
June 2008
Torbjørn Skramstad, IDI
Lillian Røstad, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Profile based Intrusion Detection for
Internet Banking Systems

Kåre Nordvik Karlsen
Tarje Killingberg

Problem Description
Machine learning is a central area of intrusion detection systems (IDS). Evaluations of machine
learning methods used in different domains reveals that their performance varies substantially
within each domain. The goal of this project is to analyze the performance of different machine
learning methods within the domain of Internet banking systems. The goal of this project can be
divided into two sub-goals.

The first goal deals with the evaluation of data sources and attributes selection, in order to find out
which data material is best suited for detection of fraud and misuse. This is conducted by building
profiles, which learns the normal behavior for usage of the system at different levels of data
detail, ranging from single attribute values to general user behavior. Further, the task includes
evaluating the different profiles, attributes, and data sources in order to find the subset that
contributes the most.

The second goal is to find and evaluate different machine learning methods with emphasis on
performance in this specific domain. The most important evaluation criterion is anomaly detection
rate. It is assumed that Internet banking systems execute transactions in batch-mode, and hence,
real time detection of abnormal behavior is a secondary requirement, compared to that of the
quality of the detection.

Assignment given: 16. January 2008
Supervisor: Torbjørn Skramstad, IDI

Abstract

A review of publications treating security in Internet banking systems has
uncovered a practice that finds security by obscurity just as important as
actual security measures. The key reason for this is that security measures do
not provide a sufficient return on investment by fraud and misuse detection.
Hence, the banks have so far taken the risk of providing poor security in their
systems, and instead compensated the compromised users. This introduces
the need for a cost-efficient, non-intrusive and customizable novel fraud and
misuse detection system. This report describes the work done in researching
such a system, based on audit data from a highly customized system, and
using machine learning methods to provide functionality.

By choosing to use audit data as the primary source of information, data
can be gathered from the system in close to real-time, without interfering
with the existing functionality. Audit mechanisms are commonly present in
any system, thus they are the primary source from which a non-intrusive
solution can be obtained.

This report proposes the use of profiles to learn a baseline of the normal
interaction between a user and the system. Each profile looks at the avail-
able data at different levels of abstraction so that different properties in the
behavior can be learned. By using these profiles, each profile can be refined
to learn its level of abstraction, while still providing a complete picture of a
user’s behavior.

Machine learning methods can be used to automatically learn a baseline
for normal behavior based on a set of historical data. The learned behavior
can then be used to compare new instances against the baseline in order to
classify them as normal or abnormal. Abnormal behavior would then be an
indication that a user is conducting illegitimate activity.

The results of our proposed solution are satisfactory. We are able to
detect anomalies by different profiles and data sources. However, there are
issues when it comes to evaluating the solution. Since we are trying to detect
novel fraud and misuse behavior, there is no apparent test set to compare
against. Some options for evaluation of anomaly detection exist. However,
we found none of these to be satisfactory. Further research needs to be con-
ducted in this area before a functional solution can be created. This report
uses results and experiences to create a foundation for such further research.

Keywords: Fraud detection, Internet banking systems, machine learning,
anomaly detection, defined context

Acknowledgements

We would like to announce our gratitude for all guidance, feedback and sup-
port received during this project. In this matter, our adviser, and main su-
pervisor, Espen Fossen at Kantega AS has been our main resource. Kantega
AS has provided office space, computers, and free lunch. Also, supervisor at
IDI, Lillian Røstad, has provided valuable feedback. Further, for this project,
we have acquired access to a test system containing audit logs from an actual
banking application. We would like to express our appreciation for this.

Our friend, Hans-Christian, has provided invaluable thoughts on the con-
tent and quality of our report. In addition, friends and families have sup-
ported us and supplied other points of view. Finally, we thank our beloveds,
Carina and Karoline, for believing in us and providing support and under-
standing during late work hours in the final stages of this project.

Without your support this work would not have been possible.

Thank you.

"To predict the behavior of ordinary people in advance, you only
have to assume that they will always try to escape a disagreeable
situation with the smallest possible expenditure of intelligence".

Friedrich Nietzsche
German philosopher (1844 - 1900)

Preface

This report is the final result of the master’s project in the 10th semester
of a master of technology degree in computer science. It is elaborated by
graduating students Tarje Killingberg and Kåre Karlsen. The assignment
is formulated in collaboration with Kantega AS and the group for Design
and Use of Information Systems at the Department of Computer and Infor-
mation Science (IDI) at the Norwegian University of Science and Technology
(NTNU). In this report we conduct research and provide results in the area of
anomaly detection in users’ interaction with a large Internet banking system,
with the goal to detect fraud and malicious behavior.

Brief table of contents

1 Introduction 1

2 Background 13

3 Method 55

4 Design 69

5 Results and analysis 109

6 Discussion 139

A Formats 151

B Instruments 155

C Implementation 159

D Additional figures 169

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Taxonomy of threats . 4

1.2.1 Attackers . 4
1.2.2 Attacks . 5
1.2.3 Scenarios . 6

1.3 Problem definition . 9
1.4 Report outline . 11

2 Background 13
2.1 Context . 15

2.1.1 System overview . 15
2.1.2 Data sources . 16
2.1.3 Threats . 19

2.2 State of the art . 25
2.2.1 Fraud detection . 25
2.2.2 Anomaly detection . 27

2.3 Intrusion detection systems 29
2.4 Machine learning methodologies 34

2.4.1 General machine learning 34
2.4.2 Support vector machines 39
2.4.3 Artificial neural networks 46
2.4.4 Markov chains . 52

3 Method 55
3.1 Research questions . 57

3.1.1 Hypothesis . 59
3.2 Operations . 59
3.3 Threats to validity . 61

3.3.1 Validity evaluation . 62
3.3.2 Conclusion validity . 62
3.3.3 Internal validity . 64

ix

3.3.4 Construct validity . 65
3.3.5 External validity . 66

4 Design 69
4.1 Profiles . 71

4.1.1 Profile 1: Request structure 71
4.1.2 Profile 2: Request values 73
4.1.3 Profile 3: Server response 75
4.1.4 Profile 4: Session structure 75
4.1.5 Profile 5: User profile 78
4.1.6 Profile 6: System overview 80

4.2 Profile selection . 82
4.2.1 Profile evaluation . 82
4.2.2 Profile comparison . 88

4.3 Data preparation . 89
4.3.1 Data Source . 89
4.3.2 Data properties . 91

4.4 User requests . 92
4.4.1 Support vector machines 93
4.4.2 Classification . 97
4.4.3 Neural networks . 100
4.4.4 Classification . 101

4.5 Session structure . 105
4.5.1 Markov chains . 105
4.5.2 Classification . 105

4.6 Summary . 106

5 Results and analysis 109
5.1 Profiles . 111

5.1.1 User requests . 111
5.1.2 Session structure . 111
5.1.3 Research questions related to profiles 112

5.2 Machine learning methods . 112
5.2.1 Results and analysis of SVM 113
5.2.2 Results and analysis of ANN 117
5.2.3 Results and analysis of Markov chains 122
5.2.4 Analysis of validity for machine learning methods . . . 128

5.3 Audit data . 129
5.3.1 Available audit data 130
5.3.2 Log parsing . 131
5.3.3 Research questions related to Audit data 132

x

5.3.4 Analysis of validity for audit data 132
5.4 Summary of analysis . 134

5.4.1 Summary of result validity 134
5.4.2 Summary of research questions 135

6 Discussion 139
6.1 Findings . 141

6.1.1 Profiles . 141
6.1.2 Audit data . 142
6.1.3 Machine learning . 142
6.1.4 Results . 143
6.1.5 Result of hypothesis test 144

6.2 Comparison to background . 145
6.3 Further research . 147
6.4 Conclusion . 149

A Formats 151
A.1 Common log format . 152
A.2 Combined log format . 153
A.3 The HTTP protocol . 153

A.3.1 Requests messages . 153

B Instruments 155
B.1 Machine learning software . 156

B.1.1 WEKA . 156
B.1.2 LIBSVM . 156

B.2 Development tools . 156
B.2.1 Java . 157
B.2.2 Eclipse . 157
B.2.3 IntelliJ IDEA . 157

B.3 Other instruments . 157
B.3.1 Dia . 158
B.3.2 SSH/Putty . 158

C Implementation 159
C.1 Log parsing . 160

C.1.1 Log reader . 160
C.1.2 Data collectors . 162

C.2 Machine learning . 162
C.2.1 Learning vector quantizer 162
C.2.2 Markov Chain . 165

xi

D Additional figures 169
D.1 Markov chain figures . 170

xii

List of Tables

2.1 Web log properties . 17
2.2 Application log properties . 17
2.3 Transaction log properties . 18
2.4 Comparison of HIDSs and NIDSs 30
2.5 Comparison of anomaly and misuse detection 31
2.6 Weight matrix for a neural net 48
2.7 Transition matrix . 53

4.1 Models for profile 1: Request structure 72
4.2 Models for profile 2: Request values 74
4.3 Models for profile 3: Server response 75
4.4 Models for profile 4: Session structure 76
4.5 Models for profile 5: User profile 78
4.6 Models for profile 6: System overview 81
4.7 Evaluation of profile 1: Request profile 83
4.8 Evaluation of profile 2: Request values 84
4.9 Evaluation of profile 3: Server response 85
4.10 Evaluation of profile 4: Session structure 86
4.11 Evaluation of profile 5: User profile 87
4.12 Evaluation of profile 6: System overview 87
4.13 Selected profile 1: User requests 88
4.14 Selected profile 2: Session structure 89
4.15 Data properties of web log . 91
4.16 Data properties of transaction log 92

xiii

xiv

List of Figures

1.1 Attack methodologies . 5
1.2 The insider scenario . 7
1.3 The masquerader scenario . 8
1.4 The Trojan scenario . 9

2.1 Overview of a general system 15
2.2 Overview of the project’s system 16
2.3 Tracking a single user between logs 18
2.4 Threat concerning authorization 20
2.5 Threat concerning command execution 21
2.6 Threat concerning information disclosure 21
2.7 Threat concerning logical attacks 22
2.8 Threat concerning distributed attacks 23
2.9 Threat concerning fraud . 24
2.10 Threat concerning suspicious activity 24
2.11 Locations of HIDS and NIDS 29
2.12 Supervised and unsupervised machine learning 35
2.13 Mapping between actual values and predicted outcome 36
2.14 ROC-curve . 37
2.15 One class classification problem 39
2.16 SVM two class classification problem 40
2.17 Support vectors creating the classification function 42
2.18 Higher dimension transformation 44
2.19 One class classification problem solved 46
2.20 Two-layered neural network 47
2.21 Output from a LVQ-I . 49
2.22 Markov chain . 52

4.1 SVM’s classification space at various configurations. 94
4.2 Variation of detection rate for SVM 95
4.3 Variation of detection rate for SVM 96
4.4 Variation of detection rate for SVM 97
4.5 Variation of detection rate for SVM 98

xv

4.6 Variation of detection rate for SVM 99
4.7 Variation in detection rate for ANN 102
4.8 Variation in training time for ANN 103
4.9 Variation in classifying time for ANN 104

5.1 Classification overview for SVM 114
5.2 Classification plot for SVM . 115
5.3 Classification plot for SVM . 115
5.4 Classification plot for SVM . 116
5.5 Classification overview for ANN 119
5.6 Classification plot for ANN . 120
5.7 Classification plot for ANN . 120
5.8 Classification plot for ANN . 121
5.9 Markov chain with high probability transitions 124
5.10 Markov chain with low probability transitions 125
5.11 Markov chain with medium probability transitions 126

D.1 Markov chain with high probability transitions 171
D.2 Markov chain with low probability transitions 172
D.3 Markov chain with medium probability transitions 173

xvi

List of Equations

2.1 Classification function . 41
2.2 Error function . 41
2.3 Risk estimate . 41
2.4 Classification function for hyperplane 41
2.5 Hyperplane for class 1 . 43
2.6 Hyperplane for class -1 . 43
2.7 Maximization of distance between support vectors 43
2.8 Lagrange transformation . 43
2.9 Calculation of w . 44
2.10 Kernel function . 44
2.11 Boundary in transformed space 45
2.12 Gaussian RBF kernel function . 45
2.13 Quadratic equation . 45
2.15 Decision function . 46
2.14 Sign function . 46
2.16 Euclidean distance . 50
2.17 Radius of the neighborhood . 50
2.18 Calculation of λ . 50
2.19 Weight adjustment . 51
2.20 Function for Θ . 51
2.21 Learning rate . 51
2.22 Quantization error . 51
2.23 The Markov property . 53
2.24 The Markov property with memory 53
4.1 Weight adjustment . 101
4.2 Calculation of λ . 101

xvii

xviii

Acronyms

ANN Artificial Neural Network
BMU Best Matching Unit
CLF Common Log Format
CPU Central Processing Unit
CSS Cascading Style Sheets
DoS Denial of Service
DDoS Distributed Denial of Service
FSS Feature Subset Selection
HIDS Host based Intrusion Detection System
HTTP HyperText Transfer Protocol
ICD Idealized Character Distribution
IDE Integrated Development Environment
IDI Department of Computer and Information Science
IDS Intrusion Detection System
IP Internet Protocol
JDT Java Development Tools
KID Customer ID
LVQ Learning Vector Quantizer
MADAM ID Mining Audit Data for Automated Models for

Intrusion Detection
MB Megabyte
NA Not Available
NIDS Network based Intrusion Detection System
NTNU Norwegian University of Science and Technology
PC Personal Computer
RBF Radial Basis Function
ROC Receiver Operation Characteristic
SQL Structured Query Language
SSH Secure Shell
SSN Social Security Number
SVG Scalable Vector Graphics
SVM Support Vector Machine
TCP Transmission Control Protocol
Trojan Trojan horse
UML Unified Modeling Language
URL Uniform Resource Locator

xix

WASC-TC Web Application Security Consortium: Threat Classification
WEKA Waikato Environment for Knowledge Analysis
XML Extensible Markup Language

xx

Mathematical acronyms

γ The bound of the radius to the hyperspace
ǫ The tolerance of termination criterion
ν Ratio of normal points
ṽ Vector
f(ṽ) Classification function f defined on input ~v
p Configuration parameter
f(ṽ,p) Classification function f defined on input ~v and configuration p
(ṽi,yi) Vector number i, ~vi, and its associated truth value, yi

E(y, ṽ) Error function resulting in 0 if y equals f(~v), otherwise 1.
b Bias term
n Number of instances (SVM)
w̃ Normal vector
Φ(x) Transformation function on x
K(ṽi, ṽj) The kernel function (K(~vi, ~vj) = Φ(~vi) · Φ(~vj))
R(p) Risk estimate as a function of p
P Probability distribution
sgn(x) Function that returns an integer indicating the sign of x
S Simple subset
¬S The negation of S
exp(x) The exponential function (ex)
R Real number
Oi Output node number i
Ii Input node number i

Ṽ Input vector

W̃ Weight vector

vi Value numer i of ~V

wi Value numer i of ~W

d(Ṽ,W̃) Distance between vectors ~V and ~W

dE(Ṽ,W̃) Euclidean distance between vectors ~V and ~W
t A variable holding the current time step
σ(t) Radius as a function of t
σ0 The radius for t = 0
λ Exponential denominator for σ(t)
N Number training cycles
Q(t) The quantization error as a function of t
X(t) A stochastic process

xxi

P(A|B) The probability of A, given B
m The order of a Markov chain
n Number of output nodes (ANN)

xxii

Chapter 1

Introduction

Summary

This chapter contains an evaluation of the current security of Internet bank-
ing systems. These findings make up the motivation for this project. Further,
we define a taxonomy of the threats to such a system, such that we may un-
derstand and define an attack, an attacker, and the relationship between
them. This is used to define three threat scenarios, which are of special con-
cern. Based on the preceding discussion, we formulate a problem definition,
in conjunction with four main research questions that need to be answered
in order to provide a solution for the defined problem. Finally, we describe
the layout of the rest of this report.

2

CHAPTER 1. INTRODUCTION

1.1 Motivation

There appears to be an impression in the general public that Internet banking
systems are secure [1], but when we scratch the surface we soon realize that
this impression is based on false premises. Several references [2], [3] and [4] de-
scribe a series of security holes and vulnerabilities not covered by the banking
system’s own security measures. An increasing number of successful Internet
frauds seem to support these findings [5]. Article [6] and [HMT06] discuss
the possibility that banking authorities think that security is not worth the
cost. This has been confirmed in [7] by a survey concluding in that most
fraud detection software costs more than the prevented loss from detected
frauds. Further, it appears that they instead consider security by obscurity
as a good and cheap alternative. Surveys also show that users find the ap-
parent trust and reputation more important than the actual security level of
the system [NAH05] and [8]. Consequently, this result in low security costs,
but also a higher possibility of successful fraud attempts. So far, the banks
have compensated users having been victims of fraud. This has however been
a voluntary practice conducted in order to ensure user satisfaction, not an
imposed legislation [9]. The question still remains to see how this practice
will be conducted when the cost of compensating the users will exceed the
cost of reduced trust and image.

The Internet banking system’s security should however not be considered
lightly. There are several reasons for this, beyond the obvious false sense
of security felt by the users. Firstly, the practice of security by obscurity is
only valid as long as the security methods are obscured [HMT06]. Once the
obscurity is threatened by a successful fraud attempt, the security measures
of that system would fail. Obscurity is always a valid requirement for any
security measure, but it should never be used as a security measure itself.
Secondly, the rate of successful fraud attempts so far has not been signifi-
cant, compared to other types of fraud. Other areas of money transactions,
such as credit card transactions have had a much higher risk of fraud. The
trends in fraud schemes seem to change as fraud detection is implemented in
systems. This is true for credit cards, where fraud preventive systems have
lead to a decrease in credit card fraud by 16% in the UK over the last two
years [5]. The rate of successful non-credit card fraud attempts using the
Internet experiences a different trend. The rate of successful fraud attempts
against Internet banking systems increased by 44% from 2005 to 2006 to a
total value of £33.5 million in the UK alone [5]. Other countries have ex-
perienced similar growth [10]. No global statistical data material was found
pertaining to this subject, but the trend in the UK should be valid for most
western countries.

3

1.2. TAXONOMY OF THREATS

Therefore, cost-efficient security measures, which can detect fraud and
fraud attempts within Internet banking systems, seem increasingly relevant
and valuable. The goal of this project is to investigate options in the detection
of fraud. In this report we present a solution for detection of fraud and fraud
attempts based on machine learning methodologies. It will be based on that
most traffic in Internet banking systems is legal, and can be used to determine
a pattern of normal behavior. New traffic can be compared to this pattern
to find anomalies, which could indicate fraudulent activity.

1.2 Taxonomy of threats

A logical approach when wanting to detect all types of attacks would be
to create a complete taxonomy of all possible threats. However, such an
approach is outside the scope of this project and is still an area of much
research activity. Instead, we will attempt to describe the subject in a general
way using previous research and our own additions as we see fit [CM02]. The
following is a generalization of the threat problem divided into two sections,
attacker and attack, and a final section with a description of three threats of
specific relevance to this domain [How98], [Lou01]. The first section, attacker,
tries to understand the motivation and characteristics of an attacker. The
second, attack, shows a general model of how attacks could be performed.
The third, scenarios, describe three scenarios for the most relevant attackers
and attack paths.

1.2.1 Attackers

In order to understand how a system is at risk, an understanding of the
benefits of attacking the system is needed. Hence, knowing the motivation
and mindset of an attacker is critical when trying to defend against and
detect attacks. The first obvious distinction that can be made is between
external and internal attackers. The internal attacker has trusted access to
the system at risk, and misuses this access to perform malicious actions. The
external attacker does not have such access, but has to gain it by attacking
the system itself or by attacking a trusted user. The internal attacker has
advantages since he does not need to bypass the first level of defense, which
prevents access by unauthorized users to the system.

The second distinction of attackers is by technical skill. The level of skill
varies from professionals, who can perform customized attacks on the system,
to unskilled users, who use automated tools and scanners created by others.

The third and final distinction relates to the objective of the attacker

4

CHAPTER 1. INTRODUCTION

when attacking the system. Some attackers have a specific objective such as
some information or code. Others may just want to cause the system general
disruption, e.g. as a protest or to prove poor security. Yet others might just
be exploring and testing the system for fun, stretching security measures,
and testing accessibility. These attacks have a varying degree of probability
and the damage varies widely. This is because the target varies for each type
of objective, from confidential data and assets, to simple tests of security
barriers.

1.2.2 Attacks

The core of an attack is to bypass the security policy of the system. In
achieving this, the attacker gains the capability to perform operations which
should not be allowed. In order to do this, a system process needs to be
accessed in an unforeseen way such that it alters functionality. This could
be done by starting, controlling, hijacking or aborting a system process such
that the attacker gains access, performs commands or makes some alteration
in system data and assets that goes beyond the security policy restrictions.

A key term when discussing attacks is vulnerabilities. Every attack needs
to exploit a security vulnerability in order to bypass the security policy. Se-
curity vulnerabilities may exist in software implementation, such as input
validation errors allowing Structured Query Language (SQL) injections or
buffer overflows. Vulnerabilities may also originate from misconfiguration
of systems and programs, for instance wrong management of permissions.
Finally, system or protocol design can inhibit security vulnerabilities. Fig-
ure 1.1 shows a general model of how a flaw (vulnerability) allows access of
assets.

Figure 1.1: Model of attack methodologies

To make a classification of the different types of attacks is outside the
scope of this project. However, some distinctions can be made. Firstly,
attacks can be separated by which vulnerability they exploit. Secondly by

5

1.2. TAXONOMY OF THREATS

what privileges the attacker would gain, and, finally, by which resources he
tries to access.

Another key distinction that can be made is between remote and local
attacks. The terms remote and local do not reflect the physical location of
an attacker, but rather the distinction of privileges. A model that represents
the different paths and attackers was proposed in [Zan06]. However, due to
the problem domain at hand, some modifications have been made. A local
attacker has access privileges to the system, while a remote attacker has not.
The types of attackers use different attack paths, each of which can develop
into different types of attacks. The local attacker, or insider, would try to gain
more privileges than he currently has. The remote attacker, or masquerader,
has several attack paths he might consider. One path is a direct attack
aiming for privileged local access using a remote exploit or a legal user’s
credentials. A second path is a break in through the non-privileged local
access. A third path is attempting to attack through a local user using a
Trojan. This final path was not represented in the original model, but is
none the less an important and highly relevant one.

1.2.3 Scenarios

Due to the problem formulation and domain restriction of this project, the
models proposed in the previous sections can be simplified to enclose three
attack scenarios. In order to understand the type of attackers and attacks
relevant for this project, we have described three scenarios which describe
the most important attackers and attack paths we have to consider.

The insider

An insider is someone who has legitimate access to the system, but misuses
this access to perform illegal operations. While doing so, he may mimic the
actions of a masquerader, see section 1.2.3, in order to avoid detection and
face the consequences of his actions. The main problem with an insider attack
is that it has bypassed the first layer of defense, since the user has legitimate
access to restricted parts of the system. Figure 1.2 shows an illustration of
the insider scenario. It shows how a legitimate user can use his access to the
system to attack it from the inside, gaining access to resources outside his
legitimate areas.

When using a profile for the user’s normal behavior, one could detect
deviations from some of the profile’s parameters, while others would remain
the same. For instance, the insider could be carrying out his normal work
during daytime, and exploit the system at night. He would then deviate from

6

CHAPTER 1. INTRODUCTION

Figure 1.2: The insider scenario

normal login time, and perhaps also session time as well as time since last
login. He could be using his normal computer, since it would look even more
suspicious if he used someone else’s, and the ratio between successful and
failed logins would perhaps look normal. A problem is that if the insider is
aware of what parameters the behavior profile consists of, he can behave in
a way that makes it look like a masquerader has used his account.

A detection scheme learning normal system usage would probably not
give a satisfying rate of accuracy on detection of insider attacks. Hence, it
would be necessary to provide an additional scheme for detection of these
kinds of attacks. A key issue with these kinds of attacks is that the user
accesses areas and functions that he normally does not have access to. In
order to gain this access, he has to probe, stress, and test the system for
weakness points, security gaps, and logical breaches. This would imply that
the user needs to perform actions and use functionality not normally used.
Hence, by looking for probing actions and break-in attacks from the inside,
one could gain additional detections on anomalous behavior.

The masquerader

A masquerader is someone who mimics a legitimate user in order to gain
access to restricted information or functionality. There are two types of mas-
querading techniques used. The first is to get the login information needed to
access the system, and then use this information from some remote location.
The second technique is harder to detect if it is performed successfully. It
is called session hijacking and occurs when the masquerader hijacks another
user’s connection after he has logged in. Hijacking a session from a remote
location has proved to be hard, since sessions often are related to an Inter-
net Protocol (IP) address by the host [GSC06]. Hence, the attacker needs
to receive IP-packets not addressed to himself. Hijack attacks done by Tro-
jans can overcome this problem by being executed on the legitimate user’s

7

1.2. TAXONOMY OF THREATS

computer. This type of attack is defined in the next scenario.

Figure 1.3: The masquerader scenario

A masquerader can be discovered by behavior that differs from that of
the ordinary user, such as logging in at different hours and from different
clients than the regular user. Furthermore, the session time would probably
be different. Since the masquerader already has acquired the user’s login
information, he would probably not make any greater number of failed login
attempts than the user whose identity he assumes. However, a strong indica-
tion of a masquerader being in the system is that some user shows abnormal
behavior, and that this behavior has been preceded by a password-guessing
attack against the user’s account. The method by which an attacker has
obtained the login credentials is not of interests to us, as long as it has not
happened within the system.

Figure 1.3 illustrates an example of the masquerader threat. It shows how
the masquerader uses a legitimate user’s login credentials to access restricted
areas of the system. This access could be used to perform malicious actions
within the legitimate user’s personal area, or elevated further to gain access
to other parts of the system.

The Trojan

A Trojan horse, or just Trojan, is in this context a piece of software that may
appear to perform some actions, while it in fact is performing other hidden
and malicious actions. One of the most common uses of Trojans involves
installing them to open backdoors on regular users’ computers, such that the
attacker can monitor and assume control of their functionality at any given
moment. Here, the threat against Internet banking systems lies.

As shown in figure 1.4, the malicious user can use a Trojan to take over
a legitimate user’s session in the banking system, without any notice from
the user. The figure illustrates how a malicious user can use a Trojan to

8

CHAPTER 1. INTRODUCTION

Figure 1.4: The Trojan scenario

access the banking system. Firstly, the attacker needs to get the legitimate
user to download and run the Trojan software. Then, the Trojan software
opens a backdoor on the legitimate user’s computer that can be used by
the malicious user to access the computer and its functionality. When this
backdoor is installed, the malicious user can monitor the legitimate user’s
actions and wait for the right moment to hijack the control.

Obviously, this is a type of attack that is very hard to detect, due to the
fact that it is a session of a legitimate user that is taken over through the
user’s computer. The obvious place to protect against this type of attack
would be on the user’s computer. Unfortunately, it seems to be little focus
on the security of user’s computers as a threat to Internet banking security.
Many banks recommend security measures for user’s computers, however
these have so far been voluntary [11]. In either case, the existence of this
threat must be acknowledged in order to find methods to detect it.

1.3 Problem definition

When the surrounding threats to the system have been identified, we can
begin to elaborate a problem definition that will be answered by this project.
By looking at this problem definition, in conjunction with the motivation
of the project and the described scenarios, we can define a set of research
questions that need to be answered in order to create a satisfactory solution
to the defined problem.

In this section we state the problem definition that is the motivation for

9

1.3. PROBLEM DEFINITION

this project. Finally, we create our main research questions, which will be
the framework for the proceedings and goals of this project. By answering
these questions we will also provide an answer to the defined problem.

Based on the motivation described in section 1.1, we see that the security
measures for Internet banking system are not satisfactory. We have identified
a general attack and attacker taxonomy, which we have specialized for our
domain by three scenarios in section 1.2.3. These scenarios describe not the
means of an attack, but rather the origin of one. This is important since
different origins would have different properties and behavior. Further, we
wish to use this information to make a contribution to improve the weaknesses
and problems found in the motivation section.

We do not wish to create a new type of security measure which will
replace any existing ones. Rather, we wish to make an addition which can
be added to any system and would join and cooperate with the current
security measures in order to increase the security level in general. By using
the data material available from audit logs, one can create a solution that
does not interfere with the system and security measures, while still having
continuously updated information. This information could then be analyzed
by an automatic processing unit in order to detect malicious behavior and
fraud that has bypassed other security measures.

Such an automatic processing unit can be implemented with the use of a
machine learning method that learns how the system normally behaves. It
could then use its acquired knowledge to detect when strange and abnormal
behavior appears, and alerts the system of this. Based on this we can define
a problem definition of what we wish to accomplish:

Evaluate different audit logs and machine learning methods, in
the context of anomaly intrusion detection, focusing on detection
of fraud and malicious activity, limited by Internet banking ap-
plications, thus resulting in an evaluation of the various methods
and audit logs.

The project will analyze the available audit log data, in combination with
machine learning methods, in order to see which of them contributes more
significantly than others in detection of abnormal behavior. Furthermore,
various sets of properties will be grouped into detection profiles, and their
performance will be evaluated within this domain. The most important eval-
uation criterion is detection rate.

Based on this problem definition, and the attack scenarios, we are able
to identify five basic research questions, which will need answers in order to
fulfill these objectives of this project. The research questions are listed next.

10

CHAPTER 1. INTRODUCTION

RQ1: Does the information contained within audit logs contain enough in-
formation about normal behavior to create a profile defining all types
of normal behavior?

RQ2: Is it possible to detect malicious behavior and fraud based on audit
records from different levels in the system?

RQ3: Will malicious activity and fraud always be classified as abnormal
data?

RQ4: Can malicious behavior be detected by the use of profiles?

1.4 Report outline

This report is organized as follows:

Chapter 2 consists of a study of background material concerning the es-
sential parts of this project. Firstly, a study of the project’s context
is conducted. This includes information such as system overview and
system threat picture. Secondly, we go into the field of fraud detection,
beginning with a state of the art study of fraud detection research.
Finally, we describe the area of machine learning and methodologies
concerning this field. This includes a general introduction, as well as
specific descriptions of the methods used in this project.

Chapter 3 tries to form a scientific basis for this project. It consists of
research questions we wish to answer and a hypothesis we wish to test
by our work. Moreover, we describe a plan for how this project should
progress in order to reach our goals. We then describe the instruments
used to carry out the actual research, including implementation and
testing. Finally, we look at threats to validity that could influence the
project’s results, and means for reducing these threats.

Chapter 4 consists of the designs and configuration done in this project. It
consists of a set of profile suggestions that are design to detect different
kinds of fraud and malicious activity using different kinds of levels of
abstraction. A subset of these profiles is then selected in order to have
a manageable set to work further with. Then we start to prepare the
available data so that it can be used my machine learning methods in an
efficient way. Next, we find settings and configurations for the different
machine learning models used to implement the selected profiles.

11

1.4. REPORT OUTLINE

Chapter 5 consists of the results provided by the different profiles and ma-
chine learning methods. Here, we analyze the results and looks at how
they answer the research questions. We also consider the validity of
the results due to different threats.

Chapter 6 presents our findings and compares them to the background ma-
terial. The hypothesis is tested in order to see how our results could
prove or discard it. We then review the project work, and outline areas
for further research.

12

Chapter 2

Background

Summary

In this chapter we describe the context of this project. The context consists
of two parts. First, it contains a description of the system at hand, in con-
junction with a review of the available data sources. Secondly, it describes
a listing of security threats related to any online system. Next, we look at
the state of the art in research on fraud and anomaly detection, in order to
understand how mature these research areas are. Then, we provide a general
introduction to intrusion detection systems, such that it can be seen how
fraud and anomaly detection fit in a bigger picture. Finally we describe ma-
chine learning methodologies, in which both a general introduction to the
field and a thorough review of different methodologies are given.

14

CHAPTER 2. BACKGROUND

2.1 Context

We have established a cooperation with a large Norwegian bank, which offers
an Internet banking application. They have provided us with insight into the
technologies and methodologies involved in such a system, as well as actual
log data from several layers of their banking application. In addition, we have
collected information on Norwegian Internet banking applications in general.
This section provides an introduction to the context of this project.

2.1.1 System overview

To our understanding, most Norwegian Internet banking applications adhere
to the following superficial description, which is illustrated in figure 2.1. The
user interacts with the banking application by means of a client, in most
cases a Personal Computer (PC). When the user performs defined actions,
the client sends requests to a corporate router, which forwards them to one
of several application servers. These servers then process the requests, and
determine responses to be sent back to the client.

Figure 2.1: Overview of a general system

If the request from the client involves some transaction, a new request is
generated in the application server, and placed in a queue. In batch mode,
this queue is processed, and the requests are sent to a third party’s server
where the transactions are performed. This means that real-time detection of
misplaced or fraudulent transactions is not critical as the transaction requests
are queued for some time before the transactions are carried out.

An overview of the system we will work with is shown in figure 2.2. The
structure is hierarchical with different layers concerned with different levels of
the functionality. The data sources originate from these layers of the system.
This means that data is collected at each layer, but information about the

15

2.1. CONTEXT

Figure 2.2: Overview of the project’s system

activity of a user is separated between the logs. Collecting a complete picture
of a user’s activities would involve tracking the user through the different logs.

2.1.2 Data sources

The data available to this project is log data from the different layers of
the system, as shown in figure 2.2, consisting of access logs from the web
server application, application logs from the underlying application layer,
and transaction logs from the transaction layer. There are also two special
logs for each of these log types. They contain special incidents, where it is
known that malicious activity has occurred. In the following we describe the
properties and contents of the three types of logs.

Web log

The web log collects data about the user at the highest layer of the system.
The basic properties of the web log can be seen in table 2.1. Every interaction
with the system will be recorded in this log. As a result, a huge amount of
data is collected at this layer. The interaction with the system is recorded
by a standard logging scheme which provides structure and consistency of
the instances. Since this log contains the web application’s recordings it is a
collection of HyperText Transfer Protocol (HTTP) requests, see section A.3.
Most notably, it specifies the origin of the request and the requested resource,
but also other information. A more formal review of the instances from this
log is conducted in section 4.3.1.

Application log

The application log contains the recordings from the application layer. The
application layer is where most of the core functionality of the system is lo-

16

CHAPTER 2. BACKGROUND

Table 2.1: Web log properties

Web log

Instances 3.9 · 107

Time frame 120 hours
Number of fields 11
Size 1022 MB
Sessions 225000
On consistent form 100%

cated. It provides a connection between the web interface and the transaction
layer, and it provides a connection between the web log and the transaction
log. Since the application layer contains much varied functionality, the log
inherits this characteristic. It includes many different types of log instances,
and does not follow a uniform format. However, instances of the same type
follow a common format. The basic properties of the application log can be
seen in table 2.2.

Table 2.2: Application log properties

Application log

Instances 2.3 · 107

Time frame 120 hours
Number of fields 6
Size 395 MB
On consistent form 47%

Transaction log

The transaction log is a more specialized log which collects information re-
garding the main functionality of the system, namely movement of an amount
of money from one account to a second. Although this log contains a great
amount of other information besides transactions, we have chosen to call it
transaction log, since we consider this the most important information in it.
Each transaction is recoded along with a set of required fields and a set of
optional fields. It is obvious that the difference between instances is limited,
but variance between attribute values could be large. It is also an important
aspect that the transaction log contains values that are directly provided by
the user, thus the accuracy and values cannot be trusted at the same level as

17

2.1. CONTEXT

values provided by the application. The basic properties of the application
log can be seen in table 2.3.

Table 2.3: Transaction log properties

Transaction log

Instances 3.1 · 107

Time frame 120 hours
Number of fields 18
transactions 529000
Size 1600 MB

Tracking a user between the different logs can be a challenging task. This
is due to the fact that there is no global identifier for a user across the
different logs. Each log usually gives the session, request, or transaction its
own unique identifier. In order to extract a complete set of data for a session,
learning these identifiers, and mapping them together, is necessary. In the
logs, users can be identified by for instance, username, IP address, session
identifier, transaction identifier and thread number.

Figure 2.3: Tracking a single user between logs

Figure 2.3 shows how a user’s interactions with the server are recorded
in different logs, and how these interactions can be tracked across the logs.
This example provides an illustration of the challenging task of tracking a
user’s session across the different logs. A single transaction is identified by
four different identifiers during its course through the logs. The example,
although only being a general example, has the same form and structure as
to how users are identified in the log material we have available.

18

CHAPTER 2. BACKGROUND

2.1.3 Threats

The Web Application Security Consortium: Threat Classification (WASC-
TC) is a cooperative effort to clarify and organize threats to the security of a
web site [Con]. It will be used as a basis for defining the possible aspects of
attacks that have to be considered when creating profiles for normal behavior.
It classifies threats into six different types: authentication, authorization,
client-side attacks, command execution, information disclosure, and logical
attacks. The WASC-TC creates a good foundation for structuring possible
attacks. However, due to the scope of this project, two additional types of
attacks will be added to the list: suspicious activity and fraud. Hence, the
possible types of attacks are:

• Authorization

• Command execution

• Information disclosure

• Logical attacks

• Fraud

• Suspicious activity

The following sections consider each of these attack types; describe them,
their characteristics and behavior, and what level of abstraction they could
be detected on.

Authorization

Authorization considers attacks that threaten the system’s method of de-
termining if a user, service, or application has the necessary permissions to
perform a requested action. For example, a user should in most cases only
be able to view his own credentials and account information, transfer money
only from his own accounts, etc.

Subclasses of authorization attacks consist of credential/session predic-
tion, insufficient authorization, insufficient session expiration, and session
fixation. These can be classified into two groups: hijacking of another user’s
session, and restriction of a user’s access rights. Figure 2.4 shows a basic
example of the authorization threat. An attacker uses false login credentials
to gain access to restricted functionality of the system.

Detection of session hijacking could be done by looking at the client’s IP
address. A sudden change in the client’s IP address could indicate that a

19

2.1. CONTEXT

Figure 2.4: Threat concerning authorization

remote connection has stolen a user’s session identifier and is using it to access
restricted information. However, session hijacking could be done by other
methods too, for example by running malicious software on the legitimate
user’s computer, thereby overtaking the session without the user being aware
of the fact. This type of attack is harder to detect, but it may be done by
looking at indication of robotic activity.

The second group, concerning access rights, is characterized by a user re-
questing abnormal information or services. By creating a baseline for normal
requests for a user, one should be able to detect attempts of illegal access.
This would involve analysis of attributes sent from the client that contains
requests for information or services.

Command execution

Command execution covers attacks designed to execute remote commands
on the system. This type of attack is possible whenever the system utilizes
user provided input to complete requests. If the processing of such input is
done insecurely, the system may be vulnerable to input that alters command
execution. Attacks that fall within this category include buffer overflow, for-
mat string attacks, LDAP injection, OS commanding, SQL injection, SSI
injection, and XPath injection1. Figure 2.5 shows a general example of how
a command execution attack is conducted. The attacker submits input that
includes commands. These commands are executed by a server side applica-
tion, which then manufactures some result.

These attacks could be detected by analyzing the input passed by the user
to the server. However, it is a difficult task to detect such attacks, as the
commands may be hidden within data that are semi-random, such as names,
account numbers, Customer IDs (KIDs), notes, etc., so a direct approach, i.e.
trying to learn all possible values for such attributes would be unsuccessful.

1For further information about these types of attacks, we refer the reader to [PB05]
and [NTGG+05]

20

CHAPTER 2. BACKGROUND

Figure 2.5: Threat concerning command execution

By taking an extra step however, the values could still be used to create a
baseline for normal input.

By looking at the statistical properties of the input it should be possible to
separate linguistic text, such as names and addresses, and semi-random num-
bers, such as account numbers and transaction sums, from malicious input.
The statistical properties could be character distribution, attribute length,
tokens used and attribute presence or absence. These properties have been
proven successful when separating malicious input from valid input [KVR05].

Information disclosure

Information disclosure covers attacks designed to acquire system specific in-
formation, such as location of files, version numbers, backbone-server ad-
dresses, etc. The attacks in this category are directory indexing, information
leakage, path traversal and predictable resource locations. In figure 2.6, an
attacker requesting a file containing restricted information is illustrated.

Figure 2.6: Threat concerning information disclosure

Prevention of information disclosure cannot be handled by analyzing nor-
mal/abnormal behavior alone. Sensitive information could be revealed, for
instance, as comments within HTML code or by server configuration. These
issues are not of interest in this context. The interest lies in the information
disclosed that could be detected by looking at the interaction between the
client and the server.

21

2.1. CONTEXT

There are two places to look for information disclosure attacks: user
requests and server responses. By defining the normal requested attributes
and server responses, abnormal requests for items, attributes or resources
should stand out and be detected. Since this could be due to logical flaws
or configuration errors, it would be a good idea to look not only at the user
requests, as with the other issues, but to also look at the information sent
back to the client. These types of attacks entail the need to look at both
streams of information between client and server.

Logical attacks

Logical attacks cover attacks that abuses or explores the web application’s
logical data flow. Application logic is the expected procedural flow used
in order to perform a certain action. Attacks classified under this category
are abuse of functionality, denial of service, insufficient anti-automation, and
insufficient process validation. Figure 2.7 shows an example in which an
attacker bypasses the login procedure in order to get authorized.

Figure 2.7: Threat concerning logical attacks

In order to detect such attacks one has to look at a higher level of abstrac-
tion in comparison to the previous attack types. One will not be able to find
such an attack without looking at several requests in combination. There are
two levels of abstraction to consider, single user attacks and multiple user
attacks.

Single user logical attacks could be detected by looking at complete ses-
sions. In this way, the normal traversal of pages, and navigation between
them, can be learned, in order to detect when somebody tries to skip a crit-
ical step. Further, other statistics in the session data should be considered,
such as number of request for each service and session time.

Multiple user attacks are coordinated attacks that compromise some part
of the system’s functionality. The most typical type of attack is the dis-
tributed denial of service (DDoS) attack, in which several clients, usually
infected with a Trojan and controlled by remote users, repeatedly request
time consuming services on the system, thereby causing an overload.

22

CHAPTER 2. BACKGROUND

Denial of service attacks are also possible from a single user, but due
to the size of the system at hand, a single user could probably not cause
enough workload. In order to detect DDoS attacks one have to monitor the
complete system for a given time frame. When a norm for the system’s load
and active sessions has been determined, abnormal values can be found that
may indicate that a distributed attack is being performed. Illustrated in
figure 2.8 is a group of attackers conducting a distributed denial of service
attack on the system and overloading its capacity.

Figure 2.8: Threat concerning distributed attacks

Fraud

To classify fraud as an attack category is incorrect. However, it is an area
which needs special attention due to the scope of this project. Fraud detec-
tion can function as a last line of defense if an attack should pass unnoticed
by all other detection mechanisms. Fraud detection considers the transac-
tions performed, and evaluates them with regard to previous transactions
and other information collected about the user.

There is no simple answer as to what separates normal transactions from
fraudulent ones, but there are several existing solutions that address this
problem. By comparing a transaction with a set of learned rules based on
historical transactions and knowledge about fraudulent properties, these so-
lutions are able to detect such events with some degree of success. Figure 2.9
shows an example of a fraud indicative action involving a rare and strange
transaction.

Suspicious activity

Suspicious activity is not an attack category, but a category consisting of
elements that could indicate that a user is preparing an attack or looking for
vulnerabilities. Since the only information available for analysis originates
at the host, there is no way to detect classical network probing. However,

23

2.1. CONTEXT

Figure 2.9: Threat concerning fraud

detection of application probing is just as relevant and indicative of such
activity should be possible to extract from audit records. Figure 2.10 shows
an example of a user probing the application by making an unusual request.

Figure 2.10: Threat concerning suspicious activity

There are several aspects to consider in terms of suspicious activity. The
most relevant level would be a total collection of a user’s activity. If only
individual sessions are considered, it would be easy to evade detection by
doing the probing across several sessions. Looking for probing activity by
combining several users would be extremely complex and not relevant within
this project’s scope. However, we see a collaboration between several users
as a future security issue. Whenever several malicious users are able to
collaborate, there is a risk that they can behave in such a way that detection
systems are taught to judge malicious activity as normal.

Other types of activities that fall under the category of suspicious activ-
ity are indications of automated activity and robotic activity. Several of the
latest attacks have been done by Trojan software on legitimate users’ com-
puters [12]. Some research [PPLC06] indicates that activity done by robots
would differ from human activity, and hence it would be possible to detect
such activity. In an Internet banking system the tolerance for robotic activ-
ity is zero, and any sign of such activity would be a strong indication that
malicious activity is being performed. One of the easiest parameters to test
is the response time to the client, but also other properties such as Cascading
Style Sheets (CSS) loading and mouse detection would give good indications.

24

CHAPTER 2. BACKGROUND

Summary

The previous sections list different threats that have to be considered when
trying to create profiles of normal behavior in order to detect anomalous
events. As is seen, there is no universal profile which will find all types of
attacks. It is necessary to look for different attacks at different levels of
abstraction, from a single request’s attribute values to a total view of all
system activities within a given time frame. Section 4.1 presents a selection
of possible profiles which could be used in order to detect abnormal behavior
at different levels.

2.2 State of the art

The area of fraud detection has been in the spotlight for researchers for several
decades. The research has led to many discoveries and new technologies, and
is still under constant evolution. This section will provide a review of the state
of art in fraud and intrusion detection with special emphasis on research that
also involves unsupervised machine learning and intrusion detection systems.

2.2.1 Fraud detection

The field of fraud detection is concerned with detection of malicious actions
that most likely would result in financial events. The following sections
describe fraud detection in general and intrusion detection systems which can
be used to detect malicious actions trying to achieve fraud. The methods used
for fraud detection also apply for other real world problems, such as computer
intrusion detection [MTV00]. This shows that these problems intertwine and
research from one field is also valid for the other field.

Within fraud detection there seems to be three main research branches,
credit card fraud, insurance fraud and telecommunications fraud. Published
research done on fraud detection within the domain of banking applications
seems to be limited. This is most likely not due to the absence of research, but
rather the privacy, secrecy and commercial interests concerning this specific
domain. However, we find that technology and research concerning fraud
detection is in general of interest to this project and will therefore be studied.
Hence, we find it more important to study which methods have been used
on different types of data sets instead of what type of fraud is detected.

Many researchers have looked at the combination of fraud detection and
machine learning. There are two approaches to machine learning. Super-
vised, in which the classification is known in advance, and unsupervised, in
which it is not. Supervised approaches, trying to learn classification based

25

2.2. STATE OF THE ART

on data from only one class, have been the focus of much research in the last
years. The first approaches to this type of fraud detection were published in
1997 by [Kok] and [AFR97]. [Kok] proposed the use of decision trees with
Boolean logical functions to profile each legitimate user’s behavior in order
to detect deviations from the legitimate norm. Then, the norm for each user
was used to perform cluster analysis to identify each legitimate user’s credit
card transactions. [AFR97], on the other hand, experimented with neural
networks consisting of the same number of input and output neurons. These
networks were used to learn the legal credit card transactions. These two
researches proposed looking at single data instances to detect fraud. This
was taken a step further by [MP99] who looked at profiles at different levels.
They specified profiling schemes for single call, daily, as well as overall levels
of normal behavior for telecommunication accounts. The final profiles were
extracted by a clustering algorithm that found normal behavior across all
accounts. Anomalies were detected by breaches on values for call duration,
destination, and quantity.

[Fin03] implements a novel fraud detection method in five steps: First,
generate rules randomly using an association rules algorithm and increase
diversity by including time. Second, apply rules on known legitimate trans-
action database and discard any rule which matches this data. Third, use
remaining rules to monitor actual system and discard any rule which detects
no anomalies. Fourth, replicate any rule which detects anomalies by adding
tiny random mutations. Fifth, retain the successful rules. This system has
been under testing for internal fraud detection by employees within a retail
transaction processing system.

A different branch of fraud detection uses unsupervised approaches to-
gether with unclassified data. The early attempts of unsupervised fraud
detection were with the use of neural networks. [DC] built an online sys-
tem for fraud detection of credit card operations based on a neural classifier,
without the need for labeled data. To ensure proper model construction, a
nonlinear discriminant analysis was used. The system is fully operational and
currently handles more than 12 million operations per year with very satisfac-
tory results. [BST01] use a recurrent neural network to form short-term and
long-term statistical account behavior profiles. A statistical model is used
to compare the two probability distributions, and give a suspicion rating on
telecommunications toll tickets. [YTWM04] demonstrated the unsupervised
SmartSifter algorithm, which can handle both categorical and continuous
variables, and detect statistical outliers on medical insurance data. The
SmartSifter algorithm uses a neural network to learn the underlying proba-
bilistic model.

[CCCY05] used a multi-layer neural network with exponential trace mem-

26

CHAPTER 2. BACKGROUND

ory to handle temporal dependencies in synthetic Video-on-Demand log data.
[ELBJ03] propose fuzzy neural networks on parallel machines to speed up
rule production for customer-specific credit card fraud detection. [ZY02] pro-
poses support vector machine (SVM) ensembles with aggregation methods
for telecommunications subscription fraud. [KPJ+03] proposes an anomaly
detection scheme using a personalized profile for each credit card, based on
the transaction information from all transactions. This scheme uses support
vector machines in the detection of anomalies and reports satisfactory per-
formance, but suggests negative data collection, i.e. collection of anomalies,
to boost performance and detection rates.

2.2.2 Anomaly detection

Little change and progress has occurred in the field of misuse detection sys-
tems. It seems that the research has been more focused within the area of
anomaly detection. This is most probably because of the potential of a suc-
cessful anomaly detection scheme. Anomaly detection is divided into two
main parts as described in the following section concerning intrusion detec-
tion systems. The two parts are host based and network based, divided by
where the data is collected from. For this state-of-the-art study, we have
chosen to focus on host based anomaly detection systems, with an emphasis
on anomaly detection by machine learning.

A huge amount of various researches have been conducted within anomaly
detection. The amount is still large when we limit the area to only contain
anomaly detection which uses machine learning. The fields studied here
include statistical models and unsupervised learning models.

In [Den87] a number of statistical characterization techniques for events,
variables, and counters were first outlined. It used parameters, such as the
central processing unit (CPU) load and the usage of certain commands, in
order to flag anomalous behaviors. Examples of these early statistical models
are:

• Threshold measures, or operational models [Den87], in which standards,
or heuristically-determined limits, are used to flag anomalous rates of
event occurrences over an interval, e.g. on the number of failed login
attempts.

• Computation of mean and standard deviation of descriptive variables,
in order to compute a confidence interval for "abnormality".

• Computation of covariance and correlation among the different compo-
nents of multivariate measurements on a computer system.

27

2.2. STATE OF THE ART

Another interesting approach is the use of an incidence matrix between
different commands and users, which is searched for statistical lows, rep-
resenting rare commands [TS98]. More complex theoretical work, such as
[YC01], has also followed this purely statistical approach, with some success.
However, some clear limitations have lead to critics to this type of approach,
mainly due to the fact that they do not take into account the sequence of
events, just atomic events.

On the border line of both statistical based and unsupervised learning lies
SVM. Anomaly based systems based on SVM have provided solutions that
proves high accuracy on training data [HLV98]. Extensions to SVM has also
been presented, which should lead to better detection of anomalies. Such an
example is Robust SVMs [LT06] and feature selection SVMs [JY06].

Various unsupervised learning techniques have been used for host based
anomaly detection. Some of the more advanced applications of statistics can
also be defined as learning algorithms. For instance, some uses of Marko-
vian process models can be ranked as such. Among these are clustering
techniques to group similar activities or user patterns and detect anomalous
behavior [Bac00].

The very first approaches dealt with the analysis of sequences of system
calls for system processes. The first mention of the idea is in [FHSL96],
where normal sequences of system calls are considered, without paying at-
tention to the parameters of each invocation. Variants of [FHSL96] have
shown improvements, as proposed in [MZI08] and [CLM01], but the general
idea is still the same. Finite state machines have been used to express the
language of the system calls of a program using deterministic or nondeter-
ministic states [GSS99]. Hidden Markov models have also been used to model
sequences of system calls [OMSH03], with better detection results, but with
computational problems [YD02]. Markov chains have also been used to create
state machines with probability rates for jumps between states [YC01]. This
research has shown satisfactory results with rather simple methods [JW05].

Different kinds of neural networks have also been suggested in [GSS99]
and [RLM98]. However, none of these methods analyzes the arguments of
neither return values nor system call values. This is due to the inherent
complexity of the task, however the arguments contain a wide range of in-
formation that can be useful for intrusion detection. For instance, mimicry
attacks [WS02] can fool the sequence analysis, but it is much harder to devise
ways to cheat both the analysis of sequence and arguments. In [WFP99] a
detailed review of different approaches is presented, along with a compar-
ative evaluation on live datasets. The conclusion is that the performance
issues increase with the size of the data set, and that simpler models would
be preferred when dealing with complete and consistent data sets.

28

CHAPTER 2. BACKGROUND

It seems clear in this study that analysis of parameters and sequences
is under-represented in the research, and would seem like a logical area to
research further.

2.3 Intrusion detection systems

The idea of intrusion detection systems (IDSs) was proposed as early as in
1980 by J.P Anderson [And80]. He defined an intrusion attempt as the poten-
tial possibility of a deliberate unauthorized attempt to access information,
manipulate information, or render a system unreliable or unusable. After
this, the concept of IDSs has undergone much research and development. In
general, one can say that an IDS monitors a system and the interaction with
its users. Each interaction is checked against some rules or norms in order
to verify that it is within the bounds that determines normal interactions.
If an interaction breaches one of these bounds, it is considered an abnormal
interaction, which should be reported. All abnormal interactions are not
necessarily malicious interactions, but it is a strong indication that it could
be.

Figure 2.11: Locations of HIDS and NIDS

IDSs differ in many aspects of their functionality. The ones of most in-
terest are location of information collection (host or network) and means
of intrusion detection (misuse or anomaly). The following sections try to

29

2.3. INTRUSION DETECTION SYSTEMS

describe some key aspects and properties of different IDSs with a final con-
clusion pertaining to the specifications of the IDS considered in this project.

Location

The difference between host IDSs (HIDSs) and network IDSs (NIDSs) is in
where the information originates from. The HIDS looks at information on
a single host, and is limited to only the information that can be traced by
the operation system on the monitored host. The NIDS is connected to the
network of a system and monitors the traffic, trying to detect packages which
could be part of an attack. The different locations of the IDS solutions can
be seen in figure 2.11. There are several advantages and drawbacks for each
of the solutions. Usually, the strength of one is a weakness for the other.

The most prominent strength of NIDSs is that they can be installed and
configured with small to no impact on the rest of the system. However a
vital shortcoming is that NIDSs are unable to analyze and detect attacks
in encrypted traffic. HIDSs, on the other hand, will affect the system they
monitor, but provide the key strength that they can analyze encrypted traffic.

Table 2.4 shows a comparison of advantages and drawbacks between HIDS
and NIDS. Here, one can see how different aspects of intrusion detection
influence the different types. The advantages are or course preferable for
both, but it is the drawbacks and limitations that usually tip the scale.

Table 2.4: Comparison of HIDSs and NIDSs

Host Network

Centralized Distributed
Large impact on system Small to non impact on system
Needs specialization General in nature
Possible bottleneck No influence on system perfor-

mance
Looks at the activity on a sin-
gle host

Looks at communication for
whole system

Can read encrypted data Cannot read encrypted traffic
Can detect attack stages and
success

Can only detect single package
attacks

Detection method

Misuse based detection relies on knowledge of past attacks and the patterns
and attributes of these attacks. The IDS uses this knowledge by analyzing

30

CHAPTER 2. BACKGROUND

packages against a database of known attack indicators, referred to as signa-
tures. This approach has been widely used by anti-virus software to detect
malicious applications. The problem with this approach is that the detec-
tion engine is only able to detect known attacks, making it vulnerable for
unknown and new approaches and methods of attacks.

Anomaly based IDSs look for behavior that deviates from what is defined
as normal behavior. The underlying assumption is that malicious behavior
deviates from normal behavior. An attractive property of these IDSs is their
ability to detect previously unknown attacks.

Such systems operate in one of two phases, a training phase and a de-
tection phase. During the training phase, normal behavior is established
through processing and analyzing a data set. This set might be an applica-
tion’s log file, or data passed from an application to the IDS through defined
interfaces.

In the detection phase, the data is analyzed to see if the events that occur
are normal, in terms of a model created during training. If the new event
differs from this model, by some metric measure by more than a defined
threshold, the event is considered abnormal, and might represent a malicious
action. Several approaches have been made to define normal behavior from
the training data, such as decision trees, neural nets, and various statistical
models. When deciding the threshold value2, there is an essential trade-
off involved, namely the trade-off between false positives and true positives.
Whereas true positives denote abnormal events classified correctly by the
IDS, false positives are harmless events mistakenly classified as malicious.

Table 2.5 shows the advantages and drawbacks between anomaly and mis-
use detection. Usually, an advantage of one detection scheme is a drawback
of the other. This makes the separation between them clear and understand-
able.

Table 2.5: Comparison of anomaly and misuse detection

Anomaly detection Misuse detection

Do not require updates Require continuous updates
Long and complex training No initial training
Tuning included in training Need tuning
Can detect new attacks Cannot detect new attacks
Vague alerts Precise alerts
High false positive rate Low false positive rate
Difficult to design Easier to design

2The threshold defines the numerical border between normal and abnormal values.

31

2.3. INTRUSION DETECTION SYSTEMS

Issues with intrusion detection

Generally speaking, there are some recurring issues that seem to trouble
all types of IDSs. These are problems not directly concerned with the way
intrusions are detected, but rather the IDSs’ architecture, integration with
existing systems, quality of service, and actions. In the following there is
presented a description of six issues that concern IDSs in general, and which
needs to be kept in mind when constructing one.

Comprehensiveness of model: This issue is concerned with how often the
model is updated against new attacks and behavior. This is relevant for
both misuse and anomaly detection, but would concern different data
for each. For misuse detection it is important to update the model
against new attacks as they are discovered. For anomaly detection
the model must be updated whenever user behavior changes due to
structural or functional updates to the monitored system. In general, it
can be said that it is very important to keep the model as comprehensive
as possible.

Zero-day attack recognition: This is clearly an issue concerning misuse
detection. IDSs are intended as a complementary security measure
which can detect failures of other mechanisms. The limitation of not
being able to detect unknown attacks would seem unacceptable. Hence,
one can state that a misuse detection scheme would not be able to pro-
vide the functionality of an IDS alone. This brings the anomaly detec-
tion scheme into focus with its strengths and weaknesses as stated in
the previous section. One can ultimately state that in order to provide
the proper functionality of an IDS, all the strengths of both misuse and
anomaly detection are needed, while limiting the weaknesses.

Intrinsic security and survivability: This is an important issue. The
security of the IDS itself also needs to be considered. All security
mechanisms are of interest to attackers, since a successful attack on
one of them could halt security. Therefore it is important that the IDS
does not become a security threat itself. Second, it is important for
it to provide as good performance as possible, even during an attack.
This is called survivability and is concerned with the consequences of
a direct attack against the IDS.

Flexibility and usability issues: This issue is concerned with how per-
sonnel interact with the IDS and how the IDS is made to adapt to the
monitored system. Clearly, a security mechanism is not any stronger

32

CHAPTER 2. BACKGROUND

than its weakest link, and hence, it is always important to provide
proper education on the usage of an IDS to the security personnel.
The IDS should also be as easy and intuitive as possible, providing a
high level of usability. The most important part of this is to make the
personnel knowledgeable of the types of alerts and security procedures
related to each alert. It is also important to make the IDS flexible in
the way in which it adapts to the system. This is a problem mostly
concerning misuse detection since attack patterns are usually applica-
tion specific, while anomaly detection uses the available data to create
its models.

Scalability and throughput: In the evolving systems of today it is impor-
tant to keep performance issues, such as scalability and throughput, in
mind when constructions IDSs. It seems inevitable that data quantity
and speed are ever increasing, hence it is important to monitor this
such that the IDS does not become a performance bottleneck for the
system in general.

Reactivity and intrusion prevention: This is probably the most impor-
tant issue with IDSs since it concerns the goal of their existence. There
are several issues regarding how the IDS should react to a detected in-
trusion. Reactivity deals with what to actually do, which is most often
divided between active and passive reaction. The most relevant issues
concern the active reactions. Firstly is the threat of denial of service
due to false positives in the IDS. If an active IDS falsely detects an in-
trusion, it could lead to a denial of a legal service request. This would
seem inevitable as long as IDSs produce false positives. The second
issue is how one would integrate a prevention mechanism. Placing it at
a key network point would seem like a good and easy choice, but would
leave the system vulnerable for local attacks. Placing it on each host
would prevent this, but would lead to a much larger and more complex
integration.

As seen in the previous points there are several issues which concerns
IDSs in general. Some of these points will most likely always be a part
of IDSs, while others might be avoided as IDSs evolve. However, the list
provides important issues which need to be kept in mind when designing and
implementing an IDS with the technology available today.

33

2.4. MACHINE LEARNING METHODOLOGIES

2.4 Machine learning methodologies

An understanding of the basic principles of machine learning is needed before
concrete methods can be studies. Hence, the following section introduces the
field of machine learning. After this introduction we describe the actual
machine learning methods used by this project to detect fraud.

2.4.1 General machine learning

Machine learning is the branch of artificial intelligence that examines how ma-
chines can mimic the humans’ intelligent ability to learn. The term machine
learning can in this context be defined as whenever a machine changes its
model, data, or relations in such a way that its expected future performance
improves, based on received inputs. This can be done either by supervised or
unsupervised learning. If the output from the model is in a discrete form, it
is called a classification problem. Otherwise, it is a regression problem. The
interest lies not in managing to remember the examples used during learning,
but using them to predict answers for cases not yet observed. The following
sections contain information on the key aspects of learning algorithms used
by anomaly IDSs.

Machine learning approaches has a clear division based on the type of
data they use, this division is between supervised and unsupervised learning.
The division is based on what type of information is available in the data
set. If we know the classification associated with each data item, the task
would be to create a model that learns this mapping. This is the supervised
case. On the other hand, if we have no idea of the classification of items in
the data set, a model has to be built that classifies the instances based on
properties in the data. This problem is often referred to as clustering, and is
primarily what unsupervised learning is concerned with.

Training

The goal of supervised learning is to create a function based on the training
data. The training data consists of pairs of input objects together with its
desired output. The output of the function can be a continuous value or
can predict a class label of the input object. In the case of a continuous
output value the learned function is called a regression function, and in the
discrete case it is called a classification function. The task of the supervised
learner is to predict the value of the function for any valid input object after
having seen a number of training examples. To achieve this, the learner

34

CHAPTER 2. BACKGROUND

has to generalize the presented data such that it can predict new unforeseen
situations in a reasonable way.

The unsupervised learning method simply receives inputs, but does not
obtain supervised target outputs, nor any other feedback based on its predic-
tions. Since the unsupervised approach does not have the same data material
as the supervised, it is clear that it does not have the foundation to make
the same types of predictions. However, it is possible to develop a formal
framework for unsupervised learning based on the notion that the machine’s
goal is to build representations of the input that can be used for decision
making, predicting future inputs, efficiently communicating the inputs to
another machine, etc. In a sense, unsupervised learning can be thought of
as finding patterns in the data above and beyond what would be considered
pure unstructured noise.

Figure 2.12: Supervised and unsupervised machine learning

Figure 2.12 visualizes the difference between supervised and unsupervised
learning. For the supervised case, there exists a predefined classification of
the input instances, and this classification is learned by the function F (x).
For the unsupervised case, no predefined information about classes or clas-
sification is available for the input instances, and the function F (x) learns
both the number of classes and classification of instances into these classes.

Measurements

The performance of different machine learning methodologies can be mea-
sured by many different means, all of which have different usage. In this

35

2.4. MACHINE LEARNING METHODOLOGIES

project we have decided to use the mapping between actual values and pre-
dicted outcome as a measurement basis. Based on this measurement we
are also able to use the receiver operation characteristics (ROC) curve to
evaluate the performance of our models [WBB08]. First, we describe the
general theory behind actual and predicted values, before the ROC curve is
explained.

Figure 2.13 shows a matrix that describes the relationship between the
predicted outcome and the actual value. This is a simple one-class case
where an instance is either classified, p′, or not classified, n′, and the actual
value is either within the class, p, or outside, n. For each instance that is
classified by a model, the outcome will lie within one of the four categories
shown in the figure. In order to use this figure, knowledge about the actual
value of the instances is needed, thus this method would seem inapplicable for
unsupervised learning methods. However, this can be bypassed by evaluating
the model on fabricated or modified data that contains classification labels.

Actual value
p n

True False

Predicted
p′

positive positive

outcome False True
n′

negative negative

Figure 2.13: Mapping between actual values and predicted outcome

First, we look at the types of outcomes a learning algorithm can pro-
duce [All01]. Figure 2.13 shows that there are two correct outcomes and two
false outcomes. First, the algorithm can classify an instance that is actually
part of the class, a true positive. Second, the algorithm cannot classify an
instance which is not part of the class, and hence produce a true negative.
Then there are two types of false outcome that could be experienced. The
first is when the algorithm classifies an instance which is not actually part of
the class. This is called a false positive. In an anomaly detection scheme this
would result in an anomaly instance being classified as normal. The second
type of false outcome is when an instance, which actually is part of the class,
is not classified by the algorithm. This is referred to as a false negative. This
would be a normal instance being classified as an abnormal one. Clearly,
models that have a high rate of true positives and true negatives are desir-
able, and as small rate as possible of false positives and false negatives. It is
also important that one of the erroneous outcomes are preferred, compared

36

CHAPTER 2. BACKGROUND

to the other. Clearly, it is better to classify a normal instance as malicious,
then to classify a malicious instance as normal.

The ROC-curve is a graphical representation of the sensibility of a clas-
sifier as the detection threshold varies. The ROC can be represented by a
graph, plotting the number of true positives and false positives for different
levels of detection rate. The usual characteristics for a learning algorithm is
that in order to gain a true positive rate close to 100 percent, the detection
rates in general have to be increased, which leads to a higher false positive
rate as well. The purpose of a ROC curve is hence twofold. First, it gives
a visualization of the performance of different learning algorithms, and sec-
ondly, it gives a visualization of the trade-off between true positives and false
positives.

Figure 2.14: ROC-curve

Figure 2.14 shows an example of a ROC-curve. Here, the true positive
rate is mapped along the y axis, and the false positive rate along the x axis.
The different approaches experience varying levels of true positive rate as the
false positive rate increases. Obviously, one would want the graph to give an
as high true positive rate compared to the false positive rate as possible. In
this example, there is however no obvious choice.

Feature selection

Feature selection is the technique, commonly used in machine learning, for
selecting a subset of relevant features when building learning models [ZS04].

37

2.4. MACHINE LEARNING METHODOLOGIES

By removing the most irrelevant and redundant features from the data, fea-
ture selection can help to improve the performance of learning models by:

• Alleviating the complexity of increasing dimensionality.

• Enhancing generalization capability.

• Speeding up learning process.

• Improving model interpretability.

Feature selection is an important step for any learning application. The
importance of correctly choosing features for machine learning problems has
been widely discussed in the literature [GE03].

Feature subset selection (FSS) for multivariate time series is a well stud-
ied process. Unsupervised FSS techniques usually compute the similarity
between features and remove redundancies in order to reduce the number of
features. Usually, this is accomplished through partitioning or clustering the
original feature set into partitions, each of which will be represented by a
single representative feature to form the reduced subset.

However, no reliable method exists which takes into account categorical
variables. Therefore, we resorted to a much simpler approach, testing differ-
ent combinations of the variables. The provenance of the data used by this
project would provide us with enough information to use common sense to
remove redundant and useless features.

One class classification

The problem in one class classification is to make a description of a target set
of objects and to detect which new objects resemble this set. The difference
compared to conventional classification is that in one class classification, only
examples of one class are available [MY01]. The objects from this class are
called target objects. All other objects are per definition anomaly objects.

Obviously, the first application for one class classification is anomaly de-
tection, detecting uncharacteristic objects from a dataset, examples which do
not resemble the bulk of the dataset in some way [MY00]. In general, trained
classifiers only provide reliable estimates for input objects resembling the
training set. Estimates for unknown and remote regions in the feature space
are very uncertain, hence we conclude in that target objects are classified
correctly and anomaly objects are not classified as target objects [RP96].

Secondly, one class classification can be used for classification problems
where one of the classes is sampled very well, while the other class is under-
sampled. For instance, possible false values from a machine would be such an

38

CHAPTER 2. BACKGROUND

under-sampled set of values. Measurements of the normal working conditions
of a machine are well represented and easy to obtain. On the other hand,
measurements of false values would require the destruction of the machine
in all possible ways. It is very expensive, if not impossible, to generate all
faulty situations [Jap99]. Only a method trained on just the target data can
solve the problem of monitoring the values of such a machine.

Figure 2.15 shows a general example of the one class classification prob-
lem. We see that we have a clear cluster of target objects located in the
middle of the graph. These target objects have been classified by a bound-
ary shown by the black line surrounding the objects. Outside this boundary
there are some anomaly objects, which clearly fall outside the defined bound-
ary, and hence are not classified as target objects.

Figure 2.15: One class classification problem

2.4.2 Support vector machines

Support vector machines (SVMs) are a technique used for data classification.
It originates from the work done on statistical learning theory by Vapnik and
Chervonenkis, published 1974 [NC74], and was first proposed at a conference
by Vapnik in 1992 [BGV92]. SVMs try to obtain the optimal boundary be-
tween two classes within a vector space, independently of the distribution
of training vectors of each class. The foundation of this technique is quite
simple: locate the boundary with is the most distant from the vectors closest
to the boundary of both classes. The basic idea was for the boundary to
be linear, but new research has introduced kernel functions, which can lo-
cate non-linear boundaries as well [CWHL]. The following sections describe

39

2.4. MACHINE LEARNING METHODOLOGIES

the basic theory behind the original SVM, followed by a description of the
extension of kernel methods.

The simplest form of SVM is a linear SVM used on data which is actually
separable [Bur98]. Figure 2.16 gives an idea of the workings of a SVM. In
the figure, there is shown two types of data, blue and red dots, which can
be separated by a linear border. The figure also shows three different border
proposals. H3 is clearly a wrong proposal, since it is unable to separate the
two data types. On the other hand, H1 and H2 manage to separate the
data. SVMs try to find the separation that provides the largest possible
distance between the border and the data item closest to the border. Here,
the distance between the border and the item closest to it is small for H1,
but maximized for H2. So the result of a SVM classification on the example
shown in the figure would be H2.

Figure 2.16: SVM two class classification problem

The following is a more formalized description of the theories behind
SVM. Suppose we have a set of training data, consisting of n data vectors,
~v1, ~v2, . . . , ~vn, and their associated truth values, y1, y2, . . . , yn:

(~v1, y1), (~v2, y2), . . . , (~vn, yn)

The vector ~v consists of the data point values in a p-dimensional space,
while the truth value y denotes the class of the data points. Now we assume
that the training set contains a sufficient distribution such that the bound-

40

CHAPTER 2. BACKGROUND

aries of the classes could be learned by a separating hyperplane3 We want
to find a classification function, f(~v), which takes as its input a vector, and
correctly assigns a truth value to it as shown in equation 2.1.

y = f(~v) (2.1)

The performance of the classifier is measured by a simple error function
shown in equation 2.2.

E(y, f(~v)) =

{

0 y = f(~v)

1 otherwise.
(2.2)

Further, we suppose that there are several classification functions that
solve the task, and that these can be written as a function, f , with config-
uration parameter, p, denoted f(~v, p). Using this, a risk estimate, R(p), of
each configuration can be defined, as shown in equation 2.3.

R(p) =
1

n
E(y, f(~v, p)) (2.3)

These equations form the basic foundation for the work on SVM described
in the following.

Basic linear support vector machine

Next we assume a two class data set which can be separated by oriented
hyperplanes. The classification function from the previous section would
then take the form of a hyperplane, as shown in equation 2.4

f(~v, p) = ~w · ~v + b = 0 (2.4)

The normal vector, ~w, points orthographically4 to the hyperplane sepa-
rating the two classes and b is the bias term. The orthographical distance of
the hyperplane to the origin is calculated by the offset parameter, b, divided
by the length of ~w. The hyperplane can be seen in figure 2.17, illustrating the
normal vector, ~w, normalized onto the hyperplane, and the bias parameter,
b, showing the offset from the axes.

3A hyperplane is an (n − 1)-dimensional subspace of an n-dimensional vector space.
4Orthographic projection is a projection which is made by drawing lines from every

point to be projected, perpendicular to the plane of projection.

41

2.4. MACHINE LEARNING METHODOLOGIES

Figure 2.17: Support vectors creating the classification function

42

CHAPTER 2. BACKGROUND

As mentioned before, the basic idea is to find a good separation by finding
the boundary with the largest distance from the neighbors of both classes.
This is because one wants to find a boundary with the best possible separation
between the two classes. This follows logically from the risk estimate, where a
large margin would result in a low risk. This solution is called the maximum
margin solution and is described as the mean of two parallel hyperplanes,
each passing through at least one vector of its representative class. These
vectors are called support vectors and are described by equations 2.5 and 2.6.

~w · ~v − b = 1 (2.5)

~w · ~v − b = −1 (2.6)

The values 1 and −1 are the usual representations of the truth value, y,
where 1 equals one class and −1 equals the other class. The two hyperplanes
are selected by two criteria: there are no data points between the hyperplanes,
and the distance 2

|~w|
is maximized. This can be put together further to obtain

equation 2.7.
yi(~vi · ~w + b) − 1 ≤ 0 ∀i (2.7)

This maximization problem should be optimized to find the largest pos-
sible distance between the support vectors, 2

|~w|
, hence minimizing the value

of |~w|. This distance can be seen in figure 2.17, as the distance between
the two support vectors. The optimization problem is solved by using a La-
grange formulation5. The mathematical foundation and description of such
a transformation is outside the scope of this project, interested readers are
recommended to read [SPST+01] for a thorough review. After the transfor-
mation of the Lagrange formulation, the problem looks as in equation 2.8.

Max
∑

p −
1

2

∑

pipjyiyj(~vi · ~vj) ∀i, pi > 0,
∑

piyi = 0 (2.8)

Solving equation 2.8 provides values for all p, b is found using equation 2.7
and ~w is calculated using equation 2.9.

~w =
∑

piyi~vi (2.9)

5The Lagrange formulation provides a way to solve functions aiming to maximize or
minimize a given cost function. It is widely used to solve optimization problems.

43

2.4. MACHINE LEARNING METHODOLOGIES

Non-linear SVM using the kernel method

So far, the SVM classifier can only have a linear hyperplane as its deci-
sion surface. This formulation can be further extended to build a non-linear
SVM. The motivation for this extension is that a SVM with non-linear de-
cision surface can only classify non-linearly separable data. This is done by
transforming data into a higher dimension, where it is separable, by a trans-
formation function, ~v → Φ(~v). This is the basis for the kernel method which
aims to transform the data to a higher dimensional space, where it is linearly
separable. Figure 2.18 shows an example of how data can be transformed
into a higher dimensional space.

Figure 2.18: Illustration of how higher dimension transformation eases the classi-

fication task

Let F be a function we wish to transform to a higher dimensional space.
The kernel function, K(~vi, ~vj), is introduced and combined with equation 2.4.
The kernel function always satisfies the condition shown in equation 2.10.

K(~vi, ~vj) = Φ(~vi) · Φ(~vj) (2.10)

The above equation indicates that the kernel function is equivalent to the
distance between ~vi and ~vj measured in the higher dimensional space. If we
measure the margin by the kernel function and perform the optimization, a
non-linear boundary is obtained [Gun98]. The boundary in the transformed
space is obtained by equation 2.11.

~wΦ(~v) + b = 0 (2.11)

44

CHAPTER 2. BACKGROUND

The kernel function can have several different forms with different prop-
erties. This project uses the Gaussian Radial Basis Function (RBF) kernel,
which has the form shown in equation 2.12. γ is a variable that defines the
boundary in the transformed space.

K(~vi, ~vj) = exp(
−|~vi − ~vj|

2

2
γ2) (2.12)

One class SVM

One class SVM is a special case of SVM classification. It originates from the
theoretical work done by Scholkopf and Smola [SSWB00] and [SPST+01].
Supposing there is a dataset, drawn from an underlying probability distri-
bution, P , an estimation of a simple subset, S, of the input space is needed,
such that the probability of a test point from P lying outside S is bounded by
some a priori specified ν ∈ (0, 1). The solution for this problem is obtained
by estimating a function, f , which is positive on S and negative on ¬S. In
other words, Scholkopf et al. developed an algorithm which returns a func-
tion f that takes the value +1 in a small region, capturing most of the data
vectors, and −1 elsewhere. A basic example of one class SVM classification
with the use of a RBF kernel can be seen in figure 2.19.

To separate the training set from the origin, one needs to solve the
quadratic equation described in equation 2.13 [GD03] and [HSKS].

min
~w∈F,ξ∈Rl,p∈R

1

2
|~w|2 +

1

νl

∑

i=1

ξi − p, (~w · Φ ~(vi)) ≥ p − ξi ξi ≥ 0 (2.13)

ν is an upper bound on the fraction of anomalies, that is, training points
outside the estimated region. l denote l-dimensional vectors whose compo-
nents are labeled using a normal typeface. ξi describes the slack from the
item ~vi to the detection threshold. If ~w and p solve this equation, then the
decision function shown in equation 2.15 will be positive for most ~v contained

45

2.4. MACHINE LEARNING METHODOLOGIES

w

v i

Figure 2.19: Example of one class classification problem solved using RBF kernel

in the training set6.

f(~v) = sgn(~wΦ(~v) − p) (2.15)

2.4.3 Artificial neural networks

An artificial neural network (ANN) is a computational model based on the
biological neural networks. They can be understood as weighted directed
graphs, consisting of neurons (nodes), synapses (edges), and a set of weights.
When presented with input, they produce some output value. During train-
ing, the output value produced by a given input can be influenced.

An ANN can be organized in different ways. As with other machine learn-
ing methodologies, they can be both supervised, and unsupervised. Since we

6The sgn-function returns an integer indicating the sign of the number as follows:

sgn(x) =

x < 0 = −1

x = 0 = 0

x > 0 = 1

(2.14)

46

CHAPTER 2. BACKGROUND

do not have the material to employ supervised learning, the ANNs consid-
ered here are unsupervised Unsupervised neural networks are two-layered,
which means that they only consist of a set of input neurons and a set of
output neurons. The input neurons are connected to the output neurons
by synapses. Each synapse is directed from the input neuron to the output
neuron, and has a weight associated to it. As such, each output neuron can
be said to have a weight vector, and the network as a whole a weight matrix.
An example two-layered neural net, with three input nodes and four output
nodes, is illustrated in figure 2.20. Its corresponding weight matrix is shown
in table 2.6. If we consider the rows, we can say that output node O1 has
weight vector ~W1 = [w1, w2, w3], O2 has weight vector ~W2 = [w4, w5, w6], and
so on.

Figure 2.20: Two-layered neural network

The input to such an ANN is a vector, i.e. one value for each input neuron.
Based on the weights of the synapses, one output neuron is calculated to be
the winner, also called the best matching unit (BMU). This is the output
neuron with a weight vector closest to the input vector. The index of the
winning neuron is the output from an unsupervised ANN.

Before ANNs can produce meaningful output, they must be trained. The
way this is performed varies between different types. In the case of unsuper-
vised networks, it involves feeding data from a training set to the network,

47

2.4. MACHINE LEARNING METHODOLOGIES

Table 2.6: Weight matrix for a neural net

I1 I2 I3

O1 w1 w2 w3

O2 w4 w5 w6

O3 w7 w8 w9

O4 w10 w11 w12

and adjusting the weight vectors. When the network is trained, the weight
vectors represent a set of reference vectors with regards to the particular data
set.

The trained network is then used to classify input vectors as belonging
to one of the output neurons.

Learning vector quantizer

Learning vector quantizer (LVQ) [KHK+96] is one of the most frequently used
unsupervised clustering algorithms. There exist several versions of LVQ. We
consider the unsupervised version, LVQ-I.

LVQ-I aims to construct clusters of similar input vectors. Similarity is
often measured in terms of the Euclidean distance. Figure 2.21 provides a
scatterplot visualization of an example output from a LVQ-I with two input
nodes and three output nodes. In the figure, the input values to the input
nodes are mapped along the horizontal and vertical axes. In that way, the
black squares represent input vectors, and the circles represent the weight
vectors of the output neurons. The blue line starts at the last input vector
and ends at the BMU for that vector.

In our context, this can be used to construct clusters of normal values.
There can be several clusters of normal values, each defining a target cluster.
Any input not within some threshold from the learned clusters are anomalies.

Training

The training phase of a LVQ-I consists of six steps:

1. Initialize weights

2. Feed the network with a vector from the training set

3. Find the BMU

4. Find the radius of the neighborhood of the BMU

48

CHAPTER 2. BACKGROUND

Figure 2.21: Output from a LVQ-I

5. Adjust the weight of each node in the neighborhood.

6. Repeat the procedure from step 2

These steps will be described next. The training algorithm for LVQ-I
does not specify the functions that should be used. The functions in the
following discussion are from [13], [KHK+96] and [Eng07].

1. Initialize weights Before training begins the weights of the connections
between the neurons are initialized. This is done either by setting the
weights equal to the first input vector, by randomizing the weights, or
setting the weights to a predefined value. The outcome of the training
phase is often influenced by this choice, so it may be a good idea to try
several methods.

2. Feed the network with a vector from the training set During
training, an input vector is chosen from the training set and presented
to the network. The vectors can be picked randomly, sequentially, or
by other methods. To make the trained model more general, randomly
choosing the input vectors may be a good idea.

3. Find the BMU Based on the current weights on the connections, find
the best matching unit, i.e. the neuron with the weight vector that is

49

2.4. MACHINE LEARNING METHODOLOGIES

most similar to the input vector. The measure of similarity may be any
function, but the Euclidean distance is often employed. For an input
vector, ~V = [v1, v2, . . . , vn], and a weight vector, ~W = [w1, w2, . . . , wn],
the Euclidean distance, dE, is calculated as in equation 2.16.

dE(~V , ~W) =

√

√

√

√

n
∑

i=1

(vi − wi)2 (2.16)

4. Find the radius of the neighborhood of the BMU In addition to
updating the weight vector of the BMU, the weight vectors of the
neurons in the neighborhood of the BMU is often altered, although
this is not specified in [KHK+96]. The function used to calculate the
neighboring neurons may be chosen freely. It is often preferable to
use a decaying function. In that instance, when training starts, all
neurons may be in the neighborhood of every other neuron. As train-
ing progresses, the neighborhood is decreased, so that in the end, the
neighborhood is only a small subset of the neurons. The radius, σ, as a
function of time, t, of the neighborhood of the BMU can be calculated
by the exponential decay function shown in equation 2.17 [13].

σ(t) = σ0ǫ
(− t

λ
) t = 1, 2, 3, . . . (2.17)

σ0 denotes the radius of the neighborhood at time t0, i.e. when train-
ing starts, and the time, t, is the current iteration of the loop. λ is
dependent on σ0 and the number of iterations chosen for the algorithm
to run, N , as shown by equation 2.18.

λ = N/ log σ0 (2.18)

When the radius of the neighborhood is determined, the neurons which
lie within can be found by Pythagoras’ equation.

5. Adjust the weight of each node in the neighborhood The neu-
rons within the neighborhood of the BMU gets their weight vectors
updated proportionally to their distance from the BMU. A suitable

50

CHAPTER 2. BACKGROUND

function to calculate the weight vector, ~W , for time t + 1, given the
weight vector at time t, ~W (t), may be as in equation 2.19.

~W (t + 1) = ~W (t) + Θ(t)L(t)(~V (t) − ~W (t)) t = 1, 2, 3, . . . (2.19)

in which t represents the time step, ~V is the input vector, and L is the
learning rate.

The purpose of Θ is to make the adjustments of the weight vectors
proportional to the distances of the neuron from the BMU. A possible
function for Θ is described in equation 2.20.

Θ(t) = ǫ
− d

2

2σ2(t) t = 1, 2, 3, . . . (2.20)

in which d is a node’s distance from the BMU.

Also, it is usually beneficial that the learning rate, L, decreases as a
function of the time, e.g. by equation 2.21.

L(t) = L0ǫ
− t

λ t = 1, 2, 3, . . . (2.21)

6. Repeat the procedure from step 2 At this step, one of three choices
are made. If the network is not yet sufficiently trained, the process is
repeated from step two. If it is, the training phase can be said to have
completed a cycle. If more cycles are to be performed, training starts
over from step one. If not, the training is completed. Several criteria
can be used to determine if a training cycle is finished. Training may be
terminated when a certain number of vectors are given to the network,
when the adjustments to the weight vectors for each input vector are
below some threshold, or when the quantization error is small enough.
The quantization error, Q, is defined in equation 2.22 [Eng07].

Q(t) =

∑t

i=1 ||
~V (i) − ~W (t)||22

t
(2.22)

in which, t again is the current time step, ~V (i) is the input vector at

time i and ~W (t) is the weight vector of the BMU at time t.

51

2.4. MACHINE LEARNING METHODOLOGIES

2.4.4 Markov chains

A Markov chain is a statistical model first applied by Andrey Markov in
1906 [14]. Markov chains model processes inhibiting the Markov property,
which indicates that given the present state, future states are independent
of past states.

A Markov chain is described by a set of states and probabilities for chang-
ing from one state to another. The changes of state are called transitions,
and the probabilities associated with the various transitions are referred to as
transition probabilities. It may be described by a weighted, directed graph,
in which the nodes and weights respectively represent the states and tran-
sition probabilities. Commonly, the transition probabilities are represented
in a matrix, referred to as a transition matrix. A simple Markov chain is
illustrated in figure 2.22. The arrows are labeled with their respective tran-
sition probability. If in state 1, the probability for moving to state 2 in the
next transition is 1. When in state 2, the probability for moving to state 3
is also 1. However, when in state 3, there are two possible transitions. The
probability for moving to the states 1 and 2 are 1

3
and 2

3
, respectively. Its

corresponding transition matrix can be found in table 2.7. The rows repre-
sent the current state and the transition probability for moving to the other
states can be found in the corresponding column.

Figure 2.22: Markov chain

Mathematically, for a stochastic process, X(t), the Markov property is

52

CHAPTER 2. BACKGROUND

Table 2.7: Transition matrix

1 2 3

1 0 1 0
2 0 0 1
3 1/3 2/3 0

described in equation 2.23.

P (X(tn+1) = xn+1|X(tn) = xn, . . . , X(t1) = x1) =
P (X(tn+1) = xn+1|X(tn) = xn)

(2.23)

for a given sequence of time points t1 < t2 · · · < tn < tn+1 [15].
A stochastic process inhibiting the Markov property is called a Markov

process, and a Markov process in which the state space is discrete is often
referred to as a Markov chain.

Many systems can be modeled by Markov chains, even if they initially do
not appear to exhibit the Markov property. Even if a process’ dependence on
previous states does not satisfy the Markov property, it may depend only on
a finite memory of past states. By considering state spaces, instead of single
states, the process can be considered Markovian [MT93]. For a process which
depends on its last m states, equation 2.23 becomes equation 2.24.

P (X(tn+1) = xn+1|X(tn) = xn, . . . , X(t1) = x1) =
P (X(tn+1) = xn+1|X(tn) = xn, . . . , X(tn−(m−1)) = xn−(m−1))

(2.24)

A Markov chain of order m, thus, considers the m past states in the
probability for future states. If m = 1, it is a regular Markov chain.

Markov chains are widely used within pattern recognition and time se-
ries analysis. In our context, they can be used to monitor user behavior.
By building a transition matrix from the various requests issued by users,
abnormal request sequences can be discovered and flagged as abnormal.

53

2.4. MACHINE LEARNING METHODOLOGIES

54

Chapter 3

Method

Summary

This chapter provides a foundation for further work of this project. First,
we elaborate on the main research questions in order to decompose them
into smaller and more manageable sub questions. The later work will be
guided by the need to answer these questions. The contents of these research
questions are united into a hypothesis, which will be tested based on the
answers of the research questions and the results of this project. After this,
we describe the remaining operations that need to be carried out in order
to finalize this project and furnish the desired results. Finally, we conduct a
thorough analysis of threats to the validity of the results to this project.

56

CHAPTER 3. METHOD

3.1 Research questions

In the following we will describe the research questions we wish to test in this
project. A research question is a statement that identifies the phenomenon to
be studied. We have chosen to list our research questions here as it provides
a way to identify the areas we wish to research. It also groups the work
that has to be done into main topics, with a decomposition of some of them
into sub-questions. This provides a better structure and overview of the
problem area, and makes the structuring of the research easier. The research
questions are numerated for the sake of reference, not in order of importance.
However, sub-questions are considered less important since they are divisions
of the main question.

RQ 1: Does the information contained within audit logs contain enough
information about normal behavior to create a profile defining all types
of normal behavior?

RQ 1.1: Does the audit logs collect enough information about the
user’s interaction with the system to enable detection of fraud?

RQ 1.2: Is it possible to separate normal and abnormal behavior in
audit logs based on SVMs?

RQ 1.3: Is it possible to separate normal and abnormal behavior in
audit logs based on ANNs?

RQ 1.4: Is it possible to separate normal and abnormal behavior in
audit logs based on Markov chains?

RQ 2: Is it possible to detect malicious behavior and fraud based on audit
records from different levels in the system?

RQ 2.1: Is it possible to detect malicious behavior and fraud based
on transaction logs?

RQ 2.1.1: Can research question 2.1 be answered by the use of
SVMs?

RQ 2.1.2: Can research question 2.1 be answered by the use of
ANNs?

RQ 2.1.3: Can research question 2.1 be answered by the use of
Markov Chains?

RQ 2.2: Is it possible to detect malicious behavior and fraud based
on application logs?

57

3.1. RESEARCH QUESTIONS

RQ 2.2.1: Can research question 2.2 be answered by the use of
SVMs?

RQ 2.2.2: Can research question 2.2 be answered by the use of
ANNs?

RQ 2.2.3: Can research question 2.2 be answered by the use of
Markov Chain?

RQ 2.3: Is it possible to detect malicious behavior and fraud based
on web logs?

RQ 2.3.1: Can research question 2.3 be answered by the use of
SVMs?

RQ 2.3.2: Can research question 2.3 be answered by the use of
ANNs?

RQ 2.3.3: Can research question 2.3 be answered by the use of
Markov Chain?

RQ 2.4: Is it possible to detect malicious behavior and fraud based
on information from a combination of logs?

RQ 2.4.1: Can research question 2.4 be answered by the user of
Markov chains?

RQ 3: Will malicious activity and fraud always be classified as abnormal
data?

RQ 3.1: Will research question 3 be true for SVMs?

RQ 3.2: Will research question 3 be true for ANNs?

RQ 3.3: Will research question 3 be true for Markov chains?

RQ 4: Can malicious behavior be detected by the use of profiles?

RQ 4.1: Can malicious behavior be detected by the use of a profile
looking at each user request?

RQ 4.2: Can malicious behavior be detected by the use of a profile
looking at sequences of requests?

It is a goal of this project that each of these research questions be answered
in a thorough manner. The questions should be answered in light of the
results and analysis of the part of the project that is most related to each
question. By subdividing each main research question into sub-questions, we
are able to provide a more thorough and detailed answer.

58

CHAPTER 3. METHOD

3.1.1 Hypothesis

The hypothesis is a statement. It is a prediction or proposed solution to a
problem based on prior knowledge or information gathered [Hor89]. It is an
educated guess about the outcome of the experiment. A hypothesis must be
able to be tested. Here, we propose a hypothesis we wish to answer with this
report. The work done by answering the research questions will all contribute
to answering and verifying the hypothesis. The hypothesis is as follows:

If it is possible to detect novel fraud and misuse by using anomaly
detection on audit data from Internet banking systems, then it is
possible to do so with the use of machine learning methods on
audit data.

The goal of proposing this hypothesis is to provide a statement to be
tested by this research, so it can be either verified or falsified. The results of
this project are the answer to the tests of this hypothesis and the research
questions.

3.2 Operations

This project has been carried out in different stages, as described in the
following list. There has not been a linear transition between the different
stages, as some of them have been executed simultaneously, while others have
been under progress the whole project. They are not necessarily separated in
time, but they are separated in domain and scope. The instruments used by
this project in order to carry out these stages are described in appendix B.

Technology research is the first thing that needs to be conducted. This
consists of arriving at an understanding of the technological field in
which we wish to work. Basically, it consists of a study of the field in
general and an analysis of the state of the art of the current solutions
to problem areas lying close to the problems we wish to address in this
project.

System research needs to be conducted in order to gain knowledge of the
foundation of the system. This stage will consist of a thorough ex-
amination of the system with a special emphasis on the available data
sources. When trying to gain knowledge of the normal behavior of a
system it is important to understand the general structure and func-
tionality. While conducting the system research it is also important

59

3.2. OPERATIONS

to collect as much information as possible, which may be useful in the
later stages. Quantity of information is more important than quality
at this stage of the project.

Available data research is a finer review and refinement of the data col-
lected in the previous stages. Here, we seek to find the data sources we
wish to examine for fraud with a choice of detection technologies. A
special emphasis is put on analysis and understanding of all data fields
available from the data sources. This understanding is crucial in order
to make qualified choices of which data material to use.

Development of hypothesis and research questions can be done once
a proper foundation on the available information has been laid. The
formulation of the hypothesis is important in order to state a goal for
what we wish to test with this project. The research questions will aid
us in accomplishing this by dividing objectives into smaller questions,
which all need to be answered in order to fully test our hypothesis.

Framework development is the first work done on the system we wish
to develop. The theoretic foundation determined earlier is used, in
conjunction with the hypothesis, as a basis for the desired functionality.
Then, all information on the data sources is taken into account, and
an advantageous way of combining this with the selected methods is
found, to achieve the wanted results.

Log parsing is the first step that needs to be conducted by an implemented
solution. The log data needs to be parsed into a consistent and lucid
format. Mechanisms are needed which can easily extract the desired
information, and provide an interface that allows the rest of our solution
to function smoothly.

Data processing and production would be the next stage, when the data
is available through the interface of the log parser. Data processing
consists of transforming data to desired formats and, in some cases,
normalizing it to get a better effect of the available data. Data produc-
tion also includes generation of additional data attributes. This is true
in particular for string values that cannot be used by machine learning
methods.

Model development and implementation can commence once the data
is ready for the machine learning algorithm. It is important to note that
different machine learning algorithms take different inputs, and this has
to be synchronized with data processing and production. This stage

60

CHAPTER 3. METHOD

consists of implementing the machine learning algorithm and making
it work with the data.

Model testing can begin once the model is finished. Model testing is con-
cerned with testing that the model actually manages to separate normal
and abnormal data in a proper way. The model is also tested to see if it
can have different thresholds correctly. Since an unsupervised learning
method is used, the model’s performance on detection of fraud cannot
be examined. However, this can be accomplished by the use of data sets
that have synthetic fraud actions inserted or data sets which contains
actual known fraud.

Results analysis will be conducted after a model has been tested. In the
case of several models, the results from different models can be com-
pared to each other to find similarities and differences. The results
should also be analyzed with regard to further improvement of the
profiles.

Results discussion and conclusion is the final stage of this project. The
results are evaluated in relation to what we expected to find. Answers
to all the research questions are discussed, together with a final conclu-
sion on the result of the hypothesis’ test. The conclusion summarizes
the results found in this project, together with a discussion related to
our findings.

Reflection and development of a platform for future research is an
additional stage, in which it is attempted to evaluate the work done,
the choices made, and what could have been done better. A reflection
on the work done provides valuable information for others conduction
similar projects. We also wish to create a platform for others who wish
to bring this work further. By creating such a platform we can use the
experience gained during this project to emphasize areas that are most
beneficial to research further.

3.3 Threats to validity

An important and fundamental part of doing research is to evaluate the
validity of the results. In order to plan and achieve valid results, validity
should be considered as early as in the planning phase of a project. The
following sections describe the threats to validity we have considered and
evaluated for the results of this project.

61

3.3. THREATS TO VALIDITY

3.3.1 Validity evaluation

There are two important aspects of validity with respect to the results. The
first is that the result should be valid within the population from which
the samples are drawn. Secondly, the results could be generalized to be valid
within a larger population. Relating this to the population in this project, the
results first need to be valid for the specific bank logs used, before they may
be generalized to be valid for bank logs in general. The results are valid to an
adequate degree if they are valid for the generalized population [WRH+00].

In the literature there may be found several classification schemes for all
types of threats to validity of a project. We have chosen to use Cook and
Campbell’s list of threats [Coo79]. They define four main threats, and state
that every threat is a special case of one of these. The main threats are
threats to conclusion, internal, construct, and external validity.

In [WRH+00] a set of more specialized threats are described for each of
the four main threats. We have chosen to use this set as a foundation for our
work to reduce the threats to validity. Although some of the threats listed
in this set are not of direct relevance for this project, we find it important to
list these as well to make explicit the fact that they are considered.

3.3.2 Conclusion validity

This validity is concerned with the relationship between the treatment and
the outcome. We wish to ensure that there is a statistical relationship with
a satisfying significance. Threats to conclusion validity are concerned with
issues that affect the outcome of an experiment. These issues include, for
example, choice of statistical tests, choice of sample size, care taken in the
implementation and measurement of an experiment.

Low statistical power The power of a statistical test is the probability
that a test will reject a false null hypothesis [MDW+95]. This type
of error is referred to as a false negative error. The statistical power
depends upon statistical significance, the variance in the populations
and the sensitivity of the data. The possibility for low statistical power
is an issue that needs to be addressed in this project. The research done
in the field of anomaly detection has shown that the false negatives
might exist, but we will try to keep this rate as low as possible. There
exists a clear trade-off between the rate of false positives and false
negatives. It is more important to keep the rate of false negatives as
low as possible instead of having false positives, due to the fact that it
is worse to classify an actual intrusion as normal than the opposite.

62

CHAPTER 3. METHOD

Violated assumptions of statistical tests Since certain tests assume
properties in the data, it is important to maintain these assumptions in
order to avoid miscalculations and erroneous conclusions [MDW+95].
The impact of a miscalculation, and ultimately a wrong conclusion,
would be fatal and should be avoided by all means. Hence we need
to pay special attention to the assumptions of statistical models before
using them.

Fishing and the error rate This threat consists of two separate threats.
First there is the threat of fishing, or searching, for a specific result. The
second is concerned with the actual significance level of a test, and how
this can be wrong when performing multiple analyses [MH96]. For this
project we find the first threat the most important and the second of
lesser importance. Fishing for results is obviously a destructive thing to
do. Therefore, we need to have an objective approach when evaluating
results and interpret the result as little as possible as to direct the result
in one way or another.

Reliability of measures Measurements could be imprecise and unreliable.
This could result in inaccurate results and false conclusions. As a basic
principle, the same result should be acquired when measuring a phe-
nomenon twice. For this project, all measurements are done automati-
cally and stored digitally, so the measurements should already be quite
reliable. However, in order to leave all doubt aside, all measurements
and calculations should be done twice. Because this is done automati-
cally, it should not lead to neither significantly increased workload nor
other complications. The basic principle should always hold.

Random irrelevance in experimental setting This threat is concerned
with elements outside the observed setting that could disturb the re-
sults. For our project we might find irrelevant data in the logs originat-
ing from occurrences not related to the actual actions in the log. This
could be things such as power-out, restarts or software updates. We
need to keep this in mind when analyzing the log to prevent irrelevant
actions from being classified as malicious behavior.

Random heterogeneity of subjects When doing statistical tests it is al-
ways a risk that the population’s individual differences are larger than
the effect to be measured [JSDJ01]. For our case this would for exam-
ple mean that the difference in behavior between individual users is in
general larger than the difference between normal and abnormal users.
After evaluating this threat we have found that this should not be a

63

3.3. THREATS TO VALIDITY

problem for our case. The very definition of abnormal behavior is to
find those cases where a user deviates beyond the normal deviation that
is seen inside the group of normal users. Hence, random heterogeneity
is taken into account and is not an issue that could affect the validity
of the outcome.

3.3.3 Internal validity

If a relationship is observed between the treatment and the outcome, we must
make sure that it is a causal relationship, in contrast to being a result of a
factor of which we have no control or have not measured. In other words,
we must ensure that the treatment causes the outcome. Threats to inter-
nal validity concern issues that may indicate a causal relationship, although
there is none [SEF08]. Factors that impact the internal validity include how
the subjects are selected and divided into different classes, how the subjects
are treated and compensated during the experiment, and whether special
events occur during the experiment. All these factors can make the experi-
ment present a behavior that is not due to the treatment, but rather to the
disturbing factors.

History It is important to note that the measurements could be performed
at different times, and that different circumstances could lead to dif-
ferent outcomes. This could lead to inaccurate results and misleading
data. The historical threat is something we know with certainty is
present in our data sets. The data will be affected by system updates
and other occurrences that could lead to change in the behavior pat-
terns. Because we are dealing with log data, it is impossible for us to
minimize this threat. We have no way of knowing the historical changes
besides from what information is present in the logs. This is a threat
that will be highly relevant for this project and could lead to a loss in
validity of the results.

Maturation Maturation is the effect that the same user could react differ-
ently as time passes by and he learns the system. When trying to create
profiles of user behavior, this is something we need to take into account.
It would be normal for the user to be more effective and accurate as
the system’s functionality is learned. The maturation threat should be
present in system logs, such as those we are dealing with. Hence we
need to keep in mind the possibility that users change behavior over
time.

64

CHAPTER 3. METHOD

Instrumentation Instrumentation looks at how and what data is collected.
Here, there are many threats that could lead to loss in the validity of the
results. The most important threat is that important data may not be
collected, which leads to the data set missing important elements that
affect the rest of the data. Another threat is that the data is stored
inaccurately, for instance with loss of precision or by generalization.
The instrumentation threat is very valid for our project, but it is also
impossible for us to remedy. Hence, we have to recognize it as a threat
and look at it as a possible affect that could threat the validity of our
results.

Selection Selection is concerned with the fact that the result could be dif-
ferent depending on how subjects are selected from a large group. To
relate this to our project, we possess information on a lot of different
users. Some of them are single users, which would be rather easy to
extract from the log, while others are more advanced users, for which
more work is needed in order for their behavior to be fully extracted.
Based on the selection threat we see that it is important to make sure
that we are able to extract as many users as possible in order to get
the best possible selection from the population.

Mortality Sometimes users quit before they are finished, leaving behind an
incomplete data trail. For a statistical evaluation this could lead to
results being affected, but for our project this will not be a problem.
As each log record is part of a session that is initiated when a user
logs in, we are able to detect when this session terminates, and hence,
where the user exits. This should then not be a problem and should
not influence the results.

3.3.4 Construct validity

This validity is concerned with the relation between theory and observa-
tion [PS00]. If the relationship between cause and effect is causal, we must
ensure two things. Firstly, we must make certain that the treatment well re-
flects the construct of the cause, and secondly, that the outcome well reflects
the construct of the effect. Threats to construct validity refer to the extent
to which the setting of the experiment actually reflects the construct under
study. For example, the number of courses taken at a university of computer
science may be a poor measure for a subject’s experience in a programming
language. This has poor construct validity. An example of better construct
validity may be the number of years of practical experience.

65

3.3. THREATS TO VALIDITY

Inadequate pre-operational explication of constructs This threat
simply means that constructs, i.e. systems, are not sufficiently de-
scribed and explained [16]. If the understanding of the system and its
functionality is unclear, then its analysis cannot be clear either. In
order to avoid this we have taken precautions and thoroughly studied
the system and its log material. We have also received training and
lectures by specialists who work with the system on a regular basis.

Mono-method bias This threat is concerned with the consequences of only
using a single type of measures or observations [16]. This is because
there is no way of verifying the results by, for instance, a cross validation
with other results. This threat is partly present in our data, although
it is probably not a big threat. We are given data from one source
alone, and have no way of checking the data against logs other than
the ones provided. On the other hand, we have a large data set with
several different logs at different levels of the applications, thus based on
these, some validation could be performed by checking the consistency
of the data across the different logs.

Experimenter expectancies The researchers conducting the experiments
could bias the results in several ways based on their expectations. For
instance, leaving out important data or reformulation of test could be
done based on the expectations of the results. We find it important
to work and evaluate in an objective manner in order to not let our
expectancies influence the results.

3.3.5 External validity

The external validity concerns generalization [SEF08]. We wish to see if
the results of our study can be generalized to a larger scope. In order to
do so we must verify that relationships between construct and cause are
valid within the new scope. Threats to external validity concern the ability
to generalize results of experiments beyond the experiments’ populations.
External validity is affected by the chosen design for the experiment, by the
objects in the experiment and the subjects chosen. There are three main
risks: having wrong participants as subjects, conducting the experiments in
the wrong environment, and performing it with a timing that affects the
results.

Interaction of selection and treatment This is a threat affected by hav-
ing a subject population not representative for the one aiming to gen-
eralize to. We feel that this is not an issue with our population. Users

66

CHAPTER 3. METHOD

of an Internet banking application for a certain bank should be repre-
sentative for users of Internet banking applications in general.

Interaction of setting and treatment This threat is affected by the lack
of representative material and experimental settings. Since our work is
conducted on real world data we find this threat negligible.

Interaction of history and treatment Since time and date could influ-
ence the results, this threat looks at the timing of the experiments. For
instance, the day before Christmas should not be regarded as a normal
day for money transactions. It is a threat that definitely is relevant for
the data used by this project. Since we use real world data we expect
to see differences in data properties based on both time and data. It
is hard to deal with this problem on a general basis, but hopefully, we
can cope with this by generalizing the data over larger intervals than
single hours or days.

67

3.3. THREATS TO VALIDITY

68

Chapter 4

Design

Summary

In this chapter we describe the steps which need to be carried out in order
to implement a functioning anomaly detection system. It begins with the
formulation and design of different profile suggestions. They are designed
in consideration of capturing user behavior at different levels of information
abstraction. These profiles are then evaluated based on a set of criteria,
in order to select a manageable subset for further use. We then look at
the available data sources and design log parsing solutions that can provide
consistent information for the machine learning methods. Finally, we describe
the machine learning methods that will be used to implement the selected
profiles. We find the configurations for these methods that will perform in
the best best manner to our needs.

70

CHAPTER 4. DESIGN

4.1 Profiles

When considering profile building in anomaly based intrusion detection, the
aspects to consider are numerous and varied. Due to the level of customiza-
tion and specialization of servers and applications, little information about
profile building can be deducted on a general basis. The solutions available
are mostly ad-hoc solutions serving for a server or application. However,
some efforts have been made to create a framework for construction of fea-
tures and models for intrusion detection systems [LS00]. Mining audit data
for automated models for intrusion detection (MADAM ID) is the most ap-
plicable framework available. It aims at using data mining techniques to
extract useful models from large stores of data. This framework is of inter-
est based on one of the basic assumption made [Lee99]. "A basic premise
for intrusion detection is that when audit mechanisms are enabled to record
system events, distinct evidence of legitimate activity and intrusions will be
manifested in the audit data." This assumption is also one of the fundamental
assumptions made by this project.

MADAM ID proposes three types of data mining algorithms that are
particularly useful for generating anomaly detection models: classification,
link analysis and sequence analysis. Classification pertains to mapping the
data into one of several predefined categories. Link analysis searches to find
relations between fields in a database’s records. Sequence analysis discovers
which time-based sequences of audit events frequently occur together. The
properties these algorithms detect give valuable information of what types of
properties to look for in the data.

The following sections provide a selection of possible profiles which could
be used in an anomaly intrusion detection scheme. The profiles look at the
data at different levels of abstraction in order to gain knowledge and insight
into possible criteria where attacks could be performed, ranging from an
analysis of a single parameter’s value to a total picture of user behavior.

4.1.1 Profile 1: Request structure

The first profile looks at the structure of a request. The entity in this profile
is a single user request to the server. The profile consists of six different
models, that look at the structure and logic of a request, in order to detect
faulty and malicious request structures. A detailed description of this profile
can be seen in table 4.1.

71

4.1. PROFILES

Table 4.1: Models for profile 1: Request structure

Request structure

Model Request structure
Description Looks at the structure of the request.
Detects Illegally crafted requests.
Learning Learns grammar for legal structure for requests.
Detection Checks each request against the learned grammar for re-

quests. If a request does not fit the grammatical structure,
it is considered an anomaly.

Model Path
Description Looks at which path is accessed.
Detects Directory indexing and predictable resource locations.
Learning Empirical list of legally accessed paths.
Detection Requests for paths not in the list are considered anoma-

lies.

Model Parameter order
Description Looks at the order in which parameters are passed in a

request.
Detects Crafted attacks not aware of application logic or struc-

ture.
Learning An attribute precedes another attribute when they appear

together in the parameter list of at least one query and
comes before in the ordered list of attributes of all queries
where they appear together.

Detection The detection process checks whether the attributes of a
query satisfy the order constraints determined during the
learning phase.

Model Parameter
Description Looks at what parameters are present in the requests.
Detects Attribute probing, backdoors and logical attacks.
Learning Valid relations between path and parameters are learned

for each unique path.
Detection If a request contains a parameter not related to the path,

it is flagged as an anomaly.

Continued. . .

72

CHAPTER 4. DESIGN

Table 4.1: Models for profile 1: Request structure – Continued

Model Value length
Description Looks at the length of each parameter’s value.
Detects Buffer overflow, injection attacks demanding more space

than provided.
Learning Approximates the mean and variance of the real attribute

length distribution by calculating the sample mean and
the sample variance.

Detection Given the estimated query attribute length distribution,
with parameters mean and variance as determined by the
learning phase, it is the task of the detection phase to
assess the anomaly of a parameter with a certain length,
given a threshold value.

Model Value type
Description Looks at the character types of the parameters’ values.
Detects Injection of invalid data.
Learning Learns the value type by looking at a sample of value

types for each attribute, e.g. string, Boolean, integer,
and double.

Detection Checks the value type against the learned type for the
attribute.

4.1.2 Profile 2: Request values

Profile 2looks at the values of different parameters set by the user, in order
to detect abnormal values, e.g. malicious code. This profile goes beyond a
traditional input validation by learning character distribution and structural
inference. It searches to detect all kinds of attacks that need to pass data on
to the server, thereby leading to a security breach, such as injection attacks.
A detailed description of this profile can be seen in table 4.2.

73

4.1. PROFILES

Table 4.2: Models for profile 2: Request values

Request values

Model Attribute character distribution
Description Looks at the distribution of characters.
Detects Injected program code that deviates from normal legal

text by the distribution of characters.
Learning For each observed request attribute, its character distribu-

tion is stored. The idealized character distribution (ICD)
is then approximated by calculating the average of all
stored character distributions.

Detection Given an idealized character distribution, the task of the
detection phase is to determine the probability of the
character distribution of a request attribute being an ac-
tual sample drawn from its ICD.

Model Structural inference
Description Looks at the structure of the request attributes.
Detects Injected code with different structural properties than

natural grammar would inhibit.
Learning When structural inference is applied to a request at-

tribute, the resulting grammar must be able to produce
at least all training examples.

Detection Once a model has been built, it can be used by the de-
tection phase to determine the probability of request at-
tributes.

Model Token finder
Description Looks to see if a value of an parameter is drawn from a

limited set of values.
Detects Injected special characters.
Learning The classification of an argument, as either enumeration

or random value, is based on the observation that the
number of different parameter values is bound by some
unknown value in the case of an enumeration, while it is
unrestricted in the case of random values.

Detection Once it has been determined that the value of a query
attribute consists of tokens drawn from an enumeration,
any new value is expected to appear in the set of known
values.

Continued. . .

74

CHAPTER 4. DESIGN

Table 4.2: Models for profile 2: Request values – Continued

Model Attribute presence or absence
Description Looks for regularities in attribute values.
Detects Changed or injected special characters.
Learning Create a model of acceptable subsets of attributes that

appear simultaneously in a query. This is done by record-
ing each distinct subset of attributes that are seen during
the training phase.

Detection The algorithm performs, for each query, a lookup of the
current attribute set.

4.1.3 Profile 3: Server response

The server response profile searches to detect if sensitive information is falsely
being disclosed to a user. It tries to learn how the server responds to different
user requests, in order to detect when a user gains a server response that is
not intended. A detailed description of this profile can is shown in table 4.3.

Table 4.3: Models for profile 3: Server response

Server response

Model Response
Description Looks for relationship between requests and responses.
Detects Detects mismatches in request response pairs.
Learning Learning the normal pairs of user request and server re-

sponse, and use these pairs to calculate the statistical
probability of each new pair.

Detection Detects all pairs of user request and server response that
have a sufficiently low probability.

4.1.4 Profile 4: Session structure

The session structure profile looks at each session as an entity for learning.
A session is defined as a sequence of interactions between a user and the
server, from login to logout, or time-out. During this interaction it should be
possible to learn a pattern of how a user normally interacts with the system,

75

4.1. PROFILES

enabling detection of abnormal patterns of interaction. Furthermore, the
session can be analyzed to detect types of malicious actions searching to
bypass application logic or searching for non-public resources. A session
provides a good collection of information in order to detect robotic activity
as well [PPLC06]. A detailed description of this profile is shown in table 4.4.

Table 4.4: Models for profile 4: Session structure

Session structure

Model Inter-request time delay
Description Looks at the time delay between successive client requests

to discover abnormal request times.
Detects Automated attacks and robotic activity.
Learning A distribution of normal time delays between successive

client requests is created.
Detection During the detection phase, a distribution of time delays

between successive requests from a client is compiled. The
goal is then to determine the probability that the observed
time delays between successive requests is a sample from
the learned distribution.

Model Invocation order
Description Looks at the sequence in which a session requests the

different resources and services of the site.
Detects Logical attacks bypassing functionality.
Learning The learning phase starts with a non-deterministic au-

tomaton that outputs exactly the strings that represent
the sessions, with their corresponding sequences of re-
quests.

Detection During the detection phase, a query is associated with its
corresponding session. When this session can be derived
from the automaton that was built during the training
phase, the output from the model for the query is normal.

Continued. . .

76

CHAPTER 4. DESIGN

Table 4.4: Models for profile 4: Session structure – Continued

Model Invocation frequency
Description Looks at the frequency by which a session invokes the

different services and requests.
Detects Detects attacks that seek to stress or probe the system,

for instance DoS)
Learning The learning of invocation frequencies consists of creat-

ing a model of different pages and services, with a mean
invocation frequency and variance for each of them.

Detection Each new invocation from a session will be collected and
the collection will continuously be evaluated against the
mean frequency learned. If a session’s collection breaches
the legal variance of invocation frequencies, it is abnormal.

Model Session time
Description Looks at the time length of a session.
Detects Looks for sessions with abnormally long durations, per-

haps prolonged by some mechanism, to perform malicious
actions on valid sessions.

Learning The learning consists of learning the mean session time,
together with the variance, in order to create an upper
bound for session times.

Detection Any session time breaching the upper bound for sessions
will be considered abnormal.

Model Session time per invocation
Description Looks at session time per invocation.
Detects Looks for sessions prolonged by limited activity in order

to prevent timeout and keeping the session valid.
Learning Learns the normal ratio between session time and invoca-

tions, together with the variance, for normal sessions.
Detection Any ratio deviating more than the learned variance is con-

sidered abnormal.

Continued. . .

77

4.1. PROFILES

Table 4.4: Models for profile 4: Session structure – Continued

Model Invocations per session time
Description Looks at the number of invocations per session time en-

tity.
Detects Looks for sessions with a high rate of invocations within

a short period of time, in order to detect automatic activ-
ity which does not breach the detection bound for single
requests.

Learning Learns the normal ratios between invocations and session
time, together with the variance, for normal sessions.

Detection Any ratio deviating more than the learned variance is con-
sidered abnormal.

4.1.5 Profile 5: User profile

In order to detect when a malicious user has gained illegal access to an ac-
count, one needs to learn how the legal user normally acts. When a baseline
of normal user interaction is created, it should be possible to detect devi-
ations from this norm compared to other users. Using a user’s behavior
characteristics, it could be possible to detect masqueraders who have gained
access to an account. A detailed description of this profile can be seen in
table 4.5.

Table 4.5: Models for profile 5: User profile

User profile

Model User statistics
Description Determines statistics about the user’s behavior, such as

login times, session durations, services used, number of
transaction made per session, and number of logins per
week.

Detects Detects actions that deviate from the statistical norm.
Learning Learning consists of generating the statistical values for

the attributes chosen.
Detection Actions that differ from the user’s statistical values will

be defined as abnormal.

Continued. . .

78

CHAPTER 4. DESIGN

Table 4.5: Models for profile 5: User profile – Continued

Model Usage patterns
Description Looks at the usage pattern of a user.
Detects Finds usage patterns indicating abnormal, and possibly

malicious, user activity.
Learning Creates a state chart of different activities and the tran-

sition between them.
Detection Unusual or strange state transitions.

Model Locations
Description Looks at the locations from where a user is logged in.
Detects Detects abnormal locations within a time frame, indica-

tion that the user’s credentials are being used by another
user.

Learning Needs no learning phase, but needs to keep track of user
locations within a given time frame.

Detection If a user’s locations deviate more than what is possible
for a user to move within the time frame, it is a strong
indication that one of the two locations is by a malicious
user.

Model Transaction amount
Description Looks at the amount that are transacted to and from an

account.
Detects Abnormal transaction amounts may be a indication that

a fraudulent transaction is being performed.
Learning The learning phase establishes the normal transaction

amounts for the users, and determines a threshold for nor-
mal values.

Detection Detection consists of checking transaction amounts
against the threshold, flagging all transactions that breach
it.

Continued. . .

79

4.1. PROFILES

Table 4.5: Models for profile 5: User profile – Continued

Model Transaction frequencies
Description Looks at the frequencies of transactions involving an ac-

count.
Detects Abnormal transaction frequencies may indicate attempts

to bypass fraud detection by performing many transac-
tions.

Learning The learning phase needs to learn the frequencies of trans-
actions by a user within different time frames, e.g. days
or months, together with variances of these frequencies.

Detection Detection consists of checking transaction frequencies at
the different time frames, notifying if the frequencies
breach a threshold.

Model Transaction recipients
Description Looks at the number of recipients of transactions involved

in an account.
Detects Abnormal number of transaction recipients may signal an

attempt to bypass fraud detection by performing transac-
tions to several recipients.

Learning The learning phase needs to learn the number of unique
recipients, and new recipients within different time
frames, together with their variances.

Detection Detection consists of checking transaction recipients
against the number of recipients within the different time
frames, notifying if some threshold is breached.

4.1.6 Profile 6: System overview

In order to detect attacks done by several users the system as a whole must
be considered. Distributed attacks usually aim to stress and overwhelm the
system, such that regular users loose, or get limited, functionality or response.
DDoS attacks could be detected by a sudden raise of service requests or by an
unusually high system load in general. A detailed description of this profile
is shown in table 4.6.

80

CHAPTER 4. DESIGN

Table 4.6: Models for profile 6: System overview

System overview

Model System load
Description Looks at the total load of system resources.
Detects Detects situations where the system resources’ workload

reaches abnormal levels due to abnormal user activity.
Learning During the learning phase, the normal load of the sys-

tem resources, in terms of the number of users and their
activity, is learned.

Detection Detection consists of monitoring the load of the system
resources and comparing it to the normal load values
learned. When the load reaches abnormal values, it may
be a sign that some kind of abnormal, resource demand-
ing, activity is in progress, such as a DDoS.

Model Service requests
Description Looks at the total number of service requests on the sys-

tem within a time frame.
Detects This model would detect attacks searching to overwhelm

the system by requesting a high number of services, and
hence, limiting the responses from these services to other
legitimate users.

Learning This model needs to learn the average number of service
requests by a user, which with a variance can be used to
calculate the total expected request distribution.

Detection When the service requests breaches the largest accepted
value per user, it is considered an abnormal event.

Model Access frequency
Description Looks at the frequencies at which services and pages are

requested by the total number of users.
Detects This model searches to find distributed attacks bypassing

the previous models, by requesting different pages and
services without any special pattern, such as, for instance,
requesting only specially demanding services.

Learning Statistical charts of access frequencies for different time
intervals.

Detection Statistical abnormalities in the chart.

81

4.2. PROFILE SELECTION

4.2 Profile selection

After a brief review of the created profiles it became clear that we had to
select a subset of them in order to keep the work amount within the limita-
tions of this project. In order to find the suitable subset of profiles to proceed
with, we had to evaluate each profile. The evaluation was carried out in two
steps. Firstly, we compared the profiles to the available data material, and
estimated the work amount needed to create them. This was then measured
up against advantages and drawbacks for each profile in order to see if the
work effort would be worth the cost.

Secondly, we conferred with the administration of the Internet bank pro-
viding the data material used by this project. We interviewed them about
which types of profiles they thought would be the most appropriate for us to
select. It became clear that the Internet banking system had several security
measures already, and they wanted to use profiles that would complement
these measures.

The different profile suggestions were evaluated by these two steps in
order to find our final subset of profiles. The evaluation of each profile, and
the conclusion, are described next.

4.2.1 Profile evaluation

The profiles were evaluated by the criteria we found the most relevant: com-
plexity, match with available data, functionality, and feedback from the ad-
ministration. Based on these evaluation criteria, we were able to analyze each
profile to find the appropriate subset. In order to not rush into any prema-
ture conclusions, we tried to analyze all profiles individually before comparing
them to each other. We wanted to end up with a subset of non redundant
profiles that could be implemented and tested within the determined frames
of this project.

The profiles were evaluated by the criteria which we found the most rel-
evant. These were complexity, match with available data, functionality, and
feedback from the administration. Based on these evaluation criteria we were
able to analyze each profile to find the wanted subset. In order to not rush
into any premature conclusions, we tried to analyze all profiles individually
before comparing them up against each other. We wanted to end up with
a subset of non redundant profiles that could be implemented and tested
within the determined frames of this project.

Profile 1, request structure, looks at how the request from a user is struc-
tured. An analysis of the request structure could find deviations indicating
that a user tries to pass additional values, skip mandatory values, or by other

82

CHAPTER 4. DESIGN

means attempts to trick the system into allowing unauthorized functional-
ity. This profile looks at the cornerstone of the available data, namely the
instances, and hence, the importance of analyzing an instance at this level is
high.

One of the main advantages of the request structure is that it is basic in
both functionality and structure. It should be easy to implement a working
solution for this profile. Another important aspect is the fact that it exactly
matches the available data as it does not necessitate rearranging, restruc-
turing, or transforming the data. It is also a relevant profile for assuring
consistency and quality of the data before it is used by other profiles. This
results in a further strengthening of this profile’s importance.

A drawback of this profile is that it is very simple, perhaps too simple
to be given any significance. To give the request structure any significance
we should analyze the deviations more thoroughly, indicating that profile 2
could be involved. It is also important to notice that since we do not have
any information about the audit mechanisms, we do not know if the instances
are transformed into a common format, thus loosing structural information.
This presents a threat to the validity of the profile, but not however a threat
to its relevance and functionality.

A final drawback of the request structure profile is that it looks at an in-
stance without taking into account the context in which the instance appears.
This could lead to misinterpretations and a higher level of false positives than
necessary. Even though we rely on a fair amount of consistency in the logs,
there may be incidents that deviate from the normal format. Examples of
this are error messages and system failures. A summary of the evaluation of
this profile can be seen in table 4.7.

Table 4.7: Evaluation of profile 1: Request profile

Profile 1: Request structure

Advantages Easy to implement. Cornerstone function-
ality. Good match with data.

Drawbacks Too simple. No context. No significance
alone.

Conclusion Basic functionality.

Profile 2, request values, looks at, and analyzes, the attribute values of
each instance. This is a refinement of profile 1 that discards the structure and
focuses on the values. The advantage of such a profile is that it can analyze
each attribute’s value more thoroughly. It can go further than the basic
properties, such as length and character type, and look at more advanced

83

4.2. PROFILE SELECTION

properties such as character distribution and structural inference.
Another advantage is that such a profile can be customized for each type

of attribute, leading to a better understanding of an attribute’s properties
and values. This further results in a greater possibility of detecting malicious
or fraudulent values. This also means that it would be harder to bypass
security measures, as all values passed by the user to the server would be
analyzed by this profile.

One of the drawbacks of such an approach is actually also one of its
advantages. The need for a customized approach for each attribute would
imply a large amount of work, due to the specialization. A possibility that
limits this drawback is to generalize the different attributes to such an extent
that the work amount would be within a satisfactory range.

Another drawback of this profile is that it does not consider how attributes
relate to each other and hence how the values are influenced by other values.
This is a property that could be useful to analyze, but which would inflict a
heavier work magnitude. For a summary of this evaluation’s main points see
table 4.8.

Table 4.8: Evaluation of profile 2: Request values

Profile 2: Request values

Advantages Specialized. Analyze data at the lowest
level. Customizable for different attributes.

Drawbacks Specialization. Probable high workload. No
relationship between attributes’ values con-
sidered.

Conclusion Highly customizable.

Profile 3, server response, looks at pairs consisting of user requests and
server responses. It would seem a good idea to look at these pairs to find
requests that seems normal, but which receives strange server responses.
Such pairs could indicate that some sort of malicious request has lead to
an unintended server response. This would be a very useful profile if one
was able to implement it. The main advantage of such a profile is that it
is fairly simple. The simplest approach does not have to consider values
and attributes, just the primitive request and response types. However, this
approach could be conducted in a much more complex way depending on
how much information is included.

A drawback of such a profile is that it is unknown what level of significance
the pairs carry. It would be difficult to find a sufficient abstraction level
for how much information to take into account for each pair. An overly

84

CHAPTER 4. DESIGN

simple approach would only be able to detect anomalies on a limited set of
properties, while a too complex approach would become complex and lack
statistical significance. Both profile 1 and 2 could be used within a complex
version of profile 3.

Another drawback of this profile is that user requests and server responses
do not appear clearly in the available data, hence the need for functionality
that can extract pairs is apparent.

A final drawback for this approach is that it neglects parts of traffic
between the user and the system. This is because not all user requests result
in a server response. This reduces the completeness of the detections done
by this profile alone. The summary of the evaluation of profile 3 is found in
table 4.9.

Table 4.9: Evaluation of profile 3: Server response

Profile 3: Server response

Advantages Looks at an important aspects. Easy in its
most basic approach.

Drawbacks Very complex when more information is
taken into account. No direct match with
data. Low significance.

Conclusion Complexity issues.

In many ways can profile 4, session structure, be looked at as an extension
of profile 3. However, in this profile it is more likely to only look at the user
requests. However, a possible extension would be to take server response into
account as well. Profile 4 looks at how a user navigates through the system’s
web interface. This profile can find strange jumps between web pages that
could indicate malicious acts such as bypassing server logic or authorization
escalation.

The main advantage of this profile is that it can detect attacks that need
some history and context to be detected. It takes into account how the
system usually is navigated through, and uses this information to create a
baseline for normal activity. This is an easy way to learn the regular user’s
behavior in the system.

It also became clear that this profile was one of the preferred choices by
the system administration. They believed that this kind of profile would
elaborate on security issues of high interest.

The main drawback is that such a profile would quickly become complex
and the complexity would escalate exponentially as the number of states
increase. Complexity would further increase if one wants to look at sequences

85

4.2. PROFILE SELECTION

of transitions between states. A possible way to lower the complexity would
be to generalize the states, but in a system as comprehensive as the one
under study, this benefit would be limited.

Another drawback with this profile is that it generalizes users into a
common system interaction model. Every user counts equally in this profile,
which would lead to even more unorganized and useless data. Clearly, a
system can have several different user types, ranging from novices to more
advanced users. The borders between user types are probably very vague, due
to user maturation, which again would lead to even more vague interaction
patterns. A synopsis of this profiles’ evaluation can be found in table 4.10.

Table 4.10: Evaluation of profile 4: Session structure

Profile 4: Session structure

Advantages Includes history and context. Finds at-
tacks that the previous profiles are unable
to. High interest to administration.

Drawbacks Becomes quickly very complex. Exponen-
tial growth. Generalizes a large quantity of
different users.

Conclusion Generalizable, includes context.

There are several similarities between profile 4, session structure, and
profile 5, user profile. They consider the same data, at the same levels of
scope, but different subsets. Profile 5 analyzes the behavior of single users in
order to find deviations from this user’s behavior, which would suggest that
the behavior is that of some other person than the legitimate user. The main
advantage with this type of profile is that we can look at a single user at a
time in order to learn how he interacts with the system. Based on this we can
learn what to expect from this user and use this to detect stolen credentials
or Trojan activity.

Sadly, this approach has some large drawbacks. Firstly, is the fact that
in order to learn a user’s normal behavior, we must collect a considerable
amount of data for each particular user. This is because we need to be able
to lay some statistical significance to the behavior profile, in order to detect
deviations from it.

The second drawback is a natural property all users have. A user will
mature and learn the system, leading to natural changes in the usage pattern.
This is a natural course of change that would make this user profile even
more difficult. With regards to statistical relevance and data validity, a
considerable amount of continuously updated data would be needed. This

86

CHAPTER 4. DESIGN

is obviously not a preferable situation. For a summary of the evaluation of
profile 5, see table 4.11.

Table 4.11: Evaluation of profile 5: User profile

Profile 5: User profile

Advantages Specialized, looks at single users. Can de-
tect changes in behavior.

Drawbacks Low statistical relevance. High need for
data validity and updates.

Conclusion Potentially low statistical relevance.

Profile 6, system overview, looks at the total performance of the system
in order to detect cooperating users attacking and draining system resources.
The main advantage of this profile is that it can detect attacks originating
from several cooperating users. This is also the only approach that can deal
with such attacks that we consider in this project.

This profile has a set of prominent drawbacks. Firstly, the fact that co-
operation attacks, such as DDoS, attacks the performance of the system,
trying to overwhelm it into being unable to respond at all. The audit pro-
cesses would also be influenced by such an attack, making the data source
compromised and unsuited for use to detect such attacks.

Secondly, that there is no data items in the available logs that include
information that directly could be used by such a profile. This means that
the logs need to be analyzed in order to find the extract the needed data,
and then used to find system performance.

A final drawback is that this profile received little interest from the system
administration, who thought that other mechanisms would be more suited for
detection of cooperation attacks. The summary of the evaluation of profile 6
can be found in table 4.12.

Table 4.12: Evaluation of profile 6: System overview

Profile 6: System overview

Advantages Detect attacks from cooperating attackers.
Drawbacks No support in data. Not of interest to ad-

ministrators
Conclusion Unfortunate data source.

87

4.2. PROFILE SELECTION

4.2.2 Profile comparison

After evaluating each profile independently we compared them up against
each other to find a non-overlapping subset of profiles that could be used
further in this project.

Firstly, profile 6, system overview, was eliminated based on the complex-
ity and relevance of the model, and difficulty with using the data in such
a profile. This left us with five profiles, with overlapping contributions and
clear strengths and weaknesses.

Profiles 1 and 2 seemed to complement each other in an attractive way.
As profile 1 is very basic in its approach, profile 2 searches to analyze the
attributes more thoroughly. This lead to the conclusion, that both profiles
were highly relevant for further work. However, alone they seem to have clear
limitations, so we proposed a new profile which combined the functionality
of both. This profile, user requests, is our first choice for further work.

Profiles 3, 4, and 5 have a lot of common responsibilities. It seems that
profile 4 lacks most problems related to profile 5, while still being able to
keep most of the strengths and relevance. A session structure profile would be
generalized and not need the amount of data leading to the complexity issues
to a user profile. It would also have a large pool of data to draw from and
the model would surely have statistical significance. However, by generalizing
data into one model, we would end up with one complex model, instead of
several simpler ones. Based on this we propose a basic implementation of
profile 4 that can be expanded to include elements from both profile 3 and 5
in later stages of development.

Table 4.13: Selected profile 1: User requests

User requests

Increment 1 Request structure.
Parameter order.
Parameter.
Value type.
Value length.
Token finder.

Increment 2 Path
Attribute character distribution.
Structural inference.
Attribute presence or absence.

If a successful model of the user’s traversal through the systems web
pages can be made, it can be specialized further to include different kinds

88

CHAPTER 4. DESIGN

of user groups and data related to user requests and system responses. It
is important to emphasize that the specialization only should be worked on
if the basis of profile 4 is implemented successfully. This leaves us with two
non overlapping profiles that will be used further in this project: the user
requests and session structure profiles.

Table 4.14: Selected profile 2: Session structure

Session structure

Increment 1 Invocation order.
Usage patterns.

Increment 2 Inter-request time delay.
Session time.
User statistics.
Response.

Table 4.13 and 4.14 shows a summary of the models each profile will
consist of. The details for each model are found in the preliminary profiles
described in section 4.1. As seen, the profiles consist of two increments.
Increment 1 represents the main functionality wanted by the profile while
increment 2 represents additions that can be added if time should allow it.

4.3 Data preparation

In order to use different machine learning methods to build the chosen pro-
files, we must prepare the available data. The preparation must be performed
in order to transform the data to a format that can be utilized efficiently by
the learning methods. Two key points are instance integrity and attribute
data type. The instance integrity is important since the learning methods
view instances as equal. If the data instances do not have a common format,
they need to be transformed into one. Attribute data type needs to be spec-
ified for each attribute value, so the learning method knows what data it is
receiving. These two points can be achieved by a log parsing scheme that
process the data sources before they are handed over to the machine learning
method. In the following text we describe the available data sources and the
data parsing that is conducted.

4.3.1 Data Source

The data for the creation of the user request profile originates from two dif-
ferent sources. Each of them will have a personal model for detection of

89

4.3. DATA PREPARATION

anomalies. The first is the transaction log, which consists of all the trans-
actions performed by the users. The second is the web log, which logs the
interactions between users and the system interface. Each of them will be
described in more detail in the following text.

We also had another log available, the application log. The application
log is written to by several sources, meaning that it contains data material
written in different formats. Hence, the application log has a very low consis-
tency among the different instances. A review and evaluation of this log was
conducted in a prior project [KK07]. We refer the reader to this project’s
report for a more thorough review and analysis of this log. However, the
conclusion of this evaluation was that the application log was unsuited for
direct use by machine learning methods.

The transaction entries from the transaction log consists of eighteen fields,
made up by nine numerical, three textual, and two date fields, in addition
to four flags, i.e. boolean fields. Each of the fields has a different range of
values. In order to keep the confidentiality of the log at a satisfying level, we
can only describe them in general terms. The numerical values range from
zero to the magnitude of 1020. The two date fields have different formats.
The first contains values describing a day, while the other specifies the date
and time with the granularity being milliseconds. The textual fields provide
written information, some provided directly by the user. Finally, the flags
have a binary representation, i.e. either on or off. The general structure of
each transaction instance is as follows:

integer, integer, integer, date, integer, integer, integer, integer,
integer, date, integer, string, string, string, flag, flag, flag, flag.

Most of the fields’ meanings are known to us by analysis of their contents.
However, some of them are hard to discover without a better documentation
of the log than that available to us. This has led to difficulties in attribute
selection, due to the fact that we have limited knowledge of the importance
and significance of some fields. Hence, we have decided not to remove any
fields with unknown meaning as a precaution. This is because we do not
wish to remove any vital information that could lead to weakened detection
performance.

The formats for the rest of the entries, those not directly involving trans-
actions, are somewhat different. However, the strict formats for these entries
are not considered important in this project.

The web log records the interaction between the user’s browser and the
system’s interface. It approximately follows the log format referred to as

90

CHAPTER 4. DESIGN

combined log format, see section A.2. The combined log format is an exten-
sion of the more known common log format (CLF), see appendix A.1. The
general format of these log instances are:

remotehost rfc931 authuser date "request" status bytes
"user_agent" integer session_id

An example of an instance written in this format would look like this:

125.125.125.125 - - 2007-08-17T16:15:05 "GET /index.html
HTTP/1.1" 200 1043 "Mozilla /4.05 [en] (WinNT; I)" 125 as-
dadJGKJHGS8765sakdjh

For the explanation of the different fields we refer to the appendix. The
web log provides a much more structured and lucid data representation. Each
field is known and follows a common format. This makes the work done on
this kind of logs easier and more efficient.

4.3.2 Data properties

Even more interesting than the data sources and structure are the data prop-
erties. In this section we describe these properties in terms of different statis-
tics. These statistics are of importance since they describe both the quality
and the completeness of the data. Min and Max is defined by the highest and
lowest values of an attribute. The Mean is the average of all values of one
attribute and Unique shows how many unique values an attribute contains.
The Null value defines the percentage of instances where the attribute has no
value. The letters NA in any of the cells indicate that the specific property
for that field is not available.

Table 4.15: Data properties of web log

Attribute Min Max Mean Distinct Null

remotehost NA NA NA 13549 0%
request NA NA NA 6900 0%
status 200 500 221 9 0%
bytes 0 1463000 9200 25822 47%
user_agent NA NA NA 2653 1%

Table 4.15 shows an overview of some statistical properties concerning a
set of selected attributes. As we can see there exists consistency within stan-
dard attributes, such as the request attributes, this is indicated by the low

91

4.4. USER REQUESTS

number of distinct values. For obvious reasons not all statistical values can
be calculated, for instance the minimum values for string values. However,
the table shows some characteristics that could be expected in a web log.
The set of requested items is drawn from a specified set of items and could
be used to determine what items a user requests from the system. From the
web log we were able to extract all instances with a success rate of 100%.
This means that the web log provides very consistent information and we do
not have to be concerned with loss of information due to consistency issues.

Table 4.16: Data properties of transaction log

Attribute Min Max Mean Distinct Null

integer1 1 42 10 41 0%
integer2 1 2866000 460000 85924 0%
integer3 1030 9898 3781 20 0%
integer4 0 142 5 117 71%
integer5 0 99000000000 47600000000 84950 15%

Table 4.16 shows the statistical properties for a selected subset of at-
tributes from the transaction log. The selected attributes are of such private
nature that they are masked for the sake of confidentiality. As seen, all at-
tributes contain integer type values and most of them seem to have a defined
range of values. The number of unique values also indicates that the at-
tributes are of a less structured nature than the ones seen in the web log.
However, some of these attributes have such low numbers of unique values
that it indicates a clear structure of the values. From the transaction log, we
extracted 72% of the log lines, since the rest of the lines, by manual inspec-
tion, were considered to carry no valuable information. Among the extracted
lines were the transaction entries, of which we were able to use all.

4.4 User requests

The user request profile searches to analyze the user’s interaction with the
system at the level of single instances. In our case this means at the level
of single transactions and single web page requests. The motivation for this
profile is to detect fraud and malicious actions by looking at the requests that
differ severely from the normal user requests to the system. These types of
actions could be detected by change in the general structure of a request, by
strange or false input to attributes, or by values that differ from the normal
value range. This profile would need to cope with all these aspects in order
to function properly.

92

CHAPTER 4. DESIGN

The functionality of SVMs and ANNs are thoroughly described in sec-
tions 2.4.2 and 2.4.3. The main limitation when using these methods on
the described data set is only being able to use numeric and categorical val-
ues. Both data sources contain string values which could contain relevant
information. In order to preserve some of the information contained in string
values we had to transform the information from the string over to numerical
values.

The transformation of a string to numerical values can be done in a num-
ber of ways. What is of most importance is that the transformation brings
the most important information over to the numeric values. Types of trans-
formations have been discussed in the suggested profiles. The transformed
numerical values could be string length, character distribution, existence of
special characters, or consistency to grammars. We chose to transform the
string values over to four numeric values, as listed below.

1. Length: the length of the string.

2. Unique: the number of unique characters within the string.

3. Rate: the rate between the number of unique characters and the length
of the string.

4. Token finder: the number of characters and words that matches a
predetermined list1.

4.4.1 Support vector machines

The configuration of a SVM consists of three variables that determine dif-
ferent aspects of the calculations for the determination borders. The gamma
variable, γ, determines the bound of the radius to the hyper space surround-
ing a class. The epsilon variable, ǫ, determines the tolerance of the termina-
tion criterion. In other words, it determines how large error is allowed when
specifying the detection border. The nu variable, ν, determines the ratio of
points that are allowed to lie inside the class defined as normal2. The library

1The predetermined list consisted of characters and words that are used to reach back-
bone systems. It could, for example, be command words searching to execute some back-
bone command or database control characters searching to alter the effect of a query.

2The variable ν is determined by three conditions, as defined in [17]:

(i) ν is an upper bound on the fraction of margin errors, and hence, also on the fraction
of training errors.

(ii) ν is a lower bound on the fraction of support vectors.

93

4.4. USER REQUESTS

we used comes with a set of default values for these variables, which we used
as an initial configuration. These default values were γ = 0.5, ǫ = 0.001, and
ν = 0.5.

Figure 4.1: SVM’s classification space at various configurations.

Figure 4.1 shows how the classification space changes for different con-
figurations, illustrated by a two dimensional space. The first picture shows
the default configuration, setting 1 illustrates the configuration with γ = 1,
ν = 0.01, and ǫ = 0.01, setting 2 with γ = 1, ν = 0.1, and ǫ = 0.01, and
setting 3 with γ = 15, ν = 0.1, and ǫ = 0.01. One can see how the different
variables influence the subspace. The following text will describe how these
variables are determined in order to gain the optimal classification space for
our data.

(iii) Suppose the data (x1, y1), . . . , (xm, ym) were generated independently and identi-
cally distributed from a distribution Pr(x, y) = Pr(x)Pr(y|x), such that neither
Pr(x, y = 1) nor Pr(x, y = −1) contains any discrete component. Suppose, more-
over, that the kernel used is analytic and non-constant. With probability 1, asymp-
totically, ν equals both the fraction of support vectors and the fraction of margin
errors.

94

CHAPTER 4. DESIGN

The best values for these settings are unknown and unique for each data
set. The only way to find the best combination is by testing each and ev-
eryone, tweaking the system until a satisfactory result is achieved [CWHL].
We found that the best way of doing this was by systematically evaluation
different combinations of values. In this way we were able to identify the
areas of values which we needed to look closer on. By doing this constriction
on the variables in two iterations, we were able to find a configuration that
performed well.

Since this is an unsupervised machine learning approach there is no way
to measure the detection rate for the different configurations. Hence, a dif-
ferent success criterion was needed. Based on this we started to look at the
classification rate of the different configurations. It would seem that one-class
classification was not as easy for most of the configurations due to difference
in the data. This raised one clear success criterion that needed to be ful-
filled. The configuration needed to be able to classify most of the instances
within one class. However, it should not classify all instances within the same
class. This is because it would lead to too wide boarders to the class and
consequently too low anomaly detection.

The evaluation of different configurations was performed by varying one
variable at the time to see how the performance consequently altered. In
the first iteration we used the default values on the constant values. In the
second iteration, we used the values that seemed to perform the best in the
first iteration as constant values.

Figure 4.2: Variation of detection rate for SVM due to variations in γ

Figure 4.2 shows the detection rate for different values of γ. The blue

95

4.4. USER REQUESTS

line shows the first iteration with default values on the constant variables,
and the red line shows the second iteration, with improved values on the
constant variables. One can see how poor the γ performs overall due to poor
performance on the default values on the other variables. On the second
iterations one can see a clear improvement in classification rate due to the
improvement of selecting new values based on the first iteration. One can
also see the effect of an increasing values of γ. When increasing the γ values
the classification hyperspace is made to fit closer to the data so that less
jitter is allowed in the data that is classified. Based on this evaluation we
can say that we need to select a γ which fits the data closely, but not so close
that it eliminates the possibility to normal variations.

The first iteration shows a tendency of weakened performance for γ values
above 3. Based on this observation we chose 3 as the new default for the
second iteration. In the second iteration we saw that the tendency was
observed for values above 4, so this value was chosen as the default for the
rest for this project.

Figure 4.3: Variation of detection rate for SVM due to variations in ǫ

Figure 4.3 shows the effect on the detection rate as ǫ varies. In order to
find varying effect with ǫ we had to chose large differences between values.
In the figure, the ǫ is reduced to one tenth of the previous value. Now we can
see how ǫ influences the classification rate of the SVM. Lower values accept
less error in the classification, and hence, are of interest to us. We see that
ǫ seems to flatten out in the interval between 0.01 and 0.001. Based on this,
ǫ was in both iterations set to 0.001.

Figure 4.4 shows how the detection rate varies for different values of ν.

96

CHAPTER 4. DESIGN

Figure 4.4: Variation of detection rate for SVM due to variations in ν

One can see that it exists a clear correlation between the detection rate and
ν. This is because ν defines the rate of instances which should be classified
within the class. However, we can also see that the other variables have some
effect on the detection rate, but clearly ν is the most significant. This is an
important observation since it would allow the model to define its detection
rate. It also introduces a challenge since we have no information about the
actual rate of malicious instances in the data set. Based on this we have
to select a value for ν that is large enough, such that anomalies cannot be
classified as normal, and low enough so anomalies are detected at all. In this
project we have chosen to use ν = 0.01. However, this value can be changed
with ease if it is discovered that another value would be better suited.

Based on this evaluation we can see that some configurations are better
than others. The following values were determined to be our standard con-
figuration for the rest of this project: γ = 4, ν = 0.01, and ǫ = 0.001. This
configuration seemed to give a low and accurate detection rate on anomalies
of about 1%. However, we kept notice of other configurations that would
provide other detection rates. We saw the possibility of being able to set the
model at different detection levels could be a valuable feature to the system.

4.4.2 Classification

After we determined a satisfactory configuration to the model we started to
test it up against the different data sets. We experimented with different
sized training sets and different sized testing sets. The emphasis on this
stage of the evaluations was to find the detection rates and anomaly rates in

97

4.4. USER REQUESTS

respect to the sizes of training and testing sets. The goal of this stage was
to find a proper trade-off between training set sizes compared to testing set
detection rates. It is an inevitable fact that the larger the training set is,
the more complex the model becomes. It is also a consequence that the time
taken to build the model increases together with the size of the training set.

Figure 4.5: Variation in detection rate for SVM due to variations in training to

test set ratio, for sizes of training set of 1000, 10000, and 100000

Two important aspects of model training is the ratio between the data
used to train the model and the data that is classified. Figure 4.5 shows
how the detection rate varies for different ratios and different sizes on the
data sets. One can see a slight decrease in performance as the ratio between
training set and testing sets increases. However, an even more important
discovery is that the loss of performance is less for larger data sets. This
would indicate that it is not the ratio between training set and test set that
is of importance, but the size of the training set. Figure 4.6 shows the
detection rate based on different sizes of training data. It is tested against
a large data set, representing several days of log information, consisting of
approximately 500000 log instances. This is because we wish for our model
to provide proper functionality for a continuously stream of data without the
need for continuously maintenance.

Figure 4.6 shows a clear tendency. Too low training sets will result in
low detection rates. However, it is clear that the improvement in detection
rate flattens as the training sets get larger. This would indicate that one
can build a model based on a subset that will perform just as good as the
whole data set. The graph seen in the figure exposes that a training set of

98

CHAPTER 4. DESIGN

Figure 4.6: Variation of detection rate for SVM due to variations in training set

size

approximately 30000 instances would be sufficiently to keep the detection
rate at proper levels.

We wished to evaluate the performance of our classification models with
actual malicious log entries. By doing this we could get an idea of a very
important aspect of anomaly detection, namely if the malicious log entries
are detected as anomalies. By doing such a test on real malicious data we
could also evaluate the false rate and tolerance of our models.

When testing was about to commence we noticed errors in the log parser
due to instance inconsistency. It became clear that some sort of update had
changed the log format of the logs making them impossible to read by our
log parsers. It would seem like a quick thing to change by reimplementing
the log parser, but this would not be possible. The incident logs containing
the malicious log entries were of a small quantity consisting of log entries
directly invoked or close to a malicious act. The rest of our available data
was on a new format, hence we did not have any training data to use for
classification on the incident logs.

This was a setback for the evaluation of the detection models, but we
found it relevant to perform an alternative evaluation of the detection rate.
When actual incident data is not available, it is normal to create synthetic
incident data with the known properties and characteristics of fraud. The
different threats described in section 3.3 would be a logical place to start
to look for different kinds of threats. However, we found that the result
provided by such synthetic instances would be very limited. This is due to
the fact that we easily could create instances that would and would not be

99

4.4. USER REQUESTS

detected by our models. This is based on the fact that we know what the
model looks for in the instances and what would be neglected.

4.4.3 Neural networks

As explained in section 2.4.3, we considered unsupervised neural networks.
We did not encounter a suitable implementation of these algorithms, so we
had to implement it ourselves. The core elements of the implementation are
shown in section C.2.1.

We wanted the net to be able to be trained and used in real-time. This
means that data can be given to the network as soon as it is available, instead
of assuming that there is a large static data set which the network should
be trained on, before the set is classified. This imposed several restrictions
on the implementation of the network. Referring to the enumeration of the
steps involved in training an unsupervised neural net in section 2.4.3, the
following decisions were taken when determining the design of the training
phases of the neural net.

Initialize weights Several approaches have been employed when initializ-
ing the weight matrix of an unsupervised neural net. In some cases
the weight vectors are set equal to some randomly chosen input vec-
tors from the training set. However, we want the net to be prepared
to make only one pass through the available data sets, so that not all
data needs to be available at the time of initialization. Therefore, the
weight matrix is initialized to random values between 0 and 1.

Feed the network with a vector from the training set Also the order
in which the input vectors from the training set are presented to the
network varies. Since the net needs to be able to train with incremen-
tally available data, this order is sequentially.

Find the BMU The BMU is the output unit which has the weight vector
closest to the input vector. The function that determines the distance
between the input vectors and the weight vectors is normally the Eu-
clidean distance. This is a good measure of this matter in most cases,
and is also implemented in our network.

Find the radius of the neighborhood of the BMU This step is some-
times implemented to make each input vector impose a greater in-
fluence on the network. This was not implemented, in accordance
with [KHK+96].

100

CHAPTER 4. DESIGN

Adjust the weight of each node in the neighborhood When the pre-
vious step was not implemented, this involves adjusting the weight vec-
tor of the BMU alone. This is accomplished by equation 2.19, without
Θ, as in [KHK+96], as shown in equation 4.1:

~W (t + 1) = ~W (t) + L(t)(~V (t) − ~W (t)) t = 1, 2, 3, . . . (4.1)

The learning rate, L, is implemented as in equation 2.21, with an initial
value, L0, of 1. However, the definition of λ, see equation 2.18, is
altered. When defined as in equation 4.2, it resulted in a more suitable
decrease in the learning rate for our dataset. The value 8 was found to
be suitable by experimentation.

λ = N/8 (4.2)

Repeat the procedure from step 2 The number of repetitions of the
training cycle was set to be configurable. However, we found that the
upper limit of the recommendation from [KHK+96], at 50 - 200 times
the number of output nodes, n, was a suitable default value.

We implemented a simple visualizer for the neural network, of which
figure 2.21 provides an example. This visualizer was used to interpret the
effect of adjusting the number 8, in equation 4.2, the number of training
cycles, as well as the initial learning rate, and to determine suitable values
for our data.

4.4.4 Classification

We implemented a classification layer on top of the neural network, i.e. a
classifier that uses the neural net to classify instances as either target or
anomaly. This classifier is configurable with regards to two central attributes:

Number of output nodes The number of output nodes affects the accu-
racy of the model, and is determined by experimentation. Generally,
the more output units used, the better the generated model will fit
the training data. However, the point is not to classify the training
set, but unknown data. In addition, more output units increase the
computational load.

101

4.4. USER REQUESTS

Anomaly threshold This is the threshold that determines whether a given
instance is regarded as target or anomaly. This value is the maximum
distance an instance can have to its BMU without being classified as
an anomaly.

When running the classifier, the input values were normalized to values
between 0 and 1. This was done by determining the largest values for each
attribute, and dividing each input by the corresponding value. This ensures
that attributes with small values has equal impact on the result as attributes
with large values.

Suitable values for the number of output nodes and the anomaly threshold
were determined by experimentation. The weight matrix was initialized to
random values before the training started. To see which effect this had
on the classification, the classifier was dry-run several times with the same
configuration. It became obvious that this had little effect on the trained
model. Nevertheless, we ran the classifier five times with each configuration
to discover any deviations from this. The numbers for the following figures
were taken to be the best values obtained, meaning the lowest number.

Figure 4.7: Variation in detection rate for ANN due to variation in number of

output units, for thresholds 0.7, 1.0, and 1.3 and N = 200n.

Figure 4.7 shows the percentage of anomalies for various numbers of out-
put units and three different anomaly thresholds. This figure is generated
with a configurations in which the number of training cycles, N , is the num-
ber of output nodes, n, multiplied by 200. Obviously, a network with 0
output units does not make sense. In this case, we define the percentage
of anomalies to be 100%, since no BMU can be found for any input vector.

102

CHAPTER 4. DESIGN

We had 525919 instances in the set. To be able to fully train a network
with 2000 output units, 400000 instances were set aside for training, leaving
125919 instances in the test set. All models, except the one where n = 2000,
were thus trained on a subset of the training set.

Generally, this figure confirms that more output nodes mean fewer anoma-
lies. However, in the range around 800 to 1200 there is a slight increase in
the number of anomalies, for each of the three classification thresholds. By
analyzing the output from the model, it appears is if it, in this interval of
N , is more sensitive to the values of the initial weight vectors. This behav-
ior should thus be reduced if the number of times the model is trained is
increased. However, the exact values for each configuration were not vital.

Figure 4.8: Variation in training time for ANN due to variation in number of output

units, n, for N = 200 ∗ n.

The relative training times for the various numbers of output units are
shown in figure 4.8, for N = 200 ∗ n. The implemented algorithm is not
optimized with regards to performance, nor do we consider the available
hardware comparable in this context, so the actual time spent training the
model is not relevant. However, the relative training times for models with
different number of output units are of interest. Obviously, we would like
a model to impose as little as possible load on a system. Evidently, the
time taken to train the model increases above linearly for each output unit
added to the network. This is as expected, since each new output node
causes the model to be trained for further 200 cycles, in addition to that the
distance from the added node’s weight vector to each input vector must be
calculated. This is not a fair measure of the implementation’s performance,

103

4.4. USER REQUESTS

since the number of cycles increase for increased number of output units, but
it is a relevant measure, since it models the actual time increase needed to
successfully train the model.

Figure 4.9: Variation in classifying time for ANN due to variation in number of

output units, n, for N = 200 ∗ n.

As expected, figure 4.9 shows that the time taken to classify the same
number of instances with varying number of output units increases linearly.
One added output unit demands one more distance calculation for each input
vector.

From figure 4.7, it can be seen that the same anomaly rate can be achieved
with different configurations. For instance, a configuration with n = 1800
and threshold = 0.7 generates approximately the same amount of anoma-
lies as a configuration with n = 600 and threshold = 1.0. There may be
differences in which instances are classified as anomalies between the config-
urations. However, we do not have any foundation to claim that one is more
correct than the other, in that the instances classified as anomalies by one
configuration are more outlying than the ones classified as anomalies by the
other. Thus, the configuration we choose to proceed with may as well be the
one with the lower number of output units, since this leads to a model which
can be trained faster.

As for SVM, different configurations can be utilized to allow different
anomaly detection rates. We chose to proceed with a configuration with the
number of output units equal to 600 and the threshold at 1.3. This provides
a low and accurate detection rate of just above 1%.

104

CHAPTER 4. DESIGN

4.5 Session structure

The purpose of the session structure profile is to attempt to create a baseline
for normal navigation through the system’s resources. In that way, unusual
sequences of requests, which may, for instance, indicate attempts to bypass
application logic will be classified as anomaly.

To analyze sequences of states, we chose to utilize a Markov chain. A
regular Markov chain, i.e. one with a memory of just one state, will fail
to consider a great deal of important information, for instance inter-request
time delay and other states than the current and next. We believe that
these would contribute a great deal to such a model. However, incorporating
such information into this profile increases the complexity of the models by a
great amount. Therefore, we consider the Markov chain in its simplest form,
without any extra information beyond state transitions.

4.5.1 Markov chains

Markov chains are introduced in section 2.4.4. Since we did not discover a
suitable implementation of a Markov chain, we implemented one ourselves.
Excerpts from this can be found in section C.2.2.

We considered only first order Markov chains. These models are rather
simple, and the only variable is the number of training cycles the model
should perform. For each cycle, information about the current transition
is incorporated into the transition matrix. This is done by maintaining a
matrix where the numbers of transitions between all nodes are kept. When
a new transition is added, this matrix is updated, and the new probability
for this transition can be calculated.

4.5.2 Classification

As with the ANN, we implemented a similar classifier for the Markov chain.
This classifier also allows a threshold to be set. This threshold defines the
minimum probability a transition needs in order for that transition to be con-
sidered normal. If the probability for that transition is below this threshold,
it is considered an anomaly.

A Markov chain is a rather general model, in that all it needs are unique
names for a set of states, and a set of transitions from one of the states to
another. We ran this model on both the transaction logs and the web logs.

A model treating the structure of sessions needs more training data than
one looking at single requests. To level with any changes in users’ behaviors
during different hours of the day, the model was trained with all log data

105

4.6. SUMMARY

from an entire day. Due to the simplicity of the model, its design is not
evaluated in the same manner as for the previous methods. However, we
should still be able to answer the research questions related to the Markov
chain. We do this by establishing the transition matrices from whole days of
log data and examine the resulting probabilities.

Transaction log

Markov chains needs a set of states and a set of transitions between them.
A central decision is what to define as states. In the transaction logs, each
request causes both an internal request and response to be manifested in the
log. The requests are caused by some function being invoked. The name of
this function is present in the logs, and so defining the states as the names
of these functions seems as a reasonable choice.

One days worth of log data from the transaction log, parsed and suitable
for the Markov chain, means about 3700000 instances.

Web log

When running the model on the web logs, we simply defined the states to be
the requested resources. This means that any request made by the user will
be treated by the Markov chain. It also means that the Markov chain has
to handle a relatively large number of states and state transitions. To keep
the number of states and transitions to a more manageable level, we exclude
requests for graphical elements in this situation. Another simplification could
be to take certain irrelevant web pages out of consideration. However, we do
not have enough insight into the banking application to decide which pages
may be excluded. Therefore, all pages are considered. Any parameters were
removed, as different values for these were not considered to be separate
states. As with the transaction logs, the model were trained on data from
one day, in this case about 8200000 instances.

4.6 Summary

As seen in this chapter, we proposed six different profiles that could be used
to detect fraud and malicious actions. Based on an evaluation of these profiles
we decided to limit the set of profiles and focus on two profiles, of which one
of them was a combination of two original ones. The profiles we chose to work
further with were the user request profile and the session structure profile.

Data preparation came as a logical next step. We needed to prepare
the available data material so that it could be used by our selected machine

106

CHAPTER 4. DESIGN

learning methods. This consisted in rearranging the data instances to a
common and consistent format, together with transformation or extraction
of unusable data types to a better suited type.

The user requests profile looks at the data at a single instance at the time.
The emphasis is on attribute values and instance structure. This profile was
implemented using two different machine learning methods, SVM and ANN.
The behaviors for both of these were similar and positive. Both machine
learning methods were able to detect anomalies at different thresholds in the
data set.

The session structure profile treats the data at a higher level. It considers
sequences of interactions between the user and the application. However, to
limit the complexity, only sequences of two interactions were considered. A
Markov chain was used to establish a model of normal sequences.

107

4.6. SUMMARY

108

Chapter 5

Results and analysis

Summary

This chapter consists of the results provided by our implemented profiles,
based on the different machine learning method, and used on the available
data logs. These results are analyzed in order to provide insight into and
understanding of their meaning and impact. We look at how the results and
information discovered by the analysis answers the research questions. Addi-
tionally, we analyze how the validity of the results is maintained, considering
the relevant threats to validity.

110

CHAPTER 5. RESULTS AND ANALYSIS

5.1 Profiles

After implementing the profiles we can evaluate their performance in terms of
how well they detected anomalies. The following analyzes the results based
on the two profiles which were implemented. The user requests and session
structure profiles were implemented using different data sources and ma-
chine learning methods. These aspects, concerning data source and machine
learning methods, will be analyzed later in this chapter, but a more formal
analysis of the profiles is conducted here. Especially, we wish to look at the
properties of the logs compared to the properties captured by the profiles.

5.1.1 User requests

The theoretical foundation for the user requests profile, described in sec-
tion 4.1, and the described threats to the system, in section 2.1.3, provided a
basis for this profile. An important foundation was that malicious behavior
would manifest itself in data types, value ranges, and characters present for
different attributes provided by the user. The user requests profile would
detect activity that falls under this category, however the results provide no
indication that the analyzed data set contained such activity. This is proba-
bly due to other security mechanisms detecting such attacks and limits these
kinds of interaction from reaching the log.

The most apparent property of the user requests profile is both a strength
and weakness, namely that this profile looks at the data at a very high level
of detail, and is limited to only look at one instance at the time. This
results in two things. Firstly, the user requests profile is able to analyze and
evaluate each instance with high accuracy, since we look at a very limited set
of data at the time. This makes room for special analysis of attribute values,
structure and other types of specialized analysis of each instance or value.
Secondly, due to the fact that this profile only looks at one instance at the
time it loses a valuable information source, namely the context in which the
instance appears. Obviously, we can think of many types of fraud that can
only be detected with an analysis that includes the context surrounding the
action. This is the main limitation of the user requests profile.

5.1.2 Session structure

The theoretical foundation for the session structure profile was defined in
section 4.1. The key aspect for the session structure profile is that we are
able to create a model for transitions between different states in the system.
When the states and the transitions between them can be modeled we can

111

5.2. MACHINE LEARNING METHODS

calculate the possibility for the different state transitions. The potential of
this profile is large since there is a large amount of information that can
be taken into account. The basic approach can learn how a user traverses
through the system’s web interface, detecting strange and illegal transitions.
More complex approaches can take sequences of transitions and time between
transitions into the model.

An apparent property of the session structure profile is the complexity
of it. If one considers the model to consist of n states, the model would
then have to provide an nxn matrix just for the basic state transitions. If
the model should include more information one can see that the growth of
complexity would be considerable.

The most interesting aspect of the session structure profile is that it can
potentially look at the complete interaction between user and system, i.e.
from login to logout. This creates a total picture of the user’s behavior that
leads to detection based on a general behavior rather than attribute values.

5.1.3 Research questions related to profiles

RQ 4.1: Can malicious behavior be detected by the use of a profile looking
at each user request? In theory, this profile would be able to detect
all kinds of attacks which would require changes in attributes’ values.
Many kinds of attacks would have such properties. However, it seems
to be a valid observation that security measures already operational
in the system provides a similar functionality. The tests performed on
the user request profile do not give any indication that it can detect
malicious behavior outside the scope of anomalous attribute values.

RQ 4.2: Can malicious behavior be detected by the use of a profile look-
ing at sequences of requests? It is known that several attacks must
exhibit properties that would be detected by such a profile. These in-
clude attacks that search to bypass application logic by altering normal
sequences of requests. A central issue is how much information to in-
clude in such a profile. Increasing the model’s complexity may lead
to increased detections. In any case, theoretically, such a profile could
detect malicious behavior.

5.2 Machine learning methods

This project has used three different machine learning methods to achieve its
results. SVMs and ANNs were used to create the user requests profile and

112

CHAPTER 5. RESULTS AND ANALYSIS

Markov chains were used to create the session structure profile. Following is
an analysis of the results provided by the different methods.

5.2.1 Results and analysis of SVM

The results provided by the SVM implementation of the User requests profile
showed that it was possible to create a classification model that could classify
new instances as normal or abnormal. In this analysis we search to find how
the SVM classifies the instances and on what basis. We also look at the
validity of the results as discussed in section 3.3 and how the results answer
the research questions presented in section 3.1.

Classification by SVM

An overview of how the anomalies are distributed into the normal data can
be seen in the plot diagram in figure 5.1. It shows different attribute data
spaces, where blue represents instances classified as normal and red instances
classified as abnormal. The figure shows that some dimensions provide better
separation between normal and abnormal instances. One can also see that
some of the dimensions provide a clearer structure of normal behavior and a
higher similarity between normal instances.

Figure 5.2 shows a more detailed graph of two of the plot graphs shown
in figure 5.1. Here, we can see that the instances form a pattern of value
ranges that define the normal behavior. These collections of blue data points
within the same area, clusters, are an indication that the values within these
clusters are legal. Further we see that a few anomalies, represented as red
data points, exist in the higher data range of the horizontal axis. It is also
important to notice the anomalies that have fallen within the areas that
we have described as legal behavior clusters. This is due to the fact that
anomalies are detected in all dimensions, not just the two dimensions shown
in this graph.

The plot graph shown in figure 5.3 displays a similar picture of data
clusters as in figure 5.2. However, there is a significant difference. This
difference lies in the vague cluster shown in the middle of the horizontal
axis and bottom of the vertical axis. This cluster is distinctive enough to
have normal instances, but vague enough to contain anomalies as well. By
analyzing this picture manually it would be tempting to look at the cluster
as an anomalous cluster. However, the SVM classification has defined this
cluster as normal. This can be seen since there are normal instances in the
cluster, and hence the border for normal classification lies further out on
the axis. The anomalies in this cluster are detected by deviations in other

113

5.2. MACHINE LEARNING METHODS

Figure 5.1: Classification overview for SVM

114

CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.2: Classification plot for SVM

dimensions than the two shown here. A valuable lesson can be learned from
this graph. Anomalies seem to deviate more from the norm in general than
the normal instances, also within dimensions other than where it is classified
as abnormal.

Figure 5.3: Classification plot for SVM

Figure 5.4 presents a quite different data distribution than the previous
illustrations. Here, it can be seen that the data distribution is more nor-
malized than in the other plots. No clear border of normal behavior can be
found in the horizontal axis. The vertical axis has, however, a clear abnormal
subspace in the middle of the axis. However, in this case on anomalies lies in
this subspace. This plot is a good example of that not all dimensions provide
clustering between each other. As this case the data does not seem very
well structured and the anomalies are distributed equally among the normal
instances.

115

5.2. MACHINE LEARNING METHODS

Figure 5.4: Classification plot for SVM

The performance of classification by the SVM model, together with the
analysis of the detection level provided in this chapter, shows that the data
set contains both clear clusters of normal behavior and correctly classified
anomalies. We see that while some dimensions show high density clusters
made up by instances classified as normal, other dimensions show little to
none patterns of behavior or clustering. A general observation from the
graphs is that instances classified as anomalies have a tendency to lie close
to the detection perimeter of other attribute dimensions as well, besides the
ones that are breached.

Research questions related to SVM

An important part of the analysis is to review how the results has provided
answers to the research questions suggested earlier in this report. In the
following we will analyze how the SVM model has provided answers to the
relevant research questions. It should be clear that the SVM can only provide
answers to the questions directly related to it.

RQ 1.2: Is it possible to separate normal and abnormal behavior in audit
logs based on SVMs? The results provided by the SVM leaves little
doubt that the SVM is capable of separating the abnormal instances
from the normal. The further analysis of the results proofs that the
SVM is actually separating out the most abnormal instances from the
data set.

RQ 2.1.1: Can research question 2.1 be answered by the use of SVMs? The
transaction log contains actually all the information one would need to
document fraud. The problem is however to separate the legal actions

116

CHAPTER 5. RESULTS AND ANALYSIS

from the illegal ones. This is an important question, whether fraud can
be detected in an environment where all types of transactions are legal.
Even if a transaction to a foreign account, involving the total balance
of an account, is fraudulent in most of the cases, it is still a legal action
for any user to do. Based on the results provided by the SVM on the
transaction logs, we see that the SVM finds anomalies that are rare
transactions. So the answer to research question 2.1.1 is no, SVMs is
not able to detect fraud. SVMs are, on the other hand, able to find
rare transactions that could indicate fraud, or at least transactions that
have a higher possibility of being fraudulent.

RQ 2.2.1: Can research question 2.2 be answered by the use of SVMs? See
answer for research question 2.2 in section 5.4.2.

RQ 2.3.1: Can research question 2.3 be answered by the use of SVM? This
is a more problematic question to answer. As we analyzed the different
kinds of threats to an Internet banking system, there is little doubt that
many types of attacks will manifests themselves in the web log, and
would have properties that a SVM model would detect. The typical
injection attacks and traversal attacks contain properties that make
them distinguishable from the normal. However, it should be noticed
that these are not a complete representation of all types of malicious
behavior. The Trojan scenario, described in section 1.2.3, does not
consistently deviate from the normal usage patterns, and hence, would
these types of fraud attempts not be detected by a SVM model alone.
Thus, the answer to this question is positive, even though SVM is
unable to detect all types of attacks.

RQ 3.1: Will research question 3 be true for SVMs? We see that the SVM
is able to classify abnormal instances correctly. Hence, it would be
possible to use SVM to detect fraud and malicious behavior. The work
conducted on SVMs shows that the limitations is not due to the prop-
erties of the SVM, but rather due to the data evaluated by the models.
SVMs should be able to detect some sort of attacks, fraud, and mali-
cious behavior, but it would not classify all types. This is due to the
fact that SVM only looks at a subset of the available data and only
analyzes this subset based on a limited set of properties.

5.2.2 Results and analysis of ANN

The ANN is capable of separating abnormal instances from normal ones.
However, it is not clear on what foundation the ANN decides which instances

117

5.2. MACHINE LEARNING METHODS

to consider abnormal. This section looks deeper into the results provided by
the ANN.

Classification by ANN

As for SVM, figure 5.5 shows an overview of the classification performed by
the ANN. The various attributes involved in the classification are stacked on
top of each other, with each attribute’s distribution of values illustrated hor-
izontally. The figure shows how the anomalies, the red dots, are distributed
among the normal instances, the blue dots. Within some attributes, the
anomalies are in the midst of all other normal instances, while in other, the
red dots have considerably different values than the cluster of blue dots.
Also evident in this figure is that many normal instances appear far more
abnormal than the anomalies within a single attribute. These observations
confirm that the ANN does not classify based on values of single attributes,
but rather on a combination of all attributes.

Figure 5.6 visualizes two of the attributes from the previous figures, one
is mapped along the X-axis, and one along the Y-axis, and the crosses are
then where one of the values intersects with the other. Again, in this and
the proceeding figures, the anomalies are indicated by a red cross and the
normal instances by a blue cross.

It is not possible to see a clear classification of the abnormal and normal
instances when considering these two attributes. The sheer majority of the
instances have at least either X-value or Y-value close to zero. The abnormal
entries seem to loosely follow the same distribution as the normal ones. Keep
in mind that only close to 1% of the entries are classified as anomalies.

Some pairs of attributes exhibit a more obvious clustering of their values,
as figure 5.7 illustrates. This relates to the nature of the attributes’ values.
Again, the distribution of the abnormal entries seems similar to that of nor-
mal ones. At the far right, there is a small cluster of entries in which, oddly
enough, most is considered normal by the ANN. In contrast, in the upper
left corner, there is an even smaller gathering of entries, in which most is
classified as anomalies. This appears as a more reasonable case.

In the final illustration, in figure 5.8, there seems to be a more logical
distribution of the anomalies compared to the normal entries, in that they are
farther away from the main groupings. There are some entries to the far right,
which mostly are considered anomalies. Further there is some clustering of
the entries. Among the instances which are the farthest from the cluster’s
centers, a relatively high number of these are considered anomalies by the
ANN.

This analysis clearly shows that, generally, no attributes alone, nor only

118

CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.5: Classification overview for ANN

119

5.2. MACHINE LEARNING METHODS

Figure 5.6: Classification plot for ANN

Figure 5.7: Classification plot for ANN

120

CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.8: Classification plot for ANN

two attributes, are decisive to cause the ANN to classify an instance as abnor-
mal. Rather, it proofs that the ANN takes all attributes into consideration
when deciding which instances are anomalies. Attributes with only one or
two abnormal values are classified as normal, as long as the rest of the values
of this instance’s attributes are normal. This is to be expected, considering
the distance function of the implemented ANN, which provides the mea-
sure of similarity. The more attributes included in the classification, the less
influence each attribute gets. It may appear that the ANN considers the
collections of all values as a group to a greater extent than the SVM. These
observations imply that a proper attribute evaluation and selection might
be beneficial for the performance of the ANN, since we cannot expect that
malicious instances deviate from the normal ones in every attribute. It is also
possible to give some of the attributes a higher weight than others, simply
by adjusting the factors used for normalization. This can only be done after
a thorough analysis and evaluation of the various attributes’ importance.

Research questions related to ANN

Here, we attempt to answer the research questions related to the ANN, based
on the results obtained. Since the ANN and the SVM both implement the
same profile, the answers are similar to those of the SVM.

121

5.2. MACHINE LEARNING METHODS

RQ 1.3: Is it possible to separate normal and abnormal behavior in audit
logs based on ANNs? It appears as if what is considered abnormal by
the ANN differs from what is considered abnormal by the SVM. The
ANN considers the whole set of attributes together, to a greater extent,
than the SVM, thereby classifying entries that are abnormal in a few
dimensions as normal, as long as the rest of their attributes are normal.
Still, the ones classified as anomalies are, in fact, anomalies, in terms of
the ANN. We cannot say which classifies more correctly than the other.
In any case, the ANN is capable of separating abnormal instances from
the normal.

RQ 2.1.2: Can research question 2.1 be answered by the use of ANNs? Sim-
ilarly to the answer of RQ 2.1.1, ANNs cannot determine which trans-
actions are fraudulent and which are not, since any transaction may,
or may not, be illegal. They are still able to find rare entries, which
often is the case for fraudulent transactions.

RQ 2.2.2: Can research question 2.2 be answered by the use of ANNs? See
answer for research question 2.2 in section 5.4.2.

RQ 2.3.2: Can research question 2.3 be answered by the use of ANNs?
Some fraudulent activities leaves traces in the web log which are de-
tectable by the ANN. Considering some of the known attacks and their
characteristics, one observation is that the SVM might be better suited
in this matter, since it is more sensitive to a subset of the attributes.
Then again, a more adapted ANN, better tuned with regards to which
attributes to consider and which weight to assign to them, might pro-
vide other results. Still, the ANN cannot tell which entries are fraud-
ulent, and which are not.

RQ 3.2: Will research question 3 be true for ANNs? No, ANNs alone will
in many cases fail to classify malicious activity and fraud as abnormal.
Several known attacks and fraudulent activities lack the properties to
make them be classified as abnormal by the ANN.

5.2.3 Results and analysis of Markov chains

We successfully implemented and trained a Markov chain on both the web
logs and the transaction logs. Hence, a transition matrix was created for the
state transitions for both these logs. In the web log, these transitions corre-
spond to resource requests, which in most cases mean page requests. In the

122

CHAPTER 5. RESULTS AND ANALYSIS

transition logs, they represent invoked functionality based on the requested
resources.

Classification by Markov chains

Figures 5.9, 5.10, and 5.11 illustrate the Markov chain, trained on data from
the transaction logs, in the form of graphs. The numbered nodes represent
states, and the transitions are represented by lines from one node to another.
In reality, these transitions are directed, but this is not illustrated in the
figures. They are divided into three figures for clarity.

Figure 5.9 shows the transitions with a probability of 1.0. For instance,
all processes which entered state 39 during this specific day also entered state
57 through state 48.

In contrast, figure 5.10 shows all transitions for which the probability is
low. In this case, the upper limit for considering a probability for low is
0.00001. Evidently, many transitions fall into this category.

For completeness, figure 5.11 shows all transitions not already illustrated
in the previous figures, i.e. transitions for which the probability is between
0.00001 and 1. Their relative probabilities are indicated by the thickness and
darkness of the lines, where darker and thicker line means larger probability.

We also present similar illustrations of the Markov chain trained on the
web logs. However, considering their limitation in additional value, they
are placed in section D.1. The upper limit for the transition probabilities
to consider low is lower in the case of the transaction log, than of the web
log. Obviously, this results in fewer transitions falling into this category, and
illustrates that this limit can be varied to adjust the threshold for which
transitions should be considered abnormal.

When defining the states as function names in the transaction logs, rather
than the requested resource from the web logs, it resulted in a more lucid
figure. However, the two models show the same result. A simple Markov
chain, without memory, or other extra information, does not discover normal
paths taken by the users. However, transitions made by very few of the users
are easily uncovered. The limit for which the transition probabilities are
considered low may vary, thus providing the possibility to alter it to evaluate
different configurations.

Research questions related to Markov chains

This section describes the answers to the research questions provided by the
Markov chain.

123

5.2. MACHINE LEARNING METHODS

Figure 5.9: Markov chain with high probability transitions trained on transaction

logs

124

CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.10: Markov chain with low probability transitions trained on transaction

logs

125

5.2. MACHINE LEARNING METHODS

Figure 5.11: Markov chain with medium probability transitions trained on trans-

action logs

126

CHAPTER 5. RESULTS AND ANALYSIS

RQ 1.4: Is it possible to separate normal and abnormal behavior in audit logs
based on Markov chains? Obviously, it is possible to divide sequences
of states based on their relative frequency. The Markov chain used
in this project only considers sequences of two states. Even so, many
transitions could be classified as abnormal.

RQ 2.1.3: Can research question 2.1 be answered by the use of Markov
chains? Figures 5.9, 5.10, and 5.11 show that Markov chains are capa-
ble of separating transitions with low probability from the rest. When
gathering data from the transaction logs, rather than the web logs, we
would assume that users’ requests are interpreted and refined to some
degree. This means that innocent transitions taken from the web logs,
and considered abnormal, in many cases will generate a transition in
the transaction log, which a Markov chain will consider to be normal.
This is confirmed by the fact that the Markov chain encountered a
lower number of states in the transaction logs, than in the web logs.
However, users who, for instance, are testing for flaws in the applica-
tion, would generate exceptions and function invocations not caused
by the average user. Therefore, while a Markov chain cannot detect
malicious transitions in the transaction logs, we expect an abnormal
transition in the transaction logs to have a higher probability of being
truly abnormal, than in the case of the web logs.

RQ 2.2.3: Can research question 2.2 be answered by the user of Markov
chains? See answer for research question 2.2 in section 5.4.2.

RQ 2.3.3: Can research question 2.3 be answered by the use of Markov
chains? As evident in figures D.1, D.2, and D.3, Markov chains can
be used to separate abnormal and normal requests for resources. How-
ever, any user is of course free to enter any address into his browser’s
address bar. This includes fictional resources located at the server
banking applications server. By doing this any user can issue a request
for a unique resource at the server, i.e. a resource never requested be-
fore, and thereby generate a low-probability transition. Further, there
is no doubt that fraudulent requests may be classified as normal by
a Markov chain. Consider, for instance, the masquerader scenario in
section 1.2.3. It should be obvious that a masquerader may issue a re-
quest for a payment by performing the same state transitions as a legal
user, thereby giving a Markov chain no reason to classify the session as
abnormal. However, malicious users conducting, for instance, guessing
for predictable resource locations or page traversals, in order to doc-
ument and test the system, would most likely generate some requests

127

5.2. MACHINE LEARNING METHODS

classified as abnormal by the Markov chain. Therefore, Markov chains
cannot detect fraud directly, but many fraudulent transitions would be
detected by Markov chains.

RQ 2.4.1: Can research question 2.4 be answered by the use of Markov
chains? See answer for research question 2.4 in section 5.4.2.

RQ 3.3: Will research question 3 be true for Markov chains? As discussed
for RQ 2.3.3, the answer is no. In the case of a Markov chain, with
no more information about the processes than that of the current and
next states, many fraudulent transitions would pass as normal.

5.2.4 Analysis of validity for machine learning methods

With regards to the threats to validity discussed in section 3.3, we analyze the
threats relevant to the results provided by our models to see if the validity
of these results is threatened. As mentioned in section 3.3, there are two
aspects to consider when evaluating the validity of results. First is the validity
of the results within the population it is evaluated by, and second is the
validity of generalizing the results to be valid within a larger population.
In the following text, we search to find the validity of the results within
both these populations based on an analysis of conclusion validity, internal
validity, construct validity, and external validity.

The conclusion validity is concerned with the relationship between the de-
tection models and the classification of instances. It consists of three relevant
threats to the results of our models:

Low statistical power: We are aware of the potential threats of validity
based on the high rate of false positives. The more important threat is
the rate of false negatives. This would give the result a low statistical
power. The important factor here is the difference between the classi-
fication of instances by our models, and the actual classes of instances.
However, when the actual classes of instances are not available, this
factor is impossible to review. It is also important to notice the differ-
ence between abnormal and malicious instances. There will always be
a strong possibility for normal instances being classified as anomalies.
Hence the rate of false positives is not a relevant measure.

Violated assumptions of statistical tests: SVMs and ANNs have some
concrete demands on the properties of the input data in order to provide
correct results. These requirements have been followed strictly in order
to minimize the risk of lowering the validity of the result.

128

CHAPTER 5. RESULTS AND ANALYSIS

Fishing: One of the main advantages with machine learning methods, such
as the ones employed in this project, is that they leave all the evaluation
and processing of data to an objective machine. Hence, the opportunity
for the participants of the project to influence the results is small.
However, the participants can influence the results indirectly by model
configuration, but this can be described more as optimizing the model
than fishing for results.

Internal validity is concerned with the quality and properties of the data,
and it is hence of little relevance to analyze within the scope of machine
learning methods. The internal validity is considered in the analysis of the
audit data in section 5.3. Construct validity treats the relation between
theory and observation, and is discussed next.

Mono-method bias: The mono-method bias is prevented by two things.
Firstly the relevant models use all parts of the available data. This
leads to a high dimensional detection space which would inhibit any
single attribute from corrupting the model. Second is the fact that the
available data is provided over a large quantity of time, which would
inhibit any non-consistent data bias from becoming apparent.

Experimenter expectancies: The expectancies of the people conducting
the tests have little influence on the results. The only way to influence
the results would be to actively alter attributes of the data sets or the
classification models. We rely on the seriousness of the conduction of
the tests, and hence, assume that only unintentional actions could be
conducted, and as explained, there is risk of an unintentional action
threatening the validity of the results is small.

The threats concerning external validity are concerned with the general-
ization of the results. We find that it is not of relevance to analyze these
threats within the scope of the machine learning methods.

As this analysis shows, just a small subset of the threats to validity con-
cerned in section 3.3 are relevant for the results of the machine learning
models. Further analysis of the relevant threats shows that the safety mea-
sures suggested in advanced have contributed to prevent any of the relevant
threats to compromise the validity of the results.

5.3 Audit data

The task of analyzing the audit data is hard and diffuse. This is because we
have a two part responsibility between the machine learning methods used

129

5.3. AUDIT DATA

and the available audit data. In this analysis we have emphasized how well
the available data mirrors the actual behavior of the user’s interaction with
the system, the consistency of the audit data, and how well we were able
to extract data from the audit data by log parsing. The rest of this section
is organized as follows. First, we look at the available audit data and its
strengths and shortcomings. Then, we analyze the log parsing conducted by
this project, to see its effect on the general performance. Finally, we look at
how the research questions concerning audit data are answered and how the
threats of validity are handled.

5.3.1 Available audit data

We were provided with a large quantity of three different logs available for this
project. One of these logs, the application log, was used in the project carried
out the semester before this project [KK07]. The evaluation of this log,
conducted in the preliminary project, led to the conclusion that its quality
was too poor. The consistency of this log would lead to great problems,
especially when wanting to use it in combination with an anomaly detection
system. This led us to focus on the web and transaction logs as information
sources for this project.

The transaction log lists all actions performed on behalf of user requests.
It thereby contains the actions performed concerning moving an amount
of money from one account to another. Most of the attributes in these
entries originates from user input, of which receiver account number, amount,
and message provide examples. As discussed earlier, attributes containing
strings impose some problems for machine learning methods, which mostly
can handle only numerical and categorical values. However, values containing
information which is directly input by the user is of such interests that they
need to be included.

We described a simple transformation scheme that transformed important
aspects and properties of the string’s value into numerical values. This was
a necessity in order to keep some of the information in the string attributes.
However, this transformation scheme imports some issues since not all of the
information from the strings can be transformed over to numerical values.
This naturally raises the question of what information should be transformed.
In this case, we chose a simple solution for bringing only the most important
properties over to a numerical form. As proposed in section 4.1, there are
also other types of information that can be extracted from the attributes.

Besides the transformation of strings, the transaction entries from the
log seem very consistent and suited for machine learning, but we also see
limitations in the information available, which could come in handy in a

130

CHAPTER 5. RESULTS AND ANALYSIS

detection scheme, such as personal user information, account information,
and receiver information.

The web log is the primary source of information for the user’s direct
interaction with the system interface through a web browser. However, there
are limitations in what information is recorded. For example, only the GET
parameters are recorded not the POST parameters1. This information would
be of interest in any IDS, since any part of user interaction could contain
valuable information.

There also exist several types of information regarding the user that could
be collected, which might be used to increase the value of the logs when con-
sidering fraud detection. Examples of these are geolocation of IP addresses2

and robot detection [KK07]. However, despite the mentioned weaknesses,
the log contains valuable information which seems to be enough to create
profiles of normal behavior. A great strength of the web log is that it follows
a consistent format which leads to a high consistency in the data.

5.3.2 Log parsing

Log parsing is the action of transforming a general log over to a defined
format. This is very important since machine learning methods look at each
instance in a log as equals. Hence, the need for a consistent format on the
log data is vital in order to utilize the data at all.

The parser was, for each log type, able to parse most of the instances over
to a consistent format. However, some atrophy was experienced. The largest
problems were with the application log, which seemed to have different data
providers leading to a high rate of inconsistency. With a general parsing
success of 47% of the instances, it is clear that this log is too inconsistent
to provide high quality data for a machine learning method. The unparsed
data from the application log seemed to be various stack traces and snippets
of HTML code.

The transaction log provided a much more consistent format, and we were
able to successfully parse all the instances involving transactions. However,
28% of the log’s content was considered not to contain any additional infor-
mation, and was discarded. The web log had an even better success rate
of close to 100%. This is due to the strict format the web log is founded

1POST and GET are different methods that define the way attributes are carried within
requests. In the GET method, the attributes set are appended to the Uniform Resource
Locator (URL). In the POST method, the attributes are included in the body of the
request.

2Geolocation refers to techniques used to identify the physical location of a computer
connected to the Internet.

131

5.3. AUDIT DATA

on. Based on this we can conclude that we were able to parse close to all of
the information from the transaction log and the web log, but, we suffered
a large loss of information from the application log, making it unsuited for
parsing and machine learning. Based on this, we can say that our previ-
ous assumption of primarily using the transaction log and the web log was
correct.

Another problem we experienced in the log parsing surfaced when we
started to analyze the relations between instances with the goal of relating
single instances to user sessions. This would mean that each instance in
every log should be grouped by a session identifier provided. The way to
identify the session of an instance varied between several different identi-
fiers, such as session id, thread id, IP address, user id, and social security
number (SSN). Clearly, this inconsistency lead to a large complexity in the
parser that attempted to extract and group instances related to each session.
This problem became even clearer when we were unable to find a session for
several of the instances. Here, we can see that it is not only important to
have consistency in form between instances, but also consistency in relations
between instances.

5.3.3 Research questions related to Audit data

Following is answers to the research questions that are related to the audit
logs.

RQ1.1: Does the audit logs collect enough information about the user’s in-
teraction with the system to enable detection of fraud? This is a very
hard, if not impossible, question to answer. Since we deal with nov-
elty behavior there is no real way of assuring that enough information
is collected. A further question would be if all kinds of fraud will be
manifested in some kind of abnormal behavior. This research question
seems impossible to answer on a general basis for all kinds of fraud and
malicious behavior. However, when we look at subsets of fraud and
malicious behavior, it suddenly seems much easier to answer. Clearly,
some kinds of fraud, malicious behavior or attempts on such will be
manifested in attributes and values provided by the available audit
logs.

5.3.4 Analysis of validity for audit data

Only the threats to validity concerning the data at hand are relevant. These
originate from the internal and external validity threats. Internal validity is

132

CHAPTER 5. RESULTS AND ANALYSIS

considered first.

History: The history threat is concerned with the influence time could have
on the data and its performance. It is obviously a threat that the
available data is collected within a too narrow time interval to provide
the proper variance in the data. It is also a fact that some parts of the
data used is no longer valid due to system upgrades and alterations.
Hence, we must conclude with that the history threat is valid for the
models generated on outdated data. However, this threat is limited
since the classification models can be rebuild on new valid data with
ease.

Maturation: This threat is concerned with how users change their behavior
to the same stimulus over time. This is a valid threat for the data at
hand. However, we are aware of this property and have implemented
our models so that they can be built on new data as behavior changes.
This is more a question about updates of models, than properties within
the data. We find it obvious that the user’s interaction with the system
will mature over time.

Instrumentation: looks at what and how data is collected. How data is
collected is outside the scope of this analysis, but what data is col-
lected is very relevant. The details and levels of data collected is a
hard selection to perform. However, we find that the data collected
provides proper information for this purpose. The transaction log pro-
vides enough information about each transaction. However, one can
always look at additional sources for information that could lead to a
better understanding of the user’s behavior.

Selection: is the threat treating whether the result could be different if
another set of instances where selected. This would be a major threat
if we had limited data available. However, the data material provided
to us is of such quantity that it would be a sufficient representation of
the behavior. This point is also supported by the analysis of machine
learning methods, where one could see that performance of the models
did not increase as the training set became larger. Hence, we can
conclude with that the selection threat is absent.

Mortality: is the fact that users can terminate their session with the system
at any time, leaving sessions incomplete. However, by the manner the
profiles are built now, this would not be a problem. A termination of a
session will not lead to an incomplete data instance and hence will not

133

5.4. SUMMARY OF ANALYSIS

affect the profiles concerned with instances. The profiles concerned with
sessions are concerned with state transitions, not complete sessions, so
we disregard the mortality threat.

External validity is concerned with the generalization of the results to a
broader population than the population used in this project. It is considered
next.

Interaction of selection and treatment: During the review of threats
we found that this threat was absent in the data set provided to us.
After analyzing the data set more thoroughly we are even more secure
that the population described in the data set is representative for the
rest of the systems users.

Interaction of history and treatment: The data available to us is col-
lected during several days, and hence, the possibility that the data is
influenced by special times or dates should be eliminated.

5.4 Summary of analysis

This chapter provides a vast amount of information about parts of this
project. During this chapter we have tried to analyze, not only the spe-
cific items, but also relevant research questions and threats to validity. In
this section we try to bring these reoccurring themes to a conclusion by
summarizing our analysis of the research questions and threats to validity.

5.4.1 Summary of result validity

In this section we summarize the findings from the analysis of the threats to
validity of this project’s results. We do this by looking at the four general
points of validity we wish to protect and how well they are protected in this
project.

Conclusion validity: The threats considered in conclusion validity origi-
nates from the possibility that the results found does not have a sat-
isfying statistical significance. These threats have been analyzed for
all the different machine learning methods used, and the results seem
rather consistent. The threat of false negatives seems to be the largest
threat to the validity of the results.

Internal validity: The internal validity is threatened by false relationship
between instances and classifications due to unknown factors in the

134

CHAPTER 5. RESULTS AND ANALYSIS

data. We were early aware of this type of threats and, as described
in section 3.3, we took precautions to limit this possible threat to the
validity of our results. During the analysis of internal validity we found
that, due to the nature of machine learning, these threats were limited
and could easily be eliminated by updating the data set as changes
occur.

Construct validity: Construct validity looks at the threats concerning re-
lations between theory and observation. The analysis shows that these
threats are limited in this project, but they can however not be dis-
regarded. We find that mono-method bias is generally eliminated due
to the high dimensionality in the data used by the machine learning
methods. However, we cannot guarantee that the experimenters’ ex-
pectancies have not been a factor in influencing the results. This is
especially a concern with the work done here in this chapter, since
analysis allows some subjective influence.

External validity: The external validity is concerned with whether the re-
sults were relevant for the population wishing to generalize to. During
our analysis we found no indication that this threat should have caused
any effect on this project’s results. Due to the large quantity, varia-
tions, and quality of the data sources used, we have eliminated this
threat.

5.4.2 Summary of research questions

In this section we summarize the answers to the five main research questions
proposed in section 3.1. These answers are vital for the results of the final test
to the hypothesis. During this analysis we have tried to answer to underlying
research questions as best in order to be prepared to answer these main
questions. The main questions’ answers are directly affected by the answers
provided in the previous analysis of the related subquestions.

RQ1: Does the information contained within audit logs contain enough in-
formation about normal behavior to create a profile defining all types of
normal behavior? The analysis of the different machine learning meth-
ods shows that it is possible to create profiles defining normal activity
of users’ interaction with the system. We can with certainty say that
this shows that the data contains enough regularity to define normal-
ity patterns. However, we also see that legal actions are classified as
abnormal. This raises the question of the difference between normal
actions and legal actions. The goal of this project was to learn normal

135

5.4. SUMMARY OF ANALYSIS

system behavior without considering what was legal. The basis was
that illegal behavior would be manifested as abnormal behavior. So we
can clearly say that the audit logs contain enough information to be
able to define normal behavior.

RQ2: Is it possible to detect malicious behavior and fraud based on audit
records from different levels in the system? In order to answer this
question we have to look at the different logs that we have analyzed and
used in this project. Obviously, different kinds of fraud can be detected
by different kinds of information. The question is if the information
from the different logs provides this kind of information.

RQ2.1: Is it possible to detect malicious behavior and fraud based on
transaction logs? The transaction log would seem as a proper
data source to detect fraudulent actions. However, as we ana-
lyzed the log we saw that there were some issues. Fraudulent
actions can have many characteristics and manifest themselves in
the data sources in different ways. The important thing is that
the fraudulent actions are manifested in the data recorded by the
log.

For the transaction log we have some variables that are determined
by applications and some that are provided by the user. Both
these types of variables are of interest for different reasons. This
is because malicious behavior and fraud would manifest itself in
different ways by the two different types of variables. Application
provided variables would provide more structure and less variance
and it would hence be easy to find abnormal deviations. User
provided variables need a more thorough analysis, and contextual
information is preferable in order to have some idea of what to
look for.

The conclusion is that the transaction logs contain a lot of valid
and interesting information, which in some cases can provide val-
ues of variables that suggest fraud or malicious behavior. However,
a lot of this information is provided by the user which means that
the variables have much less structure and higher variance than
application provided variables.

RQ2.2: Is it possible to detect malicious behavior and fraud based on
application logs? After the research questions were defined and we
started to work with the available audit logs we found that not all
the logs were suited for usage by this project. As seen in this chap-
ter, all research questions concerning the application logs are left

136

CHAPTER 5. RESULTS AND ANALYSIS

unanswered. This is due to the fact that we found the application
logs unsuited for further work with machine learning methods,
and hence no results were generated by this log. All subquestions
to this research question have thus been left unanswered.

RQ2.3: Is it possible to detect malicious behavior and fraud based on
web logs? The most outstanding property of the web log compared
to the transaction log is that it shows a much clearer structure for
the values of each attributes. This is due to the fact that most
values are set by the web server applications, and are not provided
by the user directly. This fact has an advantage and a drawback.
The advantage is that is easier to detect anomalous values in such
well structured attributes. This would lead to a higher precision
in the detection since there is less room for the user to interfere
with the values. The drawback is that since the data in the log
is mostly provided by an application, the possibility of it being
able to detect fraud and misuse is reduced. However, we see that
some behaviors indicating fraud and misuse can be manifested in
such a log, i.e. path traversal, application probing, and attempts
to reach predictable resources.

RQ2.4: Is it possible to detect malicious behavior and fraud based on
information from a combination of logs? As explained in 2.1.2,
combining information related to specific sessions from the var-
ious logs proved to be a challenging and time consuming task.
Therefore, we chose not to investigate this question.

RQ3: Will malicious activity and fraud always be classified as abnormal
data? This is clearly an ambitious question to answer, and the re-
search we have conducted has not a clear answer to this. Based on a
theoretical level, we can say that as the state of the art is today, there
clearly exist types of fraud and misuse that would not be detected
within abnormal data. An example of this is the Trojan scenario de-
fined in section 1.2.3. These types of threats are hard to cope with since
the behavior of a Trojan would exhibit limited deviations, compared to
that of the legitimate user. The need for further research on creation
of profiles of user behavior is apparent and highly valuable for future
anomaly based fraud and misuse detection.

RQ4: Can malicious behavior be detected by the use of profiles? Since we are
unable to test the performance of our profiles’ fraud and misuse detec-
tion, we are unable to answer this question based on our experiences.
However, based on the work done in the study of the state of the art,

137

5.4. SUMMARY OF ANALYSIS

we clearly can state that malicious behavior can be detected with the
use of profiles. Each profile gathers a set of properties that are found in
the available data. These properties can be learned by looking at what
values they take on a general basis. Malicious behavior deviates from
the ordinary since it tries to achieve some unforeseen or unintended
reaction from the server, and hence would be of an anomalous nature.

This summarizes the answers to our research questions. We notice that
many of the questions have been answered more on a theoretical level, than
based on actual experiences and results. This is mostly due to problems re-
lated to testing and evaluating the implementations of the profiles. However,
the answers are still valid and of value for this project.

138

Chapter 6

Discussion

Summary

This chapter sums up the project and extracts the contribution. First, we
look at our findings that obtained by creating and evaluating a set of profiles,
utilizing machine learning methods, and analyzing the results. Then, we look
at our hypothesis and try to verify or falsify it based on our findings. In
order to see the contributions of this project, we compare our findings to the
background material of this research field. After this we formulate a platform
for further research which would lead any further work in the right direction.

140

CHAPTER 6. DISCUSSION

6.1 Findings

This section will describe our findings in this project. These findings are a
direct result of the analysis of the results we have generated by testing ma-
chine learning methods on audit data for the purpose of fraud and misuse
detection. This section is organized as follows. First, we look at the find-
ings concerned with profile creation, selection, and usage. Then, we look at
our discoveries related to implementing these profiles by different machine
learning methods. After this, we discuss the results generated by our im-
plementations and findings concerning these. Finally, we use our findings to
test our hypothesis, so that a formal contribution in terms of a verification
or falsification can be provided.

6.1.1 Profiles

The design of profiles for detection of fraud and misuse by anomalous behav-
ior is hard, primarily due to the fact that we are dealing with the unexpected
and unknown. The basis of anomaly detection is to detect behavior that is
new and undiscovered, hence no assumptions about the behavior can be
made. Creating a profile for fraud detection without any assumptions means
having to take everything into account. Since nothing is certain, it is im-
possible to focus or limit expected behavior or attribute values. Due to this
we cannot make any assumptions on the anomalies, rather we have to focus
on behavior that we can make assumption of. This behavior is that of the
normal users in the system. The only assumption we can make about these
is that nearly all usage of the system is legal and can, hence, be used to learn
the legal usage of the system.

A limitation for profile design is the available data material documenting
the user’s interaction with the system. In order to learn a total picture of
the usage of the system, all information that the user inputs and generates
on the system have to be stored. This is not a practical nor efficient solution.
One of the keys to success in an anomaly detection system is that the audit
logs contain a sufficient amount of relevant information. During this project
we experienced that some logs contained a great deal of information that was
of limited significance for anomaly detection.

One of the key findings of this project is that it seems more relevant to
focus on higher level profiles. By higher level we mean profiles that take into
account several log instances, and perhaps several different logs. We found
that profiles at a lower level were unable to detect deviations in user behavior
due to the limitations in scope. This does not mean that lower level profiles
are not of interest, on the contrary, we find that low level profiles can pro-

141

6.1. FINDINGS

vide highly relevant detection. However, it would detect types of behavior
that would deviate on an attribute or instance level, not on a general behav-
ior level. We also remark that low level profiles would have a lower impact
on security, since detection on attribute level is a much more mature field
than that on the behavior level. By this we mean that regular security mea-
sures usually include input validation and attribute analysis, while behavior
detection is still a field in need of research [fBS04].

6.1.2 Audit data

After working with authentic audit logs we discovered that the log data is
not always as consistent and of the quality desired. When working with
machine learning methods we have to provide data that are on a consistent
format. Permutations, deviations, and regular instances will all be evaluated
on a common basis, making inconsistency a crucial threat to the validity
of any result for a machine learning method. In this project we parsed the
logs to a common format in order to utilize the data. This approach has its
limitations, since we were unable to parse all logs and instances. Preventing
loss of data in the log parser is an area which should be worked further with,
since any loss of data is a potential loss of performance.

Another problem with the audit logs was how to track information across
different logs. There was no unique global identifier for different users or
sessions, making the collection of these hard. The inconsistency of identifiers
across logs is something that can be improved by two methods. Firstly, by
reconstructing the audit mechanisms so that it produces logs with a global
consistency. However, this approach is unlikely due to impact on existing
system functionality. The second is to build a better log parser that is able
to collect more information about each user and session. This is an area
which needs further research, and if conducted successfully, could lead to
an improvement of profiles that can detect deviations in session and user
behavior.

6.1.3 Machine learning

Three different machine learning methods have been employed to implement
the two selected profiles. Based on the properties of the different methods,
ANN and SVM were employed on the low-level user request profile, while
Markov chains was employed in the more general high-level session structure
profile. A general observation for the machine learning methods is that they
all provide the wanted functionality and were able to detect anomalies in the
data.

142

CHAPTER 6. DISCUSSION

One key finding concerning machine learning methods is that they are
fastidious regarding the input data. A general property is the restriction of
only accepting numerical and categorical values. This leads to a reduction
in the information available to build profiles on, and could further lead to a
reduction in performance. String values are the attribute type that suffers
the most due to this. Even though we created a transformation of the most
important properties of a string, this is an area that needs further research.
This limitation is not inherent in Markov chains in the same manner, since all
they require are an enumeration of some values, be it textual or numerical to
define as states, and sequences of them to interpret as transitions. However,
the state space can not be infinite, and so the Markov chain can be considered
to require categorical values as states as well.

The main problem with the machine learning methods was the absence
of measures that could be used to evaluate their performance in detection of
fraud and misuse. We search to find behaviors that are of a novel type and,
naturally, we do not possess such examples. This leads to the question of
how to evaluate the methods’ and profiles’ performance. One way would be
to make a synthetic test set. However this would make assumptions on the
properties of fraud and misuse behavior of which we have no basis. Another
way would be to use historical data of fraud and misuse to make a test
set, but this would only provide a measure on the detection of historical
events. Hence it is unsuited to provide a measure on future detection of
novel fraudulent and malicious events.

6.1.4 Results

After the profiles were implemented in the different machine learning meth-
ods, we were able to run them on sets of logs in order to see how normal
behavior was learned and anomalies detected. All machine learning methods
were able to learn the behavior and range of attribute values that were nor-
mal. They were also able to detect instances that deviated from the norm
and classify them as anomalies.

The key observation within the results is that every data set has anoma-
lies, but an anomaly is not equal to a fraudulent or malicious act. By looking
at the instances classified as anomalies in more detail, we could look for prop-
erties within the instances that would be of an anomalous nature. A general
observation was that user provided data could contain strange and illogical
values. Most of the detected anomalies were due to the user providing unex-
pected values to different attributes. Application provided values had a much
clearer structure and provided a better material for division between normal
and abnormal values. Based on this, the key finding is that user provided

143

6.1. FINDINGS

data needs more analysis and processing in order to provide a foundation for
determining the normal ranges of the attributes’ values.

An interesting problem we experienced during analysis of the results was
how the fraudulent and malicious instances could be found within the set
of anomalies. Clearly, not all anomalies are of a fraudulent or malicious
origin. The majority will most likely be classified as anomalies due to strange
behavior or rare values. Even with a detection rate such that 0.1% anomalies
are detected in a data set, one can end up with thousands of anomalous
instances, due to the size of the set. This leads to two problems that need
further research. First, whether all instances that are of a fraudulent and
malicious nature are within the set of anomalies. Second, how could the
fraudulent and malicious instances be found within the set of anomalies.
This project has only been able to detect these two problems, not provide a
clear solution for how to answer them.

The system investigated in this project is not mature enough to be used
as a security measure in the targeted domain. Initially, we see such a system
as a tool for providers of banking applications in a process in which the
available audit data is searched for fraudulent activity. As long as fraudulent
behavior deviates from what is normal, it can aid in filtering out the normal
data, to reduce the amount of information subject to other analysis.

6.1.5 Result of hypothesis test

In section 1.3 we described a problem definition we wished to answer in
this project. The proceeding work led to the creation of a hypothesis which
should be tested in order to provide an answer to the problem definition.
Next, we will look at how the findings in the previous sections have lead to a
verification or falsification of the hypothesis. The hypothesis was formulated
as follows:

If it is possible to detect novel fraud and misuse by using anomaly
detection on audit data from Internet banking systems, then it is
possible to do so with the use of machine learning methods on
audit data.

We can break the hypothesis into three subsets that can each be verified or
falsified. The first consist of the question whether machine learning methods
can be used to perform any kind of detection that some other method is able
to do. By this we mean that if somebody or something is able to detect an
event or instance based on a set of premises, then machine learning methods
can also perform such a detection. The answer is that as long at the detection

144

CHAPTER 6. DISCUSSION

takes place based on a set of definable premises, then a machine learning
method can learn these premises and carry out the detection. This part is
hence verified.

The second part is a generalization of the subjects we want to detect. It
is concerned with whether we are able to detect novel fraud and misuse at
all by anomaly detection. Clearly, we can think of novel fraud and misuse
that would have similar properties to existing fraud and misuse. Many of
these occur when providing input values that would lead to an unintended
response in the system, and hence, would be detected as an anomaly. So also
this part can be verified.

The third part concerns whether the hypothesis can be answered for the
special case of detection of the majority of novel fraud and misuse. This
means that we want our hypothesis to be valid on a general basis, not just
for a limited number of imaginable novel incidents. Here, we encounter a
problem, which has been mentioned earlier in the findings. This is whether
machine learning methods can be prepared to detect the unexpected and
unknown. On the basis of the previous sub-verifications of the hypothesis, it
is tempting to say that also this part is valid. However, there is no way to
ensure that our hypothesis is valid for this case. This is because there is no
way of knowing what to expect from novel incidents. Based on this we have
to falsify our hypothesis, since there is no way of knowing how future novel
fraud and misuse attempts will behave.

6.2 Comparison to background

In order to attach our contribution to the related research area we look at our
findings in the light of the research and information reviewed in sections 1.1
and 2.2. In the following section we compare our findings to the related
background material.

In section 1.1 we identified a general absence of a complete security mea-
sure for Internet banking system. The problem is that security measures do
not return the investment cost in terms of detecting and preventing fraud
and misuse. It seems instead as security by obscurity is just as important as
a functional security measure. Based on this we identified the need for a cost
efficient security mechanism that could be added and customized without
interfering with the existing system.

The solution proposed by this report provided the identified properties
needed of the security measure. By using the audit data as our data source
we can collect information about the system, the users, and the interaction
between them without interfering with the current system. By utilizing ma-

145

6.2. COMPARISON TO BACKGROUND

chine learning the solution is automatically customized to be used on the
audit data available. Finally, when looking for anomalies, we find only the
fraud and misuse instances that have not already been identified by existing
security measures.

As seen in section 2.2 there has been conducted a lot of research on the
area of fraud and anomaly detection by machine learning methods. This
report tries to take this research further, by implementing state of the art
machine learning methods and fraud detection schemes in a special case on
a well known system, based on structured and well defined audit logs. By
doing so, we wish to investigate the performance of state of the art methods
by specializing them within a concrete domain.

Since we were unable to evaluate the performance of the different machine
learning methods we find it more relevant to look at the basis of our work
which is to define profiles for a concrete domain and use the knowledge and
understanding of the domain, the system and the available data to improve
these profiles. Our proposal was that by looking at a concrete domain we
could use additional information to improve the performance of machine
learning methods.

Several researches have considered a concrete area when trying to achieve
anomaly detection with the use of machine learning. For instance, [AFR97]
and [GSS99] looks at credit card transactions and system calls, respectively.
The use of profiles that analyze data at different levels have also been re-
searched in [MP99]. However, our work deviates compared to both of these
areas in key points. Firstly, we look at a domain in which public research
is very limited. We were unable to find any kind of publication that em-
ployed profile based detection on real data from an Internet banking system.
Further, most of the research conducted on concrete domains have been con-
ducted on very specific and structured data sets, such as credit card trans-
actions, which has a very consistent and simple form for each instance. We
have chosen not to limit the data used to basic data sets, rather we have
tried to use more of the available information provided by the audit logs.

The second area, profile at different levels, has also been proposed in ear-
lier research. However, we can not find any research that suggests such a
total approach as ours. Although we had to select a subset of our designed
profiles, due to limitations in working hours, our suggestion is designed to
detect fraud and misuse at every level of data abstraction. The research
we found that included profiles based on abstraction levels of the available
information include [MP99] and [CUK02]. These researches are based on
information sources from standardized systems following international stan-
dards. They also focus on profiles from a special area of data abstraction,
such as user level or at different time frames. In our case we look at a highly

146

CHAPTER 6. DISCUSSION

customized system that follows a mix of international and custom standards.
Our profiles are especially tailored towards fitting the available information
from the system in a proper way. Further, we have not chosen to look at a
specific level of abstraction, but rather tried to gain a complete set of profiles
that could provide picture of all aspects of the system.

6.3 Further research

The information described here is probably the contribution we find the
most important in our work. As this subject clearly needs further research,
it is very important to use the work and results provided by this project to
create a foundation for further research. The use of anomaly detection and
machine learning to detect fraud and malicious behavior has proven complex
and hard. Therefore, it is even more important to lay an early foundation
that can lead the research in the right direction, toward the ultimate goal
of a functional solution that can be used in a production environment with
satisfactory accuracy. Based on this, we have identified some key research
areas which we would like to emphasize. These areas are those we found vital
to answer in order to get satisfactory results, and are described here.

String analysis: Machine learning methods have a general limitation in
utilizing string values. In order to deal with this limitation, previous
research [KVR05], and this report, have proposed transformations of
textual properties to numerical values. However, there is still a lot
of information that we are unable to transform. Strings can contain
valuable information and are of interest due to the fact that it often
is directly provided by the user. Hence, there is a need to further
research how to extract as much information from a string as possible.
Possible further transformations could include extraction of grammars
and understanding of sentences.

Profile creation: This project chose to create profiles to form the founda-
tion of the detection of abnormal instances. The profiles suggested by
this project were designed based on what information was available.
The implemented profiles were limited by the available amount of work
available to this project. Due to this, interesting profiles could not be
selected for further work. We also acknowledge that there are other
profiles that should be evaluated and researched further. Other types
of information can be taken into account and data can be extracted
differently from the logs. Hence we think it is a good idea to work
further with creation and evaluation of different profiles.

147

6.3. FURTHER RESEARCH

User profiles: One profile with a significant potential is the user profile
suggested by this report. Due to the limitations discussed, we could
not consider it further in this project. However, we feel that this profile
has the most potential among those not implemented here. Because of
the limitations found in the evaluation we propose that this profile can
be generalized to some extent, but not to such a degree that it becomes
a replica of the session structure profile. It is plausible to believe that
users can be grouped into similar clusters based on behavior, and hence,
the problem with low statistical relevance of each cluster would be
avoided. A profile based on user groupings, clustered by behavior, is
the preferred choice if one should work further with this project.

Session profiles: The session structure profile implemented in this project
was rather simple. We were able to define some properties in the avail-
able data source as states, and calculate the probability for one of them
occurring immediately after another. We stated the option of extend-
ing the memory of such a model, such that sequences of more than two
states are considered, in addition to including information about the
duration of the states. Such a model quickly becomes complex, and so
it would be interesting to investigate the most beneficial properties to
include into the model, while still keeping the complexity to a manage-
able level. We believe that such a model would be a valuable addition,
if research further.

Evaluation of machine learning: A key problem we encountered in this
project was the limitation in evaluating the different detection models
created by the machine learning methods. Since we wanted to evaluate
the profiles’ ability to detect novel fraud and misuse, there existed no
available test set or evaluation criteria. Hence, we needed to develop
an evaluation scheme that was able to test profiles’ performance on a
common basis. Two suggestions were proposed by this report, however
none of them were implemented. Both have clear strengths and weak-
nesses, but the actual value of such an evaluation is still unknown. This
is because there is no way of knowing what to expect from future fraud
and misuse acts, and hence, no assumptions can be made to found an
evaluation. The area of evaluating the novelty detection of machine
learning models needs further research.

148

CHAPTER 6. DISCUSSION

6.4 Conclusion

The goal of this project was to investigate the possibility to utilize ma-
chine learning methods within anomaly based detection. The aim was to
detect fraudulent activities within an Internet banking system based on au-
dit records from the system. The analysis of the current state of security
in this domain confirms such a need. By designing a set of profiles, we de-
fine models that capture the normal behavior of users on several levels of
abstraction.

The results show that the models are capable of learning a baseline for
what to consider normal, thereby providing a method to discover deviations
from this. However, the models’ performance, with regards to discovering
malicious activity, could not be measured. We identify several immature ar-
eas that needs to be researched further in order for the value of such a system
to become satisfactory. The first opportunity we see for such a system is in
providing valuable assistance for Internet banking systems in determining
a subset of all the available information to investigate further in search of
traces of malicious activity. However, as this field matures and more public
research is conducted, such a system may eventually become a cost-efficient
security measure for the targeted domain.

149

6.4. CONCLUSION

150

Appendix A

Formats

A.1. COMMON LOG FORMAT

This appendix describes standard formats encountered in this report.

A.1 Common log format

The common log format (CLF) is a standard format for recording requests
processed by web servers. It can be produced by many different web servers,
and read by many log analysis programs. The format is as follows [18]:

remotehost rfc931 authuser [date] "request" status bytes

The meaning of the different attributes are explained in the following
list [18], [19]:

remotehost This is the IP address of the client which made the request
to the server. If a HostnameLookups-directive is set to on, the server
tries to resolve and log the hostname instead. Also, if a proxy server
exists between the client and the server, this would be the address of
the proxy, rather than the originating machine.

rfc931 The RFC 1413 identity of the client [Joh93]. This information is
highly unreliable, and some servers, such as the Apache HTTP Server,
do not log this information unless explicitly told to do so.

authuser The user identification of the person requesting the resource, as
determined by HTTP authentication. If the status code of the request
is 401, then this value should not be trusted, as the client is not yet
authenticated.

date The date and time the server finished processing the request. An ex-
ample of the default format for the Apache HTTP Server is:
[05/Jan/2008:08:09:03 +0100]

request The request line exactly as it came from the client. First, the
method used by the client is logged. Next, the resource requested is
logged, including any GET-parameters. Finally, the protocol used is
logged. An example is: "GET / HTTP/1.0"

status The HTTP status code that is returned to the client, as defined
by [FGM+99].

bytes The size of the object returned to the client, not including the response
headers.

A hyphen, -, in any of the fields indicates that the information was not
available.

152

APPENDIX A. FORMATS

A.2 Combined log format

The NCSA Combined Log Format is an extension of the Common Log For-
mat. The Combined format contains the same fields as the Common format,
but three additional optional fields are present: referrer, user_agent, and
cookie. The meanings of these additional attributes are [20]:

referrer The URL which linked the client to the server

user_agent The software and platform used on the client to access the
server.

cookie Any cookies sent to the server as part of the request. The format is
KEY=VALUE, and multiple key-value pairs are delineated by semicolons.

A.3 The HTTP protocol

The Hypertext Transfer Protocol (HTTP) [FGM+99] is the transfer protocol
used throughout the World Wide Web. It specifies the format allowed for
messages passed between entities in a distributed environment. A HTTP
messages is either a request sent from a client to a server, or a response
sent from a server to a client. It consists of a start line followed by, option-
ally, one or more header fields and/or a body. The content of the messages
are presented briefly in the next sections. The following character rules are
encountered:

CR = <US-ASCII CR, carriage return (13)>

LF = <US-ASCII LF, linefeed (10)>

SP = <US-ASCII SP, space (32)>

HT = <US-ASCII HT, horizontal-tab (9)>

DIGIT = <any US-ASCII digit "0".."9">

separators = "(" | ")" | "<" | ">" | "@"

| "," | ";" | ":" | "\" | <">

| "/" | "[" | "]" | "?" | "="

| "{" | "}" | SP | HT

A.3.1 Requests messages

A request message consists of a Request-Line as its start line. Allowed header
fields are general-header, request-header and entity-header fields, followed by
the optional body.

153

A.3. THE HTTP PROTOCOL

Request = Request-Line

*((general-header

| request-header

| entity-header) CRLF)

CRLF

[message-body]

The Request-Line is of special interest, since it corresponds to the request-
attribute in the common log format. Its format is specified as follows:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

where Method indicates the method to be performed, Request-URI is the
resource on which the method is to be performed, and HTTP-Version in-
dicates the highest HTTP version for which the application satisfies all the
MUST level requirements1 in the HTTP specification.

The method is one of OPTIONS, GET, HEAD, POST, PUT, DELETE,
TRACE, CONNECT, or any single US-ASCII character except US-ASCII
control characters and separators. All methods are optional to support, ex-
cept for GET and HEAD.

The Request-URI is either an asterix, (*), absoluteURI, abs_path, or
authority.

Request-URI = "*" | absoluteURI | abs_path | authority

The four options are dependent on the nature of the request. The asterix
means that the request does not apply to a particular resource, and the au-
thority form is only used by the CONNECT method. Further, as far as
HTTP is concerned, URIs are formatted strings which, via some character-
istics, identify a resource. The syntax and semantics of URIs are defined
in [BLFM98].

The HTTP-Version consists of the string HTTP/, followed by one or more
digits, followed by ., and ends with one or more digits.

HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

1The interpretation of the key word "MUST" is described in [Bra97].

154

Appendix B

Instruments

B.1. MACHINE LEARNING SOFTWARE

In this appendix we describe the instruments used in the construction
and operation of this project. It consists of machine learning software, de-
velopment tools and other types of instruments such as illustration and com-
munication tools.

B.1 Machine learning software

Machine learning software is freely available to download and use. They are
primarily in the form of libraries which can be embedded in larger applica-
tions. Commonly, they also include a graphical user interface, making them
a stand-alone application for evaluating machine learning methods on given
problems.

B.1.1 WEKA

WEKA (Waikato Environment for Knowledge Analysis) is a collection of
machine learning algorithms for solving real-world data mining problems [21].
It is written in Java and runs on almost any platform. The algorithms
can either be applied directly to a dataset or called from your own Java
code. The WEKA workbench contains a collection of visualization tools and
algorithms for data analysis and predictive modeling, together with graphical
user interfaces for easy access to this functionality. WEKA supports several
standard data mining tasks, more specifically, data preprocessing, clustering,
classification, regression, visualization, and feature selection. It also provides
an interface for additional machine learning libraries.

B.1.2 LIBSVM

In our research we used the LIBSVM (version 2.0) as an external library
to Weka [22]. This is an integrated tool for support vector classification
and regression which can handle one-class SVM using the Sholkopf algo-
rithms [SSWB00]. We used the standard parameters of the algorithm. For
this ’one-class SVM’, one has to choose the original frequency representation,
(e.g. the number of features), the appropriate kernel, and for each kernel the
appropriate parameters.

B.2 Development tools

The development tools are those tools that are used in the development and
implementation of the actual system.

156

APPENDIX B. INSTRUMENTS

B.2.1 Java

Java is a programming language, which has two important characteristics,
object-orientation and platform independence [23]. The first characteristic,
object-orientation, refers to a method of programming and language design.
The basic idea is to gather various types of data with their relevant operations
into entities called objects. An object can be thought of as self-contained,
consisting of code (behavior) and data (state). Platform independence means
that Java programs will run similarly on different hardware. This means one
should be able to write a Java program on any computer, and run it on
any other with the same result. This is achieved by translating the Java
program code to an intermediate format called byte code. Java has also
the possibility to import packages to expand the interface with even more
specialized features.

B.2.2 Eclipse

Eclipse is an extensible open-source Integrated Development Environment
(IDE) written primarily in Java [24]. In its default form, it is meant for Java
developers, consisting of the Java Development Tools (JDT). The Eclipse
platform, when combined with the JDT, offers many of the features one
would expect from a commercial-quality IDE such as a syntax-highlighting
editor, incremental code compilation, a thread-aware source-level debugger,
a class navigator, a file/project manager, and interfaces to standard source
control systems. Users can also extend its capabilities by installing plug-ins
written for the Eclipse software framework, such as development toolkits for
other programming languages.

B.2.3 IntelliJ IDEA

IntelliJ IDEA is another IDE for Java [25]. It supports a wide range of
modern programming languages and technologies. Among the features of
IntelliJ IDEA is a deep and intelligent editor and code analyzer, aiding the
programmer in writing clean code efficiently.

B.3 Other instruments

Other instruments contain tools which does not fit the previous classes.

157

B.3. OTHER INSTRUMENTS

B.3.1 Dia

Dia is free open source general-purpose diagramming software [26]. Dia can
be used to draw many different kinds of diagrams. It currently has special
objects to help draw entity-relationship models, Unified Modeling Language
(UML) diagrams, flowcharts, network diagrams, and simple electrical cir-
cuits. It is also possible to add support for new shapes by writing simple
Extensible Markup Language (XML) files, using a subset of Scalable Vector
Graphics (SVG) to draw the shape.

B.3.2 SSH/Putty

Secure Shell (SSH) is a network protocol that allows data to be exchanged
using a secure channel between two computers [27]. Encryption provides
confidentiality and integrity of data over an insecure network, such as the
Internet. SSH uses public-key cryptography to authenticate the remote com-
puter and allow the remote computer to authenticate the user, if necessary.
PuTTY is a terminal emulator application which can act as a client for the
SSH, Telnet, rlogin, and raw Transmission Control Protocol (TCP) comput-
ing protocols [28]. It provides all the needed features needed to communicate
securely with a remote system over an insecure channel.

158

Appendix C

Implementation

C.1. LOG PARSING

Although we have utilized packages providing some of the methodologies
we wanted to explore in this project, we had to implement some functionality
ourselves. Off course, since some of the logs were custom logs from the partic-
ular system available, no packages were available to parse these. In addition,
no suitable implementations of the LVQ and Markov chain were encountered
in an appropriate programming language. Since their functionality is rather
simple, we decided to write the code ourselves.

This appendix lists key snippet of code from the implemented function-
ality. All implementations are made in the Java programming language.

C.1 Log parsing

Logic for parsing the available logs is defined in the abstract class LogReader.
This class must be extended in order to parse the specific formats of the
various logs. A DataCollector can be attached to a LogReader in order to be
notified when any LogEntry is read and parsed.

C.1.1 Log reader

Listing C.1 shows the most important methods of the abstract class
LogReader. This class is extended by readers for specific logs, for instance by
TransactionLogReader and WebLogReader, which then must implement the
logic for parsing one or more log entries into a LogEntry in the method
readEntry(). Reading
of a log file is then initiated by calling the method setInputFilename(String)

with the filename of the log file to read, before calling readFile(). This
method creates an appropriate BufferedReader, and while this reader has
more lines to read, the readEntry()-method of the subclass is called, to read
and parse one or more log lines into a LogEntry object. If a LogEntry could
be successfully read and parsed, fireEntryRead(LogEntry) is called to notify
any listening DataCollectors of this.

160

APPENDIX C. IMPLEMENTATION

Listing C.1: class LogReader
� �

1 public abstract class LogReader {

2

3 protected BufferedReader inputFileReader ;

4 private String inputFilename;

5 private List <DataCollector > collectors;

6

7 ...

8

9 public abstract LogEntry readEntry ();

10

11 public void setInputFilename(String inputFilename){

12 this.inputFilename = inputFilename;

13 }

14

15 protected void fireEntryRead(LogEntry entry){

16 for (DataCollector collector : collectors){

17 collector.entryRead(entry);

18 }

19 }

20

21 protected int readFile () throws IOException {

22 int count = 0;

23 Reader reader;

24 if (inputFilename.endsWith(".gz")){

25 reader = new InputStreamReader (

26 new GZIPInputStream (

27 new FileInputStream (inputFilename)));

28 }else {

29 reader = new FileReader(inputFilename);

30 }

31 inputFileReader = new BufferedReader(reader);

32 while (inputFileReader .ready ()){

33 readEntry ();

34 count ++;

35 if (entry != null){

36 fireEntryRead(entry);

37 }

38 }

39 return count;

40 }

41 }
� �

161

C.2. MACHINE LEARNING

C.1.2 Data collectors

The interface DataCollector can be implemented by classes wanting to be
notified when a LogEntry has been read. Thus, collection and interpretation
of data is independent of the mechanism used to create the LogEntry-objects.
Listing C.2 shows the method defined by this interface. Classes wanting to
receive LogEntry-objects must implement the method entryRead(LogEntry),
and are then free to examine and interpret these in any way desired.

Listing C.2: interface DataCollector
� �

1 public interface DataCollector {

2

3 /**

4 * Called when a LogReader , for which this object

5 * is registered as a datacollector , has read

6 * an entry.

7 * @param logEntry the entry recently read from the

8 * data source

9 */

10 public void entryRead(LogEntry logEntry);

11

12 }
� �

C.2 Machine learning

We have implemented both a LVQ-I and a Markov chain. The following
sections show the most important elements of the classes providing these
functionalities.

C.2.1 Learning vector quantizer

The core functionality of the class implementing the LVQ-I is shown in list-
ing C.3. The network is given an input vector in form of an array of doubles.
Then, for each weight vector, it calculates the squared distance from the in-
put vector to the weight vector. Then, the square root of the BMU’s distance
from the input vector is calculated to yield the true Euclidean distance.

If the network is in training mode, the learning rate and weights are
updated by calling the methods updateLearningRate() and
updateWeights(double[], int), respectively. In addition, if the number of
input vectors exceeds the number of training cycles defines, the network turns
of training mode.

162

APPENDIX C. IMPLEMENTATION

Listing C.3: class LearningVectorQuantizerI
� �

1

2 public final class LearningVectorQuantizerI

3 extends UnsupervisedNetwork {

4

5 ...

6

7 @Override

8 public int feed(double [] z) {

9 if (z.length != nofInputUnits) {

10 throw new IllegalArgumentException (

11 "Input vector contains " + z.length +

12 " elements " + "- expected " +

13 nofInputUnits);

14 }

15

16 double dist;

17 double minDist = Double.MAX_VALUE;

18 int bmu = -1;

19 inputCount ++;

20

21 // Compute the distance , dist , between input

22 // vector z and each weight vector , weights[i]

23 for (int i = 0; i < nofOutputUnits; i++) {

24 dist = distanceSquared (z, weights[i]);

25 if (dist < minDist) {

26 minDist = dist;

27 bmu = i;

28 }

29 }

30

31 lastInputVector = z;

32 lastBMU = bmu;

33 lastMinimumDistance = Math.sqrt(minDist);

34

35 if (training) {

36 updateLearningRate ();

37 updateWeights(z, bmu);

38 if (inputCount >= nofCycles){

39 setTraining(false);

40 }

41 fireUnsupervisedNetworkChanged ();

42 } else {

163

C.2. MACHINE LEARNING

43 fireUnsupervisedNetworkProbed ();

44 }

45

46 return bmu;

47 }

48

49 private void updateWeights(double [] z, int bmuIdx){

50 for (int i = 0; i < weights[bmuIdx]. length; i++){

51 weights[bmuIdx][i] += learningRate *

52 (z[i] - weights[bmuIdx][i]);

53 }

54 }

55

56 private void updateLearningRate (){

57 learningRate = initialLearningRate *

58 Math.exp(-inputCount / expDenominator);

59 }

60 }
� �

The abstract superclass UnsupervisedNetwork defines core functionality
common for unsupervised networks, as shown in listing C.4. The method
feed(double[]) must be implemented by a subclass in order to define the
logic for that specific unsupervised network. It should return the BMU for
that input vector. Methods randomizeWeights(int) and
distanceSquared(double[], double[]) provides functionality to randomize
the weight matrix and calculate the squared distance between two vectors,
respectively.

164

APPENDIX C. IMPLEMENTATION

Listing C.4: class UnsupervisedNetwork
� �

1 public abstract class UnsupervisedNetwork

2 extends Observable {

3

4 protected int nofInputUnits;

5 protected int nofOutputUnits;

6 protected boolean training;

7 protected double [][] weights;

8 protected double learningRate;

9 protected int nofCycles;

10

11 ...

12

13 public abstract int feed(double [] v);

14

15 public void randomizeWeights(int scale) {

16 Random rand = new Random(System.nanoTime ());

17 for (int i = 0; i < weights.length; i++) {

18 for (int j = 0; j < weights [0]. length; j++) {

19 weights[i][j] = rand.nextDouble () * scale;

20 }

21 }

22 }

23

24 protected static double distanceSquared (double [] z,

25 double [] u) {

26 double dist = 0;

27 for (int i = 0; i < z.length; i++) {

28 dist += Math.pow(z[i] - u[i], 2);

29 }

30 return dist;

31 }
� �

C.2.2 Markov Chain

The core elements of the class implementing a Markov chain is shown in
listing C.5. It does not expect to know the number of states in advance,
so a method, addState(String) is provided to add states dynamically. This
method must then create a new and bigger transaction matrix, to hold the
new state, while keeping the existing probabilities. Further, the private
method addTransition(int, int) defines the functionality for incorporating
information about a new transition, i.e. updating the appropriate probability

165

C.2. MACHINE LEARNING

in the transition matrix. The method addTransition(String, String) is the
publicly available method, accepting the names of the relevant states, and
looking up the associated indices.

Listing C.5: class MarkovChain
� �

1 public final class MarkovChain {

2

3 /** The transition counts */

4 private int [][] transCounts;

5 /** The transition probabilities */

6 private double [][] transMatrix;

7 /** The states in this Markov Chain */

8 private List <String > stateList;

9 /** Whether this Markov chain is in

10 training mode */

11 private boolean training = true;

12

13 ...

14

15 public void addState(String state){

16 if (stateList.contains(state)) {

17 return;

18 }

19 stateList.add(state);

20

21 int [][] transCountsOld = transCounts;

22 double [][] transMatrixOld = transMatrix;

23

24 transCounts = new int[transCountsOld.length + 1]

25 [transCountsOld.length + 1];

26 transMatrix = new double[transCounts.length]

27 [transCounts.length];

28

29 for (int i = 0; i < transCountsOld.length; i++) {

30 System.arraycopy(transCountsOld[i], 0,

31 transCounts[i], 0,

32 transCountsOld[i]. length);

33 System.arraycopy(transMatrixOld[i], 0,

34 transMatrix[i], 0,

35 transMatrixOld[i]. length);

36 }

37 }

38

166

APPENDIX C. IMPLEMENTATION

39 public double addTransition(String prev ,

40 String next)

41 throws IllegalArgumentException {

42

43 double retVal = getTransitionProbability (prev ,

44 next);

45 addState(prev);

46 addState(next);

47 inputCount ++;

48 if (training) {

49 addTransition(stateList.indexOf(prev),

50 stateList.indexOf(next));

51 if (inputCount >= nofCycles) {

52 training = false;

53 }

54 }

55 return retVal;

56 }

57

58 private void addTransition(int idxPrev ,

59 int idxNext)

60 throws IllegalArgumentException {

61

62 transCounts[idxPrev][idxNext]++;

63

64 // update transMatrix

65 int sum = DiplomToolkit.sumArrayInt(

66 transCounts[idxPrev]);

67 for (int i = 0; i < transMatrix.length; i++) {

68 transMatrix[idxPrev][i] =

69 transCounts[idxPrev][i]/(double)sum;

70 }

71

72 fireMarkovChainChanged ();

73 }

74 }
� �

167

C.2. MACHINE LEARNING

168

Appendix D

Additional figures

D.1. MARKOV CHAIN FIGURES

This appendix contains additional illustrations we found not important
to include in the main sections of this report. They do not carry important
information individually, but they still provide some value in the matter of
completeness.

D.1 Markov chain figures

Figures D.1, D.2, and D.3 illustrate the Markov chain, trained on data from
the web log. Similarly to the transaction log, they are divided into three
figures for clarity.

Figure D.1 shows the transitions for which the probability is 1.0. Fig-
ure D.2 shows all transitions for which the probability is below 0.001. In
figure D.3 all transitions not already illustrated in the previous figures are
shown.

As can be seen, they are more complex than the figures for the transaction
log. This confirms that they are influenced by the unpredictable behavior of
users to a greater degree than is the case for the transaction log.

170

APPENDIX D. ADDITIONAL FIGURES

Figure D.1: Markov chain with high probability transitions trained on web logs

171

D.1. MARKOV CHAIN FIGURES

Figure D.2: Markov chain with low probability transitions trained on web logs

172

APPENDIX D. ADDITIONAL FIGURES

Figure D.3: Markov chain with medium probability transitions trained on web logs

173

D.1. MARKOV CHAIN FIGURES

174

References

[AFR97] E Aleskerov, B Freisleben, and B Rao. Cardwatch: A neu-
ral network-based database mining system for credit card fraud
detection. In Proceedings of the IEEE/IAFE on Computational
Intelligence for Financial Engineering, pages 220–226, 1997.

[All01] Douglas Allchin. Error types. Perspectives on Science 9:38-59,
2001.

[And80] J. P. Anderson. Computer security threat monitoring and
surveillance, 1980.

[Bac00] Rebecca Gurley Bace. Intrusion detection. Macmillan Publish-
ing Co., Inc., Indianapolis, IN, USA, 2000.

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vap-
nik. A training algorithm for optimal margin classifiers. In
COLT ’92: Proceedings of the fifth annual workshop on Com-
putational learning theory, pages 144–152, New York, NY, USA,
1992. ACM.

[BLFM98] T. Berners-Lee, R. Fielding, and L. Masinter. RFC2396: Uni-
form resource identifiers (uri): Generic syntax. ftp://ftp.

rfc-editor.org/in-notes/rfc2396.txt, August 1998. Ac-
cessed 2008.01.22 - 10:00.

ftp://ftp.rfc-editor.org/in-notes/rfc2396.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2396.txt

REFERENCES

[Bra97] S. Bradner. RFC2119: Key words for use in RFCs to indicate
requirement levels. ftp://ftp.rfc-editor.org/in-notes/

rfc2119.txt, March 1997. Accessed 2008.02.22 - 10:00.

[BST01] Peter Burge and John Shawe-Taylor. An unsupervised neu-
ral network approach to profiling the behavior of mobile phone
users for use in fraud detection. J. Parallel Distrib. Comput.,
61(7):915–925, 2001.

[Bur98] Christopher J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Min. Knowl. Discov., 2(2):121–
167, 1998.

[CCCY05] Rong-Chang Chen, Tung-Shou Chen, Yuer Chien, and Yuru
Yang. Novel questionnaire-responded transaction approach with
svm for credit card fraud detection. In ISNN (2), pages 916–921,
2005.

[CLM01] B. D. Cabrera, Lundy Lewis, and Raman K. Mehra. Detection
and classification of intrusions and faults using sequences of
system calls. SIGMOD Rec., 30(4):25–34, 2001.

[CM02] A. Chakrabarti and B. Manimaran. Internet infrastructure secu-
rity: A taxonomy. IEEE Network, 16(6):13–21, Nov-Dec 2002.

[Con] Web Application Security Consortium. Web application se-
curity consortium: Threat classification v.1.00. http://www.

webappsec.org.

[Coo79] T. D. Cook. Quasi-experimentation: Design and Analysis Issues
for Field Settings. Houghton Mifflin, Boston, MA, 1979.

[CUK02] Ramkumar Chinchani, Shambhu Upadhyaya, and Kevin Kwiat.
Towards the scalable implementation of a user level anomaly
detection system, 2002.

[CWHL] Chih Chung Chang Chih Wei Hsu and Chih Jen Lin. A practical
guide to support vector classification. citeseer.ist.psu.edu/
689242.html.

[DC] Jose R. Dorronsoro and Carlos Santa Cruz. Discrimination
of overlapping data and credit card fraud detection. cite-
seer.ist.psu.edu/26951.html.

176

ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt
http://www.webappsec.org
http://www.webappsec.org
citeseer.ist.psu.edu/689242.html
citeseer.ist.psu.edu/689242.html

REFERENCES

[Den87] Dorothy E. Denning. An intrusion-detection model. IEEE
Trans. Software Eng., 13(2):222–232, 1987.

[ELBJ03] Haakan Kvarnstrom Emilie Lundin Barse and Erland Jonsson.
Synthesizing test data for fraud detection systems. In ACSAC
’03: Proceedings of the 19th Annual Computer Security Applica-
tions Conference, page 384, Washington, DC, USA, 2003. IEEE
Computer Society.

[Eng07] Andries P. Engelbrecht. Computational Intelligence - An intro-
duction. John Wiley & Sons, 2 edition, 2007.

[fBS04] European Committee for Banking Standards. Security
guidelines for e-banking. http://www.ecbs.org/Download/

tr411v2.pdf, August 2004. Accessed 2008.01.29 - 10:00.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. RFC2616: Hypertext transfer
protocol – http/1.1. ftp://ftp.rfc-editor.org/in-notes/

rfc2616.txt, June 1999. Accessed 2008.01.22 - 10:00.

[FHSL96] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and
Thomas A. Longstaff. A sense of self for Unix processes. In
Proceedinges of the 1996 IEEE Symposium on Research in Secu-
rity and Privacy, pages 120–128. IEEE Computer Society Press,
1996.

[Fin03] For Combating Financial. Design of an artificial immune system
as a novel anomaly detector, 2003.

[GD03] A. Gretton and F. Desobry. online one-class -support vector ma-
chines. an application to signal segmentation. IEEE ICASSP,
Hong-Kong, April 2003., 2003.

[GE03] Isabelle Guyon and André Elisseeff. An introduction to variable
and feature selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

[GSC06] Rupinder Gill, Jason Smith, and Andrew Clark. Experiences in
passively detecting session hijacking attacks in ieee 802.11 net-
works. In ACSW Frontiers ’06: Proceedings of the 2006 Aus-
tralasian workshops on Grid computing and e-research, pages
221–230, Darlinghurst, Australia, Australia, 2006. Australian
Computer Society, Inc.

177

http://www.ecbs.org/Download/tr411v2.pdf
http://www.ecbs.org/Download/tr411v2.pdf
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

REFERENCES

[GSS99] Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz.
Learning program behavior profiles for intrusion detection.
In Proceedings of the Workshop on Intrusion Detection and
Network Monitoring, pages 51–62, Berkeley, CA, USA, 1999.
USENIX Association.

[Gun98] Steve R. Gunn. Support vector machines for classification and
regression. Technical Report ISIS-1-98, Department of Electron-
ics and Computer Science, University of Southampton, 1998.,
1998.

[HLV98] Wenjie Hu, Yihua Liao, and V. Rao Vemuri. Robust anomaly
detection using support vector machines, 1998.

[HMT06] Kjell J. Hole, Vebjorn Moen, and Thomas Tjostheim. Case
study: Online banking security. IEEE Security and Privacy,
4(2):14–20, 2006.

[Hor89] A. S. Hornby. Oxford Advanced Learner’s Dictionary of Current
English. Oxford University Press, Oxford, 4 edition, 1989.

[How98] John Douglas Howard. An analysis of security incidents on the
Internet 1989-1995. Carnegie Mellon University, Pittsburgh,
PA, USA, 1998.

[HSKS] Katherine A. Heller, Krysta M. Svore, Angelos D. Keromytis,
and Salvatore J. Stolfo. One class support vector machines for
detecting anomalous windows registry accesses. citeseer.ist.
psu.edu/634736.html.

[Jap99] N. Japkowicz. ConceptLearning in the Absence of Counter-
Examples: An Autoassociation-Based Approach to Classifica-
tion. PhD thesis, Rutgers University, 1999.

[Joh93] M. St. Johns. RFC1413: Identification protocol. ftp://ftp.

rfc-editor.org/in-notes/rfc1413.txt, February 1993. Ac-
cessed 2008.02.21 - 08:00.

[JSDJ01] H. JPT, T. SG, A. DG, and D. JJ. Statistical heterogeneity
in systematic reviews of clinical trials: a critical appraisal of
guidelines and practice, 2001.

[JW05] Hai Jiang and Hankang Wang. Markov chain based anomaly
detection for wireless ad hoc distribution power communication

178

citeseer.ist.psu.edu/634736.html
citeseer.ist.psu.edu/634736.html
ftp://ftp.rfc-editor.org/in-notes/rfc1413.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1413.txt

REFERENCES

networks. Power Engineering Conference, 2005. IPEC 2005.
The 7th International, pages 1–249, Nov. 29 2005-Dec. 2 2005.

[JY06] Songlun Zhao JingTao Yao. An enhanced support vector ma-
chine model for intrusion detection. Rough Sets and Knowledge
Technology, 2006.

[KHK+96] Teuvo Kohonen, Jussi Hynninen, Jari Kangas, Jorma Laakso-
nen, and Kari Torkkola. LVQ_PAK: The learning vector quan-
tization program package. Technical Report A30, Helsinki Uni-
versity of Technology, Laboratory of Computer and Information
Science, FIN-02150 Espoo, Finland, 1996.

[KK07] Kåre Karlsen and Tarje Killingberg. Data collection in inter-
net banking application for the purpose of intrusion detection.
Project report, December 2007.

[Kok] A. I. Kokkinaki. On atypical database transactions: Identifica-
tion of probable frauds using machine learning for user profiling.
citeseer.ist.psu.edu/461086.html.

[KPJ+03] Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, and
Sung Yang Bang. Constructing support vector machine ensem-
ble. Pattern Recognition, 36(12):2757–2767, 2003.

[KVR05] Christopher Kruegel, Giovanni Vigna, and William Robert-
son. A multi-model approach to the detection of web-based
attacks. Computer Networks: The International Journal of
Computer and Telecommunications Networking, 48(5):717–738,
August 2005.

[Lee99] Wenke Lee. A data mining framework for constructing features
and models for intrusion detection systems (computer security,
network security). PhD thesis, Columbia University, New York,
NY, USA, 1999. Adviser-Salvatore J. Stolfo.

[Lou01] Daniel Lowry Lough. A taxonomy of computer attacks with
applications to wireless networks. Virginia Polytechnic Institute
and State University, 2001. Chairman-Nathaniel J. Davis, IV.

[LS00] Wenke Lee and Salvatore J. Stolfo. A framework for construct-
ing features and models for intrusion detection systems. Infor-
mation and System Security, 3(4):227–261, 2000.

179

REFERENCES

[LT06] Kunlun Li and Guifa Teng. Unsupervised svm based on p-
kernels for anomaly detection. In ICICIC ’06: Proceedings of
the First International Conference on Innovative Computing,
Information and Control, pages 59–62, Washington, DC, USA,
2006. IEEE Computer Society.

[MDW+95] James Miller, John Daly, Murray Wood, Marc Roper, and An-
drew Brooks. Statistical power and its subcomponents miss-
ing and misunderstood concepts in software engineering empir-
ical research. Technical Report RR/95/192, Livingstone Tower,
Richmond Street, Glasgow G1 1XH, Scotland, 1995.

[MH96] J. Kent Martin and Daniel S. Hirschberg. Small sample statis-
tics for classification error rates II: Confidence intervals and
significance tests. Technical Report ICS-TR-96-22, University
of California, Irvine, 1996.

[MP99] Uzi Murad and Gadi Pinkas. Unsupervised profiling for identify-
ing superimposed fraud. In PKDD ’99: Proceedings of the Third
European Conference on Principles of Data Mining and Knowl-
edge Discovery, pages 251–261, London, UK, 1999. Springer-
Verlag.

[MT93] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic
Stability. Springer-Verlag, 1993.

[MTV00] S. Maes, K. Tuyls, and B. Vanschoenwinkel. Machine learning
techniques for fraud detection, 2000.

[MY00] Larry M. Manevitz and Malik Yousef. Document classifica-
tion on neural networks using only positive examples (poster
session). In SIGIR ’00: Proceedings of the 23rd annual inter-
national ACM SIGIR conference on Research and development
in information retrieval, pages 304–306, New York, NY, USA,
2000. ACM.

[MY01] Larry M. Manevitz and Malik Yousef. One-class SVMs for doc-
ument classification. Journal of Machine Learning Research,
2:139–154, 2001.

[MZI08] Federico Maggi, Stefano Zanero, and Vincenzo Iozzo. Seeing
the invisible: forensic uses of anomaly detection and machine
learning. SIGOPS Oper. Syst. Rev., 42(3):51–58, 2008.

180

REFERENCES

[NAH05] Maria Nilsson, Anne Adams, and Simon Herd. Building security
and trust in online banking. In CHI ’05: CHI ’05 extended
abstracts on Human factors in computing systems, pages 1701–
1704, New York, NY, USA, 2005. ACM.

[NC74] Vapnik V. N. and A. Ya. Chervonenkis. Teoriya raspoznavaniya
obrazov: Statisticheskie problemy obucheniya. (theory of pat-
tern recognition: Statistical problems of learning). Moscow:
Nauka, 1974.

[NTGG+05] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff
Shirley, and David Evans. Automatically hardening web ap-
plications using precise tainting. In SEC, pages 295–308, 2005.

[OMSH03] Dirk Ourston, Sara Matzner, William Stump, and Bryan Hop-
kins. Applications of hidden markov models to detecting multi-
stage network attacks. In HICSS ’03: Proceedings of the 36th
Annual Hawaii International Conference on System Sciences
(HICSS’03) - Track 9, page 334.2, Washington, DC, USA, 2003.
IEEE Computer Society.

[PB05] Tadeusz Pietraszek and Chris Vanden Berghe. Defending
against injection attacks through context-sensitive string evalu-
ation. In Recent Advances in Intrusion Detection 2005 (RAID),
2005.

[PPLC06] KyoungSoo Park, Vivek S. Pai, Kang-Won Lee, and Seraphin
Calo. Securing web service by automatic robot detection. In
ATEC ’06: Proceedings of the annual conference on USENIX
’06 Annual Technical Conference, pages 23–23, Berkeley, CA,
USA, 2006. USENIX Association.

[PS00] Joost M.E. Pennings and Ale Smidts. Assessing the construct
validity of risk attitude. Manage. Sci., 46(10):1337–1348, 2000.

[RLM98] Jake Ryan, Meng J. Lin, and Risto Miikkulainen. Intrusion
detection with neural networks. Advances in Neural Information
Processing Systems, 10:943–949, 1998.

[RP96] S. Roberts and W. Penny. A maximum certainty approach to
feedforward neural networks. In Press: Electronics Letters Oc-
tober 1996, 1996.

181

REFERENCES

[SEF08] Deborah Ashby Sandra Eldridge and Gene Feder. Internal and
external validity of cluster randomised trials: systematic review
of recent trials. BMJ, 2008.

[SPST+01] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor,
Alex J. Smola, and Robert C. Williamson. Estimating the
support of a high-dimensional distribution. Neural Comput.,
13(7):1443–1471, 2001.

[SSWB00] Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, and
Peter L. Bartlett. New support vector algorithms. Neural Com-
put., 12(5):1207–1245, 2000.

[TS98] M. Theus and M. Schonlau. Intrusion detection based on struc-
tural zeroes. Statistical Computing and Graphics Newsletter,
Vol. 9, No 1, 12-17, 1998.

[WBB08] Willem Waegeman, Bernard De Baets, and Luc Boullart. Roc
analysis in ordinal regression learning. Pattern Recogn. Lett.,
29(1):1–9, 2008.

[WFP99] Christina Warrender, Stephanie Forrest, and Barak A. Pearl-
mutter. Detecting intrusions using system calls: Alternative
data models. In IEEE Symposium on Security and Privacy,
pages 133–145, 1999.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,
Bjöorn Regnell, and Anders Wesslén. Experimentation in soft-
ware engineering: an introduction. Kluwer Academic Publish-
ers, Norwell, MA, USA, 2000.

[WS02] David Wagner and Paolo Soto. Mimicry attacks on host-based
intrusion detection systems. In CCS ’02: Proceedings of the
9th ACM conference on Computer and communications secu-
rity, pages 255–264, New York, NY, USA, 2002. ACM.

[YC01] N. Ye and Q. Chen. An anomaly detection technique based
on a chi-square statistic for detecting intrusions into informa-
tion systems. Quality and Reliability Engineering International,
17:105–112, 2001., 2001.

[YD02] D. Yeung and Y. Ding. Host-based intrusion detection using
dynamic and static behavioral models. Pattern Recognition,
vol. 36, pp. 229-243, 2002., 2002.

182

REFERENCES

[YTWM04] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and
Peter Milne. On-line unsupervised outlier detection using fi-
nite mixtures with discounting learning algorithms. Data Min.
Knowl. Discov., 8(3):275–300, 2004.

[Zan06] Stefano Zanero. Unsupervised Learning Algorithms for Intru-
sion Detection. PhD thesis, DEI Politecnico di Milano, 2006.

[ZS04] Stefano Zanero and Sergio M. Savaresi. Unsupervised learning
techniques for an intrusion detection system. In SAC ’04: Pro-
ceedings of the 2004 ACM symposium on Applied computing,
pages 412–419, New York, NY, USA, 2004. ACM.

[ZY02] Pan Y. Zhang Y.Q. Parallel granular neural networks for fast
credit card fraud detection. In Proc. 2002 Internat. Conf., vol.
1, pages 572–577, 2002.

183

REFERENCES

184

Floating references

[1] Arne Hyttnes and Arne Skauge. Trygt aa bruke nettbank. http://www.
aftenposten.no/meninger/debatt/article2113075.ece, November
2007. Accessed 2008.02.09 - 10:00.

[2] DN.no. Slakter nettbank-sikkerhet. http://www.dn.no/forsiden/

article316366.ece, September 2004. Accessed 2008.02.05 - 10:00.

[3] Henrik V. Ebne. Kritiserer sikkerheten i nettbankene. http://

forbrukerportalen.no/Artikler/2006/1150387578.78, July 2006.
Accessed 2008.02.15 - 10:00.

[4] Morten Lyse. Nedslaaende sikkerhet i nettbankene. http://www.

idg.no/computerworld/article54881.ece, May 2007. Accessed
2008.02.05 - 12:00.

[5] Assessment of Policing and Community Safety APACS. Fraud the
facts 2007. http://www.apacs.org.uk/resources_publications/

documents/FraudtheFacts2007.pdf, February 2008. Accessed
2008.01.25 - 10:00.

[6] Andreas Bakke Foss and Tone Tveoy Stom-Gundersen. Sikkerhet lon-
ner seg ikke for nettbanker. http://e24.no/it/article2233891.ece,
February 2008. Accessed 2008.02.14 - 10:00.

[7] CyberSource. Online fraud rapport. http://www.cybersource.

com/resources/collateral/Resource_Center/whitepapers_and_

http://www.aftenposten.no/meninger/debatt/article2113075.ece
http://www.aftenposten.no/meninger/debatt/article2113075.ece
http://www.dn.no/forsiden/article316366.ece
http://www.dn.no/forsiden/article316366.ece
http://forbrukerportalen.no/Artikler/2006/1150387578.78
http://forbrukerportalen.no/Artikler/2006/1150387578.78
http://www.idg.no/computerworld/article54881.ece
http://www.idg.no/computerworld/article54881.ece
http://www.apacs.org.uk/resources_publications/documents/FraudtheFacts2007.pdf
http://www.apacs.org.uk/resources_publications/documents/FraudtheFacts2007.pdf
http://e24.no/it/article2233891.ece
http://www.cybersource.com/resources/collateral/Resource_Center/whitepapers_and_reports/CYBS_2008_Fraud Report.pdf
http://www.cybersource.com/resources/collateral/Resource_Center/whitepapers_and_reports/CYBS_2008_Fraud Report.pdf

FLOATING REFERENCES

reports/CYBS_2008_FraudReport.pdf, January 2008. Accessed
2008.01.15 - 10:00.

[8] TriCipher. Tricipher consumer online banking study. http://

www.antiphishing.org/sponsors_technical_papers/TriCipher_

Consumer_Online_Banking_Study_4-5-07.pdf, March 2007. Accessed
2008.02.05 - 11:00.

[9] Morten Lyse. Slakter sikkerhet i nettbanker. http://e24.no/it/

article1790444.ece, May 2007. Accessed 2008.01.15 - 13:00.

[10] Federal Trade Commission. Consumer fraud and identity theft
complaint data 2007. http://www.consumer.gov/sentinel/pubs/

top10fraud2007.pdf, February 2008. Accessed 2008.03.15 - 10:00.

[11] Joseph Yam. Internet banking: Some useful tips for users. http://www.
info.gov.hk/hkma/eng/viewpt/20040715e.htm, July 2004. Accessed
2008.02.11 - 11:00.

[12] Einar Ryvarden. Slik blir norske nettbanker ranet. http://www.

digi.no/php/art.php?id=363235, January 2007. Accessed 2008.01.25
- 13:00.

[13] Mat Buckland. Kohonen’s self organizing feature maps. http://www.

ai-junkie.com/ann/som/som1.html. Accessed 2008.05.09 - 12:00.

[14] Wikipedia. Markov chain. http://en.wikipedia.org/wiki/Markov_

chain. Accessed 2008.01.21 - 15:00.

[15] Sanjay Kumar Bose. An introduction to queueing systems - lec-
ture slides. http://www.ntu.edu.sg/home/eskbose/qbook/chapter_

2.html, 2002. Accessed 2008.02.05 - 13:00.

[16] Web center of social research methods. Threats to construct valid-
ity. http://www.socialresearchmethods.net/kb/consthre.php, Oc-
tober 2006. Accessed 2008.03.21 - 16:00.

[17] Pai-Hsuen Chen, Chih-Jen Lin, and Bernhard Scholkopf. A tutorial on
support vector machines. citeseer.ist.psu.edu/605359.html. Ac-
cessed 2008.03.02 - 09:00.

[18] Henrik Frystyk Nielsen. Logging control in W3C httpd. http://

www.w3.org/Daemon/User/Config/Logging.html, July 1995. Accessed
2008.02.15 - 14:00.

186

http://www.cybersource.com/resources/collateral/Resource_Center/whitepapers_and_reports/CYBS_2008_Fraud Report.pdf
http://www.antiphishing.org/sponsors_technical_papers/TriCipher_Consumer_Online_Banking_Study_4-5-07.pdf
http://www.antiphishing.org/sponsors_technical_papers/TriCipher_Consumer_Online_Banking_Study_4-5-07.pdf
http://www.antiphishing.org/sponsors_technical_papers/TriCipher_Consumer_Online_Banking_Study_4-5-07.pdf
http://e24.no/it/article1790444.ece
http://e24.no/it/article1790444.ece
http://www.consumer.gov/sentinel/pubs/top10fraud2007.pdf
http://www.consumer.gov/sentinel/pubs/top10fraud2007.pdf
http://www.info.gov.hk/hkma/eng/viewpt/20040715e.htm
http://www.info.gov.hk/hkma/eng/viewpt/20040715e.htm
http://www.digi.no/php/art.php?id=363235
http://www.digi.no/php/art.php?id=363235
http://www.ai-junkie.com/ann/som/som1.html
http://www.ai-junkie.com/ann/som/som1.html
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_chain
http://www.ntu.edu.sg/home/eskbose/qbook/chapter_2.html
http://www.ntu.edu.sg/home/eskbose/qbook/chapter_2.html
http://www.socialresearchmethods.net/kb/consthre.php
citeseer.ist.psu.edu/605359.html
http://www.w3.org/Daemon/User/Config/Logging.html
http://www.w3.org/Daemon/User/Config/Logging.html

FLOATING REFERENCES

[19] The Apache Software Foundation. Apache HTTP server version 2.2 -
log files. http://httpd.apache.org/docs/2.2/logs.html. Accessed
2008.02.15 - 14:00.

[20] Log file formats. http://publib.boulder.ibm.com/tividd/

td/ITWSA/_info45/en_US/HTML/guide/c-logs.html. Accessed
2008.05.10 - 11:40.

[21] The University of Waikato. Weka 3 - data mining with open source
machine learning software in java. http://www.cs.waikato.ac.nz/

ml/weka/. Accessed 2008.01.15 - 13:00.

[22] Chih-Chung Chang and Chih-Jen Lin. Libsvm – a library for support
vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Ac-
cessed 2008.01.15 - 12:00.

[23] Sun Microsystems. Developer resource for java technology. http://

java.sun.com/. Accessed 2008.01.15 - 10:00.

[24] Inc Eclipse Foundation. Eclipse.org home. http://www.eclipse.org/.
Accessed 2008.01.15 - 12:00.

[25] JetBrains. Intellij idea: The most intelligent java ide. http://www.

jetbrains.com/idea/. Accessed 2008.06.06 - 12:00.

[26] Gnome. Dia - gnome live! http://live.gnome.org/Dia. Accessed
2008.01.15 - 10:00.

[27] Wikipedia. Secure shell. http://en.wikipedia.org/wiki/Secure_

Shell. Accessed 2008.01.15 - 10:00.

[28] Simon Tatham. Putty: A free telnet/ssh client. http://www.chiark.

greenend.org.uk/~sgtatham/putty/. Accessed 2008.01.15 - 10:00.

187

http://httpd.apache.org/docs/2.2/logs.html
http://publib.boulder.ibm.com/tividd/td/ITWSA/_info45/en_US/HTML/guide/c-logs.html
http://publib.boulder.ibm.com/tividd/td/ITWSA/_info45/en_US/HTML/guide/c-logs.html
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://java.sun.com/
http://java.sun.com/
http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
http://live.gnome.org/Dia
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

	Title Page
	Problem Description
	Introduction
	Motivation
	Taxonomy of threats
	Attackers
	Attacks
	Scenarios

	Problem definition
	Report outline

	Background
	Context
	System overview
	Data sources
	Threats

	State of the art
	Fraud detection
	Anomaly detection

	Intrusion detection systems
	Machine learning methodologies
	General machine learning
	Support vector machines
	Artificial neural networks
	Markov chains

	Method
	Research questions
	Hypothesis

	Operations
	Threats to validity
	Validity evaluation
	Conclusion validity
	Internal validity
	Construct validity
	External validity

	Design
	Profiles
	Profile 1: Request structure
	Profile 2: Request values
	Profile 3: Server response
	Profile 4: Session structure
	Profile 5: User profile
	Profile 6: System overview

	Profile selection
	Profile evaluation
	Profile comparison

	Data preparation
	Data Source
	Data properties

	User requests
	Support vector machines
	Classification
	Neural networks
	Classification

	Session structure
	Markov chains
	Classification

	Summary

	Results and analysis
	Profiles
	User requests
	Session structure
	Research questions related to profiles

	Machine learning methods
	Results and analysis of SVM
	Results and analysis of ANN
	Results and analysis of Markov chains
	Analysis of validity for machine learning methods

	Audit data
	Available audit data
	Log parsing
	Research questions related to Audit data
	Analysis of validity for audit data

	Summary of analysis
	Summary of result validity
	Summary of research questions

	Discussion
	Findings
	Profiles
	Audit data
	Machine learning
	Results
	Result of hypothesis test

	Comparison to background
	Further research
	Conclusion

	Formats
	Common log format
	Combined log format
	The HTTP protocol
	Requests messages

	Instruments
	Machine learning software
	WEKA
	LIBSVM

	Development tools
	Java
	Eclipse
	IntelliJ IDEA

	Other instruments
	Dia
	SSH/Putty

	Implementation
	Log parsing
	Log reader
	Data collectors

	Machine learning
	Learning vector quantizer
	Markov Chain

	Additional figures
	Markov chain figures

