
December 2007
Tor Stålhane, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

An Architectural Process for Achieving
Robustness

Tor-Erik Hagen

Chapter 1

Problem description

How does the current software development industry define the software ro-
bustness problem, and how can one achieve robustness through architecture
and process in a software centric solution.

i

Abstract

As our reliance on software has increased, robustness has become an im-
portant subject. Software that is not robust enough may lead to frustration,
or loss of time or value. Software architecture forms the main structures of
applications. Having focus on the quality of an applications architecture may
increase the robustness of the application. This thesis tries to find a suitable
architectural process for achieving robustness.

I report on the findings from ten interviews with software architects from
the software industry, around the theme robustness. Interview results are used
in order to form a definition of robustness which is wider than the definitions
I found in literature.

The thesis’s main contribution is a proposed process for designing and an-
alyzing robust software architectures that make use of elements from existing
methods. The proposed process is grounded on results from interviews, per-
sonal experience, and evaluation of existing methods in literature.

Chapter 2

Preface

Writing a master thesis on robustness from the view of an architect ended up
being quite hard. You need to be abstract, but at the same time make sure the
thoughts and ideas are useable. Joel Spolsky sums up the problem with getting
too abstract quite nicely in his blog:

Architecture Astronauts: When you go too far up, abstraction-wise,
you run out of oxygen. Sometimes smart thinkers just don’t know
when to stop, and they create these absurd, all-encompassing, high-
level pictures of the universe that are all good and fine, but don’t
actually mean anything at all. [69]

I want to thank my supervisor, Dr. Tor Stålhane for his suggestions and help
along the way. Also I want to thank all the architects who let me interview
them on robustness and its application to architecture and processes, you all
gave valuable input and ideas.

i

Contents

1 Problem description i

2 Preface i

3 Introduction 1
3.1 Introduction . 1
3.2 Research method and objectives 2

4 Background 7
4.1 Terminology . 7
4.2 Why is robusness important? . 10
4.3 Quality . 13
4.4 Quality attributes and architecture 23

5 Interviews 25
5.1 Interview design . 25
5.2 Interview guide . 28
5.3 Interview results . 29
5.4 What characterizes a robust solution? 29
5.5 How to achieve a robust system 39
5.6 Threats to validity . 54
5.7 Selected areas of further focus . 56

6 Robustness defined 57
6.1 Literature and definitions . 57
6.2 Current definitions . 58
6.3 Reliability and robustness . 62
6.4 The interviewees’s definition of robustness 63
6.5 The definition of robustness . 66
6.6 Other concepts . 68

7 Analysing architecture 70
7.1 Method criteria . 70
7.2 Analysis types . 72
7.3 Scenario based analysis . 73
7.4 Traditional risk/safety methods 81
7.5 Combining FMEA and Jacobsons analysis method 84
7.6 TRIAD . 85
7.7 Reviews . 87

ii

7.8 Prototyping / proof of concept 89
7.9 Evaluation of criteria . 89

8 Related research on robustness 92
8.1 N-version programming and robustness 92
8.2 Increasing robustness using self-adaption 93
8.3 Robust datastructures . 94
8.4 Testing for robustness . 94
8.5 Wrapping for robustness . 98
8.6 Exception handling . 100

9 Observations 102
9.1 Current methods . 103
9.2 Proposed method . 104

10 Conclusion and further work 117
10.1 Conclusion . 117
10.2 Further work . 117

A Code examples 121
A.1 Enhanced version of math . 122

B Example interview results 124
B.1 Company A . 125
B.2 Company B . 133

References 142

iii

List of Figures

4.1 Example non-robust C# program that does basic math. 12
4.2 McCall’s quality model [29] . 15
4.3 Boehm’s quality model [29] . 17
4.4 ISO 9162 view of internal and external quality [39] 18
4.5 ISO 9162 view of quality in use [39] 19
4.6 ISO 9162 relationship between the three views of quality [39] . . 19
4.7 General availability scenarios [7] 20
4.8 Sample availability scenario [7] 20
4.9 Product properties of a variable component and their effect on

quality [24] . 21

6.1 Robustness and included concepts 66

7.1 Sample of an utility-tree [15, p. 51] 79
7.2 Sample of an event tree . 83
7.3 Survivability Strategy Refinement Process [55] 86

8.1 Exception flow for one exception type from Robillard and Mur-
phy [60] . 101

9.1 Proposed design process . 107
9.2 Proposed analysis process . 110
9.3 Fault domain model defined by Laprie and Randell [50]. 113
9.4 Combined design and analysis process 116

iv

List of Tables

6.1 Robustness definition coverage 67

7.1 Comparison of methods . 91

9.1 List of sample scenarios . 112
9.2 Sample of possible scenario categories. 113
9.3 Sample summary report. 115

v

Chapter 3

Introduction

3.1 Introduction

Our society relies more and more on software. If you look through a regular
home you find that quite a few appliances rely on software. Your personal
computer, your washing machine, your TV, your watch, your electric shaver,
your phone, and your portable music player to name a few. Outside our homes
we find even more things we rely on, like trains, planes, the Internet, phone
networks, ticket machines, and cars. We basically rely on software for large
parts of our day.

When software fails we often have no alternatives. There are no ways you
can continue to drive your car if the software crashes because of some unex-
pected input. But you could always walk, or catch a bus. So there is some
redundancy in transport. You will not be able to be as flexible by taking the
bus, but at least you are able to move around. We can say that you still have a
transportation service, but it is degraded.

If we look at the business world where the use of software solutions is quite
extensive, the consequence of a failing service provided by a software solution
might be severe. If a cash register is no longer able to look up price information
from a central price service, one must revert to other ways of determining the
pricing. It can be performed using paper based lists or calling someone that
knows the price. Imagine this happening at a large shopping mall. Similar
problems apply to quite a lot of scenarios; a web based travel agent or web
shop is not able to function without a working software solution.

The consequences could be quite catastrophic. If for instance a web shop
that has its only income through the web does not have a working web front-
end; there is no income. Imagine that the system is unavailable for a week or
two.

It is not difficult to see that we are highly dependent on software, and that
it is an important area to focus on.

In this thesis I will first investigate how the software development industry
defines robustness, and which process and architectural measures they believe
may influence robustness. The background for this work is interviews with ten
people working as software architects. The definition of robustness expressed
by the interviewees will be compared to existing definitions in literature. I will

1

then propose a new definition of robustness.
Having established how the current software development industry defines

robustness, I will present a selection of methods for design and analysis rele-
vant for architecture. These methods will then be evaluated against a set of
evaluation criteria based on information from interviews and personal experi-
ence. Some research directions that have relevance to robustness research will
then be presented to illustrate some existing research efforts in the field.

The method evaluation indicated that none of the methods presented fulfils
all of the criteria, and a suggested process that combines parts of the methods
presented earlier is described and exemplified.

A literature review looking for architectural solutions or patterns that can
be employed to influence robustness was started. I, however, had to stop this
review due to lack of time, but some partial results from this review will be
presented as a part of future work.

3.2 Research method and objectives

3.2.1 Background and project development

The background for this project is a personal interest in software architecture,
after working as a software architect during the last years. Further, my su-
pervisor Dr. Tor Stålhane has robustness as a field of research. Combining
architecture and robustness seemed like a challenging but interesting area to
investigate. My field of experience is in software based business applications,
and I chose to investigate what relation architecture has to robustness in this
kind of applications.

Based on my suggestions, Stålhane proposed the following initial project
description:

• Definition of robustness, clarification of the concept and separation from
reliability

• How can robustness be influenced through architecture?

• Is ATAM or similar methods useful, and if so, when?

• Patterns, start by looking at patterns for safety and robustness

• Proposal for solution, process to achieve robustness

• Testing and evaluation, own development, experiments etc.

I started by conducting a review of literature looking for a definition of
robustness, and soon discovered that the term was quite often used but de-
fined in several ways. I could not find a de facto definition, so I wanted to get
information about robustness from a different source. Collecting information
from someone that faces issues related to robustness was a possible source of
more information, and I decided to collect information about robustness from
the software development industry. Stålhane had at this point talked to three
companies about their perception of robustness and suggestions on how ro-
bustness could be achieved. I chose to perform interviews after considering
various options for how to collect information.

2

The next section will discuss options and the reason for selecting interviews
as the method of choice for collecting info.

From now on research followed two parallel tracks. One track conduct-
ing interviews, while the other track continued the literature review with the
following goals:

• Investigate methods for architectural design and evaluation.

• Collect definitions of robustness used in literature.

• Study research directions related to robustness.

• Find patterns or solutions that are useful for robustness from an architec-
tural view.

This formed the final problem description as presented in Chapter 1.
As the project progressed, it became apparent that the interview process it-

self would provide valuable information about robustness in the software de-
velopment industry. As a result, more interviews than initially planned were
conducted. In order to perform the method evaluations and suggest a process
proposal, information from the interviews was needed. The result of this de-
pendency on the interview results and the fact that performing interviews and
analyzing interview results required quite a lot of calendar time, was that there
was little time left to conduct an experiment based on the proposed method.
Available time made it necessary to leave the experiment part to further work.

As I started reviewing some pattern collections looking for relevant pat-
terns, it became apparent that they contained little information about the pat-
tern’s relation to robustness. Information was scarce on both to what extent the
patterns themselves were robust, and to what extent they could contribute to
the robustness of a system. This in addition to the amount of time used on the
interviews and evaluation of architectural design and analysis methods, left
little time to analyze patterns. As a result of this I also had to stop the part of
the literature review looking for patterns, and leave it to further work.

3.2.2 Research method

Information gathering

Cornford and Smithson [16] list the following main methods for conducting
empirical research:

• Interviews

• Surveys

• Literature reviews

• Laboratory experiments

• Case studies

• Action research

3

Each of the methods has strengths and weaknesses, and is suitable for dif-
ferent types of research. A brief description of the methods based on Cornford
and Smithson [16] follows:

Interviews is based on an interviewer that asks questions to an interviewee.
Interviews allows interaction between the interviewer and interviewee,
and can range from the totally unstructured interview that is just a con-
versation around a topic, to the structured interview that follows a strict
set of questions. Interviews give the ability to explore topics in depth,
and explore areas where little is known. Interviews can also be used as a
supplement to surveys or vice versa.

Surveys are normally a fixed set of questions that is answered by a group of
people. It can either be performed by participants answering a ques-
tionnaire, or as structured interviews. If interviews are used, one has to
make sure that the same questions are used. This is because the power
of surveys is that all respondents answer the same questions. Surveys
conducted through the use of questionnaires can be an effective way of
collecting information from a large group. With good sampling, results
can be quite representative for a target population. For surveys to be suc-
cessful, well designed questions have to be used. Surveys are best suited
for simple questions, not requiring long answers.

Literature reviews looks at work that has already been performed. Sources
of information are published books and articles. Most research projects
conduct a literature review. The review can be used to relate the research
project to existing research within the field. Some projects are completely
based on literature review and contribute by providing a refined under-
standing of existing work within a field.

Laboratory experiments are experiments conducted under controlled condi-
tions. Variables are modified, and results observed. A typical example of
a laboratory experiment is a comparative study. In a comparative study
two or more groups perform the same task in similar conditions except
that one or more variables is modified for some of the groups. The pur-
pose of the study is to investigate whether the changed variable(s) has the
expected effect or not. You should be careful about generalizing results,
as the experiments are often simpler than the real-world equivalent.

Case studies explores a single situation in detail. One example of a case study
could be to study how a company uses a particular method. Compared
to laboratory experiments the conditions are harder to control. Further,
findings from a single case study are not directly generalizable. One so-
lution could be to perform multiple case studies and compare the results.

Action research is similar to a case study, except that the researcher takes an
active role in the situation under study. An example could be a researcher
that participates in a development project. The researcher can use his
knowledge to influence activities, and use experience with the activities
to gain more knowledge. On the positive side, action research leads to
deep understanding of the activities they participate in. This deep un-
derstanding could however lead to a too narrow focus and the wider
view could be missing.

4

As already mentioned, the initial idea was to use a literature review to find
an established definition for robustness. The original plan was also to investi-
gate which existing methods that can be used to influence robustness.

Although not being able to use literature reviews for establishing the defi-
nition for robustness, literature review was still used for parts of this text. To
investigate how the software development industry defined robustness and
which thoughts the industry has about influencing it, several alternatives were
available. Literature review was already ruled out, and conducting a labora-
tory experiment is not suitable. The rest of the methods however could be
used. I could have conducted a case study to study a project or a company
or two in detail. Doing action research by participating in a project to see how
the company handled robustness in their daily development process could also
be an option. Both alternatives suffer from one major drawback: Time would
only allow the study of one or two companies. It is no real way to know if it is
possible to generalize the results to be valid for the whole industry[16].

This left me with three options. I could perform a survey, do a set of inter-
views or a combination. Asking open questions in a survey is not optimal[16].
This means that quite specific questions have to be formed. At this stage, I
had some definitions of robustness from literature, and information from three
companies. Results from the three companies were hard to interpret. The in-
formation indicated that there is a possibility that a definition for robustness
exists, but that different fields within the industry had different additions.

With little information available and indications that the definition of ro-
bustness might vary between business sectors, it would be difficult to define a
set of closed questions that would provide valuable information about robust-
ness. Conducting interviews, which are suitable for asking open questions,
appeared as a better option.

Interviews can range from the completely unstructured interview that merely
is a free discussion on a topic, to the structured interview following a strict in-
terview guide[16]. My choice was to create a set of open questions that could
be used to guide discussion, but at the same time letting the interviewee talk
freely. I did not want to impose a set of important aspects, or process steps on
the interviewee. More information on the interview process can be found in
Chapter 5.

Data analysis

When collecting data it is important to determine how the data should be an-
alyzed so it is possible to analyse the gathered data. Cornford and Smithson
[16] describe two main methods for data analysis; quantitative analysis, and
qualitative analysis.

Quantitative analysis requires data to be transformed into a form that is ap-
propriate for numerical analysis. In this case a series of in depth interviews was
planned, as the interview subjects were to be allowed to talk freely around the
theme. Data collected from this kind of interview is not suited for quantitative
analysis. Analysis of the number of interviewees mentioning different ideas
could be an option. It would, however, be no way to determine if an idea was
not mentioned because it was not relevant or simply because the interviewee
forgot to mention it.

5

Qualitative analysis was a better choice based on the interview form planned.
Qualitative analysis is difficult, as it is difficult to determine if the information
is representative. Discovering errors in the data is also difficult [16]. Testing
the data is one important aspect. Testing can be performed in various ways, by
comparing with similar studies, redoing the interviews on a different popula-
tion, or comparing answers from a small and a large company. Testing using a
survey is also an option.

The selected method for analyzing the interview results was to transcribe
all the interviews, and form a list of aspects brought up by the individual in-
terviewees grouped by main topic. This was done at an early stage using the
results from the initial three interviews conducted by Stålhane. After having
conducted each individual interview, the list was updated and extended with
new items. The list was also used during the following interviews to ask about
items in the list that was not mentioned by the interviewee. As a result of this,
each interview tested the list of items. Some interviewees had conflicting opin-
ions, which will be discussed in Chapter 5. In the end, the list based on the
initial three interviews fit the rest of the interview results well, only additions
was needed to include new ideas and opinions.

It would, however, be beneficial to conduct a survey to check the proposed
definition in Chapter 6 on a larger population, but this study did not allow this
due to time constraint this is suggested for future research.

6

Chapter 4

Background

4.1 Terminology

4.1.1 Failure, error and fault

As the definition of error, fault and failure varies in literature, it is important to
define them as they will be used throughout this paper.

Definition 4.1.1. Failure The inability of a system or component to perform its
required functions within specified performance requirements. [10, p. 32]

Definition 4.1.2. Error The difference between a computed, observed, or mea-
sured value or condition and the true, specified, or theoretically correct value
or definition. [10, p. 32]

Definition 4.1.3. Fault An incorrect step, process or data definition in a com-
puter program. [10, p. 32]

So how do these definitions work together? It is best illustrated by an example:

Example 4.1.1 (Sample of faulty implementation of a ComputeSquare func-
tion).
function ComputeSquare(int a){

int result = a * 2;

return result;

}

This function should return the square of the number provided as input
through the parameter a. The function does however contain a bug so it really
returns the number provided multiplied by two. Error is the wrong value be-
ing computed, while the fault is the cause of the error. In this case the cause
is that the developer has written a * 2 instead of a * a. Failure is that the
function ends up returning the incorrect result; it does not comply with its
specification. Another way to distinguish error from failure is that a failure is
when the internal error is exposed to the caller of the function.

In this paper I will distinguish between fault, error and failure where nec-
essary. I will, however, often use the term error if it is not explicitly the cause
of an error, or a failure of a system or component being described.

7

4.1.2 Exceptions

Programming languages like C#, Java, and C++ have support for exceptions.
This is a mechanism that makes it possible to throw an error such that the error
propagates up the call chain until a catch block for the exception type is found.
The benefit of the method is that the execution point is automatically moved
to the catch clause, aborting the executing statement where the exception oc-
curred. If no matching catch clause is found, the exception propagates up to
the top of the call stack. At this level some generic mechanism might catch the
exception and report the error. As an example, Microsoft’s common language
runtime that executes compiled C# applications shows a dialog with the excep-
tion including the full call stack if an exception is not caught by the application
code. The concept is illustrated by the following example:

Example 4.1.2 (Sample of exception handling).
function foo(){

try{

bar();

}catch(ValidationException ex){

// error handling logic
10

}

}

function bar(){

// Some code

MethodThatCouldThrowError();
20

// Some more code

}

Here the method foo calls bar that in turn calls a method MethodThatCouldThrowError
that might throw an exception. If an exception of type ValidationException
is thrown, execution is moved to the catch clause in foo, or else the exception
is thrown to the method that calls foo.

An alternative approach to exception handling is the use of function return
values. A problem with this approach is that the return value might not be
checked. This could result in failures not being discovered. Take for instance
the following function:

Example 4.1.3 (Example misuse of return codes).
public void WriteToLog(string textToWrite){

int fp = OpenFile(GetAppPath() + "/log.txt");
Puts(fp, textToWrite);
CloseFile(fp);

}

8

This method would not return any error if there was a problem writing to
the log file. OpenFile might not return a valid file handle, but an error code
instead. This error code is not checked. If exceptions had been used instead,
the exception would have been raised to the caller of WriteToLog.

4.1.3 Architecture, components, and patterns

Architecture

There are several definitions for software architecture. Bass et al. [7] has the
following definition:

Definition 4.1.4. Software Architecture. The software architecture of a pro-
gram or computing system is the structure or structures of the system, which
comprise software elements, the externally visible properties of those elements,
and the relationships among them. [7, p. 21]

Thus, architecture can exist at several levels of abstraction and architectures
can be contained in other architectures (e.g. componentization). This does also
apply to how this thesis handles architecture in relation to robustness. It is also
important to mention that not everything is architecture. More precisely, the
nearer the code level you get, the more details and less architecture you have.
This thesis will define architecture as everything from the class level and up to
the system deployment model.

Component

Another related term is component. Bass et al. [7] mention that in the first re-
vision of their book, the term component were used instead of element. The
reason for changing it was the fact that the component based software engi-
neering movement had gotten the word associated with the runtime flavour of
the element.

Definition 4.1.5. Component. An encapsulated part of a software system. A
component has an interface that provides access to its services. Components
serve as building blocks for the structure of a system. On a programming lan-
guage level components may be represented as modules, classes, objects or a
set of related functions. A component that does not implement all of the ele-
ments of its interface is called an abstract component. [13, p. 434]

In other words, components are pieces of software that have an interface
and provide some sort of service. In this text I will use the term component
where I talk about a piece of a system. This means that classes and groups
of classes are also considered to be components. Basically, I will mostly use
component in the same way as the definition for software architecture uses
software element.

Pattern

Christopher Alexander is often quoted when the term pattern is to be described.
One such quote from Alexander et al. [4] can be found in Gamma et al. [34] and
Fowler et al. [32]:

9

Each pattern describes a problem which occurs over and over again
in our environment, and then describes the core of the solution to
that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice.

Alexander was talking about physical architecture, but the same ideas ap-
ply to the software world as well. Consider the following statements about
software design patterns:

Design patterns are not about designs such as linked lists and hash
tables that can be encoded in classes and reused as is. Nor are they
complex, domain specific designs for an entire application or sub-
system. The design patterns in this book are descriptions of com-
municating objects and classes that are customized to solve a gen-
eral design problem in a particular context. [34]

A pattern for software architecture describes a particular recurring
design problem that arises in specific design contexts, and presents
a well-proven generic scheme for its solution. The solution scheme
is specified by describing its constituent components, their respon-
sibilities and relationships, and the ways in which they collaborate.
[13]

A pattern is a description of a solution to a problem in a specific context.
The solution is not a copy-and-paste solution; it has to be adapted to the place
it is to be applied. The solution is well-proven, but at the same time a pattern
does not always solve a problem [31].

The problem and solution can be at several levels of abstraction, from a
quite concrete observer pattern [34] to more generic solutions like recovery
blocks [47, 52, 59]. The term pattern will be used for both high-level and low-
level solutions.

A related term to pattern is idiom, this is defined as:

Definition 4.1.6. Idiom. Idioms are low-level patterns specific to a program-
ming language. An idiom describes how to implement particular aspects of
components or the relationships between them with the features of the given
language.[13]

One example of such an idiom could be using the IDisposable interface
together with the using keyword in the C# programming language[25] for re-
source management.

At the other end of the scale there is a special category of patterns called
architectural styles. Architectural styles covers larger chunks of the architecture
than a typical pattern, and are inspired by the early works of Shaw and Gar-
lan [65]. Examples of architectural styles are pipes and filters and blackboard.
Multiple styles can be applied in the same solution, and can also overlap each
other. In the remainder of this paper I will usually not distinguish between
patterns and architectural styles, as there is no clear line that separates them.

4.2 Why is robusness important?

Applications that often fail are seldom popular among users. Work and time
is lost, and users end up getting frustrated because the application does not

10

work as expected. The reason for failure varies. Failures may for instance be
caused by incorrect use of the application, due to of inadequate specifications.
End users are not the only group that get frustrated by applications not meet-
ing their expectations. Developers may experience the same frustration for
libraries, components or other systems they use in development. Consultants
can also get frustrated when applications does not behave during installation
or upgrade.

Lack of robust behaviour in applications is one source of failures. An ap-
plication that crashes and corrupts the database because the user presses a set
of buttons in the wrong order, or reports some strange error to the end user
before suddenly exiting, does not exhibit robust behaviour. How should such
problems be handled?

Non-formal specifications contains functional descriptions that describe what
should happen when pressing different buttons or calling methods, how screens
or interfaces should be designed and so on. The specification might also con-
tain information about validation rules for data, and invalid operations in the
user interface. Information provided by the specification will however not be
complete. Describing all possible sequences of actions that should not be possi-
ble would require a huge specification. Furthermore, some interpretation will
be left to the reader of the specification. For instance, a specification could state
that a field should be used for entering an amount, but will most likely not ex-
plicitly state that this field should be validated as numeric. This is left to the
reader to understand.

It is hard to argue why the application behaves in an undefined manner
when used in a way which is not explicitly covered by the specification. A cus-
tomer will most likely not agree with a contractor that argues that the appli-
cation crashes when pressing the wrong button because the specification does
not explicitly state that it should not crash in that scenario. Obviously, the cus-
tomer wants an application built in such a way that it responds in a reasonable
manner when such a situation occurs.

The input and usage of an application, component, library or class is one
area where robustness is important, but being robust to the response of compo-
nents, libraries and classes used is also important. Validating input to a func-
tion for its own use does not help much if the function uses a component that
might return an exception the function does not handle. In order to create a
robust application, the behaviour of all interaction within an application has to
be taken into account. Interaction that occurs without being aware of possible
errors, failures and misuse might lead to an application that is not predictable
in its behaviour.

Today’s society depends largely on software to accomplish several tasks.
Many use computers in their daily work, and many companies cannot function
without functioning software applications. Software that does not work could
have major implications. When bank systems fail, customers of the bank might
not be able to make deposits, pay merchandise with their credit cards or check
their current balance. Another user might lose text written in a document if the
word processor suddenly crashes. Even worse the word processor might not
terminate, just have a silent failure that results in that the document stored to
disk, when saving is corrupt. The user would believe that the document was
stored, but when opening the document all its content might be lost.

Creating a robust application is not simple, and the degree of robustness

11

using System;

namespace SimpleMath{
class Program{

static void Main(string[] args){
double res = 0;
if (args[0] == "help"){

System.Console.WriteLine("Console math, help");
System.Console.WriteLine("help - displays this help");
System.Console.WriteLine("div a b - divides a by b"); 10

System.Console.WriteLine("mult a b - multiplies a by b");
System.Console.WriteLine("mod a b - a modulus b");
return;

}else if (args[0] == "div"){
res = double.Parse(args[1]) / double.Parse(args[2]);

}else if (args[0] == "mult"){
res = double.Parse(args[1]) * double.Parse(args[2]);

}else{
res = double.Parse(args[1]) % double.Parse(args[2]);

} 20

Console.WriteLine("Result: " + res.ToString());
}

}
}

Figure 4.1: Example non-robust C# program that does basic math.

has to be weighed against other important properties. The next section will
illustrate the difficulty of robustness through a small sample application.

4.2.1 A simple robust application

Getting a clear view of the difficulties involved in creating a fully robust appli-
cation is hard. Often the application has a high complexity and a large number
of features. To illustrate the difficulty of robustness, I will create a small console
application in C# that can do some basic math. The application will support
three basic math operations; division, multiplication and modulus. Input to the
application is to be provided through command line parameters. The first ar-
gument should be the mathematical operation to perform, and the rest should
be input to the operation. In addition, a help function should be supported
to guide the user in how the application should be used. A sample usage of
the program to multiply 2 by 4 would be math mult 2 4. The implemented
program can be found in Figure 4.1.

This program is by no means robust. I.e. if you use it correctly it is robust,
but as soon as you do not use it as it was intended, it crashes. Simply running
the program without any arguments results in a crash. Omitting numeric val-
ues or sending non-numeric values will also result in crashes. Further, if typing
the name of the mathematical operation wrong it will be computed as a modu-
lus operation. A user can easily run math multiply 2 4 instead of math mult

12

2 4. The program will accept the input and present a result, but the number is
not calculated using the operation the user intended. Sending in too high num-
bers in a multiplication or a high number to be divided by a very small number
in division would normally result in an overflow. The same would normally
be the case if the user tried to divide by zero. The double data type in C# comes
to the rescue in situations that would normally cause a larger value than the
data type can hold. Infinite is a special value of the data type, so 1/0 would
give the value infinite instead of an overflow exception. If I used a different
data type like integer or decimal these operations would result in crashes due
to overflows or division by zero. To demonstrate how complex such a simple
program becomes when taking robustness into consideration I have made a
robust version that can be found in Appendix A.1. The improved version is
more robust, but it probably still contains robustness issues. A potential issue
is that it should warn the user if it was not able to accurately represent the in-
put or result numbers. The size of the code has increased from 24 to 94 lines
(219%). This increase is in no way representative for transforming non-robust
applications, but illustrates that making an application robust is by no means
a trivial operation.

The new version of math is less maintainable. Introducing support for a
new mathematical operation requires more effort in the robust version than in
the non-robust version. Effort will depend on the number of arguments the
mathematical operation should support. Adding support for factorial (taking
only one argument) would require more effort and add more complexity than
adding plus or minus operations. In this example, other quality attributes like
performance, security and availability did not change noteworthy, but due to
the introduction of error messages the usability increased. This decrease of
maintainability with respect to adding support for new operations is a direct
consequence of the chosen design and not the increased robustness by itself. It
would be possible to get a better maintainability by choosing a different design.

Although far from being a critical business application, this simple example
illustrates the issues involved in creating a robust application. Such challenges
will also occur in a full blown business application.

4.3 Quality

Everything around us holds some kind of quality. It can be low quality, high
quality or somewhere between. It is often easier to classify the quality of a
physical item. Does it break easily, does its size fall within the defined margins
of error, does the paint cover the whole item, and is the colour right? General
quality is seldom of much help. We often have to formulate which demands
we have to quality. Based on these requirements, we are able to evaluate the
quality of an item.

A measurable definition of quality is needed in order to be able to compare
the quality of two different items. Thus, not only do we have to define what
we mean by quality, we also have to make it comparable and testable to some
extent.

The following quote from an article by Cavano and McCall [14] illustrates
the challenges:

13

Consider two application programs, A and B, which were given
the same problem requirement, written in the same language, and
implemented on the same computer. Program A runs 10 percent
faster, has 5 percent fewer errors under identical testing conditions,
and costs 20 percent less than program B as is similar in maintain-
ability and documentation aspects. Which program has the higher
quality?

As Cavano and McCall state, the immediate answer is program A, but can
one be sure that the testing was really equal? The memory footprint might
be completely different, or one of them might be designed to be run in a dis-
tributed manner. Quality on its own does not say much. It has to be evaluated
in context.

Pressman and Ince [58] describe two types of quality based on an item’s
measurable characteristics:

Quality of design: Refers to the characteristics that the designers specify for
an item. They include factors like tolerance levels, material quality and
performance specifications.

Quality of conformance: This is the extent to which the manufacturing fol-
lows the design specification. The greater the conformance, the greater
the quality.

If these definitions are applied to software, the requirements, specifications
and the design of the system make up the quality of design, while the imple-
mentation is the main contributing factor to the quality of conformance.

Multiple factors contribute to different forms of quality. Thus design, im-
plementation and deployment are all important with regard to quality. A later
section will focus on how architecture is important to quality.

Pressman’s two types of quality were described earlier, but quality can be
viewed in different ways leading to different views and definitions. For in-
stance, a user will look at how often the system fails or does not behave as the
user would expect. A developer may look at the number of defects that occurs
in production normalized by the size of the system. This difference in the per-
ceived quality comes from different views of quality. It can however be argued
that in the end, it is the user’s perception of the system during use that is the
real measure of quality. It does not help if the system has excellent internal
characteristics, if it does not function as expected by the user of the system.

Kitchenham and Pfleeger [44] describe different views of quality from a
paper by Davin Garvin [35]. According to Garvin there are five different views:

• The transcendental view — quality is something that only can be recog-
nized, but not described.

• The user view — quality is the fitness for purpose.

• The manufacturing view — quality is the conformance to specification.

• The product view — quality is tied to inherent characteristics of the prod-
uct.

14

• The value based view — quality is dependent on how much a customer is
willing to pay for it.

As time has passed by, software development has, according to Côté et al.
[17], shifted from focusing on functionality to focus more on the user experi-
ence. The sum of improvements in ease-of-use, security, reliability and stabil-
ity has resulted in a better overall user experience. This shift in focus has made
quality a more important subject, and has created a need for defining more
explicit quality requirements. In order for these requirements to be defined
precisely, quality needs to be defined precisely as well. Quality models form
the framework upon which such a definition can be created.

In the following sections, I will describe several quality models. After-
wards, I will look at how the models incorporate robustness.

4.3.1 McCall’s quality model

Figure 4.2: McCall’s quality model [29]

McCall’s quality model [14, 17, 29, 44, 58] is according to Kitchenham and
Pfleeger [44] one of the earliest quality models. McCall defines software prod-
uct qualities as a hierarchy of factors, criteria and metrics. The model defines
quality through decomposition. The structure of the model is shown in Fig-
ure 4.2. The high-level quality factors in the model are Correctness, Reliability,

15

Efficiency, Integrity, Usability, Maintainability, Flexibility, Testability, Portability,
Reusability and, Interoperability.

These 11 factors contribute to a complete view of quality[44], but none of
them are directly measurable. To solve this, the McCall model splits each factor
into a set of criteria that can be measured. If each of these criteria is fulfilled
in a software solution, the factor is also present. To evaluate each criterion,
metrics should be used. These metrics can vary from a checklist that can be run
on a document to grade it, to the number of individual code-paths through a
module.

Cavano and McCall [14] stresses the fact that the measurements are meant
to be used during the development process, not as a test at the end: ”Their
purpose is to provide an indication of the progression toward a desired level
of quality.” This means that the measurements and evaluation of quality can
be used to predict and control the quality of the end product.

Kitchenham and Pfleeger [44], and Côté et al. [17] note an issue with the
model. As many of the metrics can only be evaluated subjectively, it is difficult
to use this model to set precise and specific quality requirements. Côté et al.
[17] also note that the model emphasises on the product view of quality, thus
the model is less suited for other views of quality.

4.3.2 Boehm’s quality model

Boehm’s model [11, 17, 29] is based upon McCall’s model, but does introduce
some new higher level abstractions (see Figure 4.3). At the top level one finds
General Utility. The second level consists of [11]:

• As-is Utility - how well can I use the software package as is?

• Portability - can I still use it if I change environment?

• Maintainability - how easy is it to maintain?

At the third level we find Reliability, Efficiency, Human engineering, Testability,
Understandability and, Modifiability. Below these there is a list of primitive con-
structs. These make it simpler to define quantitative measures to measure
progress on both the primitive and higher-level constructs. As in McCall’s
model, a list of metrics is used to evaluate each of the primitive constructs.

This model is built on the assumption that a system has to be useful in order
to be considered a quality system [17]. The model can be viewed as having a
user perspective at the top of the hierarchy and a technical perspective at the
bottom. According to Côté et al. [17] this does not fit really well when looking
at the definition of the characteristics. Apart from General Utility and As-is
Utility, all definitions begin with ”code possesses the characteristic [...]”. These
definitions focus on technical personnel, and the general top level abstractions
are too vague to be helpful in specifying requirements.

One important aspect with the model is that the General Utility view of
quality is not necessarily complete for all kinds of applications. Boehm et al.
[11] mention that an application with e.g. security requirements needs addi-
tional characteristics.

16

Figure 4.3: Boehm’s quality model [29]

4.3.3 The ISO 9126(-*) model

The ISO 9126 [39] model came in its first version in 1999 and was according to
Fenton and Pfleeger [29] based on McCall’s model. It consists of the following
six high-level quality factors:

• Functionality

• Reliability

• Usability

• Efficiency

• Maintainability

• Portability

These were, according to Fenton and Pfleeger [29], said to be comprehen-
sive. Any aspect of software quality should be possible to describe using a
mixture of these six factors. The standard suggested that these six could be de-
composed into multiple levels of subcharacteristics until a level that could be
measured. In an annex to the standard, decomposition to a second level is de-
scribed, but this is not a part of the standard. In contrast to the models McCall
and Boehm, this model is strictly hierarchical, that is; each sub-characteristic
refers to only one characteristic.

Côté et al. [17] refers to a set of issues with the first version of the standard
described by Pfleeger [57]:

• There were no guidelines on how to provide an overall assessment of
quality.

• There were no indications on how to perform the measurements of the
quality characteristics.

17

• The model focuses on the developer view instead of the user view.

The new standard ISO 14598 focusing on software product evaluation is
supposed to solve the first issue. In 2001 and 2003 a revision of the standard
were published in four different parts. This revised standard tries to solve the
two other issues. The four parts of the standard is now:

• ISO 9126-1 - Provides an updated quality model

• ISO 9126-2 - Provides a set of external measures

• ISO 9126-3 - Provides a set of internal measures

• ISO 9126-4 - Provides a set of quality in use measures

The standard now has three views of quality. The 9126-2 has an external
quality view where metrics are suggested to evaluate the software while run-
ning. An internal quality view is described through metrics in 9126-3. Quality
in use measures are provided in 9126-4 and focus on the user view of quality
of the software product.

The internal and external view are inspired by McCall and Boehm and
have the same division on the top level as the first version of the standard. A
schematic view is shown in Figure 4.4. The views are modelled as a three level
hierarchical model with quality-characteristics, quality sub-characteristics and
quality measures much like McCall’s model.

Figure 4.4: ISO 9162 view of internal and external quality [39]

The quality in use is a bit different and can be seen in Figure 4.5. It is a two
level hierarchical model with quality characteristics and quality measures.

The standard also provides a theoretical relationship between the three
views of quality. This relationship is illustrated in Figure 4.6.

Quality in use requirements should be established first. They should be
used to specify external quality requirements that in turn should then be used
to specify internal quality requirements. Based on the defined relationships
between the views of quality shown in Figure 4.6, the internal quality could
theoretically be used to predict external quality after development has started.
However, as Côté et al. [17] note, this relationship is only theoretical and should
be used with care for prediction, and needs to be empirically verified.

18

Figure 4.5: ISO 9162 view of quality in use [39]

Figure 4.6: ISO 9162 relationship between the three views of quality [39]

4.3.4 Software Architecture in Practice

The SEI institute 1 frequently applies a quality model in their work, which is
presented in Software Architecture in Practice [7]. Quality is here divided into
the following groups:

• Availability

• Modifiability

• Performance

• Security

• Testability

• Usability

These are high level groups, but Bass et al. [7] also define quite general
scenarios for each individual group so that for instance scalability fits nicely
into performance, and portability fits into modifiability.

The approach used here differs from the other models mentioned. The SEI
approach is to describe the different forms of quality as quality attribute sce-
narios. The reason behind this approach is that different communities have
formed around different quality attributes, resulting in incompatible termi-
nologies. At the same time the main groups of quality attributes are not op-
erational, e.g. — it gives little meaning to say that a system is modifiable. All
systems are modifiable for a set of modifiability scenarios, but might not be
considered modifiable based on a different set of scenarios. Another issue is

1http://www.sei.cmu.edu/

19

http://www.sei.cmu.edu/

that there is a large discussion going on regarding what main quality attribute
a particular aspect belongs to. For instance, a system failure can be a part of
availability, security or usability.

A scenario consists of: a stimulus, an environment and a response. A gen-
eral availability scenario can be seen in Figure 4.7. There is a distinction be-
tween general scenarios that are applicable to any system and specific ones
that are specific to a specific system. We will be looking more closely at scenar-
ios in Section 7.3.1.

Figure 4.7: General availability scenarios [7]

Quality attribute characterizations are presented as general scenarios, which
are meant to be adapted to the system in question in order to translate the qual-
ity attribute into system requirements. One example of such a requirement de-
scribed as a scenario can be found in Figure 4.8. For each main type of quality
attribute the general scenario gives a list of possible sources of stimuli, types of
stimuli and so on that helps designing relevant testable quality requirements.

Figure 4.8: Sample availability scenario [7]

20

The list of quality attributes is not meant to be complete. For instance, if
you have a system that is required to be highly integrateable to other systems,
you should consider creating a general scenario for interoperability. Basically,
the model is adaptable so that you can focus on the aspects that are important
for your applications.

4.3.5 Dromey’s model for product quality

Geoff Dromey [23, 24] takes a slightly different approach to building quality
models. He focuses on the product characteristics of software as he sees char-
acteristics as the key to creating a good quality model.

What must be recognized in any attempt to build a quality model is
that software does not directly manifest quality attributes. Instead
it exhibits product characteristics that imply or contribute to qual-
ity attributes and other characteristics (product defects) that detract
from the quality attributes of a product. Most models of software
quality fail to deal with the product characteristics side of the prob-
lem adequately and they also fail to make direct links between qual-
ity attributes and the corresponding product characteristics. [23]

He is critical to the top-down approach employed in models like McCall
and ISO 9126. In his opinion there is no good way of decomposing high-level
quality attributes to measurable attributes through multiple levels of decom-
position. He also claims that McCall and other similar models focus to much
on the manufacturing view, and that more focus on the product view is needed.

Component

Variable

Assigned

Precise

Single-purpose

Encapsulated

Utilized

Self-descriptive

Documented

Correctness

Correctness

Correctness

Contextual

Contextual

Descriptive

Descriptive

Functionality, reliability

Functionality, reliability

Functionality, reliability

Maintainability, reuse

Maintainability, reuse

Maintainability, reuse

Maintainability, reuse

Qualiy-carrying
properties

Property
classification

Quality impact

Figure 4.9: Product properties of a variable component and their effect on qual-
ity [24]

Droomey suggests building the quality models by using a single layer of
linkage between a set of tangible quality carrying properties and the high-level
quality attributes. To find the quality carrying properties, he views the prod-
uct as a set of components, some of which are composite. The quality is mostly
determined by the choice of components, the tangible properties of the com-
ponents and the tangible properties associated with component composition.
He suggests classifying the tangible properties into four categories: correct-
ness, internal, contextual and descriptive. Then the link between these four

21

categories can be established and each individual property associated to one of
these categories. An example of product properties for a variable component,
and their effect on quality can be seen in Figure 4.9

By using this bottom-up approach, the idea is to be able to build a model for
software quality by going from the tangible to the intangible. This approach is
demonstrated by Dromey [24] where he builds parts of several quality models
for implementation, design and requirements.

The model can be summed up to that composing a product of high-quality
components in a high-quality manner results in a high quality product.

4.3.6 Other models

The list of quality models presented is by no means complete. A large amount
of models are available, some more complete and more widely used than oth-
ers. There is no de facto standard today, although some are more popular than
others. According to Côté et al. [17], it seems like the ISO 9126 series is gain-
ing some momentum in the industry, but is still not a de facto standard. The
models presented give some overview of different ways of characterizing and
dividing quality into attributes. There is an ongoing effort that will produce a
new series of ISO standards to replace the ISO 9126 and ISO 14598 series. It is
known as SQuaRE and the standards will all be in the 25000 series [70]. More
information on the ISO 25000 series can be found in an article by Suryn et al.
[70].

A important point when it comes to quality models is that you do not need
to use a fixed model [29, p. 340]. You can choose to build your own model
that either adapts an existing model to your needs, or that combines elements
from various other models. One important thing to remember if you end up
creating your own model, is that you will not be able to make use of empirical
evidence that exists for predefined models. You have to consider whether you
need your model to be compatible with one of the existing standard models, or
not.

4.3.7 Quality models and robustness

None of the models described in the previous sections include robustness ex-
plicitly in the model. Looking at an early presentation of Boehm’s model in the
article ”Quantitative evaluation of software quality” by Boehm et al. [11], ro-
bustness/integrity was included as a primitive construct at the fourth level in
the model. It was linked to the intermediate construct’s reliability and human
engineering. In the book ”Characteristics of software quality” by Boehm et al.
[12] published two years later, robustness/integrity along with accountability
and self-containedness has been removed from the model. I have not found
any explanation to why this change was made. One possibility is that Boehm
and others considered these aspects to be covered by the sum of the remaining
primitive constructs.

Even though robustness is not explicitly mentioned in these quality mod-
els, it is most likely covered by the sum of the other elements included in the
model. Further, the models are just theoretical representations of quality. In
the end, it is the definition of quality itself that counts. ISO 9126’s definition of
quality in use is formulated as:

22

Quality in use is the user’s view of the quality of the software prod-
uct when it is used in a specific environment and a specific context
of use. It measures the extent to which users can achieve their goals
in a particular environment, rather than measuring the properties
of the software itself.

NOTE ’Users’ refers to any type of intended users, including both
operators and maintainers, and their requirements can be different.[39]

I will get back to the definition of robustness in Chapter 6, but as illustrated
in Section 4.2, robust behaviour of an application means that the application
should behave in an acceptable way when an error occurs. This means that it
should not crash uncontrollably, corrupt data, or fail because a user presses the
wrong button, or due to some other fault. If we look at the definition for quality
in use in ISO 9126, issues related to robustness would be covered. An applica-
tion that is not robust, like the math application presented in Section 4.2.1 does
not make it easy for the users to achieve their goals. This would be true for
any application that crashes uncontrollably, or in another way does not handle
errors properly. When looking at the hierarchical model for quality in use, ro-
bustness can be said to be covered by the combination of productivity, safety
and satisfaction. An application that does not behave properly when errors oc-
cur, hinders productivity. It might cause harm because of e.g. lost productivity,
unavailability, or corrupt data.

4.4 Quality attributes and architecture

Architecture helps design and defines the main structures of a system. Look-
ing at buildings and other structures like bridges, it is important how the main
internal structures are built in order to be able to evaluate how well they cope
with wear and tear and the forces of nature. When looking at software, a solu-
tion only consisting of code without any well defined main structures could be
working well, but apart from a possible lack of maintainability it is difficult to
predict the other quality attributes of the solution. This is where architecture
plays an important role.

Whether a system will be able to exhibit its desired (or required)
quality attributes is substantially determined by its architecture. [7,
p. 30]

The extent to which the system is able to meet its quality attribute require-
ments is not determined by the architecture alone, but the architecture rep-
resents the foundation upon which the rest of the system is built. This means
that the architectural design, implementation and deployment all influence the
quality attributes of the system. This also means that if one or more of them are
ignored when designing a system, the level of quality might be affected. The
goal is to get both the big architectural picture and the implementation details
right.[7]

The architectural design is among the first activities in a development project,
and in the architecture the first choices are made to how the system should be

23

realized. These choices also affect the quality attributes of the system. Modi-
fiability as a quality attribute is related to the structure of the application; in-
cluding both high and low level structures. An application could be realized
as a multitier system where each tier might be deployed on different comput-
ers. This design forces a strict separation of functionality between the modules;
possibly helping the overall maintainability. Such a design may, however, be
suboptimal for performance as it introduces a communication overhead be-
tween the tiers. The overhead could, however, be kept at an acceptable level
by balancing the frequency and size of the calls between the tiers. Even with
such an architectural design in place, maintainability can be compromised by
the duplication of functionality between tiers, and performance by doing large
amounts of cross tier communication or poorly implemented algorithms in one
or more of the tiers.

Architecture is not only about the high level designs like dividing func-
tionality into application tiers and modules, but also about low level design
and making functionality possible. As an example; making it possible for the
end user to copy, paste, apply picture effects as layers or customize the menus
is also architectural issues that influence the usability of the application. Ar-
chitectural design is all about enabling the application to have the required
quality attributes. If performance is important you have to make sure that the
architecture does not require such a high level of inter-communication and syn-
chronization that reaching the quality goals gets impossible. Another example
is availability; if high availability is required, you have to design the architec-
ture in such a way that it is possible to introduce enough failover, redundancy
and other architectural elements to fulfil the requirement.

Bass et al. [7] sums up the relationship between architecture and quality
attributes quite nicely:

• ”Architecture is critical to the realization of many qualities of interest in
a system, and these qualities should be designed in and be evaluated at
the architectural level”[7].

• ”Architecture by itself is unable to achieve qualities. It provides the foun-
dation for achieving quality, but this foundation will be of no avail if at-
tention is not paid in the details”[7].

Kazman et al. [40] make an even stronger statement by suggesting that the
achievement of qualities like performance, availability and modifiability de-
pends more on architecture than other factors like practices at the code level,
development language or choice of algorithms. This supports the fact that
making sure the architecture is able to support the quality attributes, is im-
portant. As the architecture is among the first areas for decision and design in
the development of a system, it lays the foundation for the rest of the develop-
ment. Making sure these choices are correct and making any changes to them
as early as possible is crucial. As development progresses and builds upon
the choices made, the cost and effort to make changes increases. Redoing the
architecture of an application that proved to not fulfil its vital quality require-
ments during acceptance testing requires much more effort than redoing the
architecture while it still is on paper or in its early prototyping stages.

24

Chapter 5

Interviews

Before the work on this thesis started, my supervisor Dr. Tor Stålhane had
collected information from three companies concerning the theme robustness.
During the work on this thesis I did seven interviews with other companies in
order to determine how the current industry define robustness, and how they
think it can be influenced.

First the interview process including areas of focus, selection of intervie-
wees and how the interviews were conducted will be presented. Next, the
answers will be summarized and threats to the validity of the results will be
discussed. Last, I will present which of the areas mentioned by interviewees
that will be my main focus for the rest of this thesis.

5.1 Interview design

5.1.1 Preliminary work

As already mentioned, Dr. Tor Stålhane had talked to representants from three
companies. All three companies were familiar to him, as he had cooperated
with them for some time. In two of the companies he talked to multiple peo-
ple, and used a group process where each person wrote down suggestions on
pieces of paper, followed by a group discussion. In the third company he con-
ducted an interview with a single person. The results were structured and
listed for each individual company when delivered to me.

Before the interview process started, I analyzed the results from the three
companies to compare them to each other. Based on this analysis I created a
document containing the preliminary results grouped by theme. When starting
this process it was uncertain whether results from the three companies were
consistent, or if the different companies had different opinions. A theory was
that a core definition of robustness exists, but that different business sectors
have additions to this core. I will get back to this in more detail in Chapter 6.

To analyze the results I first created a document based on results from one
company, listing the main characterizations of robustness on one page, and
listing how to achieve a better level of robustness on another page. I then
took the results from the second and third company and tried to fill them into
the structure. Some adjustments were needed, but they all fitted nicely into a

25

common structure. The same themes and ideas were represented in all three
results with only small differences.

The resulting document provided a list of characteristics of robustness, and
suggestions for how architecture and process may result in higher robustness.

5.1.2 Main purpose of interviews

The purpose of the interview process was to get a better insight into the current
software development industry’s view of robustness. During the interviews,
there were two focus areas. First, information on how robustness is defined,
and what characterizes a robust application. Next, how robustness can be im-
proved during development. This covers process measures, architectural so-
lutions, guidelines and implementation details. Architecture and process has
been the main focus, and this was also important when choosing interviewees.

5.1.3 Interviewee selection

As architecture and process were the main area of focus, talking to persons
that work with this on a daily basis was an important criterion when initiating
the interview process. From personal experience, I know that these persons
have a busy schedule. It can also be difficult to get hold of these persons in a
large organization. They are normally not exposed like managers, sales rep-
resentatives or business consultants are. Based on this I chose to use existing
contacts and relations within the industry to get in contact with the right per-
sons. Other strategies could have been used. Sending mail to organizations
asking for a interview with the relevant persons was an option. I did not try
this as I suspected that the response rate would be low. Devoting time to all
enquiries like this can be difficult for an organization. According to Cornford
and Smithson [16], the fact that there is no apparent gain for the interviewee
also makes it less likely for someone to accept being interviewed.

Using my contacts I managed to book interviews with seven persons from
five companies. All interviewees work with architecture and development pro-
cesses, but from different perspectives. Some work on the business side of
things, some on the technical side as senior developers and others work as
software architects.

5.1.4 Confidentiality

Interviewees were informed that the interview result would be anonymized,
and that neither their name nor their company name would be presented to-
gether with the results. If information provided by the interviewees would be
traceable back to them and the company, it could make the interviewee afraid
to provide information. This was the main reason for choosing to present re-
sults anonymously.

This level of confidentiality limits how the result of the analysis can be pre-
sented. I, however, felt that the positive effect of being able to speak freely
outweighed the benefit of being able to publish details from the individual in-
terviews. Whether the confidentiality led to better answers or not is not known.
My personal opinion is that I know I would be more careful if everything I said

26

would be published together with my name and company name. The fear of
saying something wrong would lead to brevity in my answers.

5.1.5 The interview

Interview objects were scattered around the Nordic countries and conducting
a face-to-face interview with each of them was not possible during the work
on this thesis. This was both due to travel cost and difficulty of finding avail-
able time. Use of telephone, text-chat and mail gave more flexibility, and was
extensively used. One person was interviewed by phone, one answered ques-
tions by mail, one was interviewed in person, and the remaning four were
interviewed by the help of text-chat. Interviews were conducted in Norwe-
gian, English and Norwegian/Swedish. All non Norwegian interviews were
conducted by text-chat.

All interviewees were informed about the theme of the interview, and got
some time to think and make some notes before the interview. Interviews were
conducted as semi structured interviews1, lead by the interview guide pre-
sented in Section 5.2.

During the interview the preliminary document created on the basis of the
initial three interviews were also used to ask more specific questions about
things not explicitly mentioned by the interviewee. As new characterizations
of robustness or solutions were mentioned by interviewees this document was
also updated so that subsequent interviews could be used to verify the docu-
ment.

Information from the interviews was collected in several ways. In the face-
to-face interview notes was taken by hand, and later a transcript based on these
notes were written. The phone interview was recorded, and later transcribed.
All text from text-chats was copied, and the mail reply from the last interviewee
was copied into a document.

5.1.6 Analysis

After an interview had been conducted and transcribed, the transcript was
copied into a new document and parts without interest were removed. Af-
ter the transcript had been cleaned, information from the transcript was added
into the preliminary document created based on Stålhanes existing work. Dur-
ing the first interviews some additions and modifications to the structure of
the document was necessary. The part of the document characterizing robust-
ness stabilized and the last interviews fitted nicely into the categories. The
second part of the document describing suggestions to how robustness can
be influenced or achieved grew after each interview. The characterization of
robustness in Section 5.4 is directly based on the first part of this document.
Information on how to achieve and influence robustness from the second part
of the document was restructured into the form presented in Section 5.5.

As information from the interview process should not be traceable I have
not included all the transcripts. Two transcript summaries are, however, with
the consent of the interviewees provided as examples in Appendix B.

1As defined by [61].

27

5.2 Interview guide

The questions presented below were only used as a rough guide, and do not
focus on guiding the person being interviewed. Most of the interviewees were
asked more specific questions if some aspect were not mentioned, in order to
determine if the interviewee only had forgotten to mention it.

The questions were either asked in Norwegian or English depending on the
person being interviewed, however, only the English version of the questions
is listed below:

What is robustness?

• How do you define the term robustness?

• What characterizes a robust software application?

• How robust does a business application have to be?

How to achieve robustness?

• In your opinion, what has to be done to achieve robustness?

In which phases of development is it important to focus on ro-
bustness?

• Where in the process is it important to focus on robustness?
Why?

What do you do about robustness today, and what plans do you
have for the future?

• Do you focus on robustness in development today?

• Why / why not? Do you plan to do do it in the nearest future?

• What do you do today / what do you plan to do in order to
focus on robustness?

• What do you plan to do in the future?

What is software architecture?

• What do you consider to be software architecture?

How important is architecture?

• What role does the architecture play in creating a robust solu-
tion as you see it?

Architectural solutions

• Is there any architectural solutions/design solutions/patterns
that you think contribute to robustness? (Here both high-level
as well as low-level on the boundary to code-level solution are
interesting.)

28

5.3 Interview results

Below, interview results are summarized in two sections. The summary also in-
cludes results from Stålhane’s preliminary work. For simplicity the rest of the
paper will also refer to Stålhane’s preliminary work as interviews, although
information from two of the companies were collected through a group pro-
cess. The summary is divided into two main sections. First information about
what characterizes a robust solution is presented in Section 5.4, then informa-
tion on how a robust application can be achieved is presented in Section 5.5.
Although I have tried to divide information from interviews into two com-
partments, what characterises a robust application and how robustness can be
achieved, some information about characterizations will indicate how robust-
ness can be achieved, and some solutions will indicate what can be defined as
robust behaviour.

5.4 What characterizes a robust solution?

Below main aspects for robustness are described based on results from the in-
terviews. Each aspect is discussed, and information on how many interviewees
that has mentioned it is provided. If any interviewees have conflicting opin-
ions, this is also mentioned.

5.4.1 Good error handling

The interviewees all agree that the existence of good error handling is impor-
tant for an application to be robust. Error handling is a large subject. To be
more specific, the interviewees have mentioned the following aspects of good
error handling:

• Strategy for handling errors.

• Careful handling of error situations.

• Keep errors local.

• Informative error messages.

I will handle each of these in more detail below, but first I will list some
general aspects of robust behaviour with respect to error handling mentioned
by the interviewees.

• The system is able to handle (all) error situations.

• The system should not terminate uncontrollably.

• The system never crashes.

• How errors are handled is important to determine if an application is
robust or not.

• Errors should be handled in a way that is acceptable for the user.

• The system should be able to detect and report potential errors.

29

• The system should be able to handle unforeseen incidents.

• The user should be given the ability to retry a failed operation in relevant
use-cases.

• An application is robust as long as it handles error situations in a reason-
able way.

The statements indicate that handling errors is of importance to robustness.
To what extent errors has to be handled varies between interviewees, but it
seems that recognizing that an error has occurred, and reacting in a sensible
way based on the situation is enough to consider a system to be robust. All
errors do not have to be handled in such a way that the system continues to
run, as long as it terminates in a controlled manner. This means not leaving
stored data or dependencies in an inconsistent state, and informing relevant
parties about the cause of the error.

Strategy for handling errors

A robust system should have a clear strategy for how errors and failures should
be handled, including those who are unexpected. The effect of such a strategy
is that:

• Errors should be logged.

• Effects of errors should be minimized.

• Errors should not lead to leakage of resources like database connections,
open files etc.

• The system should provide clear information about the error, if an error
occur.

• The system is able to monitor itself, and initiate corrective measures.

• All errors should be reported, the application should not silently fail
without reporting the error.

• Unacceptable error situations should lead to a controlled termination of
the system.

Careful handling of error situations

Error situations should be carefully handled, both at the user interface level
and in the interface between components. More specifically interviewees men-
tioned:

• Data should not be lost.

• If a failure should occur, it should be easy to get back into production.

• If the database connection is lost, unstored data should not be lost. The
system should provide the ability to retry operation when the database
connection is back.

30

• The system needs to be aware of the severity of a failure, and react ac-
cordingly. For example, there is a difference between getting a SQL syn-
tax failure back from the database and getting a failure from the database
telling that the database is corrupt.

Keep local errors local

Local errors should not affect the whole system. This means that:

• The system should consider the effect on other components relying on a
component before disabling it.

• An error in a module or plug-in should not harm the rest of the system.

• Errors should not result in consumption of resources like database con-
nections, open cursors that eventually could lead to failure.

• Errors should not be allowed to spread by allowing invalid data to be
stored in a database or similar data store.

• If a module or plug-in experiences an error, the error should be reported
and the rest of the system should keep running unless the error is critical
to the consistency of the system.

Informative errors

Error messages and logged information should be informative to the reader,
and contain information so that the error can be located and corrected. More
specific the following is important:

• Is should be possible for the user to understand error messages presented.

• Information in error messages should help locate the underlying prob-
lem.

• If a simplified error message is displayed to the user, technical informa-
tion should either be logged or accessible through the message so that
technical personnel can locate and correct the problem.

• Do not use error messages only saying ”Something went wrong”.

• Information from error messages should help getting the system back
online if an error should result in the system going offline.

• All details should be kept in the error message as it is transferred between
parts of the system, and should not be removed by abstractions.

• Error messages should be clear, consistent and not overly complex.

Four of the interviewees mentioned informative errors as an important as-
pect of a robust application, but one of the interviewees disagreed, stating that
error messages are more a user interface issue than a robustness issue.

31

5.4.2 Clear strategy for logging

The application should have a clear strategy for logging. Logging may be used
for both logging errors and keeping audit trails. Logging can be done to sev-
eral sources like file, event log and database. Three of the interviewees have
stated that errors have to be logged when they occur. If the application needs
to terminate it should log the cause of termination before exiting so that the
cause of the termination is known. It is important that information about the
source of the logging also is included in the log itself. A log entry only contain-
ing ”Input value out of range, reverting to default value” is of little use if the
source of the logging is unknown. Initially an event could only be logged from
one location, but that might change as time goes by.

It is suggested that a system for logging should be contained in the appli-
cation; this would make sure that logging is done consistently, and relevant
information is included in the log entry.

Further, information must be logged in such a way that the correct per-
sons are informed about any relevant errors that have occurred within the sys-
tem. To be usefull, the logged information has to be monitored by someone.
This is especially important if the error that occurred did not make the system
terminate. If the system terminated it would be natural to look in the log to
determine the cause of the termination before starting the system. If the sys-
tem continued to function after the error, no one would know that the fault
occurred unless someone monitored the log or got notified about the error in
some other way.

An audit trail has a different purpose than error and diagnostic logging.
One of the interviewees has mentioned that logging of audit trails is important.
Audit trails can be used to verify who made changes to data, and performed
operations within the system. This can be used both to explain why data has
changed, and to diagnose errors in the system by comparing logs and audit
trails with the actual data stored.

Diagnostic and error logging is most relevant to server based systems, but
can also be beneficial to include in client based applications. Logs can be a
valuable source of information when causes of errors in data or results should
be diagnosed. It might be that the user has just clicked OK on several error
messages without notifying anyone about the errors that has occurred.

5.4.3 Consistent data source

Consistency of the data source is of importance to robustness. Making sure
the database is consistent through the use of transactions and referential con-
straints in the database helps make sure that only consistent and valid informa-
tion get stored in the database. Using correct data types also helps preventing
invalid data from getting stored in the database.

Transactions are helpful since changes will be rolled back automatically if
an error should occur in the middle of a process. Although this requires trans-
actions to be used correctly, it is much simpler than to manually undo changes.

Combining a correct normalized data model, with the use of correct data
types, referential constraints and correct use of transactions will result in fewer
chances for invalid or inconsistent data to be stored in the database. This also

32

forces other applications writing to the database to adhere to the same rules, as
they are enforced by the database.

Developing applications that can be used to verify integrity between dif-
ferent databases, and complex forms of integrity that cannot be enforced by
constraints in the database are also helpful to ensure that the data stored in the
database is correct.

Data consistency is important, as the application normally trusts informa-
tion stored in the database and uses it extensively during operation. Errors in
this data would lead to incorrect results.

5.4.4 Validity control

Related to consistency control at the database layer, are validity controls in-
side the application itself. Although only mentioned by two of the intervie-
wees, I find this to be important. By having checks inside the system that in-
forms when data indicates that something is wrong helps preventing errors
from spreading. One example of such a check is checking for extreme amounts
before charging a credit card. Checks can be realized either as error being re-
ported or as a mechanism that only logs a warning, or make an operator man-
ually verify that the information is correct.

Checking of data is not only important inside a system, verifying both input
provided to the system as described in Section 5.4.5, and output returned from
the system is important.

5.4.5 Input tolerance

Most of the interviewees (seven) have mentioned input tolerance as being im-
portant for an application to be considered robust. A robust application should
handle all input variants, including invalid input that should result in the user
being informed about the invalid input. An application that crashes due to in-
valid input is not considered robust. A special class of input tolerance, injection
attacks, will be handled together with Security in Section 5.4.12.

Input tolerance is not only relevant to parts of the application communi-
cating with a human user. Component interfaces and integration points also
have to be tolerant to all possible input. Some interviewees also include com-
munication between internal modules when talking about input tolerance, but
others thinks you should trust other parts of your system. Being careful about
input received also internally in the application would make it more difficult
for bad data to spread, but could lead to decreased performance.

When checking for input it is essential to balance between trying to handle
too much and being too restrictive. Complex logic that tries to interpret data
that contain faults can lead to invalid data being accepted. For example, trying
to handle various decimal separators can be dangerous as there is no way to
know whether a number contains a decimal separator or a thousand separa-
tor. Handling both types of decimal separators without the use of a setting or
context switch can lead to wrong interpretation of the data.

If you do not perform strict verification on the data entering a system, the
data might lead to many error situations inside the system. For instance, in-
stead of checking the length of data entering a system, the system might have
to handle errors everywhere data is stored to fields with fixed length. Instead

33

of checking the length one place, several checks could be required. Also com-
pensation logic might be needed to undo other changes and bring back the
system to a consistent state. By verifying input, the complexity of the rest of
the system can be reduced by not requiring checks and compensation logic
spread around the system.

5.4.6 Good handling of load

A robust application should, according to nine of the interviewees, handle
heavy load in an acceptable way. Load might be high volumes of data, large
amounts of data, high number of requests or a high number of users. Opinions
about how load should be handled vary. Low response time, and being able to
handle higher load than specified seems to be a common ground. Some also
mention explicitly that the system should be designed so it can make use of
connection pooling and load balancing.

When it comes to how the system should handle situations where load ex-
ceeds the load the system is able to handle, there are several opinions. Some
think the system should have a mechanism that rejects users or in another way
prevents the system from getting overloaded. Others think that it is OK that
the response time decreases, and having a mechanism that rejects users is not
useful as the system is not able to handle the request anyway. Another nega-
tive side of having a mechanism that rejects requests is that it can be difficult
to design such a mechanism as there are so many contributing factors.

Independent of the solution, it seems like most of the interviewees thinks
that the most important thing is that the system does not crash or terminate
and handles the overload situation gracefully. Examples of how the overload
situation can be handled are:

• Increase in response time.

• Rejecting users or requests.

• Queue requests.

Some also mentions that it should be possible to monitor so that it can be
determined what the cause for a decrease in response time is, and identify
increasing load early so that measures can be taken to make the application
handle the new load.

5.4.7 User friendly

A robust system should be user friendly. A user friendly user interface helps
the user using the system correctly, and at the same time checks user input and
informs the user about any invalid input before starting to process or to store
the input.

• The system is simple to use.

• The system has an intuitive user interface.

• The user interface is built in such a way that it prevents wrong use of the
system.

34

• If a user enters invalid data or in another way uses the system wrongly,
the system informs the user through an understandable error message or
visual clue.

• The user interface verifies user input before trying to store or to process
the input.

• The application uses terms and concepts familiar to the user of the sys-
tem.

• The user interface guides the user to correct use of the system.

5.4.8 Few errors

Few errors seem also to be a common characteristic of a robust application. It is
mentioned by nine of the interviewees. Most of the interviewees only requires
few errors to be present, while one said that the system should not contain any
errors. Four interviewees were asked whether there is a difference between
logical and technical errors when considering whether an application can be
considered to be robust. The interviewees responded that there is not much
difference between the types of errors. An application containing lots of errors
would not be considered to be robust regardless of the errors types.

Another opinion mentioned by four of the interviewees, was that as long as
errors are handled gracefully so that it does not severely reduce the user expe-
rience, the number of errors does not matter. This indicates that the number of
errors is not a direct metric for robustness.

Thoroughly tested

One prerequisite for an application to contain few errors is that it has been
thoroughly tested. There is no way to know if an application contains errors or
not without testing it. Through testing it is possible to find and correct errors
as well as geting an indication of the number of errors in the application. An
application that undergoes extensive testing without finding any errors is less
likely to have a high number of remaining errors compared to an application
where testing reveals a high number of errors. Thoroughly tested or having
undergone quality assurance is mentioned as a characteristic by four of the
same interviewees that mentions the importance of few errors.

5.4.9 Redundant and/or uses failover

Five of the interviewees have mentioned that the existence redundancy, load
balancing or failover can be an indication on a robust application. There are
different opinions on to what extent it is necessary and beneficial. Some think it
is overkill, other think it can be beneficial, but that third party solution should
be used where possible, instead of implementing this functionality into the
application itself.

35

5.4.10 Predictable

Predictability is mentioned as important by half of the interviewees. A pre-
dictable application should perform consistently every time it is used. This
include that it should handle similar situations consistently, and have a pre-
dictable uptime (see also Section 5.4.11).

Some samples of statements from the interviewees related to predictability
are:

• The application should satisfy the expected level of availability

• The system should not exhibit any suspicious or unpredictable behaviour.

• If the application is used within the predefined requirements, the appli-
cation should be predictable

Predefined requirements in this context can be specified versions of the op-
erating systems and databases, specified interfaces of components or applica-
tions, or behavioural specifications.

5.4.11 Has low downtime

Three interviewees mentioned low downtime or high availability as a charac-
teristic of a robust application. One of the three mentioned it as especially im-
portant for server based applications. Availability can be seen as a behavioural
result of other aspects mentioned by interviewees. It is difficult to get high
availability if the application contains a high number of faults that leads to
failures. To accomplish high levels of availability further measures like redun-
dancy might also be necessary.

One of the three interviewees states that the system’s availability should be
according to the expectations put upon the application. Based on this state-
ment, required level of availability depends on the type of application in ques-
tion. Another important aspect to remember when it comes to availability is
that the availability of an application or component requires that other services
or components the application or component is dependent upon also is avail-
able. An application that depends of a web service to function cannot have a
higher availability than the web service.

A related aspect mentioned by three interviewees is that the application
should not leak resources. Leakage of resources would eventually result in
no more resources being available and the application might crash or become
unavailable. This is also related to error handling and load situations. Errors
can result in resources not being released. The amount of resource leakage
would also be higher for a time interval with high load than an interval with
low load, which could lead to shorter time between failures.

5.4.12 Security

Interviewees have different opinions when it comes to the relation between se-
curity and robustness. Two interviewees think security in general is important
for an application to be robust. This includes having a high level of security

36

in the application through access control, rights and roles. Two other intervie-
wees mentioned access control as being important, but did not define security
in general as a part of robustness.

Based on the number of interviewees and the split opinions, it is not pos-
sible to conclude whether general security is part of robustness or not. Re-
sults, however, indicate that the resistance of a security system is related to
robustness. This means that a robust system needs to handle several types of
attacks like intrusion attempts. Preventing legitimate users from seeing data
they should not have access to, however, might not be related to robustness as
long as they do not deliberately try to access the data by using vulnerability in
the security system. The relation between robustness and security also heavily
depend on the level of security needed for a system. For drawing applications
robustness would not be related to security at all, but a online banking system
would most likely define security as a part of robustness.

Seven of the interviewees have mentioned that a robust system should not
be vulnerable to specific types of attack, giving a clear indication that this part
of security is related to robustness. Types of vulnerabilities mentioned are:

• SQL injection.

• Cross site scripting (XSS).

• Buffer overflow.

• Denial-Of-Service attacks.

Except denial-of-service, all these relates to usage of input and data stored
in a data store, which could be seen as an aspect of input handling. The notion
of access control, however, is something only covered by security. Although
there is some uncertainty about the relation between security and robustness, I
choose to consider security as a part of robustness as it has been mentioned by
several of the interviewees. Which parts of security that is relevant for robust-
ness is, however, kept open.

5.4.13 High maintainability

Some aspect related to maintainability is mentioned by all but one of the in-
terviewees. Maintainability of both the application itself and any database or
other data store should be considered. Although some mentions maintainabil-
ity in general, there are more specific aspects of maintainability mentioned:

• Faults should be simple to find and correct.

• Introduction of new functionality or change of existing functionality should
not lead to errors in other parts of the system.

• The system should have a good structure.

All these aspects are related. A well arranged system should only require
localized changes when functionality is to be added or changed, and a good
system structure should also make it easy to find and correct a fault.

Interviewees indicate that maintainability is an important aspect for creat-
ing a robust application. System architecture with high maintainability would

37

lead to a system with clear interfaces and responsibility. This would make er-
ror handling easier to plan and design, it would also make designing error
handling as part of component interfaces possible.

One of the interviewees wanted to make a clear distinction between ro-
bustness and maintainability, but mentioned that it should be easy to find and
correct problems. This indicates that even this person defined parts of main-
tainability to be relevant to robustness.

5.4.14 Good documentation

Documentation is mentioned in relation to robustness by five interviewees, but
the results are difficult to interpret. Two have mentioned that good documenta-
tion is an aspect of a robust system. Another one has expressed that documen-
tation is only important with regards to robustness during the development
of a system. Further, one of the two interviewees that mentioned good doc-
umentation also has mentioned user and system documentation. This is not
mentioned by any other of the interviewees. Two interviewees has mentioned
documentation, but not been as specific as the two explicitly mentioning it.

Information from interviews indicates that documentation is important, but
it is difficult to know if end user documentation, interface documentation, ar-
chitectural documentation, or system documentation is important based on in-
formation from the interviews. However, it is difficult to understand that a
system without any documentation at all would be easy to use, support and
maintain.

5.4.15 Other aspects

This section will list some aspects mentioned by only one or two interviewees.
It is not possible to know if these aspects are only important to some, or repre-
sents viewpoints other interviewees have omitted.

Can stand the test of time

Two of the interviewees considered the robustness of the application and its
architecture in a broader sense. They indicated that an architecture or appli-
cation that is able to handle shifting requirements, and changes in technical
aspects should be considered robust. This is related to maintainability, but is a
much broader sense of maintainability than mentioned by most of the intervie-
wees. It is important to remember that this is not a direct characterization of
application behaviour at runtime, or during minor maintenance, but how well
the architecture and application are able to handle larger shifts in technological
trends and functional requirements. An underlying data model for an appli-
cation should also be taken into consideration when considering how well the
application adapts to required changes.

An application or architecture requiring large fundamental changes when
minor changes in business rules are to be changed, or some new functionality
is to be added, is not considered to be robust. That is, it might be robust at
runtime, but is not robust to changes that should be anticipated when creating
an application that will be used for a period of time.

38

Adapts to the environment

One of the interviewed companies mentioned adaptability to the environment
as relevant behaviour of a robust system. This includes both adaptability to
the hardware and adapting to environmental changes at runtime. This is men-
tioned in one of the preliminary interviews, making it difficult to know if this
was related to a specific class of systems or meant in a specific context. Hard-
ware adaptability might be related to maintenance, and runtime adaptability
to available CPU and memory available. As this is mere speculations from me,
and not mentioned explicitly by any other interviewees I will not follow this
further.

5.5 How to achieve a robust system

The interviewees gave a number of suggestions for how they think robustness
can be improved. The interview included questions about what they currently
do, what they think can be done and what they plan to do in the future. As
the interviews were conducted, it became apparent that separating what they
currently do, plan to do, and suggest to do would be extremely difficult. Ask-
ing for each suggestion mentioned by interviewees whether they currently did
it, wanted to do it, or just thought it would be beneficial, would require more
time and could disturb the flow of the interview. As a result of this I simpli-
fied my questions by not asking specifically about what they did, or planned to
do. I have thus combined current efforts, suggested, and planned efforts into a
combined list of suggestions on how robustness can be achieved or improved.

5.5.1 Process measures

Several measures related to the process, were mentioned during the interviews,
and they can be summarized into the following main suggestions which will
be discussed separately:

• Work in teams.

• Reduce risks.

• Adhere to a process.

• Automate processes.

• Control the environment.

Work in teams

Working in teams instead of working alone is a suggestion from several of the
interviewees. Teams could consist only of people with similar roles, or consist
of people with different roles and backgrounds. Users might also be included
in these teams. Important aspects related to working in teams mentioned by
interviewees are:

• Teamwork should be performed as soon as possible in the project, it is
not recommended to do too much thinking and design alone.

39

• Teams should consist of people with different background making them
complement each other. This includes both a mix of roles, and level of
experience.

• The effect of teamwork depends on the participants. If participants do
not contribute to the team, teamwork does not have the same positive
effect

Reduce risks

Risks should be reduced during the project, by designing and implementing
the most critical and difficult parts of the system early. Iterative development
is one way of accomplishing this, by selecting critical or difficult parts for the
first iterations. Further, it is suggested to create prototypes and test parts of
the system in the customer environment early. This should reduce the risk
that some parts are not possible to implement, or will not run in the customer
environment.

Adhere to a process

Development should follow a predefined process. This process should include
a set of guidelines, and coding standards should be used to ensure that de-
velopment and design follow a common standard. The second purpose of
guidelines is to reuse well tested and known solutions instead of inventing
new solutions.

A development process should focus on being simple, but still be so de-
tailed that it can be used consistently for all development within the company
or a development group. An agile development process is one example of such
a small but effective process.

Further, a well defined development framework should be used, to make
sure all developers use a common platform of utilities and perform the same
task in a common way. Such a framework includes functions for logging, han-
dling exceptions, database communication and so on. A framework may also
contain written guidelines for how certain things should be done.

One of the interviewees said: ”Without a robust process, you will probably
not be able to develop robust applications.” This indicates a strong relation
between the development process and the robustness of an application.

Automate processes

It is suggested to automate certain parts of the development process, to make
sure the steps are done consistently and correct every time. Candidates of such
automation are processes that are repeated several times during a product’s
lifetime, and are easy to automate. Candidates for such automation are:

• Automate testing through the use of robot testing or unit testing.

• Automate the build process.

• Automate installations through the use of installation programs.

• Automate installation in test environments.

40

Control the environment

The runtime environment used during testing and production should be con-
trolled. A stabile environment should be used, reducing the risk that some-
thing outside the application fails. Most applications will not be robust if in-
stalled on hardware that fails randomly.

5.5.2 Focus on robustness

Keeping focus on robustness during design and development may seem like
an obvious and too general way of improving the robustness of an applica-
tion. Interviewees have suggested ways increased focus can help. First I will
look at some general ideas, and then move over to look at some more specific
suggestions.

• It is too much focus on functionality. To focus more on robustness and
the fact that robustness comes with a cost would be beneficial.

• Be critical about robustness already during requirement analysis.

• You need to have focus on robustness from the very beginning of a de-
velopment project, it cannot be an afterthought.

• Architectural design needs to focus on robustness, it is important that the
architecture has to handle error handling, logging, and resource manage-
ment.

• It is important to balance between flexibility, complexity and robustness.
The difficulty of creating a robust solution increases with added complex-
ity.

• Focus on robustness during requirement analysis would be beneficial, as
it would lead to better robustness requirements.

Consciousness over error conditions

Being conscious of possible errors and failures during design and development
can be beneficial. It is suggested to think through possible error situations, and
use this to plan and design the error handling accordingly. The conscious-
ness should be at several levels of abstraction, from the top level design of the
system and down to implementation details. Having a clear strategy on how
errors and failures should be handled by the system, helps ensuring that the
system is thought-through and the behaviour in erroneous situations is well
known.

An example is thinking through what happens if the database server should
crash, or possible errors that could occur when opening a file. In the database
server case, it might be beneficial to add a failover mechanism to a replicated
database server instance, or use a database cluster instead of a single database.
This has to be evaluated based on the requirements for the system’s availability.

41

Prevent error situations

Related to the consciousness of possible error conditions, is error prevention.
Designers and developers should consider if there are alternative solutions or
measures that can be taken to reduce the possibility for a failure to occur. It
can be reduced through the number of possibilities, or the probability of each
possibility occurring.

Possibilities for error prevention are highly dependent on the solution being
developed. Some examples mentioned are:

• Use asynchronous communication instead of synchronous communica-
tion.

• Keep a local copy of data to prevent communication failures from causing
failures in the application.

• Make sure that local errors do not spread to the rest of the system, or in
another way influence the rest of the system.

• Instead of using an unreliable data store, use a reliable one and include
an asynchronous mechanism that updates the unreliable data store from
the reliable data store.

Defensive development is also suggested by one of the interviewees as a
way of improving error situations. By being defensive when developing and
designing, you try to think that everything can go wrong instead of thinking
of errors as something that seldom happen. Being defensive when developing
and designing might also lead to better interfaces as errors are consistently
handled and exposed through the interface.

Analyze designs

Analysing the design and architecture was mentioned by one interviewee, and
four others agreed that it would be beneficial when asked. None of the others
were specifically asked about analysis of the architecture would be beneficial or
not. All four that either mentioned it or agreed when asked, did not think that
starting the testing and analysis on the architecture would be too early. One
expressed that starting with testing based on the architecture could even be a
bit late. This indicates that testing and analysis also may start before having a
suggested architecture.

Interviewees had several ideas for how architectures and systems may be
analyzed:

• Problematize the design or architecture; this is more relevant for large,
complex distributed systems than small simple systems.

• Evaluate the design by, letting an objective person analyze the architec-
ture.

• Create (proof-of-concept) prototypes.

• Design the architecture and identify problematic areas that might need
further investigation or testing.

42

• Let a group composed of people with varying background analyze the ar-
chitecture, this could for instance be done through asking a set of ”What
happens if ...” questions.

• Involve users in the analysis and design phases, and create prototypes to
visualise solutions to the users.

The last suggestion is similar to the suggested approach I will describe in
Chapter 9.

5.5.3 Thorough requirement analysis

I have already briefly mentioned that focusing on robustness when doing re-
quirement analysis can be beneficial. It would lead to better specified robust-
ness related requirements. Six of the interviewees have mentioned this as be-
ing important when designing and implementing a robust application. Four
of them were asked if requirements or specifications today are explicit enough
on robustness related issues, and none of them think enough information is
provided. It seems like current requirements and specifications have too high
focus on functionality and that non-functional requirements should be devoted
more space in the requirement specification. One of the interviewees expressed
a concern related to non-functional requirements, customers do not know what
they really need and want. Customers know what functionality they want, but
often lack the knowledge to express non-functional requirements.

Some negative effects of not having explicit non-functional requirements
are mentioned by interviewees:

• The customer might say that the application is too slow, too unstable, or
has too high downtime. If there are no specific requirements stating these
expectations, you would have a challenge. You do not want a customer
who is not satisfied with your delivery, and the customer might not want
to pay more as he might think you should have been able to build an
application that was robust, performant and available enough in the first
place.

• A solution or part of a solution that is developed only based on functional
requirements depends highly on the developers that realize it. Some de-
velopers develop robust and performant solutions regardless of whether
it is specified or not, others just develop the functionality specified with-
out thinking much of performance or robustness.

• Certain robustness requirements come with a cost, and these require-
ments will seldom be fulfilled if they are not explicitly stated. You nor-
mally do not make a more expensive or complex solution than necessary.

Two of the interviewees made a specific suggestion to how robustness could
become a part of the requirements. They suggest that a chapter or section in
the requirement specification should be devoted to robustness.

Robustness is not important alone as stated by one of the interviewees; a
robust system is useless if it does not fulfil the rest of the customer’s require-
ments.

In addition to explicitly including robustness requirements, there are other
suggestions as well mentioned by interviewees:

43

• Requirements and design should be performed in iterations.

• Use use-cases.

• Make sure requirements focus on what is really important. Achieving
robustness becomes more difficult as complexity grows.

• Let the customer and/or someone objective verify the requirements.

• Perform a thorough collection of requirements.

• Document the requirements thoroughly, and make sure they are all writ-
ten down.

• Include specification of required runtime environments in the specifica-
tion.

• Do not change requirements during development unless necessary.

• Use diagrams and figures to illustrate parts of the system and interactions
with its surroundings.

• Involve users in the requirements phase.

All these suggestions are quite general, but as one of the interviewees pointed
out it is important to build the system based on the correct requirements. If the
requirements turn out to be wrong, or some functionality is not included in the
requirements, and this is discovered in later stages of development or during
testing it might be hard to fix. It might be that the underlying design is simply
wrong, making it necessary to make suboptimal shortcuts or fixes in funda-
mental parts of the application. A system that contains a lot of shortcuts and
suboptimal tweaks before it is released the first time will be harder to maintain
and less likely to be robust than a system that is ”clean” in its first version. The
same interviewee concretized this into the following statement: ”The better
you succeed with the first version, the more robust the system will be”.

As time goes by, all systems will end up containing various fixes and short-
cuts due to added functionality and maintenance. A system that has fixes and
shortcuts from the start will possibly be harder to maintain, and can be less
robust because functionality has to be fitted into a wrong architecture from the
start.

Plan for support and maintenance

One of the interviewees mentioned an important aspect, you should plan for
support and maintenance of the system. It is not only important during re-
quirement collection, but also during design, development, and testing. When
a system is in production, it is important that also support personnel are able
to maintain the system so it keeps running. If this aspect does not have fo-
cus during development, it might be difficult to monitor, recover and diagnose
problems. Support personnel seldom have access to debuggers and source
code like developers have. A system that is only a black box can be difficult to
support.

44

5.5.4 Plan for robustness in architecture and design

Seven of the interviewees were asked whether they thought the architecture
have any influence on the robustness. All expressed that the architecture lays
the foundation for robustness in the application. Without considering robust-
ness during the architectural design, making a robust solution may become
difficult. Robustness is about more than just implementation details. Numer-
ous suggestions for how architecture and design should be used to ensure ro-
bustness and possible architectural solutions were mentioned by interviewees.
I will start by listing some more general suggestions and then move over to
more specific suggestions afterwards.

Some general suggestions were:

• Perform thorough design.

• Do not start the implementation before the design is complete.

• Do not make a more complex design than necessary.

• Focus on robustness during design.

• Make sure the architecture supports the required level of error handling
and resource management.

• Coordinate application and database design activities.

• Make relevant parts of the architecture fault tolerant.

• Try to just have a single architecture, and not a composition of several
architecture in the application.

• Make the architecture easy to use, easy to understand, thought-through,
and well documented.

• Design with performance in mind.

• Try to come up with alternative solutions when the current solution seems
to complex.

• Robustness alone is not enough, functionality and other non-functional
requirements also need to be considered during design.

• Document the design, and make use of figures and diagrams.

• Assure that the design is correct; starting implementation on the wrong
design can turn out to be costly.

• Test and analyze relevant parts of the architecture using prototypes.

I will now look at some more concrete suggestions from the interviewees.

Load handling

During the design stage one should determine how the design is able to cope
with load; every design has a limit on how much load it can handle. Mul-
tiple alternatives to how load can be handled has already been discussed in
Section 5.4.6.

45

Build a good data model

During the design stage a good data model should be designed. One of the
interviewees mentioned this explicitly. In his experience systems with a nor-
malized data model have longer lifetime. In his experience changes in a cor-
rect data model are more seldom than in the business logic of the application.
This is due to changes in business rules, but the underlying concepts seldom
change. Reducing the number of breaking changes in the data model is impor-
tant, as a change here also requires a change in the application everywhere the
data is used or stored.

Complexity and functionality vs robustness

As already mentioned, the solution added complexity makes robustness more
difficult to achieve. In addition tradeoffs between robustness and other non-
functional properties like performance and flexibility also need to be done. The
recommendation from three of the interviewees is to balance complexity and
flexibility with the need for robustness, but at the same time also evaluate the
effect on other non-functional aspects like performance and maintainability.
Making things unnecessary is not recommended, as it increases the difficulty
in achieving robustness.

Plan and design for recovery

When designing a system, you should also consider how the system supports
recovery. How is it possible to restore the system into a consistent state? If this
has not been considered during design and implementation and trained on
during testing, it might not be possible. If possible it could take too much time
to determine how it should be done when a situation occurs in production.
How critical the system is for the company also has to be taken into consid-
eration. If it takes 2 days to perform a recovery using the current design, the
design might have to be changed if the company requires no more than 4 hours
downtime on the system. Although this is only mentioned by one interviewee,
I have chosen to include it. This is because I think a system is not robust, if the
system does not have a proper possibility for recovery if it should crash.

Plan transactions

When designing a system, transaction logic has to be thought through. When
you implement a function or task, you also have to implement a mechanism
that can reverse the task. The task might be a part of a larger composite task, or
the task itself might fail during task execution. If this is not properly handled,
you may leave the system in an inconsistent state or store incomplete data to a
database.

It is possible to solve this by the means of transactions, but it can also be
accomplished using compensation logic. Most important is that the whole pro-
cess needs to be thought through during design. A different order of the steps
involved might be needed, for instance reversing a print of a letter or sending
of a fax or mail is not possible.

46

Plan for integrated systems

When designing a system that should be integrated with other systems, you
also have to consider how your integration interfaces should look like. Adding
integration interfaces as an afterthought might lead to problems. One example
could be that you have implemented your system as an asynchronous service,
if integration then requires synchronous communication you might struggle
with implementing it within the performance requirements set. Requirements
for transaction handling, rollback, and compensation functionality can also be
important in an integration scenario.

The main idea mentioned by three of the interviewees is that implement-
ing integrations is easier if systems have good integration and well thought
through possibilities.

Other important aspects related to integration mentioned by one of the in-
terviewees are:

• Document integration interfaces well.

• Try to let only one system own each kind of data.

• In an integrated chain of systems, the weakest system determines the
strength of the chain.

• Try to avoid compensation logic; this adds complexity to a integration
scenario.

• Try to make sure that integrated systems do not start using incomplete or
inconsistent data.

Error handling

Various forms for achieving better error handling is suggested. Numerous sug-
gestions have already been listed in Section 5.4.1. The following list presents
a summarization of suggestions related to error handling mentioned by inter-
viewees:

• Only handle the exception you can handle, do not try to handle all excep-
tions.

• Report errors, do not fail silently.

• Limit the effect of errors by reducing the ability for the error to spread.

• Use frameworks to achieve consistent error handling.

• Create wrappers around external systems, which handle errors and trans-
actions against the external system.

• Identify how errors should be handled in the system during early design.

• Try to achieve uniform error handling throughout the application.

47

Logging

Logging seems to be an area many think is important. Support for logging
should be a central part of the foundation the application is built upon. Three
different ways of logging are mentioned:

• All errors should be logged when they occur.

• The system should log information making diagnosis and monitoring
possible.

• Logging should be configurable.

Interviewees suggests that logging has to get more focus than it has to-
day, and that the logged information has to be logged in such a way that it
makes diagnosis possible. Just logging random information is less useful, than
a log specially designed for diagnosis. Logging should be possible also in the
customer environment. Is should not be used only during development and
testing, but also in production.

Secure data consistency

It is suggested that an application should contain certain mechanisms for en-
suring consistency and validity of data. Interviewees had the following sug-
gestions to how this could be done:

• Use transactions when updating the database.

• Analyze the use of transactions, to make sure that they are used correctly.

• Use the correct data type in the database.

• Use the database’s support for defining referential constraints.

• Implement consistency checks inside the application.

5.5.5 Architectural measures

As already mentioned, many of the interviewees said that the architecture lays
the foundation for a robust application. In this section I will list some sugges-
tions from the interviewees on functionality that can be built into the architec-
ture in order to increase robustness.

Enforce uniform solutions

The architecture should make sure that common tasks are performed in the
same way throughout the whole application. The architecture should contain
base functionality that makes this possible. Examples of base functionality that
should be supported by the architecture mentioned by the interviewees are:

• Read and write to the database.

• Base functionality for the application domain.

48

• Error handling.

By enforcing uniform solutions, the application will behave consistently. If
each developer were to invent his own method for reading from the database,
certain parts of the application could fail due to a change in the database con-
figuration.

Design for self-monitoring

Interviewees has suggested that more monitoring should be built into the ap-
plication, or its surrounding environment. The main idea is that the application
should be proactive and warn about potential errors that occur. No suggestions
for how this may be realized in the application were mentioned, but the inter-
viewees had several suggestions for things that could be monitored. Examples
were:

• Low disk space.

• High CPU utilization.

• Verification that a particular application runs.

• No log entries for an application within the last x minutes.

• High request rate.

By notifying the support personel about potential problems and errors when
they occur, the support personnel might be able to fix the issue before users
detect it. As long as users do not experience errors, they think the system is
robust. One of the interviewees has used extensive monitoring for a while, and
his experience is that it has a positive effect on problem resolvement time and
user experience.

Plan and design for fault tolerance and load balancing

Few of the interviewees have experience with use of fault tolerance and load
balancing. Most thought it could be beneficial, but at the same time it was con-
sidered overkill for most applications they build. These kinds of solutions were
also considered expensive and complex to build into the application. It was
suggested to design the application in such a way that functionality in existing
products could be used to implement failover, load balancing and redundancy.
Several products exist, for example load balancers, proxies and database clus-
ters.

When designing a system that should support load balancing, redundancy,
or failover there is one important design requirement. Design the service to be
stateless. If this is not possible, the necessary state should be available from all
nodes.

49

Use asyncronous patterns

Two of the interviewees suggested that asynchronous queues should be used
where possible. Both as a form of communication between systems, and within
a single system. Asynchronous communication is beneficial as it does not put
the same requirements on response time as synchronous patterns do. At the
same time it is suggested that asynchronous interfaces implemented as queues
do not have the same challenges as synchronous patterns have when it comes
to 2-phase commit. This is because an asynchronous pattern requires that tra-
ditional commit is implemented in an alternative way.

Another positive aspect of using asynchronous queues is that it makes in-
terfaces well defined. It is a predefined set of messages that can be placed on
the different queues.

Further, asynchronous queues make it possible to implement error han-
dling through the use of retry and dead letter queues. This makes error han-
dling simpler as it is a well defined behaviour that defines what should happen
when something goes wrong.

Use known tools and solutions

When designing and implementing architecture, it is suggested to make use of
known tools and solutions. The main reason behind this suggestion is that it is
difficult to know how new tools and solutions will perform. Possible sources
of known solutions are previous experience and existing documented patterns.
You can choose to either use a collection of independent tools, components and
solution, or use more extensive frameworks or architectural styles.

Some samples of patterns mentioned by interviewees were:

• Watchdog pattern

• Asynchronous communication

• Redundancy

Use components with care

Although components can be beneficial to use, you have to be careful. Com-
ponents can help save development time, and provide useful functionality. A
component or set of components might have been well tested through the use
in several systems. When using the component in a new system you might use
it in a different way, the component might not have been tested under these
circumstances which could result in failures and incorrect functionality. The
suggestion from the interviewees is to make sure that the components are well
tested under similar conditions as you are going to use them in.

5.5.6 Maintainability

It is suggested that robustness can be improved by ensuring high maintain-
ability. The benefits of maintainability has already been discussed in detail in
Section 5.4.13. In addition to the already mentioned benefits, the following
have been brought up by interviewees:

50

• Encapsulation helps robustness by making parts of the system easier to
test in isolation.

• Complexity is reduced by using information hiding and encapsulation.

• Layering should be used and abstraction leakage should be avoided.

• Divide a large problem into manageable parts.

• Modularity enforces definition of clear boundaries.

5.5.7 Testing

All interviewees have mentioned testing as being important when building a
robust solution. Numerous suggestions both on types of testing and what is
important to consider in relation to testing have been mentioned.

Suggestions have been categorized into the following categories which will
be discussed briefly:

• Plan testing.

• Test early.

• Test often.

• Spend time testing.

• Use many test methods.

• Involve users in early testing.

• Design with testing in mind.

• Use a relevant environment for testing.

• Use skilled testers.

• Unit testing.

• Regression testing.

• Stress and load testing.

• Extreme testing.

• Negative testing.

• Prototyping.

• Other test methods.

Plan testing Testing should not be an ad hoc task. It should be planned in the
beginning of the development project, and written down as a test plan.

Test early Testing should be started as early as possible in the development
project. At the latest, during the architectural design stage.

51

Test often Testing should not be a one-time activity in a development project.
It should be repeated often, and testing should be performed in all phases
of development.

Spend time testing When a project gets delayed, one should not get back on
track by reducing the time available for testing. Time and resources
should be devoted to testing; some suggest using more time than they
currently do for testing.

Use many test methods You should not rely on a single test method. Various
methods like for instance regression testing, integration testing, system
testing, load testing and extreme testing should be combined into a test
plan. No single test or test method would be able to find all issues and
defects in a system.

Involve users in early testing It is suggested to involve the users before the
acceptance testing stage. This is because when the acceptance test is per-
formed, fixing certain issues can be too late.

Design with testing in mind When designing the system, you should also re-
member that it should be possible to effectively test it. Dividing the sys-
tem into modules, and encapsulation are effective methods to make a
system better testable.

Use a relevant environment for testing When testing, a relevant environment
should be used. The environment should resemble the runtime environ-
ment the customer uses as much as possible. Testing by using the wrong
version of databases, operating systems or on completely different hard-
ware will most likely not reveal all environmental related issues.

Use skilled testers Testing is not a simple task that anyone can do. In addition
to using end users and regular testers, you should also use especially
skilled testers. Skilled testers often show more inventiveness than regular
users when testing. You seldom see a user that tries to break the system;
they often just test the functionality.

Unit testing It is suggested to make use of automated unit testing. This would
lead to reduced effort needed for testing at the class, component and
service level. By using automatic unit testing all tests can be run after
changes have been made to the system. Although unit testing is benefi-
cial it will not be able to replace other forms of testing, and should only
be used as an additional test method.

Regression testing After adding or changing functionality in the application,
regression testing of existing functionality should be performed. This
ensures that existing functionality is not broken due to the changes.

Stress and load testing As there is no way to really be sure how a solution per-
forms, load and stress testing should be performed. Load and stress tests
help to determine how the system really performs, what happens when
it gets overloaded, and combined with monitoring it can help pinpoint
bottlenecks in the system. Further, you can test the system’s resource
consumption, and verify that the system is able to handle load over long
periods of time without leaking resources or slow down.

52

Extreme testing Extreme testing should also be carried out. This can be for
example testing extreme loads, disconnecting the network or introducing
a corrupt file. This kind of testing will determine if the application is able
to handle the error situation properly.

Negative testing In addition to testing functionality, it is also important to test
on less common situations and perform error testing. Typical approaches
are to test extreme values, deliberately use the system wrong or try to ex-
ploit common security vulnerabilities. This kind of test should be used at
all stages of development, from early architectural design to acceptance
testing.

Prototyping Prototypes can be used as a form of testing, to verify that certain
solutions work, and test how they perform. This can help to reduce risks,
and help to gain more knowledge about alternative solutions.

Other test methods A variety of other test methods and areas of focus for test-
ing might be relevant for robustness. Some other mentioned by intervie-
wees are: Usability testing, measuring code coverage during testing, test-
ing security, testing error propagation, testing for security vulnerabilities,
concurrency testing, and static code analysis.

5.5.8 Documentation

As already stated, documentation is an area where the results from the inter-
views is difficult to interpret. The results do give some indications that doc-
umentation is important. Interface and architectural documentation is men-
tioned in particular by one of the interviewees. It is difficult to maintain and
extend a system that lacks proper developer/design documentation, and based
on this it seems like documenting the system is important. End user documen-
tation on the other hand was only mentioned by one interviewee. Based on this
it is difficult to conclude whether it is important or not to focus on. It could help
the users use the system correctly, but if a system requires a user manual to be
used it is not user friendly. Fixing a system by creating documentation on how
it must be used is probably not the best way to improve a ”broken” system.

When it comes to systems that do not have end users, but systems as the
user, user documentation is more important. Documentation would then de-
scribe how the system interfaces work. This would help the using system to
ensure that the system is used properly, and conforms to the interface specifi-
cations set forth by the system.

One interviewee suggests using graphical diagrams to illustrate the sys-
tem. His experience suggests, that such figures are easier to understand and
has given a positive contribution to the overall documentation. Diagrams and
figures are often easier to understand than plain text explaining the same con-
cept.

5.5.9 Usability

Focus on usability of the system should be a part of the development process.
This includes indentifying the type of users, and their knowledge. Information
about the users will be helpful when designing the user interface, and other

53

forms of interaction with the user. User interfaces should be developed in such
a way that it prevents the user from making errors. If the user manages to make
an error, the user interface should hinder it from being sent further into the sys-
tem. Visual clues, wizards, interactive validation, and disabling of fields and
buttons are some specific ways the user interface can help the user to correctly
use the system. This aspect is mentioned by four of the interviewees.

5.5.10 Input handling

Focus on input handling is mentioned as important during design and devel-
opment. It is suggested that not only user input should be validated, but also
input from other systems and other components. All data entering systems
and components should be validated so that only valid data is used. Not all
invalid data leads to crashes. Invalid input could just as well result in invalid
output. It is better to report invalid input, than to end up producing wrong
output, or storing invalid data in a database.

Interviewees did not suggest any special solutions for input validation.
This might be because the implementation of the validation itself is not dif-
ficult.

5.5.11 Configuration management

In addition to all the suggestions already listed, interviewees suggested that
good configuration management is important when designing a robust solu-
tion. Two main aspects were mentioned: change control and version control.

Change control Changes needs to be evaluated before implemented in a solu-
tion. As the solution grows it also gets more and more complex. Before
implementing a change, it is important to check for side effects. A tiny
change could lead to a complete failure of a large system. By verifying
and analyzing suggested changes such problems can be avoided in ad-
vance.

Version control As new versions are released, it is interesting to know what
has changed since last version. It might also be necessary to undo some
changes because they turned out to have unwanted side effects. As a
result of this, it is suggested to have version control on the source code,
and keep a log of changes between versions. This makes it possible to
revert to the old version and check what has changed between versions.

5.6 Threats to validity

When doing research, a discussion of the validity of the results found is needed
to determine to what degree the results can be said to be valid. This section will
discuss the validity of the interview results presented in this chapter.

5.6.1 Selection of interviewees

Interviewees were selected through convenience sampling. It is not possible to
know whether such a sample is representative or not, according to Robson [61].

54

This opens for the possibility that the results cannot be generalized to the whole
population of architects. Further, only people involved with architecture were
interviewed. Other groups like end-users, customers, and support personnel
might have a different opinion on what characterizes a robust application. The
same applies for the suggestions to what can be done to influence robustness.

Ten interviews were conducted in total and form the basis for the results.
This number is low compared to the total number of architects, but 8 differ-
ent companies are represented providing a span over the total population of
companies. The similarity between individual interviews indicates that the
definition of robustness is quite similar in different companies.

Moreover, the interviewees work mostly in large companies (companies
with 40 or more developers).

All these three factors could threat the generality of the results presented. I
advise to test the findings on a larger population.

5.6.2 Language and cultural issues

The interviewees were Norwegian, Swedish and Finnish. I communicated
with the Swedish speaking interviewees in Norwegian, while the interviews
with Finnish speaking interviewees were conducted in English. Language and
cultural differences might threaten the understanding of the questions and an-
swers. To minimize this, all interviews with Swedish and Finnish interviewees
were conducted by the use of text chat. My experience with text chat is posi-
tive when it comes to talking to foreign people; it helps on pronunciation and
talking speed issues. In particular Swedes have problems understanding Nor-
wegian dialects. It may however still be an issue that I or the interviewees have
misunderstood something.

Different countries might have different cultures when it comes to develop-
ment. The sample is heavily biased towards Norwegian companies, so results
may not be interpreted as valid for all the Nordic countries.

5.6.3 Multiple forms of interviews

Multiple forms of interviews were conducted: Text chat, phone interviews, in
person interviews of both single persons and groups. In addition, three of the
interviews were conducted by another interviewee, Dr. Tor Stålhane. All my
interviews were limited to one hour; this gave a difference between the infor-
mation provided in text interviews versus phone and in person interviews. It
takes longer time to answer when writing than speaking. This could lead to a
difference in the amount of information provided in the different interviews.
However, all interviews conducted by me were completed before we ran out of
time, so all interviewees had the possibility to express their ideas and opinions.

5.6.4 Interpretation and analysis of results

All interviews were transcribed after the interviews were conducted. The in-
terviewee interviewed by phone got the transcript and agreed that I had un-
derstood him correctly. For the in person interview I sent the transcript late,
and I had not recieved an answer at the time of delivery of this thesis. When

55

it comes to Stålhane’s interviews, I am not sure whether he verified his inter-
view notes with the interviewees. None of the interviewees interviewed by the
help of text chat got the possibility to comment on my transcript. However,
the transcript was a copy of the conversation log. I did not feel any need to let
them read their own statements in retrospect.

During the interview and the subsequent analysis, there is a possibility that
I may have misunderstood something. I could have sent the summarized in-
terview results for the interviewees to comment on, but time did not allow it.

5.6.5 Overall validity

As described above, there are many potential threats to the validity of the in-
terview results. It is safe to say that the results should be used with care. At the
same time, they give an indication that can be developed further in subsequent
analyses. It is also important to mention that interviews were only conducted
with architects, and may not be seen as representative for other groups.

5.7 Selected areas of further focus

Interviewees provided a wide variety of suggestions on how to improve ro-
bustness. Suggestions vary from implementation details at one end, to process
based at the other end of the scale. The main focus of my work on this the-
sis has been on architectural design and analysis. As a result of this, I chose
to focus on some suggestions from the interviewees related to this area. The
selected areas from the interview results are:

• Teamwork.

• Focus on robustness.

• Designing for robustness.

• Analysis of design.

• Gaining experience through prototyping.

• Reducing risk through iterative development and prototyping.

All these areas are relevant when doing design and analysis of software
architecture. In addition, these areas are mentioned by more than a couple of
the interviewees indicating that they are of some importance to other architects
than myself. Due to limited time, and the huge number of suggestions, I had to
make a selection. In my opinion, the areas selected form a sensible set of areas
to base the further analysis of architectural design and analysis methods on.

These areas will be used together with personal experience to form a set
of criteria for design and evaluation of architecture in Chapter 7. Further, the
same areas of focus will be used discussing existing methods and suggesting a
method in Chapter 9.

As time did not allow for studying patterns and architectural solutions in
detail, some of the suggested architectural approaches are summarized and
presented as a part of suggestions for further work.

56

Chapter 6

Robustness defined

Before continuing it is useful to look at the definition of robustness and pro-
vide a definition that matches the information collected through the interview
process. Robustness as a term is commonly used in both literature and daily
speech, so a concrete definition of the term is helpful before shifting focus to
how robustness can be achieved.

First, I will illustrate an issue with current definitions in computer research.
Next, I will look at some existing definitions of robustness from the literature
and the internet, and illustrate their differences. The relation between relia-
bility and robustness will then be presented before moving on to summarize
the interview results. As a part of the summary, I will briefly discuss how the
definitions cover the wide perception of robustness indicated by the interview
results. A table comparing the individual definitions with the robustness per-
ception will be presented before I present a definition for robustness. In the
end of the chapter I will briefly discuss the relation between robustness and
some other terms found in literature.

6.1 Literature and definitions

It is clear when reading articles, papers, and books that several definitions of
common terms and concepts exist. Variations can be found between areas of
research where the same term has different meanings, and within the same
field or related fields of research where the same term has completely or partly
different meanings. One example of such a difference can be seen when com-
paring the definition of security used by Laprie and Randell [50] with the def-
inition used by Becker et al. [8]. In the paper by Laprie and Randell [50] the
security quality attribute is defined as the combination of availability, confi-
dentiality, and integrity. The article by Becker et al. [8] indicates that avail-
ability and security are independent quality attributes. The same observation
has been done by Bass et al. [7] and is one of the reasons behind modelling
generic scenarios for individual attributes. To provide a detailed overview of
all quality attributes related to robustness that include a representative selec-
tion of definitions would require a huge literature study and is outside of the
scope of this project. In order to illustrate robustness’s relation to other quality
attributes, I have chosen to select a single definition for some related attributes,

57

but several definitions for robustness.
Other works like Becker et al. [8] provides an overview over some quality

attribute definitions and provides a discussion on differences. I have, however,
not found any paper or book that provides an updated overview of all major
attributes. This is most likely because such an overview would require exten-
sive literature research and knowledge in various fields of research. Quality
models is one source of an overview, but different models represent different
views of quality. These different views result in different interpretations of the
quality attributes used. This makes it necessary to combine definitions from
several models in order to create a definition that covers multiple views. This
is complicated by the fact that old models like those by Boehm and McCall are
not revised to incorporate new concepts. Looking at robustness, it is not even
listed as a quality attribute in ISO 9126, McCall’s, or Bohem’s model. Develop-
ment of taxonomies similar to the taxonomy for dependability by Laprie and
Randell [50] for all major areas of computer research would be an important
building block towards the development of taxonomies or glossaries that span
several fields of research. The IEEE glossary [10] provides such an overview,
but new terms and concepts introduced since its last published revision are
missing.

In the lack of established taxonomies for robustness it is necessary to look
for definitions in existing literature, and compare them in order to find a defi-
nition that fits my needs.

6.2 Current definitions

I will start by briefly discussing some existing definitions of the terms robust
and robustness. Each of the definitions is given a number for later reference.

Dictionary.com [77] defines robust as:

1. • 1. strong and healthy; hardy; vigorous: a robust young man; a ro-
bust faith; a robust mind.

• 2. strongly or stoutly built: his robust frame.

• 3. suited to or requiring bodily strength or endurance: robust exer-
cise.

• 4. rough, rude, or boisterous: robust drinkers and dancers.

• 5. rich and full-bodied: the robust flavor of freshly brewed coffee.

Taken from a regular dictionary this definition represents a ”popular defi-
nition” of the word robustness. It describes something that is built in such a
manner that it does not easily break, shows strength, and is able to endure dif-
ficult conditions. IEEE Standard Glossary of Software Engineering Technology
[10] has a definition with similar content:

2. Robustness: The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental con-
ditions. See also: error tolerance, fault tolerance.

This definition is for software and more specific than the one from Dictio-
nary.com. It describes two types of issues related to robustness. Invalid inputs

58

should be handled so that the system can continue to function correctly even
when they are present. The other factor is stressful environmental conditions;
this could be under high load, low amount of available resources and so on.
Tolerance to faults and errors is also mentioned. Error tolerance is defined as
”the ability of a system or component to continue normal operation despite
the presence of erroneous inputs” [10], which is basically the first part of the
robustness definition. Fault tolerance is a much wider area, defined as ”the
ability to continue normal operation despite the presence of hardware or soft-
ware faults”[10]. Fault tolerance is only mentioned as a cross reference so it
might not be intended as a part of the definition.

The definition from ATIS Telecom Glossary 2000 [75] includes fault toler-
ance as defined by the IEEE glossary. The definition does not specify a category
of faults, so this is a less precise definition than the definition given by IEEE.

3. System Robustness: The measure or extent of the ability of a system, such
as a computer, communications, data processing, or weapons system, to
continue to function despite the existence of faults in its component sub-
systems or parts. Note: System performance may be diminished or oth-
erwise altered until the faults are corrected.

The definition found on BusinessDictionary.com [76] contains similar ele-
ments, although it defines the term in relation to business.

4. Robust: Product, process, or system designed for continuous operation
with very low downtime, failure rate, variability, and very high insensi-
tivity to a continually changing external environment.

One difference is the focus on the system’s insensitivity to a changing ex-
ternal environment. External environment is in the same dictionary defined as
”Conditions, entities, events, and factors surrounding an organization which
influence its activities and choices, and determine its opportunities and risks.
Also called operating environment”. This is a wider definition of insensitivity
to the environment than found in the IEEE glossary’s definition, as that only
covers stressful environmental conditions. A new element contained in this
definition is the lack of variability. This means that the system should be pre-
dictable and not have a large range of possible outcomes of a operation. This
could include both normal and erroneous situations.

Webopedia.com contains yet another definition for robustness related to
computers and software [2]:

5. Robust: When used to describe software or computer systems, robust can
describe one or more of several qualities:

• a system that does not break down easily or is not wholly affected
by a single application failure

• a system that either recovers quickly from or holds up well under
exceptional circumstances

• a system that is not wholly affected by a bug in one aspect of it

• a system that comes with a wide range of capabilities. (It should
be noted that this last sense of the term robust is not uniformly ac-
cepted in technical circles. The term is typically used in this sense

59

in the marketing of software or computer systems to emphasize a
selling point and does not refer to the first three meanings of the
term.)

This definition mainly focuses on that failures and bugs should not affect
the whole system, and that the system should either recover quickly or not
be affected by exceptional circumstances. The notion about a wide range of
qualities is mentioned in the definition, but at the same time it is stated that
this is more used in marketing than in technical circles.

Boehm et al. [11] in ”quantitative evaluation of software quality” have the
following definition:

6. Robustness: Code possesses the characteristic robustness to the extent
that it can continue to perform despite some violation of the assump-
tions of its specification. This implies, for example, that the program will
properly handle inputs out of range, or in different format or type than
defined, without degrading its performance of functions not dependent
on the non-standard inputs.

This definition focuses mainly on the code level details, but concerns that
the program should perform correctly despite invalid input and other viola-
tions of specification assumptions. The next definition is from Hermanson [37]:

7. Robust software is software that is insensitive to errors regardless of the
source – software, hardware, or people. In addition, robust software
presents information to the user in a way that aids in the decision mak-
ing process or makes information easier to comprehend. It is easy to use
(i.e. the interface is designed to prevent human errors, and their adverse
effects) and accommodates different ways the user may elect to use the
software. The software does not ”lock-up” or abort except through a pre-
defined termination procedure. Robust software should also be easy to
modify; it should be structured, documented and written in a language
that makes it easy to isolate and remove faults.

This definition is wide, and includes usability and maintainability. In addi-
tion it includes the notion of being insensitive to errors, and also specifies that
the application should not lock-up or abort.

Another common way to define robustness is in relation to reliability. Free-
man [33] divides reliability into correctness and robustness. ”A program is
correct if it performs properly the functions that we intended and has no un-
wanted side effects”[33]. Robustness is further defined as:

8. Robustness: A program is robust if it will continue to do something rea-
sonable in the presence of environmental changes (such as hardware fail-
ure) and demands (such as bad data) that were not foreseen. In addition
to robustness the terms fault-tolerant and error-resistant are often used
to describe this property.

This definition is related to the IEEE definition, but explicitly states that any
reasonable behaviour is good enough in the presence of unforeseen changes in
environment, or input. Buschmann et al. [13] have a different way of relating
reliability to robustness, and distinguish fault tolerance and robustness as two
aspects of reliability. The definition of robustness given is:

60

9. Robustness. This deals with protecting an application against incorrect
usage and degenerate input, and keeping it in an defined state in the
event of unexpected errors. Note than in contrast to fault tolerance, ro-
bustness does not necessarily mean that the software is able to continue
computation in the event of errors - it may only guarantee that the soft-
ware terminates in a defined way. [13, p. 408]

This definition emphasises that the application should protect against in-
correct use, much like definition 7. This definition also states that keeping the
software in a defined state, and protection against incorrect use are important
aspects of robustness.

The last definition I will include is based on the dependability definition by
Laprie and Randell [50]:

10. Robustness, i.e., dependability with respect to external faults.

This definition requires a little explanation. In Section 4.1.1, I defined fault,
error and failure; the definitions have the same content as those used by La-
prie and Randell [50]. Further, Laprie and Randell define dependability as:
”1) ability to deliver service that can justifiably be trusted; 2) ability of a sys-
tem to avoid service failures that are more frequent or more severe than is
acceptable”[50]. The robustness definition uses the term external fault. In order
to know the difference between internal and external faults, some information
from Laprie and Randell about systems, components and service is necessary.
A system is something that provides a service. This service is normally used
by a different system that either can be a user or another system. A system
is constructed by a set of components. These components interact, and each
individual component can be considered a system. This creates a recursive
definition of a system that consists of communicating systems. Internal faults
are faults (causes of errors) internally in a system. External faults can either be
that a service provided by a system results in a failure. This failure will be an
external fault for the system using the service. The other alternative is that us-
age of the system can trigger internal faults (vulnerability). An example is that
the system is given two numbers as input, and should return the multiplica-
tion of these numbers. An internal fault might be that the internal service logic
does not properly check that the result fits in the return data type (overflow).
This could either result in the wrong value being returned, a service abort, or
an exception being raised. Return of the wrong value will be a clear failure.
The return of an exception could be a failure depending on how the specifica-
tion states that this kind of situation is handled. An abort, or result omission is
most likely also a failure, but could be acceptable if it is specified behaviour.

The width of this definition is subject to interpretation, as all failures re-
sulting from usage of the system (correct or incorrect) could be covered by this
robustness definition. Usage of the system that is in accorance with the specifi-
cation that results in the triggering of an internal fault, is not explicitly defined
as an external fault, but is indicated by the notion of interaction faults used by
Laprie and Randell [50]. Further it is indicated by the following quote:

a common feature of interaction faults is that, in order to be ”suc-
cessful,” they usually necessitate the prior presence of a vulnerabil-
ity, i.e., an internal fault that enables an external fault to harm the

61

system. Vulnerabilities can be development or operational faults;
they can be malicious or non-malicious, as can be the external faults
that exploit them. There are interesting and obvious similarities be-
tween an intrusion attempt and a physical external fault that ”ex-
ploits” a lack of shielding. A vulnerability can result from a delib-
erate development fault, for economic or for usability reasons, thus
resulting in limited protections, or even in their absence.

This statement in combination with what is considered a failure ”A service
fails either because it does not comply with the functional specification, or be-
cause this specification did not adequately describe the system function”[50],
also suggest that correct input can be seen as external faults. The reason is
that the implementation is vulnerable as it does not comply with the specified
behaviour. This class of faults is also covered if there is another system or com-
ponent involved. Consider a user that interacts with component A which again
calls component B based on input provided by the user. The input triggers a
fault in component B that results in a failure. This failure is an external fault
to component A. How component A handles this fault is covered by the def-
inition. This is complicated by the fact that an interaction can trigger a fault,
which results in an error in the system’s internal state. The state can be fur-
ther altered by other interactions, and not until the error results in the wrong
external state being returned to the user of the system, it is a failure.

The list of definitions above is only a small selection of definitions of ro-
bustness. I have not conducted an extensive literature research, so the list of
definitions might not be fully representative for every definition used in lit-
erature. There is a huge span in the definitions. They range from protection
against environmental changes and erroneous inputs to defining a totally fault
tolerant solution. As a result of this discovery, the interviews were conducted,
and I will come back to the analysis of the interview results, but first I will take
a brief look at the relation between robustness and reliability.

6.3 Reliability and robustness

Reliability is a term related to robustness. As already illustrated by the defini-
tions for robustness found in Buschmann et al. [13] and Freeman [33], robust-
ness can be defined as a part of reliability. Zhou and Stålhane [79] separate
the concepts for web applications by looking at the types of faults caused by
a problem. It is stated that reliability problems are caused by internal faults
within the system or component, and robustness problems by external faults
rising from the operational environment, such as unexpected input. Any fault
that makes the system contradict the specification is a reliability issue, and any
other fault is a robustness issue. This way of separating robustness from reli-
ability makes a system completely reliable if it is correct. This is in contrast to
the definition given by Freeman [33] and Buschmann et al. [13] which defines
robustness as a part of reliability, making it impossible to have a program that
is reliable unless it is also robust. The relation to reliability can, however, be
covered by the approach presented by Zhou and Stålhane [79] if robustness
issues is included in the specification. Although it handles the contradiction, it
makes it difficult to determine if a problem is related to robustness or reliability

62

without investigating the specification.
The IEEE glossary defines reliability as:

Reliability: The ability of a system or component to perform its re-
quired functions under stated conditions for a specified period of
time. See also: availability, MTBF1

This is only one definition of reliability. Becker et al. [8] list no less than
ten different definitions for reliability. This illustrates that there does not exist
a de facto definition of reliability in software. Based on this observation and
the large list of definitions of robustness with huge differences in their scope,
it is difficult to draw a clear line between reliability and robustness. This will
further be illustrated when I later look at dependability that combines tradi-
tional concepts like reliability, maintainability and availability into a new wide
field of study. It is my belief that robustness and reliability indeed shares a
common set of issues and solutions, but that neither concept is a strict subset
of the other, and that robustness share a common set of issues with some of the
traditional concepts like security and maintainability. I will get back to this as
I look further into the results of the interviews.

6.4 The interviewees’s definition of robustness

The full results from the interviews have already been presented in Chapter 5.
The interview results clearly show that the concept robustness cover a wide
area. I will summarize the results and see how the definitions presented covers
the areas mentioned by the interviewees.

Good error handling is an important part of a robust system. A clear strat-
egy for error handling should be present in the system, and error situations
should be carefully handled. The system should try to prevent faults and er-
rors from occurring. If a fault or error should occur, the application should be
able to handle the error in some predictable way. Another important aspect of
error handling is that a robust application should keep errors local. This means
that an error in a module should not affect the whole system. Last not but least
any error messages in the system should be informative, this means that errors
like ”an error occurred, press OK to continue” should not occur. The notion
of error handling is covered by almost all the listed definitions for robustness,
but it is important to notice that the interviewees did not limit error handling
to a specific class of errors, fault or failures. At the same time many of the
interviewees stated that the error handling does not have to handle the error.
Identifying that there is an error and handling it gracefully is good enough for
an application to be considered robust. Possible actions depends on the ap-
plications requirements. To help with error handling, a robust system should
also be able to log important events. This includes possible errors, and failures.
This makes it much easier to diagnose errors if the log contains relevant details.

Related to error handling is the use of redundancy or failover to increase
robustness. Not all the interviewees are familiar using failover or redundancy,
but agree that it can increase robustness. This is merely a way of handling
failures, so a definition does not need to cover this area.

1Mean time between failures

63

Predictability is also mentioned as an important aspect of robustness. This
implies that the application, if used in an environment it is built for, should
show predictable behaviour. It should also satisfy the needed level of avail-
ability, having a low downtime. This is also covered by some of the listed
definitions, and is a by-product of proper handling of error situations.

Next, input control is an important characteristic of a robust application.
An application that crashes in an undefined way due to invalid input is not
considered robust. In close relation to this are also internal validity control and
validity and consistency control in the data storage of the application. Control
of validity assists in the discovery of some types of errors, and helps ensure
that the application and data have a valid state. To help with correct input,
the application should also be user friendly making it difficult for the user to
enter invalid input, and use the same terms and concepts as the user. These as-
pects of user friendliness help in reducing the level of invalid input, and lower
the number of usability issues in the system. The notion of input tolerance
is a central part of some of the definitions, but the extension to validity and
consistency control is not covered to the same extent.

In order to be robust it is also important for an application to be thoroughly
tested, and thus contain few errors. An application does not have to be com-
pletely free of errors to be considered robust, but an application that contains
a high number of errors is not considered to be robust by a user. Handling any
errors gracefully helps on the robustness, but an application with a high num-
ber of errors will most likely not be able to handle them in a way that does not
influence the use of the application in some way. If a user has to press retry ten
times before an operation is complete, the errors has been sufficiently handled,
but the user might not consider the application to be robust. None of the def-
initions listed does explicitly mention a low number of errors, only that errors
should be handled. This is partly related, as few errors results in few faults and
errors to handle.

Aspects of maintainability are also important for an application to be con-
sidered robust. It is important that faults are easy to locate and correct. It is
also important that the application is built in such a way that addition of new
functionality and changes in existing functionality do not affect other parts of
the application. To achieve this, the application has to have a good structure.
This aspect of robustness is only mentioned by definition 7.

Security is an area where the interviewees have different opinions. Some
define all aspects of security as a part of robustness, others think security does
not directly relate to robustness. When asked directly, it seems like there is one
common aspect of security that is related to robustness, injection attacks. Some
applications also require a high level of security. These security measures need
to be robust so that they cannot be easily broken. The degree of security needed
varies between different types of applications. A drawing application would
not have any needs for security, while a on-line bank service requires a high
level of security.

Proper load handling is an important aspect of robustness. An application
should not fail after long use because of some resource leak, or fail completely
when under high load. This can be defined as changing environmental condi-
tions and is covered by the listed definitions.

Last, interviewees mentioned that a robust application or architecture should
be able to cope with changing requirements as time goes by. This is mainly a

64

maintainability issue. Further, good documentation has been mentioned, but
I see no clear relation to robustness besides making the application more user
friendly and maintainable. Adaptability to the environment is also mentioned,
which is partly covered by maintainability. The other part of environmental
adaption is adaption to the runtime environment. This part is mostly handled
by high load conditions and error situations.

Table 6.1 shows a schematic overview of how the different definitions cover
the aspects mentioned by the interviewees. All definitions are subject to inter-
pretation, and other interpretations of the same definitions might result in a
different table. The purpose of the table is not to show the absolute cover-
age of the different definitions, but to give an indication of their coverage. It
can clearly be seen that the definitions have varying coverage and none of the
definitions completely cover the wide definition of robustness given by the in-
terviewees.

65

I want to make a special note about definition 10, as this is the definition
where the most information on how it could be interpreted is available. Exact
information on how it should be interpreted is, however, not provided in the
paper by Laprie and Randell [50]. The definition alone does not give a clear
indication of what it covers. It requires more information about the terminol-
ogy employed by the authors. If interpreted in a wide manner, the definition
might cover all aspects mentioned by the interviewees. Becker et al. [8] has re-
formulated the definition into: ”Robustness is the ability of a system to tolerate
inputs that deviate from what is specified as correct input”. This interpretation
indicates a far more narrow definition of robustness, than I have illustrated is
possible above. Due to the possibility for conflicting interpretations, I do not
find this definition to be optimal for my use.

6.5 The definition of robustness

Robustness as defined by the interviewees is a very wide concept, and it is not
possible to define it isolated from other existing concepts. I have already illus-
trated that there is some common ground between reliability and robustness.
An early theory was that robustness had a defined core, with additions for
different types of software development. This is still partly true for instance,
robust security is more important for some classes of applications than oth-
ers. A better model for robustness however is based on the way Laprie and
Randell [50] has defined dependability and security. Dependability is defined
as a combination of availability, reliability, safety, confidentiality, integrity and
maintainability. The interview results suggest a similar definition for robust-
ness, a definition that includes parts of other definitions. Specific aspects of
the attributes are included in robustness, but not the whole attribute. Require-
ments defined for the software product and choice of technical platform also
define the importance of various attributes. A schematic view of the relation
between robustness and other concepts can be seen in Figure 6.1.

Robustness

Security

Fault tolerance

Availability
Correctness

Reliability

Maintainability

Usability

Figure 6.1: Robustness and included concepts

D
ef

Er
ro

r h
an

dl
in

g
Pr

ed
ic

ta
bl

e
Lo

w
 d

ow
nt

im
e

Va
lid

ity
 a

nd

co
ns

is
te

nc
y

In
pu

t t
ol

er
an

ce
H

an
dl

es
 lo

ad
U

se
r f

rie
nd

ly
Se

cu
rit

y
M

ai
nt

ai
na

bi
lit

y
Fe

w
 fa

ul
ts

/e
rr

or
s

C
om

m
en

t

1
-

-
-

-
-

-
-

-
-

-
Th

e
de

fin
iti

on
 is

 to
o

ge
ne

ra
l t

o
be

 e
va

lu
at

ed
2

In
di

re
ct

ly
, e

rr
or

s
an

d
fa

ilu
re

s
fro

m
 o

th
er

m

od
ul

es
 c

an
 b

e
se

en

as
 (i

nv
al

id
) i

np
ut

, a
nd

st

re
ss

fu
l

en
vi

ro
nm

en
ta

l
co

nd
iti

on
s

ca
n

re
su

lt
in

 fa
ilu

re
s

be
in

g
re

po
rte

d.

In
di

re
ct

ly
, t

he
 s

ys
te

m

sh
ou

ld
 b

e
pr

ed
ic

ta
bl

e
(b

eh
av

e
co

rr
ec

tly
)

ev
en

 w
he

n
gi

ve
n

in
va

lid
 in

pu
t a

nd
 w

he
n

un
de

r s
tre

ss
fu

l
en

vi
ro

nm
en

ta
l

co
nd

iti
on

s.

In
di

re
ct

ly
, a

s
in

va
lid

in

pu
ts

 a
nd

en

vi
ro

nm
en

ta
l

co
nd

iti
on

s
co

ul
d

co
nt

rib
ut

e
to

do

w
nt

im
e.

N
ot

 c
ov

er
ed

C
ov

er
ed

N
ot

 c
ov

er
ed

,
in

te
rp

re
tin

g
hi

gh
 lo

ad

as
 a

 s
tre

ss
fu

l
co

nd
iti

on
 c

ou
ld

in

cl
ud

e
it.

P
ar

tly
, h

an
dl

in
g

in
va

lid
 in

pu
t g

iv
es

 a

be
tte

r u
sa

bi
lit

y.

N
ot

 c
ov

er
ed

.
N

ot
 c

ov
er

ed
N

ot
 c

ov
er

ed

3
Y

es
, f

au
lts

 c
an

 le
ad

 to

a
de

cr
ea

se
 in

 fu
nc

tio
n

an
d

pe
rfo

rm
an

ce
.

In
di

re
ct

ly
, t

he
 s

ys
te

m

sh
ou

ld
 c

on
tin

ue
 to

fu

nc
tio

n
in

 th
e

pr
es

en
ce

 o
f f

au
lts

.

In
di

re
ct

ly
, a

s
fa

ul
ts

 is

a
m

aj
or

 c
au

se
 o

f
do

w
nt

im
e.

N
ot

 c
ov

er
ed

P
ar

tly
, w

ro
ng

 in
pu

t
du

e
to

 fa
ul

ts
 in

 p
ar

ts

of
 th

e
sy

st
em

s
sh

ou
ld

be

 h
an

dl
ed

.

N
ot

 c
ov

er
ed

, c
ou

ld
 b

e
sa

id
 to

 b
e

pa
rti

al
ly

co

ve
re

d
as

 fa
ul

ts
 d

ue

to
 h

ig
h

lo
ad

 s
ho

ul
d

be

ha
nd

le
d.

N
ot

 c
ov

er
ed

N
ot

 c
ov

er
ed

.
N

ot
 c

ov
er

ed
N

ot
 c

ov
er

ed

4
Y

es
, e

rr
or

s
sh

ou
ld

 n
ot

re

su
lt

in
 fa

ilu
re

s.
Y

es
, s

ys
te

m
 s

ho
ul

d
ha

ve
 c

on
tin

uo
us

op

er
at

io
n

an
d

lo
w

va

ria
bi

lit
y.

Y
es

N
ot

 c
ov

er
ed

In
di

re
ct

ly
, l

ac
k

of
 in

pu
t

to
le

ra
nc

e
w

ou
ld

 re
su

lt
in

 fa
ilu

re
s.

In
di

re
ct

ly
, n

ot
 c

op
in

g
w

ith
 lo

ad
 s

itu
at

io
ns

co

ul
d

le
ad

 to

do
w

nt
im

e.

N
ot

 c
ov

er
ed

N
ot

 c
ov

er
ed

.
N

ot
 c

ov
er

ed
In

di
re

ct
ly

, d
ue

 to
 lo

w

fa
ilu

re
 ra

te
 w

hi
ch

 is

ha
rd

 to
 a

cc
om

pl
is

h
w

ith
 a

 la
rg

e
am

ou
nt

 o
f

er
ro

rs
/fa

ul
ts

.
5

Y
es

, s
in

gl
e

fa
ilu

re
s

sh
ou

ld
 n

ot
 a

ffe
ct

 th
e

w
ho

le
 s

ys
te

m
.

Y
es

Y
es

, s
ys

te
m

 s
ho

ul
d

qu
ic

kl
y

re
co

ve
r f

ro
m

ex

ce
pt

io
na

l s
itu

at
io

ns
.

In
di

re
ct

ly
, v

al
id

ity
 a

nd

co
ns

is
te

nc
y

ch
ec

ks

ar
e

a
w

ay
 o

f
pr

ev
en

tin
g

th
e

ef
fe

ct

of
 b

ug
s

fro
m

sp

re
ad

in
g.

P
ar

tly
, b

ug
s

re
la

te
d

to

in
pu

t h
an

dl
in

g
sh

ou
ld

no

t a
ffe

ct
 th

e
w

ho
le

sy

st
em

.

N
ot

 c
ov

er
ed

, c
ou

ld
 b

e
sa

id
 to

 b
e

pa
rti

al
ly

co

ve
re

d
as

 e
xt

re
m

e
hi

gh
 lo

ad
s

ca
n

be

se
en

 a
s

an

ex
ce

pt
io

na
l

ci
rc

um
st

an
ce

.

N
ot

 c
ov

er
ed

N
ot

 c
ov

er
ed

.
N

ot
 c

ov
er

ed
N

ot
 c

ov
er

ed

6
P

ar
tly

, e
rr

or
s

du
e

to

in
va

lid
 in

pu
t s

ho
ul

d
be

ha

nd
le

d;
 th

is
 c

ou
ld

al

so
 c

ov
er

 fa
ilu

re
s

fro
m

 e
le

m
en

ts
 b

ei
ng

us

ed
 b

y
th

e
co

de
.

Y
es

, u
nd

ef
in

ed
 in

pu
ts

,
an

d
ot

he
r v

io
la

tio
ns

 o
f

sp
ec

ifi
ed

 a
ss

um
pt

io
ns

ar

e
pr

op
er

ly
 h

an
dl

ed
.

N
ot

 c
ov

er
ed

P
ar

tly
, e

xp
lic

it
ch

ec
ks

of

 in
pu

t a
re

 a
 fo

rm
 o

f
va

lid
ity

 c
he

ck
 a

t t
hi

s
le

ve
l o

f d
et

ai
l.

Y
es

N
ot

 c
ov

er
ed

In
di

re
ct

ly
, i

t c
on

ta
in

s
pr

ot
ec

tio
n

ag
ai

ns
t

in
co

rr
ec

t u
se

.

N
ot

 c
ov

er
ed

.
N

ot
 c

ov
er

ed
N

ot
 c

ov
er

ed
H

ig
h

fo
cu

s
on

 c
od

e
le

ve
l d

et
ai

ls

7
Y

es
, i

ns
en

si
tiv

e
to

er

ro
rs

 re
ga

rd
le

ss
 o

f
so

ur
ce

.

Y
es

, d
oe

s
no

t a
bo

rt
or

lo

ck
 u

p.
In

di
re

ct
ly

, a
s

it
is

in

se
ns

iti
ve

 to
 e

rr
or

s,

th
er

e
ar

e
fe

w
er

ca

us
es

 fo
r d

ow
nt

im
e.

N
ot

 c
ov

er
ed

Y
es

N
ot

 c
ov

er
ed

Y
es

N
ot

 c
ov

er
ed

.
Y

es
N

ot
 c

ov
er

ed

8
Y

es
In

di
re

ct
ly

, t
he

 s
ys

te
m

sh

ou
ld

 h
av

e
pr

ed
ic

ta
bl

e
be

ha
vi

ou
r

in
 s

pi
te

 o
f f

au
lts

 a
nd

fa

ilu
re

s.

In
di

re
ct

ly
, d

ue
 to

re

as
on

ab
le

be

ha
vi

ou
rs

 in
 th

e
pr

es
en

ce
 o

f f
au

lts
 a

nd

fa
ilu

re
s.

N
ot

 c
ov

er
ed

Y
es

N
ot

 c
ov

er
ed

,
in

te
rp

re
tin

g
hi

gh
 lo

ad

as
 a

n
en

vi
ro

nm
en

ta
l

ch
an

ge
 c

ou
ld

 in
cl

ud
e

it.

N
ot

 c
ov

er
ed

N
ot

 c
ov

er
ed

.
N

ot
 c

ov
er

ed
N

ot
 c

ov
er

ed

9
Y

es
Y

es
, s

ho
ul

d
be

 in

de
fin

ed
 s

ta
te

s
al

so

w
he

n
un

ex
pe

ct
ed

er

ro
rs

 o
cc

ur
.

P
ar

tly
, c

ho
ic

e
of

te

rm
in

at
io

n
in

st
ea

d
of

ot

he
r a

lte
rn

at
iv

es

co
ul

d
le

ad
 to

 h
ig

he
r

do
w

nt
im

e.

Y
es

Y
es

N
ot

 c
ov

er
ed

Y
es

, p
ro

te
ct

in
g

ag
ai

ns
t i

nc
or

re
ct

 u
se

.
N

ot
 c

ov
er

ed
.

N
ot

 c
ov

er
ed

N
ot

 c
ov

er
ed

10
Y

es
, b

ut
 th

e
cl

as
s

of

fa
ul

ts
 d

ep
en

ds
 o

n
th

e
in

te
rp

re
ta

tio
n

of

ex
te

rn
al

 fa
ul

t.

P
ar

tly
, b

eh
av

io
ur

sh

ou
ld

 b
e

pr
ed

ic
ta

bl
e

ba
se

d
on

 e
xt

er
na

l
in

flu
en

ce
.

In
di

re
ct

ly
, d

ow
nt

im
e

sh
ou

ld
 b

e
lo

w
 d

ue
 to

ha

nd
lin

g
of

 e
xt

er
na

l
fa

ul
ts

, b
ut

 in
te

rn
al

fa

ul
ts

 c
ou

ld
 c

au
se

do

w
nt

im
e.

N
ot

 c
ov

er
ed

Y
es

, i
nc

or
re

ct
 in

pu
t i

s
tre

at
ed

 a
s

an
 e

xt
er

na
l

fa
ul

t

N
ot

 c
ov

er
ed

, b
ut

ce

rta
in

 in
te

rp
re

ta
tio

ns

of
 th

e
de

fin
iti

on
 c

ou
ld

in

cl
ud

e
it.

In
di

re
ct

ly
, e

xt
er

na
l

fa
ul

ts
 (u

se
r e

rr
or

s)

sh
ou

ld
 b

e
ha

nd
le

d.

N
ot

 c
ov

er
ed

.
N

ot
 c

ov
er

ed
Y

es
, d

ue
 to

 e
xt

er
na

l
fa

ul
ts

.

Table 6.1: Robustness definition coverage

67

Robustness can be defined as the ability to:

• have a high degree of correctness, and gracefully handle any re-
maining faults, errors and failures

• have predictable behaviour under specified conditions, and fail
gracefully if outside these conditions

• provide means to easily detect and remove faults

• accept modifications in modules in such a way that it does not
affect other modules

• handle all input from users, components, and other systems in a
safe and predictable way

• keep a required level of security despite a changing environment
and variations in input

• not be vulnerable to security related faults

This broad definition contains all central elements mentioned by intervie-
wees, and the inclusion of other concepts resembles Figure 6.1. The list of re-
lated concepts included in the figure is by no means complete. There exist other
concepts like accountability, resilience, dependability, trustworthiness, safety
and survivability. The next section will briefly discuss the relation to three of
these concepts, but determining the complete list of concepts, and their degree
of relation to robustness is a possible direction of further research.

6.6 Other concepts

Figure 6.1 shows the relation to some other concepts. There are, however, three
other concepts that shows increasing popularity such as trustworthiness, de-
pendability, and survivability.

Laprie and Randell [50] defines dependability as:

Definition 6.6.1. Dependability 1) ability to deliver service that can justifiably
be trusted 2) ability of a system to avoid service failures that are more frequent
or more severe than is acceptable

Ellison et al. [27] define survivability as:

Definition 6.6.2. Survivability The capability of a system to fulfill its mission
in a timely manner in the presence of attacks, failures, or accidents.

Becker et al. [8] use the following definition for trustworthiness, taken from
Schneider [64]:

68

Definition 6.6.3. Trustworthiness is assurance that a system deserves to be
trusted — that it will perform as expected despite environmental disruptions,
human and operator error, hostile attacks, and design and implementation er-
rors. Trustworthy systems reinforce the belief that that they will continue to
produce expected behaviour and not be susceptible to subversion.

Laprie and Randell [50] give a comparison of these three concepts and con-
clude that these are ”essentially equivalent in their goals and address similar
threats”. Definition 10 for robustness in Section 6.2 is a subset of dependability;
this indicates a clear relation between these three concepts and robustness. It
is unclear whether robustness is a strict subset of these concepts, or only con-
tains some common ground like reliability. The relation is, however, helpful,
as existing research in these areas can also be of help to handle robustness.

69

Chapter 7

Analysing architecture

There is a large number of approaches to analyzing, evaluating and designing
architectures available. A comparison of eight methods has been performed by
Dobrica and Niemela [21]. I have chosen to focus on a few methods, as cover-
ing all methods is not the main purpose of this project. Formal methods have
been excluded. The reasoning behind this selection is that my main focus is
on business application development, and formal methods are not extensively
used in this development domain. The selection of methods is based on that
the methods should be easy to learn, understand and perform; making it more
likely that the current industry will use the methods.

First a set of criteria for comparing the methods will be presented. The
criteria are based on personal experience and the interview results presented
in Chapter 5. Next, a characterization of analysis types will be described before
moving on to the methods. I will look at several types of analysis and design
techniques like reviews, scenarios, ATAM, SAAM, TRIAD as well as traditional
risk and safety methods. In the end of the chapter I will present a comparison
of the methods based on the criteria.

7.1 Method criteria

Before starting to present the methods, I will present a list of criteria I later
will use to compare the methods presented. The criteria is based on personal
experience, and knowledge gained during the interview process.

1. Is it an evaluation or design method? This criterion is just to classify the
methods.

2. Which phases of design is the method suited for? Interviewees have indi-
cated that analysis needs to start early and be a recurring activity trough
the whole development process. Based on this a method to evaluate or
design for robustness should be usable in various stages of design and
development. A good method that can be used during the whole design
and implementation phase would be better than using multiple methods.

3. Is the method for a special type of application? A method should be usable
for all types of applications. This is because I am not focusing on a special

70

type of applications like distributed systems.

4. Does the architectural description have to be in a special form? A method
that requires architectural and design documentation to be in a special
format, would put requirements on the rest of the development process.
This would make the method harder to use, as it would require changing
or converting existing architectural descriptions. Depending on a indus-
try standard notation like UML would be ok, but a proprietary notation
would not be.

5. Method supports analyzing single or multiple quality attributes? Interview
results show that robustness includes several other quality attributes. A
method should be flexible and handle analyzing both multiple quality
attributes and a single quality attribute.

6. Is the method integrateable into an existing development process? A method
should not put too many requirements on the development process, and
be easy to integrate into an existing development process. This is based
the assumption that things that are complicated to use, require more ef-
fort and is less likely to be used. The best is if the method is stand-alone,
then it does not need to be integrated into the process at all.

7. Is the method demonstrated for robustness analysis? It is interesting to know
if there exist examples where the method is used for robustness. This
could provide additional information about the methods applicability to
robustness.

8. Does the method scale with ambition? Not all companies are willing to de-
vote large amounts of time and resources to robustness design or analy-
sis. Companies and development groups vary in size. It is beneficial for
a method to be scalable so that it can be adapted to the project size and
amount of resources available to perform the design or analysis. I am
looking for a method that scales well with the ambition and the size of
the team.

9. Is the method suited for iterative development? Iterative development seems
to be popular, and a method should support iterative development.

10. How easy is the method to learn and use? Based on personal experience,
a method that requires large efforts to learn and use is less likely to be
used than a method that is easier to both learn and use. This has to be
seen in conjunction with the methods ability to scale.

11. Is the method based on teamwork? Working in teams has been mentioned
as being positive for robustness, and an analysis or design method should
therefore include working in a team.

12. Does the method support analyzing failure behaviour? Error handling and
how the application handles errors is central for robustness. A method
should support analysis of how the application deals with various errors.

13. How does the method document results? It is interesting to know how the
method document design or analysis results.

71

14. Does the method make use of prior knowledge? It is beneficial if a method
is able to make use of prior knowledge. This could help less experienced
people use the method more effectively.

When it comes to importance of the different criteria, I find the criteria 2-4,
6, 8, and 10-12 to be most important. The rest of the criteria are less important.
Personal experience and information from the interviews are the reason for se-
lecting these as the most important criteria. A method that fulfils these criteria
should be easy to adapt and use, support error analysis and be suitable for a
wide range of development projects. I find that scalability and ease of use is a
key point when looking for methods to use.

The next sections will present a selection of design and analysis methods,
and in Section 7.9, I will compare the individual methods to the criteria listed
above.

7.2 Analysis types

Abowd et al. [3] divide architectural analysis into two main categories: ques-
tioning techniques and measuring techniques. Questioning techniques can be used
to evaluate any quality, while measuring techniques tend to be more focused
on a particular quality attribute. Questioning techniques help us to learn and
understand more about the architecture’s fitness to the requirements placed
upon it. This is done by posing questions about the architecture, but the tech-
niques do not help much in answering the questions.

Measuring techniques are used to answer specific questions. Mature areas
like performance and modifiability are the most used quality areas for mea-
surements. This is mostly because measurement requires the area of focus to be
well defined and mature in order to know what measures to use and how to in-
terpret the measured values. Another important difference is that questioning
techniques help in collecting qualitative answers, while measuring techniques
is about creating quantitative answers. However, measuring techniques can be
used to answer questions given by questioning techniques.

The report also lists main categories of questioning and measuring tech-
niques where questioning techniques consist of:

Scenario is a list of changes/uses of a system or architecture. The scenario can
be used to evaluate how well the architecture handles the changes/uses.
Different types of scenarios contain different types of actions. Security
scenarios contain a list of threat actions, while modifiability scenarios
contain a list of changes or modifications.

Questionnaire is a list of general and open questions that apply to most types
of architectures. The questions could be about the process and resources
involved as well as the described architecture itself. The purpose of the
questionnaires is to get an answer to any concerns one might have on the
architecture. These concerns often relate to the requirements which the
architecture is designed to fulfil.

Checklist can be viewed as a specialization of questionnaires. A checklist is
based on experiences with a type of quality and/or class of systems. A

72

checklist often focuses on aspects relating to a single quality attribute,
while questionnaires typically have a more broad focus.

The report divides measuring techniques into:

Metrics that are quantifiable measures which describe some specific aspect.
Examples of such metrics can be number of code lines and fan in/fan
out. Metrics can be applied for various quality attributes and at several
levels of abstraction.

Simulations, Prototypes, and Experiments can be used to both help create and
clarify architectures. Prototypes are normally built to either prove some
aspect of an architecture, or to learn more about it. Simulations provide
answers to specific questions by simulating how the architecture(s) will
behave. Performance models are a typical use of simulations.

I will look closer into some of these types of evaluation. Scenarios will be
further described in Section 7.3.1. Metrics are a central part of quality models
presented in Chapter 4. Some other types of analysis like checklists require
extensive experience with multiple systems, and therefore be outside the scope
of this project, and will not be handled further.

7.3 Scenario based analysis

First, scenarios in general will be described. Second, two methods that utilizes
scenarios will be presented, first SAAM and then ATAM.

7.3.1 Scenarios in general

Scenarios are widely used in many areas; requirements elicitation, performance
modelling, and safety inspections to name a few. Scenarios are effective means
of communication, easy to learn and effective in use. This is probably the ex-
planation for its extensive use [15].

Scenarios come in several forms, but the kind of scenarios used in archi-
tectural evaluation consists of three parts; stimulus, environment, and response.
The scenario describes an interaction with a system, where the interaction can
be performed by a user, another system, another part of the same system, a
developer, an architect, or a customer to name a few. These are commonly
called stakeholders. Scenarios form a central part of some architectural evalu-
ation methods like SAAM and ATAM, and are used to clarify and concretise
quality attribute requirements. Most common quality terms like e.g. reliability,
modifiability and availability provides a common platform for communica-
tion. However, these common quality terms need to be further elaborated in
order to create meaningful requirements. In addition, most of common qual-
ity terms have to be evaluated in context, as it for example is not possible to
achieve complete maintainability; it will always be in some context. The con-
text can either be a particular system, or a set of changes. Scenarios provide
this context [3].

Bass et al. [7] differentiate between general scenarios and concrete scenar-
ios. General scenarios can pertain to any system, while concrete scenarios are

73

adapted to a specific system. Normally, a concrete scenario can be formed by
adapting the general scenario to a specific system. Another characterization
is used in SAAM [15, 42] and an article by Kazman et al. [43]: direct and indi-
rect scenarios. A direct scenario represents functionality or uses of the system.
These are scenarios that are handled with the system and do not require any
modification. Indirect scenarios are those requiring a change to the system.
Typical indirect scenarios are growth of the system or porting the system to a
new platform, while a direct scenario can be processing a message arriving at
the system. ATAM uses three types of scenarios that are related to the direct
and indirect characterization: use case scenarios, growth scenarios and exploratory
scenarios [15]. Use case scenarios are similar to direct scenarios and describe
uses of the system. Growth scenarios are similar to indirect scenarios and de-
scribe normal growth or modification to the system. Exploratory scenarios are
the extreme version of the two former types. This kind of scenario tries to
stress the system and represent extreme uses or changes to the system. Sam-
ples of such scenarios can be platform changes, implementing completely new
functionality like going from only receiving synchronous to handling both syn-
chronous and asynchronous messages.

A complete scenario should consist of the three mentioned parts’ stimulus,
environment and response. The final formulated scenario does not have to
adhere to this particular form, but should contain all three aspects in order to
be clear and testable.

Stimulus This describes what the stakeholder does to initiate the interaction
with the system. This includes both the stakeholder and what the stake-
holder does and what change or input that is used. One stimulus could
be that an end user enters his name and presses enter, another could be
that the developer implements support for a new product type to the sys-
tem.

Environment This describes the part of the system that receives the stimulus
and the state the system is in when the stimulus is received. If the state of
the system is normal and the whole system is the target, this part can be
omitted. One example of an environmental condition could be that the
primary node is down, and the secondary node is partially failing due to
extensive load.

Response This describes the anticipated response the system should give when
the stimulus is received by the system. The response should be defined
in such way that it is possible to check if the actual response is in accor-
dance with the scenario. Samples could be that the new product type
should only require some added configuration to the database and the
creation of a new registration form, or that the system should either pro-
cess the request in 10 seconds or respond with a message that informs the
client to try again later.

Apart from concretising and providing a way to analyse quality attributes
which I will look more closely at while describing the utility-tree method in
ATAM, scenarios in combination with analysis methods also help to provide a
better understanding of the requirements, helps stakeholders buy in, and give a
shared understanding of how the architecture fulfils the scenarios. Information

74

on how scenarios are accomplished by the architecture also gives a documen-
tation on how the parts of the system work together to provide functionality
and adapt to changes. Last, the mapping of scenarios onto the architecture pro-
vides traceability of the requirements down to the components that realize the
requirement. [43]

7.3.2 SAAM

SAAM was first presented by Kazman et al. [41], and a later version that also
incorporates the evaluation process was presented by Clements et al. [15], Kaz-
man et al. [42]. SAAM is a method for evaluating the quality of architecture, or
for comparing alternative architectures. Maintainability and functionality are
the main focus areas of the method, but it can also be used to analyze other
aspects like performance and safety.

Compared to other methods like ATAM it is easy to learn, and requires less
time as the method itself is simple. Scenarios are the method’s vehicle of com-
munication, and the use of scenarios stimulates communication among partici-
pants. Apart from having a positive effect on communication, it helps to ensure
that the architecture is properly documented, as an architectural description is
a prerequisite and the method itself enhances and complements the existing
documentation. Requirements and business goals will be translated into well
defined scenarios and problematic areas of the architecture will be expressed.
This will be both areas with high interaction among scenarios, and scenarios
that require a modification to a large number of scenarios. The following steps
are involved in a typical SAAM analysis [15, 42]:

Step 1 - Develop Scenarios This is a step there the whole group brainstorms
for scenarios. The scenarios should represent anticipated changes to the
system, major uses of the system and qualities the system should satisfy.
Both the present and the foreseeable future should be covered.

Step 2 - Describe the Architecture(s) The architecture should be described to
the participants so that it is well understood. Several architectural views
should be available and described. The description of the architecture
and the development of scenarios is normally a recurring loop. When
new scenarios surface, the architecture might have to be modified to take
these into consideration, or more documentation might be needed. As
more details and knowledge about the architecture is available, the par-
ticipants discover more relevant scenarios.

Step 3 - Classify and Prioritize the Scenarios Each scenario in the list should
now be classified as a direct or indirect scenario. After classifying the
scenarios, they should be ranked according to their importance. This pri-
oritization could be done by voting.

Step 4 - Individually Evaluate Indirect Scenarios The most important scenar-
ios from the list should now be mapped onto the architecture. Direct sce-
narios should be demonstrated by how they execute on the architecture.
Indirect scenarios are demonstrated by illustrating how the architecture
needs to change to implement the scenario. This step will illustrate the
strengths and weaknesses of the architecture and its documentation. The

75

output of this step should be a list of scenarios with a description of re-
quired changes and an estimate of the required effort for all the indirect
scenarios.

Step 5 - Assess Scenario Interactions Two indirect scenarios requiring a change
to the same component or set of components are said to interact. If multi-
ple semantically different scenarios interact in one component this could
indicate a potential problem. The same is true if a scenario requires
changes to a large set of components. This step is about investigating
interactions between scenarios and analyzing how the architecture over-
all responds to changes. The goal of this step is to discover if interactions
occurs because the documentation is not at the correct level of detail (the
documentation shows that interaction occurs, but the component is re-
ally divided into subcomponents where interaction does not occur), or
if the component or set of components is an area of high coupling and
potential complexity that the designers should focus on. Scenarios that
require a large number of changes should also be a focus area of further
design.

Step 6 - Create the Overall Evaluation This step can be used to compare mul-
tiple alternative architectures, or multiple alternative solutions in one ar-
chitecture. This is done by assigning a subjective weight to the archi-
tecture that could indicate costs, complexity, general suitability or other
important factors. In addition, each architecture could be assigned a pos-
itive, negative or neutral point for each scenario. This combination of
weight and scenario-points can be used to compute a suitability rank for
the architecture and produce an ordered list that can be used as a basis of
decision.

7.3.3 ATAM

ATAM [7, 15, 40] stands for Architecture Tradeoff Analysis Method, which is
a structured method to analyze an architecture focusing on multiple quality
attributes. The method is based on the SAAM method and is inspired by the
quality attribute communities and the notion of architectural styles. The cre-
ators of the ATAM method think architectural styles are important as they dif-
ferentiate different classes of design. Architectural styles are helpfull by pro-
viding experimental evidence for how a class of architectures has been used,
and qualitative reasoning that explains why the class of architectures has cer-
tain properties and when it should be used [15].

The ATAM method focuses on identifying risks, nonrisks, sensitivity and
tradeoff points in the architecture, and makes extensive use of scenarios. ”A
sensitivity point is a property of one or more components and/or component re-
lationships that are critical for achieving a particular quality attribute response”[15,
p. 36], while ”a tradeoff point is a property that affects more than one attribute
and is a sensitivity point for more than one attribute” [15, p. 36]. A risk is
a problematic issue in the architecture; it can be a decision that has not been
taken, an architectural decision, or something outside the architecture itself. A
sensitivity or tradeoff point can be a risk in the architecture, but can also be a
nonrisk. A nonrisk is a good decision in the architecture based on something

76

that is fixed or highly unlikely to change. This means that when the underlying
assumptions change, the nonrisk might be converted to a risk.

For example, assigning processes to a server might affect the num-
ber of transactions that server can process in a second. Thus, the
assignment of processes to the server is a sensitivity point with re-
spect to the response as measured in transactions per second. Some
assignments will result in unacceptable values of this response -
these are risks. Finally when it turns out that an architectural de-
cision is a sensitivity point for more than one attribute, it is desig-
nated as a tradeoff point. [15, p. 57]

After a completed ATAM evaluation, we will have a list of business goals, a
presentation of the architecture and a catalogue of the architectural approaches
employed. In addition, we will have a list of the most important scenarios
linked with relevant architectural approaches, and a list of relevant quality at-
tribute question for the approaches used, and risks, nonrisks, sensitivity, and
tradeoff points. The method can be used both in the early stages of develop-
ment, and on legacy systems that are about to undergo some major changes or
additions. While the main objective of the method is to identify risks related
to the architecture, sometimes alternative solutions or improvements can be
produced as a by-product.

ATAM was first described in an article by Kazman et al. [40], but is pre-
sented in a more mature version in Bass et al. [7] and Clements et al. [15]. The
steps in the mature version are presented below. Even if the steps are num-
bered 1-9 the method is not strictly a waterfall method — there is nothing that
prevents loops or iterative uses of the method.

Step 1 - Present the ATAM The main focus of this step is to let the evaluation
leader present the ATAM method to the participants. This presentation
should briefly describe the steps and the methods that will be used. It
also helps set the context of the work that should be performed, and set
the expectations of the participants. The evaluation leader should also
reserve some time in his presentation to answer any questions the partic-
ipants might have.

Step 2 - Present the Business Drivers A representative of the project, like the
project manager or the customer should present the business goals that
motivate the development of the system. These are the main goals that
represent the main architectural drivers like high security, time to market
or high flexibility. The main purpose of the step is to make sure that all
the participants, including the evaluation team, fully understand the con-
text of the system, and the reasoning behind its creation. A high level sys-
tem overview, focusing on the main system functions, and any technical,
managerial, economical, or political constraints should also be covered in
order to fully understand the system’s context.

Step 3 - Present the Architecture Architectural presentation is the main objec-
tive of this step, and the lead architect or the architectural team should do
the presentation. The presentation should focus on how the architecture
supports the main business goals presented in the previous step. Level of

77

detail and architectural views should be chosen in a way that best present
the architectural approaches that helps fulfil the business goals and main
quality requirements. Available time and the level of detail the archi-
tectural design has, will also have to be taken into consideration when
choosing views and level of details. Any constraints like OS, hardware
or prescribed middleware and any required interaction with other sys-
tems should also be presented so that the participants can understand
the underlying constraints of the architectural design.

Step 4 - Identify the Architectural Approaches The main purpose of this step
is to identify the architectural approaches used to meet the main quality
requirements and goals. The architect will identify and name the archi-
tectural approaches and architectural styles used. There will be no anal-
ysis of the approaches and styles in this step. The analysis team will just
make a list of the approaches presented and add any approaches revealed
during the preceding architectural presentation.

The background for this collection is that the architectural approaches
and styles lay the architecture’s main foundation and structures for ad-
dressing the highest ranked quality attributes. These approaches and
styles is the architect’s main mean to ensure that the finished system will
meet its critical requirements in a predictable way. They will lay the foun-
dation for how the architecture can grow, adapt, resist attacks, respond
to major changes and so on. By later analyzing the architectural choices,
the evaluation team can determine how well the approaches and styles
qualifies the system’s driving quality attribute goals.

Step 5 - Generate the Quality Attribute Utility Tree If the analysis was to take
all possible qualities and approaches into consideration, it would be a te-
dious task that could take a long time to complete. Building a utility tree
is ATAM’s way of focusing the analysis on the most important parts of
the system. This step is performed by the main decision makers in the
project, - normally the architectural team, manager, and customer repre-
sentatives. A utility tree represent the system’s ”goodness” and this is
represented by the trees top node labelled utility. Below this level the
team is requested to name the main ”’itilities” or quality attributes the
system should employ. The list does not have to adhere to any particular
naming convention from a quality model, but can use own terms and cat-
egorizations. As long as the category can be further refined, any naming
and categorization is fine. At the third level, each of the quality attributes
should be refined into sub-categories. For instance, availability is sep-
arated into hardware and software failures. Below each sub-category a
list of well defined scenarios should be created. Each of these scenarios
should be important for the system.

After all the relevant scenarios have been created, they have to be pri-
oritized. The relative importance of the scenario, and how difficult it is
to realize should be ranked separately. Any ranking can be used, but it
is encouraged to use a High/Medium/Low ranking as it is not possible
to apply definitive metrics. This step will produce a list of well defined,
testable scenarios that define what is most important for the system being
developed. All participants are forced to explicify and prioritize current

78

and future driving forces for the system. This might also facilitate discus-
sions based on that new important goal and driving forces are brought up
on the table.

This ranked list of scenarios will guide the rest of the analysis, as the
highest ranked scenarios will be analyzed first, and then one goes down
the list. Normally the lowest ranked scenarios are not analyzed as they
are either easy to ensure in the architecture or are of low importance to
the system. Apart from this, time will set the limit for which scenarios
are covered and not in the following analysis. An example of a utility
tree can be seen in Figure 7.1.

Performance

Modifiability

Utility

Availability

Security

Data Latency

Transaction
Throughput

New product
Categories

Change COTS

Hardware
Failure

COTS Software
Failures

Data
Confidentiality

Data
Integrity

(M,L) Minimize storage latency on
costumer DB to 200ms.

(H,M) Deliver video in real time

(M,M) Maximize average throughput to
the authentication server

(L,H) Add CORBA middleware in
< 20 person-months

(H,L) Change web user interface in
< 4 person-months

(L,H) Power output at site 1 requires traffic
redirect to Site 3 in < 3 seconds

(H,M) Restart after disc failure in
< 5 minutes

(H,H) Network failure is detected and
recovered in < 1.5 minutes

(L,H) Credit card transactions are
secure 99.999% of time

(L,H) Customer database authorization
works in 99.999% of time

Figure 7.1: Sample of an utility-tree [15, p. 51]

Step 6 - Analyze the Architectural Approaches Now it is time to compare the
architectural approaches collected in step 4 with the scenarios from step
5. The purpose of this step is to see how well they match, and identify
risks, sensitivity, and tradeoff points. For each individual scenario that
is analyzed, the architect will have to identify architectural approaches
that helps satisfy the scenario. Hopefully, all the architectural approaches
have already been collected. If any new approaches come up, one must
analyze why, as it might indicate that step 4 has not succeeded in collect-
ing all relevant approaches.

Once the relevant approaches for the scenario in question have been iden-
tified, the evaluation team starts asking questions to understand the ap-
proach in detail. Questions are focused on the quality attribute the sce-
nario focuses on and are normally collected from literature and previ-
ous experience. The questions help the evaluation team identify known
weaknesses with the approach, as well as risks, sensitivity, and trade-
off points. The use of questions is not meant to be a straight Q&A ses-

79

sion, but a basis for discussion. As possible risks, sensitivity, and tradeoff
points arise, further analysis might be needed to investigate it further.
These analyses are not meant to be thorough or detailed; a ”back of the
envelope analysis” is in most cases good enough. The architect might
also be unable to answer detail questions about how the approach is ap-
plied, and in that case there is not enough information to even perform
such an analysis.

At the end of the ATAM analysis, the goal is to have a list of sensitiv-
ity points and tradeoffs associated with each scenario, and each of these
should either be classified as a risk or nonrisk. The output of this step
will for each analyzed scenario be a list of architectural approaches that
relates to the scenario, including a reasoning on how the approaches con-
tributes to accomplish the scenario in question. In addition, a list of sen-
sitivity, tradeoff points, and risks related to the scenario and the applied
architectural approaches will be provided.

These artefacts will provide architectural reasoning and documentation
on how the architecture supports the most important quality attribute
goals, as it is created directly on the basis of the utility tree that contains
the most important scenarios for the system.

Step 7 - Brainstorm and Prioritize Scenarios At this point, as many as possi-
ble of the people involved in the project will be present. The idea is that
everyone should be able to provide well-defined scenarios that are im-
portant to them. It should be done as a brainstorm, where everyone
should be able to get their scenarios on the list. The participants are
also encouraged to add scenarios from the utility tree that has not been
analysed to the list of brainstormed scenarios. Any similar scenarios are
merged before the list is prioritized. Voting may be one way to perform
the prioritisation. The top ranked scenarios are then added to the utility
tree, and any scenarios related to multiple branches in the tree is split and
adapted to each of the branches.

The result of this exercise is that the list of scenarios produced by the
smaller group of architects and developers is tested against the larger
group of participants. Either the new scenarios add variations of the ex-
isting scenarios to the tree, or they create completely new branches in the
tree. The creation of new branches, especially if new quality attributes
on the second level in the tree have to be added, should be noted as a
risk. Additions of such nodes indicate that there exists an area of im-
portant quality aspects that has not been considered while designing and
analyzing the architecture.

Step 8 - Analyze the Architectural Approaches This is the second testing step,
where the top ranked scenarios from the previous step should be demon-
strated on the architecture. The architect will guide the group through
how the architectural approaches help realizing the scenario. Basically
this is a repetition of step 6 but on a different set of scenarios. Hopefully
this step will not reveal many new architectural approaches or risks, sen-
sitivity points or tradeoffs. A huge number of new discoveries at this
point would indicate that the previous steps have not been carried out
properly.

80

Step 9 - Present the Results Presenting the result of the analysis is the last step
of the method. This step recaps previous steps, and lists the outputs and
findings. All the steps should have been documented along the way and
provide the basis for a report and/or presentation in this step. This step
produces a list of risk themes that is produced by the evaluation team.
This is based on the fact that risks normally can be grouped together
based on an underlying concern or systematic deficiency. Each of these
themes are then associated with the business drivers from step 2. This
gives closure to the method and brings the discovered risks to the atten-
tion of the management.

7.4 Traditional risk/safety methods

A large variety of traditional risk/safety methods exists, and Clifton Ericson
lists no less than 22 different techniques in his book Hazard Analysis Tech-
niques for System Safety [28]. In the following sections a few of these methods
will be presented.

Later I will present a method where the FMEA technique described below
is applied together with Jacobson’s robustness analysis.

7.4.1 PHA

Preliminary Hazard Analysis (PHA) is a method used to identify and collect
hazards in a system in order to form the initial system safety requirements.
The method focuses on early stages of design, when little design is available.
The method analyses already identified hazards as well as help discover previ-
ously undiscovered hazards. Input to the method is knowledge of the current
design, knowledge about potential hazards, and mishaps (typically in the form
of checklists and lessons learned from similar systems), and lists of known haz-
ards.

PHA starts by looking at the list of known hazards and then combines the
design with checklists and other forms of prior knowledge in order to find
any hazards that are not already on the list. Checklists and other materials
help stimulate thought and makes discovery of new hazards easier. For each
individual function and part of the system one should develop each individual
hazard further by identifying the potential causes for the hazard and the worst
case effects and consequences the hazard has on the system if it should occur,
and in what operating modes of the system the hazard is a concern. Then
each hazard should be associated with a severity and probability for the hazard
based on the causes and effects. Recommended preventive measures to help
reduce the severity or probability through design, safety devices, warnings,
or procedures should then be noted and last, a new estimate of severity and
probability if the recommended measures are implemented.

PHA is not designed to be a one-time procedure that is carried out from A to
Z, but a repetitive procedure where new hazards can be added, and worksheets
can be revisited as the design progresses.

The main outputs from this method is a list of safety requirements in the
form of preventive measures, an updated list of hazards, sources of hazards
and an initial risk assessment for the system.

81

7.4.2 HAZOP

HAZOP, or Hazard and Operability Analysis is quite similar to PHA in form,
but have its origin in the chemical industry. The method can be used both
in preliminary design and in detailed design. Instead of using checklists like
PHA, HAZOP uses key guide words and system diagrams. It is also a more
time consuming method as brainstorming is a key element. A group of mul-
tidisciplinary experts carry through the analysis, and having a qualified team
leader and a relevant selection of experts is an important key to success. In-
stead of focusing on hazards directly, the focus is on identifying potential de-
viations that could lead to hazards.

A worksheet is recommended, and the analysis is done on individual parts
of the system. For each item its intended function and purpose is described,
then combinations of parameters and a guide words are investigated in order
to find possible deviations. For example, the main function of a water pump in
a car is to circulate the water between the engine and radiator in order to pro-
vide cooling; what if less water is circulating, or the water temperature rises.
For each of these combinations of properties/attributes and guidewords a con-
sequence and potential factors that could contribute to the cause should be de-
scribed. In addition a potential hazard should be identified if the combination
has hazardous consequences. Last, an estimate on the severity and probability
should be stated together with any recommendations on how to mitigate the
hazard.

7.4.3 Fault tree analysis

If you have a single undesired event, and want to know the root causes and
probabilities for this event, then the fault tree analysis (FTA) can be used. It
helps you analyse large and complex systems to determine what combinations
of events that can cause the undesired event, and lets you calculate the proba-
bility for a single combination or the probability for the undesired event occur-
ring. FTA is a top-down approach built on logical gates and fault events that
models the cause-effect relationships that can lead to an undesired event. The
approach can be applied in a recurring fashion in order to improve the model
as more information or details are made available, and multiple models can be
built to analyse multiple undesired events. Building the model is an iterative
process. It starts at the top with the undesired event. Next, a list of normal-
events and failures that could lead to this event is described. These are linked
through a logic gate telling if all events and failures need to happen in order
to produce the undesired event (AND gate), or if only one of them needs to
be represented (OR gate). Then each of the individual failures and events are
decomposed in the same way. This is repeated until all events are defined in
terms of basic identifiable hardware faults, software faults and human faults.
The logical gates are not limited to simple AND and OR, but more complex
gates like conditionals, Priority AND and Exclusive OR are also possible to
use.

Using the strict logical model, one can easily define sets of events that lead
to the undesired events, and calculate probabilities for each of them. The
method requires some training, but is quite easy to perform once it is under-
stood. One issue with the method is that the graphical model can get quite

82

large for complex systems.

7.4.4 Event tree analysis

Event tree analysis (ETA) is in a way the opposite of the Fault tree analysis. It
lets you start with an initiating event and analyse the sequence of events that
might lead to a potential hazard or accident scenario. Like FTA the method
uses a graphical tree, although a bit simpler than the FTA trees. The main
objective of an ETA is to analyze if the occurrence of an initiating event is suf-
ficiently controlled by the safety mechanisms in the system so that it does not
result in a serious mishap.

The method starts with an initiating event that could lead to a potentially
dangerous situation, and then the list of pivotal events that should prevent
the eventual failure is identified. This requires that the accident scenarios and
the pivotal elements are found before the analysis is started. Given the initial
event there is normally two possible outcomes of the first pivotal event, either
a failure or success. For each of the output one moves on to the next pivotal
element to determine if it is able to help preventing and the possible results.
This is done for each of the pivotal events and will give an event tree. One
example of such a tree can be seen in Figure 7.2

Figure 7.2: Sample of an event tree

Since each of the results from a pivotal event are mutually exclusive, a prob-
ability can be associated with the result. That makes it possible to calculate a
probability for each of the possible outputs. These can be used to evaluate
whether or not the system has an acceptable risk profile or not.

7.4.5 FMEA

FMEA (Failure Mode and Effects Analysis) is a tool to analyse failure modes
that can affect the reliability of a system. It can also be extended to analyse fail-
ure modes that can lead to an undesired system state like a hazard. FMEA is a
bottom-up approach that uses the detailed components and functions to anal-
yse the effect of different failure modes. The fact that the lowest level should be
used does not require a detailed design to be in place. The FMEA method can
be used at any phase and on any level of abstraction, you just work from the
bottom up on the level of detail an abstraction you have chosen. As for PHA

83

and HAZOP, it is recommended to use a worksheet in order to more easily
adhere to the process.

FMEA starts by processing the low-level items in the design (component,
function or subsystem), and for each individual item, the possible failure modes
should be listed. Sample failure modes for functions are: fails to perform, per-
forms prematurely, and does not fail safe. For hardware, sample failure modes
are; cracked, bent, failure to operate, and short circuit. After having noted po-
tential failure modes for each item, the failure rate or probability of failure for
the items failure mode should be estimated. Then all the potential factors that
could cause the failure mode should be identified. The immediate effect should
then be determined; this should be the low-level effect that occurs on the next
item in the current design. If there is a system level effect, that should also be
noted. Method of detection should be noted to describe how the method of
failure can be detected before it has caused any major accident. Current con-
trols should then be noted, to describe any measures that are in place to either
prevent the failure from happening, or prevent it from having any major con-
sequences if it should happen. If there are any potential hazards as a result of
the failure mode, it should be noted as well as the severity and probability for
the hazard or mishap occurring. Last, a recommended action to eliminate or
mitigate the effects of the failure mode should be noted.

There are some important shortcomings of the method one should be aware
of, and that is that the method is not designed to identify hazards that does not
occur as a result of a failure mode. The ability of the method to examine human
errors and external influence and interfaces are also limited.

7.4.6 Safety methods applicability to software

None of the methods described above were initially designed to be used on
software from the start, and may not be as suitable for software applications as
the physical systems they are designed for. Independent of this the described
models have methodologies that helps in discovering and analysing systems
with focus on causes, effects, events and hazards.

7.5 Combining FMEA and Jacobsons analysis method

Zhou and Stålhane [78, 79] present a robustness analysis framework that can
be used in the early analysis and preliminary design phases of web systems.
The framework uses the Jacobson’s robustness analysis method in combination
with FMEA to find system elements that are critical for achieving robustness,
and identify preventive actions. Jacobsons analysis method is used to model
the system with focus on its behavioural aspects. The proposed method starts
by defining the robustness requirements for the system. Once this is done,
the system is divided into subsystems by focusing on the most important use
cases. Each use case is then analyzed using Jacobsons analysis to identify the
objects involved and classify them as one of three types:

• Boundary objects, that are the objects the user interacts with when com-
municating with the system.

• Entity objects, that represent storage or objects from the domain model.

84

• Control objects, that link boundary objects to entity objects and normally
contain business logic and rules.

Control objects serve as the target of analysis as these are the only way for
a boundary object to communicate with the entity objects. For each use case a
light-weight FMEA should be performed on all the control objects. The result
of this analysis should be connected to the goals of the system and prioritized.

7.6 TRIAD

Trustworthy Refinement through Intrusion-Aware Design, TRIAD [26, 55] is
a framework for designing survivable architectures. The approach is based
on the creation of a survivability strategy. This strategy should address how to
handle mission-compromising threats and attacks. This could be done through
resisting, recognizing, recovering from, or adapting the system to attacks. The
strategy has to be kept updated to reflect any changes in the threat situation
and critical mission goals of the system. Examples of changes that could re-
quire an update of the strategy is a higher dependability of the system in the
organization or the discovery of a new type of attack. The rationale behind
creating the framework is that many existing solutions to handling threats fo-
cus too much on details and produces only individual solutions for individual
types of threats. TRIAD tries to focus at a higher level and create an overall
strategy to handle the threats.

The method uses inspiration from Boehm’s spiral model, and has three sec-
tors in the spiral:

1. Architectural strategy.

2. Architectural instantiation.

3. Environmental analysis.

One starts in the first sector and walks through the other sectors before
doing a new round in the spiral starting with the first sector again. Each it-
eration refines and develops the system based on risk analysis, prototyping,
risk mitigation, new knowledge, and experience from previous iterations. The
iterations stop when the resulting product of each sector is at a level that gives
an acceptable risk profile for the stakeholders. The first iterations focus on
creating the survivability strategy, once that is complete focus shifts over to
technical refinement. Both new development and maintenance on legacy sys-
tems can be performed using the model. It can either be fully integrated into
the development process or be run as a separate effort early in the early stages
of development.

1 - Architectural Strategy Based on a definition of the system’s overall mis-
sion, this step forms survivability requirements and a high-level concep-
tual survivability architecture describing structure and functionality. The
basis for the requirements and the conceptual architecture is that the sys-
tem should be able to perform its mission despite penetrations and com-
promises. Conceptual architecture should be described and presented in
a form which is easy to understand for the customer.

85

A set of survivability tactics forms the conceptual survivability architec-
ture, where each tactic is ”a generic representation of an architectural ap-
proach to resist, recognize, recover from, or adapt to a pattern of attach
in a given context” [55].

2 - Architectural Instantiation This sector transforms the conceptual architec-
ture into a technical implementable architecture. It is done by instantiat-
ing the conceptual architecture using low level technical components. In-
stantiation might result in changes or feedback on the technical feasibility
of the conceptual architecture, and the resulting description of function
and structure should be at a level of detail that is suited for implementing
the architecture.

3 - Environmental Analysis After having a conceptual architecture and a sug-
gestion for its technical implementation, one can evaluate this against the
expected threats and the main objective of the system. Based on the sug-
gested survivability strategy one can check if the system will be able to
carry out its mission given the expected threats. Threats can be every-
thing from a small denial of service attack to driving a bulldozer into a
building.

Conceptual
architecture
refinement

survivability
tactics

mission
objectives

operational
constraints

high-level
attack
patterns Threat

dynamics
analysis

Threat
identification

Risk
mitigation

Figure 7.3: Survivability Strategy Refinement Process [55]

TRIAD has a high focus on traceability. Thus, each mission objective has
an associated list of possible threats. For each of these threats there is a list
of survivability requirements that are realised in the conceptual architecture.
The same chain is also traceable from the conceptual architecture and back
to the mission objectives. Traceability like this is valuable when changes to
the system are to be performed; mission objective changes or new threats are
discovered. In all these situations traceability helps by listing the areas that
will need analysis or changes.

Survivability strategy consists of the combination of survivability require-
ments and conceptual architecture. Development and evaluation of these make
use of a system dynamics approach. Threat dynamics is a modification to the

86

system dynamic approach that includes hostile actions and the system’s op-
erational response to the actions. This special kind of modelling is used to
model and understand the structure of complex human-based systems. ”...
threat dynamics provide an overview of the general influences that the threat
environment has on the ability of the system to fulfil its mission and better un-
derstanding of strategic responses to counter likely threats” [55]. The approach
to refinement of the survivability strategy can be seen in Figure 7.3. This kind
of modelling is powerful and helpful in a threat context, but less interesting in
a robustness context.

7.7 Reviews

IEEE defines a review as:

Definition 7.7.1. review. A process or meeting during which a software prod-
uct is presented to project personnel, managers, users, customers, user repre-
sentatives, or other interested parties for comment or approval. [1]

IEEE [1] has defined five main types of (systematic) reviews:

• Management reviews.

• Technical reviews.

• Inspections.

• Walkthroughs.

• Audits.

Reviews are mainly a tool that can help in verifying that requirements are
met, and that the result meets the required levels of quality. The quality at-
tributes and requirements are inputs to the reviews. Reviews can not only be
carried out on to the source code, but also on all documents and other by-
products of the development process like design documents, contracts and re-
lease notes. Reviews can also be performed at various levels in the organiza-
tion from the management down to a peer review. According to McConnell
[53, p. 573], the main idea behind technical reviews is that developers are quite
often blind to their own errors. Others, however, spot quite a few of these er-
rors them self, and it is often enough to just try to describe a problem to another
individual in order to spot a solution or error. McConnell also emphasize that
reviews are effective in discovering bugs. He refers that testing has an average
defect detection-rate of 25-45 percent, but reviews has a rate of 55-60 percent.
This, in addition to that reviews can be performed at earlier stages than testing,
makes reviews a cost-effective solution to keep defect counts down. Because
of this it can also be used as a measure to reduce development costs.

Although there is a defined distinction between different kinds of reviews,
there is not always a clear way to classify a particular kind of review. In the
rest of this thesis, the term review will therefore be used for all different kinds
of reviews. The following sections describe the five main types of reviews in
the IEEE standard.

87

7.7.1 Management review

The main objectives of a management review are to ensure and monitor progress,
recommend corrective actions and ensure a proper allocation of resources. The
typical attendants are management, technical leadership and peer mix. The
review can be used to evaluate e.g. software acquisition, development and
software maintenance processes. Typical items under review are reports like
progress reports, technical review reports, and audit reports and plans like
software safety plans and installation plans. The main characteristic of man-
agement of reviews is that they operate on a high level, and has focus on eval-
uating plans, progress and output of other reviews.

7.7.2 Technical review

A technical review evaluates the software product’s conformance to specifi-
cations, standards, guidelines, plans and procedures. In addition it verifies
that changes to a software product are implemented properly and affect only
the relevant parts of the system. Another common use of technical reviews is
to examine and provide a recommendation from alternatives. Participants in
these kinds of reviews are technical leadership and a peer mix. The review
evaluates items like software requirements, design descriptions, maintenance
manual, and user documentation. The main focus of this kind of review is to
look for and handle issues at the design and requirements level.

7.7.3 Inspection

Inspections are more about the details than the technical reviews are. The main
objectives are to find anomalies, examine alternatives and verify the product
quality. The same items as reviewed by technical reviews can also be reviewed
in an inspection. An inspection may in addition look at the actual source code
of the product. It is common to use a checklist to help find common errors dur-
ing an inspection. The typical group in an inspection is a set of peers, possibly
accompanied by a trained facilitator. The focus is on detecting abnormalities,
and how to handle them, but not on the actual solution. Also, the area of focus
tends to be much smaller and more detailed than in a technical review.

7.7.4 Walkthrough

A walkthrough’s main objectives are to find anomalies, examine alternatives,
improve the product, and it can be a forum for learning. The items under
review are the same as for inspections, but the focus is different. In a walk-
through, a solution or part of a solution is presented by its author for a larger
collection of people. People involved are normally a peer mix and the technical
leadership.

7.7.5 Audits

Audits may cover all types of items, and the main difference from other types
of reviews is that they are performed by an external auditor. An audit makes
it possible to independently evaluate compliance with objective standards and

88

regulations. Typical participants are auditors, management and technical per-
sonnel. The process is controlled by an external lead auditor.

7.8 Prototyping / proof of concept

Prototyping is a way of testing concepts or designs. A prototype implements
some part of a solution. Prototypes can vary from being completely functional
to being just a mockup.

Bardram et al. [6] mention that prototyping can be used as a way to ex-
plore and experiment with various patterns, features and architectural styles.
They illustrate architectural prototyping through three distinct cases. It is also
mentioned that it is more the process of building the prototype than the proto-
type in itself that is of interest. It is during the development and testing of the
prototype that you gain knowledge.

Prototyping has also been mentioned by several of the interviewees, and
this is the reason why it is included in the overview of architectural design and
analysis methods. Prototyping is not as well defined as the rest of the methods,
but seems to be commonly used during development.
Possible uses of prototypes according to Bardram et al. [6] are:

• Explore and learn about the architectural design space.

• Test and verify that the design fulfills the quality attribute requirements.

• Prototype parts of the architecture to reduce risks. By prototyping one
can test the suggested design, and verify that it is buildable and suitable.

• Prototypes can serve as examples to learn others how a system should be
built.

7.9 Evaluation of criteria

In Table 7.1 a comparison of each method with the individual criteria is shown.
To reduce the size of the table, some simplifications have been made. Audits
and management reviews have been omitted from the table. Management re-
views focus more on processes and results than the design, and audits is a spe-
cial type of review that has a more formal focus than other methods. Further,
the other generic review methods have been combined into a common column
as their properties are more or less the same.

The details of the comparison are shown in the table, and I will therefore
only discuss it briefly. I will get back to the adaptability to robustness for most
of the method’s in Chapter 9, where I will suggest a method based on a combi-
nation of some of the methods presented in this chapter.

The table illustrates that methods have strengths and weaknesses. Based
on my analysis, no method seems to be superior. TRIAD is too focused on
security; SAAM is very focused on maintainability and flexibility. Reviews
are more general characterizations than concrete methods, making them very
flexible, but requiring specialization to be useful for robustness. Prototyping
is a general activity that can be used to test designs, but does not focus on
robustness in particular. FMEA and Jacobson’s analysis focus on early stages of

89

design, where little design information is available. I am looking for a method
that is usable during the whole design stage. The traditional safety methods
are promising, but need adaption to be used on software. ATAM has many
good qualities, but I suspect that it does not scale well for small teams. One
possibility is to remove some steps, but the consequences of this are unknown.

90

PHA

HAZOP

FTA

ETA

FMEA

E
va

lu
at

io
n

or
 d

es
ig

n
m

et
ho

d?
-

E
va

lu
at

io
n

E
va

lu
at

io
n

E
va

lu
at

io
n

E
va

lu
at

io
n

E
va

lu
at

io
n

E
va

lu
at

io
n

E
va

lu
at

io
n

B
ot

h
E

va
lu

at
io

n
B

ot
h

E
va

lu
at

io
n

U
sa

bl
e

in
 v

ar
io

us
 s

ta
ge

s
of

de

si
gn

**

R
eq

ui
re

s
so

m
e

de
si

gn
 d

et
ai

ls
R

eq
ui

re
s

so
m

e
de

si
gn

 d
et

ai
ls

M
et

ho
d

is
 m

ea
nt

 to

be
 u

se
d

be
fo

re

de
ta

ils
 a

re

av
ai

la
bl

e.

R
eq

ui
re

s
so

m
e

de
ta

ils
, b

ut
 c

an

ad
ap

t t
o

va
rio

us

de
gr

ee
 o

f d
et

ai
l.

S
pa

ns
 a

ll
st

ag
es

 o
f

de
si

gn
.

C
an

 b
e

us
ed

 o
n

va
rio

us
 le

ve
ls

 o
f

de
si

gn
.

C
an

 b
e

us
ed

 o
n

va
rio

us
 le

ve
ls

 o
f

de
si

gn
.

Is
 d

es
ig

ne
d

to
 b

e
us

ed
 b

ef
or

e
m

uc
h

de
ta

ile
d

de
si

gn

in
fo

rm
at

io
n

is

av
ai

la
bl

e.
G

en
er

al
, n

ot
 fo

r a
 s

pe
ci

al
 k

in
d

of
 a

pp
lic

at
io

n
**

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

D
oe

s
re

qu
ire

 a
 s

pe
ci

al
 fo

rm

of
 a

rc
hi

te
ct

ur
al

 d
es

cr
ip

tio
n

**
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

S
up

po
rts

 a
na

ly
zi

ng
 a

 s
in

gl
e

an
d

m
ul

tip
le

 q
ua

lit
y

at
tri

bu
te

s.

*

B
es

t f
or

m

ai
nt

ai
na

bi
lit

y,

A
TA

M
 is

 s
ug

ge
st

ed

fo
r o

th
er

 u
se

s.

S
pe

ci
al

iz
ed

 fo
r

an
al

ys
is

 o
f m

ul
tip

le

at
tri

bu
te

s,
 s

om
e

st
ep

s
co

ul
d

be

su
pe

rfl
uo

us
 w

he
n

us
ed

 fo
r a

 s
in

gl
e

at
tri

bu
te

.

P
ar

tly
, s

ee
 *

*
Y

es
, d

ep
en

ds
 o

n
th

e
re

vi
ew

s
fo

cu
s

Y
es

, d
ep

en
ds

 o
n

th
e

m
ai

n
fo

cu
s

of

th
e

pr
ot

ot
yp

e.

N
o,

 fo
cu

s
on

ro

bu
st

ne
ss

 o
nl

y.

In
te

gr
at

es
 in

 a
n

ex
is

tin
g

pr
oc

es
s?

**
Y

es
, s

ta
nd

al
on

e
pr

oc
es

s
Y

es
, s

ta
nd

al
on

e
pr

oc
es

s
Y

es
, s

ta
nd

al
on

e
pr

oc
es

s
Y

es
, s

ta
nd

al
on

e
pr

oc
es

s
Y

es
, s

ta
nd

al
on

e
pr

oc
es

s
Y

es
, s

ta
nd

al
on

e
pr

oc
es

s
Y

es
, s

ta
nd

al
on

e
pr

oc
es

s
C

an
 b

e
ha

rd
 to

in

te
gr

at
e

Y
es

, s
ta

nd
al

on
e

pr
oc

es
s

Y
es

, s
ta

nd
al

on
e

pr
oc

es
s

Y
es

, s
ta

nd
al

on
e

pr
oc

es
s

E
xa

m
pl

e
of

 u
se

 fo
r

ro
bu

st
ne

ss
 is

 fo
un

d
*

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

, i
n

co
m

bi
na

tio
n

w
ith

 J
ac

ob
so

n'
s

N
o

N
o

N
o

Y
es

S
ca

le
s

w
ith

 a
m

bi
tio

n

**

Y
es

, t
he

 e
ffo

rt
us

ed

ca
n

va
ry

.
Y

es
, s

ol
ut

io
n

ca
n

be
 a

na
ly

ze
d

in

va
rio

us
 le

ve
ls

 o
f

de
ta

il.

Y
es

, s
ol

ut
io

n
ca

n
be

 a
na

ly
ze

d
at

va

rio
us

 le
ve

ls
 o

f
de

ta
il.

Y
es

, s
ol

ut
io

n
ca

n
be

 a
na

ly
ze

d
at

va

rio
us

 le
ve

ls
 o

f
de

ta
il.

Y
es

, s
ol

ut
io

n
ca

n
be

 a
na

ly
ze

d
at

va

rio
us

 le
ve

ls
 o

f
de

ta
il.

N
ot

 d
ire

ct
l y

, m
et

ho
d

re
qu

ire
s

a
su

bs
ta

nt
ia

l b
as

e
ef

fo
rt

du
e

to

ex
te

ns
iv

e
tra

ce
ab

ili
ty

.

Y
es

, c
an

 a
da

pt
 to

th

e
tim

e
av

ai
la

bl
e

an
d

si
ze

 o
f t

he

te
am

.

Y
es

Y
es

, s
ol

ut
io

n
ca

n
be

 a
na

ly
ze

d
in

va

rio
us

 le
ve

ls
 o

f
de

ta
il

an
d

in
 g

ro
up

s
of

 v
ar

yi
ng

 s
iz

e.

S
up

po
rts

 it
er

at
iv

e
us

e

*

Y
es

, c
an

 b
e

us
ed

m

ul
tip

le
 ti

m
es

 a
nd

at

 m
ul

tip
le

 s
ta

ge
s

Y
es

, c
an

 b
e

us
ed

m

ul
tip

le
 ti

m
es

 a
nd

at

 m
ul

tip
le

 s
ta

ge
s

Y
es

, c
an

 b
e

up
da

te
d

w
he

n
ne

w

in
fo

rm
at

io
n

is

av
ai

la
bl

e.

P
os

si
bl

e
to

 re
-r

un

th
e

pr
oc

es
s

or
 p

ar
ts

of

 it
 in

 v
ar

io
us

ite

ra
tio

ns
.

P
os

si
bl

e
to

 re
-r

un

th
e

pr
oc

es
s

or
 p

ar
ts

of

 it
 in

 v
ar

io
us

ite

ra
tio

ns
.

P
os

si
bl

e
to

 re
-r

un

th
e

pr
oc

es
s

or
 p

ar
ts

of

 it
 in

 v
ar

io
us

ite

ra
tio

ns
.

P
os

si
bl

e
to

 re
-r

un

th
e

pr
oc

es
s

or
 p

ar
ts

of

 it
 in

 v
ar

io
us

ite

ra
tio

ns
.

Y
es

, m
et

ho
d

in
 it

se
l f

is
 it

er
at

iv
e.

Y
es

Y
es

, p
ro

to
ty

pe
s

ca
n

be
 b

ui
lt

at
 v

ar
io

us

st
ag

es
 a

nd
 b

e
bu

ilt

ite
ra

tiv
el

y.

Y
es

, c
an

 b
e

us
ed

m

ul
tip

le
 ti

m
es

 a
s

ne
w

 o
r m

or
e

in
fo

 is

av
ai

la
bl

e.

E
as

y
to

 le
ar

n
an

d
us

e

**

R
eq

ui
re

s
so

m
e

tra
in

in
g,

 a
nd

 a

le
ad

er
 is

 m
os

t l
ik

el
y

ne
ed

ed
.

R
eq

ui
re

s
so

m
e

tra
in

in
g,

 a
nd

 a

le
ad

er
 is

 m
os

t l
ik

el
y

ne
ed

ed
 w

he
n

us
in

g
th

e
m

et
ho

d.

Y
es

, b
ut

 re
qu

ire
s

so
m

e
ex

pe
rie

nc
e

to

be
 a

bl
e

to
 li

st
 ri

sk
s

an
d

ha
za

rd
s.

Q
ui

te
 e

as
y

to
 le

ar
n,

bu

t r
eq

ui
re

s
a

sk
ill

ed
 le

ad
er

.

Q
ui

te
 e

as
y,

 m
ay

re

qu
ire

 s
om

e
tra

in
in

g.
 E

as
y

to

us
e

w
he

n
un

de
rs

to
od

.

Y
es

Y
es

, w
he

n
un

de
rs

to
od

 th
e

m
et

ho
d

is
 e

as
y

to

us
e

N
o,

 re
qu

ire
s

su
bs

ta
nt

ia
l t

ra
in

in
g,

an

d
pa

rts
 o

f t
he

m

et
ho

d
is

 d
iff

ic
ul

t t
o

us
e

(th
re

at

m
od

el
lin

g)

Y
es

Y
es

, s
im

ila
r t

o
re

gu
la

r
de

ve
lo

pm
en

t.

Y
es

In
vo

lv
es

 te
am

w
or

k
**

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
an

 a
na

ly
ze

 c
au

se
s

of
 e

rr
or

s
an

d
th

ei
r r

es
ul

t
**

Y
es

, b
y

fo
cu

si
ng

 o
n

it
in

 s
ce

na
rio

s.
Y

es
, b

y
fo

cu
si

ng
 o

n
it

in
 s

ce
na

rio
s.

Fo
cu

s
on

ly
 o

n
po

ss
ib

le
 e

ffe
ct

s.
Y

es
A

na
ly

se
s

ca
us

es
 o

f
a

si
ng

le
 h

az
ar

d.
A

na
ly

ze
s

ef
fe

ct
s

of

a
si

ng
le

 fa
ilu

re
.

Y
es

Y
es

, t
ro

ug
h

th
re

at

m
od

el
lin

g.
Y

es
, b

y
fo

cu
si

ng
 o

n
it

N
o,

 b
ut

 c
an

 v
er

ify

po
ss

ib
le

 d
es

ig
ns

.
Y

es

D
oc

um
en

ts
 re

su
lt

*

Y
es

, r
ep

or
t

Y
es

, r
ep

or
t

Y
es

, r
is

k
an

d
ha

za
rd

 li
st

.
Y

es
, w

or
ks

he
et

Y
es

, w
or

ks
he

et
Y

es
, w

or
ks

he
et

Y
es

, w
or

ks
he

et
Y

es
, s

pe
ci

fic
at

io
ns

,
st

ra
te

gi
es

,
re

qu
ire

m
en

ts
.

Y
es

, a
 re

po
rt

ca
n

be
 w

rit
te

n.
Y

es
, a

 re
po

rt
ca

n
be

 w
rit

te
n.

Y
es

, r
ob

us
tn

es
s

m
od

el
 a

nd

w
or

ks
he

et
.

M
ak

es
 u

se
 o

f p
rio

r k
no

w
le

dg
e

*

Y
es

, l
is

ts
 o

f r
is

ks

an
d

ha
za

rd
s.

Y
es

, l
is

t o
f g

ui
de

w

or
ds

 a
nd

ch

an
ge

s.

N
o,

 n
ot

 d
ire

ct
ly

N
o,

 n
ot

 d
ire

ct
ly

Y
es

, p
os

si
bl

e
ty

pe
s

of
 c

om
po

ne
nt

fa

ilu
re

.

Y
es

, a
rc

hi
te

ct
ur

al

st
ra

te
gi

es
.

Y
es

N
ot

 d
ire

ct
ly

.
Y

es
, l

is
ts

 o
f f

ai
lu

re

m
od

es
.

*)
 T

he
 m

et
ho

d
sc

al
es

 w
ith

 n
um

be
r o

f p
eo

pl
e

in
vo

lv
ed

, b
ut

 in
vo

lv
es

 a
 n

um
be

r o
f s

te
ps

 w
hi

ch
 w

ou
ld

 re
qu

ire
 s

om
e

ef
fo

rt
to

 c
om

pl
et

e.
 E

sp
ec

ia
lly

 fo
r A

TA
M

, s
om

e
st

ep
s

m
ig

ht
 n

ee
d

to
 b

e
re

m
ov

ed
 w

he
n

lit
tle

 e
ffo

rt
sh

ou
ld

 b
e

us
ed

. A
no

th
er

 a
lte

rn
at

iv
e

is
 to

 fo
cu

s
on

 ju
st

 s
om

e
pa

rts
 o

f t
he

 a
rc

hi
te

ct
ur

e.
**

) M
et

ho
d

is
 b

ui
lt

fo
r t

ru
st

w
or

th
in

es
s.

 S
up

po
rts

 a
na

ly
zi

ng
 b

ot
h

si
ng

le
 a

nd
 m

ul
tip

le
 a

ttr
ib

ut
es

 re
la

te
d

to
 tr

us
tw

or
th

in
es

s,
 b

ut
 is

 n
ot

 v
er

y
su

ita
bl

e
fo

r o
th

er
 a

ttr
ib

ut
es

.

C
ou

ld
 b

e
di

ffi
cu

lt,
 s

ee
 *

Y
es

, k
no

w
le

dg
e

ab
ou

t b
en

ef
its

 a
nd

dr

aw
ba

ck
s

of
 a

rc
hi

te
ct

ur
al

 s
ol

ut
io

ns
 c

an

be
 u

se
d.

TRIAD

S
af

et
y

m
et

ho
ds

Jacobsonsons
and FMEA

Prototyping

Technical
review /
Inspection /
Walkthrough

M
et

ho
d

is
 d

es
ig

ne
d

fo
r s

af
et

y,
 b

ut
 c

au
se

 o
f h

az
ar

ds
 c

an
 b

e
re

la
te

d
to

 d
iff

er
en

t a
ttr

ib
ut

es
 li

ke

m
ai

nt
ai

na
bi

lit
y,

 s
af

et
y,

 p
er

fo
rm

an
ce

 o
r s

ec
ur

ity
.

M
et

ho
d

re
qu

ire
s

th
at

 th
e

de
si

gn
 is

 a
va

ila
bl

e
an

d
is

 d
es

ig
ne

d
to

 b
e

us
ed

 o
n

de
ta

ile
d

de
si

gn
, b

ut
 c

an
 a

da
pt

 to
 m

ul
tip

le
 le

ve
ls

of

 d
et

ai
l.

ATAM

SAAM

Criteria

Importance

Table 7.1: Comparison of methods

Chapter 8

Related research on
robustness

In this chapter I will briefly look at some areas of research that either focus
primarily on robustness or is of relevance to robustness. The purpose of the
chapter is to provide an overview over the broad spectrum of relevant research
being performed. Presented approaches vary too much in scope and form to
make an comparison of the methods valuable. Instead I will briefly comment
the applicability of the individual approaches.

8.1 N-version programming and robustness

Although an experiment by Knight and Leveson [45] has shown that N-version
solutions in software do not increase reliability, many approaches similar to N-
version programming can be found. N-version programming is based on cre-
ating several independent implementations of some part of a system. It could
be a module, an algorithm or the whole system. At runtime, one or more im-
plementations recieve identical input and are run in parallel. The results are
then compared, and the majority result is considered correct. Another alterna-
tive is comparing results and abort if implementations have not provided the
same result. The experiment conducted by Knight and Leveson concludes that
different implementations do not fail independently. If individual versions had
failed independently, combining multiple versions would reduce the probabil-
ity of failure drastically. The study indicates that independent versions have
similar faults, and independent version thus do not fail independently. Critics
have been raised[46], but I have not been able to find any conclusive answer to
whether the results shown by Knight and Leveson is also valid for other sys-
tems or not. Based on this it is not evident that an N-version approach alone
will result in a dramatically reduced probability for failure.

Huhns et al. [38] show various pre and post process approaches for the
usage of independent versions of algorithm implementations. Pre-processing
adds the possibility of choosing compatible versions and only executing ver-
sions that are compatible with the task at hand. The article suggests adding
agent capabilities to the algorithm. The use of agents tries to solve two issues
with the pre and post processing approaches; faults in the pre or post step

92

could give wrong results, and the adding and removal of algorithms could
be problematic. Using an agent based approach the group of agents can to-
tally or partially replace the pre and/or post process steps. The functionality
previously in the pre and/or post process step is replaced by agent collabora-
tion. Other more complex ways to use agents also illustrated by Huhns et al.
is collaboration, where individual agents can work on parts of the solution to
produce the total result.

N-version approaches using agents or not, require the development of mul-
tiple versions. This development comes with added costs. Pullum [59] shows
that experiments suggest that the cost of an N version approach is less than n
times the cost to develop a single version. Pullum also discusses other issues
with the N-version approach. Errors in common specification might influence
all versions; different versions might contain common errors and running mul-
tiple implementations might affect performance. These are just some of the
issues mentioned by Pullum. For a more complete discussion I refer to her
book.

In the light of developing more robust systems, the ability to have alterna-
tive implementations that possibly collaborate to perform tasks is promising.
If one succeeds in the development of alternative versions that fails indepen-
dently. Just the ability to be able to use an alternative version if the first one ter-
minates unexpectedly will be of great use. The basic notion of alternative ver-
sions is the foundation of fault-tolerance and redundancy. However, in fault-
tolerance and redundancy all these alternative versions do not have to provide
the same functionality. Combining these efforts into an approach that can col-
laborate, both have redundant and degraded functionality could be valuable
to robustness. This combined effort gives multiple possibilities to prevent fail-
ure if a fault should occur. The combined effort comes with a price: increased
complexity. It is an open question whether the issues that come with the added
complexity outweigh the functionality N-version programming gives or not.

8.2 Increasing robustness using self-adaption

A related approach to N-version development and agent based systems is the
notion of self-adapting systems. The main idea is that the system should be
built in such a way that it is able to monitor its own condition and possibly
being able to adapt to improve its condition at runtime [49, 56]. The main
goal of self-adaptive software can be formulated as ”the creation of technol-
ogy to enable programs to understand, monitor, and modify themselves”[49].
Multiple approaches to supporting self-adaption exist in literature. Some ap-
proaches I have found interesting are the general approaches by Oreizy et al.
[56] and Schmerl and Garlan [62]. Both these have a system level focus, where a
mapping between the architectural description and the implementation is used
actively to make changes in the architecture that is reflected in the running
implementation. Also the component centric solution presented by Shin [67]
could be an interesting approach for increasing robustness. Shin’s approach
is that individual components in a distributed system have a service part and
a healing part. The healing part monitors objects in the service part based on
notifications. If the healing layer detects an abnormality, it switches to healing
mode and notifies other components about the situation so they can reconfig-

93

ure accordingly. In healing mode the component will repair itself, test that the
repair succeeded and then move back into normal service mode. The general
idea of self-adaption is promising, but seems to be in its early stages of re-
search. Digging deep into the field is outside the scope of my work, and is left
for further work.

Systems that monitor themselves and adapt to changes in the environment
or based on usage or fault patterns gives increased awareness of own limita-
tions and capabilities. An application that is knows how much load it can stand
before performance drops below the acceptable level, and monitors current
load in order to reject requests if the load gets to high will have a predictable
behaviour. This predictability may lead to a higher robustness if the ability of
the application and the expected load is compatible.

8.3 Robust datastructures

Another approach to achieving robustness is adding robustness to data struc-
tures as described by Black et al. [9]. The idea is to create data structures that
make it possible to correct and detect errors. Traditional data structures have
little support for this. For instance, a single-linked list is impossible to repair
if a pointer to the next item gets corrupted or erased. It is also not trivial to
discover the corruption of the list. A double linked list with information about
the number of elements in the head of the list is a more robust structure. In
the paper they describe data structures by the number of ”illegal” changes the
structure is able to detect (N-detectable) and the number of changes the struc-
ture is able to correct (N-correctable). A collection of designs for data structures
is also presented, including robust versions of linked lists and b-trees. The pa-
per is from 1995 and since then the amount of memory corruption has lessened
as a result of controlled execution environments like Java Runtime and Mi-
crosoft’s Common Language Runtime where usage of raw memory pointers is
less common. The thought about including mechanisms in the structures that
allow detection of errors and possibly correction is, however, just as relevant
today.

8.4 Testing for robustness

A number of approaches for robustness testing exist. DeVale et al. [19] give
an overview of several methods and approaches. Some automatic methods
are fault injection introducing hardware and software faults; noise introduc-
tion; writing random data to memory before spawning a large number of pro-
cesses. Most of these methods suffer from lack of repeatability. Traditional test-
ing approaches could also be used, but often testing is based on specifications,
requiring that detailed robustness requirements must be included. Specifica-
tions, however, normally focus on the functionality to be provided and not on
robustness. Another important aspect according to DeVale et al. [19] is that
measures like test coverage can be misleading. These are able to verify that
error handling code is executed, but fail to discover if some code that should
have handled some erroneous situation is missing. Some tools exist that inject

94

faults and monitors the execution of the application to reveal robustness issues,
but this often requires source code which may be unavailable.

Based on the lack of a suitable method that provided repeatability and han-
dled third party components without source code, Ballista was introduced.
Ballista [19, 48] is a testing service developed for robustness testing of soft-
ware with focus on robustness to external input. It consists of a centralized
server that generates tests and a lightweight test runner that performs the tests
and communicates with the server. The test runner normally spawns new pro-
cesses to perform tests and monitors the spawned process for hangs or abnor-
mal exits. This design makes the testing service easy to port to new platforms
as much of the logic can be contained in the server part. The test runner uses
module level testing by calling functions and routines in the module with var-
ious inputs.

A typical problem with testing is the large number of possible input values.
In order to fully test a function that has one byte argument, 255 tests has to
be performed. A function with three 16-bit integer inputs and a string has an
enormous number of possible tests. Running all of them for a single function
could take years on a fast computer.

Example 8.4.1. A function taking three 16-bit integer inputs would take almost
9 years to fully test on a computer that is able to perform 1 million tests every
second.

A complete test could guarantee that a function is free from input based ro-
bustness issues, but this is not possible to do in practice. Ballista has employed
a different approach. Each function argument has a type. For each type a list
of values is created. The list could contain a combination of values that often
causes problems like maxint, minint, zero and one, and a random selection of
other values. When a function is to be tested, one can generate combinations
based on this limited list of values for each argument. For the function in Ex-
ample 8.4.1, the number of tests would be reduced from 2.8 ∗ 1014 to 8000 tests
if the list of values contains 20 items. Another alternative could have been to
use random values. Random numbers do not produce repeatable tests, making
it difficult to compare two test runs. The other issue with pure random tests
is that if you run a low number of tests, there is no guarantee that problematic
values like maxint, minint, zero and one are included in the tests.

Even the limited list of input values used by Ballista generates a huge num-
ber of possible test cases and these can take too much time to run. A suggested
approach to reducing the number of test cases even more is by doing adaptive
testing [20]. Normal static test case generation test all combinations of param-
eter values and evaluates the results afterwards, adaptive testing analyzes and
adapts the list of tests based on previous results. Single parameter values can
always cause a fault, by identifying these early in the test run one can ignore
other tests involving these values, and reduce the number of tests and effort
while maintaining an acceptable level of precision.

Ballista does not make use of specifications. The purpose is not to test if the
result is functionally correct, but to test for non-robust behaviour. Any test that
does not result in a crash or hang is a successful test. This simplification can
be done since the purpose is to test for robustness issues, and a crash or hang
is an indication of a robustness problem. The CRASH severity scale is used to
characterize the faults [48]:

95

C atastrophic is when the OS gets corrupted or reboots.

R estart is when the testing process hangs and needs to be killed.

A bort is when the testing process exits abnormally.

S ilent is when the test silently fails. This is when an error code or indication
is expected but not occur.

H indering is when the wrong error code is returned.

Ballista is not able to discover Silent or Hindering failures as this requires
semantical knowledge of the function.

In order to perform testing, Ballista requires a definition of the functions
to be tested. This definition should list the arguments and the data type for
each of the arguments should be specified. The data type is not necessarily
the physical data type; it could also be the logical data type. For instance,
the physical type could be an integer, while the logical type is a file handle
represented by an integer pointer. It is possible to make use of hierarchies of
data types to simplify implementation of new data types. The file handle type
could inherit the value list from integer and then add its own values. As long
as the testing server and client have support for the specified data types and
the testing client has support for calling the module, no further details or input
is needed.

The Ballista approach has been proven to be effective, showing failure rates
from 9.99% to 22.69% with a mean of 15.6% across 15 different POSIX based
operating systems where 233 function calls were tested [19, 48]. The porting
ability has also been demonstrated in a study where Ballista was ported to
Windows and used to test the Microsoft Win32 API on six different versions
of Windows ranging from Windows CE to Windows 2000 [66]. The tests were
done on 237 function and system calls and also include a comparison with
Linux. The study indicates that Linux and Windows NT/2000 has less catas-
trophic failures (none) than Windows 95/98/98 SE/CE and that there are large
variations in the number of abort failures across the operating systems and
function groups tested. Windows CE has a lower number of abort failures but
a higher number of complete system crashes, making it less reliable. The study
also indicated that the Windows 95/98/98 SE family of operating systems con-
tained a higher number of silent failures than Windows NT/2000.

A related study testing the robustness of MacOS applications[54] uses a dif-
ferent approach. Instead of using statically generated tests based on parameter
types and a limited set of values, it uses random inputs in the user interface
(unstructured black box random testing). The method classifies both applica-
tion crashes and hangs as failures. Both graphical and command line programs
were tested. The report is the fourth in a series of test reports. It all started in
1990 with tests of more than 80 command line utilities on six versions of UNIX
where a failure rate of 25%-33% was found. A follow-up study was performed
in 1995 covering more utilities and operating systems. Graphical applications
running under the X-Window system and some standard library interfaces was
also included. The study illustrated a failure rate of 15-43% on the command
line utilities and 26% on the GUI applications. The open source tools, how-
ever, had a lower failure rate; GNU utilities 6%; Linux utilities 9%. In 2005 a

96

study on Windows NT/2000 was performed and resulted in crashes in 45% of
the applications tested. In the MacOS study, 135 command line utilities and 30
GUI applications were tested. Failures were found in 7% of the command line
utilities and 73% of the GUI applications.

For applications with available source code, crashes were analyzed and a
classification of the types of causes were created (not all categories had failures
in the MacOS study).

Failure to check return values - The code assumes that calls cannot fail and
does not check return values. It can also be that it is too inconvenient or
problematic to handle a failure.

Pointers/arrays - The code use pointers or arrays without having proper bounds
and validity checks.

Signed characters - The code uses the numeric form of characters and fails to
take into account sign bits and other issues when converting to and from
character notation.

Race conditions - The code assumes a sequential execution and fails to handle
race conditions that arise when that is not the case.

Input functions - Input from the user is placed into fixed size buffers or vari-
ables of specific data types without proper checks of the data.

Bad error handling - Error handling is present, but fails to handle all situa-
tions properly.

Interaction effects - The program has some expectation on the input, and feeds
it to an interpreter like a format command or SQL query. If the input con-
tains control sequences this might cause errors.

Sub processes - If the application delegates work to another application, it
does not help that the app itself can handle the input if the delegated
application fails due to the input.

Unit testing is suggested as a testing method for verifying COTS compo-
nents before using them in a software solution [73]. The Mono implementation
of the .Net framework was used to illustrate that a basic suite of tests could find
faults in a widely used part of a framework. The Convert class was chosen as
the target for testing, and a set of unit tests were written to test it. A total of
25 faults were discovered in the class, ranging from incorrect results to excep-
tions being thrown. The use of unit tests makes it possible to discover silent
failures and incorrect results that testing frameworks like Ballista are not able
to discover. On the negative side, the study wrote 2734 lines of test code for a
class containing 2463 lines of code, illustrating that writing unit tests requires
a substantial effort. Unit tests, however, give the ability to re-run tests without
much effort, and also provides a way to test APIs and functionality at a low
level. Thus it provides a way to catch errors early in the development cycle.

Three approaches for robustness testing have been presented, and they all
have their strengths and weaknesses. Ballista is currently focused on testing
single functions and methods, which makes it less suitable for solutions where
functions or methods depend on each other. Ballista is able to handle this to

97

some extent, as demonstrated by the use of a data type for file pointers. If Bal-
lista were to be used for testing an object oriented solution, however, it would
most likely not be able to cover enough of the possible scenarios in its cur-
rent form. Objects often depend on the sequence of calls to their methods since
methods and properties of objects often modify their internal state. Just adding
the combination and sequences of methods, functions and properties could be
a solution, but the number of tests would explode. Unit tests handle this as
the tests are manually generated. The type of random testing used for testing
Windows, MacOS and Unix described above, does not mind if the solution is
object oriented or not as it exercises the external interface of the application. If
random testing were to be used for API level testing, one would have to take
into account the same issues with state as Ballista does. As development lan-
guages and runtime environments have developed, more metadata has been
added. Environments like .Net and Java contain information about classes,
their methods and arguments. This makes approaches like Ballista easier to
use since the list of methods and their arguments can be generated by the use
of reflection1. A shortcoming of both random testing and Ballista is how they
check if a test has succeeded or not. By only looking for hangs and crashes
they are not able to discover silent errors, and they are not able to discover if
an exception or error code returned is the correct one based on the input. This
makes testing methods like these only helpful in determining if the application
has non-robust behaviour, not if it is correct with regards to robustness.

8.5 Wrapping for robustness

One of the goals of Ballista was to use the test results to generate or create
a robustness wrapper for the API [48]. The efficiency of hardening through
wrapping is demonstrated on three systems by members of the Ballista team
[18]. In the same paper it is also demonstrated that such checks can be added
without a high performance drop through the use of a cache for the argument
validity checks. An approach to generating wrappers for improved robustness
of Windows software is demonstrated by Ghosh et al. [36]. By the injection of
code between the calling code and the library function, the approach gives the
ability to modify the return values. This can be used to either test if an ap-
plication handles the exceptions and return values the function may return, or
protecting the application against exceptions or return values the application
does not handle. The approach does not require any modification to the origi-
nal application as the injection of the custom code happens entirely at runtime.

An automatic approach that uses a similar approach for generating wrap-
pers for C libraries called HEALERS is described by Fetzer and Xiao [30]. The
approach does not modify the library itself, but generates a wrapper for the
library based on adaptive fault-injection experiments. By placing the gener-
ated wrapper so that it has a greater resolvability than the original library, the
wrapper will be called instead of the library. The fault injection focuses on
determining robust values for the different arguments of a function, and uses

1Reflection is a functionality of the programming language and runtime platform that lets an
application introspect itself. It allows for the program to list the classes it contains, the methods
each class contains and so on. It also allows manipulation of itself, like calling its own methods
dynamically.

98

approaches like hardware memory protection and adaptive testing to accom-
plish this. Instead of requiring a list of functions with their definition as input
like Ballista, mining of the shared library, manual pages and header files is
used to generate the list of functions to test. After testing the list of functions
only the functions that have an unsafe behaviour (produce a crash or hangs) is
considered for wrapping. The wrappers can be generated directly based on the
adaptive testing, or some manual modifications to the generated function dec-
larations can be made. Wrappers work by testing arguments and monitoring
the environment so any call with a set of arguments that normally will result
in a crash returns a proper error code instead of calling the library function.
By only wrapping functions with unsafe behaviour, and providing multiple
types of wrappers to be generated, performance overhead can be kept at an
acceptable level.

Safety facades are another approach to wrapping. Siedersleben [68] first
introduced the method, and Tellefsen [72] has investigated it in more detail.
The main idea is that a safety facade is placed in front of components, and acts
as the interface for callers. Implementation of the safety facade can be replaced
based on demands for error handling placed upon the facade. It is possible
to apply safety facades for existing components, or design components so that
they are aware of the facade. Building the components so they are aware of the
safety facade makes it possible for the component to interact with the facade. If
a component is not aware of the facade, the facade will have to do all the work.

The main idea of safety facades is that the facade can centralize the error
handling and exception logic. Further, the safety facade should return errors
through return parameters on functions or through a predefined set of abstract
exceptions. The idea is that either the function call returns and indicates that
everything was ok, or it returns an error (either through return arguments, or
an exception). If an error is returned, it means that the original call failed,
and all attempts to solve the failure failed, and an attempt to cleanup any side
effects has been performed. A call with a normal return must not always run
without problems inside the facade, but this is ok as long as the facade has been
able to resolve the error reported. One example of such an error resolvement is
that a transaction is started, a call results in a transient failure, and a rollback is
performed before the whole operation is retried and succeeds.

Safety facades can reduce the amount of error handling code required by
component users, and provide a structured way to check the limited set of error
situations. The compartment approach I will present in Section 8.6 is based on
a similar concept, but is more a design approach than safety facades.

Limiting the number of possible errors to handle, reducing amount of er-
ror handling code for component usage, and defining errors as a part of the
component interface would simplify error handling and force all usage of the
component to adhere to the same error handling logic. This would be positive
for robustness, as facades can be reused and built upon each other. Further,
simplifying error handling code spread throughout the application reduces the
chance for errors in the error handling logic.

99

8.6 Exception handling

Although solving some problems, exception handling is not a perfect cure.
Tellefsen [72] investigates issues with exception handling in detail. Interested
readers are directed to Tellefsen’s thesis for details. I will just list some issues
for illustrative purposes here:

• Exceptions are performance intensive, using them for control flow result
in suboptimal performance.

• Empty catch clauses prevent exceptions from being raised up the call
stack, but might allow the application to continue execution even when
the exception has caused an invalid state.

• Too generic catch clauses might catch more exceptions than the code in
the catch clause is built to handle.

• Callers of a method have to take into account a wide variety of exceptions
that could propagate from a method far down the call chain.

• Incorrect re-throw of exceptions cause that information from the initial
exception to be lost.

• Exceptions might disclose internal details through stack and message in-
formation to a user2.

• Exceptions add an additional layer of possible flow of control.

Exceptions are also relevant from an architectural point of view, despite the
fact that they are code level constructs. A part of a system that communicates
with another part has to handle exceptions in some way. For direct calls be-
tween modules created using the same language, this is handled automatically.
Techniques used for RPC3 calls, however, might not handle it automatically.
Automatically handled or not is mainly a technical aspect, and transferring
this information through return types or arguments is one possible approach.

The interesting part, however, is twofold. First, the list of possible excep-
tions that could be returned by a method call into a different module could
be quite long. Next, the total exception flow in an application can get compli-
cated. This is illustrated by Figure 8.1 that shows possible exception flow in an
application at the class level for a single exception type.

In Section 8.5, I presented safety facades that reduces the number of excep-
tions crossing the safety facade boundary. A different approach are software
compartments, first presented for ADA by Litke [51] and later applied on a
Java program by Robillard and Murphy [60]. The idea is to divide the applica-
tion into compartments during system design. For each compartment4 of the
application, a list of exceptions that can be raised to users of the compartment
should be defined. These exceptions should be meaningful to the user of the
compartment, and be at the same level of abstraction as the compartment itself.

2An exception that contain sensitive information like e.g. a database connection string, or part
of a concatenated sql statement might give a malicious user enough info to penetrate the system

3remote procedure call
4the same technique could just as well be used at a component or element level

100

0

41

1

42

2

43

3

44

4

45

5

46

6

47

7

48

8

49

9

50

10

51

11

52

12

53

13

54

14

5515

56

16

57

17

58

18 59

19

60

20

61

21

62

22

63

23

64

24

65

25

66

26

67

27 28

29

30

31

32

33

34

35

36 37

38

39

40

Figure 8.1: Exception flow for one exception type from Robillard and Murphy
[60]

The benefit is that users of a compartment have a small defined list of ex-
ceptions that they should handle. During the design stage this forces designers
to think about possible exceptions that can be reported, and include them as a
part of the compartment interface description. To illustrate the idea, think of a
component that is used to draw graphs. If the graph component would raise
ArrayOutOfBounds or IOException this would be impossible for the caller to
understand or handle. Designing the component to raise InvalidDataExeption
or InvalidGraphType exceptions instead would make the exceptions possible
to handle and understand for the caller, and reduce the number of possible
exceptions being raised by the component.

Robillard and Murphy [60] have used the technique on three existing ap-
plications, and managed to simplify the exception flow. The same technique
may also be used at the design stage of the application development. Simpli-
fying the exception structure could lead to simpler exception handling logic,
and this could result in less chances for robustness issues to be present in ex-
ception handling code. Further, having a list of relevant exceptions as a part of
interface descriptions help developers write relevant exception handling code.
Informing the user as a result of a InvalidGraphType is a logical choice, while
catching a ArrayOutOfBounds when calling a method to draw a graph is not
obvious.

101

Chapter 9

Observations

Before discussing the current methods further, it is valuable to recap some of
the foundations for my study of architectural design and analysis methods.

As discussed in Chapter 6, the interview results clearly indicate that robust-
ness is a wide subject, including existing areas of research like fault-tolerance,
maintainability, reliability, security and availability. The definition of robust-
ness and the suggestions on how to achieve a robust solution presented in
Chapter 5 vary between the interviewees, but none of them has a narrow def-
inition. Many of the interviewees mentioned that the degree of robustness
needed varies between software products, and different customers. This sug-
gests that a method for developing robust applications has to be adaptable and
useful for a wide range of applications. Not only does it have to be adaptable
to cover the parts of robustness relevant for the application being developed,
but the method also has to integrate well into an existing development process.
Further, it has to adapt to the effort the organization wants to use on robust-
ness and the size of the team. More important is that a method should be easy
to use. A complex method requires substantial training to master and because
of this it is harder to adapt in industry. Personal experience from the software
development industry indicates that methods that are easy to learn and use,
and do not require substantial effort, have a higher probability of being used
than methods requiring more time, training, or effort.

Looking through the list of what contributes to the creation of a robust soft-
ware solution in Section 5.5 reveals that the number of suggestions are high
and vary from implementation details to process guidelines. This makes it dif-
ficult to find a method that fulfils all the suggestions. Teamwork, focus on
robustness, designing for robustness, design analysis, and gaining experience
through prototyping are suggestions mentioned by most of the interviewees,
and has been the main areas of focus in the evaluation of the architectural de-
sign and analysis methods in Chapter 7. Based on the set of criteria presented
in Chapter 7.1 I evaluated the design and analysis methods, and concluded
that none of the methods fulfilled all the criteria.

This chapter will discuss some of the strengths and weaknesses of the meth-
ods presented in Chapter 7 further. I will then suggest a method that combines
some of the methods from Chapter 7.

102

9.1 Current methods

During the literature analysis, several analysis and design methods have been
considered. An observation is that robustness is often mentioned as a quality
attribute that can be analyzed using a method, but analyzing robustness is not
used as an example unless the method is solely made for robustness analysis.
It seems like using security, modifiability, performance and the other well es-
tablished quality attributes is easier and more popular. This makes it difficult
to see how the method performs when applied to robustness.

The method based on FMEA and Jacobson’s robustness analysis presented
in Section 7.5 focuses on control objects and does a safety analysis on these con-
trol objects to reveal robustness issues. This method is based on the assumption
that relevant issues always are initiated by an interaction with the system. The
definition of robustness presented in Chapter 6 also includes internal failures,
and they do not always surface at the interaction level but might be incorrectly
handled by architectural mechanisms, resulting in corrupt state or behaviour
of the system. The difference in the definition of robustness makes the Jacob-
son’s analysis less useful as interactions at a different level of abstraction also
becomes interesting. The combination of Jacobson’s and the FMEA analysis of
control objects is still useful for the class of robustness failures that are initiated
as a result of interaction with the system, but does not easily cover the whole
broad definition of robustness given by the interviewees. Based on the limited
presentation of the method, it seems like it would also scale easily with the size
of the group and is easy to use.

In Chapter 7 a variety of architectural design and analysis methods were
presented. Some, are mere categorizations of methods, others like ATAM are
full analysis processes. Agile and iterative methods are popular these days,
and TRIAD is based on an iterative approach starting with a strategy that is
transformed to an implementable architecture. The method is designed for
designing and architecting systems with respect to threat modelling, and has
high focus on traceability between objectives, requirements and the concep-
tual architecture. The iterative design of a strategy followed by a technical
refinement makes it possible to do early analysis on the design and do adjust-
ments and choose alternative solutions before doing a substantial investment
in a particular solution. Threat dynamics analysis is rather complex and most
likely works best for modelling threats and modeling the ability of techniques
to reduce threats. Robustness is more about either handling a case or not, and
does not have to cope with an ever changing set of threats. TRIAD in its cur-
rent form is not directly applicable to design robust software, but the use of
a strategy combined with an iterative refinement and structured evaluation is
relevant to robustness.

SAAM and ATAM are analysis techniques designed to evaluate quality at-
tributes like robustness. Analysis of robustness is not used as an example in
neither of the methods. SAAM is highly focused on the interaction between
scenarios in the architecture and how architectural parts contribute to the func-
tionality of the application. This interaction is used to indicate scenarios that
require modification of many parts, and parts that require modification from
many independent scenarios. This kind of analysis can help participants un-
derstand how the architecture works and help spot architectural issues, and
scenarios focusing on robustness could be used to further improve this pro-

103

cess. The use of scenarios is participant friendly because it is easy to under-
stand and feels like a natural way to describe actions and modifications to the
system. ATAM is based on SAAM and represents a more complete process that
could also be used as an audit. Doing a complete ATAM analysis is quite time
and resource consuming due to the combination of a analysis and a testing
phase. Focus is on defining the main goals of the systems, form scenarios that
represent these goals, and then to identify how the architectural choices inter-
act and form risks, trade-offs and sensitivity points. For a full evaluation of the
architecture ATAM stands out as a highly usable method. But to analyze only
the robustness of a system, the elicitation phase is not optimal to list robust-
ness scenarios, and the whole process can be time consuming. General ideas
presented by the method can be used, and by making some minor adjustments
to the elicitation process optimizing it to define relevant scenarios for robust-
ness, the process could be used to analyze all required quality attributes or just
robustness.

An alternative to scenario based methods like SAAM and ATAM are tra-
ditional safety methods like the methods described in Section 7.4. FTA anal-
ysis can be used to determine possible causes and determine probability for
a specific situation that might arise, and Event Tree Analysis helps analyzing
consequences of a possible initiating event. Both can be useful in determining
causes and results of robustness issues that can lead to unfortunate situations
in a program system. Robustness and safety share the same challenges, but
robustness issues do not always result in hazardous situations that safety anal-
ysis is designed to detect and handle. If slightly modified to consider issues
due to robustness issues, most safety methods can be used for robustness anal-
ysis. The degree of information needed to perform the analysis varies with the
methods. Methods like PHA and HAZOP are better suited in early design than
FTA and ETA that requires more explicit knowledge about the system’s design.
The goal is to do analysis based on the current design, and this partly rules out
PHA as it is more based on known hazards and prior lists mainly related to
the type of system rather than using the design actively. FTA is better for an-
alyzing a hazard than to analyze which hazards the system contains. ETA’s
main strength is to determine potential hazards an initiating event can lead to,
and this can be helpful to determine possible effects of a robustness issue in a
component or a part of the system. HAZOP uses properties of system compo-
nents in combination with guide words to determine how a system responds
to deviations. This can be used for analyzing individual components and com-
ponent interactions in a software architecture. FMEA has been suggested for
use in software robustness analysis already and is used in a quite similar way
as HAZOP can be used. For each component in the system, lists of possible
failure modes are analyzed to determine cause and effect. Failure modes can
be triggered by robustness issues, and is these issues that it is interesting to
analyze in the software architecture. Are the failure modes gracefully handled,
or do unintended side effects occur?

9.2 Proposed method

I suggest a method based on TRIAD (presented in Section 7.6) and (ATAM pre-
sented in Section 7.3.3). The method consists of two parts that can be used

104

together or independently; a design process that helps in the design of a robust
software architecture, and an evaluation process that helps analyzing an archi-
tecture for robustness issues. The design process does resemble a typical itera-
tive process, while the analysis process is more specialized toward discovering
robustness related issues in architecture. It is a goal of the method to be so flex-
ible that it can be used at several levels of detail and can be integrated into an
organization’s development process, or used as a separate tool when needed.

The design process is an iterative process starting with a strategy or vision
that is transformed into a realizable architecture that can be evaluated. This
sequence of steps is repeated in an iterative manner adapting to the analysis
results from the previous iterations. The first iterations should focus mainly
on a strategy consisting of a rough sketch of the system architecture. As the
strategy matures, focus shifts to transforming the strategy into a realizable ar-
chitectural design.

The evaluation process is a simplified version of ATAM adapted to analysing
a system’s robustness. It consists of a presentation of the architectural choices
that contributes to the system’s robustness, and an analysis of these choices
with respect to their contribution to the overall robustness of the system. Anal-
ysis is done by analyzing a set of ”what-if” scenarios inspired by safety analysis
on the proposed architecture to reveal shortcomings or issues.

A prerequisite for the method is that the system should have well defined
requirements that describe expected system behaviour in erroneous and ex-
treme situations. Requirements should cover the expected external behaviour
of the system, which includes both external interfaces and user interfaces. Com-
mon questions answered by these requirements are:

• Should the system stop or terminate on a fault?

• Should the system notify the user about faults?

• Should the user be presented with an option to retry a failed operation?

• If the system is overloaded, is a degraded performance acceptable, or
should the operation be rejected?

• Are there any situations where a rejected operation is not acceptable?

• Which level of downtime is accepted if an error should occur?

• Should anyone else than the end-user be notified about a fault?

This prerequisite makes the definition of the architectural strategy slightly
different from TRIAD. In TRIAD the strategy consists of the combination of
the survivability requirements and the conceptual architecture. The suggested
method requires that requirements already exist and the task of defining the
strategy only needs to consider the conceptual architecture or vision. It is ex-
pected that during the creation of the conceptual architecture requirements
might need to be refined. This means that the distinction between the archi-
tectural strategy and conceptual architecture is kept and that the main focus is
on design of the conceptual architecture.

Design and analysis of the architecture need to have these requirements in
order to build the architecture in conformance with the expected behaviour.

105

The requirements form a lower boundary of accepted behaviour, and the de-
signers can choose to build an architecture that performs better than the re-
quirements. It expected that requirements need to be added or refined as the
design process progresses, and questions about expected behaviour are raised.

The steps of the design method are:

Step 1: Define an architectural strategy for the system. In the early stages, ar-
chitectural approaches to the solution at hand should be described with-
out much thought on the realization issues. Typical artefacts created
at this stage are rough sketches of the architecture, including the main
strategies of the architectural solution.

Step 2: Design the architecture of the system. During this stage, the sketches
and strategies are transformed into realizable designs of the architecture.
This includes making the changes needed to make the ideas possible to
implement, and making a more detailed design.

Step 3: Prototype parts of the architecture. While designing architecture, cer-
tain parts are more uncertain than others. It can be an unknown tech-
nology, unfamiliar problems or unknown properties of an architectural
design. Trying these out is helpful, as it helps evaluating solutions and
test concepts.

Step 4: Perform a robustness evaluation. The architectural proposal needs to
be evaluated. This step uses an adapted ATAM analysis to check the ar-
chitecture for robustness related issues, which is done through analyzing
a set of what-if scenarios.

Architectural evaluation (step 4) is further refined into:

Step 4.1: Present the architecture. The architecture should be presented with
focus on describing architectural solutions handling robustness.

Step 4.2: Define what-if scenarios. A set of what-if / failure scenarios should
be created. The purpose of the scenarios is to determine if the suggested
architecture responds correctly to erroneous and extreme situations.

Step 4.3: Test scenarios on the architecture. Each of the scenarios should be
checked against the architecture. Any scenario which is not handled or
handled in an unsatisfactory way should be noted for evaluation and cor-
rection.

Step 4.4: Summarize the results. A summarized list of the analyzed scenarios
should be created where each scenario should be classified as fully han-
dled, partially handled or not handled. Details from the analysis of sce-
narions that are not handled or just partially handled should be included
on the list.

The summarized list of results and discussions during the analysis process
works as input to the next design iteration. A discussion should take place after
the analysis is complete, to decide whether a new iteration is needed or not.

106

This could be to determine whether the architectural strategy is good enough to
proceed with designing the architecture, or if the architectural design is ready
for implementation.

9.2.1 The design approach

The suggested design approach is based on the TRIAD method presented in
Section 7.6. Instead of focusing on system survivability and its threats; focus is
on the design of robust software architectures. An explicit step to create proto-
types and do explicit trials of the architecture is added. Instead of using threat
dynamics modelling to evaluate the system’s response to threats, I suggest the
use of a simple ATAM like evaluation to evaluate how the system behaves in
various situations. An overview of the suggested design process can be seen
in Figure 9.1.

Architectural

Strategy

Architectural

Design

Prototyping

Architectural

Analysis

Does the current design
adequately fulfil the
(robustness) requirements?

Figure 9.1: Proposed design process

During the design phase, it is important not to over-architect the solution,
adding more flexibility or functionality than needed. One should find a balance
between complexity and simplicity that handles the robustness requirements.
It is important to remember that it is the whole system that should be robust,
not necessarily all its parts. For instance, there is no reason to split a web ap-
plication into a web front-end that calls a set of web services if there only is
one application using the exposed web service functionality, and no concrete
plans to offer the services to other applications exists. By adding this extra
complexity, the exposed surface is larger, resulting in more complex and ex-
pensive design, analysis and testing. Developing the core functionality as a set
of libraries makes it easy to expose a web service when needed, and keeps core
logic clearly separated from GUI logic. Just adding flexibility because it is easy,
without thinking about the added complexity and possibility for robustness
issues, could result in a suboptimal architecture with regards to robustness.
Adding measures to cope with robustness to the architecture is not always the
solution. It might be that the gain in robustness does not justify the added
complexity, decrease in maintainability and increase in development costs.

107

Step 1: Define an architectural strategy for the system

By starting with a conceptual architecture defined by an architectural strategy
or vision, communicating the architecture can be done at an early stage. By
communicating and analyzing the proposed architecture early, it is possible to
do major changes and evaluate alternative solutions before large investments
in the architecture have been made. Another benefit is that by working at the
conceptual level, it is possible to ignore the technical details and limitations
until a clear concept has been defined.

A conceptual architecture might define that the system should be distributed
and rely on existing open standards for client-server communication. It might
also suggest that messages should be encoded as XML according to a schema,
and that a standard load-balancing approach should be employed. Details like
the choice of communication standard, schema layout and choice of library for
XML handling are irrelevant at the conceptual level.

The conceptual architecture should make it possible to draw and discuss
the architecture at a level that makes it possible to discuss the main structures
of the architecture with regards to robustness. Choice of application layout,
distribution, infrastructure, forms of communication, architectural style and
suggested implementation language and environment should be the main fo-
cus of the conceptual architecture. These choices lay the foundation for which
robustness issues that have relevance to the proposed architecture. For in-
stance, a sequential approach has benefits and drawbacks that are different
from a asynchronous approach when it comes to robustness.

Important questions the architectural strategy should answer are:

• Which forms of load-balancing should be included?

• Does the application need any form of redundancy?

• Can self-monitoring help making the application more robust?

• What is the strategy for error-handling?

• Which external services does the application depend on?

• Can the architecture make use of asynchronous operations?

• How should the architecture handle transactional operations?

Separating the work on the conceptual architecture in this step from the ac-
tual design of the architecture can be difficult. The important difference is that
the conceptual architecture does not have to handle all the details and techni-
cal realization details. As work progresses and the design has been refined in
several iterations, it can be difficult to decide which details should be in the
conceptual architecture and what should only be described in the architectural
design. As a rule of thumb, all non major details and technical details should
be in the architectural design, and the conceptual architecture should be a high
level picture of the architecture. It is important to update the conceptual ar-
chitecture when changes are made in the architectural design due to technical

108

limitations or realization, and at the same time it is important that the concep-
tual architecture contains enough details to be useful. A conceptual architec-
ture that only describes that ”the architecture is a client-server architecture that
accepts multiple clients” is less useful.

Step 2: Design the architecture of the system

The main purpose of this step is to transform the conceptual architecture into
an implementable solution. This includes deciding technical aspects and adding
details to the design. Several approaches are possible; sometimes it might be
important to add some overall detail to the conceptual architecture. In other
cases it might be better to start by only detailing parts of the architecture.

By detailing parts of the architecture, the most uncertain parts can be de-
signed early to reveal issues or make it possible to prototype parts of the sys-
tem. Adding some more details and formalizing the whole architecture can
make it easier to discuss and communicate the design. Facilitating discussion,
increasing the understanding of the architecture and reducing risk should be
the main drivers of choosing which parts to start with. Detailing the whole
architecture when it is likely that the overall concept cannot fulfil the architec-
tural goals of the system is most likely a waste of time.

Important elements the architectural design should include are:

• Determine how the application should handle errors.

• Determine which commonly used functions the architecture should sup-
port.

• Determine where and how input should be validated.

• How can repeatable tasks be supported or automated?

• Define transactional boundaries.

• Which communication protocols should be used.

• How should external components and dependencies be encapsulated.

• Definition of the data model.

Step 3: Prototype risky parts of the architecture

During the work on the conceptual architecture and architectural design, sev-
eral areas that need investigation might be revealed. Possible issues can be
uncertainty about how a design performs, how a library or other external de-
pendency behaves in various situations, or if a particular design approach is
implementable. Prototyping is an alternative to doing design based investiga-
tion, and simple proof-of-concept prototypes or partial implementations can be
developed. Developing prototypes as a central part of the design process can
provide improved understanding of the problems at hand, help reduce risks,
provide better understanding of how external solutions work, and be used to
test out new ideas.

109

By using prototyping in the design process, the number of surprises during
implementation and testing of the solution can be reduced. It is much easier to
make corrections based on discoveries in a prototype during the early design
phases than to do the same discovery during the final testing phase.

Another important use of prototypes can be to train developers in the frame-
work that should be used or create small sample applications that can be used
as reference when implementing the real application.

Step 4: Perform a robustness evaluation

The main purpose of this step is to evaluate the current architecture or architec-
tural strategy to determine how robust it is to various types of environmental
influences and failures. The output of the analysis is used to determine if cor-
rections, investigations or more detailed design are needed.

9.2.2 The analysis process in detail

Analysis can be performed either as a strictly sequential process, an iterative
process or somewhere in between. It is recommended to let the architect per-
form the initial architectural presentation before starting the scenario elicita-
tion. The scenario elicitation and analysis, however, would benefit from an
iterative process, as analysis can promote discussion and stimulate discovery
of new scenarios. An overview of the suggested analysis process can be seen
in Figure 9.2.

Architecture

Presentation

Define

Scenarios

Analyse
Scenarios

Summarize

Analysis

Figure 9.2: Proposed analysis process

Compared to ATAM, step 4.1 resembles step 3 & 4, 4.2 resembles 5 & 7, and
4.3 resembles step 6 & 8. The presentation steps 3 & 4 have been combined into
a single step. Further, the analysis and testing stage of ATAM have been com-
bined to form one stage that combines a structured process with brainstorming.
The search for robustness related issues should benefit from this combined ap-
proach, as robustness is more related to testing for a wide selection of scenarios
and understanding the architectural choices with respect to robust behaviour
than adhering to business goals that is the focus of the structured utility-tree
approach used by ATAM.

110

Step 4.1: Present the architecture

The architecture should be presented, and the architectural choices contribut-
ing to the system’s robustness should be highlighted. The expected behaviour
of the system in erroneous situations should also be presented. To what extent
the architecture should be presented is determined by the prior knowledge the
participants have about the solution. There is no need to do a extensive presen-
tation of the architecture if all participants are familiar with it. The same ap-
plies for subsequent analysis as the design progresses; it is important to tell the
participants about the changes in the current version, not spend time on pre-
senting the whole architecture. At the end of this step all participants should
have a firm understanding of the architecture or architectural strategy so they
can suggest relevant scenarios to test on the architecture.

It is suggested to have figures and illustrations describing the architecture
as they aid the understanding of the architecture and are helpful when partic-
ipants should describe scenarios and later when the scenarios are going to be
analyzed.

Step 4.2: Define what-if scenarios

As already stated, robustness is a wide subject, and as a consequence I sug-
gest using a ”what-if approach” to elicit scenarios. The process can take many
forms, but a structured approach inspired by FMEA combined with an open
brainstorm is my choice.

The reasoning behind the choice is twofold. First, going through the system
in an ordered manner helps make sure that all the individual parts have been
covered by analysis. Also errors occurring in seemingly unimportant compo-
nents can cause robustness issues if not handled properly. Next, a brainstorm
approach does not limit the creativity of the participants. Ideas from one par-
ticipant could also trigger others to think of other issues. The downside of
using a brainstorm approach is that it requires creativity from the participants.
Using a list of scenario categories can, however, help this, but should be used
with care. A list could limit the creativity of the participants as they might not
think of types of scenarios not represented in the list.

First, the system as a whole should be investigated, the participants here
listspossible issues the system can encounter. Typical examples are high num-
ber of requests, harmful input like injection attacks or environmental influ-
ences like power failure or hardware failures. The purpose of the overall sys-
tem analysis is to cover scenarios that are hard to relate to a single component
or a set of components. Next, the individual components of the architecture
should be subject to a similar analysis. Samples of issues are inability to com-
municate with other components, internal failure in the component itself, call
to a component results in a failure and erroneous input to component. A list of
sample scenarios is shown in Table 9.1. All the architectural components do not
have to be included, but all central components should be covered. It might be
that the list of components has to be expanded based on how the architecture
under review performs to determine the extent of some issue.

During the structured elicitation, all participants should be allowed to sug-
gest scenarios that are not directly related to a single component or the system
as a whole. It is important that all scenarios are considered, it is better to reject

111

Part Scenario
Overall The database server crashes
Overall A user is registering a new order and during the

registration, communication with the server is lost
Overall The system experiences a higher concurrent load

than the database is configured to accept
Overall Due to a power failure, the server loses

power immediately
Overall User creates a new person with a ’ character
Database The disk volume runs out of available space
Database The database query contains a syntax error
Component X Invalid input is provided by component Y
Component Z An internal failure occurs and is

broadcasted to the calling component
Secondary Node Communication with the primary node is

suddenly lost, and now receives a request from a client
TransactionValidator The transaction in the queue contains invalid XML
WebService The specified session token is invalid

Table 9.1: List of sample scenarios

a scenario during the analysis phase if it turns out to be irrelevant, duplicate,
or not related to robustness than to be negative about the participants’ sugges-
tions. One irrelevant scenario could easily trigger another participant to think
of a new related scenario.

Lists of scenarios from previous analyses can be used to facilitate discus-
sions, check that the current list covers all relevant aspects, or replace the elic-
itation step completely. It is important not to start by presenting such a list to
the participants, as this might limit the types of faults the participants present
scenarios for.

To help the participants, a categorization of scenario types can be provided,
an example of such a categorization can be found in Table 9.2. It should, how-
ever, as already mentioned be used with care.

Relation to existing methods

Tekinerdogan et al. [71] defines failure scenarios based on FMEA, and describe a
methodology using a fault domain model for scenario elicitation. The sugges-
tion is to use a general fault domain model like the model defined by Avizienis
et al. [5] (Figure 9.3 shows an updated version of the model that resembles
the figure used by Tekinerdogan et al. [71]) to analyze possible failure modes
for individual components in an architecture. HAZOP (see Section 7.4.2) has
a similar approach that combines a set of guide words with properties of the
system to be analyzed. The suggested approach above has direct relations to
both of these approaches, but has a wider focus area than failure scenarios and
is more targeted than the general use of guide words used by HAZOP.

112

Type Category
Overall Loss of service
Overall Invalid input
Overall High load
Overall Hardware fault
Overall Malicious input
Overall Data loss
Component Nonconforming design
Component Lost communication
Component Transient failure occurred during delegation
Component Internal fault
Component Delegation failure
Component Invalid result returned from delegation
Component Invalid input
Component Invalid state

Table 9.2: Sample of possible scenario categories.

Figure 9.3: Fault domain model defined by Laprie and Randell [50].

113

Step 4.3: Test scenarios on the architecture

For individual what-if scenarios, the architect should present what happens,
and demonstrate how the robustness aspects of the architecture are able to cope
with the situation. Preferably, it should be demonstrated on a model of the
proposed architecture. For issues involving implementation or detailed design,
the architect should describe how the development process, guidelines, and
tools make sure that implementation and detailed design are not violating the
requirements set forth by the architecture.

A scenario could be only partially handled, handled wrong, or not handled
at all by the proposed architecture. This should be noted together with any
suggestions to alternative architectural solutions or improvements to the cur-
rent architecture that could resolve the issue. The same should be the case with
any scenarios or issues where it is not clear how the architecture will react. For
a scenario that is handled, it is not obligatory to describe how the issue is han-
dled, but a short comment about how the scenario is handled is recommended.

Uncertainties should be further analyzed and are candidates for prototyp-
ing.

Step 4.4: Summarize results

The results from the analysis should be summarized. Based on the results,
a new iteration can be initiated if the current proposal has issues, or further
investigations are needed. A possible template for such a summary is shown
in Table 9.3

9.2.3 Main benefits of the method

The main goal was to define a scalable and easy to use method for designing
and evaluating software architectures with respect to robustness. An illustra-
tion of the combined design and analysis process can be seen in Figure 9.4. The
suggested method should be usable both for a small development team con-
sisting of a couple of persons, and be a valuable tool for larger teams. Steps
involved should be easy to understand and perform, and should integrate eas-
ily into existing development processes like RUP, Scrum and others. The use
of iterative design should make it possible to start with a simple vision and
transform it safely into a robust software architecture that forms a basis for the
implementation of a software application providing robust services to its users.

Prototyping aids learning and helps reduce risks and explore unknown ter-
ritory. By using a simplified version of ATAM, a well studied and working
analysis tool based on scenarios, the analysis part should be helpful in evaluat-
ing how robust the proposed architecture is. The combination of a structured
approach that considers the system as a whole and all its components, and
the open brainstorming for each part should facilitate the discovery of relevant
scenarios that need to be tested on the architecture.

The method remains to be tested on a real software project, and the effect
would most likely not be breathtaking compared to a similar project that does
not use the method. By using the method it will give a structured focus on
robustness in the software architecture, and the focus alone should give a pos-
itive effect on the robustness. Based on findings and scenarios developed in

114

Pa
rt

Sc
en

ar
io

St
at

us
Pr

ob
le

m
de

sc
ri

pt
io

n
Sy

st
em

Ex
tr

em
e

lo
ad

H
an

dl
ed

Lo
ad

-b
al

an
ce

r
re

je
ct

s
re

qu
es

ts
w

he
n

re
sp

on
se

ti
m

e
fr

om
se

rv
er

ex
ce

ed
s

10
se

cs
Sy

st
em

In
pu

tfi
el

d
co

nt
ai

ns
a

’c
ha

ra
ct

er
N

ot
ha

nd
le

d
If

in
pu

t
fie

ld
is

us
ed

in
a

SQ
L

st
at

em
en

t,
it

w
ill

re
su

lt
in

a
sy

n-
ta

x
er

ro
r.

It
is

su
gg

es
te

d
to

ad
d

a
ge

ne
ri

c
da

ta
ba

se
in

te
rf

ac
e

th
at

ha
nd

le
s

sp
ec

ia
lc

as
es

lik
e

th
is

.
Sy

st
em

Sy
st

em
ha

s
m

or
e

co
nc

ur
re

nt
us

er
s

th
an

th
e

da
ta

ba
se

al
lo

w
s

U
nk

no
w

n
Th

e
er

ro
r

re
tu

rn
ed

by
th

e
da

ta
ba

se
se

rv
er

in
th

is
si

tu
at

io
n

ar
e

un
kn

ow
n,

an
d

po
ss

ib
le

ef
fe

ct
s

of
th

is
er

ro
r

is
un

kn
ow

n
C

om
po

ne
nt

Z
In

te
rn

al
fa

ul
ti

s
no

th
an

dl
ed

Pa
rt

ia
lly

ha
nd

le
d

C
ac

he
d

by
ge

ne
ri

c
to

p-
le

ve
l

ex
ce

pt
io

n
m

ec
ha

ni
sm

,b
ut

th
e

sy
s-

te
m

m
ig

ht
be

le
ft

in
a

un
kn

ow
n

st
at

e.
Po

ss
ib

le
ex

ce
pt

io
n

pa
th

s
fr

om
C

om
po

ne
nt

Z
m

us
tt

o
be

ve
ri

fie
d

Lo
gg

er
Fa

ul
tw

hi
le

lo
gg

in
g

a
fa

ul
t

H
an

dl
ed

O
ri

gi
na

le
rr

or
is

re
tu

rn
ed

to
th

e
ca

lle
r

al
so

w
he

n
lo

gg
in

g
fa

ilu
re

s
ar

e
en

co
un

te
re

d.

Ta
bl

e
9.

3:
Sa

m
pl

e
su

m
m

ar
y

re
po

rt
.

115

Architectural Analysis

Architecture

Presentation

Define

Scenarios

Analyse

Scenarios

Summarize

Analysis

Architectural

Strategy

Architectural

Design

Prototyping

Does the current
design adequately
fulfil the (robustness)
requirements?

Figure 9.4: Combined design and analysis process

applications of the method, knowledge can be combined into checklists, lists
of common scenarios, and robustness description of various solutions. These
aids may be integrated into a more mature development process to increase ro-
bustness, but shifts in technology transforms robustness into a moving target
as new technology brings new types of robustness issues and removes others.

Considering how internet applications were first built using mainly CGI
applications written in C++, handling the input data was a major robustness
issue. As time went by, frameworks and new languages like ASP, Perl and JSP
came along and solved the issues with buffer overflows and parsing of the in-
put data. Decrease in awareness of input resulted in new forms of problems. Is-
sues like SQL injection and cross site scripting are quite common. Frameworks
and solutions for handling these exist, and the number of issues decreases, but
we are in the middle of a new era with more powerful client side behaviour
in web applications making use of client side scripting and Ajax that brings a
whole new set of challenges to the table.

A set of guidelines, checklists and solutions for robustness will only be rele-
vant for a limited period of time, until technology, languages, tools and frame-
work has changed the rules of the game.

116

Chapter 10

Conclusion and further work

10.1 Conclusion

This thesis started by illustrating the importance and complexity of robustness.
I then looked at quality and quality models in general before looking at the
relation between quality and architecture.

I then presented the results from ten interviews on the theme robustness
and architecture. All the interviewees work with software architecture on a
daily basis. The interview results indicated that the architects within the soft-
ware industry have a wider definition of robustness than existing definitions
in literature. Based on this, I have in Section 6.5 presented a definition of ro-
bustness that reflects the interviewees view of robustness.

The required level of robustness varies with the type of application. In
essence, an application that from the users point of view handles faults, errors
and failures gracefully, can be said to be robust.

The interviewees were also asked for their opinion about process measures
which are important when designing and implementing software applications
that should exhibit robust behaviour. These results were then combined with
my personal experience to form a set of important criteria for an architectural
design or analysis method. A selection of analysis and design methods were
then presented and evaluated against the criteria. I did not find any of the
methods presented to be optimal as a method to design or analyze for robust-
ness. Based on this I have proposed a design and analysis method that com-
bines elements from several of the methods already presented.

The proposed method is presented in Chapter 9 and it makes active use of
iterative development, scenarios and prototyping. It is designed to be easy to
use, employable during the whole architectural design stage and should scale
well with both ambition and the size of the project team.

Time did not allow for testing the definition of robustness on a larger popu-
lation, or to test the proposed method in practice. This is left for further work.

10.2 Further work

This section will describe suggestions for further work based on the work pre-
sented in this thesis.

117

10.2.1 Patterns and robustness

As mentioned in the introduction, the plan was to perform a study of patterns
to find patterns for analysis that could be used for robustness. Due to lack of
time, this analysis was not completed. However, a number of possible pat-
terns were found during the work on this thesis. Some were found during the
short review I did on pattern collections, some were suggested during the in-
terviews and others were found as a result of the literature review of research
related to robustness, presented in Chapter 8. I will briefly discuss my findings
to provide a list over patterns and solutions that can be useful for building ap-
plications that should exhibit robust behaviour. I will, however, leave further
elaboration and analysis of the suggested patterns and solutions for further
work.

I suggest studying the individual groups of patterns or solutions listed be-
low. A more complete list of patterns in each category needs to be developed.
Further, how each of the patterns can contribute to robustness needs to be in-
vestigated. I suggest collecting patterns through the use of a literature review
in combination with case studies of existing applications, interviews or sur-
veys. The individual patterns need to be investigated in detail to determine
exactly how they contribute to the system’s robustness. This can be by analyz-
ing them through case studies, detailed analysis or laboratory experiments.

A list of patterns where each pattern’s contribution to the robustness is
known is a valuable tool to use in my proposed design and analysis method.
The robustness characteristics for the individual patterns can be used both
when designing and analyzing a design. Interaction between the patterns still
needs to be analyzed, but knowledge about the individual patterns help to re-
duce the number of unknown factors in a design.

Failover, Redundancy, and Clustering Adding redundancy to a system might
be a way of increasing robustness to failure. The N-version approach
was discussed in Section 8.1. Douglass [22] describes several patterns
that are related to redundancy: protected single channel, homogenous
redundancy, triple modular redundancy and heterogeneous redundancy.
The protected single channel pattern is the simplest pattern and just adds
checks, much like a monitoring pattern. The heterogeneous redundancy
pattern is at the other end of the scale, employing independently de-
signed or implemented channels. Buschmann et al. [13] describe the
client-dispatcher-server pattern which is another way of implementing
redundancy or failover.

Monitoring and self-awareness Monitoring and self-awareness can vary in
range. At one end we have the fully generic approach discussed in Sec-
tion 8.2 which requires substantial architectural support. At the other
end we find the simple watchdog pattern mentioned by one of the in-
terviewees. Douglass [22] describes three monitoring patterns: monitor-
actuator pattern, sanity check pattern and watchdog. They vary in com-
plexity from the watchdog pattern, which just monitors that a part of a
system is running or proceeding as expected. The Monitor-actuator pat-
tern is the most complex and monitors the input and output of the system
in order to discover when something might be wrong. Monitoring pat-
terns can also be used to control redundancy.

118

Load balancing Load balancing is mentioned as a measure to handle load. In-
terviewees suggest using third party products instead of building it into
the systems themselves. The approach looks helpful for systems that
need to handle high load.

Layering One of the interviewees explicitly mentioned layering and reducing
abstraction leakage as approaches to achieve more robust systems. Other
interviewees have not been as specific, but a good system structure was
mentioned by several of them. Trowbridge et al. [74] describe the layer-
ing pattern, and explicitly state that it is a pattern that contributes to the
robustness of a system.

Transactions, Rollback, and Compensation Transactions can help ensure that
some changes are not left after an error has occurred, or when an opera-
tion is aborted. Transactions support rolling back changes made. How-
ever, they rely on proper use. Changes or actions not handled by a trans-
action boundary will not be rolled back. Proper use of transactions was
mentioned by three of the interviewees as an important approach to im-
proved robustness.

Asynchronous communication Not all communication needs to be synchronous.
This applies both between systems and inside systems. Douglass [22] de-
scribes a message queuing pattern. The pattern is generic and can be
used both for communication on an internal thread level, and between
systems. One interviewee suggested that this form of communication
also can help handle the 2-phase commit issue1.

Data consistency Consistency can be enforced at the database level by the use
of referential constraints, but also through consistency checks for data
structures illustrated by the work by Black et al. [9] presented in Sec-
tion 8.3 can be beneficial for robustness as it identifies inconsistent data.

Wrapping or encapsulation Wrapping or encapsulation can be performed in
several ways. Section 8.5 described safety facades as one pattern, and
Schmidt et al. [63] have a pattern they call wrapper facade that hides
underlying details for a client. Likely other patterns for wrapping or en-
capsulation also exist, which can be beneficial for robustness.

Further, the definition of robustness provided in Chapter 6 does not limit
robustness to a particular class of faults. This makes it relevant to also look at
existing research within fault-tolerance. Pullum [59], Koren and ManiKrishna
[47], and Lyu [52] describe several approaches or patterns like e.g. data di-
versity, recovery blocks and retry blocks, which also could be relevant when
designing an application that should exhibit robust behaviour.

10.2.2 Testing the suggested design and analysis method

In Chapter 9, I proposed a design and analysis method. This method needs to
be empirically tested in order to determine whether it is useful or not. Testing
can be performed in several ways:

1If multiple systems are involved in a transaction, they all need to agree to commit the transac-
tion before actually committing.

119

• An existing application or architecture can be analyzed using the ap-
proach.

• A laboratory experiment comparing systems designed with and without
the method can be performed.

• The method can be tested in a real development project.

10.2.3 Verifying the definition

Based on the interview results, I have suggested a definition for robustness.
This definition differs from definitions found in literature, by being very wide.
The definition should be tested against a larger population by conducting more
interviews or doing a survey. Ten interviews is a small sample to generalize
upon, and there are variations in how the interviewees have defined robust-
ness. By testing against a larger and carefully sampled population, it is possible
to test if the proposed definition represents the industry’s view of robustness
or not. It should also be considered to include other groups like end-users,
developers, and customers in such a test.

10.2.4 Looking into other suggestions

In this thesis I have focused on finding and defining a process to analyze and
design the architecture with the use of teamwork, scenarios and prototyping.
In addition, some patterns are suggested, but there are also other areas men-
tioned by the interviewees that may be important for robustness. Some sug-
gested areas are:

• Focused testing on robustness issues.

• Requirement analysis in relation to robustness.

• Usability issues related to robustness.

120

Appendix A

Code examples

121

A.1 Enhanced version of math

This is a enhanced sample of the simple math application found in Figure 4.1

using System;

namespace SimpleMathRobust{
class Program{

static void Main(string[] args){
try{

string operationName = null;
if ((args != null) && (args.Length > 0)){

operationName = args[0];
} 10

switch (operationName){
case "div":
case "mult":
case "mod":

if (args.Length != 3){
PrintErrorAndHelp("Missing arguments, format should be ’command numberA numberB’");
return;

}
20

double numA = 0;
double numB = 0;
double res = 0;

if (!double.TryParse(args[1], out numA)){
PrintError("Invalid argument: " + args[1] + " is not a valid number");
return;

}
if (!double.TryParse(args[2], out numB)){

PrintError("Invalid argument: " + args[2] + " is not a valid number"); 30
return;

}

if (operationName == "div"){
if (numB == 0){

PrintError("Invalid argument: division by zero is not possible");
return;

}
res = numA / numB;

}else if (operationName == "mult"){ 40
res = numA * numB;

}else if (operationName == "mod"){
if (numB == 0){

PrintError("Invalid argument: division by zero is not possible");
return;

}
res = numA % numB;

}

if (double.IsInfinity(res)){ 50
Console.WriteLine("Error: cumputing error, result to large");

}else if (double.IsNaN(res)){
Console.WriteLine("Error: cumputing error, result is not defined");

}else{
Console.WriteLine("Result: " + res.ToString());

}

break;

122

case "help": 60
PrintHelp();
break;

default:
PrintErrorAndHelp("Invalid option: " + operationName);
break;

}
}
catch (Exception ex){

System.Console.WriteLine("An unexpected error has occured"); 70
System.Console.WriteLine(ex.ToString());

}
}

private static void PrintError(string error){
System.Console.WriteLine(error);

}

private static void PrintErrorAndHelp(string error){
System.Console.WriteLine(error); 80
System.Console.WriteLine("");
PrintHelp();

}

private static void PrintHelp(){
System.Console.WriteLine("Console math, help");
System.Console.WriteLine("help - displays this help");
System.Console.WriteLine("div a b - divides a by b");
System.Console.WriteLine("mult a b - multiplies a by b");
System.Console.WriteLine("mod a b - a modulus b"); 90

}
}

}

123

Appendix B

Example interview results

124

B.1 Company A

Notater fra intervju med NN i bedrift A
Hva er robusthet?

Robusthet kan sees på oppførselen til en applikasjon når den er
overlevert og befinner seg i drifts og forvaltningsfasen.

Applikasjonen skal dekke tilgjengelighetsbehovet den er tenkt å
dekke, den skal ha forventet ytelse, og dersom det skjer noe galt
eller oppstår en feilsituasjon så skal det være raskt å komme opp
tilbake i normal produksjon igjen.

Sikkerhet i tradisjonell forstand oppleves ikke som en del av robus-
thetsbegrepet.

Antall feil i et system er ikke et måleparameter på grad av robus-
thet alene. Så lenge et system håndterer feil fornuftig kan det være
robust selv om det inneholder feil

Angrepsvinkler og viktige elementer ved robusthet:

Jobbe i team fremfor alene

• Sammensatt gruppe med folk

Viktig å ha med seg folk som har erfaringer med drift
og forvaltning av applikasjoner, sammen med (yngre)
folk som er oppdaterte på nyere teknologi og løsninger.

• Er absolutt en fordel å jobbe i team

• Viktig å motta nye drypp fra nye folk, og gjerne folk fra helt
andre miljøer

• Det å få satt sammen team mest mulig bredt er veldig lurt

• Det er viktig å ta med brukerne i utviklingsprosessen

Planlegg for drift og forvaltning

• Hensyn til driftsdimensjonen

Viktig å ta hensyn til driftsdimensjonen under design
og utvikling av løsningen, den har lett for å bli utelatt.

Gode feilmeldinger og feilhåndtering

• Enkle, fornuftige feilmeldinger

• Feilmeldinger som har informasjon om den underliggende feilen

• Feilmeldinger som bidrar til å løse kilden til feilen som er oppstått

Viktig med enkle og forståelige feilmeldinger som pin-
pointer problemet, feilmeldinger som kun forteller at
noe har feiler er av liten verdi.
Feilmeldingene bør hjelpe til at en er raskt oppe og
går igjen dersom det skulle oppstå alvorlige feilsitu-
asjoner

125

Design for selvmonitorering

• Proaktivitet er sentralt

• Automatisk varsling ved symptomer på at en feilsituasjon kan
oppstå

• Automatisk varsling ved symptomer på at en feilsituasjon har
oppstått

Har i senere år lagt inn proaktivitet i applikasjonene.
Applikasjonen klarer selv eller ved hjelp av ekstern
monitorering å oppfatte symptomer på at noe er galt,
eller noe galt er i ferd med å skje. Ved denne type
symptomer sendes det varsel til forvaltnings og driftsper-
sonale.

• Varsle driftspersonale før brukerne oppdager at noe er galt

Ved automatisk monitorering og varsling er situasjo-
nen varslet til forvaltning og drift, og kanskje også ret-
tet før brukeren er i stand til å oppfatte situasjonen.

• Varsling med påfølgende manuell reaksjon gir brukere en op-
plevelse av høyere robusthet

Varsling og tett oppfølgning fra drift og forvaltning
gir ofte brukerne en opplevelse av en mer robust app-
likasjon enn hva som egentlig er tilfelle. Dette ved at
man oppdager og/eller avverger feilsituasjoner på et
tidlig tidspunkt.

Typiske varsler

• Varsel ved fulle disker

• Varsel ved fulle køer

• Varsel ved fulle feilkøer

• Varsel ved akkumulerende køer

• Varsel ved unormalt høy last

Varsel ved mangel på data

Dersom det ikke er kommet en type hendelser fra ett av
systemene som fungerer som en av leverandørene til ett
større system på x minutter, så varsles det.
Dersom det ikke er kommet forespørsel på søket i løpet
av x antall minutter så genereres det et varsel
Varsel på manglende data bygges typisk opp på basis av
erfaringstall på normal belastning og bruk av systemene.

Benytte driftserfaring til å etablere nye varsler ved behov, og i
nye systemer

Design asynkrone grensesnitt

• Asynkrone grensesnitt gir mer robuste systemer

126

• Benytt asynkrone grensesnitt der det er mulig

• Synkrone grensesnitt krever ofte mer intrikate løsninger enn asynkrone 2
fase commit problemstillinger er ikke like aktuelle ved asynkrone grens-
esnitt

• Asynkrone grensesnitt krever at man realiserer tradisjonell commit prob-
lematikk på en annen måte

• Asynkrone grensesnitt stiller mindre krav til tilgjengelighet enn synkrone
systemer

Dersom et system er nede vil systemet plukke opp forespørsler
når det kommer opp igjen.
Dersom et system skal spørre 2-3 andre for å gi et aggregert
svar stiller det større krav ved synkrone enn asynkrone imple-
mentasjoner. Både på tilgjengelighet og svartid.

• Asynkrone grensesnitt gir mindre kobling enn synkrone grensesnitt

Bygg en god datamodell

• Bruk tid på datamodellering

Gode datamodeller har vist seg å ha stor påvirkning for det
videre livet til programsystemer.

• En god og riktig datamodell er viktig for fremtidig vedlikehold

Gode datamodeller er mer bestandige og gjør at introduksjon
av ny funksjonalitet som oftest har begrenset påvirkning på
den eksisterende datamodellen.
Ny funksjonalitet er ofte lokalisert til nye entiteter og innføring
av nye attributter på eksisterende entiteter, og har liten innvirkn-
ing på eksisterende entiteter.

• Involver brukere for å sikre riktig datamodell i første versjon

Ved å involvere brukere så kan en sikre seg at ens oppfatning av
virkeligheten som danner grunnlaget for datamodellen stem-
mer. Dette gjør at man ikke sent i utviklingsfasen må gjøre store
endringer i datamodellen.

• Jobb mot normaliserte datamodeller

Dagens maskinvare gjør at datamodellene kan være mer riktig
uten at man får problemer med ytelse. Og 3’dje normalform er
en god mal å legge seg på.

• Ha god og riktig datamodell i første versjon

Kommer man ut fra start med feil modell i bunn, så er det ikke
noen god start for systemet.

• Store endringer i datamodellen har ofte store konsekvenser for løsningen

127

Dersom en begynner og splitte og/eller flette sammen entiteter
så har det oftest store konsekvenser for løsningen som helhet.
Ved denne type endringer så har ofte resten av løsningen en
tendens til å kunne bli ustabil eller kreve større endringer. Følgefeil
er vanlige i slike situasjoner.

• Endringer i den eksisterende datamodellen krever også endringer i data

Om man endrer datamodellen så krever det også som oftest at
dataene som er lagret må oppdateres også, med de farene det
fører med seg.

• Gode datamodeller er ofte bestandige

Ved god datamodell så er datamodellen ganske bestandig, og
systemendringene over tid oftest lokalisert til forretningsreg-
lene og ikke datamodellen.

• Datamodellen bestemmer ofte mye av applikasjonens levetid

Applikasjoner med en datamodell som har vist seg å være god
og bestandig har ofte lengre levetid enn andre systemer.

Sikre datakvalitet

• Inputkontroll er viktig

• Viktig å sjekke all data som kommer inn i et system

Viktig å sjekke når data kommer inn, dersom hele systemet skal
ta høyde for skitten data, så skaper dette unødvendig komplek-
sitet i systemet, samt økt i teste testen av systemet.

• Viktig å sjekke at data om skrives ut av et system/en prosess er korrekt

Det er gjerne flere prosesser/systemer som leser data som et
system/prosess skriver ut, og det er da viktig å fokusere på at
systemet/prosessen leverer korrekte data, etter som det krever
mye mer arbeid å sjekke at de øvrige systemene/prosessene
oppfører seg riktig på basis av ukorrekte data. Samt å designe
og utvikle systemene/prosessene for å takle ugyldige data.

• Behov for kompensasjon av feilsituasjoner som følge av ukorrekt data
fører til unødvendig kompleksitet.

• Viktig med referanseintegritet i baser for å sikre datakvalitet

• Viktig å benytte regler i basen for å sikre like regler for alle systemer

Vanskelig å sikre at alle som legger inn data i et datalager følger
de eksakt samme reglene uten at de håndheves av basen.

• RI i base er viktig selv om det begrenser frihetsgraden

Mer komplekst å gjøre uttrekk av data for test, eller gjøre større
masseoppdateringer, men det sikrer et konsistent datagrunnlag.

128

Fokus på god test

• Vesentlig å ha fokus på testing

• Regresjonstesting er viktig

• Faste tester som kjøres for hver versjon (regresjon)

Regresjonstesting forhindrer at nye versjoner introduserer feil i
eksisterende deler av løsningen. Erfaringsmessig innfører nye
versjoner mye feil i eksisterende deler av løsninger.

• Automatisert testing er et ønske, spesielt til bruk for regresjonstesting.

• Utfør stresstesting

Ikke anta at systemet takler produksjonslast, verifiser det

• Ikke la tidsnød gjøre at man får mindre tid til test

Det er ofte testperioden som blir forkortet når tidligere faser
av prosjektet har tatt lengre tid, ikke la dette skje da testing av
systemet er veldig viktig.

• Utfør negative tester både under enhetstest og systemtest

Det er for stor fokus på å teste at systemet gjør det som står i
spesifikasjonen, det var mye mer fokus tidligere på å teste hva
som skjedde dersom ikke forutsetningene stemte, det oppstår
unormale situasjoner, situasjoner som ikke er beskrevet direkte.
Det er mange situasjoner som ikke er beskrevet direkte i spesi-
fikasjonene.

• Sørg for at det finnes kunnskap og erfaring på negativ testing

• Utfør ”katastrofetesting”

Dra ut pluggen på servere som en del av testkjøringen for å
verifisere at oppførselen til systemet er akseptabel.

• Bruk gjerne negativ testing tidlig i utviklingsløpet

Endringskontroll

• Viktig å planlegge endringer i produksjon

Enkelte endringer påvirker andre systemer og det er da vik-
tig å ha rutiner som sørger for at behovene til de øvrige sys-
temene er opprettholdt. Dette kan ivaretas av et endringsfo-
rum, som også kan avgjøre om endringen er viktig nok for å
kunne gjennomføres med tanke på sesongvariasjoner og andre
variabler. Et slikt forum kan også ha ansvar for å sørge for at
kunden/eier er bevist på endringene som er tenkt foretatt der
det er nødvendig.

• Viktig å hensynta perioder hvor det er ekstra kritisk med feil

129

Enkelte perioder er mer forretningskritisk med tanke på sårbarhet
ved feil. Det gjelder både tilgjengelighet på mannskap til å kor-
rigere og utbedre (f.eks ferie), og perioder hvor avhengigheten
av systemet er ekstra høy.

• Viktig å evaluere viktigheten av en endring

En må evaluere om endringen er viktig nok til å gjennomføres
sett opp mot risikoen en tar ved å gjennomføre den. En endring
bare for endringens skyld er neppe godt nok.

• Viktig å akkumulere erfaringer med endringer

Det er viktig å akkumulere den kunnskapen man gjør seg med
tanke på hvilke feilsituasjoner ulike endringer kan føre med
seg, og benytte dette i evalueringen av nye endringer.

• Sammenflettede systemer krever håndheving av endringshåndtering

• En liten ”ubetydelig” endring kan ta ned et helt integrert system

Versjonering og versjonskontroll

• Det er viktig med god versjonskontroll og versjonsstyring

• Viktig å kunne vite hva som er endret mellom versjoner

• Viktig å kunne gå tilbake til en tidligere versjon om det skulle være nødvendig

• Flere systemer og plattformer som er involvert øker viktigheten av å ha
god felles versjonskontroll

Flere miljøer er gjerne involverte og uten versjonskontroll er
det veldig vanskelig å ha kontroll over endringer mellom ver-
sjonene.

• Viktig med versjonering av grensesnitt og tilhørende beskrivelser

Planlegg og design for recovery

• Viktig å ha gode backup og recoveryløsninger

• Viktig å ha planen for recovery klar dersom noe skulle oppstå

• Viktig å bygge systemet med tanke på at en fornuftig recovery er mulig

• Viktig å se recovery scenarioer opp mot hvor tidskritisk det er for virk-
somheten

Det holder ikke at det er mulig med recovery om den tar 2
dager, mens bedriften ikke kan klare seg uten systemet i mer
enn et par timer.

Failover / clustring / redundans

• Failover / clustring / lastdeling benyttes i noe grad

• Failover/clustring krever stateless systemer som er laget for det

130

• Det er svært vanskelig å kombinere state i systemer med failover/redundans

En må i realiteten da starte helt på nytt igjen om man går over
på en annen ”node”.

• De hardwaremessige aspektene er en viktig faktor til robusthet

Avverg feilsituasjoner

• Duplisere viktige data for å forbedre robusthet ved ustabile linjer

• Duplisere viktige data for å sikre bedre tilgjengelighet

Dersom det er ustabile telefonlinjer mellom applikasjonen og
datakilden kan det være nødvendig å duplisere relevante deler
av kritisk data på klienten for å sikre seg at den er tilstede når
den er nødvendig. F.eks informasjon nødvendig for pakkeut-
levering kan sendes når pakken er bekreftet ankommet på postkon-
toret.

Sikre spesifikasjon og forventninger til løsningen

• Brukermedvirkning i utviklingsprosessen er viktig

• Bruk av prototyping sammen med brukerne i utviklingsprosessen er bra

• Større endringer i sene faser skaper lettvintløsninger og kompromisser

Derfor viktig å vite med sikkerhet at systemet man er i ferd
med å bygge er det samme som brukeren forventer.

• Desto bedre du treffer med systemet i første versjon, desto mer robust
blir det

• Viktig å komme ut med et rent system i første versjon, og ikke et som
allerede har begynt å ligne et system som har levd et lengre liv

• Viktig å fremstille systemet og design ved hjelp av figurer da det er langt
mer utvetydig enn beskrivelser når man skal kommunisere med andre.

Vær bevist på integrerte systemer

• Bygging av systemer ut fra kildedataprinsippet

Dersom du har fokus på at få systemer skal ha dataeierskap
mens mange skal være brukere, vær da bevist på å følge strate-
gien. Vær også bevist på hvilke følger det har med tanke på
integrasjonskrav og tilgjengelighetskrav.

• Det svakeste systemet bestemmer for det totale systemet ved integrering

En kan bygge ens eget system solid, men det er ikke mye til
hjelp dersom det er avhengig av integrasjoner mot andre sys-
temer som er dårlige. Alle vil alltid lide under det svakeste
leddet i kjeden.

• Systembevissthet på datakrav og avhengigheter

131

• Forhindre unødvendig kompensering

Et system har gjerne en del prosesser og funksjoner som ikke
får startet eller bør starte med mindre det nødvendige data-
grunnlaget er på plass. Det er viktig at systemet da er be-
vist på disse avhengighetene og ikke starter opp prosessene
på feil datagrunnlag. En unngår da en del situasjoner hvor
man er nødt til å rulle tilbake fordi man har startet på feil data-
grunnlag. Stikkord: kompanserer, proaktiv.

• Viktig med gode og dekkende beskrivelser av grensesnitt mellom syste-
mer

Problematiser design

• Det å problematisere designet med scenarioer kan være nyttig

• Det å forsvare feilsituasjoner på et system i designfasen kan være nyttig

• Komplekse sammensatte systemer kan med fordel problematiseres

Ett system gjerne kan falle ut og 5 andre skal bestå

Design relevante deler feiltolerante

• Dead-letter køer er en mekanisme for å fange opp feil

• Meldinger med transiente feil kan gjerne legges på feilkøer for å re-prøves

Feil rekkefølge på meldinger er her en typisk feilkilde

132

B.2 Company B

Notater sendt på mail av NN i bedrift B
Hva er robusthet?

Hva legger du i begrepet robusthet?

At det tåler en støyt uten å gå i stykker. feks for en bil er at den tåler
hard bruk uten at noe ryker, eller at andre feil oppstår.

Hva kjennetegner en robust applikasjon?

Brukeropplevelse At uansett hva brukeren legger inn så får man
skikkelige feilmeldinger og data som godtas har en riktig kon-
tekst. Dvs man kan ikke legge inn data som er ugyldige i en
eller annen sammenheng. At brukerfeil ikke fører til at sys-
temressurser brukes opp; DB connections, DB cursors mm.

Belastning Ved stor belastning skal ikke systemet plutselig dø, men
ha en akseptabel måte å handtere dette på. Feks økt respons
tid, eller feilmelding til brukeren/systemlogger som er forståelig.

Innvending Når noe feiler i applikasjonen skal den ikke dø, men
logge hva som er feil slik at man kan finne ut av det. I til-
legg skal ikke feil føre til at komponenter disables og ikke kan
brukes lenger som fører til feil andre steder i applikasjonen.

Grensesnitt Connection problemer skal føre til driftsalarmer, og
data skal køes opp slik at de ikke går tapt (persistent). Nærmer
man seg feks disk full må applikasjonen slutte å akseptere in-
put, men ikke dø. Dersom den ikke lengre kan ta imot input
må den gi feilmelding tilbake til andre systemer slik at det kan
køes opp andre steder.

Hvor robust må en vanlig forretningsapplikasjon være?

Dette er avhengig av hvem som er brukere, men jo flere brukere jo
mer robust bør den være.

Hvordan oppnå robusthet?

Hva kan man gjøre for å oppnå robusthet slik du ser det?

• Lagdeling i applikasjonsarkitekturen. Forhindre abstraksjon-
slekkasje (Alle feilmeldidinger bør vær forståelige for bruk-
eren). Asynkronitet bør ivaretas vha køer.

• Bruk av rammeverk i applikasjonene slik at man får en en-
sartet feilhåndtering.

• Det første man gjør er å definere hvordan feil skal håndteres.
Dette bør være klart ved start av implementasjon.

• Videre oppnår man mye ved å teste skikkelig, men hvordan
gjør man dette? Jo ved feks å kjøre automatisk og kontinuerlig
testing. (Støttes etterhvert av flere utviklingsverktøy)

133

• Man oppnår også mye ved å slippe sluttbrukerne til i sys-
temtesten. Å la de komme inn i akseptansetest er vanligvis
for sent. Dette sikrer at alle brukstilfellene blir kjørt tidligst
mulig.

• Man oppnår også mye ved iterativ utvikling. Man får da min-
dre moduler å debugge.

Hvilke faser er fokus på robusthet viktig i?

Hvor i prosessen er det viktigst med fokus på robusthet og hvor-
for (hvilke faser)?

Viktigst i design av applikasjonsarkitekturen. I mange forskjellige
systemer må feilhåndtering og ressurshåndtering være en grunn-
leggende funksjonalitet.

Hva gjør du/dere med robusthet, og hvilke planer har du/dere?

• Fokuserer du/dere på robusthet utviklingen i dag?

Det har høyt fokus og man må sikre at man ikke mister data,
samt at applikasjonen oppfører seg ”fornuftig” hvis store feil-
mengder plutselig raser inn - den kan feks stoppe innlesning.
Kravet har alltid vært å ha feilhåndtering og logge rammever-
ket klart ved oppstart av implementasjon.

• Hvorfor / hvorfor ikke? Planlegger du/dere å gjøre det i nærmeste fremtid?

• Hva gjør du/dere i dag / hva planlegger du/dere å gjøre for å fokusere
på robusthet?

• Hva planlegger du/dere å gjøre i fremtiden?

Mer fokus på forbyggende tiltak som nevnt over.

Hva er arkitektur?

Hva mener du arkitektur er?

Grunnleggende strukturer og rammeverk som man benytter når
man utvikler. Dette definerer hvilke deler systemet består av, hvor-
dan de kobles sammen, hvilke ansvar de ulike deler har og hvordan
de kommuniserer. Patterns kan være med å definere disse struk-
turene.

Viktigheten av arkitekturen?

Hvilken rolle spiller arkitekturen slik du ser det i hvorvidt løsningen
blir robust eller ikke?

En god arkitektur kan sikre egenskaper som feilhåndtering, lastbal-
ansering og effektiv ressurshåndtering.

Arkitekturmessige løsninger

134

Er det noen arkitekturmessige/design løsninger/patterns som du
mener bidrar til robusthet? Her er høynivå så vel som lavnivå
arkitektur/design på grensen til kodeløsninger interessante

• Har egentlig ikke sett mange rammeverk som gir robusthet.....
men språkene gir mulighet for å bygge komponenter som kan
bidra.

• En god arkitektur gjør applikasjonen mer endringsbar.

• Helt avgjørende for å få til en effektiv utvikling med roller og
iterativ/scrum baserte metoder

• Har jobbet en del med Java og har sett at dersom man benyt-
ter rammeverk som MVC, STRUTS, DAO, Facade, DTO, Gang
of four patterns, samt patterns for feks Web applications, i til-
legg til blueprints fra feks SUN/Microsoft mm. så blir app-
likasjonene mer endringsbare og robuste)

135

Bibliography

[1] IEEE Std 1028-1997, chapter IEEE Standard for Software Reviews, pages
i–37. 1998.

[2] Robust - webopedia.com. web. URL http://www.webopedia.com/TERM/
R/robust.html. visited 2007-08-09.

[3] Gregory Abowd, Len Bass, Paul Clements, Rick Kazman, Linda Northrop,
and Amy Zaremski. Recommended Best Industrial Practice for Soft-
ware Architecture Evaluation. 1996. URL http://www.sei.cmu.
edu/pub/documents/96.reports/pdf/tr025.96.pdf. Technical Report:
CMU/SEI-96-TR-025.

[4] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson,
Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford
University Press, New York, USA, 1977. ISBN 0-19-501919-9.

[5] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental
concepts of dependability, 2001. URL http://dirc.org.uk/research/
pubs/trs/papers/739.pdf. Research Report N01145, LAAS-CNRS, April
2001.

[6] Jakob Eyvind Bardram, Henrik Baerbak Christensen, and Klaus Mar-
ius Hansen. Architectural prototyping: An approach for grounding ar-
chitectural design and learning. wicsa, 00:15, 2004. doi: http://doi.
ieeecomputersociety.org/10.1109/WICSA.2004.1310686.

[7] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Prac-
tice. Addison Wesley, Boston, USA, second edition, 2003. ISBN 0-321-
15495-9.

[8] Steffen Becker, Wilhelm Hasselbring, Alexandra Paul, Marko Boskovic,
Heiko Koziolek, Jan Ploski, Abhishek Dhama, Henrik Lipskoch, Matthias
Rohr, Daniel Winteler, Simon Giesecke, Roland Meyer, Mani Swami-
nathan, Jens Happe, Margarete Muhle, and Timo Warns. Trustworthy
software systems: a discussion of basic concepts and terminology. SIG-
SOFT Softw. Eng. Notes, 31(6):1–18, 2006. ISSN 0163-5948. doi: http:
//doi.acm.org/10.1145/1218776.1218781.

[9] J.P. Black, D.J. Taylor, and D.E. Morgon. A Compendium of Robust Data
Structures. Fault-Tolerant Computing, 1995, ’Highlights from Twenty-Five
Years’., Twenty-Fifth International Symposium on, pages 127–, 27-30 Jun 1995.

136

http://www.webopedia.com/TERM/R/robust.html
http://www.webopedia.com/TERM/R/robust.html
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr025.96.pdf
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr025.96.pdf
http://dirc.org.uk/research/pubs/trs/papers/739.pdf
http://dirc.org.uk/research/pubs/trs/papers/739.pdf

[10] IEEE Standards Board. IEEE Standard Glossary of Software Engineering Tech-
nology. The Institute of Electrical and Electronics Engineers, 1990. ISBN
1-55937-067-X.

[11] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of soft-
ware quality. In ICSE ’76: Proceedings of the 2nd international conference on
Software engineering, pages 592–605, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[12] Barry W. Boehm, John R. Brown, Hans Kaspar, Myron Lipow, Gordon J.
MacLeod, and Michael J. Merrit. TRW Series of Software Technology Vol-
ume 1: Characteristics of software quality. North-Holland, Amsterdam, 1973.
ISBN 0-444-85105-4.

[13] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-oriented software architecture: a system of patterns. John
Wiley & Sons, Inc., New York, USA, 1996. ISBN 0-471-95869-7.

[14] Joseph P. Cavano and James A. McCall. A framework for the measure-
ment of software quality. In Proceedings of the software quality assurance
workshop on Functional and performance issues, pages 133–139, 1978. doi:
http://doi.acm.org/10.1145/800283.811113.

[15] Paul Clements, Rick Kazman, and Mark Klein. Evaluating software archi-
tectures: methods and case studies. Addison-Wesley, Boston, 2002. ISBN
0-201-70482-x.

[16] Tony Cornford and Steve Smithson. Project Research in Information Systems.
A Student’s Guide. Palgrave, New York, NY, USA, 1996. ISBN 0-333-64421-
2.

[17] Marc-Alexis Côté, Witold Suryn, and Elli Georgiadou. In search for
a widely applicable and accepted software quality model for software
quality engineering. Software Quality Journal, 15(3), 2007. doi: http:
//dx.doi.org/10.1007/s11219-007-9029-0.

[18] John DeVale and Jr. Philip J. Koopman. Robust software - no more excuses.
In DSN ’02: Proceedings of the 2002 International Conference on Dependable
Systems and Networks, pages 145–154, Washington, DC, USA, 2002. IEEE
Computer Society. ISBN 0-7695-1597-5.

[19] John P. DeVale, Philip J. Koopman, and David J. Guttendorf. The Bal-
lista Software Robustness Testing Service. URL http://www.ece.cmu.
edu/~koopman/ballista/tcs99/tcs99.pdf.

[20] Marcel Dix and Holger D. Hofmann. Automated Software Robustness
Testing - Static and Adaptive Test Case Design Methods. euromicro, 00:62,
2002. ISSN 1089-6503. doi: http://doi.ieeecomputersociety.org/10.1109/
EURMIC.2002.1046134.

[21] Liliana Dobrica and Eila Niemela. A survey on software architecture anal-
ysis methods. IEEE Transactions on Software Engineering, 28(7):638–653,
2002. ISSN 0098-5589. doi: http://doi.ieeecomputersociety.org/10.1109/
TSE.2002.1019479.

137

http://www.ece.cmu.edu/~koopman/ballista/tcs99/tcs99.pdf
http://www.ece.cmu.edu/~koopman/ballista/tcs99/tcs99.pdf

[22] Bruce Powel Douglass. Real-Time Design Patterns: Robust Scalable Archi-
tecture for Real-Time Systems. Addison-Wesley Professional, Boston, MA,
USA, 2002. ISBN 0-201-69956-7.

[23] R. Geoff Dromey. A model for software product quality. IEEE Trans. Softw.
Eng., 21(2):146–162, 1995. ISSN 0098-5589. doi: http://dx.doi.org/10.
1109/32.345830.

[24] RG Dromey. Concerning the Chimera [software quality]. Software, IEEE,
13(1):33–43, 1996.

[25] ECMA. ECMA-334 - C# Language Specification 4th edition, ISO/IEC
23270:2006. 1996. URL http://www.ecma-international.org/
publications/standards/Ecma-334.htm.

[26] Robert J. Ellison and Andrew P. Moore. Trustworthy Refinement Through
Intrusion-Aware Design (TRIAD). 2003. URL http://www.sei.cmu.
edu/pub/documents/03.reports/pdf/03tr002.pdf. Technical Report:
CMU/SEI-2003-TR-002.

[27] Robert J. Ellison, David A. Fisher, Richard C. Linger, Howard F. Lipson,
Thomas A. Longstaff, and Nancy R. Mead. Survivability: Protecting your
critical systems. IEEE Internet Computing, 3(6):55–63, 1999. ISSN 1089-
7801. doi: http://dx.doi.org/10.1109/4236.807008.

[28] Clifton A. Ericson. Hazard analysis techniques for system safety. Wiley-
Interscience, 2005.

[29] Norman Fenton and Shari Lawrence Pfleeger. Software metrics (2nd ed.):
a rigorous and practical approach. PWS Publishing Co., Boston, MA, USA,
1997. ISBN 0-534-95600-9.

[30] Christof Fetzer and Zhen Xiao. An automated approach to increas-
ing the robustness of c libraries. dsn, 00:155, 2002. doi: http://doi.
ieeecomputersociety.org/10.1109/DSN.2002.1028896.

[31] Martin Fowler. Patterns. IEEE Software, 20(2):56–57, 2003. ISSN 0740-7459.
doi: http://doi.ieeecomputersociety.org/10.1109/MS.2003.1184168.

[32] Martin Fowler et al. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, Boston, USA, 2003. ISBN 0-321-12742-0.

[33] Peter Freeman. Software reliability and design: A survey. In DAC ’76:
Proceedings of the 13th conference on Design automation, pages 484–494, New
York, NY, USA, 1976. ACM. doi: http://doi.acm.org/10.1145/800146.
804850.

[34] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, USA, 1995. ISBN 0-201-63361-2.

[35] Darvin .A. Garvin. What does ”product quality” really mean. Sloan Man-
agement Review, 26(1):25–43, 1984.

138

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03tr002.pdf
http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03tr002.pdf

[36] Anup K. Ghosh, Matt Schmid, and Frank Hill. Wrapping windows nt
software for robustness. ftcs, 00:344, 1999. ISSN 0731-3071. doi: http:
//doi.ieeecomputersociety.org/10.1109/FTCS.1999.781070.

[37] S.E. Hermanson. The software embarrassment: a solution. Computer As-
surance, 1989. COMPASS ’89, ’Systems Integrity, Software Safety and Process
Security’, Proceedings of the Fourth Annual Conference on, pages 26–30, 19-23
Jun 1989. doi: 10.1109/CMPASS.1989.76034.

[38] Michael N. Huhns, Vance T. Holderfield, and Rosa Laura Zavala Gutier-
rez. Robust software via agent-based redundancy. In AAMAS ’03: Proceed-
ings of the second international joint conference on Autonomous agents and mul-
tiagent systems, pages 1018–1019, New York, NY, USA, 2003. ACM. ISBN
1-58113-683-8. doi: http://doi.acm.org/10.1145/860575.860774.

[39] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC,
2001.

[40] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere.
The architecture tradeoff analysis method. iceccs, 00:0068, 1998. doi: http:
//doi.ieeecomputersociety.org/10.1109/ICECCS.1998.706657.

[41] Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. Saam: a
method for analyzing the properties of software architectures. In ICSE
’94: Proceedings of the 16th international conference on Software engineering,
pages 81–90, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.
ISBN 0-8186-5855-X.

[42] Rick Kazman, Gregory Abowd, Len Bass, and Paul Clements. Scenario-
based analysis of software architecture. IEEE Softw., 13(6):47–55, 1996.
ISSN 0740-7459. doi: http://dx.doi.org/10.1109/52.542294.

[43] Rick Kazman, S. Jeromy Carrière, and Steven G. Woods. Toward a disci-
pline of scenario-based architectural engineering. Ann. Softw. Eng., 9(1-4):
5–33, 2000. ISSN 1022-7091.

[44] Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: The
elusive target. IEEE Softw., 13(1):12–21, 1996. ISSN 0740-7459. doi: http:
//dx.doi.org/10.1109/52.476281.

[45] J. C. Knight and N. G. Leveson. An experimental evaluation of the as-
sumption of independence in multiversion programming. IEEE Trans.
Softw. Eng., 12(1):96–109, 1986. ISSN 0098-5589.

[46] John C. Knight and Nancy G. Leveson. A reply to the criticisms of the
knight & leveson experiment. SIGSOFT Softw. Eng. Notes, 15(1):24–35,
1990. ISSN 0163-5948. doi: http://doi.acm.org/10.1145/382294.382710.

[47] Israel Koren and C. ManiKrishna. Fault Tolerant Systems. Morgan Kauf-
mann Publishers Inc., San Francisco, USA, 2007. ISBN 0-12-088525-5.

[48] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek. Automated Robustness
Testing of Off-the-Shelf Software Components. In FTCS ’98: Proceedings
of the The Twenty-Eighth Annual International Symposium on Fault-Tolerant

139

Computing, page 230, Washington, DC, USA, 1998. IEEE Computer Soci-
ety. ISBN 0-8186-8470-4.

[49] Robert Laddaga. Creating robust software through self-adaptation. IEEE
Intelligent Systems, 14(3):26–29, 1999. ISSN 1094-7167. doi: http://doi.
ieeecomputersociety.org/10.1109/MIS.1999.769879.

[50] Jean-Claude Laprie and Brian Randell. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secur. Comput.,
1(1):11–33, 2004. ISSN 1545-5971. doi: http://dx.doi.org/10.1109/TDSC.
2004.2. Fellow-Algirdas Avizienis and Senior Member-Carl Landwehr.

[51] John D. Litke. A systematic approach for implementing fault tolerant soft-
ware designs in ada. In TRI-Ada ’90: Proceedings of the conference on TRI-
ADA ’90, pages 403–408, New York, NY, USA, 1990. ACM. ISBN 0-89791-
409-0. doi: http://doi.acm.org/10.1145/255471.255565.

[52] Michael R. Lyu. Software Fault Tolerance. John Wiley & Sons, Inc., New
York, NY, USA, 1995. ISBN 0-471-95068-8.

[53] Steve McConnell. Code complete: a practical handbook of software construction.
Microsoft Press, Redmond, WA, USA, 1993.

[54] Barton P. Miller, Gregory Cooksey, and Fredrick Moore. An empirical
study of the robustness of macos applications using random testing. In
RT ’06: Proceedings of the 1st international workshop on Random testing, pages
46–54, New York, NY, USA, 2006. ACM. ISBN 1-59593-457-X. doi: http:
//doi.acm.org/10.1145/1145735.1145743.

[55] Andrew P. Moore and Robert J. Ellison. TRIAD: a framework for surviv-
ability architecting. In SSRS ’03: Proceedings of the 2003 ACM workshop
on Survivable and self-regenerative systems, pages 105–109, New York, NY,
USA, 2003. ACM. ISBN 1-58113-784-2. doi: http://doi.acm.org/10.1145/
1036921.1036933.

[56] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heim-
bigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.
Rosenblum, and Alexander L. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, 1999. ISSN
1541-1672. doi: http://dx.doi.org/10.1109/5254.769885.

[57] Shari Lawrence Pfleeger. Software Engineering: Theory and Practice. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, second edition, 2001. ISBN
0130290491.

[58] Roger S. Pressman and Darrel Ince. Software Engineering: A Practitioner’s
Approach: European Adaptation. McGraw-Hill, Inc., New York, NY, USA,
1997.

[59] Laura L. Pullum. Software Fault Tolerance Techniques and Implementation.
Artech House, Inc., Norwood, MA, USA, 2001. ISBN 1-58053-137-7.

[60] Martin P. Robillard and Gail C. Murphy. Designing robust java programs
with exceptions. SIGSOFT Softw. Eng. Notes, 25(6):2–10, 2000. ISSN 0163-
5948. doi: http://doi.acm.org/10.1145/357474.355046.

140

[61] Colin Robson. Real World Research: A Resource for Social Scientists and
Practitioner-Researchers (Regional Surveys of the World). Blackwell Publish-
ing Limited, 2002. ISBN 0631213058.

[62] Bradley Schmerl and David Garlan. Exploiting architectural design
knowledge to support self-repairing systems. In SEKE ’02: Proceedings
of the 14th international conference on Software engineering and knowledge en-
gineering, pages 241–248, New York, NY, USA, 2002. ACM. ISBN 1-58113-
556-4. doi: http://doi.acm.org/10.1145/568760.568804.

[63] Douglas C. Schmidt, Hans Rohnert, Michael Stal, and Dieter Schultz.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Net-
worked Objects. John Wiley & Sons, Inc., New York, NY, USA, 2000. ISBN
0471606952.

[64] Fred B. Schneider, editor. Trust in Cyberspace. National Academy Press,
Washington, DC, USA, 1998. ISBN 0309065585.

[65] Mary Shaw and David Garlan. Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.
ISBN 0-13-182957-2.

[66] Charles P. Shelton, Philip Koopman, and Kobey Devale. Robustness
testing of the microsoft win32 api. dsn, 00:261, 2000. doi: http://doi.
ieeecomputersociety.org/10.1109/ICDSN.2000.857548.

[67] Michael E. Shin. Self-healing components in robust software architecture
for concurrent and distributed systems. Sci. Comput. Program., 57(1):27–44,
2005. ISSN 0167-6423. doi: http://dx.doi.org/10.1016/j.scico.2004.10.003.

[68] Johannes Siedersleben. Errors and Exceptions — Rights and Obligations, vol-
ume 4119 of Lecture Notes in Computer Science, pages 275–287. Springer
Berlin / Heidelberg, 2006. ISBN 978-3-540-37443-5.

[69] Joel Spolsky. Don’t let architecture astronauts scare you. web, apr 2001.
URL http://www.joelonsoftware.com/articles/fog0000000018.
html. visited 2007-09-03.

[70] Witold Suryn, Alain Abran, and Alain April. ISO/IEC SQuaRE. The sec-
ond generation of standards for software product quality. Seventh IASTED
International Conference on Software Engineering and Applications, pages 807–
814, 2003.

[71] Bedir Tekinerdogan, Hasan Sozer, and Mehmet Aksit. Software architec-
ture reliability analysis using failure scenarios. In WICSA ’05: Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05),
pages 203–204, Washington, DC, USA, 2005. IEEE Computer Society. ISBN
0-7695-2548-2. doi: http://dx.doi.org/10.1109/WICSA.2005.65.

[72] Christian Tellefsen. An Examination of Issues with Exception Handling
Mechanisms. Master’s thesis, Norwegian University of Science and Tech-
nology, 2007.

141

http://www.joelonsoftware.com/articles/fog0000000018.html
http://www.joelonsoftware.com/articles/fog0000000018.html

[73] R. Torkar, S. Mankefors, K. Hansson, and A. Jonsson. An exploratory
study of component reliability using unit testing. issre, 00:227, 2003. ISSN
1071-9458. doi: http://doi.ieeecomputersociety.org/10.1109/ISSRE.2003.
1251045.

[74] David Trowbridge, Dave Mancini, Dave Quick, Gregor Hohpe, James
Newkirk, and David Lavigne. Enterprise Solution Patterns for .NET. Mi-
crosoft Press, 2003. ISBN 0735618399.

[75] Unknown. System robustness - atis telecom glossary 2000. web, feb
2001. URL http://www.atis.org/tg2k/_system_robustness.html. vis-
ited 2007-08-09.

[76] Unknown. Robust - businessdictionary.com. web, . URL http://www.
businessdictionary.com/definition/robust.html. visited 2007-08-09.

[77] Unknown. Robust - dictionary.com unabridged (v 1.1). web, . URL http:
//dictionary.reference.com/browse/robust. visited 2007-10-24.

[78] Jianyun Zhou and Tor Stålhane. A Framework for Early Robustness As-
sessment. In Software Engineering and Applications - 2004.

[79] Jianyun Zhou and Tor Stålhane. Using FMEA for Early Robustness Anal-
ysis of Web-Based Systems. compsac, 02:28–29, 2004. ISSN 0730-3157. doi:
http://doi.ieeecomputersociety.org/10.1109/CMPSAC.2004.1342662.

142

http://www.atis.org/tg2k/_system_robustness.html
http://www.businessdictionary.com/definition/robust.html
http://www.businessdictionary.com/definition/robust.html
http://dictionary.reference.com/browse/robust
http://dictionary.reference.com/browse/robust

