examine if people find it interesting to use location for enhancing the
functionality when browsing photo collections on mobile phones.”

Some background and related research on using the location information of photos will be
presented in chapter 2. The Android platform will be described in detail in chapter 3. Chapter
4 will cover several different ways of utilizing the location information of photos, while
chapter 5 will describe how some of these ways was implemented, as well as describe the user
study that was carried out. The results of the study will be discussed in chapter 6, and the
conclusion is presented in chapter 7. There are also some suggestions of more research that
should be done on the basis of this study presented in chapter 8.

 Page 5 of 108

2 State of the Art
The usage of the location information in photos is an area that has received an increasing
amount of attention in the recent years. This chapter gives an introduction to the concept of
geotagging and the most relevant technology involved, present the main research on the topic
and review some of the available software for geotagging.

2.1 Geotagging
A geotagged object is an entity that has some metadata attached to it which describes the
object’s geographic location. In the case of a geotagged photo, the metadata describes the
location of where the picture was taken. In its most basic form geotagging is not a new
concept. Something as simple as writing “Vacation in Paris” or “At the family cabin” next to
a photo in an old fashioned photo album can be regarded as a kind of geotagging. The idea of
geotagging is therefore almost as old as photography itself, even though the word geotagging
is relatively new. This very simple form of geotagging is of course useful, but with the help of
modern technology a whole new world of opportunities arises.

The description of a location may be given in several different ways. As mentioned in [2],
these may include commonly understood place names like Paris or the Nidaros cathedral. It
may be personal place names like “the family cabin” or “my house”, or it may be an address
or a zip code. A location may also be described as coordinates. The most common kind of
coordinates used to describe locations on the surface of the earth is latitude and longitude, and
altitude above mean sea level is also often added. Other coordinate systems, like the (x, y, z)
coordinates of a three dimensional Cartesian coordinate system relative to a specified origin
may also be used. These kinds of coordinates are usually not as useful though, and therefore
not as common. There are other ways of describing location also, but these are the most
common.

Place names are often the easiest way of describing a location when humans are
communicating with each other. If you ask your friends to meet you at “Marinen” to have a
barbeque, it will be easy for them to understand where it is, given that they are familiar with
the Trondheim area. For computers, on the other hand, place names may be difficult to
interpret, so a numerical description like latitude and longitude would be much more useful.
But if you asked your friends to meet you at 63° 25’ 30’’ N, 10° 23’ 45’’ E you might easily
end up eating alone.

In the rest of this study the latitude and longitude representation of a location is being used,
since the study concerns the usage of location information on a mobile device, which is a kind
of portable computer.

2.2 Reference Systems for Coordinates on Earth
The use of latitude and longitude may seem like a very unambiguous way of describing a
location, but it may in fact not be. Several different reference systems have been used
throughout the world to define coordinates, and they are not completely compatible with each
other. The reason for this is that until the latest few decades accurate maps were mostly made
for a small area of the earth, and therefore models of the earth that best approximated that
specific area was used. The earth is an irregular shape, so a model that is very accurate for one

 Page 6 of 108

part may be less accurate for other parts. Examples of such models that have been in use are
the North American Datum, European Datum and Tokyo Datum. The difference between
locations described using the different models may be as much as a kilometer. Eventually the
need for a global reference system for coordinates grew, and in 1966 the first version of the
World Geodetic system was defined. The latest version of this system is currently the World
Geodetic system 1984 (WGS84). This is the reference system currently used by the GPS
system.

WGS84 [3] is a model of the earth, published by the National Imagery and Mapping Agency,
which is a part of the US Department of Defence. The model defines a reference frame for a
coordinate system for describing positions on the earth. It defines the shape of the earth as an
approximation of an ellipsoid with a semi-major axis (equatorial radius) of 6378137.0 meters
and a semi-minor axis (polar radius) of 6356752.3142 meters.

The GPS system uses the WGS84 reference system to define latitude and longitude. Since this
is the most common way of getting the coordinates of a location, this have also become the
most common way of describing a location numerically. In most new maps and in
Geographic Information Systems (GIS) applications it can be expected that WGS84 is used as
the reference system for coordinates, unless otherwise stated. Thus, WGS84 is also the
reference system used in this study.

2.3 Methods for Obtaining Location Information
There are a number of different methods for obtaining the location information that is needed
when a photo is to be geotagged. It can be done manually, and it can be done automatically
using several different technologies. Most of the common technologies used for automatically
obtaining location can be described as either stand-alone, satellite-based, or terrestrial radio-
based (Mobile Phone Location Determination and Its Impact on Intelligent Transportation
Systems). A common example of a stand-alone system is dead reckoning, i.e. using sensors to
track movement. An example of a dead reckoning system is to estimate the position of a
vehicle moving from a known starting point using an odometer and a compass. The most
common satellite-based system for obtaining location is the Global Positioning System (GPS),
which is described in section 2.3.3. An example of a terrestrial radio-based system is
LORAN-C [4], which consists of radio-towers transmitting navigation signals to ships,
aircrafts and others. It is an old system, which has become less popular because of GPS.
Although there are lots of different systems for obtaining location, only the ones that are
applicable for mobile phones will be discussed in this study.

One of the aspects of geotagging that must be defined is whether to store the location of
where the camera was when taking the picture or the location of what you can see in the
picture. If a vague description of location was used, like the name of the city where the photo
was taken, this is usually not an issue. But when using coordinates like latitude and longitude
the distance between the camera and the objects in the photo may be much greater than the
precision of the location information, and the photo may also cover a large area with several
objects far away from each other. If the photo is geotagged manually, then it would usually be
easy to define the location of one single object seen in a photo, but when there are several
significant objects in a photo it might be hard to decide which object to choose. There is also
currently no good way of doing this kind of geotagging automatically. Therefore, because of
these complications, only the location of the camera will be considered in this study. The
location of the camera can relatively easy be automatically obtained from a positioning

 Page 7 of 108

system built into the camera or located close to the camera. Manually deciding the location of
the camera is also usually not much harder than deciding the location of an object that you
can see in the photo.

2.3.1 Manual
Probably the most basic way of determining the latitude and longitude of where a photo was
taken is to find the location on a map and manually read off the latitude and longitude. This
can be done using an old fashioned printed map, or using an electronic map. There are several
computer programs available to help in this process, where you can browse through your
photo collection and click on a map to indicate where the photo was taken, or even just drag
and drop the photo onto a map. The software will then store the location information for later
use. Some applications that can be used for this task is described later in this chapter.

Even though this is the simplest approach to geotagging, it has several disadvantages. Firstly,
it is a very laborious task that may take a lot of time if the photo collection is large. It is
unlikely that most users will think that it is worth the time and effort required to do this work,
at least not over time. There is also likely that human errors will occur from time to time, for
instance reading the map wrong or not being able to find the location on a map at all. Another
problem is that people may forget where a picture was taken, especially if there is a long time
between taking the picture and geotagging it. For example if a user has been on a long trip,
e.g. a round trip in China, and has been taking a lot of pictures during the trip, the
photographer may not remember the exact location of where all of the pictures was taken
when he comes back home.

2.3.2 Cell-ID
One of the least accurate ways of automatically obtaining the location of a mobile phone is to
use the cell-ID of the base station the phone is currently connected to. This location technique
has been reviewed in [5]. The idea is to use the location of the base station as an
approximation of the phone’s actual location, instead of finding the exact location of the
phone itself. The accuracy of this approximation is proportional to the size of the network
cells, i.e. the reach of each base station in the network. The cell size varies wildly as it
depends on the population density in the area. An area with lots of people needs more base
stations than areas with few people, and therefore the cell size is much smaller in urban than
in rural areas. The accuracy in urban areas can be down to a few hundred meters, while the
accuracy in rural areas will often be as high as several kilometers.

The biggest problem of implementing a positioning system based on cell-ID is that there is no
public database that describes the location of all the base stations available. All base stations
have a globally unique identifier, and it is available to software running on mobile phones, but
only the mobile operators have access to databases that map these identifiers to the exact
location of their own base stations. Some operators can provide location based on cell-ID as a
service to customers, but it is usually not a free service. It would be a lot of work and
probably very expensive to gain access to these services for applications that are meant to be
deployed globally, since a very high amount of operators would have to be involved. These
services are probably not available from all operators either. Another method of obtaining the
locations of the base stations is to use publicly available databases that are being maintained
by companies and organizations that see the benefits of a cheap positioning system being
available all over the world. Using these databases will achieve lower coverage and accuracy,

 Page 8 of 108

but they are available for free. The databases are built by a community of users who have both
mobile phones and GPS receivers. Areas are then mapped out by uploading GPS positions of
where they are located together with the cell-ID of the base station that their mobile phone is
currently connected to. The approximation of each base station’s location gets better as the
number of observations grow. This kind of community-built databases are available in Google
Maps Mobile, in a service called My Location [6], in the Yahoo! ZoneTag Cell Location API
[7], in CellDB [8], GSMLoc [9] and CellSpotting.com [10].

The element that makes this positioning method attractive is that it does not require any
additional hardware at neither the mobile phone network nor the phone itself, and it can
therefore be very cheap to deploy. Unfortunately, the accuracy is very low and unpredictable,
so this is not an ideal location technology for use in a geotagging application.

2.3.3 GPS
The Global Positioning System (GPS) [11][12][13] is a satellite-based positioning system that
provides three-dimensional positioning and accurate time to GPS users all over the world at
all times. The system was developed by the United States Department of Defense, and is
currently being maintained by the Global Positioning Systems Wing in the US Air Force.

The US Department of Defense started the research on a satellite-based positioning system
already in the late 1950s, but getting from there to a fully functional system took a long time.
The first GPS satellite was launched in 1978. Full Operational Capability was not declared
until 1995 [14].

The system was designed to need at least 24 operational satellites to be functional all over the
globe at all times. There are currently 31 operational GPS satellites in orbit, which provides
for better accuracy and better fault tolerance of the system in case of failing satellites. All the
GPS satellites contain atomic clocks that are synchronized to be able to keep time as accurate
as possible. Each satellite is constantly transmitting its current time and information about its
orbit in addition to other information about the satellite towards the earth.

A GPS receiver will calculate its own position based on the radio signals it receives from the
satellites. Even though the clocks on all the satellites are synchronized, the GPS receiver will
still see small differences in the timing information received from the different satellites. This
is because the time that the signal needs to travel from a satellite to a GPS receiver is
dependant on the distance between the satellite and the receiver. The exact position of the
GPS receiver can be calculated using trigonometry when the positions of the satellites are
known in addition to the distances between the satellites and the receiver. The clock of a GPS
receiver can not be expected to be accurate and synchronized with the GPS satellites. It is
therefore necessary to solve a set of equations to find not only the three dimensional position
of the receiver, but also the exact time. The position can not be calculated accurately without
the time also being accurate. A GPS receiver needs signals from at least four different GPS
satellites to be able to calculate the three dimensional position plus the time dimension. If
signals from more satellites are available, these will be used to achieve better accuracy.

The GPS satellites broadcast navigation signals on two different frequencies. One is publicly
available to anyone who buys a GPS receiver. The other one is encrypted and only available
to the US military.

 Page 9 of 108

Better and more accurate GPS receivers are constantly being developed. Some of the newer
receivers, like the SiRFstarIII GSC3e/LP chip [15], can achieve an accuracy of less than 2.5
meters. According to [16], the theoretical limit for the accuracy of GPS is just a few
centimeters.

The GPS system is a good system for obtaining the users current location, but it also has
several drawbacks. One significant drawback is that the signals sent from the satellites are not
very strong. Therefore the GPS receiver needs a nearly clear view to the area of the sky where
the satellite is located to be able to receive the signal. This means that GPS receivers will
usually not work inside buildings. When used in cars they have to be placed in one of the
windows or use an external antenna, and they do not work inside tunnels. A work-around for
car navigation systems in tunnels is to estimate the actual position inside tunnels based on the
speed of the car before going into the tunnel and the time since the signal was lost. This is a
kind of dead reckoning system. Another drawback is that GPS receivers have been known for
giving wrong positions or no position at all when used in urban areas with lots of tall
buildings or close to a tall rock wall. There are two reasons for this. The first is because a very
small area of the sky is visible. It is therefore hard for the GPS receiver to receive any signals.
The other reason is that the signal from the satellites gets bounced off the walls of the tall
buildings before reaching the GPS receiver. This effect is called multipath. It causes the time
measured for the signal traveling from the satellite to the receiver to be a bit longer than it
would be if it went in a straight line. The GPS receiver may also receive the same signal more
than once in this situation. Newer GPS receivers have become much better at tackling such
difficult conditions, but some areas still cause problems.

A problem with GPS that is particularly important when the receiver is embedded in mobile
phones is that the time it takes before the system can determine its location the first time after
starting the receiver, called time-to-first-fix, can be very long. This can be from around 30
seconds to as much as several minutes [17]. When the GPS receiver knows nothing about
which satellites are visible, it has to scan a large frequency range before actually finding a
valid signal. It then has to download a description of each satellites orbit and position, called
the ephemeris. This is a very slow transmission, only 50 bits/second. When this first
initialization is done, the calculation of new locations can be done continually. The problem
for mobile phones is that if the GPS receiver is running constantly, it would drain the battery
very fast. The receiver therefore usually has to be started and re-initialized each time the user
requires the location.

Two different kinds of GPS receivers may be used for automatic geotagging of photos: stand-
alone or integrated in the camera device, which may be a mobile phone. A stand-alone GPS
receiver can be used to record a timestamped track log of where the photographer has been
while taking the photos. Most digital cameras store a timestamp integrated in the image files.
Therefore when the images are transferred to a computer, the timestamps can be compared to
the timestamps in the track log from the GPS to find the photo location. If the GPS receiver is
integrated in the camera device, the location data can be stored directly in the EXIF header of
the image file, and no post processing is necessary.

2.3.4 AGPS
Assisted GPS (AGPS) is a system that has been developed to solve some of the problems with
integrating GPS receivers in mobile phones. The most important task of AGPS is to reduce
the time-to-first-fix. This is both necessary to make a location aware system more user

 Page 10 of 108

friendly, but also to reduce the battery consumption. The system is based on GPS, but it
utilizes the mobile phone network to enhance the performance.

The orbital positions of the navigation satellites are described in two different ways in the
GPS system, called almanac and ephemeris. The almanac provides a very rough description
of the position, whereas the ephemeris is used to calculate the exact satellite position. If an
updated almanac is available when the GPS receiver starts up, it can instantly start receiving
on the correct frequency. However the exact frequency that the GPS signals can be received
on is dependent on the satellites positions, so in the absence of an updated almanac a
frequency range of +/- 4.2 kHz must be scanned [18]. When the exact frequency is found, the
ephemeris data has to be downloaded from one of the satellites on a 50 bits/second rate before
the receivers exact location can be calculated.

In AGPS there are stationary GPS receivers that are always on and therefore always have
updated information of the GPS satellites exact location. These receivers are connected to
location servers, which are also connected to the mobile phone network. When an AGPS
receiver is turned on it does not have to scan the frequency range and download the orbital
positions from the satellites, instead this data can be downloaded from one of the location
servers in the mobile phone network. There are several different standards for mobile phone
networks, with a wide variety of transmission rates, but all mobile phone networks provides
transmission rates that are much higher than the 50 bits/second received from the GPS
satellites. Using this method can reduce the time-to-first-fix to just a second or less [19].

The AGPS system has two modes of operation. In the literature about AGPS the mobile
phones are called Mobile Station (MS), and the two modes of operation are called MS-based
and MS-assisted. The two modes have different uses, and both have their pros and cons.

An MS-based AGPS receiver will normally work just as a regular GPS receiver. It uses the
mobile phone network to reduce the time-to-first-fix, but after that there is nothing different.
The main advantage of an MS-based AGPS receiver compared to an MS-assisted one is that if
a mobile phone network is not available, or if there is no location server available in the
current network, the MS-based AGPS receiver can still function as a normal GPS receiver. In
such cases it will have the same time-to-first-fix as regular GPS receivers.

An MS-assisted AGPS receiver, on the other hand, will offload much of the location
calculation to a server in the network. The requirements of memory and processing power in
the mobile phone is therefore lower, and thus the price of implementing an MS-assisted
AGPS receiver in a phone is less than an MS-based one. It will also not drain the phones
battery as much. The downside of MS-assisted receivers is that they transmit a lot more data
over the mobile phone network. Each time the location needs to be updated, the phone must
transmit data from the AGPS receiver to a location server that calculates the position. If the
location information is to be used by the mobile phone itself, and not by a service in the
network, the position must be transferred back to the phone.

For applications that constantly need updated information of the phones location on the phone
itself, such as navigation applications, an MS-based receiver will be the best choice, since it
will calculate the location on the phone and not generate any network traffic. If only seldom
updates of the location are required, and the location information is not to be used on the
phone itself, then an MS-assisted receiver will be a cheaper choice. This can for instance be

 Page 11 of 108

very useful for operators at emergency call centers that need to know where the caller is
located.

In the context of a geotagging application, an MS-based AGPS receiver will be preferred,
since the location information is needed on the phone itself.

2.3.5 WLAN
The availability of Wireless Local Area Networks (WLANs) have increased at an enormous
rate in the recent years. They are now widespread in lots of corporations, schools and
universities, in addition to people’s homes. For a lot of people, WLAN is the preferred way of
accessing the internet. It is available on both PCs with a WLAN adapter, as well as some of
the newer and more advanced mobile phones. The wireless network clients connect to a
wireless Access Point (AP) that relays connections to the regular wired network. The range of
an AP is greatly influenced by the kind and size of antenna and the obstructions between the
AP and the client. According to [20], the range in a typical office environment is less than 70
meters, but the range can be several times larger when there are no obstructions.

The high availability of WLANs has fostered the idea of using these networks as a positioning
system for mobile network clients. The WLAN-based positioning systems can be divided into
two research areas: Indoor positiong systems restricted to a small area, for instance a hospital,
mall or university, and systems with wide area coverage. Most of the formal research on this
kind of positioning systems has focused on indoor systems.

[21], [22] and [22] provides good descriptions of how an indoor positioning system based on
WLAN APs can be realized. The basis for these systems is that the area of interest needs to
have a very good WLAN coverage, and the exact locations of all the APs must be known to
the system. Since the range of WLAN APs is low, these systems are only useful in relatively
small areas where the WLAN coverage and AP locations can be controlled. This kind of
systems can give a mean distance error as low as 1.5 meters under good conditions. Because
these systems are restricted to small areas only, they are not applicable in most general
geotagging applications.

Wide area WLAN positioning, on the other hand, is much more suitable for geotagging.
There has not been much formal research on this, but there are several providers of WLAN
positioning systems available on the internet. These systems are made possible by creating
large databases of the location of WLAN APs all over the world. The databases are created by
traveling around in urban areas with a laptop with both WLAN adapter and GPS, constantly
scanning for new WLANs, and recording the GPS location for each AP. It is not possible to
know the exact location of each AP, as required by the indoor systems, but the approximate
location can be estimated based on several observations of the same AP from different
locations.

The Boston-based company Skyhook Wireless, Inc. [24] has built one of the most
comprehensive WLAN AP location databases available, and is constantly expanding it. Since
it is a commercial company, they are able to pay drivers to scan urban areas all over the
world. They claim to have tens of millions of APs in their database, have 20 meter accuracy,
and cover 70% of the population in the US, Canada, Australia, Germany, France and the UK.
The time-to-first-fix is less than one second. WiGLE [25] is an organization that also are
creating a database of WLAN AP locations, but this is not a commercial company, and

 Page 12 of 108

therefore all the scanning has to be done by volunteers for free. WiGLE has currently
collected the location of more than 14 million APs, by more than 800 million unique
observations, since the start in 2001.

These WLAN positioning systems with wide area coverage have at least as good coverage
indoors as outdoors, or maybe even better, and therefore they may be a very good addition to
GPS, which has poor indoor coverage. The accuracy is also much better than systems based
on the mobile phone networks cell-ID. However, GPS can not be replaced with a WLAN-
based system, since these systems only work in urban areas, and the coverage in rural areas is
very poor or non-existent.

2.4 Related Research on Geotagged Photos
There have been several research papers published on how to utilize the information from
geotagged photos, but most of this research has been on PCs, and not mobile phones. Some
research regarding mobile phones is available though. The publications that are most relevant
to this study are presented here.

2.4.1 World Wide Media eXchange
The World Wide Media eXchange (WWMX) is a database of geotagged photos developed by
Microsoft Research. [2] describes this database and the development of a location-aware
image browsing client for PCs, and also briefly introduces some other possible applications of
geotagged photos. The WWMX is a client/server system, where the server-side consists of
both a central server and peer PCs. The full resolution photos are only stored on the
contributor’s PC, whereas the central server stores thumbnails and metadata for all the users’
photos, as well as pointers to the peer PC where the full resolution photo can be obtained. The
location-aware image browsing client enables the user to browse the photos in this database
using a map. This systems uses an equirectangular projection of the positions, also known as
unprojected latitude/longitude, which means that the latitude and longitude values of each
photo are treated as (x,y)-coordinates on a 2-dimentional plane. This is a simple solution, but
not the most accurate.

The paper explores several different ways of visualizing the location of geotagged photos on a
map. The five visualizations described are called thumbnails, point markers, isopleths, border-
dependent and media dots. The thumbnail visualization refers to showing small thumbnails of
the geotagged photos at the positions where they were taken on the map. The technique is
very visually appealing when the number of photos is low, but it does not scale. When the
number of photos increases, it eventually becomes impossible to see the map because of all
the photos in front of it, and several photos taken in the same location is impossible to
separate. Thumbnail visualization also makes it difficult to read off the position of a photo
accurately.

The use of point markers is, according to the paper, the most popular way of showing the
location of a photo in a map. It consists of drawing a small dot or icon on the map at the
location where each of the photos was taken. The density of dots on the map represents the
number of images in that area, and the exact location of each photo can easily be seen.
Unfortunately, this has the same problem with scaling as the thumbnail approach, so when the
photo collection is large, the map becomes completely covered in markers, and photos taken
in the same location will look just like one photo. However, the number of photos that can be

 Page 13 of 108

visualized before the map is covered in point markers is much higher than with the
thumbnails.

The method called isopleth involves applying a partially transparent overlay on the map. The
overlay is colored in different colors representing the varying image densities in the different
areas. Isopleth solves the scaling problem, and can be a good visualization for very large
image collections, but it is not good when the number of images is low. It also does not
convey the fundamental discreteness of the photos.

Another method is to divide the photo collection into separate groups by using borders such
as the ones between countries, cities and so on. The number of photos in each area can be
visualized by an icon which is scaled according to the photo count. The drawbacks of this
method are that it requires a lot of interaction with the underlying geographical map data. It is
also a potential problem and that the borders that are relevant at one zoom level may not be
relevant at other zoom levels.

 The final visualization technique chosen by the authors of this paper is called media dots.
The method consists of dividing the map into a grid of 10x10 pixel cells. The number of
photos within each area is counted, and a dot with a size logarithmically proportional to the
photo count is drawn in each cell. This solution scales relatively well, since several photos are
aggregated into one dot. If the photo collection becomes very large, and the photo locations
are uniformly geographically distributed, then large portions of the map may be covered, but
it will never get as bad as with the regular point markers.

2.4.2 PhotoCompas
PhotoCompas is a photo retrieval system developed by researchers at Stanford University.
Several papers describing the research and development of the system have been published.
The most interesting papers for this study are [26] and [27]. The papers describe a method to
automatically generate meaningful organizations of geotagged photo collections, based on
location clustering and event clustering, where events are described as a combination of
location and time. It is a method consisting of several steps, and the processing of both time
and location data are integrated into the same method. The geotagged photos are first divided
based on country borders, because of the assumption that people usually know which country
they are in when taking photos. It has been observed that photos are usually taken in bursts
[28][29], and therefore the next step in the algorithm is to process the photo collection of each
country sequentially and split them into segments. The splitting is done where the
geographical or temporal distance between two consecutive photos is larger than a threshold
value. A geographical clustering algorithm is then executed to find several different segments
of photos that are taken in the same location. Finally, consecutive segments that are located in
the same place are merged. The two outputs from this algorithm are the list of geographical
clusters from the penultimate step, and the list of segments from the last step representing
events. The researchers wanted to eliminate the need for using a map to present the
geographical clusters, and therefore an intricate way of naming these has been developed. The
naming is based on a geographical dataset of administrative regions in the US. User surveys
have shown that the results of this algorithm are meaningful ways of organizing photos.

The researchers behind PhotoCompas have also explored other context data that can be
derived from the basic information about location and time. The location data can be used to
find the time zone which a photo was taken in, and combined with the timestamp from the

 Page 14 of 108

camera the local time of the day can be calculated. This information can then be used to
calculate the daylight status, such as day, night, dusk and dawn, and to find out which season
it is. The logs from thousands of weather stations around the world are available on the
internet, and so the location and time may be used to obtain the weather conditions and
temperature for the time when a photo was taken. Some other context data was also explored,
and a user survey was conducted to see which kinds of context data users would find valuable
to use when searching for specific photos. The results showed that time of day, daylight status
and season are elements of a photo that people remember well, but data such as temperature
and elevation did not turn out to be very interesting. They also found that information about
location is a very important aspect of remembering photos, and that it is as important as the
people in the photos.

2.4.3 MediAssist
[30] describes a system for browsing personal photo collections on mobile phones utilizing
the context of the photos. The photo collections used in this paper are taken using regular
stand-alone digital cameras. The photos are geotagged using separate GPS devices which logs
timestamped location data to a track file while photographing. This data is then integrated
with the photos when they are uploaded to a PC. In addition to the context data describing
time, date and GPS position, which is directly available, several other kinds of information is
also derived from this. Most importantly, the location data is used to obtain human readable
descriptions of the location. A gazetteer is used to translate the coordinates into descriptions
on three levels: country, city/state and town. The location information of the photos is also
combined with the timestamp to calculate the daylight status and the season in which each
photo was taken. Thousands of weather stations are located all over the world, and both the
historical and current data from many of these are available on the internet. The weather
condition of each photo can therefore also be obtained by providing location, time and date.
This paper describes a system which enables the user to search for photos based on time, date,
country, city/state, town, daylight status, season and weather. The photos and context data are
made available for mobile phones through a web-interface specially designed to be used on
mobile phones. The most interesting result from this paper is the small user survey that was
performed to see how long it would take the users to find a specified photo from their own
photo collection using the location-based search in comparison to finding the photos only by
the time they were taken. The results showed that the time-based approach took 31.2 seconds
on average, while the location-based search took 17.9 seconds, i.e. using location was
approximately twice as fast. The test group consisted of only 7 persons, but it still indicates
that using the information of location may drastically reduce the time it takes to find photos in
a large collection.

2.4.4 GeoFoto
Much of the research on the usage areas of geotagged photos revolves around productivity
concerns, such as finding specific photos as fast as possible. GeoFoto [30], on the other hand,
is an application for recreational use of other people’s geotagged photos. The idea is to use a
mobile phone to explore the area around you through pictures. The GeoFoto application starts
by finding the user’s current location from a GPS receiver, and retrieves photos that are
geotagged close to that location. The user can then explore other photos by moving north,
south, east or west using the navigation keys on the phone. This can be used to explore areas
close to where the user is located, before actually going there physically. There is no limit to

 Page 15 of 108

how far the user can navigate using the application though, so photos from all over the world
may be found using GeoFoto, if it is connected to a photo collection that is large enough.

2.5 PC Software for Geotagging
Several software solutions that utilize geotagging have become available over the last few
years, in addition to the scientific research prototypes. There are two kinds of applications that
are needed for geotagging to be useful. Firstly, there need to be a mechanism that generates
and stores the location of the images. This may or may not be the same program or device that
captures the picture. Secondly, one or more programs need to use this data and present it in a
useful manner. This section presents some of the currently available software that involves
geotagged photos. There are several applications that use geotagged photos on PCs, but not on
mobile phones. The mobile phone software that is available is mostly for producing
geotagged photos, only very few for managing them.

2.5.1 Flickr
Flickr [31] is currently one of the most popular photo-sharing websites on the internet. Users
of Flickr can upload their photos to make them available on the website for other people to
see. Restrictions may be applied to the photos so that only your friends and family may view
them, or they can be made available for everyone. The users can browse other people’s photos
by several different kinds of metadata, such as owner, date, category, and so on. The most
interesting feature of Flickr in regard to this study is that it supports geotagging. The users can
browse a map of the world which shows markers where geotagged photos are taken.
Geotagged photos may also be found by searching for places like the name of a city or
country, or by browsing photos taken nearby other geotagged photos. When a user has
uploaded a photo to flickr, he can choose to view a map where the location of the photo can
be indicated by placing a marker. When a photo has been geotagged, it can be found by other
users who are browsing the map.

2.5.2 Services from Google
Google has released a plethora of different services and applications for many different
aspects of digital life the recent years. Many of these are connected to each other in an
intricate and chaotic web. Some of these services and applications involve geotagging of
photos.

Panoramio [32] is a website owned by Google that lets users upload photos to be shared with
other users and geotag these photos using Google Maps [33]. The photos can then be browsed
geographically using either Google Maps or Google Earth [34].

Picasa [35] is a desktop application for organizing personal photo collections, which is also
provided by Google. It supports geotagging through the use of Google Earth. Geotagged
images may be browsed using Google Earth, and it may also be used to geotag photos without
location information by simply dragging the photos onto the map and dropping them on the
correct location. A web-version of Picasa, called Picasa Web Albums, is also available, and
enables the user to share photos with others. It is possible to browse geotagged photos in the
web version also, but then Google Maps is used in stead of Google Earth. The photos are
shown as thumbnails on the maps both in Google Maps and Google Earth.

 Page 16 of 108

Photos that have previously been geotagged, either automatically or using other software, will
usually have the location information stored in the EXIF header in the image file. Both Picasa
and Panoramio are able to import the location from this header so that it is not necessary to
apply new geotags in this software.

2.5.3 Microsoft Pro Photo Tools
Microsoft Pro Photo Tools [36] is a desktop application for managing the metadata of image
files. When images are loaded into the application, several different kinds of metadata are also
loaded from the files and presented to the user. This metadata can then be viewed and, if
desired, it can be changed and written back into the files. The kinds of metadata supported
includes a description of the camera and camera settings such as shutter speed, ISO-value and
flash mode, a list of the people in the photo, description of the photographer, different
categories, a title, rating and keywords, as well as a longer textual description of the image. It
also supports date and time from several different headers in the image files, and most
importantly for this study, it supports geotagging. The geotags can be read from and written to
the EXIF header in the image files, they can be generated from a GPS track file or they can be
created by locating the photos on a map embedded in the application. The application can be
used to obtain human readable location data such as country, state/region, city and street
address for images where a GPS position is available. In the absence of a GPS position, the
human readable location data can be used to obtain the latitude and longitude. The collection
of geotagged photos can be visualized in a map using point markers. As described in [2], the
use of one point marker for each photo does not scale very well, and is bad for representing
several photos taken at the same location.

2.6 Mobile Phone Software for Geotagging
Most geotagging applications for mobile phones handle the task of geotagging photos taken
with the built-in camera and uploading them to either a PC or a website. There are several
applications available for this, and some of them will be presented here.

Shozu [37] is an application for using social websites such as YouTube [38], Facebook [39],
flickr [31], blogger [40], picasa [35] and more from a mobile phone. One of the features of
Shozu is that mobile phones with GPS receivers can be used to geotag photos and
automatically upload them to relevant websites.

Locr [41] is a mobile application specifically for capturing geotagged photos and uploading
them to the locr website. Users of the locr website may browse the photos on a map, where
each photo is represented by a point marker.

Some of the newer GPS-enabled Nokia phones, such as N82, have native support for
geotagging. The geotagged photos can be uploaded to Nokia’s own website for sharing
mobile media called Share on Ovi [42], or they may be viewed on the phone using Nokia
Maps 2.0. This is one of the very few possibilities of actually using the location information
on the phone itself.

2.7 Summary
This chapter have introduced the concept of geotagging, presented the WGS84 reference
system for representing locations and described several different technologies for obtaining

 Page 17 of 108

information about location. GPS and AGPS are the most practical solutions to use for
automatic geotagging, although others systems such as cell-ID or WLAN-positioning are also
possible.

The related research presented here indicates that the use of location information can be very
helpful when trying to find photos in large collections. It has been shown that searching for
photos in large collections using location terms such as country and city may be
approximately twice as fast as traditional time-based browsing. Researchers from Microsoft
Research reviewed several different ways of visualizing photo locations in a map, such as
thumbnails, point markers, isopleth, border-dependent and media dots, and their pros and cons
have been described.

Several different software solutions for geotagging, both for creating, manipulating and
visualizing location information, which is currently available, have been described. Desktop
applications and websites, as well as mobile applications have been covered.

 Page 18 of 108

3 Android
Android [1] is a new platform for mobile phones, which is currently in the last stages of initial
development. It is likely to gain popularity in the high-end market when the phones are
released. Phones in this market segment are often called smartphones, to indicate that they are
capable of much more than just a regular mobile phone, such as reading and writing e-mails,
browsing web-pages, using office applications and running different kinds of third party
applications. The currently dominant platforms for smartphones are Symbian OS [43],
Microsoft Windows Mobile [44] and RIM BlackBerry [45]. The Android platform is being
developed by Google and their partners in the Open Handset Alliance (OHA) [46] as a free
and open alternative to these other proprietary systems.

The Android platform is a good platform for geotagging applications, as it includes both a
customizable version of Google Maps that can be used for visualizing locations, a Location
API for obtaining the phone’s current location and it is a very open system with few
limitations. Android is being developed to natively support mobile phones with a touch
screen, which makes it much easier to handle a map, but it can also run on more regular
phones without touch screen.

3.1 History
It is just a few months since the Android platform was first announced to the public.
However, there have been speculations of Google entering the mobile phone market for
several years. It all started when Google’s vice-president of operations Urs Hoelzle did an
interview with Siliconrepublic [47] in December 2004, where he stated that “the mobile
phone market is failing to grasp the potential of the internet.” One of the first reactions to this
interview was by blogger Gary Price [48], writing “I wonder if GPhone is in the works.”

The rumor of Google looking into the mobile phone business soon spread throughout the
computer press, and the nickname GPhone was widely adopted. Several events in the coming
years caused the rumors to re-appear in the press, but Google refused to say much about it.
One of these events was that Google acquired a small start-up company named Android Inc.
in August 2005 [49]. Not much was known about this company, other than that they were
making software for mobile phones, but there were rumors that they were making an
operating system for mobile phones. Other events, such as Google filing patents for mobile
technologies and making business deals with companies in the mobile industry, all lead to
speculations in the press of whether a GPhone was coming.

Although there were a lot of news articles written about Google’s role in the future of mobile
phones, it was all mostly speculations until 5 November, 2007. At that date the Open Handset
Alliance (OHA) and the Android platform were announced [50]. The OHA is a group of 34
companies, including Google, T-Mobile, HTC, Qualcomm, Motorola and other companies in
the mobile industry. Both software and hardware manufacturers, as well as mobile operators
and commercialization companies are represented. The stated goal of the group is to “foster
innovation on mobile devices and bring consumers innovative new mobile experiences.” This
group works together to bring Android-based mobile phones to the market.

At 12 November, 2007 the OHA released an early look of the Android Software Development
Kit (SDK) [51]. This included an emulator for testing Android applications on a PC, which
was made available for Windows, Mac and Linux. Several updates to this SDK has since been

 Page 19 of 108

released and made available for download from the official Android website [1]. There has
currently not yet been released any mobile phones based on the Android platform. Therefore
all the applications that are being developed for Android by programmers all over the world
are still based on the emulator. According to [52], the first Android phones will be released in
the fourth quarter of 2008.

3.2 Android Developer Challenge
One of the most important aspects of Android, which is supposed to set this platform apart
from all the other mobile platforms available, is that it is very open and free from restrictions.
This is supposed to make Android a platform for innovative solutions, and the availability of
many third party applications is necessary to prove this point. It is therefore important for the
OHA that there already are lots of third party applications ready when the first Android-based
phones are released in the market. The early preview release of the SDK and the emulator was
supposed to give people good time to get started on making Android applications well before
the first phones are out.

Writing mobile applications that can only be run on an emulator might be a bit boring, so to
further spark the enthusiasm for the Android platform the OHA announced the Android
Developer Challenge (ADC) [53]. ADC is a competition to make the best software for
Android phones, with a total of 10 million USD in price money to be split between all the
winners. The ADC is split into two competitions: one competition for applications developed
on the emulator, called ADC1, and another competition, called ADC2, which will be held
after the first Android phones are available. The applications submitted to the ADC are
examined by a total of more than 100 judges chosen by the OHA, most of which are
employees of the OHA member organizations. The official judging criteria are originality,
effective use of the Android platform, polish and appeal and indispensability. ADC1 opened
for submissions 3 January, 2008. The deadline was 14 April, 2008. A total of 1788
applications were submitted. On 12 May, 2008 a list of what the judges thought was the 50
best applications were published at the official Android Developers Blog [54]. These 50
competitors got a little bit of the price money and the chance to further develop their
application before the grand price winner is announced July 2008.

3.3 System Architecture
The Android platform is a complete software stack, reaching from the most low level modules
that controls the hardware and up to the user applications. It has been described at the
Android website [1], and further detailed in a presentation held at the Google I/O conference
in May 2008 [55]. The platform is based on the Linux kernel and incorporates several open
source software packages, in addition to libraries and applications developed specifically for
Android. All the Android-specific code is planned to be released under the open source
Apache License, Version 2.0 [56] when the first phones are released to the market. The
system architecture has been divided into several layers, going from the operating system
kernel at the bottom, to the user applications at the top, as shown in Figure 3.1.

 Page 20 of 108

Figure 3.1: The layered architecture of the Android platform.

As mentioned, the Android platform is based on a Linux kernel, with a few enhancements that
makes it more suitable for Android devices. The kernel provides basic capabilities such as
memory management, process management, security features and a driver model. Although
the Linux kernel has many features that fit perfectly with the needs of Android, there are
some elements that are more optimized for PCs and servers than mobile devices. Mobile
devices generally have slower CPUs and less memory than PCs and servers, and they have a
limited battery capacity. One of the enhancements that have been made for Android is the
power management. It is based on the standard Linux power management, but has been made
more aggressive in Android. For instance, the CPU is turned off when not needed to avoid
draining the battery. It is possible to override this though, when applications need the device
to be always on. Applications can obtain either a partial WakeLock for certain parts of the
device, such as the CPU or LCD screen, or a full WakeLock for the complete device. Another
thing that had to be changed for Android has to do with the low amount of memory that
mobile devices usually has. The system designers worked with a design criterion of low-end
Android devices having approximately 64MB RAM, and only 20MB being available to
applications after the system is loaded. In additions to this, there is no swap space available,
so the physical RAM is all that there is. It was therefore necessary to include a module that
has been called the Low Memory Killer. The task of this module is to kill the least necessary
processes when the system is low on memory. This will typically be applications the user is
no longer actively using, but are still running in the background. The constraints of having
little memory and a slow processor also showed the need for the development of a new
InterProcess Communication (IPC) system that has been called the Binder. It is a lightweight
IPC solution that maintains high performance by using shared memory instead of passing data
around. There are also a few other smaller enhancements that has been done on the Linux
kernel, all of which are available at the Android kernel Git repository [57].

On top of the Linux kernel sits the low level libraries, which are usually written in C or C++.
These include a surface manager for the display, an audio manager and an implementation of
the standard C library. A media framework is available that supports processing of standard
video, audio and image formats in addition to codec plug-ins. OpenGL|ES is included for
creating 3D graphics. The transactional database engine called SQLite is included, and will be
covered in more detail in section 3.5. The WebKit engine for processing web pages is also a
part of the library layer, as well as several other libraries. These libraries will not be used
directly by the applications, but through other more high level libraries in the application
framework.

The part of the platform that is called the Android runtime consists of the core libraries and
the Dalvik Virtual Machine (Dalvik VM). The core libraries are an implementation of most of
the functionality in Java Standard Edition (Java SE) [58]. The main things that are missing are

 Page 21 of 108

all the GUI components, since Android provides its own libraries for this. A few other smaller
features are also missing. The Dalvik VM is a virtual machine, developed specifically for
Android, which executes bytecode in the Dalvik Executable format. The Dalvik VM is
described in more detail in section 3.6.

The application framework is the collection of all the Android-specific libraries that are
available for the applications. These come in addition to the standard Java libraries in the core
libraries. The application framework contains libraries for building an Android GUI. It
contains libraries for all sorts of telephony-related operations. It has a Package Manager for
managing the installation of software packages, an XMPP Service for sending messages over
the internet and ContentProviders for sharing different kinds of data between applications. It
also provides several hardware services for controlling hardware such as Bluetooth, WiFi and
USB, and special sensors such as compass and accelerometers. It also has a LocationManager,
which provides a unified interface for obtaining the phone’s current location from different
technologies. The location may be obtained by any of the technologies described in the
previous chapter, or by some new technology, and published to the application through the
same LocationManager interface.

On the top of the Android software stack are the applications. These include everything that is
visible to the users on the screen of the phone, in addition to background services that will
only be accessed through other applications. Some of the most basic applications will be part
of Android, such as the home screen, the contacts manager and the phone application, but the
real power of Android is the great support for third party applications. The applications that
are included uses the exact same API as the third party applications have access to, and even
the built-in applications may be replaced to create an enhanced and more customized user
experience.

3.4 Developing Applications for Android
Android is intended to be an open platform, where the users can run any applications they
want. The great support for third party applications is one of the most important aspects the
OHA is talking about when they presented Android. The applications that are developed for
the Android platform are written in the Java programming language, but it is not a limited
version such as Java Micro Edition (Java ME) [59], which is available on most mobile phones
today. It does not adhere to any of the common Java standards, but it implements most of the
functionality in Java SE. The standard GUI components of Java SE are missing, as well as
some other minor features. Instead Android provides its own set of library functions for
creating GUIs, in addition to lots of other useful features.

The Android Software Development Kit (SDK) provides a plug-in for developing Android
applications in the Eclipse Integrated Development Environment (IDE) [60], a toolchain
consisting of all the tools necessary for building Android applications without using Eclipse,
an emulator for testing the applications on a PC, and some other tools. Eclipse is one of the
most popular IDEs for developing Java applications, but it also supports a lot of other
languages. It is an open source project, released under the Eclipse Public License, so everyone
can download the software and use it for free. There is also a plethora of plug-ins available for
Eclipse, which helps the developers to be more productive. Eclipse is written in Java, and is
therefore available for most popular PC operating systems. The Android SDK is available for
Windows XP and Vista, Linux and Mac OS X (on x86 processors only).

 Page 22 of 108

The Android applications are compiled into Java bytecode with a standard Java compiler, but
there are more steps necessary to make them into executable Android applications. First, the
.class-files created by the Java-compiler needs to be converted into Dalvik Executables, called
.dex-files. This is a special bytecode format for mobile devices. Then, the .dex-files have to be
packaged into Android Packages, called .apk-files. Finally, the .apk-files have to be
transferred to the Android device, or the emulator. When using Eclipse, all of this happens
automatically, but the SDK also provides separate tools for each of these steps. The
developers are therefore able to perform these steps manually, or use other IDEs than Eclipse
by integrating the Android toolchain.

All development of third party Android applications is currently done on a PC-based
emulator, since there are no actual mobile phones running Android available yet. The
emulator is described in more detail in section 3.8.

Android applications are built up using several different basic elements. These are Activities,
IntentReceivers, Services and ContentProviders. All applications must use at least one of
these elements.

The most basic element is the Activity. An Activity in Android corresponds to what usually
would be called a screen in an application. It could be something like “Write an SMS”, “Pick
a contact from the contact list” or “Show the video with filename xyz.avi”. All applications
with a user interface that is visible on the screen need to have one or more Activities. The user
interfaces of Activities consist of one or more Views, which roughly corresponds to what
might be called user controls in other programming environments. There is for instance a
TextView for showing text, a ListView for showing a list and an ImageView for showing
images. How the Views are arranged on the screen is controlled by a Layout, which can be
specified either in Java code or in XML. More information on how to create the layouts for
the activities can be found in the Android reference documentation.

An Intent is a statement of what the application wants to do. For instance “I want to write an
SMS”, “I want to pick a contact from the contact list” or “I want to show the video with
filename xyz.avi”. Most Activities are started by an Intent, and user actions in an Activity can
trigger other Activities in the same application, or in other applications. An Intent can either
be explicit, i.e. directed to one specific software module, or it can be implicit, i.e. broadcasted
to the whole system. The implicit events are filtered through a set of intent-filters, which will
in turn trigger a set of IntentReceivers. IntentReceivers are entry-points into the different
software packages for handling broadcasted Intents. Intents and IntentReceivers are somewhat
similar to events and event handlers, but Intents and IntentReceivers captures the concept of
“I want xyz to happen”, instead of “Xyz has happened”. By changing the intent-filters, the
Activities that are launched to handle certain Intents can be replaced. Even the built-in
Activities, such as browsing for a contact in the contact list, can be switched for a more
customized application.

Some applications need to run in the background and do their work, without any screen
interaction. This can be e.g. music players or applications that need to periodically look for
updates over the network. This sort of behavior can be implemented by creating a Service.
Services will typically be invoked and configured through an Activity.

The security features of the Android platform, described in more detail in section 3.7,
prevents applications from accessing the files, databases and other resources belonging to

 Page 23 of 108

other applications. Instead, the concept of using ContentProviders to share data between
applications has been introduced. By implementing a ContentProvider the applications can
share specific parts of their data with the other applications and control the access to it.
ContentProviders can be built on top of databases, files or any other resource that the
providing application has available. Other applications can access the data by using a URI on
the form content://<authority>/<path>/<ID>. The <authority> part is the fully qualified class
name of the ContentProvider being accessed. The <path> part specifies what kind of data that
is being requested. The <ID> part, which is optional, is used to specify one single item, as
opposed to accessing the whole data collection. There are several built-in ContentProviders in
the Android platform, for instance for accessing the data in the contact list. These are accessed
in the same way as third party ContentProviders, except that the <authority> part is not a fully
qualified class name, but rather a short and descriptive name, like “contacts”. One small
problem with using ContentProviders comes up when trying to combine data from different
ContentProviders. If the application that consumes the ContentProvider had direct access to
database tables instead, this could be done by a simple join operation, but with
ContentProviders this has to be done in the application code.

3.5 SQLite
Android has a built-in relational database engine called SQLite [61]. This is available for any
software installed on the device, and is one of the preferred ways of storing user data in
Android. It is also used by several internal services in Android, for instance the address book.
A SQLite database created on an Android device is only available to the application that
created it, because of the security mechanisms implemented in the platform, as described in
section 3.7. If the data is made available to other applications on the device, it has to be
published through a ContentProvider.

Most of the database systems people are used to today are using the client/server model, as
shown in Figure 3.2 and Figure 3.3. Examples of this kind of systems are Oracle Database
[62], Microsoft SQL Server [63] and MySQL [64]. In these systems the database management
system is running as a separate process, and the client applications connect to this database
server either locally on the same computer or through a network connection. SQLite is instead
embedded as a module in the application that is using the database, as shown in Figure 3.4, so
it reads and writes directly from the database files in the file system. SQLite is embedded in
several widely adopted software applications such as Mozilla Firefox, Skype, McAfee
antivirus, Sun Solaris 10, Mac OS, the iPhone and newer versions of Symbian smartphones.

 Page 24 of 108

Figure 3.2: Client/server model in the same computer.

Figure 3.3: Client/server model using two different computers.

Figure 3.4: The embedded model, used by SQLite.

 Page 25 of 108

SQLite is a software library that can be embedded in any software that needs to store
structured data. The source code of SQLite is in the public domain, so anyone can use it for
whatever they want. The system is programmed in ANSI-C and does not depend on any
external libraries. It can easily be recompiled to run on any platform that has a C compiler
available. This is probably the most important reason for why SQLite is believed to be the
most widely deployed SQL database system [65].

The four basic features that any transactional database system should have are Atomicity,
Consistency, Isolation and Durability (ACID). Although SQLite is considered a transactional
database system, it only supports three of these four features. Atomicity, Isolation and
Durability are supported. SQLite does not enforce foreign keys, and therefore the Consistency
feature is not supported. Foreign keys must be enforced by the application that SQLite is
embedded in, if they are needed.

The query language used in SQLite is mostly compliant to the SQL92 standard [66], but there
are a few missing pieces. The most important missing feature is probably that views in SQLite
are read-only, therefore all updates and inserts has to be done directly to the tables, but there
are also a few others in addition to this. For instance the ALTER TABLE command can only
be used to rename tables and add columns, and is therefore incomplete. Another problem is
that the support for foreign key constraints is missing. There is also no support for nested
transactions, and right and full outer join is missing, even though left outer join is
implemented. There are a few other small shortcomings that also prevent SQLite from being
fully SQL92 compliant, but these are the most important ones.

3.6 Dalvik Virtual Machine
The details of the Dalvik Virtual Machine (Dalvik VM) were presented at the Google I/O
conference in May 2008 [67]. It is a bytecode interpreter written exclusively for Android that
executes all the Android applications written in the Java programming language. It does not
execute Java bytecode though, but a special bytecode format optimized for mobile phones.
The Java code first has to be compiled into regular Java bytecode, and then the .class- and
.jar-files can be converted into Dalvik Executables, known as .dex-files, with a tool included
in the SDK.

The Dalvik Executables are created to work in an environment with low system resources.
The system memory may be as low as 64MB, and after the Android system is loaded, as little
as 20MB might be available for the applications. There is also no swap space. The processor
in these devices are usually slow, the operating frequency may be approximately 250 – 500
MHz. All mobile phones have limited battery power, and every processor instruction
consumes power, so the number of instructions needs to be minimized. These requirements
are different than on a PC, and therefore the regular Java bytecode is not optimized for this.

The Dalvik VM on the other hand, optimizes the bytecode to make it more suitable for the
limitations of low system resources. The result is that a .dex-file takes less than half as much
memory as the corresponding .class-file and has 30% fewer processor instructions, according
to the developers own numbers, published in the presentation.

For the curious: The Dalvik VM is named after a place called Dalvík on Iceland.

 Page 26 of 108

3.7 Security
At first glance, the Android platform might look a bit insecure. The openness of the platform
has been emphasized, and it has been pointed out that users are supposed to be able to run
whatever software they want. Therefore, there is no certification process for Android
applications, which exists for most other popular mobile platforms, to make sure that the
applications do no harm to the system. When you look a bit closer under the covers, though,
there are several security mechanisms that are supposed to prevent third party applications
from doing too much damage to the system and to other applications.

First of all, Android applies the traditional Linux user model in a creative way. The
developers realized that there is no need for several separate users on a mobile phone, since it
is mostly used by just one person anyway. Instead, the user model could be used for
sandboxing each application on the system. Each time a new application is installed on an
Android system, a new Linux user is created for it. The underlying Linux file system
permissions make sure that all the files and databases belonging to one application are kept
private and inaccessible for anyone else. If data is to be shared between applications, this has
to be done explicitly, for instance by implementing a ContentProvider.

Another security feature is the permissions system. Most of the critical features in the system
are protected by this, so that all applications need to obtain permission before accessing them.
Examples of actions that the applications need permission to do are making phone calls,
accessing a GPS receiver and deleting installed software packages. An application’s
permissions are requested at install-time, and the user will be prompted to grant or reject each
permission request separately. The idea is that the mobile phone user is supposed to use some
common sense when granting permissions to avoid malware on the phone. For instance, it
would be weird if a calculator application requests write access to the contacts list. Once an
application is installed, it will have the granted permissions until uninstalled, without any
further user interaction.

3.8 The Emulator
There are currently not being sold any devices running Android. As mentioned earlier, the
first Android-based mobile phones are expected to be released in the fourth quarter of 2008.
Android has been hacked onto a few devices that are currently in the market, but this is not
supported by the handset manufacturers. All development of Android applications is therefore
still based solely on using the emulator on a regular PC.

Most mobile phones today are based on a processor with ARM architecture, but most PCs
have a processor with x86 architecture. The Android platform is naturally targeted to the
ARM architecture, so to be able to run Android on a regular PC an ARM processor has to be
emulated. The Android emulator is based on the open source processor emulator QEMU [68],
which is released under the GNU General Public License. QEMU supports several different
processor arcitectures, including ARM. The Android developers have used QEMU as a base
and added a nice GUI for it, as shown in Figure 3.5. They have also provided a set of tools for
making it easy to deploy, run and debug Android applications on it. The developers can
interact with the emulator by using the PC keyboard, or by clicking on the virtual keyboard or
phone buttons in the emulator GUI. Android has built-in support for touch-screens, so the
virtual phone screen in the emulator can be interacted with by using the mouse.

 Page 27 of 108

Figure 3.5: The GUI of the Android emulator running on Windows XP.

Although the API in the emulator is the same as in real phones, the results of interacting with
anything outside of the phone are different from a real phone. For instance, images from the
camera only shows a square in front of a chess pattern, as shown in Figure 3.6, and the
location data obtained from GPS will always be in the San Francisco Bay Area.

The emulator is available for Windows XP and Vista, Linux and Mac OS X, just like the rest
of the SDK.

 Page 28 of 108

Figure 3.6: The image returned by the camera driver in the Android emulator.

3.9 Summary
Android is a mobile platform for smartphones, being developed by Google and the Open
Handset Alliance (OHA). There were rumors of Google entering the mobile phone market for
several years, but they remained silent until November 2007 when the OHA released an early
look on the SDK. A programming contest involving large prices was also launched to gain the
interest and attention from developers.

The Android platform is based on a Linux kernel, and incorporates several other open source
systems, such as the 3D graphics library OpenGL|ES and the database engine SQLite. It has a
virtual machine called Dalvik, which executes Dalvik Executables. These can be created from
regular Java class files. The Core Libraries in Android implements most of the functionality
in Java SE, but not the GUI components. The Application Framework of Android provides all
the Android-specific libraries, such as GUI-libraries and the Location API, as well as libraries
for accessing the underlying native libraries mentioned earlier. The Android applications are
written in Java, and use both the Core Libraries, as well as the Application Framework.

There are currently no phones available for the Android platform, so all development is done
on the emulator that has been released as a part of the SDK. The emulator is available for
Windows XP and Vista, Linux and Mac OS X. It is a convenient way of testing applications,
but it has shortcomings with most of the functionality that involves the world outside the
phone itself.

 Page 29 of 108

4 Applications of Geotagged Photos
The location information attached to a geotagged photo can be used in a lot of different ways,
only limited by the developer’s imagination. Some applications are very obvious, others are
more sophisticated. The most interesting applications will probably emerge from combining
different sources of information.

Several different ideas for mobile applications using the location information in a geotagged
photo will be explored and described in this section. Some of them are well tested concepts
that are widely available throughout the internet, but may not be as widespread in the context
of a mobile phone. Others are more original ideas. Most of the concepts discussed here are
applicable both for personal photo collections, and for browsing other people’s photo
collections. How the photo collections are retrieved is not discussed here.

4.1 From Photo to Map
Let’s start with one of the most basic uses of a geotagged photo: Show the location of where
the photo was taken in a map. This scenario starts out with the user browsing through either
all or a subset of the photos on the device. When the user has selected a specific photo, he can
choose to view a map where the exact location of where the photo was taken is visualized by
a marker. This function can be available by the press of a button, or via a choice in a context
menu.

The usefulness of this feature will vary largely based on the user’s pattern of photography. It
is probably most useful when browsing photos that you did not take yourself, but it can also
be valuable when the user do not know or remember where he took the picture. If the user
only takes very few pictures, always uploads the photos to his PC and organizes them soon
after taking them, then this kind of application will be mostly useless since he will most likely
remember where his photos were taken. A very different example may be a user that has been
on a long trip, taking lots of pictures along the way. When he comes back home he might not
remember where all of the pictures were taken, so seeing this in a map would probably be
rather helpful to him. Another useful scenario is if the picture was taken a long time ago, so
the photographer might have forgotten where it was.

The high-level steps of the algorithm needed to implement this functionality are not very
advanced. The algorithm is as follows:

1. Read the coordinates of the photo into memory.
2. Translate the latitude and longitude into (x,y)-coordinates of the map.
3. Center the map at the (x,y)-coordinates.
4. Adjust to an appropriate zoom level.
5. Draw the marker indicating the (x,y)-coordinates.

How difficult each step is to implement depends on the development platform. Some
platforms may have lots of supporting library functions that can be used, while others may
provide little support for this. The details on how to implement this on the Android platform
is described in section 5.2.6.

 Page 30 of 108

4.2 From Map to Photos
A more sophisticated way of visualizing the photos in a map is to show a marker for all the
places where the user has been taking photos. The user can then select a specific marker either
by clicking on it if the phone has a touch screen, as the emulator has, or by navigating to the
marker by using the d-pad or joystick on the phone, as almost all newer phones has. When the
user selects a specific marker, he can choose to view and browse through the subset of his
photo collection that is taken in that specific location.

The primary use of this application is when the user is searching for a photo from a specific
place where he knows that he took a picture or a specific picture that he knows where he took.
If the photo collection is large and not well organized, this way of finding a photo might be
much faster than browsing through the whole collection sequentially.

As described in section 2.4.1, [2] discusses several methods for visualizing photo locations on
a map. A quick recap of these and an evaluation of how well they will work in the context of
a mobile phone are necessary here. The thumbnail visualization, where a thumbnail of each
photo is drawn on the map in the location where it was taken, was considered not scalable
when used on a PC. This effect is drastically increased when used on a mobile phone with a
much smaller screen than a PC, since each thumbnail would have to take up a large portion of
the screen if it were to be viewable at all. Using point markers, i.e. drawing small dots or
icons on the map where each photo was taken, was said to be the most popular visualization
technique. The problems with this were that photos taken at the same place would be rendered
indistinguishable, and it also does not scale, although it can handle larger photo densities than
the thumbnail approach. These problems may be somewhat increased on a smaller mobile
phone screen, but not nearly as much as when using thumbnails. The paper describes a
method of applying a partially transparent overlay on the map, with varying color to indicate
the different photo densities in different areas. This method is not applicable for this
application, as it would be very hard to implement a usable interface for selecting photos from
a map with no markers. Dividing the photos by man-made borders is discussed, but it has the
drawbacks of requiring much interaction with the underlying map data, and that which
borders that are relevant will vary between the different zoom levels. The authors of [2] ended
up using what they called media dots. The method involves dividing the map into 10x10 pixel
cells, and drawing a dot in each cell which is logarithmically scaled to match the number of
photos taken in that area.

Even though [2] sees media dots as the best solution, this approach still has some problems.
The 10x10 pixel cells are a very artificial way of dividing the photos, and do not represent the
inherent structure of the locations in the photo collection. Photos taken at approximately the
same place, but with small variations may be split into several adjacent cells, and mixed with
photos taken further away. The use of dots in different sizes may also not be a good fit for
small mobile phone screens, where it may be difficult to see the differences.

Instead, the method used in this study takes advantage of the fact that photos are usually taken
in bursts, see [28][29]. Several photos taken during a relatively short time span, will usually
also have to be in a relatively restricted area (unless they are taken while traveling in a car,
train, plane or something similar). This structure can be taken advantage of by grouping
photos taken close to each other together. A single point marker can then be used to indicate
the average location of a whole group. This approach will mitigate the problem with scaling
in the other methods, since there is no need for a dedicated pointer for each photo.

 Page 31 of 108

One important challenge in creating this application is to automatically divide the photo
collection into groups of pictures that are taken geographically close to each other. This is a
kind of problem that in computer science is usually referred to as data clustering. It is a very
generic method that can basically be described as dividing a set of objects into groups of
objects that have something in common. The property or properties that the objects in a group
have in common may be any kind of measurable attribute. The value of this property does not
necessarily have to be exactly the same for all the objects in a group, but it must be close
enough so that any group may be distinctively separated from all the others. An example of
12 objects divided into three clusters, determined by two different properties, is shown in
Figure 4.1. The threshold for how much variance that is accepted within a group is
determined by the context. The difference in value between any two objects is calculated
using a function called the distance function. This function is defined explicitly for each new
problem to fit the particular needs of the application. Thus, a very generic clustering
algorithm may be used on any kind of data by simply replacing the distance function.

Figure 4.1: 12 objects clustered into three clusters by using two parameters.

The most common clustering algorithms can roughly be divided into hierarchical clustering
and partitional clustering. There are other, more specialized clustering algorithms that don’t
fit into these categories, but they are not relevant for this study. The main difference between
hierarchical and partitional is that the partitional algorithms try to divide the data set into a
pre-defined number of partitions, whereas with the hierarchical algorithms the number of
clusters may be decided after executing the algorithm or determined based on a threshold on
the distance function. Hierarchical clustering was first described by in [69].

Hierarchical and partitional clustering are both very useful algorithms, but they are used to
solve different kinds of problems. In this application, the number of places where the user has
taken photos can not be determined before actually running the algorithm, and therefore a
hierarchical clustering algorithm must be used. The number of clusters returned by a
hierarchical clustering algorithm can, as mentioned earlier, either be decided directly by
cutting the tree at a specified level, as shown in Figure 4.2, or it can be determined by a
threshold on the value returned by the distance function. In this application the method of
using a threshold on the distance is the method of choice, since the actual number of clusters
is not important.

 Page 32 of 108

Figure 4.2: Hierarchical clustering of four objects.

The threshold value used on the distance function in this application must not be a static
value, but determined by the current zoom level of the map. When the map is zoomed all the
way out, so that the whole world is visible, it would be very counter-productive to have one
marker for each photo. It would be impossible to select the correct marker unless the photo
collection consists of just one photo for each country. For this zoom level, a very high
threshold value must be used to make sure that the number of groups is not too high. When
the map is zoomed further in, so that e.g. just one city is visible, the threshold value must be
much smaller, so that pictures taken in different parts of the city can be divided into different
groups. The composition of the groups must therefore be computed for each zoom level.

The algorithm of agglomerative (bottom-up) hierarchical clustering used in this application
can basically be described as follows:

1. Create a separate group for each single point in the data collection.
2. Merge the two groups with the shortest distance between them.
3. Repeat step 2 until there is only one group or a threshold on the distance is reached.

The most important step in customizing a clustering algorithm to a specific problem is to
define the distance function. In some situations this can be easy, but it can be harder or almost
impossible in other situations where several different properties which are not directly
comparable are involved. In this application, where the only two parameters are the latitude
and longitude of the geographical coordinates, it is relatively easy, but some care must still be
taken. The easiest and most inaccurate way of calculating the distance is the naïve Euclidean
interpretation of the coordinates. The latitude and longitude are simply seen as coordinates in
a 2-dimensional Cartesian coordinate system, so the Euclidean distance between two points is
trivial to calculate. Because of the curvature of the meridians, which meet each other at the
poles, this is an inappropriate way of calculating distance. It will be fairly accurate for small
distances near the equator, where the curvature can be negligible, but can not be used as a
general distance measure. [70] tested the naïve Euclidean method to calculate the distance
between two points in Colorado which was known to be 741.7 km apart. The naïve Euclidean
method yielded a distance of 933.8 km, approximately 25% more than the actual distance.
Another simplified way of calculating the distance between two points is to treat the earth as a
sphere, and use the method of great circle distance to calculate the destination, but this is not
accurate either. To accurately calculate the distance between two points on earth, the WGS84
ellipsoid, which was described in section 2.2, has to be used.

 Page 33 of 108

When the groups for the current zoom level has been defined, they must be visualized on the
map in some way. The easiest way of doing this is to draw a dot or a small icon at the average
location for each group. Since the photos have been aggregated into groups, this will not pose
any major problem with scaling. The method described earlier of using different sizes of the
dots to indicate the number of photos in each group is just as applicable to this way of
creating the groups as it is for the 10x10 pixel cells used with media dots, but it may still be
hard to distinguish between the different sizes on a small mobile phone screen. Another
method of showing the number of photos in a group could be to draw a small circle with the
number written inside on the average location of the group. The circles might have to be
relatively large though, for the user to be able to read the number.

When the groups are created and a marker is drawn on the map, it is relatively easy to make
the application show all the photos in the group when the user selects a marker on the map. If
the user zooms close enough, the markers may indicate just one single photo, since small
variations in coordinates is likely to occur. The user will then be presented with only that
single photo when the marker is selected.

4.3 Who Lives Here?
The use of maps is probably the most obvious way of utilizing location information, but there
are a lot of other ways of using this information as well, that may be even more interesting
and useful. One such application is to show the user which of his contacts that lives where his
photos were taken. When the user can’t remember where a photo was taken, and it’s not
possible to find out by looking at the photo, he can easily find out if it was taken where some
of his contacts live by the press of a button or a choice in the context menu. This serves the
same purpose as showing the location of where a photo was taken in a map, so both
applications may be used when the user wants to find out where a photo was taken.

Even though this application covers the same need as the map application described in section
4.1, the format of the answer that the user gets is significantly different. Which of these
applications that is most useful for the user is determined by the situation. The application
described here is completely useless for photos taken while hiking in the woods, but in that
situation the map application is an appropriate presentation of the location. Photos that are
taken while visiting one of your friends, on the other hand, are the ones that will be suitable
for this application, and the name of the person who lives there is expected to be much faster
and easier to interpret for the user than a map with a marker on it. The situation where this
application will be most useful though, is probably when looking at pictures taken by
someone else, since the user then will have no way of knowing where the photo was taken.

The location of where a geotagged picture was taken will be stored as latitude and longitude,
but it can not be expected that the user will bother to store the coordinates of where his
contacts lives manually. The location of where your contacts live must in some way be
automatically translated into latitude and longitude coordinates that can be compared to the
coordinates of the photos. The most basic way of determining the coordinates of the contacts
will be to start out by requiring the user to manually store the address of each contact in the
contact list. There exist several web services on the internet that are able to translate addresses
into coordinates [71][72]. When the addresses of all the contacts are known, one of these web
services can be used to retrieve the coordinates.

 Page 34 of 108

There will usually be a slight variance between the coordinates stored in a geotagged photo
and the coordinates retrieved for an address, since the coordinates can be given with higher
accuracy than the size of a building. Small deviations must therefore be accepted when
comparing the locations of photos to the addresses of contacts. To compare the photo location
to the contact locations, the distance from the photo to each of the addresses must be
calculated. As discussed in the last section, the WGS84 ellipsoid must be used to get an
accurate answer. Each of the distances must be compared to a threshold value to decide if the
photo was taken at that address or not.

The algorithm for finding which of the contacts that lives where a specific photo was taken
can be described as follows:

1. Read the location of the photo into memory.
2. Retrieve the coordinates of the address for each of the contacts in the contact list.
3. For each of the addresses, calculate the distance between the photo and the address.
4. If the distance is less than the threshold, add the contact to the list of matches.

This algorithm will cover the case where several contacts live together. There are however
some problems with it. The fixed size threshold value can be really problematic, since the size
of people’s properties varies wildly. A very low threshold value of 20-50 meters would be
appropriate for people living in small apartments, whereas a much larger value would be
needed for people living at farms. Unfortunately, the web services that convert addresses to
coordinates have no information about the size of the properties, so there is no good way of
determining this. Geographical data that describes which areas are considered urban and
which are considered rural might be used to make a guess on property size, but it would be
very inaccurate. Another problem is that people living at different floors in the same
apartment building can not be distinguished from each other.

4.3.1 Phone Directory
The biggest problem with the “Who Lives Here?” application is that it requires the user to
manually store the home address of all the contacts in the contact list. A typical mobile phone
user will usually just store the name and phone number of his contacts. Other information,
like home address, is currently not very useful in a mobile phone, and it is therefore expected
that very few people will take the time to enter this manually. This problem can be mitigated
by the use of a public phone directory available as a web service, since most phone directories
usually also contains the address of the phone owner. The problem of several people having
the same name can be avoided, since the phone number is already available on the phone. The
name and phone number pair will uniquely identify one specific person. The address of this
contact can then be returned to the mobile phone and used in the same way as if it was stored
manually.

4.3.2 Social Networking Websites
The popularity of websites for social networking has exploded the last few years. Examples
are Facebook [39], MySpace [73] and LinkedIn [74]. A large portion of the population use
one or more of these services, and many have more contacts on these sites than they have on
their mobile phone. Most of the social networking sites let the user publish a profile with
personal information, such as address, phone number and so on. Most of the sites also provide
some sort of API that lets developers integrate the sites into other applications. The data from
these sites could therefore potentially be used to enhance the functionality of the “Who Lives

 Page 35 of 108

Here?” application. Instead of just looking through the contact list on the phone, the
application could retrieve the user’s contact list from the social networking websites and use
these in the exact same way. If a contact on a social networking site has published an address,
this can be used directly with the web services that translate to coordinates, just like with a
regular phone contact. If only a phone number is available, and no address, the phone
directory can be used, just like described above. This addition could increase the portion of a
photo collection that matches a contact’s address.

4.4 From Contact List to Photos
The “Who Lives Here?” application described in the last section can be just as interesting if it
is reversed. Instead of finding which contacts that live where a specific photo was taken, it
can be useful to find all photos taken where a specific contact lives. It can be used for the
same basic problem as finding a photo with a map, namely to find a photo that the user knows
where was taken. If the user remembers taking the photo where one of his friends lives, it
would be much easier to just browse through the contact list to find his friend, than navigating
to the right location on a map. Photos that are not taken where anyone in the contact list lives
are not accessible at all using this approach though.

4.5 Social Gathering Places
A lot of the places where people meet to socialize are provided and taken care of by
companies. This may be pubs, bars, restaurants, cafés, concert scenes, schools and many
others. When people describe these places to each other, it will usually be by the name of the
company. Given that the person is familiar with the place, this is the easiest way of describing
the location. Using address, coordinates or any other description of location will be less
intuitive.

When a picture is taken at one of these places, its location will therefore also most intuitively
be described by the name of the company. If this idea is taken into the domain of an image
browsing application, it might be useful if the application could tell the user for instance that
“This photo was taken at Rick’s café in Trondheim.” It is often dark and very crowded at
some of these locations, and it may therefore be difficult to recognize where it was taken. The
use of a company name can be much faster and easier to interpret for the user than for
instance a map, as described in section 4.1.

A comprehensive database of companies and their locations is needed to implement this
application. It is hard to find such a database that has global coverage, but databases for
specific countries are possible to obtain. For a lot of countries, this information is made
available on the web by companies such as YELLOWPAGES.COM LLC [75] for the US and
Gule Sider by Eniro Norge AS [76] for Norway. A lot of the companies in such databases will
not be relevant for this kind of application, so it will have to be filtered to obtain only the
most interesting categories. When a list of addresses for the relevant companies is available,
the exact location for these companies, described by latitude and longitude, may be obtained
and used in the same way as for the contacts, as described in section 4.3. The same web
services for translating addresses into coordinates can be used, and the same general
algorithm as used with the contact list to find geographical matches can be used, by just
replacing the contact location by company location instead. The usage of a threshold on the
distances also still holds. The algorithm for this application would then be as follows:

1. Read the location of the photo into memory.

 Page 36 of 108

2. Retrieve the coordinates of the address for each of the companies in the database.
3. For each of the addresses, calculate the distance between the photo and the address.
4. If the distance is less than the threshold, add the company to the list of matches.

This of course has the same pros and cons as when used on contacts. If several companies are
located at the same place, all of them will be found. The problem of using a static threshold
value for all companies is still problematic, so for example large outdoor concert scenes will
cause problems.

4.6 Current Location
The goal of this application is to use the coordinates of where the user is currently located as a
basis for browsing a subset of the photo collection. Some times a user may be at a place
where he remembers having taken pictures some time ago. By utilizing the user’s current
position, obtained by some kind of positioning system in the mobile phone, the geotagged
photos that were taken in this location can be retrieved. The same algorithm as used earlier for
retrieving objects that are within a certain distance threshold can be used here too, but in this
case it might be beneficial for the user to manually adjusting the threshold value through the
user interface, instead of using a predefined static value. If the user is not exactly at the place
where a certain photo was taken, the threshold value can be increased until the correct photo
is found. When the algorithm returns too many photos, the user can lower the threshold value
if he is in the exact same place where the photo was taken. It is important to be careful when
adding more adjustable parameters to the user interface though, as this might often confuse
the user. This is especially true on a mobile phone, where the space on the screen is limited. It
is probably not a problem in this case though, as this will be the only adjustable value.

4.7 Same Location as Other Photos
This feature is about finding more photos that are taken in the same location as the photo the
user is currently viewing. This can be used to find several photos of the same object, possibly
from different view angels, different seasons and different weather. For instance, if the user is
viewing a photo of the Nidaros cathedral, this feature can be used to find other photos of the
cathedral. Since the photos may be taken at different events, with a long time span separating
them, the traditional way of sorting photos by date and time is of little help. Photos taken at
the same location can be found using a map, as described in section 4.2, but it would be a lot
of unnecessary extra work to use this approach when the location is already available. If the
result set of this location-based search is very large, it can be beneficial to list the photos by
event, using a time-based clustering algorithm [29].

The same algorithm as described earlier can be used too to determine the photos which are
taken close to the currently viewed photo. The ability to choose threshold value for the
distance might be interesting in this application also, but the concern of reduced usability still
prevails.

4.8 Related Geotagged Information
Even though a picture is supposed to tell more than a thousand words, it is still often
interesting to get more information about the content of the photo. For instance, when the user
is viewing a photo of the Nidaros cathedral, he might be interested in obtaining more

 Page 37 of 108

information about the cathedral. Unfortunately, the research on image recognition techniques
has not come so far as to be able to recognize any object in a picture. Instead, the location of
where the photo was taken can be used for making good guesses, if a database of geotagged
information is available. This is of course not a perfect solution, for instance a close-up photo
of a bird, which was incidentally taken outside the Nidaros cathedral, would be recognized as
the cathedral and not the bird. Even though this problem exists, it might be a good enough
approximation in many cases.

The database of geotagged information could come from many different sources. For
instance, news articles from a news archive might be interesting, as well as articles from an
encyclopaedia. Unfortunately, there are not many sources of information that currently geotag
their content. The most interesting exception is Wikipedia [77], the currently largest and most
popular encyclopaedia with user-generated content, available for free on the internet. The
number of articles that have been geotagged is constantly growing, and has currently reached
more than 200 000. Unfortunately Wikipedia does not, at least not yet, provide any way of
searching for articles based on coordinates. Instead, the database of geotagged articles is made
available for download from the project webpage of Wikipedia-World [78]. This can be used
by interested developers to create applications that utilize the geotagged information.

One big obstacle for making this a user friendly system has to do with the size of the object
being described in the article. For instance, it might be important to distinguish between
articles describing countries, cities and buildings. Even though the coordinates for these might
be the same, the scale is not. If a user is viewing a photo of the Nidaros cathedral, he is
probably not interested in an article about Norway. The databases of geotagged information
might contain information about scale, such as the Wikipedia database does, but this is not
available for photos that have been automatically geotagged. It might be reasonable to assume
though, that most private photos, at least those taken with a mobile phone camera, will usually
show just a small area, and not large regions like whole cities or countries. Thus, removing or
filtering out articles about large-scale objects from the database before doing a location-based
search might be favorable. The method for identifying geotagged articles that are close
enough to be relevant for a specified photo will be very similar to the one described for the
earlier applications.

4.9 Navigation to Photo Location
Sometimes a user might look at a photo and recognize where it was taken, but not know how
to get there. This can happen if the photo was taken in an area that the user is not familiar
with, or if the user is viewing photos that were taken by someone else. In these cases, the user
might want to get to the location of the photo, especially if the photo shows a sight or
landmark that is usually visited by tourists. This can be made possible by combining the
geotagged photos with a navigation application, with similar functionality as the GPS
navigation units that has become extremely popular in cars and boats. It can either be a stand-
alone navigation application that just receives the target coordinates from the geotagged
photo, or the navigational data can be an integrated part of an image browsing application.
The Android platform has support navigation as a part of the integrated Google Maps
application and framework.

One of the most interesting scenarios where this kind of functionality can be useful is
providing services for tourists. A tourist information office or website might provide a
collection of geotagged photos of the most interesting places for tourists to visit in the area.

 Page 38 of 108

When the collection is loaded into the phone, the user can request directions to each of the
places while browsing the photos.

4.10 Summary
Several different usages of geotagged photos have been discussed in this chapter. Mobile
phones have until the recent years not been a good enough platform for these kinds of
applications, but this is currently changing. Some of the application suggestions described
here are well tested on PCs, others are not. Most of them have not spread to mobile phones
yet. The concept of visualizing geotagged photos using a map is well known in the PC world,
as described in section 2.5. Connecting the location of photos to contacts or social gathering
places, as well as other geotagged information has not been well explored.

 Page 39 of 108

5 Methodology
To be able to answer what was stated in the problem definition, several of the application
suggestions described in the previous chapter had to be implemented. This was necessary both
to gain a better understanding of the capabilities of the Android platform, and to be able to
carry out a realistic user survey. Unfortunately, there was not enough time to implement them
all, so three applications that were regarded as most interesting was chosen. They have not
been developed to a level where they are ready to be released to the public, but only as proofs
of concepts to be able to answer the fundamental questions of this study. This chapter will
elaborate further on what the study is about, provide details on how the application
suggestions were implemented, and describe how the user survey was carried out.

5.1 Problem Elaboration
As stated in the problem definition, the objectives of this study is to explore different usages
of geotagged photos, assess how suitable the Android platform is for applications involving
geotagged photos, and to carry out a small user survey to investigate if mobile phone users
find these kinds of applications interesting to use. Several concepts for how geotagged photos
can be used were explored in the previous chapter, and some of these have been investigated
further to gain a deeper understanding of how they can be implemented on the Android
platform. The platform has several built-in features that are concerned with the location of the
mobile phone, and therefore fits perfectly into geotagging applications. These features had to
be studied to find out how they could be used to implement the different prototypes.

A very interesting part of this study though, is the user survey. A small user group is asked to
try the different prototypes that are implemented, and to answer some questions about them.
This is important to not only find out how the applications can be implemented, but also if
people find these kinds of applications useful and intuitive.

5.2 Implementation of Prototypes
As mentioned earlier, there was not enough time to implement all of the application
suggestions described. Therefore, only the three applications that were regarded most
interesting were chosen for prototype implementation. These are the applications called
“From Photo to Map”, “From Map to Photos” and “Who Lives Here?”, as described in the
previous chapter. The details of how these prototypes were implemented are described here,
as well as how the underlying data is created and stored. Some general concerns regarding
development for mobile phones, not specific for the Android platform, are also discussed
here.

5.2.1 Challenges of Mobile Development
Although the recent years have shown huge improvements in the technology of mobile
phones, they are still very limited devices compared to regular PCs. This has to be considered
when developing mobile applications. Mobile phones today still have limited resources such
as slow processors and little memory, even though they are much better than they were just a
few years ago. Unlike desktop computers, mobile devices are powered by batteries, so more
work for the processor means that the battery drains faster. Mobile devices also have much
smaller screens and more awkward input methods than PCs, which makes it much more

 Page 40 of 108

important to focus on implementing simple user interfaces that are easy to use and have only
as many user choices as absolutely necessary.

The popularity of fast and always-on internet connections for PCs has strongly influenced the
way software is developed, and software developers today can usually assume that most PCs
have a good quality connection to the internet most of the time. The situation for mobile
phones, on the other hand, is varies a lot. High speed connections are available in some areas,
but in other areas only slow connections are available, although this is constantly being
improved. The cost of transferring data to and from a mobile phone has also been high.
Mobile subscriptions that allow unlimited data transfers for a fixed price have recently
become available, but are not very widespread yet, although the popularity is rising. Some
newer and more advanced mobile phones also have a built-in WLAN adapter, which can
provide free internet access where this is available. In this study, it is assumed that a high
quality internet connection is available.

Software development on mobile phones has traditionally meant using Java ME, which is
available on most mobile phones. This is a very limited version of Java, and the kinds of
applications that can be implemented using this are restricted. There is a long list of
standardized extensions to Java ME called Java Specification Requests (JSRs), but the
support for these varies a lot between the different phone models. The more advanced mobile
phones available that goes in the category smartphones usually does not have so much
restrictions though, as applications for these platforms can be developed using other
technologies than Java ME. For instance, applications for Symbian OS can be programmed in
C++ or Python, and Windows Mobile applications can be programmed using either native
C++ or any language supporting the .net framework, such as C#. The customized Java-
support in the Android platform is no where near the limited Java ME, but closely resembles
Java SE, and does not put a lot of restrictions on the kinds of applications that can be
implemented.

5.2.2 Using the Android Emulator
An emulator that makes it possible to run applications for mobile phones on the development
PC is available for most mobile platforms supporting third party applications. It makes
development and debugging of mobile software much easier, as there is no need to deploy the
application to the phone each time a minor change is done. The developers don’t even need
access to the phones they are developing applications for. Although the applications should
always be tested on real hardware before they are released, of course.

The Android emulator is very well integrated with the Eclipse IDE plug-in, and it is very easy
to test and debug Android applications on the emulator from within the IDE. For the user
survey, on the other hand, the use of an emulator might have some drawbacks. The experience
of using the mobile applications by manipulating the virtual phone with the mouse and
keyboard is fundamentally different than having an actual phone in the hand. This might
influence the results of the user survey. The concepts of the applications are the most
important thing to investigate here though, so a slight awkwardness in the usability might not
be that important.

Other problems with the Android emulator is, as mentioned in section 3.8, that the camera
only shows a square in front of a background with a chessboard pattern, and that the GPS in
the emulator only simulates that the phone is traveling back and forth on a predefined route in

 Page 41 of 108

the San Francisco Bay area. There are other limitations too, but they are not relevant for the
applications described here.

5.2.3 Storing and Accessing Location Information in Image Files
The first step to implementing these geotagging applications is to find a good way of storing
the location information. The Android developers seem to be planning to implement a way to
store geotagged photos in the platform itself, as a ContentProvider for this has been defined in
the class android.provider.MediaStore.Images. Unfortunately, the ContentProvider does not
work yet, and there is no information available on how it will work or when it will be done. A
way of storing the location information must therefore be created by the application
developer. The solution must be fast and effective, so that retrieving the location information
from all the photos in large collections, as needed when the location of all photos is to be
visualized in a map, does not cause too much delay. The location information can be stored in
several different ways, but the two most promising ways are either to store the information in
the Exchangeable Image File Format (EXIF) [79] header of the image file itself or to use a
separate database in the mobile phone to store the locations.

The EXIF header is a standardized format for storing many different types of metadata about
a photo inside the image file itself. This can be information such as the time and date, the
camera model, the camera settings used to capture this exact picture, and most importantly for
this study, the geographical location for where the photo was taken. The information in the
EXIF headers in the image files can be read and written using a third-party Java library called
Sanselan [80], which is an open-source project released under the Apache Licence, Version
2.0 [56]. There are two main advantages of using the EXIF header. The first is that since the
location information is stored in the file itself, it will follow the file wherever it is copied to. If
the file is transferred from the mobile phone to a PC or uploaded to a server, the location
information will be available there too. The other advantage is that it is a standardized format,
supported by a large portion of applications that handle geotagged photos. The location
information can therefore also be easily used by other applications when the photos are
transferred out of the phone. The main disadvantage with using the EXIF header is speed. As
long as the location information for only single photos is requested, there is no problem.
When the location information from a large number of photos are to be aggregated, on the
other hand, the application might get very slow if the information must be read from a large
number of different files.

The other alternative is to store the location information for each of the photos in a database,
separated from the image files. The photos could be stored as regular files, and the database
would store the filename of each file to be able to connect the location information to the
correct photos. As described in section 3.5, the Android platform has the SQLite database
engine built in, and it could be utilized for this purpose. Databases are made for handling
large datasets, so the main advantage of using a database for storing the location information
would be speed. There is unfortunately no standardized way of storing the location
information of a geotagged photo in a database, and the image files themselves would have no
information about the location. If the images were to be transferred to another device, the
location information would be lost. A system could be made to interface between the database
and the receiving system, but there is no standardized way of doing this.

The portability problems of using a database is a major concern, but the performance of
storing the location information distributed into each separate file might also be problematic.

 Page 42 of 108

To be able to make a decision, a benchmark test comparing the performance of the two
methods had to be performed. The scenario being tested was to read the location information
for 100 photos. There were created 100 image files with the location information embedded in
the EXIF header, and a simple database table was created in SQLite that contained 100
coordinates. First the image files were tested. The test program looped through all the image
files, reading all the coordinates into an array using the Sanselan library. The test was run five
times while the execution time was measured. The average result was 27.8 seconds, with very
low variance. Then the database method was tested. The test program used the built-in library
from the Android Application Framework to read the 100 coordinates from the database table
into an array. This test was also run five times, and the execution times were measured. The
result was 0.2 seconds, also with very low variance. As expected, the database solution was
extremely much more efficient than using the files, as shown in Figure 5.1. The point of this
test was to see how big the difference is, and it turned out to be major. The difference is also
expected to grow larger as the size of the photo collection increases.

0

5

10

15

20

25

30

SQLite EXIF Header

E
xe

cu
tio

n
tim

e
[s

ec
on

ds
]

Figure 5.1: Execution time for reading coordinates of 100 geotagged photos.

Although the database storage is superior in performance, the portability of the geotagged
photos is still a big concern. A possible solution is to combine the two methods, by storing the
location information both in the EXIF header in the image files and in a database table. The
database can thereby be used as a fast caching mechanism of the metadata in the files. This
combined solution has the advantages of both the two original suggestions, and none of the
disadvantages. If the image file is transferred to other devices, the location information will
still be intact, at the same time as the database can be used to get high performance when the
location of many photos is needed. When the location for just a single photo is needed, both
methods can be used. The delay will be negligible anyway, so the method that is considered
easiest to implement in the current context can be used.

 Page 43 of 108

The combined storage solution has been used to create a ContentProvider for geotagged
photos, to make the geotagged photos available to the applications on the mobile phone that
will use them. It is simply named ImageProvider. ContentProviders will usually contain
methods to query, insert, update and delete the underlying data. Only the method for querying
data was needed for the prototypes implemented here, so the other three methods were
omitted. If the ImageProvider was to be released to real users, and not just used as a proof of
concept in a user survey, the methods for insert, update and delete would also have to be
implemented. This would be trivial though. When querying the ImageProvider, both the
metadata and the actual image file data is made available to the application consuming the
data from the provider. How the data is further utilized is completely up to the consumer
application. The source code of the ImageProvider is given in appendix E.

The database table created for the ImageProvider is shown in Figure 5.2. The fields for
filename, latitude and longitude do not need any further explanation, but the fields
image_original, image_screensize and image_thumbnail will be described in the following
sections. Other fields for storing other parts of the metadata from the EXIF header, such as
time and date, may be desirable to store in the database for other applications than the ones
described here. This has not been implemented, but it would be an easy extension.

Figure 5.2: Database table used to store location information of geotagged photos.

An Activity was added to the ImageProvider application to make it possible to read metadata
from image files in a specified folder and store it in the database. The activity was called
ProviderController. It uses the Sanselan library to read the EXIF header in the files, and the
SQLite library in the Android Application Framework to store the data directly in the
database. Since this activity is a part of the same application package as the ImageProvider,
they both have direct access to the database.

The algorithm for importing the location information from the EXIF headers is as follows:

1. Retrieve a list of all the files in the image folder.
2. Retrieve a list of all the records in the database.
3. Compare the list of image files to the list of records.
4. If an image file is not in the database, read the metadata from the file, create a

thumbnail in the thumbnail folder and store the information as a new row in the
database.

5. If a row in the database points to a file that does not exist, delete the row from the
database.

In the future, the earlier mentioned built-in ContentProvider described in
android.provider.MediaStore.Images might be used instead of this ImageProvider, but it is
currently not implemented in Android yet. It seems like the plan is for the provider to be able
to store the location of images, but it is not yet known how the location data will be stored. A
new benchmark will therefore have to be performed if the provider becomes available to see if

 Page 44 of 108

it is fast enough for the uses specified earlier, or if the custom ImageProvider developed in
this study must still be used.

5.2.4 Creation of a Geotagged Photo Collection
An important aspect of geotagging, although not the main focus of this study, is how to create
geotagged photos. Several different positioning technologies and software for geotagging
were presented in chapter 2. There are applications that automatically geotag photos taken
with a mobile phone available for other mobile platforms, but none is available for Android
yet.

The first approach of this study was to create an Android application that could capture an
image from the camera, retrieve the location of the phone from the GPS receiver and store the
location in the EXIF header of the image file. The Sanselan library was used to write the
EXIF header. Unfortunately, as described in section 3.8, the data retrieved from the camera
and GPS in the emulator is not very interesting. The emulator is able to access web services
on the internet, and therefore it would be possible to connect a webcam and a GPS receiver to
the host computer, and publish the data from these devices through a local web server. It
would be very awkward though, to run around with a laptop, webcam and GPS receiver to
create a collection of geotagged photos. It would also take a lot of time to create a collection
of a reasonable size for use in the user survey. The survey also would be most interesting if
the collection had photos from several different countries and continents, which would not
have been possible if they were to be created using the emulator. It was therefore decided to
not use the Android geotagging application.

Instead of creating geotagged photos using the emulator, two photo collections were created
in two different ways. First, a small collection consisting of only seven photos was made for
testing the concept. It was created by selecting photos from a private photo collection and
manually geotagging them by using PC software, as described in section 2.5. The collection
was then transferred to the emulator and stored in the ImageProvider. For some of the tests in
the user survey though, a much larger photo collection was needed. It was therefore created an
Android application that downloaded publicly available geotagged photos from flickr and
stored them in the ImageProvider. A photo collection of 176 photos taken all over the world
was created using this tool.

5.2.5 Implementation of a Location-Aware Image Brow ser
The three application suggestions that were selected for prototype implementation have been
combined into one integrated location-aware image browser. The application’s main layout,
as shown in Figure 5.3, has been based on the example code of an image gallery that comes
with the Android SDK. The photos used in the example code were hard-coded resource files
that were compiled into the application. For the location-aware image browser the photos
instead had to be retrieved from the ImageProvider at runtime. The user can switch between
the different photos using the directional keys on the phone. A context menu was added to
provide access to the three new functionalities added, as shown in Figure 5.4.

In the first attempt, the original full-size image data was used directly both for the large-scale
view of the selected photo and for the small thumbnail-sized photos near the bottom of the
screen. This caused two big problems that made the application unusable. The first problem
was that the image browser was extremely slow. It took a long time to start up, and switching

 Page 45 of 108

from one photo to the next took several seconds. The other problem is related to the current
version of the Android platform. The garbage collection mechanism in the Dalvik VM does
not work very well yet. If a series of large objects are created in the Java code, and the
reference to each object is removed before the next one is created, the garbage collector is
expected to delete each of the unreferenced objects when necessary. When the memory
available to the applications fills up with unreferenced data, the garbage collector should
remove this to make space for new data. Unfortunately, the garbage collector in Dalvik seems
to just work periodically and not kick in when the memory fills up. Instead, the whole
application is simply killed, without any warning or error messages. This issue must be
expected to be fixed in the final release of the Android platform though, so the main problem
of using the original full-size image data is speed.

Figure 5.3: Screenshot of the image browser.

 Page 46 of 108

Figure 5.4: Screenshot showing the context menu of the image browser.

To avoid both the performance problem and the application crash, the size of the image data
used had to be reduced. A photo taken by most kinds of digital cameras, both integrated in
mobile phones and stand-alone cameras, will usually consist of significantly more pixels than
the screen of a mobile phone can show. It is not uncommon today that mobile phone cameras
produce pictures of 2-3 megapixels. The resolution of mobile phone screens is of course
varying, but the resolution of the emulator screen can be used as an indicator. The default
emulator resolution is 320x480 pixels, approximately 0.15 megapixels. The thumbnail-sized
photos at the bottom of the screen in the image browser are much smaller than this too. It was
therefore decided that when the photos are imported into the ImageProvider, two image
copies with lower resolution should be created. One with a maximum width of 320 pixels and
another with a maximum width of 60 pixels were needed to fit the full-screen view and the
thumbnail view. The heights of these low-resolution images had to be calculated from the
aspect ratio of the original image. Using these two image files instead of the original full-
sized image resolved both the described problems. The image browser became very
responsive, and the garbage collector got time to do its job before the memory filled up.

Storing two copies of each photo will of course need more storage space than just storing the
original, but this is considered a minor problem when compared to the advantage gained.
Most new and advanced mobile phones have large storage capacities, provided by the support
of memory cards. Currently the memory cards for mobile phones are available in sizes up to
8GB. A JPEG compressed photo taken with a mobile phone camera will vary in size, but

 Page 47 of 108

usually take up somewhere between 200kB and 2MB. The two low-resolution image files
combined will need approximately 5-10% of the storage space needed by the original image,
which is considered to be negligible.

The next sections will describe the implementation of the three different usages of the
location information in the geotagged photo collection. The source code of the complete
location-aware image browser is provided in appendix D.

5.2.6 Implementation Details of “From Photo to Map”
The first feature that has been implemented is the one called “From Photo to Map”, which
enables the user to see a marker on a map where a specified photo was taken. The feature was
described in section 4.1. The user starts by browsing the photos in the location-aware image
browser. When he has found a photo that he wants to find the location of, he can open the
context menu shown in Figure 5.4 and select “Show this photo in a map” to open the map
Activity. The map activity shows a map of the area where the photo was taken, with the exact
location indicated by a marker, and the zoom adjusted to a suitable level. The zoom level has
been hard-coded and will therefore be the same for all photos. An example of a map with a
marker is shown in Figure 5.5. The circle shown on the end of the marker is not a part of the
marker, but simply indicates the center of the screen to make it easier to aim when zooming.

Figure 5.5: Screenshot of the map with a point marker.

 Page 48 of 108

On the emulator the map can be panned around by moving the mouse pointer around on the
screen while holding the left mouse button down. This is equivalent to moving the finger
around on the screen on a real phone. By clicking and holding the mouse button down without
moving the mouse, or by holding the finger still on a real phone, the partially transparent
zoom controller appears. It was decided not to have it constantly visible in order to save space
on the screen for the map. This is not a problem on a regular PC, but on the small screen of a
mobile phone the space on the screen needs to be used more carefully. The zoom controller is
shown in Figure 5.6.

Figure 5.6: Screenshot showing the zoom controller of the map.

As described in the Android chapter, the Activities in Android applications are built up by
Views. It was also mentioned that Google Maps, as shown in these screenshots, are a built-in
part of the Android platform. Google Maps is made available to the developers as a View,
simply called MapView. Features of the MapView, such as panning and zooming, can be
controlled programmatically by calling methods on a MapController obtained from the
MapView.

The web-based version of Google Maps used on PCs has a built-in feature for placing a
marker onto the map in a specified coordinate. This feature is unfortunately not available in
the Android implementation of Google maps. What is available though is an
OverlayController, which can be obtained from the MapView. The OverlayController can be

 Page 49 of 108

used to draw any kind of graphics onto the map. The developer does not need to worry about
the screen coordinates of where the overlays are drawn, as the framework contains
functionality for converting from latitude and longitude. In this application, the
OverlayController has been used to draw a point marker icon stored in a resource file, which
is compiled into the application package.

5.2.7 Implementation Details of “From Map to Photos ”
The second implemented feature is the one called “From Map to Photos”, described in section
4.2. It lets the user start with a map where all the places where photos have been taken are
shown with a point marker. If the user clicks on one of the point markers, he is shown all the
photos taken at that location. Photos taken close to each other are aggregated into single point
markers. How close the photos have to be to be grouped into one marker depends on the
current zoom level of the map. When the map is zoomed all the way out so that the whole
world is visible, photos from large areas, often spanning several countries, will be grouped
together. When the map is zoomed close in, only photos taken at the exact same location will
be grouped together. Three different zoom levels are shown in Figure 5.7, Figure 5.8 and
Figure 5.9, illustrating that the number of groups are different when the whole world, a
country and just a city is visible. The feature is available via the context menu in the image
browsing application, as shown in Figure 5.4, by selecting “Show a map with all photos”.

Figure 5.7: From Map to Photos, showing the whole world.

 Page 50 of 108

Figure 5.8: From Map to Photos, showing a country.

 Page 51 of 108

Figure 5.9: From Map to Photos, showing a city.

When the application is started, the map will automatically be adjusted to show all the photo
locations. If photos in the collection are taken all over the world, the whole world will be
visible. If the collection consists of photos from only one city, then just that city will be
visible. The pan and zoom controls that the user needs to navigate the map are the same as
described in the previous section.

The hardest implementation challenge here is the clustering algorithm. An overview of the
steps in the algorithm as defined by [69] was given in section 4.2. A more detailed description
of the implementation is given here. At the beginning, each photo is given its own cluster, so
the number of photos, N, equals the number of clusters. Then, the distances between each of
the clusters need to be calculated. As described earlier, the WGS84 ellipsoid has to be used to
accurately calculate the distance between two coordinates. Fortunately for Android
developers, this distance calculation is included in the Location API, so using it is as easy as
simple function call. The distances are stored in an NxN matrix, so that the value placed in (x,
y) is the distance between photo x and photo y. The matrix is then traversed to find the
shortest distance between any two clusters, and those two clusters are merged. In the matrix,
the corresponding rows and columns are deleted, and a new row and column are added for the
new cluster. The distance from the new cluster to all other clusters must be calculated and
inserted into the matrix. The distance between two clusters consisting of more than one photo
can be defined in several ways, the most important being single-linkage and complete-
linkage. Single-linkage means using the shortest distance from any photo in the first cluster to

 Page 52 of 108

any photo in the other, while complete-linkage means using the greatest distance. If complete-
linkage was used, all the photos in one cluster would have to be very close to each other.
Single-linkage was chosen, to be able to catch situations such as a series of photos taken
alongside a road. When the new distances are added to the matrix, a new minimum must be
found. The process of merging clusters, removing old rows and columns and adding new,
calculating new distances and finding a new minimum is repeated until either all photos are
merged into the same cluster or a threshold value on the minimum distance is met.

In the first attempt of using this algorithm, a new distance threshold was calculated each time
the zoom level changed, and the clustering algorithm was executed until this threshold was
met. This worked smoothly on the small test collection of only seven photos, but when a
larger collection was used the inherent scalability problems in the clustering algorithm
became very obvious. The clustering algorithm has a time complexity of O(n2), which means
that each time the number of photos doubled, the execution time is multiplied by four, and
this was confirmed by testing the algorithm with photo collections of different sizes. It was
hoped that this effect would be negligible for the relatively small size of an average photo
collection, but this was proven wrong. For the photo collection of 176 photos, it took
approximately five minutes to generate the clusters. It is of course totally unacceptable to
have a delay of five minutes each time the zoom level of a map is changed.

It was realized that there is no need to regenerate the clustering tree for each time the zoom
level is changed. Instead, the clustering algorithm can be executed once until all photos are
merged into the same cluster. This clustering tree can then be kept in memory together with
an array containing the minimum distances that caused the cluster merges for each level.
When the zoom level of the map changes, the corresponding composition of clusters can be
obtained by going into the correct level in the clustering tree. This was used to enhance the
performance of the application, so that no noticeable delay from calculating clusters occurs
when changing zoom levels, although the cluster tree still takes five minutes to build when the
application is started. This was not considered a problem for using the application as a proof
of concept in the user survey though, so this was the method used. If the application were to
be released to normal users, the loading time problem would have to be mitigated somehow.
Suggestions for how this could be done are discussed in chapter 8.

5.2.8 Implementation Details of “Who Lives Here?”
The third and last application suggestion that was implemented was the one called “Who
Lives Here?” It is described in section 4.3. It is available from the context menu in the image
browser, shown in Figure 5.4, by selecting “Who lives here?” If any of the contacts lives
where the currently selected photo was taken, the user is shown a list of these, as shown in
Figure 5.10. Otherwise a message telling the user that none of the contacts lives where the
photo was taken is shown. The two possible extensions described in the sub-sections 4.3.1
and 4.3.2 has not been implemented, so this application requires the user to store the address
of each of the contacts manually.

 Page 53 of 108

Figure 5.10: Who Lives Here?, showing two contacts.

The developers of Android plan to include the functionality of translating street addresses into
coordinates as a part of the Android platform. The class has been created as
android.location.Geocoder, but the functionality is not implemented yet. As mentioned in
section 4.3, there exist several web services that are able to perform this task. The one
provided by Google was used in this prototype implementation.

As explained in section 4.2, the distance from the selected photo to the address of each of the
contacts must be calculated. Therefore, the coordinates for every contact in the contact list
must be retrieved. To use a web service is a relatively slow process, especially when it has to
be called many times in a row. If the coordinates for all the contacts were to be obtained from
the web service each time the application needed them, it would induce a huge delay and the
application would feel extremely unresponsive. Thus, the coordinates need to be cached
locally at the phone. The contact list in Android, which can be access through a
ContentProvider, is an extensible data structure that supports many other kinds of data than
the ones available through the built-in contact list application. One of the possibilities is to
store the location for each contact. This is currently not in use by the Android platform, and
can therefore be used to store the cached coordinates of the address. There is no
documentation on how the location field in the contact list is supposed to be used though, so
for an application released to users it would be wise to store the cached coordinates in a
separate database and use foreign key references to the contact list for the other contact
information. Otherwise there might be a conflict with other applications or services using the

 Page 54 of 108

same data fields in another way. This is not a concern for this prototype implementation
though, so the coordinates are stored directly in the contact list. The current address of each
contact is also copied to a field assigned for extra data in the location structure, so that it can
be detected if the address is changed manually.

The algorithm to retrieve all the contacts that lives where a photo was taken, including the
caching mechanism, can be summed up as follows:

1. Retrieve a list of all contacts that does not have the coordinates cached.
2. Obtain the coordinates for each of these contacts from the web service and store them

locally in the contact list ContentProvider.
3. Retrieve a list of all coordinates stored in the contact list ContentProvider.
4. Loop through all the coordinates.
5. If a coordinate is within a specified distance threshold from the current photo, add the

ID to a match list.
6. Loop through the match list of IDs and retrieve the contact information for each of

them.

The question of how large the distance threshold should be, and if a static threshold is
appropriate, was discussed in section 4.3. In this prototype a static threshold of 100 meters
was used. Not much work has been done in determining what a good value for this would be.
100 meters is just a guess that works well with the test data, but more tests must be done to
find a value that will make the application more accurate.

5.3 User Survey
In order to answer some of the core questions of this study, a small user survey had to be
carried out. A small user group of 10 volunteers was created for this. The user group consisted
of people between 19 and 27 years old, who are comfortable with using new and mobile
technology in everyday life. Both sexes were represented in the group.

The persons in the group were first given a brief introduction to Android before being showed
the location-aware image browser. This was done to make sure that the general user interface
and navigation in Android was not an obstacle to understanding the application. The users
were then given just a short introduction to what this study is about, before being asked to
play around and explore the application themselves for a little while. In the end a detailed
explanation of the application was given. The users were then asked to fill out a form with
some questions, both regarding the three implemented features and some of the other
application suggestions that were not implemented. The original Norwegian form given to the
users can be seen in appendix A, and an English translation is given in appendix B. Each
question was to be answered by a number between 1 and 5, where 1 means completely
disagree and 5 means completely agree. The questions involve how useful they think each of
the features is and how easy they are to use.

In addition to the questions, the users were also asked to participate in an efficiency test to see
how fast they could find a specified photo using the map interface compared to browsing
through all the photos linearly. The large photo collection of 176 photos was used in this test.
The users were asked to find a photo of the Norwegian parliament building as fast as possible,
first by using the map, then by browsing through the photo collection linearly. The parliament
building was chosen because everyone knows where it is and most people can locate it on a
map. If they don’t know the exact location on the map, at least they know that it is in Oslo and

 Page 55 of 108

can find that city on the map. For the linear browsing, the photo was placed in the middle of
the collection, so that half of the pictures had to be browsed through before finding the correct
one. This was based on the assumption that the average position of all the photos is in the
middle, and this would therefore represent the average case.

5.4 Summary
The most important steps that had to be performed to answer the questions of the problem
definition was described in this chapter. Three applications called “From Photo to Map”,
From Map to Photos” and “Who Lives Here?” was selected for prototype implementation. A
method for creating a geotagged photo collection was created, as well as a ContentProvider
for storing and accessing the geotagged photos. A location-aware image browser was
developed, which includes and implementation of all the three application prototypes
described. A user survey also had to be carried out to find out how mobile phone users
respond to the ability of using the extra information of location when interacting with a photo
collection.

 Page 56 of 108

6 Results
The prototypes described in the previous chapter have been implemented, and the user survey
has been conducted. This chapter presents some of the experiences acquired from working
with the Android SDK, an analysis of the answers from the user survey and the results of the
efficiency test of the map-based browsing.

6.1 Experiences from Using the Android SDK
The implementation of the prototype applications described in this study has required the
developer to acquire a firm understanding of the currently available SDK for the Android
platform. There have been both good and bad experiences. The most important aspects are
described here.

In general, Android seems like a very good platform for developing both applications for
geotagged photos and other location-aware applications. The platform includes a mapping
solution and the Location API for easily acquiring the current location of the phone.
Throughout the Android API there are many hints that make it obvious that location-
awareness has been an important thing on the minds of the developers. Much of the
functionality that involves location has not been implemented yet, but it is important to
remember that the currently available SDK is described as a preview release, and that the
platform is not finished yet. Most of the problems encountered with Android are things that
most likely will be changed before the final release.

The biggest problem encountered was the garbage collector in the Dalvik VM that did not
kick in before the whole process was killed when it used too much memory. This made the
prototype development much more difficult. This is something that must be expected to be
fixed before the final version is released though.

Another problem has been with the Android emulator sometimes crashing and hanging during
startup. All the settings and user files for the emulator then had to be deleted before the
emulator would start again. This might not be an issue with the Android platform itself
though, as it might just as well be an issue with the emulator. This is also something that
could be fixed before the final release.

A major annoyance that is unlikely to be changed has to do with the combination of data from
more than one ContentProvider. Often times the ContentProviders are just an interface layer
on top of a database table. An example of this is the contact list system, where several
different ContentProviders grants access to different kinds of data about a contact stored in
different database tables. The underlying database tables, and therefore also the data available
through the ContentProviders, follows ordinary database design guidelines and uses foreign
key constraints to connect the data in different tables to each other. When the database is
queried directly, the data from different tables can be combined using simple join operators.
When the only possible access is through the ContentProviders, on the other hand, the
combination of data from different sources must be done in the Java code. This may in some
cases be much more complex than combining directly in an SQL query.

There have also been some other smaller annoyances and bugs, but several features have been
fixed by SDK updates, and much can still be changed before the platform is finished.

 Page 57 of 108

6.2 Answers from the User Survey
All the users in the survey group seemed very interested in the system developed, and they all
eagerly answered all the questions they were given. The raw numbers are provided in
appendix C, so only an analysis of them is appropriate here. Some of the results were very
conclusive, while others were not so clear. For all the questions, the median of the ten
answers has been used as a basis for the analysis.

For the application called “From Photos to Map”, the users mostly think it is useful, and they
definitely agree that it is very intuitive to use. They generally do not think it would have been
much easier to use on a PC, and they think that the application is suitable in the context of a
mobile phone. Some think that they would use this application themselves, others do not. The
median of the scores on this is 4, so the users seem slightly positive to using this kind of
application.

When it comes to the application “From Map to Photos” the users are a bit more skeptical.
The answers of the usefulness and intuitiveness of this application are positive, but not as
enthusiastic as with the previous one. The users also say that it would have been easier to use
on a PC. When asked if they would use this application themselves, the median score was 3.5,
which must be regarded as inconclusive.

The “Who Lives Here?” application was regarded very intuitive to use, and also relatively
useful. They also mostly agreed that it would not be easier to use on a PC, and that the
application was suitable for a mobile phone. This application received the highest score of the
three implemented ones when asked if they would want to use the application themselves.
Both the suggested extensions to this application, i.e. obtaining addresses from a phone
directory and using the contact list from social websites, was considered very useful additions
to this application.

When asked about the reversed kind of the “Who Lives Here?” application, i.e. obtaining all
the photos taken where a specified contact lives, the users mostly agreed that it was useful,
but was not so sure if they would use it themselves. The same results are also received when
they are asked about getting help to navigate to the place where a photo was taken and to get
information from Wikipedia regarding the photo location.

In general, the users answered more positively when asked about the usefulness of a feature
than they did when asked if they would use it themselves. Some of the reason for this might
be that only the technology was presented to the users, but not much was said about possible
usage scenarios. People that are interested in technology might think that a feature is cool and
that it might be useful, without being able to think of situations where it would be useful to
them.

6.3 Efficiency of Map-Based Browsing
A very interesting part of the user survey was to see if the users could find photos faster by
using a map instead of browsing for the photos linearly. The results are shown in Figure 6.1.
It can be seen that the efficiency of using the map varies a lot between the different users. The
overall results though, indicate that photos can be found faster using a map for most people.

 Page 58 of 108

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

User

S
ea

rc
h

tim
e

[S
ec

on
ds

]

Browse

Map

Figure 6.1: Search time by using map-based vs linear browsing.

Out of the ten users in the survey, seven found the specified photo faster by using the map
than when using linear browsing. It should be noted that when user 6 performed this test,
Google Maps was loading very slow on the emulator. This was caused by problems with the
internet connection or the Google servers, not the emulator or the application. Because of this,
the result of user 6 should be disregarded, and therefore seven out of nine users found the
photo faster with a map. It is also interesting to see the difference in the average search time
for the two methods. The results of user 6 is still disregarded, therefore the average search
time using a map is 50 seconds, while using linear browsing takes 66 seconds, i.e. it takes
32% longer to use the linear browsing. This is illustrated in Figure 6.2.

 Page 59 of 108

0

10

20

30

40

50

60

70

Browse Map

A
ve

ra
ge

 s
ea

rc
h

tim
e

[S
ec

on
ds

]

Figure 6.2: Average search times for map-based and linear browsing.

It was observed during the user survey that some of the users found both the application itself
as well as the interface of the emulator easier to use than other users. This also affected how
efficient their map-based browsing was. Most of the users pointed out that it was a bit
awkward to navigate the map, especially the zoom controller. It was chosen not to have the
zoom dialog always visible because of space constraints on the mobile screen, but usability
concerns may require the zoom dialog to always be there. If the zoom controller was easier to
use, some of the users would have found the photo faster.

Some users noted that it was impossible to know how close it was necessary to zoom, since
the markers did not convey any information of the number of images they represent. This
could have been solved by the suggestion mentioned earlier, of replacing the marker icon with
a circle with the number of photos written inside. This also would have made some of the
users find the photo faster, as they zoomed in much more than actually needed before clicking
on the marker.

It should also be noted that the map-based approach might have been more effective on an
even larger photo collection. The search time using the linear browsing is expected to increase
linearly with the number of photos, while the search time using the map is expected to grow
much slower. Finally, it should be pointed out that there are more effective ways of linearly
browsing a photo collection than going one by one photo, as in this application. Showing a
grid of thumbnails on the screen might be enough to evaluate the content of the photos, even
on a small mobile phone screen.

 Page 60 of 108

7 Conclusion
This study has explored different uses of geotagged photos on mobile phones based on the
Android platform. Three of the application suggestsions, namely “From Photos to Map”,
“From Map to Photos” and “Who Lives Here?” have been implemented prototypes of. Both
these and some of the other suggestions were examined by giving them to a group of
volunteers, who answered some questions after.

It was found that Android is a very good platform for implementing applications that involve
geotagged photos. The platform still has some problems, but most of these are expected to be
fixed before the final release.

The users in the user group turned out to have a very positive response to applications using
location information and thought that the applications in the survey were useful. They were a
little bit more skeptical towards using the applications themselves though.

In the efficiency test between map-based and linear browsing, the results were in favor of the
map-based approach. On average, the users spent 50 seconds on finding a photo using the
map, while it took 66 seconds if they were to browse through the photo collection linearly.
Several points that could affect the efficiency of both the map-based approach as well as the
linear browsing were discussed, so the results presented here are not conclusive.

 Page 61 of 108

8 Further Work
This study explored several possible applications of geotagged photos on mobile phones, but
unfortunately, there was only enough time to implement a few of them. All the other
application suggestions are also interesting, and deserve to be studied in more detail.

Some of the users participating in the survey indicated that navigating the map was awkward,
and would be easier on a regular PC with keyboard and mouse. This was only a simple
prototype, and the map navigation could probably have been made much easier if there was
time for it. It might also be easier if there was an actual mobile phone, and not just the
emulator. In a real phone, hardware buttons could be used to zoom and pan the map, instead
of using the touch screen.

The implementation of the “From Map to Photos” application has a big problem with the time
it takes to generate the cluster tree. The creation procedure of the tree was moved from each
time the zoom level changes to the start of the application. This was a acceptable solution for
the user survey, but not for a real product. It should be investigated further if other, more
lightweight clustering algorithms can handle this problem more efficiently without too large
side effects. The cluster tree generation procedure can also be moved further, so that the user
does not have to wait each time the application is started. The simplest solution would be for
the application to store the cluster tree in a file, and reload the file each time the application is
restarted. When the photo collection is changed, the cluster tree would have to be regenerated,
which would still force the user to wait. A more user friendly solution might be to integrate
the generation of the cluster tree into the ImageProvider, so that each time a new photo is
added to the collection, parts of the cluster tree could be rebuilt in a low-priority background
thread. This might be a bit messy though, as the cluster tree can not be regarded as a
fundamental part of a geotagged photo collection, but rather an application specific database
of metadata.

 Page 62 of 108

9 References
[1] http://code.google.com/android
[2] Geographic Location Tags on Digital Images.

Kentaro Toyama, Ron Logan, Asta Roseway.
Proceedings of the eleventh ACM international conference on Multimedia.

[3] NIMA Technical Report TR8350.2, "Department of Defense World Geodetic System
1984, Its Definition and Relationships With Local Geodetic Systems", Third Edition.
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html

[4] http://www.navcen.uscg.gov/loran/Default.htm
[5] Cell-ID location technique, limits and benefits: an experimental study.

Emiliano Trevisani, Andrea Vitaletti.
Sixth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA'04).

[6] http://www.google.com/mobile/gmm/mylocation/
[7] http://developer.yahoo.com/yrb/zonetag/locatecell.html
[8] http://www.celldb.org/
[9] http://gsmloc.org/
[10] http://www.cellspotting.com/
[11] http://www.losangeles.af.mil/library/factsheets/factsheet.asp?id=5311
[12] http://www.losangeles.af.mil/library/factsheets/factsheet.asp?id=5325
[13] http://www.navcen.uscg.gov/gps/default.htm
[14] http://www.navcen.uscg.gov/gps/geninfo/global.htm
[15] http://www.sirf.com/products/gps_chip3e.html
[16] Navstar GPS and GLONASS: global satellite navigation systems.

Professor P. Daly.
Electronics & Communication Engineering Journal, Volume: 5, Issue: 6

[17] Standardization of Mobile Phone Positioning for 3G Systems.
Yilin Zhao.
IEEE Communications Magazine, Volume: 40, Issue: 7

[18] Mobile Phone Location Determination and Its Impact on Intelligent Transportation
Systems.
Yilin Zhao.
IEEE Transactions on Intelligent Transportation Systems, Volume: 1, Issue: 1

[19] Geolocation and Assisted GPS.
Goran M. Djuknic, Robert E. Richton.
Computer, vol. 34, no. 2

[20] Measured Performance of 5-GHz 802.11a Wireless LAN Systems.
James C. Chen, Jeffrey M. Gilbert.
White paper, Atheros Communications

[21] Positioning with IEEE 802.1lb Wireless LAN.
A. Kotanen, M. Hannikainen, H. Leppakoski, T.D. Hamalainen.
14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003.
PIMRC 2003. Volume: 3

[22] Indoor Positioning Techniques Based on Wireless LAN.
Binghao Li, James Salter, Andrew G. Dempster, Chris Rizos.
1st IEEE International Conference on Wireless Broadband and Ultra Wideband
Communications

 Page 63 of 108

[23] LOCADIO: Inferring Motion and Location from Wi-Fi Signal Strengths.
John Krumm, Eric Horvitz.
First Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous'04)

[24] http://www.skyhookwireless.com/
[25] http://www.wigle.net/
[26] Automatic Organization for Digital Photographs with Geographic Coordinates.

Mor Naaman, Yee Jiun Song, Andreas Paepcke, Hector Garcia-Molina.
International Conference on Digital Libraries. ICDL 2004

[27] Context Data in Geo-Referenced Digital Photo Collections.
Mor Naaman, Susumu Harada, QianYing Wang, Hector Garcia-Molina, Andreas
Paepcke.
Proceedings of the 12th annual ACM international conference on Multimedia

[28] Temporal event clustering for digital photo collections.
Matthew Cooper, Jonathan Foote, Andreas Girgensohn, Lynn Wilcox.
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMCCAP), Volume 1 , Issue 3

[29] Time as essence for photo browsing through personal digital libraries.
Adrian Graham, Hector Garcia-Molina, Andreas Paepcke, Terry Winograd.
Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries

[30] Mobile Access to Personal Digital Photograph Archives.
Cathal Gurrin, Gareth J. F. Jones, Hyowon Lee, Neil O'Hare, Alan F. Smeaton, Noel
Murphy.
Proceedings of the 7th international conference on Human computer interaction with
mobile devices & services

[31] http://flickr.com/
[32] http://www.panoramio.com/
[33] http://maps.google.com/
[34] http://earth.google.com/
[35] http://picasa.google.com/
[36] http://www.microsoft.com/prophoto/
[37] http://www.shozu.com/
[38] http://youtube.com/
[39] http://www.facebook.com/
[40] http://www.blogger.com/
[41] http://locr.com/
[42] http://share.ovi.com/
[43] http://www.symbian.com/
[44] http://www.microsoft.com/Windowsmobile/
[45] http://www.blackberry.com/
[46] http://www.openhandsetalliance.com/
[47] http://www.siliconrepublic.com/news/news.nv?storyid=single4143
[48] http://blog.searchenginewatch.com/blog/041201-120143
[49] http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.ht

m
[50] http://www.openhandsetalliance.com/press_110507.html
[51] http://www.openhandsetalliance.com/press_111207.html
[52] http://online.wsj.com/article/SB121418837707895947.html?mod=googlenews_wsj
[53] http://code.google.com/android/adc.html
[54] http://android-developers.blogspot.com/

 Page 64 of 108

[55] Anatomy & Physiology of an Android.
Patrick Brady.
Google I/O 2008

[56] http://www.apache.org/licenses/LICENSE-2.0
[57] http://git.android.com/
[58] http://java.sun.com/javase/
[59] http://java.sun.com/javame/
[60] http://www.eclipse.org/
[61] http://www.sqlite.org/
[62] http://www.oracle.com/database/
[63] http://www.microsoft.com/sql/
[64] http://www.mysql.com/
[65] http://sqlite.org/mostdeployed.html
[66] http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
[67] Dalvik VM Internals.

Dan Bornstein.
Google I/O 2008

[68] http://bellard.org/qemu/
[69] Hierarchical clustering schemes.

Stephen C. Johnson.
Psychometrika, Volume 32, Number 3

[70] On Geodetic Distance Computations in Spatial Modeling.
Sudipto Banerjee.
Biometrics, Volume 61, Number 2

[71] http://code.google.com/apis/maps/documentation/services.html#Geocoding_Direct
[72] http://developer.yahoo.com/maps/rest/V1/geocode.html
[73] http://www.myspace.com/
[74] http://www.linkedin.com/
[75] http://www.yellowpages.com/
[76] http://www.gulesider.no/
[77] http://wikipedia.org/
[78] http://de.wikipedia.org/wiki/Wikipedia:WikiProjekt_Georeferenzierung/Wikipedia-

World/en
[79] http://www.exif.org/
[80] http://www.fightingquaker.com/sanselan/

 Page 65 of 108

Appendix A: User Survey – Original Norwegian versio n

Alle spørsmål skal besvares med tallene 1 – 5, der 1 = helt uenig og 5 = helt enig.

Del 1: Implementerte funksjoner

Funksjon 1: Se posisjonen til hvor et bilde ble tatt i et kart Svar:

Denne funksjonen er nyttig. _____

Denne funksjonen er intuitiv å bruke. _____

Denne funksjonen hadde vært enklere å bruke på en PC
med større skjerm, samt tastatur og mus. _____

Denne funksjonen passer godt for bruk på en mobiltelefon. _____

Jeg ville benyttet denne funksjonen dersom jeg hadde en Android-telefon. _____

Funksjon 2: Kart som viser posisjon for alle bilder

Denne funksjonen er nyttig. _____

Denne funksjonen er intuitiv å bruke. _____

Denne funksjonen hadde vært enklere å bruke på en PC
med større skjerm, samt tastatur og mus. _____

Denne funksjonen passer godt for bruk på en mobiltelefon. _____

Jeg ville benyttet denne funksjonen dersom jeg hadde en Android-telefon. _____

Funksjon 3: Hvem bor her?

Denne funksjonen er nyttig. _____

Denne funksjonen er intuitiv å bruke. _____

Denne funksjonen hadde vært enklere å bruke på en PC
med større skjerm, samt tastatur og mus. _____

Denne funksjonen passer godt for bruk på en mobiltelefon. _____

Jeg ville benyttet denne funksjonen dersom jeg hadde en Android-telefon. _____

 Page 66 of 108

Del 2: Ikke-implementerte funksjoner

Funksjon 4: Samme som funksjon 3, men kobler seg til telefonkatalogen på internett for
å slå opp adressen til kontakter man ikke har lagret adressen for.

Denne funksjonen ville gjort funksjon 3 mer nyttig. _____

Jeg ville benyttet denne funksjonen dersom jeg også benyttet funksjon 3. _____

Funksjon 5: Samme som funksjon 3, men i tillegg til kontaktlisten på mobiltelefonen
hentes også adresser fra vennelisten på nettsider for sosiale nettverk (f.eks. Facebook).

Denne funksjonen ville gjort funksjon 3 mer nyttig. _____

Jeg ville benyttet denne funksjonen dersom jeg også benyttet funksjon 3. _____

Funksjon 6: Brukeren ser gjennom kontaktlisten sin og ber om å få opp alle bilder som
er tatt hjemme hos en spesifikk kontakt.

Denne funksjonen virker nyttig. _____

Denne funksjonen passer godt for bruk på en mobiltelefon. _____

Jeg ville benyttet denne funksjonen dersom jeg hadde en Android-telefon. _____

Funksjon 7: Når man har valgt et bilde, så kan man få hjelp til å navigere til stedet der
bildet ble tatt (slik som navigasjonssystemer for bil fungerer i dag).

Denne funksjonen virker nyttig. _____

Denne funksjonen passer godt for bruk på en mobiltelefon. _____

Jeg ville benyttet denne funksjonen dersom jeg hadde en Android-telefon. _____

Funksjon 8: Wikipedia har lagret posisjon for en del artikler. Når man ser på et bilde så
kan man få opp link til artikler som omhandler noe som er i nærheten av der bildet ble
tatt.
(F.eks. et bilde av Nidarosdomen kan gi link til Wikipedia-artikkel om Nidarosdomen)

Denne funksjonen virker nyttig. _____

Denne funksjonen passer godt for bruk på en mobiltelefon. _____

Jeg ville benyttet denne funksjonen dersom jeg hadde en Android-telefon. _____

 Page 67 of 108

Appendix B: User Survey – English translation

All questions must be answered by the numbers 1 – 5, where 1 = completely agree and 5 =
completely disagree.

Part 1: Implemented functions

Function 1: See the position of where a photo was taken in a map Answer:

This function is useful. _____

This function is intuitive to use. _____

This function would be easier to use on a PC with
larger screen, a keyboard and mouse. _____

This function is a good fit for use on a mobile phone. _____

I would use this function if I had an Android phone. _____

Function 2: Map that shows position for all photos

This function is useful. _____

This function is intuitive to use. _____

This function would be easier to use on a PC with
larger screen, a keyboard and mouse. _____

This function is a good fit for use on a mobile phone. _____

I would use this function if I had an Android phone. _____

Function 3: Who lives here?

This function is useful. _____

This function is intuitive to use. _____

This function would be easier to use on a PC with
larger screen, a keyboard and mouse. _____

This function is a good fit for use on a mobile phone. _____

I would use this function if I had an Android phone. _____

 Page 68 of 108

Part 2: Non-implemented functions

Function 4: Same as function 3, but connects to the phone directory on the internet to
look up the address of contacts which does not have the address stored.

This function would have made function 3 more useful. _____

I would use this function if I also used function 3. _____

Function 5: Same as function 3, but in addition to the contact list on the phone addresses
are also collected from the friends list on social networking websites (e.g. Facebook).

This function would have made function 3 more useful. _____

I would use this function if I also used function 3. _____

Function 6: The user looks through the contact list and requests to bring up all photos
taken at the home of a specific contact.

This function seems useful. _____

This function is a good fit for use on a mobile phone. _____

I would have used this function if I had an Android phone. _____

Function 7: When you have selected a photo, you can get help to navigate to the place
where the photo was taken (like navigation systems for cars currently work).

This function seems useful. _____

This function is a good fit for use on a mobile phone. _____

I would have used this function if I had an Android phone. _____

Function 8: Wikipedia have stored the position for some articles. While looking at a
photo you can get a link to articles dealing with something close to where the photo was
taken. (For instance a photo of the Nidaros cathedral may give you a link to a Wikipedia
article concerning the cathedral)

This function seems useful. _____

This function is a good fit for use on a mobile phone. _____

I would have used this function if I had an Android phone. _____

 Page 69 of 108

Appendix C: User Survey – Results

User
1

User
2

User
3

User
4

User
5

User
6

User
7

User
8

User
9

User
10 Average Median

Function 1
Question
1.1 3 5 5 5 3 3 5 5 3 4 4,1 4,5
Question
1.2 4 5 5 5 5 5 5 5 5 3 4,7 5
Question
1.3 5 3 3 2 5 1 1 2 4 2 2,8 2,5
Question
1.4 5 5 4 5 5 5 5 5 3 5 4,7 5
Question
1.5 2 3 3 5 3 4 5 4 5 4 3,8 4

Function 2
Question
2.1 3 4 4 4 5 5 4 4 3 4 4 4
Question
2.2 4 4 5 4 3 4 5 4 5 3 4,1 4
Question
2.3 5 5 4 4 5 4 4 1 4 3 3,9 4
Question
2.4 5 3 3 4 3 4 3 3 4 5 3,7 3,5
Question
2.5 2 3 4 4 3 5 4 3 3 5 3,6 3,5

Function 3
Question
3.1 4 4 5 3 2 3 4 4 2 4 3,5 4
Question
3.2 4 5 5 5 4 5 5 5 5 4 4,7 5
Question
3.3 3 3 2 1 5 1 1 1 4 2 2,3 2
Question
3.4 5 5 5 5 4 5 5 5 4 5 4,8 5
Question
3.5 3 5 5 3 1 3 5 5 4 5 3,9 4,5

Function 4
Question
4.2 5 5 5 5 3 4 5 5 5 5 4,7 5
Question
4.2 5 5 5 5 3 4 5 4 5 5 4,6 5

Function 5
Question
5.1 5 4 5 5 1 4 5 5 5 5 4,4 5
Question
5.2 5 4 5 5 1 4 5 5 3 5 4,2 5

 Page 70 of 108

Function 6
Question
6.1 5 5 3 4 3 5 5 4 2 5 4,1 4,5
Question
6.2 5 5 3 5 3 4 3 5 3 5 4,1 4,5
Question
6.3 3 5 3 4 2 4 4 2 3 5 3,5 3,5

Function 7
Question
7.1 5 3 5 3 4 5 3 3 5 5 4,1 4,5
Question
7.2 5 5 2 4 5 5 4 3 4 5 4,2 4,5
Question
7.3 5 3 2 3 3 5 3 3 5 5 3,7 3

Function 8
Question
8.1 5 5 4 4 4 5 3 4 5 5 4,4 4,5
Question
8.2 5 5 3 3 5 3 2 3 5 5 3,9 4
Question
8.3 5 5 3 3 2 3 1 5 5 4 3,6 3,5

 Page 71 of 108

Appendix D: Source Code of ImageBrowser

ContactList.java

package no.ntnu.idi.android.imagebrowser;

import android.app.ListActivity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.BaseColumns;
import android.provider.Contacts;
import android.view.View;
import android.widget.ListAdapter;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;
import android.widget.Toast;

public class ContactList extends ListActivity {

 public static final String PERSON_ID_LIST = "personIdList" ;
 private ListAdapter adapter = null;

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 Bundle extras = getIntent().getExtras();
 int[] personIDs = (extras == null) ? null :
 (int[])extras.getSerializable(PERSON_ID_LIST);

 if (personIDs == null || personIDs.length == 0) {
 Toast.makeText(this, "No matching contacts." ,
 Toast.LENGTH_SHORT).show();
 return;
 } else {
 Uri peopleUri = Contacts.People.CONTENT_URI;

 StringBuilder sb = new StringBuilder();
 // The "people." is an ugly hack to get around a bu g in the current
 // version of Android.
 sb.append("people." + BaseColumns._ID);
 sb.append("=");
 sb.append(personIDs[0]);
 for (int i = 1; i < personIDs.length; i++) {
 sb.append(" OR ");
 sb.append("people." + BaseColumns._ID);
 sb.append("=");
 sb.append(personIDs[i]);
 }
 String selection = sb.toString();

 String[] projection = new String[]{BaseColumns._ID,
 Contacts.People.NAME};

 Cursor cursor = this.managedQuery(peopleUri, projection,
 selection, null);
 if (cursor == null) {

 Page 72 of 108

 Toast.makeText(this, "Query error." , Toast.LENGTH_SHORT).show();
 return;
 }

 adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 cursor, new String[]{Contacts.People.NAME},
 new int[]{android.R.id.text1});
 setListAdapter(adapter);
 }
 }

 @Override
 protected void onListItemClick(ListView l, View v, int position, long id)
{
 if (adapter != null) {
 Cursor cursor = (Cursor)adapter.getItem(posit ion);
 int idColumn = cursor.getColumnIndex(BaseColumns._ID);
 int personID = cursor.getInt(idColumn);

 Uri peopleUri = Contacts.People.CONTENT_URI;
 peopleUri =
peopleUri.buildUpon().appendPath(Integer.toString(p ersonID)).build();
 Intent i = new Intent(Intent.VIEW_ACTION);
 i.setData(peopleUri);
 startActivity(i);
 }
 }

}

 Page 73 of 108

EnhancedMapView.java

package no.ntnu.idi.android.imagebrowser;

import android.content.Context;
import android.view.MotionEvent;

import com.google.android.maps.MapView;

public class EnhancedMapView extends MapView {

 private OnTouchEventListener listener = null;

 public EnhancedMapView(Context context) {
 super(context);
 }

 public void setOnTouchEventListener(OnTouchEventListener liste ner) {
 this.listener = listener;
 }

 @Override
 public boolean onTouchEvent(MotionEvent ev) {
 if (listener != null) {
 if (listener.onTouchEvent(ev)) {
 return true;
 } else {
 return super.onTouchEvent(ev);
 }
 }

 return super.onTouchEvent(ev);
 }

 public interface OnTouchEventListener {
 public boolean onTouchEvent(MotionEvent ev);
 }

}

 Page 74 of 108

Geocoder.java

package no.ntnu.idi.android.imagebrowser;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.InetSocketAddress;
import java.net.MalformedURLException;
import java.net.Socket;
import java.net.URL;
import java.net.URLEncoder;
import java.net.UnknownHostException;
import java.util.ArrayList;
import java.util.List;

import android.app.Activity;
import android.content.ContentValues;
import android.database.Cursor;
import android.location.Location;
import android.net.Uri;
import android.provider.BaseColumns;
import android.provider.Contacts;

public class Geocoder {

 private static final String API_KEY = "INSERT PRIVATE API KEY HERE" ;
 private String partialUrl =
"http://maps.google.com/maps/geo?output=csv&key=" + API_KEY + "&q=" ;
 private Activity activity = null;

 public Geocoder(Activity activity) {
 this.activity = activity;
 }

 public Location getLocationFromAddress(String address) {
 try {
 Socket socket = new Socket();
 socket.connect(new InetSocketAddress("maps.google.com" , 80));

 OutputStream os = socket.getOutputStream();
 BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(os));
 String encodedAddress = URLEncoder.encode(add ress, "UTF-8");
 bw.write("GET /maps/geo?output=csv&key=" + API_KEY
 + "&q=" + encodedAddress);
 bw.write("\nHost: maps.google.com\n\n");
 bw.flush();

 InputStream is = socket.getInputStream();
 BufferedReader br = new BufferedReader(new InputStreamReader(is));
 String s = br.readLine();

 socket.close();

 String[] lineParts = s.split(",");
 if (lineParts[0].equals("200") && lineParts[1].equals("8")) {

 Page 75 of 108

 Location location = new Location();
 location.setLatitude(Double.parseDouble(lin eParts[2]));
 location.setLongitude(Double.parseDouble(li neParts[3]));
 return location;
 } else {
 return null;
 }

 } catch (UnknownHostException uhe) {
 return null;
 } catch (IOException ioe) {
 return null;
 } catch (Exception e) {
 return null;
 }
 }

 public List<Integer> findContactsNearLocation(Location lo cation,
 int maxDistance) {
 List<Integer> matchingContacts = new ArrayList<Integer>();

 // Retrieve all contacts
 Uri peopleUri = Contacts.People.CONTENT_URI;
 Cursor peopleCursor = activity.managedQuery(peo pleUri,
 new String[]{BaseColumns._ID}, null, null);

 if (peopleCursor != null && peopleCursor.first()) {
 int idColumn = peopleCursor.getColumnIndex(BaseColumns ._ID);
 do {
 int personID = peopleCursor.getInt(idColumn);
 Uri contactMethodsUri = peopleUri.buildUpon ()
 .appendPath(Integer.toString(personID))
 .appendPath("contact_methods").build();
 Cursor contactMethodsCursor = activity.mana gedQuery(
 contactMethodsUri, new String[]{Contacts.ContactMethods.KIND,
 Contacts.ContactMethods.DATA,
 Contacts.ContactMethods.AUX_DATA},
 Contacts.ContactMethods.KIND + "="
 + Contacts.ContactMethods.LOCATION_KIND
 + " OR (" + Contacts.ContactMethods.KIND + "="
 + Contacts.ContactMethods.POSTAL_KIND
 + " AND " + Contacts.ContactMethods.TYPE + "="
 + Contacts.ContactMethods.POSTAL_KIND_HOM E_TYPE + ")" ,
 null);

 if (contactMethodsCursor != null) {
 if (contactMethodsCursor.first()) {
 int kindColumn = contactMethodsCursor
 .getColumnIndex(Contacts.ContactMetho ds.KIND);
 int dataColumn = contactMethodsCursor
 .getColumnIndex(Contacts.ContactMetho ds.DATA);
 int auxDataColumn = contactMethodsCursor
 .getColumnIndex(Contacts.ContactMetho ds.AUX_DATA);
 Location cachedLocation = null;
 String cachedAddress = null;
 String currentAddress = null;
 do {
 int kind = contactMethodsCursor.getInt(kindColumn);
 if (kind == Contacts.ContactMethods.POSTAL_KIND) {
 currentAddress =
 contactMethodsCursor.getString(da taColumn);

 Page 76 of 108

 } else if (kind == Contacts.ContactMethods.LOCATION_KIND) {
 String locationString = contactMeth odsCursor
 .getString(dataColumn);
 String[] locationParts = locationSt ring.split(",");
 if (locationParts.length == 2) {
 cachedLocation = new Location();
 cachedLocation.setLatitude(
 Double.parseDouble(locationPart s[0]));
 cachedLocation.setLongitude(
 Double.parseDouble(locationPart s[1]));
 }
 cachedAddress = contactMethodsCurso r
 .getString(auxDataColumn);
 }
 } while (contactMethodsCursor.next());

 if (currentAddress != null) {

 if (cachedAddress != null &&
 !cachedAddress.equals(currentAddr ess)) {
 // Retrieve new location
 Location newLocation =
 getLocationFromAddress(currentAdd ress);
 cachedLocation = newLocation;
 } else if (cachedAddress == null) {
 // Retrieve new location
 Location newLocation =
 getLocationFromAddress(currentAdd ress);

 // Insert new location
 ContentValues values = new ContentValues();
 values.put(Contacts.ContactMethods. PERSON_ID, personID);
 values.put(Contacts.ContactMethods. KIND,
 Contacts.ContactMethods.LOCATION_ KIND);
 values.put(Contacts.ContactMethods. DATA,
 newLocation.getLatitude() + ","
 + newLocation.getLongitude());
 values.put(Contacts.ContactMethods. AUX_DATA,
 currentAddress);
 activity.getContentResolver().inser t(contactMethodsUri,
 values);

 cachedLocation = newLocation;
 }

 // check if the person lives near the given locatio n
 if (location.distanceTo(cachedLocation) <= maxDistanc e) {
 matchingContacts.add(personID);
 }
 }
 }
 }
 } while (peopleCursor.next());
 }

 return matchingContacts;
 }
}

 Page 77 of 108

GeotaggedBitmap.java

package no.ntnu.idi.android.imagebrowser;

import android.graphics.Bitmap;
import android.location.Location;

public class GeotaggedBitmap {
 private Bitmap bitmap;
 private Location location;

 public GeotaggedBitmap(Bitmap bitmap, Location location) {
 this.bitmap = bitmap;
 this.location = location;
 }

 public GeotaggedBitmap(Bitmap bitmap, double latitude, double longitude){
 this.bitmap = bitmap;
 Location location = new Location();
 location.setLatitude(latitude);
 location.setLongitude(longitude);
 this.location = location;
 }

 public Bitmap getBitmap() {
 return bitmap;
 }

 public void setBitmap(Bitmap bitmap) {
 this.bitmap = bitmap;
 }

 public Location getLocation() {
 return location;
 }

 public void setLocation(Location location) {
 this.location = location;
 }
}

 Page 78 of 108

GeotaggedImageGroup.java

package no.ntnu.idi.android.imagebrowser;

import java.util.ArrayList;
import java.util.List;

import android.location.Location;

public class GeotaggedImageGroup {
 private List<GeotaggedImageID> imageIDs = null;

 public GeotaggedImageGroup() {
 imageIDs = new ArrayList<GeotaggedImageID>();
 }

 public GeotaggedImageGroup(GeotaggedImageID imageID) {
 this();
 add(imageID);
 }

 public void add(GeotaggedImageID imageID) {
 imageIDs.add(imageID);
 }

 public void add(GeotaggedImageGroup images) {
 for (GeotaggedImageID image : images.getImageIDs()) {
 add(image);
 }
 }

 public Location getAverageLocation() {
 Location averageLocation = new Location();

 Location location;
 double latitudeSum = 0.0;
 double longitudeSum = 0.0;
 for (GeotaggedImageID image : imageIDs) {
 location = image.getLocation();
 latitudeSum += location.getLatitude();
 longitudeSum += location.getLongitude();
 }

 averageLocation.setLatitude(latitudeSum / image IDs.size());
 averageLocation.setLongitude(longitudeSum / ima geIDs.size());

 return averageLocation;
 }

 public List<GeotaggedImageID> getImageIDs() {
 return imageIDs;
 }

 public double calculateMinDistanceTo(GeotaggedImageGroup otherGr oup) {
 List<GeotaggedImageID> otherImageIDs = otherGro up.getImageIDs();
 double minDistance = Double.MAX_VALUE;
 Location location1, location2;
 double distance;
 for (GeotaggedImageID imageID : imageIDs) {
 location1 = imageID.getLocation();
 for (GeotaggedImageID otherImageID : otherImageIDs) {

 Page 79 of 108

 location2 = otherImageID.getLocation();
 distance = location1.distanceTo(location2);

 if (distance < minDistance)
 minDistance = distance;
 }
 }

 return minDistance;
 }
}

 Page 80 of 108

GeotaggedImageID.java

package no.ntnu.idi.android.imagebrowser;

import android.location.Location;

public class GeotaggedImageID {
 private int imageID;
 private Location location;

 public GeotaggedImageID(int imageID, Location location) {
 this.imageID = imageID;
 this.location = location;
 }

 public int getImageID() {
 return imageID;
 }

 public void setImageID(int imageID) {
 this.imageID = imageID;
 }

 public Location getLocation() {
 return location;
 }

 public void setLocation(Location location) {
 this.location = location;
 }
}

 Page 81 of 108

ImageAdapter.java

package no.ntnu.idi.android.imagebrowser;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import no.ntnu.idi.android.imageprovider.ImageProvider;
import android.app.Activity;
import android.content.ContentUris;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Matrix;
import android.net.Uri;
import android.provider.BaseColumns;
import android.view.View;
import android.view.ViewGroup;
import android.view.ViewGroup.LayoutParams;
import android.widget.BaseAdapter;
import android.widget.Gallery;
import android.widget.ImageView;

public class ImageAdapter extends BaseAdapter {

 private Activity activity;
 private ImageConsumer imageConsumer;

 public ImageAdapter(Activity activity, ImageConsumer imag eConsumer) {
 this.activity = activity;
 this.imageConsumer = imageConsumer;
 }

 public int getCount() {
 return (imageConsumer == null) ? 0 : imageConsumer.getCount();
 }

 public Object getItem(int position) { return position; }

 public long getItemId(int position) { return position; }

 public View getView(int position, View convertView, ViewGroup parent) {
 ImageView i = new ImageView(activity);
 i.setImageBitmap(imageConsumer.loadBitmap(posit ion,
 ImageConsumer.ImageSize.THUMBNAIL));
 i.setAdjustViewBounds(true);
 i.setLayoutParams(new Gallery.LayoutParams(
 LayoutParams.WRAP_CONTENT, LayoutParams.WRA P_CONTENT));
 i.setBackground(android.R.drawable.picture_fram e);
 return i;
 }

 public float getAlpha(boolean focused, int offset) {
 return Math.max(0.2f, 1.0f - (0.2f * Math.abs(offset)));
 }

 public float getScale(boolean focused, int offset) {
 return Math.max(0, offset == 0 ? 1.0f : 0.6f);
 }
}

 Page 82 of 108

ImageBrowser.java

package no.ntnu.idi.android.imagebrowser;

import java.util.List;
import android.app.Activity;
import android.content.Intent;
import android.graphics.drawable.BitmapDrawable;
import android.location.Location;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.view.Menu.Item;
import android.view.ViewGroup.LayoutParams;
import android.widget.AdapterView;
import android.widget.Gallery;
import android.widget.ImageSwitcher;
import android.widget.ImageView;
import android.widget.Toast;
import android.widget.ViewSwitcher;

public class ImageBrowser extends Activity
 implements ViewSwitcher.ViewFactory, AdapterView.OnItemSelect edListener {

 public static final String IMAGE_IDS = "image_ids" ;
 private ImageSwitcher imageSwitcher = null;
 private ImageConsumer imageConsumer = null;
 private Location currentLocation = null;
 private static final int MENU_MAP = Menu.FIRST;
 private static final int MENU_LIVES_HERE = Menu.FIRST + 1;
 private static final int MENU_MAP_ALL = Menu.FIRST + 2;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.imageswitcher);

 imageSwitcher = (ImageSwitcher)findViewById(R .id.imageSwitcher);
 imageSwitcher.setFactory(this);
 Bundle extras = getIntent().getExtras();
 int[] imageIDs = (extras == null) ? null :
 (int[])extras.getSerializable(IMAGE_IDS);
 if (imageIDs != null) {
 imageConsumer = new ImageConsumer(this, imageIDs);
 } else {
 imageConsumer = new ImageConsumer(this);
 }
 Gallery gallery = (Gallery)findViewById(R.id. gallery);
 gallery.setAdapter(new ImageAdapter(this, imageConsumer));
 gallery.setOnItemSelectedListener(this);
 }

 @Override
 public void onItemSelected(AdapterView parent, View view,
 int position, long id) {
 // Load the new image into the ImageSwitcher
 GeotaggedBitmap geotaggedBitmap =
 imageConsumer.loadGeotaggedBitmap(position,
 ImageConsumer.ImageSize.SCREENSIZE);
 currentLocation = geotaggedBitmap.getLocation() ;
 imageSwitcher.setImageDrawable(

 Page 83 of 108

 new BitmapDrawable(geotaggedBitmap.getBitmap()));
 }

 @Override
 public void onNothingSelected(AdapterView arg0) { }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(0, MENU_MAP, "Show this photo in a map");
 menu.add(0, MENU_LIVES_HERE, "Who lives here?");
 menu.add(0, MENU_MAP_ALL, "Show a map with all photos");
 return super.onCreateOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(Item item) {
 switch (item.getId()) {
 case MENU_MAP:
 Intent mapIntent = new Intent(this, ImageMap. class);
 mapIntent.putExtra(ImageMap.LOCATION, current Location);
 startActivity(mapIntent);
 break;
 case MENU_LIVES_HERE:
 Geocoder geocoder = new Geocoder(this);
 List<Integer> contactList =
 geocoder.findContactsNearLocation(currentLo cation, 100);

 if (contactList.size() <= 0) {
 Toast.makeText(this, "None of your contacts lives here." ,
 Toast.LENGTH_SHORT).show();
 } else {
 int[] contactIDs = new int[contactList.size()];
 int i = 0;
 for (Integer contactID : contactList) {
 contactIDs[i++] = contactID;
 }
 Intent contactListIntent = new Intent(this, ContactList. class);
 contactListIntent.putExtra(ContactList.PERS ON_ID_LIST, contactIDs);
 startActivity(contactListIntent);
 }
 break;
 case MENU_MAP_ALL:
 Intent mapAllIntent = new Intent(this, ImageMap. class);
 startActivity(mapAllIntent);
 break;
 }

 return super.onOptionsItemSelected(item);
 }

 @Override
 public View makeView() {
 ImageView i = new ImageView(this);
 i.setBackgroundColor(0xFF000000);
 i.setScaleType(ImageView.ScaleType.FIT_CENT ER);
 i.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));
 return i;
 }
}

 Page 84 of 108

ImageConsumer.java

package no.ntnu.idi.android.imagebrowser;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;

import no.ntnu.idi.android.imageprovider.ImageProvider;
import android.app.Activity;
import android.content.ContentUris;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.location.Location;
import android.net.Uri;
import android.provider.BaseColumns;

public class ImageConsumer {

 public enum ImageSize {
 ORIGINAL,
 SCREENSIZE,
 THUMBNAIL
 }

 private Activity activity;
 private int[] imageIDs;

 //private Uri imageUri = ImageProvider.CONTENT_URI;
 private Uri imageUri = ImageProvider.FLICKR_CONTENT_URI;

 public ImageConsumer(Activity activity) {
 this.activity = activity;
 this.imageIDs = retrieveImageIDs();
 }

 public ImageConsumer(Activity activity, int[] imageIDs) {
 this.activity = activity;
 this.imageIDs = imageIDs;
 }

 public int getCount() {
 return (imageIDs == null) ? 0 : imageIDs.length;
 }

 private int[] retrieveImageIDs() {
 Cursor cursor = activity.managedQuery(imageUr i,
 new String[]{BaseColumns._ID}, null, null, BaseColumns._ID);
 if (cursor == null) {
 return new int[0];
 }

 int[] imageIDs = new int[cursor.count()];

 int idColumn = cursor.getColumnIndex(BaseColumns._ID);
 int i = 0;

 if (cursor.first()) {
 do {
 // put id into correct position in array

 Page 85 of 108

 imageIDs[i++] = cursor.getInt(idColumn);
 } while (cursor.next());
 }

 return imageIDs;
 }

 public GeotaggedImageID[] retrieveGeotaggedImageIDs() {
 return retrieveGeotaggedImageIDs(null, null, null, null);
 }

 public GeotaggedImageID[] retrieveGeotaggedImageIDs(Doubl e minLatitude,
 Double maxLatitude, Double minLongitude, Doub le maxLongitude) {

 Cursor cursor;
 if (minLatitude != null && maxLatitude != null && minLongitude != null
 && maxLongitude != null) {
 cursor = activity.managedQuery(imageUri,
 new String[]{BaseColumns._ID,
 ImageProvider.LATITUDE, ImageProvider.LON GITUDE},
 "latitude > ? AND latitude < ? "
 + " AND longitude > ? AND longitude < ?" ,
 new String[]{minLatitude.toString(), maxLatitude.toStr ing(),
 minLongitude.toString(), maxLongitude.toS tring()},
 BaseColumns._ID);
 } else {
 cursor = activity.managedQuery(imageUri,
 new String[]{BaseColumns._ID,
 ImageProvider.LATITUDE, ImageProvider.LON GITUDE},
 null, null, BaseColumns._ID);
 }

 if (cursor == null) {
 return new GeotaggedImageID[0];
 }

 GeotaggedImageID[] imageIDs = new GeotaggedImageID[cursor.count()];

 int idColumn = cursor.getColumnIndex(BaseColumns._ID);
 int latitudeColumn = cursor.getColumnIndex(ImageProvid er.LATITUDE);
 int longitudeColumn = cursor.getColumnIndex(ImageProvi der.LONGITUDE);
 int i = 0;

 if (cursor.first()) {
 do {
 // put id into correct position in array
 int imageID = cursor.getInt(idColumn);
 double latitude = cursor.getDouble(latitudeColumn);
 double longitude = cursor.getDouble(longitudeColumn);
 Location location = new Location();
 location.setLatitude(latitude);
 location.setLongitude(longitude);
 imageIDs[i++] = new GeotaggedImageID(imageID, location);
 } while (cursor.next());
 }

 return imageIDs;

 }

 public Bitmap loadBitmap(int position, ImageSize imageSize) {

 Page 86 of 108

 Uri specificImageUri = ContentUris.appendId(ima geUri.buildUpon(),
 imageIDs[position]).build();
 Cursor cursor = activity.managedQuery(specificI mageUri,
 null, null, null);

 if (cursor.first()) {
 int imageColumn;
 if (imageSize == ImageSize.THUMBNAIL) {
 imageColumn = cursor.getColumnIndex(ImagePr ovider.IMAGE_THUMBNAIL);
 } else if (imageSize == ImageSize.SCREENSIZE) {
 imageColumn =
 cursor.getColumnIndex(ImageProvider.IMAGE _SCREENSIZE);
 } else {
 imageColumn = cursor.getColumnIndex(ImagePr ovider.IMAGE_ORIGINAL);
 }

 String path = cursor.getString(imageColumn);

 try {
 InputStream is = activity.getContentResolve r()
 .openInputStream(Uri.parse("file:" + path));
 Bitmap bitmap = BitmapFactory.decodeStream(is);
 is.close();
 return bitmap;
 } catch (FileNotFoundException e) {
 return null;
 } catch (IOException ioe) {
 return null;
 }
 }

 return null;
 }

 public GeotaggedBitmap loadGeotaggedBitmap(int position,
 ImageSize imageSize) {
 Uri specificImageUri = ContentUris.appendId(ima geUri.buildUpon(),
 imageIDs[position]).build();
 Cursor cursor = activity.managedQuery(specificI mageUri,
 null, null, null);

 if (cursor.first()) {
 int imageColumn;
 if (imageSize == ImageSize.THUMBNAIL) {
 imageColumn = cursor.getColumnIndex(ImagePr ovider.IMAGE_THUMBNAIL);
 } else if (imageSize == ImageSize.SCREENSIZE) {
 imageColumn =
 cursor.getColumnIndex(ImageProvider.IMAGE _SCREENSIZE);
 } else {
 imageColumn = cursor.getColumnIndex(ImagePr ovider.IMAGE_ORIGINAL);
 }
 int latitudeColumn = cursor.getColumnIndex(ImageProvid er.LATITUDE);
 int longitudeColumn = cursor.getColumnIndex(ImageProvi der.LONGITUDE);

 String path = cursor.getString(imageColumn);
 double latitude = cursor.getDouble(latitudeColumn);
 double longitude = cursor.getDouble(longitudeColumn);

 try {
 InputStream is = activity.getContentResolve r()
 .openInputStream(Uri.parse("file:" + path));

 Page 87 of 108

 Bitmap bitmap = BitmapFactory.decodeStream(is);
 is.close();
 return new GeotaggedBitmap(bitmap, latitude, longitude);
 } catch (FileNotFoundException e) {
 return null;
 } catch (IOException ioe) {
 return null;
 }
 }

 return null;
 }
}

 Page 88 of 108

ImageMap.java

package no.ntnu.idi.android.imagebrowser;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;

import android.content.Intent;
import android.location.Location;
import android.os.Bundle;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.widget.Toast;
import android.widget.ZoomDialog;
import android.widget.ZoomSlider;

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import com.google.android.maps.OverlayController;
import com.google.android.maps.Point;

public class ImageMap extends MapActivity implements
MapView.OnLongPressListener, EnhancedMapView.OnTouc hEventListener,
ZoomSlider.OnZoomChangedListener {

 public static final String LOCATION = "location" ;
 private static final int MIN_SPACING = 25;

 private MapView mapView = null;
 private MapController controller = null;
 private OverlayController overlayController = null;
 private Location location = null;
 private ImageConsumer imageConsumer;
 private GeotaggedImageID[] imageIDs = null;
 private Collection<GeotaggedImageGroup> currentGroups = null;
 private MapPinOverlay[] overlays = null;
 private boolean initialized = false;
 private ArrayList<ArrayList<GeotaggedImageGroup>> clusterT ree = null;
 private ArrayList<Double> levelMinimums;

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 mapView = new EnhancedMapView(this);
 mapView.setOnLongPressListener(this);
 ((EnhancedMapView)mapView).setOnTouchEventListe ner(this);
 controller = mapView.getController();
 overlayController = mapView.createOverlayContro ller();
 setContentView(mapView);

 Bundle extras = getIntent().getExtras();
 location = (extras == null) ? null :
 (Location)extras.getParcelable(LOCATION);

 if (location != null) {
 float lat = (float)location.getLatitude();
 float lon = (float)location.getLongitude();

 Page 89 of 108

 controller.animateTo(new Point((int)(lat * 1000000),
 (int)(lon * 1000000)));
 controller.zoomTo(15);
 overlayController.add(new MapPinOverlay(this, location.getLatitude(),
 location.getLongitude()), false);
 } else {
 // Retrieve list of all images
 imageConsumer = new ImageConsumer(this);
 imageIDs = imageConsumer.retrieveGeotaggedIma geIDs();

 // Find zoom span
 double minLatitude = Double.MAX_VALUE;
 double maxLatitude = Double.MIN_VALUE;
 double minLongitude = Double.MAX_VALUE;
 double maxLongitude = Double.MIN_VALUE;

 Location location;
 for (GeotaggedImageID imageID : imageIDs) {
 location = imageID.getLocation();
 if (location.getLatitude() > maxLatitude)
 maxLatitude = location.getLatitude();
 if (location.getLatitude() < minLatitude)
 minLatitude = location.getLatitude();
 if (location.getLongitude() > maxLongitude)
 maxLongitude = location.getLongitude();
 if (location.getLongitude() < minLongitude)
 minLongitude = location.getLongitude();
 }

 Point averageLocation =
 new Point((int)(((minLatitude + maxLatitude) / 2) * 1000000),
 (int)(((minLongitude + maxLongitude) / 2) * 1000000));
 controller.animateTo(averageLocation);
 controller.zoomToSpan((int)((maxLatitude - minLatitude) * 1000000),
 (int)((maxLongitude - minLongitude) * 1000000));

 // Group locations
 generateClusterTree(imageIDs);
 }
 }

 @Override
 public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);

 if (location == null && hasFocus && !initialized) {
 generateOverlays();
 initialized = true;
 }
 }

 @Override
 public boolean onLongPress(View v, float x, float y) {
 ZoomDialog zoomDialog = new ZoomDialog(this);
 zoomDialog.setParams(0, mapView.getMaxZoomLevel (),
 mapView.getZoomLevel(), this, true);
 zoomDialog.show();

 return true;
 }

 Page 90 of 108

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_UP && ove rlays != null) {
 for (int i = 0; i < overlays.length; i++) {
 if (overlays[i].coversPixelCoordinate((int)event.getX(),
 (int)event.getY())) {
 GeotaggedImageGroup group =
 (GeotaggedImageGroup)currentGroups.toAr ray()[i];
 Intent browseIntent = new Intent(this, ImageBrowser. class);
 int[] imageIDs = new int[group.getImageIDs().size()];
 int j = 0;
 for (GeotaggedImageID imageID : group.getImageIDs()) {
 imageIDs[j++] = imageID.getImageID();
 }
 browseIntent.putExtra(ImageBrowser.IMAGE_ IDS, imageIDs);
 startActivity(browseIntent);
 return true;
 }
 }
 }

 return false;
 }

 public void onZoomChanged(ZoomSlider zoomSlider,
 int oldZoom, int newZoom) { }

 public void onZoomCompleted() { }

 public void onZoomIn(ZoomSlider zoomSlider, int oldZoom, int newZoom) {
 controller.zoomTo(newZoom);

 if (location == null) {
 generateOverlays();
 }
 }

 public void onZoomOut(ZoomSlider zoomSlider, int oldZoom, int newZoom) {
 controller.zoomTo(newZoom);

 if (location == null) {
 generateOverlays();
 }
 }

 private void generateOverlays() {
 overlayController.clear();

 double metersPerPixel = calculateMetersPerPixel();
 double threshold = metersPerPixel * MIN_SPACING;
 currentGroups = findGroupsCached(threshold);

 overlays = new MapPinOverlay[currentGroups.size()];
 int i = 0;
 for (GeotaggedImageGroup group : currentGroups) {
 Location location = group.getAverageLocation();
 MapPinOverlay overlay = new MapPinOverlay(this,
 new Point((int)(location.getLatitude() * 1000000),
 (int)(location.getLongitude() * 1000000)));
 overlayController.add(overlay, false);
 overlays[i++] = overlay;

 Page 91 of 108

 }
 }

 private double calculateMetersPerPixel() {
 // Must use width, since the height of the View is not fully utilized
 // when zoomed out all the way. Height would be easier since 1 minute
 // of arc is defined as 1852 meters

 Point mapCenter = mapView.getMapCenter();

 // Work-around for bug in MapView
 // Reported as Android issue #736
 int longitudeSpan;
 if (mapView.getZoomLevel() == 1) {
 longitudeSpan = 360000000;
 } else {
 longitudeSpan = mapView.getLongitudeSpan();
 }

 Location westBoarderLocation = new Location();
 westBoarderLocation.setLatitude((double)mapCenter.getLatitudeE6()
 / 1000000);
 westBoarderLocation.setLongitude(((mapCenter.ge tLongitudeE6()
 - (longitudeSpan / 2)) % 180000000) / 1000000);
 Location eastBoarderLocation = new Location();
 eastBoarderLocation.setLatitude((double)mapCenter.getLatitudeE6()
 / 1000000);
 eastBoarderLocation.setLongitude(((mapCenter.ge tLongitudeE6()
 + (longitudeSpan / 2)) % 180000000) / 1000000);

 double distance = westBoarderLocation.distanceTo(eastBoar derLocation);
 double metersPerPixel = distance / mapView.getWidth();

 return metersPerPixel;
 }

 private void generateClusterTree(GeotaggedImageID[] imageIDs) {
 clusterTree = new ArrayList<ArrayList<GeotaggedImageGroup>>();
 levelMinimums = new ArrayList<Double>();
 HashMap<Integer, GeotaggedImageGroup> imageIDMa p =
 new HashMap<Integer, GeotaggedImageGroup>();
 int numImages = imageIDs.length;
 double[][] distanceMatrix = new double[numImages][numImages];

 double distance;
 Location location1, location2;
 ArrayList<GeotaggedImageGroup> clusterList =
 new ArrayList<GeotaggedImageGroup>();
 GeotaggedImageGroup groupToCache = new GeotaggedImageGroup();
 for (int i = 0; i < numImages; i++) {
 imageIDMap.put(i, new GeotaggedImageGroup(imageIDs[i]));
 clusterList.add(new GeotaggedImageGroup(imageIDs[i]));

 location1 = imageIDs[i].getLocation();
 for (int j = i + 1; j < numImages; j++) {
 location2 = imageIDs[j].getLocation();

 distance = location1.distanceTo(location2);

 distanceMatrix[i][j] = distance;
 distanceMatrix[j][i] = distance;

 Page 92 of 108

 }
 }
 clusterTree.add(clusterList);

 double minDistance;
 int minDistanceID1, minDistanceID2;
 do {
 // find min distance
 minDistanceID1 = -1;
 minDistanceID2 = -1;
 minDistance = Double.MAX_VALUE;
 for (int i = 0; i < numImages; i++) {
 for (int j = i + 1; j < numImages; j++) {
 if (distanceMatrix[i][j] < minDistance) {
 minDistance = distanceMatrix[i][j];
 minDistanceID1 = i;
 minDistanceID2 = j;
 }
 }
 }

 if (minDistanceID1 >= 0 && minDistanceID2 >= 0) {
 // put content of group minDistanceID1 into group minDistanceID2
 ((GeotaggedImageGroup)imageIDMap.get(minDis tanceID2))
 .add((GeotaggedImageGroup)imageIDMap.get(minDistanceID1));

 // remove group minDistanceID1
 imageIDMap.remove(minDistanceID1);

 // set row and column minDistanceID1 to Double.MA X_VALUE
 for (int i = 0; i < numImages; i++) {
 distanceMatrix[i][minDistanceID1] = Doubl e.MAX_VALUE;
 distanceMatrix[minDistanceID1][i] = Doubl e.MAX_VALUE;
 }

 // recalculate row and column minDistanceID2
 for (int i = 0; i < numImages; i++) {
 if (i != minDistanceID2 && distanceMatrix[i][0]
 != Double.MAX_VALUE) {
 distance = ((GeotaggedImageGroup)imageI DMap
 .get(minDistanceID2)).calculateMinDis tanceTo(
 (GeotaggedImageGroup)imageIDMap.get (i));
 distanceMatrix[i][minDistanceID2] = dis tance;
 distanceMatrix[minDistanceID2][i] = dis tance;
 }
 }

 // Loop through all groups to store in cached tree
 clusterList = new ArrayList<GeotaggedImageGroup>();
 for (GeotaggedImageGroup group : imageIDMap.values()) {
 groupToCache = new GeotaggedImageGroup();
 for (GeotaggedImageID imageID : group.getImageIDs()) {
 groupToCache.add(imageID);
 }
 clusterList.add(groupToCache);
 }
 clusterTree.add(clusterList);
 levelMinimums.add(minDistance);
 }
 } while (minDistanceID1 >= 0 && minDistanceID2 >= 0);
 }

 Page 93 of 108

 private Collection<GeotaggedImageGroup> findGroupsCached(
 double threshold) {
 int level;
 for (level = 0; level < levelMinimums.size(); level++) {
 if (threshold < levelMinimums.get(level)) {
 level++;
 break;
 }
 }

 return clusterTree.get(level);
 }
}

 Page 94 of 108

MapPinOverlay.java

package no.ntnu.idi.android.imagebrowser;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Paint;
import com.google.android.maps.Overlay;
import com.google.android.maps.Point;

public class MapPinOverlay extends Overlay {

 private final android.graphics.Point PIN_HOTSPOT =
 new android.graphics.Point(5,29);

 private Bitmap mapPin = null;
 private Paint paint = null;
 private Point location = null;
 private int x = 0;
 private int y = 0;
 private android.graphics.Point screenCoord;

 public MapPinOverlay(Context context, double latitude, double longitude){
 mapPin = BitmapFactory.decodeResource(context.g etResources(),
 R.drawable.mappin_red);
 paint = new Paint();
 location = new Point((int)(latitude * 1000000),
 (int)(longitude * 1000000));
 }

 public MapPinOverlay(Context context, Point location) {
 mapPin = BitmapFactory.decodeResource(context.g etResources(),
 R.drawable.mappin_red);
 paint = new Paint();
 this.location = location;
 }

 @Override
 public void draw(Canvas canvas, PixelCalculator calculator,
 boolean shadow) {
 super.draw(canvas, calculator, shadow);
 int[] pixelCoord = new int[2];
 calculator.getPointXY(location, pixelCoord);
 screenCoord = new android.graphics.Point(pixelCoord[0] - PIN_HOTSPOT .x,
 pixelCoord[1] - PIN_HOTSPOT.y);
 x = pixelCoord[0] - PIN_HOTSPOT.x;
 y = pixelCoord[1] - PIN_HOTSPOT.y;
 canvas.drawBitmap(mapPin, x, y, paint);
 }

 public boolean coversPixelCoordinate(int x, int y) {
 if (x > screenCoord.x && x < screenCoord.x + mapPin.g etWidth()
 && y > screenCoord.y && y < screenCoord.y + mapPin.getHeight()) {
 return true;
 }
 return false;
 }

}

 Page 95 of 108

Appendix E: Source Code of ImageProvider

BitmapHelper.java

package no.ntnu.idi.android.imageprovider;

import android.graphics.Bitmap;
import android.graphics.Matrix;

public final class BitmapHelper {

 /*
 * Resize a bitmap to the specified scale.
 * Values < 1 makes the bitmap smaller, values > 1 makes it bigger.
 */
 public static Bitmap resizeBitmap(Bitmap bitmapOrg, float scale) {
 int width = bitmapOrg.width();
 int height = bitmapOrg.height();

 Matrix matrix = new Matrix();
 matrix.postScale(scale, scale);

 Bitmap resizedBitmap = Bitmap.createBitmap(bitmapOrg, 0, 0,
 width, height, matrix, true);
 return resizedBitmap;
 }

 /*
 * Resizes a bitmap to the specified width.
 * The aspect ratio is not changed, so the new he ight will
 * be calculated based on the provided width.
 */
 public static Bitmap resizeBitmap(Bitmap bitmapOrg, int newWidth) {
 int width = bitmapOrg.width();
 int height = bitmapOrg.height();

 float scale = ((float) newWidth) / width;

 Matrix matrix = new Matrix();
 matrix.postScale(scale, scale);

 Bitmap resizedBitmap = Bitmap.createBitmap(bitm apOrg, 0, 0, width,
 height, matrix, true);
 return resizedBitmap;
 }
}

 Page 96 of 108

DatabaseHelper.java

package no.ntnu.idi.android.imageprovider;

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;

public class DatabaseHelper extends SQLiteOpenHelper {

 private static final String DATABASE_NAME = "images" ;
 private static final int DATABASE_VERSION = 6;

 @Override
 public void onCreate(SQLiteDatabase db) {

 db.execSQL("CREATE TABLE images ("
 + "_id INTEGER PRIMARY KEY AUTOINCREMENT,"
 + "filename TEXT UNIQUE,"
 + "image_original TEXT,"
 + "image_screensize TEXT,"
 + "image_thumbnail TEXT,"
 + "latitude REAL,"
 + "longitude REAL);");

 db.execSQL("CREATE TABLE flickr_images ("
 + "_id INTEGER PRIMARY KEY AUTOINCREMENT,"
 + "filename TEXT UNIQUE,"
 + "image_original TEXT,"
 + "image_screensize TEXT,"
 + "image_thumbnail TEXT,"
 + "latitude REAL,"
 + "longitude REAL);");

 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion){
 db.execSQL("DROP TABLE IF EXISTS images");
 db.execSQL("DROP TABLE IF EXISTS flickr_images");
 onCreate(db);
 }

 public SQLiteDatabase openDatabase(Context context) {
 return openDatabase(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

}

 Page 97 of 108

FlickrPhotoHandler.java

package no.ntnu.idi.android.imageprovider;

import java.util.ArrayList;
import java.util.List;

import org.xml.sax.Attributes;
import org.xml.sax.Locator;

import android.location.Location;

public class FlickrPhotoHandler implements org.xml.sax.ContentHandler {

 private List<String> filenames = new ArrayList<String>();
 private List<String> urls = new ArrayList<String>();
 private List<Location> locations = new ArrayList<Location>();

 public void startElement(String uri, String localName,
 String qName, Attributes atts) {
 if (qName == "photo") {
 String id = atts.getValue("id");
 String secret = atts.getValue("secret");
 String server = atts.getValue("server");
 String farm = atts.getValue("farm");
 String isPublic = atts.getValue("ispublic");
 String latitude = atts.getValue("latitude");
 String longitude = atts.getValue("longitude");

 if (isPublic.equals("1")) {
 if (!latitude.equals("0") && !longitude.equals("0")) {
 String baseUrl = "http://farm" + farm + ".static.flickr.com/"
 + server + "/" ;
 String filename = id + "_" + secret + ".jpg" ;
 filenames.add(filename);
 urls.add(baseUrl + filename);
 Location location = new Location();
 location.setLatitude(Double.parseDouble(l atitude));
 location.setLongitude(Double.parseDouble(longitude));
 locations.add(location);
 }
 }
 }
 }

 public List<String> getFilenames() {
 return filenames;
 }

 public List<String> getUrls() {
 return urls;
 }

 public List<Location> getLocations() {
 return locations;
 }

 // Required to implement interface
 public void characters(char[] ch, int start, int length){}
 public void endDocument(){}
 public void endElement(String uri, String localName, String qName){}

 Page 98 of 108

 public void endPrefixMapping(String prefix){}
 public void ignorableWhitespace(char[] ch, int start, int length){}
 public void processingInstruction(String target, String data){}
 public void setDocumentLocator(Locator locator){}
 public void skippedEntity(String name){}
 public void startDocument(){}
 public void startPrefixMapping(String prefix, String uri){}

}

 Page 99 of 108

ImageProvider.java

package no.ntnu.idi.android.imageprovider;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import android.content.ContentProvider;
import android.content.ContentValues;
import android.content.Context;
import android.content.Resources;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.net.Uri;

public class ImageProvider extends ContentProvider {

 private static final String URI_AUTHORITY =
 "no.ntnu.idi.android.imageprovider" ;
 private static final String URI_PATH = "images" ;
 private static final String FLICKR_URI_PATH = "flickr" ;
 private static final int URI_IMAGES = 1;
 private static final int URI_IMAGE_ID = 2;
 private static final int FLICKR_URI_IMAGES = 3;
 private static final int FLICKR_URI_IMAGE_ID = 4;

 public static final Uri CONTENT_URI = Uri.parse("content://"
 + URI_AUTHORITY + "/" + URI_PATH);
 public static final Uri FLICKR_CONTENT_URI = Uri.parse("content://"
 + URI_AUTHORITY + "/" + FLICKR_URI_PATH);
 public static final String IMAGE_ORIGINAL = "image_original" ;
 public static final String IMAGE_SCREENSIZE = "image_screensize" ;
 public static final String IMAGE_THUMBNAIL = "image_thumbnail" ;
 public static final String LATITUDE = "latitude" ;
 public static final String LONGITUDE = "longitude" ;

 private UriMatcher uriMatcher;
 private SQLiteDatabase db;

 /*
 * @returns true if the provider was successfully loaded, false otherwise
 */
 @Override
 public boolean onCreate() {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(URI_AUTHORITY, URI_PATH, URI_ IMAGES);
 uriMatcher.addURI(URI_AUTHORITY, URI_PATH + "/#" , URI_IMAGE_ID);
 uriMatcher.addURI(URI_AUTHORITY, FLICKR_URI_PAT H, FLICKR_URI_IMAGES);
 uriMatcher.addURI(URI_AUTHORITY, FLICKR_URI_PAT H + "/#" ,
 FLICKR_URI_IMAGE_ID);

 DatabaseHelper dbHelper = new DatabaseHelper();
 db = dbHelper.openDatabase(getContext());

 Page 100 of 108

 return (db == null) ? false : true;
 }

 @Override
 public int delete(Uri uri, String selection, String[] selecti onArgs) {
 return 0;
 }

 @Override
 public String getType(Uri uri) {
 switch (uriMatcher.match(uri)) {
 case URI_IMAGES:
 return "vnd.android.cursor.dir/vnd.ntnu.image" ;
 case URI_IMAGE_ID:
 return "vnd.android.cursor.item/vnd.ntnu.image" ;
 default:
 throw new IllegalArgumentException("Unknown URI: " + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 return null;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();

 switch (uriMatcher.match(uri)) {
 case URI_IMAGES:
 queryBuilder.setTables((String)getContext()
 .getResources().getText(R.string.db_table)) ;
 break;
 case URI_IMAGE_ID:
 queryBuilder.setTables((String)getContext()
 .getResources().getText(R.string.db_table)) ;
 queryBuilder.appendWhere("_id=" + uri.getPathSegments().get(1));
 break;
 case FLICKR_URI_IMAGES:
 queryBuilder.setTables((String)getContext()
 .getResources().getText(R.string.flickr_db_ table));
 break;
 case FLICKR_URI_IMAGE_ID:
 queryBuilder.setTables((String)getContext()
 .getResources().getText(R.string.flickr_db_ table));
 queryBuilder.appendWhere("_id=" + uri.getPathSegments().get(1));
 break;
 default:
 throw new IllegalArgumentException("Unknown URI: " + uri);
 }

 Cursor cursor = queryBuilder.query(db, projecti on, selection,
 selectionArgs, null, null, sortOrder);
 return cursor;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selec tion,

 Page 101 of 108

 String[] selectionArgs) {
 return 0;
 }
}

 Page 102 of 108

ProviderController.java

package no.ntnu.idi.android.imageprovider;

import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.List;

import org.cmc.sanselan.ImageReadException;
import org.cmc.sanselan.ImageWriteException;
import org.cmc.sanselan.Sanselan;
import org.cmc.sanselan.formats.jpeg.JpegImageMetadata;
import org.cmc.sanselan.formats.jpeg.exifRewrite.ExifRewr iter;
import org.cmc.sanselan.formats.tiff.TiffImageMetadata;
import org.cmc.sanselan.formats.tiff.write.TiffOutputSet;
import org.xml.sax.SAXException;

import android.app.Activity;
import android.content.Context;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.location.Location;
import android.os.Bundle;
import android.util.Xml;
import android.view.Menu;
import android.view.Menu.Item;
import android.widget.TextView;
import android.widget.Toast;

public class ProviderController extends Activity {

 private static final int MENU_RESCAN = 1;
 private static final int MENU_FLICKR = 2;
 private static final int THUMBNAIL_WIDTH = 60;
 private static final int SCREENSIZE_WIDTH = 320;

 private SQLiteDatabase db;
 TextView counterTextView;

 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 DatabaseHelper dbHelper = new DatabaseHelper();
 db = dbHelper.openDatabase(this);

 counterTextView = new TextView(this);

 Page 103 of 108

 setContentView(counterTextView);

 updateCounter();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(0, MENU_RESCAN, "Rescan image folder");
 menu.add(0, MENU_FLICKR, "Rescan flickr");

 return super.onCreateOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(Item item) {
 if (item.getId() == MENU_RESCAN) {
 loadImagesFromFile();
 updateCounter();
 Toast.makeText(this, "Done!" , Toast.LENGTH_SHORT).show();
 } else if (item.getId() == MENU_FLICKR) {
 loadImagesFromFlickr();
 Toast.makeText(this, "Done!" , Toast.LENGTH_SHORT).show();
 }

 return super.onOptionsItemSelected(item);
 }

 private void updateCounter() {
 Cursor cursor = db.query("images" , new String[]{ "_id" }, null,
 null, null, null, null);
 counterTextView.setText("Number of images in DB: " + cursor.count());
 }

 private void loadImagesFromFile() {
 // Get a list of all files in the subdirectory call ed images
 File imagesDirectory = this.getDir((String)getResources()
 .getText(R.string.images_directory), Context. MODE_PRIVATE);
 File thumbnailsDirectory = this.getDir((String)getResources()
 .getText(R.string.thumbnails_directory), Cont ext.MODE_PRIVATE);
 File[] dirFiles = imagesDirectory.listFiles();

 // Get a list of all images in db
 Cursor cursor =
 db.query((String)getResources().getText(R.str ing.db_table),
 new String[]{ "filename" }, null, null, null, null, null);
 int numRows = cursor.count();
 String[] dbFilenames = new String[numRows];
 int filenameColumn = cursor.getColumnIndex("filename");
 if (cursor.first()) {
 int i = 0;
 do {
 dbFilenames[i++] = cursor.getString(filenam eColumn);
 } while (cursor.next());
 }

 boolean found;
 // For each file in the subdirectory called images
 for (File file : dirFiles) {
 found = false;
 for (int i = 0; i < numRows; i++) {
 //if (filename.equals(dbFilenames[i])) {

 Page 104 of 108

 if (file.getName().equals(dbFilenames[i])) {
 found = true;
 break;
 }
 }

 // if file doesn't exist in db
 if (!found) {
 // Make thumbnail and store in a subdirectory calle d thumbnails
 try {
 String filename = file.getName();
 String thumbnailFilename = filename.subst ring(0,
 filename.lastIndexOf('.')) + "_thumb.jpg" ;
 String screensizeFilename = filename.subs tring(0,
 filename.lastIndexOf('.')) + "_screen.jpg" ;

 InputStream inputStream = new FileInputStream(file);
 Bitmap bitmap = BitmapFactory.decodeStrea m(inputStream);
 inputStream.close();
 inputStream = new FileInputStream(file);
 Double latitude = null;
 Double longitude = null;
 try {
 JpegImageMetadata metadata = (JpegImage Metadata)Sanselan
 .getMetadata(inputStream, filename);
 if (metadata != null) {
 TiffImageMetadata exif = metadata.get Exif();
 if (exif != null) {
 TiffImageMetadata.GPSInfo gpsInfo = exif.getGPS();
 if (gpsInfo != null) {
 latitude = gpsInfo.getLatitudeAsD egreesNorth();
 longitude = gpsInfo.getLongitudeA sDegreesEast();
 }
 }
 }
 } catch (ImageReadException ire) {
 } catch (IOException ioe) {
 }
 inputStream.close();

 Bitmap thumbnail = BitmapHelper.resizeBit map(bitmap,
 THUMBNAIL_WIDTH);
 File thumbnailFile = new File(thumbnailsDirectory,
 thumbnailFilename);
 OutputStream outputStream = new FileOutputStream(thumbnailFile);
 thumbnail.compress(Bitmap.CompressFormat. JPEG, 100,
 outputStream);
 outputStream.close();
 thumbnail = null;

 Bitmap screensize = BitmapHelper.resizeBi tmap(bitmap,
 SCREENSIZE_WIDTH);
 File screensizeFile = new File(thumbnailsDirectory,
 screensizeFilename);
 outputStream = new FileOutputStream(screensizeFile);
 screensize.compress(Bitmap.CompressFormat .JPEG, 100,
 outputStream);
 outputStream.close();
 screensize = null;

 Page 105 of 108

 bitmap = null;

 // Add new row to db
 db.execSQL("INSERT INTO "
 + (String)getResources().getText(R.stri ng.db_table)
 + "(filename, "
 + ImageProvider.IMAGE_ORIGINAL + ", "
 + ImageProvider.IMAGE_SCREENSIZE + ", "
 + ImageProvider.IMAGE_THUMBNAIL + ", "
 + ImageProvider.LATITUDE + ", "
 + ImageProvider.LONGITUDE + ") VALUES('"
 + filename + "', '" + imagesDirectory.getAbsolutePath() + "/"
 + filename + "', '"
 + thumbnailsDirectory.getAbsolutePath() + "/"
 + screensizeFilename + "', '"
 + thumbnailsDirectory.getAbsolutePath() + "/"
 + thumbnailFilename + "', "
 + ((latitude == null) ? "null" : "'" + latitude + "'") + ", "
 + ((longitude == null) ? "null" : "'" + longitude + "'")
 + ");");

 } catch (FileNotFoundException e) {
 continue;
 } catch (IOException ioe) {
 continue;
 }
 }
 }
 }

 private void loadImagesFromFlickr() {
 File imagesDirectory = this.getDir((String)getResources()
 .getText(R.string.flickr_images_directory),
 Context.MODE_PRIVATE);
 File thumbnailsDirectory = this.getDir((String)getResources()
 .getText(R.string.flickr_thumbnails_directory),
 Context.MODE_PRIVATE);

 String urlString =
"http://api.flickr.com/services/rest/?method=flickr .interestingness.getList
&per_page=500&extras=geo&date=2008-05-26&api_key="
 + getResources().getText(R.string.flickr_API_ key);

 try {
 URL url = new URL(urlString);
 HttpURLConnection connection =
 (HttpURLConnection)url.openConnection();
 if (connection.getDoInput()) {
 InputStream is = connection.getInputStream();
 BufferedReader br = new BufferedReader(new InputStreamReader(is));
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = br.readLine()) != null) {
 sb.append(line);
 }
 br.close();

 Xml result = new Xml();
 FlickrPhotoHandler handler = new FlickrPhotoHandler();
 result.parse(sb.toString(), handler);

 Page 106 of 108

 List<String> filenames = handler.getFilenam es();
 List<String> urls = handler.getUrls();
 List<Location> locations = handler.getLocat ions();

 if (urls.size() != locations.size())
 return;

 for (int i = 0; i < urls.size(); i++) {
 String filename = filenames.get(i);
 String imageUrl = urls.get(i);
 Location location = locations.get(i);

 String thumbnailFilename = filename.subst ring(0,
 filename.lastIndexOf('.')) + "_thumb.jpg" ;
 String screensizeFilename = filename.subs tring(0,
 filename.lastIndexOf('.')) + "_screen.jpg" ;

 url = new URL(imageUrl);
 connection = (HttpURLConnection)url.openC onnection();
 if (connection.getDoInput()) {
 is = connection.getInputStream();
 TiffOutputSet outputSet = new TiffOutputSet();
 outputSet.setGPSInDegrees(location.getL ongitude(),
 location.getLatitude());
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 new ExifRewriter().updateExifMetadataLossless(is, baos ,
 outputSet);
 is.close();

 File imageFile = new File(imagesDirectory, filename);
 OutputStream outputStream = new FileOutputStream(imageFile);
 byte[] imageBytes = baos.toByteArray();
 baos = null;
 outputStream.write(imageBytes);
 outputStream.close();

 Bitmap bitmap = BitmapFactory.decodeByt eArray(imageBytes, 0,
 imageBytes.length);
 imageBytes = null;

 Bitmap thumbnail = BitmapHelper.resizeB itmap(bitmap,
 THUMBNAIL_WIDTH);
 File thumbnailFile = new File(thumbnailsDirectory,
 thumbnailFilename);
 outputStream = new FileOutputStream(thumbnailFile);
 thumbnail.compress(Bitmap.CompressForma t.JPEG, 100,
 outputStream);
 outputStream.close();
 thumbnail = null;

 Bitmap screensize = BitmapHelper.resize Bitmap(bitmap,
 SCREENSIZE_WIDTH);
 File screensizeFile = new File(thumbnailsDirectory,
 screensizeFilename);
 outputStream = new FileOutputStream(screensizeFile);
 screensize.compress(Bitmap.CompressForm at.JPEG, 100,
 outputStream);
 outputStream.close();
 screensize = null;

 Page 107 of 108

 bitmap = null;

 db.execSQL("INSERT INTO "
 + (String)getResources().getText(R.st ring.flickr_db_table)
 + "(filename, "
 + ImageProvider.IMAGE_ORIGINAL + ", "
 + ImageProvider.IMAGE_SCREENSIZE + ", "
 + ImageProvider.IMAGE_THUMBNAIL + ", "
 + ImageProvider.LATITUDE + ", "
 + ImageProvider.LONGITUDE + ") VALUES('"
 + filename + "', '" + imagesDirectory.getAbsolutePath()
 + "/" + filename + "', '"
 + thumbnailsDirectory.getAbsolutePath () + "/"
 + screensizeFilename + "', '"
 + thumbnailsDirectory.getAbsolutePath () + "/"
 + thumbnailFilename + "', "
 + ((location == null) ? "null" : "'" + location.getLatitude()
 + "'") + ", "
 + ((location == null) ? "null" : "'"
 + location.getLongitude() + "'") + ");");
 }
 }

 }
 } catch (MalformedURLException mue) {
 } catch (IOException ioe) {
 } catch (SAXException se) {
 } catch (ImageReadException ire) {
 } catch (ImageWriteException iwe) {
 }
 }
}

	Title Page
	Problem Description
	Report

