
June 2008
John Krogstie, IDI
Carl-Fredrik Sørensen, SINTEF

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Context-Aware Goods
Combining RFID Tracking and Environment Sensing

Sigve Albretsen
Mikael André Larsen

Problem Description
Item tracking and context information is becoming more and more important in the effort to
ensure safe food and good food quality, especially for fresh food. Standards for item tracking and
sensor information are emerging, but little work has been done to combine them.

This thesis will try to explore the field of context-aware information and tracking of goods. The
work will partly be a continuation of the project EPC Information Services: Usage and Value
Scenarios of EPCIS, completed fall 2007. This thesis will use EPCIS for tracking of goods, and
investigate if SensorML can be used together with EPCIS for context-aware information.

The goal for the thesis is to develop an example software architecture and present a set of
scenarios describing future uses. The software architecture shall combine an RFID tracking
system with context information retrieved from sensors.

Assignment given: 15. January 2008
Supervisor: John Krogstie, IDI

i

i

ABSTRACT

Technology is becoming increasingly important in the effort to ensure safe food and good

food quality, especially in the fresh food industry. Examples of such technology are systems

for tracking and tracing food products, and the use of sensors to obtain context information

about the environment. This technology is becoming more mature, and various standards

are starting to emerge, but little work has been done combining these technologies or

respective standards.

This thesis presents an example software architecture combining an RFID tracking system

with context information retrieved from sensors. The sensors can be located both on the

RFID tag itself and in locations where the items are, or have been, located. Two frameworks

are combined in this architecture; EPC Architecture Framework for item tracking and Sensor

Web Enablement for sensor and context information.

A set of scenarios describing potential uses of this technology is also presented. They are

grouped by topics, with categories such as quality deterioration, temperature profiles,

sensor collaboration and intelligent goods, hierarchy of goods with sensors, and proximity

control. Each scenario is independent of the technical solution used, and does not require

our architecture. The focus is on what can be achieved when a context-enabled tracking

solution is implemented. These scenarios form the basis for the requirements specification

of the architecture.

The thesis shows that the integration of the two standard frameworks can be achieved with

relatively small modifications, and that the technology needed to achieve what is presented

in the scenarios is already available. It is, however, necessary to perform pilot

implementations and testing in order to find how best to utilize the technology.

ii

ii Context-Aware Goods: Combining RFID Tracking and Environment Sensing

iii

iii

PREFACE

This report presents our Master’s Thesis in Computer Science at the Department of

Computer and Information Science (IDI) at the Norwegian University of Science and

Technology (NTNU). The work took place during the spring of 2008, and was conducted in

cooperation with SINTEF Fisheries and Aquaculture.

We would like to thank our supervisors, Dr. Carl-Fredrik Sørensen from SINTEF and Professor

John Krogstie from NTNU, for all their help and advice. They have provided valuable input

and ideas for our work, as well as feedback on the final report. We would also like to thank

Aleksander Lie for proofreading our thesis.

Trondheim, June 10, 2008

Sigve Albretsen Mikael André Larsen

iv

iv Context-Aware Goods: Combining RFID Tracking and Environment Sensing

v

v

TABLE OF CONTENTS

Part I Introduction ...1

1 Introduction ..3

1.1 Motivation ..3

1.2 Scope ..3

1.3 Goals...4

1.4 Thesis Outline ...4

2 Research ...5

2.1 Research Context ..5

2.2 Research Questions ..5

2.3 Research Approach ...5

2.4 Contributions ..7

Part II Background and State of the Art ..9

3 Introduction ..11

4 Context-Aware Computing ..13

4.1 Context ...13

4.2 Context-Awareness ...14

4.3 Context Applied to this Thesis ...14

5 RFID Technology ...17

5.1 Tag Characteristics ..17

5.1.1 Active and Passive Tags ..17

5.1.2 Powering a Passive Tag ..18

5.1.3 Reusable Tags ..19

5.1.4 Static or Dynamic Data ...19

5.2 Challenges ..20

5.2.1 Collocated Tags ..20

5.2.2 Reliability ...20

5.2.3 Reader Collision Problem ...21

5.2.4 Cost ...21

5.2.5 Security and Privacy ...21

5.3 Standards ..23

vi

vi Context-Aware Goods: Combining RFID Tracking and Environment Sensing

6 Sensors ...25

6.1 Wireless Sensor Networks...25

6.1.1 Applications ...26

6.1.2 Challenges ...27

6.2 Different Types of Electronic Sensors ..28

6.2.1 Manufacturers ...29

6.2.2 Product Types ..29

6.3 Chemical Sensors ..31

7 Integrating RFID and Sensor Systems with EPC/EPCIS ...33

7.1 Including User Data with Standard EPC Tags ...34

7.2 Integrating with EPCIS ...35

7.2.1 Using EPCIS Independent of Tag Type ..36

7.2.2 Extending EPCIS to Fit Different Needs ..37

7.2.3 EPCIS Interfaces ...40

8 Administration of RFID and Sensor Networks ..43

9 Sensor Web Enablement Standards ..47

9.1 Observations and Measurements (O&M) ..49

9.2 Sensor Model Language (SensorML) ...50

9.3 Sensor Observation Service (SOS) ...54

9.4 Sensor Planning Service (SPS)..56

9.5 Other Standards ..58

Part III Own Contribution ...61

10 Introduction ..63

11 Evaluation and Comparison of EPC AF and SWE ..65

11.1 EPC Architecture Framework ...65

11.2 Sensor Web Enablement ...67

11.3 Integration of EPC AF and SWE ..70

11.4 Comparison of EPC AF and SWE...71

12 Stakeholder Analysis ...73

12.1 Government ..73

12.2 Consumers ..73

12.3 Product Manufacturers ...73

12.4 Transportation Companies ..74

vii

vii

12.5 Retailers ..74

12.6 Developers ..74

13 Scenarios ..75

13.1 Quality Deterioration (SC 1) ...75

13.1.1 Automatic and Dynamic Expiration Dates (SC 1.1)75

13.1.2 Reloading of Shipment Based on Quality (SC 1.2)76

13.1.3 Proving the Quality of Fresh Food (SC 1.3) ..77

13.2 Temperature Profiles (SC 2) ...77

13.2.1 How Many Sensors Are Needed In a Given Space (SC 2.1)77

13.2.2 Detection of Cold Spots and Warm Spots (SC 2.2)77

13.2.3 Mapping the Need for Insulation of Goods Under Transportation (SC 2.3)

 78

13.3 Sensor Collaboration and Intelligent Goods (SC 3) ...78

13.3.1 Automatic Alarms of Violations (SC 3.1) ...78

13.3.2 Automatic Environment Control (SC 3.2) ..79

13.3.3 Collaboration of Goods (SC 3.3) ..79

13.4 Hierarchy of Goods with Sensors (SC 4) ...79

13.4.1 Automatic Aggregation of Goods with Sensors in a Hierarchy (SC 4.1)80

13.5 Proximity Control (SC 5) ..80

13.5.1 Fresh Food (SC 5.1) ...80

13.5.2 Dangerous Goods (SC 5.2) ..81

14 Requirements Specification...83

14.1 Scope ..83

14.2 Functional Requirements ..84

14.3 Requirements Relation to Scenarios and Research Questions87

14.4 Quality Attributes ..88

14.4.1 Security ..88

14.4.2 Privacy ...89

14.4.3 Scalability ...89

14.4.4 Modifiability ...89

14.4.5 Performance ..90

15 Architectural Solution ...91

viii

viii Context-Aware Goods: Combining RFID Tracking and Environment Sensing

15.1 Architectural Drivers ...91

15.2 Choosing Viewpoints ...91

15.2.1 What Are Viewpoints and Why Investigate Them91

15.2.2 Evaluation of the Different Viewpoints ...93

15.3 Quality Tactics ...95

15.3.1 Modifiability ...95

15.3.2 Performance ..96

15.3.3 Security ..96

15.3.4 Privacy ...96

15.3.5 Scalability ...97

15.4 Patterns...97

15.4.1 Separation of Concerns ..97

15.4.2 Facade ..98

15.5 Views ..98

15.5.1 Logical View ...99

15.5.2 Process View .. 106

15.5.3 Development View ... 110

15.6 Scenarios ... 114

15.6.1 Proving the Quality of Fresh Food (SC 1.3) .. 114

15.6.2 Automatic Alarms of Violations (SC 3.1) ... 116

15.7 Software Architecture Rationale .. 119

15.7.1 Security and Privacy ... 119

15.7.2 Scalability and Performance ... 119

15.7.3 Modifiability ... 119

Part IV Evaluation and Conclusion ... 121

16 Evaluation ... 123

16.1 Architectural Evaluation .. 123

16.1.1 Separation of Concerns .. 123

16.1.2 Scenario Evaluation .. 124

16.1.3 Requirements Evaluation ... 127

16.2 Research Questions Evaluation.. 130

ix

ix

16.3 Discussion ... 132

17 Conclusions and Future Work ... 135

17.1 Conclusions ... 135

17.2 Future work ... 135

PART V Bibliography and Appendices ... 137

Bibliography ... 139

A Acronyms .. 145

B Introduction to EPC Information Services .. 147

x

x Context-Aware Goods: Combining RFID Tracking and Environment Sensing

xi

xi

TABLE OF FIGURES

Figure 1 Research approach..6

Figure 2 Chemical sensor (TimeTemp 2008) ...32

Figure 3 EPCglobal Architecture Framework (EPCglobal 2007c) ..34

Figure 4 EPCIS layers (EPCglobal 2007a) ..36

Figure 5 EPCIS Capture Interface (EPCglobal 2007a) ...40

Figure 6 EPCIS Query Control Interface ...41

Figure 7 EPCIS Query Callback Interface ..41

Figure 8 Sensor Web example (Botts, Percivall et al. 2007) ...47

Figure 9 Basic Observation type (Open Geospatial Consortium 2007a)49

Figure 10 SensorML process model (Open Geospatial Consortium 2007c)53

Figure 11 SensorML non-physical/physical processes (Open Geospatial Consortium 2007c).54

Figure 12 Consumer flow chart (Open Geospatial Consortium 2007e)55

Figure 13 SPS overview (Botts, Percivall et al. 2007) ...57

Figure 14 Registries in SWE (Botts, Percivall et al. 2007) ...58

Figure 15 Deterioration of one type of food at two different temperatures..........................76

Figure 16 Overview of the environment ...83

Figure 17 The 4+1 View Model (Kruchten 1995) ...92

Figure 18 Separation of concerns..97

Figure 19 Facade pattern ..98

Figure 20 Logical view ... 100

Figure 21 EPCIS parts of the system .. 101

Figure 22 Sensor Web Enablement parts of the system .. 103

Figure 23 Context-Aware Goods System parts .. 103

Figure 24 Context data flow diagram .. 106

xii

xii Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Figure 25 Top level data flow diagram .. 107

Figure 26 Observation registration ... 109

Figure 27 Development view .. 111

Figure 28 The role component syntax ... 112

Figure 29 The interface component syntax ... 113

Figure 30 Proposed solution of SC 1.3 by CAGS ... 115

Figure 31 Proposed solution of SC 3.1 by CAGS; The management of sensors..................... 116

Figure 32 Proposed solution of SC 3.1 by CAGS; The subscription 117

Figure 33 Proposed solution of SC 3.1 by CAGS; The alert ... 118

Figure 34 EPCglobal Architecture Framework (EPCglobal 2007c) .. 149

Figure 35 EPCIS layers (EPCglobal 2007a) .. 150

Figure 36 EPCIS event types (EPCglobal 2007a) ... 154

Figure 37 Service Layer interfaces (EPCglobal 2007a).. 156

Figure 38 Comparison of ONS and EPCIS Discovery (University of Cambridge, AT4 wireless et

al. 2007) ... 160

xiii

xiii

TABLE OF TABLES

Table 1 Temperature sensors ...30

Table 2 Acceleration sensors ..31

Table 3 Humidity sensors ..31

Table 4 EPCIS data extension methods (EPCglobal 2007a) ..39

Table 5 O&M example ..50

Table 6 Functional requirement to research question...87

Table 7 Functional requirement to scenarios ..88

xiv

xiv Context-Aware Goods: Combining RFID Tracking and Environment Sensing

1

1

Part I Introduction

2

2 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

3

3 Introduction

1 INTRODUCTION

This chapter will briefly explain the motivation for our research, our scope, and present the

different parts of the thesis, giving a brief overview of the structure of the report. The next

chapter presents our research questions, research context, and the research methods used.

It will also present our main contributions.

1.1 MOTIVATION

The need for context information concerning tangible products in a supply chain is

increasing. Laws in the EU and Norway will demand tracing and control of products, and a

big issue regarding control is the application of context information. Fresh food have to be

transported at given temperatures, other goods like electronics have to be handled gently.

By tracking context information about a product, it can be proved when a product has been

treated as it should, and when it has not. This information is necessary for internal use, but

has great potential when shared with others within a value chain.

The technology behind RFID (Radio Frequency Identification) has been around for quite a

long time, but it is only in latter years that it has been used at a larger scale. Different

industries have shown interest in this technology, where the benefits of identifying items on

an individual level are obvious. One industry that has been very interested is the retail

industry, which handles large amounts of items and has complex logistics that could be

supported by RFID. RFID can be used to track purchases, do inventory management and

control, and automate manual processes such as dispatch and receipt of goods.

In many cases the tracking of an identity is not enough, and additional information is

needed. This is especially relevant in the fresh food industry where information about, e.g.,

temperature of the goods is very important. It is interesting to know where the food is

coming from, where it has traveled, and how it has been treated on the way. Some retail

chains use this information today as an extra service to customers, but it is likely that in a

few years this will be mandatory for all companies dealing with fresh food. Both the

Norwegian government and the European Union have projects on tracing fresh food.

1.2 SCOPE

There are many possible angles of approach to a problem such as this. It is possible to look

at, e.g., hardware requirements, communication between sensors (smart sensors),

interoperability between solutions from different vendors or industries, and how to share

the information generated. Our focus is on the software level, and we will look at the

situation from after the information from the sensors and tags have been read and entered

into the software systems. We will elaborate about the technology behind RFID and different

sensor types in the background section, but this is only to understand the situation and will

4

4 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

not be researched further. Our focus is not on the hardware level, and we will assume that

this is working. We will not look at filtering tag reads, false reads, read reliability and other

such issues. We assume that the information received is correct, and we focus on how this

information can be used.

Our interest lies in combining information from sensors and RFID tags, potential uses of such

information, and how this can be shared between different organizations. What we find

interesting is how software architectures can support generic information from sensors and

RFIDs, and other relevant information. It should also be easy to add new sensor types and

different behaviors and actions based on the information available.

1.3 GOALS

The main goal of this project is to develop a software architecture combining RFID tracking

with sensor information. The architecture will be generic with regard to sensor types and

sensor data supported. The secondary goals are to investigate and evaluate two standard

frameworks which will be used in our architecture, Electronic Product Code Architecture

Framework (EPC AF)(EPCglobal 2007c) and Software Web Enablement (SWE)(Botts, Percivall

et al. 2007), as well as present scenarios for potential uses of such a solution.

1.4 THESIS OUTLINE

This thesis is divided into five parts: Introduction, Background and State-of-the-Art, Own

Contribution, Evaluation and Conclusion, and Bibliography and Appendices.

 Part I: Introduction presents the background and motivation for the thesis, how we

have proceeded in our work, what we have achieved, and present the rest of the

report.

 Part II: Background and State-of-the-Art presents the technology behind RFID,

different sensors, issues to consider related to administration of large RFID/sensor

networks, and how EPC and EPCIS can be used for RFID and sensor networks. It also

presents the Sensor Web Enablement framework for sensor webs.

 Part III: Own Contribution presents our contribution. It presents an evaluation of two

standard frameworks, scenarios for how the technology can be used, as well as a

requirements specification and architecture for a software solution supporting the

scenarios.

 Part IV: Evaluation and Conclusion evaluates our contribution. It also concludes the

report and defines future work.

 Part V: Bibliography & Appendices presents the references used, acronyms, and an

introduction to EPC Information Services (EPCIS).

5

5 Research

2 RESEARCH

This chapter will present the context for our research, our research questions, and the

approach used to answer these. It will also briefly present our contributions.

2.1 RESEARCH CONTEXT

This thesis is partly a continuation of a project done last fall in cooperation with Accenture

(Albretsen and Larsen 2007), a project which focused on the Electronic Product Code

Information Services (EPCIS) standard from EPCglobal, and potential uses of this. The original

problem description for this thesis was proposed by Accenture.

The problem description has been further developed in cooperation with SINTEF Fisheries

and Aquaculture, which among other things is conducting research on the tracking of fresh

fish and related context information. Related projects at SINTEF are “Smart Vareflyt”, SILO,

InnovaRFID, and Seafood Plus. Important research areas are traceability and documentation,

and food safety. The work on this thesis has been conducted in close cooperation with

SINTEF.

2.2 RESEARCH QUESTIONS

These are the research questions investigated in this thesis:

RQ 1. How can an electronic ID tracking information system be extended with sensor

information?

RQ 2. How to achieve relative positioning of one tagged unit with regards to other tagged

units?

RQ 3. How to build a generic software architecture towards sensors and tags that can be

used in many different situations?

RQ 4. How to ensure scalability in an ID tracking information system extended with sensor

information?

RQ 5. How can a system with sensor information be integrated with EPC and EPCIS from

EPCglobal?

RQ 6. How can SensorML be integrated with EPCIS?

2.3 RESEARCH APPROACH

The research approach has consisted of five steps, as shown in Figure 1. First an extensive

literature study on the state of the art of the relevant research fields was conducted. The

fields investigated were related to the problem description and included context and

context-aware computing, RFID technology, sensors and sensor networks, related standards

etc. This is, as mentioned above, a continuation of a previous work that included a literature

6

6 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

study on silent commerce, the EPC Architecture Framework, and the EPC Information

Services.

An evaluation of relevant standard frameworks was conducted after the literature study. The

frameworks evaluated were the EPC Architecture Framework and Software Web

Enablement. These were evaluated with regards to their usefulness for context information

and item tracking. In parallel a set of application scenarios were described, where the

possibilities of using this technology are described. This could be done in parallel as the

scenarios describe the possibilities of combining item tracking with context information

without depending on specific technology or solutions.

Figure 1 Research approach

The next step was to develop a software architecture which can be used when creating

applications enabling these scenarios. The frameworks evaluated in the previous step were

integrated into this architecture. Finally, the solution was evaluated with regards to the

research questions stated above.

7

7 Research

2.4 CONTRIBUTIONS

The main contribution of this thesis is a software architecture description of a solution

utilizing standard frameworks from EPCglobal and OpenGIS to provide a context-enabled

RFID tracking system. This architecture will serve as an example of how two such

architectures can be integrated and how generic sensors and context information can be

included in a tracking system. The architecture description includes information and

specification of stakeholders, requirements, quality attributes, tactics, patterns, and views.

Another important contribution is a set of scenarios presenting motivations for this

architecture. The scenarios are grouped according to topic, with a description of what kind

of data will be needed and how this information can be used. Each requirement in the

architecture is tied to one or more scenarios. The thesis also gives an evaluation of the two

standard frameworks used in the architecture with respect to the two areas item tracking

and context information. Finally, the contributions are evaluated, and some conclusions and

areas of future work are presented.

8

8 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

9

9

Part II Background and

State of the Art

10

10 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

11

11 Introduction

3 INTRODUCTION

This part describes the background for the thesis, and is the result of a literature study. This

study was conducted to gain enough knowledge to perform the work done later in this

thesis. The part introduces the technology behind RFID and issues related to RFID networks,

and it also discusses different possibilities for sensors related to RFID networks. Finally, the

Sensor Web Enablement framework for sensor networks is presented.

The goal of this part is to present topics necessary as background when reading the parts

that follow later in the thesis. It is also the intention to give readers unfamiliar with RFID and

wireless sensors an introduction to these areas.

OUTLINE

The rest of this part is divided into six chapters:

 Chapter 4: “Context-aware computing" defines what context is, and how

applications can be context-aware. Context is then related to later chapters, and its

meaning in RFID and sensor systems are presented.

 Chapter 5:“RFID Technology” presents the technology behind RFID. Different

characteristics for RFID tags, challenges for RFID, and relevant standards are

presented.

 Chapter 6: “Sensors” discusses wireless sensors and sensor networks in general,

before a description of different types of wireless sensors. The focus is on sensors

related to RFID and which sensor types are available.

 Chapter 7: “Integrating RFID and sensor systems with EPC/EPCIS” describes how

EPC and EPCIS can be used in a setting where both RFID and sensors are part of the

system. It presents the different possibilities to extend EPC/EPCIS with information

from sensors.

 Chapter 8: “Administration of RFID and sensor networks” presents important issues

to consider when implementing solutions based on RFID and wireless sensors.

 Chapter 9: “Sensor Web Enablement Standards” presents the standards in the

Sensor Web Enablement work done at the Open Geospatial Consortium.

12

12 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

13

13 Context-Aware Computing

4 CONTEXT-AWARE COMPUTING

The use of context is important in many types of applications. It is especially important if the

context changes frequently, and the application needs to reflect this. This chapter will

present what context is, how applications can be context-aware, and how context relates to

this research.

4.1 CONTEXT

There are many different definitions of context, and it is difficult to determine exactly what

the term means. It is often used as a vague term, because it is used in so many different

situations. Most people have a certain idea what it means, but it is difficult to describe

accurate. Merriam-Webster’s dictionary defines context as “Interrelated conditions in which

something exists or occurs” (Merriam-Webster 2008). This is a very general definition, and it

does not help in understanding the term related to computer science. People may think of

context as something which defines the situation we are in, such as location, date, and time;

but this is not a formal definition. A problem with definitions which lists other terms to

describe context, such as location, date and time, and nearby people, is that it is difficult to

determine if information other than those listed is context. Another way to define context is

by using synonyms for context. Examples are the environment, situation, user’s

environment, application’s environment, and situation of the user. This is according to (Dey

and Abowd 1999) just as limiting as the example above, as it is difficult to apply in practice.

Even though (Dey and Abowd 1999) says that context definitions based on examples is a bad

idea, they present four types of context they consider more important than others: location,

identity, activity and time.

(Chen and Kotz 2000) mentions four different categories for context, and two aspects. The

categories are computing context, user context, physical context, and time context. Having

these categories, and especially time, it will be possible to obtain a context history, which

can be interesting in many situations. The two aspects are active and passive. Active context

is context that influences the behavior of the application, while passive context is relevant

but not critical context. Their definition of context is: “the set of environmental states and

settings that either determines an application’s behavior or in which an application event

occurs and is interesting to the user”.

The definition above is only relevant for computer applications, and for this thesis something

more broadly is needed. It must be possible to define the context of e.g. fresh food or other

products tracked by RFID. Context will therefore for the rest of this thesis be defined as by

(Dey and Abowd 1999):“Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

14

14 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

themselves”. This definition also focuses on software applications, but it defines context

related to an item relevant for the application, e.g. RFID-tagged fresh food.

4.2 CONTEXT-AWARENESS

Context-aware applications are in essence applications which know about context, and can

use this in some way. (Chen and Kotz 2000) defines two kinds of context-awareness in the

same way as they define context: active and passive. Active context-awareness is

applications adapting to the context, and which changes behavior according to context.

Passive context-awareness is applications that presents context information to a user, or

stores it for later use. (Dey and Abowd 1999) defines context-awareness a little different: “A

system is context-aware if it uses context to provide relevant information and/or services to

the user, where relevancy depends on the user’s task”. This is a very general definition, and

fits about every situation, and it combines the active and passive definition above into one

definition by saying that applications provide information (passive) or services (active) to the

user using context. They also present a list of three context-aware features that may be

supported by such applications: Presentation of information and services to a user,

automatic execution of a service, and tagging of context to information for later retrieval.

Both these definitions have things in common, and they rely on two possible uses for

context: adapting to context and presenting context. In addition, it is possible to store the

context information for later use. When this stored information is used it will be for one of

the two above; adapting to or presenting context. A typical example of a context-aware

application presenting context is a tourist guide which uses the location of the user to

present relevant information on the surrounding environment. E.g. at an art gallery the

application can automatically present information on the closest painting. An application

that adapts to context can be a print service on a PDA automatically sending print jobs to the

nearest printer, which changes as the user moves through an office environment. A device

presenting different functionality based on context, and not just changes functionality, is a

cell phone which only allows outgoing calls when a network is in range. This is a common

feature, but it could be possible for the phone to allow calls in all situations. The result when

the network is out of reach would be that the user would not succeed in placing a call, and

he would not know why.

4.3 CONTEXT APPLIED TO THIS THESIS

In this thesis, context is the identification and positioning of items, tracing of items, and

sensor data related to items. Both the identification/tracing information and sensor data are

relevant for presentation to users as well as for applications adapting to the information.

Trace information can be used passively by presenting the steps a product has taken from

the manufacturer to the store to a user. It can also be used actively to detect if an item has

passed a boundary and raise an alarm, e.g. for theft prevention. This is the same for sensor

15

15 Context-Aware Computing

data, it can be presented to a user who then decides if he wants to act on it, or it can be

used more actively, e.g. by a refrigerator which automatically turns down the temperature if

a product inside is too warm.

It is obvious that the easiest way to handle context information is to present it to a user, and

then let the user decide what to do. If e.g. an item is located at several different positions, it

is not difficult to plot these on a map to provide trace information. It requires a bit more

logic for an application to take this information, process it, and then present to the user if

the item has deviated from its planned route, in what state it is (e.g. if the last known

location was the garbage), if it has been transported by air etc. The most advanced way to

handle context information is applications which automatically act on this information. It can

for example be possible for the application to predict when the item will arrive at a cross-

docking site, and automatically order further transportation to be ready at that time.

Common for all these situations is that they have a tracking solution as a foundation, and

build on this. This means that when such a solution is in place, it is possible to start with the

easiest type of context-awareness, just presenting the information to a user, and later

expand the solution with more advanced functionality.

In RFID-based systems, the identification of items is inherent. This thesis tries to get

additional context information and relate this to the identified item. Using various sensors it

is possible to get a lot of different context information which helps define the state of the

item, the situation it is in, how it has been treated, where it has been, and when it was

there. If all this information is combined and stored for future use, a very detailed history of

an item’s lifetime can be obtained. Not only where the item was and when it was there, but

also information on the state and situation the item was in at that time. Possibly could

information on the item’s state between the locations also be obtained.

RFID is based on locating tags at “checkpoints” where there are RFID readers, and it gives no

information on what happened between these readings. This information can be added by

using sensors storing context information between tag-reads.

16

16 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

17

17 RFID Technology

5 RFID TECHNOLOGY

This chapter gives an introduction to the technology behind RFID (Radio Frequency

Identification), and looks at different characteristics and possibilities for RFID tags.

Challenges when implementing RFID solutions are discussed, and some important standards

related to RFID are presented.

RFID has been around for quite a while. It was e.g. used by the British military during World

War II to identify aircrafts. Still it took many years before it gained a wide interest. Now

there are much publicity regarding RFID, and many companies are looking at how RFID can

benefit their business. RFID can be a natural replacement for the old barcode, and it has

several benefits over barcodes. It can also be used as a supplement to barcodes with

additional information and for redundancy. One important advantage of RFID is that it does

not require a clear line of sight between the reader and the tag, which makes it possible to

read larger quantities of tags at the same time. This thesis will not go into detail on the

history of RFID, for more information, see (Landt 2005).

5.1 TAG CHARACTERISTICS

There are many different types of RFID tags using the same or similar technology, but which

have different properties. It is therefore important to know what is available, and to choose

the correct tag for a given situation. This section presents some characteristics or properties

of RFID tags to give an overview of the possibilities of RFID.

5.1.1 ACTIVE AND PASSIVE TAGS

RFID tags are usually categorized into two different types; active and passive. The main

difference between these is in how they are powered. Active tags are powered by their own

power supply, either internally from a battery or connected by a power cord. Passive tags

are without a power supply and receive power only when they are read. This means that

passive tags only have power when in the range of a reader, and they are not capable of

continuously collecting or processing data. For RFID used solely for identification, this is no

problem as the tag will be powered when someone tries to read it, and will remain inactive

at all other times. When the tags are required to process data at any time, e.g. when

combined with a temperature sensor, an active tag is required.

Some monitoring is possible with passive tags as well. It is e.g. possible to monitor if a

package has been opened by creating a small circuit around the entire package which will

break when opened. This can be detected upon reading by submitting a single bit saying if

the circuit leads power or not. This method enables only simple monitoring and an active tag

is needed for more advanced functionality. The other possibility is to include a passive tag

for identification, and have active sensors independent of the RFID tag.

18

18 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Active tags have longer range than passive, as they can transmit with higher power. They are

also capable of transmitting a beacon signal at even intervals which will be captured by

readers whenever one is in range. The downside is that the battery has a limited lifetime,

and that the price is higher than for a passive tag. It is also possible to have a semi-active tag.

Semi-active tags have an onboard power source, but they do not try to transmit any signals

before a given event occurs. Such tags could for example be used for alarm signals, where

the tag gives notice if something happens but otherwise stays quiet.

There are also semi-passive tags. These tags are similar to active tags in the sense that they

have their own power supply in the form of a battery, but this power is only used on the tag

and not for transmitting a beacon signal or for broadcast. This results in a longer battery life

than for active tags, and communication functions as for passive tags. The battery may be

used to assist the receiving circuit on the tag which results in better reading range. The

onboard power can for example be used to log environmental data, and it can therefore

provide dynamically created data which is not possible for passive tags (Xiao, Yu et al. 2006)

(Want 2006).

5.1.2 POWERING A PASSIVE TAG

There are two different approaches for powering a passive tag from a reader based on the

electromagnetic properties near-field and far-field of an RF antenna. The near-field uses

magnetic induction while the far-field uses electromagnetic wave capturing. The technology

for sending the response from the tag to the reader is also different, near-field uses load

modulation while far-field uses back scattering. Technical details will not be discussed here,

for more information see (Want 2006).

It is one important problem by having two different approaches for passive RFID; they are

not compatible. Near-field uses HF frequencies while far-field uses UHF. One important

technology within near-field is NFC (Near Field Communication). NFC tries to enable wireless

mobile devices to communicate with other devices on a short range without relying on

discovery mechanisms used by other standards. The typical example of NFC is a mobile

phone with a built in RFID tag and reader which can read passive RFID tags using the near-

field approach. Potential uses for this are many, e.g. to use a cell phone as a means of

payment. When entering a bus a reader at the door can detect the RFID tag in the cell

phone, and payment can be done using the phone network such as GSM (Want 2006).

The first passive RFID tags were based on near-field, but there are some problems with this

technology. The range for near-field is not too good due to limitations of magnetic induction,

and it is reduced as the frequency is increased. The range for magnetic induction is

approximately , where c is the speed of light and f is the frequency. The frequency needs

to be increased as the load is increased, and the range is thus reduced. Therefore tags based

on far-field communication have been developed. The EPC (Electronic Product Code) from

19

19 RFID Technology

EPCglobal is one example of the use of far-field RFID. Near-field usually operates at

frequencies up to 100MHz, while far-field is above this level (Want 2006). The current EPC

standard uses UHF frequencies (Ultra High Frequencies), but the standard mentions the

possibility of a HF (High Frequency) tag using the near-field capabilities in the future.

According to (Roberti 2007), this standard was supposed to be ratified in the middle of 2007,

but as of June 2008 no standard has been released. When this standard has been ratified, it

will be a great benefit to end users as they can choose between HF and UHF according to

whatever fits their needs, and still conform to EPC standards.

5.1.3 REUSABLE TAGS

In some contexts reusable tags are important and are a necessity for implementing RFID. An

example is Nortura, the leading supplier of meat and eggs in Norway. They have a special

reusable container used for meat. Nortura has started an RFID project and is in the process

of tagging each and every one of these containers. It has been very important for them that

the tags are reusable and robust. It is for example necessary for the tags to endure washing

at very high temperatures, as well as temperatures below freezing when containing frozen

products. As these tags are cast inside the plastic of the case, they need to have a lifetime at

least as long as the case itself (Logistikk & Ledelse 2007).

Another example where reusable tags are necessary is when using expensive tags with many

functions. The cost difference between passive and active tags is very large, thus when using

an active tag with added sensors or other functionality, reusability becomes important.

A situation where reusable tags are not an issue is when tagging consumer goods.

Consumers will not want to return the tag when buying a product and the tag only needs to

be usable until retail. Another example is when tagging disposable containers. The cost of

removing the tag and applying it to a new container could be larger than the cost of the tag

itself, depending on the type of tag used, and it would thus be thrown away with the

container.

5.1.4 STATIC OR DYNAMIC DATA

Another characteristic of RFID tags is the data stored on the tag. Every tag has the ability to

store and communicate static data, but some also has the ability to have dynamic data.

Dynamic data is important when incorporating sensors on the tag to enable storing of data

sampled from the sensor. Some tags have a kind of “semi-dynamic” memory in the sense

that there is a user memory but it is writable only once. This can also be viewed as the

difference between read-only and read-write memory. As always it is a question about cost

and functionality, read-only is cheaper but read-write has better functionality. The possible

uses of the user memory can both be predefined and optional to the implementer. As an

example, the Tag Data Standard from EPCglobal clearly specifies the data types of the user

20

20 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

memory. For added security, it is possible to have access control when reading or writing to

the tag, typically by supplying a password with the read/write command (Want 2006)

(EPCglobal 2007b).

5.2 CHALLENGES

There are many challenges to consider when using RFID. Many of these have been solved,

but implementers need to be aware of them. This section will describe some of these.

5.2.1 COLLOCATED TAGS

It is problematic to read collocated tags, as there are problems with collision in transmission

in all wireless communication. This needs to be considered when producing RFID readers,

but for end users this problem has been solved. The solution used by e.g. the EPC Class 1

tags is a Query Tree protocol, which models the ID space as a binary tree and tries to read

different parts of the tree at a time, until it only reads a node which corresponds to a tag

identity. Similar solutions exist for other tag air interfaces.

5.2.2 RELIABILITY

Highly reliable reading has been a problem for RFID solutions, where less than 100% tag read

success are in many cases not an option. It can e.g. be very expensive if a checkout counter

at a store does not register every item that passes through. It is also necessary to have a

different approach when trying to correctly identify one tag, e.g. for RFID-based access

control, and when trying to correctly identify an unknown number of tags at the same time,

e.g. at a supermarket (Vogt 2002). The material of the object tagged does also have an

impact on the success of a tag read. It is important to consider the material of the tagged

objects, and to choose tags accordingly, as it can interfere with the radio waves (Ukkonen,

Engels et al. 2005). It is however possible to achieve high read rates for RFID and Pat King

argues in (King 2006) that it is possible to achieve Six Sigma reliability with RFID. Six Sigma

refers to the ability of a process to perform within specification. The goal is that there

should be six standard deviations between the mean and the specification limits. According

to (Michael and McCathie 2005), the San Francisco International Airport has consistent read

rates above 99.5%, but, as mentioned above, in many cases 100% is required. It is possible to

detect if any tags has not been read, and (Potdar, Hayati et al. 2007) suggests to use the

total weight of the goods to be read, and to compare this with backend information about

the weight of the goods that has been read. This is a smart approach, as in some

circumstances consistently achieving 100% read rates might not be possible. It is possible to

detect if some tags have not been read, and to take action, and it might be easier to detect if

some tags are not read than to try and achieve 100% read rates. Sometimes the demand of

21

21 RFID Technology

100% read rates might interfere with the goal of real-time processing, especially with large

quantities (Ding, Li et al. 2007).

5.2.3 READER COLLISION PROBLEM

The reader collision problem is when different RFID readers interfere with each other, either

by using the same frequency at the same time or by trying to read the same tag (Engels and

Sarma 2002). This is not an unknown problem for wireless communication, and has e.g. been

studied extensively for mobile phones. The difference here is that RFID tags are much

simpler than mobile phones, especially passive tags, and they can therefore not assist much

in the communication.

Solutions to this problem are e.g. to let each reader have its own frequency, or its own

timeslot to send a signal. It can also be useful to tune the signal strength of the readers to

have minimal overlap. Some overlap is however required to gain full coverage over an area.

At a warehouse with many gates with RFID readers, it might be possible to isolate each gate

so that radio waves are not transmitted between the gates. The only interference is from

other readers at the same gate and not from all the gates (Engels and Sarma 2002).

5.2.4 COST

The price of the tag is another important challenge. This has been a major reason for slow

adoption of RFID in the retail industry, as the tag price has been too large compared to the

price of the item tagged. The prices have dropped, however, and they will continue to drop

as the use of RFID continues to spread. For UHF tags, a major price drop came when the EPC

standard was released. It has also helped that large chains such as Wal-Mart have required

many of its top suppliers to use EPC for pallet and carton tracking (Liard 2004).

Many people have talked about the “5 cent tag”, and it has been sort of a goal to achieve

this price on a tag. This price was first introduced by Sanjay Sarma in 2004 (Sarma 2004).To

our knowledge, SmartCode Corp. was the first to achieve this price for EPC Gen 2 tags, at

volumes of 100 million tags and above (SmartCode Corp. 2006). This is not very sophisticated

tags, and for active tags or passive tags with, e.g., cryptographic features, this price is not yet

realistic (Nahas and Deogun 2007).

5.2.5 SECURITY AND PRIVACY

A very important aspect of RFID technology is privacy. There is a great potential for misuse

of information when every object is tagged with an RFID. This is mostly a problem when

tagging consumer goods, and not when RFID is used for tagging pallets and containers in the

supply chain.

22

22 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Even though the scenario where a thief stands outside a house with an RFID reader and

reads information on every object in the house is not realistic, there are other problematic

scenarios. While an RFID reader at a store exit can prevent theft of tagged items, it also

enables the store to scan each and every customer entering and exiting and to get

information on the objects they carry with them. This is not information people want to give

away, especially not automatically and without consent. There exist technical solutions for

protecting privacy when using RFID, but availability does not mean that they will be used.

This is why it is necessary to have rules or laws governing the use of RFID in public areas.

Privacy can also be a problem when used in the supply chain. Consider e.g. trying to keep a

shipment secret if all items or pallets shipped carry RFID tags that can be read by anyone.

This is not a privacy issue but a security issue.

The European Union has recently released a draft of recommendations for privacy, data

protection, and information security principles for RFID supported applications (Rossen

2008). They made the draft available to the public for comments and suggestions, but the

consultation is now closed and the draft has been withdrawn in wait for a new version. One

of the suggestions is that anyone who wants to implement an RFID application first needs to

investigate possible implications on privacy, and to make the results of this publicly

available. They also need to publish an easy to understand statement on how RFID will be

used. For RFID used in public places, it will be mandatory to inform everyone at the site

about this, e.g. by using signs. There will be separate rules for RFID in the retail industry, and

it will e.g. be mandatory to deactivate all RFID tags from items sold unless the customer

explicitly says otherwise, and it must be possible for the customer to check if this is in fact

done (Rossen 2008).

KILL BIT

One technology to improve privacy is a kill bit on the tag. This is a writeable bit in the tag

memory that says if the tag is operational or not. If the kill bit is set, no information can be

read. The information will still be there but it will not be available to readers. One can for

example imagine a situation where it is required to set the kill bit when an item is sold to an

end user, which as mentioned above is proposed by the European Union. One problem is

that stores might not be careful enough to set the bit on all tags, and that it is difficult for

the user to know if it has been done without buying a reader for himself. The end users also

looses the possible benefits of the tags, such as washing machines automatically knowing

what clothes are being washed and setting the appropriate temperature. Stores might also

want the tags active upon a possible return of the item, to see the item’s history (Want

2006) (EPCglobal 2007b).

23

23 RFID Technology

BLOCKER TAG

The blocker tag is another way to improve privacy. (Ari, Ronald et al. 2003) propose to use a

tag that utilizes the singulation algorithm used by the readers to block access to all tags. The

most common singulation method is tree-walking, and this is the one used by EPCglobal. In

short, this algorithm functions like a depth-first search of a binary tree. It is assumed that the

tag identification numbers have a fixed bit length, and that each possible identification

number is a node in the tree. The blocking tag blocks this algorithm by simulating all possible

tag identification numbers, giving the impression that all tags are present. It is possible to

divide the tree into zones, and have the blocking tag block only a sub tree corresponding to a

particular zone. This makes it possible to have both public and private tags.

The blocking tag can also be misused by disrupting legit tag reads. A very simple reader will

try each possible combination in the tree, and if all tags are present, or seem to be present,

the entire tree will be traversed. This will take a very long time, and will result in a denial-of-

service attack. For more information on the blocker tag and more advanced uses, see (Ari,

Ronald et al. 2003).

5.3 STANDARDS

Different standards exist for how RFID tags are to be constructed, and for communication

between the tag and the tag reader. Some of these standards are compatible with each

other, and an effort has been made to make different standards more compatible. As an

example, EPCglobal has support for various ISO standards in their Tag Air interface. This

section presents some important standards for RFID technology.

One of the most used RFID standards is ISO 18000. This is a multipart standard which

specifies air interfaces for many frequencies in the LF, HF, and UHF bands. ISO (International

Organization for Standardization) also has two other relevant standards, ISO 14443 and ISO

15693. ISO 14443 is a standard for proximity devices with a very short operating range,

typically 10 cm, while ISO 15693 is a newer standard in the HF band for vicinity devices with

ranges up to 1 meter. ISO 18000-3 is based on this standard (Juels 2006) (Weinstein 2005).

The other major standard comes from EPCglobal. Contrary to ISO 18000, which only specifies

air interfaces, EPCglobal has standards for air interface, tag data, middleware and databases

for storing and sharing this data and related information. EPC currently only support UHF,

but as mentioned above, an air interface using the HF band is under way. The most recent

version of EPC UHF Gen 2 has been taken in as a part of ISO 18000-6C, which means that

they are compatible and readers are capable of reading both standards. One major

requirement for including EPC standards in ISO 18000 was the inclusion of a toggle bit in the

tag data standard, which specifies if the tag carries an EPC or if it carries an ISO 15961

Application Family Identifier (O'Connor 2005). As of version 1.3 of the Tag Data Standard,

this is included (EPCglobal 2007d). This could mean very much for the adoption of EPC Gen2

24

24 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

tags, as businesses are now guaranteed interoperability with other ISO 18000 standards

(Weinstein 2005) (O'Connor 2006a).

The last standard mentioned is NFC from the Near-Field Consortium (NFCIP-1/ECMA340, ISO

18092). As mentioned above, this standard tries to enable mobile or portable devices to

communicate with each other. NFC has a tag-reader model, meaning that a device such as a

mobile phone is both a tag and a reader. NFC uses the HF band and is compatible with both

ISO 14443 and ISO 15693 (Juels 2006).

25

25 Sensors

6 SENSORS

This chapter gives a brief introduction to wireless sensor networks (WSN), applications and

challenges of WSNs, and different sensor types. A sensor is a very wide term, and there are

many types of sensors. It is possible to consider an RFID reader as a sensor, sensing RFID

tags. In this thesis the term sensor will not be used for RFID readers, if not stated explicitly.

The sensors presented in this chapter will mainly be related to RFID tags, and the examples

are all RFID tags which include sensors on the tag.

Given a fixed computational capacity, the size will in time shrink dramatically. The first

computer had a size equal to a house, and today there are computers the size of a credit

card or even smaller. It is not hard to believe that there one day will be small sensors

everywhere, with acceptable computational capacity to sense the real world; Smart dust and

brilliant rocks as M. Satyanarayanan explained it (Satyanarayanan 2003). A network of

several inexpensive sensors spread like sand or dust, smart dust, solving small sensor tasks.

The other approach is smarter and larger sensors, described as brilliant rocks. Used for

calculation and communication between sensors automatically, without the need of an

external computer. The technology of today enables the beginning of this revolution of

tracking and sensing the world. Not only the use of RFID to track goods in a supply chain, but

sensing the context around the goods.

6.1 WIRELESS SENSOR NETWORKS

A wireless sensor network (WSN) can be explained as several sensors in a relation to each

other with one or more listeners. The devices in a WSN are constrained with regards to

resources and are low on power, processor capacity, bandwidth, storage etc. If the resources

of all the devices in a large WSN were combined, it could be a considerable amount. The

main aspect of a sensor in a WSN is the ability to:

 Sense data from the physical world

 Record sensor readings, keeping them for later or immediate use

 Process sensor readings to save space and communication need

 Communicate readings to a listener over a wireless network

The third aspect, process senor readings to save space and communication need, is very

important when the WSN becomes large. As much processing as possible should be done at

the edge of the network, reducing the need for communication. If every possible data

sensed had to be sent to a central server for processing, it could be a huge problem with

performance and scalability. Ideally, only information wanted and relevant for the rest of the

network should be communicated from the nodes. The sensors can either be aware of each

other, using themselves and others to communicate their readings to one or more listeners,

26

26 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

or they could be unaware of each other communicating directly with the listeners (Culler,

Estrin et al. 2004).

6.1.1 APPLICATIONS

Sensors and wireless communication devices become cheaper and smaller. When cost

decreases it opens up for a number of uses, enabling widespread use of WSN. These

networks can be used to solve several tasks, and (Culler, Estrin et al. 2004) summarizes these

in three areas:

 Monitoring space

 Monitoring objects

 Monitoring the interactions of objects with each other and the encompassing space

The following sections will briefly present examples of these three areas.

MONITORING SPACE

Using sensors to monitor and give relevant information about a space. Typical examples are:

 Temperature readings for a cooler or indoor climate control

 Camera surveillance

 Intelligent alarm systems

Temperature sensing is probably one of the most used sensor technologies, there are

temperature sensors everywhere. This is used in many different situations, e.g. on

processors in computers to know when to turn on the fan and for weather stations

monitoring the air temperature.

MONITORING OBJECTS

Using sensors to give relevant information about the given state or condition of an object.

Typical examples are:

 Structural monitoring

 Equipment maintenance

 Medical diagnostic

One example of monitoring objects is sensors attached to various types of machines in a

factory. These sensors can perform a wide range of measurements, e.g. vibrations or

pressure. The sampling rate needs to be much higher for this type of sensing than for

environmental sensors. A temperature sensor could for example measure the temperature

every minute, but a vibration sensor would have to take measurements much more often.

27

27 Sensors

MONITORING THE INTERACTIONS OF OBJECTS

Using sensors to give relevant information about objects and how they interact with each

other. Typical examples are:

 Wildlife habitats

 Disaster management

 Emergency response

 Ubiquitous computing environments

 Asset tracking

 Healthcare

 Manufacturing process flow

This is the most advanced form of sensors, and also the most interesting. It is not enough to
monitor an object isolated, but also how that object interacts with other objects and the
space it is in. For wildlife habitats it is e.g. a difference between monitoring one cow and an
entire herd of cattle, including the interaction between them. This type of sensor use will not
be discussed further in this thesis, as it is not relevant. Relevant sensors for this thesis are
sensors monitoring space, e.g. the temperature in a cold storage, or sensors monitoring
objects, e.g. acceleration sensors.

6.1.2 CHALLENGES

There are several challenges to wireless communication alone, and adding small sensors will

drastically increase the complexity. There exist numerous hardware challenges, but this

section will focus on the limitations regarding how and for what sensors and WSNs can be

used, and how these limitations can be overcome. For more information, see e.g. (Culler,

Estrin et al. 2004).

POWER

A major limitation of sensors is power. The power source would occupy most of the sensor’s

size and is therefore a challenge. A sensor with a car battery cannot be called small, and a

sensor without power would not be able to communicate or sense the world around it.

Balancing these factors, size and amount of power, is challenging because of the expected

lifetime of a sensor. Sensors would be made to last long, and the minimization of power

usage is important. This could be done by disabling functionality in the sensor, such as

communication, when it is not used. The usage of the sensor should therefore be taken into

consideration, as the use of the sensor defines the power needed.

COMMUNICATION

Due to the complexity of wireless communication, such as packet loss, interference, and

distance, power is critical. Transmitting over longer distances or in though environments

28

28 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

would drain the battery drastically compared to communication in a perfect setting. As

communication consumes most of the sensor’s battery power, it should be carefully

planned. All sensor readings do not need to be sent the second they are read, and these data

can be stored for later transmission. If they are to be stored, the storage capacity of the

sensor needs to be considered when planning the use of a sensor. It is necessary to make

sure that nothing will be lost. It is also important to send as little irrelevant data as possible.

If the receiver discards the data, it should not have been sent. This is a general principle for

WSNs; try to make as many decisions as possible at the edge of the network. This is due to

scalability and performance, but in this case it also applies to sensor communications. There

is also, as mentioned above, a problem with interference, and having sensors only

communicating when necessary would reduce the problem with interference from other

sensors trying to transmit.

SCALABILITY

When creating a WSN, there will be limitations due to the large amount of sensors. Consider

a trailer with pallets stacked with several boxes containing sales items. The numbers start to

increase, and it is necessary to plan the communication. The use of super nodes,

concatenating sensor readings from several sensors, could be used in a hierarchy to reduce

the load. This is also discussed above with regards to making decisions at the sensors instead

of centrally.

REMOTE MANAGING

Not all sensors in a WSN would be easy to reach physically, thus remote access would be the

only solution if the sensors needed to be reconfigured. Remote access would also decrease

the time needed to configure a large number of sensors, because a one-to-one configuration

could be dropped. Instead it would be possible to configure a large number of sensors all at

once, and as the usage of WSNs increases, the number of sensors will increase drastically,

increasing the need for remote management. It will therefore be necessary to find common

standards for configuration and management of sensors, to ensure that sensors from

different vendors can coexist in a WSN and be managed through the same interface.

6.2 DIFFERENT TYPES OF ELECTRONIC SENSORS

This section gives an overview of some sensors produced by a few manufacturers today. The

section will not go into details about how these sensors work; only what they are able to

observe to give an idea about what is available. The section will focus on sensors relevant for

this thesis, e.g. sensors which can be used to provide context information related to item

tracking in general and fresh food specific.

29

29 Sensors

6.2.1 MANUFACTURERS

The sensors described in this section come from the manufacturers CAEN, KSW, and

Montalbano. CAEN is an Italian company producing, among other things, RFID readers and

tags. They also produce an RFID tag which includes a temperature sensor, called a

Temperature Logger UHF Semi-Passive tag (CAEN 2008). KSW focuses on RFID, and delivers

both active and passive RFID equipment. They have also included a temperature sensor on

their active tag, called VarioSens (KSW 2008). Montalbano produces mainly semi-passive

RFID tags which can include many different types of sensors (Montalbano 2008).

Montalbano has developed a platform which is modular and makes it possible to include a

wide range of sensor types on the RFID tags. Two of them are shown in this section, but they

have many other possibilities as well, e.g. pressure and shock sensors.

These manufacturers are selected as examples, and there are many others. It is obvious that

the market for RFID tags including environment sensors is growing, as many companies are

developing such products.

6.2.2 PRODUCT TYPES

This section presents different types of sensors, with examples from the manufacturers

presented above. A set of characteristics is given for each sensor to give a brief description

of the performance and qualities of such sensors.

TEMPERATURE

The first, and most used and discussed today, is the temperature sensor. This is very relevant

for the fresh food industry, and in many other situations. Each of the three manufacturers

produces temperature sensors, and one example from each is included. Each example below

is a semi-passive RFID tag including a temperature sensor.

30

30 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Table 1 Temperature sensors

CAEN RFID Mod. A927 from CAEN

 Time interval for readings is 6 seconds,
can be configured on request

 Semi passive tag read/write

 3 year lifetime

 Supporting ISO 18000, but extended to
support sensor data.

 Configurable after production

 Unix time, internal clock

 Two sensors. One of them a probe,
enabling internal and external sensing
of a box for example.

VarioSens from KSW

 0 up to 720 values (10Bits per value)

 Time interval: 2s up to 9h

 Monitoring delay: 0 up to 720 days

 Read distance: 0 up to 25cm

 0,6 s for reading the whole data (720
values)

 Battery MnO2Zn - printed battery
(1,5V ... 1,1V)

MTsens from Montalbano

MTsens measures time and acquires data of
exposure to heat with programmable
frequency and performs a very accurate data
logging.

ACCELERATION

The second example is an acceleration sensor. This type of sensor is able to detect the

acceleration of an item, typically by attaching an RFID tag with the sensor to the item. This

can be used to detect rough treatment of items, e.g. if it has been tossed or fallen down

from a height.

31

31 Sensors

Table 2 Acceleration sensors

MTshock from Montalbano

 Full scale +-2g/6g

 -20/+60 degree Celsius

 Reusable and low cost

 Programmable rate for data
acquisition and storage

HUMIDITY

The last example is a humidity sensor sensing the humidity, which is very important to

preserve the quality of certain products. The example shown below is from Montalbano, as

was the acceleration sensor.

Table 3 Humidity sensors

MThumidity from Montalbano

 Combined temperature and
RH% sensing.

 0-100 RH%

 Programmable rate for data
acquisition and storage

 Reporting over 1000
temperature and RH pairs

6.3 CHEMICAL SENSORS

Electronics can be expensive to produce and may therefore be too expensive to be used on

every product. A cheaper solution might be the use of chemical sensors, reacting to time and

environment. TimeTemp AS is a Norwegian company specializing in making chemical sensors

for fresh food. These sensors give the products dynamic expiration dates, which change over

time. The TimeTemp tag is shown in Figure 2. It has a dynamic scale going from +14 days to

32

32 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

expiration to expired. The expiration date on the tag varies as a function of time and the

temperature of the product. This type of tag is not relevant for use with RFID tags and sensor

networks, as it has no means to communicate its observations, but is included to show an

alternative approach.

Figure 2 Chemical sensor (TimeTemp 2008)

33

33 Integrating RFID and Sensor Systems with EPC/EPCIS

7 INTEGRATING RFID AND SENSOR SYSTEMS WITH EPC/EPCIS

This chapter will describe how RFID systems can be integrated with the EPC standards from

EPCglobal. It will not go into detail on what EPC and EPCIS is, but a chapter from a previous

report (Albretsen and Larsen 2007) is included in Appendix B. Some of the extension

mechanisms in EPC that can be used to include sensor data as well as other information in

addition to the RFID already there will be discussed. It will also be explained how systems

can utilize EPCIS to share this data. The use of EPCIS is independent of the underlying tag

standard used. EPCIS can be used both with EPC tags and other tags. Figure 3 shows an

overview of the EPCglobal Architecture Framework.

34

34 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Figure 3 EPCglobal Architecture Framework (EPCglobal 2007c)

7.1 INCLUDING USER DATA WITH STANDARD EPC TAGS

This section will explain how it possible to include sensor data in addition to the RFID on the

tag using the EPC tag standard. The Class 1 Gen 2 Tag Air Interface specifies four different

memory types, or memory banks, which are: reserved memory, EPC memory, TID memory

and user memory. The first three memory types are predefined by the standard, but the

user memory is available for extra information. For EPCglobal applications, this memory

must be encoded according to the EPC Tag Data Standard, for other applications it must

conform to ISO/IEC 15961 and ISO/IEC 15962. The current version of the Tag Data Standard

35

35 Integrating RFID and Sensor Systems with EPC/EPCIS

(version 1.3.1) does not specify how EPCglobal applications should encode the user memory,

but it is expected to be addressed in a future version (EPCglobal 2007d) (EPCglobal 2007b).

The user memory makes it possible to include industry specific data on the tag, and as such

makes it unnecessary to have one tag for the EPC and one for an industry specific code. An

example of use of this is within the car industry in the U.S. The industry plans to include the

U.S. Department of Transportation tire identification number, with information on

production date and location, in the user memory. This is just one example, and other

industries can include different information in the same memory. As the EPC standard

specifies that the user memory must conform to the ISO 15961 and 15962 protocols, RFID

readers will know how to access the user data even though it does not know what kind of

data is included. This is important as reader manufacturers only need to conform to one

standard (in addition to EPC). Different industries can include the information they want as

long as it is encoded according to the same standard (O'Connor 2006b) (Harmon 2006).

Other possible uses of the user memory are sensor data, expiration dates, serial numbers

etc. All data relevant for a unique item and not the entire class of items is potential data for

the user memory, limited by the size of the memory. A problem with large user memories

can be the transmit time of the data, which will have an impact on tag throughput of a

system.

The EPC standard does not specify the size of the tag memory, other than that each of the

four memory banks shall contain zero or more 16 bit memory words, or how the memory is

organized. These are issues that should be addressed to achieve a good utilization of the

user memory. An EPC for identification is very useful, but more information is also necessary

to get higher benefits from RFID tags. It is therefore important that the specifications for the

user memory are more detailed, to make it easier to use (Harmon 2006).

7.2 INTEGRATING WITH EPCIS

The other part of the EPCglobal standards discussed here is EPCIS, used to publish and

retrieve information related to EPCs (EPCglobal 2007a). If EPCIS gets a wide adoption, it will

be interesting for companies and industries using any tag standard to integrate with this

architecture, both for EPC and non-EPC tags. If, e.g., a retail chain shares and retrieves

product information using EPCIS, it would want to use this from all its suppliers, independent

of the suppliers’ underlying systems. This section will first explain how the underlying tag

type used is not relevant for the use of EPCIS, and then look at how the EPCIS standard can

be adapted to suit the needs of different industries. Figure 4 shows the different layers in

EPCIS.

36

36 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Figure 4 EPCIS layers (EPCglobal 2007a)

7.2.1 USING EPCIS INDEPENDENT OF TAG TYPE

The first EPCIS part of the EPC Architecture Framework is the EPCIS Capturing Application, as

seen in Figure 3. Everything below the Capturing Application is related to RFID tags, the

reading of tags, and filtering and collection of tag reads. The reason that EPCIS is

independent of tag type is that it is not specified explicitly how an EPCIS Capturing

Application retrieves its information. The EPCglobal Architecture standard specifies the

responsibilities of that role (among others) as:

37

37 Integrating RFID and Sensor Systems with EPC/EPCIS

“[EPCIS Capturing Application (Role)] may coordinate multiple sources of data in the

course of recognizing an individual EPCIS event. Sources of data may include filtered,

collected EPC data obtained through the Filtering & Collection Interface, other device-

generated data such as barcode data, human input, and data gathered from other

software systems.”(EPCglobal 2007c)

This means that there are no reasons that the data could not come from another source

than the EPC Filtering & Collection interface. The EPCIS standard also specifies that an EPCIS

Event does not have to directly relate to a physical tag observation. It is therefore no

problem to use EPCIS to share information from many different sources, both standard EPC

tags and others. The only limitation is that the item specified should have an EPC code. It

could be possible to use EPCIS and its extensions with another code standard than EPC, but

then it would not be necessary to use EPCIS at all.

One of the benefits of using EPCIS is using the Object Name Service (ONS) and EPCIS

discovery to find information about a specific item based on the EPC code. A retail store can

e.g. use the same interface to retrieve information on each of its products, as long as the

product has an EPC number. It is irrelevant whether the EPC is encoded by an EPC Class 1

Gen 2 UHF tag, another RFID standard tag, a barcode or by other means.

7.2.2 EXTENDING EPCIS TO FIT DIFFERENT NEEDS

The entire EPCIS standard has a wide focus on extensibility. Extensibility is one of three

principles defined for the specification of EPCIS (in addition to layered and modular). It

should therefore be possible for most industries to adapt it to their needs.

The standard specifies two mechanisms used for extensibility: subclassing and extension

points. In addition to this, there is extensibility inherent in the use of a layered approach. By

using subclassing, it is possible to extend every data type in the Data Definition Layer and

include additional functionality or information in the class, while still being able to work

together with users that only know of the parent class. This ensures backward compatibility,

as the subclass only need to be known by those wishing to use the extra functionality or

information. Such a subclass can be used wherever the parent class is used. Extension points

are included for vendors to provide extended functionality without using subclasses. The

standard clearly specifies where extension points are required or optional. Wherever an

extension point occurs, implementations shall provide for extensibility through new

operations. Extensions from EPCglobal in future versions of the standard and from

proprietary vendors shall be supported. Extensibility from layering comes from the fact that

each layer may be implemented in many different ways, but is still able to interoperate. The

obvious example from EPCIS is the different data bindings provided. If one industry wants to

use another binding, it is no problem to implement a new binding type and reuse the rest of

the layers.

38

38 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

The Abstract Data Model layer defines the two data types “event data” and “master data”.

The standard specifies the structure of these data types, but not the meaning. Event data

can be seen as data that grows over time as business is conducted, and it is on the form

“Item A passed location X at time T”. Master data is more static and is not expected to be

updated very often. Master data is there to help interpret the event data, and in the case

above, could explain what item A is, and where location X is.

These two data types lay the foundation for all data processing in EPCIS, and there are 5

methods defined for extending the data processed. These methods allow the creation of:

 New event types

 New event fields

 New vocabulary types

 New master data attributes

 New vocabulary elements

An event type is defined as nothing more than a namespace-qualified name (qname) that

indicates which event type a given event conforms to. The event types are defined in the

Data Definition Layer. An event field is a qname that refers to a field in an event type defined

in the Data Definition Layer, or to an extension. A vocabulary is a set of alternative values for

an event field, and vocabulary elements are items in such a vocabulary. An example of a

vocabulary can be a set of available location names. Master data attributes are name/value

pairs that are associated with a vocabulary element. See Table 4 for an overview of the

extension mechanisms. The table also specifies how these extensions are made available to

the users.

39

39 Integrating RFID and Sensor Systems with EPC/EPCIS

Table 4 EPCIS data extension methods (EPCglobal 2007a)

Organization
type

Extension Method How
Disseminated

New
Event
Type

New
Event
Field

New
Vocabulary

Type

New
Master

Data
Attribute

New
Vocabulary

Element

EPCglobal
EPCIS Working
Group

Yes Yes Yes Occasionally Rarely New Version of
EPCIS Spec

EPCglobal
Business
Action Group
for a specific
industry

Rarely Rarely Occasionally Yes Yes
(standard
vocabulary)

Specification
Document

Industry
Consortium or
Private End
User Group
outside
EPCglobal

Rarely Rarely Occasionally Yes Yes
(standard
vocabulary)

Private Group
Interoperability
Specification

Individual End
User

Rarely Rarely Rarely Rarely Yes (user
vocabulary)

Updated
Master Data
via EPCIS
Query or other
data sync

There are many possibilities for extensions, and it is clearly defined which organization

should define an extension to each part of the standard. It is worth noticing that individual

users do not have many options for extending the specification. This is because an extension

is not worth anything if only one part is aware of its existence, thus such extensions should

be coordinated by e.g. an industry consortium. For large corporations this might be

different, as they can control all parts of the value chain, and they will sometimes not need

to exchange data with other corporations. Such corporations might benefit from individual

extensions, but in most cases this should be coordinated by a larger group.

Throughout the standard, it is clear that EPCglobal tries to accommodate as many industries

as possible, by making the standard very generic. It is also possible to create non standard

extensions to meet specific industry needs that might be used to expand and update the

standard specification in a later version (EPCglobal 2007a).

40

40 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

7.2.3 EPCIS INTERFACES

The EPCIS standard (EPCglobal 2007a) specifies three interfaces and one data model. The

data model is a standard way to represent information on physical objects, described above.

To integrate with EPCIS it is also necessary to implement the three interfaces, one for

capturing event data and two to retrieve this information. Each of these interfaces will be

explained below.

7.2.3.1 EPCIS CAPTURE INTERFACE

The capture interface is used by EPCIS Capture applications to provide EPCIS Events to a

repository or other applications. This is a very simple interface with only one method which

takes a list of EPCIS events as an argument.

Figure 5 EPCIS Capture Interface (EPCglobal 2007a)

The interface has the extension point mentioned above, and it will also accept subtypes of

the EPCISEvent class, which means that vendor specific events will be accepted through the

standard interface. This is the entire capture module of the standard. The EPCIS Capture

Application from the EPC AF (Figure 3) is a role and not an interface, and is therefore not

specified. This is where RFID data is retrieved through the Application Level Events (ALE)

interface or by other means, and where the EPCIS Events are generated. How this is

achieved is up to the implementation, the only requirement is that the events are delivered

through this capture interface. It is not specified how master data enters the system; it is

assumed static in comparison and needs to be entered by other means.

7.2.3.2 EPCIS QUERY INTERFACES

The query operations module consists of two interfaces, the EPCIS Query Control Interface

and the EPCIS Query Callback Interface. These are used by EPCIS Accessing applications to

retrieve EPCIS data. The Query Control interface is used to retrieve EPCIS data from a

repository, and to subscribe to standing queries to receive push information. This is the only

interface (of these two) that needs to be implemented by the service itself. The Query

Callback interface is the means through which the service delivers results from standing

queries subscribed to by accessing applications.

41

41 Integrating RFID and Sensor Systems with EPC/EPCIS

Figure 6 EPCIS Query Control Interface

The EPCIS Query Control Interface consists of seven methods. Four of these only return lists

of names or version IDs. The version methods are used by applications to find which version

is supported by the service, and backwards compatibility is assumed. The other three

methods are more interesting: subscribe, unsubscribe and poll. Poll is the method used to

retrieve data directly from a repository. It has only two parameters; the name of the query

and the parameters for that query. This is because EPCIS only supports predefined queries.

The standard specifies two, SimpleEventQuery and SimpleMasterDataQuery, but it is possible

for vendors to add others. The QueryParams parameter is simply name/value pairs

corresponding to the query specified by the query name. The method returns a QueryResults

object, which consists of the query name, a subscription ID and a QueryResultsBody specified

independently for each query. The subscription ID shall actually be omitted for the poll

method, but is included in results for standing queries. Subscribe is used to register for a

standing query to receive “push” information. All the parameters from poll are included, and

in addition dest which specifies where to deliver the results, SubscriptionControls which

defines the schedule for the query and subscriptionID. Unsubscribe simply removes a

previously registered subscription.

Figure 7 EPCIS Query Callback Interface

The query callback interface is invoked by services to deliver results of standing queries to

accessing applications. CallbackResults is used to deliver the query results, with the same

QueryResults object as described above. As this is standing queries, and not replies to a

direct request, exceptions needs to be handled in a special way. In the query callback

42

42 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

interface this is done by implementing two methods which is invoked instead of the

callbackResults method when an exception occurs. There are two possible exceptions,

queryTooLargeException and implementationException, and there is one method for each.

These are invoked by the service if an exception occurs when processing a standing query.

This concludes the chapter on how RFID and sensor systems can be integrated with EPCIS.

The next chapter will present important issues regarding the administration of RFID and

sensor networks.

43

43 Administration of RFID and Sensor Networks

8 ADMINISTRATION OF RFID AND SENSOR NETWORKS

It is obvious that there are many benefits from using RFID and sensors to track and monitor

goods throughout the value chain, but there are also challenges. One of these is the

administration of large RFID/sensor networks. Depending on the number of items tracked

and the sampling rate of the sensors, an enormous amount of data will be generated, and

this needs to be managed. There are also a potentially very large number of readers, tags,

and sensors that needs to be administered, and this should be done as generic as possible.

Even when using equipment from different vendors, it would be a goal to administer and

monitor these through a common interface. This is why a middleware system is needed.

There is a big difference between a few readers and tags in a pilot implementation to a full

scale deployment in a global corporation. This chapter will first look at two different

solutions from EdgeWare and Nofilis. They both define a set of challenges for RFID solutions,

and describe how they try to solve them. The focus here is on the challenges and

requirements for RFID middleware, and not on the specific products they promote.

The different areas of focus from the two articles are combined below (Hanebeck 2006)

(Nofilis 2007):

1. Manage your data volume

An enormous amount of data will be generated, and this needs to be managed. It will

therefore be necessary to have some kind of business logic at the edge layers, which

filters the data going through to the enterprise systems. The amount of data is so

large that it will be important to ensure that only relevant data will be sent through

the network.

2. Determine your need for “local” intelligence

As mentioned earlier, the reading of an ID in itself is not very interesting; it must be

combined with other information. It is at least necessary to know to which item an ID

belongs. One might also want to relate the reading of the ID to a purchase order or

an invoice, and it might be interesting to know why exactly that item was detected at

a given location.

3. Define your need for configuration flexibility

Configuration of the RFID network is important, and users need to consider the

different processes that will take place at the different locations. It might also be a

demand for different treatment of different customers at the same location. This can

e.g. be done using workflow scenarios.

4. What else do you need? Data attributes!

There are a lot of possible data attributes not related to the product itself that might

be interesting. Some examples are at which reader an item was last detected, where

it was first detected and entered the system, date and time of readings, items’

relative positions to other items etc.

44

44 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

5. How do you manage historical data?

It will be necessary to retrieve information based on individual IDs, and existing

enterprise systems might not support this. It can be very expensive to exchange all

legacy systems, and it might be cheaper to develop a new system that integrates with

the existing one to handle such data.

6. Assess your need for reverse read loops:

This is related to exceptions in business processes. When an exception condition

occurs, the process needs to be reversed. Exceptions can, e.g., be damaged goods,

difference between read goods and what was supposed to be read, missing goods.

Some reversals can be done automatically, others require manual intervention. It is

therefore important to have monitoring solutions in place, and support for alerts and

notifications to operators.

7. How do you enable collaborative processes?

This relates to using the data provided by RFID in collaborative processes. It is for

example possible to collect performance metrics and to share these with other parts

of the supply chain to optimize the chain. Another example could be a retail store

wanting product information from a manufacturer, and this information is collected

and lies in the RFID network of that company. When enabling such collaborations,

security becomes a very important consideration.

8. Health monitoring & remote management

Health monitoring needs to be done automatically as manual overview of the entire

network does not scale at all. It should be possible to know which sensors break,

what is wrong with them, and where they are as soon as possible after a problem

occurs. Remote management is especially important when the network is

geographically spread, as it is necessary to be able to manage the devices from a

central solution. It is also a great benefit to be able to create standardized

configurations that can be deployed to many readers, independently of the brand or

type of reader.

9. RFID application development and integration

Once the solution is deployed, it must be possible to develop and integrate new

applications into the solution without disrupting the daily use. This can for example

be achieved by the possibility to emulate the entire physical network to test new

applications.

10. RFID “Plug & Play”

RFID Plug & Play means that it should be possible to administer the physical

infrastructure and the business processes independently. The addition of new RFID

devices should be done without disrupting business processes, and business

processes should be changed independently of the infrastructure.

Some of the points above are issues discussed earlier. One issue is the importance of

configurability and monitoring of the system. Without this support, it will be impossible to

45

45 Administration of RFID and Sensor Networks

control a large system. The other is the need to share the data acquired. The greatest

potential in RFID solutions lies in sharing the information between business partners. With

time it might also be possible and interesting to share this with end users in a retail store

that want more information about a product they are interested in buying.

It is important to find ways to manage both the RFID infrastructure and the amount of data

generated. This must be done in a way that supports heterogeneous devices, collaboration

with other corporations, and makes it easy to monitor the performance of the system. It is

also important to clearly define what kind of data will be needed, and how they will be used.

The amount of data may be very large, and it is necessary to only process and store

information that will be of use. It might be difficult to determine what information and data

attributes is needed in the future. Without some control over the data, it will be very

difficult to manage such systems. For the same reasons, some kind of intelligent layer at the

edge is needed. The system needs to determine what kind of information it wants when the

RFIDs are read, not after each reading is processed and distributed across the network. If

each such decision is to be processed by a central server, the system would not scale.

According to Forrester Research, RFID middleware solutions need to support the following

seven capabilities (Leaver 2004):

 Reader and device management

 Data management

 Application integration

 Partner integration

 Process management and application development

 Packaged RFID content

 Architecture scalability and administration

These are mainly the same areas as covered above. The one not discussed previously is

“Packaged RFID content”. This is a requirement that the middleware is able to integrate with

RFID-related applications and understand processes such as shipping and asset tracking.

With time, the area of application for RFID middleware will change as readers become more

and more intelligent. It is probable, e.g., that more and more filtering will be done at the

readers to limit network load. This does not mean that all filtering will be done at the reader,

some filtering still needs to be done at a higher level in the system. As more standards for

RFID readers evolve, the need for each enterprise to find standardized ways of configuration

for its readers might change, as they can follow global standards. A way to centrally manage

and administer the readers will still be needed, and this can be done by the middleware

(Leaver 2004).

46

46 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

47

47 Sensor Web Enablement Standards

9 SENSOR WEB ENABLEMENT STANDARDS

A sensor network is many different sensors at different locations that are connected and

accessible by computers. A Sensor Web refers in this case to sensor networks that are

accessible over the web using standard protocols and APIs. The idea is to have a multitude of

sensors available online monitoring many different conditions, and to provide metadata

describing the live and stored data to discover, access, and use these data from anyone using

a web browser. It should also be possible to control these sensors remotely via the web for

configuration and maintenance (Reichardt 2003) (Botts, Percivall et al. 2007). Figure 8 shows

the concept of a sensor web.

Figure 8 Sensor Web example (Botts, Percivall et al. 2007)

Open Geospatial Consortium (OGC) is an international standards organization similar to

EPCglobal. OGC develops standards for geospatial and location-based services. They have an

initiative called “Sensor Web Enablement” (SWE) where they are building a framework of

open standards to support the sensor web. There are mainly six areas of functionality

targeted by this architecture (Botts, Percivall et al. 2007):

 Discovery of sensor systems, observations, and observation processes that meet an

application’s or user’s immediate needs;

 Determination of a sensor’s capabilities and quality of measurements;

 Access to sensor parameters that automatically allow software to process and geo-

locate observations;

48

48 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

 Retrieval of real-time or time-series observations and coverage in standard

encodings;

 Tasking of sensors to acquire observations of interest;

 Subscription to and publishing of alerts to be issued by sensors or sensor services

based upon certain criteria.

Support for this functionality is enabled by a set of specifications for encoding sensors and

sensor observations, and several service interfaces using web services. Every standard is

based on XML. There are currently seven different standards created by the SWE working

group, which all are pending OpenGIS Specifications (Botts, Percivall et al. 2007):

1. Observations & Measurements Schema (O&M) – Standard models and XML Schema

for encoding observations and measurements from a sensor, both archived and real-

time.

2. Sensor Model Language (SensorML) – Standard models and XML Schema for

describing sensors systems and processes; provides information needed for discovery

of sensors, location of sensor observations, processing of low-level sensor

observations, and listing of taskable properties.

3. Transducer Markup Language (TransducerML or TML) – The conceptual model and

XML Schema for describing transducers and supporting real-time streaming of data

to and from sensor systems.

4. Sensor Observations Service (SOS) - Standard web service interface for requesting,

filtering, and retrieving observations and sensor system information. This is the

intermediary between a client and an observation repository or near real-time sensor

channel.

5. Sensor Planning Service (SPS) – Standard web service interface for requesting user-

driven acquisitions and observations. This is the intermediary between a client and a

sensor collection management environment.

6. Sensor Alert Service (SAS) – Standard web service interface for publishing and

subscribing to alerts from sensors.

7. Web Notification Services (WNS) – Standard web service interface for asynchronous

delivery of messages or alerts from SAS and SPS web services and other elements of

service workflows.

The first three standards are XML Schemas for encoding of sensors, sensor observations, and

real-time streaming to and from sensor systems. These three are required to have a

common understanding of the functionality of a sensor, and what the data coming from the

sensors mean. The last four standards are web service interfaces enabling communication

with the sensors. The parts of the framework most important for this thesis will be described

in the following sections. Many of the standards rely on other standards, e.g. various ISO

standards, but these will not be explained.

49

49 Sensor Web Enablement Standards

9.1 OBSERVATIONS AND MEASUREMENTS (O&M)

Observations and Measurements is a standard focusing on representation and exchange of

observation results. By having a common standard for this it will not be necessary to

implement support for a long range of vendor-specific data formats for each sensor in the

sensor network. This section will give a brief introduction to O&M, for more details see the

standard document (Open Geospatial Consortium 2007a).

Observations and Measurements have at its core a basic observation type. An UML model of

this type is shown in Figure 9.

Figure 9 Basic Observation type (Open Geospatial Consortium 2007a)

This type has four key properties:

 The featureOfInterest is a representation of the object regarding which the

observation is made.

 The observedProperty is the property associated with the feature of interest, and

describes the phenomenon observed.

 The procedure is a description of the process used to get the result.

50

50 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

 The result is the value received. The type of the result must be consistent with the

property observed.

Table 5 shows an example on these four properties related to earth observations.

Table 5 O&M example

O&M Earth Observation

Observation->Result Observation value, measurement value
Observation->Procedure Method, sensor
Observation->ObservedProperty Parameter, variable
Observation->FeatureOfInterest Media (air, water…)

The standard describes the observation as a “property-value-provider” for the feature of

interest. This means that the result contains the observed value of a given property of the

feature. The other detailed information in the observation type is of more interest for

applications that evaluate errors in the estimated values. The feature of interest type is

further specified in (Open Geospatial Consortium 2007b).

Domain specialization will be needed in any actual implementation. This will primarily be

done by the associated classes, and not by the observation class itself. These classes are

referred to as the “second layer” in the standard. E.g. where the model says

<<FeatureType>>, this will be determined by actual feature instances for that application.

Detailed schemas for these second-layer classes are generally domain-specific schemas

utilizing O&M. For examples on how such schemas can be implemented, see (Open

Geospatial Consortium 2007a).

9.2 SENSOR MODEL LANGUAGE (SENSORML)

Sensor Model Language is a framework used to describe sensor systems and the processes

associated with these (Open Geospatial Consortium 2007c). The goal is to be able to

describe almost any sensor system to treat any sensor in a heterogeneous sensor network in

the same way. The concept behind SensorML was first proposed and implemented in SPICE,

a software system developed by the Navigation and Ancillary Information Facility at NASA

JPL. It has later been further developed at the University of Alabama in Huntsville, before it

became an OpenGIS standard.

The information provided by SensorML is in essence the information needed to interpret

observation results. If, e.g., a distance sensor measures the distance to something to be 5

meters, it is necessary to know where the sensor is located, the angle the measurement is

taken etc. This can be provided by SensorML. Even though SensorML is a part of the SWE

framework it can also be used alone or together with other sensor system architectures. It is

however not capable of describing observation results. A standard such as O&M, described

51

51 Sensor Web Enablement Standards

above, is thus necessary. SensorML is used in the SWE framework to enable sensor

discovery, including capabilities, location, and taskability. It also helps processing real-time

observation data, both by SensorML-enabled software and intelligent sensors using

SensorML, e.g. to determine the location of its observations. Finally, it describes interfaces

and taskable parameters to enable tasking services, and it provides sensor information to

accompany sensor alerts sent by sensor systems.

SensorML is actually a process modeling language capable of describing any process. This

includes the process used for sensor measurements and post-processing. SensorML models

everything as processes. Such process models define inputs, outputs, parameters, and

methods for that process as well as metadata describing the process. They are all defined

using the SWE Common Conceptual Models. The SWE common provides the following

categories of data types (Open Geospatial Consortium 2007c):

 Primitive data types, complementing those implemented in the Geography Markup

Language (GML)

 General purpose aggregate data types, including records, arrays, vectors and

matrices

 Aggregate data types with specialized semantics, including position, curve, and time-

aggregates

 Standard encodings to add semantics, quality indication and constraints to both

primitive and aggregate types

 Specialized components to support semantic definitions, as required above

 A notation for the description of XML and non-XML array encodings

SWE Common are currently a part of the SensorML standard, but an OpenGIS Work Group is

working on extracting it to a separate standard (Botts, Percivall et al. 2007) (OpenGIS 2008).

SENSORS AND DETECTORS

SensorML distinguishes between sensors and detectors. Detectors are devices which take an

input signal and generate one or more outputs. Detectors are based on simple models. The

simple processes in SensorML are called “process models” or “components”. A process

model is used for pure processes, while components are used for physical processing

devices, such as detectors.

Sensors are a combination of several detectors linked in parallel or series. As detectors are

modeled as processes, sensors can be seen as process chains. In SensorML, the term

“process chain” is used for processes that do not exist in the physical domain, and “sensor

systems” are used for physical devices. Systems are a collection of sensors that are somehow

related spatially and temporally. SensorML utilizes the composite design pattern (Gamma

1994), and both process chains and sensor systems are processes, which mean that they

52

52 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

have inputs, outputs, parameters, and methods. This enables collections of process chains

and sensor systems. This thesis will mainly focus on sensor systems and not process chains.

The creation of sensor systems, or sensor platforms as the standard also describes it,

enables the developer to create metadata concerning the entire system. It is possible to

relate the sensors to each other, effectively creating a network of related sensors e.g. to

generate temperature profiles for a given space. The typical situation will be that sensors are

modeled as containing one or more detectors, and systems contain one or more sensors

together with information on the relationships among them. It is therefore normal to have

the sensor take measurements relative to the platform, and depend on the platform for

geospatial positioning. This is called a Coordinate Reference Systems (CRS), and is an

important part of sensor systems. Every measurement is taken relative to the sensor’s CRS.

MEASUREMENTS VS. OBSERVATIONS

The standard distinguishes between measurements and observations. A sensor is set to

measure a given property. These measurements results in observations, which can be used

immediately or stored for later use. SensorML specifies what is measured, how it is done,

and the quality of the measurements. As mentioned above, it does not provide the

observation values resulting from the measurements, but it may link to those values.

PROCESSES

Everything in SensorML is modeled as processes. The SensorML process model will be

presented here. Information about this model can be found in (Open Geospatial Consortium

2007c). Figure 10 shows an UML diagram of the conceptual process model in SensorML.

Every process type is derived from the AbstractProcess type, and the difference between

physical and non-physical processes is seen by the ProcessChain/System and

ProcessModel/Component types.

53

53 Sensor Web Enablement Standards

Figure 10 SensorML process model (Open Geospatial Consortium 2007c)

Sensors are modeled as processes as it is difficult to know where detecting ends and

processing begins. Sensors are a combination of detected and processed data. It can also be

argued that any detector converts an input signal to an output, and therefore is a process.

For the user, this means that there are no differences in how measurements, simulations, or

data processing chains are handled, and it is therefore possible to treat everything the same.

Figure 11 shows the difference between physical and non-physical processes, as well as

atomic and composite processes. These are the four types of processes available in

SensorML, in addition to the abstract types. For examples on how such sensor models can be

implemented, see the SensorML standard (Open Geospatial Consortium 2007c).

54

54 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Figure 11 SensorML non-physical/physical processes (Open Geospatial Consortium 2007c)

9.3 SENSOR OBSERVATION SERVICE (SOS)

The Sensor Observation Service (SOS) provides a standard way to access observations from

sensors and sensor systems. The SOS specification defines an API for retrieving sensor data

and for managing deployed sensors. SOS acts as an intermediary between clients and

observation repositories, and it also provides metadata associated with the observations and

sensors. The standard separates between two points of view for clients using SOS;

observation-centric and sensor-centric. The observation-centric user wants observations

from a particular area or a particular phenomenon, but does not know of any sensor

providing that information. Sensor-centric users are already aware of one or more sensors,

and want to retrieve observations from them. Figure 12 shows a flow chart of how such a

55

55 Sensor Web Enablement Standards

process is performed by a sensor data consumer. The service discovery part is done through

OGC Catalog Services (CS-W), and is not part of SOS.

Figure 12 Consumer flow chart (Open Geospatial Consortium 2007e)

The workflow will be similar for producers of sensor data. The only difference is that they

insert new sensors or observations instead of retrieving them. The SOS service only allows

publishing of observations from sensors already known to the service. If it is a new sensor,

that sensor must be registered in the SOS before the observations can be published (Open

Geospatial Consortium 2007e) (Botts, Percivall et al. 2007).

The observations provided are sorted into offerings. The SOS is responsible for combining

relevant observations into offerings. Two sensors monitoring the same feature of interest

would typically be combined into an offering. If these two sensors are taking measurements

at different times, they could be provided as two different offerings. This is because a small

change in the query could return a very different result. A goal is to have valid queries return

as few empty results as possible (Open Geospatial Consortium 2007e).

The Core Operations Profile of SOS has three mandatory methods:

56

56 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

 GetCapabilites() retrieves a list of observation offerings from the service.

 DescribeSensor() takes a URI to a sensor as input and returns a description of the

sensor in either SensorML or Transducer Markup Language (TML).

 GetObservations() retrieves observations on the O&M format. The offering

containing the observations must be specified, and it is possible to specify sensor (in

that offering) and time span of the observation.

The Transaction Operations Profile has two optional methods:

 RegisterSensor()

 InsertObservation()

Finally, the Enhanced Operations Profile has seven optional methods:

 GetObservationById()

 GetResult()

 GetFeatureOfInterest()

 GetFeatureOfInterestTime()

 DescribeFeatureType()

 DescribeObservationType()

 DescribeResultModel()

9.4 SENSOR PLANNING SERVICE (SPS)

The Sensor Planning Service (SPS) is developed for clients to determine collection feasibility

and to submit collection requests to one or more sensors or platforms. It defines interfaces

to determine feasibility of planning requests, submitting planning requests, retrieve status of

requests, and to update or cancel requests. The standard defines the users of SPS as large

enterprises wanting to automate complex information flows (Botts, Percivall et al. 2007). SPS

is created to support collection management, which means coordinating resources involved

when collecting information. There are three subsets of collection management:

requirements management, mission management, and asset management (Open Geospatial

Consortium 2007d).

The SPS operations can be divided into two parts, information and functional operations.

The current standard specifies eight operations. The informal operations are (Open

Geospatial Consortium 2007d):

 GetCapabilities

 DescribeTasking

 DescribeResultAccess

 GetStatus

57

57 Sensor Web Enablement Standards

The current functional operations are:

 GetFeasibility

 Submit

 Cancel

 Update

Figure 13 SPS overview (Botts, Percivall et al. 2007)

Figure 13 shows how a Sensor Planning Service fits in an environment with in-situ sensors

and how it communicates with the Sensor Observation Service described above.

Registries play an important role in the SWE, and an operational system will have many

registries for sensors, sensor types, and observations. Figure 14 shows the different roles

registries play in a sensor web. The left side contains registries for sensor and observation

types, while the right has actual sensors and observations. It also shows the roles of

SensorML and O&M.

58

58 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Figure 14 Registries in SWE (Botts, Percivall et al. 2007)

9.5 OTHER STANDARDS

This section will here briefly describe the remaining three standards in the SWE. The

Transducer Markup Language (TML) is used to describe transducers and transducer systems.

It supports capturing, exchanging, and archiving live, historical, and future data. TML

supports streaming real-time observations from sensor systems that are time tagged and

sensor-references, while SensorML describes the systems models to help interpret the

streaming observations (Botts, Percivall et al. 2007).

Sensor Alert Service (SAS) provides interfaces to an alert service, providing information on

capabilities, protocols, and subscription. SAS is more like a registry than an alert system.

Sensors and data providers register to a message server, which then forwards the

information to SAS. Users will then lookup in SAS to retrieve the communication endpoint

for the messaging server. It is therefore necessary to use other alert protocols and standards

not specified in SAS (Botts, Percivall et al. 2007).

The final standard is the Web Notification Service (WNS). This is an interface for a service

where clients can conduct asynchronous message interchange with different services (Botts,

Percivall et al. 2007).

59

59 Sensor Web Enablement Standards

This was the final chapter of Part II, and concludes the background study of this thesis. Part

III presents the contributions of this thesis.

60

60 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

61

61

Part III Own Contribution

62

62 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

63

63 Introduction

10 INTRODUCTION

This part describes the thesis’ contribution. It first presents an evaluation of the EPC

Architecture Framework and the Sensor Web Enablement. They were evaluated with regard

to their fitness of use for item tracking and context information. After this, a chapter with a

stakeholder analysis is presented, listing important stakeholders for a system for item

tracking and context information. This analysis was then used to develop a set of scenarios

presented in Chapter 13. These scenarios present potential uses for a system combining

item tracking and context information.

The stakeholder analysis and scenarios were used as a basis for a requirements specification

of a software system, presented in Chapter 14. Based on these requirements a software

architecture which could be used to build a system enabling the scenarios was designed. This

architecture combines the two frameworks, and is presented in Chapter 15.

OUTLINE

The rest of this part is organized as follows:

 Chapter 11: “Evaluation and Comparison of EPC AF and SWE”

 Chapter 12: “Stakeholder Analysis”

 Chapter 13: “Scenarios”

 Chapter 14: “Requirements Specification”

 Chapter 15: “Architectural Solution”

64

64 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

65

65 Evaluation and Comparison of EPC AF and SWE

11 EVALUATION AND COMPARISON OF EPC AF AND SWE

This chapter evaluates the EPC Architecture Framework (EPC AF) and the Software Web

Enablement (SWE) with regards to tracking of items and context information, and presents

opportunities for how they can be integrated. Finally, the two frameworks are briefly

compared.

11.1 EPC ARCHITECTURE FRAMEWORK

EPC Architecture Framework is a collection of standards and core services operated by

EPCglobal with the goal of using Electronic Product Code (EPC) to enhance the supply chain

(EPCglobal 2007c). The framework has standards for both hardware and software, from the

coding of RFID tags to sharing of EPCIS events. This thesis concentrates mostly on the EPCIS

part and the sharing of information. For an introduction to EPCIS, see Appendix B. The

specified user memory of the tags is capable of storing sensor observations, and this can be

a good solution for RFID tags with attached sensors. The benefit of also providing hardware

specifications is that it ensures interoperability between different vendors. This also applies

to the software level, as software created by different developers will be able to

interoperate.

EPCIS FOR ITEM TRACKING

EPCIS is capable of describing events related to items tagged with EPCs, and provides

interfaces for sharing these events. It basically provides everything needed related to

tracking of items and sharing this information with business partners. The EPCIS information

is described as the “what, where, when, and why of items”, meaning that it has information

on what an item is, where it has been, when it was there, and why it was there.

One benefit of using this standard is that it does not require the use of RFIDs to carry the

EPCs; the information can come from any source, e.g. barcodes. This means that items not

tagged with RFID can still be a part of solutions based on EPCIS as long as they are identified

by an EPC. This is a huge benefit and makes it much easier to start using EPCIS than if every

item needs an RFID tag and every part of the value chain needs RFID readers installed.

Other benefits of using this standard are that it is an open standard available to everyone,

and that the use of RFID and EPC is starting to spread. If an organization or industry has

already standardized on EPC, it will be easier for them to adapt to solutions based on EPCIS

than if something else were used for item tracking. Large software companies have already

started implementing solutions based on EPCIS; among them are SAP, IBM, and Oracle.

EPCIS is also very well documented, and the needs of different industries have been taken

into consideration. The standard is easily extendible, and can be adapted to the needs of

specific industries or to groups of trading partners.

66

66 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

A drawback with the EPC AF and EPCIS is that not every part is finished. The standard

specifies an EPCIS Discovery Service, as well as a centralized authentication service, but none

of these are finished. This should not be a big problem, as they are under development and

it is possible, in the meantime, to develop substitutes. These missing services are especially

important for large EPC networks between many organizations, but such networks will

probably not be implemented for some years.

There are many pilot implementations but few full scale implementations of EPC AF and

EPCIS in large organizations. A main reason for this is that the standard is very new; EPCIS 1.0

was released April 12, 2007, and EPC Architecture Framework 1.0 at July 1, 2005.

EPCIS FOR CONTEXT INFORMATION

The EPC AF and EPCIS standards handles the area of item tracking very well, but has little or

no support for context information. EPCIS events have the possibility to include some

context information, but this information is related to business processes such as business

step, related transactions, disposition of the items etc. In e.g. the fresh food industry, this

will not be sufficient.

The EPC Architecture Framework focuses on extensions, and it is possible to extend the

EPCIS events with additional information. This could be a way to include sensor data and

other context information. It is possible to create an event that is a subclass of the EPCIS

Event called, e.g., ContextEvent, containing context information. By this approach the

ordinary EPCIS system can be used and the only requirement would be that the EPCIS

Capturing Application is extended with information about the new ContextEvent and that

sensor data is sent through the EPCIS Capturing Application to generate the events.

The problem with this approach is that there are no descriptions of how the observations

shall be encoded, or how information about the sensors used shall be provided. This would

have to be provided by some other means. SensorML can be used for sensor descriptions

and the observation results can be encoded in O&M (Observations & Measurements). These

two standards would give the needed information, but it would be problematic to tie

sensors to EPCs, especially if they are not physically on the same item at all times. It would

also require a means to publish and retrieve this information. The standard EPCIS Query

Interface only support predefined queries, and context-related queries would be

problematic.

An easy solution would be to just extend the EPCIS Event base type with a context-field

providing the observation results, and leave it up to the user to figure out how to

understand the data. This could fit into ordinary EPCIS systems, and there would be fewer

problems with queries as the user can use the same predefined queries as for ordinary EPCIS

operations. It would however not be possible to specify context-related parameters in the

query, e.g. a search for all items with too high temperatures. The only difference from this

67

67 Evaluation and Comparison of EPC AF and SWE

new event type and a standard EPCIS system would be that the resulting events contain an

additional context-field. The problem would of course be how to encode this field. For very

simple observations, this is no problem. If for instance the fresh food industry wanted to

know the temperature of the goods, they could include a field called TemperatureInCelcius

containing an Integer with the value. This approach is mentioned in the EPCIS standard, but

it limits the sensor types used, as it would require a separate field for each sensor type.

It would also be difficult with more advanced observations. As mentioned in Part II, it is not

enough to have observation results without knowledge of how the observations has been

measured and retrieved. Information about the sensor or sensors used is also important. It is

necessary to know such parameters as quality of the measurements, error rate of the

sensors, measurement locations, sampling rates etc. This could of course be encoded in

every EPCIS Event, but it would be a huge overhead and the user memory of the RFID tags is

of limited size. The only reasonable way would probably be to have some kind of sensor

repository with sensor information, and it could be possible to include a link to this in the

EPCIS event.

None of these solutions are very good, and some kind of external system would be needed

in any case to provide descriptions of sensors and information on how to interpret the

observations. Even if this was available, it seems cumbersome to force EPCIS into doing

something it is not really suited for. Including context information in EPCIS can be done, but

it is probably not an optimal solution. The principle of separation of concerns also applies

here. EPCIS is good at item tracking, but it is originally not made for sensor and context

information, which thus should be left to something else.

The conclusion is that EPC AF is a very well developed standard, and that it is already starting

to get a wide use for item tracking, especially in the retail industry. It is also possible to

support context information in EPC AF, but this would be a limited support with many

problems.

11.2 SENSOR WEB ENABLEMENT

The Sensor Web Enablement (SWE) is, as mentioned in Chapter 9, a framework of open

standards created to support a sensor web. A sensor web is a sensor network available on

the web using standard protocols. SWE contains many different standards to support this,

focusing on software. Hardware standards are not included, and this means that there are

no guidelines as to what kind of sensors can be used or how they are read; this is up to the

developer. What SWE do provide is SensorML and TML used to describe sensors and

transducers, and Observations and Measurements (O&M) used to describe the observations.

SensorML/TML descriptions will typically be provided by the manufacturer together with

O&M templates for describing the results. Software developers will need to somehow obtain

these models, enabling them to understand how the sensors are functioning and how the

68

68 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

output should be encoded. The rest of this thesis will focus on SensorML, and not TML,

because the sensors relevant for this thesis would be described by SensorML.

The benefit of the approach with only standards for software is that sensor manufacturers

are free to create the sensors as they want. There are no restrictions on how the sensors

should function or how they should be read, and the SensorML specifications are created so

that it should be possible to create models for any sensor. The drawback is that there are no

assurances of interoperability between different hardware vendors, which is one of the

benefits of the EPC Architecture Framework. The observations need to be obtained from the

sensors, and a common standard for this would be useful. A possible reason for not including

this in the framework is that sensors varies much more in functionality and type than e.g.

RFID tags and readers, and it would be difficult to provide a common standard with enough

functionality. This lacking standardization is no problem for this thesis, as the focus is on

what happens after the sensors are described by SensorML and the results are encoded in

O&M.

SWE FOR ITEM TRACKING

The Sensor Web Enablement framework does not describe any support for item tracking,

but it could however be possible to achieve. This could be accomplished by describing RFID

readers in SensorML and including the identity of the tracked item, for example an EPC, in

the observation. The observation result could be encoded in O&M, and would include the

time of the reading. The location of the item would then be obtained from the SensorML

model of the reader.

Although this is possible there are many problems with this approach. It would mean forcing

SWE to do something it is not meant for. Using RFID tagged items as an example; it would

probably be difficult to get every manufacturer of RFID readers to write SensorML

descriptions of the readers. It would also be problematic to get other organizations to use

this solution as it is not an industry standard. At every point in the supply chain where the

items are detected it would be necessary to have SensorML models of the reader as well as

creating O&M encoded observations.

Finding information in such a system would also be problematic, and especially when sharing

between organizations. Item tracking solutions should focus on items, but SWE focuses on

sensors, sensors systems, and observation offerings from these. It would also lack

functionality to push events from the system to users, which is possible with, e.g., EPCIS. It

would be possible to extend the existing interfaces with methods providing this

functionality, but the framework does not specify where or how extensions should be made.

This means that there are no assurances that extensions will continue to work with future

versions of the framework, which especially is a big problem when sharing information

across organizations. It would require all participating organizations to use the same version

69

69 Evaluation and Comparison of EPC AF and SWE

of the framework, or at least versions compatible with the extensions, and it would be

difficult to upgrade as new versions are released.

Although it is clearly possible to use this approach, it is not an optimal solution. The biggest

problem would probably be to get organizations to use this solution instead of already

established standards. It is likely that many organizations, especially within retail, will first

implement an item tracking solution and later extend with context information, not the

other way around. This means that it would probably be better to use an established

standard for item tracking. An established standard would enable organizations already

using item tracking based on this standard to extend their existing solutions with context

information, instead of implementing an entirely new solution using SWE for item tracking.

SWE FOR CONTEXT INFORMATION

The standards found in the Sensor Web Enablement framework support description of

sensors, description of observation results, services to obtain these data, and much more.

The SensorML models are much more advanced than what is needed for this thesis, and the

O&M standard is capable of describing a huge range of observation types not needed by,

e.g., the fresh food industry. It is for example possible to describe remote sensors on a

satellite monitoring conditions on the earth, which is a bit more advanced than a

temperature sensor mounted on an RFID tag. But it also provides what is needed for this

thesis, and it meets every requirement for context information.

Using the Sensor Observation Service (SOS) it is possible to retrieve sensor descriptions,

providing information about where the sensor is located, how it is configured, what kind of

observations it provides, and the time period it has been operating. There are also methods

to retrieve observation results, which can be limited to a particular sensor or to observation

offerings. Observation offerings are a collection of sensors providing related information, i.e.

a temperature sensor and a humidity sensor located in the same storage area. The results

can also be time limited, helping the user to retrieve only relevant data.

The one thing SWE does not provide is a link between items and context. SWE is a sensor-

oriented framework, and it is not possible to query the system to find context information

related to an item. It can also be observation-oriented, but it is still related to a specific area

or a particular phenomenon, such as a storage facility, and not to an item. It does not know

which items that have been in a particular area. This means that it provides the necessary

context information, but it does not relate that information to particular items. For sensors

fastened directly on the item, e.g. RFID tags with temperature sensors, this is no problem.

But it limits the possibility of retrieving additional information from sensors not directly

related to the item, such as sensors in a truck or in a storage facility. A separate system is

needed to keep track of items related to sensors. If it is possible to determine where an item

has been, SWE can give sensor observations for those locations.

70

70 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

One problem using this framework can be support of the standards. SensorML has been

under development for a long time, but the OpenGIS version of SensorML was released as

late as July 2007. The rest of the standards in the framework are also very new. It will take

some time before all sensors have descriptions in SensorML, and for enterprise systems to

support reading these formats. However, implementing support for these standards would

not be very difficult since XML is used as the message format.

The conclusion is that SWE is very well suited for context information, and that it is possible

but not optimal to use it for item tracking. The standards in the framework are new, and

they show signs of not being completely finished. Even though the standards are new, they

are very extensive, and show a great potential for wide use in the future.

11.3 INTEGRATION OF EPC AF AND SWE

It is obvious that a solution integrating these two frameworks would provide everything

needed to extend an item tracking system with context information. EPCIS in the EPC AF is

good at tracking items and providing related event information to every part of a value

chain, and SWE is good at providing sensor information and observation values. There are

mainly three ways to integrate these systems: extend EPCIS with SWE, extend SWE with

EPCIS, and create a third system which uses both EPCIS and SWE.

Extending EPCIS with SWE has briefly been discussed above. Focusing on the Sensor

Observation Service to provide sensor information, it is possible to extend EPCIS events with

links to relevant SOS systems. This will provide users aware of the extension with useful

information, and other users can continue to use EPCIS as before. This will require the EPCIS

capturing applications to know which SOS systems have relevant information for the EPCs it

generates events for. This means that if an item has passed through several parts of a value

chain, each with its own capturing application and EPCIS repository, each of these needs to

be checked for potential context information. Including links to SOS services in the EPCIS

events is probably a better solution than including the observations themselves, which have

many problems as discussed above. Including this link would however break the principle of

separation of concerns, as it includes context information in a tracking event.

Another possibility is to extend SWE with EPCIS information. This is probably not a good

solution, as the SWE framework has no focus on extensibility, and it would give problems

with interoperability as discussed above. This solution would mean that each time a sensor

generates an observation it must check for EPCs related to that observation, and if needed

either generate EPCIS events or pass the information to an EPCIS Capturing Application. It

would also be impossible to query the system for item information, as there are no such

interfaces in the SWE standard. A third party application would be needed to tie EPCs to

sensors. It could be possible to offer an EPCIS interface from e.g. the Sensor Observation

71

71 Evaluation and Comparison of EPC AF and SWE

Service or the Sensor Planning Service, but this would as mentioned be a non-standard

extension, and it could be difficult to get organizations to adopt such a solution.

The final option is to have EPCIS and SWE as separate systems, creating a common interface

which combines the functionality of these. In this way, users only interested in either EPCIS

events or sensor observations can use the existing systems as before, while users interested

in both can use the new interface. This would require a bit more custom implementations

than the two solutions above, it would e.g. be necessary to have a mapping between EPCs

and sensors to know which sensors has information on which EPCs. The benefit of this

solution is that it keeps the original frameworks as they are, without modifications. It also

enables the frameworks to evolve on their own, and new version of either framework would

probably not require much update to other parts of the system. The drawback is that a third

system would have to be developed and maintained.

11.4 COMPARISON OF EPC AF AND SWE

Even though these frameworks concern different domains, it is interesting to compare them.

EPC Architecture Framework tries to provide all necessary functionality for an item tracking

solution, from the hardware level with RFIDs carrying EPC tags up to global software services

supporting the EPC network. Software Web Enablement similarly tries to provide everything

needed for a sensor web, from sensor and observation descriptions to providing this

information through services. The main difference here is that SWE does not consider

hardware at all.

One thing noticed when reading these standards, is that they seem to be of differing

qualities. The standards from EPCglobal seem very well documented, are rather easy to get

into, and they seem ready for implementation. It is clearly defined which parts are finished,

and what remains for future versions. They have also taken into consideration that the

standards might be used in many different industries, and the standard documents clearly

specify how the standards can be made to fit these industries.

This is not the case for the standards in SWE. It is not obvious what information is found in

the different chapters of each standard, and the same information is explained in different

ways across the standards in the framework. SWE also lacks a central standard combining all

the others. The SWE framework consists of many separate standards, but the framework

itself is only described by a high level architecture document (Botts, Percivall et al. 2007).

This document is an introduction to the various standards, but it would be better if the

framework had tied the standards tighter together. This would not necessarily have an

impact on how the various standards develop, but it would help organizations wanting to

implement a solution based on the framework.

72

72 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

The standards in SWE are also clearly in version 1, as it is written several places in the

documentations that a particular section should be revised, or that the approach taken in a

situation should be changed in a future version. The EPCIS standard is also in its first edition,

but it does not have the same problems. The cores of the SWE standards seem to be very

good, and have a lot of potential, but they will benefit from some revision. This might also be

a reason why not many commercial uses of SWE are found.

These two frameworks come from two very different sources, and this is probably a major

reason for the differences. EPCglobal is a global standards organization, but it is initialized by

GS1, and it clearly has a commercial purpose. They focus on getting the standards adopted

by as many industries as possible, which is reflected in the standards through their focus on

extensibility. This is of course very important, as the potential of an EPC tracking system is

greatest when every part of the value chain is using it. It is also clear that EPCglobal wants

organizations to use EPC for identification and the EPC Class 1 Gen 2 UHF standard for RFID

tags, even though there are many other standards for RFID tags, e.g. various ISO standards.

This is of course because EPCglobal is behind the various EPC standards, but this does not

mean that they are the best in every situation.

This is in contrast to the Open Geospatial Consortium (OGC), which has released the SWE

framework. OGC is an international industry consortium working on publicly available

interface specifications through a consensus process. Their process starts with an

interoperability problem, and then they try to develop standards solving this problem. At the

end they present a specification describing how this should be solved, and the specification

can be adopted by anyone as it is made freely available on the Internet. This is very different

from the EPC Architecture Framework. EPCglobal has, through its members, created a

framework that will enhance the supply chain through the use of EPC. Each standard in the

framework is focusing on this goal, and they clearly complement each other. OGC has many

standards that are not directly related as there is no common framework surrounding them.

The SWE framework does not yet have a separate specification, only a White Paper from

OGC describing a high level architecture (Botts, Percivall et al. 2007). OGC also has other

standards that are not related to SWE. These differences between EPC AF and SWE does not

mean that one framework is better or worse, it only illustrates the different approaches

taken by the two organizations (EPCglobal 2008b) (Open Geospatial Consortium 2008).

73

73 Stakeholder Analysis

12 STAKEHOLDER ANALYSIS

To better understand what is required by a software system, stakeholders need to be

analyzed. This chapter will present different stakeholders and analyze their interests in the

system. The stakeholders and their interests define the requirements at an abstract level.

This will lay the foundation for later sections, exploring possible scenarios and a related

requirements specification.

12.1 GOVERNMENT

The Norwegian government has recently given control of fresh food a considerable amount

of interest. This recent interest is due to food accidents involving human deaths and injuries.

Contaminated food was sold from stores, and when the contamination was detected and

investigated no immediate source could be found. They spent several days tracing the

source before it was found. This event and other recent events call for solutions giving better

control, with tracking of location and environment data. Their interest will be in standards to

be used by the whole industry, sharing of information between enterprises and from

enterprises to the government, and privacy and safety issues.

12.2 CONSUMERS

Fresh food and other goods tracked by an item tracking system will at the end arrive at the

consumers, and they will therefore be an important stakeholder. Consumer interests are in

safety and privacy issues, and also in easiness of application, in how well this new solution

can be used by them. Their interests may not come at first, when retailers start using this

system, but later on when stores start to share information from the system as a service to

the customer.

Consumers are skeptical to new systems, and these days tracking has a bad reputation. This

is why their main interests are safety and privacy, but if these are met, usability and

usefulness of services become important.

12.3 PRODUCT MANUFACTURERS

The manufacturers of products will be greatly influenced by a tracking solution, and are

therefore an important stakeholder. Their interests would be cost, security, privacy, sharing

of information, and standards.

A tracking solution relies on manufacturers to use EPC for their products, so they can be

tracked later in the supply chain. Descriptions of goods are also important, and a standard

method of retrieving this information. Therefore, standards for information sharing are

important to manufacturers. Because the products are to be attached with an EPC tag, the

74

74 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

price of this addition is important, because extra costs mean less income. As always, with

sensitive information, security and privacy are important.

12.4 TRANSPORTATION COMPANIES

Goods are transported and companies doing this job are important stakeholders. Their

interests will be safety, sharing of information, reliability, and trust.

The transportation companies have to be sure that information about how they treat

products is reliable and not altered after they deliver them. They need to share this

information with their customers, and they need customers to trust the correctness of this

information.

12.5 RETAILERS

Retailers buying goods before they are sold to consumers, sit at the end of the value chain or

in other words the last station before consummation. They are therefore important

stakeholders with a lot of interests, such as: cost, increase of product costs for example;

security, of information; privacy, mainly concerned with consumers; sharing of information,

concerning other enterprises and government; and standards, to be supported and widely

known.

Retailers need control over their value chain, tracking and quality assurance. To be able to

prove quality through every part of the value chain, and give reassurance of this.

12.6 DEVELOPERS

Companies or individuals required to build information systems in this domain will be

interested in best practices. Looking at suggested solutions will influence their choices, and

help them build their system more effective.

75

75 Scenarios

13 SCENARIOS

This chapter presents several scenarios for future use of wireless sensors based on the

stakeholder analysis performed previous chapter. The scenarios present future applications

and investigate data needs. What a sensor tracks is not important to the sensor itself, but to

the systems using the recorded data. The scenarios are grouped by topic, and each topic is

explained before different scenarios are presented for the given topic. Every scenario is then

further explained. The scenarios are numbered hierarchical in topic and scenario, e.g. topic 2

scenario 3 is numbered SC 2.3.

13.1 QUALITY DETERIORATION (SC 1)

Fresh food, but also food in general, has an expiration date. The quality of the food

decreases as time passes, but most important is how it has been treated during its lifetime.

Today, expiration dates are set by the government and by law, different for every type of

goods. A good example of why this is not a perfect system is the expiration dates for eggs in

Norway. Every Easter, eggs have longer durability. Not due to anything else than a petition

from the industry to the government.

The expiration dates are set based on general rules of safety, meaning that most food would

actually be fresh long after the expiration date. The environment in which the food has been

stored and managed is often the real reason of quality deterioration.

13.1.1 AUTOMATIC AND DYNAMIC EXPIRATION DATES (SC 1.1)

Expiration dates can be explained as a function of time and environment. Important

environment properties are temperature, humidity, light, and exposure to possible

contamination through contact with equipment or human hands. A biological research into

these properties would enable a function to be implemented in a small computer, a different

function for each product type.

Although there are several factors to food quality, the most important factor is temperature.

The increase in temperature will have a high impact on the quality deterioration over time.

A function for time and temperature, given parameters for how the food type reacts to

temperature, is (Brock 2003):

T = Temperature in Kelvin degrees

t = Time in days

76

76 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Q(0) = 100% quality of product

This function would be different for different types of food, because of different input

parameters. For every type of food a similar function could be calculated.

Figure 15 Deterioration of one type of food at two different temperatures

Calculation of expiration date based on treatment of the product over time, and not just a

guess or prediction, enables creation of dynamic expiration dates. An example of use could

be milk cartons, where the amount of time outside of the refrigerator would have an impact

on the expiration date. If the carton is left too long outside, it will go sour before the

expected expiration date.

13.1.2 RELOADING OF SHIPMENT BASED ON QUALITY (SC 1.2)

Transportation of fresh food over long distances can be a challenge. Fish from the north of

Norway can travel several hundred kilometers by trailer trucks. Failures of cooling systems or

loading/unloading of cargo can deteriorate the quality of the fish. Being able to detect this

deterioration and allowing a reloading of the goods along the route will minimize the impact.

Fresh fish close to contamination can be reloaded midway and sold or worked up into new

products. This will prevent fresh fish to be sold in stores after contamination or at a lower

quality than expected or ordered.

0

20

40

60

80

100

1 6

11 16 21 2
6

31 36 41 46 51 56 61 6
6

7
1

76 81 86 91 96

10
1

Q
u

a
lit

y
in

 %

Number of days

0° C

21° C

77

77 Scenarios

13.1.3 PROVING THE QUALITY OF FRESH FOOD (SC 1.3)

Fresh food has not been frozen, and one can clearly distinguish between the two when it

comes to the quality of the food. Therefore, consumers often pay a higher price for fresh

food. Fresh food that has been frozen should no longer be sold as fresh food. Tracking of

temperature over time would enable the consumer to check the quality of their product, e.g.

by checking that defrosted products are marked and not sold as fresh food.

13.2 TEMPERATURE PROFILES (SC 2)

Tracking the temperature of goods in containers may reveal information about the

conditions inside the container if all the sensors’ data are combined. Tracking this over time

and building a profile of temperatures inside the whole container would reveal a unique

behavior for the given container. To be able to track this information, it must be possible to

determine the sensors’ positions relative to each other, defining a sensor area. This

information can then be used to visualize the environment and change where different

goods are transported and managed. The data needed is time and temperature, together

with the sensor locations.

13.2.1 HOW MANY SENSORS ARE NEEDED IN A GIVEN SPACE (SC

2.1)

For a given space, e.g. a container, temperature profile information could be used to reveal

the exact need for sensors. If the temperature is identical in the whole container, only one

working sensor is needed. If trailers are considered, transporting goods in a temperature-

controlled box, loading and unloading of goods will affect the temperature differently in the

front and the far back. Goods with high thermal capacity would also affect an area if the

temperatures are changing. Mapping this information for different types of goods

transported in different environments, will give information about how many sensors are

needed for every given scenario of transportation done in the past.

13.2.2 DETECTION OF COLD SPOTS AND WARM SPOTS (SC 2.2)

Using the same example as in SC 2.1, a trailer with a temperature-controlled box,

information about the temperature profile could be used to detect cold spots and warm

spots. This information would reveal where trailers have spots with poor or broken

insulation. This information could also be used when placing the goods for transportation.

Placing goods right next to a cooler might not give the same conditions as being placed at

the far corner of the box. One important issue here would be how the cooler is regulating

the temperature, whether it is an air cooler or surface cooler.

78

78 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

13.2.3 MAPPING THE NEED FOR INSULATION OF GOODS UNDER

TRANSPORTATION (SC 2.3)

During transportation of goods, unloading and loading is bound to occur. This will affect the

condition and temperatures of the goods. Placing two sensors, one inside and one outside

the box, a temperature profile of the differences between the two could be detected.

Tracked over time this information would reveal the differences in temperature and for how

long they occur. This information can then be used to calculate how much insulation is

needed. An example could be transportation of fish, using ice as insulation. Ice is heavy, and

the less needed the better because of the cost of transporting unnecessary weight. Tracking

several transportations in a supply chain for fish, the amount of ice needed could be

optimized. This would decrease cost, but not the quality of the fish transported.

13.3 SENSOR COLLABORATION AND INTELLIGENT GOODS (SC 3)

Sensors are already used to control different environment controlling devices, e.g. cooler

systems in trailers. When all goods transported by a trailer with a cooler have a sensor, the

goods’ sensors could be used instead. The trailer’s sensor network can be outdated, and by

using the goods’ sensors correct information are retrieved. Whenever the cooler system

needs information about the temperature, it can use the goods’ sensors if its own sensors

are not working properly. This can also be reversed, and the goods can use sensors already

inside the trailer to retrieve information about their environment. This way the trailer can

optimize its sensors, and one only needs to know which goods are on the trailer at a given

time. Both scenarios take into consideration where to put the trust, and this depends on

each given scenario. This makes both solutions equally valuable, in different settings.

Sensors used for tracking the conditions of goods can be semi-passive or active. Semi-passive

sensors only track the conditions and save them for later, to when readers retrieve the

information. Active sensors can act or communicate at given intervals or conditions,

enabling the goods to make decisions and control other devices influencing their

environment.

13.3.1 AUTOMATIC ALARMS OF VIOLATIONS (SC 3.1)

Each ware or every type of ware in transportation may have quite different requirements to

their environmental conditions. The example with trailers transporting goods in

temperature-controlled boxes, is a good example of this if extended to include

transportation of different types of goods for every transportation or at least changing from

time to time. The goods may be able to communicate themselves whenever the demands of

the environment are not met. Each ware would have a sensor with a programmable

minimum and maximum temperature, communicating whenever these conditions are

79

79 Scenarios

broken. In this way the driver or receiver would know, and measures could be taken to avoid

contamination of the food or further quality deterioration.

13.3.2 AUTOMATIC ENVIRONMENT CONTROL (SC 3.2)

By communication between the sensors and devices controlling the environment, sensors

could be used not only to detect the conditions of the environment, but also controlling it. In

the example used so many times before, trailers with temperature-controlled boxes, the

trailers have their own sensors controlling temperature. Instead of only alerting the

surroundings and systems whenever requirements are broken, the goods could control the

cooler to lower or raise the temperature. This way, the cooler would automatically satisfy

the needs of the goods transported.

13.3.3 COLLABORATION OF GOODS (SC 3.3)

For transportation of goods of different types, minimum and maximum temperatures can be

set based on data about the different goods. This can be done automatically by

communication between the sensors and based on their own and neighbors’ demands.

These minimums and maximums could then be communicated to cooler devices, or the

sensors may only communicate warnings whenever the environment does not meet the

demands. One issue here would be disagreement of minimum and maximum temperature, if

the allowed span for every ware in the transport does not overlap. Another issue could be

the placement inside the compartment. Goods placed right next to the cooler outlet might

disagree with other goods when it comes to minimum and maximum temperature. They

might say it is too cold, and ask for an increase in temperature, when other goods at the far

end might ask for a decrease in temperature. This could be solved by the sensors

themselves, one agreeing to break their conditions, preferably the ware with the least

impact on quality if the condition is not upheld.

13.4 HIERARCHY OF GOODS WITH SENSORS (SC 4)

Transportation of goods is done in several ways, but some aspects apply in every case.

Goods can be placed in boxes, and boxes can be placed on pallets. Every pallet can then be

loaded on a trailer or in a container. This natural hierarchical composition of goods can be

used to minimize the need for sensors and readings. Placing only a few sensors at the top of

the hierarchy instead of many sensors at the bottom reduces the numbers greatly. The right

level of where to put sensors in the hierarchy would need to be considered for every

scenario, depending of the requirements of the accuracy needed for sensor readings. An

example of why is temperature. Obviously the temperature could be quite different inside a

large container, from one end to the other.

80

80 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

This way, instead of considering every ware when information is needed, the appropriate

parent in the hierarchy can be used.

13.4.1 AUTOMATIC AGGREGATION OF GOODS WITH SENSORS IN A

HIERARCHY (SC 4.1)

When goods are transported in a hierarchy, these relationships between the goods are not

permanent. They may exist for a long time, but not for ever. At a manufacturer the goods

would be packed in for example boxes and then loaded on pallets. To scan every ware, in

each box, to build a hierarchy would take a lot of time done by hand. Therefore by setting

up gates reading tags of every ware, creating the hierarchy and the new box, this could be

done automatically. The same can then be done on pallets, and so on upwards in a

hierarchy. The other way around, a gate at the arrival destination could do the opposite. The

gate is then used to remove the hierarchy relationships between the goods, before they are

opened.

13.5 PROXIMITY CONTROL (SC 5)

When goods are transported they are often or always stacked and stored beside each other.

Enabling sensors to detect awareness and position of other sensors will enable the

knowledge of relative position, mentioned briefly in SC 2. Each ware also has a specification

of content. This combined with relative position could help avoid unwanted close proximity.

There are two solutions; it could be done either by mapping relative positions manually, or

automatically. If sensors can map relative positions automatically, the knowledge of each

sensor could be extended to include a list of EPC-classes not wanted in different proximities.

In this way, a sensor could notify of dangerous goods placed too close. Another possibility of

automatical control is to just enable the sensors to detect relative positions and

communicate these to readers. Then a capturing application, or an accessing application,

could use the information to either alert or influence different calculations.

13.5.1 FRESH FOOD (SC 5.1)

The quality deterioration, as mentioned in SC 1, is influenced mainly by temperature.

Another important issue is how some fresh food reacts to other similar types of fresh food,

e.g. apples and bananas. Storing apples in close proximity to bananas increases the

deterioration rate drastically for the bananas. Detection and notification of such a case is

important. Either to move goods to avoid the deterioration or to consider when calculating

expiration dates. The information about these proximities could also in other cases be used

to hasten ripening of fruit or other types of food.

81

81 Scenarios

13.5.2 DANGEROUS GOODS (SC 5.2)

When transporting chemicals, the proximity control becomes more important. If a

transportation company is transporting goods from several producers, the safety could be

insured by proximity control. This could be done by making each ware capable of detecting

whether dangerous goods are too close. Control of the amount of a type of goods in a given

space can also be interesting. There are e.g. rules for how much explosives can be stored in

the same container.

There is usually no reason to know afterwards if two dangerous types of goods have been

stored together, because of the obvious risk of explosion or toxic reactions. Therefore the

sensors need to automatically detect proximity and recognize types of dangerous goods. In

this way an alarm or notification would trigger instantly when two dangerous types of goods

come too close.

82

82 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

83

83 Requirements Specification

14 REQUIREMENTS SPECIFICATION

This chapter will define and explain the requirements deciding how the system should be

developed. The requirements are based on the scenarios previously described in Chapter 13.

First of all this chapter gives a scope for the system, because of the time limit and separation

of concerns this thesis can’t solve everything. Then a list of requirements are stated and

explained in details, before they are mapped to scenarios and research questions. This is

done to show how each requirement is needed by different scenarios, and how this thesis

will answer its research questions by focusing on these requirements. After the functional

requirements are stated, non-functional requirements are presented as quality attributes.

This chapter will be used extensively later when creating a software architecture for this

system.

14.1 SCOPE

Sensors and RFID tags are the basis of the system solution, but this thesis’ focus will be

above this layer. Either sensors communicate readings automatically through portals and

readers, or they can be read manually. Sensors could even communicate between

themselves to limit the need for central communication infrastructures.

The system solution will focus on historical data and retrieval of these for business processes

or receiving applications, both inside the enterprise and outside. The need for a

standardization of sharing of data across enterprises will be heavily explored.

Figure 16 Overview of the environment

84

84 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Figure 16 illustrates the context for this thesis. At the bottom there are tags and sensors, and

data from them are pushed through a communication link into a repository. These data

could be generated by using cell phones, computers, PDA or tablets, or they could be

generated by sensors and tags in contact with readers. At the top, users can use different

applications, called accessing applications, to retrieve this information. One example of an

accessing application could be the Norwegian company Posten and their package tracking by

ID on the Internet (Posten 2008). Posten is a Norwegian postage, logistics and transportation

office. Other accessing applications could be more complex systems like for example a data

warehouse solution for an external enterprise, accessing information about relevant

products.

14.2 FUNCTIONAL REQUIREMENTS

This section describes the functional requirements required by the system to enable

implementation of every scenario described in Chapter 13, and to help answer the research

questions of this thesis. First the requirements are presented in an ordered list, and then

every requirement is described in detail.

FR 1. The system must support data from different sensor types

a. It must support configuration of new sensor types from a generic sensor type

FR 2. The system must be able to receive real-time data from readers

a. Sensor data combined with a time aspect

b. Identification of items

FR 3. The system must extend a logistic information system based on identification with a

context-aware information system.

FR 4. The system must be integrated with EPCIS

a. Generate EPCIS Events

b. Submit EPCIS Events through an EPCIS Capture Interface

FR 5. The system must support a hierarchical structure of items

a. A generic model for hierarchy

FR 6. Items must have a unique identification (URI)

FR 7. The system must support zero to many sensors on items

a. Identification of each sensor.

FR 8. The system must support relative positions of items

a. Relative position to other items in a given space

b. A generic model for relative position of items

FR 9. The system must have a generic alert mechanism

a. Enable alarms and alarm handling

b. Able to define sensor types to watch, and laws for these types

c. Able to execute a procedure if laws are broken.

FR 10. The system must support sharing of sensor information using SensorML

85

85 Requirements Specification

FR 1 THE SYSTEM MUST SUPPORT DATA FROM DIFFERENT SENSOR TYPES

This requirement is crucial for the system solution. There are already several sensor types,

and new sensors and sensor data need to be easy to integrate. Almost every scenario

depends on this requirement, and realization of FR 1 would answer parts of the research

questions RQ 3 and RQ 6; how to share data using SensorML with EPCIS (RQ 6) and how to

build a generic architecture for sensors and tags (RQ 3).

FR 2 THE SYSTEM MUST BE ABLE TO RECEIVE REAL-TIME DATA FROM
READERS

Logging or storing of sensor data, historically, is needed for tracking of goods’ context. The

scenarios regarding temperature profiles and food deterioration are all dependent on this

requirement. This will also answer parts of the research questions about extending id

tracking information systems and scalability (RQ 1 and RQ 6).

FR 3 THE SYSTEM MUST EXTEND A LOGISTIC INFORMATION SYSTEM BASED ON
IDENTIFICATION WITH A CONTEXT-AWARE INFORMATION SYSTEM

This requirement relates directly to RQ 1, and realization of this requirement will have a

deep impact on the answer for RQ 1. It will also answer part of RQ 2, about relative positions

of items. The scenarios relevant to this requirement are quality deterioration, temperature

profiles, hierarchy of goods with sensors and proximity control.

FR 4 THE SYSTEM MUST BE INTEGRATED WITH EPCIS

This requirement will contribute to answering the research questions about integration with

EPCIS, RQ 5, and RQ 6. The scenarios depending on this requirement will be scenarios based

on sharing of information. Reloading of shipment and proving quality of fresh food both

need tracking information about goods. This information could either be saved locally or

retrieved from partners. Information about hierarchy and proximity also depends on EPCIS

integration. This is because of aggregation events to build a hierarchy and information about

products for proximity control.

FR 5 THE SYSTEM MUST SUPPORT A HIERARCHICAL STRUCTURE OF ITEMS

This requirement will help answering RQ 1, RQ 3 and RQ 4. It will tell something about how

to extend an ID tracking information system with sensor information, how to build a generic

architecture independently of case and how to ensure scalability. This requirement is

needed by many scenarios, because items need to be placed in a hierarchy because of

scalability concerns. With logistics handling several items this requirement is crucial.

86

86 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

FR 6 ITEMS MUST HAVE A UNIQUE IDENTIFICATION (URI)

This requirement will give information about how to extend an ID-based tracking

information system with sensor data. The requirement is required for every scenario about

tracking of items and their context. An identification of items is crucial if information is saved

for later use, or the case is dependent on a description of items.

FR 7 THE SYSTEM MUST SUPPORT ZERO TO MANY SENSORS ON ITEMS

This requirement is crucial because every scenario is based on sensors used on items. It will

answer the research question about a generic architecture, RQ 3.

FR 8 THE SYSTEM MUST SUPPORT RELATIVE POSITIONS OF ITEMS

Relative positions of items are used in the scenarios regarding temperature profiles and

proximity control, and this requirement is needed for them to be realized. Realization of this

requirement will partly answer RQ 2 about relative positioning and RQ 3 about how to build

architecture for sensors independent of scenarios.

FR 9 THE SYSTEM MUST HAVE A GENERIC ALERT MECHANISM

This requirement is needed for the scenarios alerting systems or people about unwanted

behavior. Reloading of shipment, sensor collaboration and intelligent goods, and proximity

control are scenarios depending on this requirement. Supporting alerts through realization

of the dependent scenarios will help answer the research question about a generic

architecture (RQ 3).

FR 10 THE SYSTEM MUST SUPPORT SHARING OF SENSOR INFORMATION USING
SENSORML

Every scenario storing information about sensor readings are dependent on this

requirement, because SensorML has been chosen to store and share sensor information.

This would include the scenarios about reloading of shipment, proving the quality of fresh

food, the scenarios regarding temperature profiles, and lastly the proximity control

regarding fresh food. Realization of the requirement, and enabling implementation of the

scenarios mentioned above, will answer the research questions about SensorML integration

with EPCIS (RQ 6). It will also help answer how to extend an ID-tracking information system

with sensor information, and how to build a generic architecture towards sensors (RQ 1 and

RQ 3).

87

87 Requirements Specification

14.3 REQUIREMENTS RELATION TO SCENARIOS AND RESEARCH

QUESTIONS

This section maps each functional requirement to scenarios and research questions in the

tables below. Both tables give an informative connection of the information stated in the

previous section.

Table 6 Functional requirement to research question

 RQ 1 RQ 2 RQ 3 RQ 4 RQ 5 RQ 6

FR 1 X X

FR 2 X X

FR 3 X X

FR 4 X X

FR 5 X X X

FR 6 X

FR 7 X

FR 8 X X

FR 9 X

FR 10 X X X

Table 6 explains how every functional requirement (FR) is connected to the research

questions (RQ). Implementation of the FRs would help answer the marked RQs.

88

88 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Table 7 Functional requirement to scenarios

 SC

1.1

SC
1.2

SC
1.3

SC
2.1

SC
2.2

SC
2.3

SC
3.1

SC
3.2

SC
3.3

SC
4.1

SC
5.1

SC
5.2

FR 1 X X X X X X X X X X X

FR 2 X X X X X X

FR 3 X X X X X X X X

FR 4 X X X X X

FR 5 X X X X X X

FR 6 X X X X X X X X

FR 7 X X X X X X X X X X X X

FR 8 X X X X X

FR 9 X X X X X X

FR 10 X X X X X X

Table 7 explains how every functional requirement (FR) is connected to the scenarios (SC).

Implementation of the FRs would enable the marked scenarios to be realized.

14.4 QUALITY ATTRIBUTES

This section defines the different quality attributes and selects the most important of these

for this system. The quality attributes describe non-functional requirements. They are stated

to stress their importance when building the system, and will later result in quality tactics in

section 15.2.2.4. After the most important attributes are selected, they will each be

explained in detail.

The quality attributes considered are stated in (Bass, Clements et al. 2005): Availability,

modifiability, performance, security, testability, usability, scalability and portability. This

system depends on all of these, but some are more important than others. Security,

scalability, modifiability and performance would be the most crucial aspects of the system,

and privacy will also be included because of its importance to consumers.

14.4.1 SECURITY

The need for unaltered and correct information is really important, because of laws imposed

by governments. Another important issue is to have control over the information, both

when stored and transferred between different sources or applications.

89

89 Requirements Specification

Information in the wrong hands could enable theft, or increase misuse of information. An

example could be credit card thefts; they could easily be done because of knowledge about

where the envelope sent from the bank is. Other dangerous scenarios would be changing

descriptions of goods or produce fake goods; this will also undermine the credibility of the

system.

14.4.2 PRIVACY

Privacy is important because people are skeptical. The information stored about products’

movements and locations could potentially be quite sensitive. It is therefore important to

focus on privacy.

Many examples could be given; one would be shops knowing exactly where a customer has

bought his clothes. Because every garment is tagged with an RFID, and information about

sales is stored and shared. This may not seem as a threat, but this could be used to do

aggressive marketing by the stores. Thieves could even use this information to decide

whoever they want to rob, what houses to visit.

Consumers will not be happy if everybody can check whatever they buy, at what time and

amount. Information about people and their habits would be easy to track, and the need for

a protection of privacy is important. Of course information like buying habits are useful for

shops and even the government, but people should be skeptical because one side wants

what the other does not.

14.4.3 SCALABILITY

Scalability is important because this domain will grow increasingly over time. If every item

now marked with a barcode is to be marked with an EPC, the system has to scale. Even if

only a small part of the items would be marked with EPCs in the beginning, the amount

would increase drastically as the shift is made over time. The amount of sensors will also

probably increase in the future. Because goods might start with sensors tracking only

temperature to calculate quality, but later on would need information about humidity, light

and other relevant information. The amount of goods tracked by sensors will most likely also

increase over time.

14.4.4 MODIFIABILITY

Modifiability is important because technology is changing and expected future scenarios

might not be correct. Therefore the system must be modifiable, to ease development and

maintenance of the system over time.

New types of sensors and new types of identification methods are developed. The

technology used by system applications are changing, communication protocols are

90

90 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

changing. The technology is changing over time, and the system should embrace this

technological advancement.

14.4.5 PERFORMANCE

Tracking and sensor information will flow from readers and sensors into the system at a

great load. Several applications would use this system to retrieve information stored about

sensors and sensor readings. The amount of applications would vary, but most likely it would

be a large number because of both external and internal use of this information. It is

therefore crucial to have high performance to handle the potential large load from both

application retrievals and readers transmitting sensor readings.

91

91 Architectural Solution

15 ARCHITECTURAL SOLUTION

This chapter will present a software architecture combining an RFID tracking system with

context information retrieved from sensors.

The chapter will first give an explanation of the architectural drivers, defining important

issues influencing the software architecture. Then a section explaining different viewpoints

will be presented, defining how the software architecture is best presented to its

stakeholders. After the viewpoints are selected, the following section will describe and select

relevant quality tactics to realize the chosen quality attributes in section 14.4Quality

Attributes. The next section will describe well-known patterns, defining best practices suited

for this system. Before the last section presents the software architecture, explained by

using the different viewpoints selected to show several aspects of the software architecture

to the system’s stakeholders.

15.1 ARCHITECTURAL DRIVERS

First of all this software architecture is made to prove a connection and integration of

context information with a tracking system working with IDs. This software architecture will

use best practices wherever possible, but most of the issues have not been tried out yet or

even solved. Wherever solutions already exist, the software architecture will focus on

integration of such parts with the rest. The limited amount of time available to build this

architecture would probably affect its quality.

15.2 CHOOSING VIEWPOINTS

This section will first describe what viewpoints are and why they have to be chosen. Then

the different viewpoints are evaluated with regards to the stakeholders. This section will

only present evaluations of the relevant viewpoints. The selected viewpoints will later be

used to present the architecture in section 15.5.

15.2.1 WHAT ARE VIEWPOINTS AND WHY INVESTIGATE THEM

A viewpoint can be explained as a way of seeing something, and different people have

different viewpoints. A view is what you see from the chosen viewpoint. An example

inspired by (Bass, Clements et al. 2005) is building architecture. In building there is not just

one sketch. For the builders, e.g. the industry workers, there exist detailed blueprints. For

the buyers, normal citizens, there exist 3D models. There are also plumbing diagrams and

much more. Not one of them is the architecture, but they all convey the architecture.

Understanding the stakeholders and what they need is critical for the conveyance of the

architecture.

92

92 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

In “4+1” View Model of Software Architecture (Kruchten 1995), 5 viewpoints are presented

and explained. The 5 viewpoints are shown in Figure 17.

Figure 17 The 4+1 View Model (Kruchten 1995)

The logical viewpoint primarily supports the functional requirements, what the system is

supposed to offer to the users. It is class diagram, consisting of objects and object classes.

Typical notation for this view could be UML Class Diagrams.

The development viewpoint focuses on actual modules of the software architecture.

Explaining how they interact and their responsibility. It is often used to ease allocation of

work to different teams. Typical notation for this view could be UML Component Diagrams.

The process viewpoint supports both functional and non-functional requirements, displaying

business processes or activities at different abstraction levels. Typical notations for this view

could be UML Activity Diagrams, Business Process Modeling Notation, UML Sequence

Diagrams or Data Flow Diagrams.

The physical viewpoint supports the non-functional requirements and presents the physical

world. The system is executed on nodes, connected by a network. Backup nodes may exist as

well as test nodes. All this can be explained and presented in the physical view.

The scenarios are referred to as the “+1”, because they are redundant to the other

viewpoints. The scenarios bind the different views together, explaining by examples how the

system will work. As explained in (Kruchten 1995), the scenarios have two purposes:

93

93 Architectural Solution

 As a driver to discover the architectural elements during the architecture design as

we will describe later

 As a validation and illustration role after this architecture design is complete, both on

paper and as the starting point for the tests of an architectural prototype.

More information about the different views and the 4+1 View Model can be found in

(Kruchten 1995).

15.2.2 EVALUATION OF THE DIFFERENT VIEWPOINTS

This section will evaluate the relevant viewpoints with regards to the stakeholders. The

viewpoints presented are: Logical, Process, and Development. Scenarios will also be used

and evaluated. For each viewpoint a stakeholder evaluation, a short explanation, and the

chosen notation is given.

15.2.2.1 LOGICAL VIEWPOINT

This viewpoint shows class diagrams for parts in the system, and how they interact. The

notation used for this view is UML Class diagram (Fowler 2005).

STAKEHOLDER EVALUATION
 Transportation companies and Retailers

Interested in the system design, for own implementation and understanding of the

system, and to be able to follow the implementation from an early state.

 Developers

Developers are interested in a detailed description of the different parts of the

system, for guidance during implementation. To be used to control the workflow and

improve efficiency.

15.2.2.2 PROCESS VIEWPOINT

This viewpoint shows data flow diagrams (DFD) explaining information flows between

external users or systems and processes, and activity diagrams describing the overall flow of

control. The notations used for this view are Data Flow Diagrams (DFD) (Hawryszkiewycz

2001) and UML Activity Diagrams (Fowler 2005).

STAKEHOLDER EVALUATION
 Government

Interested in how information will flow, to get an insight into new possibilities. To

form new laws and regulations for sharing of important information, like tracing and

quality.

 Consumers

94

94 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Interested in what retailers will be able to know and how they can improve to better

suit the consumers’ needs. Interested to see new possibilities and ensure safety and

privacy.

 Product Manufacturers

Interested in information about the importance of new possibilities and how

information is shared, and to what extent it improves today’s solutions. Product

manufacturers want to estimate the business value of using EPC from the very start

when products are made.

 Transportation companies

Interested in how information is shared with external companies, and what benefits

will come from this sharing. Interested in how much of the system they need to

implement to be a supplier of needed information.

 Retailers

Interested in how documentation of treatment and other information flows and how

it can be shared with external enterprises. Interested in new possibilities and how

they can improve business processes.

 Developers

Interested in how the different parts of the system interact, so work can be

delegated with as few problems with integration as possible.

15.2.2.3 DEVELOPMENT VIEWPOINT

This viewpoint gives an overview over system components, showing different roles and how

they are interacting. The notation used by this view is UML Component diagram (Fowler

2005).

STAKEHOLDER EVALUATION
 Government, Product Manufactures, Transportation companies and Retailers

Interested in an overview, showing different parts of the system and how they

interact, and to easily get an understanding of the whole system without worrying

about the underlying details.

 Developers

Their interests lie in the same as the rest mentioned above, but they are also

interested in the underlying details. The development view will provide a solution of

how to separate concerns into different parts, implementing them one by one. This

will ease the delegation of work, and integration of all the parts later on.

15.2.2.4 SCENARIOS

The scenarios are used to bind the views together. This view will use two scenarios from

section 13, and show how they are proposed solved by the software architecture.

95

95 Architectural Solution

STAKEHOLDER EVALUATION

All stakeholders would be interested to have an abstract explanation of the system, through

real scenarios they can relate to. This will further the understanding of the concept of the

software architecture.

15.3 QUALITY TACTICS

In Section 14.4, quality attributes selected as most important for the system are presented.

In this section, quality tactics to be used to realize them are explained, inspired by (Bass,

Clements et al. 2005). These tactics are to be used when creating the software architecture,

and later when building the system.

15.3.1 MODIFIABILITY

It is important that the system is modifiable as described in Section 14.4.4. To solve this

problem these tactics will be used:

Have a focus on localizing modification because there will be changes to this system. For

example, new sensors will need to be added or edited, and it is hard to predict future needs.

Therefore these tactics will be used to localize modification:

 Maintain semantic coherence

o Put common services in modules, making it easy to modify one module alone

without worrying about the others.

 Anticipate expected change

o Investigate as best as possible how things will change in the future, and bring

this into the solution.

 Generalize the module

o Generalize a module to the extent that many different cases are allowed in

one implementation, without the need for modification of the module.

To further improve modifiability, the solution should try to prevent ripple effects by hiding

information on modules. Using interfaces to define what information is public, and hide the

rest.

The last tactic is to defer binding time by using configuration files. More precisely, advanced

files describing different aspects of the system, like sensors. This would enable new sensors

to be added without coding and compiling new code or even rebooting the system.

96

96 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

15.3.2 PERFORMANCE

Performance is important due to the amount of data that will pass through the system. The

number of clients and the possibly enormous amount of sensors will in general greatly affect

performance. To ensure performance the following tactics will be used:

 Reduce computational overhead

o Reducing the use of unneeded resources. Making the need for

communication to a minimum if it is not required.

 Bound execution times and queue sizes

o Limit the time and sizes to the extent that information needed is retrieved,

but oversized method calls are ignored. For example by limiting the maximum

time span of a query for sensor information from years to weeks or even

hours.

 Maintain multiple copies of either data or computations

o Allowing the use of several resources to be queried for information.

15.3.3 SECURITY

Security is very important for this type of system, and without it enterprises and consumers

would be very skeptical. The main focus for security tactics would thus be to resist attacks,

described below:

 Authentication

o It is important to know who the retriever is, to be sure of what to do.

 Authorization

o Different users need different information, and some users might not be

granted access to specific parts of information. Having authentication,

authorization to allow different users different type of access can be enabled.

 Maintaining data confidentiality

o Ensuring correctness of information is important. To prevent the information

of being tampered with before reaching the user.

15.3.4 PRIVACY

Privacy is crucial to a tracking system because of user skepticism of revealing personal

information. It can be accepted as a known truth that users are skeptical to new technology.

Tracking being a highly discussed privacy issue. It is therefore crucial to uphold privacy, and

to do this the focus will be on the same tactics stated in the previous section about security.

97

97 Architectural Solution

15.3.5 SCALABILITY

Because of the vast amount of potential sensors recording measurements and clients

retrieving information, scalability is important for the system. A focus will be put on the

tactics mentioned in the section about performance, and also the reuse of systems built for

scalability. It is important to perform as much computation as possible in the edge of the

system, preventing the need to pass everything through a central server.

15.4 PATTERNS

This section will describe well-known patterns, defining best practices, suited for this system.

These are used later when creating the software architecture. Every pattern is explained

before an explanation is given of why they are used.

15.4.1 SEPARATION OF CONCERNS

Figure 18 Separation of concerns

By grouping or dividing concerns into different modules they can be solved separately. The

groups can be seen as members with high cohesion, solving their domain without worrying

about everything else. This way all groups would not solve everything, and duplicate work

could be avoided. By allowing others to solve one problem, the rest would have one problem

less and could solve their problems better. The result would be better solutions for every

module, because the concerns would only be for the specific module.

Separation of concerns will be used because the system is focused on bringing two domains

together, tracking goods based on identification and context-information tracked by sensors.

The concerns are split into separate modules, for example one sensor module and one ID

98

98 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

tracking module. The concerns are then solved separately, using best practices for the

separate parts or modules greatly improving the system.

15.4.2 FACADE

Figure 19 Facade pattern

The facade pattern as it is explained in (Gamma 1994), is about creating abstract interfaces

for complex operations. The goal is to make it easier to use for external parts. In Figure 19,

the overall concept of a search engine is explained. Whenever a user types a query

(represented as the search() method in SearchEngine), different jobs have to be done before

the results can be returned. First the tokenize() method must be called, then the stem()

method, and finally the query() method. Instead of the systems using every method one by

one before a search, it only worries about SearchEngine and the method search(). The result

being the same as if every method was called separately, but instead of using many methods

only one method implemented by SearchEngine is used.

The facade pattern will be used to supply only a few interfaces, and have the underlying

system take care of the rest. These few interfaces will integrate the functionality from the

underlying systems, serving the needs of external applications.

15.5 VIEWS

This section will present each view resulting from the selection of viewpoints in section 15.2.

A view is what can be seen from the chosen viewpoint, showing different aspects or details

99

99 Architectural Solution

of the same object. Every view will therefore describe different aspects of the software

architecture. Describing in detail a proposed solution for the system to the stakeholders, in a

way they all can understand.

The views are presented as figures with text explaining different parts and aspects of the

view. The views are presented in the following order: logical view, process view and the

development view. At last the scenarios will bind the three views together to further explain

the software architecture and give a greater understanding for all stakeholders.

15.5.1 LOGICAL VIEW

This view will first present a class diagram showing every element of the logical view, before

different groups are presented to give a better presentation. Every group will describe

different elements having high cohesion. The groups are EPCIS, Sensor Web Enablement and

Context-Aware System. All the elements in every group will be described in detail.

100

100 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Figure 20 Logical view

101

101 Architectural Solution

Figure 20 presents the logical view of the software architecture solution, and because of the

number of elements this figure will be presented in separate parts.

15.5.1.1 EPC INFORMATION SERVICES

This section describes the group related to EPCIS. All elements except the AssociationEvent

are from EPCIS. The group is presented in Figure 21 and each element is then described in

detail. More information about the elements from EPCIS can be found in Chapter 7 and

Appendix B.

Figure 21 EPCIS parts of the system

EPCIS CAPTURE INTERFACE

This interface has one method, receiving EPCIS Events. This interface is defined by EPCglobal.

The interface defines the communication between the Capturing Application and EPCIS

Repository.

EPCIS QUERY CONTROLLER INTERFACE

This interface is often referred to as EPCIS Query Interface, and it is defined by EPCglobal.

The purpose of this interface is to give Accessing Applications the ability to receive EPCIS

Events. Whether they pull for information or subscribe and EPCIS pushes information to

them. The queries used are predefined and therefore referred to by name, used by both

subscribe() and poll(). In the subscribe() method there is also a parameter for an URI to

where EPCIS Events should be sent.

102

102 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

EPCIS QUERY CALLBACK INTERFACE

This interface is for receiving query results when subscribing through the EPCIS Query

Controller Interface. The subscriber needs to implement this interface to be able to receive

answers from the EPCIS Repository, when subscribing for EPCIS Events. There are two

exception methods in this interface to be able to communicate exceptions, either

QueryTooLargeException or ImplementationException.

EPCIS EVENT

This is the basic EPCIS Event defined by the EPCIS Architecture Framework. This event is only

a generic event, and other events such as ObjectEvent, AggregationEvent, QuantityEvent and

TransactionEvent are subclasses of this. The event is just stating the time of recording and

the time of occurrence.

ASSOCIATION EVENT

This event extends the EPCISEvent and is used to associate one EPC with another EPC. The

AssociationEvent is the only element in this section proposed by the thesis as an extension of

EPCIS. Different from the EPCISAggregationEvent (see Appendix B), describing a solid

connection between EPCs, this event represent a much lighter connection. The

EPCISAggregationEvent is designed for items packed in boxes for a long time, but this

AssociationEvent is for two boxes or items placed next to each other. The two boxes could

easily be moved from each other, without unwrapping before separating them.

The most important parameter of the AssociationEvent is the DistanceVector telling how the

two EPCs are related, the item and relatedItem. This is a vector describing distance and

direction, with the item’s position as point of origin.

The AssociationEvent does not include many of the normal EPCIS Event properties, such as

bizStep and disposition included in EPCISAggregationEvent and the rest of the events from

EPCIS. This is because the AssociationEvent would be used as an additional event, and it will

only be available for Accessing Applications with knowledge of this extension. For all the

other Accessing Applications there need to be a normal EPCIS Event describing the event. A

model of all the standard EPCIS Event types can be found in Appendix B.

15.5.1.2 SENSOR WEB ENABLEMENT

This section describes the group related to Sensor Web Enablement (SWE). The group is

presented in Figure 22 and each element is then described in detail. More information about

the elements from SWE can be found in Chapter 9.

103

103 Architectural Solution

Figure 22 Sensor Web Enablement parts of the system

SENSOR OBSERVATION SERVICE INTERFACE

This interface is from the SWE framework. The interface is extended in the Context-Aware

Goods System, and more information about this interface can be found in Chapter 9.

15.5.1.3 CONTEXT-AWARE GOODS SYSTEM

This section describes the group representing the Context-Aware Goods System (CAGS). The

group is presented in Figure 23 and each element is then described in detail.

Figure 23 Context-Aware Goods System parts

CONTEXT EXTENDED EPCIS QUERY INTERFACE

This interface extends the EPCISQueryControllerInterfaces, with methods for context

information retrieval.

104

104 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

The first method getCapabilities() retrieves information about what types of context are

tracked for the given EPCs.

The second method describeSensor() retrieves information about the given sensors in

SensorML format, the input is sensor URI for identification of sensors. The sensor URIs can

be retrieved using the getCapabilities() method.

The method getObservation() retrieves actual sensor readings i.e. temperature over time. It

is possible to give a list of EPCs, interesting EPCs; a list of sensors, interesting sensors; a list

of properties, e.g. temperature if a sensor has several; start time and end time as inputs. All

of these inputs could be empty, and if for example the sensor list is empty information from

every sensor for the given EPCs are retrieved. If both EPCs and sensor URIs are given as

input, information from the given sensors with information about the given EPCs would be

retrieved. The only requirement is that either a list of EPCs or a list of sensor URIs is given.

The subscription method, subscribeContext(), is for registering a request for information or

alerts the instant it occurs. The method takes several parameters, but some can be excluded.

The obligated parameters are: destination URI, properties, subscriptionID and one of the

two: sensor URIs or EPCs.

The list of EPCs, properties, and SensorURIs are the same as in getObservations(). The

subscriptionID is a string uniquely identifying the subscription for the subscriber. The

subscriptionID together with the identity of the accessing application is unique for CAGS. The

expression parameter is a logical expression with mathematical operators like >, <, =, And, Or

and combinations of these with values. An example could be “((temp > 0) AND (temp < 5))”,

combined with the other parameters it could mean fresh food with temperatures between 0

and 5 degrees Celsius. After registering this request, observations matching the first

parameters (EPCs, sensors and properties) and breaking the expression would be

communicated to the subscriber.

BNF (Backus Naur Form) is used to describe syntax (Van Roy and Haridi 2004). The notation

is as follows:

 ::= meaning "is defined as"

 | meaning "or"

 < > angle brackets used to surround category names.

 ‘’ are used to show a symbol, ‘(‘ would explain that the character “(“ is to be used.

The expression parameter is here specified in BNF:

<expression> ::= ‘(‘ <leafExpression> <operator> <leafExpression> ‘)’ | <leafExpression>

<leafExpression> ::= <expression> | ‘(‘ <digit> <comparator> <paramName> ‘)’ | ‘(‘

<paramName> <comparator> <digit> ‘)’

105

105 Architectural Solution

<operator> ::= AND | OR

<comparator> ::= ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘=’

A parameterName is parameters from the list of properties, meaning the memberName

identifying the property. A digit is any number, decimals are allowed. A correct expression

would be: “((temp > 0) AND (temp < 5))” as mentioned above.

If EPCs are not given, the list of sensor URIs is used. If the expression is empty, all

observations matching other parameters are to be communicated to the subscriber.

To cancel a subscription, the unsubscribeContext() method is used. This method takes only

one parameter, subscriptionID, given as input parameter when the subscription was created.

CONTEXT EXTENDED EPCIS QUERY CALLBACK INTERFACE

This interface is for receiving observation and query results when subscribing through the

ContextExtendedEPCISQueryControllerInterface. The subscriber needs to implement this

interface to be able to receive answers from the Context-Aware Goods System, when

subscribing for information. If a list of EPCs is given when subscribing, the observations will

be related to the given EPCs. If no EPCs are given and a list of sensor URIs was used, only

observations will be received.

SENSOR MANAGEMENT INTERFACE

This interface is for managing sensors; creating, editing and deleting. It is also used for

editing of the relation of EPC to sensor. Controlling which sensor is related to which EPCs, in

a given time span. An example could be a warehouse with a cold storage. Whenever goods

are stored in the cold storage, information about temperature can be retrieved by using the

storage’s sensor. So whenever goods enter and exit, the information has to be registered

through this interface. Then CAGS will know that from time X to time Y, this sensor has

information about this EPC. When registering the information, a timestamp can also be

given. This is done to enable the informant to send delayed information without losing

observation information.

EXTENDED SENSOR OBSERVATION SERVICE INTERFACE

It is used by both the Sensor Capturing Application and the Context-Aware Goods System to

manage sensor observations information, one of them inserting and the other retrieving

them later on. Retrieval of sensor observations can be done in two ways, either by pulling

the information from the system or by subscribing to specific observations. In much the

same way explained in the ContextExtendedEPCISQueryInterface. This interface is also used

to register and manage sensors in the Sensor Observation Service (SOS).

106

106 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

SENSOR OBSERVATION CALLBACK INTERFACE

This interface is needed by the SOS to send observations that CAGS subscribe for, because

an Accessing Application has subscribed through the CAGS for this information. This is done

because CAGS map sensor URIs to EPCs, and this interface only focuses on sensor URIs.

15.5.2 PROCESS VIEW

This view will first present a context flow diagram giving an abstract view of the data flow

between the system and stakeholders, before a more detailed diagram is presented to give

further insight. Then an activity diagram will show what happens when a sensor reading

enters the system.

Figure 24 Context data flow diagram

Figure 24 shows the information flow between the users, stakeholders, and the system. The

focus is on what is specific for the system, and not on the underlying EPCIS and SWE

systems. The information entered will mainly be lists of EPCs and sensor information, and

the information sent out is sensor observations and EPCIS events.

107

107 Architectural Solution

Figure 25 Top level data flow diagram

Figure 25 shows a more detailed process view of the system. The different stakeholders, or

users, are now presented as Accessing Applications. Every stakeholder would access the

system through an accessing application, either directly or indirectly through other systems.

The last role, Sensor Manager, is a role for sensor setup and configuration. This role would

be taken by many of the stakeholders, but not all. The use of the Accessing Application and

108

108 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

the Sensor Manager actors instead of every stakeholder is done to make the diagram easier

to understand.

The accessing applications are sending lists of EPCs to the system to retrieve information.

The information returned are either EPCIS Events or sensor observations, based on the

method invoked. The sensor manager is sending and receiving sensor information. This

information is used to manage all the sensors; what they are and how they work, what items

are they attached to and such administration of sensors. The actor’s dataflow moves

through several processes as shown in Figure 25, processes shown as circles in the figure.

These will now be explained in detail.

1 CHECK AUTHENTICATION AND AUTHORIZATION

This process explains the need for security, done by authentication and authorization. It is

important that no one without access to perform requests can retrieve information. This

process does not say anything about how it should be done. Authorization is also explained,

because different accessing applications might not have access to the same information.

One could for example have access to the EPCIS Events; others could additionally have

access to sensor observations.

2 FIND SENSORS WITH INFORMATION ABOUT EPC

This process uses the information about sensors related to EPCs at given time spans to select

sensors based on incoming EPCs. A list of EPCs is sent to this process, and then the process

maps each EPC to known sensors with information about this EPC. If the user have included

a time span in the request, only sensors with information from that time span will be used.

The mapping information about EPCs to sensor URIs is retrieved from an EPC/Sensor archive.

3 FIND SENSOR OBSERVATIONS

This process uses the incoming sensor URIs to retrieve observations from a repository of

Sensor Observations. This is done using the Sensor Observation Service interfaces defined in

SWE, described in the logical view, section 15.5.1.

4 FIND EPCIS EVENTS

This process retrieves relevant EPCIS Events to the EPCs given as input to the process. This is

done as a normal EPCIS query to an EPCIS Repository.

5 MANAGE EPC / SENSOR RELATIONS

This process registers connections between sensors and EPCs, and manages sensor

information. Whenever a new type of sensor is set up, this information is sent to this

process. Additionally, whenever sensors are allocated to EPCs, e.g. by attaching a sensor to

109

109 Architectural Solution

an item, this information is also sent to this process. This process updates EPC/Sensor

archive, based on information from the Sensor Manager.

Figure 26 Observation registration

Figure 26 Observation registration shows the activity performed whenever a sensor

observation is retrieved and sent to the system. This activity is presented to show how the

alert mechanism works.

The observation is received as a first activity, and then the system will check for subscribers

for this sensor property. If there are no subscribers the information is stored for later

retrieval, but if there are subscribers they need to be investigated. Every subscriber has

given rules of violation, and if the observation violates the subscriber’s rule, an alert will be

sent. The alert will be sent by sending the observation to the subscriber, and then the

observation is saved for later retrieval. If the observation does not violate any rules defined

by the subscribers, the observation is directly saved for later retrieval. An example of such a

rule could be a temperature sensor, setting maximum and minimum of allowed readings. If

the temperature observations move outside this boundary, the rules are violated.

110

110 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

15.5.3 DEVELOPMENT VIEW

This section defines roles and interfaces for communication. There is no need for every role

to be implemented separately. Several roles or interfaces could be included in one

application. The only real requirement is the support of the

ContextExtendedEPCISQueryInterface by an underlying system.

The section will first present the view in Figure 27, and then the roles and interfaces are

described. The roles are described in detail first, and then the interfaces.

111

111 Architectural Solution

Figure 27 Development view

15.5.3.1 ROLES

This section will describe each role in Figure 27 in detail. The roles are meant to be filled by

software systems. One software system could fill several roles, or there could be one

112

112 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

software system for each role. Figure 28 shows how a role is modeled in the development

view.

Figure 28 The role component syntax

ACCESSING APPLICATION

This would be a software system, e.g. an Enterprise Resource Planning or a Customer

Relationship Management system, dependent on information about goods. It is the same

Accessing Application as EPC AF describes. The application will talk to the CAGS (Context-

Aware Goods System), through the ContextExtendedEPCISQueryInterface.

CONTEXT-AWARE GOODS SYSTEM

This is the core of the software system. Here all sensors are mapped to EPCs with a time

span. Queries for sensor observations for EPCs would come from an Accessing Application

and be mapped to sensors before the Sensor Observation Service is queried. Queries for

EPCIS Events will also go through this system to an EPCIS Repository.

EPCIS REPOSITORY

The repository storing EPCIS Events, explained in EPC AF. Used by the EPCIS Query Interface

to retrieve information about what, where, when, and why events happened to the goods.

More information can be found in Appendix B.

EPCIS CAPTURING APPLICATION

This role is described in EPC AF, and the job is to create EPCIS Events from actual readings of

EPCs. This means adding business information to actual observations. More information can

be found in Appendix B.

SENSOR OBSERVATION SERVICE

This role is from the SWE framework, and contains actual readings from sensors. It could e.g.

contain temperature readings over time from a temperature sensor. It also contains

information about a sensor explained in the notation SensorML. This information could be

such as correctness, type of information measured and intervals for measurement. The

sensor readings are specified in the O&M (Observations & Measurements) notation. More

information can be found in Chapter 9.

113

113 Architectural Solution

SENSOR CAPTURING APPLICATION

This application is sending sensor readings to the SOS (Sensor Observation Service). This role

is the software link to the hardware, transforming data coming from different readers to

observations sent through the ExtendedSensorObservationServiceInterface to the SOS.

SENSOR MANAGER

This system maintains sensors; adding new sensors, deleting sensors and editing sensors. It

also explains to CAGS what EPCs are connected to which sensors and the time span of the

relation.

15.5.3.2 INTERFACES

This section will describe each interface in Figure 27 in detail. The interfaces are made to

standardize the communication between the different roles. Even though one software

system could fill several roles, excluding the need for some interfaces, it does not remove

the need for interfaces because all the roles might be implemented separately. Figure 29

shows how an interface is modeled in the development view.

Figure 29 The interface component syntax

CONTEXT EXTENDED EPCIS QUERY INTERFACE

This interface defines how the Accessing Application interacts with CAGS. It extends the

EPCIS Query Interface defined by EPCglobal with context specific functions. The reason for

this extension is to enable the coexistence of context-extended systems and pure EPCIS

systems. Accessing Applications not aware of the new extension would still be able to use it,

just not the extended part.

EPCIS QUERY INTERFACE

This interface is from EPCIS as the name implies, and is used by CAGS to retrieve information

from the EPCIS Repository. More information can be found in Chapter 7 and Appendix B.

EPCIS CAPTURE INTERFACE

This interface is also from EPCIS and is used by the EPCIS Capturing Application. More

information can be found in Chapter 7 and Appendix B.

114

114 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

EXTENDED SENSOR OBSERVATION SERVICE INTERFACE

This interface describes how CAGS can retrieve readings and sensor descriptions, by

querying or subscribing. It also defines how the Sensor Capturing Application store readings

from sensors. More information can be found in section 15.5.1.3, where this interface is

described in detail.

SENSOR MANAGEMENT INTERFACE

This Interface describes how the Sensor Manager interacts with CAGS; creating, editing or

deleting sensors and managing sensor and EPC relations.

SENSOR OBSERVATION CALLBACK INTERFACE

This interface defines how the SensorObservationService can contact CAGS with information

about subscribing observations. The subscriptions come from Accessing Applications through

CAGS, mapped to sensors before subscribed to the SensorObservationService.

15.6 SCENARIOS

This section will describe how two scenarios from section 13 are proposed solved by the

architecture. Each scenario is first explained by a summary; then the proposed solution is

presented using figures and text.

15.6.1 PROVING THE QUALITY OF FRESH FOOD (SC 1.3)

This scenario will use an EPC for a fresh food product, e.g. fish, to prove the quality of the

ware. The Accessing Application could be a control machine placed in a store, allowing

customers to check the quality of the fish before they buy it. The fish is wrapped in paper,

with an RFID inside the price tag.

PROPOSED SOLUTION BY THE CONTEXT-AWARE GOODS SYSTEM

The solution is presented in Figure 30, and every step is described in detail.

115

115 Architectural Solution

Figure 30 Proposed solution of SC 1.3 by CAGS

The customer scans the fish giving the Accessing Application an EPC to investigate.

1. The EPC is sent to the Accessing Application calculating if the fish is fresh. To do this it

needs information about how the fish has been treated before the customer scanned

the EPC.

2. The Accessing Application uses ONS (Object Name Service). It sends the EPC to the

CAGS and asks for EPCIS information. More information about ONS can be found in

(EPCglobal 2007c).

3. Aggregation Events are retrieved explaining that the fish has been transported in a

box, from time X to time Y.

4. This box’s EPC is used to retrieve sensor information by sending the new EPC to

CAGS. The CAGS finds relevant sensors based on the EPC and its relation to sensor

URIs.

5. The sensor URI is sent to the Sensor Observation Service retrieving observations

registered by this sensor.

6. The observations are sent to CAGS

116

116 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

7. The observations are sent to the Accessing Application and the information about

temperature to time is used to control if the fish has ever been frozen. The Accessing

Application verifies that the temperature has never been below 1 degree Celsius.

8. Information about the fish is sent to the customer, confirming the freshness of the

fish.

15.6.2 AUTOMATIC ALARMS OF VIOLATIONS (SC 3.1)

This scenario will use EPCs to tag boxes of fresh fish transported from Trondheim to Arendal,

two cities in Norway. The fish is transported by a trailer, containing a temperature-controlled

box. Alerts of temperature violation can be sent to the driver’s PDA, communicating with a

central server using a regular mobile network.

PROPOSED SOLUTION BY THE CONTEXT-AWARE GOODS SYSTEM

The solution is presented in three figures. Every figure will present different aspects of the

solution and they are all described in detail.

Figure 31 Proposed solution of SC 3.1 by CAGS; The management of sensors

Figure 31 describes the proposed solution when the sensors are set up and attached to the

boxes, and later loaded on the trailer for transportation. In this figure the Capturing

Application also plays the role of the Sensor Manager, both described in section 15.5.3.1.

1. When the boxes are made, the sensors are attached and the relation between the

box’s EPC and the sensor’s URI has to be registered. This information is sent to the

CAGS.

2. When the trailer loads the boxes, a gate at the exit registers this and the information

is sent to CAGS because the trailer has a sensor as well. This needs to be updated so

every EPC inside the trailer now have an extra sensor.

3. The capturing application also delivers EPCIS Events about the loading to an EPCIS

Repository.

117

117 Architectural Solution

Figure 32 Proposed solution of SC 3.1 by CAGS; The subscription

Figure 32 describes the proposed solution when the Accessing Application watching the

goods subscribes for information about violations.

1. The Accessing Application controlling driver alerts subscribes to information about all

the EPCs loaded onto the trailer.

2. The CAGS registers this subscription with the Sensor Observation Service

118

118 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Figure 33 Proposed solution of SC 3.1 by CAGS; The alert

Figure 33 describes the proposed solution when sensor readings are received by the system,

eventually warning the driver about the temperature being too high.

1. A Sensor Capturing Application receives information from a sensor on a fish box and

sends this to the Sensor Observation Service (SOS).

2. The SOS checks the sensor against subscriptions and finds a subscriber. The

expression is checked and a violation is detected. The SOS sends this information to

CAGS.

3. The CAGS maps the sensor to EPCs and finds the subscriber, sending the observation

as an alert.

4. The Accessing Application receives the observation and a SMS message telling the

driver to check the temperature-controlled box is sent. The temperature registered

119

119 Architectural Solution

by the sensor is also sent, to give the driver information to work with when fixing the

problem.

15.7 SOFTWARE ARCHITECTURE RATIONALE

The important quality attributes for this system are: Security, Privacy, Scalability,

Modifiability and Performance. This thesis has tried to make the software architecture to

best suit all of them, but there are bound to be trade-offs between them. The next sections

present how every attribute has been incorporated into the software architecture.

15.7.1 SECURITY AND PRIVACY

These two attributes have been given much focus because of their importance. The

architecture itself is only a proposed solution, and the real focus comes when the

implementation is done. To ensure privacy, security has been given attention as shown in

Figure 25. Here the authentication and authorization of accessing applications are shown.

This view only emphasizes the need for this to be solved during implementation. How, by

whom, and what standards to use, the software architecture does not state.

15.7.2 SCALABILITY AND PERFORMANCE

By making the system scalable, this system needs to have high performance. This is because

of the vast amount of sensors and id-tags on one side, and accessing applications on the

other side. Figure 27, the development view, shows the different parts and roles of the

system. All these roles can be duplicated, making it highly scalable. Retailers may have one

of each, making all requests go through one central server park. Other retailers might have

several stores in many countries, requiring several server parks in different regions. To

prevent the need of several central servers, it is important to perform as much computation

as possible at the edge of the system. The proposed software architecture is also based on

elements of already developed systems, emphasizing scalability.

15.7.3 MODIFIABILITY

Modifiability is important because of the ever-changing aspect of the system. Sensors today

will not be the same as sensors developed in the future. The context information considered

interesting will also change, and it is important to be able to evolve with these changes. To

be able to modify the system roles and interfaces have been a focus, shown in Figure 27.

Standards emphasizing modifiability are also used, e.g. SensorML, EPCIS, and O&M.

120

120 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

121

121

Part IV Evaluation and Conclusion

122

122 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

123

123 Evaluation

16 EVALUATION

This chapter presents our evaluation of the software architecture presented in the previous

part, and our answers to the research questions. It also presents a discussion of the findings,

and an overall evaluation of the work done in this thesis.

16.1 ARCHITECTURAL EVALUATION

An evaluation of the architecture would normally be done, e.g., by an Architecture Tradeoff

Analysis Method (ATAM) (Bass, Clements et al. 2005). It is difficult for us to come in contact

with our stakeholders, given the time span of this thesis and the nature of the stakeholders.

We can therefore not perform an ATAM at this time, but it would be useful to do so before

an eventual implementation is started.

This section will evaluate the proposed software architecture with regard to the scenarios,

functional requirements, and research questions. As both the scenarios and the functional

requirements are based on the research questions, some of the information below will be

similar, e.g., a scenario and a functional requirement. We have still decided to discuss each

of them, even though some information might be repeated, to show how our software

architecture can be used for each scenario, functional requirement, and research question.

The architecture is role and interface based, meaning that implementers could choose to

have one application cover more roles at the same time. To support sharing of information

with accessing applications, only the Context Extended EPCIS Query Interface described in

Chapter 15 needs to be implemented. Implementing this interface would enable sharing of

both EPCIS events and context information. The rest of the roles could theoretically be

implemented by the same application. This would depend on the type of implementation,

e.g. prototype or full implementation, and it would be necessary to consider the scalability

of the final system when deciding how the roles should be divided.

The software architecture in this thesis is represented at a high level of abstraction. To be

able to really implement this system, the whole SWE framework and EPCIS standard would

need to be investigated. To give the implementer a full understanding of every detail at the

bottom level, such as EPCIS events, sensor descriptions, and observations. The use of

different roles to divide work could decrease the amount of information and understanding

needed by each developer. Different teams could be assigned to work with the

implementation of EPCIS, sensor management, and sensor observations.

16.1.1 SEPARATION OF CONCERNS

We decided to integrate two existing frameworks for the domains sensors and item tracking.

This decision was made in order to take something good from each domain, and combine it

124

124 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

into something new. There is no reason to reinvent the wheel if existing solutions can do the

job. EPCIS is starting to get a wider use, and could easily become the de-facto standard for

retailers. Because of this wide use the benefit of integration with EPCIS is obvious. It will be

much easier for businesses to adapt the software architecture from this thesis if they are

already using EPC tagged items and EPCIS.

The EPCIS integration was done by adding methods to the EPCIS Query Interface. By taking

this approach the Object Name Service (ONS) and EPCIS Discovery Service from EPCglobal

could still be used to find repositories with information about an EPC. If the Accessing

Application retrieving information is pure EPCIS, it would still be able to use the new system,

just without the new information available. Accessing Applications with context-awareness

would be able to look up EPCs and investigate if there are only EPCIS Events or context

information as well. In this way both types of Accessing Applications can access and retrieve

information, and they will only get information they know how to handle.

An EPCIS repository is used to store EPCIS Events, and SensorML and O&M is used for

context information. SensorML is used to describe a sensor, with information about

accuracy, time interval, and type of values measured. O&M is used to describe actual

readings or observations. Both O&M and SensorML are XML descriptions, defined in the

SWE framework. This enables the two domains to evolve separately, and be the best at their

part. If sensors change, SensorML would change (if needed), without the need of changes to

EPCIS. The O&M could also change without any impacts on EPCIS and SensorML. However,

both SensorML and O&M are made to be highly modifiable, reducing the need for changes

to the two standards themselves.

We have also decided to have separate repositories. There will be one EPCIS repository for

EPCIS events, another for storing SensorML models and SensorML instances, and one for

observations. It is also possible to have separate repositories for SensorML models and

actual sensor instances. The same is possible for O&M types and actual observations.

16.1.2 SCENARIO EVALUATION

This section evaluates the architecture with regard to the scenarios presented in Chapter 13.

Each scenario type is presented, and an explanation on how the software architecture could

enable the scenario is given.

QUALITY DETERIORATION (SC 1)

Scenario SC 1.1 on automatic and dynamic expiration dates is not solved directly by this

software architecture, because the scenario is based on a tag placed directly on the goods.

This tag is thought of as being a communicator to the end user, and therefore does not

directly use Context-Aware Goods System (CAGS). The tag is preconfigured before the goods

are put out into the shelves, with information about the current quality. After this the tag

125

125 Evaluation

lives without communication with CAGS, or else the communication needed would be a

problem, both in a security and privacy perspective.

Scenario SC 1.2 could be solved by a solution implementing the proposed software

architecture. Context information about the food would be stored in an observation

repository, and subscriptions can be used to retrieve information about undesirable values.

With this solution in place, users retrieving this information on food quality would need to

build a software system reacting to the information and correctly alert persons or other

software systems, e.g. by sending a text message to the driver’s cell phone.

Scenario SC 1.3 depends on a temperature history of the food. This could be obtained using

our architecture, as context information would be sensed and registered together with the

food’s EPC. Accessing Applications could then lookup EPCs and check for temperatures

outside of the accepted range.

TEMPERATURE PROFILES (SC 2)

Scenarios SC 2.1 and SC 2.2 depend on the same information. They require a temperature

profile showing how the temperature varies in a given space. To create such a profile it is

necessary to know how the sensors are positioned relative to each other. This can be

achieved in two different ways with our proposed software architecture. If all the

temperature sensors are mounted rigidly in the space, a sensor system can be modeled in

SensorML, and an offering which includes the observations from the individual sensors as

well as relative positioning among them could be provided. This information could then be

retrieved either directly from the SOS, or through the Context Extended EPCIS Query

Interface. To use the last method it would be necessary to either identify the space with an

EPC or to have the EPC of an item that has been in that space. This is because our solution

retrieves sensor information related to given EPCs.

The other way to achieve these scenarios would be to include temperature sensors on the

goods stored in the space. This could either be on each item or, e.g., on each pallet. By using

our Association Event, which extends the EPCIS event, relative positioning among these

items is possible. An accessing application could then query the Context Extended EPCIS

Query Interface for information on relative positioning among the items, and for the

observations from the sensors mounted on the items. Using this information, an accessing

application could detect cold spots, map the need for insulation of goods, and calculate how

many sensors are needed in a given space using historical data.

Scenario SC 2.3 depends on two sensors mounted directly on the items. This could be

achieved using SensorML to specify a sensor with two detectors, one inside and one outside

of the insulation. An accessing application could then query the Context Extended EPCIS

Query Interface for observations from this sensor, and observe differences in temperature

from the two detectors. This could be used to determine the amount of insulation required.

126

126 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

SENSOR COLLABORATION AND INTELLIGENT GOODS (SC 3)

These scenarios describe sensors which increase in sophistication. In the first scenario the

sensors give alerts when certain conditions are not met (SC 3.1). The second scenario has

sensors which automatically takes action if these conditions are not met, without

consideration for other sensors in the same space (SC 3.2). In the third scenario the sensors

collaborate on these actions (SC 3.3). The actions taken would, e.g., be to automatically

control the climate control in the space.

One way to solve the last two scenarios, SC 3.2 and SC 3.3, would be to have intelligent

sensors communicating between each other, and with the climate control system. This could

be done without using our proposed Context-Aware Goods System, but would require much

logic implemented on the sensors themselves, especially for the third scenario.

The scenarios could also be solved by CAGS. This would require a central application

receiving the information from the sensors and carrying out the actions, the sensors would

not carry out the actions themselves. The first scenario describes sensors alerting when

something is wrong. This can be achieved with our subscription mechanism, where accessing

applications can subscribe to observations from the sensors. The other two scenarios would

then depend on the accessing application taking actions on the information received. It

could either react on observations received from subscriptions, or it could actively collect

the information needed through the Context Extended EPCIS Query Interface and then

decide what it should do.

We believe a good solution could be an application which periodically asks for observations

to adjust the environmental controlling systems, based on information from all sensors in

the space. The application would also subscribe to information on observations that are out

of range, enabling alerts when something is wrong. This solution would not actually make

the goods collaborate, but the actions taken would depend on information from sensors

placed on all the goods. Actual sensor collaboration would, as mentioned above, require

very intelligent sensors, and are not in the scope of our software architecture.

HIERARCHY OF GOODS WITH SENSORS (SC 4)

Automatic aggregation of goods can be done by setting up predefined gates or readers at

given spots. For example at a packaging station, a reader could be set up to read every

package departing. Every package could be read for the package’s EPC and the EPCs inside

the package. Then the reader sends all this information to the capturing application,

automatically storing this as an aggregation event. Aggregation events are built-in to EPCIS,

and as our proposed architecture depends on EPCIS this could be achieved.

As aggregations in EPCIS can be identified by parent EPCs, e.g. an EPC on a pallet, it would be

possible to connect sensors to the aggregated item using our solution. The Context Extended

127

127 Evaluation

EPCIS Query Interface provides methods to query for sensor information related to EPCs.

This enables queries for sensor observations of an aggregation instead of querying for each

item in the aggregation. Because EPCIS Aggregation Events supports multiple levels in the

hierarchy by aggregating parent EPCs into new aggregations, each identified by an EPC,

sensors could be connected to any level in the hierarchy. This gives accessing applications

the opportunity to retrieve sensor observations at the desired level in the hierarchy.

Aggregating items could greatly reduce the amount of queries needed. If e.g. a pallet has a

temperature sensor, EPCs placed on that pallet could be connected to that sensor. If these

items were aggregated together, it would only be necessary to query for the temperature of

the parent EPC, and not for every item on the pallet. If it was a temperature sensor in the

room instead of on each pallet, the benefit would be the same. Both the EPCs of the items

and of the pallets could be connected with the sensor in the room, and it would be possible

to query both for item EPCs and pallet EPCs.

The connection between EPCs and sensors described above would be done in CAGS as

described in Chapter 15.

PROXIMITY CONTROL (SC 5)

Scenario SC 5.1 and scenario SC 5.2 requires similar technology. They both require the

knowledge of how goods are placed relative to each other, how close they are, and what

kind of goods is stored. This could be realized by the proposed association event, which

provides information on relative positioning among items. This event would have to be

created either manually when goods are stored, or by having sensors on every ware and a

capturing application receiving information from the sensors and generating the event. The

subscription methods could be used to receive information if the wrong kinds of goods are

stored together. An alert could be raised when receiving information from the subscriptions.

We have previously mentioned that sensor systems can be modeled with information on the

relative positions between sensors. This would not be useful for this scenario, as the

scenario focuses on storage facilities where the goods stored change with time. Such sensor

systems are better suited for sensors mounted rigidly.

16.1.3 REQUIREMENTS EVALUATION

This section presents the functional requirements from Chapter 14, and shows how the

proposed software architecture can be used to solve them.

FR 1. The system must support data from different sensor types

a. It must support configuration of new sensor types from a generic sensor type

128

128 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

This requirement is proposed solved using SensorML and O&M from the SWE framework.

Our software architecture uses SensorML to describe the sensors used and O&M to describe

the observations. Both these standards are generic, and can be used to describe just about

any sensor type and observation type. New sensor types not considered at implementation

will not be a problem, as SensorML is a generic XML-based language, and it does not require

the sensor type to be specified before implementation. New sensor descriptions in

SensorML would have to be written for each new sensor type used, but this does not impact

the rest of the system. Using repositories to store the SensorML models, it would be easy to

include new sensor models. If SensorML gets a wide use, it could be possible that sensor

manufacturers would provide this information.

FR 2. The system must be able to receive real-time data from readers

a. Sensor data combined with a time aspect

b. Identification of items

This requirement is proposed solved by integrating the EPCIS and SWE frameworks. In

SensorML sensors are identified by URIs, and in EPCIS items are identified by EPCs. Sensor

data combined with a time aspect could be retrieved from the SOS, and identification of

items from EPCIS. The proposed CAGS combines relates items to sensors, and provides a

common interface to retrieve item and context information.

FR 3. The system must extend a logistic information system based on identification with a

context aware information system.

This requirement is proposed solved by integrating EPCIS with SWE in our CAGS. EPCIS is

used to track information on items identified by EPCs, and SWE is used to describe and share

context information. The proposed Context Extended EPCIS Query Interface extends the

standard EPCIS Query Interface with additional methods for context information.

FR 4. The system must be integrated with EPCIS

a. Generate EPCIS Events

b. Submit EPCIS Events through an EPCIS Capture Interface

This requirement is proposed solved by extending the EPCIS Query Interface to support

context information. CAGS appends a context aware system to a fully functional EPCIS

system. In this way EPCIS is kept as normal, with the capturing application and other roles

intact. EPCIS Events will be generated by a capturing application, and they will be sent

through a capture interface in the normal way.

FR 5. The system must support a hierarchical structure of items

a. A generic model for hierarchy

129

129 Evaluation

The proposed software architecture supports standard EPCIS events. One of these events is

the Aggregation Event, which can be used for hierarchical structures. This requires the use of

EPCs for identification of items, which is used in our architecture.

FR 6. Items must have an unique identification (URI)

This is solved by requiring all items to be uniquely identified by an EPC, and an EPC is an URI.

This comes naturally when supporting EPCIS. Sensors are also uniquely identified in

SensorML by URIs.

FR 7. The system must support zero to many sensors on items

a. Identification of each sensor.

This is proposed solved in CAGS by mapping EPCs to sensor URIs. Every sensor is identified

with an URI and described with SensorML. Our system maps EPCs to sensor URIs in a many-

to-many relationship.

FR 8. The system must support relative positions of items

a. Relative positions to other items in a given space

b. A generic model for relative position of items

This is proposed solved by extending the EPCIS Event base type with an Association Event.

This event describes the relative distance between two items. The event contains the EPCs

of the two items and a distance vector describing the direction and distance from one item

to the other. This event could be created manually by observing the items, or automatically

from observations retrieved from sensors on the items able to sense distance to other

sensors or items.

FR 9. The system must have a generic alert mechanism

a. Enable alarms and alarm handling

b. Able to define sensor types to watch, and laws for these types

c. Able to execute a procedure if laws are broken.

The proposed solution for this is the subscribe method available from the Context Extended

EPCIS Query Interface. This requires users interested in receiving alerts to subscribe to each

sensor he wants to monitor. With EPCIS it is possible to have many different EPCIS

repositories at different locations, and this could also be done for CAGS. In such a situation it

would be necessary to register subscriptions at all locations that could possibly have this

information. This could seem a little bothersome, and it would be easier with one centralized

location, but it is done to support scalability. This would have to be considered at each

implementation.

FR 10. The system must support sharing of sensor information using SensorML

130

130 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Support for sensors and observations are included in other requirements as well, e.g. FR1

and FR 3 explained above. FR 10 covers how information about the sensors themselves

should be shared. This requirement is a little vague, as it does not specify what sensor

information is. It could be information about the sensor itself, i.e. description of a sensor, or

it could be information coming from the sensor, i.e. observations. The requirement also

specifies that SensorML should be used for sharing, but SensorML is a modeling language

used to describe sensors, not to share information. This ambiguity is due to a limited

knowledge of the SWE standards when the requirements were written.

The software architecture we have proposed uses the SWE framework for context

information. This means that SensorML is used to describe sensor information, O&M is used

to describe sensor observations, and Sensor Observation Service is used to share this

information. Our proposed Context Extended EPCIS Query Interface has methods to retrieve

this information, describeSensor for sensor information and getObservation for observations.

16.2 RESEARCH QUESTIONS EVALUATION

This section presents the research questions presented in Chapter 2, and gives our proposed

answers. Because many of the functional requirements above are based on these questions,

some of them have already been answered. We will still answer each of the research

questions here.

RQ 1. How can an electronic ID tracking information system be extended with sensor

information?

There are many different ways to extend a tracking system with sensor information. We

propose to solve this by integrating two frameworks, one for item tracking and one for

sensor information. Chapter 15 presents a software architecture showing how this can be

done. We have used the EPC Architecture Framework, and especially EPC Information

Services, from EPCglobal as the tracking system. Our proposed software architecture extends

the EPCIS Query Interface with methods to retrieve sensor information. By this approach

systems based on our architecture can coexist with standard EPCIS systems. Accessing

applications aware of our extension can utilize the new methods through the Context

Extended EPCIS Query Interface, while other applications can use this interface as a standard

EPCIS Query Interface to retrieve EPCIS Events.

We propose to use the Sensor Web Enablement (SWE) framework for the sensor

information and observations. This includes SensorML for sensor descriptions, Observations

& Measurements for observations, and Sensor Observation Service to share this information.

Our software architecture is built so this could be exchanged for something else, but we

believe that SWE is a good choice as it is an open global standard and it provides a generic

way to describe both sensors and observations.

131

131 Evaluation

RQ 2. How to achieve relative positioning of one tagged unit with regards to other tagged

units (next to, under, above)?

This can be done by using sensors able to track proximity of other sensors, and storing this

information using EPCIS Events. We have proposed an extension to the EPCIS Event called

Association Event which describes how two uniquely identified items (using EPC) is placed

relative to each other. The association event describes this relative position using a vector,

which includes direction and distance.

Relative positioning can also be achieved without proximity sensors. The EPCIS Association

Event could be generated by an application based on manual input from a human user

instead of sensor observations. This event would then be treated the same as automatically

generated events.

RQ 3. How to build a generic software architecture towards sensors and tags that can be

used in many different situations?

We have tried to solve this by designing our software architecture based on known

standards which emphasize generalization. The use of the EPC AF and SWE frameworks,

which are both built to be generic, will help our solution to be generic. We believe that our

solution might work for many different situations, because of the focus on being generic, but

it is difficult to predict future use.

This research question is partly answered, as it is generic towards sensors but only partly

generic towards RFID tags. We require that the tags are identified by an EPC, which limits the

tags used. Our architecture does not require that the tags used follow an EPCglobal tag-air

interface, e.g. the UHF Gen 2 Class 1 standard used today (EPCglobal 2007b), and in theory

any tag type can be used as long as it carries an EPC. Sensors are described by SensorML,

which provides full support for generic sensors. Because of this we consider the software

architecture for the most part to be generic.

RQ 4. How to ensure scalability in an ID tracking information system extended with sensor

information?

Our proposed software architecture is as mentioned above built on the EPC Architecture

Framework, which is built to scale. Our architecture integrates the SWE framework with EPC

AF, and inherits many of the same qualities as EPC AF. Every role in the architecture can be

duplicated, and it is up to the implementer to decide how many instances to create. We

believe that the possibly large number of sensors and tags requires a decentralized

information system. In our architecture this is solved in the same way as in EPC AF by giving

the opportunity to have many different repositories, instead of just one central. This means

that accessing applications will have to access more than one service in order to retrieve all

relevant information, but this is necessary in order to ensure good scalability.

132

132 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

We believe that the answer to this research question is to spread the information on

different repositories, and to make decisions at the edge of the network where possible. If

every possible sensor observation and RFID tag detection should go through the same

central server it would have a big impact on scalability. Both the EPC AF and SWE have the

same focus of taking decisions at the edge, e.g. by filtering false reads and only storing

relevant information.

RQ 5. How can a system with sensor information be integrated with EPC and EPCIS from

EPCglobal?

We propose to solve this by extending the EPCIS Query Interface with methods providing

access to sensor information. This is possible because of the focus on extensibility in the

EPCIS standard, providing the opportunity to extend the interfaces in the standard. This is

explained as an answer to research question 1 above.

RQ 6. How can SensorML be integrated with EPCIS?

This research question is partly answered, as SensorML is used together with EPCIS in our

software architecture, but it is not enough to use SensorML alone. SensorML is, as

mentioned above, used in the SWE framework to describe sensor information. We provide

SensorML descriptions through the describeSensor method in our Context Extended EPCIS

Query Interface, but a Sensor Observation Service (SOS) from SWE is needed to actually store

and retrieve this information. The CAGS, which implement the Context Extended EPCIS Query

Interface, uses SOS to retrieve sensor descriptions whenever needed. The sensor

descriptions are then sent to an Accessing Application as XML, following the SensorML

specification.

16.3 DISCUSSION

We believe that our proposed software architecture can be used to solve the issue of

extending an electronic ID tracking system with sensor information. We decided to integrate

two frameworks leading in their areas, EPC AF for item tracking and SWE for sensor

information. This was done because we believe that it is much easier to start using a system

if it is based on standards already known. If a company is currently using EPC-tagged items

and EPCIS to track their movements, it would be much easier for them to extend this system

with sensor information instead of adopting an entirely new system. The same point can be

made for sensor information. If we had developed a new sensor description language, it

would be difficult to get sensor vendors to provide descriptions of their sensors in our

language. They might have done this if our language had gained wide use, but in the

meantime companies interested in implementing our software architecture would have to

write their own sensor descriptions for each sensor type.

133

133 Evaluation

The main contribution of this thesis is the software architecture integrating EPC AF and SWE.

It took some time to figure out how we could best integrate item tracking and sensor

information, but once we decided to use EPCIS and SWE, the solution was not that difficult.

We have tried to design a software architecture using as much from the two frameworks as

we could; only adding what is necessary to combine them. This was done to be as

compatible as possible with existing software systems already using either of the two

frameworks. We also wanted the advantages of using open global standards, e.g. full access

to the specifications, an open development process for future versions, and global

interoperability. Even if the resulting software architecture is simple, it took time to think of

the solution because both specifications had to be evaluated and investigated. The result of

the process is a software architecture extending EPCIS, ready to be implemented as an

extension to EPCIS without impacting existing implementations.

One problem encountered during the work on this thesis, was the large amount of

information and knowledge necessary to be acquired. Both frameworks used are large and

complex, and it took quite a while to achieve enough understanding of these to proceed

with the work. Even though we knew about EPCIS from previous work, we had to figure out

how it could best be extended. SWE was completely new to us, as well as sensor technology

in general. As mentioned in Chapter 11, the documentation of SWE was relatively difficult to

read, and this was one reason that it took quite some time to investigate the framework. The

decision to use SWE was also taken relatively late in the process, resulting in a short period

of time to develop the software architecture. We did not have as much time to evaluate and

improve the description of the software architecture as wanted, but we still believe that the

architecture provided is a good solution to the problem at hand.

The approach taken with the software architecture focuses on using EPCIS as much as

possible, and adding context information from SWE. If we had more time, or for a later

project, it could be interesting to try to develop a solution the other way around, with SWE

at the center and extending with EPCIS. RIFD readers could be considered as sensors and

modeled by SensorML, and item observations could be described using standard O&M used

for sensor observations. Then either the Sensor Observation Service or the Sensor Planning

Service from SWE could be extended with EPCIS methods providing EPCIS events. This

approach would lose the benefit our approach has by utilizing existing EPCIS

implementations, but it would have been interesting to further explore these possibilities.

Perhaps it could be possible to use existing standard EPCIS implementations for companies

not interested in sensor readings, and only implement the SWE standards for those

interested in additional context information. If these companies already had implemented

an item tracking solution using EPCIS they could probably reuse some of this, but they would

need to change at least parts of their systems.

Overall we believe that the choice of using EPCIS as the basis and extending with SWE was a

good solution. It seems that the EPC standards are more used today, while SWE is relatively

134

134 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

new and have not gotten that much attention. It also seems that the SWE standards are not

quite finished. There are many notifications of future changes and potential problems with

various parts of the standards in the standard documents. It is of course still possible to use

them at this point, but we did not consider it wise to use them as the basis for our software

architecture. The reason for using EPCIS is also related to the nature of the problem

description of this thesis. The focus is on tracking items, in this case fresh food, and

collecting context information as they are tracked. We believe that it is better to implement

a tracking system and later extend with context information, than to implement a sensor

network and later extend with the possibility to track items.

135

135 Conclusions and Future Work

17 CONCLUSIONS AND FUTURE WORK

This chapter concludes our thesis. The first section presents concluding remarks, before the

second briefly discusses future work.

17.1 CONCLUSIONS

Tracking of goods and related context information are becoming more and more important.

We believe that in a few years this will be regulated by the government. All fresh food sold

can be traced back to its place of origin, and information on how it has been treated on the

way is easily available. There are also many other benefits for businesses able to track and

trace their products through their supply chains, thus it will be motivating to implement such

solutions even where it is not mandatory.

We have found out that a lot of work has been done on item tracking, and especially after

EPCglobal was established and global standards became available. There are also many

projects on sensor information related to fresh food, but we do not see the same focus on

standardization there. The SWE standards from OpenGIS might take the same position for

sensors and sensor information as EPC has done for electronic identification.

We do not think that it is a good idea to combine these standards into one, as they cover

very different areas. But we do believe that solutions combining the information they

provide are very interesting. By having two separate standards it is also possible for them to

develop independently as the technology advances and new and different needs arise.

This thesis has shown some of the possibilities arising when a context-aware tracking

solution is available through a set of scenarios. These are of course only examples, and the

possibilities are many. It has also presented an evaluation of one standard framework for

each of the two areas item tracking and context information, together with a software

architecture where these frameworks are integrated. The evaluation in Chapter 16 shows

that the research questions presented in Chapter 2 can be answered using our proposed

software architecture.

17.2 FUTURE WORK

This software architecture is an example of how a tracking system can be extended with

context information. Before implementing this architecture we believe that it is important to

consult with the different stakeholders. We have stated who we consider as stakeholders for

the solution, and have tried to anticipate their needs, but due to time constraints we have

not been in contact with them. The information we have gained have been through

literature studies and discussions with supervisors, and a more thorough stakeholder

analysis is necessary.

136

136 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

It is also necessary to implement a proof-of-concept solution. We have shown a software

architecture that can be used for this, but in order to get companies interested it is

important to have a working prototype. This architecture is at a high level of abstraction, and

a detailed design phase together with a pilot implementation would take this project one

step further.

The work being done by the two standards organizations should be followed. As both of the

frameworks we have used are in version 1.x, it is important to remember that they can be

changed in the future. As more and more companies start using these frameworks, the

organizations will get feedback on how they are performing together with suggestions for

improvements. There could be issues with the current specifications that neither we nor the

standards organizations are aware of at this time. We do believe that this is also one of the

benefits of using standard specifications as the basis for our solution. More users means

more feedback, and we believe that both frameworks will evolve and improve in the future.

137

137

PART V Bibliography and Appendices

138

138 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

139

139 Bibliography

BIBLIOGRAPHY

Albretsen, S. and M. A. Larsen (2007). EPC Information Services: Usage and Value Scenarios
of EPCIS. Department of Computer and Information Science. Trondheim, Norwegian
University of Science and Technology.

Ari, J., L. R. Ronald, et al. (2003). The blocker tag: selective blocking of RFID tags for
consumer privacy. Proceedings of the 10th ACM conference on Computer and
communications security. Washington D.C., USA, ACM.

Asher, C., G. Morgan, et al. (2007). "EPCIS Frequently Asked Questions." Retrieved April 01,
2008, from http://www.epcglobalinc.org/standards/epcis/epcis_1_0-faq-
20070427.pdf.

Bass, L., P. Clements, et al. (2005). Software Architecture in Practice, Second Edition,
Addison-Wesley.

Botts, M., G. Percivall, et al. (2007, December 28). "OGC® Sensor Web Enablement: Overview
And High Level Architecture." OGC White Paper 3.0. Retrieved Mars 01, 2008, from
http://portal.opengeospatial.org/files/?artifact_id=25562.

Brock, D. L. (2003, June 1). "Fresh Food – Dynamic Expiration Dates Using Auto-ID
Technologyand Analytic Shelf Life Models." White Paper Retrieved April 24, 2008,
from http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH019.pdf.

CAEN. (2008). "CAEN Homepage." Retrieved April 10, 2008, from http://www.caen.it/.

Chen, G. and D. Kotz (2000). A Survey of Context-Aware Mobile Computing Research.
Technical Report, Darthmouth College.

Culler, D., D. Estrin, et al. (2004). "Guest Editors' Introduction: Overview of Sensor
Networks." Computer 37(8): 41-49.

Dey, A. K. and G. D. Abowd (1999). Towards a better understanding of context and context-
awareness. Technical Report, Georgia Institute of Technology.

Ding, Z.-h., J.-t. Li, et al. (2007). A Filter Design of RFID Middleware in the Progress of
Updating Barcode to RFID. RFID Eurasia, 2007 1st Annual.

Engels, D. W. and S. E. Sarma (2002). The reader collision problem. IEEE International
Conference on Systems, Man and Cybernetics 2002.

EPCglobal (2005). Object Naming Service (ONS) Version 1.0. EPCglobal Ratified Specification,
EPCglobal Inc.

EPCglobal (2007a). EPC Information Services (EPCIS) Version 1.0.1 Specification. EPCglobal
Ratified Specification, EPCglobal Inc.

http://www.epcglobalinc.org/standards/epcis/epcis_1_0-faq-20070427.pdf
http://www.epcglobalinc.org/standards/epcis/epcis_1_0-faq-20070427.pdf
http://portal.opengeospatial.org/files/?artifact_id=25562
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH019.pdf
http://www.caen.it/

140

140 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

EPCglobal (2007b). EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID
Protocol for Communications at 860 MHZ - 960 MHz Version 1.1.0. EPCglobal Ratified
Specification, EPCglobal Inc.

EPCglobal (2007c). The EPCglobal Architecture Framework Version 1.2. EPCglobal Ratified
Specification, EPCglobal Inc.

EPCglobal (2007d). EPCglobal Tag Data Standards Version 1.3.1. EPCglobal Ratified
Specification, EPCglobal Inc.

EPCglobal (2008a). The Application Level Events (ALE) Specification Version 1.1. EPCglobal
Ratified Specification, EPCglobal Inc.

EPCglobal. (2008b). "EPCglobal Homepage." Retrieved Mars 24, 2008, from
http://www.epcglobalinc.org.

Fowler, M. (2005). UML Distilled, Third Edition, Addison-wesley.

Gamma, E. (1994). Design patterns: elements of reusable object-oriented software. Reading,
Massachusetts, Addison-Wesley.

Hanebeck, C. (2006). "Managing Data from RFID & Sensor-based Networks." White Paper
Retrieved June 01, 2008, from
http://www.globeranger.com/pdfs/futureoftheedge/GlobeRangerRFIDData.pdf.

Harmon, C. K. (2006). "The necessity for a uniform organisation of User Memory in RFID."
International Journal of Radio Frequency Identification Technology and Applications
1(1): 41-51.

Hawryszkiewycz, I. (2001). Introduction to systems analysis & design, Pearson Education.

Juels, A. (2006). "RFID security and privacy: a research survey." IEEE Journal on Selected
Areas in Communications 24(2): 381-394.

King, P. (2006). "Six Sigma and the Single Tag." RFID Journal Retrieved February 29, 2008,
from http://www.rfidjournal.com/article/articleview/2102/1/82/.

Kruchten, P. B. (1995). "The 4+1 View Model of architecture." Software, IEEE 12(6): 42-50.

KSW. (2008). "KSW Homepage." Retrieved April 10, 2008, from http://www.ksw-
microtec.de.

Landt, J. (2005). "The History of RFID." IEEE Potensials 24(4): 8-11.

Leaver, S. (2004, August 13). "Evaluating RFID Middleware." Tech Choices Retrieved April 05,
2008, from http://www.bauer.uh.edu/rfid/ForresterRFIDwave.pdf.

Liard, M. J. (2004, June). "The Co-Existence of EAS and RFID Technologies in Retail
Environments: An Independent Perspective." White Paper Retrieved May 01, 2008,
from

http://www.epcglobalinc.org/
http://www.globeranger.com/pdfs/futureoftheedge/GlobeRangerRFIDData.pdf
http://www.rfidjournal.com/article/articleview/2102/1/82/
http://www.ksw-microtec.de/
http://www.ksw-microtec.de/
http://www.bauer.uh.edu/rfid/ForresterRFIDwave.pdf

141

141 Bibliography

http://www.adt.com/wps/wcm/resources/file/eb141f026a257fb/VDC_RFID_EAS-
WhitePaper.pdf.

Logistikk & Ledelse. (2007). "Gilde, Intermec og SINTEF sammen om stort utviklingsprosjekt:
RFID skal klare biffen " Logistikk og Ledelse Retrieved Mars 04, 2008, from
http://www.logistikk-ledelse.no/2007/it/it01-03.htm.

Merriam-Webster. (2008). "Merriam-Webster Online Dictionary." Retrieved Mai 2, 2008,
from http://www.merriam-webster.com/dictionary/context.

Michael, K. and L. McCathie (2005). The pros and cons of RFID in supply chain management.
International Conference on Mobile Business, 2005. ICMB 2005.

Montalbano. (2008). "Montalbano Homepage." Retrieved April 01, 2008, from
http://www.montalbanotechnology.com/.

Myhren, K. A. (2007). Personal communication with Kjell Arne Myhren from GS1 Norway. M.
A. Larsen. Oslo.

Nahas, H. A. and J. S. Deogun (2007). Radio Frequency Identification Applications in Smart
Hospitals. Twentieth IEEE International Symposium on Computer-Based Medical
Systems, 2007. CBMS '07. .

Nofilis. (2007). "CrossTalk White Paper 2.0." White Paper Retrieved January 25, 2008, from
http://www.nofilis.com/documents/CrossTalk_WhitePaper_2.0_EN.pdf.

O'Connor, M. C. (2005, January 18). "Gen 2 Finds a Path to ISO Approval." RFID Journal
Retrieved Mars 10, 2008, from
http://www.rfidjournal.com/article/articleview/1346/1/1/.

O'Connor, M. C. (2006a, July 11). "Gen 2 EPC Protocol Approved as ISO 18000-6C." RFID
Journal Retrieved Mars 10, 2008, from
http://www.rfidjournal.com/article/articleview/2481/1/1.

O'Connor, M. C. (2006b, January 31). "Tag Proposal Addresses Industry Needs." RFID Journal
Retrieved Mars 10, 2008, from
http://www.rfidjournal.com/article/articleview/2113/1/1/.

Open Geospatial Consortium (2007a). Observations and Measurements – Part 1 -
Observation schema. S. Cox, Open Geospatial Consortium.

Open Geospatial Consortium (2007b). Observations and Measurements – Part 2 - Sampling
Features. S. Cox, Open Geospatial Consortium Inc.

Open Geospatial Consortium (2007c). OpenGIS Sensor Model Language (SensorML)
Implementation Specification. M. Botts, University of Alabama in Huntsville.

Open Geospatial Consortium (2007d). OpenGIS Sensor Planning Service Implementation
Specification. I. Simonis, OpenGIS.

http://www.adt.com/wps/wcm/resources/file/eb141f026a257fb/VDC_RFID_EAS-WhitePaper.pdf
http://www.adt.com/wps/wcm/resources/file/eb141f026a257fb/VDC_RFID_EAS-WhitePaper.pdf
http://www.logistikk-ledelse.no/2007/it/it01-03.htm
http://www.merriam-webster.com/dictionary/context
http://www.montalbanotechnology.com/
http://www.nofilis.com/documents/CrossTalk_WhitePaper_2.0_EN.pdf
http://www.rfidjournal.com/article/articleview/1346/1/1/
http://www.rfidjournal.com/article/articleview/2481/1/1
http://www.rfidjournal.com/article/articleview/2113/1/1/

142

142 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

Open Geospatial Consortium (2007e). Sensor Observation Service. A. Na and M. Priest,
OpenGIS.

Open Geospatial Consortium. (2008). "OGC Website." Retrieved May 23, 2008, from
http://www.opengeospatial.org/.

OpenGIS. (2008, May 16, 2008). "SWE Common Data Model 1.1 Standards Working Group."
Retrieved May 16, 2008, from
http://www.opengeospatial.org/projects/groups/swecommonswg.

Posten. (2008). "Posten homepage." Retrieved Mars 01, 2008, from http://www.posten.no.

Potdar, V., P. Hayati, et al. (2007). Improving RFID Read Rate Reliability by a Systematic Error
Detection Approach. RFID Eurasia, 2007 1st Annual.

Reichardt, M. (2003). "The Sensor Web's Point of Beginning." Retrieved May 15, 2008, from
http://www.geospatial-
solutions.com/geospatialsolutions/article/articleDetail.jsp?id=52681&pageID=1&sk=
&date=.

Roberti, M. (2007, January 22). "Moving Forward on an HF EPC Standard." RFID Journal
Retrieved Mars 12, 2008, from
http://www.rfidjournal.com/article/articleview/2981/1/2/.

Rossen, E. (2008, February 22). "EU ser strengt på RFID og personvern." digi.no Retrieved
Mars 17, 2008, from http://www.digi.no/php/art.php?id=511447.

Sarma, S. (2004). "Integrating RFID." Queue 2(7): 50-57.

Satyanarayanan, M. (2003). "From the Editor in Chief [Of Smart Dust and Brilliant Rocks]."
Pervasive Computing, IEEE 2(4): 2-4.

SmartCode Corp. (2006). "SMARTCODE™ CORP. announces the world's first 5 cent RFID tag."
Retrieved April 08, 2008, from http://www.smartcodecorp.com/newsroom/01-05-
06.asp.

TimeTemp. (2008). "TimeTemp homepage." Retrieved Mars 14, 2008, from
http://www.timetemp.no/.

Ukkonen, L., D. Engels, et al. (2005). Reliability of passive RFID of multiple objects using
folded microstrip patch-type tag antenna. Antennas and Propagation Society
International Symposium, 2005 IEEE.

University of Cambridge, AT4 wireless, et al. (2007, August 15). "High level design for
Discovery Services." Retrieved December 04, 2007, from http://www.bridge-
project.eu/data/File/BRIDGE%20WP02%20High%20level%20design%20Discovery%20
Services.pdf.

Van Roy, P. and S. Haridi (2004). Concepts, Techniques, and Models of Computer
Programming, MIT Press.

http://www.opengeospatial.org/
http://www.opengeospatial.org/projects/groups/swecommonswg
http://www.posten.no/
http://www.geospatial-solutions.com/geospatialsolutions/article/articleDetail.jsp?id=52681&pageID=1&sk=&date=
http://www.geospatial-solutions.com/geospatialsolutions/article/articleDetail.jsp?id=52681&pageID=1&sk=&date=
http://www.geospatial-solutions.com/geospatialsolutions/article/articleDetail.jsp?id=52681&pageID=1&sk=&date=
http://www.rfidjournal.com/article/articleview/2981/1/2/
http://www.digi.no/php/art.php?id=511447
http://www.smartcodecorp.com/newsroom/01-05-06.asp
http://www.smartcodecorp.com/newsroom/01-05-06.asp
http://www.timetemp.no/
http://www.bridge-project.eu/data/File/BRIDGE%20WP02%20High%20level%20design%20Discovery%20Services.pdf
http://www.bridge-project.eu/data/File/BRIDGE%20WP02%20High%20level%20design%20Discovery%20Services.pdf
http://www.bridge-project.eu/data/File/BRIDGE%20WP02%20High%20level%20design%20Discovery%20Services.pdf

143

143 Bibliography

Vogt, H. (2002). Multiple object identification with passive RFID tags. IEEE International
Conference on Systems, Man and Cybernetics, 2002.

Want, R. (2006). "An introduction to RFID technology." Pervasive Computing, IEEE 5(1): 25-
33.

Weinstein, R. (2005). "RFID: a technical overview and its application to the enterprise." IT
Professional 7(3): 27-33.

Xiao, Y., S. Yu, et al. (2006). "Radio frequency identification: technologies, applications, and
research issues." Wireless Communications and Mobile Computing 7(4): 457-472.

Yingping, C., W. Dong, et al. (2007). PTSP: a lightweight EPCDS platform to deploy traceable
services between supply-chain applications. RFID Eurasia, 2007 1st Annual.

144

144 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

145

145 Acronyms

A ACRONYMS

CAGS Context-Aware Goods System

EPC Electronic Product Code

EPC AF Electronic Product Code Architecture Framework

EPCIS Electronic Product Code Information Services

HF High Frequency

NFC Near Field Communication

NTNU Norwegian University of Science and Technology

O&M Observations and Measurements

OGC Open Geospatial Consortium

ONS Object Name Service

RFID Radio Frequency Identification

SensorML Sensor Model Language

SOS Sensor Observation Service

SPS Sensor Planning Service

SWE Sensor Web Enablement

TML Transducer Markup Language

UHF Ultra-High Frequency

UML Unified Modeling Language

XML Extensible Markup Language

146

146 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

147

147 Introduction to EPC Information Services

B INTRODUCTION TO EPC INFORMATION SERVICES

EPCIS is the upper layers of the EPCglobal Architecture Framework. This standard is about

sharing data, and specifically sharing EPC-related data. EPCIS is all about events, and the data

shared is events occurring in a business process.

EPCglobal defines the goal of EPCIS as the following: “The goal of EPCIS is to enable disparate

applications to leverage Electronic Product Code (EPC) data via EPC-related data sharing,

both within and across enterprises. Ultimately, this sharing is aimed at enabling participants

in the EPCglobal Network to gain a shared view of the disposition of EPC-bearing objects

within a relevant business context.” (EPCglobal 2007a)

This means that EPCIS is about sharing data, both within and across enterprises, and is at a

higher level than the other standards in the framework which are about the data itself and

how to gather it.

An important difference between EPCIS and the lower layers of the framework is that EPCIS

deals with historical data in addition to real-time data. Another major difference is that

EPCIS is at a semantically higher level than the lower layer because of its context-awareness.

An EPCIS-level event consists not only of EPC data, but it also sets this data in a business

context, saying for instance where in a business process the data was gathered.

This standard takes a service approach by defining standard interfaces for capturing and

querying data through a set of service operations. It also defines a set of data standards for

the shared data. The information shared can be described as the what, where, when and

why of events (Asher, Morgan et al. 2007). This may be information such as what goods

passed through a point, where that point is located, when it passed through and why it

passed through. The why may be several different reasons, such as for example the business

transaction the goods are a part of, what business step in a process is performed or the

disposition of the goods. The main point is that the information shared is about events, both

historical and real-time events. We will later go into more detail on the different event types

available in EPCIS.

The requirements for the EPCIS standards are much more complex than for the lower level

standards of the framework, due to historical data and incorporation of business process

context. Thus the EPCIS standard is described as a framework specification with more

detailed specifications to populate the framework.

B.1 ARCHITECTURE

EPCIS is as mentioned the upper layers of the EPCglobal Architecture Framework, and the

entire framework is shown in Figure 34. We have emphasized the figure by dividing it into

three different parts. This is not part of the standard, but we believe there is a distinct

148

148 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

difference between these three, and it also helps define the parts that will be discussed in

this report. At the bottom of the figure there are a set of standards for how RFID tags are to

be encoded, the specification of EPC, interfaces for RFID readers and an interface for

applications that filters and collects the information retrieved by the readers. These

standards are mostly RFID specific, and we will not say much about them. In the middle

there is a set of interfaces for capturing, storing and accessing this information, which are

the EPC Information Services. This is the main focus of our project. At the top there is a set

of core services that are either operated by the EPCglobal or EPCglobal has granted access to

other organizations or companies to operate. These services are freely available for anyone

using the EPCglobal network, and we will describe the ones related to EPCIS later in this

chapter.

The architecture consists of roles and interfaces where the roles are thought

implementations that are not a part of the standard, only the interfaces are defined. For

EPCIS this means that the relevant parts are the EPCIS Capture Interface and the EPCIS Query

Interface. This means that for instance an EPCIS Accessing Application may be implemented

in a number of different ways; the only requirement is that it is able to communicate with

the EPCIS Query Interface. Other interfaces will come, and we can see that the Subscriber

Authentication and EPCIS Discovery roles communicate with interfaces that are TBD,

meaning that they are not yet defined in the standard. These interfaces will probably

become a part of the EPCIS specification in a future version. We will talk more about the

EPCIS Discovery interface later, as this is important in a supply chain with multiple, and

possibly unknown, parts.

149

149 Introduction to EPC Information Services

Figure 34 EPCglobal Architecture Framework (EPCglobal 2007c)

There are three important principles that have been in mind when designing the EPCIS

specification. The specification is, as mentioned before, described as a framework

specification with more detailed specifications to populate the framework, and it is designed

to be layered, extensible and modular.

EPC

Information

Services

Hardware, RFID

readers and

tags

Core services,

operated or

governed by

EPCglobal

150

150 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

B.2 ARCHITECTURE LAYERS

Figure 35 EPCIS layers (EPCglobal 2007a)

EPCIS consists of four different layers as shown in Figure 35. These are the Abstract Data

Model Layer, Data Definition Layer, Service Layer and Bindings. The Abstract Data Model

Layer specifies the structure of EPCIS data in a generic way, and is the only layer that is not

extensible. The Data Definition Layer specifies the data that is exchanged through EPCIS

following the rules of the Abstract Data Model Layer. The Service Layer specifies service

interfaces that EPCIS clients use to interact. Bindings specify concrete realizations of the

Service Layer and the Data Definition Layer. We will here give an overview of the layers and

look into detail on some important parts. For detailed information we refer to the EPCIS

standard.

B.3 ABSTRACT DATA MODEL LAYER

The Abstract Data Model Layer defines two kinds of data, event data and master data. This is

the only layer in the specification that is not extensible; the only way to change this layer

would be to change the EPCIS specification itself.

Event data comes from business processes, or rather it appears during the course of a

business process, and is captured by the EPCIS Capture Interface. The event data is made

available through the EPCIS Query Interface.

151

151 Introduction to EPC Information Services

Master data provides context to the event data and is available through the EPCIS Query

Control Interface. There is currently no interface to capture or add master data to the

system, but this is expected to be added in a future version of the standard and it is not a big

issue. As master data may change over time, these changes are expected to be infrequent

compared to the rate event data is generated. It is however important to define the

structure of the master data, as this will be shared between different parts in a supply chain.

The difference between event data and master data is that while the event data describes

events on the form of what, where, when and why as described above, the master data gives

more meaning to the event data. An example on event data may be “EPC 123 was at 10:30

on November the 1st 2007 observed at Location A.” This does not give much meaning

without knowing what EPC 123 and Location A is, and this is described by the master data.

The standard defines a set of terms for the structure of event and master data, such as Event

Data, Event, Event Type, and so on. We will not go into detail on these here, for more

information we refer to (EPCglobal 2007a). One term we will say something about is

Vocabulary. A vocabulary is a finite set of alternatives that may appear in specific fields of

events. There are two main kinds of vocabularies, Standard Vocabulary and User Vocabulary.

A standard vocabulary is defined by organizations of many end users, such as EPCglobal, and

the corresponding master data is defined by the same organizations. Changes to such

vocabularies are usually done through a deliberate process, such as agreeing on a new

version of a standard or a vote in an industrial group. A user vocabulary on the other hand is

under the control of a single organization. The master data associated with such

vocabularies are usually distributed through the EPCIS Query Control Interface. The EPCIS

specification does not distinguish between these two types of vocabularies, but it is useful to

think of them as two different types due to the way they are defined and modified.

We mentioned above that this is the only layer that is not extendible. By this we mean that

there is only one data model, the EPCIS Abstract Data Model as shown in Figure 35, and it is

not possible to extend this. It is however possible to extend parts within the data model,

such as adding new vocabulary elements.

B.4 DATA DEFINITION LAYER

This layer builds on the Abstract Data Model Layer, and modules here populate the module

in the Abstract Data Model Layer. The standard specifies a set of rules for how modules in

this layer are to be developed, and then it presents one such module, the Core Events

Module. This layer is open for extension by writing modules that extend the Core Events

Module.

A module in the Data Definition Layer has the following components:

 Value types

152

152 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

 Event types

 Event fields

 Vocabulary types

 Master data attributes

 Vocabulary elements

Data Definition Layer modules in specifications from the EPCIS Working Group will include

definitions of the first four components, but not master data attributes or vocabulary

elements. Modules defined by others will include event fields extending existing event types,

master data attributes extending vocabulary types and vocabulary elements to populate

existing vocabularies.

For each event there is a set of assertions that defines the semantics of the event. These are

either retrospective or prospective. Retrospective semantics tell us something that was

known to be true when the event happened, such as item A passed gate 1. Prospective

events tell us something about the present condition of the object, about what is true until

contradicted by a subsequent event. For instance, if door 1 leads to room B, an object

passing in door 1 should be in room B. However, from an EPCIS Accessing Application this

should be considered as something that might be true, it is not a definite truth. If for

instance the reader at door 2 is broken, the object may have passed through that door

without the event being registered.

A restricted form of UML is used to specify event types and event fields. The UML used

consists of classes with attributes and associations, but without operations. Every Event Type

must include an extension point, written as <<extension point>> in UML, and Value Types

may include such extension points. An extension point is a place where the implementation

must allow extensibility by adding new data members. This again shows the emphasis on

extensibility in the standard, extension is not an option, it is mandatory.

Core Event Types Module

This module specifies the EPCIS data capture events. The components of this module are

value types, event types, event fields, vocabulary types, master data attributes and

vocabulary elements. There is a set of data types that may be used for the different

components in the module. We will here give a brief description of the more important

ones, before we describe the different event types.

PRIMITIVE DATA TYPES

The primitive data types in this module are int, time and EPC. We mention this because it is

important to know that en EPC may be both a primitive data type and a vocabulary element.

This is due to the diversity of the EPC; an EPC describing a specific trade item is not

153

153 Introduction to EPC Information Services

considered to have master data and is represented as a primitive type, while an EPC

representing for instance a read point in an ObjectEvent is a vocabulary element.

ACTION TYPES

Another important type is the Action type, which says something about how the event

relates to the lifecycle of the entity described. Action type is enumerated and has three

possible values: ADD, OBSERVE and DELETE. What is special with this type is that the values

have different meanings for the different event types. We will go into more details about

this in the section about events, but for example the action ADD for an AggregationEvent

means that the EPCs have been added to a parent EPC, while for the TransactionEvent it

means that it has been associated to the business transaction in question.

LOCATION TYPES

Another type we want to mention is the Location type. Four types are defined, and the

special part here is that only two of them are actual location types in respect to the rest of

EPCIS. The other two are only included to say that these kinds of locations are not real EPCIS

locations in order to avoid confusion. This is done because there is a distinct difference

between an EPCIS location and a reader identity, but these have been mixed in the past. The

reader/location types, which are not true EPCIS location types, are PhysicalReaderID and

LogicalReaderID. The first is the serialized identity of a reader while the second is the name

given to such a reader. More information on these locations as they appear in lower layers

of the EPCglobal Architecture Framework, where they are an actual part of the specification,

may be found in (EPCglobal 2005) (EPCglobal 2008a). The other two location types, which

are true EPCIS location types, are ReadPointID and BusinessLocationID. The first refers to the

point where the event took place, and the second refers to the place where the object is

after the event. For example if the reader is located at a door leading to a storage room, the

ReadPointID will be referring to the door and the BusinessLocationID will be referring to the

storage room. If we relate this to the two types of semantics described above, ReadPointID

relates to retrospective semantics while BusinessLocationID relates to prospective

semantics.

OTHER TYPES

The other data types defined are Business Step, Disposition, Business Transaction and

EPCClass. Business step denotes a step in a business process, for example “sending”,

disposition denotes the business state of an object, for example “in storage”. Business

transaction consists of an optional id for the transaction type and a BusinessTransactionID.

This is a user vocabulary, and may for instance contain the element “Corporation order #34”.

The last type is the EPCClass which is a user vocabulary that denotes classes of trade items.

This relates to the object field of the EPC code. Master Data Attributes for these classes is

154

154 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

independent of EPCIS and contains the data defined for the objects, for example data from a

product catalog.

EPCIS EVENTS

Five different event types are defined, one generic, EPCISEvent, and four subclasses:

ObjectEvent, AggregationEvent, QuantityEvent and TransactionEvent. An overview of the

different events is shown in Figure 36.

Figure 36 EPCIS event types (EPCglobal 2007a)

The EPCISEvent has only three fields, eventTime, recordTime and eventTimeZoneOffset. For

each of the other event types there are four key dimensions represented by fields. These are

155

155 Introduction to EPC Information Services

the objects or entities of the event, the date and time, location of the event and business

context. It is possible for different industries to define specifications on top of this one with

industry-specific information fields.

OBJECTEVENT

This event class contains information on one or more objects identified by EPCs. If there are

more than one EPC involved in the event, no relationships between them are implied. This is

the most basic of the four events, and the action type only says if an EPC has been added to

an object, observed or removed from an object.

AGGREGATIONEVENT

Aggregation events are about objects that have been physically aggregated. A containing

entity with a set of contained elements is defined. This event type is for the cases where

there is a strong relationship between the objects, for example cases that are loaded onto a

pallet, where the pallet is the containing object containing the cases. It is important that this

is intended for strong relationships. For instance if there are two pallets on the same truck,

but not physically paired together, an ObjectEvent would be more appropriate.

QUANTITYEVENT

Quantity events are as the name implies about the quantity of an object class. This is useful

for inventory levels of a product. This is the only event that does not contain one or more

EPCs, but it contains EPCClass and the quantity of the class.

TRANSACTIONEVENT

This event type is used to associate one or more business transactions with one or more

objects. When using the action type observe, this event type may be used to locate a set of

EPCs based on transaction id instead of EPC. The transaction id field is specified such that it

is possible to use internal order or transaction numbers and still having a unique id when

searching for events related to a specific transaction.

B.5 SERVICE LAYER

The Service layer defines the interfaces that need to be implemented and used by the

different EPCIS applications. There are three different interfaces in this layer, EPCIS Capture

Interface, EPCIS Query Callback Interface and EPCIS Query Control Interface. Figure 37 show

the association between the different interfaces. If we relate this to Figure 35 we can see

that the capture interface is a part of the Core Capture Operations Module, and the query

callback and query control modules are parts of the Core Query Operations Module. We will

156

156 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

not go into detail on these modules, but will give an introduction with focus on the different

interfaces.

Figure 37 Service Layer interfaces (EPCglobal 2007a)

Core Capture Operations Module

This is a very small module; it contains only one interface, the capture interface, and is only

used to deliver events from an EPCIS Capture application. This interface contains only one

method, capture, and it takes a list of EPCISEvent objects as argument and has no return

type.

Core Query Operations Module

This module provides interfaces for querying EPCIS data by EPCIS Accessing Applications.

Two interfaces are defined, the Query Callback Interface and Query Control Interface. The

module supports on-demand queries, where the result is directly returned to the client via

the Query Control Interface in response to a query, and standing queries where a client

registers for a query and results are returned via the Query Callback Interface. Queries for

Master Data may only use the on-demand type. For the standing queries there are two

possible ways for the data to be returned. The first is on a defined schedule, where results

are sent on even time intervals, and the second is by specifying a trigger event that will

trigger the execution of the query.

A set of exception types are defined to handle error conditions. This is important as it is

possible to create requests for a very large amount of data, or requests that take too much

system resources to process. Therefore there are specific exceptions defined for these cases,

called QueryTooLargeException and QueryTooComplexException.

157

157 Introduction to EPC Information Services

QUERY CONTROL INTERFACE

The Query Control interface is used both for on-demand queries and for administration of

the standing queries. This is done with three methods: subscribe and unsubscribe for

standing queries and poll for on-demand queries. It also contains four methods to retrieve

basic information about the query service: getQueryNames, getSubscriptionIDs,

getStandardVersion and getVendorVersion.

Currently there is no way for a client to specify new queries, and so the only queries

available are pre-defined. In EPCIS 1.0 there are two pre-defined queries that must be

implemented, but the organization creating the service may implement as many queries as it

wants. The two mandatory queries are SimpleEventQuery and SimpleMasterDataQuery.

Although only two, these are heavily parameterized, and it is possible to define precisely the

data of interest. The first one is available both for poll and subscribe, but the latter only for

poll. This is a general rule, queries for master data is only available on-demand, not for

subscription, because master data is assumed to be almost static.

QUERY CALLBACK INTERFACE

The Query Callback Interface is used to return the results of standing queries to an EPCIS

Accessing Application. This interface contains three methods, one for returning the results

and two for the exceptions QueryTooLargeException and ImplementationException. As the

response from this interface does not come directly from a request, it is necessary to use

these two methods to send exceptions as there is no method called that may throw them.

B.6 BINDINGS

Bindings are defined for each of the modules in the Data Definition and Service layers.

Bindings are concrete realizations of the different modules, and there may be more than one

binding for each module. EPCIS 1.0 has a total of nine bindings. The Data Definition module

has two XML bindings, one for event data and one for master data. The Core Capture

Operations module has two bindings; one for Message Queue and one for HTTP. The rest of

the bindings are in the Core Query Operations module. The Query Control interface has

bindings to SOAP/HTTP and AS2 and the Query Callback interface has bindings to HTTP,

HTTPS and AS2.

We will not describe the different bindings here, as these are available from the standard

itself. We want to emphasize the use of standard protocols for the bindings, such as HTTP

and SOAP. The exception is Message Queue, which has no industry standard. Thus the

Message Queue binding is designed to apply to any system, and is more like guidelines for

how to implement a binding, whereas for instance the XML bindings for data types are

actual XML Schemas.

158

158 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

B.7 EXTENSIBILITY

Extensibility is important for the EPCIS standard, and it is reflected in just about every part of

the standard. The layered approach makes it possible to change parts of the specification

without having to revise the entire specification. It is for example possible to create many

different bindings, and as such change the Bindings-layer, and still use the rest of the

standard as it is. There are also other techniques used to enable this extensibility, for

example subclassing. When subclassing a data definition in the Data Definition layer it is

possible to add new functionality or information to a class, while still being able to work

together with users that only know about the super class. This ensures backwards

compatibility, but users without the new class will of course not be able to use the new

functionality.

Another important technique is extension points. Every data definition and interface

includes extension points, making it possible to extend the functionality without using

subclasses. The standard is very clear on where such extension points are required, optional

or forbidden. This ensures a good indication on where to add wanted functionality, and

where to look for possible extensions.

It is easy to see why there is such a focus on extensibility in this standard. For a global

standard to be useful it is very important that it is accepted and taken into use by as many as

possible. This standard is intended to work across many different industries, and they can

have very different needs. Thus it is important for these industries to extend the

specifications where needed so that it applies to their specific needs. This is also the reason

why the extension points try to promote both backwards and forwards compatibility,

meaning that old version is compatible with an extended version and new extend version is

compatible with older versions. It is also possible to have extensions that are non standard,

in order to meet the specific needs of different industries and also as a possibility to

experiment in order to expand and update the standard specification at a later point

(EPCglobal 2007c).

B.8 MODULARITY

The last design principle, in addition to layers and extensibility, is modularity. This is a way to

say that the standard is not one large specification, but as we have already mentioned it is a

framework with many individual specifications that populate the framework. This enables

the standard to evolve and change without having to change the entire specification; one

only has to update the module that needs to be changed. Modularity is achieved through the

other two principles and by explicitly grouping the functionality into modules.

While the standard is specified in a modular fashion, this does not necessarily mean that an

implementation needs to be modular. It is for instance possible to combine different

159

159 Introduction to EPC Information Services

modules in one service, such as bindings, data definition modules and one or more services,

and deploy this as one service with no trace of the modules from the standard, not

externally and not in the source code. This is allowed as long as the implementation

conforms to the standard. This is another example of the flexibility of the standard.

B.9 INTERFACES VERSUS IMPLEMENTATIONS

The entire specification defines interfaces and not implementations. This is done in order to

create the possibility for different vendors to create their own solutions in a competitive

market, but still being able to interoperate. It will also be possible for a company that wants

to implement this to choose hardware and software from different vendors, and use the

different products together. This is important because it means that a choice taken on for

instance RFID readers will not have an impact on how the EPCIS system needs to be

implemented. The only requirement for each part of a system-architecture is that it

conforms to the standard specification and then they will be able to interoperate.

It also means that an implementer is not locked to for instance a specific program language

or operating system. This again shows that EPCglobal tries to get a wide adaptation of the

standard, and that each user is free to choose how he wants his system to be implemented.

B.10 WHAT IS MISSING?

Even if this is a very large standard which has gone through a lot of reviews, it still has some

shortcomings. At the time of this writing the standard is only in its first version 1.0 (or 1.0.1

but the difference between those is just errata corrections) and not every part of the

standard is finished. We will here discuss two of the features we miss the most, EPCIS

Discovery and centralized authentication. Both of these are mentioned in the standard, but

are marked as under development or to be developed.

EPCIS Discovery

The functionality of the EPCIS Discovery interface is not yet defined and only thoughts and

envisioned requirements are mentioned in the standard (EPCglobal 2007c). This means that

it may change when the final specifications are ready, but the core functionality of what it

will provide is assumed to be the same.

When EPC and EPCIS become widely used and adopted, there will be a very large number of

EPCIS services available. In a supply chain with many different participants, often not known

in advance, it can be very difficult to locate the needed services. If someone for instance has

a product they want to trace back to the manufacturer, they might not know in advance

which transporting company delivered the product; it might even have passed through

different companies on the way. In such a situation it will be almost impossible to locate the

relevant EPCIS services, they would have to know about every single one that might be

160

160 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

relevant and check for each product. As the number of services is expected to grow over

time, this is not possible. This is the problem that EPCIS Discovery is intended to solve.

EPCIS Discovery is a service to locate EPCIS services. Conceptually it will be possible to look

up an EPC and retrieve all EPCIS services with information about the given EPC. This might be

combined with authorization policies, so that only services that the user has access to will be

retrieved. This is listed as a Core Service in the current specification, but it is explicitly stated

that this is only a placeholder, and might change in the future. It might be achieved through

a set of core services, and also by services operated by EPCglobal subscribers and not only

the EPCglobal itself. Regardless of how it will be implemented, this is a service that needs to

be available to all users of the EPC network, and it cannot be implemented individually by

every organization that wants to start using EPCIS.

Figure 38 Comparison of ONS and EPCIS Discovery (University of Cambridge, AT4 wireless et al. 2007)

Figure 38 shows how ONS and EPCIS Discovery complement each other. Where ONS

contains product information through a link to the manufacturer of the product, EPCIS

Discovery contains links to each EPCIS service with information about a given object. The

lookup is also different, as ONS is based on object lookup on a class level while EPCIS

Discovery is based on lookup on individual serial numbers from the EPC.

Because of the need for such a service, and because organizations and industries are already

starting to use EPCIS in production environments, different industries has started to

implement their own EPCIS Discovery services (Myhren 2007). If an industry or a group of

trading partners is able to coordinate their efforts in creating such a service, this is a solution

that is not very difficult to implement. It is more problematic for smaller companies as the

development and integration costs can be too high. A solution to this is suggested in the

Product Trace Service Platform (Yingping, Dong et al. 2007). Their solution is to create a

discovery service and include a link to it in the ONS. This means that each EPC has two

records in the ONS, one is the standard reference to the EPC Manager for that particular

EPC, and the other is for the PTSP service. With this solution an application only needs to

161

161 Introduction to EPC Information Services

check the ONS to locate the discovery service, and all relevant services needs to be

registered there. Services are registered to the PTSP service whenever an EPCIS event is

registered. The company that registers an event about the EPC locates the PTSP of that EPC

from the ONS and then sends a register event to the PTSP with the EPC and its own EPCIS

URI. This platform is meant as a lightweight platform for prototyping or for small companies.

There also exist solutions aimed at large corporations, for example from the BRIDGE project,

which is funded by the European Union (University of Cambridge, AT4 wireless et al. 2007).

This and other solutions work well within an industry, but it hinders a global adaptation

across different industries, as one would need to access many different EPCIS Discovery

services to retrieve the information. Therefore we believe that it is important for EPCglobal

to address this issue. This is a big problem for small industries or supply chains as these

might not have the resources to implement their own discovery services, but for larger

industries or supply chains the creation of a discovery service is not very difficult. However

we believe that the lack of a common discovery service should not prevent EPCIS from being

used, and (Yingping, Dong et al. 2007) shows that it is possible even for small companies to

create its own discovery services. But it will make global interoperability harder and it will

also make it harder to start using EPCIS than if a common service were in place.

Authentication

As we have mentioned before the specifications aim to gain a wide global adaptation as

soon as possible, as a network such as this, is of no use without many participants. This is

also visible with authentication; the architecture allows the use of many different

authentication methods. EPCglobal does however expect that the X.509 authentication will

be widely used. But a common authentication service is lacking from the current

specifications. Just as for the EPCIS Discovery service a common Subscriber Authentication is

mentioned in the standard, but it is marked as to be developed. We believe that this is a

major problem in the current version of the standard.

Authentication is the process of identifying who is accessing a system. Authentication is

important when sharing business information on the Internet; without the knowledge of

who is accessing the information it is not very likely that companies would like to share this

information. Therefore authentication is necessary for EPCIS. Authentication in itself is not

very difficult to manage, but if every single EPCIS service provider should implement its own

authentication mechanism, it would be very difficult to use. If for instance five different

EPCIS services has information about a single EPC, a user that wants to access information

about that EPC would have to be authenticated five times. If a company needs information

on many different EPCs, this is not a good solution. Therefore it is necessary to have a

common authentication service for EPCIS. Each EPCIS provider would still be able to have its

own authorization policies, deciding who should have access to what, but when a request

162

162 Context-Aware Goods: Combining RFID Tracking and Environment Sensing

arrives it will already know its origin. That way a user will only need to authenticate once,

and he will be able to retrieve the information he has access to.

It is of course possible to create shared authentication services outside of EPCglobal in the

same way as for the discovery service, and this is also done by different organizations and

industries today (Myhren 2007). However, security is very important to get right, and not

every company would trust anyone to manage such a service. Therefore we believe that

EPCglobal should prioritize to create a core service that handles authentication.

	Title Page
	Problem Description
	Introduction
	Introduction
	Motivation
	Scope
	Goals
	Thesis Outline

	Research
	Research Context
	Research Questions
	Research Approach
	Contributions

	Background and State of the Art
	Introduction
	Outline

	Context-Aware Computing
	Context
	Context-Awareness
	Context Applied to this Thesis

	RFID Technology
	Tag Characteristics
	Active and Passive Tags
	Powering a Passive Tag
	Reusable Tags
	Static or Dynamic Data

	Challenges
	Collocated Tags
	Reliability
	Reader Collision Problem
	Cost
	Security and Privacy
	Kill bit
	Blocker tag

	Standards

	Sensors
	Wireless Sensor Networks
	Applications
	Monitoring space
	Monitoring objects
	Monitoring the interactions of objects

	Challenges
	Power
	Communication
	Scalability
	Remote managing

	Different Types of Electronic Sensors
	Manufacturers
	Product Types
	Temperature
	Acceleration
	Humidity

	Chemical Sensors

	Integrating RFID and Sensor Systems with EPC/EPCIS
	Including User Data with Standard EPC Tags
	Integrating with EPCIS
	Using EPCIS Independent of Tag Type
	Extending EPCIS to Fit Different Needs
	EPCIS Interfaces
	EPCIS Capture Interface
	EPCIS Query Interfaces

	Administration of RFID and Sensor Networks
	Sensor Web Enablement Standards
	Observations and Measurements (O&M)
	Sensor Model Language (SensorML)
	Sensors and Detectors
	Measurements vs. Observations
	Processes

	Sensor Observation Service (SOS)
	Sensor Planning Service (SPS)
	Other Standards

	Own Contribution
	Introduction
	Outline

	Evaluation and Comparison of EPC AF and SWE
	EPC Architecture Framework
	EPCIS for item tracking
	EPCIS for context information

	Sensor Web Enablement
	SWE for item tracking
	SWE for context information

	Integration of EPC AF and SWE
	Comparison of EPC AF and SWE

	Stakeholder Analysis
	Government
	Consumers
	Product Manufacturers
	Transportation Companies
	Retailers
	Developers

	Scenarios
	Quality Deterioration (SC 1)
	Automatic and Dynamic Expiration Dates (SC 1.1)
	Reloading of Shipment Based on Quality (SC 1.2)
	Proving the Quality of Fresh Food (SC 1.3)

	Temperature Profiles (SC 2)
	How Many Sensors Are Needed In a Given Space (SC 2.1)
	Detection of Cold Spots and Warm Spots (SC 2.2)
	Mapping the Need for Insulation of Goods Under Transportation (SC 2.3)

	Sensor Collaboration and Intelligent Goods (SC 3)
	Automatic Alarms of Violations (SC 3.1)
	Automatic Environment Control (SC 3.2)
	Collaboration of Goods (SC 3.3)

	Hierarchy of Goods with Sensors (SC 4)
	Automatic Aggregation of Goods with Sensors in a Hierarchy (SC 4.1)

	Proximity Control (SC 5)
	Fresh Food (SC 5.1)
	Dangerous Goods (SC 5.2)

	Requirements Specification
	Scope
	Functional Requirements
	FR 1 The system must support data from different sensor types
	FR 2 The system must be able to receive real-time data from readers
	FR 3 The system must extend a logistic information system based on identification with a context-aware information system
	FR 4 The system must be integrated with EPCIS
	FR 5 The system must support a hierarchical structure of items
	FR 6 Items must have a unique identification (URI)
	FR 7 The system must support zero to many sensors on items
	FR 8 The system must support relative positions of items
	FR 9 The system must have a generic alert mechanism
	FR 10 The system must support sharing of sensor information using SensorML

	Requirements Relation to Scenarios and Research Questions
	Quality Attributes
	Security
	Privacy
	Scalability
	Modifiability
	Performance

	Architectural Solution
	Architectural Drivers
	Choosing Viewpoints
	What Are Viewpoints and Why Investigate Them
	Evaluation of the Different Viewpoints
	Logical viewpoint
	Stakeholder evaluation

	Process viewpoint
	Stakeholder evaluation

	Development viewpoint
	Stakeholder evaluation

	Scenarios
	Stakeholder evaluation

	Quality Tactics
	Modifiability
	Performance
	Security
	Privacy
	Scalability

	Patterns
	Separation of Concerns
	Facade

	Views
	Logical View
	EPC Information Services
	EPCIS Capture Interface
	EPCIS Query Controller Interface
	EPCIS Query Callback Interface
	EPCIS Event
	Association Event

	Sensor Web Enablement
	Sensor Observation Service Interface

	Context-Aware Goods System
	Context Extended EPCIS Query Interface
	Context Extended EPCIS Query Callback Interface
	Sensor Management Interface
	Extended Sensor Observation Service Interface
	Sensor Observation Callback Interface

	Process View
	1 Check authentication and authorization
	2 Find sensors with information about EPC
	3 Find sensor observations
	4 Find EPCIS Events
	5 Manage EPC / Sensor relations

	Development View
	Roles
	Accessing application
	Context-Aware Goods System
	EPCIS Repository
	EPCIS Capturing Application
	Sensor Observation Service
	Sensor Capturing Application
	Sensor Manager

	Interfaces
	Context Extended EPCIS Query Interface
	EPCIS Query Interface
	EPCIS Capture Interface
	Extended Sensor Observation Service Interface
	Sensor Management Interface
	Sensor Observation Callback Interface

	Scenarios
	Proving the Quality of Fresh Food (SC 1.3)
	Proposed solution by the Context-Aware Goods System

	Automatic Alarms of Violations (SC 3.1)
	Proposed solution by the Context-Aware Goods System

	Software Architecture Rationale
	Security and Privacy
	Scalability and Performance
	Modifiability

	Evaluation and Conclusion
	Evaluation
	Architectural Evaluation
	Separation of Concerns
	Scenario Evaluation
	Quality deterioration (SC 1)
	Temperature profiles (SC 2)
	Sensor collaboration and intelligent goods (SC 3)
	Hierarchy of goods with sensors (SC 4)
	Proximity control (SC 5)

	Requirements Evaluation

	Research Questions Evaluation
	Discussion

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography and Appendices
	Bibliography
	Acronyms
	Introduction to EPC Information Services
	Architecture
	Architecture layers
	Abstract Data Model Layer
	Data Definition Layer
	Core Event Types Module
	Primitive Data Types
	Action Types
	Location Types
	Other Types
	EPCIS Events
	ObjectEvent
	AggregationEvent
	QuantityEvent
	TransactionEvent

	Service Layer
	Core Capture Operations Module
	Core Query Operations Module
	Query Control Interface
	Query Callback Interface

	Bindings
	Extensibility
	Modularity
	Interfaces versus implementations
	What is missing?
	EPCIS Discovery
	Authentication

