
May 2008
Reidar Conradi, IDI
Tore Hovland, Skattedirektoratet

Master of Science in Informatics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Study of Software reuse at
Skattedirektoratet

Line Ånderbakk Olsen
Thor Ånderbakk Olsen

Abstract

This master thesis is a case study on software reuse within a subset of systems at the
Norwegian Directorate of Taxes, Skattedirektoratet (SKD). The systems chosen for our
research are the GLD systems; legacy systems which dates back to the late 1980's and
early 1990's. Because of historical reasons, these systems are copied and created over and
over again in an annual cycle. There are redundancies in code and data between the annual
versions, but also across the di�erent GLD systems. The consequence of this is systems
with reduced maintainability and possible inconsistencies in code and data.

Our objectives with this case study is to determine both the current level of software reuse
within a subset of the GLD systems, and the emphasis on reuse in SKD's development
process. After determining the status of as-is, we will continue with an investigation of
the potential for software reuse within the context of SKD, and how they can achieve
systematic software reuse.

The contributions of this thesis can be divided into four main themes:

• T1: Review of state-of-the-art literature on software reuse

• T2: Investigation of reuse level within selected GLD systems

• T3: Investigation of SKD's development process

• T4: Investigation of opportunities for systematic reuse in SKD

The main contributions are:

• C1: Review of literature in the �eld of software reuse

• C2: Measurement of the reuse maturity level within the selected GLD systems.

• C3: Survey of the software development process and reuse aspects at SKD

� C3.1: Results from SKD

� C3.2: Results from SKD combined with results from previous surveys on soft-
ware developers attitude toward software reuse by NTNU

• C4: Process which assures reuse

Keywords: Systematic software reuse, Reuse maturity, Software development,
Software engineering

i

Preface

This thesis was written as the concluding part of the Master of Science degree in Infor-
matics.

First of all we would like to thank our supervisor, Reidar Conradi, for his continuous
support, feedback and advice during this master thesis. Second we want to thank Tore
Hovland and the developers working with the GLD system for their helpfulness during our
data acquisition, and the people from Skattedirektoratet who participated in the survey
and interview.

Trondheim, 30. May 2008

_____________ _____________
Line Ånderbakk Olsen Thor Ånderbakk Olsen

iii

Contents

I Introduction 3

1 Introduction 5

1.1 Motivation . 5
1.2 Problem Outline . 6
1.3 Research Questions and Goals . 6
1.4 Our Contribution . 6
1.5 Thesis Structure . 7

II Literature Review and Research Context 9

2 State-of-the-Art of Software Reuse (T1) 11

2.1 Software Maintenance . 11
2.2 Introduction to Software Reuse . 12

2.2.1 Ad-hoc versus Systematic Reuse . 13
2.2.2 Bene�ts from Software Reuse . 13
2.2.3 Problems associated with Software Reuse 15

2.3 Technical Aspects of Software Reuse . 15
2.3.1 Reuse Perspectives . 15
2.3.2 Approaches to Software Reuse . 17
2.3.3 A De�nition of Reuse Types . 18
2.3.4 Software Repository . 19
2.3.5 Domain Engineering . 20

2.4 Nontechnical Aspects of Software Reuse . 20
2.4.1 The Human Factor and Cultural Issues 20
2.4.2 Economic Issues . 21
2.4.3 Organizational Issues . 22

2.5 Reuse Maturity Models and Measurement 22
2.5.1 Koltun and Hudson's Reuse Maturity Model (RMM) 24
2.5.2 Measurement . 25

2.6 How to achieve Systematic Software Reuse 26
2.6.1 Reuse Program . 27
2.6.2 Reuse requires Changes in Development Process 28
2.6.3 Reuse requires Changes in Organization 29
2.6.4 Pilot Projects . 29
2.6.5 An Example of an Incremental Transition from no Reuse 31

2.7 Previous studies of Developers Attitude towards Software Reuse at NTNU . 32
2.7.1 Ericsson, EDB Business Consulting and Mogul 32

v

vi CONTENTS

2.7.2 Statoil ASA . 32
2.8 Empirical Research Methods . 33

2.8.1 Qualitative Methods . 33
2.8.2 Quantitative Methods . 34
2.8.3 Evaluation of Research Activities . 34

2.9 Summary . 36

3 State-of-the-practice at Skattedirektoratet 37

3.1 IT-Department . 37
3.1.1 System Group 2 (SG2) . 38

3.2 IT Systems . 39
3.3 Electronic Cooperation in the Public Sector 40
3.4 Framework for System Maintenance . 41
3.5 The GLD System . 42

3.5.1 List of GLD Systems . 42
3.5.2 GLD System Description . 43
3.5.3 Batch and CICS . 45
3.5.4 Annual Versions . 45
3.5.5 Maintenance . 46
3.5.6 Selected GLD Systems . 47
3.5.7 The MAG Project . 49
3.5.8 Summary . 51

III Design of Empirical Investigation 53

4 Research Agenda 55

4.1 Schedule and Description over Research Activities 55
4.2 Research Questions and Themes . 57
4.3 SKD's Goal with our Research . 57
4.4 Meetings with the Developers from SG2 and its Limitations 58

5 Investigation of Reuse Level in the GLD Systems (T2) 59

5.1 Reviewing the GLD Documentation . 59
5.2 Analyzing the Source Code . 60

5.2.1 Generating reports . 62
5.3 Approach for Classifying with the Reuse Maturity Model 65

6 Investigation of SKD's Development Process (T3) 67

6.1 Planning the Survey of the software development process and reuse aspects
at SKD . 67

6.2 Planning the Interview about SKD's Framework for System Maintenance . . 68

IV Results 69

7 Results from Investigation of Reuse Level(T2) 71

7.1 Results from Review of GLD Documentation 71
7.1.1 GA/LTO System . 71
7.1.2 Remaining GLD Systems . 71

CONTENTS vii

7.2 Results from Code Analysis . 73
7.3 Classi�cation with the Reuse Maturity Model 73

8 Survey Results (T3) 79

8.1 Respondents . 79
8.2 General Questions G1 . 80
8.3 General Questions G2 . 82
8.4 General Questions G3 . 82
8.5 Component Questions . 82
8.6 Requirements . 85
8.7 Cross Tabulation Analysis of Component Questions 85

8.7.1 Cross Tabulation Analysis of Question C9 85
8.7.2 Cross Tabulation Analysis of Question C2 86

8.8 Results from Survey combined with Previous Surveys 86

V Discussion 89

9 Current Level of Reuse within the Selected GLD Systems (T2) 91

9.1 Limitations of Approaches . 92

10 Emphasis on Software Reuse in SKD's Development Process (T3) 95

10.1 Findings from the Survey at SKD . 95
10.1.1 Limitations of Survey at SKD . 96

10.2 Survey Discussed in Relation to Previous Surveys at NTNU 97
10.2.1 Results from Survey at SKD combined with Previous Studies 97

10.3 Interview about SKD's Framework for System Maintenance 99
10.3.1 Limitations of the Interview . 99

10.4 Discussion of RQ3 . 100

11 Opportunities for Systematic Reuse in SKD (T4) 101

11.1 What is the Potential for Systematic Reuse? 101
11.2 How can SKD achieve Systematic Reuse? 103

11.2.1 Management Commitment . 103
11.2.2 Changes in Organizational Structure 103
11.2.3 Changes in Development Process . 103
11.2.4 Training and the use of Champions 105
11.2.5 Pilot Project . 105

11.3 Rewriting of Existing GLD Systems, Three Alternative Approaches 106
11.3.1 X-version Approach . 106
11.3.2 Separating common Functionality in Separate Modules 107
11.3.3 Restructuring and Software Architecture 107
11.3.4 Issues Related to the proposed Approaches 108

VI Conclusion and Further Work 111

12 Conclusion and Further Work 113

12.1 Conclusion . 113
12.2 Further Work . 113

viii CONTENTS

Bibliography 115

Index 120

VII Appendices 121

A SEVO - Study of Software Reuse at Sattedirektoratet 123

B List of GLD systems 125

C Resume of Meeting 25. May 2007, at SKD 127

D Resume of Meeting 15. October 2007, at SKD 133

E Resume of Meeting 26. November 2007, at SKD 137

F Resume of Meeting 15. February 2008, at SKD 141

G Resume of Interview regarding SKD's Framework for Software Mainte-
nance, 15. February 2008 145

H Questionnaire of the Software Development Process and Reuse Aspects
at Skattedirektoratet, February 2008 147

I Results of Questionnaire of the Software Development Process and Reuse
Aspect at SKD, February 2008 151

List of Figures

1.1 Themes and contributions . 7

2.1 Two cases of reuse maturity(Sametinger, 1997) 23
2.2 Categorization of reuse metrics and models (Frakes and Terry, 1996) 24
2.3 Systematic reuse involves four concurrent processes (Jacobson et al., 1997) . 28
2.4 A standard reuse organization(Jacobson et al., 1997) 30
2.5 The incremental adoption of reuse (Jacobson et al., 1997) 30
2.6 Di�erent approaches to quality assessment (Johannesen et al., 2004) 35

3.1 Organization chart (01.01.2008) . 37
3.2 IT-department (01.01.2008) . 38
3.3 System chart for SKD, version 1.3 . 39
3.4 SKD's Framework for System Maintenance 41
3.5 GLD system description . 44
3.6 GLD main menu . 45
3.7 Annual versions of the systems . 46
3.8 System maintenance . 47
3.9 GA/LTO CICS main menu . 48
3.10 GB CICS main menu . 49
3.11 GD CICS main menu . 50
3.12 GK CICS main menu . 50

5.1 Relationship between GLD systems, applications and programs 60
5.2 Extract from a report generated by Winmerge 63
5.3 Screenshot from Winmerge . 64

7.1 Phases in the Reuse Maturity Model (RMM) 75

8.1 Results from question P2 . 80
8.2 Results from question P6 . 80
8.3 Results from question G1a-d . 81
8.4 Results from question G2a-f . 82
8.5 Results from question G3a-e . 83
8.6 Results from question C1 . 83
8.7 Results from question C2 . 83
8.8 Results from question C5 . 84
8.9 Results from question C9 . 84

10.1 Results from questions G1a-d . 98
10.2 Results from questions G2a-f . 98

ix

x LIST OF FIGURES

10.3 Results from questions G3a-e . 99

11.1 Simple example of restructured GLD program 108

C.1 Annual versions of the systems . 128
C.2 Interfaces of the systems . 128
C.3 Service oriented Architecture . 129
C.4 Sequential batch . 130

List of Tables

1.1 Relationship between research questions, themes and contributions 7

2.1 Six perspectives from which to view software reuse 16
2.2 De�nitions of reuse types . 19
2.3 Hudson and Koltun Reuse Maturity Model(Frakes and Terry, 1996) 25

4.1 Schedule over research activities performed from January 2007 to June 2008 56

5.1 The naming of the programs . 61
5.2 Sample from spreadsheet, which shows how the cross-checking was performed 61

7.1 Results from documentation review of the GA/LTO system 72
7.2 Common lines in programs from di�erent GLD systems 73
7.3 Common lines in annual programs . 74
7.4 RMM: Activities in the "Repository structure" factor 75
7.5 RMM: Activities in the "Development Architecture" factor 76
7.6 RMM: Administrative management . 77

8.1 Results from question C2 answered by all four companies 86
8.2 Results from question C3a answered by all four companies 87
8.3 Results from question C3b answered by all four companies 87
8.4 Results from question C4 answered by all four companies 87
8.5 Results from question C5 answered by three of the companies 88
8.6 Results from question C9 answered by by three of the companies 88
8.7 Results from question R1 answered by all four companies 88
8.8 Results from question R3 answered by all four companies 88

11.1 IT-department organizational chart extended to incorporate software reuse . 104

E.1 Other programs used by more than one application 138

I.1 Results from question P1: Current role at SKD 152
I.2 Results from question P2: Number of years working at SKD 152
I.3 Results from question P3: Number of projects 153
I.4 Results from question P6: Highest completed academic degree 153
I.5 Results from question G1a: For achieving lower development costs 154
I.6 Results from question G1b: For achieving shorter development time 154
I.7 Results from question G1c: For achieving higher product quality 154
I.8 Results from question G1d: For achieving a more standardized architecture 155
I.9 Results from question G1e: For achieving lower maintenance costs 155

xi

xii LIST OF TABLES

I.10 Results from question G2a: Reuse/component technologies 156
I.11 Results from question G2b: OO technologies 156
I.12 Results from question G2c: Testing . 157
I.13 Results from question G2d: Inspections . 157
I.14 Results from question G2eb: Formal speci�cations 157
I.15 Results from question G2f: Con�guration management 157
I.16 Results from question G3a: Requirements 158
I.17 Results from question G3b: Use case . 158
I.18 Results from question G3c: Desgin . 159
I.19 Results from question G3d: Code . 159
I.20 Results from question G3e: Test data/documentation 159
I.21 Results from question C1: During development 160
I.22 Results from question C2: The process of �nding, assessing and reusing . . 160
I.23 Results from question C3a: Documentation of components 160
I.24 Results from question C3b: If sometimes or no 161
I.25 Results from question C4: Construction of a reuse repository 161
I.26 Results from question C5: How to decide . 161
I.27 Results from question C6: A code/design component that is reused 162
I.28 Results from question C7: Integration . 162
I.29 Results from question C8: Extra e�ort . 162
I.30 Results from question C9: Feel a�ected by reuse 162
I.31 Results from question C10a: Documented 163
I.32 Results from question C10b: If the answer.. 163
I.33 Results from question R1: Requirement negotiation process 164
I.34 Results from question R2: In a typical project.. 164
I.35 Results from question R3: How often is requirements changed 165
I.36 Cross tabulation analysis of questions C2 and C9 165
I.37 Cross tabulation analysis of questions C4 and C9 165
I.38 Cross tabulation analysis of questions C1 and C9 166
I.39 Cross tabulation analysis of questions C5 and C9 166
I.40 Cross tabulation analysis of questions C6 and C9 166
I.41 Cross tabulation analysis of questions C7 and C9 166
I.42 Cross tabulation analysis of questions C8 and C9 166
I.43 Cross tabulation analysis of questions C10a and C9 166
I.44 Cross tabulation analysis of questions C2 and C3a 167
I.45 Cross tabulation analysis of questions C10a and C2 167
I.46 Cross tabulation analysis of questions C2 and C4 167
I.47 Cross tabulation analysis of questions C2 and C5 168
I.48 Cross tabulation analysis of questions C2 and C7 168

xiii

Abbreviations

ADF Application Development Framework by Oracle, a commercial Java frame-
work for creating enterprise applications

Altinn E-government portal for electronic dialogue between industry and public
authorities

BATCH Batchwise data processing with insigni�cant or no user involvement,
opposite to online or interactive data processing

CASE Computer-Aided Software Engineering
CICS Customer Information Control Systems - Program for control of trans-

actions to IBM mainframe. Is used for interactive data processing, online
entry in database

COBOL COmmon Business-Oriented Language, which is a third generation
programming language especially designed for administrative
computer systems

COTS Commercial-O�-The-Shelf
DB2 Relational Database Management System from IBM
DSB Computer-aided tax return treatment - used locally on tax o�ces

(Datastøttet selvangivelsesbehandling)
ESB Enterprise Service Bus
FLT Simpli�ed salary and deduction statements
GLD Assignments (basis data) from third party
GLDB The GLD database
GUI Graphical User Interface
HR Human Resources
IBM International Business Machines Corporation
ISO International Standardization Organization
JCL Job Control Language, for execution of for example COBOL programs
LTO Salary and deduction
MAG Modernization of basis data
MVC Model-View-Controller
SG2 System group 2 in the IT-department
SKD The Norwegian Directorate of taxes
SOA Service Oriented Architecture
OO Object Oriented
PhD Doctor of Philosophy - an advanced academic degree awarded by universities
PSA Pre�lled tax return
REXX-routine A menu made in REXX, that is used to initiate executions on basis data,

print out control lists, copy disks, withdraws paper assignments and such
RMM Reuse Maturity Model
SEI Software Engineering Institute
SL System for assessment (System for Likning)
SPC Software Productivity Consortium
SPSS Statistical Package for the Social Sciences
NTNU Norwegian University of Science and Technology

1

Part I

Introduction

3

Chapter 1

Introduction

This chapter presents our motivation for doing this Master's thesis, followed by a de�nition
of the problem and the research questions and goals. We brie�y present our contributions
and themes which will be used throughout this thesis. Finally, the outline of the thesis is
presented.

1.1 Motivation

Both of the authors have been programming for �ve years, in projects, assignments, and
as software developers at di�erent companies. One thing we have noticed that does not
cease to amaze us, is the feeling of déjà vu when programming. And it's not just a feeling,
it's a fact. The module for reading and writing �les, the component which accesses the
database, your MVC-patterned web implementation or your �rst implementation of the
quicksort-algorithm you were once so proud of. It has all been done before, but still we
keep on writing the same code over and over again. Occasionally when we know that the
exact problem has been solved before, we search our entire hard drives for that one piece
of code fragment, written several years ago, located in a �le we can not remember. If you
are lucky enough to �nd the particular �le and code sample, it is not necessarily as easy as
copy/paste into your current project. The little piece of code might need comprehensive
re-writing in order to work in your new software, and every time source code is changed
new errors might be introduced. The whole task can only be described as time-consuming,
and as the old saying goes: "Time is money".

What if the code or component written for a earlier system had been designed and imple-
mented with the intention that it would be reused in a later project? And what if this
component was stored in library, along with documentation and several other components
created for other purposes. The idea is promising, develop a component once, and create
new software systems from the reusable components. A good parallel to this is to consider
a software component as a brick of Lego. The brick alone is rather useless, but it's simplic-
ity lets you combine it with other bricks, building large, complex structures. The software
community is still a far away from creating systems as easily as children puts the Lego
bricks together, but we do believe that a systematic approach to reuse can contribute to
more e�cient development of software systems, and reduce costs, development time and
errors.

5

6 CHAPTER 1. INTRODUCTION

1.2 Problem Outline

This master thesis is a case study on software reuse within a subset of systems at the
Norwegian Directorate of Taxes, Skattedirektoratet (SKD). The systems chosen for our
research are the GLD systems; legacy systems which dates back to the late 1980's and
early 1990's. Because of historical reasons, these systems are copied and created over and
over again in an annual cycle. There are redundancies in code and data between the annual
versions, but also across the di�erent GLD systems. The consequence of this is systems
with reduced maintainability and possible inconsistencies in code and data[61].

1.3 Research Questions and Goals

Our objectives with this case study is to determine both the current level of software reuse
within a subset of the GLD systems, and the emphasis on reuse in SKD's development
process. After determining the status of as-is, we will continue with an investigation of
the potential for software reuse within the context of SKD, and how they can achieve
systematic software reuse. In addition, our research initially tried to answer if reused
components are more stable than non-reused components, but we were not able to answer
that question with our collected data. The research questions are:

• RQ1: What is the current state of software reuse in the selected GLD systems?

• RQ2: Do reused components have lower change and defect rate compared to other
components?

• RQ3: What is the emphasis on software reuse in the current development process?

• RQ4: What is the potential for systematic reuse, and how can it be achieved?

In addition to the research question, SKD inquired that two organization-speci�c goals
would be added to the research

• SKD goal 1: Propose a process which assures software reuse

• SKD goal 2: Propose an ideal architecture for GLD, with focus on reuse

1.4 Our Contribution

The contributions of this thesis can be divided into four main themes:

• T1: Review of state-of-the-art literature on software reuse

• T2: Investigation of reuse level within selected GLD systems (RQ1)

• T3: Investigation of SKD's development process (RQ3)

• T4: Investigation of opportunities for systematic reuse in SKD (RQ4, SKD goal 1
and 2)

The main contributions are:

• C1: Review of literature in the �eld of software reuse

1.5. THESIS STRUCTURE 7

Figure 1.1: Themes and contributions

• C2: Assessment of the reuse maturity level within the selected GLD systems

• C3: Survey of the software development process and reuse aspects at SKD

� C3.1: Results from SKD

� C3.2: Results from SKD combined with results from previous surveys on soft-
ware developers attitudes toward software reuse by NTNU

• C4: Process which assures reuse

Table 1.1: Relationship between research questions, themes and contributions

Figure 1.1 shows the di�erent themes in our thesis in a chronological order, and how
the contributions relate to them. Table 1.1 shows the relationship between our research
questions, themes and contributions. RQ2 remains unanswered in this thesis, due to lack
of data resources, and is therefor not covered by any of the themes or contributions.

1.5 Thesis Structure

This thesis is organized into seven parts as following:

8 CHAPTER 1. INTRODUCTION

Part I describes our motivation for this thesis, problem de�nition, research questions and
goals, and our contribution.

Part II contains a literature review on State-of-the-Art of software reuse, where we present
a de�nition of software reuse, terms, approaches, metrics and bene�ts/problems associated
with reuse. We proceed with an introduction of the Norwegian Directorate of Taxes (SKD),
and the GLD systems, which was the context and subject for our research.

Part III presents the activities performed in this project, and our choice of research meth-
ods. The research questions are revisited, and we also connect each research question with
a corresponding theme. The themes are used throughout the report in order to organize
our research and results.

Part IV contains results concerned with two of the themes: Investigation of the reuse level
within the GLD systems and investigation of SKD's development process.

Part V contains discussions of our results, organized into corresponding themes.

Part VI presents our conclusion, and suggestions to further work.

Part VII contains appendices: the original task description, resumes of meetings and in-
terview, and the survey and its results.

Part II

Literature Review and Research
Context

9

Chapter 2

State-of-the-Art of Software Reuse
(T1)

Ever since libraries of shared components were �rst suggested by Doug McIlroy in 1968[30],
software reuse has been recognized as an attractive idea with an obvious payo�. Individuals
and small groups have always practiced ad-hoc software reuse[16] by reusing ideas, abstrac-
tions and processes[43]. Nowadays, software reuse is becoming increasingly necessary for
competitive reasons such as decreased time-to-market and lower costs. This mitigates to-
wards a more organized approach to reuse[43]. This chapter contains a literature review on
the �eld of software reuse. A great deal of research has been performed in this �eld in the
last decades, and the existing information is comprehensive. In jeopardy of overwhelming
both our readers and the size of the report, we have narrowed down to topics that are of
relevance to our research.

We will start by giving a de�nition of systematic software reuse and why software reuse
is important. Both bene�ts and problems will be presented. As software reuse comes in
many di�erent forms, and the terms are often mixed in the literature, we have tried to
present this in a sensible way. We will also explain why changes to both the development
process and organization are required in order to achieve systematic reuse. Measurement
is of high importance for achieving systematic reuse, thus a presentation of metrics and
models will be given. Because we have performed a survey on developers' attitude towards
software reuse at SKD, we present two similar studies from NTNU. The last section has
nothing to do with software reuse, but gives a presentation of empirical strategies that we
have used in our project.

2.1 Software Maintenance

Increasingly more software developers are employed to maintain and evolve existing ap-
plications instead of developing new systems from scratch[36]. Software evolution is a
necessary consequence of the inevitable software maintenance process[26], and it is the
process of modifying a software system or a component in order to correct faults, improve
performance or other attributes, or adapt to a changed environment. The maintenance of
existing software can occur for over 60 percent of all e�ort carried out by a development
organization, and the percentage continues to increase as more software is produced[74].

11

12 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

Reengineering existing applications to be web enabled is a issue in many software devel-
opment teams today[1]. Substantial e�orts are now made in rearchitecting legacy systems
into more maintainable and functional system families, generally oriented at distributed
applications[9].

Osborne and Chikofsky[40] have the following description of software, which we �nd quite
suiting despite it was written almost 20 years ago:

Much of the software we depend on today is on average 10-15 years old. Even
when these programs were created using the best design and coding techniques
known at the time (and most were not), they were created when program size
and storage space were principal concerns. They were then migrated to new
platforms, adjusted for changes in machine and operation system technology
and enhanced to meet new user needs - all without enough regard to overall
architecture.

These types of changes to a system can have impact on the system's internal structure and
complexity. Software evolution may therefore cause decline in software quality and erosion
of software architecture over time[6].

2.2 Introduction to Software Reuse

Software reuse is the process of creating new software systems from existing systems,
knowledge or artifacts rather than building them from scratch[50][15][17]. Reuse can be
found in many di�erent forms from ad-hoc to systematic and from white-box to black-box
reuse[50][47]. These terms will be described further in this chapter. Software reuse can also
be speci�ed in two directions: development for reuse and development with reuse [53][49].
Development for reuse relate to systematic generalization or components for later reuse,
while development with reuse relates to how existing components can be reused in new
applications and systems.

Software is seldom built entirely from scratch[50]. Frakes and Terry[17] gives several ex-
amples of reusable assets from software projects which can be copied and adapted to �t
new requirements:

• Architecture

• Source code

• Data

• Design

• Documentation

• Estimates (templates)

• Human interfaces

• Plans

• Requirements

• Test cases

2.2. INTRODUCTION TO SOFTWARE REUSE 13

2.2.1 Ad-hoc versus Systematic Reuse

Software reuse usually takes to di�erent forms: ad-hoc or systematic[14], where the �rst
is the most common form[50]. Ad-hoc reuse is an informal process, where no methods
for reuse are de�ned. This type of reuse usually happens by chance[34] and individual
developers are responsible for identifying and locating reusable components. Many de-
velopers have successfully performed this type of reuse, primarily by cutting and pasting
code snippets from existing programs into new ones[51]. This may work �ne for a while
for individual developers or small groups, but it does not scale up across business units or
enterprises to provide systematic reuse[51]. The increase of productivity from this type of
reuse is only marginal[34]. Ad-hoc reuse is also known as individual reuse or opportunistic
reuse[50] .

Systematic reuse requires up-front e�orts and investment to de�ne guidelines and proce-
dures [50], and to monitor and measure changes in the process at the organizational level
to ensure regular reuse[34]. Systematic means that the process is consistent and repeat-
able, and follows a logical sequence of events[17][16]. Domain models and architecture are
important concepts that are used for specifying and designing a new system in a particular
domain or application area[45][16]. This requires changes to the development methods and
organizational structure. Systematic reuse is also referred to as institutionalized reuse or
planned reuse[50] .

The following advantages of systematic reuse are gathered from Prieto-Dìaz[44]:

• Makes software reuse an integrated part of software development

• Makes software reuse a standard practice

• Can help towards better software methodology

• Makes everybody a participant

• Promises a reuse culture

Frakes[16][14] claimed, in the mid 90s, that systematic reuse is a paradigm shift in software
engineering where one went from building single systems to building families of related sys-
tems. The related systems share common parts and vary in certain regular and detectable
ways. This new paradigm is domain focused, based on repeatable processes and centers
around reuse of higher level life cycle artifacts such as requirements, design, subsystems
etc. Sametinger[50] argues that some people might think that Frakes idea of a paradigm
shift is too extravagant, but justi�es it with that software reuse and software components
has provoked so many changes and innovations to the way we perform software engineering.

2.2.2 Bene�ts from Software Reuse

Software Reuse is widely believed to be the most promising technology for signi�cantly
improving software quality and productivity [72][67][50]. The quality of a program or
component increases every time the item is reused, since error �xes accumulates from
reuse to reuse[50]. In the construction phase, reuse can increase productivity with 20%[5].
E�ort required in other phases are also reduced; developers need to create less code, and
can minimize the redundant work and enhance the reliability of their work because each
reused component has already been created, tested and documented in the course of its

14 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

original development [20][16][50][27]. This is also supported by other statistics[7] which
indicates that only 15% to 40% of developed code is code that de�nes a new purpose.
The remaining 60% to 85% are most likely components that could have been created as
reusable assets. Software reuse makes it easier to estimate project costs and delivery time.
Accelerated development can be achieved because both development and validation time
should be reduced.

Software reuse can also improve the way software systems work together, their interoper-
ability, if several systems use the same components for the interfaces[50]. When developers
reuse components over time, they will become familiar with these components. Costs are
reduced as the productivity increases and time spend on training and testing is reduced.
Another important cost reducing factor is that the development can be conducted by
smaller teams with software reuse[50].

To summarize bene�ts that software reuse can achieve:

• Improved quality, since errors can be discovered every time the item is reused

• Increased productivity, since less code needs to be created. As more artifacts are
reused, such as design, tests and documentation, the productivity increases even
further

• Better interoperability between software systems

• Reduced costs due to less training, maintenance and production time, and smaller
teams

Successful Reuse Programs

Prieto-Dìaz[44] de�nes a reuse program as an organizational structure and collection of
support tools, which is aimed at fostering, managing, and maintaining the practice of
reusing software in an organization.

Research studies have consistently shown that reusing technology has the greatest potential
to reduce the cost of software [8], where some reuse programs have achieved from 30 to 80
percent reuse. Hitachi's Eagle Eye environment has shown reduced time to market, defect
density, maintenance cost and overall software development costs [20]. Hewlett-Packard
improved time to marked, higher quality of their systems and lower development costs.
This increased as the levels of reuse and sophistication of the reuse program increased.
But experience has shown that it takes time, investment and experience with software
reuse in each organization to get those levels of reuse. Other organizations have achieved
highly customizable products, increased market agility and consistent families of related
products that provide familiar, compatible interfaces to many customers [20].

Ericsson, the Swedish telecommunication company, had great success with its reuse pro-
gram. A strategic decision was made early on to architect and implement the product for
substantial reuse and evolution. The need for extensive initial investment and long-term or-
ganizational commitment, a well-designed architecture, support for various con�gurations
and structuring the development organization to match the system architecture, showed
to be of vital importance[20].

2.3. TECHNICAL ASPECTS OF SOFTWARE REUSE 15

2.2.3 Problems associated with Software Reuse

Software reuse has proved to be di�cult to achieve[16], and far from all reuse programs
succeed [8]. Earlier software reuse was seen as a technical problem, but now we see that it
is not that simple [71]. Reuse must address issues such as managerial, economic, cultural,
technology transfer, in addition to the technical ones[46][47]. The root cause identi�ed
by Morisio et al.[35], was a lack of commitment by top management, or non-awareness
of the importance of those factors, often coupled with the belief that using the object-
oriented approach or setting up a repository seamlessly is all that is necessary to achieve
success in reuse. Organizations attempting to implement systematic reuse (a software reuse
program), face therefore both technical and non-technical problems[16].

There is a signi�cant amount of additional e�ort required in both the initial design and
adoption of an architecture which supports the idea of software reuse. Software components
must be easily retrieved from a component library, understood and sometimes adopted to
work in a new environment[67]. There are considerable costs associated with understand-
ing whether a component is suitable for reuse in a particular situation, and in testing
the component to ensure dependability[67]. Technical problems therefore includes inter-
changeability and classi�cation, cataloging and retrieving software components[48][47], in
addition to problems with tools, standards and technology.

Nontechnical problems includes the human factor and cultural-, economic- and organiza-
tional issues. When several components should be developed and reused across a suite of ap-
plications, it must also be supported by both the inherent process and the organization[20].
We will come back to nontechnical aspects of software reuse in section 2.4 on page 20.

2.3 Technical Aspects of Software Reuse

2.3.1 Reuse Perspectives

Software reuse does not only apply to fragments of code[17] as mentioned in section 2.2,
but to all life cycle products such as documentation, system speci�cations, architectures,
functions, tests and pseudo-code. Ideas and concepts can be reused just as well as entire
applications. It can be conducted by individuals, groups or entire organizations. Due to the
widespread of terminologies, de�nitions, types and approaches in the �eld of software reuse,
we have used a taxonomy suggested by Prieto-Dìaz[46]. He identi�ed six perspectives, or
facets, from which to view software reuse. These facets were:

• Substance - De�nes the essence of the items which are to be reused

• Scope - De�nes the extent of reuse

• Mode - De�nes how the reuse is conducted

• Technique - De�nes the approach used to implement reuse

• Intention - De�nes how the items will be reused

• Product - De�nes which items, or work products, are reused

Table 2.1 is based on Prieto-Dìaz's six perspectives, and shows the facets with additional
examples. The �rst column in the table is "Substance". An example of reusable ideas

16 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

Table 2.1: Six perspectives from which to view software reuse[46]

and concepts is when a developer uses an algorithm from a book. The algorithm tells how
the problem should be solved, but the developer must still use a speci�c programming
language and implement the solution herself. When the component has been developed,
the component also becomes a reusable asset. Concepts can also be designed so they can
be con�gured and adapted for a range of situations such as design patterns, con�gurable
system products and program generators[67]. Prior studies in the �eld of software reuse dis-
tinguishes between reuse across horizontal and vertical domains[5], as seen under "Scope"
in the table. Horizontal reuse refers to software components that are used across a wide
variety of application areas, such as library components, software drivers or graphical user
interface functions. Commercial o�-the-shelf (COTS) components are also often referred
to as horizontal reuse. Vertical reuse is harder to achieve, but has a greater potential when
it comes to the bene�ts of software reuse. Vertical reuse embraces entire functional areas,
or domains, and can occur if the majority of applications are representative of a single kind
of data processing activity[5] (family of systems). Internal reuse is when a component is
used multiple times within the system it was developed for[50], while external reuse applies
to the use of a component developed for another software system. Small-scale reuse is the
"common way" of developing software, by reusing simple classes and functions.

Table 2.1 lists two techniques for developing software systems with reuse. Compositional
reuse is the composing of available lower-level components into a larger system[50]. In such
cases, the components are retrieved from a software repository, as described in 2.3.4. When
adopting reference- or generic architectures and standard interfaces for components, this
is referred to as generative reuse[50]. The �fth facet, intention, describes how the items
will be reused. This depends on the visibility of the internals within the component[50].
If a component is white-box, we have access to all its internals, and can modify it in any
way we feel appropriate[47]. Black-box is the opposite, it must be used as-is. When using
components from libraries, such as in Java, these are often compiled classes and thus black-
box. Glass-box is a combination of white- and black-box, their internals are visible but
they can not be modi�ed. Morisio et al.[34] states that white-box reuse entails less cost
and risk, and is more feasible since it does not require speci�c personnel in the organization
for developing and maintaining the reusable assets. The last facet in table 2.1, product,
concerns all the artifacts that can be reused.

2.3. TECHNICAL ASPECTS OF SOFTWARE REUSE 17

2.3.2 Approaches to Software Reuse

Krueger[25] lists 8 approaches to software reuse. These are given in the list below, and are
ranked on how well they "Reduce the amount of intellectual e�ort required to go from the
initial conceptualization of a system to a speci�cation of the system in abstractions of the
reuse technique". As the rankings shows, source code reuse (code scavenging) is not the
most e�ective way of developing software.

1. Application Generators

2. Software Architectures

3. Transformational systems

4. Very high-level languages

5. Software schemas'

6. Source code components

7. Code scavenging

8. High-level languages

Application generators

Application generators can create customized applications based on patterns[50]. Appli-
cation generators focuses on a narrow domain, and translates input speci�cations into
executable programs. They can be used when[25]:

• Many similar systems are written

• One software system is modi�ed or rewritten several times during its lifetime

• Many prototypes of a system are necessary to converge on a usable product

There is only a limited availability of application generators, and it can be di�cult to �nd a
generator for a speci�c type of software. Building a general-purpose application generator
has proved to be complicated[25].

Software Architectures

Reusable software architectures are software frameworks and design that captures the
global structure of a system[25]. The software architecture represents a substantial e�ort
in both design and implementation, and if reused, it can o�er a signi�cant leverage in the
development process. The scope of this type of reuse is large-scale [25], and it is a di�cult
task to create a reusable general-purpose software architecture.

Source Code Components

Source code is the most common reuse product[50]. Source code components are similar to
code scavenging since both approaches involves that developers copy existing source code
into new systems. Source code components are developed as reusable components, and

18 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

are stored in catalogs or libraries. The main problem with this approach is to retrieve the
stored components. It is unreasonable to believe that a developer will spend much time
searching trough a large library for an appropriate component[25], and if the process of
�nding the component takes too long, the developer will most likely build it herself.

Code Scavenging

Code scavenging is an ad-hoc approach of reusing design or source code, where existing
software systems are scavenged for useful code fragments[25][50]. By copying existing
code, the number of keystrokes and time needed for developing software are reduced. The
scavenging approach separates between code scavenging and design scavenging . In code
scavenging, a continuous block of code is copied from an existing system and pasted into
the new system. Design scavenging is when a larger, continuous block is copied and used as
a global template for a new system. There are several disadvantages with the scavenging
approach. If a developer should be able to �nd code a fragment to scavenge, she must
be able to remember or know where to �nd it. Most likely, the code fragment must be
customized or specialized in order to resolve the con�icts between the existing and new
system. This means that the developer must manually modify the fragment, and by doing
so introduce new errors. Thus, the code fragment must be validated, tested and debugged
as thoroughly as when it was �rst developed. Also, the developer is forced to become
closely involved in the implementation details of the source code, since scavenging o�ers
no abstraction[50].

High-level Languages

High-level languages applies to programming languages that are closer to human language
than machine language, such as C, Lisp, Ada, Smalltalk, COBOL, C++, Java etc. High-
level languages o�ers a relatively small numbers of reusable artifacts in the form of language
constructs which a programmer can choose from[25]. Such constructs can for example be
an if-statement. High-level languages are usually not treated as examples of software
reuse, although their goals are similar to those of software reuse[50]. Frakes and Fox[15]
conducted a survey of organizations from the U.S and Europe, and found that the choice
of programming language does not a�ect code reuse levels. Contrary to popular belief, ef-
forts to increase reuse levels should focus on other factors besides programming languages.
Most software development organizations move to object oriented technology because en-
gineering managers believe that this will lead to signi�cant reuse. Unfortunately, without
an explicit reuse agenda and a systematic reuse-directed software process, most of these
object adoption e�orts do not lead to successful large-scale reuse[20]. Practice has also
been quite successful with non-object oriented languages such as COBOL and Fortran.
These non-object component bases technologies reinforce the fact that successful reuse is
not really about object-oriented languages or class libraries [20].

2.3.3 A De�nition of Reuse Types

A de�nition of reuse types is given in �gure 2.2[17]. Some of the terms in the table overlap
in meaning. For instance, the terms public and external in the table, both describe the
part of a product that was constructed externally, while private and internal describes

2.3. TECHNICAL ASPECTS OF SOFTWARE REUSE 19

when a product is used multiple times within a system it was originally written for. The
terms verbatim and black-box both describe reuse without modi�cation, while leveraged
and white-box both describe reuse with modi�cations. The last four terms describe levels
of reuse that can occur in the object-oriented paradigm.

Table 2.2: De�nitions of reuse types

2.3.4 Software Repository

One of the most important requirements for achieving software reuse, is to be able to
store and retrieve the reusable assets. A software repository is a software library or struc-
ture where these assets can be stored and classi�ed, and later found and reused. Before
developing new code and components for a speci�c purpose, the developer searches the
repository to check if the particular solution already exists. If the solution exists, the de-
veloper can use this as-is or modify it in order to ful�ll her speci�c needs. A repository

20 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

should have a wide variety of high-quality components, which must be properly classi�ed
in order to retrieve them[50]. Poulin[42] states that the best repositories range from 30
to 250 components, since users often �nd classi�cation and retrieval methods hard to use.
The repository should be managed at organization or enterprise level[5], since it is an ac-
tivity that spans across di�erent projects and application systems. The largest challenges
concerned with software repositories are techniques to locate and retrieve the components,
and how to integrate the components into software system[50].

2.3.5 Domain Engineering

In order for an organization to achieve systematic reuse it must have a business strategy
that looks beyond the current project[8], and invest in assets that future projects will take
advantage of. The requirements of future projects must be anticipated, and resources must
be invested in the current project to build software that is intended for reuse. It is also
important that the reuse program is marked-driven, and that it pro�ts from the economic
dimensions of reuse.

Domain engineering is a key concept in systematic reuse[16], and it is a methodical way of
identifying potentially reusable assets and an architecture which enables reuse. A domain
may be de�ned as an application area or, more formally according to Frakes and Isoda[16],
as a set of systems that share design decisions. The domain can therefore function as a
design space for a family of related systems[20].

Domain engineering consists of two phases; domain analysis and domain implementation.
The �rst phase is the process of discovering and recording the commonalities and vari-
abilities of the systems in a domain[16]. The second phase makes use of the information
uncovered in the domain analysis in order to create the reusable assets and new systems.
This way, domain engineering helps an organization to look beyond a single project or
system. The system architecture is de�ned for the applications and components, and a
set of appropriately generalized components is developed. This should result in reusable
assets that can be cost-e�ectively exploited in subsequent system engineering.

2.4 Nontechnical Aspects of Software Reuse

"Technical aspects are important prerequisites for successful reuse. However,
they do not su�ce to make reuse happen" (Johannes Sametinger, 1997, p.37[50]).

Non-technical problems includes changing the organizational structure, processes and cul-
ture, as well as the up-front investment to build a software reuse infrastructure[47][50].
The most important obstacles to reuse are economic and cultural, not technological[8].
In an organization, individual developers can do little about software reuse on their own.
Management must institute the mechanisms needed, provide organizational support and
money to �nance them[27], and be committed to reuse[9].

2.4.1 The Human Factor and Cultural Issues

It is now obvious that reuse is not merely a technical issue; it is also a people issue. Morisio
et al.[35] have identi�ed three main causes of failure: not introducing reuse-speci�c pro-

2.4. NONTECHNICAL ASPECTS OF SOFTWARE REUSE 21

cesses, not modifying non-reuse processes and not considering human factors. An example
of human factors is that some software engineers prefer to write their own code or rewrite
components because they believe that they can improve on them[67]. This has to do with
trust and the fact that writing original software is seen as more challenging than reusing
other people's software. This problem is called the "Not-invented here syndrome". This
requires a change of attitude from "not invented here" to "we reuse her"[48]. However,
Frakes and Fox[15] found that most of the respondents to a survey they conducted did not
su�er from the "Not-invented here syndrome", and argued that most developers prefer to
reuse rather than build from scratch.

Studies have identi�ed that successful reuse programs must be integrated within the culture
of a company's existing organizational structure[13], since cultural changes takes energy
and persistence[8]. Card and Comer[8] states that there are four cultural issues have either
unique or misunderstood e�ects on software reuse:

• Training

• Incentives

• Measurement

• Management commitment

Training is often overlooked when reuse programs are planned because people think reuse
requires only minor variations on traditional software development techniques. This is not
necessary the case since software reuse requires additional planning and design in order
to make the developed software applicable in future applications. When Motorola imple-
mented a software reuse program, they discovered that training was the most important
activity and it was the key for gaining acceptance for reuse in the organization[21].

The introduction of awards or incentives for developers who contributes to the organizations
reuse program has shown to have a considerable positive e�ect[21][48]. Motorola had good
experience with encouraging reuse throughout the organization with a cash-reward for the
developers who shared or used reuse-components[21]. Developers should be encouraged to
develop software systems with reusable software, and to design components of new software
systems for future reuse[48]. We will come back to measurement in section 2.5.2 on page
25. Management commitment is discussed in section 2.4.3.

2.4.2 Economic Issues

Initial investments are needed in order to install a reuse program[50], and separating the
investments costs can be di�cult. Producing maintainable software is often an integrated
part of the development process, whereas making its components reusable is not. Realizing
the full return on reuse investment takes time, and organizations must adopt a long-term
perspective. This requires real commitment and strategic thinking. Joos argues that
high initial costs and a slow return on investment can make software reuse hard to sell[21].
Management must understand and accept the need to invest not just in enabling technology,
but also in the projects that produce reusable assets[50].

The extra costs may inhibit the introduction of reuse and can lead to that the overall costs
savings are not as great as anticipated[20]. It takes funding to �nance[27][20]:

• Education and training

22 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

• Vendor supplier components

• Creating or purchasing reuse work products, libraries and tools

• Implementing reuse-related processes

• Domain engineering

The costs and time involved in systematic reuse has to be justi�ed by the organization[17][50].
Software reuse can only succeed if it can be proved as economical bene�cial[44]. Potential
costs and payo�s can be calculated with a cost bene�t analysis model. The payo� will not
come for several years later, when numerous applications are built more cost-e�ectively
and more rapidly using the reusable components. This payo� of reduced time to marked
and reduced cost builds up over time as the components are reused repeatedly and as more
components are developed[20].

2.4.3 Organizational Issues

Organizational factors can have great impact on the implementation of reuse programs[50].
An organizations management structure can determine the failure or success of a reuse
program[42], and organizational change will in many cases be required before the full
potential of software reuse can be realized[50][6][47].

It is essential that a reuse program receives commitment from the management[34] because
reuse programs require changes in the way software is developed. Current methodologies
and procedures do not consider reuse as a part of their processes[44]. It is also important
that a reuse program obtain resources, power, priority, visibility and support if it is to
succeed, just as with any other process improvement project[18].

It is not uncommon for project managers to wanting their development projects to succeed
at the expense of other development groups within the same company[50]. Successful
projects can enhance project leaders' career opportunities, because it makes them better
than their direct competitors. In such a corporate culture, development groups are not
encouraged to build generalized software components that may be reused not only in their
own future projects, but also in projects of other groups.

Developing for future reuse is expected to take at least twice as much time as when de-
veloping non reusable components [48][50]. Even though reusable components are initially
more expensive, they cause downstream cost avoidance for subsequent project that can
make use of the components. At Motorola[21] they found that a lot of reuse e�orts existed
throughout the company, and by sharing information, the di�erent groups could bene�t
from each other experiences, failures and success.

2.5 Reuse Maturity Models and Measurement

"A maturity model is at the core of planned reuse, helping organizations un-
derstand their past, current, and future goals for reuse activities"(Frakes and
Terry, 1996, p.424[17]).

The concept of reuse maturity is based on the presumption that an organization wants
to become more e�ective in reusing its software assets[12]. Maturity is intended to be an

2.5. REUSE MATURITY MODELS AND MEASUREMENT 23

indication on how advanced an organization is when it comes to implementing systematic
reuse[17]. The assessment of an organizations reuse maturity level should act as motivation
factor for taking the appropriate steps for increasing the maturity. Figure 2.1 is gathered
from the book "Software engineering with reusable components"[50] on page 51, and shows
two examples of reuse maturity. In the case of low reuse maturity, potential and intended
opportunities do not match each other well. This means that actual reuse is limited
from the start. In the case of high reuse maturity, these opportunities match each other,
an facilitates higher actual reuse. Existing reuse opportunities has to be recognized and
exploited systematically in order for the e�orts to be fruitful.

Figure 2.1: Two cases of reuse maturity(Sametinger, 1997, p.51[50])

Reuse maturity models have similarities to the Capability Maturity Model developed by
the Software Engineering Institute (SEI). A �ve-stage maturity model was developed by
the Software Productivity Consortium (SPC). This model proposes the following stages:
ad-hoc reuse, repeatable reuse, portable reuse, architectural reuse and systematic reuse[50].
Another �ve-level maturity model was proposed by Koltun and Hudson, which we describe
further in section 2.5.1. Other reuse maturity models in literature worth mentioning are:

• REBOOT's Reuse Maturity model[53]

• STARS Reuse Maturity Model[11]

• The Reuse Capability Model[12]

Why are models and measurements so important? Organizations must be able to measure
their progress and identify the most e�ective reuse strategies as they implement systematic
reuse programs[17]. This is done with reuse models and metrics. Figure 2.2 is derived
from Frakes and Terry and shows metrics and models categorized into six categories. They
state that organizations often encounter the need for these metrics and models in the order
presented.

• Reuse cost-bene�ts models include economic cost/bene�t analysis as well as quality
and productivity payo�

• Maturity assessment models categorize reuse programs by how advanced they are in
implementing systematic reuse

• Amount of reuse models are used to assess and monitor a reuse improvement e�ort
by tracking percentages of reuse for life cycle objects

24 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

Figure 2.2: Categorization of reuse metrics and models (Frakes and Terry, 1996, p.416[17])

• Failure models are used to identify and order the impediments of reuse in a given
organization

• Reusability metrics indicate the likelihood that an artifact is reusable

• Reuse library metrics are used to manage and track usage of a reuse repository

2.5.1 Koltun and Hudson's Reuse Maturity Model (RMM)

The Reuse Maturity Model was developed by Philip Koltun and Anita Hudson during a
year-long system improvement project at Harrison Corporation[23]. The model is shown
in table 2.3.

The columns in the model represent the �ve phases of reuse maturity, assumed to improve
along an ordinal scale from 1 to 5 [23][17]. Ten dimensions or aspects of reuse maturity
have also been enumerated. For each of these dimensions, an attribute or situation has
been speci�ed for each maturity level. In this model an organization has to assess its reuse
maturity before starting with a reuse improvement program by identifying its placement
on each dimension. The amount of organizational involvement and commitment for each of
the ten dimensions of reuse expands as an organization advance from initial/chaotic reuse
to ingrained reuse. With such characteristic descriptions, organizations should be able to
�nd their place in the maturity model with a minimum of e�orts according to Koltun and
Hudson[23], although Sametinger[50] states that it is di�cult to quantify reuse maturity
levels.

These are the following �ve phases in the model:

1. Initial /chaotic

2.5. REUSE MATURITY MODELS AND MEASUREMENT 25

2. Monitored

3. Coordinated

4. Planned

5. Ingrained

At the start of a reuse program, most organizations are between the Initial/Chaotic and
Monitored phases[17]. When an organization achieves Ingrained reuse, reuse becomes part
of the business routine and will no longer be recognized as a distinct discipline. Ingrained
reuse embodies fully automated support tools and accurate reuse measurement to track
progress. Software reuse concerns must be institutionalized in the development life cycle
if it is to make lasting progress[22].

Table 2.3: Hudson and Koltun Reuse Maturity Model(Frakes and Terry, 1996, p.425[17])

2.5.2 Measurement

"It is often said that we cannot manage what we cannot measure" (Johannes
Sametinger, 1997, p.48[50]).

26 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

Measurement is the activity of measuring a given property of software[32]. A metric is the
property of the measured software and it is a mean to measure the software product and
the process by which it was developed. This makes metrics important in e�ective software
management[41]. Software reuse in organizations can span across multiple projects and
can have in�uence on an organizations processes and structures. This is why some kind
of monitoring is required if one is to manage such enterprise-wide activities. Software
metrics can be used for estimating costs, costs savings and evaluating a particular software
practice[41].

Incorporating reuse measures into an organizations measurement program can be a strong
incentive to reuse within the organization[8]. If the management notices that they can gain
returns of investment for their investments in reuse, it is a greater chance that they will
make a commitment and grant resources. This is why reuse practitioners have learned the
mantra: "business decisions drive reuse!"[42].

Reuse Level

The amount of software reuse (referred to as both reuse level and reuse ration[28]) in a
certain software system can be determined by the ratio of reused components (or their
lines of code) to the total components of the system (or total amount of code lines)[50][17].
It can also be used to determine how similar two �les are. The number of lines that are
identical in �le a and �le b as opposed to the total number of lines (of �le a) gives an
indication of how much of �le a has been reused in �le b. The formula can be used for
determining how much of �le a is being reused in �le b, and how much of �le b originates
from �le a (by using the total number of lines of �le b)[50].

Line reuse percentage = NumberOfIdenticalLines
TotalNumberOfLines

The comparison of lines and words can give a good indication about white-box reuse[50],
while the comparison of components gives indication of black-box reuse. This approach is
used extensively by both the industry and academia, but this metric should never be used
alone when measuring results of software reuse; a high reuse ratio does not necessary denote
that the time and e�ort expended to achieve the level is justi�ed[28][50]. Additional lines
may be required in order to incorporate the reused source code or component. Another
disadvantage with reuse ratio alone is that it does not consider other important aspects in
software reuse maturity, such as software repository and organizational aspects.

2.6 How to achieve Systematic Software Reuse

Systematic reuse does not just happen. It must be planned and introduces throughout an
organization-wide reuse program[67]. Software reuse requires a concerted and systematic
e�ort by both management and software developers in order to overcome the business,
process, organizational and technical impediments that often hinder software reuse [20].
Without an explicit reuse agenda and a systematic approach to design and process, it is dif-
�cult to obtain the desired bene�ts and reuse level[3]. A proper reuse program reduces the
initial risk for development, maintenance, and acquisitioning activities by using software
that is already proven to be functional and reliable through prior usage[48].

2.6. HOW TO ACHIEVE SYSTEMATIC SOFTWARE REUSE 27

2.6.1 Reuse Program

An organization without a systematic and mature development method can experience dif-
�culties in taking advantage of reuse[8]. A high level of maturity can help the organization
to understand and control their processes[34]. In section 2.2.2 we de�ned a reuse program
as an organizational structure and collection of support tools that is aimed at fostering,
managing, and maintaining the practice of reusing software in an organization. A reuse
program should be part of an organizations overall process improvement program, not a
standalone activity[34], in order to make a lasting progress[22]. A reuse program can give
a organization the power to deliver more function, to deliver it faster, to deliver it with
fewer defects and to deliver it with less cost[41]. As mentioned in section 2.4.3, systematic
reuse requires changes to the development methods and organizational structure.

Morisio et al.[34] suggests that an organization follow these six key points for success:

• Change processes and roles

• Obtain management commitment

• Minimize changes

• Keep a sense of portion

• Anticipate human factors

• Acquire process maturity

De�ning roles and adding new reuse processes will help clarify who is in charge of developing
a company's reusable assets and when[34]. Prieto-Dìaz and Joos[44][21] both recommend
that reuse programs should be implemented incremental. This helps the organization to
provide immediate return on investments and build up con�dence in the organization. An
incremental approach also helps the organization to manage the program, tune and re�ne
the reuse processes, and facilitate monitoring and evaluation of the program. Prieto-Dìaz
also argues that the reuse program should be systematic, formal and have management
support. As mentioned in section 2.4.1, management support and commitment are key
ingredients in all successful reuse programs. Managers can be seen as the reuse programs
sponsors; representatives from the top management who has power over resources[18]. By
minimizing changes, Morisio et al.[34] recommend that one should introduce as few changes
as possible at a time, and build on existing knowledge, skills, and tools in the organization.
Human factors can be considered by providing education and training. This should not
be underestimated since it has shown to be highly important for gaining acceptance and
understanding of reuse in the organization. Joos[21] highlights the importance of �nding
a champion for each of the roles in the reuse organization. Champions are the driving
forces behind the change processes, and it is important that these people have a strong
software engineering background, are enthusiastic about reuse and have trust from their
fellow workers[18].

The combination of guidelines, organizational structures, processes, methods, reuse met-
rics, economic aspect, technologies and a set of requirement is needed for a reuse program
to be e�ective[3][44]. The guidelines should include how to plan, specify, model, design,
implement and document components and applications in the problem domain.

28 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

2.6.2 Reuse requires Changes in Development Process

Software engineering should apply de�ned, repeatable processes to achieve predictable
results[34]. However, since processes vary from organization to organization, and from
project to project, one approach clearly cannot �t all. Morisio et al.[34] initiated a two-
year study in 1997 of about two dozen European companies that were establishing reuse
programs. They discovered that despite variation in business context, technical and man-
agerial tradition, and size, companies can indeed achieve reuse, using diverse processes.
Alvaro et al.[3] argues that existing methods are not �exible enough to meet the needs of
various situations, or too vague, and not applicable without strong additional interpreta-
tion and support. There is therefore a need for better and more �exible methods[9] that
can be customized to adapt various enterprise situations, and methods with su�cient guid-
ance and support[34]. An organization implementing a reuse program is therefore advised
to adapt processes that are suitable for doing so.

According to Jacobson et al.[20], systematic software reuse can be expressed in four con-
current processes, as seen in �gure 2.3: create, reuse, support and manage processes.

Figure 2.3: Systematic reuse involves four concurrent processes (Jacobson et al., 1997,
p.16[20])

Create

The create process, as seen in �gure 2.3, identi�es and o�ers reusable assets to the reusers[20].
The process can include activities such as inventory and analysis of existing application
and assets, domain analysis, architecture de�nition, assessment of reuser needs, reusable
assets testing and packaging. The assets can include code, interfaces, architecture, test,
tools an so on.

2.6. HOW TO ACHIEVE SYSTEMATIC SOFTWARE REUSE 29

Reuse

The reuse process make use of the reusable assets to produce applications or products[20].
The process can include activities such as examination of domain models and reusable
assets, the collection and analysis of end-user needs, the design and implementation of
additional components, adaption of provided assets and the construction and testing of
complete applications.

Support

The support process helps the overall set of processes, and manages and maintains the
reusable assets collection [20]. The process may include activities such as classi�cation and
indexing the reusable assets in a library, announcing the distribution of the asset, providing
additional documentation, collection feedback and defect reports from the reusers.

Manage

The manage process plans, initiates, resources, tracks and coordinates the other processes[20].
The process can include activities such as setting priorities and schedules for new asset con-
struction, analyzing the impact and resolving con�icts concerning alternative routes when
a needed asset is not available, establishing training, and setting direction.

2.6.3 Reuse requires Changes in Organization

An organizations management structure can often determine the failure or success of a
reuse program[41]. A systematic reuse process involves two primary functions; domain
engineering organization and application engineering organization[20]. Domain engineering
aims at de�ning and implementing domain commonalities in a generic product as discussed
in section 2.3.5 on page 20, and application engineering produces individual applications
for customers starting from the generic product, according to Morisio et al.[34]. The �rst
function involves the creator (also called producer[17] of the reusable components), and the
latter involves the reuser(also called consumer of the reusable components). Companies
with experience in systematic reuse generally �nd that a third function is of importance,
namely support as seen in �gure 2.4 by Jacobsen et al.[20].

Reuse activities can be divided into producer activities and consumer activities[17], each
with distinct goals. Creators need to build high-quality assets that will serve the needs of
many reusers[20]. The creators have to be close to the reusers to keep reusable components
practical. At the same time they must be isolated from daily project pressure if they are to
get reusable components designed and build. The "M" in the box, in �gure 2.4 represents
a local manager who has to mediate the interests of both creators and reusers, because of
the di�erent goals.

2.6.4 Pilot Projects

Several reuse strategies suggest that an organization should start the reuse program with
smaller pilot projects[51][21]. As these pilot projects meet a degree of success, they are

30 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

Figure 2.4: A standard reuse organization(Jacobson et al., 1997, p.20[20])

expanded incrementally which increases the reuse coverage and penetration into the organi-
zation. An incremental approach is therefore recommended, i.e., starting with small teams
and representative subsystems to gain experience, skills and con�dence[9][51]. Observa-
tion of the introduction of business process engineering and indeed, change management
in general further reinforces this stepwise approach.

Figure 2.5: The incremental adoption of reuse (Jacobson et al., 1997, p.21[20])

2.6. HOW TO ACHIEVE SYSTEMATIC SOFTWARE REUSE 31

2.6.5 An Example of an Incremental Transition from no Reuse

The transition from no reuse to informal reuse as shown in �gure 2.5 by Jackobsen et al.[20]
occurs when developers are familiar with each other's code, and trust each other. They
also have to feel the need to reduce time to marked, even though they prefer to write their
own code. This strategy works �ne for a while. Development time is reduced and testing
is often simpler than with brand new code. But as more products are developed using this
approach, maintenance problems increases. Multiple copies of the software, each slightly
di�erent, has to be managed. Defects found in one copy must be found and �xed multiple
times.

This often leads to a black-box code reuse strategy, in which a carefully chosen instance of
code is reengineered, tested and documented for reuse[20]. All projects are then encouraged
or required to use just this copy without modi�cations. This works well for a while too,
until the issues of dealing with changes to satisfy an increasing number of reusers arise.
Such issues can lead to the creation of a managed work product reuse process, in which
the creation and reuse of components is explicitly managed and supported by a distinct
organization.

An organization must move incrementally. Start by focusing on a narrow domain and
only a part of the complete product architecture. This is usually best done via a series
of reuse pilots[20]. As the reusable software components and frameworks is being devel-
oped, the organization must gain and retain management support, customize process and
organization, and ensure that the reusers are involved in the discussions early.

Recommendation for Implementing a Reuse Program

Jaconsen et. al recommends the following ten principles for software reuse(Jacobson et al.,
1997, p.27[20]):

1. Maintain top-management leadership and �nancial backing over the long term

2. Plan and adopt the system architecture, the development process and the organiza-
tion to the necessities of reuse in a systematic but incremental fashion. Start with
small pilot projects, and then scale up

3. Plan for reuse beginning with the architecture and an incremental architecting pro-
cess

4. Move to an explicitly managed reuse organization which separates the creation of
reusable components from their reuse in applications, and provides an explicit sup-
port function

5. Create and involve reusable components in a real world environment

6. Manage application systems and reusable components as a product portfolio of �-
nancial value, focusing reuse on common components in high-payo� application and
subsystem domains

7. Realize that object or component technology alone is not su�cient

8. Directly address organization culture and change, using champions and change agents

9. Invest in and continuously improve infrastructure, reuse education and skills

32 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

10. Measure reuse progress with metrics, and optimize the reuse program

2.7 Previous studies of Developers Attitude towards Soft-
ware Reuse at NTNU

26 developers from three Norwegian companies participated in a survey about their expe-
rience and attitude towards component reuse and component-based development to inves-
tigate the relationship between the companies reuse levels and some key factors in reusing
in-house components[38]. The study was published in 2004.

Another study from Statoil ASA[49], published in 2006, characterized developers view on
software reuse. The researchers used a survey followed by semi-structured interviews which
investigated software reuse in relation to requirements (re)negotiation, value of component
information repository information, component understanding and quality attribute spec-
i�cation.

2.7.1 Ericsson, EDB Business Consulting and Mogul

An empirical study was performed as part of two Norwegian R&D projects; SPIKE (Soft-
ware Process Improvement based on Knowledge and Experience) and INCO (Incremental
and Component-based development)[38]. The sample size of the current research is still
small and is therefore still a prestudy. Data collection was carried out by NTNU PhD and
MSc students. Mohagheghi, Naalsund, and Walseth performed the �rst survey in Erics-
son in 2002. In 2003, Li, Sæhle and Wang performed the survey reusing the core parts
of the questionnaire in two other companies (i.e. EDB Business Consulting and Mogul
Technology)[38]. The companies were selected because they had experience on component
reuse and wanted to contribute to NTNU's research.

Ericsson Norway-Grimstad started a development project in the late 90s and has success-
fully developed two large-scale telecommunication systems based on the same architecture
and many reusable components in cooperation with other Ericsson organization. EDB
Business Consulting in Trondheim (now Fundator) is an IT-consultant �rm which helps
its customers to utilize new technology who started to build reusable components in 2001.
Mogul Technology (now Kantega) in Trondheim has large customers in the Norwegian
�nance- and bank sector[38].

The surveys found that developers are positive, but not strongly positive to the value of
component repository. None of the developers believe that the design/code of components
is well documented because the documents are either incomplete or not updated. They
believe that insu�cient component documentation is a problem, but they manage to get
an understanding of the components from informal channels, such as previous experience
and local experts.

2.7.2 Statoil ASA

Data was collected by two NTNU PhD students. 16 developers participated in the survey
and �lled in the questionnaire based on their experience and views on software reuse. The
results from the survey showed that reuse bene�ts from developers view include lower

2.8. EMPIRICAL RESEARCH METHODS 33

costs, shorter development time, higher product quality of the reusable components and a
standardized architecture. These results support those found in the literature[27]. In terms
of factors contributing towards reuse, the survey found no link to education or evidence
that experience contributes towards reuse. When it comes to formal processes, the �ndings
support the literature[15]; the formal processes are used only for software development in
general, not speci�cally for software reuse, but they may still have an implicit positive
e�ect. Improving documentation of reusable components would have been largely bene�cial
toward achieving successful reuse.

2.8 Empirical Research Methods

It is of critical importance that the research is carried out in such a way that the knowledge
we establish can be used and re-examined by other researchers[4]. By using a method, one
follow a determined path toward a goal. Di�erent methods tells one how to collect, analyze
and interpret data. The three most important characteristics for empirical research is that
it is systematic, thorough and open. By knowing the di�erent methods, it helps one to
make the appropriate choices and increases the chances for reliable results[19].

Quantitative and qualitative methods are used for performing empirical studies, where
each of these are used in di�erent situations depending on the desired result[4]. The
di�erence between these two approaches is that qualitative methods collect information as
text, pictures or sound, while quantitative methods collect information as numbers.

2.8.1 Qualitative Methods

Collection and analyzing of qualitative data is more �exible than with quantitative ap-
proaches. Qualitative data can consist of text, pictures or sound that are processed to
get a deeper meaning[4]. We chose to give a short description of the qualitative method
"interview" because we have used it in our research.

Interview

A interview is a conversation with a structure and a purpose. The interviewers asks all the
questions and follow up the answers that the informant gives. The epistemological starting
point in using qualitative interviews is that the researcher must talk, interact, listen and
ask questions in order to get peoples knowledge, views, understandings, interpretations,
experiences and interactions[4].

An interview usually has a structure, and can consist of both open and closed questions.
The interview can have various degrees of being structured, ranging from a conversation
without strict structure or order, to a fully structured interview with prede�ned questions
and alternatives for the answers. Advantages with standardized interviews with alterna-
tives for the questions, is that it makes it easier to focus the interview and that it is easier
to analyze and compare results. One disadvantage with interviews with strict structures
is limited �exibility. Expert interview can also be performed, where people with speci�c
knowledge about a topic is interviewed or group interview.

34 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

2.8.2 Quantitative Methods

The collection and analysis of quantitative data is characterized by lesser �exibility than
with qualitative approaches. The analysis of data is done with enumeration and various
statistical estimates[4]. A description of surveys is given since we have made use of it in
our research.

Survey

A questionnaire usually has prede�ned answer options (pre-coded forms) and is standard-
ized. This let us look at similarities and variations in how respondents answer[4]. One
can, among other things, look into di�usion of a phenomenon, correlations between di�er-
ent phenomenons, and generalize results from sample to population. Another advantage is
that standardized questionnaires lets one collect data from many respondents in a relatively
short period of time.

The starting point for the formulation of a questionnaire is the research questions. It is
important that the questions are formulated in such a way that they give adequate results
on the research questions. One bene�t with using questions from other questionnaires is
that the results can be compared with other surveys[4]. It is important that questions' and
answers' options are formulated in the exactly same way as the original questionnaire, in
order to compare the results.

Open questions were the respondents can write down the answer with his own words
is especially useful in order to get additional information beyond the prede�ned answer
options. But such questions are hard to generalize. If many open questions are required,
it may be better to use interviews instead. Few responses to a questionnaire can cause
imbalance in the selection, because many of the preferred respondents are missing. The
respond rate to questionnaires are often low.

2.8.3 Evaluation of Research Activities

The reliability term and the various forms for validity are used for assessing quantitative
research. Guba and Lincoln[4] thinks that qualitative research has to be evaluated di�er-
ently than quantitative research. They use the terms reliability, credibility, transferability
and conformability as measurement in qualitative research situations. Other researchers
states that it is not all or nothing, but both. Cook and Campbell[10] states that there
are four threats to validity: conclusion, internal, construct and external validity. Table 2.6
shows the relationship between qualitative and quantitative situations, and is translated
from Norwegian from the book "Forskningsmetode for økonomisk administrative fag" on
page 227[4].

Reliability

Reliability has to do with the surveys data; what type of data is used and how it is collected
and processed. Reliability is critical in quantitative research. In qualitative research it is
not always practical to test data's reliability in the same manner as with quantitative
research. This has to do with unstructured data collections as observations (which is

2.8. EMPIRICAL RESEARCH METHODS 35

Figure 2.6: Di�erent approaches to quality assessments of qualitative and quantitative
research(Johannessen et. al, 2004, p.227 [4])

context dependent) and interviews. It is almost impossible for a researcher to duplicate
another researcher's qualitative research. A researchers experience has great in�uence on
how data is interpreted. In order to strengthen data's reliability, the researcher should
give a detailed description of the context and an open and thorough presentation of the
method that is used under the whole research process[4].

Credibility

Credibility in qualitative research deals with to what degree the researcher's �ndings on
an accurate way re�ects the purpose with the study and how it represents reality[4]. Con-
tinual observation and triangulation is two commonly used techniques for increasing the
researcher's prospects for credible results. Credibility can also increase by letting colleagues
analyze the same data material to see if they interpret the results the same, or by letting
the informants verify the results. For quantitative research the term internal validity is
used.

Transferability

A survey's transferability has to do with whether the results of the research is transferable
to other similar situations. For quantitative research the term external validity is used.

Conformability

Conformability has to do with to what degree our empirical data really measures the the-
oretical terms and variables we intended to measure. Conformability is thus important
for how meaningful, interpretable and generalizable the research results really are[4]. The
�ndings have to be a result of the research, and not a result of our own subjective percep-
tion. It is therefore important to be self critical to how the research is carried out, and
comment previous experience, imbalance or deviation, prejudice and other perceptions that
could in�uence the interpretation and approach to the research. So even though one can-
not achieve conformability in qualitative surveys, it is still important that the researcher's
data material can be traced back to its origin (without revealing the informants identity).
For quantitative research the term construct validity is used. An example of a relevant
threat to the construct is that the subjects have di�erent perceptions of the scale used in
the answer alternatives. A person answering "very high" may be equal to another person's
perception of "high".

36 CHAPTER 2. STATE-OF-THE-ART OF SOFTWARE REUSE (T1)

2.9 Summary

We have seen that software reuse is the process of creating new software from existing
systems, knowledge or artifacts rather than building them from scratch[50][15][17]. Soft-
ware reuse can be found in many di�erent forms, ranging from ad-hoc to systematic, from
white-box to black-box, and from horizontal to vertical[50][47][14]. Improved software qual-
ity, increased productivity, better interoperability between software systems and reduced
costs are important bene�ts associated with software reuse[72][67][50]. Software reuse has
however, proved to be di�cult to achieve, and far from all organizations succeed with sys-
tematic reuse[16]. We see that non-technical issues such as organization structure, human
factors, economical issues, together with technical issues such as creating and maintaining
a component library are important when dealing with software reuse. Systematic reuse
does not just happen. It must be planned and introduces throughout an organization-wide
reuse program[67].

Chapter 3

State-of-the-practice at
Skattedirektoratet

Skattedirektoratet (SKD) is the Norwegian directorate of taxes. Its overall goal is to
make sure that obliged taxes and duties are correctly settled and paid[55]. SKD is also
responsible for the National Registry of the Norwegian population. The organization chart
for SKD is shown in �gure 3.1.

Figure 3.1: Organization chart (01.01.2008)

3.1 IT-Department

The computer systems of SKD are one of Norway's largest when it comes to amount of
data and users. The IT-department is responsible for developing, managing and operating
these systems. The department has about 220 employees and is organized as shown in

37

38 CHAPTER 3. STATE-OF-THE-PRACTICE AT SKATTEDIREKTORATET

�gure 3.2. The Information systems branch in the �gure is responsible for developing new
concepts and systems, and perform maintenance on existing systems.

Figure 3.2: IT-department (01.01.2008)

3.1.1 System Group 2 (SG2)

At the time when our research was initiated, the group responsible for maintenance and
further development of the GLD systems (see section 3.5) was named System group 2, from
now on referred to as SG2. They were also responsible for the technical expertise regarding
GLD and performed work related to the system. Our supervisor and contactperson within
SKD, Tore Hovland, was the group leader for SG2. As of January 2008 the organizational
structure of SKD was reorganized. Changes were made to both SG2 and other system
groups, but we chose not to emphasize on this since it did not a�ect our work. SG2 would
have belonged under the Information systems branch in �gure 3.2. Although SG2 has
ceased to exist, we will still refer to the group responsible of the GLD systems as SG2.

The largest and most important tasks for SG2 involves[56]:

• Program and print out new versions of forms and accompanying letters

• Develop new versions of the GLD systems each year

• Correct defects in the GLD systems

• Produce weekly statistics over received, selected and approved tax related information
(basis data)

• Responsible for distributing tax related information

3.2. IT SYSTEMS 39

3.2 IT Systems

Most of the systems that SKD develops and administer are built in order to carry out and
direct tax regulations [58]. Each tax year, the Norwegian parliament, Stortinget, proposes
and legislates new laws and regulations. Sporadic resolutions and changes in regulations
with a �xed start date can come throughout the year, which has high priority and must
be implemented independent of scope, cost and any other planned or started changes.

SKD's systems are divided into two main groups of systems: annual systems and continual
systems[58]. Changes to the latter can in much larger extend be planned and accomplished
independent of regulated deadlines. On the basis of earlier experience, both functional and
technical changes may be proposed and planned thorough, either annually or as interme-
diate cycles during the year.

The IT-systems are built on various technical platforms, and have high demands regarding
performance, quality and functionality. The systems are based on Oracle and/or DB2
databases, and uses UNIX, PC and IBM mainframe as platforms, as seen in �gure 3.3.
Note that the �gure shows the system groups responsibilities before the reorganization of
SKD.

Figure 3.3: System chart for SKD, version 1.3

40 CHAPTER 3. STATE-OF-THE-PRACTICE AT SKATTEDIREKTORATET

3.3 Electronic Cooperation in the Public Sector

The government has launched a modernization program which intends to make life easier for
its citizens and industry by building down bureaucracy and transferring resources to service
production[39]. The modernization program proposes strategies and initiatives which goals
is to make public sector more e�cient and utilize public resources more e�ciently. In order
to achieve these goals, the government's IT-systems must be able to interact with each
other, and other IT-systems in the industry[39], and they must provide both industry and
public with several and better services[24]. Electronic interaction can contribute to:

• Improved and more related services for citizen and industry

• Improved utilization of common basis data (key information for identifying persons,
business, properties etc.) for citizen and industry

• Improved possibilities for establishing services across sectors and administration lev-
els, and on new areas

• Establish new solutions in public sector, based on self-service solutions

• Greater competition and diversity in the supplier marked

The government possesses di�erent registers, and many of these do not provide su�cient
solutions. In the public sector there are for example many local variations of the National
Registry that both collects and administers data, instead of using the central national
registry. Di�erent registers are developed over a long time period and administered by
di�erent organizations. The evolution has lead to that information which was only meant to
be used by an individual organization, now wants to be used by several other organizations,
and for additional purposes. The National Registry, the Employer/Employee Register, and
the Property Register are examples of registers that are used by several, both in and outside
of the public sector.

In order to achieve the goals of the government's modernization program, a common
electronic infrastructure that public authorities, industry and citizen can connect to is
required[24]. The work with an architecture for electronic cooperation is expected to re-
sult in better and more cost e�ective cooperation within the public sector, private users
and industry[39].

A proposed, new IT-strategy[66] for SKD suggest the use of open standards and open
source. This way, the work will ensure competition between suppliers in the IT-marked[66].
There is also a need for closer integration between the electronic services in use by the
general public and the underlying branch systems[39]. The systems and registers in public
sectors are developed over a long time period and often based on di�erent technology, and
it can be challenging to make these di�erent technologies work together. SKD's IT-strategy
suggests that middleware and common exchange solutions should be used in order to use
the existing legacy systems. This way one can avoid making too much changes to well-
established systems. When new software systems are requested, existing solutions should
be reused if possible. New components should be designed and implemented generically,
and with focus on software reuse. Software systems developed by governmental agencies,
such as SKD, are expected to have a rather long life cycle. One must therefore expect
considerable costs concerned with the maintenance of these systems, and the systems should
be created cost-e�ective in a long-term perspective. It is also a request that the public

3.4. FRAMEWORK FOR SYSTEM MAINTENANCE 41

sector work together on the use of common software components and services, and that a
common software library for communication within the public sector is established[24].

3.4 Framework for System Maintenance

SKD has its own framework for system maintenance. The system maintenance process
describes phases, activities, guidelines, supporting material, and how the maintenance or-
ganization is organized. This process makes SKD capable of receiving, managing and
e�ectuating requirements for both new and existing systems[57]. The process is controlled
by a system maintenance organization, which consists of several units within SKD. Each
unit is participating in, or managing one or more activities. Communication and collabo-
ration is important in order for the process to be completed within a given time, and with
the expected result and quality.

Each phase consist of several activities, which di�erent units can be responsible for. The
framework describes what to ground the activity on, and which support materials and roles
are recommended to get the expected results. Support material ranges from checklists,
routines, technical descriptions, templates, guidelines and standards. Under routine, we
�nd routines for how to collect experiences, evaluate the system maintenance process,
con�guration management, development etc.

The system maintenance process consists of six generic phases, as seen in �gure 3.4; map-
ping, analysis, design, development, test and production.

Figure 3.4: SKD's Framework for System Maintenance

Based on last years version of the system and changes in laws and regulations, new re-
quirements and proposals for amendments must be considered when creating a new annual
version. Annually version will be discussed further in section 3.5.4. All of these require-
ments and amendments are collected and registered in the mapping phase. The artifact

42 CHAPTER 3. STATE-OF-THE-PRACTICE AT SKATTEDIREKTORATET

of this phase is a report which describes the experience gained from the execution of the
phase. All the requested changes found in the mapping phase is then speci�ed more thor-
oughly in the analysis phase. This phase also produces proposals for how to solve the
requested changes, and then estimates them by using cost/bene�t analysis. Based on
these estimations, decisions are made regarding which changes should be implemented.

The foundation for the development is performed in the design phase. This involves the
creation of a detailed and complete design for each of the changes, and planning of unit
tests. All implementation and unit testing are performed in the development phase. When
a decision is made, the artifacts from earlier phases are updated, so that the actual imple-
mentation is a true re�ection of the proposed solution. In the test phase, all new and mod-
i�ed code is integrated into the existing system, and thoroughly tested. The Framework
for System Maintenance includes a strategy for testing which describes how the testing is
performed, and how to verify that the system is robust and ful�lls its requirements. When
all tests has been approved, the system is ready for production. In this phase, the system
is distributed into the operating environment, and made accessible for all users.

3.5 The GLD System

The GLD systems are legacy systems, which dates back to the late 1980's and early
1990's, running on SKD's mainframe. The systems run in batch on SKD's mainframe, and
are mainly made up from COBOL-programs, in addition to some assembler and REXX
routines[59]. The system uses IBM's relation database DB2. COBOL developed programs
over the database and CICS applications on top. The CICS applications are used for
entries, control and quality assurance of the admitted data in the systems.

In Norwegian "GLD" is short for basis data (GrunnLagsData). The main purpose of
the systems are to receive and store tax related information from third-parties. This
information is then transferred to the DSB system, and is also used for the pre�lling of tax
returns. DSB is a system for processing tax returns, and is used at the local tax assessment
o�ces.

3.5.1 List of GLD Systems

There are 15 di�erent GLD systems as listed below[64]. The original names for these
systems has been translated from Norwegian, and can be found in appendix B.

• GA/LTO - Salary and Deduction

• GB - Credit and Interest

• GC - Shareholding

• GD - Building Association

• GE - Gifts for research and volunteer organizations

• GF - Life Insurance

• GG - Casualty Insurance

• GH - Holding of Share- and Bond Funds

3.5. THE GLD SYSTEM 43

• GJ - Vehicle and agriculture

• GK - Day Care Center

• GL - Housing Co-operative

• GM - Alimony

• GN - IPA, Deposit and Company Pension Scheme

• GP - Account Data

• GS - BSU, Youth Saving for Habitation

3.5.2 GLD System Description

Figure 3.5 shows an illustration of the GLD systems. Each GLD system has a part that
receives information from third-parties. These third-parties range from banks, insurance
companies, employers to daycare centers etc. The received information can be delivered to
the GLD systems both by paper and electronically. For the latter, information is copied
from Altinn, �oppy disks, CD's, streamers, tapes and cassettes to the mainframe.

The received information (both on paper and electronic), is processed and treated in the
corresponding GLD system[59]. This process is called "Load". During this stage, all infor-
mation is automatically controlled. If the delivery has too many errors or is in an incorrect
format, the delivery is stopped. In such situations, controls are performed manually by
SKD personnel. After validating the information, the systems return a receipt to the sub-
mitter, con�rming that the information has been received. Errors found in the received
information, either by the system or manual by a SKD employee, will be listed in an attach-
ment together with the receipt. The submitter of the information will then have to correct
the errors, and send the information all over again. The systems must also keep track of
the third-parties who have, or have not delivered information within the deadline. When
information is put into a GLD system, it is regarded as quality assured and approved. The
quality of the information is of critical importance because of SKD's mass management
of information. The information should have minimal manual treatment, and also ensure
accurate �scal treatment.

The received information is stored in individual databases, one for each GLD system, as
seen in the �gure. The information is also replicated from the individual databases to the
GLDB database throughout the whole production year. What �gure 3.5 does not show, is
the extraction of information from the GLD systems to the DSB system and tax accounts.

The GLD Systems Functions

The GLD systems functions can be divided into the following main parts[59]:

• Production of information material (accompanying, guidance, and information let-
ters, and paper forms) to third-parties

• Reception of tax-related information

• Control of tax-related information

• Generation and distribution of receipts and error-lists

44 CHAPTER 3. STATE-OF-THE-PRACTICE AT SKATTEDIREKTORATET

Figure 3.5: GLD system description

3.5. THE GLD SYSTEM 45

• Processing of tax-related information

• Communication of tax-related information

3.5.3 Batch and CICS

The GLD systems consist of several batch programs, in addition to CICS programs, which
are written in COBOL. The di�erence between CICS and batch programs, is that the latter
normally don't require any user interaction. Most of the batch programs are initiated by
the system itself and set to run once a day, preferably at night. The batch programs groups
similar jobs together, and carries them out.

CICS is a teleprocessing monitor, and is used for online transactions on a mainframe[2].
The CICS programs in the GLD systems are used for entries, control and quality control
of the information admitted into the systems. The main �ow of control is outside the
program, and is controlled by the user. The user has to type in the entry she is looking
for on a keyboard. Navigation in and between di�erent displays happens with the help of
given menu options, function keys (F-keys) or simple commands as plotting in organization
or birth number. CICS is not a programming language, but can be written using several
languages, such as COBOL. About 5000 access points are connected to SKD's mainframe.

Figure 3.6 shows the main menu to the GLD systems. By typing in a number from 1 to
22, the user can access the di�erent GLD systems, register paper assignments and make
queries. By typing the number 1, the GA/LTO system will start; by typing the number 2
will the GB system start etc.

Figure 3.6: GLD main menu

3.5.4 Annual Versions

As mentioned in the introduction of this chapter, the �rst GLD systems were developed
in the late 1980's and early 1990's. At that time, the performance of storage devices was
considered to be insu�cient for the amount of data needed by all the GLD systems. Also,
the storage capacity of the available devices was not considered to be good enough for the
amount of data required by the GLD systems year after year. These two problems were

46 CHAPTER 3. STATE-OF-THE-PRACTICE AT SKATTEDIREKTORATET

solved using a duplex solution. First, every GLD system got its own database. This took
care of the performance problem. Second, each GLD system would be replicated each year,
thus creating a new database for each annual version of each GLD system. This way the
information stored in each database would be kept to a minimum, thereby solving capacity
problems.

Figure 3.7 illustrates how these systems are copied year after year. In order to create
a new annual version of a GLD system, the �rst step is to set up new databases for
each system. After creating the tables for the database, it is time to set up views, generate
declarations etc., before inserting data into internal tables. When the programs are copied,
all references to year, databases and views have to be modi�ed. New laws and legislations
requires changes in the systems, and are implemented in the new annual versions. We
chose not to go further into detail, since it is a very extensive process.

Figure 3.7: Annual versions of the systems

3.5.5 Maintenance

Development, maintenance and management are overlapping processes within SKD's sys-
tems. This is especially true for the GLD systems since they have annual versions[54].
The development and maintenance of the GLD systems are performed in cooperation be-
tween system owners and SG2. The system owners have the superior responsibility for
the systems and must order changes and fault corrections, and further development of the

3.5. THE GLD SYSTEM 47

systems. SG2 is responsible for the actual development.

The GLD systems follows annual cycles concerning changes to the systems. The new
annual versions must be ready before receiving tax assessments in January. Large or
system critical faults that are discovered under production, or changes that is urgent,
is performed continuously if the result of the risk assessment that is done is within an
acceptable level. The work with the fault correction and change request starts in March.
Last year's experiences with the systems are recorded in system owners experience report
Erfaringsrapport med tiltaksforslag 20nn[59]. This report together with any changes to
the regulations, form the basis for next year's changes to the system. The system owners
de�nes the changes in an initiative list after priority and develops suggestions for suitable
solutions. This list contains all changes and faults that have to be corrected, before next
year's version of the systems. This list has three classi�cations of changes and/or error
changes:

1. Law- and regulations that must be implemented in the systems

2. Changes and faults that must be corrected before next income year

3. Changes that is desirable to have implemented to the system

At the same time as working with the initiative list, the developers begins to test solutions
and describe the test cases in the program Test Director. The �gure 3.8 is a simpli�ed
graphical representation of the course of events.

Figure 3.8: System maintenance

Previous annual versions must still be available when new versions arrive, due to after
treatment, handling of complaints etc. Some of these systems must be available up to
ten years[54]. Previous versions are not prioritized when it comes to correction of errors,
although necessary changes are performed quickly if needed.

3.5.6 Selected GLD Systems

The GLD systems was the main source of empirical data for one of our research questions;
What is the current level of software reuse in selected GLD systems?. In collaboration
with SKD, we selected four GLD systems which would be further analyzed. Three of the

48 CHAPTER 3. STATE-OF-THE-PRACTICE AT SKATTEDIREKTORATET

systems where chosen because they are representative for all GLD systems, and they are
also quite similar in functionality and implementation. This was an important criteria
since we where to compare source code for these systems. GA/LTO on the other hand,
was chosen because it's implementation di�ers from the rest of the GLD systems. The
selected systems are:

• GA/LTO

• GB

• GD

• GK

GA /LTO, Salary and Deduction System

The GA/LTO system is responsible for retrieving, validating and storing salary and deduc-
tion statements received from employers, and it provides this information to the pre�lled
tax returns. The system also handles the distribution of tax deductions from taxpayers
and employers to the appropriate local government. All information in GA/LTO can be
entered and accessed through CICS, and the system has several users such as tax o�ces-
and collectors, employers and county revenue o�ces. The number of employers who reports
data to this system is somewhere around 220 000, and these delivered 7 million statements
electronically in 2004 [70]. Also, 600 000 statements was received on paper. It required
30 million transactions to process these statements. The GA/LTO system has a di�erent
structure and system owner than the other 14 GLD systems.

Figure 3.9 shows the CICS main menu for GA/LTO.

Figure 3.9: GA/LTO CICS main menu

3.5. THE GLD SYSTEM 49

GB, Credit and Interest System

The GB system, Credit and interest, is used as basis for the account number table. This
table is used to select which accounts that are recommended as refund of outstanding
taxes. It is also used by the Governments' Loan Fund for education by payment of loan
and scholarship. The Governments Collection o�ce and the National Insurance Service gets
credit and interest information from the basis data register by making queries on personal
identi�cation numbers. In the period January to March, the GB systems availability is of
critical importance. This is because of high activity in the systems with registration and
replication of information. Load, replication, paper withdraws, identi�cation and other
jobs runs on evening and at nights. Figure 3.10 shows the CICS main menu for the GB
system.

Figure 3.10: GB CICS main menu

GD, Building Association and GK, Day Care Center

There where no textual descriptions of the GD and GK system available. In short, the GD
system handles the retrieval, validation and storage of statements from building associa-
tions. Figure 3.11 show the CICS main menu for the GD system. The GK system handles
the retrieval, validation and storage of statements from day care center. Figure 3.12 show
the CICS main menu for the GK system.

3.5.7 The MAG Project

When we executed our case study of software reuse within the GLD systems, SKD was at
the same time working on their own modernization project. The project focuses on the

50 CHAPTER 3. STATE-OF-THE-PRACTICE AT SKATTEDIREKTORATET

Figure 3.11: GD CICS main menu

Figure 3.12: GK CICS main menu

3.5. THE GLD SYSTEM 51

modernization of the GLD systems, and is referred to as the MAG project [69]. The aim
of the project was to select and develop a new platform, and to create and develop a new
architecture for the GLD systems.

The project addresses the adaption required to meet the requirements of a new system
for employees and senior citizens (a system referred to as SL). On page 40, Electronic
cooperation in the Public Sector, we discussed several aspects which has lead to the MAG
project. Industry and commerce is to have access to complete, electronically services, with
around-the-clock availability and short response time. The services will be accessible from
the existing websites, and should be designed in such a way that they can be used by other
vendors and applications without additional e�ort from SKD.

The MAG project is divided into two phases. In the �rst phase, adjustments will be made
to the GLD systems so that they can function with the new SL system. Also, the basis data
(data provided by the GLD systems) will be made available through a web-application.
GLDB will not be modi�ed in phase 1. The goal of phase 2 is the establishment of
one, common system for all areas of GLD, and that this system replaces the previously
mentioned annual versions. All new systems should be implemented on the new platform,
as services available by web.

3.5.8 Summary

To summarize, the GLD systems consist of 15 di�erent systems which collect tax related
information from third-parties, and are used for the pre�lling of tax returns. For historical
reasons, the 15 systems are copied and created over and over again in an annual cycle. This
have caused the GLD systems to have reduced maintainability and possible inconsistencies
in code and data. In addition, some of the systems must be available for up to ten years,
which means that up to 150 systems are kept alive or stored on tape.

Part III

Design of Empirical Investigation

53

Chapter 4

Research Agenda

This chapter will start by giving a presentation and schedule over the main activities in
our master project. Then the research questions, themes and SKD's goal with our project
will be presented. Please observe that the empirical strategies were presented in section
2.8 on page 33.

List over main activities in our project:

• Literature review

• Meetings with the developers in SG2

• Review of GLD systems documentation

• Source code analysis

• Review of SKD's Framework for System Maintenance

• Interview about SKD's Framework for System Maintenance

• Survey of the software development process and reuse aspects at SKD

4.1 Schedule and Description over Research Activities

Table 4.1 shows a schedule over our research activities from January 2007 to June 2008.
Based on the initial assignment description given by Reidar Conradi and SKD, as seen
in appendix A, we conducted a brief literature search of software reuse before our very
�rst meeting with Tore Hovland and SG2 at SKD in Oslo. We had an open mind about
the assignment since we had no prior experience with software reuse, legacy or COBOL
systems.

The meetings at SKD with SG2 has been very important for our data collection, and is
furtherer presented in section 4.4. These meetings have directed our work with the research
questions, and provided us with valuable insight, knowledge and feedback.

From the project startup in January to October 2007, we reviewed system documenta-
tion handed out by SKD, which ranged from GLD user manuals, Framework for System
Maintenance, experience reports, to lists over tables in the GLD databases, in order to
familiarize ourself with the GLD systems and their context. At the meeting with SG2 at

55

56 CHAPTER 4. RESEARCH AGENDA

October 15. 2007, the research questions were de�ned and it was decided on a subset of
systems within the GLD systems which we would focus on. After this meeting at SKD,
we started working on how to collect data for our research questions. In order to �nd the
current state of reuse, we reviewed the system documentation for the selected GLD systems
in order to identify reused programs. This process, together with the source code analysis
is elaborated in chapter 5. Existing routines that ensures reuse in the organization were
mapped with the help of an interview with the person responsible for SKD's Framework
for System Maintenance and meetings with the developers at SG2. Reidar Conradi told us
about a survey that was performed by prior master students at NTNU about developers
attitude towards software reuse, and in February 2008 we performed a similar survey at
SKD. During March to June we prepared and analyzed the results from the survey, and

Table 4.1: Schedule over research activities performed from January 2007 to June 2008

4.2. RESEARCH QUESTIONS AND THEMES 57

proceeded with the writing of this master thesis. We also audited our literature study
because we discovered new research and articles on the �eld of software reuse, which we
did not �nd earlier.

4.2 Research Questions and Themes

We decided to take three of the topics from the initial assignment description (see Ap-
pendix A) as a basis for our research, and came up with the following research questions:
RQ1: What is the current state of software reuse in the selected GLD systems?
RQ2: Do reused components have lower change and defect rate compared to other com-
ponents?
RQ3: What is the emphasis on software reuse in current development process?
RQ4: What is the potential for systematic reuse, and how can it be achieved?

As we stated in the introduction of this thesis, our research can be divided into four themes.
The connections between the di�erent themes, research questions, and contributions are
illustrated in table 1.1 on page 7. This way of structuring the report was recommended to
us by our supervisor, Reidar Conradi. The themes are as following, with the corresponding
research questions are shown in parenthesis:

• T1: Review of state-of-the-art literature on software reuse

• T2: Investigation of reuse level within selected GLD systems (RQ1)

• T3: Investigation of SKD's development process (RQ3)

• T4: Investigation of opportunities for systematic reuse in SKD (RQ4)

RQ2 is not covered by any of the themes, and remains unanswered in this thesis. When
our research was initiated in January 2007, RQ2 was originally one of the questions we
planned to answer. However, this research question is inconclusive of several reasons. As
our knowledge about the GLD systems and SKD increased, we realized that this research
question was not clearly de�ned. The programs selected by SKD and us, which we would
analyze, were all developed with source-code reuse. In fact, all program within the GLD
systems are created annually, thus there were no empirical data (components) to compare
the reused components against. Also, we were not able to �nd any rates or measurements
of defects within the GLD systems. During our meetings we were told by the developers
at SG2 that the GLD systems have low change density, and faults are seldom discovered.
Annual changes to the systems are documented in experience reports after each year, but
this data alone was inadequate to answer the research question.

4.3 SKD's Goal with our Research

Tore Hovland and SG2 proposed to speci�c goals with our research.

SKD goal 1 Propose a process which assures software reuse
SKD's existing software development process should be extended to take software reuse
into account. This is to ensure that new components are developed with reuse in mind.
This goal 1 will be answered through our work on RQ4.

58 CHAPTER 4. RESEARCH AGENDA

SKD goal 2: Propose an ideal architecture for the GLD system, with focus on reuse
When we �rst initiated our research, SKD had originally asked us to propose an ideal GLD
architecture for the new platform. Later in 2007, SKD had taken upon this task themselves
with the MAG project, although we were not informed of this until the meeting in February
2008. We were disappointed since this research goal became obsolete, and because of the
late notice. Due to this, SKD suggested that our contribution would be a review of the
proposed architecture, with focus on software reuse. We used one week in March 2008
to read and evaluate the suggested GLD architecture, but we soon discovered that this
new goal was not within the scope of our project. SKD was also not clear about their
evaluation criteria for design, requirements and architecture, which made it di�cult for us
to contribute with constructive critique and suggestions. We also felt that we had neither
the required knowledge about the systems internal structure nor the experience with this
type of work.

4.4 Meetings with the Developers from SG2 and its Limita-
tions

During this project we had �ve meetings with employees at SG2, as described in section
4.1. In addition to the meetings, we also had continuous contact with SG2 on e-mail and
telephone. In general we prepared an agenda and a set of questions before each meeting,
which we sent to Tore Hovland. This way he could get a hold of relevant informants and
help us organize the meetings. At these meetings we usually gathered two to six developers
from SG2 for an hour where we went through the agenda for the meeting and updated
them on our results. The questions we had prepared and a draft of our report was often
discussed in plenum with the developers. This type of meeting have similarities to a "focus
group interview", which is an interview performed in a group of six to twelve people[4].

We did not use a tape recorder at the meetings, but both of us took thorough notes of
what was said. At the end of each meeting we went through our notes and registered them
in a text document which we sent to both Reidar Conradi and Tore Hovland. This was to
increase the credibility of our notes. It also resulted in feedback, corrections and new ideas,
which we used as a basis for further work. A resume of the main parts of the meetings is
found in appendices C to F.

These meetings are examples of a qualitative research activity. As mentioned, we increased
the credibility of the data from the meetings by transferring it back to its informants. The
results have no transferability because the topics of discussion and context was speci�c to
SKD and the GLD systems. A source of errors to this type of data sampling is whether
or not we asked the right type of questions, and if the informants provided us with correct
answers. Informants may give wrong answers if they misinterpret, don't know the answer,
acts as they knows the answer or are lying to the questions. Focus group interviews may
be problematic because the persons in a group have di�erent personalities[4]. Some people
may have great in�uence on the rest of the group, other may be to dominating, shy or
simply jabber to much. This type of behavior can cause us to miss important information
from people who might have something important to say.

Chapter 5

Investigation of Reuse Level in the
GLD Systems (T2)

This chapter covers the research performed in order to answer our �rst research question,
RQ1:"What is the current state of software reuse within the selected GLD systems?". We
used three di�erent approaches in this part. First, documentation and program descriptions
[64][65][62][63] of all GLD systems where reviewed in order to �nd components used across
di�erent applications. Our second approach was to analyze source code on a subset of the
GLD programs in order to �nd similarities between these programs. This was done by using
a textual di�erencing tool combined with some self-developed programs. Findings from
our literature review of software reuse states that it is insu�cient to �nd an organizations
maturity level solely based on comparison of source code lines or components [28][50]. Thus,
our last approach is one described by Morillo et al.[33], which determines the maturity level
in Koltun and Hudsons reuse maturity model.

5.1 Reviewing the GLD Documentation

The documentation for the GLD systems contained listings of all programs in each GLD
system (a GLD system consists of several programs). In the documentation the programs
were grouped according to their purpose. SKD referred to the grouping of Batch-programs
as "procedures", and the CICS programs as "applications". For consistency, we will refer
to both of these as applications, thus one application can have one or more programs.
The relationship between what we referrers to as GLD systems, applications and programs
are shown in �gure 5.1. Our motivation for performing this analysis was to investigate
the amount of black-box reuse across the di�erent applications in the GLD systems, since
programs used by several applications would be used as-is.

We read through all of the program descriptions from the documentations, and created
complete lists of all the programs used by the GLD systems, both Batch and CICS ap-
plications. Four lists were created, two for GA/LTO and two for the remaining 14 GLD
systems (GB, GC, GD, GE, GF, GG, GH, GJ, GK, GL, GM, GN, GP and GS):

• GA/LTO, Batch programs

• GA/LTO, CICS programs

59

60CHAPTER 5. INVESTIGATION OF REUSE LEVEL IN THE GLD SYSTEMS (T2)

• GB to GS, Batch programs

• GB to GS, CICS programs

We then proceeded with a textual search for each program in the lists, and documented
which application the program was used by. We crosschecked the lists to see if any programs
appeared in more than one application. Programs used across di�erent applications could
indicate the presence of black-box reuse. The result was documented in a spreadsheet, as
the example in table 5.2 shows.

GA/LTO is quite di�erent from the rest of the GLD systems. The di�erence is so consider-
able that GA/LTO has its own documentation, while all other GLD systems are described
in one document. For this reason we chose to analyze it separately. GA/LTO is made up of
29 applications and 124 programs. 40 of these programs are CICS, while the remaining are
BATCH programs. The other 14 GLD systems share the same documentation. The results
from GA/LTO was entered in a separate spreadsheet. The results for all the remaining
GLD systems was entered in a single spreadsheet, which counted 163 programs (111 CICS-
and 52 BATCH programs). This gives a total of 287 cross-checked programs, covering all
GLD systems.

Figure 5.1: There are several GLD systems. A GLD system consists of one or more
applications, and applications uses one or more programs

Naming of the Programs

The naming of the programs in the GLD systems follows a standard set by SKD: GZnbyyy[59].
An explanation of the di�erent characters is given in table 5.1. An example on the use
of the naming standard, is GB6P301. From the �rst two digits, we see that the program
belong to the GB system. The next characters tells us that the program belong to year
2006 and the environment is production. The three last characters tells us that the number
of the program is 301. Programs with identical numbering performs basically the same
task but for a di�erent GLD system.

5.2 Analyzing the Source Code

The most common way of measuring the amount of reuse within a software system is
by counting the number of reused components or lines, divided by the total number of

5.2. ANALYZING THE SOURCE CODE 61

Table 5.1: The naming of the programs

Table 5.2: Sample from spreadsheet, which shows how the cross-checking was performed.
Applications are aligned vertically and the programs horizontally.

62CHAPTER 5. INVESTIGATION OF REUSE LEVEL IN THE GLD SYSTEMS (T2)

components or lines[50][17]. We discussed this approach in 2.5.2 on page 26. The �rst
approach we described focused on measuring the amount of black-box reuse, while the
approach covered in this section measures the amount of white-box reuse, or code/design
scavenging. SKD handed out source code for three of the of the GLD systems, namely GB,
GD and GK. We were given three CICS programs (301, 302 and 304) from each of these
systems and for two di�erent years (2006 and 2007). This gives a total of 18 programs. The
programs were chosen because we wanted to establish how much of the code is identical
between di�erent programs in GLD systems, and how much is changed between the annual
versions. This gives us two forms of software reuse which we have focused on. The �rst
one is the di�erence, or similarity, between two programs from di�erent GLD systems with
identical years and numbering (for example GB6P301 and GD6P301). The other form of
reuse we wanted to analyze was the similarity between two annual versions of the same
program (for example GB6P301 and GB7P301). Since the GA/LTO system di�ers in
structure from the 14 other GLD systems (and the numbering of the programs are not
the same as in the other GLD systems), we decided not to compare any programs from
GA/LTO. To do this we would have had to select random programs from GA/LTO for
comparisons with programs from GB, GD and GK, and this would not be suitable.

The programs were written in COBOL370, a programming language which neither of us
had any previous experience with. In our �rst set of code to analyze, the 2007 version of
the three systems, there where no line breaks present in the �les. The result of this was
that all code appeared on a single line in the source �le. To solve this, we wrote a Java-
program which separated the single line of code into lines according to the COBOL-syntax.
Since the �les would be compared using a "di�" or "merge" tool, we also wanted to remove
all comments in order to get a more precise result. We modi�ed our tool to remove all
comments from the source code. Also, in order to make the source �les more identical, we
replaced all multiple blank lines with a single blank line. Without comments and multiple
blank lines, the �les varied in size from 879 to 2455 lines. The total number of lines was
almost 30 000.

5.2.1 Generating reports

The source code was compared using a tool called WinMerge[73], a visual di�erencing and
merging tool for text �les. The program compares two text �les by showing which lines
are modi�ed, added or deleted in each of the text �les. It generates this informations into
a report, where added lines are marked with a '+', removed lines '-' and modi�ed lines
with an ' !'. The report is similar to the one generated by the Linux/Unix di�-command,
as seen in �gure 5.2. There are both pros and cons when using a textual based merge
tool for this purpose. First, it threats the source code as pure text, thus disregarding the
programming language it was written in[31]. Considering that our subject of research was
written in COBOL, which is a rather old language, this is clearly a bene�t. The detection
of changes are however limited to line-level granularity[29]; it shows where a change was
made and what it was. It gives no context of the changes, and structural and syntactic
information in the source code is ignored.

When we generated these reports, we noticed that slight di�erences would sometimes
appear when comparing the same �les. These di�erences occurred when we shifted the
left and right side of the comparison (see �gure 5.3). It seemed like the di�erencing tool
would, for example, in the �rst comparison recognize a line as modi�ed, but when shifting

5.2. ANALYZING THE SOURCE CODE 63

Figure 5.2: An extract from a report generated by Winmerge. Modi�ed lines are shown
with an ' !', added lines with a '+' and removed lines with a '-'.

64CHAPTER 5. INVESTIGATION OF REUSE LEVEL IN THE GLD SYSTEMS (T2)

the left and right side it would be considered an added line. Because of this, we decided
that we would generate two reports for each time we compared two �les with source code.
When one change is made to, for example, a variables name, this change will be counter
as several changes since the new name will be used in the rest of the program. One could
argue that a change like this should only be counted once. We chose to threat this scenario
as several changes, mainly since a developer at SKD would have to alter all lines where
this is required. By treating it as several changes, it is easy to see how much work e�ort
is required when developing new annual versions, or even a new program in for a GLD
system.

Figure 5.3: Winmerge. The program compares two documents, and highlights modi�ed,
added and removed lines.

We �rst compared programs with the same numbering and year, but from di�erent GLD
systems. This produced a total of (GB, GB and GK) * (2006 and 2007) * (301, 302 and
304) = 3 * 2 * 3 = 18 reports. Since we had decided to double check each report by
switching the left and right side of the comparison, this gave us a total of 36 reports.

Next when we compared two annual versions of the same program, but from di�erent years,
the numbers of reports became (GB, GD and GK) * (301, 302 and 304) = 9 reports. This
was also validated by making a second, inversed comparison, and produced a total of 18
reports.

The 56 reports was approximately 6MB of pure text, so to manually review them seemed
like a very time consuming task. We wrote a simple program in Java which read the reports
and counted the number of times each marker occurred (!, + or -), and it also identi�ed
which of the two �les in the comparison the marker was connected to. All �ndings was
then entered into a spreadsheet, which contained the total length in code lines for each

5.3. APPROACH FOR CLASSIFYING WITH THE REUSE MATURITY MODEL 65

program, number of code lines when comments was removed, number of added, removed
and modi�ed lines. The spreadsheet then calculated the number of common lines by
subtracting modi�ed and added lines from the number of lines without comments. The
results from the spreadsheets are presented in chapter 71.

5.3 Approach for Classifying with the Reuse Maturity Model

In the previous sections we discussed two approaches used to estimate the current state
of software reuse within selected GLD systems. Findings from our literature review of
software reuse stated that it is insu�cient to �nd an organizations maturity level solely
based on comparison of source code lines or components (software reuse ratio) [28][50].

We used the Reuse Maturity Model as seen in �gure 2.3 (page 25) developed by Koltun
and Hudson[17] to provide a quantitative indicator of the current level of reuse within the
selected GLD systems. The columns in the maturity model represents di�erent phases of
reuse maturity; Initial/chaotic, Monitored, Coordinated, Planned and Ingrained. Quanti-
fying reuse maturity levels can be di�cult[50]. The Reuse Maturity Model has ten dimen-
sions, and each of these can be in a di�erent phase. So, how would we identify a maturity
level when the dimensions where in various phases? For this reason, we adopted an ap-
proach described by Morillo et al.[33] to determine which maturity level was appropriate
for the GLD systems. In their paper, they use three reuse factors for determining the
maturity level:

• Repository structure (r)

• Software development architecture (s)

• Administrative management (g)

Each reuse factor consists of several activities grouped together. Each group has a maxi-
mum of three points, and in order to obtain three points in a group all activities must be
present within the organization. The three factors r, s and g can each give a maximum of
9 points. The formula for calculating the maturity level is expressed as:

M1 =
√

r2 + s2 + g2 (5.1)

The value of M1 determines the maturity level:

• 0 - 3, Initial/Chaotic

• 3 - 6, Monitored

• 6 - 9, Coordinated

• 9 - 12, Planned

• 12 ->, Ingrained

All the activities contained in each reuse factor was listed in three tables (one table for
each reuse factor). We sent the tables to our contact person at SKD, Tore Hovland, along
with an explanation for each activity. Next to each activity there was a �eld which had
to be �lled as either true or false, indicating if the speci�c activity was present or not in
the development of the GLD systems. When the tables were returned to us, we started

66CHAPTER 5. INVESTIGATION OF REUSE LEVEL IN THE GLD SYSTEMS (T2)

converting the true and false values to the equivalent score, according to the paper by
Morillo et al.[33]. These tables are shown in the �gures 7.4, 7.5 and 7.6 in chapter 7.

Figure 7.4 contains the table of activities in the "Repository structure" factor. A repository
is capable of storing artifacts which may be reused, and is therefor one of the most impor-
tant requirements for software reuse. Figure 7.5 contains activities found in the "Software
development architecture" factor. This factor evaluates the existing software architectures
orientation concerning reuse. The �nal factor, "Administrative Management", is evaluated
in �gure 7.6. This factor covers administrative aspects of software reuse, specially those
concerned with human resources allocated to reuse. The last activity in this factor con-
cerns reuse obtained by previous projects, and the score is given by 3 ∗ averageR1, and
can be in the range of 0 to 3. averageR1 is the average of the reuse rates, but the paper
by Morillo et. al. [33] did not describe how to obtain these rates. We calculated the reuse
rate by comparing the annual versions we investigated in 5.2, thus R

T 3, where R is the total
amount of reused lines and T is the total number of lines. This is the most frequently
used approach when measuring the level of software reuse[28][50] and is used by both the
industry and academia, as stated in section 2.5.2.

Chapter 6

Investigation of SKD's Development
Process (T3)

We used three di�erent sources in order to answer RQ3: What is the emphasis on software
reuse in the current development process? These were:

• A survey among 25 developers at SKD

• Meetings with the developers in SG2

• Review of SKD's Framework for Software Maintenance

• Interview with the person in charge of SKD's Framework for Software Maintenance

A summary of SKD's Framework for Software is presented in section 3.4 on page 41. In
this chapter we present the preparations for the survey and interview.

6.1 Planning the Survey of the software development process
and reuse aspects at SKD

The survey was performed using a questionnaire, which was developed by two diploma
students at NTNU in 2002[37], and had previously been answered by developers at Ericsson
AS in 2002. Core parts of that questionnaire was used at EDB Business Consulting[52]
and at Mogul in 2003[75]. The three companies were selected to participate in the survey
since they had experience on component reuse and wanted to cooperate with NTNU in
this research[38]

The questions were divided into categories. We removed three of the categories and modi-
�ed some of the answers because they were not relevant for our purpose. The �rst category
was Personal Info. Even though the survey was done anonymously, some information was
still required to get better understanding of what the candidates based their answers on.
Then a category of general reuse questions followed. They were formed as how important
reuse is in relation to di�erent assertions, and how important di�erent technologies and
tools are. Next was a category dealing with components and reuse to see what the software
developers thought about the current component reuse situation. The three last questions
were about requirements and change of requirements during the course of a project. To

67

68 CHAPTER 6. INVESTIGATION OF SKD'S DEVELOPMENT PROCESS (T3)

increase the reliability of the survey, the questionnaire included a de�nitions of the dif-
ferent concepts used. The respondents were free to add comments after each category of
questions. The questionnaire is found in appendix H, and the results is found in chapter 8
and in Appendix I.

Originally each of the questions in the questionnaire was used to study one or more research
questions in the master thesis of Naalsund and Walseth[37]. We had no assumptions of
what the results of the survey would be. Our primary goal with the survey was to use it
as a starting point for research questions RQ3 "What is the emphasis on software reuse in
the current development process" and RQ4 "What is the potential for reuse".

We chose to make use of someone else's questionnaire because we wanted the possibility
to combine our results with the ones from the previous studies. The studies from Ericsson
AS, EDB Business Consulting and Mogul had 26 respondents in all and together with our
survey, it was possible to combine the results from a total of 51 respondents. This way we
participated in the research already performed by NTNU on developers attitude towards
software reuse. We also believed that it was a good thing to use a survey that was already
tested out and quality assured.

6.2 Planning the Interview about SKD's Framework for Sys-
tem Maintenance

After reviewing SKD's Framework for Software Maintenance, we prepared for an interview
with the person in charge of the framework. The Framework for Software Maintenance gave
no mentioning on software reuse, so we assumed that it did not take reuse into account.
We wanted to con�rm this assumptions with the interview, and we also wanted feedback
on how the current process could be altered to support reuse. The questions had no
predetermined answer options and was sent to the interviewee on week in advance so she
would have time to prepare herself. A resume of the interview can be found in appendix
G.

Part IV

Results

69

Chapter 7

Results from Investigation of Reuse
Level(T2)

In this chapter we present the results from the research associated with T2, the investi-
gation of reuse level in the GLD systems. First we present the results from the system
documentation review. We then proceed with the results from the source code analysis,
and in the last section we present our classi�cation with the reuse maturity model. This
theme covers, as previously mentioned, research activities concerned with RQ1:"What is
the current state of software reuse in selected GLD systems?".

7.1 Results from Review of GLD Documentation

As we described in section 5.1 on page 59, we created lists of all programs (and which
application it was connected to). The lists were crosschecked in order to see if any programs
appeared in more than one application. Our motivation for this review was to see if we
could �nd programs or components which were being reused across applications.

7.1.1 GA/LTO System

GA/LTO is made up of 29 applications and 124 programs. 40 of these programs are CICS,
while the remaining are BATCH programs. In all, we found four programs used by more
than one application, of which all were BATCH programs. Table 7.1 shows the programs
and the applications which used them.

7.1.2 Remaining GLD Systems

As stated previously, the other 14 GLD systems (GB, GC, GD, GE, GF, GG, GH, GJ, GK,
GL, GM, GN, GP and GS) share the same documentation. The documentation contained
descriptions of 163 programs; 111 CICS- and 52 BATCH programs.

As with the GA/LTO analysis, none of the CICS programs in this examination appeared
in more than one application. By doing a closer investigation of the spreadsheet, we
noticed repeatedly series of programs often occurred in the same applications. By series we

71

72 CHAPTER 7. RESULTS FROM INVESTIGATION OF REUSE LEVEL(T2)

Table 7.1: Results from documentation review of the GA/LTO system. Four programs
were reused across applications

mean that the name of the program ends with the same identi�cation number. Example
of a series is GBnP301, GDnP301, GEnP301, GGnP301, GKnP301 and GLnP301. We
identi�ed seven such series. These were (presented with an description):

• GznP301: Checks all the requests that are received from the main menu, then calls
for the right transaction (six programs: GBnP301, GDnP301, GEnP301, GGnP301,
GKnP301 and GLnP301)

• GznP302: Online registration of di�erent paper assignments (six programs: GBnP302,
GDnP302, GEnP302, GGnP302, GKnP302 and GLnP302).

• GznP303: Terminates the update which is initiated by transaction XX01 (six pro-
grams:GBnP303, GDnP303, GEnP303, GGnP303, GKnP303 and GLnP303).

• GznP304: Online control of di�erent paper assignments (six programs: GBnP304,
GDnP304, GEnP304, GGnP304, GKnP304 and GLnP304).

• GznP305: Online control of di�erent paper assignments for one delivery (six pro-
grams: GBnP305, GDnP305, GEnP305, GGnP305, GKnP305 and GLnP305).

• GznP380: Main program - for building association, gifts, damages, kindergarten and
housing co-operative (�ve programs: GDnP380, GEnP380, GGnP380, GKnP380,
and GLnP380).

• GznP393: Sub routine - gets name/address on national identity number or organi-
zation number for the current for building association, gifts, damages, kindergarten
or housing co-operatives (�ve programs: GDnP393, GEnP393, GGnP393, GKnP393,
and GLnP393).

We chose the top four programs in the list above as subjects for the source code analyze,
because of their identical numbering and description. This way we could analyze them for
similarities both between the di�erent GLD systems, and between annual versions.

Among the 52 BATCH programs, we found one program that was used in two applications;
this was the program GXnP002, used in both the Load- and Identi�cation routine.

7.2. RESULTS FROM CODE ANALYSIS 73

7.2 Results from Code Analysis

We performed source code analysis on 18 programs, as described in 5.2 on page 60. We
focused on identifying two forms of software reuse. The �rst one is the di�erence, or
similarity, between two programs from di�erent GLD systems, with the same year and
numbering (for example GB6P301 and GD6P301). The second one was the similarity
between two annual versions of the same program (for example GB6P301 and GB7P301).

Table 7.2 shows the percentage of modi�ed, added and common lines from our �rst analysis,
where only the numbering and year of the programs name are equal. The �rst thing we
noticed when rearranging our �ndings into a single table, was that there was an equally
amount of changes made both years. For example, GBnP301 and GDnP301 has the same
percentage, 50%, of common lines in both 2006 and 2007. This is true for every row in the
table. GKnPyyy and GDnPyyy had the highest amount of common lines, up to 79%. The
median, or middle value, was 60% common code lines, and the minimum was 36%.

Table 7.2: Common lines in programs from di�erent GLD systems, given in percentage.
The total for each row should add up to be 100%, but may vary -1 or 1 % due to rounding
of decimals

Table 7.3 shows �ndings from our second analysis, where annual versions was compared
against each other. The amount of common lines was much greater between the annual
versions. According to table 7.3, between 97% and 99% of the lines are identical.

7.3 Classi�cation with the Reuse Maturity Model

In section 5.3, we described our approach of classifying the current state of reuse within
the GLD systems. The result of this classi�cation is presented in this section.

As previously stated, we chose the Koltun and Hudson Reuse Maturity Model for classi�-
cation (�gure 2.3 on page 25). In order to select an appropriate level of reuse, we adopted

74 CHAPTER 7. RESULTS FROM INVESTIGATION OF REUSE LEVEL(T2)

Table 7.3: Common lines in annual programs, given in percentage.

an approach described by Morillo et al.[33]. Their approach uses three reuse factors; repos-
itory structure (r), software development architecture (s) and administrative management
(g). The factors consists of several activities organized in three tables, one for each reuse
factor. The tables 7.4, 7.5 and 7.6 shows all activities, along with a score speci�c for the
development of the GLD systems. The tables were �lled in by SG2 themselves with true
or false values before we converted these values into an equivalent score. The score which
each activity gives is shown under Max points in the tables.

Table 7.4 shows the activities in the Repository structure factor. It shows that the GLD
systems are not supported by a software repository. However, SKD stated that compo-
nents concerning user interface are stored in a repository structure. Components are not
automatically indexed, and thus there are no mechanisms for retrieving them. The total
sum for repository structure (r) was 1.1.

Activities concerned with the Software development architecture factor are shown in table
7.5. The software architecture deployed in the GLD systems is not based on any structured
techniques, nor is it created using object-oriented techniques. However, the systems are
created by reusing source code (copy/paste). Analysis, design and other documentation
are also currently reused. Testing is highly prioritized at SKD, as the table indicates. The
total sum for "Software development architecture" (s) was 4.4.

The �nal factor, Administrative Management, is evaluated in table 7.6. The table shows
that no human resources (HR) are dedicated to the development or management of reusable
components. Incentives for developers who creates or makes use of reusable components are
non-existing, as well as any planning for reuse. The last activity in the "Administrative
Management" factor concerns reuse obtained by previous projects. We calculated the
average percentage of reused lines from table 7.3, giving us an average of 98,33%. This
gives g = 98.33

100 3 = 2.95

To summarize, we ended up with the following coe�cients; r = 1.1, s = 4.4 and g = 2.95.
This gives the following equation:

M1 =
√

r2 + s2 + g2 =
√

1.12 + 4.42 + 2.952 = 5.41 (7.1)

Figure 7.1 shows that the value of M1 corresponds to "Level B, Monitored" in the Reuse
Maturity Model.

7.3. CLASSIFICATION WITH THE REUSE MATURITY MODEL 75

Table 7.4: RMM: Activities in the "Repository structure" factor

Figure 7.1: Phases in the Reuse Maturity Model (RMM)

76 CHAPTER 7. RESULTS FROM INVESTIGATION OF REUSE LEVEL(T2)

Table 7.5: RMM: Activities in the "Development Architecture" factor

7.3. CLASSIFICATION WITH THE REUSE MATURITY MODEL 77

Table 7.6: RMM: Administrative management

Chapter 8

Survey Results (T3)

The survey was an important source of information on theme T3: "Investigation of SKD's
development process (RQ3)". This chapter presents the results of this survey. Further
analysis, discussion and validity threats will be discussed in section 10.1 on page 95. The
questionnaire was given to the group leader of SG2. Since we wanted as many responds as
possible, he encouraged other system groups to participate in answering the questionnaire.
For this reason we do not know the exact number of people who were asked to �ll in the
questionnaire. It took about three weeks from we sent out the �rst questionnaire, until we
had received the last one. We had to remind people to answer, since the developers were
busy and had hard to �nd time to answer. We ended up with a total of 25 answers to the
questionnaire. The questionnaires were answered and delivered electronic with the help of
Microsoft Word and e-mail.

The variables under the Component section did not have high enough level of measurement
to do more powerful statistical analysis. That is why we only chose to do frequencies and
cross tabulations. We refer to Appendix I for the complete results from the questionnaire.
For the General questions G1 to G3, we chose to display the results in a clustered column
chart in the same was as the three previous surveys at Ericsson, Mogul an EDB Business
Consulting. We used SPSS version 15.0 for the analysis of the questionnaire. SPSS stands
for Statistical Package for the Social Sciences, and it is a program that is used for analyzing
data. It can perform a variety of data analysis and presentation functions, including
statistical analysis and graphical presentation of data[68].

8.1 Respondents

A total of 25 people answered the questionnaire. The respondents came from various de-
velopment departments within SKD, and had experience with di�erent computer systems.
17 of the respondents of the questionnaire were system developers, which constitutes 68%.
The remaining respondents had di�erent roles as adviser, architect, consultant, team leader
or responsible for a system.

Figure 8.1 shows that most of the developers have been working at SKD from 0-4 or 5-9
years, which together makes 64%. 7 of the respondents have been working at SKD for
more than 17 years, according to table I.2 in Appendix I.

79

80 CHAPTER 8. SURVEY RESULTS (T3)

Figure 8.1: Results from question P2: Number of years working at SKD (n=25 respon-
dents)

We asked the respondents which programming and design languages they were familiar
with, and currently using. From the answers we could see that 16 of the respondents
were familiar with COBOL. Of the 12 respondents familiar with Java, 7 of these were also
familiar with COBOL. Most of the developers are currently working with programming
and design languages such as COBOL, Java and Oracle Warehouse Builder.

Figure 8.2 shows that 20% of the respondents has high school as their highest completed
academic degree, 48% has completed an bachelor degree and 28% has completed an master
degree.

Figure 8.2: Results from question P6: Highest completed academic degree (n=24 respon-
dents)

8.2 General Questions G1

The respondents were asked how important they considered reuse to be in achieving ben-
e�ts such as lower development costs, shorter development time, higher product quality,
more standardized architecture and lower maintenance costs. As �gure 8.3 shows, the re-

8.2. GENERAL QUESTIONS G1 81

spondents thinks that reuse is important to achieve all the di�erent bene�ts. The results
does not point out any of the questions as extra important.

Figure 8.3: Results from questions G1a-d. Columns are in the same sequence as in the
description �eld

Comments:

As mentioned, the respondents were free to add comments to each category of questions.
One person said that it is very practical to reuse code by copying code they think is useful
when making new systems in COBOL or Easytrieve. They also reuse copy members which
are code used by several programs or systems, or use programs who do the same function
for several systems by calling up these programs (or also copy members) when needed.

Another person said that for most of the systems he worked on, they make new versions
every year because of new tax rules. Most of the tax rules are the same, but some of the
rules are new every year. The reuse of code is very important, and makes them able to
create new versions easily.

A third person stated that reuse also carries risk in the sense that errors are spread pro-
portionally to the degree of reuse. A too religious approach may be counterproductive: in
the pursuit of reusing a module or class (incorporate it in a new system), one may adopt a
bad overall design in the new system just to be able to reuse the module. If it is a simple
module, writing new code may be the right course. He also said that it is often much more
quicker to write the necessary code when one needs it, than to locate a reusable module
or class that may or may not exist. Done right, however, reuse is important.

One person commented on that making components reusable require extra resources. An-
other person stated that in practice, reuse is not achieved very often. It would need a lot
more to see real bene�ts, and he said that it is important to standardize the implementation
of a few common tasks.

The last comment was made by a person who did not think that they had opportunity
to reuse components here, unless he made a system that was similar to something he had

82 CHAPTER 8. SURVEY RESULTS (T3)

made before. Then he knew his code and could reuse what he wanted.

8.3 General Questions G2

The respondents were asked how useful or important they found reuse/component based
technologies, OO technologies, testing, inspections, formal inspections and con�guration
management to be. Figure 8.4 shows how the answers were spread out. It seems that the
respondents agree that most of the technologies mentioned in the question is of high im-
portance. Testing stands out from the rest; it is of very high importance. OO technologies
and con�guration management has a higher degree of "I don't know" answers than the
rest.

Figure 8.4: Results from questions G2a-f. Columns are in the same sequence as in the
description �eld

8.4 General Questions G3

The respondents were asked how useful or important they considered requirements, use
cases, design, code and test data/documentation, with respect to reuse, to be. Figure
8.5 suggest that the participants �nd most of the artifacts useful and important to reuse.
This questions stands out from the two previous general questions, since more respondents
answered "little" or "don't know" to this question.

8.5 Component Questions

We asked if the construction of a reuse repository with extra component documentation
would or would not be worthwhile. 72% of the respondents stated that it would be worth-
while. 64% of the respondents said that there is no clearly de�ned way when decideing

8.5. COMPONENT QUESTIONS 83

Figure 8.5: Results from questions G3a-e. Columns are in the same sequence as in the
description �eld

Figure 8.6: Results from question C1:
During development:
(n = 25 respondents)

Figure 8.7: Results from question C2:
Is the current process working?
(n = 25 respondents)

whether to reuse a code/design component "as-is" or "with modi�cation", or to make a
new component from scratch. 16% follows guidelines and another 16% consult experts as
seen in �gure 8.8.

68% of the respondents stated that a code/design component which is reused (and possibly)
modi�ed, is usually more stable and cause less problems, and 28% said that it is about
equal to a component created from scratch. 52% of the respondents said that integration
may cause some problems when reusing a component, 32% stated that it usually works
well, while 8% felt it was di�cult. This is shown in �gure I.28 in Appendix I.

The next question was to what extend the respondents feel a�ected by reuse in their work.
As seen in �gure 8.9, 32% feel that the extend of reuse is high to very high. 28% feel
that it is medium, and 32% feel that it is little or no reuse. 68% of the respondents felt
that there should be more reuse during development, as seen in �gure 8.6, while 8% felt
that it was too much reuse during development. 40% of the respondents thinks that the

84 CHAPTER 8. SURVEY RESULTS (T3)

Figure 8.8: Results from question C5: How
do you decide to reuse a code/design compo-
nent?(n = 25 respondents)

Figure 8.9: Results from question C9: How
a�ected are you by reuse?(n = 25 respon-
dents)

process of �nding, assessing and reusing existing code/design is not functioning, while
the majority of 60% feel that it is. A total of 60% said that the existing code/design
components is sometimes su�ciently documented, while the remaining respondents have
split opinions between yes and no. We asked the ones that answered "sometimes" or "no"
to this question if they thought that this was a problem. Most of the respondents who felt
that the existing code/design components was not su�ciently documented, felt that this
was a problem.

The last question was an open question, where the respondents were asked to write down
their main source of information about reusable components during implementation.

• Randomly searching code. Consulting older system experts. Reuse has no agenda in
my daily work, WHATSOEVER! It's not prioritized by the "bosses"

• Experience

• System documentation

• I ask persons who have worked with similar tasks. I have also, as the years go by,
made myself a little "library" of code I think may be useful in the future

• Look at the description in heading and at the code

• The GLD system

• Persons who know the reusable components

• The code itself

• My own knowledge and the experience of my co-workers

• Tips from other developers about speci�c preexisting modules. Also, reuse is built
into our existing practices: A lot of systems are made a new each year, and the reuse
in these cases occur when the new code is copied from the last year - this happens
regularly

• General system knowledge

• My own experience with those components, and advice from the developers I'm
working with. Also some help from Google when third party components is an
option

8.6. REQUIREMENTS 85

8.6 Requirements

The last category of questions had tree questions involving requirements. 4 of the 25
respondents (16%) did not answer the last category. This was probably because they did
not see the last page. The �rst question was whether the requirement negotiation process
at SKD is working su�ciently. 64% of the respondents said it is working su�ciently. In a
typical project, 48% stated that it is no particular trend; requirements are sometimes rigid
and other times �exible. 32% said that the requirements are usually �exible in a typical
project, as seen in table I.34 in Appendix I. The last question was whether requirements is
often, sometimes or seldom changed or renegotiated during a development project. 40% of
the respondents said that requirements are sometimes changed and 36% said often, during
this time.

Comments:

One person wrote that he had answered the questions based on his own experience with
the systems he is involved with. These are mainly "bread and butter" systems (systems
that are made a new each year), and the changes are thus incremental. The dynamics in
these systems are no problem, he states; they are expected and they work very close with
the people specifying, often using an approach similar to prototyping. SKD do however at
any given time run a lot of projects and his impression is that in these, unexpected changes
do happen during the course of the project. The reasons for this are legitimate, and among
them are insu�cient original speci�cations, badly chosen technology and subcontractors
exploiting things in the speci�cations that the speci�es took for granted; this necessitates
new and more detailed speci�cations, and is accompanied by "quarrels" about whether the
new speci�cations represent changes (for which the subcontractor may charge extra) or if
they only represent clari�cations (no extra cost).

8.7 Cross Tabulation Analysis of Component Questions

We performed cross tabulation analysis on questions C2 "Do you feel that the process
of �nding, assessing and reusing is functioning" and C9 "To what extend do you feel
a�ected by reuse in your work". The results from the cross tabulation analysis are found
in Appendix I.

8.7.1 Cross Tabulation Analysis of Question C9

About equal half's of the respondents felt that the process of �nding, assessing and reusing
is or is not functioning. The majority of respondents stated that the construction of a
reuse repository would be worthwhile and that it should be more reuse. The majority
of respondents answered that it is not clearly de�ned how one should decide to reuse a
code or design component, and they also stated that code or design components that
are reused is more stable and cause less problems that components created from scratch.
When integrating a reusable component, the respondents are almost equally split between
"usually works well", or it "may cause some problems". The respondents are also split
between if there is or is not any extra e�ort put into testing or documenting potentially
reusable components. The majority of the respondents agree on that the design or code
of reusable components is sometimes su�ciently documented. The di�erence between the

86 CHAPTER 8. SURVEY RESULTS (T3)

respondents answers might be because they work in various development departments and
projects.

8.7.2 Cross Tabulation Analysis of Question C2

Question C2 "Do you feel that the process of �nding, assessing and reusing is functioning"
was cross tabulation analyzed with questions C3a, C10a, C4, C5 and C7. To summarize,
the majority of respondents who feel that this process is working, thinks that:

• The construction of a reuse repository would be worthwhile

• The integration of reusable components may cause some problems

• It is not a clearly de�ned way for how to decide whether to reuse a code or design
component

8.8 Results from Survey combined with Previous Surveys

We added the results from our survey at SKD to a selection of the results from the three
previous surveys on developers view on component reuse. As mentioned in section 6.1 on
page 67, the four surveys have some common questions. This section displays the results
from the questions that were answered by all four companies. Questions C5 and C9 are
included even though they were only answered by three of the companies. The results will
be discussed in section 10.2.

There are some di�erences in the naming of the questions, but we chose to proceed with
the naming from our survey at SKD. Survey results and questionnaires from Ericsson,
Mogul and EDB Business Consulting can be found in the master thesis of Naalsund and
Walseth[37], Wang[75] and Sæhle[52]. The survey at Ericsson had 9 respondents, Mogul
had 7 respondents, EDB Business Consulting had 10 respondents and SKD 15 respondents,
which makes a total of 51 respondents. Questions C2, C3a, C3b, C4, C5, C9, R1 and R3
is presented in the remainder of this section.

C2: Do you feel that the process of �nding, assessing and reusing existing code/design
components is functioning? Table 8.1 show how the results were spread, and that 4 re-
spondents did not answer this question.

Table 8.1: Results from question C2 answered by all four companies

C3a: Is the existing code/design components su�ciently documented? Table 8.2 shows
how the results were spread. We see that 4 respondents did not answer this question.

8.8. RESULTS FROM SURVEY COMBINED WITH PREVIOUS SURVEYS 87

Table 8.2: Results from question C3a answered by all four companies

C3b: If "sometimes" or "no": is this a problem? Table 8.3 shows how the results were
spread. We see that 10 respondents did not answer this question.

Table 8.3: Results from question C3b answered by all four companies

C4: Would the construction of a reuse repository, with extra component documentation
etc.: Table 8.4 shows how the results were spread. We see that 5 respondents did not
answer this question.

Table 8.4: Results from question C4 answered by all four companies

C5: How would you decide to reuse a component "as-is", reuse with modi�cations, or
make a new component from scratch? Table 8.5 shows how the results were spread. We
see that 14 respondents did not answer this question, where 9 of these were from Ericsson.

C9: To what extend do you feel a�ected by reuse in your work? Table 8.6 shows how the
results were spread. We see that 9 respondents did not answer this question, where all of
these were from Ericsson.

R1: Is the organizations requirement negotiation process working su�ciently? Table 8.7
shows how the results were spread. We see that 7 respondents did not answer this question.

R2: In a typical project: Was answered by all four companies, but we did not understand
the results from Mogul and EDB Business Consulting.

88 CHAPTER 8. SURVEY RESULTS (T3)

Table 8.5: Results from question C5 answered by three of the companies

Table 8.6: Results from question C9 answered by by three of the companies

Table 8.7: Results from question R1 answered by all four companies

R3: Are requirements often changes/renegotiated during a development project? Table
8.8 shows hot the results were spread. We see that 6 respondents did not answer this
question.

Table 8.8: Results from question R3 answered by all four companies

Part V

Discussion

89

Chapter 9

Current Level of Reuse within the
Selected GLD Systems (T2)

In this chapter we discuss the results from the work associated with T2, the investigation
of current level of reuse within the selected GLD systems, which aims at answering RQ1.
We used three approaches in order to answer this question; system documentation review,
analysis of source code, and the Reuse Maturity Model. The �rst covers black-box reuse
between applications within all GLD systems, while the second approach measures identical
lines of code (white-box reuse) in a selection of programs from three of the selected GLD
systems. The last of the approaches measures the reuse maturity level according to the
Koltun and Hudson Reuse Maturity Model. We end the chapter with a discussion on the
limitations of the approaches we used.

In section 7.1 we reviewed system documentation for all GLD systems. In section 2.3.1 on
page 15 we mention several types of reuse, among them the reuse of software components.
Our motivation for executing the system documentation review was to �nd if programs
were reused across di�erent applications, as reusable components. As seen in section 7.1.1
on page 71, only four programs for the GA/LTO system were reused in this manner.
For the remaining 14 GLD systems, one program appeared in two applications. We �nd it
interesting that one GLD system had four programs which were used in several applications,
while only one turned up in the remaining 14. When we �rst selected which GLD systems
we would investigate closer, we were told that GA/LTO was very di�erent from the other
systems; it has a completely di�erent structure, and it is of newer date (Appendix D). Also,
GA/LTO has a di�erent system owner than the other GLD systems. We believe this is the
reason for the unequal division of reused components between GA/LTO and the other GLD
systems. The system documentation describes a rather general purpose for the four reused
programs; adding name- and address- information, distribution of salary and deduction
statements, retrieving statements from the database, and print. The documentation for
the other GLD systems shows that they also have several programs with general purposes,
but here each GLD system has its own, modi�ed program for this. In order to reuse a
program across di�erent applications, or between GLD systems, the developer must use
the program as-is. Even though she has complete access to the programs internals (white-
box), modifying the source code might unwillingly a�ect other programs. This description
corresponds to the description of "glass-box" reuse as shown in table 2.2; the developer
can view the source code but not modify it.

91

92CHAPTER 9. CURRENT LEVEL OF REUSEWITHIN THE SELECTEDGLD SYSTEMS (T2)

In section 7.2 we measured the amount of source code reuse from 18 programs. With this
approach, as expressed in 5.2, we investigated two forms of reuse. First we analyzed the
source code for similarities between programs from di�erent GLD systems in order to �nd
indications of common functionality. Our results, as seen in �gure 7.2 on page 73, shows
that the median amount of common source code lines was 60%. This indicates that the
compared programs has a large multitude of common functionallity, and that these common
functionalities could be a subject for reuse. Secondly, we investigateted the similarities in
the source code between the annual versions of the programs. We found this analysis very
interesting since it showed that up to 99% of the code is common between annual versions.
The di�erences we found was exclusively references to year, database tables etc. Based on
our meetings with some of the developers at SKD, we expected these programs to have
very few di�erences. They estimated that approximately 70-80% of the code was identical
between the annual versions (see Appendix C).

The approaches for developing the GLD systems can be described as code/design scaveng-
ing (2.3.2, p.18). The scavenging technique allows the developers of the GLD systems to
decrease both time and keystrokes needed to create a program, if the alternative would be
to create each annual version from scratch. One of the problems associated with code and
design scavenging is that the developer must know were to �nd the speci�c code fragment,
and valuable time can be wasted in the search process. This problem does not seem to
a�ect the developers of the GLD systems, since an annual program is basically a "clone"
of the previous version, and thus the source is given by the programs name. With the few
changes performed each year we made the following assumption; There is a large, stable
core in the programs, and bugs and �aws, if any, have been identi�ed and removed several
years ago. Altough we think it is plausible, we are not able to con�rm this in our current
research, but this could become a subject for later studies.

We decided that we would asses the current level of reuse within the selected GLD systems
against the Reuse Maturity Model by Koltun and Hudson[17]. This model, as shown in
�gure 2.3 on page 25, contains �ve phases of maturity. In order to provide an objective and
accurate identi�cation of the precise maturity level, we adopted an approach by Morillo
et al.[33]. Although this approach was barely covered in literature in the �eld of software
reuse, we selected it because it provided us with metrics and the ability to calculate the
reuse maturity level according to speci�c criteria. We had no presumptions of which level
of reuse to expect; the development at SKD was not supported by reuse technologies
such as a software repository or by the development process, but the amount of reused
code was considerably high between the annual versions. Our investigation concluded
that the current level of reuse within the selected GLD systems is level B, Monitored,
in the Koltun and Hudson Reuse Maturity Model. This is the �rst reuse maturity level
assessment conducted for the GLD system, and probably within SKD as well, and the
maturity level we identi�ed corresponds with other case studies; Frakes[17] states that
most organizations are between the Initial/Chaotic and Monitored phases at the time a
reuse program is initiated.

9.1 Limitations of Approaches

The system documentation delivered to us by SKD was supposed to contain all programs
in the GLD systems. After performing the review of the documentation and cross-checking
of programs and applications, we presented the results to SKD (Appendix E). During this

9.1. LIMITATIONS OF APPROACHES 93

presentation, one of the developers realized that the system documentation was imperfect,
and that there were several programs missing. The developer mentioned some of these,
which are listed in table E.1 on page 138.

We also discovered that the documentation did not show possible connections between the
di�erent programs, so based on the documentation alone it was impossible to determine the
amount of reused components. We could only determine the amount of components reused
across di�erent applications, not components reused within the same application. Thus,
we chose to do this on an application level, although this does not provide the accuracy
we initially wanted. With the lack of complete system documentation and call-graphs, the
alternative approach for determining reused components would be to analyze all the source
code of all programs in all GLD systems, which would most likely be a too comprehensive
task for a Masters' thesis. The cross-checking of programs did not provide us with data
which could determine the level of software reuse, but guided us in the selection of which
programs we would analyze in the source code analysis.

The programs chosen for the source code analysis belonged to the "paper registration"
application. When we presented the results from the analysis, we were told that these
programs received little attention from SG2, since more and more deliveries are received
electronically these days (Appendix F). Also, the programs we analyzed were all CICS
programs. Nevertheless, the approach for developing these programs are the same as with
all the other programs in the GLD systems, so the results should represent the other CICS
programs as well. We expect that annual versions of Batch-programs have similar reuse
rates, but this is purely an assumption. It is di�cult to say if our �ndings from the source
code analysis would have been di�erent if we would have analyzed programs from other
GLD systems. The validity of our results can be increased by analyzing a larger subset
of the GLD systems. The di�erential tool we used detected only changes in lines and
words. With our limited knowledge about the COBOL-language, we were only able to
spot changes such as references to year, tables, pointers etc. We showed that the median
amount of similarities between two programs from di�erent GLD systems was 60%, but
we cannot provide our readers with information on what kind of functionality that di�ers
between the programs.

When we initially started to use the Reuse Maturity Model, we compared the develop-
ment of the GLD systems against each of the ten corresponding dimensions. The di�erent
dimensions can each be in a di�erent phase of maturity, which made it di�cult to deter-
mine and communicate one appropriate phase for the GLD systems. With the paper by
Morillo et al. [33] we were able to quantify the di�erent aspects involved in reuse, and we
could calculate and locate the current phase in the Reuse Maturity Model. However, a
considerable limitation of this approach is that we could not �nd it in any other literature,
and as far as we know it has not been published in any journals (but, the authors have
written several other, published articles on software engineering). We became in doubt
whether if we should use the approach or not. Our �nal decision, after inquiring us with
our supervisor, was to use the paper.

Chapter 10

Emphasis on Software Reuse in
SKD's Development Process (T3)

What is the emphasis on software reuse in the current development process? Our motiva-
tion was to �nd out how well SKD had prepared the organization towards software reuse.
Four di�erent approaches was used in order to answer RQ3:

• A survey among 25 developers at SKD

• Meetings with the developers in SG2

• A review of the Framework for System Maintenance

• Interview about SKD's Framework for System Maintenance

This chapter will �rst go through some of the �ndings from the survey and its limitations.
Then a discussion of the survey in relation to the previous surveys at Ericsson, Mogul and
EDB Business consulting is presented, which has no relevance to RQ3, but is presented
under theme T3 since it is one of our contributions from the survey. Then a short de-
scription of the interview about SKD's Framework for System Maintenance follows, before
a discussion of RQ3 which will draw the conclusion of that SKD has not prepared the
organization for reuse in their current development process.

10.1 Findings from the Survey at SKD

This section will give a summary of the �ndings from the General questions G1 to G3 of
the survey, go into detail to component question C2 and C9, discuss the surveys validity,
and �nally compare our results with those the surveys at Ericsson, Mogul, EDB Business
Consulting and Statoil.

It seems to be a positive attitude toward software reuse and the developers found reuse
to be important for achieving di�erent bene�ts. Figure 8.3, 8.4 and 8.5 in chapter 8
shows the results of the three categories of general questions. Most of the respondents
�nd reuse to be important for achieving di�erent bene�ts such as lower development costs,
shorter development time, higher product quality, standardized architecture and lower
maintenance costs 8.3. For G2 we see that the respondents answers are typically in the
range from medium to high. All 25 respondents agree on that testing is very important.

95

96CHAPTER 10. EMPHASIS ON SOFTWARE REUSE IN SKD'S DEVELOPMENT PROCESS (T3)

OO technologies and con�guration management seemed to be lesser important than the
rest as seen in �gure 8.4. For question G3 we see that the respondents answers are also
typically in the range from medium to high. Several respondents answered don't know on
the question involving use cased and requirements. Most of the respondents feel that there
should be more reuse, and they have split opinions about whether the process of �nding,
assessing and reusing is functioning or not. The majority of respondents answered that it
is not clearly de�ned how one should decide to reuse a code or design component. When
we asked to what extent they feel a�ected by reuse in their work, the answers typically
ranged from little too high.

10.1.1 Limitations of Survey at SKD

The di�erent validity threats were discussed in section 2.8.3 on page 34.

Internal Validity

The participants' previous knowledge and experience on some approaches to software de-
velopment can have impact on their answers for questions C1-C3.

External Validity

Since we only had 25 respondents, we do not think that the results are generalizable. But
if we add the �ndings from SKD with those from the surveys at Ericsson, Mogul and EDB
Business Consulting we have 51 answers from four companies, we increase our chances of
a representable population of the Norwegian IT industry.

Construct Validity

In the survey di�erent concepts such as component, architecture and etc. were used.
These lack a clear and proper de�nition, and may therefore be interpreted di�erently by
the respondents. Also, subjects have di�erent perceptions of the scale used in the answer
alternatives in the questionnaire. These may be interpreted di�erently by the various
respondents. A person answering "very high" may be equal to another person's perception
of "high". As mentioned in section 8.7 on page 85, several questions were not relevant for
all the respondents and should therefore have o�ered an "don't know" answer option.

When we started to analyze the questions, we discovered that the Component Questions
were not relevant for all the respondents. Unfortunately we had forgot to provide question
C1, C2, C3a, C4, C5, C6, C7 and C8 with an "I don't know" answer option. Ideally, the
respondents should have skipped the questions if they did not know how to answer them,
but this was not the case. We take self-criticism for this, and we should have detected
this when we decided to use an already existing questionnaire. To make up for this, we
decided to make cross tabulation analysis of the questions C1 to C8, against C9. The
answer alternatives to question C9 was provided with an "I don't know" answer option,
and we thought that this might be a good starting point to eliminate mirepresentative
answers. In our opinion respondents who answered that they were little or not a�ected by
reuse in their work, or did not know, may not always be capable of answering questions

10.2. SURVEY DISCUSSED IN RELATION TO PREVIOUS SURVEYS AT NTNU 97

involving reuse. This involved 10 of the 25 respondents. For this reason, we removed these
10 from the result presented in section 8.7.

Participants in a survey may have certain expectancies to what the results of the survey
should be, which may lead to respondents misrepresenting the answers by trying to look
better or worse, or guessing the answers. There can be several reasons why a respondent
may give faulty answers; misinterprets the question, does not know the answer but answers
anyway, thinks he knows the answer but answers incorrect, or is lying.

10.2 Survey Discussed in Relation to Previous Surveys at
NTNU

Our results corresponds to the results of the previous studies at Ericsson, Mogul, EDB
Business Consulting and Statoil. Reuse bene�ts from developers view include lower costs,
shorter development time, higher product quality of reusable components and a standard-
ized architecture, which is supported by the �ndings from Statoil and in the literature. The
results also shows that the developers at Ericsson, Mogul, EDB Business Consulting and
SKD are positive, but not strongly positive to the value of component repository. The re-
spondents also seems to agree on that the design/code components is not well documented,
and that this could sometimes be a problem.

10.2.1 Results from Survey at SKD combined with Previous Studies

When we add our results to the previous three studies, the respondents from SKD pull
up the average on all questions. The population get a skewed distribution since there are
two-three times as many respondents from SKD, as from the other companies. The results
are therefore not generalizable, and the surveys are still a prestudy.

Figure 10.1, 10.2 and 10.1 shows the results of the general questions, from all four surveys.
For general questions G1 we see that the answers are typically in the range of medium to
very high. The respondents believes that reuse are important in achieving all the di�erent
bene�ts. Lower development costs, shorter development time and a more standardized
architecture is distinguished as the most important bene�ts10.1.

From �gure 10.2 that testing and reuse/component based technologies is clearly seen as
most useful and important to the respondents.

From �gure 10.1 wee see that the respondents �nd most of the artifacts useful and impor-
tant with respect to reuse. The majority of the answers range from very high to medium
importance.

When we disregard the fact that several of the questions were missing a "don't know"
answer option (this concerns the previous surveys too), we see that most of the respondents
feels that the process of �nding, assessing and reusing existing code/design is functioning.
The existing code/design documentation is sometimes su�ciently documented, and this is
clearly a problem. Twice as many respondents believes that the construction of a reuse
repository would be worthwhile. When it comes to deciding how to reuse a component
as-is, with modi�cations or make a new component from scratch, most of the developers
from Mogul, EDB Business Consulting and SKD says that it is not clearly de�ned, where

98CHAPTER 10. EMPHASIS ON SOFTWARE REUSE IN SKD'S DEVELOPMENT PROCESS (T3)

Figure 10.1: General questions G1a-d(n=51 respondents). Columns are in the same se-
quence as in the description �eld

Figure 10.2: General questions G2a-f(n=51 respondents). Columns are in the same se-
quence as in the description �eld

the rest is divided between consulting experts or following guidelines. The majority of
respondents from Mogul, EDB Business Consulting and SKD feels little a�ected by reuse
in their work. Almost as many respondents are divided between medium to high in this
question. The organizations requirement negotiation process is working su�ciently for
most of the respondents, and the requirements is often or sometimes changed/renegotiated
during a development project.

10.3. INTERVIEW ABOUT SKD'S FRAMEWORK FOR SYSTEM MAINTENANCE99

Figure 10.3: General questions G3a-e(n=51 respondents). Columns are in the same se-
quence as in the description �eld

10.3 Interview about SKD's Framework for System Mainte-
nance

We interviewed the person in charge of SKD's framework for software maintenance. A
resume of the interview can be found in Appendix G. Because we had read and performed
a textual search of the framework, before planning the questions, we were sure that the
framework did not take software reuse into account.

As mentioned in section 6.2 on page 68, the questions was sent to the interviewee in
advance, so she would have time to prepare herself. During the interview an extra person
from the "Architecture" group joined her to aid in the questions around SOA.

We were told that SKD had no software maintenance process before the spring 2005,
and it was challenging to get people to think new thoughts and change their attitude
on how they would develop software. A good deal of information and working methods
exist only in individuals minds, not as written knowledge, and SKD is very depended
upon speci�c persons. It also came up during the interview that the process is not at all
adjusted for reusing artifacts. This was con�rmed by our review of their framework, were
we found no indications of software reuse. We asked if the process could be supplemented
with routines and templates for software reuse, and were told that it is di�cult to know
what level of detail such templates should have. Routines and templates would have to
be especially adjusted to the di�erent types of systems, because di�erent systems have
di�erent requirements.

10.3.1 Limitations of the Interview

Even though the interviewee did not understand all the questions, we felt that our initial
assumption were con�rmed. She had considerable knowledge about the framework, and

100CHAPTER 10. EMPHASIS ON SOFTWARE REUSE IN SKD'S DEVELOPMENT PROCESS (T3)

because we had gone through the framework ourselves, we are sure of that the framework
does not take reuse into account. Some of the questions was not answered at all, because
the interviewee had little experience with software reuse.

10.4 Discussion of RQ3

So back to RQ3, what is the emphasis on software reuse in the current development process?
As pointed out in the previous section, we have con�rmed that the Framework for System
Maintenance does not take reuse into account. This is supported by �ndings from both
the survey and meetings.

In the survey, the respondents were able to provide comments to each category of questions.
A couple of the developers made the following remarks in our survey:

• "In practice, reuse is not achieved very often"

• "I don't think we have the opportunity to reuse components here"

• "Reuse has no agenda in my daily work WHATSOEVER! It's not prioritized by the
'bosses'"

• "I have also, as the years go by, made myself a little 'library' of code I think may be
useful in the future"

These comments supports our assumption on that developers are not encouraged to reuse
software artifacts, and that there are no documented routines for how to perform software
reuse. In an organization, individual developers can do little about software reuse on their
own. Managers must institute the mechanisms needed, and provide organizational support
and money to �nance them, as described in section 2.2.3.

In an conversation with two of the developers (see Appendix F) we asked them how they
got information about reusable components during implementation. The developers told
us that they use their own experience, consult other developers or system experts and
randomly search for code. This indicated that it is up to each individual developer how
they carry out with software reuse. When asked if there were any documented routines on
how newly-hired employees could learn the reuse practices performed within the group, we
were told that there were no such documented routines. When you have worked on a project
for some time, you will learn the routines and they will eventually get institutionalized.

Our conclusion on RQ3 is that SKD has not prepared the organization for reuse in their
current development process.

Chapter 11

Opportunities for Systematic Reuse
in SKD (T4)

Earlier, we argued that the current state of reuse within the selected GLD systems is
"Level B, Monitored" according to the Reuse Maturity Model, and we found that SKD
had not prepared the organization for software reuse. This chapter will focus on the future
of SKD and the GLD systems; what is the potential for systematic reuse, and how can it be
achieved? We will discuss the potential for systematic reuse based on our literature study
in chapter 2. To answer how it can be achieved, we focus on changes that are required
in SKD's Framework for System Maintenance. Other aspects that must be changed or
added to the development process and organization structure will also be suggested, based
on the literature study in chapter 2. In the remainder of this chapter, we present three
alternatives for how the existing GLD systems can be reengineered.

11.1 What is the Potential for Systematic Reuse?

The results from RQ1, as seen in chapter 9, concluded that the current level of software
reuse within the selected GLD systems is "Level B, Monitored". The conclusion from RQ3
(chapter 10) was that the Framework for Software Maintenance does not emphasize soft-
ware reuse. This indicates that reuse is not institutionalized into the current development
process, and this is therefore an ad-hoc approach towards software reuse. As we discussed
in section 2.2.1 on page 13, the ad-hoc approach is an informal process, where no methods
for reuse are de�ned.

Because the various GLD systems had common features, the developers found a chance to
save development time and e�orts by copying and pasting the existing source code. Accord-
ing to the literature[34] ad-hoc reuse often happens by chance and individuals developers
are responsible for identifying and locating reusable components. Copying and pasting
code snippets from existing programs into new ones may work �ne for a while for indi-
vidual developers or small groups. However, it does not scale up across business units or
enterprises to provide systematic reuse[51]. The productivity gained by copy/paste is only
marginal, because it makes the maintenance of the software system more time consuming
and complex.

In section 2.2.2 we mentioned some bene�ts with software reuse, found from literature.

101

102 CHAPTER 11. OPPORTUNITIES FOR SYSTEMATIC REUSE IN SKD (T4)

However, it is di�cult to achieve the desired bene�ts without a systematic approach to
software reuse[3]. A summary of the bene�ts is given in the list below:

• Improved quality

• Increased productivity

• Increased interoperability between systems

• Reduced costs

The GLD systems have only experienced minor changes since they were initially developed.
The quality of the systems can be debated; the systems performs the activities they are
created for, and their defect rate is low. On the other hand, the amount of redundant code
and programs that performs basically the same tasks is fairly high.

As mentioned in section 2.6.5, development time is improved when using the copy/paste
approach. However, the approach also introduces signi�cant maintenance problems as
more products are developed. Multiple copies of the software, each slightly di�erent, has
to be managed. The source code must be adapted and modi�ed each time it is reused,
and by doing so, new errors may be introduced[50]. Thus, the code must be tested as
thoroughly as the �rst time it was created. Also, defects found in one copy must be found
and �xed several times.

In section 3.3 on page 40, we described SKD's new IT-strategy[66] and their need for
interaction and communication between the di�erent IT-systems. SKD's software systems
should be designed so that the systems can communicate both with systems within SKD,
as well as with systems in the public sector. The new IT-strategy for SKD also encourages
reuse and development on existing components instead of development from scratch or
acquisition of new solutions. The current solution deployed in the GLD systems does not
support this desired goal. Software reuse can contribute to the interoperability between
software systems if several systems have the same components for the interfaces[50]. Service
Oriented Architecture (SOA) has in the recent years become a popular way of increasing
legacy systems interoperability and reuseability.

Our investigation has not focused on development costs and resources within SKD or the
GLD systems. Due to this, we have not given any estimations on how much time, costs,
and e�ort spend can be reduced. However, we did �nd that SG2 is concerned about the
lack of resources available[60] (this was also mentioned during a meeting with SKD, see
Appendix F). More resources is required to handle the increased changes and system
initiatives[60]. Development can be conducted by smaller teams with systematic software
reuse[50]. Software reuse can reduce the amount of new code and the maintenance of the
various GLD systems.

To summarize, we see that the introduction of systematic software reuse in the GLD
systems development has potential to improve the overall quality, productivity, interoper-
ability between systems, and reduce costs. The next section will address how this can be
achieved.

11.2. HOW CAN SKD ACHIEVE SYSTEMATIC REUSE? 103

11.2 How can SKD achieve Systematic Reuse?

In section 2.6.2, we argued that processes varies from both organization to organization,
and between projects. One process alone can rarely ful�ll all the di�erent requirements from
organizations and projects who use them. Recall from RQ3 in chapter 10, we discussed
our interview about SKD's Framework for System Maintenance. The interviewee said
that their process is of a higher level and meant to capture the overall requirements from
di�erent projects within SKD, but it does not specify individual or project speci�c needs.
We will therefore propose a method for how SKD can initiate systematic software reuse.
We have followed the six key points for a successful reuse program by Morisio et al.[34], and
from Jacobson et al.[20] we used the four concurrent processes, organizational structure,
and the ten principles for software reuse.

In order to make systematic software reuse an integrated part of the existing Framework
for System Maintenance, we suggest a guideline that should be included into the process.
Figure 3.4 on page 41 shows the phases of the Framework for System Maintenance, and
that guidelines are available in all phases in the lifecycle. A guideline should include how
to plan, specify, model, design, implement and document components and applications in
the problem domain.

11.2.1 Management Commitment

In SKD's proposal for its IT-strategy for 2007-2009 [66], they state that software reuse and
development on existing solutions should be considered before new development or new
acquisition. New components should be create as generic reusable components. With this
statement from SKD, we believe that it is fair to assume that a software reuse program
would have top management commitment. Management support and commitment are of
high importance in a successful reuse program[34].

11.2.2 Changes in Organizational Structure

We recommend that SKD establish a group of Creators, who is responsible for developing
reusable components and domain engineering. This group would preferably be located
under the Information technology branch as seen in the organizational chart of SKD's IT-
department (�gure 11.1). The users of the reusable assets would include the developers
of the systems under Information systems. The creators needs to be close to the reusers,
since they must design and create components that are both useful and feasible.

11.2.3 Changes in Development Process

Jacobson et al.[20] suggested four concurrent processes for software reuse, as described in
section 2.6.2, These processes are called create, support, reuse and manage. The Create
process is performed by the Creators of reusable assets as seen in �gure 2.3. They are
responsible for activities such as inventory and analysis of existing application and as-
sets, domain analysis and engineering, de�nition of architecture, analysis of reuser needs,
technology evolution and testing of reusable assets.

104 CHAPTER 11. OPPORTUNITIES FOR SYSTEMATIC REUSE IN SKD (T4)

Table 11.1: IT-department organizational chart extended to incorporate software reuse

The Reuse process is performed by the systems under the Information systems branch
in �gure 11.1. The reusers are involved in application engineering, and makes use of
the reusable assets to produce applications or products. Before developing new code and
components for a speci�c purpose, the developer searches the repository to check if the
particular solution already exists. If the solution exists, the developer can either use it as-is
or modify it. The reusers are also responsible for activities such as examination of domain
models and reusable assets, collection and analysis of end-user needs, design and imple-
mentation of additional components, adaption of provided assets, and the construction and
testing of complete applications[20].

The Support function should help the overall set of processes, and manage and maintain
the reusable assets collection. The process may include activities such as classi�cation
and indexing of reusable assets in a library or software repository, announcement of the
distribution of the assets, provide additional documentation, and also collect feedback
and defect reports from reusers. The repository should be managed at organization or
enterprise level, since it is an activity that spans across di�erent projects and application
systems. Since we are interested in introducing as few changes as possible at a time, we
suggest that the support function is performed by the Creators of the reusable assets, at
least in the beginning. When the reusable software repository have grown considerably,
and is used by a number of di�erent systems, this process can be extracted to an own
group that is responsible for these activities.

The Manage process acts as a superior process, which tracks and coordinate the other
processes. Activities includes setting priorities and schedules for new asset construction,
analyzing the impact and resolving con�icts concerned alternative solutions when required
assets is not available, and establishing a training program. The manage process also have
to mediate con�icting interests of both creators and reusers. We believe that this process

11.2. HOW CAN SKD ACHIEVE SYSTEMATIC REUSE? 105

can be performed by a subgroup within the Technology management group, under the
Information technology branch.

A software reuse program can only succeed if SKD can prove it to be economical bene�cial,
as discussed in section 2.4.2 on page 21. It is important to measure the reuse progress with
metrics if they are to manage the reuse program, justify the investments and optimize
it. The measurement and monitoring of reusable assets and reuse program should be
performed by the Management process, since it is important that measure and monitoring
is performed at the organizational level to ensure reuse.

11.2.4 Training and the use of Champions

Training is one of the most important activities in implementing systematic reuse. Not
only does it increase the knowledge about reuse, but it is also a key for gaining acceptance
for reuse. This is especially important for SKD, since systematic reuse is quite di�erent
from the way reuse is currently performed at SKD, namely ad-hoc. It is important that
SKD encourage developers to develop systems with reusable components, and that new
components is design with reusability in mind. The introduction of awards or incentives is
reported to have a positive e�ect in other organizations[21][48], and should be introduced
at SKD. Incentives helps as a motivation and encourages developers to change their way
of developing software. The use of champions, both for the creators and reusers, should
encourage to further software reuse within SKD. Champions can act as driving forces
behind change processes, and should be people with a strong engineering background that
have trust from their fellow workers and are enthusiastic about software reuse.

11.2.5 Pilot Project

The reuse program should be implemented incrementally. By a series of pilot project,
taking one system at a time, the program can evolve in smaller increments. SKD should
introduce as few changes as possible at a time, and build upon existing knowledge, skills,
and tools in the organization. This has several advantages; it helps them build up con�-
dence in the organization and provides immediate returns on investments.

If SKD for example would like to take the GLD systems as a starting point for implementing
systematic reuse and the building of reusable assets, it would require substantial e�orts and
investments. It is important that SKD have a business strategy that looks beyond current
projects, and invests in assets that future project can take advantage of. As discussed in
section 2.3.5 on page 20, domain engineering is a key concept in systematic reuse, that can
help identify potentially reusable assets and an architecture that enables reuse. Domain
analysis can be performed in order to locate and record commonalities and variability in
the GLD systems. Then, domain implementation can be performed in order to create
the reusable assets and new systems. These processes are performed by the Creators of
reusable assets.

Within the GLD systems it exist potential for vertical, internal and external reuse, meaning
that reusable software components can be reused within a single GLD system (for example
GA/LTO) or by the di�erent GLD systems. Vertical reuse is harder than horizontal reuse
to achieve, but o�er greater potential when it comes to the bene�ts of software reuse.

106 CHAPTER 11. OPPORTUNITIES FOR SYSTEMATIC REUSE IN SKD (T4)

Horizontal reuse refers to when software components is used across a wide variety of appli-
cation areas. This can be both COTS components, library components, software drivers
and graphical user interface functions. We anticipate that these types of components can
be used by other systems outside the GLD systems if they are generic or have a common
interface.

Since we only have knowledge about the GLD systems, we are not sure if these are a
suitable place to start from. This decision must be made by SKD. Regardless of the
system they start with, we assume that great e�orts must be made in domain engineering
and reengineering of the systems in order to build reusable assets and an architecture that
enables reuse. When the pilot project is �nished, a new pilot can be initiated. This time
a new representable system should go through the same process as the former, only this
time SKD has gained more experience, skills and con�dence. The new pilot might also be
able to use the reusable assets constructed in the previous pilot. It is also fair to assume
that processes, guidelines, tools and training is customized gradually as SKD get more
experience. As previously mentioned, the entire process must be monitored and measured
with metrics in order to manage their reuse progress.

SKD's payo� will eventually come when several applications are build more cost-e�ciently
and more rapidly using reusable components. This payo� builds up over time, as the
reusable components are reused repeatedly and more reusable components are developed.

11.3 Rewriting of Existing GLD Systems, Three Alternative
Approaches

In our source code analysis of the GLD systems, we discovered that the annual versions
of the programs have between 97% and 99% of unchanged code. This raises the question
about how necessary these annual versions really are. Most of the annual systems are
required by law to be available for up to 10 years. With 15 di�erent GLD systems, this
means that up to 150 systems must be kept alive or stored on tape. As mentioned earlier,
the reason for these annual versions relates back to the days where the storage capacity and
speed of hard drives was inadequate for storing the data needed for all GLD systems, and
for several years. The solution for this was to let each GLD system have its own database,
and creating a new GLD and database each year.

In this section we will discuss di�erent approaches to how the GLD systems could be made
more reusable while still running on the existing mainframe. The approaches presented here
does not consider development of the GLD systems from scratch, but only modi�cations to
the existing systems. The "X-version approach" is speci�c for the GLD systems, while the
two other suggestions could be applied to legacy systems and COBOL programs in general.
However, the rewriting of such systems is not to be underestimated, and substantial work
and e�ort is required when considering these approaches.

11.3.1 X-version Approach

The "X version" approach came up during a meeting with one of the developers at SKD
(see Appendix F). The programs are created without any reference to which year of the
databases they are communicating with. The same program can be used year after year,

11.3. REWRITINGOF EXISTINGGLD SYSTEMS, THREE ALTERNATIVE APPROACHES107

and only requires modi�cations if it is required. Instead, the programs are using database
views which can be replaced each year. The view directs the application to the correct
year.

This approach has the advantage that the programs would not have to be copied, pasted
and modi�ed annually, thus reducing the number of systems which needs to be maintained.
This approach is only partial bene�cial, since views and databases still needs to be created
as they did before, and it does not solve the problem of code redundancies between the
di�erent programs.

11.3.2 Separating common Functionality in Separate Modules

The GLD systems had an high percentage of common code lines between the annual ver-
sions, but their was also a great amount of commonalities between the di�erent GLD
systems. Our code analysis showed that these numbers varied from 36% to 78%. This
indicates that there are common functionality between the di�erent systems, and these
functionalities are potentially reusable assets. These reusable assets should be extracted
and placed into generic components, and made available for other modules. The variation-
points are extracted to smaller, specialized components. In object-oriented programming
this is recognized as functions in separated classes. We brie�y mentioned the concept of a
"copybook" earlier. A copybook in COBOL is a �le which contains code and can be shared
among several programs. By placing the common code in copybooks, the redundancies in
the GLD systems would be reduced.

11.3.3 Restructuring and Software Architecture

Our source code analysis revealed that there is a lack of a visible and uniting architecture
in the GLD systems. All CICS applications have their "sort of three layer" architecture,
but we have not been able to �nd an higher and superior form of architecture which uni�es
and structures all the programs. In order to achieve a higher level of reuse, a software
architecture is required[20]. And if a software architecture is to be created and deployed,
the GLD systems would need severe restructuring. In the remainder of this section we
discuss a technique for restructuring COBOL/CICS applications. We must emphasize
that we have limited knowledge in this �eld, and we can not guarantee that this concept
will work in the context of the GLD systems.

The CICS applications are written in mixed languages; COBOL and CICS. Restructuring
COBOL/CICS applications are far from trivial, and certain problematic CICS constructs
should be removed[2]. The CICS HANDLE commands are such constructs. The HANDLE
CONDITION, HANDLE ABEND and HANDLE AID has been proved to have counter in-
tuitive behavior under certain conditions, and these should be removed in order to increase
the maintainability and reusability of the system. For exception handling, these statements
should be replaced with return codes used by CICS. For evaluating input from the user,
the HANDLE should be replaced with the COBOL EVALUATE statement.

Sellink et al.[2] also states that the GO TO and GO TO DEPENDING commands should
be removed because these commands makes the program unstructured. The GO TO should
be replaced by the PERFORM command, and all statements from the point of entry to to
where the control is passed back to the teleprocessing monitor should be performed within

108 CHAPTER 11. OPPORTUNITIES FOR SYSTEMATIC REUSE IN SKD (T4)

the EVALUATE section. Figure 11.1 shows a simple example of how the HANDLE AID
commands could be removed.

Figure 11.1: Simple example of restructured GLD program

After performing the actions mentioned so far, the program should be repartitioned[2].
Subroutines in SECTION levels should be extracted and placed as separated �les. The
subroutines will then exist as subprograms, which has several obvious payo�s:

• The subprograms becomes reusable since they can be accessed and used by other
programs.

• Only the CICS commands and control logic remains in the original program, and the
business and database logic is extracted.

• The programs becomes smaller in size, thus more maintainable and testable.

For more detailed information on restructuring COBOL/CICS application and support
tools, we recommend the article "Restructuring of COBOL/CICS Legacy Systems"[2]. By
restructuring the GLD systems, the architecture would no longer be a "sort of", but rather
an actual three layer architecture. The modularization of the system supports the idea of
a Service Oriented Architecture (SOA).

11.3.4 Issues Related to the proposed Approaches

The annual versions of all GLD systems and databases is still the largest obstacle against
achieving a large-scale reuse program. None of the approaches for rewriting the GLD sys-
tems solves this particular problem. In one of our meetings, one of the developers stated
that it is probably more expensive to manage several databases than to have a single
database. Hard drives has decreased in costs, and both capacity and performance has
increased since these systems was created in the early 90's. Some modi�cations would of
course be required to the existing tables, among them is the identi�cation of the speci�c
year in each table. All redundancies between the di�erent GLD databases must be identi-
�ed and replaced with a single table. The developers in SG2 does not agree whether or not
it is more feasible with one common database for all the GLD systems, or as the current
solution with one database for each GLD system (see Appendix F).

In an internal paper at SKD[61] the group leader for SG2 describe how more modern in-
tegration technologies and SOA can be utilized in order to modernize SKD's systems and
processes. SOA is a concept of structuring programs in the shape of service. The value

11.3. REWRITINGOF EXISTINGGLD SYSTEMS, THREE ALTERNATIVE APPROACHES109

for SKD lays both internal and external to the organization. The internal value is that
services can make us of common resources across both mainframe and Unix platforms.
The greatest gains is external where SKD's services can be made available for external
users and contribute to improved cooperation with citizen and industry. As mentioned
earlier, SKD's systems are build on various technical platforms, and with an integration
platform these systems could be able to communicate with the help of services. We have
not emphasized on Service Oriented Architecture in this thesis since SKD initiated their
own project for modernization of the GLD systems. The MAG-project aims at a Service
Oriented Architecture for their IT-systems, and as previously mentioned an ideal architec-
ture for the GLD systems has already been proposed. Its still not clear whether the GLD
systems will be re-engineered using object-oriented languages, or if they will be customized
and wrapped in order to function with the new technology.

Part VI

Conclusion and Further Work

111

Chapter 12

Conclusion and Further Work

In this chapter we present the conclusion of this thesis, and propose further work.

12.1 Conclusion

The objective of this thesis was to solve four research question and two organization spe-
ci�c goals. We showed that even though there is a considerable amount of reuse within
the GLD systems, the extent of this reuse is ad-hoc and performed only on individual
basis. Their current phase in the Reuse Maturity Model is level B, Monitored, which is
common for organizations without a systematic approach to reuse. Our second research
question remains inconclusive in this thesis, as we could not answer if reused components
are more stable than other components with the available data resources. The currently
deployed development process at SKD does not emphasize on software reuse. However, the
developers at SKD seems to have a positive attitude toward software reuse, and feels that
it is an important approach for lowering development costs, shortening development time,
increasing product quality, and lower maintenance costs. Changes must be made to SKD's
development process in order to achieve systematic reuse. This requires commitment from
the management, and preferably an own unit who is responsible for developing reusable
assets. Systematic reuse in the GLD systems could potentially reduce todays maintenance
problems, improve the overall quality, increase the productivity and interoperability with
other systems.

12.2 Further Work

Our assessments on the current reuse level within the GLD systems can be used as starting
point for the introduction of systematic reuse. SKD needs to change their current develop-
ment process so reusable assets are created and used during development, and they need
technology that supports development with reuse. The developers must be encouraged to
perform systematic software reuse, and the use of incentives could act as a motivational
factor for achieving a higher level of reuse. The guideline we proposed should be tested
with pilot-projects in order to gain experience and knowledge, before extending the reuse
program to other systems within SKD. When initiating a reuse program, it is important
that SKD measures and evaluates the processes and reusable assets frequently. Now that

113

114 CHAPTER 12. CONCLUSION AND FURTHER WORK

SKD knows the GLD systems' current level in the Reuse Maturity Model, it should be
easier to �nd where reuse initiatives are required in order to reach a higher phase in the
model. Other metrics and models besides the Koltun and Hudson model can also be used.

The source code analysis presented in this thesis shows only the amount of similarities
between some of the programs. In order to remove the redundancies in the GLD systems,
SKD must identify the content of the commonalities.

The survey used in this thesis has previously been used by other master thesis' at NTNU.
We have contributed with more respondents to NTNU's research on software developers
attitude toward software reuse. If later studies include more Norwegian IT-companies, the
result could be generalized to concern the Norwegian IT-Industry.

We were not able to answer if reused components are more stable regarding changes and de-
fects than other components, due to the available data resources. The question is nonethe-
less very interesting, and could be included in case studies were both reused and non-reused
components are available, along with statistics on changes and defects.

SKD has initiated a project which focuses on modernization of the GLD systems (the MAG
project). When this project becomes well under way, further work could include a second
assessment on the state of reuse within the GLD systems. Later studies could also do a
closer investigation on the success factors for achieving systematic reuse, such as:

• Which modi�cations in the development process proved to be bene�cial

• The e�ect of introducing a group of creators responsible for creating reusable assets

• The e�ect of Domain Engineering

• The advantage of incentives for developers

• The advantage of technologies such as a software repository

Bibliography

[1] Silvia Mara Abrah and Antonio Francisco do Prado. Web-enabling legacy systems
through software transformations. In WECWIS '99: Proceedings of the International
Workshop on Advance Issues of E-Commerce and Web-Based Information Systems,
page 87, Washington, DC, USA, 1999. IEEE Computer Society.

[2] Harry Sneed Alex Sellink and Chris Verhoef. Restructuring of COBOL/CICS legacy
systems. Software Maintenance and Reengineering, 1999. Proceedings of the Third
European Conference on, pages 72�82, 1999.

[3] Almeida Alvaro and Meira. Towards a software component
certi�cation framework. In In the 7th International Confer-
ence on Quality Software (QSIC), Portland, Oregon, USA, 2007.
http://www.ecoop.org/phdoos/ecoop2005phd/EduardoSantanaDeAlmeida.pdf.

[4] Line Kristo�ersen Asbjørn Johannesen and Per Arne Tufte. Forskningsmetode for
økonomisk-administrative fag. Abstrakt forlag as, 2004.

[5] R.D. Banker, R.J. Kau�man, and D. Zweig. Repository evaluation of software reuse.
Software Engineering, IEEE Transactions on, 19(4):379�389, Apr 1993.

[6] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Ad-
dison Wesley, 2003.

[7] Elizabeth Burd, Malcolm Munro, and Clazien Wezeman. Analysing large cobol pro-
grams: the extraction of reusable modules. icsm, 00:238, 1996.

[8] Dave Card and Ed Comer. Why do so many reuse programs fail? Software, IEEE,
11(5):114�115, Sep 1994.

[9] Reidar Conradi. Process support for reuse. Software Process Workshop, 1996. Process
Support of Software Product Lines., Proceedings of the 10th International, pages 43�
47, 17-19 Jun 1996.

[10] Thomas D. Cook and D. T. Campbell. Quasi-experimentation: design and analysis
issues for �eld settings. Boston: Houghton Mi�in, 1979.

[11] Margaret J. Davis. Stars reuse maturity model: Guidelines for reuse strategy for-
mulation. In Proceedings of the 5th Annual Workshop on Software Reuse, 1992.
ftp://gandalf.umcs.maine.edu/pub/WISR/wisr5/proceedings/ascii/davis_m.ascii.

[12] Ted Davis. Toward a reuse maturity model. In Proceedings of the
5th Annual Workshop on Software Reuse. University of Maine., 1992.
http://www.umcs.maine.edu/ larry/latour/WISR/wisr5/proceedings/ascii/davis_t.ascii.

115

116 BIBLIOGRAPHY

[13] Danielle Fafchamps. Organizational factors and reuse. IEEE Softw., 11(5):31�41, Sep
1994.

[14] William B. Frakes. Systematic software reuse: a paradigm shift. IEEE, 1994.
http://ieeexplore.ieee.org/iel2/2956/8385/00365817.pdf.

[15] William B. Frakes and Christopher J. Fox. Sixteen questions about software reuse.
Commun. ACM, 38(6):75��., 1995.

[16] William B. Frakes and Sadahiro Isoda. Success factors of systematic reuse. IEEE
Softw., 11(5):14�19, September 1994.

[17] William B. Frakes and Carol Terry. Software reuse: metrics and models. ACM
Comput. Surv., 28(2):415�435, 1996.

[18] Tore Berg Hansen and Greta Hjertø. Kvalitet og programvareutvikling. Tisip og
Gyldendal Akademisk, 2003.

[19] Ottar Hellevik. Forskningsmetode i sosiologi og statsvitenskap. Oslo: Universitetsfor-
laget, 2002.

[20] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software reuse: architecture, process
and organization for business success. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1997.

[21] Rebecca Joos. Software reuse at motorola. IEEE Softw., 11(5):42�47, Sep 1994.

[22] Philip Koltun. Infrastructure issues for achieving software reuse. In Fifth Workshop
on Institutionalizing Software Reuse, Hewlett-Packard, Palo Alto, California, October
1992.

[23] Philip Koltun and Anita Hudson. A Reuse Maturity Model. In Fourth Annual Work-
shop on Software Reuse, November 1991.

[24] Det kongelige Fornyings-og administrasjonsdepartementet. Eit informasjonssamfunn
for alle, 2006-2007. St.meld.nr.17.

[25] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131�183, 1992.

[26] Meir M. Lehman and Juan F. Ramil. Rules and tools for software evolution planning
and management. Ann. Softw. Eng., 11(1):15�44, 2001.

[27] Wayne C. Lim. E�ects of reuse on quality, productivity and economics. IEEE Software,
11(5):23 � 30, 1994.

[28] Wayne C. Lim. Why the reuse percent metric should never be used alone.
In Workshop on Institutionalizing Software Reuse (WISR'9), January 1999.
http://www.umcs.maine.edu/�ftp/wisr/wisr9/�nal-papers/Lim.html.

[29] Jonathan I. Maletic and Michael L. Collard. Supporting source code di�erence analy-
sis. In ICSM '04: Proceedings of the 20th IEEE International Conference on Software
Maintenance, pages 210�219, Washington, DC, USA, 2004. IEEE Computer Society.

[30] Doug McIlroy. Mass produced software components. NATO Software Engineering
Conference, pages 138�155, 1968.

[31] Tom Mens. A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng.,
28(5), 2002.

BIBLIOGRAPHY 117

[32] Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and economic bene-
�ts of software reuse: a review of industrial studies. Empirical Software Engineering,
12(5):471�516, 2007.

[33] J. Llorens Morillo, A. Amescua Seco, and V. Martinez Orga. The
reuse process and its maturity level in an organization: Rmm, 1997.
www.ie.inf.uc3m.es/grupo/Investigacion/LineasInvestigacion/Congresos/RMM97_
Docum_Final.doc last visited on 30. May 2008.

[34] Maurizio Morisio, Colin Tully, and Michel Ezran. Diversity in reuse processes. IEEE
Softw., 17(4):56�63, 2000.

[35] Maurizio Morisio, Colin Tully, and Michel Ezran. Success and failure factors in soft-
ware reuse. IEEE Trans. Softw. Eng., 28(4), 2002.

[36] Hausi A. Müller and Mari Georges, editors. Proceedings of the International Confer-
ence on Software Maintenance, ICSM 1994, Victoria, BC, Canada, September 1994.
IEEE Computer Society, 1994.

[37] Erlend Naalsund and Ole Anders Walseth. Decision-making in component-based de-
velopment. Master's thesis, Norwegian University of Science and Technology, 2002.

[38] Jingyue. Conradi. Mohagheghi. Sæhle. Wang. Naalsund and Walseth. A study of
developer attitude to component reuse in three it companies. In Proceedings of the
2006 ACM/IEEE international symposium on Empirical software engineering, pages
538�552. Springer-Verlag Berlin Heidelberg, 2004.

[39] Arbeids og administrasjonsdepartementet. Arkitektur for elektronisk samhandling i
o�entlig sektor. strategier og tiltak for mer samordning på it-området (forprosjektrap-
port), 2004.

[40] Wilma M. Osborne and Elliot J. Chikofsky. Guest editors' introduction: Fitting pieces
to the maintenance puzzle. IEEE Softw., 7(1):11�12, 1990.

[41] Je�rey S. Poulin. Measuring reuse. In 5th Annual Workshop on Software Reuse,
WISR5. IBM, 1992. citeseer.ist.psu.edu/poulin92measuring.html.

[42] Je�rey S. Poulin. Technical opinion: reuse: been there, done that. Communication of
the ACM, 42(5):98�100, 1999.

[43] Roger S. Pressman. Software Engineering: A Practitioner's Approach. McGraw-Hill
Higher Education, 2001.

[44] Rubén Prieto-Díaz. Making software reuse work: an implementation model. SIGSOFT
Softw. Eng. Notes, 16(3):61�68, 1991.

[45] Rubén Prieto-Díaz. Systematic reuse: a scienti�c or an engineering method? SIG-
SOFT Softw. Eng. Notes, 20(SI):9�10, 1995.

[46] Rubén Prieto-Díaz. Status report: software reusability. Software, IEEE, 10(3):61�66,
May 1993.

[47] Thiagarajan Ravichandran and Marcus A. Rothenberger. Software reuse strategies
and component markets. Commun. ACM, 46(8):109�114, 2003.

118 BIBLIOGRAPHY

[48] DOD Software reuse initiative falls church va. Software
reuse executive primer, 7th edition. http://stinet.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA300508&Location=U2&doc=GetTRDoc.pdf.

[49] Slyngstad. Gupta. Conradi. Mohagheghi. Ronneberg and Landre. An empirical study
of developers views on software reuse in statoil asa. In ISESE '06: Proceedings of the
2006 ACM/IEEE international symposium on Empirical software engineering, pages
242�251, New York, NY, USA, 2006. ACM.

[50] Johannes Sametinger. Software engineering with reusable components. Springer-Verlag
New York, Inc., New York, NY, USA, 1997.

[51] Douglas C. Schmidt. Why software reuse has failed and how to make it work for you.
C++ Report magazine, January 1999.

[52] Odd Arne Sæhle. Evaluation of software reuse at edb-bc. Master's thesis, Norwegian
University of Science and Technology, 2003.

[53] Guttorm Sindre, Reidar Conradi, and Even-Andre Karlsson. The REBOOT approach
to software reuse. The Journal of Systems and Software, 30(3):201�212, September
1995. citeseer.ist.psu.edu/sindre95reboot.html.

[54] Skattedirektoratet. Strategisk plan for bruk av it i skatteetaten versjon 1.3.

[55] Skattedirektoratet. Veiviser til skatteetaten, 2003.

[56] Skattedirektoratet. Erfaringsrapport for mottaksapparatet 2004. grunnlagsdata fra
tredjemann - gld 2003., 2004.

[57] Skattedirektoratet. Rammeverk for skattedirektoratets systemforvaltningsmetode,
2004.

[58] Skattedirektoratet. Rammeverk for skattedirektoratets systemforvaltningsmetode.
mars-prosjektet, 2005.

[59] Skattedirektoratet. Systembeskrivelse Grunnlagsdata 2004, 2005.

[60] Skattedirektoratet. Erfaringsrapport med forslag til tiltak. grunnlagsdata - glds 2006,
2006.

[61] Skattedirektoratet. S@ts, 2006. Internal paper for the system section at SKD's IT-
department.

[62] Skattedirektoratet. Systembeskrivelse Grunnlagsdata 2006, Vedlegg 1 Programbeskriv-
elser batch, 2006.

[63] Skattedirektoratet. Systembeskrivelse Grunnlagsdata 2006, Vedlegg 2 Programbeskriv-
elser CICS, 2006.

[64] Skattedirektoratet. Systembeskrivelse Grunnlagsdata FLT 2006, 2006.

[65] Skattedirektoratet. Systembeskrivelse Grunnlagsdata FLT 2006, Vedlegg 2 - Pro-
grambeskrivelser, 2006.

[66] Skattedirektoratet. Skatteetatens it-strategi 2007-2009, 2007.

[67] Ian Sommerville. Software engineering. Addison Wesley, 7 edition, 2001.

BIBLIOGRAPHY 119

[68] SPSS.com. Spss base 14.0 user's guide. http://www.wright.edu/cats/docs/docroom/spss/,
2005. last visited 17.04.2008.

[69] Torstein Talleraas. Arkitekturdokument mag. Technical report, Skattedirektoratet,
2007.

[70] Torstein Talleraas and Knut Botheim. Arkitekturdokument lsa. Technical report,
Skattedirektoratet, 2007.

[71] Will Tracz. Software reuse myths. SIGSOFT Softw. Eng. Notes, 13(1):17 � 21, 1988.

[72] Je�rey Voas. Cots software: The economical choice? IEEE Softw., 15(2):16�19, 1998.

[73] Winmerge, an open source visual text �le di�erencing and merging tool for windows
(version 2.6.12.0 unicode), 1996-2006. downloaded from http://winmerge.org/ - last
visited 01.02.2008.

[74] Myeong-Jae Yi, Jong-Min Park, Jae jung Yang, and Myoung-Joon Lee. Design and
implementation of a www-based c source code documentation tool using the re tech-
nologies. Science and Technology, 2001. KORUS '01. Proceedings. The Fifth Russian-
Korean International Symposium on, 1:127�130 vol.1, 26 Jun-3 Jul 2001.

[75] Øyvind Wang. A study of industrial, component-based software engineering, mogul.
Master's thesis, Norwegian University of Science and Technology, 2003.

Index

Ad-hoc software reuse, 11�13, 18, 19, 23, 36,
101, 105

Annual, 39, 41, 45�47, 51, 64, 73, 92, 106�
108, 127, 139

Black-box software reuse, 12, 16, 19, 26, 36,
59, 60, 62

Capability Maturity Model, 23
Consumer, see Reuser
Creator, 29, 103�105, 114
Cultural issues, 15, 20, 21

Domain Engineering, 20, 22, 103, 105, 106

Economic issues, 15, 20�22
Empirical strategy, 33

GA/LTO System, 42, 48, 59, 60
GB System, 42, 48, 49, 60, 62, 64, 71�73
GD System, 42, 48�50, 59, 60, 62, 64, 71�73
GK System, 43, 48, 50, 59, 60
Glass-box software reuse, 16, 19, 91
GLDB, 43, 51

Horizontal software reuse, 16, 19, 36, 105
Human factors, 15, 27, 36

Individual software reuse, see Ad-hoc soft-
ware reuse

Institutionalized software reuse, see System-
atic software reuse

Koltun and Hudson, see Reuse Maturity Model

MAG, 51, 114
Maintenance, 14, 38, 41, 42, 95, 99, 101�103,

145, 146
Metric, 22�24, 26, 32, 105

Opportunistic software reuse, see Ad-hoc soft-
ware reuse

Organizational issues, 15, 22

Pilot project, 29, 31, 105, 106

Planned software reuse, see Systematic soft-
ware reuse

Producer, see Creators

Qualitative methods, 33�35
Quantitative methods, 33�35

Repository, 15, 16, 19, 24, 26, 32, 65, 66, 74,
75, 97, 104

Reuse Maturity Model, 24, 25, 65, 73�75, 91,
92, 101

REBOOT Reuse Maturity Model, 23
Reuse Capability Model, 23
STARS Reuse Maturity Model, 23

Reuse program, 14, 15, 20�23, 25�29, 31, 32,
36, 92, 103, 105

Reuser, 28, 29, 31, 103�105

Scavenging
Code scavenging, 17, 18
Design scavenging, 18

SG2, 38, 47, 55, 57, 58, 79, 102
SOA, 99, 102, 108
Systematic software reuse, 5, 6, 11�13, 15,

19, 20, 22, 23, 26�29, 31, 36, 57,
101�103, 105

Vertical software reuse, 16, 19, 36, 105

White-box software reuse, 12, 16, 19, 26, 36,
62, 91

120

Part VII

Appendices

121

Appendix A

SEVO - Study of Software Reuse at
Sattedirektoratet

The computer systems at Skattedirektoratet (SKD) are mainly based on mainframe (COBOL/
CICS/ DB2) and UNIX (Oracle database, Forms, PL/SQL). It is very likely that SKD will
establish a new integration platform (ESB), where reusable services can be made available
for both mainframe and UNIX platforms. SKD is interested in an assignment that among
other, give answer to the following:

• What is the current state of reuse?

The study should be based on studies of two systems from each platform. If this is too
comprehensive, it is possible to take two systems from the same platform. The study
can include an outline over actual reused modules, potentially reusable modules,
existing routines that ensures reuse, and knowledge about reuse (to what degree
are the employees concerned about reuse, and know about routines and existing
modules). Suggest how much of the systems are reused in number of code lines,
function points etc.

• Are there di�erences in reuse (pattern, volume) from mainframe to UNIX?

• Consider bene�ts and drawbacks with reuse of di�erent types of components, to
investigate which components or types of components give the greatest reuse gains.
This can be measured after quality factors such as error rate, change rate, architecture
standardization etc. The study can also include an estimate of which characteristics
give the greatest reusability. Collection of data can happen by the use of data
archeology and interview.

• Suggest a number of reusable services for the new integration platform, and estimate
cost/bene�t with the new integration platform versus keeping the existing architec-
ture. How can SKD make use of OSS/COTS, and which bene�ts can it provide?

• Suggest improved processes for reuse (technical, project, organization). If possible,
a cost/bene�t model can be used in the evaluation, to demonstrate concrete e�ects.

• Look at the e�ects of outsourcing, mainly with the Altinn system.

The assignment will be further adjusted in dialogue with SKD.

Supervisor: Reidar Conradi, IDI. Co-supervisor: Tore Hovland, SKD

123

Appendix B

List of GLD systems

These are the 15 GLD systems, presented in Norwegian:

• GA - lønns- og trekkoppgaver (også kalt GA/LTO eller FLT-systemet)

• GB - Saldo og renter

• GC - Beholdning aksjer, obligasjoner og opsjoner fra VPS

• GD - Boligselskap

• GE - Gaver til forskning og frivillige organisasjoner

• GF - Livsforsikring

• GG - Skadeforsikring

• GH - Beholdning av realisasjoner i aksje- og obligasjonsfond - transaksjoner fra VPS

• GJ - Bil og Landbruk(primærnæring)

• GK - Barnehager

• GL - Boligsameie

• GM - Underholdningsbidrag

• GN - IPA (Individuell pensjonsavtale)

• GP - Avregningsdata

• GS - BSU (Boligsparing for ungdom)

125

Appendix C

Resume of Meeting 25. May 2007, at
SKD

We had prepared some questions which we wanted to be answered, before the meeting
at SKD. These questions were reviewed by Reidar Conradi, and sent to Tore Hovland
in advance of the meeting. It is important to notice that the answers below are just a
summary of what was said on the meetings, and not exact quotations. The question was
answered by various members of system group 2.

The GLD Systems

1. How many GLD systems are there?

The number depends on which person is counting. The number usually varies be-
tween 14-15 systems. Some people want even more GLD systems, but there are both
advantages and disadvantages to this. More GLD systems indicate, among other
things, more maintenance.

2. It was mentioned earlier that the �rst GLD systems were the foundation for new
ones. How much of the code is copied and modi�ed to create new GLD systems?

The earliest GLD systems acted as a base for newer ones. Code was copied and
modi�ed to support newer GLD systems need. This indicates that there are about
14 systems that are more or less the same with individual variations, which has to be
maintained. In addition to this, there are di�erent versions each year of every GLD
system. These annual versions of each system are modi�ed and changed according
to new law legislations, faults discovered, new functionality etc. Each GLD system
has its own database. This database is also copied each year. About 70-80 percent
of the code is the same for the various systems.

Figure C.1 illustrates how these systems are copied year after year.

3. Are there functions or general code that is the same for all?

Much of the code is the same, but there are individual modi�cations to each GLD
system. The systems also have di�erent sizes (for example number of programs and
code lines).

127

128 APPENDIX C. RESUME OF MEETING 25. MAY 2007, AT SKD

Figure C.1: Annual versions of the systems

4. What are the main challenges attached to this?

Maintenance; there are several interfaces to deal with. Changes to one system may
have consequences on others. Systems and stakeholders have di�erent concerns and
needs that must be considered. Figure C.2 shows the di�erent interfaces.

Figure C.2: Interfaces of the systems

5. What kind of changes or change propositions are GLD exposed to and how often are
the GLD systems changed?

Law legislations, faults discovered, new functionality etc. The systems are changed
once a year, due to annual revision of the system. The faults are analyzed and
corrected if critical errors are discovered.

6. Are changes based solely on the experience reports?

No, not entirely. Changes are also caused by law legislations.

7. What kind of consequences can a change in a GLD system have for other GLD
systems? (Ripple e�ect and cohesion/coupling between modules)

A change in one system may have consequences for others. The system owner is
responsible for change propositions and notifying responsible parties. It is important

129

that changes are thoroughly analyzed before implementation starts. An unfortunate
incidence occurred when an extensive change imposed changes on other systems and
stakeholders. None of the departments wanted to take responsibility for the system
test. This indicated that the chain of command were indistinct.

8. Do some GLD systems require more maintenance and fault corrections than other?

Yes, large systems require more maintenance than smaller once. Some systems are
also more exposed to law legislation changes.

9. Are there GLD systems that are more stable regarded to changes, and have lower
error rate than others? Yes..

10. Are the GLD systems still under development, or just in maintenance? Maintenance
and development of annual versions of each GLD system and corresponding database.

SOA

1. What are the long term goals for introducing SOA? The government wants around
the clock electronic administration ("Døgnåpen Elektronisk forvaltning") and co-
ordinated services to the public. See the documents for more information:

• "Eit informasjonssamfunn for alle"

• "Arkitektur for Elektronisk samhandling i o�entlig sector. Strategier og tiltak
for mer samordning på IT-området"

2. Pro�ts, cost-e�ectiveness and users?

"MinSide" and "Altinn" are examples of web portals that simplify services to the
population. An SOA platform for GLD systems might do the same. Other de-
partments might also bene�t from SOA. Same software components can be used for
di�erent systems, not only the GLD systems. Figure C.3 shows how a possible service
oriented architecture might look.

Figure C.3: Service oriented Architecture

3. What kind of services is relevant for SOA?

Validation and control of schemes that user �lls in. Reuse potential of services and
components across departments and platforms etc.

130 APPENDIX C. RESUME OF MEETING 25. MAY 2007, AT SKD

4. Possible date for initiation?

This year.

5. Have SKD internal competences on SOA?

Yes, some competences. But consultants are also required.

6. Which supplier of ESB is relevant?

All the major once, for example IBM and BEA.

7. What are the main challenges with introducing SOA?

The major challenge with GLD is that it is based on batch. SKD wants a new
architecture, with transactions and online processing instead of batch (sending �les
and waiting until the next day for answers).Figure C.4 tries to illustrate this.

Figure C.4: Sequential batch

Architecture

1. Is there any documentation of the overall architecture of the GLD systems? (Logical
view, process view, use cases, deployment view) There is a lot of documentation.
We received, among other publications, a copy of "Systembeskrivelse Grunnlagsdata
2004".

2. Is there correspondence between documented architecture and implementation?

No, architecture erosion has come a long way.

131

Software Development Method

1. What development method does SKD use?

SKD has a method for system management. This method is called "Framework for
System Maintenance (MARS)", and is designed to help manage all the applications
that SKD is responsible for maintenance and further development on.

2. Is this method the same for all system groups?

Yes, all system groups are supposed to use MARS.

3. Are you satis�ed with the method?

The method can be found at SKD's intranet, where all stakeholders can �nd it.
The di�erent phases are illustrated with relevant activities, guidelines, document
templates etc can be found. This is very helpful.

4. What are the test procedures?

SKD has a test strategy that is described in the MARS development method. System
test, acceptance test and production test. TestDirector is used for coordinating and
administrating the test activities.

COTS and Open Source

The GLD systems don't use any COTS or open source software, but the government wants
all departments to take it into consideration and use it.

Much of the functionality from GLD systems are of generic types and it is likely that
a lot of functionality can be bought from somebody else. PDF receipts and encryption
standards are examples of functionality that SKD might consider buying and using in the
GLD systems.

Appendix D

Resume of Meeting 15. October
2007, at SKD

The agenda for the meeting was the determination of the research questions. In collabo-
ration with Reidar Conradi, who also participated on the meeting, we had suggested four
research questions. Each of these research questions were discussed and elaborated at the
meeting. To developers from SG2 and one developer from the "Architecture" group from
SKD attended the meeting. It is important to notice that this is merely a summary of
what was said on the meeting, and not exact quotations.

Organization-speci�c Goals

Tore Hovland requested that two organization-speci�c goals should be added to the project.

SKD goal 1: Propose a process which assures software reuse

• SKD's existing software development process; MARS, should be extended to incor-
porate software reuse

• Ensure that new components are developed with reuse in mind

• How to identify potential reusable assets /components

SKD goal 2: Propose an ideal-architecture for GLD, with focus on reuse

Suggestion: Investigate rule based engines/ systems. This could be appropriate for systems
where rules changes, but were part of the system is stable. Search if there are relevant
open source components or open standards that might be useful within a new architecture.

Research Questions

RQ1: What is the current state of software reuse in selected GLD systems?
Software reuse is de�ned in IEEE, and concerns not only reuse of code but also documents,
architectural patterns, use case etc. There are di�erent levels of functionality and di�erent
levels of complexity concerning the changes that needs to be made to the di�erent GLD
systems. Each basis data (GLD) has its own set of rules which sets the basic for changes.

133

134 APPENDIX D. RESUME OF MEETING 15. OCTOBER 2007, AT SKD

Some of these rules are more stable regarding annually changes to the regulations. The
data structure can also vary in the di�erent systems and annually versions (example; input
from banks etc). An ideal solution for this would be a generic set of rules with a matching
data structure.

A practical example regarding software reuse from SKD: The module that calculates taxes
is the same that does the calculation for the �nal tax settlement. The developer from the
"Architecture" group showed us a sketch for the GA/LSA component ("7.2 Prinsippskisse
for LSA-komponenten), which was discussed.

Four GLD systems were selected. Line and Thor will start by describing the core function-
ality and subsystems of each of the selected GLD systems. This will result in four di�erent
case studies:

1. GA / LTO (Salary- and deduction assignments/ "Lønns- og trekkoppgaver") This
system stands out from the rest of the GLDS, and should therefore be included in the
study. The whole solution is considered in a new way and there are several potential
interviewees. The system has a di�erent owner than the rest of the systems, and is
therefore administered and structured in a di�erent way. The functionality is quite
similar, but software code and database structural are di�erent. GA has an interface
against ALTINN.

2. GB (Credit and interest / "Saldo og renter") This is the system with most function-
ality.

3. GD (Building association / "Boligselskap") Almost identical with the GL ("Boligsameie")
system and has an interface against ALTINN.

4. GK (Kindergartens - Care of children /"Barnehager - pass og stell av barn") GK is
a simple and typical GLD system.

A �fth GLD system was mentioned: GJ (agriculture and cars /"Jordbruk og bil"). This
system is insu�cient and has little value (manual work, lacks validation etc). The system
owners want an upgrade with more functionality, so that the system will be at the same
level as the rest of the GLD systems. With this system, we have a potential to start from
scratch. Reporting can be done via SOA, instead of the old architecture. Maybe this
system could act as a basis for the SKD goal 2 - "ideal architecture"?

SCLM - Developer environment used by SKD, and probably also used as con�guration
management. We shall use a common notation like UML for documenting the architecture,
process and products.

RQ2: Is reused components more stable regarding changes and defects com-
pared to other components? Does this research question have to be rephrased since
all GLD systems in one or another way are reused? Defect logs, change logs etc can be
used as a starting point.

RQ3: What is the potential for reuse? The focus will be on both components
and services, with emphasize on a service oriented architecture (SOA). We could see this
research question together with SKD goal 1. How di�cult will it be to incorporate changes
in the current development process and which parts of the development process is ideal for
reuse?

Who should be responsible for the reusable components? Is it possible to extend the
existing roles at SKD, so that they can support reuse? System architects versus system

135

maintainers. There is a need for a coordinating group, because of con�icting demands and
changes towards the reusable components. SKD is at the current time in acquisition for
a new integration platform. Within the next few months there will be a reorganization of
the organization (with more focus on architecture and testing).

RQ4: What is the emphasis on software reuse in current development pro-
cesses? This question is not about inspecting the employee's knowledge or attitude to-
wards software reuse. We want to investigate how well SKD has prepared the organization
for reuse, so that the developers can practice and think about reuse in their daily work.

Conradi has a questionnaire that has been used on Ericsson and to smaller companies,
to identify this sort of questions. This questionnaire will be the basis for this research
question. We will also check out available strategy documents to see for any driving forces
for software reuse.

Platforms

To di�erent platforms is currently used:

• UNIX running Oracle

• IBM mainframes running CICS

Upgrading Oracle is more problematic than upgrading the mainframes because of interplay
between di�erent systems and versions of systems. There will be a gradual transition to
a Java platform (J2EE). The integration platform will connect the di�erent components
and services.

Problems:

• Old code running on new platforms

• The architectural dimensions

• Performance

Appendix E

Resume of Meeting 26. November
2007, at SKD

We had prepared some questions which we wanted to be answered, before the meeting
at SKD. These questions were reviewed by Reidar Conradi, and sent to Tore Hovland
in advance of the meeting. It is important to notice that the answers below are just a
summary of what was said on the meetings, and not exact quotations. The question was
answered by various members of system group 2.

The day started with a joint meeting between six employees from SKD and us students.
We showed the results from our analysis of the program- and system description from the
following documents:

• sb-�t-06-b programbeskrivelse 20070430.doc

• sb-�t-06-b systembeskrivelse 20070530.doc

• sb-grld06-gx-z-CICS v.20061009-01.01.doc

• sb-grld06-gz v 20070424-01 01.doc

Summary of our Findings

The following is a summary of our �ndings:

1. GA/LTO

Consist of 29 applications or procedures, and 124 programs. Four of the 124 programs
was in use by more than one application/procedure: GAnP428, GAnP430, GAnP456
and GAnP510.

2. GLD

(a) CICS

The GLD CICS systems consists of 10 applications and 111 programs. None
of the programs was in use by more than one procedure. Series of programs
occurred often in the GLD systems. We assumed for example that the series
GBnP301, GDnP301, GEnP301, GGnP301, GKnP301 and GLnP301 had to be

137

138 APPENDIX E. RESUME OF MEETING 26. NOVEMBER 2007, AT SKD

programs that were almost identical for the GB, GD, GK systems, etc. The
following programs occurred in several GLD systems: XXnP301, XXnP302,
XXnP303, XXnP304, XXnP305, XXnP380 and XXnP393.

(b) Batch

The GLD batch systems consists of 10 procedures and 52 programs. Only one
program were in use by two procedures. This was the GXnP002 program that
was used in both the LOAD and Identi�cation routines.

3. Discussion Our results were con�rmed under the meeting. One of the employees at
system group 2, could tell us that the system documentation for the GLD batch
programs was inadequate, since several of the programs were not mentioned in the
documentation.

During the last meeting at Skattedirektoratet, which was on October 15. 2007, it
was decided that the GLD systems GA/LTO, GB, GD and GK was to be examined
further by us. After the analysis of the programs, we decided to focus on GB, GD
and GK because they are built quite similar. GA/LTO is build on a di�erent way,
and do not have much in common with the rest of the GLD systems.

We determined to divide the day into two section. One would focus on CICS and
the other one Batch.

De�nition of Terms

The terms procedure and applications turned out to be quite confusing for us while reading
the program descriptions. Under the meeting, an explanation of the di�erences between
the two were given. For the Batch programs is the program partitioning called procedures,
and for the CICS programs it is called application. Every procedure or application has one
or more programs.

Batch

As mentioned, we could only �nd one program that was in use by more than one procedure.
One of the developers listed up some an example of programs which were also in use by
more than one application, as shown in the table E.1. These programs does not only exist
for GB, but also the rest of the GLD systems except from GA/LTO.

Table E.1: Other programs used by more than one application

The earliest GLD systems were GB and GD. The remaining systems are copied and mod-
i�ed from these through the years.

139

An example of a program used by several procedures, is the GXnP002 program. This
program checks the social security number from input �le against the census to see if the
number is in use. This program is used by all, since it uses the same database. The read
routine is also the same for every GLD system, but the remaining routines has their own
variant for each of the GLD systems.

When the GLD systems was developed in the early nineties, the amount of data that had
to be stored was considered to be vast. Storing capacity and performance was important
factors which lead to that each system got its own database.

System Modi�cation

The GB, GD and GK systems are pretty stable regarding changes and the scope of changes
between the annual versions. If there for example are �ve di�erent systems that are a�ected
by a change to the law regulation, this change is only revised in one of the systems source
code. This modi�cation is then copied and adjusted to the four remaining systems.

The main di�erence between the various GLD batch systems are which �elds they take as
input, sum �elds, database de�nitions and the declarations of cursors. Copy member,which
is a description of reusable data �elds, are used so that data �elds is not hard coded into
the source code.

Questions for Developers

We had prepared some questions for the developers in SG2. It is important to notice that
the answers below are just a summary of what was said on the meetings, and not exact
quotations.

1. What separates the di�erent programs in a series from each other?

The programs GB, GD etc. uses di�erent databases, and have some di�erences in
the processing rules. They also have di�erent screen menus. It's easier to maintain
several systems than few large ones.

2. How much of the code is identical between the systems, for example GBnP301 and
GDnP301?

Much of the code is identical, but it was not possible to get an estimation of this. It
was decided that SKD would email us the source code for GB6P301, GD6P301 and
GK6P301, this way we could run tools for di�erencing locally.

3. The documentation states that the GX programs are common for several systems.
What is the intention of these?

The GX programs are general. In CICS for example, they are the main menus.

4. Are there any call graphs for GB, GD, GK or GA? What decides the order in which
these programs will be executed? There are no call graphs for the GLD systems.
Each program is executed from the main menu, or GX program. The user types
a number to identify a particular system, and the program starts running. This is

140 APPENDIX E. RESUME OF MEETING 26. NOVEMBER 2007, AT SKD

where the 301 program comes in to play. BATCH programs have their order decided
by JCL.

5. Are there any package diagrams for the GLD systems available?

No.

6. Are the similarities between program with di�erent numbering?

No, the name of the program basically tells which programs are "copied and modi�ed"
from each other.

7. In which way has reusable programs been identi�ed so far? And how can this process
be improved?

It's been a long time since the reused programs was copied and modi�ed, except for
the annual versions. There are no routines for this.

SKD does not have any checklists when it comes to developing new annual versions,
the developers have their own routines when performing these tasks. The lack of
competence could become a problem in the future, because the lack of routines and
since the technology used is rather old. Today, all annual versions are �rst copied
from the preceding year, and then adjusted to �t the needs for this year (tables etc.)
The developers are not sure about the future of the GLD systems, but believe they
will be phased out eventually as new requirements and services appear. For example,
all reporting should be performed using Altinn.

It was also mentioned that the systems was very stable, and had few changed between
the annual versions. However, some of the programs should have been structured in
a better way to improve readability and modi�ability.

Appendix F

Resume of Meeting 15. February
2008, at SKD

It is important to notice that this is merely a summary of what was said on the meeting,
and not exact quotations. Various members from SG2 participated on the meeting.

Presentation of Findings

We presented our �ndings and results from our code analysis for the developers at SG2
and from the "Architecture" group. When confronted with the high amount of similarities
between the di�erent programs, we were told that the developers had tried to separate the
commonalities into separate modules. The problem was that each program had di�erent
�elds that needed validation, and these �eld often had di�erent length. The programs does
not separate logic and presentation. We asked if the programs could be divided into layers,
but were told that the programs are build in a "traditional" COBOL-style, and that it is
one program.

The Future of the GLD Systems

The developers told us that SKD will not conduct any changes to the COBOL-programs.
This has low priority, and SKD has already limited resources.

SKD is about to establish a new integration platform. The MAG-project will propose a
new technical solution for the basis-data systems. A developer from the "Architecture
group" gave examples of the following ways to rewrite the existing systems:

• Batch

� By packaging the batch-programs in a di�erent way, it is possible that they can
form one or more services

� A cheap way to open up the systems on, but it still requires maintenance and
it is time-consuming

� It is not certain that this is more cost-bene�cial than developing from scratch

141

142 APPENDIX F. RESUME OF MEETING 15. FEBRUARY 2008, AT SKD

• Altinn

� The Altinn system performs considerable validation.

� Validation is much of the logic in the GLD systems, and it is reasonable to
believe that there will be changes to ghe GLD systems because of the LS and
Altinn systems.

• Gradual transition

� Reuse: new interfaces, web-solutions can be packaged into the presentation
layer, closer integration between the systems, make CICS available through
services.

� Remove some of the functionality, rebuild to servers, repackage batch-programs
and validation of data etc.

One or several Databases

It was discussed whether one or several databases would be more suitable for the GLD
systems. The GLD systems is similar from year to year, where roughly speaking only year
and database name is changed. It is therefore not necessary to establish new systems each
year, but it is done because the databases is new each year.

The developer from the "Architecture" group was positive to only one database. His argu-
ments were that one database would be more practical. Storage capacity and performance
is cheap, and he believed that it is more costly to operate several databases now than
before. Maintenance and administration also take up a great deal of time. With the help
of XML, it is possible to only use one database for all the di�erent GLD systems. A
developer from SG2 did not agree with this proposed solution, because of the low change
density to the �elds in the databases. The 39 database tables is only altered when new law
legislations set in, and it is not that costly to continue with todays approach with separate
databases for each GLD system.

The GLD Systems Reuse Approach

Previous version of the di�erent GLD systems is taken as a starting point when developing
next years' system. This process is rapid, could one of the developers at the batch-programs
tell us. About one day is used when making a new GLD system. The developer therefore
question the gains when we proposed scripts or something of the sort, for automating this
process (since the script also have to be maintained).

Another developer, working with CICS-programs came up with the following approach,
which he referred to as the "X version" approach. The programs are created without any
reference to which year of the databases they are communicating with. The same program
can be used year after year, and only requires modi�cations if it is required. Instead, the
programs are using database views which can be replaced each year. The view points
the application to the correct year. This approach has the advantage that the programs
can remain as-is, without being copied, pasted and modi�ed each year. This reduces the
total number of systems, thus, fewer systems will need to be maintained. Both views and
databases must still be created as they did earlier.

143

The developers also told us that they use their own experience, consult other developers
or system experts and randomly search for code.

The MAG-project

The developer from the "Architecture" group gave us an update on the status of the MAG-
project. The MAG-project had become well-established since we started our research, and
they had created their own suggestion for an ideal architecture for the GLD systems.

Appendix G

Resume of Interview regarding
SKD's Framework for Software
Maintenance, 15. February 2008

This is a resume of an interview regarding SKD's framework for software maintenance.
At �rst we only intended to interview the person who was in charge of SKD's software
maintenance process, but it turned out that our questions were di�cult to understand, so
an extra person from the "Architecture" group was called in to help.

1. How would you say that the software maintenance process is functioning?

This method has been in use since the spring 2005. Before this SKD had no develop-
ment or maintenance process. It is challenging to get people to think new thoughts
- a change of attitude. About 250 people has gotten training in the software main-
tenance process, and there are constantly more people who decide to use it.

There are many di�erent systems and needs. This is why the framework is superior
and can be adjusted to �t di�erent needs. A good deal of information and working
methods is in peoples head, and SKD is very depended upon speci�c persons. The
answer to the question is therefor depended on who you are asking. Altinn and
some of the smaller systems do not use the process. Most of the persons that the
interviewees has talked to, is positive to the process.

2. How would you say that the software maintenance process is adjusted for reuse of
artifacts?

Not at all. There are no formal structure of this.

(a) In which phases is it possible to plan for software reuse?

The interviewee from the "Architecture" group says it is possible to plan for
reuse in all of the phases. It is important to consider reuse as early as possible.
The software maintenance process is not especially adjusted for this and has
little focus on deliveries.

(b) In which phases is it possible to use existing artifacts as design documents, code
etc.?

Don't know.

145

146APPENDIX G. RESUMEOF INTERVIEWREGARDING SKD'S FRAMEWORK FOR SOFTWAREMAINTENANCE, 15. FEBRUARY 2008

(c) Is it possible to supplement the software maintenance process with routines and
templates for software reuse?

Yes it is possible, but the questions is on what level should the routines and
templates have. After some discussion we conclude that such routines and tem-
plates have to be especially adjusted to the di�erent types of systems. Di�erent
systems have di�erent needs. The interviewees questions the gains of this.

(d) How would you identify reusable services, with respect to SOA?

No one has asked these questions before. SKD is currently working on estab-
lishing a new integration platform, but there are no concrete plans for how to
identify reusable services.

i. Does it exist any routines or templates for this?

No, it does not exist any routines or templates for identifying reusable
services.

ii. Does it exist any structured catalogue that keep track of reusable services?

No, it does not.

3. Have you accepted any requests from system groups or other units about new routines
for reuse?

No one has requested anything - maybe people wants as little as possible.

(a) Do you know if the software developers or system owners are engaged in reuse?

Don't know.

(b) Is reuse systematized as a formal process?

No, it is not.

4. How would you say that the management adjusts for reuse of documents, programs
etc.?

It depends on what you mean when you say the "management", because it is di�erent
levels of management. Some people has worked on this for a long time, but I would
say that the management has to be persuaded.

Reuse has been on the agenda, but it is not until now that is has gotten a break
through. The "Platform project" is a pioneer and there are many people who are
involved in this. Until now it has been �ve core groups in addition to reference
groups, and more and more are getting involved.

Appendix H

Questionnaire of the Software
Development Process and Reuse
Aspects at Skattedirektoratet,
February 2008

The purpose of this questionnaire is to map how SKD's employees view their development
process especially concerning reuse, as well as where they feel changes to the development
process may be necessary.

The questionnaire consists of multiple-choice questions. Mark the choices you feel is most
correct. Be honest; if you feel the current developments process works perfectly and is in
need of no changes, say so.

The questions are enumerated by the category they belong to, and a number. The compo-
nents category has questions C1, C2, C3 and so on. If a question is depends on a particular
answer from the prior question, these two questions are enumerated by an "a" and "b".
C4a and C4b are two such questions. Feel free to add comments.

Personal Information

P1: What is your current role at Skattedirektoratet?

P2: How long have you been working at Skattedirektoratet?

P3: How many projects have you been involved in?

P4: Which programming and design languages are you familiar with?

P5: Which programming and design languages are you currently using?

P6: What is your highest completed academic degree?

147

148APPENDIX H. QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECTS AT SKATTEDIREKTORATET, FEBRUARY 2008

General

G1: How important do you consider reuse in achieving the following bene�ts:

G1a: For achieving lower development costs, reuse is of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G1b: For achieving shorter development time, reuse is of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G1c: For achieving higher product quality, reuse is of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G1d: For achieving a more standardized architecture, reuse is of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G1e: For achieving lower maintenance costs (including technology updates), reuse is of
____ importance:
[] very high [] high [] medium [] little [] no [] don't know

Comments:

.

.

.

G2: How useful/important do you �nd the following:

G2a: reuse / component based technologies are of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G2b: OO technologies (java, UML, CORBA) are of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G2c: Testing is of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G2d: Inspections are of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G2e: Formal speci�cations / methods are of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

G2f: con�guration management is of ____ importance:
[] very high [] high [] medium [] little [] no [] don't know

Comments:

.

.

.

149

G3: How useful/important do you consider the following arti-
facts with respect to reuse:

G3a: requirements are of ____ importance with respect to reuse:
[] very high [] high [] medium [] little [] no [] don't know

G3b: use cases are of ____ importance with respect to reuse:
[] very high [] high [] medium [] little [] no [] don't know

G3c: design is of ____ importance with respect to reuse:
[] very high [] high [] medium [] little [] no [] don't know

G3d: code is of ____ importance with respect to reuse:
[] very high [] high [] medium [] little [] no [] don't know

G3e: test data/documentation is of ____ importance with respect to reuse:
[] very high [] high [] medium [] little [] no [] don't know

Comments:

.

.

.

Components

C1: During development:
[] There is too much reuse of code / design components going on.
[] The percentage of code/design components reused is as high as possible (optimized).
[] There should be more reuse of code / design components.

C2: Do you feel that the process of �nding, assessing and reusing existing code / design
components is functioning?
[] Yes [] No

C3a: Is the existing code / design components su�ciently documented?
[] Yes [] Sometimes [] No

C3b: If 'Sometimes' or 'No': Is this a problem?
[] Yes [] No

C4: Would the construction of a reuse repository, with extra component documentation
etc:
[] Not be worthwhile: The current system works su�ciently
[] Be worthwhile: Make �nding / reusing components easier

C5: How would you decide whether to reuse a code / design component "as-is", reuse
"with modi�cation", or make a new component from scratch?
[] By following the guidelines
[] By consulting experts
[] Not clearly de�ned

C6: A code / design component that is reused (and possibly modi�ed) is usually:
[] More stable and cause less problems than a component that is created from scratch

150APPENDIX H. QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECTS AT SKATTEDIREKTORATET, FEBRUARY 2008

[] About equal to a component created from scratch
[] Inferior to a component created from scratch (in performance, stability and so on)

C7: Integration when reusing a component
[] Usually works well (the components usually �t easily into the architecture)
[] May cause some problems
[] Is di�cult (hard to �t component into architecture)

C8: Is any extra e�ort put into testing/documenting potentially reusable components?
[] Yes [] No

C9: To what extend do you feel a�ected by reuse in your work?
[] very high [] high [] medium [] little [] no [] don't know

C10a: Is the design/code of reusable components su�ciently documented?
[] Yes [] No [] Sometimes [] don't know

C10b: If the answer to C10a is 'sometimes' or 'no', is this a problem?
[] Yes [] No [] Sometimes

C10c: What is your main source of information about reusable components during imple-
mentation?

.
Comments:

.

.

.

Requirements

In most software development projects, the initial set of requirements may change during
the course of the projects. The customers may think of new features they want to add,
the developers may �nd some requirements unfeasible (or possibly easier) to ful�ll and so
on. In such cases it may be necessary for the stakeholders to renegotiate requirements.

R1: Is the requirements renegotiation process at Skattedirektoratet working su�ciently?
[] Yes
[] No

R2: In a typical project:
[] Requirements are usually �exible, and may often be adjusted.
[] No particular trend (sometimes rigid, sometimes �exible).
[] Requirements are usually very rigid, little or no change can be negotiated

R3: Are requirements often changed / renegotiated during a development project
[] Often
[] Sometimes
[] Seldom

Comments:

.

Appendix I

Results of Questionnaire of the
Software Development Process and
Reuse Aspect at SKD, February 2008

The purpose of this questionnaire was to map how SKD'a employees view their development
process especially concerning reuse, as well as where they feel changes to the development
process may be necessary.

Explanation of Terms

The following is a short explanation of the di�erent terms that appears in the tables[4].

• Frequency: Number of respondents who has answered each category

• Percent: Number of respondents who has answered each category given in percent

• Valid Percent: Number of respondents minus missing respondents, given in percent

• Cumulative Percent: The valid percent of that value added to the valid percent of
the previous values

• Missing: Number of respondents that has not answered the question

Personal Info

P1: Table I.1 shows the respondents current role at SKD.

P2: Table I.2 shows how long the respondents have been working at SKD.

P3: Table I.3 shows how many projects the respondents have been involved in.

P4: Familiar with the following programming and design languages: Ada, ASP, Assem-
bler, Basic, C, C++, CICS, COBOL, DB2, Easytrieve, HTML, Java, Javascript, JCL,
Lisp, Turbo Pascal, Perl, PHP, Prolog SQL, PRO-IV, PL1, Matlab, UML, XML, Oracle
Warehouce builder (OWB)etc.

151

152APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

Table I.1: Results from question P1: Current role at SKD

Table I.2: Results from question P2: Number of years working at SKD

153

Table I.3: Results from question P3: Number of projects

16 of the respondents are familiar with COBOL. 12 of the respondents were familiar with
Java, were 7 of these also were familiar with COBOL.

P5: Currently using the following programming and design languages: CICS, COBOL,
Easytrive, JCL, Java, Javascript, PRO-IV, Oracle Designer, Oracle Warehouse Builder
etc.

• Java: 5

• COBOL: 7

• Oracle Warehouse Builder: 4

• Javascript: 3

P6: Table I.4 shows the highest completed academic degree.

Table I.4: Results from question P6: Highest completed academic degree

154APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

General Questions G1

The respondents were asked how important they considered reuse to be, in achieving
bene�ts such as lower development costs, shorter development time, higher product quality,
more standardized architecture and lower maintenance costs.

G1a: For achieving lower development costs, reuse is of 'X' importance according to table
I.5.

Table I.5: Results from question G1a: For achieving lower development costs

G1b: For achieving shorter development time, reuse is of 'X' importance according to table
I.6.

Table I.6: Results from question G1b: For achieving shorter development time

G1c: For achieving higher product quality, reuse is of 'X' importance according to table
I.7.

Table I.7: Results from question G1c: For achieving higher product quality

155

G1d: For achieving a more standardized architecture, reuse is of 'X' importance according
to table I.8.

Table I.8: Results from question G1d: For achieving a more standardized architecture

G1e: For achieving lower maintenance costs (including technology updates), reuse is of 'X'
importance according to table I.9.

Table I.9: Results from question G1e: For achieving lower maintenance costs

Comments:

In COBOL or Easytrieve programming is very practical to reuse code by copying useful
code into the programs when we are making new systems. Or else we reuse copy members
which are code used by several programs or systems. We also use programs who do the
same function for several systems by calling up these programs (or also the copy members)
when needed. This is mostly in COBOL code programming.

For most of the systems I work on, we make a new version every year because of new tax
rules every ear. Most of the tax rules are the same, but there are some new rules every
year. The reuse of code is very important, and make us able to make new versions easily.

Reuse also carries risk in the sense that errors are spread proportionally to the degree of
reuse. And a too religious approach may be counterproductive: In the pursuit of reusing
a module or class (incorporate it in a new system), one may adopt a bad overall design
in the new system just to be able to reuse the module - if it is a simple module, writing
new code may be the right course. And �nally it is often much more quicker to write the
necessary code when one needs it, than to locate a reusable module/class that may or may
not exist. Done right, however, reuse is important.

Making components reusable incurs extra resources.

156APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

In practice, reuse is not achieved very often. Would need a lot more to see real bene�ts. I
think it's important to standardize the implementation of a few common tasks .

I don't think we have the opportunity to reuse components here. Unless I make a system
that is similar to something I have made before. Then I know my code and can reuse what
I want.

General Questions G2

The respondents were asked how useful or important they found reuse/component based
technologies, OO technologies, testing, inspections, formal inspections and con�guration
management to be.

G2a: Reuse/component technologies are of 'X' importance according to table I.10.

Table I.10: Results from question G2a: Reuse/component technologies

G2b: OO technologies (java, UML, CORBA) are of 'X' importance according to table I.11.

Table I.11: Results from question G2b: OO technologies

G2c: Testing is of 'X' importance according to table I.12.

G2d: Inspections are of 'X' importance according to table I.13.

G2e: Formal speci�cations /methods are of 'X' importance according to table I.14.

G2f: Con�guration management is of 'X' importance according to table I.15.

Comments: Mainframe are very powerful computers, but they are not built for OO tech-
nologies hence cannot make much use of what OO technologies have to o�er. So in the
mainframe world OO technologies are of little importance.

157

Table I.12: Results from question G2c: Testing

Table I.13: Results from question G2d: Inspections

Table I.14: Results from question G2eb: Formal speci�cations

Table I.15: Results from question G2f: Con�guration management

158APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

The code you have tested, you know is ok. If the system abends, you know where you
don't have to search for the error. Testing is 'to be or not to be' for a programmer!

Inspections of code produced by juniors is very important (early desk check). Value of
formal methods depends upon project size and complexity.

General Questions G3

The respondents were asked how useful or important they considered requirements, use
cases, design, code and test data/documentation with respect to reuse to be.

G3a: Requirements are of 'X' importance according to table I.16.

Table I.16: Results from question G3a: Requirements

G3b: Use cases are of 'X' importance according to table I.17.

Table I.17: Results from question G3b: Use case

G3c: Design is of 'X' importance according to table I.18.

G3d: Code is of of 'X' importance according to table I.19.

G3e: Test data/documentation is of 'X' importance according to table I.20.

Comments: It is good to have a quality, complete requirements but is should not a�ect
the reusability of the system. The design would be the most important phase to ensure
that the system components are reusable. Test data are to test out it the system was
developed according to the speci�c requirements. It has little to do with system reuse.

159

Table I.18: Results from question G3c: Desgin

Table I.19: Results from question G3d: Code

Table I.20: Results from question G3e: Test data/documentation

160APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

Documentation is very useful at maintenance phase where a coder can use as a reference
hence make use of the system component. But the system had to have reusable components
at �rst place.

We work with systems with only a few changes every year, therefore we may run the same
tests year after year.

Code quality is of course very important, but the implementation details should not be
when reusing an OO component. Not sure how to interpret the question.

Component Questions

C1: During development according to table I.21:

Table I.21: Results from question C1: During development

C2: Do you feel that the process of �nding, assessing and reusing existing code/design
components is functioning? Answers in table I.22.

Table I.22: Results from question C2: How the process of �nding, assessing and reusing
existing code/design is functioning

C3a: Is the existing code/design components su�ciently documented? Answers in table
I.23.

Table I.23: Results from question C3a: Is the existing code/design components su�ciently
documented

161

C3b: If "Sometimes" or "No": Is this a problem? Answers in table I.24.

Table I.24: Results from question C3b: If sometimes or no

C4: Would the construction of a reuse repository, with extra component documentation
etc be worthwhile or not? Answers in table I.25.

Table I.25: Results from question C4: Construction of a reuse repository

C5: How would you decide whether to reuse a code/design component "as-is", reuse "with
modi�cation" or make a new component from scratch? Answers in table I.26.

Table I.26: Results from question C5: How to decide whether to reuse a code/design
component "as-is", reuse "with modi�cation" or make a new component from scratch

C6: A code/design component that is reused (and possibly modi�ed) is usually more stable,
about equal or inferior to a component created from scratch according to table I.27.

C7: Integration when reusing a component usually works well, may cause some problems
or is di�cult according to table I.28.

C8: Is any extra e�ort put into testing/documenting potentially reusable components?
Answers in table I.29.

C9: To what extend to you feel a�ected by reuse in your work? Answers in table I.30.

C10a: Is the design/code of reusable components su�ciently documented? Answers in
table I.31.

162APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

Table I.27: Results from question C6: A code/design component that is reused (and
possibly modi�ed) is usually more..

Table I.28: Results from question C7: Integration

Table I.29: Results from question C8: Extra e�ort

Table I.30: Results from question C9: Feel a�ected by reuse

163

Table I.31: Results from question C10a: Documented

C10b: If the answer to C10a is "sometimes" or "no", is this a problem? Answers in table
I.32.

Table I.32: Results from question C10b: If the answer..

C10c: What is your main source of information about reusable components during imple-
mentation?

• Randomly searching code. Consulting older system experts. Reuse has no agenda in
my daily work WHATSOEVER! It's not prioritized by the 'bosses'

• Experience

• System documentation

• I ask persons who have worked with similar tasks. I have also, as the years go by,
made myself a little 'library' of code I think may be useful in the future

• Look at the description in heading and at the code

• The GLD system

• Persons who know the reusable components

• The code itself

• My own knowledge and the experience of my coworkers.

• Tips from other developers about speci�c preexisting modules. Also, reuse is built
into our existing practices: A lot of systems are made a new each year, and the reuse
in these cases occur when the new code is copied from the last year - this happens
regularly

• General system knowledge

164APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

• My own experience with those components, and advice from the developers i'm work-
ing with. Also some help from google when third party components is an option

• My own experience with those components, and advice from the developers I'm
working with. Also some help from Google when third party components is an
option

• Own experience (so I know where to look for code to copy/reuse)

Requirement Questions

R1: Is the requirements renegotiation process at Skattedirektoratet working su�ciently?
Answers in table I.33.

Table I.33: Results from question R1: Requirement negotiation process

R2: In a typical project are requirements usually �exible, have no particular trend or very
rigid? Answers in table I.34.

Table I.34: Results from question R2: In a typical project..

R3: Are requirements often changed/renegotiated during a development project? Answers
in table I.35.

Comments: I have answered the questions here based on my experience with the systems
I am involved with; these are mainly "bread and butter" systems (systems that are made
a new each year), and the changes are thus incremental). The dynamics in these systems
are no problem; they are expected and we work very close with the people specifying,
often using an approach akin to prototyping. SKD as such do however at any given time
run a lot of projects, and my impression is that in these, unexpected changes do happen
during the course of the project. The reasons for this are legio, and among them are
insu�cient original speci�cations, badly chosen technology and subcontractors exploiting

165

Table I.35: Results from question R3: How often is requirements changed

things in the speci�cations that the speci�ers took for granted; this necessitates new and
more detailed speci�cations, and is accompanied by "quarrels" about whether the new
speci�cations represent changes (for which the subcontractor may charge extra) or if they
only represent clari�cations(no extra cost).

Cross Tabulation Analysis

C2 vs. C9 is shown in table I.36.

Table I.36: Cross tabulation analysis of questions C2 and C9

C4 vs. C9 is shown in table I.37.

Table I.37: Cross tabulation analysis of questions C4 and C9

C1 vs. C9 is shown in table I.38.

C5 vs. C9 is shown in table I.39.

C6 vs. C9 is shown in table I.40.

C7 vs. C9 is shown in table I.41.

C8 vs. C9 is shown in table I.42.

C10a vs. C9 is shown in table I.43.

C2 vs. C3a is shown in table I.44.

166APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

Table I.38: Cross tabulation analysis of questions C1 and C9

Table I.39: Cross tabulation analysis of questions C5 and C9

Table I.40: Cross tabulation analysis of questions C6 and C9

Table I.41: Cross tabulation analysis of questions C7 and C9

Table I.42: Cross tabulation analysis of questions C8 and C9

Table I.43: Cross tabulation analysis of questions C10a and C9

167

Table I.44: Cross tabulation analysis of questions C2 and C3a

C2 vs. C10a shown in table I.45.

Table I.45: Cross tabulation analysis of questions C10a and C2

C2 vs. C4 is shown in table I.46.

Table I.46: Cross tabulation analysis of questions C2 and C4

C2 vs. C5 is shown in table I.47.

C2 vs. C7 is shown in table I.48.

168APPENDIX I. RESULTS OF QUESTIONNAIRE OF THE SOFTWAREDEVELOPMENT PROCESS AND REUSE ASPECT AT SKD, FEBRUARY 2008

Table I.47: Cross tabulation analysis of questions C2 and C5

Table I.48: Cross tabulation analysis of questions C2 and C7

	Title Page
	masteroppgave.pdf

