
June 2008
Svein Erik Bratsberg, IDI
Øystein Torbjørnsen, Fast Search & Transfer

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Translating XQuery to Relational
Algebra

Mads Nyborg
Andreas Ravnestad

Problem Description
XQuery is a flexible language for querying XML data. This language may be a suitable interface for
performing queries on MARS, a search engine framework under development at Fast Search &
Transfer.

The task is to find or develop a method for translation of XQuery queries into MQL, a relational
algebra language for MARS, and to implement a proof of concept which demonstrates some of the
capabilities of this method.

Assignment given: 15. January 2008
Supervisor: Svein Erik Bratsberg, IDI

Abstract

XQuery is a flexible language for querying XML data across a variety of storage methods.
This thesis is a part of iAD, an ongoing research effort in next generation information access
solutions. iAD is hosted by Fast Search & Transfer, a company developing their next search
engine platform MARS. This project seeks to investigate the utilisation of XQuery as a query
language for MARS.

The result of this project is a novel method of translation, dubbed “Tainting Dependencies”
(TD), which seeks to avoid unecessary denormalisation of intermediate results, and is designed
specifically for translation to MARS’ relational algebra. This method supports a large subset
of XQuery features.

Furthermore, we have developed a prototype implementation which supports basic constructs
such as FLWOR and sequence construction. TD is then compared head-on to a similar method
dubbed “Loop Lifting”, and the results of this comparison is evaluated through discussion.

The outcome of this project is a novel and well-documented method for translation of XQuery
to MQL – a method which is designed to perform equally or better than existing implemen-
tations.

i

ii

Preface

This thesis was written at the Department of Computer and Informations Science (IDI) at
the Norwegian University of Science and Techology (NTNU) during the spring semester of
2008. The assignment was given by and written for the Information Access Distruption centre
(iAD). The supervisors of this project has been Svein Erik Bratsberg at NTNU and Øystein
Torbjørnsen at Fast Search & Transfer.

We would like to thank Svein Erik Bratsberg for feedback and proof reading of this report.
Additionally we would also like to thank Øystein Torbjørnsen for taking time from his busy
schedule giving guidance, feedback and teaching us about the workings of MARS.

Trondheim, June 10, 2008

Andreas Ravnestad Mads Nyborg

iii

iv

Contents

1 Introduction 1

2 Theory 3
2.1 XQuery . 3

2.1.1 Basic language features . 3
2.1.2 Path expressions . 4
2.1.3 Predicates . 5
2.1.4 FLWOR . 6
2.1.5 Full text extensions . 7
2.1.6 XQuery Core . 8

2.2 Existing implementations . 11
2.2.1 eXist . 11
2.2.2 Pathfinder . 11
2.2.3 Galatex . 12
2.2.4 Trait comparison matrix . 13

2.3 Relational algebra . 13
2.3.1 Primary operators . 14
2.3.2 Derived operators . 16

2.4 Parsing and syntax trees . 18
2.4.1 Common parser technologies . 18
2.4.2 Parser generators . 19
2.4.3 The XQFT Parser project . 20
2.4.4 Tree parsing . 21

2.5 Loop Lifting . 23
2.5.1 Operators . 23
2.5.2 Basics . 24
2.5.3 Constant subexpressions . 24
2.5.4 Bound variables . 24
2.5.5 Free variables . 25
2.5.6 Mapping back . 25
2.5.7 Other expression types . 25
2.5.8 Example . 26

2.6 Summary . 28

3 Method 29
3.1 Development of a novel translation method 29
3.2 Tree parsing . 29

v

3.3 AST rewriting . 30
3.3.1 Normalising FLWOR expressions . 30

3.4 Target relational algebra language . 31
3.4.1 General concepts . 31
3.4.2 Language syntax . 32
3.4.3 Operators . 33
3.4.4 Assumed functionality . 37

3.5 Calculating complexity in relational algebra 39
3.5.1 Tuple and field creation . 39
3.5.2 Join and sort tuple I/O . 41
3.5.3 Total complexity . 41

3.6 Summary . 41

4 Tainting Dependencies 43
4.1 MarkXRemove . 43

4.1.1 Basics . 43
4.1.2 FLWOR . 44
4.1.3 Flaws . 44

4.2 Inference rule language explanation . 45
4.3 Basics . 46

4.3.1 Iterator Dependency Inheritance . 47
4.3.2 Iterator dependency tainting . 49
4.3.3 Unique iterations . 50
4.3.4 Literals . 51

4.4 Sequence construction . 51
4.5 FLWOR Expressions . 53

4.5.1 Iterator ordering . 54
4.5.2 Where-clause . 55
4.5.3 Order by-clause ordering . 56

4.6 Simple binary operator expressions . 58
4.6.1 Arithmetic Expressions . 58
4.6.2 Logical Expressions . 59
4.6.3 Comparative Expressions . 60

4.7 Conditional Expressions . 62
4.8 Quantified Expressions . 64
4.9 Path expressions and predicates . 66

4.9.1 Path expressions . 66
4.9.2 Predicates . 69

4.10 Simplifications . 71
4.10.1 Literals . 72
4.10.2 Sequence construction . 72
4.10.3 Path expressions . 73
4.10.4 Arithmetic expressions . 74

4.11 Summary . 74

5 Implementation 77
5.1 Prerequisites . 77
5.2 List Of Supported Features . 77

vi

5.3 Overall system description . 78
5.3.1 Data flow . 79
5.3.2 Visible external API . 79
5.3.3 Command line interface . 79

5.4 Using the XQFT Parser . 80
5.5 Constructing the MQL algebra tree . 81

5.5.1 Operators and parameters . 81
5.5.2 Usage . 82

5.6 Context-sensitive Visitor . 82
5.7 Scoping and Symbol Tables . 84

5.7.1 Concepts . 84
5.7.2 Semantics . 85

5.8 Passing Metadata Between Nodes . 85
5.8.1 The TraverseReturn Class . 85
5.8.2 Iterator Dependencies . 86
5.8.3 Singleton nodes . 87
5.8.4 Example of usage . 87

5.9 Tainting dependencies . 88
5.9.1 Tainting . 88
5.9.2 FLWOR expressions . 89
5.9.3 Sequences . 90
5.9.4 If-then-else . 91

5.10 Summary . 92

6 Results 93
6.1 Theoretical Algebra . 93

6.1.1 Extensive FLWOR . 93
6.1.2 Path expression with predicate . 95
6.1.3 If-then-else . 97

6.2 Algebra Generated By Implementation . 98
6.2.1 Trivial FLWOR . 98
6.2.2 Complex FLWOR . 99
6.2.3 FLWOR with conditional . 101

6.3 Comparison . 103
6.3.1 Assumptions . 103
6.3.2 DAG comparison . 103
6.3.3 Complexity estimation and comparison 106

6.4 Summary . 108

7 Discussion 109
7.1 XQuery features not supported . 109

7.1.1 Full-text extensions . 109
7.1.2 Ordering mode . 111
7.1.3 Binary expressions . 111
7.1.4 Order by . 114
7.1.5 XQuery functions . 115

7.2 XQuery sequences . 115
7.2.1 Effective boolean value . 116

vii

7.3 External environment . 118
7.4 Type system considerations . 119
7.5 Optimisation . 120

7.5.1 XQuery semantics . 121
7.5.2 Path expressions . 122

7.6 Implementation . 123
7.6.1 Manual vs. automated tree parser construction 123
7.6.2 AST rewriting and the visitor pattern 124
7.6.3 Constructed algebra trees and performance 124

7.7 Normalisation and rewriting . 124
7.8 Results . 125

7.8.1 Translation output . 125
7.8.2 Complexity comparison . 126
7.8.3 Loop Lifting vs Tainting Dependencies 127
7.8.4 Considerations for executing MQL . 127

8 Conclusion 129

9 Future Work 131

A Translation process Using TD 133
A.1 An extensive FLWOR expression . 133
A.2 If-then-else . 137
A.3 Path expression with a predicate . 140

B Links, resources and further reading 143
B.1 Diagrams and graphs . 143
B.2 Further reading regarding XQuery . 143

C Installation and usage 145

D EBNF for XQuery 1.0 Full-text grammar 147

viii

Glossary

ANTLR ANother Tool for Language Recognition. A predicated-LL(k) parser generator
that handles lexers, parsers, and tree parsers.

AST Abstract Syntax Tree. A two-dimensional tree which encode the structure of the the
input symbols.

DAG Directed Asyclic Graph.

DOM Document Object Model. A platform- and language-independent standard object
model for representing XML and related formats.

EBNF Extended Backus Naur Form. A metasyntax notation used to express context-free
grammars

FLWOR for, let, where, order by, return. A XQuery expression with loop semantics. See
Section 2.1.4.

Iterator dependency A concept of Tainting Dependencies. See Section 4.3.1

Loop Lifting A XQuery to relational algebra translation method developed by Torsten
Grunst and Jens Teubner. See Section 2.5.

MarkXRemove A predecessor of Tainting Dependencies. See Section 4.1.

MARS A search engine platform under development at Fast Search & Transfer

MQL MARS Query Language. The relational algebra language of MARS

Normalised, relation A relation without redundancies.

Normalised, XQuery See XQuery Core, Section 2.1.6.

Production A grammar spesification rule, either terminal or non-terminal.

Tainting Dependencies A novel XQuery to MQL translation method developed as a part
of this Master’s thesis. See Chapter 4

Tainting, iterator dependency A concept of Tainting Dependencies. See Section 4.3.2

TD See Tainting Dependencies

W3C WorldWideWebConsortium. An international standards organisation for the World
Wide Web.

ix

x

Chapter 1

Introduction

The search engines of today are capable of finding relevant documents based on simple search
terms as well as weighting and ranking schemes of varying complexity. However, few are
capable of joining several query results, performing structural queries, and filtering by complex
full-text expressions in a single unified query operation.

XQuery is an XML query language capable of performing complex nested queries, extendable
with full-text searching, including linguistics such as stemming and thesaurus. In theory,
XQuery queries may be translated into relational algebra for execution on a suitable algebra
processor engine.

iAd [24] (Information Access Disruptions) is an ongoing research effort in “next generation
information access solutions”, in which this project partake. Our specific goal is to develop
a method of translating XQuery queries into MARS relational algebra, and compare this to
existing technology. Furthermore, a prototype will be implemented as a proof of concept.

This report is structured as follows: In Chapter 2 we will examine XQuery itself in further
detail and investigate the current state of XQuery translator implementations and research.
In Chapter 3 we will detail the tools and methods used. In Chapter 4 we will describe
our novel translation method dubbed “Tainting Dependencies”. Continuing to chapter 5 we
expound on the implementation of a prototype which serves as a proof of concept. Eventually
the results will be presented and discussed in chapters 6 and 7. Our work is concluded in
chapter 8, and we propose future work and improvements in Chapter 9.

1

2

Chapter 2

Theory

XML is designed for encapsulation of structured and semistructured data, relational data,
and object repositories. The XQuery query language is designed to perform flexible queries in
such data. A translation of the language into relational algebra requires detailed knowledge
about XQuery for a proper translation to be made. In this chapter, section 2.1 describes
important details about the XQuery language that are essential to this task. Further, existing
implementations of such translators are documented and compared.

Additionally, the concept of classic relational algebra itself is outlined in Section 2.3, as the
target algebra will be based on much of its semantics.

Then in Section 2.4, some common strategies for parsing and construction of parsers are
outlined, as well as techniques for parsing syntax trees.

Finally, a thoroughly researched method for translating XQuery to relational algebra dubbed
“Loop Lifting” is described in Section 2.5.

2.1 XQuery

XQuery is a query language developed by the XML Query working group of W3C. Version
1.0[36] became a W3C Recommendation January 2007. It was designed as a response to an
emerging task: to intelligently express queries in the increasing amounts of information stored,
exchanged and presented using XML. The language is derived from Quilt[10]. Development of
XQuery 1.0 was coordinated with the development of XSLT 2.0, and the two teams cooperated
on development of XPath 2.0.

XQuery can be used to query any kind of data structure that can be represented as an XML
document. This includes text documents, relational databases and XML-compliant HTML
markup.

2.1.1 Basic language features

XQuery is a functional language with a comparatively small syntax. It lacks some fea-
tures known from many functional languages, such as support for higher order function

3

declarati1ons. However, it has some of the most important benefits, such as a lack of side-
effects. XQuery is a declarative language (as opposed to imperative languages), and is strongly
typed. Static typing is optional, and may vary between various implementations.

XQuery is an orthogonal language, meaning that most expressions can be arbitrarily nested.
For example, a path expression predicate can be another path expression:

/a/b[/c/d[e]]

Or, the return-clause in a loop construct can be another loop construct:

for $i in (1,2,3)
return for $j in (4,5,6)
return $i + $j

These features are important to consider for later translation, as truth values in predicates
and return values may need to be coerced and/or inferred into their proper types and values.

The XQuery type system is rather complex, and we refer to some of the introductory articles[23]
by Michael Rys, as well as the XQuery formal semantics specification[33] for more information
about this. However, we will emphasize some important traits about the type system:

All sequences are one-dimensional. Any given sequence that is not one-dimensional,
will be flattened. For example, the two-dimensional sequence ((1,2),3) is to be flatted into
(1,2,3).

Sequences can evaluate to an effective boolean value. Informally, this value is defined as
follows: Anything that is not 0, empty, or false, evaluates to true . In a boolean
context (such as an predicate or an if..then..else), this means that anything that is
“something” will evaluate to true.

2.1.2 Path expressions

XPath (XML Path Language) is a small language for traversing and selecting nodes (both
element nodes and text nodes) from XML data. XPath is a subset of XQuery, and is also
available in XSLT, XML Schemas, XForms, and several other technologies related to XML.

In its abbreviated form, XPath bears a strong resemblance to file path syntax known from
many modern operating systems. This implies that the XPath syntax may be familiar and
intuitive for new users.

For example, consider the following XML source:
<a>

<c>Hello World</c>

If we execute the XPath expression /a/b/c, we will receive the c-node which is a child of the
b-node which is a child of the a-node which is the document root node. Note that we will
not receive the text Hello World, which is a text node, but rather its parent node, which
is the c-node. To retrieve the text, we would rather use the path expression /a/b/c/text().
The text() expression is known as a kind test. The following kind tests are available:

• text() - as described above, returns a text node

4

• comment() - returns a comment node, for example <!– Hello world –>

• processing-instruction() - returns processing instructions, which means constructs
such as <?xml version="1.0"?>

• node() - returns any type of node

In its unabbreviated syntax (or, verbose syntax), the semantics of XPath become more clear.
For the XML source above, the full syntax for the path expression to match the c-node would
be /child::a/child::b/child::c. Here we see a new addition to our path expression, the
child:: axis specifier. An axis specifier helps navigation within the XML document, by
allowing the user to specify further traits about the nodes to be matched. For example,
attribute nodes can be matched using attribute:: (or @, with abbreviated syntax). For a
complete reference to axis specifiers, we refer to [34].

2.1.3 Predicates

Predicates are used in path expressions to filter nodes. Predicates are appended to step
expressions (and filter expressions, see [34]), and multiple predicates are applied from left to
right. Predicates never add to the node sets returned from the path expressions, they only
restrict by filtering. Predicate expressions are appended to step expressions within square
brackets, like this:

/a/b[@id > 1]

This expression will return all b-nodes within a a-node and with an attribute id whose value
is larger than one.

Consider the following XML source:

<a>
<b id="1">

<c />

<b id="2">

<c />

If we apply the path expression mentioned above, we will thus receive the second b-node.

There are a few important things to note about predicates. Firstly, the predicate expression
can be any expression, and as such its return value is coerced into a effective boolean value
(either true or false), as described previously in Section 2.1.1.

However, there is one important exception – if the return value for the predicate expression
evaluates to a numerical value, then the predicate becomes a numeric predicate, and its
value is used to identify the nth node in the step expression. For example, the following path
expression returns the first b-node: /a/b[1], as it is the first b-node within the only a-node.
/a/b/c[1] will select both c-nodes of the document as they both are the first c-node within
their respected b-nodes.

5

2.1.4 FLWOR

Definition 1. An iteration expression or iterator is an XQuery expression consisting
of an iterator variable declaration and an iterator body. The iterator body is executed
multiple times, and for each time the iterator variable is bound to the next item in the
iterator sequence.

XQuery is centered around a loop construct known as FLWOR, which is an acronym:

• For - iteration over tuples

• Let - assignment of tuples

• Where - conditional expression

• Order by - sorting

• Return - return expressions (similar to yielding in coroutines known from functional
languages, not to be confused with a return statement in languages such as Java)

The FLWOR construct is thought to be roughly equivalent to a SELECT-statement in SQL.
For example, consider the following SQL statement:

SELECT v.title FROM video v WHERE v.year = 1959

And then compare it to the following XQuery counterpart:

for $v in doc("videos.xml")//video
where $v/year = 1959
return $v/title

Then construct a file videos.xml with the following contents:

<videos>
<video>

<title>Plan 9 from outer space</title>
<year>1959</year>

</video>
<video>

<title>Earth vs. the Flying Saucers</title>
<year>1956</year>

</video>
</videos>

And finally execute the above query on this file to receive the following result:

<title>Plan 9 from outer space</title>

It is important to note the distinction of bound and free variables in FLWOR constructs –
or, in other words, the scope boundaries. Consider the following example:

for $a in (1,2,3)
return for $b in (4,5,$a)
return $a + $b

6

When evaluating the for-clauses in this nested FLWOR expression, the iterator sequence is
evaluated in the parent scope and not the new scope for the current FLWOR expression. We
can illustrate this point by separating the scopes graphically:

for $a in (1,2,3)

return for $b in (4,5,$a)

return $a + $b

As can be seen, the iterator sequence for the inner loop is evaluated in the scope of the
outer loop, and a new scope is not started until this iterator sequence has been evaluated.
Otherwise one could risk overwriting variables in the iterator sequence when binding variables
in the new scope.

Furthermore, a FLWOR construct may consist of several for- and let-clauses in any order –
and each of these clauses may contain several variable bindings. For example, the following
is a valid XQuery FLWOR expression:

for $a in (1,2), $b in (3,4)
let $c := 5, $d := 6
return $a + $b + $c + $d

However note that semantically this expression is equivalent to:

for $a in (1,2) return
for $b in (3,4) return
let $c := 5 return
let $d := 6 return
$a + $b + $c + $d

The latter seems significantly less complex to parse, since this query embodies no less than
four individual FLWOR expressions, each with one and only one for- or let-clause. This
raises the question, could it be benefitial to rewrite complex FLWOR expressions into a
simpler form? This question is addressed in Section 3.3 on page 30.

2.1.5 Full text extensions

XQuery is by nature a structural query language – that is, queries are based on document/data
structure and not on content. The full-text extensions to XQuery reduces the smallest unit
of an XML document to single words instead of nodes. Additionally, they add sophisticated
tools such as stemming, thesaurus, and scoring variables.

Technically, the ftcontains operator applies tokenisation of the first operand, and searches
for a match with the second operand among the tokens. It allows specifying match options
like stemming, thesaurus, etc to a second operand modifying the criteria for finding a match.
A full list of match options are described in [34].

7

For example, consider the following example:

for $b in /books/book
where $b/title ftcontains ("dog" with stemming case sensitive)

ftand "cat"
return $b/author

This will match any book-node where the title-node contains a word with the stem “dog”.
Further, the word must be in lower case, and the word “cat” must reside inside the same node.
The query will return the author-node of these book-nodes.

2.1.6 XQuery Core

XQuery Core is a less powerful but semantically equivalent language for expressing XQuery
queries. XQuery Core as well as the process of normalising regular XQuery to XQuery Core
is described in the document “XQuery 1.0 and XPath 2.0 Formal Semantics”[33].

The goal of this subset language is to simplify queries and remove syntactic sugar, leaving
only the essential semantics without loss of expressiveness. This is useful for optimization
routines and translations into new types of queries, for example relational algebra or SQL.

The process of normalisation is described through a rich set of mapping rules. These are
documented in detail in [33] and will not be reiterated here. However we will examine some
important examples.

First, however, it is important to take note of the syntax of the mapping rules, as described
in [33], section 3.2.2.

[Object]Subscript, premises == MappedObject

Figure 2.1: Mapping rules syntax

Consider Figure 2.1. Here, the left-hand side of the equality symbol (==) denotes the original
object to be rewritten. The subscript indicates the type or kind of the object to be mapped,
and/or additional information to be passed between mapping rules. The right-hand side
denotes the rewritten object.

Rewriting FLWOR expressions

[for $V arName1 OptTypeDeclaration1 OptPositionalV ar1 in Expr1, . . . , $V arNamen
OptTypeDeclarationn OptPositionalV arn in Exprn FormalReturnClause]Expr

==
for $V arName1 OptTypeDeclaration1 OptPositionalV ar1 in [Expr1]Expr return

...for $V arNamen OptTypeDeclarationn OptPositionalV arn in [Exprn]Expr return
[FormalReturnClause]Expr

Figure 2.2: XQuery FLWOR expression to XQuery Core mapping rule

The mapping rule for FLWOR for-clause expressions can be seen in figure 2.2. The mapping
rule for let-expressions is similar and omitted for brevity, however they are also normalised
into several nested bindings.

8

Similarly, the mapping rules for where-clauses, order by-clauses and return-clauses can be
seen in figures 2.3, 2.4, and 2.5.

[where Expr1FormalReturnClause]Expr
==

if([Expr1]Expr) then [FormalReturnClause]Expr else ()

Figure 2.3: XQuery Where-clause to XQuery Core mapping rule

[stable? order by OrderSpecListFormalReturnClause]Expr
==

[OrderSpecList]OrderSpecList return [FormalReturnClause]Expr

Figure 2.4: XQuery order by-clause to XQuery Core mapping rule

[return Expr]Expr
==

[Expr]Expr

Figure 2.5: XQuery return-clause to XQuery Core mapping rule

For an example of how these rules are applied, consider the following FLWOR expression:

for $i in (1, 2), $j in (3, 4)
let $k := $i + $j
where $k >= 5
return ($i, $j)

By applying the mapping rules described, this expression is typically rewritten to:

for $i in (1, 2) return
for $j in (3, 4) return
let $k := $i + $j return
if ($k >= 5) then ($i, $j)
else ()

The corresponding AST graphs can be seen in figures 2.6(a) and 2.6(b). In particular, note
that multiple for-clauses in a FLWOR expression is rewritten into several nested FLWOR
expressions, and that the where-clause is rewritten into an if..then..else expression.

Rewriting composite relative path expressions

A composite relative path expression (for example, a/b), can be rewritten into a for-loop
using the mapping rule in figure 2.7. Given the trivial example a/b, this translates into the
following block of normalised code:

fs:apply-ordering-mode (
fs:distinct-doc-order-or-atomic-sequence (

let $fs:sequence as node()* := a return
let $fs:last := fn:count($fs:sequence) return
for $fs:dot at $fs:position in $fs:sequence return

b))

9

AST_MODULE

AST_FLWOR

AST_FORCLAUSE AST_LETCLAUSE AST_WHERECLAUSE (

$ $

i (

1 2

j (

3 4

$

k +

$ $

i j

>=

$ 5

k

$ $

i j

(a) FLWOR AST tree before normalisation

AST_MODULE

AST_FLWOR

AST_FORCLAUSE AST_FLWOR

$

i (

1 2

AST_FORCLAUSE AST_FLWOR

$

j (

3 4

AST_LETCLAUSE AST_IFEXPR

$

k +

$ $

i j

>= ((

$ 5

k

$ $

i j

(b) Normalised FLWOR AST tree

Figure 2.6: A FLWOR expression before and after normalisation.

10

Which may seem like a rather verbose representation of such a simple path expression. In par-
ticular, for complex path expressions this may escalate into rather large rewritten expressions.
However, this is a trade-off to be made for normalisation of such path expressions.

[RelativePathExpr/StepExpr]Expr
==

fs:apply-ordering-mode(
fs:distinct-doc-order-or-atomic-sequence(
let $fs:sequence as node()* := [RelativePathExpr]Expr return
let $fs:last := fn:count($fs:sequence) return
for $fs:dot at $fs:position in $fs:sequence return

[StepExpr]Expr))

Figure 2.7: Composite relative path expression mapping rule

2.2 Existing implementations

This section describes some of the most interesting existing implementations of XQuery
parsers and translators. Note that some of these are fundamentally different in some as-
pects (for example, eXist operates on DOM trees), but may implement certain features of
interest, and are therefore included here.

2.2.1 eXist

eXist[30] is an open source native XML database with an XQuery query processor. The
eXist system is written in Java. This system stores native XML data in B-trees and paged
files, and document nodes in persistent DOM trees[29]. Document collections are stored in a
hierarchical manner similar to a regular file system.

eXist has a numerical indexing scheme for identification of relationships between nodes (par-
ent/child, ancestor/descendant, previous/next sibling). This provides a structural index for
element attribute nodes. In addition, eXist has a fulltext index for text and attribute values,
and range indexes for typed values.

Based on these provided index types, the eXist XQuery engine relies on path join algorithms[31]
for efficient computation of node relationships instead of traditional tree traversals.

2.2.2 Pathfinder

Pathfinder[25] claims to be a “purely relational XQuery processor”, which theoretically can
utilise any off-the-shelf RBDMS as a backend for XQuery execution in a relational context.

The technique used for transforming XQuery into relational algebra is called “Loop Lifting”[28].
Loop Lifting is a FLWOR-centric approach which essentially transforms iterations into joins.
The technique is described in detail in Section 2.5.

As a relational backend, the XQuery processor uses MonetDB, an integrated component in the
Pathfinder project. However, recent versions of Pathfinder is also capable of producing SQL

11

XQuery

RDBMS

XPath axes (staircase join)

Tree encoding (XPath acceleration)

Sequence encoding Loop-lift ing

Figure 2.8: Pathfinder architecture / development stack

code for execution on conventional database systems. As a proof of concept, they performed
the XMark test suite on top of the IBM DB2 system[27].

XML-documents are stored the database where each XML node are stored as one tuple. Each
tuple contains pre and post fields, with values corresponding to the order of visiting the node
during a preorder and postorder traversal of the XML-tree, respectively. Axis steps of path
expressions are evaluated utilising “staircase join”, a custom made join operator utilising the
pre and post encoding of the XML-documents. Figure 2.8 shows a conceptual illustration of
XQuery processing in Pathfinder.

2.2.3 Galatex

XML Preprocessing

Full-text semantic
funct ions implementat ion

in XQuery

Galax

GalaTex parser
Full-text

query
Equivalent

XQuery

XML
Eval

getPositions()
containsPos()
wordDistance()

Inverted l ists

Figure 2.9: Galatex architecture, based on architecture described on the GalaTex website[12]

Galatex is claimed to be the first full implementation of the W3C XQuery 1.0 and XPath 2.0
Full-Text 1.0 specification[34]. As can be seen in figure 2.9, Galatex translates the full-text
parts of the query into XQuery Core[33] in the Galatex parser. The equivalent XQuery query
is then executed on the Galax query processor.

The most interesting aspect of Galatex is its full-text capabilities. This is realised first
and foremost by an implementation of the AllMatches data model proposed by W3C[34].

12

Additionally, as mentioned above, the full-text fragments of the queries are translanted into
corresponding functions in regular XQuery.

2.2.4 Trait comparison matrix

This section will compare some important traits of the described implementations, and will
outline their implications. The traits chosen for the comparison matrix in table 2.1 are chosen

eXist Pathfinder GalaTex
Normalisation to
XQuery Core

Yes Yes Yes

Relational back-
end

No Yes No

Full-text exten-
sions

No No Yes

Test suite cover-
age

99.4% 99.4% n/a

Free source code Yes Yes Yes

Table 2.1: Comparison of implementation traits

due to their relevance to this project. As can be seen, there is a spread in diversity across
these implementations. In particular, Pathfinder is the only implementation with a relational
backend. This implies that Pathfinder will be a natural focal point of interest for studying
existing methods of translation. As will be shown in chapters 3 and 4, Pathfinder and its Loop
Lifting technique will serve as a basis for development of an improved and novel translation
method.

2.3 Relational algebra

The relational model for database management was introduced for the first time by Edgar
Frank Coddin 1974[5]. It was based on relational algebra which is an offshoot of first-order
logic. Several terms are used when talking about relational algebra [11][8][7]:

• Set: A mathematical definition for a collection of objects which contains no duplicates

• Domain: A set of atomic values

• Attribute: A real world role played by a named domain

• Tuple: A collection of attributes which describe some real world entity

• Relation: A set of tuples

• Degree: The number of attributes of a relation. Sometimes called arity.

• Cardinality: The number of tuples in a relation

• Union compatible: Two relations R and S are union compatible if and only if they
have the same degree and the domains of the corresponding attributes are the same.

13

It should be noted that often relational algebra is based on “bag” semantics rather than set
semantics. A “bag” may contain duplicates unlike sets. Removal of duplicates can be a very
costly operation in terms of computer resources.

2.3.1 Primary operators

The primary operators is a set of operators which constitutes the base of an algebra. Other
operators can be defined in terms of the primary ones. If one of the primary operators is
excluded, the algebra will loose some of its expressiveness. The primitive operators of Codd’s
algebra are: selection, projection, union, difference, cross product and rename (later added
for the sake of the named relational algebra).

Selection

Selection is a unary operator, and is used to obtain a subset of the tuples of a relation that
satisfy a select condition. The resulting relation may have fewer tuples but it will have the
same degree as the original relation. It is sometimes called restriction to avoid confusion with
SELECT in SQL. The operator is often symbolised by sigma:

σC(R)

Where R is a relation and C is the select condition: a truth value or an expression yielding
a truth value. The expression can be made up of any combination of the logical operators
{∧,∨,¬}. Figure 2.10 shows an example of a select operation.

R
Letter Number

A 1
A 3
A 6
B 7

σLetter=′A′∧Number>2(R) =
Letter Number

A 3
A 6

Figure 2.10: Example showing the selection operator

Projection

Projection is also a unary operator, and is used to obtain a subset of the attributes of a
relation. The resulting relation will have an equal or lower degree than the original relation.
In the case of duplicates being produced as a result of omitting some attributes, the resulting
relation will have fewer tuples than the original. P i is often used to symbolise the operation:

πattr(R)

Where R is a relation and attr is the set of attributes to be returned from R. Figure 2.11
shows an example of a projection.

14

R
Let Num Sym
A 1 %
B 1 %
C 3 #

πNum,Sym(R) =
Num Sym
1 %
3 #

Figure 2.11: Exaple showing the projection operator

Union and difference

Union and difference are two binary operators analogous with union and difference operators
in set theory. The relational algebra version of the operators requires that the relations
involved are union compatible.

The union of two relations returns a relation which includes all the tuples that are in either or
both of the original relations. As the result is also a relation, any potential duplicates will be
removed. The operation is commutative, and the returned relation will have the same degree
as the two relations involved. A union between two relations are often symbolised as:

R ∪ S

Where R and S are relations.

The difference of two relations R and S is a relation that contains all the tuples that are in
R but not in S. The returned relation will, as is the case with union, have the same degree
as the two relations involved. A difference between relations R and S is written like this:

R− S

Cross product

The cross product operator is sometimes referred to as the cartesian product operator. As
with union and difference, this operator also stems from set theory. The operator is used to
combine all tuples in one relation with all the tuples from another. The returned relation
will have a degree equal to the sum of the degrees of each of the original relations, and a
cardinality equal to the product of the cardinalities. The operator is commutative and written
as a cross:

R× S = S ×R

Where R and S are relations. Figure 2.12 shows an example of a cross product.

R
Let
A
B

×

S
Num Let
1 C
2 A

=

R.Let S.Num S.Let
A 1 C
A 2 C
B 1 A
B 2 A

Figure 2.12: An example of cross product.

15

Rename

Rename is a unary operator used to rename a relation and/or a subset of its attributes. The
resulting relation will be equal to the original one in all aspects except maybe some of its
name properties. The Greek letter rho is often used to mark the presence of the rename
operator:

ρS(R)

Where R is the relation being renamed, and S is a relational scheme. S is on the form
T(a1,...an) for a n-degree relation, where T is the new relation name and a1, ...an is the new
names for relation R’s attributes from 1 to n. The degree of the scheme must be the same as
the degree of the relation being operated on.

2.3.2 Derived operators

None of the six primary operators can be expressed as a combination of any of the others. In
contrast, some useful operators can be derived using one or more of the primary ones. Most
notably among these are intersection and join.

Intersection

Intersection is the fourth mentioned operator that stems from set theory. It is a binary
operator, and the resulting relation will contain the set of tuples that are in both of the
relations operated on. It can be expressed with the help of the difference operator, and hence
require that the input relations are union compatible:

R ∩ S = R− (R− S)

Joins

Joins are a group of operators that all are derived from the primary operators with the cross
product as a base. Among the operators in this group is natural join, theta-join, equi-join,
anti-join, semi-join, outer joins and division. Some of these will be presented in this section.

Natural join. Natural join is a binary operator that returns a relation consisting of all
combinations of tuples in input relations that are equal on their common attribute names.
The result relation will have a degree equal to the sum of the degrees of the two original
relations subtracted the number of common attributes. Natural join can be expressed as a
combination of cross product, projection and selection:

R ./ S = πa1,...,an,R.b1,...,R.bn,c1,...,cn(σR.b1=S.b1∧...∧R.bn=S.bn(R× S))

Where R and S are relations, b1, .., bn are the common attributes, a1, .., am are the attributes
unique to R and c1, ..., ck are the attributes unique to S. A rename operator can lastly be
used to remove the prefix of the common attributes.

16

Equi-join and theta-join. Theta-join returns a relation which is a combination of all the
tuples in the two input relations that satisfy a condition C. C is in the form aθb, where
a is a attribute name from one relation, b is an attribute from the other and θ is a binary
operator in the set {<,≤,=,≥, >}. An equi-join is a theta-join where the binary operator
in the condition is the equality operator. Theta-join can be expressed as a combination of
selection and a cross product:

R ./aθb S = σaθb(R× S)

Division. Division in relational algebra can be described as the inverse operator of cross
product, in the same way division and multiplication are inverse in natural numbers calculus
– i.e. they are not inverse if the division gives a residue:

(R× S)÷R = S and (R× S)÷ S = R

The resulting relation after a division contains the attribute values of the divisor relation that
are associated with every member of the dividend relation[16]. The operation may be better
explained as a combination of cross product, projection and difference:

R÷ S = πa1,...,an(R)− πa1,...,an((πa1,...,an(R)× S)−R)

Where R and S are relations and a1, ..., an are the attributes unique to R.

Semi-join. Semi-join is a binary operation which returns a relation with the attributes of
the first relation, and all the tuples in this same relation for which there is a tuple in the
second relation that is equal on their common attributes. Semi-join can be described with
the project and natural-join operators:

Rn S = πa1,...,an(R ./ S)

Where R and S are relations, and a1, ..., an are the attributes unique to R.

Anti-join. The anti-join operator is very similar to the semi-join operator (and is also
sometimes referred to as the anti-semi-join), except that it returns all the tuples in the first
relation for which there is no tuple in the other relation on their common attributes. It can
be described with help of semi-join and difference:

RB S = R−Rn S

Where R and S are relations.

17

Outer joins. The outer joins is in many ways as the natural join, except the resulting
relation will include some extra tuples based on one or both of the input relations. The right
outer join (× =) will return a relation with all the tuples from a natural join between the
first (left) and the second (right) relation, as well as the tuples from the right relation that
did not match any tuples from the left one on their common attributes. These extra tuples
will have the value NULL in the result relation for all attributes that were unique to the left
relation. The left outer join (= ×) is analogous with the right version, the only difference
is that the extra tuples will be based on the left input relation. The result relation of a full
outer join (= × =) will have extra tuples based the ones that did not find a match in both
input relations.

2.4 Parsing and syntax trees

The act of parsing is the process of analysing a series of tokens and construct a grammatical
structure (syntax tree) based on a formally specified grammar. In Figure 2.13, the parser
component of a generic compiler/interpreter is shown in the context of a generic compiler
architecture.

S o u r c e s t r i n g (s o u r c e c o d e)

C o m p i l e / i n t e r p r e t / t r a n s l a t e

L e x i c a l a n a l y s i s

S y n t a c t i c a n a l y s i s
(s e m a n t i c a n a l y s i s)

P a r s e r

T o k e n s

P a r s e t r e e (A S T)

O u t p u t (m a c h i n e c o d e ,
re la t i ona l a lgeb ra , . .)

Figure 2.13: Typical compiler/interpreter data flow

2.4.1 Common parser technologies

There are two common types of parser technologies, top-down and bottom-up parsers. As
their names imply, these technologies differ in the sense that top-down parsers will attempt

18

to match production rules with the input top-down, while bottom-up parsers will start with
the terminal symbols and combine them into production rules. Often this is implemented
as a process of shift and reduce operations, where a symbol is shifted onto the stack after
consulting a parse table, and a reduction is made when a sequence of symbols are recognised
as a non-terminal production rule.

We refer to [3] for further in-depth information about parser technologies. However, it is
important to note that typically a top-down parser based on an LL1-grammar with low token
lookahead (typically one token lookahead, aka LL(1)) will perform better than a bottom-up
parser and be subject to a higher number of well-researched optimisations, out of which a few
are described in [3] and [4].

2.4.2 Parser generators

For large grammars, writing a parser by hand from the ground up may turn out to be a
substantial amount of work. As a natural consequence, a large number of parser generators
exist. Most of these parser generators have a very similar set of functionality. From a formal
grammar, often in a notation similar to BNF, the parser generator will output the source code
for a complete parser for the given grammar – this process is shown in figure 2.14. Ideally, the
maintainability of this generated parser could be reduced to simply changing the grammar
specification, without actually modifying the generated source code.

P a r s e r g e n e r a t o r

G r a m m a r
s p e c i f i c a t i o n

C o m p l e t e p a r s e r
(s o u r c e c o d e)

Figure 2.14: Automatic parser generation workflow

Several parser generators exists, covering several target languages and overlapping in terms
of functionality and features. As expected, the most common parser generators will generate
either top-down or bottom-up parsers. Typical examples of bottom-up parser generators are
yacc (and derivatives), CUP, GOLD, and SableCC. Some popular top-down parser generators
include JavaCC, ANTLR, Spirit, and Coco/R.

A comparison of some of the most popular parser generators were made in [19] for the de-
velopment of the XQFT Parser (see Section 2.4.3), and out of these the ANTLR parser
generator was chosen. We will not reiterate the features of ANTLR in this document, how-
ever it is important to note that ANTLR can generate predicated LL(*)-parsers[20] based on
LL-compliant grammars. This choice was made due to the XQuery BNF specification which

1LL is a Left-to-right, Leftmost derivation parser, using a top-down approach

19

is claimed to be LL(1) (one token lookahead) – however, as discussed in [19], it may not be
suitable to define the required lookahead for this grammar, as it contains ambiguities.

2.4.3 The XQFT Parser project

The XQFT Parser[19] was developed as a part of an academic project at the Department of
Computer and Information Science (IDI) at the Norwegian University of Science and Tech-
nology (NTNU) throughout the autumn of 2007.

In this project the ANTLR parser generator was utilised to generate a predicated LL-parser
based on the W3C specification[34] for XQuery with full-text extensions.

The output from this parser are carefully crafted abstract syntax trees which are well suited
for translation into other representations.

The dataflow for actual use of the XQFT parser is shown in figure 5.2 on page 79.

AST construction

The abstract syntax tree is constructed by specifying tree rewrite rules in the grammar
file (the tree rewrite rules are extensively covered in [19], section 4.5). The tree consists
of nodes instantiated from the no.ntnu.xqft.parse.XQFTTree class. To compensate for
missing tokens to determine tree context, the XQFT Parser employs the use of imaginary
tokens. These are simply tokens that do not exist in the input stream, they only have an
associated name and no specific token. These imaginary tokens are typically used where there
are no “real” tokens available to represent the proper semantic or contextual meaning.

One example can be seen in Figure 2.15, where imaginary tokens, identified by a AST_-prefix,
have been injected into the tree.

AST_MODULE

AST_PATHEXPR_SGL

/

/ AST_STEPEXPR

AST_STEPEXPR AST_STEPEXPR

bookstore book

title

Figure 2.15: Example of injected imaginary tokens

20

2.4.4 Tree parsing

Tree parsing (or tree walking) is an integral part of translation from AST to new structures
and representations. Several methods exist to accomplish this in various manners. Some
are restricted by language limitations, while others are mostly transparent to programming
paradigms and syntax. In this section we will present a small selection of common patterns,
and describe their various traits.

Manual tree walker (non-visitor)

One of the simplest forms of tree parsing is the “manual non-visitor” methodology. This
way of parsing a tree structure is particularly suited for trivial trees where context is not
important. However, for operations that are contextually sensitive – such as context-sensitive
code generation, as is the case for this project – this methodology can be difficult to maintain
as the problem domain expands. This particular problem is rooted in that any contextual
information must be extracted from parent nodes, and is thus not available implicitly.

Another problem with this technique is that the data structure (the tree) and the logic to parse
it will often be tied together quite closely, creating another maintenance problem when/if the
tree structure changes to accommodate new specifications.

Visitor pattern

C l i e n t V i s i t o r

+ V i s i t (C o n c r e t e E l e m e n t : O b j e c t)

C o n c r e t e V i s i t o r

+ v i s i t (C o n c r e t e E l e m e n t : O b j e c t)

E l e m e n t

+ a c c e p t (V i s i t o r : O b j e c t)

C o n c r e t e E l e m e n t

+ a c c e p t (V i s i t o r : O b j e c t)

Figure 2.16: Visitor pattern

The visitor pattern[15] (Figure 2.16) is a common design pattern for parsing tree structures.
The visitor pattern gives a number of ways to modify the behaviour of a hierarchy of classes
without having to change those classes. Additionally, this allows the benefit of a clean sepa-
ration of logic/algorithms and data structures.

However, the visitor pattern does not scale well with complexity of the problem domain.
In particular, for context-sensitive parsing of tree structures, the visitor pattern will quickly
lead to complex visitors, cluttered with additional logic for state preservation and determining
types.

21

Context-sensitive visitor pattern

Here we present a novel pattern based on the visitor pattern which seeks to avoid complex
state preservation mechanisms and logic for type switching. This idea is loosely based on the
“island grammar” concept[18]2.

The semantics of the context-sensitive visitor pattern can be captured in the following two
rules:

• For a change of state which affects how a visitor should behave when encountering some
node in the subject tree, switch to another visitor which incorporates this logic (use
inheritance as necessary), and execute this visitor on the subject tree

• For type switching logic which depends on context in the subject tree, switch to another
visitor which incorporates this logic (use inheritance as necessary), and execute this
visitor on the subject tree

Simplifying this idea, it means that visitors are specialised and used interchangeably on the
subject tree as needed. This leads to the benefit of encapsulating state mechanisms and type
switching logic in specialised visitors, thus avoiding a single large and complex visitor.

C l i e n t V i s i t o r

+ V i s i t (C o n c r e t e E l e m e n t : O b j e c t)

C o n c r e t e V i s i t o r

+ v i s i t (C o n c r e t e E l e m e n t : O b j e c t)

E l e m e n t

+ a c c e p t (V i s i t o r : O b j e c t)

C o n c r e t e E l e m e n t

+ a c c e p t (V i s i t o r : O b j e c t)

S p e c i a l i z e d V i s i t o r 1

+ v i s i t (C o n c r e t e E l e m e n t : O b j e c t)

S p e c i a l i z e d V i s i t o r 2

+ v i s i t (C o n c r e t e E l e m e n t : O b j e c t)

Figure 2.17: Context-sensititive visitor pattern

As can be seen in Figure 2.17, the class structure is similar to a common visitor pattern (figure
2.16). The important distinction thus lies in the logic and how the visitors are executed
and how they interact. The two classes SpecializedVisitor1 and SpecializedVisitor2
are special-purpose visitors that can be executed from any of the others. Inheritance is
implemented in this example, but is purely optional, as previously mentioned.

2See http://www.program-transformation.org/Transform/IslandGrammars for a brief introduction

22

2.5 Loop Lifting

Loop lifting is a method of translating XQuery iteration expressions into relational algebra.
The method was developed by Torsten Grust and Jens Teubner and originally presented in
[28]. It is a part of the Pathfinder project[25] (see Section 2.2.2).

In this section we will present Loop Lifting mainly based on the two articles [26] and [28].
The articles present the method for a subset of XQuery Core (Pathfinder rewrites queries to
Core, see Section 2.2.2), of which we will only present the elements relevant in a comparison
between Loop Lifting and the Tainting Dependencies method. Thus, the translation of path
expressions and XML-element construction will not be handled, as pathfinder’s XML-tree
representation(section 2.2.2) is incompatible with MARS.

Pathfinder generates relational operator directed asyclic graphs (DAGs) rather than operator
trees. The Loop Lifting method does not require such a structure, but as we will see, it will
gain advantage by it, as much evaluation relies on earlier evaluations.

Accompanying the translation method is also methods for analysis, simplification and opti-
misation of the generated relational algebra, such as the Peep-Hole plan simplification[26].

2.5.1 Operators

Loop-lifting utilises a set of relational algebra operators, out of which the ones used in this
chapter is presented in Table 2.2.

πa1:b1,...,an:bn projection and renaming
σa selection
∪̇ disjoint union
× cartesian product
./a=b equi-join
%b:(a1,...,an)/p numbering operator
}b:(a1,...,an) n-ary arithmetic/comparison operator ◦
a b literal table

Table 2.2: Operators of the Pathfinder relational algebra. a, b and p represents attributes

Most of the operators are quite standard, and can easily be understood by comparing with
the operators from general relational algebra (Section 2.3) and MQL (Section 3.4.3).

Only a very restricted selection is utilised, written σa, which only returns tuples satisfying
a 6= 0. Considering the numbering operator, p denotes the partitioning attribute, a1, . . . , an
the attributes to be sorted on and b is an added attribute holding the result of the numbering
(equal to the proposed numberate-operator of MQL, Section 3.4.4). a b represents the
creation of a relation with attributes a and b.

Operator }b:(a1,...,an) will evaluate the arithmetic/comparison expression a1◦. . .◦an and place
the result in b. Where ◦ ∈ {+,−, <,=, . . .}.

23

2.5.2 Basics

XQuery expressions evaluate to finite, ordered sequences of items. As a sequences are one-
dimensional, it can be represented by a single relation where each tuple encodes a sequence
item. The order of the sequence is maintained by an attribute pos. The value of the item is
held in an attribute item.

During this section concerning Loop Lifing, variables, expressions and scopes is denoted like
this (ref. section 2.1.4):

s

...

for $v0 in e0 return
s0 {e′0

...

Generally, a scope sx·y identifies the yth child scope of scope x, x ∈ {N} , y ∈ {N}. Expression
ex·y evaluates to an iterator sequence and is bound to the variable vx·y. e′x·y constitutes the
coresponding iterator body, and Ix·y the whole iterator expression.

qx(e) is used to denote the relational representation of expression e in scope sx.

2.5.3 Constant subexpressions

For a iterator expression ix with n iterations there exists a relation loopx, consisting of a
single column, iter, with values 1,2,. . . ,n. In the outermost scope, loop has a single tuple
with the value 1.

A constant value c in scope sx is lifted like this:

qx(c) = loopx × pos item
1 c (2.1)

A tuple (iter, pos, item) in a loop lifted relation for subexpression e′x can be understood as
during the iterth iteration, the item in position pos in e′x has the value item.

2.5.4 Bound variables

An iterator sequence expression ex·y is evaulated in scope sx. This sequence is then iterated
over and each item is successively bound to the iterator variable vx·y. The evaluation of e′x·y
is in scope sx·y and may utilise these bindings.

Considering this, a representation of vx·y in scope sx·y may therefore be calculated by retaining
the values of qx(ex·y), introducing a iter attribute with consecutive numbers and holding the
pos attribute to the constant value 1. In terms of algebra, the representation of vx·y is
computed like this:

qx·y($vx·y) = pos
1 × πiter:inner,item(%inner:(iter,pos)(qx(ex·y))) (2.2)

The introduction of the inner attribute is used to denote evaluation of the loop in scope sx·y.
The iter attribute of qx(ex·y) can be viewed as an atttribute outer, as it denotes the iterations
in the outer loop of scope sx.

24

Loop lifting requires maintenance of a loop relation to ensure independent iterations. The
iterator body in scope sx·y needs to be evaluated once for each binding of the iterator variable
vx·y. Thus, the loop relation needs to be redifined based on qx·y(vx·y):

loopx·y = πiter(qx·y(vx·y)) (2.3)

2.5.5 Free variables

XQuery expressions may use any iterator variable bound in enclosing scopes. That is, vx
bound in scope sx may also be referred to within any of its child scopes. When looking at
one of these child scopes, sx·y, by itself, the variable vx·y appears to be a free variable.

Consider a iterator expresion Ix·y within another iterator expression Ix, both with iterator
sequences of length two. If vx is referred to within scope sx·y, from sx·y’s point of view, vx
is free. For each binding of vx in the outer iteration expression, two evaluations of the inner
iteration expresion occur. A relation capturing the relationship between number of iterations
of these two iterator expressions can be defined like this:

outer inner
1 1
1 2
2 3
2 4

Where a tuple (outer, inner) is read as for the innerth iteration of the inner iterator expres-
sion, the outer iterator expression is in its outerth iteration. This relation is called mapx,x·y
as it maps representations between scopes sx and sx·y. It can be calculated like this:

mapx,x·y = πouter:iter,inner(%inner:(iter,pos)(qx(ex·y))) (2.4)

With this relationship defined it is now possible to represent the free variable vx in the scope
sx·y with the help of an equi-join:

qx·y($vx) = πiter:inner,pos,item(qx ($vx) ./iter=outer mapx,x·y) (2.5)

2.5.6 Mapping back

All steps and equations presented so far have been helpful to represent sequences and variables
in a lower scope level. But the result of a query will have to be in form of its representation
in the outermost scope s. So a way to represent an expression e′x,y in its scope’s parent scope
sx is needed. Once again the map relation may be of use, combined with an equi-join:

qx(e′x·y) =
πiter:outer,pos:pos1,item(

%pos1:(iter,pos)/outer(qx·y(e′x·y) ./iter=inner mapx,x·y))
(2.6)

2.5.7 Other expression types

The sequence construction e1, e2 is essentially a disjoint union of the relational representa-
tions of the expressions, that is, qx(e1) and qx(e2). By temporarily adding an attribute ord to

25

these relations before a renumbering of the result with %, the proper ordering of the sequence
is acquired. Construction of sequences can therefore be expressed like this:

qx(e1, e2) =
πiter,pos:pos1,item (

%pos1:(ord,pos)/iter ((
ord
1 × qx(e1)

)
∪̇
(
ord
1 × qx(e2)

))) (2.7)

The } operator meets the requirement of evaluating comparison and arithmetic operations
on atomic values. Given two XQuery values e1 and e2 in multiple iterations, with relational
representations as before, the expression e1 + e2 can be translated by first joining qx(e1)
and qx(e2) on their iteration number, i.e. iter. Then, for each tuple, store the sum of the
values of both of the item attributes, before cleaning up the resulting relation with a project.
Expressed as an equation, the translation of sum expressions looks like this:

qx(e1 + e2) =

πiter,pos,item:res (
⊕res:(item,item′) (

qx(e1) ./iter=iter′(
πiter′:iter,item′:item(qx(e2))

)) (2.8)

The if(e1) then e2 else e3, is one of the more complex translations of Loop Lifting. First
the boolean expression e1 is compiled. The result is split into two new loop relations, loop1
and loop2, which uses selection on all true and false values respectively. loop2 is used as
current loop relation for the compilation of e2 and loop3 as loop relation for the mapping of
e3. A equi-join with their corresponding loop relation on iter will filter out all unnnecesary
iterations. The result is the union of both branches.

qx(if e1 then e2 else e3) =
πiter,pos,item(qx(e2) ./iter=iter′ (πiter′ : iter(loop2)) ∪̇

πiter,pos,item(qx(e3) ./iter=iter′ (πiter′ : iter(loop3))
loop2 = πiter(σitem=TRUE(qx(e1)))
loop3 = πiter(σitem=FALSE(qx(e1)))

(2.9)

2.5.8 Example

Only looking at equations may be a bit too abstract to fully understand Loop Lifting. To
concretise we will present a simple example of evaluating a query with the method and show
intermediate results. The naming of expressions, scopes and variables will, where possible,
be the same as earlier in this section. This query is the basis of this evaluation:

s

for $v0 in (10,20) return

s0

{
($v0, for $v00 in (7,8,9) return
s0,0 {$v0 + $v00)

The goal of the evaluation is, after all other calculations, to have a representation of e′0
in scope s, that is, q(e′0). This is done by nesting inwards until the deepest scope, while
calculating needed helping relations on the way, before evaluating the subexpressions one by
one as one nests outwards until the outermost scope.

26

Firstly a representation of the outermost loop is needed. With the help of equation 2.1 we
find a representation of (10, 20) in scope s, s(e0). Then, employing equation 2.2 yields
$v0 in scope s0, the result of which is shown in Figure 2.18(a). loop0 and map ,0 can now
be calculated by using equations 2.3 and 2.4 and are shown in Figure 2.18(b) and 2.18(c)
respectevely (remember loop consists of a single tuple with value 1).

pos iter item

1 1 10
1 2 20

(a) q0($v0)

iter

1
2

(b) loop0

outer inner

1 1
1 2
(c) map ,0

Figure 2.18: Outer loop intermediate results

Before we evaluate the sequence expression in scope s0, we need to evaluate the inner for
loop. By the same measure as with the outer loop we first calculate q0·0($v00), loop0·0 and
map0,0·0. The results are shown in Figure 2.19.

pos iter item

1 1 7
1 2 8
1 3 9
1 4 7
1 5 8
1 6 9
(a) q0·0($v00)

iter

1
2
3
4
5
6

(b) loop0·0

outer inner

1 1
1 2
1 3
2 4
2 5
2 6
(c) map0,0·0

Figure 2.19: Inner loop intermediate results

To be able to calculate the sum-expression, e′0·0, we first need a representation of the variable
$v0 in scope s0·0. As this variable is a free variable in this scope, this is done by applying
equation 2.5 on q0($v0) (Figure 2.18(a)). This result is shown in Figure 2.20(a). Now that
we have both $v0 and $v00 expressed in scope s0·0, we can employ equation 2.8 to sum the
two variables together. The resulting relation can be seen in Figure 2.20(b).

pos iter item

1 1 10
1 2 10
1 3 10
1 4 20
1 5 20
1 6 20

(a) q0·0($v0)

pos iter item

1 1 17
1 2 18
1 3 19
1 4 27
1 5 28
1 6 29

(b) q0·0(e
′
0·0) = q0·0($v0 + $v00)

Figure 2.20: Innermost expression intermediate results

The result of the summation, q0·0(e′0·0) is expressed in scope s0·0 and will have to be mapped
up to scope s0. This is done with help from equation 2.6 and map0,0·0 which we calculated
earlier, and the result can be seen in Figure 2.21(a). With q0(e′0·0) evaluated, and with q0($v0)

27

from earlier, the sequence building can be completed. This operation requires equation 2.7,
and yields the relation shown in Figure 2.21(b).

pos iter item

1 1 17
2 1 18
3 1 19
1 2 27
2 2 28
3 2 29

(a) q0(e
′
0·0)

pos iter item

1 1 10
2 1 17
3 1 18
4 1 19
1 2 20
2 2 27
3 2 28
4 2 29

(b) q0(e
′
0)

pos iter item

1 1 10
2 1 17
3 1 18
4 1 19
5 1 20
6 1 27
7 1 28
8 1 29

(c) q(e′0)

Figure 2.21: Intermediate and final result

Finally the built sequence will have to be expressed in terms of scope s. Achieving this only
requires the use of equation 2.6 one last time in combination with map,0. The complete result
of the query is shown in Figure 2.21(c).

2.6 Summary

This chapter has described XQuery and its semantics, including FLWOR expressions, paths
and predicates, and the XQuery Core subset language and its normalisation rules. Fur-
ther, existing implementations have been examined and compared, and we have shown that
Pathfinder is one particularly interesting implementation because of its dependence on a
relational back end and thus relational algebra.

Relational algebra and its semantics were described to set the stage for a description of the
target language which will be presented in the next chapter. Parser generators and other
relevant parser technology has been presented, as well as some strategies for parsing syntax
trees. Finally, the Loop Lifting method employed by the Pathfinder project to translate
XQuery to relational algebra was described.

In the next chapter, important architectural decisions and methods are presented.

28

Chapter 3

Method

This chapter describes the most important decisions and constraints for this project. Essen-
tially, this chapter describes what will be done along with rationales for decisions that have
been made. Implementation-specific details are left to Chapter 5. This chapter is initiated by
Section 3.2, where a method for tree parsing is chosen. Further the method for rewriting the
syntax tree is explained in Section 3.3. Finally we present the target algebra language (MQL),
and the chapter ends with a description of a method for calculating algebra complexity which
will be used in chapter 6 for comparisons.

3.1 Development of a novel translation method

In Section 2.5, “Loop Lifting” was presented. This is a translation method used by Pathfinder
(section 2.2.4) to translate XQuery to relational algebra for execution on MonetDB. As the
goal of this thesis is to find a way to translate queries in this language to MQL, the MARS
Query Language, one possibility would be to modify the Loop Lifting methodology to produce
MQL trees instead of algebra for MonetDB. However, this modified method would most likely
not utilise the full expressiveness and power of MQL. This lead to the development of a
MARS specific method of translation, “Tainting Dependencies”, which will be reviewed in full
in chapter 4. Another incentive for not modifying Loop Lifting is that it produces large and
quite complex operator trees, which lead to unnecessarily denormalised intermediate results.
This is discussed further in Section 7.8.3 on page 127.

3.2 Tree parsing

In Section 2.4.4 some common design patterns for tree parsing were described. Based on some
important traits of XQuery, such as being an orthogonal language (see section 2.1.1), it seems
natural to employ the context-sensitive visitor pattern, as described in section 2.4.4. The
benefits of this decision is the possibility to create specialised visitors for certain tasks, such
as rewrite visitors for preprocessing the syntax tree (hinted upon in section 2), or predicate
visitors, or any situation where propagation of context/state information is required.

The implementation of the context-sensitive visitor pattern is described in Section 5.6.

29

3.3 AST rewriting

Definition 2. The process of normalisation of XQuery is defined as the process of translat-
ing the whole or parts of an XQuery abstract syntax tree into an XQuery Core abstract syntax
tree, as described in Section 2.1.6.
Definition 3. An abstract syntax tree is said to be denormalised if it has not yet been
normalised through a process of normalisation.

The basic abstract syntax tree produced by the XQFT Parser (see section 2.4.3) is in a
denormalised form. As explained in Section 2.1.6 on page 8, normalisation has the benefit
of simplification without loss of expressiveness or semantics, and thus simplifying the task of
translating the syntax tree.

Based on findings in Section 2.1.4 regarding the structure of FLWOR expressions, it was
briefly mentioned that complex FLWOR expressions could be transformed into semantically
equivalent and simpler representations. A question was also posed – could it be benefitial to
rewrite complex FLWOR expressions into a simpler form? We will now attempt to answer
this question.

3.3.1 Normalising FLWOR expressions

A denormalised XQuery syntax tree may contain nodes such for-clause expressions with
several variable declarations and assignments as can be seen in Figure 2.6(a). Such an ex-
pression could be normalised to several nested FLWOR expressions, as shown in Figure 2.6(b),
as defined by the mapping rules in figures 2.2, 2.3, 2.4, and 2.5.

Here, the method in Section 2.1.6 has been applied to the example tree in Figure 3.1(a), and
the result can be seen in Figure 3.1(c). The corresponding hypothetical source code for the
denormalised and normalised trees can be seen in Figure 3.2.

AST_MODULE

AST_FLWOR

AST_FORCLAUSE $

$ $ $

a (

1

b (

2

c (

3

a

(a) Step 1: original denor-
malised syntax tree

AST_MODULE

AST_FLWOR

AST_FORCLAUSE AST_FLWOR

$

a (

1

AST_FORCLAUSE $

$ $

b (

2

c (

3

a

(b) Step 2: partly normalised
tree

AST_MODULE

AST_FLWOR

AST_FORCLAUSE AST_FLWOR

$

a (

1

AST_FORCLAUSE AST_FLWOR

$

b (

2

AST_FORCLAUSE $

$

c (

3

a

(c) Step 3: fully normalised tree

Figure 3.1: Normalisation steps of FLWOR expression with multiple for-clauses

30

for $a in (1),
$b in (2),
$c in (3)

return $a
(a)

for $a in (1) return
for $b in (2) return

for $c in (3) return $a
(b)

Figure 3.2: Hypothetical source code corresponding to the trees in figures 3.1(a) and 3.1(c)

Considering these trees, we can assert the following:

1. Multiple nested FLWOR constructs with a single for/let-clause and a single variable
binding maintains the semantics of a single FLWOR with multiple for/let-clauses and
variable bindings

2. A FLWOR construct with a single for/let-clause and a single variable binding is easier
to parse than a FLWOR construct with multiple for/let-clauses and bindings because
it is known that there is only one for/let-clause with a variable binding, and there is
no need to look for others within the same FLWOR construct

Based on these findings, it is natural to conclude that normalisation of FLWOR expressions
is benefitial for the sake of simplicity in the tree parsing process. Normalisation may be
attained by executing a specialised rewrite visitor on the syntax tree, which will be described
in Chapter 5.

3.4 Target relational algebra language

Given as premise for this project was the target algebra language. This algebra is a dialect
of classic relational algebra (see section 2.3) developed by Fast Search & Transfer. The
language is called MQL (MARS Query Language). This section will briefly describe some
of the operators of this language as well as the indexes they operate on. Further, it will
demonstrate the usage as well as some important traits of this language with a few examples.

Note that this section is largely based on documentation provided by FAST which has been
deemed company confidential.

3.4.1 General concepts

All queries for MQL are written as strings with a syntax reminiscient of Lisp dialects. An
example query can be seen in Figure 3.4.

Data is stored in indexes rather than in DOM trees. Naturally, this is a prerequisite for effi-
cient execution of relational algebra on the data. There are two basic index types: occurence
indexes and value indexes. In the case of an occurence index, a lookup for a term will map
the term to the occurences of this term. In a value index, a key (for example document id)
is associated to one or more values in the document collection. Lookups in value indexes can
be combined with lookups in occurence indexes to add data to the result set for the user.
Throughout this chapter and later chapters, any reference to a value occurence index (valocc)
implies exactly such a hypothetical combination of occurence and value indexes.

31

The schema of the indexes determins the fields/columns in the result sets from a lookup, but
typically these three fields will be included on a lookup of a term in the occurence index:

• Document ID: Internal identifier for the document in which the term occurs

• Position: The term position in the document (counted by terms, not characters or
nodes)

• Scope: the context of the occurence, e.g /a/b. Note that the scope also contains
metadata about the instance of the scope (this is visualised like this: a[1].b[2], which
reads as “the first instance of a and the second instance of b within this a”)

Additionally, a Value field can be added by combining the result set from an occurence index
with the equivalent result set from a value index. Figure 3.3 shows an example result set
from a lookup in a hypothetical valocc index.

DocumentID Position Scope Value
1 7 a[1].b[2] c
1 8 a[1].b[3] c
1 11 a[1].b[4] c

Figure 3.3: Example result set from a lookup in valocc

The input for operators are result sets from child operators. The output from operators is a
single result set. Note however that some operators, such as index() will modify the context
for child operators. This feature is not documented, and the exact mechanics are not known.
However their respective behaviours are described here where applicable.

3.4.2 Language syntax

The syntax of MQL (MARS Query Language) is, as mentioned above, reminiscent of Lisp
dialects. Consider the example in Figure 3.4. This example will lookup the term “c” in the
scope /a/b in the index valocc.

index(valocc;
scope(/a/b;

lookup(c)));

Figure 3.4: Simple MQL example

The syntax for MQL can be described in a condensed form using EBNF notation as can be
seen in Figure 3.5

OPERATORNAME ::= IDENTIFIER
OPERATOR ::= OPERATORNAME "(" PARAMETERLIST?

(";" OPERATORLIST)? ")"
OPERATORLIST ::= OPERATOR ("," OPERATOR)*

Figure 3.5: Simplified MQL EBNF

32

Note that PARAMETERLIST has no definition. This production will be described for each
operator, if applicable.

Also note that parameters and child operators are separated by a semicolon. For example,
in the MQL expression index(valocc;lookup(hairdresser)) the index() operator is given
one parameter (valocc) and one child operator (lookup(hairdresser)).

3.4.3 Operators

Lookup

The lookup() operator performs a lookup in the default index (if none other defined by
an index() operator, see 3.4.3). The result set returned from this operator contains all
occurences of the given term, if any. This operator will use the last index specified by the
index() operator, otherwise the default index. See Figure 3.4 for an example of usage.

Input: none (parameters only)

Output: result set with occurences and/or values, depending on index (see Section 3.4.1)

Scope

The scope() operator accepts one parameter and one child operator. Informally, the result
set from the child operator is filtered to match the given scope. See Figure 3.4 for an example
of usage.

Input: a scope string (i.e /a/b), and a result set from the child operator which will be filtered
for the given scope string

Output: a filtered result set with matches only within the given scope

Index

This operator modifies the behaviour of the child operator such that any lookup will use the
specified index. See Figure 3.4 for an example of usage where the child operators will operate
on the index valocc.

Input: result set from the child operator

Output: result set from the child operator

Project

The project() operator lends its name and semantics from the project and the rename operator
known from basic relational algebra (Section 2.3.1). Note that it is also possible to execute
functions and apply constant values to the projection. The example in Figure 3.6 may produce
an output similar to that of Figure 3.6.

Input: projection parameters, and a result set from the child operator

33

Output: projection of result set on the given parameters

project(id=DocumentID, cid=max(100,DocumentID), one="1");
index(valocc;

scope(/a/b;
lookup(c))));

Figure 3.6: Simple MQL project() example with inline function call and an applied constant field

id cid one

45 100 1
103 103 1
90 100 1
33 100 1
289 289 1

Figure 3.7: Hypothetical result of query in figure 3.6

Select

The select() operator filters tuples from the child operator based on boolean function pred-
icates. Consider the example in figure 3.8, where eq() compares the two parameters and
returns true if the parameters are equal. A hypothetical result (based on the example for
project()) can be seen in figure 3.9.

select(eq(100, cid);
project(id=DocumentID, cid=max(100,DocumentID), one="1");

index(valocc;
scope(/a/b;

lookup(c)))));

Figure 3.8: Simple MQL select() example

id cid one

45 100 1
90 100 1
33 100 1

Figure 3.9: Hypothetical result of query in figure 3.8

Input: predicate expression parameter, and a result set from a child operator

Output: filtered result set from the child operator

Join

A join operator (one of hhjoin(), hljoin(), or mergejoin()) performs an equi-join operation as
described in section 2.3.2. In the case of a mergejoin(), the input result sets must be sorted.

34

The complete syntax for any of the join operations can be described with EBNF notation
as can be seen in Figure 3.10. A trivial usage example of the mergejoin() operator can be

JOINFIELD ::= ("left." | "right.")? FIELDNAME
PROJECTFIELD ::= (FIELDNAME "=")? JOINFIELD
PROJECTLIST ::= PROJECTFIELD ("," PROJECTFIELD)*
JOINNAME ::= "hhjoin" | "hljoin" | "mergejoin"
OPERATOR ::= JOINNAME "(" "[" FIELDLIST "]" ","

"[" FIELDLIST "]" "," "[" PROJECTLIST "]"
("," "left" | "right" | "full")? ";"
OPERATOR "," OPERATOR ")"

Figure 3.10: Join operator EBNF

seen in Figure 3.11, where the result sets from two hypothetical child operators Query1()
and Query2() are joined on their document ids, and the result is projected on the fields
DocumentID and Position.

mergejoin([DocumentID], [DocumentID], [DocumentID, Position];
Query1(..),
Query2(..))

Figure 3.11: Simple MQL mergejoin() example

Input: join specification parameters, and result sets from child operators

Output: joined result set based on join specifications

Make

The make() operator is used to synthesise result sets from the given (constant) arguments.
Field names can be specified, but are not required. The default field names are field0, field1,
. . . , fieldN, where N is the number of fields. The example in Figure 3.12 will produce the
output seen in figure 3.13.

make(1,2,3)

Figure 3.12: Trivial MQL make() example

field0 field1 field2
1 2 3

Figure 3.13: Hypothetical result of query in figure 3.12

A more complex example can be seen in 3.14, where field names are specified, and several
tuples are synthesised. The corresponding result is shown in Figure 3.15. Notice how values
are specified column-wise.

Input: tuple specification parameters

Output: result set consisting of one or more tuples according to tuple specification

35

make(name:=["A","B","C"], [1,4], [2,5] [3,6])

Figure 3.14: MQL make() example

A B C

1 2 3
4 5 6

Figure 3.15: Hypothetical result of query in figure 3.14

Group

OPERATOR ::= "group" "(" GROUPINGFIELDS ["," AGGREGATORS]
";" OPERATOR ")"

Figure 3.16: Group operator EBNF

The notation of the group() operator can be seen in the EBNF sepecification of figure 3.4.3.
The operator will group tuples with the same value for the fields specified in GROUPINGFIELDS,
and create one tuple per group. Fields not specified in the operator will not be a part of
the result relation. AGGREGATORS may be used to specify aggregator functions to be run
within each group. The result of an aggregator will be added as a field for the result tuple
corresponding to the group it operated on.

group((cid), max(id), count(); Query1)

Figure 3.17: Simple MQL group() example

If Query1 evaluates to the relation shown in Figure 3.7, the query of Figure 3.17 will result
in the relation of Figure 3.18.

cid max count

100 90 3
103 103 1
289 289 1

Figure 3.18: Result of the query in Figure 3.17

Input: grouping specification, and a result set from the child operator

Output: grouped result set based on grouping specification

Cross

This operator computes a cross product between its two child operators. This operator does
not take any parameters.

Input: result sets from two child operators

36

Output: the cross product between the two input result sets

3.4.4 Assumed functionality

Some extra functionality is required to achieve the goals of this project. This section describes
new operators and functions, and their respective behaviour. Additionally, the rationales for
assuming these new functionalities are explained.

Numberation/sequence generator

Order is an inherent concept of the XQuery data model, to accomodate for this a numbering
operator such as numberate is needed. The syntax for this operator can be defined in EBNF
notation as seen in figure 3.19. Given a sort order defined by the fields in SORTLIST, the
operator numbers consequtive tuples of the relation returned from OPERATOR, recording the
row number in the new field FIELD. Row numbers start from 1 in each partition defined by
the fields in PARTITIONLIST. If no SORTLIST is defined, the original sort of the input relation
is used. The fields specified in SORTLIST is not a part of the result relation. The operator
is comparable to the DENSE_RANK operator defined by SQL:1999 [17]. No particular order is
required in the result relation.

FIELD ::= IDENTIFIER
SORTLIST ::= "[" FIELD ("," FIELD)* "]"
PARTITIONLIST ::= "[" FIELD ("," FIELD)* "]"
OPERATOR ::= "numberate" "(" FIELD ("," SORTLIST)?

("," PARTITIONLIST)? ";" OPERATOR ")"

Figure 3.19: EBNF definition for the numberate() operator

numberate(Seq, [C], [A];
make(name:=["A","B","C"]; [1,1,1,2,2,2], [a,b,c,a,b,c],[6,5,4,6,5,4]))

Figure 3.20: Trivial example of numberate() usage

A B C

1 a 6
1 b 5
1 c 4
2 a 6
2 b 5
2 c 4
(a) Input:

Seq A B

1 1 c
2 1 b
3 1 a
1 2 c
2 2 b
3 2 a
(b) Output:

Figure 3.21: Input/output result sets

The example in Figure 3.20 illustrates the behaviour of this operator. In the output result set
seen in figure 3.21(b), a column Seq has been added, with a number sequence which follows a

37

sort order of C and restarted for each new value of A. Also note the C attribute is not part
of the result relation.

Scope comparison functions

These boolean functions (not operators) accepts two arguments which must be scope fields
from index lookups (as described in Section 3.4.1). They each correspond to one of the axes
of XQuery/XPath. Informally, for one tuple, the scope field has a value on this format:
a1[m].a2[n]. . . aj [o]. In this format ax are scope names and m, n and o are integers. Further,
a2 is the nth scope with the name a2 which resides within the a1 scope. a1 is the mth scope
with that name of the document. In the following description of the functions a1[m] is called
a step and [m] is called the instance. scopen is to be read as the value in the scope attribute
for one tuple. The length of scopen is equal to the number of steps it contains.

isChild(scope1, scope2) Returns true if scope2 is exactly on step longer than
and a prefix of scope1. Else false.

isDescendant(scope1, scope2) Returns true if scope2 is longer than and a prefix of
scope1. Else false.

isSelf(scope1, scope2) Returns true if scope2 is equal to scope1. Else false.
isDescendantOrSelf(scope1, scope2) Returns true if scope2 is equal to or a prefix of scope1.

Else false.
isFollowing(scope1, scope2) Returns true if scope2 has a higher instance for a step

corresponding to a step in scope1. Else false.
isFollowingSibling(scope1, scope2) Returns true if scope2 is equal to scope1 except having

a higher instance of the last step. Else false.
isParent(scope1, scope2) Returns true if scope1 is exaclty one step shorter than

and a prefix of scope2. Else false.
isAncestor(scope1, scope2) Returns true if scope1 is shorter than and a prefix of

scope2. Else false.
isAncestorOrSelf(scope1, scope2) Returns true if scope1 is equal to or a prefix of scope2.

Else false.
isPreceding(scope1, scope2) Returns true if scope2 has a lower instance for a step

corresponding to a step in scope1. Else false.
isPrecedingSibling(scope1, scope2) Returns true if scope2 is equal to scope1 except having

a lower instance of the last step. Else false.

As can be seen, many of these functions can be defined by some of the other functions. But
for readability we assume one function per axis.

xqBoolean/boolean truth value coercion

This function (not operator) accepts one argument and determines its truth value. XQuery
truth values (effective boolean values) were described in Section 2.1.1.

The semantics of this function is captured in the example in figure 3.22. For the input result
set produced by the make() operator in Figure 3.23(a), the output result in Figure 3.23(b) is
produced. The example converts the integer 5 to true and the integer 0 to false.

38

project(truthVal=xqBoolean(B);
make(name:=["A","B","C"], [1,4], [0,5] [3,6]))

Figure 3.22: Example of xqBoolean() usage

A B C

1 0 3
4 5 6

(a) Input for ex-
ample in figure
3.22

truthV al

false
true

(b) Output
from example
in figure 3.22

Figure 3.23: Input/output result sets

Union/disjoint union

The union() operator accepts multiple operators, and will behave as the standard relational
algebra operator (Section 2.3.1), except it does not remove duplicates (as disjoint union).
The function of the operator is to concatenate the relations returned from its child-operators.
No particular ordering of tuples in the result relation is required.

3.5 Calculating complexity in relational algebra

A method for indicating complexity of relational algebra trees was suggested by Øystein
Torbjørnsen at Fast Search & Transfer. This method is based on the assumption that the
algebra will be executed on an implementation written in Java or a similar object oriented
language. Not withstanding the benefits of compile-level optimisations and other ways to
increase performance such as caching, this method of complexity indication defines complexity
as creation of new objects in run-time, and the cost of sort and join operations.

This definition of complexity does not account for disk I/O, nor is it a direct measurement
of performance. However, given an algebra tree which is to be executed on some known host
implementation, it may give an indication of spending of time and computational resources.

3.5.1 Tuple and field creation

Definition 4. A field is an in-memory object which contains a value and a mapping to an
attribute name in a relation
Definition 5. A tuple is defined as an in-memory object which contains a set of fields
(Definition 4), where each field contains a value for some given attribute in the relation

Semantics

A new tuple is assumed to be created every time an old tuple needs to add or remove one or
more fields. A new field is assumed to be created for every new value for any attribute for
any tuple.

39

f1 f2 . . . fN

:= va lue

Tuple

Field

f1

Figure 3.24: The structure of a tuple with fields

Implications of semantics

Any kind of projection of x tuples over n “new” attributes and o “old” attributes generates
x new tuples and n new fields (note that duplicates are not removed). Old fields are reused,
and attribute renaming is naturally capable of reusing old fields.

Any kind of tuple construction (e.g using the make() operator) for n tuples and m fields
generates n new tuples and n×m new fields.

Assumptions

Pathfinder generates relational algebra which contains some operators for which the behaviour
is unknown. Some assumptions have made about these operators:

• The Join operator is assumed to produce n×m fields for an input of n tuples and m
fields

• The behaviour of the Diff operator is unknown, it is assumed to produce 0 tuples and
0 fields

• The behaviour of the Distinct operator is unknown, in favour of Pathfinder it is then
assumed to produce 0 tuples and 0 fields

• The Not operator is assumed to perform an inversion of boolean values and thus pro-
duces n tuples and m fields for an input of n tuples and m fields (where m is always 1
in the comparisons made in this dissertation)

• The Cast operator is assumed to produce n tuples and 1 field for an input of n tuples
and m fields

• The Attach operator is assumed to produce n tuples and m fields, where m is the
number of fields constructed by the Attach operator and n is the number of input
tuples

40

3.5.2 Join and sort tuple I/O

Definition 6. The input of an operator is defined as the sum of tuples entering the operator

Definition 7. The output of an operator is defined as the sum of the tuples produced by the
operator

Semantics

For every operator that either performs a equi-join or sort operation, the number of input
and output tuples are counted. The minimum, maximum, and averages are calculated for
both input and output.

3.5.3 Total complexity

Definition 8. Measurement of complexity is defined as that for some given operator α,
counting the following:

• Creation of new tuples (definition 5)

• Creation of new fields (definition 4)

• If α performs an equi-join or a sort operation, all input(Definition 6) and output
(Definition 7) tuples

The integer sum of counting field and tuple creations (from and including 1 and up) defines
the complexity for α. Further, the sum of all the complexity sums in some given relational
algebra tree defines the complexity sum for that given tree. Additionally, the minimum,
maximum and average input and output tuples defines the tuple I/O complexity for that
given tree.

3.6 Summary

In this chapter the most significant decisions for this project have been presented and ex-
plained in detail. In the next chapter, we will present our novel methodology for translating
XQuery queries to relational algebra, dubbed “Tainting Dependencies”.

41

42

Chapter 4

Tainting Dependencies

One of the greatest challenges in translating XQuery to relational algebra, is to translate
the semantics of iterators. The iterative nature of expressions such as for expressions and
the bulk oriented relational processing may seem contradictory. But because XQuery is a
purely functional language, and thus free of side effects, it is semantically sound to evaluate
all iterations of the iterator body in parallel.

In this chapter we will first present MarkXRemove. This was the first iterator translation
proposal of this project. As it had some flaws, the method was reinvented and evolved into
Tainting Dependencies (TD), accomodating for the deficiencies of MarkXRemove. The rest
of the chapter is dedicated to this method. First some concepts will be discussed, followed by
methods for translating various features of XQuery into MQL relational algebra trees, includ-
ing the translation of iterators. Finally, the chapter will discuss some possible simplifications
of trees generated with TD.

4.1 MarkXRemove

Our original proposition to a method for translating XQuery ASTs into relational algebra was
named MarkXRemove. Even though it has many shortcomings and flaws, we will in this sec-
tion give a quick overview of the method. This is because the Tainting Dependencies method
is an evolution and a refinement of MarkXRemove, and may be easier understood when seen
in the perspective of its origins. Another reason is that in case of further development of TD,
it may be of help to also know what will not work, what will work partially and why it is
flawed.

4.1.1 Basics

The foundation of the method is that an iterator expression is always translated by calculating
the cartesian product of the iterator sequence and the iterator body, hence the “X” in the
name. “Remove” stems from the removing of tuples who ends up in the wrong iteration in the
cross product result. The cartesian product and the selection of tuples afterwards actually
constitutes a kind of natural join (section 2.3.2) as we will see later.

43

As the translator comes across an iterator variable declaration with the variable name χ, it will
augment the relational representation of the iterator sequence belonging to this variable with
an attribute χnumb. This new attribute will hold consecutive values from 1 to n for a n item
long sequence. These values symbolise the iteration number of the iterator expression seen
isolated from possible other surrounding iterator expressions. A function counter() returning
the row number of a relation and a project operator will handle the augmentation. The
corresponding algebra tree is stored in the symbol table. The “mark” of the name of the
method is because of this augmentation.

4.1.2 FLWOR

If the translator later comes across a reference to an iterator variable χ, it will get the tree
from the symbol table and return it to the referring AST node without any further ado. The
translator is also required to know which subtrees have a child that has referred to which
iterator variable. This is because the χnumb attribute could be lost in a project operation
without this knowledge.

When the translator returns to the iterator expression node for the variable χ after traversing
the iterator body, it will, as mentioned before, make sure that the cartesian product between
the iterator sequence and body is calculated. From the result of this, the tuples where the
χnumb stemming from the iterator sequence does not line up with the χnumb stemming from
the body are removed. Any tuple with a χnumb value NULL will be kept.

A NULL value in the χnumb field of a tuple means that this tuple is not marked, i.e. it is not
dependent on which iteration the χ iterator expression is in. Unmarked tuples can e.g. stem
from the creation of a sequence. MarkXRemove translates sequence construction expressions,
e.g. (e1, e1), to a simple disjoint union, r(e1) ∪̇ r(e2). Where r() symbolises a function
translating XQuery expressions into relational algebra.

The method creates quite simple algebra, as exemplified by the following query:

for $i in (1,2,3) return
($i, ’yes’)

which is translated into this algebra:

select(ifThenElse(isNull(value), true, eq(r.inumb,l.inumb))
cross(

project(inumb = counter(), value;
make(name:=["value"], [1,2,3]))

union(
project(inumb = counter(), value;

make(name:=["value"], [1,2,3]))
make(name:=["value"], [’yes’]))))

4.1.3 Flaws

The main problem with MarkXRemove is that it requires a particular ordering of tuples in
a relation which is a result of a cartesian product. Not only can the MQL cross operator
not promise the particular ordering of its result, it can not promise any particular ordering

44

at all. The ordering the method requires is that for each tuple in the left relation, the tuple
is repeated for all tuples in the right relation. If this requirement is not met any item may
appear anywhere in the resulting sequence, which is not acceptable for evaluation of XQuery
expressions where all sequences are ordered.

Another problem with this method is that any sequence built which includes a reference to an
iterator variable is not fully calculated until the cartesian product between the corresponding
relation and the variables iterator sequence is evaluated. This makes it hard to evaluate
expressions where such a sequence is a subexpression. The iterator body of this query:

for $i in (5,10) return
($i, 8) > (6,12)

would be translated into this relational algebra:

project(value = gt(l.value, r.value), inumb
cross(

union(
project(inumb = counter(), value;

make(name:=["value"], [5,10]))
make(name:=["value"], [8]))

make(name:=["value"], [3,12])))

which again would produce this relation:

inumb value

1 false
1 false
2 true
2 false

NULL true
NULL false

The query should of course be evaluated to (true, true), as the > operator in XQuery yields
true if one item in the left operand is larger than one item in the right. This means that the
relation would have to be pruned by a select or group, which can not be done generally in the
relations current state. A possibility would be to postpone the pruning until after the relation
is crossed with the iterator sequence, but there would still not be any trivial solution. This
problem leads to the introduction of iterator dependency tainting, as we will see in Section
4.3.2.

4.2 Inference rule language explanation

During this chapter we will present some inference rules. Table 4.1 explains some of the the
various typographical representations.

Inference rules are generally in this format:

condition

e
7−→ r(e)

45

7−→ Translates into
ϑ A set of iterator dependencies
sans serif MQL expressions
monospaced XQuery expressions
e, . . . , en Generic expressions
χ, . . . , χn Generic variable names
Iχ The iterator expression which declares χ
bold Operations done during the generation of the algebra
r(e) Returns the relational algebraic representation of e
t(r(e),ϑ′) Returns r(e) tainted with the dependencies ϑ′

B(r(e)) Returns the effective boolean value of r(e).

Table 4.1: Explanation of inference rule symbols

This should be read as: if condition condition is satisfied, the XQuery expression e will be
translated into r(e).

Often MQL operator trees are depicted like this:

operator1(. . . ,l.attr, r.attr. . . ;
operator2(. . .);
operator3(. . .))

This is to be interpreted as “operator2 is the left child of operator1 and operator3 is the right
child”. MARS does not allow attribute names to contain punctuation marks or allow two
attributes with the same name within one relation. An operator combining two relations
will therefore have renaming functionality. A typical projection list of such an operator
combining two relations which both contain the attribute attr would look something like:
. . . rattr=right.attr, lattr=left.attr. . . . To make the inference rules easier to read, this step has
been dropped. The rules assume that the equal named fields will automatically be given a
prefix l. (left) or r. (right) depending on which child the attribute stems from.

We assume the union-operator accepts relations with different schemas. The schema for the
result relation can be described as:

schema(union(α, β)) = schema(α) ∪ schema(β).

The tuples which have more fields in the result relation than they did in the relation they
stem from will have a NULL value for the introduced attributes. It may be not be desirable
to implement the operator in such a way. In that case each child-relation will have to be
augmented with the attributes needed with an project operator.

The effective boolean value function, B() is described in Section 4.3.3.

4.3 Basics

The method assumes left-to-right traversal of the assymetric syntax tree. The traversal
is postorder, meaning a subtree can be evaluated independently from its ancestors. The
relational algebra will thus be generated bottom-up. In addition to the evaluated subtree, a

46

node must be able to inform its parent node about its iterator dependencies (ϑ), which we
will discuss later.

One XQuery sequence is represented as one relation and one XQuery item is represented
as one tuple. This is sound, as all XQuery items are sequences, and all sequences are one-
dimensional (section 2.1.1). As we mentioned in Section 4.1, the MarkXRemove method did
not actually consider the ordering of items in sequences at all. In Tainting Dependencies,
however, we have introduced an attribute index holding the intra sequence number of the
item. Consider the XQuery sequence (’a’,’b’,. . .,’z’). With this attribute, the relational
representation will be as follwing:

index value

1 ’a’
2 ’b’
.

n ’z’

As can be seen, the item value is stored in the value attribute. For the course of this
chapter we will, for the sake of simplicity, treat value as a polymorphic type attribute. This
simplification has minimal consequences for the method and the way XQuery expressions are
translated. XQuery types and relational representation of such will is discussed in Section
7.4.

Also for simplicity, the index, documentId, pos and scope attributes have sometimes been
left out of the attributes specified in project operators. If the project operator is applied to
the result of a join or cartesian product, these fields will follow the value attribute if nothing
else is specified. That is, if r.value is projected, then so is r.documentId, etc. . . if applicable.

Tainting Dependencies utilises a symbol table for storing of variables declared. The table has
two functions:

• put(χ, r(e)) – will store the algebraic version of the expression bound to the variable
$χ with χ as the key.

• get(χ) – will do a lookup in the table based on the name of the variable $χ and return
the algebraic version of the expression linked to it.

The symbol table handles scoping according to XQuery semantics (Section 2.1.4), meaning
the translator will always be able to find the right declared variable based on which node in
the AST the translator is visiting.

4.3.1 Iterator Dependency Inheritance

The concept of iterator dependency form the basis of the Tainting Dependency method. Such
dependency is defined as follows:

Definition 9. An XQuery expression e is dependent on an iterator Iχ if e occurs within
the iterator body of Iχ and if the evaluation of e depends on the iteration number of Iχ.

An variable reference to an iterator variable $χ is by this definition dependent on the iterator
Iχ. Intuitively, an expression which subexpression is dependent on an iterator Iχ is also
dependent on this iterator – we say the dependency is inherited. Consider the example

47

subexpression of figure 4.1, where $x and $y both are iterator variables. Here, the expression
e1 is dependent on the two iterators Ix and Iy, while expression e2 is only dependent on Ix.

and

e1

+

e2

$x 3

$y

Figure 4.1: Iterator variable dependency

The iterator dependencies of an expression e are part of the set e.ϑ. As mentioned earlier,
an AST node must be able to inform its parent about the node’s dependencies as well as the
algebra generated. For an expression e this can be done by letting e.ϑ piggyback the r(e)
returned. The variable dependencies for an expression e with the subexpressions e1, . . . , en
can be described as following:

e.ϑ = e1.ϑ ∪ . . . ∪ en.ϑ (4.1)

The dependency on the iterator Iχ manifest itself relationally by the attribute χnumb. The
value of χnumb is the iteration number of Iχ, that is, for a tuple (χnumb, value) the value
value will appear in the χnumbth iteration of Iχ.

When an iterator variable $χ is declared it is assigned a χnumb by renaming the index
attribute of the corresponding iterator sequence. Which leads us to the inference rule for
translating the (optional) for-clause of a FLWOR expression:

for $χ in e...
7−→

put(χ,
project(χnumb = index, index=1, value;
r(e)))

(4.2)

Where the dependencies piggybacking the project operator can be expressed as: ϑ = e.ϑ∪ Iχ.
For a for-clause with multiple variable bindings the rule must be applied once per binding.

From Definition 9 it can be seen that χ is not part of the set of dependencies the iterator Iχ
returns its parent. This is in fact the only case where a iterator is removed from a dependency
set. Because of this, we must be careful not to incidentally remove an χnumb attribute from
a relation by means of a project operator.

When we in this chapter write ϑ enclosed in MQL syntax it is to be interpreted as a comma
separated list of all the attributes linked to the dependencies in the set ϑ. As an example, the
dependency set ϑ =

{
Ix, Iy, Iz

}
, is read as xnumb, ynumb, znumb in an MQL environment.

XQuery variable reference expressions, be it iterator, let or declare variables, are translated
to relational algebra quite simply by fetching the tree linked to the variable name in the symbol
table:

$χ
7−→ get(χ) (4.3)

48

4.3.2 Iterator dependency tainting

The iterator body of an iterator with a iterator sequence with length n will have to be executed
n times. This can be done by e.g. evaluating the cartesian product between the body and
the sequence, as with the MarkXRemove method. To avoid any denormalised intermediate
results, an ideal solution would be to always calculate such products after all other evaluations
of the query is done. Consider the following simple example of the query e:

for $a in (1, 2) return
for $b in (3, 4) return

5 + 6

Conceptually, the result of this query can be calculated like this:

r(e)=r((1, 2))×r((3, 4))×r(5 + 6).

But such a simple solution is not adequate if there is a reference to an iterator variable
somewhere within the iterator body. This was managed by MarkXRemove by implementing
inheritance of iterator dependencies, similar to the concept discussed in Section 4.3.1, and
replacing the cartesian product operator with something like a natural join operator (Section
4.1.1).

MarkXRemove has shortcomings when it comes to evaluating expressions where a sequence
constructed with at least one iterator dependent expression is a subexpression. Tainting
Dependencies mend for this by requiring that all items involved in the evaluation of the
result of an iterator dependent expression are iterator dependent. To meet this requirement,
dependency tainting is introduced.

Definition 10. Iterator dependency Tainting is to impose a representation of one expression
for each iteration of the iterators another expression is dependent on.

During sequence construction, expressions explicitly taint all other expressions part of the
construction with their dependencies. Consider this subexpression:

...
(e1, e2)

...

Where e1.ϑ = {Iχ1} and e2.ϑ = ∅. Here e2 will be tainted by e1’s dependency on χ1, but
as e2 have no dependencies, e1 will not be tainted. The tainting process is carried out by
calculating the cartesian product of e2 and the χ1numb column of r($χ1) stored in the symbol
table.

The tainting of the relational representation of expression e with the depdendencies ϑ is
expressed like this:

ϑ = {Iχ1 , . . . Iχm}
t(r(e),ϑ) = r(e)×

∏
Iχj∈(e.ϑ−ei.ϑ)

project(χjnumb; get(χj)) (4.4)

49

4.3.3 Unique iterations

Consider an XQuery expression consisting of nested iterators Iχ1 , . . . , Iχn , where Iχj (1 <
j < n) occurs within the iterator body of Iχj−1 . As per XQuery semantics, the iterator body
of a iterator Iχj is evaluated once for each of the items in the iterator sequence of Iχj . And
because of the nesting, Iχj will have to be evaluated once per item in the iterator sequence
of Iχj−1 . The consequence of this is that the number of unique iterations the body of Iχj is
actually evaluated can be expressed like this:

unique iterations evaluated for body of Iχj =
j∏
i=1

card(Iχi)

Where card(Iχ) is a function returning the cardinality of the iterator sequence of Iχ.

Of these nested iterators, let a subexpression e be dependent on the subset {Iχk , Iχl}. Because
of dependency tainting and inheritance, the relational depiction of e will have a representation
in all possible iteration combinations of Iχk and Iχl . A tuple in e, (index, χknumb, χlnumb, value),
represents one of these unique iterations. When Iχk is in its χknumbth iteration and Iχl is
in its χlnumbth iteration, the item in position index of the sequence returned from e will
be value. Let Iχm also be one of the nested iterators, but one which e is not dependent on.
e will evaluate to the same result regardless of which iteration Iχm is in given the iteration
number of Iχk and Iχl is constant.

When an subexpression such as e is used in further evaluation, it is important to seperate
these iterations from each other. This is done by partitioning the relation on all unique
combinations of its iterator dependency attributes. Partitioning can be done either by the
group operator or by specifying the attributes to partition on in the partition list of the
numberate operator.

Often the evaluation of an expression use the value fields of each of its subexpressions. E.g.
an addition expression is evaluated by adding the value of its first subexpression with the
value of the second. To be able to calculate such expressions, the values of the subexpressions
will have to be in the same relation. This can be achieved by evaluating the cartesian product
of the subexpressions. Assumed that the subexpressions are independent of iterators or are
not dependent on the same iterators this is sufficient. But if they are depentent on one or
more iterators in common, the result of the cartesian product will have to be synchronised
on the common iterators iterations. This allows evaluation in each unique iteration, and is
solved by turning the cartesian product into an equi-join.

Generally, for such an expression e, with the subexpressions e1 and e2 this can be written
like this:

r(e) =

...
hhjoin([(e1.ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ e1.ϑ)]. . .
r(e1)
r(e2))

The dependencies e.ϑ is described by equation 4.1. If e1.ϑ 6= e2.ϑ each subexpression will be
implicitly tainted by the other’s unique dependencies. If the hhjoin operator is used without
specifying the join attributes, we assume it will behave as a cross operator.

50

How the effective boolean function B(r(e)) works will be discussed in section 7.2.1. In
this chapter is sufficient to consider it as a grouping operator, grouping on the attributes
specified by e.ϑ (i.e. all known unique iterations). For each group it will produce a field pred
representing the effective boolean value of e in that unique iteration. If e holds a singleton
numeric value in one group pred will hold this value, in all other cases it will hold a boolean
value. The result relation of the function will in addition to the pred-attribute contain all
the attributes implied by e.ϑ. The main reason this function is introduced at all is that it
ensures that a incoming relation will have exactly one tuple per unique iteration.

4.3.4 Literals

The XQuery Full Text specification[34] defines a number of literals as seen in figure 4.2. A
StringLiteral is a text string enclosed in apostrophes or quotation marks, and the numeric
literals are similar to numeric types from other programming languages.

[85] Literal ::= NumericLiteral | StringLiteral
[86] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral

Figure 4.2: Definition of literals in XQuery Full Text

To be able to include such expressions in evaluation of relational algebra, they need a relational
representation. As we in this chapter assume value is a polymorphic type attribute, with the
help of the make operator translation of literals is done in the following way:

e ∈ {Literals}
e

7−→ make(name:=["index","value"], [1, e]) (4.5)

This is a general way to translate literals, but there exists quite a few simplifications. Most
importantly when constructing sequences entirely composed of literals, as we will discuss in
section 4.10.

4.4 Sequence construction

[33] FLWORExpr ::= (ForClause | LetClause)+ WhereClause?
OrderByClause? "return" ExprSingle

[45] IfExpr ::= "if" "(" Expr ")" "then" ExprSingle
"else" ExprSingle

[31] Expr ::= ExprSingle ("," ExprSingle)*
[89] ParenthesizedExpr ::= "(" Expr? ")"

Figure 4.3: Excerpt from W3C XQuery EBNF showing sequence construction

A sequence in XQuery can be built with the comma operator(,). But this operator is the
XQuery operator with the lowest precedence, therefore, in most cases a sequence construction
expression will be enclosed in paratheses. This is to solve parser ambiguities, which can be
seen in the excerpt of the W3C XQuery EBNF specification[36] in Figure 4.3. An ExprSingle

51

can solely consist of a ParenthesizedExpr via a series of productions omitted from the figure.
Also note a ExprSingle can be a FLWORExpr.

As also can be seen from the figure the return-clause of a FLWOR expression, as many other
expressions, accepts an ExprSingle. If a sequence is to be constructed in the return-clause,
it will have to be parenthesised.

With the concept of tainting and iterator dependencies explained, we are now ready to intro-
duce the translation of an XQuery sequence construction expression:

e1, ..., en
7−→

numberate(index, [sprIdx, index], [ϑ];
union(

project(sprIdx=1, index, value;
t(r(e1), ϑ));
...

project(sprIdx=n, index, value;
t(r(en), ϑ))))

(4.6)

Where ϑ = e1.ϑ ∪ . . . ∪ en.ϑ. Notice how all subexpressions are tainted with the iterator
dependencies of all the others.

The basis of a sequence construction is the union operator – as with MarkXRemove. But
because we in Tainting Dependencies have introduced the explicit ordering of items with the
index attribute, additional operators have been added. Each item in the sequences returned
from the subexpressions is equipped with a temporary field sprIdx (superindex) holding
the relative position of each subexpression. Based on the positioning defined by sprIdx
and index the numberate operator can renumberate the resulting sequence. The numbering
must partition on the fields corresponding to the dependencies in ϑ, to separate the different
sequences constructed for all known unique iterations.

for $a in (10,20) return
($a, "no")︸ ︷︷ ︸

e1

Figure 4.4: Simple XQuery query

Example 1: Consider the simple XQuery query of Figure 4.4. Here r($a) will taint r("no")
with its dependency on the iterator Ia, the result of which is shown in Figure 4.5(b). Further,
we can see that for each iteration of Ia the return-clause will return a sequence of two items.
Having in mind that anumb (anb in figure) holds the iteration number of Ia, this can be seen
in figure 4.5(c).

The sequence construction rule also holds even if the subexpressions of the soon-to-be sequence
are within the body of an iterator the sequence is not dependent on. Expanding the query of
Figure 4.4 we get the query of Figure 4.6.

In this query, notice the innermost return-clause expression, e1, is identical to e1 in the
previous query. Here, the result of the sequence construction will still be the relation shown
in figure 4.5(c), because e1.ϑ = {Ia} – also as before. e1 is not aware of the iterator Ib – and
does not need to be either, as the result of e1 is independent of which iteration number Ib is
in.

52

anb idx val

1 1 10
2 1 20

(a) r($a)

anb idx val

1 1 "no"
2 1 "no"

(b) t(r("no"),r($a).ϑ)

anb idx val

1 1 10
2 1 20
1 2 "no"
2 2 "no"
(c) r(($a, "no"))

Figure 4.5: Applying translation Rule 4.6 on (a) and (b) yields (c). Attribute names are shortened

for $a in (10,20) return
for $b in (50,75) return
($a, "no")︸ ︷︷ ︸

e1

Figure 4.6: Query of Figure 4.4 expanded

4.5 FLWOR Expressions

The let-clause does not explicitly cause any dependencies, only variable binding, and can
therefore be translated into storing the algebraic version of the expression to be bound in the
symbol table (see Section 4.3):

let $χ := e ...
7−→ put(χ, r(e)) (4.7)

The iterator dependences e.ϑ is stored along with r(e) and will piggyback this algebra tree
if it later fetched from the symbol table. If there is more than one variable binding in the
let-clause the rule must be applied once per binding as if one binding were one let-clause.

As seen by the excerpt of the W3C XQuery EBNF specification in figure 4.3, a FLWOR
expression may be structured in many different ways. For simplicity and readablilty the
translation of such expressions will be split up in more managable pieces.

A FLWOR expression may have multiple for-clauses, and a for-clause may have multiple
iterator variable bindings. This means that one FLWOR may consist of many iterators, the
semantics of which is described in Section 3.3. We assume all possible iterator dependencies
generated from the FLWOR, that is, all iterator variables bound, is stored in a ordered set
β. The dependencies are ordered in the order of which the corresponding iterator variables
are bound, i.e. top down, left to right while parsing the query. When enclosed in MQL
syntax β is, as ϑ, to be read as a comma separated list of the attributes corresponding to the
dependencies.

[for/let ...]+
[where e2]?
[order by e3]?

return e4

Figure 4.7: Illustration of a FLWOR expression

The translation of a single FLWOR like the one illustrated in Figure 4.7 will be executed as
shown in Figure 4.8. Firstly, all for and let variables will be bound as described by the

53

rules 4.2 and 4.7, respectively. Further, the return-clause will be evaluated. If there is a
where-clause present, it is evaluated next, based on the where-expression and the result of
the return-clause, referred to as r(eC). The order of the items returned from the FLWOR
is conditioned by the presence of an order by-clause in the expression. If there is a order
by-clause, it will order the intermediate result from the return or while-clause, and finalise
the FLWOR. If there is no order by-clause, the final evaluation of the FLWOR will be to
order the intermediate result according to the iterators.

[var binding]+ return e4 [where e2]?

iterator order

[order by e3]?

r(eC)

r(eC)

r(eC)

Figure 4.8: Illustration of step-by-step translation of FLWOR.

Any possible iteration, ordering og filtering will be handled by other clauses than the return-
clause. The return-clause will just ship the evaluated version of the return-expression for-
ward:

return e4
7−→ r(e4) (4.8)

4.5.1 Iterator ordering

Acording to XQuery semantics, the return-clause is evaluated once for iteration for each of
the iterators of the FLWOR expression. The results of these evaluations are concatenated to
form the result of the FLWOR expression. As TD evaluate iterations in parallel, if the return-
expression is not dependent on a iterator, its relational form will not have a representation
for each of the iterators iterations and will have to be tainted.

Because each FLWOR iterator creates a new sequence, renumbering is needed. No expression
in a sibling or parent scope of the FLWOR may be dependent on the dependencies in β. Thus,
β is not part of the dependencies returned from the FLWOR, and the attributes corresponding
to β must be removed.

If the FLWOR contains no order by-clause, the ordering of the resulting sequence is de-
termined by the iterators of the expression. Remember, the set of iterators β is ordered
according to the order the variables were bound.

iterator order
7−→ numberate(index, [β, index], [ϑ];

t(r(eC), β)
(4.9)

Where ϑ = eC .ϑ−β, and eC is the result returned from the where-clause, if present, otherwise
it is the result of the return-clause.

From equation 4.4 it is clear that an expression already dependent on any iterator in β will
not be tainted by these iterators.

54

The numberate operator will have to partition on the remaining dependencies in ϑ to seper-
ate the sequences returned from the iterator for all iterators the result is dependent on, as
described in section 4.3.3.

Example 2: Consider the query of Figure 4.9. Notice the expression in the return-clause
(e1) is the same as e1 in Example 1.

for $a in (10,20),
$b in (50,75)

return ($a, "no")︸ ︷︷ ︸
e1

Figure 4.9: Example query with two iterators.

Expression e1 is not depentant on Ib, and by Rule 4.9 will be tainted by this iterator. The
result of the tainting is shown in Figure 4.10(a). The expression will however not be tainted
by Ia, as it is already dependent on this iterator (ref. equation 4.4).

bnb anb idx val

1 1 1 10
1 2 1 20
1 1 2 "no"
1 2 2 "no"
2 1 1 10
2 2 1 20
2 1 2 "no"
2 2 2 "no"

(a) t(r(e1), {b})

idx val

1 10
2 "no"
3 10
4 "no"
5 20
6 "no"
7 20
8 "no"
(b) r(Ia)

Figure 4.10: Evaluating the query in Figure 4.9 yields the intermediate result (a) and the final result
(b). Attribute names are shortened.

With the expression tainted the dependencies of all the iterators of the FLWOR, renumbering
is the last operation required to translate the query. The numberate operator will sort the tu-
ples first on anumb, then on bnumb and finally index before numbering. As the FLWOR itself
does not have any dependencies the numeration will not be partitioned over any attributes.
The result of the query is shown in figure 4.10(b).

4.5.2 Where-clause

The W3C describes the FLWOR expression as generating a tuple stream which contains one
tuple for each combination of values bound in the expression[36]. In this view, the optional
where-clause serves a filter for these tuples. The expression in the where-clause is evaluated
once for each tuple. If the boolean value of this expression is true, the tuple is retained, if
the boolean value is false the tuple is discarded.

The where-clause can be evaluated by only selecting the iteration combinations where the
where-expression is true. The result of this will be joined with the result of the return
clause. If the result from the return-clause and the where-expression has no common iterator

55

dependencies, the equi-join will have to be replaced by a cartesian product, as discussed in
4.3.3.

where e2
7−→

hhjoin([(eC .ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ eC .ϑ)], [l.value, ϑ];
r(eC);
select(xqBoolean(pred);
B(r(e2))))

(4.10)

Where ϑ = eC .ϑ ∪ e2.ϑ, and r(eC) is the result of the translation done in the return-clause.

By employing the select operator before the joining of the two relations the number of tuples
needed involved in the join will be minimised. Further, as the hhjoin operator allows for
declaring which attributes to be projected, there is no need for a seperate project operator.

Example 3: Consider the XQuery query of Figure 4.11. The evaluation of e1 is very similar
to the evaluation of e1 of Example 1, and the result is shown in Figure 4.12(a). The where-
clause contains a comparison expression, which will be discussed later. Figure 4.12(b) shows
the result relation of the where-expression.

for $a in (10,20)
where $a > 15
return ($a, 14)︸ ︷︷ ︸

e1

Figure 4.11: A FLWOR expression with a where-clause

anb idx val

1 1 10
1 2 14
2 1 20
2 2 14

(a) r(e1)

anb idx val

1 1 false

2 1 true
(b) r($a > 15)

anb idx val

2 1 20
2 2 14

(c)

Figure 4.12: Applying Rule 4.10 on (a) and (b) yields (c). Attribute names are shortened.

During the evaluation of the FLWOR, the tuples in the where-expression relation where value
(val in figure) is not true will be removed. The result is a relation with a single tuple where
anumb holds the value 2. This result is then joined with the e1 relation on anumb, as shown
in figure 4.12(c). Rule 4.9 will have to be applied to complete the evaluation of the query.

4.5.3 Order by-clause ordering

As can be seen in Figure 4.5.3, an Order by-clause may contain several specifications on how
to order and what to order by.

At this time, Taiting Dependencies only support a simple form of the clause. Only one
OrderSpec is allowed, where the expression to be sorted on will be referred to as e4 – confor-

56

[38] OrderByClause ::= (("order" "by") | ("stable" "order" "by"))
OrderSpecList

[39] OrderSpecList ::= OrderSpec ("," OrderSpec)*
[40] OrderSpec ::= ExprSingle OrderModifier
[41] OrderModifier ::= ("ascending" | "descending")?

("empty" ("greatest" | "least"))?
("collation" URILiteral)?

Figure 4.13: W3C EBNF order by clause specification[36].

mant to figure 4.8. Nor is any OrderModifiers allowed. A complete translation of the order
by-clause is discussed in Section 7.1.4.

As with the where-clause W3C specify the order by-clause as operating on a tuple stream
created by the variable bindings in the FLWOR[36]. The clause causes the stream to be
reordered into a new, value-based order. This means that the iterator dependency attributes
(χnumb) will no longer decide the composition of the sequence returned from the FLWOR.

Firstly, to ensure that the result will have a representation for all the iterations (still valid
after possible filtering by where-clause) of all the expressions iterators, eC is tainted with
β. The order by-expression is evaluated and joined with the result of the tainting on their
common iterator dependencies. Lastly, this relation is renumbered according to the order of
the values stemming from the order by-expression:

order by e3
7−→

project(value = l.value, ϑ;
numberate(index, [r.value], [ϑ];

hhjoin([(eC .ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ eC .ϑ)],[l.value, r.value, ϑ];
t(r(eC), β);
r(e3))))

(4.11)

Where ϑ = (eC .ϑ ∪ e3.ϑ) − β, and r(eC) is the result of the translation done in the where-
clause if present, else the return-clause. Fields such as index and if applicable documentId,
pos and scope will follow l.value. r.value is only the value column from the right relation.
To accommodate for the stable keyword, the numberate operator will have to sort on l.index
aswell, after sorting on r.value.

As desired, all iterator dependency attributes (χnumb, χ ∈ β) will be projected away by the
hhjoin operator. An additional project operator is used to ensure that the value returned from
the expression is the value attribute of the return-expression.

Example 4: Figure 4.14 shows a query consisting of a FLWOR expression containing a
order by clause.

for $a in (4, 6, 8)
order by $a mod 3
return $a

Figure 4.14: Example query with order by clause

57

The evaluated order by-expression is shown in Figure 4.15(a). How modulus expressions
are translated will be discussed later. After their evaluation, the relational representation
of order by-expression relation and the return-clause is joined on their common iterator
dependencies, Ia (anumb). The result of the join is shown in Figure 4.15(b). Lastly, this
relation is renumbered and sorted on the r.value (r.val in figure) attribute stemming from
the order by-expression, as shown in Figure 4.15(c). An additional projection to rename
l.value to value is needed to finalise the query.

idx anb val

1 1 1
1 2 0
1 3 2
(a) r($a mod 3)

l.idx anb l.val r.val

1 1 4 1
1 2 6 0
1 3 8 2

(b)

idx l.val

1 6
2 4
3 8

(c)

Figure 4.15: Intermediate results evaluating the query of figure 4.14. (a) shows the evaluated order
by expression. (b) shows the order by-expression joined with the return-expression. (c) shows the
relation in (b) renumbered. Attribute names are shortened.

4.6 Simple binary operator expressions

In this section we will present methods for translating simple XQuery binary operator ex-
pressions, namely arithmetic, logic and comparison operator expressions. XQuery binary
operators not covered here will be discussed in Section 7.1.3 on page 111.

4.6.1 Arithmetic Expressions

W3C defines the XQuery arithmetic expressions as shown in figure 4.16[36]. Notice how the
specified grammar handles operator precedence. UnaryExpr is a decendant production of
UnionExpr.

[50] AdditiveExpr ::= MultiplicativeExpr (("+" | "-") MultiplicativeExpr)*
[51] MultiplicativeExpr ::= UnionExpr (("*" | "div" | "idiv" | "mod") UnionExpr)*
[58] UnaryExpr ::= ("-" | "+")* ValueExpr

Figure 4.16: The arithmetic expressions of XQuery

The translation of such expressions will have to be separated in binary and unary operators.
For the binary operators the two values to be operated on will have to be in the same relation.
To ensure the values to be operated on are from the same unique iteration (if there is any
iterations at all), the relations corresponding to the two expressions will have to be joined
on their common iterator dependencies, as described in section 4.3.3. Both the unary and
the binary XQuery arithmetic operators accept only singleton sequences. This is discussed in
Section 7.2.

58

e1 OP e2
7−→

project(index=1,value=FUNC(l.value,r.value),ϑ;
hhjoin([(e1.ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ e1.ϑ)],[r.value, l.value, ϑ];
r(e1)
r(e2)))

(4.12)

Where ϑ = e1.ϑ ∪ e2.ϑ, OP will map to a MQL function replacing FUNC as shown in Table
4.2. The projecting functionality of the hhjoin operator will in this case remove the index
attributes and any possible documentId, scope and pos attributes.

OP FUNC
+ sum
- subtract
* prod

div div
idiv idiv
mod mod

s

Table 4.2: Mapping XQuery arithmetic operators to MQL functions.

Considering the unary operators, the + operator will never have any effect, and can therefore
be dropped. The unary - operator will change the sign of the value it is assigned to. This is
equal to multiplying the value with −1:

-e1
7−→ project(value = prod(-1, value);

r(e1))
(4.13)

Example 5: Consider the XQuery query of Figure 4.17. Here e1 is an arithmetic expression.

for $a in (1,2) return
for $b in (3,4) return
$a + $b︸ ︷︷ ︸

e1

Figure 4.17: Example query containing a arithmetic expression.

Both $a and $b is translated to simple two-tuple relations by rules 4.2 and 4.3. As the two
expressions do not have any iterator dependencies the hhjoin operator of Rule 4.12 will be
treated as a cartesian product (ref. 4.3.3). The cross product of the two relations are shown in
figure 4.18(a). Lastly, the project operator is employed to calculate the sum for each iteration,
the result of which is shown in Figure 4.18(b).

4.6.2 Logical Expressions

An XQuery logical expression is either an and expression or an or expression. If a logical
expression does not raise an error(see Section 7.2.1), its value is always one of the boolean
values true or false.

59

anb bnb l.val r.val

1 1 1 3
2 1 2 3
1 2 1 4
2 2 2 4

(a)

idx anb bnb val

1 1 1 4
1 2 1 5
1 1 2 5
1 2 2 6

(b) r(e1)

Figure 4.18: Results of evaluating expression e1 of Figure 4.17. (a) shows the result of the cross
product. (b) is the fully evaluated e1. Attribute names are shortened.

A logical expression is translated in a matter very similar to the arithmetic expressions. The
XQuery logical operators does however operate on the effective boolean value (see Section
2.1.1) rather than the direct value. As the operators require boolean values, and the effective
boolean function B() may return a number, the pred fields will have to be run through the
xqBoolean() function.

e1 OP e2
7−→

project(index=1,value=FUNC(xqBoolean(l.pred),xqBoolean(r.pred)),ϑ;
hhjoin([(e1.ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ e1.ϑ)],

[r.pred, l.pred, ϑ];
B(r(e1))
B(r(e2))))

(4.14)

Where ϑ = e1.ϑ ∪ e2.ϑ, OP will map to a MQL function replacing FUNC as shown in Table
4.3.

OP FUNC
or or
and and

Table 4.3: Mapping XQuery boolean operators to MQL functions

4.6.3 Comparative Expressions

Comparison expressions allow two values to be compared. XQuery provides three kinds
of comparison expressions, called value comparisons, general comparisons, and node compar-
isons. The comparison operators as specified by W3C are shown in Figure 4.19. The Tainting
Dependency method does at this time not support node comparisons, but possible solutions
are discussed in Section 7.1.3.

[61] ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"
[60] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="
[62] NodeComp ::= "is" | "<<" | ">>"

Figure 4.19: The comparison operators of XQuery [36]

Value comparisons are used for comparing two single values. With the same premises and
restrictions, the rule for translating arithmetic expressions (Rule 4.12) can be used to translate

60

such comparison expressions. The mapping between the XQuery value comparison operators
and MQL functions can be seen in Table 4.4.

OP FUNC
eq eq
ne neq
lt lt
le leq
gt gt
ge geq

Table 4.4: Mapping XQuery value comparison operators to MQL functions

General comparisons are existentially quantified comparisons that may be applied to se-
quences of any length. If employing a general comparison operator on any pair of items
consisting of one from each of the sequences yields true, the comparison expression yields
true. As an example, all the comparison expressions of figure 4.20 evaluates to true.

(1, 2) = (2, 3)
(1, 2) != (2, 3)
(1, 200) < (10, 20)
(1, 200) > (10, 20)

Figure 4.20: Example general comparisons: all expressions evaluate to true

The big difference between general and value comparisons is that the first must accomodate
for sequences. This is solved by grouping expressions’ iterator dependencies, meaning that
each group will contain the sequence of one unique iteration. By defining true as having a
larger value than false, the max() aggregator will identify the groups with at least one true
value.

As with the arithmetic expressions, the relational representation of the two operands is joined
on their common dependencies to ensure that both values are from the same iteration.

e1 OP e2
7−→

project(index = 1, value=max, ϑ;
group((ϑ), max(value);

project(value=FUNC(l.value,r.value),ϑ;
hhjoin([(e1.ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ e1.ϑ)],[l.value, r.value, ϑ];

r(e1)
r(e2)))))

(4.15)

Where ϑ = e1.ϑ ∪ e2.ϑ. OP wil map to a MQL function replacing FUNC as shown in Table
4.5.

The result of a general comparison is always a singleton sequence, thus it is safe to project
in an index attribute with the value 1. The index and possible documentId, scope and pos
attributes are left out of the project list of the hhjoin operator.

Example 6: Figure 4.21 shows a simple XQuery query with a general comparison expression,
e1.

61

OP FUNC
= eq
!= neq
< lt
<= leq
> gt
>= geq

Table 4.5: Mapping XQuery general comparison operators to MQL functions.

for $a in (10, 20) return
$a > (5, 15)︸ ︷︷ ︸

e1

Figure 4.21: Example query with a general comparison expression

Because the operands of the > operator have no common iterator dependencies, the cartesian
product of the two relations is calculated, as seen in Figure 4.22(a). After the inner project
operator is employed, the result will be as in Figure 4.22(b). The double line illustrates
the grouping on anumb (anb in the figure). The maximum value of value for each group is
calculated and the attributes are renamed, which gives the relation of Figure 4.22(c).

anb l.val r.val

1 10 5
1 10 15
2 20 5
2 20 15

(a)

anb val

1 true

1 false

2 true

2 true
(b)

idx anb val

1 1 true

1 2 true
(c) r(e1)

Figure 4.22: Results of evaluating expression e1 in Figure 4.21. (a) The relations of the operands
joined. (b) Each combination of the sequences evaluated. Double line illustrates grouping. (c) The
final result. Attribute names are shortened.

4.7 Conditional Expressions

XQuery supports a conditional expression based on the keywords if, then, and else. The
expression is specified by W3C as seen in Figure 4.23.

The expression following the if keyword is called the test expression, and the expressions
following the then and else keywords are called the then-expression and else-expression,
respectively. If the effective boolean value of the test expression evaluates to true, the then-
expression is returned, if it evaluates to false the else-expression is returned.

Conditional expressions are translated by adding an attribute alt with the value 1 to the
then-expression relation and the relational representation of the else-expression with the
same attribute but with the value 2. These two relations are then spliced together with a

62

[45] IfExpr ::= "if" "(" Expr ")" "then" ExprSingle
"else" ExprSingle

Figure 4.23: W3C EBNF conditional expression specification[36].

union operator. If the relations have disjoint dependencies, they will have to taint each other
first.

The result of the union operation is then joined with the relational representation of the
test expression on their common dependencies. Lastly, a select operator is employed on this
relation to select the tuples where alt is 1 if the value field from the test expression evaluates
to true, or alt is 2 if it does not:

if e1 then e2 else e3

7−→

project(value = l.value, ϑ;
select(ifthenelse(xqBoolean(pred), eq(alt,1), eq(alt,2));

hhjoin([((e2.ϑ ∪ e3.ϑ) ∩ e1.ϑ)], [(e1.ϑ ∩ (e2.ϑ ∪ e3.ϑ))],[l.value, pred, ϑ, alt];
union(

project(alt=1, value, (e2.ϑ ∪ e3.ϑ),
t(r(e2), e3.ϑ));

project(alt=2, value, (e3.ϑ ∪ e2.ϑ),
t(r(e3), e2.ϑ)));

B(r(e1)))))

(4.16)

Where ϑ = e1.ϑ∪ e2.ϑ∪ e3.ϑ. index and possible documentId, pos and scope attributes will
follow value as described in Section 4.3.

for $a in (10, 20) return
for $b in (5, 15) return

e1

if($b > $a) then
$a

else
$b

Figure 4.24: Example query containing a conditional expression

Example 7: The query of Figure 4.24 contains a conditional expression e1. First the then-
expression and the else-expression are tainted with each others iterator dependencies. The
result of the tainting is shown in Figure 4.25(a). Then the two relations are augmented with
the alt attribute and spliced together with an union operator to make the relation depicted
in Figure 4.25(b).

The result of the union operation is then joined with the test expression (figure 4.25(c)) on
their common dependencies (anumb and bnumb) to form the relation in figure 4.26(a). From

63

bnb anb val

1 1 10
1 2 20
2 1 10
2 2 20

(a)

alt bnb anb val

1 1 1 10
1 1 2 20
1 2 1 10
1 2 2 20
2 1 1 5
2 2 1 15
2 1 2 5
2 2 2 15

(b)

anb bnb pred

1 1 false

2 1 false

1 2 true

2 2 false
(c)

Figure 4.25: Intermediate results of evaluating e1 in Figure 4.24. (a) The then-expression tainted
with Ib (b) The then-expression and the else-expression augmented with an alt attribute and spliced
together. (c) The test expression. Attribute names are shortened. index attribute is left out.

this relation, only the tuples where alt has the value 1 and r.val is true or alt has the value
2 and r.val is false are selected. The result of the selection after the final renaming is shown
in Figure 4.26(b).

alt bnb anb val pred

1 1 1 10 false

2 1 1 5 false

1 2 1 10 true

2 2 1 15 true

1 1 2 20 false

2 1 2 5 false

1 2 2 20 false

2 2 2 15 false
(a)

bnb anb val

1 1 5
2 1 10
1 2 5
2 2 15

(b)

Figure 4.26: Evaluating e1 in figure 4.24. (a) The test expression joined with the union of the then-
and else-expression. (b) e1 fully evaluated. Attribute names are shortened. index attribute is omitted.

4.8 Quantified Expressions

Figure 4.27 shows the EBNF specification of the XQuery quantified expression. These ex-
pressions support existential and universal quantification, and will always result in a single
true or false value.

[42] QuantifiedExpr ::= ("some" | "every") "\$" VarName "in" ExprSingle
("," "\$" VarName "in" ExprSingle)* "satisfies" ExprSingle

Figure 4.27: W3C specification of quantified expressions [36]

If the quantifier is some, the expression only returns true if at least one evaluation of the
satisfies-expression yields true. For the every quantifier, the expression will only return

64

true if every evaluation of the satisfies-expression yields true.

It can be suitable to treat such expressions as iterators with the satisfies-expression as the
iterator body. The result of the iterator is then checked if every or some of its items have the
effective boolean value true. This can be done with a group operator similarily to the general
comparison operator expressions. If we assume true has a bigger value than false, a max
aggregator will reveal if there exists a tuple with the value true and a min operator will reveal
if there exist a tuple with the value false. All variables bound in quantified expressions will
be treated by the iterator binding translation of rule 4.2. β will refer to the set of all variables
bound in one such expression

QUANT $...satisfies e1
7−→

project(index = 1, value, ϑ;
group((ϑ), AGG(value);

project(xqBoolean(value), ϑ;
B(r(e1)))))

(4.17)

Where ϑ = e1.ϑ − β, and a quantifier specification QUANT maps to an aggregator function
as seen in Table 4.6. The xqBoolean() funcion will have to be run on the value fields of the
satisfies expression, as there is no requirement that it is a boolean expression.

QUANT AGG
some max
every min

Table 4.6: Mapping XQuery quantifiers to MQL aggregators

Example 8: Consider the XQuery query of Figure 4.28. In this query the iterator body of
the FLWOR is a quantified expression.

for $a in ("a","b") return
every $e in ($a, "b") satisfies $e eq "b"

Figure 4.28: Example query with quantified expression

The sequence sequentially bound to the quantifier variable is treated as explained in section
4.4: where $a taints "b" and the relations are spliced together. As quantifier variables are to
be handled as iterator variables, the index attribute of this relation will be renamed enumb,
as illustrated in Figure 4.29(a). This relation (or rather the algebra evaluating to it) is stored
in the symbol table, and is fetched during the evaluation of the satisfies-expression. The
result of this comparison expression is shown in figure 4.29(b). Here, the double line illustrates
grouping.

Except for the quantifier variable, this expression is dependent on Ia, which the result of the
satisfies-expression is grouped on. Each group will be run through the min aggregator,
because the quantifier is every. As false has a lower value than true, the aggregator will
reveal if the group contains a false. The result of the grouping is shown in Figure 4.29(c).
This result will have to be renumbered to finalise the evaluation of the query.

65

idx anb enb val

1 1 1 "a"
1 1 2 "b"
1 2 1 "b"
1 2 2 "b"

(a)

idx anb enb val

1 1 1 false

1 1 2 true

1 2 1 true

1 2 2 true
(b)

idx anb val

1 1 false

1 2 true
(c)

Figure 4.29: Evaluating the quantified expression of figure 4.28. (a) The quantifier variable fetched
from the symbol table. (b) The result of the satisfies-expression. The double line illustrates the
groups. (c) The result of the quantified expression. Attribute names are shortened.

4.9 Path expressions and predicates

XQuery implement XPath 2.0 path expressions and predicates as described in section 2.1.2
and 2.1.3. In this section we will present a method for translating some of these expressions
into MQL relational algebra.

For the translations in this section to be correct we assume the tuples returned from a scope
lookup in the hypothetical valocc-index (see Section 3.4 on page 31) will have information of
the scope it self in the scope attribute, and the contents of the scope in an value attribute.
E.g. a lookup of $c (the $-sign indicates it is a scope) in this index may return a tuple with
a[1].b[2].c[1] as its scope value.

The tuples returned from a lookup in the value occurence index will have to be ordered
according to document order. This order will have to hold even after the result is run through
a scope

The concept of the context item is important in this section, and is by the W3C defined as
follows[36]:

[Definition: The context item is the item currently being processed. An item
is either an atomic value or a node.][. . .] The context item is returned by an
expression consisting of a single dot (.). When an expression e1/e2 or e1[e2]
is evaluated, each item in the sequence obtained by evaluating e1 becomes the
context item in the inner focus for an evaluation of e2.

4.9.1 Path expressions

A path expression consists of a series of one or more steps, separated by “/” or “//”, and
optionally beginning with “/” or “//”. Each step is either a axis step or a filter expression,
and a axis step consist of a axis and a node test. This can be seen from the excerpt of the
W3C XQuery specification in Figure 4.30. A node test can be either a kind test or a name
test, we will focus on the latter.

The semantics of such expressions reading from left to right, is that the result of one step
expression is used as input for the next. Within one step expression, the result from the
preceding step will first be used as input for the axis expression. The result of this will be
filtered by a name or kind test, before this again is filtered by possible predicates.

66

[68] PathExpr ::= ("/" RelativePathExpr?)
| ("//" RelativePathExpr)
| RelativePathExpr

[69] RelativePathExpr::= StepExpr (("/" | "//") StepExpr)*
[70] StepExpr ::= FilterExpr | AxisStep
[71] AxisStep ::= (ReverseStep | ForwardStep) PredicateList
[72] ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep
[75] ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep

Figure 4.30: Path expressions as specified by W3C[36]

Step expressions can be abbreviated. If the axis name is omitted from an axis step, the default
axis is child. decendant-or-self can be replaced by using “//” istead of “/” between the
steps. @ is an abbreviation of attribute::. We will only present translation of unabbreviated
syntax.

To accomodate for the context item, the result of each step of a path expression will be
stored on the symbol table as dot – each time replacing the the last entry. The context item,
and references to it will be treated as iterator dependencies. The attribute corresponding
to a dependency on dot is dotNumb. No expression not within the path expression can be
dependent on dot, which is why dot will not be part of the dependencies ϑ returned. A
general path expression is translated in the following manner:

[/]e1/ . . . /en
7−→

put(dot, t(r(e1), {dot}))
...

put(dot, t(r(en), {dot}))
numberate(index, [dotNumb, index], [ϑ];
get(dot))

(4.18)

Where ϑ = (en.ϑ−dot). Axis step expressions are all dependent on the context item and will
take no effect of the tainting. Tainting is used in this context to ensure filter expressions to
be evaluated correctly. The ϑ piggybacking the tree in the symbol table will contain dot, as
with the iterator variables.

A general step expression, axis + name test, can be translated like this:

AXIS::QName1

7−→

project(docId, index, value, pos, scope, ϑ;
numberate(dotNumb, [dotNumb, subIdx], [(ϑ− dot)];

numberate(index, [index], [ϑ];
select(isFUNC(scope, lsc);

hhjoin([docId],[docId],[lsc=l.scope,subIdx=r.index,r.value,ϑ];
get(dot);
numberate(index, [], [];

index(valocc;
lookup($QName1))))))))

(4.19)

67

Where ϑ is the ϑ returned from get(dot), QName1 is any XML-qualified name. r.value is
short for value = right.value, index = right.index, . . . etc, and docId is short for documentId.
AXIS will map to an MQL funciton isFUNK as described in table 4.7. To ensure correct
ordering, the order of the tuples returned from the lookup operator must be the same as the
order of the tuples received by the numberate operator.

AXIS isFUNC
child isChild

descendant isDescendant
attribute isChild∗

self isSelf
descendant-or-self isDescendantOrSelf

following isFollowing
following-sibling isFollowingSibling

parent isParent
ancestor isAncestor

ancestor-or-self isAncestorOrSelf
preceding isPreceding

preceding-sibling isPrecedingSibling

Table 4.7: Mapping between XQuery axes and MQL functions.

∗For the attribute axis the parameter to lookup will have a $@-prefix instead of the $-prefix
described in the rule.

The relation after the join will contain to copies of the index attribute stemming from the
lookup, index and subIdx. This is because the numberate operator will remove the attributes
specified in the sort list. The next to last numberate operator will number the tuples according
to the document order, but among others partition on its dependency of the context item.
This numbering is necessary to solve e.g. numeric predicates. The last numberate operator
will update the dotNumb field as it is possible that the axis step do not match the items from
the last step in a 1:1 ratio.

Example 9: Consider the excerpt of a XML-document of Figure 4.32. The subscript numbers
are used to differentiate the different elements with same names, and are not a part of the
names. Further, let a non-iterator variable $a be bound to a sequence of the A-nodes of the
figure, but not in document order. An illustration of the relational representation of $a as it
is stored as the context item in the symbol table is shown in Figure 4.33(a). The val attribute
indicates which XML-node is represented and the scope-attribute indicates the scope of this
element. Figure 4.31 shows an excerpt of a query referring to the variable $a.

...$a/child::B/...

Figure 4.31: Example XQuery path expression

First, a lookup of $B (where $ indicates to find a scope/node, not a word) is done in the value
occurence index. The result of this is numerated by a numberate-operator, as illustrated in
figure 4.33(b). The index-attribute (idx in the figure) now holds the document-order of the
B-nodes. As there may be more B-nodes in the document, the index attribute may not start
at the value 1 for the tuples relevant to the query.

68

...
<A1>
<B1/><B2/>

</A1>
<A2>
</A2>
<A3>
<B3/><B4/><B5/>

</A3>
...

Figure 4.32: Excerpt of example XML-document. The subscript numbers indicate the instance of the
elements, and are not part of the QName

dNb val scope

1 A2 ..A[2]
2 A3 ..A[3]
3 A1 ..A[1]

(a) r($a)

idx val scope

.
5 B1 ..A[1].B[1]
6 B2 ..A[1].B[2]
7 B3 ..A[3].B[1]
8 B4 ..A[3].B[2]
9 B5 ..A[3].B[3]
.

(b)

Figure 4.33: Illustration of results evaluating the expression in Figure 4.31. (a) The variable $a.
(b) Excerpt of a lookup on the term $B, and the following numbering. Some attribute names are
shortened. val attribute indicates which XML-element is represented in the tuple.

The result of the lookup will be joined with the context item relation on their documentId-
attribute. As we assume only one XML-document, this attribute is omitted from our example.
A select operator is applied to the result of the join to prune the relation. Only the tuples
where the scope attribute stemming from the lookup defines a scope which is the child scope
(as defined by the MQL function isChild() in Section 3.4.4) of the scope defined by the scope-
attribute stemming from the $a relation (called lsc). After the selection the result will be as
illustrated in figure 4.34(a). The copy of the index column is not shown.

Finally, numbering is employed two times, followed by a projection removing the last at-
tributes stemming from the context item relation. The result of the expression is illustrated
in Figure 4.34(b).

4.9.2 Predicates

A predicate consists of an expression, called a predicate expression, which evaluates to a
boolean value. The expression assigned the predicate is called a predicated expression. A
predicate serves to filter a sequence, retaining the items where the expression evaluates to

69

dNb idx val scope lsc

2 9 B5 ..A[3].B[3] ..A[3]
2 8 B4 ..A[3].B[2] ..A[3]
2 7 B3 ..A[3].B[1] ..A[3]
3 5 B1 ..A[1].B[1] ..A[1]
3 6 B2 ..A[1].B[2] ..A[1]

(a)

dNb idx val scope

1 1 B3 ..A[3].B[1]
2 2 B4 ..A[3].B[2]
3 3 B5 ..A[3].B[3]
4 1 B1 ..A[1].B[1]
5 2 B2 ..A[1].B[2]

(b)

Figure 4.34: Further evaluation of the path expression in figure 4.31. (a) The result of the selection
of the joining of r($a) and the numerated result of the lookup of $B. (b) Renumbering an projection
on the relation of (a). Some attribute names are shortened.

true and discarding all other. In the case of multiple adjacent predicates, the predicates
are applied from left to right, and the result of applying each predicate serves as the input
sequence for the following predicate. If the value of the predicate expression is a singleton
atomic value of a numeric type, the predicate truth value is true if the value of the predicate
expression is equal to the position of the context item within the input sequence.

When entering a predicate the relational algebra tree corresponding to the expression assigned
to the predicate is stored as dot, containing a copy of dotNumb called sprDotNumb. The
reason for the copy is to ensure that the predicate is applied to the right context item of
the predicated expression. If the predicate expression contains a path expression, it may
update the dotNumb fields, but sprDotNumb will always correspond to the right context
item outside the predicate. The predicate expression is then evaluated, and joined with
the relational representation of predicated expression on their common dependencies. If
the context item is referred to within the predicate, the relations will have to be joined on
sprDotNumb from the predicate expression and index from the predicated expression aswell.
The context item may be referred to explicitly with the dot-operator (.), or implicitly through
a relative path expression. When evaluating path expressions it is important to note that
predicates have higher precedence than the / (step expression separator). As the predicate
may remove items, renumbering is needed:

e1[e2]
7−→

project(index, value = l.value, ϑ;
numberate(index, [index], [ϑ];

select(ifthenelse(isNumber(pred),eq(index,pred), xqBoolean(pred));
hhjoin([(e1.ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ e1.ϑ)],[l.value,pred,ϑ];
r(e1);
B(r(e2)))))

(4.20)

Where ϑ = (e1.ϑ∪e2.ϑ)−sprDot. The fields of the left relation in the join will follow l.value as
described in Section 4.3. The final project operator will restore the names of these attributes.

As described earlier, before translation of the expression the context item will be store in the
symbol table:

put(dot,
project(sprDotNumb=index, dotNumb=index, index=1, value, ϑ;
r(e1))).

70

However, if dot ∈ e1.ϑ, it will have to be stored in the following way:

put(dot,
project(sprDotNumb=dotNumb, dotNumb, index=1, value, ϑ;
r(e1))).

In both cases, attributes not explicitly mentioned will follow value and the ϑ piggybacking
the tree stored in the symbol table will be (dot ∪ sprDot ∪ e1.ϑ). The reason why there is
both a sprDotNumb and dotNumb in the same relation is because dotNumb may be updated
if the predicate is a path expression (ref Section 4.9.1).

If e2 is dependent on sprDot – meaning the predicate utilises the context item – the rela-
tions will be joined on r(e1).dotNumb = r(e2).sprDotNumb (as opposed to r(e1).index =
r(e2).sprDotNumb if it is not), as well as their common dependencies.

Example 10: Consider the XQuery query of Figure 4.35. In this query the predicate ex-
pression is dependent on the context item.

(2, 3, 4, 5)[. mod 2 = 0]

Figure 4.35: Example query with a predicate.

The predicated sequence is illustrated in 4.36(a). As it is not dependent on dot its index
attribute will be renamed to sprDotNumb (sdNb in the figure) before it is stored in the
symbol table. A reference to the context item is like a reference to a variable, and the
predicate expression evaluates to the relation illustrated in Figure 4.36(b). The two relations
only joined together on index from the predicated expression and sprDotNumb from the
predicate expression, as they do not have any other dependencies. Further, as the predicate
expression does not evaluate to a numeric type, only the tuples where pred is true are selected.
This is shown in Figure 4.36(c).

idx val

1 2
2 3
3 4
4 5
(a)

sdNb idx val

1 1 true

2 1 false

3 1 true

4 1 false
(b)

idx val pred

1 2 true

3 4 true
(c)

Figure 4.36: Evaluating the query in figure 4.35. (a) The sequence assigned the predicate. (b) The
predicate expression. (c) The relations (a) and (b) joined together and pruned with a selection.
dotNumb is omitted for simplicity. Attribute names are shortened.

To finish the evaluation of the query, after the selection, the relation will have to be renum-
bered and the pred attribute will have to be removed with a project operator.

4.10 Simplifications

In this section we will present some possible simplifications discovered during the development
of the Tainting Dependencies method. The ⇒ sign is to be read as “can be written as”.

71

4.10.1 Literals

Rule 4.5 of Section 4.3.4 shows a very general way to translate XQuery literals to a relational
format. But creating one relation for each literal is very often unnecessary, and often quite
a bit more resource consuming than alternative solutions. The parent expression of a litteral
should in most cases be informed that its subexpression is a literal instead of being handed
a one-tuple relation.

One such case is if the literal will be used in a join (predicate-less) or cartesian product.
A better solution will then be to project the literal into the other relation. Following is an
example of how such an expression should be written:

...
hhjoin([],[],. . .

. . . r(e). . .
r(Literal)

...

⇒

...
project(. . . , rvalue=Literal. . .

. . . r(e). . .
...

(4.21)

If the reason for the join with the relation was because the literal was part of a arithmetic,
comparison or logical expression, the literal may be moved inside the project operator respon-
sible for executing the binary operation, shortening the relational algebra even more:

project(val=OP(l.val, r.val). . .
hhjoin([],[],. . .

. . . r(e). . .
r(Literal)
...

⇒
project(val=OP(val, Literal). . .

. . . r(e). . .
...

(4.22)

If the cases where a literal will have to be translated to a single-tuple relation, in most cases
the index attribute will not be needed. But this will probably be detected by the optimiser,
and may be left out anyway.

4.10.2 Sequence construction

Informing a parent expression about whether or not its subexpressions will evaluate to sin-
gleton sequences can have some advantages. One is the possibility of detecting certain type
errors, as will be discussed in Section 7.2. Another advantage is gained when it comes to
sequence construction:

Rule 4.6 in Section 4.4 describes a general way to build sequences. But if all the expressions to
build a sequence from will evaluate to singleton sequences, there is no need for the numberate
operator. Further, instead of adding sprIdx fields to specify the order, this can be done

72

directly on the index fields. A version of Rule 4.6 can therefore be put like this:

{e1, . . . , en} ⊂ Singletons
e1, ..., en

7−→

union(
project(index=1, value;
t(r(e1), ϑ));
...

project(index=n, value;
t(r(en), ϑ)))

(4.23)

Where ϑ = e1.ϑ ∪ . . . ∪ en.ϑ.

If a sequence construction expression have only literal subexpressions, the translation may
be even more simplified. As the rule stands now, the sequence will be built by splicing
together single-tuple relations with an union operator. The make operator does however
support multiple items, so a better solution would be to collect all items in one MQL operator:

{e1, . . . , en} ⊂ Literals
e1, ..., en

7−→ make(name:=["index", "value"],
[1, . . . , n], [e1, . . . , en])

(4.24)

These rules may even be combined, as literals are also singleton sequences. If all the items in
the soon to be sequence are singletons, all singletons which are literals as well can be inserted
into a relation with the same make operator. The index value of the items will have to be
according to their relative position within the sequence construction expression. Following is
an example of a sequence construction with only singleton items where not all of them are
literals:

(’a’, ’b’, $b, ’c’) 7−→

union(
project(index=3, value, bnumb;
r($b));

t(make(name:=["index", "value"],
[1, 2, 4],[’a’, ’b’, ’c’]), {b}))

4.10.3 Path expressions

The scope operator of MQL can be used to filter tuples based on the value of their scope field.
The operator allows only complete scope descriptions, that is, no wildcards are allowed. /
separates the scopes, and can be read as “encompasses” or “is the parent scope of”. E.g. a/b
is read as the scope where a is the parent scope of b. This can be exploited when translating
path expressions with subsequent child axis or parent axis steps. Multiple subsequent child
axis + name test steps can be translated like this:

73

child::QName1/child::.../child::QNamen

7−→

project(docId, index, value, pos, scope, ϑ;
numberate(dotNumb, [dotNumb, subIdx], [(ϑ− dot)];

numberate(index, [index], [ϑ];
select(isChild(scope, lsc);

hhjoin([docId],[docId],
[lsc=l.scope,subIdx=r.index,r.value,ϑ];

get(dot);
numberate(index, [], [];

index(valocc;
scope(QName1/. . . /QNamen;

lookup($QNamen)))))))))

(4.25)

Where ϑ is the ϑ returned from get(dot), QNamex is any XML-qualified name. r.value is
short for value = right.value, index = right.index, . . . etc, and docId is short for documentId.

Multiple parent axis steps can receive corresponding treatment, except the path defined
to the scope operator will have to be reversed. Only clean axis + name test steps can be
translated like this, without any interruption by e.g. a predicate or kind test.

Rule 4.18 shows how whole path expressions are translated. Here, the last step is renumbered
by a numberate operator. If the last step does not include some kind of filtering, e.g. in form
of a predicate, the operator can be exchanged with a project operator like this: project(index
= dotNumb, value, ϑ;. . . .

The next to last numberate operator in the rules for translating axis + nametest expressions
(rules 4.25 and 4.19) is employed to ensure that numeric predicates always can be evaluated.
If the translator with the help of a type system be make sure that the predicate expression
does not evaluate to a numeric type, or if the step expression does not contain a predicate,
this operator may be dropped.

4.10.4 Arithmetic expressions

Rule 4.13 describes a translation of the unary - operator. If there is multiple consecutive
unary operators, there is no need to apply the translation rule the same amount of times.
The translator can count the number of unary - operators assigned to one expression. If the
number of operators is odd, the rule is applied, if it is even, no translation is needed.

4.11 Summary

In this chapter we have presented Tainting Dependencies – a method for translating XQuery
expressions into MQL relational algebra trees. Some of the base concepts behind the method
is iterator dependencies and interator dependency tainting. An expression dependent on
an iterator will have a relational representation for each iteration of that iterator. This

74

dependency can taint another expression, if that expression is a subexpression of an expression
whose evaluation requires representation for all iterations. We have presented methods for
translating features of XQuery complying to the implications of tainting and dependencies.
Finally, we presented some possible simplifications of trees generated with TD. In section 7.1
we will discuss translation of XQuery features not presented in this chapter.

75

76

Chapter 5

Implementation

This chapter describes the steps made to implement a proof of concept (dubbed “the pro-
totype”) which utilises some of the most important translation rules developed in Chapter
4. This includes an overall system description, as well as details about usage of the XQFT
Parser. Furthermore, we describe the process of building a MQL algebra tree, and how the
context sensitive visitor pattern is used. The scoping and symbol table implementation is
covered, as well as how metadata is passed between nodes while parsing the syntax tree dur-
ing the construction of the MQL tree. Finally, this chapter describes in detail how some of
the rules from Tainting Dependencies are implemented and how they can be made to work
in a real-life situation.

5.1 Prerequisites

As requested specifically by Fast Search & Transfer, this proof of concept was implemented in
Java 5.0, using regular object oriented techniques, and is licensed under a liberal BSD license.
Instructions for compilation and installation can be found in Appendix C.

5.2 List Of Supported Features

This implementation supports the translation of the following XQuery features, here anno-
tated with references to the descriptions of their respective translation:

• FLWOR constructs (Section 4.5, page 53)

• Sequence construction (Section 4.4, page 51)

• Integer literals (Section 4.3.4, page 51)

• Conditional expressions (Section 4.7, page 62)

• Binary comparison (Section 4.6.2, page 59)

77

5.3 Overall system description

A simplified class diagram describing the essentials of the system is shown in Figure 5.1.
The individual parts are described in detail in the following sections of this chapter. In this
section, the overall system, flow of data, and external API is described.

It is important to note that, as mentioned, this implementation is a “proof of concept” and
only implements a subset of Tainting Dependencies described in chapter 4.

n o . n t n u . x q f t n o . n t n u . x q f t . p a r s e

n o . n t n u . x q f t . t r e e . p a r a m

P a r a m

S t r i n g L i t e r a l

N a m e

L i s t

n o . n t n u . x q f t . t r e e

X Q F T X Q F T T r e e

+ a c c e p t (V i s i t o r : O b j e c t)

T r a v e r s e R e t u r n

i s S i n g l e t o n : b o o l = f a l s e

o p e r a t o r T r e e : O p e r a t o r

v a r R e f s : V a r R e f S e t

< < H a s h S e t > >

V a r R e f S e t

V a r R e f

n a m e : S t r i n g

V i s i t o r

+ V i s i t (C o n c r e t e E l e m e n t : O b j e c t)

R e w r i t e V i s i t o r

+ v i s i t (n o d e : X Q F T T r e e)

X Q u e r y 2 M Q L V i s i t o r

+ v i s i t (n o d e : X Q F T T r e e)

S c o p e

+ p u s h ()

+ p o p ()

n o . n t n u . x q f t . t r e e . o p e r a t o r

O p e r a t o r

n a m e : S t r i n g

o p e r a t o r s : A r r a y L i s t < O p e r a t o r >

P a r a m e t e r s : A r r a y L i s t < P a r a m e t e r >

L o o k u p I n d e x S c o p e P r o j e c t . . .

Figure 5.1: Simplified UML for complete implementation

78

5.3.1 Data flow

Figure 5.2 illustrates the flow of data when translating a XQuery query into a MQL query
(see Section 3.4 on page 31 for a description of MQL).

X Q u e r y q u e r y X Q F T p a r s e r A b s t r a c t s y n t a x t r e e

T r e e p a r s e r / T r a n s l a t o r M Q L o p e r a t o r t r e e

Figure 5.2: Data flow for XQuery parsing and translation to MQL

5.3.2 Visible external API

The API available to programmers is defined in a trivial manner in the no.ntnu.xqft.XQFT
class. This class can also be executed as a standalone application (see next subsection).
Figure 5.3 describes the no.ntnu.xqft.XQFT class.

X Q F T

+ e x e c u t e O n I n p u t (i n p u t : S t r i n g , c r e a t e D o t : b o o l ,
 c r e a t e P d f : b o o l , o u t p u t F o l d e r : S t r i n g ,
 b a s e n a m e : S t r i n g) : O p e r a t o r

+ e x e c Q u e r y (p a r s e r : X Q F T P a r s e r) : X Q F T P a r s e r . m o d u l e _ r e t u r n

Figure 5.3: External API for the XQuery to MQL translator

As can be seen, two methods are primarily available. Out of these two, executeOnInput()
is the most complex, but also the most flexible. A typical usage scenario for an external user
could be as follows:

XQFT xqft = new XQFT();
Operator mqlTree = xqft.executeOnInput(

"for $i in (1,2,3) return $i",
false, false, null, null

);

The mqlTree would now be a reference to a complete MQL operator tree, provided that no
errors occured during the parse process or the translation process.

5.3.3 Command line interface

The command line interface is available by executing the no.ntnu.xqft.XQFT class as a main
class, as mentioned in the previous section. The command line interface uses the Args Engine1

for the sake of simplicity to parse options/switches on the command line.
1http://www.adarshr.com/papers/args

79

The command line usage is as follows:

java no.ntnu.xqft.XQFT [-p] [-t] [-o <path>] file1 file2 ... fileN

It is also possible to specify queries in the form of strings enclosed in double quotes, or any
mix of strings and filenames. The switches are:

• -t : output a DOT tree (requires graphviz)

• -p : output a PDF syntax tree (requires graphviz)

• -o <path> : stores generated PDF/DOT files in the given folder, otherwise in the
current folder (simply ./)

See Appendix C for more information about installation and dependencies.

5.4 Using the XQFT Parser

The XQFT Parser [19] (described in section 2.4.3) is a prerequisite for providing the abstract
syntax tree for this XQuery translator. This section will outline how this parser was used
and interfaced with the implementation.

The XQFT Parser is a parser generated by the ANTLR parser generator. Thus, there
is a loosely standardised API available for any implementor utilising a parser generated by
ANTLR. In the case of XQFT Parser, two classes are generated: XQFTParser and XQFTLexer.
These classes are used in conjunction on an input string to produce an abstract syntax tree
(see next subsection, and also section 2.4.3).

A typical use case to achieve this is shown in figure 5.4, which is copied almost verbatim from
the implementation.

CharStream cs
= new ANTLRStringStream(

"for $i in (1,2,3) return $i");

XQFTLexer lexer = new XQFTLexer(cs);

UnbufferedCommonTokenStream tokens
= new UnbufferedCommonTokenStream();
tokens.setTokenSource(lexer);

XQFTParser parser = new XQFTParser(tokens);
parser.setTreeAdaptor(new XQFTTreeAdaptor());
parser.setLexer(lexer);

XQFTTree ast = parser.module().getTree();

Figure 5.4: Using the XQFTParser and XQFTLexer classes

Note the use of ANTLRStringStream, UnbufferedCommonTokenStream, and XQFTTreeAdaptor.
The latter, XQFTTreeAdaptor, is a specialised class required to create instances of the XQFTTree
class to represent nodes in the abstract syntax tree.

80

The actual parsing is performed by calling the method module(), which is the top-level
production rule in the grammar for the XQFT parser (see Appendix D).

The XQFTTree class represents a node in the produced syntax tree. When a syntax tree is
returned from the parser, the root node is an instance of this class, as well as all children (see
Figure 5.4)

To make practical use of the XQFT Parser, what remains is nothing more than to translate
the abstract syntax tree acquired from the call to getTree(), which is the object ast on the
last line of code in Figure 5.4.

5.5 Constructing the MQL algebra tree

MQL queries are constructed as trees, where each node represents an operator. Each node
is an instance of an operator class, and may contain a list of child operators and a list of
parameters. The trees are constructed bottom-up while parsing the abstract syntax tree
corresponding to a XQuery query.

5.5.1 Operators and parameters

no.ntnu.xqft.tree.operator

Opera tor

#name: String

#operators: ArrayList<Operator>

#Parameters: ArrayList<Parameter>

Lookup Index Scope Project ...

Figure 5.5: Simplified class diagram of MQL operators

The operators modeled in the implementation correspond to the operators described in Section
3.4.3. A simplified class diagram is shown in Figure 5.5. Converting an operator to a string is
in most cases handled by the default fallback in the Operator class, where the string generated
will be on the form:

operator_name(param1, param2, ..., paramN;
operator1;
operator2;
...;
operatorM)

81

Constructing such a string for the complete query tree is achieved by calling toPrettyString(0)
on the root node. The parameter to the method specifies the initial indentation.

n o . n t n u . x q f t . t r e e . p a r a m

P a r a m

S t r i n g L i t e r a l

N a m e

L i s t

Figure 5.6: Class diagram of MQL parameters

MQL parameters (as described in 3.4.1) are modeled as seen in Figure 5.6. Parameters require
no complex structure, and are only created and added to operators as needed.

5.5.2 Usage

The operator classes are designed to be intuitive and simple to use. Figure 5.7 shows one
example where a simple operator tree is built and converted to an MQL query string. The
result can be seen in Figure 5.8).

Lookup lookup = new Lookup("Death in the clouds");
Scope scope = new Scope("/books/book/title", lookup);
Project project = new Project("author", scope);
System.out.println(project.toPrettyString(0));

Figure 5.7: Example java code to construct a MQL operator tree

project(author;
scope(/books/book/title;

lookup("Death in the clouds")))

Figure 5.8: Resulting MQL query string from example in figure 5.7

5.6 Context-sensitive Visitor

In Section 2.4.4 a number of techniques for tree parsing were presented. In Section 3.2 the
context-sensitive visitor pattern was chosen as the technique for this implementation.

82

The context-sensitive pattern is designed to be flexible and to generate code with a higher
level of maintainability, for which the rationale was presented in Section 2.4.4.

X Q F T V i s i t o r

+ V i s i t (C o n c r e t e E l e m e n t : O b j e c t)

X Q F T T r e e

+ a c c e p t (V i s i t o r : O b j e c t)

R e w r i t e V i s i t o r

+ v i s i t (n o d e : X Q F T T r e e)

X Q u e r y 2 M Q L V i s i t o r

+ v i s i t (n o d e : X Q F T T r e e)

Figure 5.9: Context sensitive visitor implementation

The class diagram for the actual implementation of the context-sensitive visitor pattern can
be seen in Figure 5.9. Compare this to the generalised class diagram in figure 2.17 on page
22.

Note that the use of XQFTTree as the element class implies that the XQFTTree be supplemented
with an accept() method to accommodate this pattern. This method is essentially a static
dispatcher which will call the appropriate method on the visitor based on the token type of
the node currently being visited. Figure 5.10 shows an excerpt of this method and how it
acts on the visitor class.

public TraverseReturn accept(Visitor visitor) {
switch(this.getType()) {

case XQFTParser.AST_MODULE:
return visitor.visitAST_MODULE(this);

case XQFTParser.AST_FLWOR:
return visitor.visitAST_FLWOR(this);

case XQFTParser.AST_FORCLAUSE:
return visitor.visitAST_FORCLAUSE(this);

case XQFTParser.AST_LETCLAUSE:
return visitor.visitAST_LETCLAUSE(this);

case XQFTParser.AST_ORDERBYCLAUSE:
return visitor.visitAST_ORDERBYCLAUSE(this);

case XQFTParser.AST_WHERECLAUSE:
return visitor.visitAST_WHERECLAUSE(this);

...

Figure 5.10: Excerpt from the accept() method in the XQFT class

The prototype utilises two different visitors, namely the Rewrite visitor and the XQuery2MQL

83

visitor. The Rewrite visitor is used to perform rewrite operations on the abstract syntax tree
before performing the actual translation. In particular, these rewrite operations consists of
normalising the required subtrees of the syntax tree to a subset of XQuery Core (as described
in sections 2.1.6 and 3.3).

The XQuery2MQL visitor performs the bulk of the work related to performing the translation
of XQuery to MQL. This visitor is capable of re-instantiating itself (or other visitors) when
entering new contexts, such as path predicates.

5.7 Scoping and Symbol Tables

Crucial to the implementation of the Tainting Dependencies methodology described in Chap-
ter 4 is the ability to maintain a contextual environment with scoping and symbol tables.
This section details the implementation of this, and how it is used to meet the requirements
of TD.

5.7.1 Concepts

The scoping system in the implementation is based on building a scope tree. The previous
scope, if any, is set as parent of the new scope, and the previous scope maintains a list of
child scopes – this is referred to as pushing a scope. When exiting a scoped subexpression in
the AST, the previous scope is again set as the current scope. This is referred to as popping
a scope. A reference to the root scope node is always maintained. Considering the example
XQuery query in figure 5.11, the scope tree in figure 5.12 is generated. The scope itself
contains one symbol table for the current scope.

for $i in (1,2,3) return
for $a in (4,5,for $b in (6,7,8) return $b)

return ($i,$a)

Figure 5.11: Scope tree example code

i

a

b

Figure 5.12: Scope tree for source code in figure 5.11

Entries in the symbol table are represented through an instance of the SymTabEntry class
which maintains metadata about symbols (such as symbol name, a flag indicating whether
it is an iterator variable, and an evaluated expression). The symbol table is realised as

84

a subclass of the HashMap class in the java.util package, and is constrained to storing
instances of SymTabEntry, with the symbol name as key.

5.7.2 Semantics

The scoping semantics are encapsulated in a singleton manner in the class Scope, with static
methods available for pushing and popping scopes, and storing and retrieving symbols. The
external (static) API as available to a user of the scope system is shown in Figure 5.13.

S c o p e

- i n s t a n c e : S c o p e

- r o o t S c o p e : S c o p e

+ g e t (k e y : S t r i n g) : S y m T a b E n t r y

+ s e t (k e y : S t r i n g , n o d e : T r a v e r s e R e t u r n , i s I t e r V a r : b o o l)

+ p u s h (i s F l w o r S c o p e : b o o l e a n)

+ p o p ()

+ g e t I n s t a n c e () : S c o p e

Figure 5.13: Scope API

A new scope is pushed whenever a for-clause is encountered while parsing the abstract syntax
tree, and the current scope is popped after evaluating a return-clause – both of which occur
within a FLWOR expression.

The scoping system also tracks iteration variables. That is, for any scope, there is one and
only one iteration variable, except in the top scope where there is no iteration variable. The
concept of an iteration variable is explained in Definition 9. Tracking of these variables are
reviewed in Section 5.9.

5.8 Passing Metadata Between Nodes

To implement the Tainting Dependencies method it is necessary to pass metadata upwards
when parsing the syntax tree, such as iterator dependencies and flags to indicate singleton
nodes (for simplifications). Additionally, the operator tree which is being built bottom-up
(as described earlier in section 5.5) is also required to be passed upwards.

This is achieved through the TaverseReturn, which models a return type when visiting nodes
in the syntax tree. That is, the visitor methods are responsible of 1) visiting any child nodes,
and 2) returning an instance of the TraverseReturn class based on what was returned from
the child nodes, if anything.

5.8.1 The TraverseReturn Class

The class diagram for the TraverseReturn class is shown in figure 5.14. Note the flag to indi-
cate if the current context is a singleton, the reference to an MQL operator tree (which is being
built bottom-up), and a reference to a set of iterator dependencies (in the implementation
called varRefs).

85

T r a v e r s e R e t u r n

i s S i n g l e t o n : b o o l = f a l s e

o p e r a t o r T r e e : O p e r a t o r

v a r R e f s : V a r R e f S e t

Figure 5.14: TraverseReturn class diagram

The TraverseReturn class is, as mentioned, used in the visitor when visiting nodes in the
abstract syntax tree (see section 5.6). A typical use case is shown in figure 5.19, which is an
excerpt from the implementation.

5.8.2 Iterator Dependencies

Iterator dependencies, described in Section 4.3, are passed upwards together with the MQL
operator tree being built during the syntax tree parsing process. These sets of dependencies
are handled by th VarRef and VarRefSet classes. A class diagram for these classes is shown
in Figure 5.15.

< < H a s h S e t > >

V a r R e f S e t

V a r R e f

n a m e : S t r i n g

Figure 5.15: VarRefSet and VarRef class diagram

As described in Section 4.3.1, an iterator variable reference is always dependent on its corre-
sponding iterator. Thus, when a iterator variable is encountered during the parse process, and
the variable is being “read” and not assigned or declared, the corresponding iterator is added
to the current set of iterator dependencies. The example in Figure 5.16 shows the variable $a
being read, in which case the iterator is added to the TraverseReturn to-be-returned’s set of
dependencies.

for $i in (1,2,3) return
($a,4,5)

Figure 5.16: Example of the variable $a being read. Note that the iterator variable $i is never read

The source code excerpt in Figure 5.17 shows how iterator dependencies are treated in the
visitor implementation.

86

// Fetch entry from symtab
SymTabEntry entry = Scope.get(tree.getChild(0).getText());

// Obtain and append new var ref
TraverseReturn tr = entry.getTraverseReturn();
tr.getVarRefs().add(new VarRef(tree.getChild(0).getText()));

return tr;

Figure 5.17: Appending a new variable reference

5.8.3 Singleton nodes

Singleton nodes are nodes corresponding to expressions that return a sequence of exactly one
item. In the cases where this is known to be true, the result from a translation can be tagged
with this information and used later to simplify the translation of sequence construction (as
described in Section 5.9.3).

This is the case of integer literal nodes as well as iterator variable lookups in the symbol
table. The case of integer literal nodes is shown in figure 5.19 in the next section. The case
of variable lookups is somewhat less intuitive, since the singleton flag is actually stored when
a variable is first set. That is, the right-hand side of the assignment is translated once and
annotated with the singleton flag, which is then set for all subsequent lookups in the symbol
table. The excerpt in figure 5.18 shows how this is done in the implementation.

// Visit children on the right side of the assignment
TraverseReturn tr = acceptThis(tree.getChild(1));

// Required for tainting deps method
Project project = new Project("[" + varName + "numb, value]",

tr.getOperatorTree());

// Assign metadata
tr.setOperatorTree(project);
tr.setSingleton(true);

// Enter into symbol table
SymTabEntry tmp = Scope.set(tree.getChild(0).getText(),

tr, isIterationVar);

Figure 5.18: Iterator variable assignment example, annotated with the singleton flag before being
entered into the symtab

5.8.4 Example of usage

In the example in Figure 5.19, an integer literal node is visited (a node that simply holds an
integer). A make() MQL operator as well as a new TraverseReturn instance is created. The
make() operator is then appended to the TraverseReturn instance, and the isSingleton flag
is set to true since the result of this translation is a single item.

87

public TraverseReturn visitIntegerLiteral(XQFTTree tree) {

Make make = new Make("name:=[index, value], [1, " + tree.getText());
TraverseReturn tr = new TraverseReturn();
tr.setSingleton(true);
tr.setOperatorTree(make);
return tr;

}

Figure 5.19: TraverseReturn usage example

5.9 Tainting dependencies

Tainting Dependencies is a method of translating XQuery queries to relational algebra. The
semantics of this method is described in detail throughout Chapter 4. This section describes
an implementation of a subset of the rules in this method – an implementation which is
capable of translating simple FLWOR expressions, sequences, and variables.

5.9.1 Tainting

The concept of tainting one expression with the iterator dependencies of another is described
in section 4.3.2 on page 49. A method taint() is introduced to cover the semantics of this
concept. Residing in the XQuery2MQL visitor class it is reachable from all nodes of the tree.
The method is implemented like this:

protected TraverseReturn taint(TraverseReturn tr, VarRefSet varRefs) {

TraverseReturn result = new TraverseReturn();

VarRefSet taintBy = (VarRefSet)varRefs.clone();
taintBy.removeAll(tr.getVarRefs());

Operator expr = tr.getOperatorTree();
Project project;
for (VarRef varRef : taintBy) {

project = new Project(varRef.getName() + "numb",
Scope.get(varRef.getName()).getOperatorTree());

expr = new Cross(project, expr);
}

tr.getVarRefs().addAll(taintBy); \\ Add gained dependencies
result.setVarRefs(tr.getVarRefs());
result.setOperatorTree(expr);
result.setSingleton(tr.isSingleton());

return result;
}

88

5.9.2 FLWOR expressions

The translation process for FLWOR expressions was outlined in section 4.5. Consider infer-
ence rule 4.2 on page 48. This inference rule states how to translate and bind an iterator
variable in a for-clause in a FLWOR expressions. Furthermore, consider the abstract syntax
tree example in Figure 5.20. First a for-clause is visited, and the child is flagged as a FLWOR
tuplet definition.

AST_MODULE

AST_FLWOR

AST_FORCLAUSE $

$

i (

1 2 3

i

Figure 5.20: FLWOR syntax tree example

Next a dollar sign is visited (which carries the meaning of a variable in the abstract syntax
tree). If the child count is more than one, it is an assignment. Note that the isIterationVar
flag is true if this assignment is a tuple definition as flagged earlier. Then, if this is an
assignment and a tuple definition, the right-hand side of the assignment is translated, and
the symbol is entered into a symbol table. The creation of the project operator is required
by inference rule 4.2:

// Visit children on the right side of the assignment
TraverseReturn tr = acceptThis(tree.getChild(1));

// Augment with -numb attribute
Project project = new Project(varName + "numb, index=1, value",

tr.getOperatorTree());

// Assign metadata
tr.setOperatorTree(project);
tr.setSingleton(true);

// Enter into symbol table
SymTabEntry tmp = Scope.set(tree.getChild(0).getText(),

tr, isIterationVar);

if (tree.isFlworTupleDef()) {
Scope.setCurrentIterVar(new VarRef(tmp.getName()));

}

89

Following the translation of the for-clause, the return-clause and its subexpressions are
translated. When the visitor returns to the AST_FLWOR node, as there is no where or
order by-clauses iterator ordering (Section 4.5.1, page 54) is applied:

...
// Taint if needed
returnClause = this.taint(returnClause, Scope.getCurrentIterVar());

// Remove current iterator from dependencies
VarRefSet newVarRefs

= (VarRefSet)returnClause.getVarRefs().clone();
newVarRefs.remove(Scope.getCurrentIterVar());

// Sort and partition fields
String[] sortBy = {Scope.getCurrentIterVar().getName()

+ "numb", "index"};
String[] partitionBy

= new String[returnClause.getVarRefs().size() - 1];

int i = 0;
for (VarRef ref : prevVarRefs) {

partitionBy[i] = ref.getName();
i++;

}

// Construct MQL
Numberate numberate = new Numberate("index",

sortBy,
partitionBy,
returnClause.getOperatorTree());

// Construct result
TraverseReturn result = new TraverseReturn();
result.setSingleton(false);
result.setVarRefs(newVarRefs);
result.setOperatorTree(numberate);

Scope.pop();
return result;

5.9.3 Sequences

The translation process for sequence construction is described in section 4.4. First, the iterator
dependencies of the expression is calculated. This is used to taint all the subexpressions:

boolean allSingletons = true;

// Collect all iterator dependencies
VarRefSet allVarRefs = new VarRefSet();
for (TraverseReturn childResult : childResults) {

allVarRefs.addAll(childResult.getVarRefs());
if(!childResult.isSingleton())

90

allSingletons = false;
}

Union union = new Union();

for (TraverseReturn childResult : childResults) {
if(allSingletons)

projectString = "index = " + c + ", value";
else

projectString = "sprIdx = " + c + ", index, value";

union.addOperator(new Project(projectString,
this.taint(childResult, allVarRefs).getOperatorTree()))

c++;
}

if(!allSingletons)
...

The tainted expressions are added to an union operator. But first they will have to be inserted
into a project operator, with parameters depending on they are all singleton sequences or not.
If they are, the union is wrapped in a TraverseReturn, completing the translation of the
sequence constructor. If they are not, a numberate operator is needed.

Note that the parantheses in sequence expressions are not required, and according to spec-
ification, sequence expressions are recognised by the comma symbols and not parantheses.
However, the XQFT Parser rewrites sequence expressions into including a paranthesis as start
token for sequence subtrees within the AST.

5.9.4 If-then-else

The translation process for conditional expressions is explained in section 4.7. In particular,
rule 4.16 describes this translation.

First the child expressions are visited, and the variables e1, e2, and e3 correspond to the
expressions e1, e2, and e3 in Rule 4.16, while r_e1, r_e3, and r_e3 correspond to r(e1), r(e2),
and r(e3).

Continuing, sets of iterator dependencies are obtained:

// VarRefs: e2 union e3
VarRefSet v_e2_u_e3 = (VarRefSet)r_e2.getVarRefs().clone();
v_e2_u_e3.addAll(r_e3.getVarRefs());

// VarRefs: (e2 union e3) intersect e1
VarRefSet v_e2_u_e3_i_e1 = (VarRefSet)v_e2_u_e3.clone();
v_e2_u_e3_i_e1.retainAll(r_e1.getVarRefs());

// VarRefs: e1 union e2 union e3
VarRefSet v_e1_u_e2_u_e3 = (VarRefSet)r_e1.getVarRefs().clone();
v_e1_u_e2_u_e3.addAll(r_e2.getVarRefs());
v_e1_u_e2_u_e3.addAll(r_e3.getVarRefs());

91

The variable v_e2_u_e3 corresponds to e2∪e3, v_e2_u_e3_i_e1 corresponds to (e2∪e3)∩e1,
and v_e1_u_e2_u_e3 corresponds to e2 ∪ e3 ∪ e1.

This result is used to create the to project() operators and union them together:

// Alternatives
Project alt1 = new Project("index, alt=1, " + v_e2_u_e3.toStringList() + ", value",

this.taint(r_e2, r_e3.getVarRefs()).getOperatorTree());

Project alt2 = new Project("index, alt=2, " + v_e2_u_e3.toStringList() + ", value",
this.taint(r_e3, r_e2.getVarRefs()).getOperatorTree());

// Union
Union union = new Union(alt1, alt2);

The translation is finalised by using this result to construct a join and apply the select()
operator:

// HHjoin
HHJoin hhjoin = new HHJoin("[" + v_e2_u_e3_n_e1.toStringList() + "]," +

"[" + v_e2_u_e3_n_e1.toStringList() + "]," +
"[index = l.index, " + v_e1_u_e2_u_e3.toStringList() +
", lvalue = l.value, rvalue = r.value]",

union, r_e1.getOperatorTree());

// Select
Select select = new Select("ifthenelse(xqBoolean(rvalue),

eq(alt,1), eq(alt,2))", hhjoin);

// Project
Project project = new Project("index, " +

v_e1_u_e2_u_e3.toStringList() +
", value = lvalue" , select);

5.10 Summary

This chapter has described the implementation of a proof of concept for the “Tainting Depen-
dencies” method. In the next chapter, some results are presented, such as theoretical algebra
output. Additionally, algebra generated by the prototype described here will be compared to
that generated by Pathfinder.

92

Chapter 6

Results

This chapter will demonstrate a series of relational algebra trees. First, in Section 6.1, exam-
ple trees computed by hand using the rules for Tainting Dependencies are presented, utilising
some major capabilities of this method which is not supported by the prototype implementa-
tion. Further, in Section 6.2, some trivial and complex queries are generated by the prototype
implementation and displayed. Furthermore, in Section 6.3, comparisons are made to algebra
generated by Pathfinder which uses classic Loop Lifting techniques.

6.1 Theoretical Algebra

In this section, a collection of XQuery query examples and their translation to relational
algebra are presented. The translation is done manually using the “Tainting Dependencies”
method described in Chapter 4, and includes the simplifications specified in section 4.10. For
the sake of brevity, only the rules used throughout the translation will be noted. Intermediate
translations are not shown here, however they are all shown in their entirety in appendix A.

6.1.1 Extensive FLWOR

This example will illustrate the translation of the following FLWOR expression:

for $a in (1,2,3) let $b := 2
where $a gt $b
order by $a
return ($a, $b)

The translation process in its entirety is shown step by step in Appendix A.1, page 133. And
the result of the translation is shown in figure 6.1. The operator tree can be converted to the
DAG seen in Figure 6.2.

93

project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])

project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])

project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])

project([index = 2, anumb = index, value = 2];

project(index, value=l.value;)

numberate(index, [r.value, index], [];

hhjoin([l.anumb], [r.anumb], [anumb, l.value, r.value];

hhjoin([anumb],[anumb], [anumb, l.value];

select(xqBoolean(value); union(; , ,

project(index=1, anumb, value=gt(value, 2);

Figure 6.1: Complete translation of expression extensive FLWOR expression

project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])

project([index = 2, anumb = index, value = 2];

project(index, value=l.value;)

numberate(index, [r.value, index], [];

hhjoin([l.anumb], [r.anumb], [anumb, l.value, r.value];

hhjoin([anumb],[anumb], [anumb, l.value];

select(xqBoolean(value); union(; , ,

project(index=1, anumb, value=gt(value, 2);

Figure 6.2: DAG representation of the translated extensive FLWOR expression

94

6.1.2 Path expression with predicate

This example will illustrate the translation of a path expression with a predicate:

/a/b[@id eq 2]

The translation process in its entirety is shown step by step in Appendix A.3, page 140, and
the result of the translation is shown in figure 6.3. The operator can be converted to the
DAG seen in Figure 6.4.

numberate(index, [dotNumb, index], [];

project(index, docId, scope, pos, value, dotNumb;

select(ifthenelse(isNumber(pred), eq(index,pred), xqBoolean(pred));

hhjoin([dotNumb],[sprDotNumb], [value=l.value,scope=l.scope,pos=l.pos,docId=l.docId,pred=r.value];

project(dotNumb, docId, index, value, pos, scope; project(index=1, value=eq(value, 2), sprDotNumb;

numberate(dotNumb, [dotNumb, subIdx], []; project(index=dotNumb, docId, value, pos, scope, sprDotNumb

select(isChild(scope, lsc);

hhjoin([docId], [docId], [dotNumb,lsc=l.scope,subIdx=r.index,value=r.value,pos=r.pos,scope=r.scope];

symtab.get(dot); numberate(index, [], [];

index(valocc;

scope(a/b;

lookup($b)

project(docId, index, value, pos, scope, dotNumb, sprDotNumb;

numberate(dotNumb, [dotNumb, subIdx], [sprDotNumb];

select(isChild(scope,lsc);

hhjoin([docId],[docId],[dotNumb,lsc=l.scope,subIdx=r.index,value=r.value,pos=r.pos,scope=r.scope,sprDotNumb]

project(sprDotNumb=dotNumb, dotNumb, index=1, value, pos, docId, scope; numberate(index, [], []

project(dotNumb, docId, index, value, pos, scope; index(valocc;

numberate(dotNumb, [dotNumb, subIdx], [];

select(isChild(scope, lsc);

hhjoin([docId], [docId], [dotNumb,lsc=l.scope,subIdx=r.index,value=r.value,pos=r.pos,scope=r.scope];

symtab.get(dot); numberate(index, [], [];

index(valocc;

scope(a/b;

lookup($b)

lookup($@id)

Figure 6.3: Complete translation of the path expression.

95

numberate(index, [dotNumb, index], [];

project(index, docId, scope, pos, value, dotNumb;

select(ifthenelse(isNumber(pred), eq(index,pred), xqBoolean(pred));

hhjoin([dotNumb],[sprDotNumb], [value=l.value,scope=l.scope,pos=l.pos,docId=l.docId,pred=r.value];

project(dotNumb, docId, index, value, pos, scope;

project(index=1, value=eq(value, 2), sprDotNumb;

numberate(dotNumb, [dotNumb, subIdx], [];

project(index=dotNumb, docId, value, pos, scope, sprDotNumb

project(docId, index, value, pos, scope, dotNumb, sprDotNumb;

numberate(dotNumb, [dotNumb, subIdx], [sprDotNumb];

select(isChild(scope,lsc);

hhjoin([docId],[docId],[dotNumb,lsc=l.scope,subIdx=r.index,value=r.value,pos=r.pos,scope=r.scope,sprDotNumb]

project(sprDotNumb=dotNumb, dotNumb, index=1, value, pos, docId, scope; numberate(index, [], []

index(valocc;

select(isChild(scope, lsc);

hhjoin([docId], [docId], [dotNumb,lsc=l.scope,subIdx=r.index,value=r.value,pos=r.pos,scope=r.scope];

symtab.get(dot); numberate(index, [], [];

index(valocc;

scope(a/b;

lookup($b)

lookup($@id)

Figure 6.4: DAG representation of the translated path expression.

96

6.1.3 If-then-else

This example will illustrate the translation of a conditional expression:

for $a in (1,2,3) return
if $a gt 2 then $a else 3

The translation process in its entirety is shown step by step in Appendix A.2, page 137, and
the result of the translation is shown in figure 6.5. The operator tree can be converted to the
DAG seen in Figure 6.6.

project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])

project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])

project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])

project(index, value=l.value;

select(ifthenelse(xqBoolean(lvalue), eq(alt,1), eq(alt,2));

project(anumb, alt = 1, value; project(anumb, alt = 2, value=3;

 project(index=1, anumb, value=gt(value, 2);

hhjoin([l.anumb],[r.anumb], [anumb, lvalue = l.value, rvalue = r.value];

union(;

Figure 6.5: Complete translation of the conditional expression

project([index = 1, anumb = index, value];

make(name:=[index, value], [1,2,3], [1,2,3])

project(index, value=lvalue;

select(ifthenelse(xqBoolean(lvalue), eq(alt,1), eq(alt,2));

project(anumb, alt = 1, value; project(anumb, alt = 2, value=3;

project(index=1, anumb, value=gt(value, 2);

hhjoin([l.anumb],[r.anumb], [anumb, lvalue = l.value, rvalue = r.value];

union(;

Figure 6.6: DAG representation of the translated conditional expression

97

6.2 Algebra Generated By Implementation

In this section, a collection of queries are translated to relational algebra using the imple-
mented proof of concept described in chapter 5. Naturally, this implementation also uses the
“Tainting Dependencies” method, however the results from these translations will be used in
a comparison with Pathfinder in the next section.

6.2.1 Trivial FLWOR

The following query:

for $a in (1,2,3) return $a

gives the operator tree in figure 6.7.

Result

numberate(index,[anumb,index],[anumb];

project([index = 1, anumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1,index,value; project(sprIdx=2,index,value; project(sprIdx=3,index,value;

make(name:=[index, value], [1], [1]) make(name:=[index, value], [1], [2]) make(name:=[index, value], [1], [3])

Figure 6.7: Complete translation of trivial FLWOR

98

6.2.2 Complex FLWOR

This query:

for $a in (1,2) return (3, for $b in (4,5) return ($a, $b, 6))

gives the operator tree of Figure 6.9, which can be converted into the corresponding DAG of
figure 6.8.

numberate(index,[anumb,index],[];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1, index, value; project(sprIdx=2, index, value;

cross(;

project(anumb;

make(name:=[index, value], [1], [3])

project([index = 1, anumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1, index, value; project(sprIdx=2, index, value;

make(name:=[index, value], [1], [1]) make(name:=[index, value], [1], [2])

numberate(index,[bnumb,index],[anumb];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1, index, value; project(sprIdx=2, index, value;project(sprIdx=3, index, value;

cross(;

project(bnumb;

project([index = 1, bnumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1, index, value;project(sprIdx=2, index, value;

make(name:=[index, value], [1], [4])make(name:=[index, value], [1], [5])

cross(;

project(anumb;

cross(;

project(bnumb;cross(;

project(anumb; make(name:=[index, value], [1], [6])

Figure 6.8: The translated complex FLWOR query converted to a DAG

99

nu
m

be
ra

te
(i

nd
ex

,[
an

um
b,

in
de

x]
,[

];

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

cr
os

s(
;

pr
oj

ec
t(

an
um

b;
m

ak
e(

na
m

e:
=

[i
nd

ex
,

va
lu

e]
,

[1
],

 [
3]

)

pr
oj

ec
t(

[i
nd

ex
 =

 1
,

an
um

b
=

 i
nd

ex
,

va
lu

e]
;

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

1]
)

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

2]
)

nu
m

be
ra

te
(i

nd
ex

,[
bn

um
b,

in
de

x]
,[

an
um

b]
;

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

3,
 i

nd
ex

,
va

lu
e;

cr
os

s(
;

pr
oj

ec
t(

bn
um

b;
pr

oj
ec

t(
[i

nd
ex

 =
 1

,
an

um
b

=
 i

nd
ex

,
va

lu
e]

;

pr
oj

ec
t(

[i
nd

ex
 =

 1
,

bn
um

b
=

 i
nd

ex
,

va
lu

e]
;

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

4]
)

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

5]
)

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

1]
)

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

2]
)

cr
os

s(
;

pr
oj

ec
t(

an
um

b;
pr

oj
ec

t(
[i

nd
ex

 =
 1

,
bn

um
b

=
 i

nd
ex

,
va

lu
e]

;

pr
oj

ec
t(

[i
nd

ex
 =

 1
,

an
um

b
=

 i
nd

ex
,

va
lu

e]
;

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

1]
)

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

2]
)

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

4]
)

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

5]
)

cr
os

s(
;

pr
oj

ec
t(

bn
um

b;
cr

os
s(

;

pr
oj

ec
t(

[i
nd

ex
 =

 1
,

bn
um

b
=

 i
nd

ex
,

va
lu

e]
;

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

4]
)

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

5]
)

pr
oj

ec
t(

an
um

b;
m

ak
e(

na
m

e:
=

[i
nd

ex
,

va
lu

e]
,

[1
],

 [
6]

)

pr
oj

ec
t(

[i
nd

ex
 =

 1
,

an
um

b
=

 i
nd

ex
,

va
lu

e]
;

nu
m

be
ra

te
(i

nd
ex

,[
sp

rI
dx

,i
nd

ex
],

[]
;

un
io

n(
;

pr
oj

ec
t(

sp
rI

dx
=

1,
 i

nd
ex

,
va

lu
e;

pr
oj

ec
t(

sp
rI

dx
=

2,
 i

nd
ex

,
va

lu
e;

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

1]
)

m
ak

e(
na

m
e:

=
[i

nd
ex

,
va

lu
e]

,
[1

],
 [

2]
)

Figure 6.9: Complete translation of the complex FLWOR query

100

6.2.3 FLWOR with conditional

The following query:

for $a in (10,20) return if ($a > 15) then $a else 15

is translated into the operator tree of Figure 6.10. This can be converted to the corresponding
DAG of Figure 6.11.

numberate(index,[anumb,index],[anumb];

project(index, anumb, value = lvalue;

select(ifthenelse(xqBoolean(rvalue), eq(alt,1), eq(alt,2));

hhjoin([anumb],[anumb], [index = l.index, anumb, lvalue = l.value, rvalue = r.value];

union(; project(index=1, anumb, value=max;

project(index, alt=1, anumb, value; project(index, alt=2, anumb, value;

project([index = 1, anumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1,index,value; project(sprIdx=2,index,value;

make(name:=[index, value], [1], [10]) make(name:=[index, value], [1], [20])

cross(;

make(name:=[index, value], [1], [15]) project([anumb];

project([index = 1, anumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1,index,value; project(sprIdx=2,index,value;

make(name:=[index, value], [1], [10]) make(name:=[index, value], [1], [20])

group((anumb), max(value);

project(anumb, value=gt(lvalue, rvalue);

hhjoin([],[],[anumb, lvalue = l.value, rvalue = r.value];

project([index = 1, anumb = index, value]; make(name:=[index, value], [1], [15])

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1,index,value; project(sprIdx=2,index,value;

make(name:=[index, value], [1], [10]) make(name:=[index, value], [1], [20])

Figure 6.10: Complete translation of FLWOR with conditional expression

101

numberate(index,[anumb,index],[anumb];

project(index, anumb, value = lvalue;

select(ifthenelse(xqBoolean(rvalue), eq(alt,1), eq(alt,2));

hhjoin([anumb],[anumb], [index = l.index, anumb, lvalue = l.value, rvalue = r.value];

union(;project(index=1, anumb, value=max;

project(index, alt=1, anumb, value;

project(index, alt=2, anumb, value;

project([index = 1, anumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1,index,value; project(sprIdx=2,index,value;

make(name:=[index, value], [1], [10]) make(name:=[index, value], [1], [20])

cross(;

make(name:=[index, value], [1], [15])

project([anumb];

group((anumb), max(value);

project(anumb, value=gt(lvalue, rvalue);

hhjoin([],[],[anumb, lvalue = l.value, rvalue = r.value];

Figure 6.11: Translated FLWOR with condition converted to a DAG

102

6.3 Comparison

6.3.1 Assumptions

This comparison must be seen in the context of a number of assumptions about the systems
being compared. With regards to fairness, it is important to note that the algebra trees
generated by Pathfinder may have been simplified (to which the exact extent is not known),
while the algebra trees generated by the prototype developed throughout this project does
not apply any simplifications or optimalisations at all. The simplifications possibly applied
by Pathfinder are noted in [26].

Some important effects on the Pathfinder algebra tree from these optimalisations are typically:

• The cartesian products between a loop relation and a constant subexpression are trans-
formed into projections

• The custom operator attach is roughly a simpler equivalent to a project() where a new
field with a constant field is added

6.3.2 DAG comparison

Note that the readability for these DAG comparisons are not essential – however, links to
large-scale versions of these diagrams are noted in appendix B.

SERIALIZE (item) order by (pos)

EMPTY_FRAG Project (iter, pos:pos1, item)

RANK (pos1:<ord, pos>)

UNION

Attach (ord), val: #1 UNION

Attach (item), val: 1 Attach (ord), val: #2 Attach (ord), val: #3

Attach (pos), val: #1

TBL: (iter)

[#1]

Attach (item), val: 2 Attach (item), val: 3

Attach (pos), val: #1 Attach (pos), val: #1

(a) Pathfinder/MonetDB

numberate(index,[anumb,index],[anumb];

project([index = 1, anumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1,index,value; project(sprIdx=2,index,value; project(sprIdx=3,index,value;

make(name:=[index, value], [1], [1]) make(name:=[index, value], [1], [2]) make(name:=[index, value], [1], [3])

(b) Prototype implementation

Figure 6.12: Comparison of DAGs for the trivial expression in section 6.2.1

Figure 6.12 compares the DAGs generated for the trivial expression in section 6.2.1. As
expected, both implementations produces relatively small algebra for this example.

103

SERIALIZE (item) order by (pos)

EMPTY_FRAG Project (iter:outer, pos:pos1, item)

RANK (pos1:<sort, pos>)

Join (iter = inner)

UNION

Project (outer:iter, sort:pos, inner)

Project (iter:inner, pos, item) Attach (item), val: 15

ROWID (inner)

Join (iter = outer) Attach (pos), val: #1

Attach (pos), val: #1

Project (outer:iter, inner:iter)

Project (iter:inner, item)

Project (iter)

Project (iter, pos:pos1, item)

RANK (pos1:<ord, pos>)

UNION

Attach (ord), val: #1 Attach (ord), val: #2

Attach (item), val: 10 Attach (item), val: 20

Attach (pos), val: #1

TBL: (iter)

[#1]

Attach (pos), val: #1

Select (item)

Project (iter, pos, item:res)

NOT (res:<item>)

Project (iter, pos, item:cast)

CAST (cast:<item>), type: bool

Attach (pos), val: #1

UNION

Attach (item), val: false Attach (item), val: true

DISTINCT DIFF

Project (iter)

UNION

Attach (item), val: 1 EMPTY_TBL: (iter | pos | item)

Attach (pos), val: #1

Project (iter)

Select (item)

Project (iter, pos, item:res)

NOT (res:<item>)

Project (iter, pos, item:cast)

CAST (cast:<item>), type: bool

Attach (pos), val: #1

UNION

Attach (item), val: false Attach (item), val: true

DISTINCT DIFF

Project (iter)

UNION

Attach (item), val: 1 EMPTY_TBL: (iter | pos | item)

Attach (pos), val: #1

Project (iter)

Select (item)

Project (iter, pos, item:res)

> (res:<item, item1>)

Join (iter = iter1)

Project (iter, pos, item:cast)

Project (iter1:iter, item1:cast)

CAST (cast:<item>), type: int

CAST (cast:<item>), type: int

Attach (item), val: 15

Attach (pos), val: #1

Project (iter)

Project (iter)

Project (iter)

Project (iter)

Select (res)

NOT (res:<item>)

(a) Pathfinder/MonetDB

numberate(index,[anumb,index],[anumb];

project(index, anumb, value = lvalue;

select(ifthenelse(xqBoolean(rvalue), eq(alt,1), eq(alt,2));

hhjoin([anumb],[anumb], [index = l.index, anumb, lvalue = l.value, rvalue = r.value];

union(;project(index=1, anumb, value=max;

project(index, alt=1, anumb, value;

project(index, alt=2, anumb, value;

project([index = 1, anumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1,index,value; project(sprIdx=2,index,value;

make(name:=[index, value], [1], [10]) make(name:=[index, value], [1], [20])

cross(;

make(name:=[index, value], [1], [15])

project([anumb];

group((anumb), max(value);

project(anumb, value=gt(lvalue, rvalue);

hhjoin([],[],[anumb, lvalue = l.value, rvalue = r.value];

(b) Prototype implementation

Figure 6.13: Comparison of DAGs for the conditional expression in section 6.2.3

Figure 6.13 compares the DAGs generated for the conditional expression in section 6.2.3.
The immediate impression may be that the algebra generated by Pathfinder is substantially
more complex, however this stems partly from the numerous Attach operators. Also note that
Pathfinders algebra contains three joins, whereas the algebra generated by our prototype only
contains two joins.

104

SERIALIZE (item) order by (pos)

EMPTY_FRAG Project (iter:outer, pos:pos1, item)

RANK (pos1:<sort, pos>)

Join (iter = inner)

Project (iter, pos:pos1, item)

Project (outer:iter, sort:pos, inner)RANK (pos1:<ord, pos>)

ROWID (inner)

UNION

Attach (ord), val: #1 Attach (ord), val: #2

Attach (item), val: 3 Project (iter:outer, pos:pos1, item)

Attach (pos), val: #1

Project (iter)

Attach (pos), val: #1

Project (iter:inner, item)

Project (iter, pos:pos1, item)

RANK (pos1:<ord, pos>)

UNION

Attach (ord), val: #1 Attach (ord), val: #2

Attach (item), val: 1 Attach (item), val: 2

Attach (pos), val: #1

TBL: (iter)

[#1]

Attach (pos), val: #1

RANK (pos1:<sort, pos>)

Join (iter = inner)

Project (iter, pos:pos1, item)

Project (outer:iter, sort:pos, inner)

RANK (pos1:<ord, pos>)

ROWID (inner)

UNION

Attach (ord), val: #1 UNION

Project (iter:inner, pos, item)

Attach (ord), val: #2

Attach (ord), val: #3

Join (iter = outer)

Project (outer, inner)

Project (iter, pos:pos1, item)

RANK (pos1:<ord, pos>)

UNION

Attach (ord), val: #1 Attach (ord), val: #2

Attach (item), val: 4 Attach (item), val: 5

Attach (pos), val: #1 Attach (pos), val: #1

Attach (pos), val: #1

Attach (item), val: 6

Project (iter:inner, item)

Attach (pos), val: #1

Project (iter)

(a) Pathfinder/MonetDB

numberate(index,[anumb,index],[];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1, index, value; project(sprIdx=2, index, value;

cross(;

project(anumb;

make(name:=[index, value], [1], [3])

project([index = 1, anumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1, index, value; project(sprIdx=2, index, value;

make(name:=[index, value], [1], [1]) make(name:=[index, value], [1], [2])

numberate(index,[bnumb,index],[anumb];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1, index, value; project(sprIdx=2, index, value;project(sprIdx=3, index, value;

cross(;

project(bnumb;

project([index = 1, bnumb = index, value];

numberate(index,[sprIdx,index],[];

union(;

project(sprIdx=1, index, value;project(sprIdx=2, index, value;

make(name:=[index, value], [1], [4])make(name:=[index, value], [1], [5])

cross(;

project(anumb;

cross(;

project(bnumb;cross(;

project(anumb; make(name:=[index, value], [1], [6])

(b) Prototype implementation

Figure 6.14: Comparison of DAGs for the complex expression in section 6.2.2

Figure 6.14 compares the DAGs generated for the complex expression in section 6.2.2. Again
it may seem that Pathfinders algebra is substantially more complex, however this fact is, as
in the previous comparison, partly magnified due to the numerous Attach operators.

105

6.3.3 Complexity estimation and comparison

Complexity estimation is performed as detailed in section 3.5. The comparison matrix shown
in table 6.1 details the differences in complexity. This result is also charted in figures 6.15
and 6.16.

Refer to Section 3.5 on page 39 for a detailed account of how these complexity estimations
are made.

Pathfinder Prototype
Tuples Fields Tuples Fields

Trivial 16 16 15 18
Complex 215 265 136 102

Conditional 94 50 31 44

Table 6.1: Complexity comparison matrix

For the trivial example, the generated algebra seems to be close in complexity. However, for
the more extensive examples, the complexity of the algebra generated by Pathfinder seems
substantially larger. For example, consider the “complex” example where Pathfinder seems
to produce 58% more tuples and almost 160% more fields.

Trivial Complex Conditional

0

50

100

150

200

250

Pathfinder/MonetDB

Prototype
Implementation

Test case

T
u
p
le

s

Figure 6.15: Comparison of complexity based on tuple creation

106

Trivial Complex Conditional

0

50

100

150

200

250

300

Pathfinder/MonetDB

Prototype
Implementation

Test case

F
ie

ld
s

Figure 6.16: Comparison of complexity based on field creation

The tuple I/O complexity differences for join and sort operators are shown in tables 6.2 and
6.2.

Pathfinder
In Out

Min Max Avg Min Max Avg
Trivial 0 0 0 0 0 0 0
Complex 3 6 14 12.67 4 14 10

Conditional 3 4 6 4.67 1 2 1.67
Prototype

In Out
Min Max Avg Min Max Avg

Trivial 0 0 0 0 0 0 0
Complex 0 0 0 0 0 0 0

Conditional 2 3 6 4.5 3 6 4.5

Table 6.2: Tuple input/output in join operators

Considering Table 6.2, it seems that for the “complex” example, the prototype implementation
does not produce any join operators at all, while Pathfinder produces three join operators.
Also note that for the same example, Pathfinder has an average of 12.67 input tuples.

Table 6.3 shows that in the case of sort operators, Pathfinder and the prototype are more
equal in complexity

107

Pathfinder
In Out

Min Max Avg Min Max Avg
Trivial 1 3 3 3 3 3 3
Complex 6 2 14 8.8 2 14 8.8

Conditional 2 2 2 2 2 2 2
Prototype

In Out
Min Max Avg Min Max Avg

Trivial 2 3 3 3 3 3 3
Complex 6 2 14 9.33 2 14 9.33

Conditional 2 2 2 2 2 2 2

Table 6.3: Tuple input/output in sort operators

6.4 Summary

In this chapter, a series of algebra trees have been presented. Specifically, algebra computed
by hand as well as algebra generated by the prototype implementation has been presented.

In the next chapter, these results as well as challenges and problems are discussed in detail.

108

Chapter 7

Discussion

In this chapter, some central aspects of this project will be discussed. Some of them are
concrete problems or challenges, others are of a more predictive nature and may serve as a
basis for further research. Also, possible solutions or ideas are proposed where applicable.

Most importantly, XQuery features not currently supported by Tainting Dependencies (TD)
are discussed. Challenges related to XQuery sequences are presented, and some possible
solutions are proposed. The external environment and communication with it poses some
problems which are reviewed, and the lack of support for a type system in TD is elaborated
upon as well. Furthermore, we discuss some optimisations and how they may be implemented.
The prototype implementation and the usage of syntax tree normalisation is discussed. Fi-
nally, we briefly analyse the results presented in the previous chapter, and insecurities as well
as possible sources of errors are accounted for.

7.1 XQuery features not supported

In this section we will present some of the features of XQuery at the time not supported by
Tainting Dependencies, and some ideas around how a possible solution may be realised. Some
of the features are not supported because they involve types, which is discussed in Section
7.4.

7.1.1 Full-text extensions

XQuery Full Text[34] is a superset of XQuery. A quick overview of the extensions made to
XQuery can be found in Section 2.1.5. Tainting Dependencies does however at this time
support any of these features. One of the most important expressions of the extension is the
ftcontains expression. An excerpt of the EBNF specification of this expression and some
of its subexpressions can be seen in Figure 7.1. The FTPrimaryWithOptions production is a
straight descendant of FTMildNot, and FTWordsValue is a straight descendant of FTPrimary.
The complete EBNF specification can be found in Appendix D.

A simple ftcontains expression checking if a node contains a literal may be quite simple to
translate. This can be done by looking up the literal and joining the result with the node on

109

[51] FTContainsExpr ::= RangeExpr ("ftcontains" FTSelection FTIgnoreOption?)?
[144] FTSelection ::= FTOr FTPosFilter* ("weight" RangeExpr)?
[145] FTOr ::= FTAnd ("ftor" FTAnd)*
[146] FTAnd ::= FTMildNot ("ftand" FTMildNot)*
...
[149] FTPrimaryWithOptions ::= FTPrimary FTMatchOptions?
[166] FTMatchOption ::= FTLanguageOption

| FTWildCardOption
| FTThesaurusOption
...

[152] FTWordsValue ::= Literal | ("{" Expr "}")

Figure 7.1: Excerpt of W3C EBNF full text specification[34]

their scope attributes. Something like this:

e ftcontains literal

. . .
hhjoin([l.scope],[r.scope],. . . ;
r(e);
. . .

lookup(literal))

ftand and ftor expressions may extend upon this solution. These operators makes it possible
to check for more than one term per node. If the translator keeps track of which scope is
the current scope according to a path expression, as discussed in Section 7.5.2, this can
be translated quite nicely into MQL. MQL supports two operators and and or which when
surrounded by a scope operator will require the results from the two operands to stem from
the same scope. A simple ftand expression may therefore be translated something like this:

e ftcontains literal1 ftand literal2

. . .
hhjoin([l.scope],[r.scope],. . . ;
r(e);
. . .

scope(e.scope;
and(

lookup(literal1);
lookup(literal2)

A problem do however arise when the operands of ftcontains are not a node and a literal.
As can be seen from the specification in Figure 7.1, a general expression may also be an
operand. This is no simple task to accomodate for. One possible solution would be to let the
lookup operator take a relation as input. There will also be problems if the first operand is
not a node. If this is the case, there is no scope attribute to join on. An example of such a
query might be:

"a man and his dog" ftcontains "dog"

Here, the MQL processor would have to split up and search through the first operand for any
matches with the second.

110

FTMatchOption contains a great deal of options which modify in the way two terms or phrases
are matched. The options are specified like e.g. with stemming and with thesaurus. One
possible solution for accomodating for such options would be a context operator comparable to
the index operator (Section 3.4.3). The operator would take the match options as parameters,
and set the context for possible lookup operators within its subtree. Another possibility would
be to use the options as parameters directly to the lookup operator.

7.1.2 Ordering mode

XQuery contains ordered and unordered expressions. The purpose of these expressions is
to set the ordering mode in to ordered or unordered for a certain region in a query. The
expressions set up an environment enclosed by curly braces in which the specific ordering
mode applies. The default ordering mode is ordered. A performance advantage may be
realised by setting the ordering mode to unordered for expressions where the ordering of the
result is not significant. The system will then be granted the flexibility to return the result
in the order it finds most efficient.

The index attribute and the numberate operator are responsible for ensuring correct order in
Tainting Dependencies. One of the problems with MarkXRemove was that it did not consider
the ordering of items, while one of its advantages was its simplicity. By introducing the
concept of tainting to MarkXRemove, this would probably be a good start for finding a method
of translating in unordered mode. But as TD is an evolution of MarkXRemove and a more
complete method, a better solution might be to simplify this method by removing numberate
operators and all operators whose only intent is to manipulate index fields. Utilising context
sensitive visitor patterns (Section 2.4.4), differentiating translation of ordered and unordered
mode expressions will be made easy.

7.1.3 Binary expressions

In this section we will present some of the XQuery binary operator expressions not handled
in section 4.6, and some ideas for possible translations of them.

Node comparison operators

The node comparison operators of XQuery are is, « and », and are currently not handled by
Tainting Dependencies. A comparison with the is operator yields true if the two operand
nodes have the same node identity. Where node identity is defined by W3C like this [32]:

Each node has a unique identity. Every node in an instance of the data model is
unique: identical to itself, and not identical to any other node.

111

One solution would be to translate such expressions into checking if the two nodes have the
same value in their respective scope and documentId fields:

e1 is e2

. . .
project(value = and(eq(l.docId,r.docId), eq(l.scope, r.scope)). . . ;

hhjoin([(e1.ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ e1.ϑ)],. . . ;
r(e1)
r(e2)

This holds true as documentId is unique per document, and no two nodes may be in the
exactly same position within one document.

A comparison with the « and » operators returns true if, in document order, the left operand
node precedes the right operand node and if the left operand node follows the right operand
node, respectively. Otherwise it returns false. These operators have semantics comparable
with the preceding and following axes in path expressions, and may therefore be translated
by utilising the isPreceding and isFollowing functions (Section 3.4.4, page 37):

e1 COMP e2

. . .
project(value = isFUNK(l.scope, r.scope),. . . ;

hhjoin([(e1.ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ e1.ϑ)],. . . ;
r(e1)
r(e2)

When the comparison operator COMP is « the MQL function isFUNK must be isPreceding, and
when the operator is » the function must be isFollowing.

Combining node sequences

XQuery provides the following operators for combining sequences of nodes:

• union and |(read as “or”) which are equivalent. They take two node sequences as
operands and return a sequence containing all the nodes that occur in either of the
operands.

• intersect takes two node sequences as operands and returns a sequence containing all
the nodes that occur in both operands.

• except takes two node sequences as operands and returns a sequence containing all the
nodes that occur in the first operand but not in the second operand.

As all these operators eliminate duplicate nodes from their result sequences (based on node
identity), the operators are the XQuery equivalent to the relational algebra operators union,
intersect and difference discussed in Section 2.3 on page 13. The result is also required to be
in document order.

MQL does currently not implement a pure distinct operator, but if it did it would need
partition functionality similar to that of the numberate operator, and a translation of union

112

and | may have looked something like this:

e1 union e2

numberate(index, [documentId, scope], [e1.ϑ ∪ e2.ϑ];
distinct([documentId, scope], [e1.ϑ ∪ e2.ϑ];

union(
r(e1);
r(e2))))

Where the first parameter list of distinct is the field combinations which need to be distinct,
and the second list is the fields to partition on. This solution also requires the possibility sort
on scope fields.

The intersect operator may be implemented as a join on their node identity, that is,
documentId and scope. The result will have to be run through a distinct operator like in
the case of the union expression, in case any of the operand sequences contains duplicates.
A solution might look something like:

e1 intersect e2

numberate(index, [documentId, scope], [e1.ϑ ∪ e2.ϑ];
distinct([documentId, scope], [e1.ϑ ∪ e2.ϑ];

hhjoin([docId,scope,(e1.ϑ ∩ e2.ϑ)], [docId,scope,(e2.ϑ ∩ e1.ϑ)],. . . ;
r(e1);
r(e2))))

The translation of the except operator may have been solved with the help of a anti-join
(section 2.3.2 on page 17). But as MQL does not implement a anti-join operator, the same
effect may be achieved by using a left-outer-join followed by a selection. A distinct operator
is needed here aswell, as the left operand may contain duplicates:

e1 intersect e2

numberate(index, [documentId, scope], [e1.ϑ ∪ e2.ϑ];
. . .
distinct([documentId, scope], [e1.ϑ ∪ e2.ϑ];

select(eq(r.value, NULL);
hhjoin([docId,scope,(e1.ϑ ∩ e2.ϑ)], [docId,scope,(e2.ϑ ∩ e1.ϑ)],

. . . , left;
r(e1);
r(e2)))))

As can be seen, all these proposals involve multiple resource-expensive operators such as
numberate and distinct. So a better solution would be preferred, or at least to minimise the
use of the sequence combination operators when forming XQuery queries.

Range expressions

Range expressions are in the format e1 to e2 and can be used to construct a sequence of
consecutive integers. Both operands must be integers or castable to xs:integer. If a operand

113

is an empty sequence, or the integer value of first operand is greater than the integer value of
the second, the result is an empty sequence. Otherwise, the result is a sequence containing
the two integers and every integer between the two operands, in increasing order.

If the operands are literals, the translator can turn the expression into a sequence construction
expression containing the needed literals. However, if the value of the operands is not known
before runtime, such expressions will have to be handled by the MQL processor. The least
unnatural solution to this would be to implement a MQL operator taking one relation as
input, two attribute names to create a sequence from and to, and a list of attributes names
for fields that must be a part of the result. The operator would then create tuples based on
the value of the fields specified as the from and to attributes, and augment each produced
tuple with a copy of the value of the fields specified to be part of the result. This would look
something like:

e1 to e2

. . .
rangeExpr([l.value, r.value], [e1.ϑ ∪ e2.ϑ];

hhjoin([(e1.ϑ ∩ e2.ϑ)], [(e2.ϑ ∩ e1.ϑ)],. . . ;
r(e1);
r(e2))))

The rangeExpr operator would be a very specialised operator, and probably quite complex to
implement. If no better translation option is found, a better solution would be to require
range expressions to have literals as operands.

7.1.4 Order by

As can be seen from the order by-clause specification of Figure 4.5.3 on page 57, the ordering
of tuples returned from a FLWOR expression is very flexible as it may be set by one or more
ordering specifications. Options may also be set for each order specification, called order
modifiers. Currently, Tainting Dependencies only accomodates for a single order specification
and no order modifiers. Expanding the translation rule for order by ordering (Rule 4.11)
to allow multiple ordering specification may be done by sequentially joining the specifiers on
their common dependencies before joining the result of this with the relation stemming from
the where or return-clause, and finally renumbering while sorting on the values from the
order specifier in the correct order:

order by e3·1,...,e3·n

project(value = l.value, ϑ;
numberate(index, [value1,. . . ,valuen], [ϑ];

hhjoin(. . . [l.value,r.value1,. . . ,r.valuen,. . .];
t(r(eC), β);

hhjoin(. . . [value1= l.value,. . . ,r.valuen,. . .];
r(e3·1))))
hhjoin(. . .
. . .

hhjoin(. . . ,valuen=r.value. . . ;
. . .
r(e3·n))))

114

Where ϑ = (eC .ϑ ∪ e3·1.ϑ ∪ . . . ∪ e3·n.ϑ) − β. If the order by clause is defined as stable,
l.index will have to be added as a last attribute to sort on in the numberate operator.

The best way to implement the order modifiers would probably be to allow some corresponding
parameters to be specified in the numberate operator. It may be cumbersome to implement
such an operator allowing modifiers to be specified for each of the attributes to sort on.
In such a case, each of the order specifier relations may have their value fields sorted and
updated by their own numberate operator.

7.1.5 XQuery functions

XQuery supports numerous built-in functions, such as fn:not and fn:count, all specified in
[35]. These functions are identified by being a member of the fn-namespace. In addition,
XQuery allows users to declare functions of their own. A function declaration specifies the
name of the function, the names and datatypes of the parameters, and the datatype of the
result, as can be seen from the specification in Figure 7.2.

[26] FunctionDecl ::= "declare" "function" QName "(" ParamList? ")"
("as" SequenceType)? (EnclosedExpr | "external")

[27] ParamList ::= Param ("," Param)*
[28] Param ::= "$" QName TypeDeclaration?

Figure 7.2: W3C XQuery function declaration specification[36]

The external keyword means that the function is implemented outside the query environ-
ment. This is discussed in Section 7.3. To support built-in and query declared functions with
TD, a function table may be introduced. By querying this table with the name of the func-
tion, a operator tree is returned with pointers to possible references of the parameters within
the tree. When the translator comes upon a function call, it fetches this tree and follows the
pointers to the parameter references and inserts the corresponding algebra tree. The built-in
functions will have to be hardcoded and reside within the function table at startup.

7.2 XQuery sequences

There is no distinction between an item, that is, a node or an atomic value, and a single-
ton sequence containing that item in XQuery. An item is equivalent to a singleton sequence
containing that item and vice versa. A sequence may contain nodes, atomic values, or any
mixture of nodes and atomic values. But it may be advantageous for a translator to differen-
tiate singleton sequences from other sequences.

As we saw in Section 4.10, by knowing that all subexpressions return singleton sequences, the
translation of the sequence construction expression may be simplified. If the return-clause
expression is a singleton sequence the translation of iterator ordered FLWOR expressions may
also be simplified. If the FLWOR only contains only one iterator and no where-clause the
renumbering can be replaced by a renaming of the −numb field corresponding to the iterator
to index. Understanding that this works can be done by considering the rule for translation
of iterator ordering (rule 4.9). As the return-clause is a singleton, the index fields will have

115

the constant value 1. β will contain only one −numb attribute, holding information of which
iteration the value in value occurs. The iteration number will then become the index field of
the sequence created by the FLWOR.

Some expressions, such as arithmetic expressions, order by-expressions and value compar-
isons, require their subexpressions or operands to be singleton sequences. This means that a
query such as (1, 2) + 3 will raise a type error. By having the knowledge of the cardinality
of the sequence returned to such an expression, the translator may raise the error, and avoid
a faulty query being run on the MQL processor. Evaluating the cardinality of seqences re-
turned from expressions is in many cases a simple task. Some expressions will always return
singletons, such as logical, comparison and aritmetic expressions, iterator variable references
and literals. The cardinality of sequences constructed of such expressions may also be cal-
culated in the translator. A problem arises, however, when dynamic content (not from the
query itself) is included. Consider the following query:

for $a in doc("people.xml")//person
order by $a/surname
return $a

As previously stated, the order by-expression only accepts singletons. If the document con-
tains a person node containing two surename nodes the query should fail. The translator
does however not have the ability to evaluate if a type error should be raised or not. The
query stated will, without a check for multiple surname node per person, result in a sequence
where the person nodes containing more than one surname node will occur more than one
time.

The problem lies in the fact that the query is not a erroneous MQL query, but a erroneous
XQuery query. One solution would be to implement a check in MQL, which would inform the
MQL processor of any potential error. This can be done e.g. by a MQL function raiseError(),
which would abort the evaluation of the query and e.g. throw an exception. All items in
the relational representation of sequences in Tainting Dependencies are marked with their
position within the sequence with the index field. One way to check if an expression e does
not return a singleton sequence can be the following:

select(ifthenelse(eq(index, 1), true, raiseError());
r(e))

The check may of course be omitted if the translator is sure, by the means discussed earlier,
e will return a singleton.

7.2.1 Effective boolean value

Within certain circumstances it is necessary to find the effective boolean value of a sequence.
The effective boolean value is by W3C defined as follows[36]:

The effective boolean value of a value is defined as the result of applying the
fn:boolean function to the value.

Where the function is declared as fn:boolean($arg as item()*) as xs:boolean and the
dynamic semantics are defined as follows[35]:

1. If $arg is the empty sequence, fn:boolean returns false.

116

2. If $arg is a sequence whose first item is a node, fn:boolean returns true.

3. If $arg is a singleton value of type xs:boolean or a derived from xs:boolean, fn:boolean
returns $arg.

4. If $arg is a singleton value of type xs:string or a type derived from xs:string,
xs:anyURI or a type derived from xs:anyURI or xs:untypedAtomic, fn:boolean re-
turns false if the operand value has zero length; otherwise it returns true.

5. If $arg is a singleton value of any numeric type or a type derived from a numeric type,
fn:boolean returns false if the operand value is NaN or is numerically equal to zero;
otherwise it returns true.

6. In all other cases, fn:boolean raises a type error.

In the chapter presenting Tainting Dependencies, Chapter 4, we solved resolving the effective
boolean value of sequences with the help of an assumed MQL function xqBoolean() and
an undefined abstract function B(). In that chapter we said it was enough to consider it
as a grouping function returning one tuple per unique iteration (as implied by the iterator
dependencies). The points 3-5 of the definition of the effective boolean value are all handled
by xqBoolean() without problems, as they all concern singleton sequences. Points 2 and 6
together, however, creates a interesting situation. They imply that when finding the effective
boolean value of all possible XQuery sequences, all should cause an error, except the sequences
where a node is the first element, regardless of the other items in the sequence.

This means that a simple check as proposed for evaluating the cardinality of operands for
e.g. arithmetic expressions earlier in this section will not do. A possible solution for the B()
function would be to run a group operator on the relation, grouping on the unique iterations,
and run a count and some aggregator functions selecting the value and type of the first item
of each group. Further, the result will then have to be checked similar to the check proposed
earlier.

select(or(eq(type, node), ifthenelse(eq(count,1), true, raiseError());
group((e.ϑ), count(), selProj(eq(index,1), value), selProj(eq(index,1), type);
r(e)))

Where selProj(pred, field) is a kind of selection and projection hybrid, selecting field field
if predicate pred is true. Such a aggregator function may however seem strange, and there is
nothing similar implemented in the MQL processor.

An alternative can be to utilise the groupby operator. The semantics of this operator is the
same as for the group operator, except that the input relation is unchanged and returned
as the output. Further, the result of the grouping is returned as a separate, named relation
(“result set” in MQL lingo). The resultset operator with the name as its parameter will fetch
this named result:

select(and(eq(index,1), or(eq(type,node), ifthenelse(eq(count,1), true, raiseError())));
hhjoin([e.ϑ], [e.ϑ], [l.value, r.count];

groupby(countrelation, (e.ϑ), count();
r(e));

resultset(countrelation)))

Both solutions assume a type system where a field type holds the type of the item represented
in the tuple. The last proposal of a implementation of the B() function only uses operators

117

and functions already implemented in the MQL processor. A disadvantage with this solution,
however, is that it will probably be more resource-demanding as it consists of both a grouping
and a join.

Point #1 in the definition of evaluation of effective boolean value is also a bit problematic.
This is because Tainting Dependencies, as it is presented in Chapter 4, does not handle empty
sequences explicitly. And in most cases this is sufficient, as non-empty sequences containing
empty items should be normalised. In the following query it is clear that the result must be
all the maybe nodes of the document which is a child of a elem node:

fn:doc("nodes.xml")//elem/maybe

The elem nodes which does not contain a maybe node (making ../elem/maybe an empty
sequence) are irrelevant to the evaluation of this query. The only time the need for knowledge
of a possible empty sequence arises is when evaluating the effective boolean value. Consider
the following XQuery expression:

if($a/maybe) then
"exists"

else
"empty"

Further, let $a be an iterator variable consecutively bound to one and one elem node. If
some of the elem nodes does not contain a maybe node, some items of the resulting sequence
should be the string literal "empty".

A possible solution to this would be to differantiate between the times the empty sequences
are needed, and the times they are not. This can be done by evaluating all the descendant
expressions of an expression which is to be calculated into a effective boolean value, in its own
context. To evaluate some expressions in another matter according to the context is made
simple by implementing a context sensitive visitor pattern (section 2.4.4). The difference
in translating in the logical context as opposed to the default context will only be that all
joins on common dependencies will have to be made into full outer joins. In addition joins
such as in the axis+name test translation (Rule 4.19) where only the left operand may have
dependencies, will have to be turned into a left-outer join. Always employing outer joins will
ensure that no −numb field corresponding to one unique iteration will be removed from the
relation. Using this solution xqBoolean() must return false if it is run with NULL as input.

7.3 External environment

XQuery provides some different ways to communicate with the external environment, that
is, the world outside the query. One of these features is that variables and functions may
be declared with the external keyword. A query containing such expressions will have to
be translated by the translator, leaving space where the expressions are referred to. These
spaces will have to be filled by another part of the system. If the contents of the variables
and functions are known before runtime, a better solution would be to insert them into the
symbol and function tables of the translator before translation commences.

The functions fn:doc and fn:collection also provide access to external data. The fn:doc
function takes a string containing a URI. If that URI is associated with a document among the

118

available documents, the function returns a document node representing the given document.
Conformant to Tainting Dependencies, this function would need to map the document name
to a document id, and return a relation containing one tuple with this document id in the
documentId field and an empty scope field.

A collection can be any sequence of nodes. The fn:collection function also takes takes
a string containing a URI. The URI will have to be associated with a collection, which is
returned from the function. To accomodate for this function with Tainting Dependencies, the
collection returned must be in form of a relation with index, documentId, pos, scope and
value fields. The collection may of course be a collection of document nodes.

The final way for XQuery to access the external environment is through initial values (ap-
pendix C.2 of [36]). Most important of these is the context item and the default collection.
The default collection is referred to with a function call with fn:collection without an URI
as parameter. The initial context item is referred to explicitly with the . (dot) operator, or
implicitly at the start of a path expression. These features may be supported in Tainting
Dependencies by inserting the values in the function and symbol table, respectively.

7.4 Type system considerations

Currently, neither Tainting Dependencies (TD) nor the prototype implementation assumes
any form of availability of a type system. However according to the formal semantics
specification[33] (and also noted in [13]), XQuery Core is inherently fully statically typed.
This suggests that full normalisation of queries to XQuery Core would imply the availability
of this. Static typing could help solve some problems, such as distinguishing numeric pred-
icates. However, XQuery Core has semantics for solving this exact problem – the predicate
normalisation mapping applies a typeswitch construct which contains the necessary logic
to differentiate between numeric predicates and other predicates. And regardless, numeric
predicates were solved in TD as per Rule 4.20.

Another related challenge is the lack of explicit typing in the MQL language. The only
concrete specification given by Fast Search & Transfer is the fact that if a column is typed,
then if can only contain fields of that type. MQL has typed columns, however it is not possible
to specify type. For example, the make operator has no parameters for type specification.
This is complicated further by the fact that a XQuery sequence is simply just a sequence.
The individual items themselves can have vastly different types.

The intricate challenges related to typing are numerous. For example, consider the sequence
(1, <a>2, "3"). This sequence can not be represented in a relation without
resorting to a BLOB1-like data type for the value column. However, that implies that the
semantics of the second item as an XML element is lost unless it is somehow serialised in a
common format with which MQL is compatible. That again implies that metainformation
about fields may be required to indicate the type of the contents.

Furthermore, the isaxis() functions proposed in section 3.4.4 on page 37 requires a scope field
in the tuple being tested. Consider this non-sensical example:

1Binary Large Object

119

for $i in (1,2,3) return
$i/a

Somehow, this error must be discovered and prevented. Likewise, the following example must
be allowed without errors:

for $i in (<a>1, <a>2, <a>3) return
$i/b

On a final note, non-heterogeneous sequences are seldom of practical use, and can appear
irrational. Path expressions always return nodes, string operations always return strings, and
so on. Non-heterogeneous sequences are, as far as known to the authors, only specifiable by
an end-user of XQuery, for example by attempting to execute a query such as this:

for $i in (1, <a>2, "3") return
$i * 2

This particular example appears non-sensical, and will likely not execute. For example, the
Saxon parser[6] returns this run-time error message when attempting to execute the above
query:

XPTY0004: Unsuitable types for * operation
Query processing failed: Run-time errors were reported

Naturally, it appears that typing is an important but complex aspect of XQuery, and several
issues such as the ones described here needs to be solved for a full implementation to take
place.

7.5 Optimisation

In Section 4.10 we presented some situations where the translation from XQuery into MQL
can be specialised and simplified. In this section we will outline some ideas for further
simplification and optimisation.

As can be seen of the tree in Figure 6.3 on page 95, Tainting Dependencies can produce
relational algebra trees with consecutive project operators. This is of course unnecessary, and
such operators can be merged into one single project. Additionally, attributes which is not
part of the result or part of evaluation of the result can be pruned. This may however not be
anything the translator would need to consider, as the MARS optimiser already implements
methods for detecting and simplifying such trees.

Rule 4.16 on page 63 describes the translation of XQuery if..then..else expressions. It
was implemented considering the result would be a operator tree and not a DAG, and the
number of operations should be minimised. In this translation both the then-expression and
the else-expression will be evaluated and their results spliced together. From this relation
the tuples stemming from the right expression according to the result of the test expression
is selected. If the MQL processor labours DAGs it may be a better solution to evaluate the
two expressions only for the cases where they are to be returned.

This may be done in a matter very similar to the Loop Lift solution (equation 2.9 on page
26). In this solution different loop relations are made depending on the outcome of the
test-expression. One of the relations are used to evaluate the then-expression, another the

120

else-expression. As Tainting Dependencies does not utilise loop relations, some changes
would have to be made. Evaluation of the test-expression will reveal which unique iterations
which expression is to be evaluated in. Based on this information iterations can be pruned
from the two expressions before they are evaluated.

7.5.1 XQuery semantics

As XQuery is a purely functional language, an implementation is always free to evaluate
the operands of an operator in any order[36]. This means that a MQL optimiser is able
to rearrange operators as it sees fit, with the possible outcome of a less expensive query
execution. One such case would be in a path expression such as this:

$i/child::elem/descendant::maybe

If the optimiser has some notion of the frequency of occurence of the maybe and elem nodes,
as well as the cardinality of the relational representation of $i, it may not be evaluated from
left to right. If there exists only a few maybe elements and the $i relation is relatively large,
the most effective execution plan for this path expression would most likely be from right to
left.

In some cases, a XQuery implementation can determine the result of an expression without
accessing all the data that is implied by the formal expression semantics. A consequence of
this is that some errors goes undetected. W3C specify to which extent an implementation
may optimise its access to data at the cost of not detecting errors like this [36]:

Consider an expression Q that has an operand (sub-expression) E. In general
the value of E is a sequence. At an intermediate stage during evaluation of the
sequence, some of its items will be known and others will be unknown. If, at such
an intermediate stage of evaluation, a processor is able to establish that there are
only two possible outcomes of evaluating Q, namely the value V or an error, then
the processor may deliver the result V without evaluating further items in the
operand E. [. . .]

There is an exception to this rule: If a processor evaluates an operand E (wholly
or in part), then it is required to establish that the actual value of the operand E
does not violate any constraints on its cardinality. [. . .]

This feature could be utilised in situations where path expressions are to be evaluated to
effective boolean values (as described in Section 7.2.1). If the path expression is to return
either nodes or an empty sequence, it is sufficient to find one node per unique iteration.
This might prove difficult to implement on an MQL processor however, as it is hard to
know which unique iteration an node belongs to before the node relation and a relation with
representations in all unique iterations are joined together.

Another situation where not accessing all data is required is with numeric predicates. The
formal description of filter expressions[33] says that an expression such as $s[1] should be
evaluated by consecutively examining the items of the sequence $s, and selecting all items
where position()=1. A better solution would be to only pick the first item of the sequence.
But as Tainting Dependencies stores sequences from many iterations in the same relation,
and no ordering can be assumed, this can not be done easily. The MQL processor will have
to sequentially scan the relation to find the tuples holding the items which are the first item

121

of their respected sequences, unless there is som kind of indexing of the relation on the index
fields. In such a case the processor could simply lookup the tuples where index has the value
1.

7.5.2 Path expressions

Quite a lot of research has been done on optimising XPath (Path expressions in XQuery stem
from XPath) since it became a W3C Recommendation in 1999. Of the documents produced
by this research we would recommend [22], [21] and [14]. As this is outside the scope of this
report the contents of these will not be resited here. However, [9] presents a reverse axis
removal algorithm which may be interesting in a MQL and Taiting Dependencies specific
setting. The algorithm recognises path expressions containing reverse axis steps, and rewrites
them into pure forward axis step expressions with possible predicates. This may be helpful
as the MQL scope operator only accepts steps equivalent to the child axis.

By letting the translator keep track over valid consecutive child axis steps, the scope operator
may be employed to filter the results from the lookup (ref Rule 4.19, page 67), most likely
reducing the tuples involved in the subsequent join. Consider the following path expression:

/a/b[g]/c//d[h]/e

Here, the result of looking up g may be filtered by a scope operator with /a/b/g as its
parameter. Similarly, the lookup of c may be filtered on /a/b/c. Because the name test d is
not part of a child axis step (rather a descendant-or-self axis step), no filtering can be
done. However e may be filtered by scope with the parameter d/e. Some consideration will
still have to be done concerning how much cheaper the join will become with the filtering
compared to the cost of filtering one of its operands. Additionally, if a leading slash (/) in the
parameter to the scope operator would indicate an absolute path, the operator could in many
cases perform a more strict and accurate filtering. Without this leading slash, the filtering
would be on a relative path – as before.

One idea would be to move all predicates out of the path expression, and apply them as post
filters. This would probably reduce the number of required joins – at least in some cases. In
other cases it may be to costly to build a filter fitted to the whole path expression. If e.g.
h from the last example query was a number instead, the path expression up until d would
have to be evaluated, filtered with the g predicate, and finally joined with the evaluation of
the path expression without the last predicate on the scope fields of their d step.

The rule for translating predicates, Rule 4.20 on page 70, is a general rule. Here, a reference to
the context item from the outside of the predicate is “copied” inside the predicate (containing
sprDotNumb). This copy is then operated on, and the evaluated predicate expression and
the predicated expression is joined on the reference to the context item. An example of this
process is seen in figure 6.4 on page 96. Here, the copying is seen in the form of a upwards
split. However, if the context item is only referred to once within the predicate this translation
may however be simplified.Consider the following XQuery query:

//person[name eq "Robert"]

This can be solved by joining the name relation with the person relation, and keeping all the
attributes from both relations. The attributes stemming from the name relation would have
to be marked in some way, as these are not a part of the result of the query. The relation

122

will have to be filtered with a selection removing the tuples where the scope stemming from
the name is not a child scope of the scope stemming from the person relation. Further, only
the tuples where the value stemming from the name relation is "Robert" is retained. Finally
the attributes stemming from the name relation are projected away.

A similar solution may be considered for other types of predicates as well, but if there is more
than one reference to the context item within the predicate things get more cumbersome.
In such a case the method would have to be sure that no reference to the context item is
removed from the relation at any time before the finalisation of the evaluation.

7.6 Implementation

Chapter 5 describes how a prototype was implemented to demonstrate the “Tainting Depen-
dencies” method. This implementation was dependent on a number of constraints:

• The availability of a free2 pre-made XQuery parser capable of producing abstract syntax
trees

• The ability to parse and manipulate syntax trees and re-write them into new structures

• The ability to translate syntax trees into MQL (MARS relational algebra)

In this section, the methods chosen to achieve the goals of the implementation are discussed
and elaborated upon.

7.6.1 Manual vs. automated tree parser construction

ANTLR provides a utility for automated construction of AST parsers. This utility requires
the specification of a separate tree grammar. The tree grammar is almost identical to the
original parser grammar. Practically, the parser grammar can be copied verbatim, renamed,
modified slightly and used as a tree grammar. This process is described in detail in [20],
section 8.1.

This introduces some redundancy. If not all nodes in the AST can be matched by the tree
grammar, the parser will throw an error for encountering an unknown token. This implies
that an ANTLR tree grammar will need to recognise all tokens in a syntax tree, thus the tree
grammar in some ways depends on being synchronised with the parser grammar to be able
to function properly.

This creates a potential problem with maintainability. As the parser grammar and rewrite
rules are not freezed at this point but rather highly subject to change, any changes made in
the parser grammar will need to be transferred to the tree grammar, and vice versa.

In [2], Terence Parr argues that the traditional visitor pattern (Section 2.4.4) only provides
a simplistic facility for triggering events on the AST, that no tree structure validation is
implicitly available, and that context information has to be passed down through the tree
during the parse or by setting global variables.

2By “free” is meant a liberal license and availability of source code

123

In another point of view strongly polar to that of Terence Parr, Andy Tripp argues that
manual tree parsing is better[1]. He establishes the following points of argument which are
of particular interest to this project:

• Duplication of code and effort – the concept of “what is a valid AST” would have to
be implemented in both the parser and the AST transformer phase (as a rebuttal to
validation of AST).

• With regards to contextual information, There seems to be nothing wrong with depend-
ing on the physical structure of the AST.

• Defining a traditional parser in grammar is practical because the grammar usually
resembles the ouput AST. In the case of a tree parser proposed by Parr where the
grammar actually resembles the input AST, this mapping may break down completely
if the output is another tree structure.

In particular, the last point holds a strong indication that a tree grammar may not be suited
for this project, as the goal of this tree parser would be to transform the AST into a relational
algebra tree.

7.6.2 AST rewriting and the visitor pattern

In Chapter 3, methods to achieve the goals of the implementation were presented. The method
chosen for parsing of the abstract syntax tree (see Section 3.2) was the context sensitive visitor
pattern. This pattern laid the foundation for a clean and simplistic implementation. The
semantics of the tree parsing process itself did not interfer unecessarily with the rest of the
implementation.

The process of rewriting the abstract syntax tree was implemented as a stand-alone visitor
(the RewriteVisitor class). This implementation exploited the visitor pattern extensively,
resulting in a clear separation of concerns. In particular, it seems to hold true that the visitor
pattern typically will cleanly separate a data structure from an algorithm which is operating
on that structure.

7.6.3 Constructed algebra trees and performance

As explained in Section 5.5 on page 81, the MQL is constructed as an in-memory tree struc-
ture. This was done by instantiating a new Operator subclass (the exact class depending
on context) for every node in the tree. It is important to note that even though this could
become a performance bottleneck for very large and complex queries, it is still an important
trade-off. In exchange for a theoretical performance bottleneck, the implementation achieves
a higher level of maintainability.

7.7 Normalisation and rewriting

In Section 3.3 on page 30, some methods for rewriting (normalising) certain expressions to
XQuery Core were described. In the prototype implementation, these rewrites are made using
the RewriteVisitor class. The advantage of normalising to XQuery Core is simplification of

124

the syntax tree while maintaining full semantics. That is – the final syntax tree may be bigger
and appear more complex. However, expressions such as FLWOR and path expressions are
split into smaller subexpressions that are easier to parse by themselves.

This project has taken an pragmatic approach to normalisation. The rules defined in Chapter
4 do not rely on normalisations. However, for the sake of simplicity in the prototype, a rewrite
visitor was applied to simplify FLWOR expressions. This must be seen in the light of the
fact that XQuery Core is a very extensive specification[33], and so strict adherence to this
specification would imply a substantially larger amount of effort into normalisation.

Consider the normalisation of RelativePathExpr/StepExpr which is normalised into a FLWOR
expression3. This may be counter-productive as the usage of the scope operator in MQL will
imply that this normalisation will somehow have to be reversed.

Furthermore, the normalisation of FLWOR expressions themselves require that where-clauses
are rewritten to if..then..else expressions. The rules for this normalisation process is
shown in section 2.1.6 and figure 2.3 on page 2.3. However, in Tainting Dependencies (TD)
the translation of a where-clause (Rule 4.10 on page 56) is optimised and shown to be more
efficient than the translation of an equivalent if..then..else expression (rule 4.16 on page
63). This is a paradoxical situation, and raises the question of whether other normalisation
rules may also affect the efficiency of the resulting translation.

On a final note, the TD method in its current state does not rely on denormalised XQuery –
however it is compatible with XQuery Core since XQuery Core is a subset of XQuery.

7.8 Results

Chapter 6 presented a series of algebra trees – some calculated by hand using Tainting De-
pendencies, and others generated using the prototype implementation described in Chapter
5. Furthermore we compared algebra generated by the prototype with that generated by
Pathfinder. This section will discuss these results in detail.

7.8.1 Translation output

In sections 6.1 and 6.2, a series of XQuery queries were translated using the novel Tainting
Dependencies (TD) methodology developed and described in Chapter 4. In section 6.1, where
hand-computed translations were presented, a series of simplifications were applied (these
simplifications were described in Section 4.10). However, the prototype developed in Chapter
5 did not implement any of these simplifications. This was an important point to keep in
mind when later comparing this algebra to that generated by Pathfinder, and is discussed
more thoroughly in the next section.

One characterisation of the algebra generated by TD is that nodes with more than one parent
node are typically located far towards the bottom of the algebra tree.

Another characteristic of the algebra is that is seems to maintain a fairly compact form. This
is partly due to the fact that the tainting process does not affect constant subexpressions, and

3See http://www.w3.org/TR/xquery-semantics/#id-axis-steps for details

125

thus the potential size of the algebra is reduced significantly. Compare this to Loop Lifting
used by Pathfinder, where all expressions within a loop body are loop lifted – as explained in
sections 2.5.3, 2.5.6, and 2.5.7.

7.8.2 Complexity comparison

The complexity calculation method (see Section 3.5 on page 39) defined by Øystein Torb-
jørnsen at Fast Search & Transfer was used to compare complexity in the algebra generated
by the prototype implementation to that of Pathfinder. This comparison was based on three
queries (Trivial, Complex, and Conditional). For each of these queries, algebra was generated
on both the prototype implementation as well as Pathfinder. Then the described method of
calculating complexity was applied to these trees, and the result was used to compare the
prototype and Pathfinder.

We found that in terms of counting tuple and field creations, TD seems to excel in large and
complex queries. In the case of more trivial queries, Loop Lifting and TD seem to perform
similarly. Furthermore, in the case of tuple input/output in join and sort operators, we saw
that for the “complex” query example, TD did not produce any equi-joins at all, while Loop
Lifting produces 3 equi-joins for the same expression.

Though an interesting comparison, this is a sparse source of data – it is difficult to be con-
clusive based this data alone. However, with the exception of the most trivial query, it seems
that the “Tanting Dependencies” (TD) method generates substantially less complex algebra
than Pathfinder. As one may consider TD more specialised method than the general Loop
Lifting technique, this should emerge as a natural consequence.

However, there are some sources of uncertainty for this comparison. It is not known exactly to
which degree simplifications and optimalisations have been applied to the algebra generated
by Pathfinder. In any case, the algebra generated by TD is not simplified or optimised, and
as such puts these implementations on equal footing.

It is also known that Pathfinder does not :

• generate algebra using pure Loop Lifting as would be expected from [28] and [26] – this
is deduced by comparing the output from Pathfinder with the output from the rules
defined in [28] and [26]

• apply all simplifications described in [26] – again, this is deduced by comparing the
output from Pathfinder with the supposed output from the simplifications in [26]

Additionally, in Section 3.5.1 on page 40 it was assumed that the Diff and Distinct operators
utilised by Pathfinder both creates 0 tuples and 0 fields, only relaying the input to output. It
is natural to assume that both of these are in fact costly operators in some aspects. However,
given that Diff computes a difference between result sets, this does not imply that it creates
new tuples and/or fields. Furthermore, the Distinct operator only removes duplicates, and
as such it should be safe to assume that it does not generate new tuples and/or fields. This
implies that these assumptions may favour Pathfinder, but likely not in the context of the
method for calculation of complexity used here.

Furthermore, it is natural to assume that Pathfinder generates algebra which is tailored for
execution on the MonetDB database system (as indicated in [26]).

126

With regards to performance measurement, and with the lack of availability of a proper
implementation of a MQL processor (as mentioned in section 3.4 on page 31), it could have
been of interest to generate algebra using TD modified for MonetDB, and compare actual
performance of Loop Lifting vs. TD on this database system. This notion is further detailed
in Section 9.

Finally, it is important to note that the complexity comparison performed did not in any way
account for disk I/O or CPU and memory usage, and the results must not be interpreted as
such. Again, see Section 3.5 on page 39 for an detailed account of this method.

7.8.3 Loop Lifting vs Tainting Dependencies

This project has studied two approaches for translating XQuery to relational algebra; Loop
Lifting as implemented by Pathfinder, and “Tainting Dependencies” (TD), which is a novel
method developed in this project which still shares a few common traits with Loop Lifting.
However, the motivation for the development of TD was the fact that the more expressive
MQL algebra allowed more flexibility in the translation. Furthermore, Loop Lifting had the
disadvantage of full denormalisation, as noted in [26]:

[..] Loop Lifting consequently leads to a fully denormalised representation for e
and thus to – at least potentially – significant data redundancy

And so a major motivation for the development of TD was avoiding this level of denormali-
sation.

Another common trait of Loop Lifting, which is also noted in [28] and [26], is that the algebra
trees will quickly grow very large. Consider the example in section 2.5.8 on page 26; here,
the intermediate results grow in size very quickly. In particular, they are comparatively large
seen in the context of the trivial query they are produced from.

When the algebra trees generated by Loop Lifting are converted to DAGs, this trait may not
seem so appareant. However, it is easily recognised by the fact that nodes with more than
one parent often are located in the middle and higher parts of the tree, for example as seen
in figure 6.13(b) on page 104. If this particular DAG was converted to a tree, it would indeed
be substantially larger.

Further, when comparing the rules in Loop Lifting (described in [28]) and TD, it appears
that TD will in most cases produce less operators and less complex trees than Loop Lifting,
as well as substantially smaller intermediate results. This comparison does not consider
simplifications, however. In some situations, especially for trivial queries, optimised Loop
Lifting trees may perform better than unoptimised TD.

7.8.4 Considerations for executing MQL

The “Tainting Dependencies” method produces relatively simplistic algebra when compared
to the full feature set of MQL. In Section 3.4, only the operators used throughout this project
was described. However, this is only a subset of the features in MQL. This was done with
the intent of creating algebra which can be optimised using common techniques already
available. Introducing new and exotic operators complicates this process, and so this was

127

avoided. However, in the light of the expressiveness available in MQL, it may be benefitial
to employ a wider array of operators available when constructing MQL algebra. In any case,
this requires further documentation and concrete performance measurements.

128

Chapter 8

Conclusion

Throughout this project, we have explored the nature of XQuery and relational algebra. We
have studied one well-researched method of translation, “Loop Lifting”, and found points of
improvement as well as untapped potential in the fact that the target language MQL is a
more expressive form of algebra which may allow more creative and efficient translations.

We have developed a novel method of translation dubbed “Tainting Dependen-
cies” (TD) which seeks to avoid unecessary denormalisation of intermediate results, and
which is also designed specifically for translation to MQL. Our method currently supports a
substantially large subset of the XQuery language – however lacking functionality has been
accounted for, and suggestions for solutions have been proposed.

Furthermore, we developed a prototype as a proof of concept, which is capable of
translating XQuery queries containing basic constructs such as FLWOR expressions, sequence
constructions, and conditional expressions (if..then..else).

Finally, based on a method of measurement for complexity defined by Øystein Torbjørnsen at
Fast Search & Transfer, we staged a comparison of our prototype TD implementation
and an implementation of Loop Lifting called Pathfinder developed by Teubner et. al
at the University of Konstanz. Not withstanding the weaknesses of this method of comparison,
we then empirically suggested that our method may produce less complex and more efficient
relational algebra.

Further research may be required, however the outcome of this project is a fairly complete,
novel and well-documented method for translation of XQuery to MQL – a method which is
designed to perform equally or better than existing implementations.

129

130

Chapter 9

Future Work

The outcome of this project is a fairly well-defined method of translation, there is still head-
room for improvement and continued research. In particular, this relates to performance
benchmarking, simplifications and optimisations, and improvement of XQuery feature sup-
port.

We propose the following research related to performance benchmarking:

• Run the XMark benchmark suite and compare results. Given that Fast Search
& Transfer develops a working implementation of an MQL processor some time in
the future, it could be interesting to extend or rewrite the prototype developed here,
and execute the XMark1 benchmark suite and compare the result to other existing
implementations

• Execute algebra generated by Tainting Dependencies on MonetDB. If a work-
ing MQL processor can not or will not be developed in the foreseeable future, then the
prototype and the rules of TD may be modified and interfaced with MonetDB, and a
comparison with Pathfinder could be performed on this combined system. However,
the adaptation of TD to MonetDB may be non-trivial, as the method depends on some
MQL specific features.

• Further research on optimisation and simplification of the TD methodology.
This thesis suggests some simplifications (section 4.10 and 7.5), however we suspect
there are still substantial gains to be made on this account

• Investigate applicability of parallell execution of subtrees in the algebra tree.
MQL supports threading/branching within the language itself, and this may be ex-
ploited to parallellise the execution of algebra and boost performance

Furthermore, we propose the following improvements:

• Improved support for interfacing with the external environment (as described
in Section 7.3)

• Improved support of XQuery functionality, including: full-text operations, ordered
and unordered mode, binary operators not currently supported, multiple order specifi-

1http://www.xml-benchmark.org/

131

http://www.xml-benchmark.org/

cations for the order by-clause, and user-defined functions as well as built-in XQuery
functions (within the fn namespace)

• Implementation of the full XQuery type system into TD, which may also possibly
be exploited for optimisations

• Optimisation of if..then..else expressions by assuming execution of DAGs and
not trees, as described in section 7.5

132

Appendix A

Translation process Using TD

This appendix contains step-by-step translations of some XQuery expressions using Tainting
Dependencies.

A.1 An extensive FLWOR expression

This example shows the translation process for extensive FLWOR expression of Section 6.1.

The translation process is initiated by entering the FLWOR expression in the syntax tree
and visiting the for- and let-clauses. Recall from section 4.3 on page 46 that r(e) returns the
translation of the XQuery expression e into relational algebra. This function is then defined
through a set of rules described throughout Section 4.

The translation process starts with the for-clause which we translate using Rule 4.2. However,
to produce r(e), we must translate (1,2,3) using rules 4.6 and 4.5.

By applying Rule 4.5 to each of the elements in the sequence, we obtain the following trans-
lations:

make(name:=[index, value], [1], [1])

make(name:=[index, value], [1], [2])

make(name:=[index, value], [3], [3])

By applying Rule 4.6 to this result we obtain the following translation of the sequence (1,2,3):

numberate(index,[sprIdx,index],[];
union(;

make(name:=[index, value], [1], [1])

make(name:=[index, value], [1], [2])

make(name:=[index, value], [3], [3])))

133

We can now continue translating the for-clause, as the above translation equates to r(e). By
Rule 4.2, we obtain the following translation which is to be entered into the symbol table for
this scope (for the symbol χ = a):

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
make(name:=[index, value], [1], [1])

make(name:=[index, value], [1], [2])

make(name:=[index, value], [3], [3]))))

Any later reference to $a is now replaced with a lookup in the symbol table which will return
this algebra expression.

The let clause is translated in a similar manner, however the entry in the symbol table will
not be tainted by $b. To translate the let-clause, we apply the Rule 4.5 on the expression
and obtain:

make(name:=[index, value], [1],[2])

Which is entered into the symbol table as per Rule 4.7.

Before translating the where- and orderby-clauses, it is benefitial to translate the return-clause
(since the two former requires the translation of the latter). The translation is obtained using
rule 4.8 (return-clause) and rule 4.6 (sequence construction), which is trivial. Recall that
references to $a and $b are replaced by their translations in the symbol table:

numberate(index,[sprIdx,index],[];
union(;

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
project(sprIdx=1,index=0,value;

make(name:=[index,value], [1], [1])),
project(sprIdx=2,index=0,value;

make(name:=[index, value], [2], [2])),
project(sprIdx=3,index=0,value;

make(name:=[index, value], [3], [3]))))),
project([anumb = index, index = 2, value];

make(name:=[index, value],[1], [2]))))

This translation is now used to replace r(eC) in the translation of the where-clause, which is
translated using rules 4.10 and 4.12:

The translation process is finalised by translating the where-clause using rules 4.10 and 4.15.
First we obtain the following translation from $a gt $b:

project(index=1, value=gt(r.value, l.value), anumb;
hhjoin([], [], [anumb, lvalue=l.value, rvalue=r.value, alt];

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;

134

project(sprIdx=1,index=0,value;
make(name:=[index, value], [1], [1])),

project(sprIdx=2,index=0,value;
make(name:=[index, value], [2], [2])),

project(sprIdx=3,index=0,value;
make(name:=[value], [3], [3]))))),

make(name:=[index, value],[1], [2])))

Which is entered together with r(eC) into the translation of the where-clause:

hhjoin([],[], [l.value, anumb];
numberate(index,[sprIdx,index],[];

union(;
project([anumb = index, index = 1, value];

numberate(index,[sprIdx,index],[];
union(;

project(sprIdx=1,index=0,value;
make(name:=[index, value], [1], [1])),

project(sprIdx=2,index=0,value;
make(name:=[index, value], [2], [2])),

project(sprIdx=3,index=0,value;
make(name:=[value], [3], [3]))))),

project([anumb = index, index = 2, value];
make(name:=[index, value],[1], [2]))),

select(xqBoolean(value);
project(index=1, value=gt(r.value, l.value), anumb;

hhjoin([], [], [anumb, lvalue=l.value, rvalue=r.value, alt];
project([anumb = index, index = 1, value];

numberate(index,[sprIdx,index],[];
union(;

project(sprIdx=1,index=0,value;
make(name:=[index, value], [1], [1])),

project(sprIdx=2,index=0,value;
make(name:=[index, value], [2], [2])),

project(sprIdx=3,index=0,value;
make(name:=[value], [3], [3]))))),

make(name:=[index, value],[1], [2]))))))

This result is used to replace r(eC) in the translation of the orderby-clause, and we obtain
the complete translation:

project(value=l.value, index;
numberate(index, [r.value, index], [];

hhjoin([anumb], [anumb], [l.value, r.value];
project([anumb = index, index = 1, value];

numberate(index,[sprIdx,index],[];
union(;

project(sprIdx=1,index=0,value;
make(name:=[index, value], [1], [1])),

project(sprIdx=2,index=0,value;
make(name:=[index, value], [2], [2])),

project(sprIdx=3,index=0,value;
make(name:=[value], [3], [3]))))),

hhjoin([],[], [l.value, anumb];

135

project(index=1, value=gt(l.value, r.value), anumb;
hhjoin([], [], [anumb, lvalue=l.value, rvalue=r.value, alt];

numberate(index,[sprIdx,index],[];
union(;

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
project(sprIdx=1,index=0,value;

make(name:=[index, value], [1], [1])),
project(sprIdx=2,index=0,value;

make(name:=[index, value], [2], [2])),
project(sprIdx=3,index=0,value;

make(name:=[value], [3], [3]))))),
project([anumb = index, index = 2, value];

make(name:=[index, value],[1], [2])))),
select(xqBoolean(value);

project(index=1, value=gt(l.value, r.value), anumb;
hhjoin([], [], [anumb, lvalue=l.value, rvalue=r.value, alt];

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
project(sprIdx=1,index=0,value;

make(name:=[index, value], [1], [1])),
project(sprIdx=2,index=0,value;

make(name:=[index, value], [2], [2])),
project(sprIdx=3,index=0,value;

make(name:=[value], [3], [3]))))),
project([anumb = index, index = 2, value];

make(name:=[index, value],[1], [2])))))))))))

This can be simplified by replacing the sequence construction nodes with a single operation
make(name:=[index, value], [1,2,3], [1,2,3])):

project(value=l.value, index;
numberate(index, [r.value, index], [];

hhjoin([anumb], [anumb], [l.value, r.value];
hhjoin([],[], [l.value, anumb];

numberate(index,[sprIdx,index],[];
union(;

project([anumb = index, index = 1, value];
make(name:=[index, value], [1,2,3], [1,2,3])),

project([anumb = index, index = 2, value];
make(name:=[index, value],[1],[2])))),

select(xqBoolean(value);
project(index=1, value=gt(l.value, r.value), anumb;

hhjoin([l.anumb], [r.anumb], [l.value, r.value, anumb];
project([anumb = index, index = 1, value];

make(name:=[index, value], [1,2,3], [1,2,3])),
make(name:=[index, value],[1],[2]))))),

project([anumb = index, index = 1, value];
make(name:=[index, value], [1,2,3], [1,2,3])))

And further by magic:

136

project(value=l.value, index;
numberate(index, [r.value, index], [];

hhjoin([anumb], [anumb], [l.value, r.value];
hhjoin([anumb],[anumb], [l.value, anumb];

union(;
project([anumb = index, index = 1, value];

make(name:=[index, value], [1,2,3], [1,2,3])),
project([anumb, index = 2, value = 2];

make(name:=[index, value], [1,2,3], [1,2,3]))),
select(xqBoolean(value);

project(index=1, value=gt(value, 2), anumb;
project([anumb = index, index = 1, value];

make(name:=[index, value], [1,2,3], [1,2,3]))))),
project([anumb = index, index = 1, value];

make(name:=[index, value], [1,2,3], [1,2,3])))))

A.2 If-then-else

This translation is initiated precisely as the previous “Extensive FLWOR” example, so we
will not reiterate the translation of the for-clause here. However, note that the following
expression is obtained and entered into the symbol table to represent $a:

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
project(sprIdx=1,index=0,value;

make(name:=[index, value], [1], [1])),
project(sprIdx=2,index=0,value;

make(name:=[index, value], [2], [2])),
project(sprIdx=3,index=0,value;

make(name:=[value], [3], [3]))))

The translation of the if-then-else expression follows rule 4.16 on page 63. First, however, the
boolean expression $a > 2 (which corresponds to e1 in Rule 4.16) must be translated. This
can be done using Rule 4.15, as for the where-clause in the previous FLWOR example:

project(index=1, value=gt(r.value, l.value), anumb;
hhjoin([], [], [anumb, lvalue=l.value, rvalue=r.value, alt];

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
project(sprIdx=1,index=0,value;

make(name:=[index, value], [1], [1])),
project(sprIdx=2,index=0,value;

make(name:=[index, value], [2], [2])),
project(sprIdx=3,index=0,value;

make(name:=[value], [3], [3]))))),
make(name:=[index, value],[1], [2])))

Next we translate e2 (which is simply a lookup in the symbol table for $a):

137

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
project(sprIdx=1,index=0,value;

make(name:=[index, value], [1], [1])),
project(sprIdx=2,index=0,value;

make(name:=[index, value], [2], [2])),
project(sprIdx=3,index=0,value;

make(name:=[value], [3], [3])))))

The last expression, e3 (which is tainted by $a), can be translated using a simplification where
instead of constructing the tuples, an additional field with the value 3 is projected onto the
result from a lookup of $a in the symbol table:

project(anumb, index = 1, value = 3;
project([anumb = index, index = 1, value];

numberate(index,[sprIdx,index],[];
union(;

project(sprIdx=1,index=0,value;
make(name:=[index, value], [1], [1])),

project(sprIdx=2,index=0,value;
make(name:=[index, value], [2], [2])),

project(sprIdx=3,index=0,value;
make(name:=[value], [3], [3]))))))

Now the translated representations of e1, e2 and e3 (where the latter is also tainted) can be
entered into Rule 4.16:

project(value=lvalue, anumb;
select(ifthenelse(xqBoolean(rvalue), eq(alt,1), eq(alt,2));

hhjoin([l.anumb],[r.anumb], [anumb, lvalue=l.value, rvalue=r.value, alt];
union(

project(anumb, alt = 1, value;
project([anumb = index, index = 1, value];

numberate(index,[sprIdx,index],[];
union(;

project(sprIdx=1,index=0,value;
make(name:=[index, value], [1], [1])),

project(sprIdx=2,index=0,value;
make(name:=[index, value], [2], [2])),

project(sprIdx=3,index=0,value;
make(name:=[value], [3], [3])))))),

project(anumb, alt = 2, value;
project(anumb, index = 1, value = 3;

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
project(sprIdx=1,index=0,value;

make(name:=[index, value], [1], [1])),
project(sprIdx=2,index=0,value;

make(name:=[index, value], [2], [2])),
project(sprIdx=3,index=0,value;

make(name:=[value], [3], [3])))))))),

138

project(index=1, value=gt(l.value, r.value), anumb;
hhjoin([], [], [anumb, lvalue=l.value, rvalue=r.value, alt];

project([anumb = index, index = 1, value];
numberate(index,[sprIdx,index],[];

union(;
project(sprIdx=1,index=0,value;

make(name:=[index, value], [1], [1])),
project(sprIdx=2,index=0,value;

make(name:=[index, value], [2], [2])),
project(sprIdx=3,index=0,value;

make(name:=[value], [3], [3]))))),
make(name:=[index, value],[1], [2]))))))

This can be simplified further by replacing make() as described in Rule 4.24:

project(value=lvalue, anumb;
select(ifthenelse(xqBoolean(rvalue), eq(alt,1), eq(alt,2));

hhjoin([l.anumb],[r.anumb], [anumb, lvalue=l.value, rvalue=r.value, alt];
union(

project(anumb, alt = 1, value;
project([anumb = index, index = 1, value];

make(name:=[index, value], [1,2,3], [1,2,3]))),
project(anumb, alt = 2, value;

project(anumb, index = 1, value = 3;
project([anumb = index, index = 1, value];
make(name:=[index, value], [1,2,3], [1,2,3]))))),

project(index=1, value=gt(value, 2), anumb;
project([anumb = index, index = 1, value];

make(name:=[index, value], [1,2,3], [1,2,3]))))))

The translation is finalised by applying Rule 4.9:

numberate(index, [anumb, index], [];
project(value=lvalue, anumb;

select(ifthenelse(xqBoolean(rvalue), eq(alt,1), eq(alt,2));
hhjoin([l.anumb],[r.anumb], [anumb, lvalue=l.value, rvalue=r.value, alt];

union(
project(anumb, alt = 1, value;

project([anumb = index, index = 1, value];
make(name:=[index, value], [1,2,3], [1,2,3]))),

project(anumb, alt = 2, value;
project(anumb, index = 1, value = 3;

project([anumb = index, index = 1, value];
make(name:=[index, value], [1,2,3], [1,2,3]))))),

project(index=1, value=gt(value, 2), anumb;
project([anumb = index, index = 1, value];

make(name:=[index, value], [1,2,3], [1,2,3])))))))

139

A.3 Path expression with a predicate

It should be noted that the query is not a valid query unless the context item is set before
execution. We assume the context item is stored in the symbol table, and have no depen-
dencies. First the axis steps consisting of the name tests a and b is translated. As these are
consecutive child-axis steps (no axis specifier is read as child::), Rule 4.25 may be used once
for both steps, instead of using the more general rule (Rule 4.19) twice:

project(dotNumb, docId, index, value, pos, scope;
numberate(dotNumb, [dotNumb, subIdx], [];

select(isChild(scope, lsc);
hhjoin([docId], [docId], [dotNumb,lsc=l.scope,subIdx=r.index,

value=r.value,pos=r.pos,scope=r.scope];
symtab.get(dot);
numberate(index, [], [];

index(valocc;
scope(a/b;

lookup($b))))))))

Also note that the next to last numberate operator from the rule is dropped, as the predicate
expression must evaluate to a boolean type. This is described in Section 4.10.3.

Then the predicate will have to be taken into account. The result of /a/b is stored in the
symbol table as sprDot, where dotNumb is copied to sprDotNumb and the index fields will
be set to the value 1. When this is done, the comparison expression in the predicate will
be evaluated. First @id is evaluated. This contains a implicit reference to the context node,
and in its verbose form is formed like this: ./attribute::id. This expression is evaluated
by Rule 4.19. As this path expression (within the predicate) does not contain any predicate,
the next to last numberate operator will be dropped. As it is the complete path expression it
will be finalised by Rule 4.18. The last step of the path expression (still the one within the
predicate) does not contain some kind of filtering, thus the final numberate operator will be
exchanged with a project operator:

project(index=dotNumb, docId, value, pos, scope, sprDotNumb
project(docId, index, value, pos, scope, dotNumb, sprDotNumb;

numberate(dotNumb, [dotNumb, subIdx], [sprDotNumb];
select(isChild(scope,lsc);

hhjoin([docId],[docId],[dotNumb,lsc=l.scope,subIdx=r.index,
value=r.value,pos=r.pos,scope=r.scope,sprDotNumb]

project(sprDotNumb=dotNumb, dotNumb, index=1, value, pos,
docId, scope;

project(dotNumb, docId, index, value, pos, scope;
numberate(dotNumb, [dotNumb, subIdx], [];

select(isChild(scope, lsc);
hhjoin([docId], [docId], [dotNumb,lsc=l.scope,

subIdx=r.index,value=r.value,pos=r.pos,
scope=r.scope];

symtab.get(dot);
numberate(index, [], [];

index(valocc;
scope(a/b;

lookup($b)))))))))

140

numberate(index, [], []
index(valocc;

lookup($@id))))))))

The comparison expression will then be evaluated. By the simplifications described in section
4.10.1, the whole expression will be evaluated by adding a single project operator:

project(index=1, value=eq(value, 2), sprDotNumb;
project(index=dotNumb, docId, value, pos, scope, sprDotNumb

project(docId, index, value, pos, scope, dotNumb, sprDotNumb;
numberate(dotNumb, [dotNumb, subIdx], [sprDotNumb];

select(isChild(scope,lsc);
hhjoin([docId],[docId],[dotNumb,lsc=l.scope,

subIdx=r.index,value=r.value,pos=r.pos,
scope=r.scope,sprDotNumb]

project(sprDotNumb=dotNumb, dotNumb, index=1, value,
pos, docId, scope;

project(dotNumb, docId, index, value, pos, scope;
numberate(dotNumb, [dotNumb, subIdx], [];

select(isChild(scope, lsc);
hhjoin([docId], [docId], [dotNumb,lsc=l.scope,

subIdx=r.index,value=r.value,pos=r.pos,
scope=r.scope];

symtab.get(dot);
numberate(index, [], [];

index(valocc;
scope(a/b;

lookup($b))))))))
numberate(index, [], []

index(valocc;
lookup($@id)))))))))

Then the rule for translating predicates (Rule 4.20) are employed. The predicate expression
and the predicated expression will have to be joined on their sprDotNumb and dotNumb
attributes respectively, as they have no other common dependencies. Finally the whole path
expression is finalised by a renumbering, as described by Rule 4.18.

numberate(index, [dotNumb, index], [];
project(index,docId,scope,pos,value,dotNumb;

select(ifthenelse(isNumber(pred),
eq(index,pred),xqBoolean(pred));

hhjoin([dotNumb],[sprDotNumb], [value=l.value,scope=l.scope,
pos=l.pos,docId=l.docId,pred=r.value];

project(dotNumb, docId, index, value, pos, scope;
numberate(dotNumb, [dotNumb, subIdx], [];

select(isChild(scope, lsc);
hhjoin([docId], [docId], [dotNumb,lsc=l.scope,

subIdx=r.index,value=r.value,pos=r.pos,
scope=r.scope];

symtab.get(dot);
numberate(index, [], [];

index(valocc;
scope(a/b;

141

lookup($b))))))))
project(index=1, value=eq(value, 2), sprDotNumb;

project(index=dotNumb,docId,value,pos,scope,sprDotNumb;
project(docId,index,value,pos,scope,dotNumb,sprDotNumb;

numberate(dotNumb, [dotNumb, subIdx], [sprDotNumb];
select(isChild(scope,lsc);

hhjoin([docId],[docId],[dotNumb,lsc=l.scope,
subIdx=r.index,value=r.value,pos=r.pos,
scope=r.scope,sprDotNumb]

project(sprDotNumb=dotNumb,dotNumb,index=1,
value,pos,docId,scope;

project(dotNumb,docId,index,value,pos,scope;
numberate(dotNumb, [dotNumb, subIdx], [];

select(isChild(scope, lsc);
hhjoin([docId], [docId], [dotNumb,

lsc=l.scope,subIdx=r.index,
value=r.value,pos=r.pos,
scope=r.scope];

symtab.get(dot);
numberate(index, [], [];

index(valocc;
scope(a/b;

lookup($b))))))))
numberate(index, [], []

index(valocc;
lookup($@id)))))))))))))

142

Appendix B

Links, resources and further reading

This appendix details some additional material which may be of use for the reader. Many of
these resources are informally written, and should be considered as such.

B.1 Diagrams and graphs

Large-scale versions of the DAG graphs in Section 6.3 can be found in the subversion reposi-
tory for this project available at the project website located at http://code.google.com/p/xqft-
parser/. In particular, all graphs are available in full-scale versions in the doc/img/graphs
folder in the project root, and all diagrams are available in full-scale versions in the doc/diagrams
folder. Additionally, all example queries used throughout this project are available in doc/graph_queries
and doc/td_src.

B.2 Further reading regarding XQuery

Michael Rys maintains an interesting weblog which contains some writing about the XQuery
type system. His weblog is located at http://www.sqljunkies.com/WebLog/
mrys/archive/2004/05/13/2480.aspx.

Michael Kay has written a series of papers and articles regarding XQuery and practical use
thereof, especially some interesting pieces on XQuery Core and compilation of queries into
Java bytecode. These writings are maintained at the Saxon Diaries website, located at
http://saxonica.blogharbor.com/.

143

http://code.google.com/p/xqft-parser/
http://code.google.com/p/xqft-parser/
http://www.sqljunkies.com/WebLog/mrys/archive/2004/05/13/2480.aspx
http://www.sqljunkies.com/WebLog/mrys/archive/2004/05/13/2480.aspx
http://saxonica.blogharbor.com/blog?cmd=search&keywords=xquery

144

Appendix C

Installation and usage

Visit the project website at http://code.google.com/p/xqft-parser/ for the latest updates and
installation instructions.

Project Directory Contents

The project directory contains a multitude of files and folders. Here is a list of the most
important ones with a short explanation:

• bin - contains the compiled binaries

• doc - documentation (this report)

• etc - contains the source grammar file, XQFT.g

• lib - necessary runtime dependencies

• Makefile - Makefile for GNU Make

• src - all source code, the generated parser/lexer is moved to this directory after gener-
ation

• test - contains files related to testing and debugging

• tmp - temporary files generated during parser generation

Prerequisites

A computer with a Unix-based operating system is recommended however not required. Note
that the makefiles provided are not immediately suitable for win32-based operating systems.

Software

This software should be available for download from the internet if not already installed on
the system.

145

http://code.google.com/p/xqft-parser/

• GNU Make

• Subversion

• Java JDK 1.5.0 or newer

Optional software for generating AST and algebra graphs:

• Graphviz

• GNU Sed

Getting the Source

To download the source code using Subversion, execute the following in a command line
interface:

svn checkout https://xqft-parser.googlecode.com/svn/trunk/ xqft-parser

To download the source code as a tarball, please visit the project website at http://code.google.com/p/xqft-
parser/.

Compiling the Source

Move to the root directory of the source code, and enter the following command: make. This
will generate a new parser/lexer pair, compile them together with supporting classes, and
generate a convenient ntnu-xqft.jar-file.

lol section fitte

Command line interface

Refer to Section 5.3.3 on page 79 for a description of the command line interface.

146

Appendix D

EBNF for XQuery 1.0 Full-text
grammar

This grammar is limited in the sense that it requires productions from XML and other
specifications (such as XPath). For the full grammar with contextual links, please visit
http://www.w3.org/TR/xpath-full-text-10/.

[1] Module ::= VersionDecl? (LibraryModule | MainModule)
[2] VersionDecl ::= "xquery" "version" StringLiteral

("encoding" StringLiteral)? Separator
[3] MainModule ::= Prolog QueryBody
[4] LibraryModule ::= ModuleDecl Prolog
[5] ModuleDecl ::= "module" "namespace" NCName "=" URILiteral Separator
[6] Prolog ::= ((DefaultNamespaceDecl | Setter | NamespaceDecl | Import)

Separator)* ((VarDecl | FunctionDecl | OptionDecl |
FTOptionDecl) Separator)*

[7] Setter ::= BoundarySpaceDecl | DefaultCollationDecl | BaseURIDecl |
ConstructionDecl | OrderingModeDecl | EmptyOrderDecl |
CopyNamespacesDecl

[8] Import ::= SchemaImport | ModuleImport
[9] Separator ::= ";"
[10] NamespaceDecl ::= "declare" "namespace" NCName "=" URILiteral
[11] BoundarySpaceDecl ::= "declare" "boundary-space" ("preserve" | "strip")
[12] DefaultNamespaceDecl ::= "declare" "default" ("element" | "function")

"namespace" URILiteral
[13] OptionDecl ::= "declare" "option" QName StringLiteral
[14] FTOptionDecl ::= "declare" "ft-option" FTMatchOptions
[15] OrderingModeDecl ::= "declare" "ordering" ("ordered" | "unordered")
[16] EmptyOrderDecl ::= "declare" "default" "order" "empty" ("greatest" |

"least")
[17] CopyNamespacesDecl ::= "declare" "copy-namespaces" PreserveMode ","

InheritMode
[18] PreserveMode ::= "preserve" | "no-preserve"
[19] InheritMode ::= "inherit" | "no-inherit"
[20] DefaultCollationDecl ::= "declare" "default" "collation" URILiteral
[21] BaseURIDecl ::= "declare" "base-uri" URILiteral
[22] SchemaImport ::= "import" "schema" SchemaPrefix? URILiteral ("at"

URILiteral ("," URILiteral)*)?
[23] SchemaPrefix ::= ("namespace" NCName "=") | ("default" "element"

"namespace")
[24] ModuleImport ::= "import" "module" ("namespace" NCName "=")?

147

URILiteral ("at" URILiteral ("," URILiteral)*)?
[25] VarDecl ::= "declare" "variable" "\$" QName TypeDeclaration? ((":="

ExprSingle) | "external")
[26] ConstructionDecl ::= "declare" "construction" ("strip" | "preserve")
[27] FunctionDecl ::= "declare" "function" QName "(" ParamList? ")" ("as"

SequenceType)? (EnclosedExpr | "external")
[28] ParamList ::= Param ("," Param)*
[29] Param ::= "\$" QName TypeDeclaration?
[30] EnclosedExpr ::= "{" Expr "}"
[31] QueryBody ::= Expr
[32] Expr ::= ExprSingle ("," ExprSingle)*
[33] ExprSingle ::= FLWORExpr

| QuantifiedExpr
| TypeswitchExpr
| IfExpr
| OrExpr

[34] FLWORExpr ::= (ForClause | LetClause)+ WhereClause? OrderByClause?
"return" ExprSingle

[35] ForClause ::= "for" "\$" VarName TypeDeclaration? PositionalVar?
FTScoreVar? "in" ExprSingle ("," "\$" VarName
TypeDeclaration? PositionalVar?
FTScoreVar? "in" ExprSingle)*

[36] PositionalVar ::= "at" "\$" VarName
[37] FTScoreVar ::= "score" "\$" VarName
[38] LetClause ::= (("let" "\$" VarName TypeDeclaration?) | ("let" "score"

"\$" VarName)) ":=" ExprSingle ("," (("\$" VarName
TypeDeclaration?) | FTScoreVar) ":=" ExprSingle)*

[39] WhereClause ::= "where" ExprSingle
[40] OrderByClause ::= (("order" "by") | ("stable" "order" "by"))

OrderSpecList
[41] OrderSpecList ::= OrderSpec ("," OrderSpec)*
[42] OrderSpec ::= ExprSingle OrderModifier
[43] OrderModifier ::= ("ascending" | "descending")? ("empty" ("greatest"

| "least"))? ("collation" URILiteral)?
[44] QuantifiedExpr ::= ("some" | "every") "\$" VarName TypeDeclaration?

"in" ExprSingle ("," "\$" VarName TypeDeclaration?
"in" ExprSingle)* "satisfies" ExprSingle

[45] TypeswitchExpr ::= "typeswitch" "(" Expr ")" CaseClause+ "default"
("\$" VarName)? "return" ExprSingle

[46] CaseClause ::= "case" ("\$" VarName "as")? SequenceType "return"
ExprSingle

[47] IfExpr ::= "if" "(" Expr ")" "then" ExprSingle "else" ExprSingle
[48] OrExpr ::= AndExpr ("or" AndExpr)*
[49] AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*
[50] ComparisonExpr ::= FTContainsExpr ((ValueComp

| GeneralComp
| NodeComp) FTContainsExpr)?

[51] FTContainsExpr ::= RangeExpr ("ftcontains" FTSelection
FTIgnoreOption?)?

[52] RangeExpr ::= AdditiveExpr ("to" AdditiveExpr)?
[53] AdditiveExpr ::= MultiplicativeExpr (("+" | "-") MultiplicativeExpr)*
[54] MultiplicativeExpr ::= UnionExpr (("*" | "div" | "idiv" | "mod")

UnionExpr)*
[55] UnionExpr ::= IntersectExceptExpr (("union" | "|")

IntersectExceptExpr)*
[56] IntersectExceptExpr ::= InstanceofExpr (("intersect" | "except")

InstanceofExpr)*
[57] InstanceofExpr ::= TreatExpr ("instance" "of" SequenceType)?
[58] TreatExpr ::= CastableExpr ("treat" "as" SequenceType)?

148

[59] CastableExpr ::= CastExpr ("castable" "as" SingleType)?
[60] CastExpr ::= UnaryExpr ("cast" "as" SingleType)?
[61] UnaryExpr ::= ("-" | "+")* ValueExpr
[62] ValueExpr ::= ValidateExpr | PathExpr | ExtensionExpr
[63] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="
[64] ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"
[65] NodeComp ::= "is" | "<<" | ">>"
[66] ValidateExpr ::= "validate" ValidationMode? "{" Expr "}"
[67] ValidationMode ::= "lax" | "strict"
[68] ExtensionExpr ::= Pragma+ "{" Expr? "}"
[69] Pragma ::= "(#" S? QName (S PragmaContents)? "#)"/* ws: explicit */
[70] PragmaContents ::= (Char* - (Char* ’#)’ Char*))
[71] PathExpr ::= ("/" RelativePathExpr?)

| ("//" RelativePathExpr)
| RelativePathExpr /* xgc: leading-lone-slashXQ */

[72] RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*
[73] StepExpr ::= FilterExpr | AxisStep
[74] AxisStep ::= (ReverseStep | ForwardStep) PredicateList
[75] ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep
[76] ForwardAxis ::= ("child" "::")

| ("descendant" "::")
| ("attribute" "::")
| ("self" "::")
| ("descendant-or-self" "::")
| ("following-sibling" "::")
| ("following" "::")

[77] AbbrevForwardStep ::= "@"? NodeTest
[78] ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep
[79] ReverseAxis ::= ("parent" "::")

| ("ancestor" "::")
| ("preceding-sibling" "::")
| ("preceding" "::")
| ("ancestor-or-self" "::")

[80] AbbrevReverseStep ::= ".."
[81] NodeTest ::= KindTest | NameTest
[82] NameTest ::= QName | Wildcard
[83] Wildcard ::= "*"

| (NCName ":" "*")
| ("*" ":" NCName) /* ws: explicitXQ */

[84] FilterExpr ::= PrimaryExpr PredicateList
[85] PredicateList ::= Predicate*
[86] Predicate ::= "[" Expr "]"
[87] PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr |

ContextItemExpr | FunctionCall | OrderedExpr |
UnorderedExpr | Constructor

[88] Literal ::= NumericLiteral | StringLiteral
[89] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral
[90] VarRef ::= "\$" VarName
[91] VarName ::= QName
[92] ParenthesizedExpr ::= "(" Expr? ")"
[93] ContextItemExpr ::= "."
[94] OrderedExpr ::= "ordered" "{" Expr "}"
[95] UnorderedExpr ::= "unordered" "{" Expr "}"
[96] FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")"

/* xgc: reserved-function-namesXQ */
/* gn: parensXQ */

[97] Constructor ::= DirectConstructor | ComputedConstructor
[98] DirectConstructor ::= DirElemConstructor

| DirCommentConstructor

149

| DirPIConstructor
[99] DirElemConstructor ::= "<" QName DirAttributeList ("/>" | (">"

DirElemContent* "</" QName S? ">"))
/* ws: explicitXQ */

[100] DirAttributeList ::= (S (QName S? "=" S? DirAttributeValue)?)*
/* ws: explicitXQ */

[101] DirAttributeValue ::= (’"’ (EscapeQuot | QuotAttrValueContent)* ’"’)
| ("’" (EscapeApos | AposAttrValueContent)* "’")
/* ws: explicitXQ */

[102] QuotAttrValueContent ::= QuotAttrContentChar | CommonContent
[103] AposAttrValueContent ::= AposAttrContentChar

| CommonContent
[104] DirElemContent ::= DirectConstructor

| CDataSection
| CommonContent
| ElementContentChar

[105] CommonContent ::= PredefinedEntityRef | CharRef | "{{" | "}}" |
EnclosedExpr

[106] DirCommentConstructor ::= "<!--" DirCommentContents "-->"
/* ws: explicitXQ */

[107] DirCommentContents ::= ((Char - ’-’) | (’-’ (Char - ’-’)))*
/* ws: explicitXQ */

[108] DirPIConstructor ::= "<?" PITarget (S DirPIContents)? "?>"
/* ws: explicitXQ */

[109] DirPIContents ::= (Char* - (Char* ’?>’ Char*))
/* ws: explicitXQ */

[110] CDataSection ::= "<![CDATA[" CDataSectionContents "]]>"
/* ws: explicitXQ */

[111] CDataSectionContents ::= (Char* - (Char* ’]]>’ Char*))
/* ws: explicitXQ */

[112] ComputedConstructor ::= CompDocConstructor
| CompElemConstructor
| CompAttrConstructor
| CompTextConstructor
| CompCommentConstructor
| CompPIConstructor

[113] CompDocConstructor ::= "document" "{" Expr "}"
[114] CompElemConstructor ::= "element" (QName | ("{" Expr "}")) "{"

ContentExpr? "}"
[115] ContentExpr ::= Expr
[116] CompAttrConstructor ::= "attribute" (QName | ("{" Expr "}")) "{"

Expr? "}"
[117] CompTextConstructor ::= "text" "{" Expr "}"
[118] CompCommentConstructor ::= "comment" "{" Expr "}"
[119] CompPIConstructor ::= "processing-instruction" (NCName | ("{" Expr

"}")) "{" Expr? "}"
[120] SingleType ::= AtomicType"?"?
[121] TypeDeclaration ::= "as" SequenceType
[122] SequenceType ::= ("empty-sequence" "(" ")")

| (ItemType OccurrenceIndicator?)
[123] OccurrenceIndicator ::= "?" | "*" | "+"

/* xgc: occurrence-indicatorsXQ */
[124] ItemType ::= KindTest | ("item" "(" ")") | AtomicType
[125] AtomicType ::= QName
[126] KindTest ::= DocumentTest

| ElementTest
| AttributeTest
| SchemaElementTest
| SchemaAttributeTest

150

| PITest
| CommentTest
| TextTest
| AnyKindTest

[127] AnyKindTest ::= "node" "(" ")"
[128] DocumentTest ::= "document-node" "(" (ElementTest |

SchemaElementTest)? ")"
[129] TextTest ::= "text" "(" ")"
[130] CommentTest ::= "comment" "(" ")"
[131] PITest ::= "processing-instruction" "(" (NCName | StringLiteral)? ")"
[132] AttributeTest ::= "attribute" "(" (AttribNameOrWildcard (","

TypeName)?)? ")"
[133] AttribNameOrWildcard ::= AttributeName | "*"
[134] SchemaAttributeTest ::= "schema-attribute" "(" AttributeDeclaration ")"
[135] AttributeDeclaration ::= AttributeName
[136] ElementTest ::= "element" "(" (ElementNameOrWildcard ("," TypeName

"?"?)?)? ")"
[137] ElementNameOrWildcard ::= ElementName | "*"
[138] SchemaElementTest ::= "schema-element" "(" ElementDeclaration ")"
[139] ElementDeclaration ::= ElementName
[140] AttributeName ::= QName
[141] ElementName ::= QName
[142] TypeName ::= QName
[143] URILiteral ::= StringLiteral
[144] FTSelection ::= FTOr FTPosFilter* ("weight" RangeExpr)?
[145] FTOr ::= FTAnd ("ftor" FTAnd)*
[146] FTAnd ::= FTMildNot ("ftand" FTMildNot)*
[147] FTMildNot ::= FTUnaryNot ("not" "in" FTUnaryNot)*
[148] FTUnaryNot ::= ("ftnot")? FTPrimaryWithOptions
[149] FTPrimaryWithOptions ::= FTPrimary FTMatchOptions?
[150] FTPrimary ::= (FTWords FTTimes?) | ("(" FTSelection ")") |

FTExtensionSelection
[151] FTWords ::= FTWordsValue FTAnyallOption?
[152] FTWordsValue ::= Literal | ("{" Expr "}")
[153] FTExtensionSelection ::= Pragma+ "{" FTSelection? "}"
[154] FTAnyallOption ::= ("any" "word"?) | ("all" "words"?) | "phrase"
[155] FTTimes ::= "occurs" FTRange "times"
[156] FTRange ::= ("exactly" AdditiveExpr)

| ("at" "least" AdditiveExpr)
| ("at" "most" AdditiveExpr)
| ("from" AdditiveExpr "to" AdditiveExpr)

[157] FTPosFilter ::= FTOrder | FTWindow | FTDistance | FTScope |
FTContent

[158] FTOrder ::= "ordered"
[159] FTWindow ::= "window" AdditiveExpr FTUnit
[160] FTDistance ::= "distance" FTRange FTUnit
[161] FTUnit ::= "words" | "sentences" | "paragraphs"
[162] FTScope ::= ("same" | "different") FTBigUnit
[163] FTBigUnit ::= "sentence" | "paragraph"
[164] FTContent ::= ("at" "start") | ("at" "end") | ("entire" "content")
[165] FTMatchOptions ::= FTMatchOption+ /* xgc: multiple-match-options */
[166] FTMatchOption ::= FTLanguageOption

| FTWildCardOption
| FTThesaurusOption
| FTStemOption
| FTCaseOption
| FTDiacriticsOption
| FTStopwordOption
| FTExtensionOption

151

[167] FTCaseOption ::= ("case" "insensitive")
| ("case" "sensitive")
| "lowercase"
| "uppercase"

[168] FTDiacriticsOption ::= ("diacritics" "insensitive")
| ("diacritics" "sensitive")

[169] FTStemOption ::= ("with" "stemming") | ("without" "stemming")
[170] FTThesaurusOption ::= ("with" "thesaurus" (FTThesaurusID

| "default")) | ("with" "thesaurus" "("
(FTThesaurusID | "default")
("," FTThesaurusID)* ")") | ("without"
"thesaurus")

[171] FTThesaurusID ::= "at" URILiteral ("relationship" StringLiteral)?
(FTRange "levels")?

[172] FTStopwordOption ::= ("with" "stop" "words" FTRefOrList
FTInclExclStringLiteral*) | ("without" "stop"

"words") | ("with" "default" "stop" "words"
FTInclExclStringLiteral*)

[173] FTRefOrList ::= ("at" URILiteral)
| ("(" StringLiteral ("," StringLiteral)* ")")

[174] FTInclExclStringLiteral ::= ("union" | "except") FTRefOrList
[175] FTLanguageOption ::= "language" StringLiteral
[176] FTWildCardOption ::= ("with" "wildcards") | ("without" "wildcards")
[177] FTExtensionOption ::= "option" QName StringLiteral
[178] FTIgnoreOption ::= "without" "content" UnionExpr

Terminal Symbols

[179] IntegerLiteral ::= Digits
[180] DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)

/* ws: explicitXQ */
[181] DoubleLiteral ::= (("." Digits) | (Digits ("." [0-9]*)?)) [eE] [+-]?

Digits /* ws: explicitXQ */
[182] StringLiteral ::= (’"’ (PredefinedEntityRef | CharRef

| EscapeQuot | [^"&])* ’"’) | ("’" (PredefinedEntityRef
| CharRef | EscapeApos | [^’&])* "’")
/* ws: explicitXQ */

[183] PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp" | "quot" | "apos")
";" /* ws: explicitXQ */

[184] EscapeQuot ::= ’""’
[185] EscapeApos ::= "’’"
[186] ElementContentChar ::= Char - [{}<&]
[187] QuotAttrContentChar ::= Char - ["{}<&]
[188] AposAttrContentChar ::= Char - [’{}<&]
[189] Comment ::= "(:" (CommentContents | Comment)* ":)"

/* ws: explicitXQ */
/* gn: commentsXQ */

[190] PITarget ::= [http://www.w3.org/TR/REC-xml#NT-PITarget]
/* xgc: xml-versionXQ */

[191] CharRef ::= [http://www.w3.org/TR/REC-xml#NT-CharRef]
/* xgc: xml-versionXQ */

[192] QName ::= [http://www.w3.org/TR/REC-xml-names/#NT-QName]
/* xgc: xml-versionXQ */

[193] NCName ::= [http://www.w3.org/TR/REC-xml-names/#NT-NCName]
/* xgc: xml-versionXQ */

[194] S ::= [http://www.w3.org/TR/REC-xml#NT-S] /* xgc: xml-version */
[195] Char ::= [http://www.w3.org/TR/REC-xml#NT-Char]

/* xgc: xml-versionXQ */

152

Bibliography

[1] Andy Tripp . Manual tree walking is better than tree grammars. http://jazillian.
com/articles/treewalkers.html. Online: 2008.02.06.

[2] Terence Parr . Translators should use tree grammars. http://antlr.org/article/
1100569809276/use.tree.grammars.tml. Online: 2008.02.06.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Hardcover, 2006.

[4] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University Press,
1998.

[5] Kjell Bratbergsengen. Lagring og behandling av store datamengder, chapter 11. Tapir
akademisk forlag, 2003.

[6] David Brownell and David Megginson. SAX Project. http://www.saxproject.org/.
Online: 2008.02.05.

[7] Sudarshan S. Chawathe. A Quick Introduction to Relational Algebra. http://www.
umcs.maine.edu/~chaw/200609/mat500db/relnalg.pdf. Online: 2008.02.01.

[8] City University of New York. Database Managment Systems – Relational Algebra. http:
//cisnet.baruch.cuny.edu/holowczak/classes/3400/relationalalgebra/. Online:
2008.01.28.

[9] Dan Olteanu and Holger Meuss and Tim Furche and Francois Bry. XPath: Looking
Forward. In EDBT Workshop on XML Data Management (XMLDM), Prague, Czech
Republic, 2002.

[10] Don Chamerlin, Jonathan Robie and Daniela Florescu. Quilt: an XML Query Lan-
guage for Heterogeneous Data Sources. http://www.almaden.ibm.com/cs/people/
chamberlin/quilt_lncs.pdf. Online: 2008.4.28.

[11] Dr Gordon Russel. Database eLearning. http://db.grussell.org/. Online: 2008.01.29.

[12] Emiran Curtmola et.al. GalaTex: An XML Full Text Search Engine. http://www.
galaxquery.com/galatex/. Online: 2007.10.16.

[13] Jens Teubner. Pathfinder: Compiling XQuery for Execution on the Monet Database
Engine. http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-76/
teubner.pdf. Online: 2007.12.11.

153

http://jazillian.com/articles/treewalkers.html
http://jazillian.com/articles/treewalkers.html
http://antlr.org/article/1100569809276/use.tree.grammars.tml
http://antlr.org/article/1100569809276/use.tree.grammars.tml
http://www.saxproject.org/
http://www.umcs.maine.edu/~chaw/200609/mat500db/relnalg.pdf
http://www.umcs.maine.edu/~chaw/200609/mat500db/relnalg.pdf
http://cisnet.baruch.cuny.edu/holowczak/classes/3400/relationalalgebra/
http://cisnet.baruch.cuny.edu/holowczak/classes/3400/relationalalgebra/
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_lncs.pdf
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_lncs.pdf
http://db.grussell.org/
http://www.galaxquery.com/galatex/
http://www.galaxquery.com/galatex/
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-76/teubner.pdf
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-76/teubner.pdf

[14] Michael Kay. XSLT and XPath Optimization. In IDEAlliance XML 2002 Conference,
Baltimore, Maryland, USA, December 2002.

[15] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[16] Lester I. McCann. On Making Relational Division Comprehensible. http://fie.
engrng.pitt.edu/fie2003/papers/1057.pdf. Online: 2008.01.29.

[17] Jim Melton. Advanced SQL:1999-Understanding Objec-Relational and Other Advanced
Features. Morgan Kaufmann, 2002.

[18] Leon Moonen. Generating Robust Parsers using Island Grammars. In Proceedings of the
8th Working Conference on Reverse Engineering, pages 13–22. IEEE Computer Society
Press, October 2001.

[19] Mads Nyborg and Andreas Ravnestad. Development of an XQuery Parser with Full-Text
Extensions. Specialization project, Norwegian University of Science and Technology,
December 2007, http://printf.no/tmp/report.pdf.

[20] Terrence Parr. The Definitive ANTLR Reference. The Pragmatic Bookshelf, 2007.

[21] Philippe Michiels. XQuery Optimization. In Proceedings of the VLDB 2003 PhD Work-
shop, "Berlin, Germany", September 2003.

[22] Pierre Genevés, Jean-Yves Vion-Dury. Logic-based XPath optimization. In ACM sumpo-
sium on Document engineering, Milwaukee, Wisconsin, USA, 2004.

[23] Michael Rys. An introduction to the xquery (and xpath 2.0) type system: The
general concepts. http://sqljunkies.com/WebLog/mrys/archive/2004/05/13/2480.
aspx. Online: 2008.05.12.

[24] The iAD Research Centre. iAd: Information Access Disruptions. http://www.
iad-centre.no/. Online: 2007.12.13.

[25] the Pathfinder Team. Pathfinder: A Purely Relational XQuery Processor. http://
pathfinder-xquery.org/. Online: 2007.12.13.

[26] Torsten Grust. Purely Relational FLWORs. In ACM SIGMOD 2nd International Work-
shop on XQuery Implementation, Experience and Perspectives (XIME-P 2005), Balti-
more, MD, USA, June 2005.

[27] Torsten Grust, Jens Teubner, Manuel Mayr, Jan Rittinger, and Sherif Sakr. A SQL:1999
Code Generator for the Pathfinder XQuery Compiler. In SIGMOD International Con-
ference on Management of Data, Beijing, China, June 2007.

[28] Torsten Grust and Jens Teubner. Relational Algebra: Mother Tongue – XQuery: Fluent.
In Twente Data Management Workshop on XML Databases and Information Retrieval
(TDM 2004), Enschede, The Netherlands, June 2004.

[29] Wolfgang Meier. eXist fact sheet. http://exist.sourceforge.net/facts.html. On-
line: 2008.04.23.

[30] Wolfgang Meier. eXist XQuery documentation. http://exist.sourceforge.net/
xquery.html. Online: 2007.11.12.

154

http://fie.engrng.pitt.edu/fie2003/papers/1057.pdf
http://fie.engrng.pitt.edu/fie2003/papers/1057.pdf
http://printf.no/tmp/report.pdf
http://sqljunkies.com/WebLog/mrys/archive/2004/05/13/2480.aspx
http://sqljunkies.com/WebLog/mrys/archive/2004/05/13/2480.aspx
http://www.iad-centre.no/
http://www.iad-centre.no/
http://pathfinder-xquery.org/
http://pathfinder-xquery.org/
http://exist.sourceforge.net/facts.html
http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/xquery.html

[31] Wolfgang Meier. Index-driven XQuery processing in the eXist XML database. http:
//exist.sourceforge.net/xmlprague06.html. Online: 2007.11.12.

[32] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model (XDM). http:
//www.w3.org/TR/xpath-datamodel/. Online: 2008.06.02.

[33] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 formal semantics. http:
//www.w3.org/TR/xquery-semantics/. Online: 2008.06.01.

[34] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text 1.0. http://www.
w3.org/TR/xquery-full-text/. Online: 2008.06.02.

[35] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators.
http://www.w3.org/TR/xquery-operators/. Online: 2008.06.02.

[36] World Wide Web Consortium. XQuery 1.0 Specification. http://www.w3.org/TR/
xquery/. Online: 2008.06.02.

155

http://exist.sourceforge.net/xmlprague06.html
http://exist.sourceforge.net/xmlprague06.html
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-full-text/
http://www.w3.org/TR/xquery-full-text/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

	Title Page
	Problem Description
	Introduction
	Theory
	XQuery
	Basic language features
	Path expressions
	Predicates
	FLWOR
	Full text extensions
	XQuery Core

	Existing implementations
	eXist
	Pathfinder
	Galatex
	Trait comparison matrix

	Relational algebra
	Primary operators
	Derived operators

	Parsing and syntax trees
	Common parser technologies
	Parser generators
	The XQFT Parser project
	Tree parsing

	Loop Lifting
	Operators
	Basics
	Constant subexpressions
	Bound variables
	Free variables
	Mapping back
	Other expression types
	Example

	Summary

	Method
	Development of a novel translation method
	Tree parsing
	AST rewriting
	Normalising FLWOR expressions

	Target relational algebra language
	General concepts
	Language syntax
	Operators
	Assumed functionality

	Calculating complexity in relational algebra
	Tuple and field creation
	Join and sort tuple I/O
	Total complexity

	Summary

	Tainting Dependencies
	MarkXRemove
	Basics
	FLWOR
	Flaws

	Inference rule language explanation
	Basics
	Iterator Dependency Inheritance
	Iterator dependency tainting
	Unique iterations
	Literals

	Sequence construction
	FLWOR Expressions
	Iterator ordering
	Where-clause
	Order by-clause ordering

	Simple binary operator expressions
	Arithmetic Expressions
	Logical Expressions
	Comparative Expressions

	Conditional Expressions
	Quantified Expressions
	Path expressions and predicates
	Path expressions
	Predicates

	Simplifications
	Literals
	Sequence construction
	Path expressions
	Arithmetic expressions

	Summary

	Implementation
	Prerequisites
	List Of Supported Features
	Overall system description
	Data flow
	Visible external API
	Command line interface

	Using the XQFT Parser
	Constructing the MQL algebra tree
	Operators and parameters
	Usage

	Context-sensitive Visitor
	Scoping and Symbol Tables
	Concepts
	Semantics

	Passing Metadata Between Nodes
	The TraverseReturn Class
	Iterator Dependencies
	Singleton nodes
	Example of usage

	Tainting dependencies
	Tainting
	FLWOR expressions
	Sequences
	If-then-else

	Summary

	Results
	Theoretical Algebra
	Extensive FLWOR
	Path expression with predicate
	If-then-else

	Algebra Generated By Implementation
	Trivial FLWOR
	Complex FLWOR
	FLWOR with conditional

	Comparison
	Assumptions
	DAG comparison
	Complexity estimation and comparison

	Summary

	Discussion
	XQuery features not supported
	Full-text extensions
	Ordering mode
	Binary expressions
	Order by
	XQuery functions

	XQuery sequences
	Effective boolean value

	External environment
	Type system considerations
	Optimisation
	XQuery semantics
	Path expressions

	Implementation
	Manual vs. automated tree parser construction
	AST rewriting and the visitor pattern
	Constructed algebra trees and performance

	Normalisation and rewriting
	Results
	Translation output
	Complexity comparison
	Loop Lifting vs Tainting Dependencies
	Considerations for executing MQL

	Conclusion
	Future Work
	Translation process Using TD
	An extensive FLWOR expression
	If-then-else
	Path expression with a predicate

	Links, resources and further reading
	Diagrams and graphs
	Further reading regarding XQuery

	Installation and usage
	EBNF for XQuery 1.0 Full-text grammar

