
June 2008
Babak Farshchian, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Collaboration Instance Manager of
UbiCollab 2008
Collaboration Instance Synchronization and Management in P2P
network

Xiaobo Wang

Problem Description
The problems I need to resolve in my research and describe in this report include how to develop a
pure Peer-to-Peer network for UbiCollab and Collaboration Instance Manager. How to make data
synchronized between peer and peer. How to manage these synchronized data in a persistent,
logical structure. As a ubiquitous groupware system, I also give the approach of how to use
location information to update user's information. Finally, for show the result of my work, I need to
develop a Graphic User Interface (GUI) to show the utility of this system.

Assignment given: 15. January 2008
Supervisor: Babak Farshchian, IDI

Abstract

This report is for my research of Collaboration Instance Manager of UbiCollab project. UbiCollab
want to be the platform for ubiquitous collaborative active. UbiCollab project aims to develop a
distributed collaborative platform which makes people in distributed space ubiquitous collaborate
with friends and colleagues. Collaboration instance manager (CIM) is a core component of the
UbiCollab platform, which manage such collaborative activities.

My research topics of CIM include in the P2P network development by using JXME, the data
synchronization through this P2P network and how to manage these synchronized date by using a
local file system. The result of my research is a CIM system, which deployed as OSGI bundle.
User can use that do some collaborative active. This CIM system manage the service level of data
synchronization, other modules and applications can use that to handle data synchronization
between each other without know the details of how to implement it.

For that purpose I first reviewed the related theories of distributed systems, ubiquitous systems,
mobile systems and CSCW. After that review I researched on some alternatives for developing
such system and choose the candidate technologies for my prototype. Secondly I analyzed the
requirements of UbiCollab and designed the prototype. Based on that design, I implemented and
tested that CIM system based on agreed common scenarios and developed a simple GUI for show
the utility. Finally, I evaluate the system by analysis system requirements and scenario criteria.

Table of content

Chapter 1 Introduction...1

1.1 Overview of UbiCollab project ..1
1.1 Motivation..2
1.2 Problem define...3
1.3 Research approach..4

Chapter 2 Theoretical review...6
2.1 CSCW and groupware ..6
2.2 Data synchronization and concurrency control in real time groupware system7
2.3 Mobility and location awareness..8
2.4 Ubiquitous system ...9
2.5 P2P network and JXTA ..9

Chapter 3 State of the art ...11
3.1 Introduction ...11

3.2 Plan B, how file system used in ubiquitous system...11
3.3 JXME, used for develop a P2P network on mobile device ..12

3.4.1 Content management system...13
3.4.2 Myjxta ...13
3.4.3 Gnutella...14

3.5 Collaborative editing system ..15
Chapter 4 Requirement specification ..16
4.1 Introduction ...16

4.2 Quality requirements ..16
4.3 Functional requirements...17
4.4 Non-functional requirement ...17

Chapter 5 System Architecture ..20
5.1 Introduction ...20
5.2 System logical static view..20
5.3 Collaboration Instance ...21
5.4 CIM and JXTA services..22
5.5 Process view and MVC pattern of CIM ..22
5.6 CIM classes ..25
5.7 System overview ..26

Chapter 6 Implementation ...27
6.1 Introduction ...27
6.2 Scenario for demonstration ..27
6.3 Test bed ..29
6.4 From JXTA to JXME. History and change issues of the P2P network development31
6.5 File system for UbiCollab ...32
6.6 Synchronization of file system..33
6.7 Space proxy and location awareness ...34

 1

6.8 CIMTool ...34
Chapter 7 Evaluation..39
Chapter 8 Future work ...42
Chapter 9 Conclusion ...43
Appendix ..44

A 1 Common scenario ...44
A 2 Code ...55
A 3 Deployment ...98

Reference..99

 1

Chapter 1 Introduction
1.1 Overview of UbiCollab project
UbiCollab is the platform for supporting collaboration through network.[1] As the result of
internet capability and technical evaluation, communication and complex collaboration among
physically distributed people become possible. Many academic communities research on CSCW
and groupware, which closed related to distributed collaboration. Other interesting aspects for
collaboration are mobility and ubiquity, which been considered as high logical level of
collaboration and treated as inherent properties of UbiCollab project.[1]

UbiCollab is the intersection of these areas mentioned above since it takes all of these researches
filed into consider. It supports the groupware liked common collaborated services and makes this
kind of collaboration to be ubiquitous. The mobility makes the ubiquitous collaboration becoming
possible, since UbiCollab should be deployed on both PC and PDA or cell phone.

I mention some important concepts of UbiCollab here for easy understanding of this project and
give the details of them in later chapters. Collaboration Instance (CI in short), is the virtual
collaboration space (context) where services, resources to be shared and collaborated works
happen. Physical distributed users use UbiNode, which is the device deployed by UbiCollab
system, to collaborate with each other. These users¡ services and resources in physical space are
published to CI, a common shared space. Through this way, people, services and spaces construct
the so-called human grid.[1]

Figure 1.1 an instance of human grid

 2

Figure 1.1 shows an instance of human grid. The Space represents physical space, CI in the central
of grid. One important property of UbiCollab human grid is: the infrastructure could be
re-constructed, which means the topology of grid network and participants might change due to
spontaneous leave, join and location change of users. This character is the requirement of
ubiquitous computing and CSCW. I will explain them later in literature review chapter.

UbiCollab project is been divided into some sub-tasks of student projects based on different
modules. The modules been research on in this semester are: Session manager, Collaboration
Instance Manager, ID manager and Service Discovery manager. I worked on Collaboration
Instance Manager (CIM in short), and cooperated with others who responsible for the three
modules.

UbiCollab is an open source project, which means the developed source code is free for use and
the libraries, platforms used for development must has open source license. The wiki homepage of
UbiCollab is: http://mediawiki.idi.ntnu.no/wiki/ubicollab/index.php/Main_Page.

1.1 Motivation
As mentioned above, UbiCollab means Ubiquitous Collaboration system. It is not just a simple
combination of ubiquitous computing and CSCW, groupware. We want to develop a platform for
people to cooperate with friends and work mates in the natural way. Ubiquitous environment and
mobility is the key for success.

There is a lot of research on CSCW from 1984.[2] In early time, researchers and the system
developers mostly without consider how people collaborate with people in natural way. The
reason is both due to technical constraints and no theories supporting. These systems and
applications, of course, support some level collaborated activities to users who are locate in
different physical spaces, but at the same time, undermining the mobility of users , which is what
they used to in natural way. [3]

Mobility is closed relate to ubiquitous computing (ubicomp) since the later one means we can
access information and get service anytime and anyplace. [4] For this purpose, not only mobile
devices such as PDA and cell phone but also ubiquitous environment are required.

UbiCollab project is supposed to be the platform through which people can do ubiquitous
collaboration. We deploy system on PC, laptop and mobile device. User can take these mobile
devices to different physical spaces, which represent different collaboration context. UbiCollab
supports collaboration, context awareness, spontaneous participant and automatic re-construction
of human grid. The achievement of last one based on location or other context parameters change.

My contribution to UbiCollab is CIM module. CIM is the basic core of UbiCollab system. I list
and explain the main problems CIM and UbiCollab faced with in next section.

 3

1.2 Problem define
I define the main problems of UbiCollab and my CIM module, both technical and non-technical
ones, into two categories. The first one contains the lower level communication between peers,
implementation of the infrastructure network. The other is in a higher level abstraction, relate to
ubiquitous, context awareness and usability.

Following are belonged to the first category:

P2P network development

Because of the human grid and ubiquitous requirement of UbiCollab, spontaneous and no
dependence on server is very important to the network. P2P is the best choice in our case. I
responsible for such a P2P network development, which supports basic data transfer and complex
data synchronization. I use JXTA [5] for this purpose, through which, each UbiNode becoming a
JXTA peer and collaborate with others in the same group.

Data synchronization

One of the most important topics of distributed system is how to keep the data reside in remote
peers consistent with each other. The ideal situation is all the peers have the same data and view of
it. But it is impossible since network delay and currency operations collision. UbiCollab, as a
groupware, in additional to the classic synchronization issues in distributed database, has its
specific property. The feeling of human and performance must be take into consider.[6]

Data synchronization and currency control are very wide and deep research area. In this thesis
report, I focus on how to use JXTA to achieve synchronization purpose, how these synchronized
data and information are stored in a logical way and, how to use synchronized information and
data to make UbiCollab context awareness. At the same time, I will give my idea of how
UbiCollab should treat with currency control.

Deployment of device and platform

In order to fulfill mobility, UbiCollab have to be installed on mobile device such as PDA and cell
phone. I have implemented an older version of CIM on standard PC and laptop. There are some
constraints and technical problems when change that to CDC mobile devices. I will give a trace of
CIM development and the problems encountered such as compatible and wireless network.

Following falls into the second category:

Context awareness

Context awareness is important to CSCW. This awareness contains knowledge of your cooperators
and this knowledge facilitates collaboration activities. In UbiCollab, such awareness is location

 4

awareness. How to design CIM in order to make it receive and make use of the location
information should be taken into consider. In human grid, when user changes the physical space,
the location awareness information might be: ¡ I leave my office so I don¡t want talk about work!¡
or ¡ I¡m home now¡ . The information and space change could cause user leave and join a new CI,
or just find new services and publish it to CI. CIM has to know how to treat with these raw data
from sensor and do corresponding update based on it.

UbiBuddy

UbiBuddy is the demonstration application of UbiCollab. It is a MSN liked chatting, collaboration
platform. My work mates and I want to use it show the basic functions and services UbiCollab can
support to users. It is a combination of the modules we developed and its GUI affects how user
feels of and uses UbiCollab.

Persistent storage and local data management

UbiCollab system and CIM should keep data persistent in UbiNode. The data include the service
resource and other user information. This is not only for initial CIM and UbiCollab system but
also used for data synchronization management. The storage structure decides the destination
where synchronized data will be propagated to and local CIM system can retrieval resource from.

1.3 Research approach

Firstly, I read and research on papers and books relate to CSCW, data synchronization of
distributed system, JXTA development and how to using file system to develop ubiquitous system.
The literature review and study give me basic knowledge and technical supporting for my research
work.

Beside the theories and technologies mentioned above, I do some case study focus on some
counterpart applications and alternatives technologies. The state of the art research not only gives
me some example of how groupware, ubiquitous systems should be developed but also what
shortcomings should be avoid during my design work. After the analysis, we know what aspects
make UbiCollab and CIM unique and different to others.

I have developed a CIM module based on JXTA standard version. For my thesis I develop a new
one (not dependent on the older one). For that purpose, I compare what is different between JXSE
and JXME. I list constraints and problems when I use the micro version and what can be improved
in future.

What I mentioned above is preparation work in early phase. After that I design system architecture
based on requirement specification analysis. A good understanding of both technical requirements
and non-technical ones limit the boundary of CIM. This boundary decides what I should and what
I should not do. The system architecture includes different views of CIM and how it

 5

communicates with other modules, proxies and applications.

I implement a CIM version 0.1 for demonstrate the usability based on the design work. My work
mates and me decide to use UbiBuddy[1] to show what UbiCollab system should looks like and
how it work. CIM supports CI manager and P2P network initial for that application. I describe the
details of implementation in the chapter six.

Finally, I evaluate the system based on how it satisfies the requirement and performance. I also
give a conclusion of how it can be improved in future in the end of this report.

 6

Chapter 2 Theoretical review

2.1 CSCW and groupware
CSCW (Computer Supported Cooperative Work) should be conceived as an endeavor to
understand the nature and requirements of cooperative work with the objective of designing
computer-based technologies for cooperative work arrangement. This is the definition of CSCW
given by Schmidt and Bannon (1992)[7]. In this definition, CSCW is basically a design oriented
area, a design discipline but not a strict guideline or framework. Groupware is the implementation
of CSCW. It supports the platform for collaborated work on. As the definition of UbiCollab
project, it belongs to CSCW research area and the real implementation is a groupware.

Cooperative work is inherently distributed, this character result in the complexity of cooperative
work. The more distributed the activities of a given cooperative work arrangement, the more
complex the articulation of the activities of that arrangement is likely to be[7]. The CSCW system
design should consider this characteristic into cooperative design.

In order to support distributed collaboration, a common shared space is required. CI is this abstract
space in UbiCollab system. For the common information space, CSCW system should support
basic structures for establishing and maintaining conceptual structures to keep track of actors work
and negotiate of the update of work for a common consensus.[7] CIM is the core module
responsible for these purposes, it should provide data publish, remotely request and access, event
registry, notify of update and space management.

In the white paper of UbiCollab, authors mentioned the collaboration instance is a virtual context
for collaboration,[1] combine with the awareness for cooperative work, we can say the UbiCollab
should support contextual awareness. In order to understand Context-aware computing we must
know what is context in this domain. Context is: any information that can be used to characterize
the situation of entities that are considered relevant to the interaction between a user and an
application, including the user and application themselves. Context is typically the location,
identity and state of people, group, and computational and physical objects.[8] In UbiCollab
systems, CI should contains and interacts with physical devices in the surround environment, the
states changes of these devices gives contextual awareness of people in the environment, for
example you turn on a light in you office reveals you are working now. CI also interact directly
with the physical space around you, for example the locate track and location based services,
awareness systems.[9] These physical changes will reflected in CI which eventually gives a
contextual awareness to you friends or mates in remote places. I will give some details of location
awareness in later section.

 7

2.2 Data synchronization and concurrency control in real

time groupware system

A distributed system is the one in which hardware or software components located at networked
computers communication and coordinate their actions only by passing messages.[10] UbiCollab
is a typical distributed system if taking this definition to consider it: different nodes (Ubinode)
coordinate actions and sharing resource by messages passing on the connected network, which can
both mobile and cable network.

Data synchronization is one of the basic services that distributed system should support.
Synchronization achieved by data replication and concurrency control. The idea is, keep the data
in distributed node consistent with each other.[10] Replication of data means maintenance of
copies of data at multiple computers. In the system model of replication, copies of objects or data
called replicas held by distinct replica managers, which contain the replicas on computers and
perform operations upon them. In UbiCollab, replica is the data shared in CI, and CIM act as the
manager of such data.

When we work in a physical shared space, we work on a distinct objects and to be physical
constrained from doing particular actions.[6] However, situation becoming complex when we use
groupware liked distributed collaboration system. These systems have multi copies over
distributed computers, data replication only can replica data to them but not make them
consistency. Concurrency control problem arise when concurrency operation happened on multi
peers. Time delays when exchange such concurrency conflict actions.[6]

Traditionally, there are two ways for managing concurrency conflicts. One way is serialization and
another one is privileged access through locking. Serialization usually achieved by generates a
total ordering of events. A scheduler then decides how to execute events or how to detect and
repair order inconsistencies.[6] Locking, in another way, keep privileged access to object. Only
the locker holder can access and operate on the locked object and other candidates should request
to lock. Commonly, there two policies as guideline when these approach are used: Optimistic and
non-optimistic. Optimistic policy has the assumption that: there are very low opportunities for
conflict operations and concurrency collisions happen. It allows data replication between peers
without ordering guarantee before, if inconsistencies be detected, some rules used to repair that.
Non-optimistic, in another way, make sure the arrived event must in the correct global order
before allows it affects local state.

Groupware is the tool for help people collaboration, human interaction and feeling has to be taken
into consider when design concurrency control approach. The result of such control must to be
perceived and understandable to human. And the local response should be as soon as possible. The
two traditional approaches mentioned above get problems when used in groupware. In
non-optimistic policy, both approaches face the problem of waiting and pending either for global
order guarantee or request lock. In optimistic policy, the requests and operations can be allowed

 8

immediately, but the problem due to how interface to show repair of inconsistencies caused by out
of order sequences through undo and transformation.[6] People will feel strange when the
co-edited object, such as text, change to an unexpected state due to transformation or rollback to
the original state caused by redo. But worse situation is people not notice of such change, this
always causes data lost or failure of collaboration.

As mentioned above, the choice of concurrency control for groupware is different to other
distributed systems. We should consider both human and technical aspect. From user¡s point of
view, the data update and repair should be understandable. When user editing characters or
grabbing pictures, unexpected characters change or picture move should make them confused. At
that time, a lock policy might be a good choice. On the other hand, if user want to work close with
others and don¡t want to grab the control, a serialization policy may suffice.[6]

In this report I mainly focus on how to use UbiBuddy liked interface and CIM, JXME based p2p
network to achieve data synchronization. The user information and local update should be
synchronized to others on time and in an understandable way. I will give details of that in
implementation chapter.

2.3 Mobility and location awareness
One important character of collaboration active is mobility.[3] In physical space, we not only stay
at the front of desktop but also move to lab, office and go home. In CSCW and groupware, we
want make use of this flexibility to give users better collaboration experience. A low level but
obviously good example is mobile phone, which facilitate us everyday life and make an evaluation
of communication technology.

Based on wireless network, cellular network and mobile device such as cell phone and PDA, we
can get touch with friends and colleagues anytime and place. But is that the final result we want to?
In CSCW, this is only the basic requirement for advanced, complexly collaborated work.
Groupware should base on, but have more advanced functions and services than text, voice, video
communication, such as co-edit and group meeting. On the other hand, connect to friends and
colleagues anytime could break some social rule, for example, I don¡t want to talk about work
when I home.

In groupware system design, we need to make use of mobile device to make cooperate work can
be done during movement and consider the information from location change. This information is
location awareness.[9] UbiCollab wants to develop the platform that satisfies such requirements.
UbiCollab platform should be deployed on both static devices such as PC laptop (even laptop
could be use during movement but not in and easy way) and mobile devices. The platform should
collect information from environment in order to give location awareness to services and
applications. These applications then update and adapt to the changes, in order to give users and
co-works awareness. A scenario is: Charlie walks into office, his status of CI ¡ work¡ becomes
online, which means he is work now and available if the participants in the same group want to
have some cooperate work with him.

 9

The location information could be collect from multi ways, such as GPS. In our case, we use
RFID tag fro that purpose. The RFID tag should contains location information and read that
through a Bluetooth reader.

2.4 Ubiquitous system
Mobility makes groupware has one character of work in natural way, but real collaboration not
only needs move flexibility but also contains more activities. We use artifacts in physical space to
help us work, such as whiteboard and printer. The purpose of ubiquitous computing is: augment
people ability of treat information and cooperation by support services which vanished into
physical environment (disappear).[11]

In order to develop ubiquitous system, some themes need to take in to consider. One is natural
interface, which make people use the natural way to interaction with computer systems, such as
speech input. The purpose is to make people interact with computer like what he or she used to
with physical world. It is contribute to disappear because when you interact with systems in a used
way, you will not pay attention or at least less to the interaction itself but more focus on the task or
goal underlying it. Another is the context-aware; I have mentioned some theory about context
especially location awareness. In ubiquitous system, the consumers of context information are
both human and the system, the system adapt itself to the environment it involved in based on the
context it get, in this way system can support services to human base on different situation. Finally,
the large number ubiquitous applications want the capture the life experiences and access it latter.

UbiCollab research mainly focus on how to get services from environment and support context
awareness. These services then shared with co-workers, who can use them supported by context
awareness.

2.5 P2P network and JXTA
I mentioned human grid before, this grid should support users with spontaneous join and leave.
Another reason for spontaneous and independency is mobile devices are easily disconnect from
network both due to low battery and wireless network unstable. For this purpose, UbiCollab needs
Peer-to-Peer topology network. The advanced feature of P2P is: all the peers have the same role,
no dependency between each other. This feature means that there no central server, which supports
central control or storage for others in client-server architecture.[10]

Because of independency, peers could join and leave without affect others. However, no central
control arise some problems. One of them is route, how peers discover interested peers or resource
and then replicate dynamic date to them. Another one is shared space. CSCW, groupware must
provide common space service, but common space naturally relate to central control and
dependency.

I use JXTA to develop the P2P network used for UbiCollab and provide low level functions for

 10

CIM. JXTA, which is a programming language and platform, designed to solve a number of
problems in modern distributed computing, especially in the area broadly referred to as
peer-to-peer computing, or peer-to-peer networking, or simply P2P.[5]

I use JXME, the micro version of JXTA to develop the foundational network and platform. One
reason of use JXME is that: it easily solves the route problem by use pipe. Another one is, JXME
proxy-less version is tested compatible to deploy on PDA, which shows mobility for UbiCollab. I
will describe details of JXME in next chapter.

 11

Chapter 3 State of the art

3.1 Introduction

There are a lot of research have been done in groupware, P2P network and resource sharing. I
research on them and give a conclusion in this chapter. I compare these results with UbiCollab and
CIM in order to show what ideas CIM and UbiCollab could get from them, what is different
between them and what is the advanced of UbiCollab and CIM.

3.2 Plan B, how file system used in ubiquitous system

Ubiquitous system provides users access to different services, which vanish into physical space.
These services might have heterogeneous runtime platforms, APIs and protocols. Developed
ubiquitous system need makes these heterogeneous systems interoperate with each other. The
ubiquitous system always has new interfaces, which incompatible with legacy applications and
services. We need develop new tools for ubiquitous system even the old ones are work well.

Middleware generous used for integrate different systems. Middleware approaches rely on
XML-based interfaces for interoperability. One reason for this is to provide a universal interface
that most programs understand. However, because their interfaces are also new, general-purpose
tools stop working for the new abstractions, so programmers need new tools even when old tools
could work. In Plan B and Plan 9 projects, researchers use a hierarchy file system instead of XML
tree to represent resource and services. This approach require only file explore system but doesn¡t
need introduce new technology and software for both people and programs to use it.[12]

Resource located at corresponding file path, which represented by resource volume. Volume name
identify resource exported in a global namespace. The operations on this file system are simple
open, close, read and write. By using special requesting commands, programs and people can
easily find, modify and request resource. User can also manually use third-part tools or
applications change the file content, for example change the status of a light from on to off. The
change will cause light turn off since system support file monitor.

I adopt some ideas from the file system approach into CIM and UbiCollab system. I define a
folder hierarchy used to locate different resource and information, such as the services that users
published into space, user status and common session templet. A XML file describes the concrete
content of resource. CIM should responsible for manage these files, notify modification and
synchronize them. The reason for use this approach is because it is easy for both human and
system to understand and show usability. CIM create and manage the folder hierarchy by JAVA,
which means it works on both Windows and Unix system. The details of architecture and
implementation will be described in later chapter.

 12

3.3 JXME, used for develop a P2P network on mobile device

JXTA is the platform used to develop P2P network, which responsible for network communication.
The communication and data transfer through pipe, which is the channel that encapsulated
message send to target peer(s).

The main objectives of JXTA are: Interoperability, Platform Independence and Ubiquity.[5] JXTA
project provide protocols used as mechanism to realize the objectives. The basic component in
JXTA world is peer, peer can creates, join, peer group and publish advertisement, then peers
communicate by passing message from pipes or sockets.

The typical JXTA software architecture is illustrated in figure 3.2, which is divided into three
layers. At the bottom, the core layer deals with peer establishment, communication management.[5]
The service layer supports core services are the services all the peers in JXTA world must
implement, additional to these, some standard and user customized ones are implemented.
Different peer groups are recognized by the services implemented inside this group, in actually,
group join and creation is the process of instantiate a group object with the predefined services.
On the top of this architecture are applications, which use the services supported by lower layers.

Figure3.2 JXTA software architecture [5]

JXME is the micro version of JXTA, which used for develop system deployed on mobile devices.
It has two distributions. One is CDC (proxy-less) version and another is CLDC. The first one used
for my thesis research. The reason for choice that is both due to it is tested compatible with PDA
with windows mobile system and it is similar with the original JXSE version. The main
differences between JXME and JXSE are: JXME requires more support from rendezvous peer and

 13

not support cache, since the limitation of mobile device capacity.

However, JXME proxy-less version can work well without rendezvous peer in a local sub-network,
which is the environment for my research. This feature gives possibility for develop a pure P2P
topology network, no dependency and relay on others. In future work, the Ubi-network could be
extended to whole internet with deployed rendezvous peers, who facilitate discovery, support
communicate across NAT and firewall and provide utility services.

3.4 Shared resource management

Common space and shared content is required by UbiCollab project. I do research on this topic
and give some possible alternatives for my thesis and future work.

3.4.1 Content management system

Content management system (CMS) is a desire to manage the explosion of content, a desire to
provide structure and meaning to content in order to make it accessible, and a desire to work
collaboratively to manipulate content in some meaningful way.[13]

However, traditional CMS systems face problems with the P2P network. The ranged capability of
mobile device market requires the CMS should treat with a lot of heterogeneous or low capacity
platforms and devices.

There are some projects addresses the problem of how CMS work in a P2P network. JXTA CMS
is the extension library based on JXTA. By using that, developers can develop a shared content
space and access them between each other. However, this library tested not compatible with
JXME CDC when I tried to develop a JXME based CMS approach. In my CIM, I don¡t use CMS
approach to develop the shared space, but it is might possible in future.

3.4.2 Myjxta

An open source project developed a JXTA based application: Myjxta, which show some usability
of JXTA, such as peer discovery, group discovery and file sharing. CIM should support some
services like the Myjxta did but more focus on CI management, data synchronization and
awareness. In a short word, CIM use JXTA to achieve services implementation rather than a JXTA
application.

Myjxta use JXTA CMS developed the file sharing system, by point at desired file through local

 14

file explore system, it create a shared file folder and other peers in the same group could access
them. However, as I mentioned above, CMS is not compatible with JXME and UbiCollab require
OSGI as the container. I didn¡t adapt Myjxta to CIM implementation both due to too much change
work required and incompatible.

Figure 3.4.2 shows screenshot of Myjxta, you can see there are share function button and list of
avatars represent discovered or join the same groups peers. The right part shows the relation ship
of groups, all the custom groups created from the initial group: MyJxta. This approach used in
UbiCollab design. At beginning, the initial peer (called UbiHome), create the initial group called
UbiCollab. All the peers want to participant UbiCollab network should join this group.

Figure 3.4.2 Myjxta user interface

3.4.3 Gnutella
A successful P2P case is Gnutella. Gnutella is a file search and sharing system, like other P2P
application, Gnutella builds at the application level a virtual network (Gnutella network) with its
own routing mechanisms.[14] Peer in the Gnutella network query and propagates messages by
using a flooding mechanism, which means query is propagated to all neighbors within a certain
radius.[15]

We use a standard taxonomy in P2P world to classify different systems. Consider Degree of
centralization, there are purely decentralized, partially centralized and hybrid decentralized

 15

systems. Consider the network structure there are structured and unstructured systems. Gnutella is
a pure centralized, unstructured network system.[16]

In UbiCollab project, we want to develop a pure decentralized P2P network without any central
server dependency. No dependency is more advanced than Gnutella liked centralized system but at
the same time, hard to implement and cost more network resource and time for route. In future
work, rendezvous peers could be taken consider into, since it support some ¡ super service¡ , which
facilitate resource discovery, however, becoming system to be a partial P2P topology. I want to
develop a pure P2P structure system, peers participant in which replicate available resource or the
reference to them to interested peers.

3.5 Collaborative editing system

Collaborative editing is another important function groupware could support. Users could co-edit
text, graph and some complex objects. The challenge to co-edit is to make data consistent in all
sites. Basically, collaborative editing system should follow three criterions during deign and
implementation. Intention preservation, casual consistency and convergence.[17] Intention
preservation requires that for ¡any operation op, the effects of executing op at all sites are the same
as the intention of op, and the effect of executing op does not change the effects of independent
operations¡ .[18] The operations on each site should execute on a state where they are legal. Such
as an insert operation must relay on the two characters before and after the target one. The respect
of preconditions ensures the causal consistency criteria. Convergence criterion states that peers
with the same set of editing operations compute the same state of the replicated data. A direct way
to ensure convergence is that the state of the data does not depend on the order that a peer executes
received operations.[17]

In order to achieve these requirements, system should consider how to treat with arrived
operations. Because of concurrency operation and network latency, arrived operations could out of
order in different sites, which could cause different result if without concurrency control. As
mentioned above, lock and serialization are the common technology used for that purpose. But for
P2P and groupware system, more situations should be taken into consider as I described in last
chapter.

In my report, this kind of co-editing system is not the main research area. Because of the time
limit and complex of concurrency design. However, I will give my ideas of possible approaches of
how co-editing application could be achieved through CIM and possible extension in future work.

 16

Chapter 4 Requirement specification

4.1 Introduction

All the design and implementation work based on requirement analysis. I should understand the
requirements from stakeholders in early phase and define boundary, which tell me what should do
and what shouldn¡t. I list these requirements specification into three categories and give
constraints of future implementations.

4.2 Quality requirements

These main quality requirements from a generally point of view to see what features CIM and
UbiCollab should focus on. In real design and implementation, I mainly focus on CIM. However,
since quality requirements are required by the whole UbiCollab system and affect CIM. They
should get from functional and non-functional requirements. However, I list them firstly in order
to give an overview of CIM and UBiCollab.

Portability: CIM and UbiCollab should be deployed on ranged devices, which include PC, laptop,
PDA and cell phone. Especially, run on PDA and cell phone is the pre-condition of mobility,
which is required by white paper of UbiCollab.[1]

Availability: Availability relate to independency, since UbiCollab should not breakdown because
of peer leave and network problems. However, this doesn¡t means all the services have to
available even the specific vendor leave. I want to use a pure P2P topology in order to satisfy this
requirement.

Security: Collaboration instance is the virtual space, where services can be shared from access to.
We need some security protocols to prevent private services and CI groups from accessible for all
peers. JXTA support authentication for that purpose.

Performance: As a groupware, UbiCollab shoud have a good performance, which gives users
satisfied experience. CIM is responsible for data synchronization and CI management. CIM
should replicate data to all the related peers on time with concurrency control, which make sure
data consistency. The detail of how groupware should perform was mentioned in chapter two.

Scalability: CIM and UbiCollab must be scalable when new functional requirement being added in.
New services could be extended in future work. We should make sure the joint is seamless. By
using OSGI platform as the container, new added services with standard interface can be easily
resolved and run. Pure P2P network also gives extendable feature when peers increase.

 17

4.3 Functional requirements

I list functional requirements of CIM in table with description. Details are given at follow.

ID Description
F1 CIM responsible for create, delete and modify CI.
F2 CIM responsible for data synchronization
F3 CIM responsible for create and manage a persistent local space for stores configure data in

each UbiNode. These data used for CIM initiation and access replica data at runtime.
F4 CIM responsible for discover groups and users by assigned attribute(s).
F5 CIM communicate with applications and proxies, which access and update CIs data

through CIM.
F6 CIM could register with some proxies for get context awareness information and local

system change.
F7 Membership through distribution of URI.

The first two are easy understood and the data synchronization is mentioned above. For the F3,
CIM maintains local folder system I mentioned in last chapter and the details will be given in next
chapters. CIM use JXTA provided discovery service to lookup remote peers and CIs by specify
name or other attributes (optional). As the manager of CI, all applications and proxies should
access CI through CIM, CIM define the interfaces for update CI information, changed data could
store in the local file system if required. F6 is similar with F5 but more specific. For example, the
location change will be received by RFID reader then send to a proxy, which registered with CIM.
CIM get the changed location information and use it to update local CI, in this case, the user¡s
location change affect online status.

4.4 Non-functional requirement

ID Description
N1 UbiCollab and CIM must implemented as open source
N2 CIM and UbiCollab should be implemented on rang of devices. (PDA, laptop, tablet,

mobile phone)
N3 CIM and UbiCollab must satisfy mobility
N4 UbiCollab components should independent with third part components.
N5 UbiCollab, CIM and other components should be implemented in OSGI container.
N6 UbiCollab components should light weight and small size

These non-functional requirements are specify criteria that can be used to judge the operation of a
system, rather than tell what CIM and UbiCollab should to do-these details behaviors are
mentioned in functional requirements. The first requirement was clearly described in UbiCollab
project. The code, the libraries and the platforms used to develop CIM must have open source
license. N2 decide the portability quality requirement which include N3, since mobility means

 18

system should deployed on PDA and cell phone. As ubiquitous system, it should make sure the
components are independent in order to treat with the dynamic characteristic of ubiquitous
environment. This feature also makes system spontaneous join the ubiquitous world.[19] N5 is
more details than others, but since OSGI container has different specifications, the real
implementation should consider compatible. The last one caused by consider thin system,[20]
which dose¡s has as enough capability and available space as laptop, such as PDA or mobile phone.
For make these thin clients could use UbiCollab and CIM, the components must not as big as
hundreds mega-byte and don¡t require big memory.

4.5 Hardware, software and constraints

Hardware and software which used for develop and test CIM have to be open source ones. These
devices, library and platform have some constraints both due to capability and compatible. I list
these required COTS components and analyze constraints after that.

Hardware:

For the requirements of mobility, PDA is required. We use HTC TyTN 2 as the testing PDA. The
details of specification of it will be described in implementation chapter. We use a router to create
a sub-network instead of using NTNU network since that tested has problem. For discovery
service, they using a RFID reader and RFID tag (an electric rabbit). Other developing and testing
tools are laptops.

Software:

The runtime and JVM, we using J9 platform which support J2ME for embedded system
development, the details of it can be found in implementation chapter. The container of our
modules is OSGI container, Equinox specification. I choice JXME, version 2.1.3 as the JXTA
platform and library (include Log4J library). For GUI development we agree with the SWT as the
toolkit.

Constraints:

The PDA has smaller screen compare with laptop and tablet. Display and control is unconvinced.
The small memory is a problem also, if multi-session and modules need to be load and run, it
takes long time and some times crush. The Equinox not support Swing which developed by SUN,
we have to using SWT. Even it has a good performance, developing and testing has some
constraints. For example, the SWT create an individual thread for display, outside thread can¡t
modify display directly. It takes our some time to solve this problem. Another good OSGI
container Knopflerfish is the alternative at the beginning of development phase; however, it can¡t
satisfy with some purpose of session manager¡s task.

For J9 platform, it is not support enough utility libraries by itself. We have to change the library by

 19

ourselves and re-compile some source code (al of them are open source). The JXME development
required rendezvous peer as the connecter of different network. I have not deployed any UbiNodes
for that purpose, which could limit the communication scale of this P2P network (only in
sub-network).

 20

Chapter 5 System Architecture

5.1 Introduction

Based on requirement specification, I design the architecture of collaboration instance and related
modules. I will give the overview relationship between CIM and other module, applications. Then
give the details architecture of CIM itself. These architectures are figured out from different point
of view such as static view, process view and detail for specific services.

5.2 System logical static view

Firstly, I describe the relationship between CIM and other modules, since all of them contribute to
UbiCollab and communicate with CIM. Figure 5.2 is the component logical view of it.

Figure 5.2 logical view of UbiCollab components.

All of other modules/components use CIM and CIM also use some of them. Session manager get
update message from CIM if the local common session templet is changed. Session manager and
other application/ proxy could directly modify the local files, CIM monitor local file system or get
through other way to know these change, then propagate update data to other peers.

 21

Discovery manager and ID manager publish discovered services to CIM or check imputed ID with
correct one. Some application/proxy, ID manager and service discovery manager (optional) get the
information from RDIF tag through RFID reader, which in our case, a RDIF pen. These
information will cause CI update by calling CIM.

In real implementation, user and other modules, application/proxy use CIM directly or through a
CIM tool, which support interface to them. In this diagram, I don¡t include CIM tool because most
of other mentioned modules can use CIM directly.

5.3 Collaboration Instance

The main task of CIM is to manage collaboration instance. User can create and join multi CIs.
However, I assume that each UbiNode can only have one active CI at one time. This assumption is
due to JXTA group creation and pipe service. I use one pre-defined pipe advertisement for pipe
creation and the pipe will reconfigure itself by discovery service, which specified by group. If
multi groups alive at the same time, pipe don¡t know who is owner of the discovery service. This
assumption is not a limitation but ease the developing, in future work, multi groups at same time is
possible if corresponding pipes were created for them.

Figure 5.3: CIM, CI and related modules.

This diagram shows that all modules affect CI through CIM. Space proxy is the proxy used for
sending location change message to CIM through register with CIM. CIM get information then
update CI status and active CI. CIM tool and application is the interface to user, who can do
change to current CI, this change update to CI through CIM.

 22

As mentioned above, a local file system is important to my CIM research. CIM monitor file
changes that could cause by application or CIM tool. Once CIM knows the change, it propagates
updated data to other peers.

5.4 CIM and JXTA services

JXTA is the foundational platform used for develop P2P network and provides basic functions for
CIM. Figure 5.4 is the diagram of relationship between CIM services/components and JXTA
services/component.

JXTA discovery service is the service used for discovery JXTA group, publish advertisement and
as the parameter of other service. CIM use it for discovery remote CI instance and other UbiNode.
Pipe service supports communication channel for sending message through it. The implementation
in CIM is propagate message to UbiNodes, who in the same group. Two specifications of the
propagate message are: send text message, which responsible for group chatting and broadcast
message; send file, which responsible for sending file content (input stream) to other UbiNodes.

Message is the basic unit for JXTA communication. Each message can have zero to more message
element, who contains text string or input stream. CIM propagate message by using pipe and
message.

Each JXTA group abstracted as one collaboration instance. But JXTA group only supports basic
initiation of CI and a discoverable instance. Attributes and higher level implementation should be
added in.

Figure 5.4: CIM services and JXTA services

5.5 Process view and MVC pattern of CIM

 23

I figured out some static views which show relationship between modules/components. However,
these diagrams didn¡t show how data transfer between them. I give the process view in order to
show the concurrency and synchronization aspects of CIM and other modules.

Figure 5.5.1 shows the process of application and space proxy communicate with CIM and how
CIM update CI, store update date to local file system then propagate to same group peer. CIM call
space proxy, which responsible for send location change message derived from space manager or
other modules. When location change event happen, space proxy callback to CIM, who firstly
update information to all the CIs, then store the change to local file system, finally replicate these
change to other peers.

For other applications, they directly call CIM, use it to update CI. After update, the process is
same as space proxy did.

Figure 5.5.1 application and space proxy use CIM for update CI

Space Proxy
Collaboration Instance

Manager 1 CI 1 CI 2Application

call

use Update

Callback
Call

Update

Store

Local File System Collaboration Instance
Manager 2

Replication Message

Update

Store

Replication Message

Figure 5.5.2 Session Manager and CIM too use CIM to update CI and local file system

 24

The main approach used in my system is the file monitor process, which inspired by the file
system plan B which was mentioned early. Some modules and applications directly update the file
system without using CIM. Figure 5.5.2 shows how CIM treat with such kind of situation. CIM
monitor file system in case files changed by applications or other modules by using file monitor
system, which generates event when file content modified or new folders created. In this diagram,
session manager updates common session templet and CIMTool updates file content. CIM receive
event, retrieval updated content from event, and then propagate file content to other peers. CIM
tool could be the GUI of CIM or other application.

Based on the process, I consider CIM system as an implementation of MVC pattern.[21] CIMTool
or other application is the View, which displays the data. CIM is the Control module, responsible
for treat with data in local system. Local file system doesn¡t take care of the data it stored. Figure
5.5.3 is the MVC pattern of them.

Figure 5.5.3 MVC view of CIM system

 25

The solid lines indicate a direct association such as file write and read, and the dashed lines
indicate an indirect association, which implemented as file listener and other event handler.

5.6 CIM classes

I figured out UML models from logical and process view in order to show relationship between
UbiCollab system modules and CIM. In this section I give details of CIM classes and functions for
implementation.

Figure 5.6: CIM and services classes.

+startService()
+startJxta()
+initialGroupsInfor()
+storeAdv()
+retrievalGroupAdv()
+creatNewGroup()
+creatGroupFromLocal()
+discoveryGroup()
+createLocalCIRplica()
+createLocalUserInfor()
+sendFile()
+sendMessage()
+joinGroup()
+pipeMsgEvent()
+writeFile()
+discoveryEvent()
+addMonitorFile()
+removeMonitorFile()
+reMonitor()

JXMEUbiService

+initialCI()
+getUsersList()
+loadUserList()
+getUserInfor()
+addUser()
+addService()

-name
-CIUser
-description
-Services

CI

+HOME
+ADV
+STATUS
+SERVICE
+FRIENDS
+LOCATION
+TEMPLET

FilePath

+InitialUser()
+setName()
+setLocation()
+setStatus()
+getName()
+getLocation()
+addService()
+getService()

User

+setServiceName()
+setServiceURI()
+setServiceLocation()
+setServiceDesURI()
+getServiceName()
+getServiceURI()
+getServiceLocation()
+getServiceDesURI()

-ServiceName
-ServiceURI
-ServiceLocation
-ServiceDesURI

Service

-Lab145
Location

1

0..*

1

1..*

*
*

1

0..*

-Own by

1 -Manage

0..*

+open()
+createContents()
+updateStatus()
+updateService()
+updateFriends()
+writeToFile()

CIMTool

+start()
+stop()

Activator

+initialJxta()
+setCIMTool()
+addFileListener()
+synchronizeFile()
+getCIInfor()
+createNewCI()
+startLocalCI()
+discoveryCI()
+getFriendsList()
+getFriendServices()
+remonitor()
+getFile()
+sendMessage()
+getUsrList()
+getCIList()
+addProxy()

-cin
-osw
-readrer
-jus
-userName
-tool
-CIList
-activedCI
-user

CIM

+fileChanged()

<<interface>>
FileListener

+FileMonitor()
+stop()
+addFile()
+removeFile()
+addListener()
+removeListener()

-timer_
-files_
-listeners_

FileMonitor

+run()

FileMonitorNotifier

Figure 5.6 is my design of collaboration instance manager system. The two main classes for this
system if JXMEUbiService and CIM. The first one responsible initial JXME network and supports
basic services. The CIM is the collaboration instance manager, who uses the JXTA service and
supports higher level services such as data synchronization. The CIM class manages CI, who
could have Service, User. Each user has Location and Service.

File monitor service supported by class FileMonitor. It generates fileChanged event when

 26

monitored file content was changed. The listener who generates this event is the interface
FileListener. Inside this interface, a method fileChanged was defined.

CIMTool is the graphic user interface (GUI) of this system. It also could be considered as any
application who wants to use CIM. CIMTool implements the FileListener and describes what
actives the system should do when file content changed. The actives such as user¡s status change,
add service on GUI, add user¡s name and service when new user join current CI are based on this
file monitor approach.

In a short word, the file system is the media which connected CIM and other application with each
other. I will give details about file system and CIM in next chapter.

5.7 System overview

Finally, I give the system overview represented by layered services.

Figure 5.7: System overview.

CM and other UbiServices are implemented as OSGI bundles. Applications could be developed as
bundles. However, outside applications should be allowed access to UbiCollab in future work.

 27

Chapter 6 Implementation

6.1 Introduction

This chapter includes the details of implementation of CIM. Firstly I introduce the common
scenario of UbiCollab project. This scenario shows usability of all modules and has specific part
for CIM. Then I give the test bed for system development and testing. Before describe CIM
system, I want to show the implementation change log of using JXTA and JXME libraries. This
description gives the reason of why select JXME as the library and the limitation of JXME.

This chapter mainly includes the details of CIM implementation and the usability of CIM through
a GUI. I want to demonstrate the data synchronization, local file system and how CIM
communication with other systems.

6.2 Scenario for demonstration

The whole content of common scenario could be found in appendix A1. There are four stories,
which talk about the daily life of a user of UbiCollab called ¡ John¡ . All of them show the utility of
CIM, Session manager, ID manager and Service Discovery manager. I am not explaining the
whole content of the scenario here since it is a long story and my report should only focus on CIM.
However, I take a simple example from them and explicate all scenarios that relate to CIM.

John uses a RFID reader to scan the RFID tag in his office. His UbiBuddy (the device such as
PDA and be installed UbiCollab platform) knows he is in office now and set him available for the
CI group ¡ COLLEAGUE¡ . At the same time, his status should be ¡ offline¡ for other groups.

John should use his to find a printer in his office by using Bluetooth or RFID reader on the device.
After then, the found service should be published to CI services system and notify all of the users
in the same CI. The users can access the service if they have the password. He is furthermore
prompted whether he wants to change the runtime states of some of his current sessions.
Specifically, the sessions that are running is a presence service and a bulletin-board service. The
first shows presence related information from a CI/ group; the latter is a bulletin-board specific for
a given CI/ group. Confirming this, by interacting with the UbiNode, the ongoing sessions are
adapted to the current environment. After the applications are initialized, a message pops up on the
bulletin board viewer, telling him that the weekly project meeting is to be held at Room 354 in one
hour.

This short scenario shows some utilities of the four modules but not all. The first section is related
to location awareness service supported by CIM. He can find printer service through the Service
Discovery manager. Other users should access it by password authorization is supported by ID

 28

manager (password should relate to specific ID). The session manager manages the ongoing
sessions.

I explain all scenario parts which related to CIM following:

1: John holds a RFID reader over a RFID tag located at the office entrance. This action positions
the user to the collaboration space ¡office¡¡ and also activates the identified space. This service has
been configured to modify his presence for his work-related CIs. Since he is working with a
specific project he does not want to be interrupted, so he has specified that he should only be
visible to the participants of the collaboration instance ¡project UbiCollab¡¡ and unavailable to the
other CI groups he is a member of to avoid non-related, external annoyances.

Explication: this scenario relate to location awareness of CIM. The RFID information should be
string or XML format which contains the location identifier content. A space proxy, which is a
application callback to CIM when there are location update. CIM use the information updates all
of the CIs. If a CI¡s pre-defined space scale contains current location identifier, this CI should be
active.

2 He browses the contents of the CI/ project area through a Co-editing notepad, and notices that
some of the project reports have been updated this morning.

Explication: Co-editing system relate CIM data synchronization and concurrency control. Content
modification should be updated to all the UbiNodes in the same CI group. While two users update
the same object, collision should happen.

3 John takes out his windows based mobile and opens the ¡Ubi Buddy¡ list. He finds ¡John¡s
computer¡ from his equipment list, which is the work computer that resides in his office. At the
same time, his colleague at another floor find John is online in the group ¡Colleague¡. And the
services (devices) found by John¡s PDA are shown. Through his PDA, John is prompted to use the
ID he had already specified for the services or create a new one. His colleague chats with him
because he wants to use John¡s printer, but John tells him ¡I am going to a presentation¡.

Explication: CIM responsible for propagate local services to CI shared space. The service should
be represented by URL of the address of them. If any new service been added, users have privilege
to it should notified. Chatting is another important feature of UbiCollab system. CIM should
provides both group chatting and one-one chatting.

4: After 10 minutes of presentation, he wants another professor to show a related document. He
pushes the avatar of that professor and type ¡ Hi Jane, I want you come and show the document I
gave you yesterday¡ to the popup chatting dialog window. Jane is busy now, but he opens the
equipment ¡projector¡ in the equipment list of John¡s and open the document. This document is
show on the AUD after transfer finish.

Explication: Similar with the third one. CIM need a GUI to show the utilities. This GUI design is

 29

also important since the feeling of user should be taken into consider.

I will mention details of how CIM satisfies these scenarios in next chapters and show the GUI
(CIMTool) made for use CIM.

6.3 Test bed
I list the details of devices and software platform/environment for CIM implementation and
UbiCollab project.

Hardware

Tablet:

Type: ASUS R2H

Specifications:

 Intel? Celeron? M ULV Processor (900MHz)
 Genuine Windows? XP Tablet PC Edition
 Onboard 256MB, DDRII 533, 1x SoDimm socket for expansion up to 768MB DDRII 667

DRAM support
 7" WXGA touch screen LCD, ASUS Splendid Video Intelligent Engine
 PATA 1.8" HDD 4200PRM 40 GB
 Bluetooth? V2.0 + EDR, 3x USB, 1x SD Card -Reader, 1x GPS, 1x Finger Print Reader
 23.4 x 13.3 x 2.8cm, 830g

PDA:

Type: HTC TyTN 2

Processor: Qualcomm? MSM7200TM, 400MHz

Operating System Windows Mobile? 6 Professional

Memory: ROM: 256MB RAM: 128MB SDRAM

Network: HSDPA/UMTS: Tri-band 850, 1900, 2100 MHz HSDPA: Up to 384kbps for upload and

 30

3.6Mbps for download
UMTS: Up to 384kbps for upload and download
GSM/GPRS/EDGE: Quad-band 850, 900, 1800, 1900 MHz (The device will operate on
frequencies available from the cellular network)

Connectivity: Bluetooth? 2.0 Wi-Fi?: IEEE 802.11 b/g HTC ExtUSB? (11 -pin mini-USB and
audio jack in one) GPS antenna connector

Laptop: The laptop is powerful enough for development and testing. I will not give the details of
laptop here. The system used in UbiCollab and CIM is Windows XP SP2.

RFID Reader: The reader for read RFID tag. However, this part is not related to my work. I don¡t
get the detail of it.

RFID tag: Unknown. .

Network:

- WIFI 802.11
- Bluetooth
- WIFI Router

Software

JRE: J9? virtual mac hine: IBM J9 optimized for supported platforms. It is already used in
production and proven in independent testing to provide a fast runtime environment for embedded
systems. We use j9-cdc-arm JVM for deployed on HTC PDA and use j9-cdc-x86 one for
development, debug.

 31

OSGI platform: Equinox. Equinox is an implementation of the OSGi R4 core framework
specification and is the foundation of the Eclipse platform (as plugin). There is a set of bundles
that implement various optional OSGi services and other infrastructure for running OSGi-based
systems. The reason for using Equinox is it tested compatible with PDA and satisfy all developers¡
purpose and supported by J9. However, other OSGI specification such as Knopflerfish is still
possible for the container of UbiCollab.

JXTA framework: JXME_Proxy_less (CDC) version 2.1.3. This is a stable and latest version of
JXME community at this time. Tested work smoothly and compatible with J9, PDA and connected
successfully to wireless network. The size of required libraries is around 1100 KB (include the
Log4J, which should supported by other vendor), the pure JXME jar package is 824 KB.

6.4 From JXTA to JXME. History and change issues of the

P2P network development

I have developed a prototype of CIM system before. This CIM developed by using JXTA standard
version library (JXSE) and tested works well. This prototype supported basic functions of CIM
such as chatting. However, these functions are low level ones, which not satisfy with high level CI
management requirements. For the purpose of giving high usability, I re-develop a new CIM
system.

Another reason for develop the new CIM is the mobility requirement of UbiCollab. JXSE not
supports mobile device developing environment. JXME has two specifications, which are
obviously different developing feeling. One of them is JXME_CDC/JXME_proxyless, which
supports java ME Connected Device Configuration (CDC) framework. This framework used for
build applications on embedded devices. Another specification is JXME_CLDC, which
compatibles with java Connected Limited Device Configuration (CLDC).

The PDA, tablet and laptop for my development and testing are powerful enough to use the
JXME_CDC library. Compare with service supporting, the CDC one are more similar with the
JXSE specification than the CLDC one. In actually, it more likes the older version of JXSE.
However, it has limitation such as no local cache supported and less utility classes.

JXME device commonly using wireless network and arise the edge-IP address problem. The IP
addresses of them are dynamically changed. In this case, rendezvous (RDV) peers is mandatory.
However, my test bed network environment is the sub-network and all the UbiNode¡s capacity is
powerful enough to run the JXME_CDC_Prxyless one. As what the name stands for, it not
mandatory requires RDV peer and supports most of the services of JXSE.

My work-mates and I tested the JXME_CDC connecting by using VPN in NTNU sub-network
firstly, but it not work. Finally we decide to use router (AP) create a local network. Another

 32

problem is the JXME group creation approach is different with the JXME one. And some utility
libraries are not compatible with it such as JXTA CMS. This library provides interface and
functions for shared file management. I planed to use CMS make a shared file system. However, I
have to develop a similar local file system by myself due to the incompatible.

JXME not support cache directly, which used for storing advertisements. Alternative,
advertisement can be stored and retrieval by system input/output, which reads and writes XML
content into a self-defined file. This advertisement file is part of my local file system.

6.5 File system for UbiCollab

Local file system is important to CIM. It not only provides a persistent local storage space but also
works for CIM as the share space. CIM responsible for construct the folder structure and files
inside.

Each UbiNode has the same folder structure. The root folder called CI, which you can choice
where you want it to be placed. Under that are folders who represent each CI group, named by
each CI group name.

Two folders inside each CI group folder, named as ¡ adv¡ and ¡ Myfolder¡ . The adv folder store a
file named ¡ peerGroupAdv.xml¡ , which store the JXTA group advertisement. This advertisement
used for create group from local without create a new advertisement. Inside Myfoder folder is the
subfolders which store CI resource. User and developer in future can self-define folders as they
want. I defined 7 folders for testing.

Five folders have corresponding functions supporting in the current CIM system. They are
¡ Friends¡ , ¡ Service¡ , ¡ Templet¡ , ¡ Status¡ , and ¡ Location¡ . Beside ¡ Friends¡ folder, others contain
an xml file, which contains resource description. For example, the service.xml could contain the
service name, description and URL address. It should be represent in standard XML format,
however, since I have not use xml parser to read and write xml file, the actual implementation
only use simple text string, each line contain predefined content. It is not affect testing quality of
CIM since easy to add xml parser in future and change the format.

The Friends folder contains subfolders named by other UbiNode¡s name. These peers are in the
same CI group. Each friend folder contains the same subfolder structure and namespace as
Myfolder folder except the ¡ Friends¡ one. User¡s resource are managed and shared through
replicate the file system.

-CI/
------adv/PeerGroupADV.xml
------Myfolder/

-----------Templet/templet.xml
 -----------Content/content.xml

 33

 -----------Service/service.xml
 -----------Status/status.xml
 -----------Location/location.xml

-----------Friends/
 ---------Templet/templet.xml

 -----------Content/content.xml
 -----------Service/service.xml
 -----------Status/status.xml
 -----------Location/location.xml

CIM responsible for add interested files for monitor content change. The FileMonitor and
FileListener classes are open source code. I use the source code directly without make it as jar
library. CIM use addMonitorFile() method of FileMonitor class to add interested file. After that,
the instance of this class adds a listener responsible generate message when file content changed.
In my case, the CIMTool class implements the FileListener interface and overload
fileChanged(event e) method. The GUI should update display and make use of CIM to replicate
data.

6.6 Synchronization of file system

Once monitored file content was changed, CIM decide how to do corresponding date
synchronization. Basically, the changed file will be replicate to all the UbiNodes who are in the
same CI group and place at hardcoded place. For example, user ¡ Wang¡ manually set status to
¡ online¡ , the file ¡ CI/Myfolde/Status/status.xml¡ content is overwritten to ¡online.¡ CIMTool get
the update event and call CIM to distribute this file to his friends. On another side, his friend
called ¡ John¡ will found ¡ Wang¡ status changed. CIMTool GUI updates display since it receives
notification that the file ¡ CI/Myfolder/Friends/Wang/Status/status.xml¡ content was changed.

CIM uses JXME propagate pipe to send file. JXTA Message is the unit for JXTA communication.
Message contains MessageElement which is the real data user want to send. Message also has
NameSpace, which used for distinguish different kind of message. I defined FileMessage
namespace and TextMessage namespace. They separate file message from text message, which
used for send chatting message.

File message contains InputStreamMessageElement, which is constructed by the file input stream.
Besides the file, two StringMessageElement are added into the message object. One is the
FileType and another is the SenderName. They are simple strings. The FileType will be explained
later and the SerderName is the user of this UbiNode. JXME has InputPipeListener, which
generates event when receive message. Because of the message is broadcasted to all peers include
the sender, a SenderName string is the precondition of message parser and operation. If JXME
receive the same sender name as the user, it not looks into it. This SenderName should be changed
to a unique ID for security and correct reason. However, this should take ID manager into consider
in the advanced version in future.

 34

CIM receives the file message and retrievals the InputStreamMessageElement from message
object. Depends on the FileType element, CIM decides where should the received file be put in.
Some condition judgments take care of that.

The final process of file synchronization is use CIM to do some update work based on the changed
content of file. It should be careful here is: CIM and CIMTool not directly retrieval the message
element content from pipe message. They just decide where should put them into. The file monitor
will tell CIM what should do on next step such as update CI classes and update GUI display.

6.7 Space proxy and location awareness

One scenario of CIM is when use enters some predefined place. He/she manually read the RFID
tag by UbiNode, the space information will be transferred to a space proxy, which send message to
CIM for CI update. If CIM find there is a CI¡s predefined location is equals with the received one,
it changes this CI¡s status to online and set the original one ¡ offline¡ .

I have not defined what the proxy is, since it should communicate with ID manager and other
service discovery service which not falls into my research domain. I define a interface in CI call
addProxy(), it used for add any proxy including the space proxy. The difference between a proxy
and a application we agreed with is: a proxy should be the applications who is run in background.

I designed the CIM add proxy by using callback approach. Transfer the reference of CIM to proxy
and when proxy get some event, it callback to CIM, who does corresponding work. However, it
could works in an alternative way, by using the file system. All CI groups keep a file
¡ location.xml¡ , which stores the predefined physical locations, where this CI can apply to. For
example, CI ¡ Work¡ has three locations in the file: ¡ Office 145¡ , ¡ Lab145¡ and ¡ Meeting Room
245¡ . If the user enter into Lab145 and use RFID reader to read the tag, the same string in the
RFID ¡ Lab145¡ will be received by space proxy. Space proxy not directly talks to CIM, it writes
the string into a temp file which is monitored by CIM. CIM then check the content with the
location files defined by user before and update corresponding CI status.

6.8 CIMTool

CIMTool is the GUI of CIM system. It is the view of system and also plays the role of file monitor
listener. I explain how to use the simple GUI to show the utility of CIM.

Initial

The main window of CIMTool is shown in figure 6.8.1. This GUI was developed by SWT: the
Standard Widget Toolkit, which is an open source widget toolkit for Java designed to provide
efficient, portable access to the user-interface facilities of the operating systems on which it is

 35

implemented. The reason for use that is because of J9 not support with swing and its good
performance.

The top left button Start UbiCollab used for initial JXTA network and the CIM system. After that,
user can create a new CI by input the CI name into the text part left to the button createNewCI.
User then pushes the button for create that CI. Alternative, user can start a created CI by select the
CI name from the dropdown combo and then push button ¡ startLocalCI¡ . Now, there are five
testing CIs.

I start the local CI family for example. After start, the tree content at the left bottom is updated.
There are two tested user in this group. Under each name is the sub-tree shows the services that
published by this user. From figure 6.8.2, user ¡ wang¡ has four services.

Figure 6.8.1 CIMTool main window

Figure 6.8.2: Start CI group ¡ family¡

 36

These user list and service list could dynamic changed due to user leaving and joining, service add
and delete. These changes are updated to local display immediately based on my local file monitor
approach and then synchronized to other UbiNodes based on the JXTA P2P network.

The services here are just strings that represent names of them. We have no people works on
service publish and make them could be used by others. The possible way is make the names as
the link to service URL address or other references that could make use of services. When click a
service name, a new window popup with the information of it and makes service can be use.

The button discoveryCI used for lookup specific CI by name. After find the CI, my peer
automatically joins it. The group concept in JXTA network is the instance who implements
specific services and with same agreements. Join group means implement the same group services
by using the same group advertisement. JXTA support a discovery service, which used for
discover remote group by name or other attributes. The service also used for discovery individual
peers and publish advertisement for it available for other peers. The discoverGroup(String name)
method defined in CIM is the implementation of discovery service.

Status change

The button changeStatus is used for manually changes my online status and test the status
synchronization. When push this button, my status changed from offline to online and verse vice.
These changes are base on local file status.xml. Current status are overwritten to this file, CIM
monitor this file and change current user¡s status then propagate to other UbiNodes. This status

 37

change could also invoked by location awareness, if the space proxy sends the space change
message, current CI could disappear from current view and a new CI instead of it. At the same
time other peers¡ friends¡ statuses will be changed also.

Synchronize file

Button synchronize is used for testing file synchronize manually. From the dropdown combo, user
could choice the file that he/she wants to propagate to others. This manually way can be easily
adapted to an interface to other applications who want to make use of CIM. The method in CIM
for this purpose is sendFile(String type).

Group chatting

The new window button used for popup a new dialog window for chatting. Figure 6.8.3 is the
popup one. This simple one is tested for group chatting. The chatting is broadcast message which
broadcast to all the peers in the same CI. User can type message and click the send button. It
displays the received message with the format: username> message on another test filed.

I haven¡t implement an unicast one to one chatting method. The reasons are, firstly, I have
developed the unicast chatting method in my last JXSE prototype CIM. Secondly, for develop that
unicast JXTA pipe, JXTA service need to create dynamic pipe or predefine some pipes for that
purpose. This unicast pipes testing take too much time for testing, this JXTA network issue could
be improved in future but not my current main task.

Figure 6.8.3: group chatting dialog window:

 38

It is hard to show the dynamic update and synchronization from picture. As mentioned above, all
dynamic changed update immediately in local without waiting confirm from remote sites. It is
consider the user¡s felling, no people want to wait 10 seconds from sending message or add a new
service. These changes write to local file as resource. And propagate to others later. The details of
code you can find in appendix A2.

 39

Chapter 7 Evaluation

I evaluate my CIM system based on two criteria. First is how it satisfies with requirements
specification, which is focus on system quality. Another is focus on how it satisfies the scenarios,
which focus on utility and user¡s feeling.

Requirements specification analysis

Start from non-functional requirements. N1 is satisfied since all the develop tool and platform we
used in this project are open source software such as J9, JXME and some utility libraries. N2 is
achieved by using JXME and J9, which support J2ME developing. The CIM and other modules
are tested work smoothly on PDA and other advanced devices. However, we can¡t deploy it on cell
phone at this moment both due to JXTA limitation and compatible.

For N3, the mobility is satisfied by deploying CIM and UbiCollab on PDA and using wireless
network. N4 is achieved since all the components we developed are open source, platform
independent and is P2P system. Since OSGI container is the test bed for UbiCollab, N5 is no
satisfied. Finally, the bundle (only for CIM system) is less than 2 MB, PDA has enough space to
install it.

The quality driver (quality requirements) analysis

Portability: UbiCollab and my CIM system is platform independent and tested work on PDA and
tablet, PC. (not deployed on cell phone)

Availability: It constructed by a pure P2P network, less independent means high availability.

Security: For whole UbiCollab system, security should achieved by ID manager, which not my
work. For CIM, security should achieved by JXTA security protocol, which not available in
current version due to time limitation and technical problem.

Performance: Data synchronization is very fast, no long time latency. But have not tested for big
data stream since JXME don¡t compatible with JXTA CMS and the file transfer limitation is 8 KB
for each time.

Scalability: OSGI container used for this purpose. New services add without reboot system.
Functional requirements analysis

CIM support methods for F1 and F2. F3 is the most problem in early develop phase, since JXME
not directly support cache and not find good way to solve CI information persistent storage. These
problems are overcame by using file system and file monitor callback.

 40

F4 is satisfied by discovery service. For F5, I define the interface for add proxy and application,
but not assign concrete task to it since we don¡t have test object (application, proxy). But the
interface is enough for future extension. The other two ones are partial satisfied. F6 is similar with
F5 and F7 partially falls into ID manager¡s work. I provide the data synchronization channel for
satisfy this purpose.

Scenario criteria analysis

Scenario 1: The first part of this scenario related to service discovery manager. I don¡t know the
details of RFID reader. However, I define the interface in CIM for location awareness. If the space
proxy gives location information, CIM should set current CI as predefined ones depends on
location.

1: assume that at the same time, only one CI is active. This assumption ensures CI avoids
annoyances from other.

2: I have not developed a specific Co-editing notepad application. However, a simple shared
notepad is achieved through using local file system, you can edit specific file by windows editor.
When you save the file, change will be synchronized to others.

3: When user¡s service discovery service finds services available around physical environment, it
publishes service name and address to file system, in service.xml file. CIM then propagate the
services to friends in the same group. User can chatting with other participant through group
chatting.

4: We don¡t have testing service but the propagated service should include the available address of
project and printer. The detail of service invoke not falls into my research area.

I give a conclusion of CIM system quality. The advantages of my CIM system are:

1: pure P2P groupware system.

2: deployed on mobile device.

3: platform independent, has big extension space.

4: File system is not a creative by me, but I make file system work for data synchronization and
groupware. The simply structure and no special requirement of file system make it can be
improved and adapt in different ways. For less resource and web service approach, file content is
easy displayed on webpage and edited by any text editor.

The shortcomings are:

1: No authorization available at this moment, CI group is visible to all peers.

 41

2: Only work in sub-network.

3: Not all CIM functions are supported. I planed to develop a Co-edit application but not finished
due to time limitation. However, as I mentioned above, the file system provide possible to do that.

4: GUI looks not nice. We have another version UbiBuddy, which looks better than mine. This
GUI just used for my purpose of testing CIMTool.

 42

Chapter 8 Future work

Based on what I have done and take consider of the shortcomings and advantages of CIM system,
I list what should be improved in future work.

Functions: more high level functions should be added in future. Such as online meeting, (audio,
vide). JXME might be a boundary of that since the limitation of JXME compatible and device
capacity. An alternative way is develop different specifications for ranged devices. For PC, JXSE
can be used as the platform, which provides more utilities.

Shared file: even file system support a shared file environment, but the limitation of 8KB of file
transfer makes its hard to share really useful content such as PDF or WORD document. CMS is a
way to solve that problem if the compatible of JXME can be satisfied in future.

Rendezvous peer: rendezvous peer should be introduced into UbiCollab. These specific peers
facilitate resource discovery and across the boundary of edge peer and firewall, NAT. By using
that, the runtime network be extended to whole internet but not the sub-network. I don¡t think
introduce RDV peer take the risk of break pure P2P architecture if we consider it as partial P2P,
which belong to P2P architecture.[16] In actually, pure P2P architecture is hard to implement for a
real usable groupware. The role of RDV peer could be played by any UbiNode if this peer has
enough capacity. In this way, RDV peer can be changed and if there enough number of peers in
UbiCollab network, it has high availability quality and no server dependency problem.

User interface design: GUI of CIM system and the UbiBuddy should be improved for give user
good feeling and performance.

 43

Chapter 9 Conclusion

I give conclusion of my research and work of CIM system based on system quality and evaluation.
This CIM system achieves most purposes from stakeholder¡s point of view and is the start point of
future work. Because of time limitation and technical problems such as compatible, CIM¡s
functions and utility are limited. However, it should be consider as a prototype of UbiCollab. I
define some interface for future applications to use CIM. It is easy to extend.

The most important features of my CIM system are, firstly, it is a pure P2P groupware based on
JXME platform satisfy the purpose of mobility. Secondly, the file system gives big extension
space and easy to adapt for different purpose. For web service, xml files are easy to display and
parser the content. For co-working application, xml file are easy to edit with any text editor. CIM
manage synchronization issues of this file system, lose coupling with applications. This feature
makes development and communication with other modules very easy. Thirdly, UbiCollab and
CIM system is open source and platform independent, which make it without the problem of
re-development for different runtime and platform. User can self-develop interesting service or
application as bundle. OSGI platform make service publish and interactive easy. This feature is
also important for UbiCollab extension.

UbiCollab is a good research topic which focuses on ubiquitous and groupware system. We want
people can seamlessly interact with each other and participant in natural way. CIM manages one
of the most important services of UbiCollab system, data synchronization. Through JXTA P2P
network and local file system management, resource synchronization is worked in an easy way
and has potential of adapt to different application and platform.

There are still some shortcomings and unresolved problems need to be improved in future. I have
not given the concurrency control police since time limitation and technical problems. This service
is important to co-editing application. The four modules of UbiCollab have not connected together
yet. In CIM, I have defined some interfaces for them.

 44

Appendix

A 1 Common scenario
Changelog:

Date Author Comments
12.02.2008 Simon,

Xiaobo,
Xiaozhou,
Kai Arne

Had a meeting about our shared scenarios.
Xiaozhou had prepared a scenario.

12.02.2008 Xiaobo

Initial version. Added scenario and
requirements.

13.02.2008 Xiaozhou Added scenario
14.02.2008 Kaiarneg Added scenes and refactored the document.

Also added some comments.
Added appendix (draft).

14.02.2008 Xiaozhou Added 3 pictures
15.02.2008 Kai Arne Merged scenes 1 and 2. Cleaned up some

scenes. Deleted some of the redundant parts

This scenario is used for the UbiCollab project demo.

Scenario
Scene 1

Some services:
- Calendar service
- Mail application
- Presence viewer
- MessageViewer/ bulletinBoard/ sharedTable

- Brainstorming application
- Bruk av touchscreen for meldingene.

Text
John is a professor, and he is a UbiBuddy user. One day, John entered his office as usual, scanned
the tag by using his Ubinode. A rabbit in his office is awoken. Right after he scan the tag and his
Ubibuddy status changed to online under the group ¡ office¡ . A group of services showed up like
light, printer and so on. He renamed his printer to ¡ Printer_john_office¡ and published it on the
¡Office¡ group. He turns on his X10-enabled lamp. This service has been configured to modify his
presence for his work-related CIs. Since he is working with a specific project he does not want to
be interrupted, so he has specified that he should only be visible to the participants of the
collaboration instance ``project x¡¡ and unavailable to the other groups/ CIs he is a member of to
avoid non-related, external annoyances.

 45

In addition, he holds a RFID reader over a RFID tag located at the office entrance. This action
positions the user to the collaboration space ``office¡¡ and also activates the identified space. He is
furthermore prompted whether he wants to change the runtime states of some of his current
sessions. Specifically, the sessions that are running is a presence service and a bulletin-board
service. The first shows presence related information from a CI/ group; the latter is a
bulletin-board specific for a given CI/ group. Confirming this, by interacting with the UbiNode,
the ongoing sessions are adapted to the current environment. After the applications are initialized,
a message pops up on the bulletin board viewer, telling him that the weekly project meeting is to
be held at Room 354 in one hour.

He browses the contents of the CI/ project area, and notices that some of the project reports have
been updated this morning. However, John is left puzzled by some of the conclusions as they seem
to be in contrast with some of the pending work he is currently looking into. The project is near a
milestone, so the issues should be clarified as soon as possible.

He prints the report and reads it more carefully. The printer is chosen automatically based on his
current location. An interface towards this service is provided through a printer control widget,
allowing operations such as changing preferences, number of copies, etc. This may also be used as
a service from other applications.

In order to have something to discuss at the meeting, he prepares a presentation of his current
work. 10 minutes before the meeting he notices at the periphery of his attention that participants of
the CI/ group starts disappearing. He finishes his presentation, and heads off to the meeting room,
bringing his UbiNode.

Upon leaving the room, the session is reconfigured such that the output resources, i.e. the display
on the desk and the calendar device, are disconnected and only the calendar and mail application
is running.

Analysis

Storyboard
text

What it means in
terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications and
services

He is
currently
logged into
UbiBuddy.

The user logins
using their real
user names only
known by the ID
manager.

In the different
collaboration
instances, the
user should be
identified by
their chosen

ID Manager

User Manager

Enter username
and password

Authentication

Authorization

 Login GUI

 46

Storyboard
text

What it means in
terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications and
services

pseudonyms.
¡¡he has
specified that
he should
only be
visible to the
participants
of the
collaboration
instance
``project x¡¡
and
unavailable to
the other CIs
he is a
member of.¡

- That a
CI can
have
informa
tion
about
inhabita
nt
online
status.

- That
this
informa
tion can
be
differen
t from
one CI
to
another.

- That the
user can
decide
to set
this
informa
tion for
each CI
individu
ally.

- That
other
inhabita
nts can
see this
informa
tion.

Hva med ruting
av informasjon
mellom noder?
Er dette

- CI
manage
r.

- Session
Manag
ement
if the
online
informa
tion
will be
display
ed in
other
nodes
in the
Space.

Related use cases:
- Create CI.
- Browse

CI.
- Display

CI.
- Set CI

informatio
n.

- Set up
session.

-

- CI
browser.

- CI viewer.
- CI

informatio
n editor.

- Presence
display
service.

-

 47

Storyboard
text

What it means in
terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications and
services

sesjonens job? If
the online
information is to
be displayed at
other nodes etc.

Bootstrapping The platform
and application
components are
configured and
started up

service domain

session manager

As he enters
his office, he
holds a RFID
reader over a
RFID tag
located at the
office
entrance. This
action
positions the
user to the
collaboration
space
``office¡¡ and
also activates
the identified
space.

That services
and
configurations
are
location-based/
related to a
specific CS

Certain
components are
location based/
enabled/
supported

Should the
location perhaps
be published? (if
the user wants
to?)
This is an
important issue
for mobile users;
where are
mobile users
located and so

CS manager

Collaboration
instance

Specify location

Look up location

CS UI for manual
location
specification (if
RFID is not
available)

CS Management
Tool (tool using the
rfid reader and
updating location
in a given CI)

¡He is [¡]
prompted
whether he
wants to
change the
runtime states
of some of
his current
sessions. [¡]
the ongoing

That
applications are
run on the
platform, and
that these may
be controlled by
the user (run,
terminate,
change state etc)
through the
application

That
applications may

Service Domain

Session Manager

Browse sessions

Control session

Presence service

Bulletin-board
service

Session control UI
/ Configure session
(choose templates)

 48

Storyboard
text

What it means in
terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications and
services

sessions are
adapted to the
current
environment.
This space
and how the
environment,
along with
the services,
etc is to
behave, has
been
previously
defined and
configured.¡

have different
configurations
and that these
configurations
are used to set
up the
environments/
platform keeps
configurations
for different
locations

Services may
have
preferences, and
these are
specified
through the
session
templates
(perhaps ID
manager? Does
it make sense to
relate different
preferences
based on the id
used?)

That sessions
have different
runtime states

That the state of
services may be
kept by the
platform,
enabling
continuity in the
work for the
user (if the
services support
this).

That the
configuration
process may be
context aware
(for example, if
I¡m in room A,
then x, y, z
should be
activated
automatically¡

 49

Storyboard
text

What it means in
terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications and
services

If I leave the
room, the
session should
be put to a
background
state).

That the user
also should be in
control of the
runtime
environment
(browsing,
initiating,
terminating)

Sessions may be
reconfigured

These
configuration
parameters are
specified
through two
types of
templates;
session and
composition.
Templates, at
least at the level
of compositions,
should be able to
be shared.
Session
templates
contain certain
preferences, and
may not be
sharable (as they
might have
privacy issues
the users don¡t
think of etc? Are
to be treated as
individual items)

The service
proxies must
implement
suitable
interfaces (such
as for session
management,

 50

Storyboard
text

What it means in
terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications and
services

start, stop etc).
He browses
the contents
of the CI/
project area,
and notices
that some of
the project
reports have
been updated
this morning.

CI works as a
shared file area

LOOK AT
COMMENT:
files are
represented
by ¡ files or
urls?

Collaboration
Instance

He prints the
report, and
reads it more
carefully

That services are
accessible from
and handled by
the platform

That the
application is
able to utilize
these services,
both from an
application and
as a standalone
application (e.g.
print from an
application, and
a standalone
print-control)

That users
should be able to
control services
in some way
(e.g. service ui)

These are
furthermore
appropriately
configured
(minimum effort
needed)

Session manager

Service domain
(lookup)

Browse
applications (needs
to specify that he
wants to use this
app)

Set up session

Terminate session

Printer control UI/
control widget

Printer Service

Portal?

¡the session
is
reconfigured
such that the
output
resources, i.e.
the display on
the desk and
the calendar

Sessions are
reconfigurable

(re)configuration
happens in a
way that makes
it possible to
reinstate the
session with
other
(compatible)
services. May

Session manager

Service domain

Space Manager
(to denote that
the user is on the
move)

Collaboration
instance (change
availability of

Control session
(change state)

Reconfigure
session

Manage resources
(resource
management)

Session control UI

 51

Storyboard
text

What it means in
terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications and
services

device, are
disconnected
and only the
calendar and
mail
application is
running.

not be true for
all sessions;
services must
themselves
denote what
operations are
supported.

Any shared
services are
made
unavailable
when a user
exits the room
these services
are related to.
EXCEPTIONS
could be
specified?

The platform
must be able to
notice that the
user has left the
room

shared services)

Look up services

Scene 2
Text
¡John take out his windows based mobile and opens the ¡Ubi Buddy¡ list. He finds ¡John¡s
computer¡ from his equipment list, which is the work computer resides in his office. He dose¡s
need a password to do this since his pda and the ¡John¡s computer¡ are in the same category
¡John¡s equipments¡. There are many other services (devices) in this category like ¡office light¡,
¡office print¡. (Figure 1)

At the same time, his colleague at another floor find John is online in the group ¡Colleague¡.
(Figure 2)And the services (devices) found by John¡s PDA are shown. His colleague chats with
him because he want to use John¡s printer, but John talk to him ¡I am going to a presentation¡.

[vurder ? kutte ut denne] It takes 3 minutes for John walk to the door of AUD 5. He want take a
cup of coffee. He open his PDA and find the coffee machine service is found. He choose a
cupchino. (The coffee machine out the door of AUD 5 is belong to a public group, so every one
can access to).

Analysis
Storyboard text What it means in

terms of
What subsystems
are involved

How is the flow What are the
involved

 52

architecture applications
and services

¡At the same
time, his
colleague at
another floor find
John is online in
the group
¡Colleague¡.
(Figure 2)And
the services
(devices) found
by John¡s PDA
are shown. His
colleague chats
with him because
he want to use
John¡s printer,
but John talk to
him ¡I am going
to a
presentation¡. ¡

That users are
able to view
contextual
information
about participants
(services, etc).

Shared services
may belong to
different classes:

- Services
to be
available
all the
time
(e.g.
fileshari
ng)

- Should
be
available
in the
context
of the
user (e.g.
location
or time).

- That the
user
carries
with
them
(what
Babak
referred
to as
wearable
s)
\cite{so
meCiting
}

Collaboration
instance Manager

Session manager

Context
awareness
(location based)

Look up user

Look up services

Resource
management

Context group

Context shared
devices list

Scene 3
Text
[kan whiteboard ogs? brukes til noe ifm sesjonsh?ndtering (forst?tt som sporing av brukere¡s
handlinger?]

After John enter the AUD 5, the devices in the AUD are found and show on the list. (Other
services shown before such as coffee machine and Office computer (and are not private) are
disable and disappear from the equipment list). (Figure 3)

 53

Distribuert sesjon som involverer andre (ubi)noder, ikke bare tjenestenoder. Remote participants
deltar via videokonferanse. Siden prosjektet har folk som er lokalisert p? andre sites, vil disse
delta p? m?tet over videokonferanse. John invokerer en presentasjonsapplikasjon for dette
scenariet.

Vil han se delte ressurser? Is?fall kan han benytte 2 viewers... sin egen og den p? remote site.
Personene som joiner vil ha utstyr tilgjengelig for seg/ i sitt rom... John kan starte opp, invitere
folka p? remote site, sl? opp p? deres tjenester, og velge ? benytte noe av deres utstyr/
synkronisere sesjonene. Vil strengt talt kun v?re ¨n sesjon her... Johns (han vil iallefall v?re
master). De andre vil innvolveres med sitt utstyr¡? De kunne ogs? ha startet egne, kompatible
sesjoner, og synkronisert disse.

At the conference room, John uses a presentation service for showing his presentation. This
service also requires the use of a controller. The UbiNode itself offers a simple control service able
to control the presentation. [I need to add a section here (Kai); the PDA that is running the
platform also has a controller-service installed, so he uses it for controlling the presentation)].

After 10 minutes of presentation, he want another professor show an related document. He click
the avatar of that professor and type ¡hi Jane, I want you come and show the document I gave you
yesterday¡. Jane are busy now, but he open the equipment ¡projector¡ in the equipment list of
John¡s and open the document. This document are show on the AUD after transfer finish.

Analysis
Storyboard text What it means in

terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications
and services

At the conference
room, John uses a
presentation
service for
showing his
presentation. This
service also
requires the use
of a controller.
The UbiNode
itself offers a
simple control
service able to
control the
presentation.

Hvordan tilbys
disse
applikasjonene?
Er det noe han
har installert?
Noe han kan sl?
opp? Noe han
kan dele?

Instansene som
inng?r her¡
composition
template

Session
management

Service domain/
collaboration
instance
(implicitly,
service lookup)

Browse
applications, and
activate template

Session set up

Presentation
service

Presentation
Controller

Session control
(invite, look at
services the other
site has available
etc)

 With remote
participants:

 54

Sessions may
involve
distributed nodes/
physical
distribution (in a
collaborative
sense).

Actions reflected
at one service
must thus be
propagated to the
other participants
(more trad. Cscw
session
management).

The human grid
may have
different
constellations;
the session
concept must be
able to
accommodate all
of these.

Scene 4
Text
Towards the end of the meeting, a discussion about the exclusion of some product features arises
between Alice and John. The discussion continues until they are disrupted by another group
having reserved the conference room. John proposes to continue their discussion from his office.

John and Alice heads out to the hallway. While specifying that the session should be moved, he
notices that Bob, one of the key members of the product group under discussion, is at his office.
To settle the discussion, he wishes to supplement with his viewpoints and asks if Bob accepts.
Having shared some of his resources to UbiCollab, John specifies to his UbiNode that the current
meeting session should not stop but be moved to Bob's office and adopted to the resources
available.

After the discussion, John heads back to the office. He then reinstates his mail- and calendar
session.

Analysis
Storyboard text What it means in

terms of
architecture

What subsystems
are involved

How is the flow What are the
involved
applications
and services

 55

TBA: Collaboration instance/ replication
When one get the service, the system invoking the Ubi Instance manager and add the service
under the user. (only an announcement for testing). The instance manager simple propagates the
information to the others who subscribe to the change (the UbiNode in the same group).

The propagation should be finished in an acceptable time. (2 seconds for example).

A 2 Code

Package service:

Class jxmeUbiService

package service;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.List;

import fileMonitor.*;

import tool.CIMTool;

import net.jxta.discovery.DiscoveryEvent;
import net.jxta.discovery.DiscoveryListener;
import net.jxta.discovery.DiscoveryService;
import net.jxta.document.Advertisement;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.Document;

 56

import net.jxta.document.MimeMediaType;
import net.jxta.endpoint.InputStreamMessageElement;
import net.jxta.endpoint.Message;
import net.jxta.endpoint.MessageElement;
import net.jxta.endpoint.StringMessageElement;
import net.jxta.endpoint.Message.ElementIterator;
import net.jxta.exception.PeerGroupException;
import net.jxta.id.IDFactory;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.peergroup.PeerGroupID;
import net.jxta.pipe.InputPipe;
import net.jxta.pipe.OutputPipe;
import net.jxta.pipe.PipeID;
import net.jxta.pipe.PipeMsgEvent;
import net.jxta.pipe.PipeMsgListener;
import net.jxta.pipe.PipeService;
import net.jxta.platform.ConfigurationFactory;
import net.jxta.protocol.DiscoveryResponseMsg;
import net.jxta.protocol.ModuleImplAdvertisement;
import net.jxta.protocol.PeerGroupAdvertisement;
import net.jxta.protocol.PipeAdvertisement;
import net.jxta.rendezvous.RendezVousService;

public class jxmeUbiService implements DiscoveryListener, PipeMsgListener {

 static PeerGroup netPeerGroup = null;

 private final static String SenderMessage = "JxtaTalkSenderMessage";
 private static final String SenderName = "JxtaTalkSenderName";
 private static final String SENDERGROUPNAME = "GrpName";
 private static final String messageNameSpace = "Message";
 private static final String fileNameSpace = "Filemessage";
 private static final String fileType = "fileType";
 private static final String LocationFile = "Location";
 private static final String StatusFile = "Status";
 private static final String ServiceFile = "Service";
 private static final String ContentFile = "Content";
 private static final String TempletFile = "Templet";

 private String[] group = null;
 private String[] friendsList = null;
 private String currentGroupName = null;
 private PeerGroup mygroup = null;

 57

 private PipeService pipeService;
 private RendezVousService rendezvous;
 private PipeAdvertisement pipeAdv;
 private InputPipe input = null;
 private OutputPipe output = null;
 private DiscoveryService discovery = null;
 private OutputStream os = null;
 private boolean joind = false;
 private File currentGroup = new File(FilePath.HOME + currentGroupName);
 private File Name = new File(currentGroup, FilePath.NAME);
 private File Location = new File(currentGroup, FilePath.LOCATION);
 private File Status = new File(currentGroup, FilePath.STATUS);
 private File Content = new File(currentGroup, FilePath.CONTENT);
 private File Friends = new File(currentGroup, FilePath.FRIENDS);
 private File Service = new File(currentGroup, FilePath.SERVICE);
 private File Templet = new File(currentGroup, FilePath.TEMPLET);
 private File NameF = new File(Name, "name.xml");
 public File LocationF = new File(Location, "location.xml");
 public File StatusF = new File(Status, "status.xml");
 public File ContentF = new File(Content, "content.xml");
 public File ServiceF = new File(Service, "service.xml");
 public File TempletF = new File(Templet, "templet.xml");
 private File advPath = new File(FilePath.HOME + currentGroupName
 + FilePath.ADV + "peerGroupAdv.xml");
 private File advF = new File(advPath, "peerGroupAdv.xml");
 private String peerName = null;
 static boolean find = false;
 private boolean monitorFile = false;
 public FileMonitor monitor;
 public CIMTool tool;

 /*
 * this function uses for initial the basic service of jxta. Discovery
 * service used to discovery other peers and group
 *
 * pipe service used to propagate or unicast message to other peer(s).
 */
 public void startService() throws IOException, InterruptedException {

 discovery = netPeerGroup.getDiscoveryService();
 // discovery.remotePublish(netPeerGroup.getPeerAdvertisement());
 discovery.addDiscoveryListener(this);
 pipeService = netPeerGroup.getPipeService();
 // Create the input pipe with this app as the message listener for this

 58

 // pipe
 input = pipeService.createInputPipe(getMyJxtaPipeAdv(), this);
 // This pipe is a propagated pipe, therefore also bind to it
 output = pipeService.createOutputPipe(getMyJxtaPipeAdv(), 100);
 // Announce our presence
 sendMessage("Hello Ad-Hoc World ");

 // discoveryGroup("xiaobo test group");
 monitor = new FileMonitor(1000);
 }

 public void addListener(FileListener listener) {
 monitor.addListener(tool);
 }

 /**
 * Starts jxta
 *
 * @throws InterruptedException
 *
 */
 public void startJxta(String name, int Portnumber) throws IOException,
 InterruptedException {
 try {
 // Set the peer name
 // System.out.println("set your peer name");
 ConfigurationFactory.setName(name);
 peerName = name;
 ConfigurationFactory.setTCPPortRange(Portnumber, Portnumber + 10);
 // ConfigurationFactory.setTcpPort(9920);
 // Configure the platform
 Advertisement config = ConfigurationFactory.newPlatformConfig();
 // save it in the default directory $cwd/.jxta
 ConfigurationFactory.save(config, false);

 // create, and Start the default jxta NetPeerGroup
 netPeerGroup = PeerGroupFactory.newNetPeerGroup();

 } catch (PeerGroupException e) {
 // could not instantiate the group, print the stack and exit
 System.out.println("fatal error : group creation failure");
 e.printStackTrace();
 System.exit(1);
 }

 59

 }

 private void freshFilePath() {
 currentGroup = new File(FilePath.HOME + currentGroupName);
 Name = new File(currentGroup, FilePath.NAME);
 Location = new File(currentGroup, FilePath.LOCATION);
 Status = new File(currentGroup, FilePath.STATUS);
 Content = new File(currentGroup, FilePath.CONTENT);
 Friends = new File(currentGroup, FilePath.FRIENDS);
 Service = new File(currentGroup, FilePath.SERVICE);
 Templet = new File(currentGroup, FilePath.TEMPLET);
 NameF = new File(Name, "name.xml");
 LocationF = new File(Location, "location.xml");
 StatusF = new File(Status, "status.xml");
 ContentF = new File(Content, "content.xml");
 ServiceF = new File(Service, "service.xml");
 TempletF = new File(Templet, "templet.xml");
 advPath = new File(FilePath.HOME + currentGroupName + FilePath.ADV);
 advF = new File(advPath, "peerGroupAdv.xml");

 }

 public String[] getFriendServices(String name) {
 File friServices = new File(Friends, "/" + name
 + "/Service/service.xml");
 String line = null;
 List service = new ArrayList();

 int i = 0;
 try {
 BufferedReader br = new BufferedReader(new FileReader(friServices));
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 service.add(line);

 }

 Iterator it = service.iterator();
 String[] serviceList = new String[service.size()];
 while (it.hasNext()) {
 serviceList[i] = (String) it.next();
 i++;
 }
 return serviceList;

 60

 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 return null;

 }

 public void initialcurrentGroupFriendsInfor() {

 friendsList = Friends.list();

 }

 public String[] getCurrentGroupFriends() {
 initialcurrentGroupFriendsInfor();
 return friendsList;
 }

 /*
 * TODO:retrieval the existing group information, load into memory here,
 * just load the name of existing group
 */
 private void initialGroupsInfor() {
 File groupList = new File(FilePath.HOME);
 // groupList.list();
 group = groupList.list();

 }

 /*
 * TODO:get group list
 */
 public String[] getGroupList() {
 initialGroupsInfor();
 // System.out.println(group.toArray().toString());
 return group;
 }

 61

 /*
 * storage adv in local system
 */
 private void storeAdv(Advertisement adv) throws IOException {
 advPath.mkdirs();
 advF.createNewFile();
 Document adver = adv.getDocument(new MimeMediaType("text/xml"));
 FileOutputStream fos = new FileOutputStream(advF);
 adver.sendToStream(fos);
 }

 /*
 * initial specific group information from local adv
 */
 private Advertisement retrievalGroupAdv(String groupName)
 throws IOException {
 FileInputStream fis = new FileInputStream(FilePath.HOME + groupName
 + FilePath.ADV + "peerGroupAdv.xml");
 Advertisement adv = AdvertisementFactory.newAdvertisement(
 new MimeMediaType("text/xml"), fis);
 return adv;
 }

 public void configPeer() {

 }

 private void configPipe() throws IOException {

 if (mygroup != null) {
 pipeService = mygroup.getPipeService();
 input = pipeService.createInputPipe(getMyJxtaPipeAdv(), this);
 // This pipe is a propagated pipe, therefore also bind to it
 output = pipeService.createOutputPipe(getMyJxtaPipeAdv(), 100);
 }

 }

 public void creatNewGroup(String name, String des) {

 ModuleImplAdvertisement TheModuleImplementationAdvertisement;

 // Creating a new peer group ID
 PeerGroupID ThePeerGroupID = IDFactory.newPeerGroupID();

 62

 try {
 TheModuleImplementationAdvertisement = netPeerGroup
 .getAllPurposePeerGroupImplAdvertisement();
 mygroup = netPeerGroup.newGroup(ThePeerGroupID,
 TheModuleImplementationAdvertisement, name, des);
 } catch (PeerGroupException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (Exception ee) {

 }
 ;

 PeerGroupAdvertisement ThePeerGroupAdvertisement = mygroup
 .getPeerGroupAdvertisement();

 discovery.remotePublish(ThePeerGroupAdvertisement);
 System.out.println("created the group\n"
 + mygroup.getPeerGroupAdvertisement());
 currentGroupName = name;
 freshFilePath();
 if (monitorFile == true) {
 removeMonitorFile();
 addMonitorFile();
 } else
 addMonitorFile();

 try {
 storeAdv(ThePeerGroupAdvertisement);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public void creatGroupFromLocal(String groupName) throws Exception {

 PeerGroupAdvertisement ThePeerGroupAdvertisement = (PeerGroupAdvertisement)
AdvertisementFactory
 .newAdvertisement(PeerGroupAdvertisement.getAdvertisementType());

 Advertisement adv = retrievalGroupAdv(groupName);
 PeerGroupAdvertisement Ad = (PeerGroupAdvertisement) adv;

 63

 ModuleImplAdvertisement groupImplAdv = netPeerGroup
 .getAllPurposePeerGroupImplAdvertisement();
 groupImplAdv.setModuleSpecID(Ad.getModuleSpecID());

 try {

 mygroup = netPeerGroup.newGroup(Ad.getPeerGroupID(), groupImplAdv,
 groupName, Ad.getDescription());
 } catch (PeerGroupException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 // netPeerGroup.newGroup(adv., arg1, arg2, arg3)

 discovery.remotePublish(mygroup.getPeerGroupAdvertisement());

 currentGroupName = groupName;
 freshFilePath();
 if (monitorFile == true) {
 removeMonitorFile();
 addMonitorFile();
 } else
 addMonitorFile();
 System.out.println("created the group\n"
 + mygroup.getPeerGroupAdvertisement());

 }

 public void discoveryGroup(String name) throws InterruptedException {

 while (true) {
 if (joind) {
 // System.out.println("not get new group");

 discovery.removeDiscoveryListener(this);

 joind = false;
 return;
 }
 System.out.println("finding group");
 discovery.getRemoteAdvertisements(// no specific peer (propagate)
 null, // Adv type
 DiscoveryService.GROUP, // Attribute = any

 64

 "Name", // Value = any
 name, // one advertisement response is all we are looking
 // for
 1, // no query specific listener. we are using a global
 // listener
 null);
 System.out.println("after finding group");

 try {

 Thread.sleep(10000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 }

 /*
 * TODO: this method used to create local file system replica, each user
 * have its own sub-dictionary
 */
 public void createLocalCIRplica() {

 if (currentGroup.exists())
 System.out.println("Already have the group " + currentGroupName
 + " folder");
 else {
 currentGroup.mkdirs();
 System.out.println("create the folderfor :" + currentGroupName
 + "!");

 }

 }

 /*
 * TODO: this method used to create local user information replica each kind
 * of information represented by a xml file, which can store the information
 * you need to add in in future. The Friends is only Folder since it will
 * contains other user's information
 */

 65

 public void createLocalUserInfor(String userName) throws IOException {

 if (!(currentGroup.exists() && Name.exists())) {
 System.out.println("creating the user folders and files......");
 if (!currentGroup.exists())
 currentGroup.mkdirs();
 Name.mkdirs();
 NameF.createNewFile();
 Location.mkdir();
 LocationF.createNewFile();
 Status.mkdir();
 StatusF.createNewFile();
 Content.mkdir();
 ContentF.createNewFile();
 Service.mkdir();
 ServiceF.createNewFile();
 Templet.mkdir();
 TempletF.createNewFile();
 Friends.mkdir();
 System.out.println("finish create");

 } else {
 System.out.println("user:" + userName
 + " have its home in local system!");
 }

 }

 /*
 * TODO:this class used for create friends folders for each CI
 */
 public void createFriendsFolder() {
 File friends = new File("..\\CI\\" + currentGroupName + "\\Friends");
 friends.mkdir();
 }

 public String getUserInfor() {
 return peerName;
 }

 public void synchronizeUserInfor(String type, File file) {

 }

 66

 /*
 * TODO: this method used to propagate local user information to remote
 * peers for synchronization
 *
 */
 public void synchronizeUserInfor(String userName) throws IOException {
 File Location = new File("..\\CI\\" + currentGroupName + "\\"
 + userName + "\\" + "Location");
 Location.mkdirs();
 File LocationFile = new File(Location, "test1.xml");
 if (!LocationFile.exists())
 LocationFile.createNewFile();

 File Status = new File("..\\CI\\" + currentGroupName + "\\" + userName
 + "\\" + "Status");
 File Content = new File("..\\CI\\" + currentGroupName + "\\" + userName
 + "\\" + "Content");
 File group = new File("..\\CI\\" + currentGroupName);
 if (group.exists())

 System.out.println("Already have the group folder");
 else {
 createLocalCIRplica();
 createLocalUserInfor(userName);
 }

 }

 public void sendFile(String Type, File file) throws IOException {
 // File file = new File(name);
 FileInputStream fis = new FileInputStream(file);
 Message msg = new Message();
 /*
 * */
 msg.addMessageElement(fileNameSpace, new StringMessageElement(
 SenderName, peerName, null));
 msg.addMessageElement(fileNameSpace, new StringMessageElement(fileType,
 Type, null));
 msg.addMessageElement(fileNameSpace, new InputStreamMessageElement(
 "file", null, fis, null));
 if (msg != null)
 System.out.println("send file now");
 try {
 output.send(msg);

 67

 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public void sendMessage(String gram) {
 Message response = new Message();
 // The gram
 response.addMessageElement(messageNameSpace, new StringMessageElement(
 SenderMessage, gram, null));
 // Our name
 response.addMessageElement(messageNameSpace, new StringMessageElement(
 SenderName, peerName, null));
 try {
 // Send the message
 output.send(response);
 } catch (IOException io) {
 io.printStackTrace();
 }
 }

 private PipeAdvertisement getMyJxtaPipeAdv() {

 byte[] preCookedPID = { (byte) 0xD1, (byte) 0xD1, (byte) 0xD1,
 (byte) 0xD1, (byte) 0xD1, (byte) 0xD1, (byte) 0xD1,
 (byte) 0xD1, (byte) 0xD1, (byte) 0xD1, (byte) 0xD1,
 (byte) 0xD1, (byte) 0xD1, (byte) 0xD1, (byte) 0xD1, (byte) 0xD1 };

 PipeID id = (PipeID) IDFactory.newPipeID(netPeerGroup.getPeerGroupID(),
 preCookedPID);
 PipeAdvertisement pipeAdv = (PipeAdvertisement) AdvertisementFactory
 .newAdvertisement(PipeAdvertisement.getAdvertisementType());
 pipeAdv.setPipeID(id);
 // the name really does not matter here, only for illustration
 pipeAdv.setName("test");
 pipeAdv.setType(PipeService.PropagateType);
 return pipeAdv;
 }

 private void joinGroup(Advertisement adv) {

 // The creation includes local publishing
 try {

 68

 System.out.println("before join");
 mygroup = netPeerGroup.newGroup(adv);
 pipeService = mygroup.getPipeService();
 // Create the input pipe with this app as the message listener for
 // this
 // pipe
 input = pipeService.createInputPipe(getMyJxtaPipeAdv(), this);
 // This pipe is a propagated pipe, therefore also bind to it
 output = pipeService.createOutputPipe(getMyJxtaPipeAdv(), 100);
 currentGroupName = mygroup.getPeerGroupName();
 joind = true;
 System.out.println("after join");
 } catch (PeerGroupException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException ee) {

 }
 System.out.println("we joined the group\n"
 + mygroup.getPeerGroupAdvertisement());
 freshFilePath();
 System.out.println(mygroup.getPeerGroupAdvertisement());
 if (monitorFile == true) {
 removeMonitorFile();
 addMonitorFile();
 } else
 addMonitorFile();

 // long Duration = 1000 * 60 * 10;

 // Publishing the new group remotely
 discovery.remotePublish(adv);

 currentGroupName = mygroup.getPeerGroupName();
 return;

 }

 /**
 * Display messages as they arrive, if the message contains the string
 * "jxme" respond with a greeting
 */

 public void pipeMsgEvent(PipeMsgEvent event) {

 69

 Message msg = null;
 try {
 // grab the message from the event
 msg = event.getMessage();

 if (msg == null) {
 return;
 }
 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
 System.out.println("get some message");

 ElementIterator ei = msg.getMessageElements();
 String name=null;
 String namespace=null;
 if (ei != null) {
 if (ei.hasNext()) {
 name=ei.next().toString();
 namespace=ei.getNamespace();
 System.out.println(name);
 System.out.println(namespace);
 }

 }else
 return;
//
 if (namespace.equals(fileNameSpace)&&!(name.equals(peerName))) {
 System.out.println("some file");
 String senderName = msg
 .getMessageElement(fileNameSpace, SenderName).toString();
 System.out.println("sender by " + senderName);
 File friend = new File(Friends, senderName);
 File friendLocation = new File(friend, "Location");
 File friendStatus = new File(friend, "Status");
 File friendService = new File(friend, "Service");
 File friendContent = new File(friend, "Content");

 System.out.println("some file setp 2");
 if (!friend.exists()) {
 friend.mkdirs();
 friendLocation.mkdir();

 70

 friendStatus.mkdir();
 friendService.mkdir();
 friendContent.mkdir();
 }
 MessageElement file = msg.getMessageElement(fileNameSpace, "file");
 if (file != null) {
 if (msg.getMessageElement(fileNameSpace, fileType).toString()
 .equals(LocationFile)) {

 File locationFile = new File(friendLocation, "location.xml");
 writeFile(file, locationFile);

 }

 if (msg.getMessageElement(fileNameSpace, fileType).toString()
 .equals(ServiceFile)) {

 File serviceFile = new File(friendService, "service.xml");
 writeFile(file, serviceFile);

 }
 if (msg.getMessageElement(fileNameSpace, fileType).toString()
 .equals(StatusFile)) {

 File statusFile = new File(friendLocation, "status.xml");
 writeFile(file, statusFile);

 }
 if (msg.getMessageElement(fileNameSpace, fileType).toString()
 .equals(TempletFile)) {

 writeFile(file, TempletF);

 }

 }
 return;
 }

 if
(namespace.equals(messageNameSpace)&&!msg.getMessageElement(messageNameSpace,
SenderName)
 .toString().equals(peerName)) {

 71

 System.out.println("some text message");
 String senderName = "unknown";

 // Get originator's name
 MessageElement nameEl = msg.getMessageElement(SenderName);
 if (nameEl != null) {
 senderName = nameEl.toString();
 }

 // now the message
 String senderMessage = null;
 MessageElement msgEl = msg.getMessageElement(SenderMessage);
 if (msgEl != null) {
 senderMessage = msgEl.toString();
 }

 // Get message
 if (senderMessage == null) {
 senderMessage = "[empty message]";
 }

 System.out.println(senderName + "> " + senderMessage);
 // return;
 }

 return;
 }

 private void writeFile(MessageElement fileElement, File targetFile) {

 if (!targetFile.exists()) {
 try {
 targetFile.createNewFile();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 try {
 os = new FileOutputStream(targetFile);
 fileElement.sendToStream(os);
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();

 72

 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public void discoveryEvent(DiscoveryEvent e) {
 System.out.println("got it!!");
 DiscoveryResponseMsg res = e.getResponse();

 Advertisement adv;
 Enumeration en = res.getAdvertisements();

 if (en != null) {
 while (en.hasMoreElements()) {
 adv = (Advertisement) en.nextElement();
 if (adv.getAdvType() == "jxta:PGA") {

 if (!joind) {
 // find=true;
 System.out.println(" [Got a Discovery Response ["
 + res.getResponseCount()
 + " elements] from peer : " + e.getSource()
 + "]");
 System.out.println(adv);
 System.out.println(adv.getAdvType());

 System.out.println("now join the found group!!!!");

 joinGroup(adv);
 }

 }

 }
 }

 }

 private void addMonitorFile() {
 // monitor = new FileMonitor(1000);
 monitor.addFile(NameF);
 monitor.addFile(LocationF);
 monitor.addFile(StatusF);

 73

 monitor.addFile(ContentF);
 monitor.addFile(ServiceF);
 monitor.addFile(TempletF);
 monitor.addFile(NameF);
 monitor.addFile(new File(FilePath.HOME));
 // monitor.addFile(new File(Friends,"/wang/Service/service.xml"));
 monitor.addFile(new File(Friends + "/"));
 if (new File(Friends + "/").list() != null) {
 String[] FriendsList = new File(Friends + "/").list();
 int i = FriendsList.length;
 for (int j = 0; j < i; j++) {
 monitor.addFile(new File(Friends, "/" + FriendsList[j]
 + "/Service/service.xml"));
 }

 }
 monitorFile = true;

 }

 private void removeMonitorFile() {
 // monitor = new FileMonitor(1000);
 monitor.removeFile(NameF);
 monitor.removeFile(LocationF);
 monitor.removeFile(StatusF);
 monitor.removeFile(ContentF);
 monitor.removeFile(ServiceF);
 monitor.removeFile(TempletF);
 monitor.removeFile(NameF);
 monitor.removeFile(new File(FilePath.HOME));
 // monitor.removeFile(new File(Friends,"/wang/Service/service.xml"));
 monitor.removeFile(new File(Friends + "/"));
 if (new File(Friends + "/").list() != null) {
 String[] FriendsList = new File(Friends + "/").list();
 int i = FriendsList.length;
 for (int j = 0; j < i; j++) {
 monitor.removeFile(new File(Friends, "/" + FriendsList[j]
 + "/Service/service.xml"));
 }

 }
 monitorFile = false;

 }

 74

 public void reMonitor() {
 removeMonitorFile();
 addMonitorFile();
 }

}

Class FilePath

package service;

public class FilePath {
 public final static String HOME = "..\\CI\\";
 public final static String ADV ="\\adv\\";
 public final static String NAME = "Myfolder\\Name\\";
 public final static String CONTENT = "Myfolder\\Content\\";
 public final static String STATUS = "Myfolder\\Status\\";
 public final static String SERVICE = "Myfolder\\Service\\";
 public final static String FRIENDS = "Myfolder\\Friends\\";
 public final static String LOCATION = "Myfolder\\Location\\";
 public final static String TEMPLET = "Myfolder\\Templet\\";

}

Package fileMonitor

Interface FileListener

/*
 * This code is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This code is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,

 75

 * MA 02111-1307, USA.
 */
package fileMonitor;

import java.io.File;

/**
 * Interface for listening to disk file changes.
 * @see FileMonitor
 *
 * @author Jacob Dreyer
 */
public interface FileListener
{
 /**
 * Called when one of the monitored files are created, deleted
 * or modified.
 *
 * @param file File which has been changed.
 */
 void fileChanged (File file);
}

Class FileMonitor

/*
 * This code is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This code is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this program; if not, write to the Free
 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

 76

package fileMonitor;

import java.util.*;
import java.io.File;
import java.lang.ref.WeakReference;

/**
 * Class for monitoring changes in disk files.
 * Usage:
 *
 * 1. Implement the FileListener interface.
 * 2. Create a FileMonitor instance.
 * 3. Add the file(s)/directory(ies) to listen for.
 *
 * fileChanged() will be called when a monitored file is created,
 * deleted or its modified time changes.
 *
 * @author Jacob Dreyer
 */
public class FileMonitor
{
 private Timer timer_;
 private HashMap files_; // File -> Long
 private Collection listeners_; // of WeakReference(FileListener)

 /**
 * Create a file monitor instance with specified polling interval.
 *
 * @param pollingInterval Polling interval in milli seconds.
 */
 public FileMonitor (long pollingInterval)
 {
 files_ = new HashMap();
 listeners_ = new ArrayList();

 timer_ = new Timer (true);
 timer_.schedule (new FileMonitorNotifier(), 0, pollingInterval);
 }

 77

 /**
 * Stop the file monitor polling.
 */
 public void stop()
 {
 timer_.cancel();
 }

 /**
 * Add file to listen for. File may be any java.io.File (including a
 * directory) and may well be a non-existing file in the case where the
 * creating of the file is to be trepped.
 * <p>
 * More than one file can be listened for. When the specified file is
 * created, modified or deleted, listeners are notified.
 *
 * @param file File to listen for.
 */
 public void addFile (File file)
 {
 if (!files_.containsKey (file)) {
 long modifiedTime = file.exists() ? file.lastModified() : -1;
 files_.put (file, new Long (modifiedTime));
 }
 }

 /**
 * Remove specified file for listening.
 *
 * @param file File to remove.
 */
 public void removeFile (File file)
 {
 files_.remove (file);
 }

 /**

 78

 * Add listener to this file monitor.
 *
 * @param fileListener Listener to add.
 */
 public void addListener (FileListener fileListener)
 {
 // Don't add if its already there
 for (Iterator i = listeners_.iterator(); i.hasNext();) {
 WeakReference reference = (WeakReference) i.next();
 FileListener listener = (FileListener) reference.get();
 if (listener == fileListener)
 return;
 }

 // Use WeakReference to avoid memory leak if this becomes the
 // sole reference to the object.
 listeners_.add (new WeakReference (fileListener));
 }

 /**
 * Remove listener from this file monitor.
 *
 * @param fileListener Listener to remove.
 */
 public void removeListener (FileListener fileListener)
 {
 for (Iterator i = listeners_.iterator(); i.hasNext();) {
 WeakReference reference = (WeakReference) i.next();
 FileListener listener = (FileListener) reference.get();
 if (listener == fileListener) {
 i.remove();
 break;
 }
 }
 }

 /**
 * This is the timer thread which is executed every n milliseconds
 * according to the setting of the file monitor. It investigates the
 * file in question and notify listeners if changed.

 79

 */
 private class FileMonitorNotifier extends TimerTask
 {
 public void run()
 {
 // Loop over the registered files and see which have changed.
 // Use a copy of the list in case listener wants to alter the
 // list within its fileChanged method.
 Collection files = new ArrayList (files_.keySet());

 for (Iterator i = files.iterator(); i.hasNext();) {
 File file = (File) i.next();
 long lastModifiedTime = ((Long) files_.get (file)).longValue();
 long newModifiedTime = file.exists() ? file.lastModified() : -1;

 // Chek if file has changed
 if (newModifiedTime != lastModifiedTime) {

 // Register new modified time
 files_.put (file, new Long (newModifiedTime));

 // Notify listeners
 for (Iterator j = listeners_.iterator(); j.hasNext();) {
 WeakReference reference = (WeakReference) j.next();
 FileListener listener = (FileListener) reference.get();

 // Remove from list if the back-end object has been GC'd
 if (listener == null)
 j.remove();
 else
 listener.fileChanged (file);
 }
 }
 }
 }
 }

}

Package CIM

Class CIM

 80

package CIM;

import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

import fileMonitor.FileListener;

import service.jxmeUbiService;
import tool.CIMTool;

public class CIM {
 private static final String LocationFile = "Location";
 private static final String StatusFile = "Status";
 private static final String ServiceFile = "Service";
 private static final String ContentFile = "Content";
 private static final String TempletFile = "Templet";
 private static InputStreamReader cin = new InputStreamReader(System.in);
 private static OutputStreamWriter osw = new OutputStreamWriter(System.out);
 private static BufferedReader readrer = new BufferedReader(cin);
 private static jxmeUbiService jus = null;
 private String userName = null;

 private CIMTool tool;

 public void initialJxta(String name, int port) {
 jus = new jxmeUbiService();
 try {
 try {
 jus.startJxta(name, port);
 jus.startService();

 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 userName = name;
 // jus.creatNewGroup("want", "test2");
 // jus.discoveryGroup("ubicollab");
 // jus.createLocalCIRplica();

 81

 // jus.createLocalUserInfor("xiaobo1");
 // jus.synchronizeUserInfor("xiaobo");
 // File file = jus.ServiceF;
 // System.out.println(file);
 // jus.sendFile("Service", file);

 // jus.discoveryGroup("xiaobo test group");
 // jus.createLocalCIRplica();
 // jus.createLocalUserInfor("xiaobo");

 // jus.discoveryGroup("xiaobo test group");
 // chatDemo.discoveryGroup("xiaobo test group");
 // chatDemo.printMemStat();

 // chatDemo.discoveryGroup("xiaobo test group");

 /*
 * while (true) { String message = readrer.readLine();
 * jus.sendMessage(message); }
 *
 */

 } catch (IOException io) {
 io.printStackTrace();
 }

 /*
 * synchronized(jus) { //The intention with the wait is to ensure the
 * app continues to run //run. try { jus.wait(); } catch
 * (InterruptedException ie) { Thread.interrupted(); } }
 *
 */

 }

 public void setCIMTool(CIMTool tool) {
 jus.tool = tool;
 this.tool = tool;
 }

 public void addFileListener() {

 jus.addListener(tool);
 }

 82

 public void synchronizeFile(String type) {
 if (type.equals(LocationFile))
 try {
 jus.sendFile(type, jus.LocationF);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 if (type.equals(StatusFile))
 try {
 jus.sendFile(type, jus.StatusF);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 if (type.equals(ServiceFile))
 try {
 jus.sendFile(type, jus.ServiceF);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 if (type.equals(ContentFile))
 try {
 jus.sendFile(type, jus.ContentF);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 if (type.equals(TempletFile))
 try {
 jus.sendFile(type, jus.TempletF);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public String[] getGroupInfor() {

 83

 // System.out.println((String[])jus.getGroupList().toArray());
 return jus.getGroupList();
 }

 public void createNewGroup(String name, String des) {
 jus.creatNewGroup(name, des);
 jus.createLocalCIRplica();
 try {
 jus.createLocalUserInfor(userName);
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public void startLocalGroup(String name) {
 try {
 jus.creatGroupFromLocal(name);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public void discoveryCI(String name) {
 try {
 jus.discoveryGroup(name);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public String[] getFriendsList() {
 return jus.getCurrentGroupFriends();
 }

 public String[] getFriendServices(String name) {
 return jus.getFriendServices(name);
 }

 public void remonitor() {
 jus.reMonitor();
 }

 84

 public File getFile(String type) {
 if (type.equals(LocationFile))
 return jus.LocationF;

 if (type.equals(StatusFile))
 return jus.StatusF;

 if (type.equals(ServiceFile))
 return jus.ServiceF;

 if (type.equals(ContentFile))
 return jus.ContentF;

 if (type.equals(TempletFile))
 return jus.TempletF;
 return null;
 }

 public void sendMessage(String message){
 jus.sendMessage(message);
 }
}

Package CI

I don¡t include the classes in this package since most of them are abstracted and have not real used in
CIM research at this moment.

Package CIMTool

Class CIMTool

package tool;

import java.io.BufferedReader;

public class CIMTool implements FileListener {

 protected Shell shlUbibuddy;
 private Text text;
 private CIM sm;
 Combo groups;

 private Text text_1;

 85

 private Label status;
 static CIMTool window;
 private Display display;
 private TreeItem trtmMyFriends;
 private Tree tree;
 private Button btnChangeStatus;
 private Button btnNewWindow;
 private Shell child;

 // static Thread t;

 /**

 * Launch the application.

 */

 public static void start() {

 try {
 window = new CIMTool();
 window.open();

 } catch (Exception e) {
 e.printStackTrace();

 }

 }

 public void fileChanged(File file) {
 System.out.println("changed");

 if (file.getName().equals("service.xml")) {
 File Service = new File(file.getParent());
 String name = new File(Service.getParent()).getName();
 updateService(name);

 } else if (file.getName().equals("Friends")) {
 updateFriends();

 } else if (file.getName().equals("status.xml")) {

 try {
 String line = null;
 BufferedReader br = new BufferedReader(new FileReader(sm
 .getFile("Status")));

 if ((line = br.readLine()) != null) {
 System.out.println("my status " + line);
 updateStatus(line);

 86

 }

 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();

 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();

 }

 }

 }

 /**

 * Open the window.

 */

 public void open() {
 display = Display.getDefault();
 createContents();

 shlUbibuddy.open();

 shlUbibuddy.layout();

 while (!shlUbibuddy.isDisposed()) {
 if (!display.readAndDispatch()) {
 display.sleep();

 }

 }

 }

 /**

 * Create contents of the window.

 */

 protected void createContents() {
 shlUbibuddy = new Shell(SWT.SHELL_TRIM);
 shlUbibuddy.setLayout(new GridLayout(2, false));
 shlUbibuddy.setSize(450, 300);

 shlUbibuddy.setText("UbiBuddy");

 {

 Button btnStartUbicollab = new Button(shlUbibuddy, SWT.NONE);
 {

 GridData gridData = new GridData(GridData.BEGINNING,
 GridData.CENTER, true, false, 1, 1);
 btnStartUbicollab.setLayoutData(gridData);

 }

 87

 btnStartUbicollab.addMouseListener(new MouseListener() {
 public void mouseDoubleClick(MouseEvent arg0) {
 }

 public void mouseDown(MouseEvent arg0) {
 sm = new CIM();
 sm.initialJxta("xiaoboo", 9910);

 sm.setCIMTool(window);
 sm.addFileListener();

 System.out.println("added listener");
 // sm.addFileListener();

 String[] l = sm.getGroupInfor();

 groups.setItems(l);

 }

 public void mouseUp(MouseEvent arg0) {
 }

 });

 btnStartUbicollab.setText("Start Ubicollab");

 }

 new Label(shlUbibuddy, SWT.NONE);
 {

 text = new Text(shlUbibuddy, SWT.BORDER);
 {

 GridData gridData = new GridData(GridData.BEGINNING,
 GridData.CENTER, true, false, 1, 1);
 text.setLayoutData(gridData);

 }

 text.addVerifyListener(new VerifyListener() {
 public void verifyText(VerifyEvent arg0) {
 }

 });

 text.addModifyListener(new ModifyListener() {
 public void modifyText(ModifyEvent arg0) {
 }

 });

 }

 {

 Button btnCi = new Button(shlUbibuddy, SWT.NONE);
 {

 GridData gridData = new GridData(GridData.BEGINNING,
 GridData.CENTER, true, false, 1, 1);
 btnCi.setLayoutData(gridData);

 88

 }

 btnCi.addMouseListener(new MouseListener() {
 public void mouseDoubleClick(MouseEvent arg0) {
 }

 public void mouseDown(MouseEvent arg0) {
 sm.createNewGroup(text.getText(), "test");

 groups.add(text.getText());

 // text.getText();

 // text.setTopIndex(0);

 // text.setSelection(0, 10);

 // text.insert("hello world");

 // System.out.println("push me");

 }

 public void mouseUp(MouseEvent arg0) {
 }

 });

 btnCi.addKeyListener(new KeyListener() {
 public void keyPressed(KeyEvent arg0) {
 }

 public void keyReleased(KeyEvent arg0) {
 }

 });

 btnCi.setText("createNewCI");

 }

 {

 groups = new Combo(shlUbibuddy, SWT.NONE);
 {

 GridData gridData = new GridData(GridData.FILL,
 GridData.CENTER, true, false, 1, 1);
 groups.setLayoutData(gridData);

 }

 groups.setText("CIS");

 }

 Button btnStartlocalci = new Button(shlUbibuddy, SWT.NONE);
 btnStartlocalci.addMouseListener(new MouseListener() {
 public void mouseDoubleClick(MouseEvent arg0) {
 }

 public void mouseDown(MouseEvent arg0) {

 89

 sm.startLocalGroup(groups.getText());

 String[] friends = sm.getFriendsList();

 if (friends.length != 0) {
 trtmMyFriends.dispose();

 trtmMyFriends = new TreeItem(tree, SWT.NONE);
 trtmMyFriends.setText(groups.getText());

 trtmMyFriends.setExpanded(true);

 for (int i = 0; i < friends.length; i++) {
 TreeItem name = new TreeItem(trtmMyFriends,
SWT.NONE);
 name.setText(friends[i]);

 name.setExpanded(true);
 String[] Services =

sm.getFriendServices(friends[i]);

 for (int j = 0; j < Services.length; j++) {
 TreeItem service = new TreeItem(name,
SWT.NONE);
 service.setText(Services[j]);

 }

 }

 }

 }

 public void mouseUp(MouseEvent arg0) {
 }

 });

 {

 GridData gridData = new GridData(GridData.FILL,
GridData.CENTER,

 true, false, 1, 1);
 btnStartlocalci.setLayoutData(gridData);

 }

 btnStartlocalci.setText("startLocalCI");

 new Label(shlUbibuddy, SWT.NONE);
 new Label(shlUbibuddy, SWT.NONE);

 final Combo fileList = new Combo(shlUbibuddy, SWT.NONE);
 fileList.addSelectionListener(new SelectionListener() {
 public void widgetDefaultSelected(SelectionEvent arg0) {
 }

 public void widgetSelected(SelectionEvent arg0) {

 90

 }

 });

 fileList.setText("choice");

 fileList.setItems(new String[] { "Location", "Status", "Service",
 "Content", "Templet" });

 {

 GridData gridData = new GridData(GridData.FILL,
GridData.CENTER,

 true, false, 1, 1);
 fileList.setLayoutData(gridData);

 }

 {

 Button btnSynchronize = new Button(shlUbibuddy, SWT.NONE);
 {

 GridData gridData = new GridData(GridData.FILL,
 GridData.CENTER, true, false, 1, 1);
 btnSynchronize.setLayoutData(gridData);

 }

 btnSynchronize.addMouseListener(new MouseListener() {
 public void mouseDoubleClick(MouseEvent arg0) {
 }

 public void mouseDown(MouseEvent arg0) {
 sm.synchronizeFile(fileList.getText());

 // System.out.println(fileList.getText());

 }

 public void mouseUp(MouseEvent arg0) {
 }

 });

 btnSynchronize.setText("synchronize");

 }

 new Label(shlUbibuddy, SWT.NONE);
 new Label(shlUbibuddy, SWT.NONE);

 text_1 = new Text(shlUbibuddy, SWT.BORDER);
 {

 GridData gridData = new GridData(GridData.FILL,
GridData.CENTER,

 true, false, 1, 1);
 text_1.setLayoutData(gridData);

 }

 91

 Button btnDiscoveryci = new Button(shlUbibuddy, SWT.NONE);
 btnDiscoveryci.addMouseListener(new MouseListener() {
 public void mouseDoubleClick(MouseEvent arg0) {
 }

 public void mouseDown(MouseEvent arg0) {
 sm.discoveryCI(text_1.getText());

 groups.add(text_1.getText());

 }

 public void mouseUp(MouseEvent arg0) {
 }

 });

 {

 GridData gridData = new GridData(GridData.FILL,
GridData.CENTER,

 true, false, 1, 1);
 btnDiscoveryci.setLayoutData(gridData);

 }

 btnDiscoveryci.setText("discoveryCI");

 status = new Label(shlUbibuddy, SWT.NONE);
 {

 GridData gridData = new GridData(GridData.BEGINNING,
 GridData.CENTER, true, false, 1, 1);
 status.setLayoutData(gridData);

 }

 status.setText("offline");

 btnChangeStatus = new Button(shlUbibuddy, SWT.NONE);
 {

 GridData gridData = new GridData(GridData.BEGINNING,
 GridData.CENTER, true, false, 1, 1);
 btnChangeStatus.setLayoutData(gridData);

 }

 btnChangeStatus.addMouseListener(new MouseListener() {
 public void mouseDoubleClick(MouseEvent arg0) {
 }

 public void mouseDown(MouseEvent arg0) {

 if (status.getText().equals("online"))
 writeToFile(sm.getFile("Status"), "offline");

 else

 92

 writeToFile(sm.getFile("Status"), "online");

 }

 public void mouseUp(MouseEvent arg0) {
 }

 });

 btnChangeStatus.setText("Change status");

 tree = new Tree(shlUbibuddy, SWT.BORDER);
 {

 GridData gridData = new GridData(GridData.FILL,
GridData.FILL,

 true, true, 1, 1);
 tree.setLayoutData(gridData);

 }

 trtmMyFriends = new TreeItem(tree, SWT.NONE);
 trtmMyFriends.setText("My Friends");

 trtmMyFriends.setExpanded(true);

 btnNewWindow = new Button(shlUbibuddy, SWT.NONE);
 {

 GridData gridData = new GridData(GridData.BEGINNING,
 GridData.CENTER, true, false, 1, 1);
 btnNewWindow.setLayoutData(gridData);

 }

 btnNewWindow.addMouseListener(new MouseListener() {
 public void mouseDoubleClick(MouseEvent arg0) {
 }

 public void mouseDown(MouseEvent arg0) {
 InputDialog dlg = new InputDialog(Display.getCurrent()
 .getShells()[0]);

 String input = dlg.open();

 /*

 * Shell shell = new Shell(); shell.setLayout(new

FormLayout());

 * shell.setVisible(true); shell.setText("Select Column

Data");

 *

 *

 * Label label = new Label(shell, SWT.NONE);

 * label.setText("hihi"); GridData data = new GridData();

 93

 * data.horizontalSpan = 2; label.setLayoutData(data);

 *

 *

 *

 * Label label1 = new Label(shell, SWT.NONE);

 * label1.setText("YOUPI"); FormData formData = new

FormData();

 * formData.bottom = new FormAttachment(100, 0);

formData.top =

 * new FormAttachment(0, 0); formData.left = new

 * FormAttachment(0, 0); formData.right = new

 * FormAttachment(100, 0);

label1.setLayoutData(formData);

 * shell.pack(); shell.setLocation(200, 200);

shell.setSize(300,

 * 100); shell.open();

 */

 }

 public void mouseUp(MouseEvent arg0) {
 }

 });

 btnNewWindow.setText("new window");

 }

 protected void updateStatus(String s) {
 System.out.println("file changed");
 sm.synchronizeFile("Status");

 final String x = s;
 if (this.status.isDisposed())
 return;

 display.asyncExec(new Runnable() {
 public void run() {
 status.setText(x);

 status.redraw();

 }

 });

 System.out.println("file changed");

 }

 94

 protected void updateService(String name) {

 System.out.println("file changed");
 sm.synchronizeFile("Service");

 final String x = name;
 if (this.status.isDisposed())
 return;

 display.asyncExec(new Runnable() {
 public void run() {
 String[] friends = sm.getFriendsList();

 trtmMyFriends.dispose();

 trtmMyFriends = new TreeItem(tree, SWT.NONE);
 trtmMyFriends.setText(groups.getText());

 trtmMyFriends.setExpanded(true);

 for (int i = 0; i < friends.length; i++) {
 TreeItem name = new TreeItem(trtmMyFriends, SWT.NONE);
 name.setText(friends[i]);

 name.setExpanded(true);
 String Services[] = sm.getFriendServices(friends[i]);

 for (int j = 0; j < Services.length; j++) {
 TreeItem service = new TreeItem(name, SWT.NONE);
 service.setText(Services[j]);

 }

 }

 }

 });

 System.out.println("file changed");

 }

 protected void updateFriends() {
 System.out.println("file changed");

 if (this.status.isDisposed())
 return;
 sm.remonitor();

 display.asyncExec(new Runnable() {

 95

 public void run() {
 String[] friends = sm.getFriendsList();

 trtmMyFriends.dispose();

 trtmMyFriends = new TreeItem(tree, SWT.NONE);
 trtmMyFriends.setText(groups.getText());

 trtmMyFriends.setExpanded(true);

 for (int i = 0; i < friends.length; i++) {
 TreeItem name = new TreeItem(trtmMyFriends, SWT.NONE);
 name.setText(friends[i]);

 name.setExpanded(true);
 String Services[] = sm.getFriendServices(friends[i]);

 for (int j = 0; j < Services.length; j++) {
 TreeItem service = new TreeItem(name, SWT.NONE);
 service.setText(Services[j]);

 }

 }

 }

 });

 System.out.println("file changed");

 }

 private void writeToFile(File file, String content) {
 try {
 // Create file

 FileWriter fstream = new FileWriter(file);
 BufferedWriter out = new BufferedWriter(fstream);
 out.write(content);

 // Close the output stream

 out.close();

 } catch (Exception e) {// Catch exception if any
 System.err.println("Error: " + e.getMessage());
 }

 }

 class InputDialog extends Dialog {

 private String message;

 private String input;

 96

 // Shell shell;

 public InputDialog(Shell parent) {

 this(parent, SWT.DIALOG_TRIM | SWT.APPLICATION_MODAL);
 }

 public InputDialog(Shell parent, int style) {
 super(parent, style);
 setText("Chating with group Dialog");

 setMessage("Please enter chatting content");

 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }

 public String getInput() {
 return input;
 }

 public void setInput(String input) {
 this.input = input;
 }

 public String open() {
 // Display d= new Display();

 child = new Shell(getParent(), SWT.DIALOG_TRIM);
 child.setText(getText());

 child.forceActive();

 createContents(child);

 child.pack();

 child.open();

 // display.dispose();

 97

 return input;
 }

 private void createContents(final Shell shell1) {

 shell1.setLayout(new GridLayout(5, true));
 shell1.forceActive();

 shell1.setVisible(true);
 shell1.setSize(450, 300);

 Label label = new Label(shell1, SWT.NONE);
 label.setText(message);

 GridData data = new GridData();
 data.horizontalSpan = 5;

 data.verticalSpan = 3;

 label.setLayoutData(data);

 final Text send = new Text(shell1, SWT.BORDER);
 data = new GridData(GridData.FILL_HORIZONTAL);
 data.horizontalSpan = 5;

 send.setLayoutData(data);

 Button ok = new Button(shell1, SWT.PUSH);
 ok.setText("Sending");

 data = new GridData(GridData.FILL_HORIZONTAL);
 data.horizontalSpan = 2;

 ok.setLayoutData(data);

 ok.addListener(SWT.Selection, new Listener() {
 public void handleEvent(Event e) {
 sm.sendMessage(send.getText());

 }

 });

 Button cancel = new Button(shell1, SWT.PUSH);
 cancel.setText("Cancel");

 data = new GridData(GridData.FILL_HORIZONTAL);
 data.horizontalSpan = 2;

 cancel.setLayoutData(data);

 final Text receive = new Text(shell1, SWT.BORDER);
 data = new GridData(GridData.FILL_HORIZONTAL);
 data.horizontalSpan = 4;

 send.setLayoutData(data);

 98

 shell1.setDefaultButton(ok);

 }

 }

}

Package osgi

Class Activator
/*
 * Created on Fri May 09 18:34:11 CST 2008
 */
package osgi;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

import tool.CIMTool;

public class Activator implements BundleActivator {

 /* (non-Javadoc)
 * @see org.osgi.framework.BundleActivator#start(org.osgi.framework.BundleContext)
 */

 public void start(BundleContext context) throws Exception {
 CIMTool.start();
 }

 /* (non-Javadoc)
 * @see org.osgi.framework.BundleActivator#stop(org.osgi.framework.BundleContext)
 */
 public void stop(BundleContext context) throws Exception {
 }
}

//

Source code can be found in disk also

A 3 Deployment

 99

The details of deployment can be found in the readme.txt in the attached disk.

Reference

1. Farshchian, B.A. and M. Divitini, UbiCollab Architecture White Paper. IDI Technical

Report, 2007.
2. ANDY CRABTREE and T.R.S.B., Moving with the Times: IT Research and the

Boundaries of CSCW. 2005. p. 217-251.
3. Paul Luff, C.H., Mobility in Collaboration, in ACM conference on Computer supported

cooperative work. 1998, ACM: Washington, United States.
4. Abowd, G.D. and E.D. Mynatt, Charting Past, Present, and Future Research in Ubiquitous

Computing. ACM Transactions on Computer-Human Interaction (TOCHI), 2000: p.
29-58.

5. Gong, L., JXTA: a network programming environment. Internet Computing, IEEE,, 2001.
5(3): p. 88-95.

6. Greenberg, S. and D. Marwood. Real time groupware as a distributed system: concurrency
control and its effect on the interface. in Proceedings of the 1994 ACM conference on
Computer supported cooperative work. 1994.

7. Carstensen, P. and K. Schmidt, Computer Supported Cooperative Work: New Challenges
to System Design. Handbook of Human Factors, ed. K.I. (ed.). 2002.

8. Dey, A.K., C. Edwards, and D. Salber, A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 2001. 16: p. 97-166.

9. Jones, Q. and S.A. Grandhi, P3 systems: putting the place back into social networks.
Internet Computing, IEEE, 2005. 9(5): p. 38-46.

10. Coulouris, J.D. and T. Kindberg, eds. Distributed Systems: Concepts and Design. 2005,
Addison Wesley.

11. Weiser, M., The computer for the 21st century. sci, am, 1991(265(3)): p. 94-104.
12. Ballesteros, F.J., et al., Plan B: Using Files instead of Middleware Abstractions. Pervasive

Computing, IEEE, 2007. 6(3): p. 58 - 65.
13. Bhana, I. and D. Johnson, A Peer-to-Peer Approach to Content Dissemination and Search

in Collaborative Networks. Computational Science: Lecture Notes in Computer Science
2005. 3516/2005: p. 391-398.

14. Ripeanu, M. Peer-to-Peer Architecture Case Study: Gnutella Network. in First
International Conference on Peer-to-Peer Computing (P2P'01). 2001.

15. Lv, Q., et al. Search and replication in unstructured peer-to-peer networks. in 16th
international conference on Supercomputing. 2002. New York: ACM.

16. Androutsellis-Theotokis, S. and D. Spinellis, A survey of peer-to-peer content distribution
technologies. ACM Computing Surveys (CSUR), 2004. 36(4): p. 335-371.

17. Oster, G., et al. Data consistency for P2P collaborative editing. in anniversary conference
on Computer supported cooperative work. 2006: ACM.

 100

18. Sun, C., et al., Achieving Convergence, Causality Preservation, and Intention Preservation
in Real-Time Cooperative Editing Systems. ACM Transactions on Computer-Human
Interaction, 1998. 5(1): p. 63-108.

19. Kindberg, T. and A. Fox, System software for ubiquitous computing. Pervasive Computing,
IEEE, 2002. 1(1)(70-81).

20. Satyanarayanan, M., Pervasive computing: vision and challenges. Personal
Communications, IEEE, 2001. 8(4): p. 10-17.

21. ErichGamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software.
1994: AddisonWesley.

	Title Page
	Problem Description
	Microsoft Word - Collaboration Instance Manager of UbiCollab 2008.doc

