& NTNU

Innovation and Creativity

Software Quality in the Trenches

Two Case Studies of Quality Assurance Practices in Free/Libre and
Open Source Software (FLOSS)

Tor Arne Vestbg

Master of Science in Informatics
Submission date: November 2007
Supervisor: Eric Monteiro, IDI
Co-supervisor: Thomas @sterlie, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Software Quality in the Trenches

Two Case Studies of Quality Assurance Practices
in Free/Libre and Open Source Software (FLOSS)

Trondheim, November 2007

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics

and Electrical Engineering

Deparment of Computer and Information Science

Master of Science in Informatics
Supervisor: Eric Monteiro, IDI
Co-supervisor: Thomas @sterlie, IDI

@ NTNU

Innovation and Creativity

© 2007 by Tor Arne Vestbg
Some rights reserved.

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License.

To view a copy of this license, visit
, or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA.

@l BY NC SA
This thesis was typeset in Linotype Galliard and FontFont DIN by the author,
using the BIEX 2¢ macro language on a Dell D420 running openSUSE 10.2.

Printed by Tapir Trykk. Available online from

Cover photo shows trees planted in a 1st World War memorial in northern France.
Each tree represents a life lost in the trenches, which are now covered in grass.

Photo Credits: Stephen Stills, cover photo (licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 2.0 license); Robert McMillan/Linux
Magazine, p. 11 (licensed under the GNU Free Documentation License); All
other images used under § 23 of Norwegian copyright law (“Andsverkloven”).

All trademarks and product names are the property of their respective owners.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://daim.idi.ntnu.no/

Abstract

When proponents of open source software are asked to explain the success of their
movement they typically point to the quality of the software produced, which is
in turn attributed to the rather unconventional development model of releasing
unfinished versions of the software and having users look over the code and report
and fix bugs.

This thesis investigates the open source quality assurance model from a knowledge
management perspective — based on the assumption that debugging involves a
high degree of knowledge work. By doing interpretive case studies of two open
source projects — using direct observation, e-mail archives, and bug-trackers as
data sources — I present descriptive accounts of the day to day quality practices in
open source development.

The analysis shows that conceptualizing and classifying bugs is a complex process
involving sensemaking and subjective considerations; that the peer-review pro-
cess in open source projects has a lot in common with traditional field-testing;
and that communication tools and mediums are used interchangeably, but with
certain preferences depending on subject matter. I conclude that perhaps the suc-
cess of the open source development model is not due to its novelty compared to
traditional software engineering, but because open source developers have recog-
nized that debugging is a knowledge-intensive process.

Keywords: Open Source, Software Quality, Knowledge Management

Preface

This thesis is the result of one year of work, and concludes the requirements for a
Master’s degree in informatics at the Norwegian University of Science and Tech-
nology (NTNU). The assignment was given by the Department of Computer and
Information Science (IDI), with Professor Eric Monteiro as acting supervisor.

Despite the illusion that I already knew a fair bit about open source development
before starting this thesis, I now feel that I have a pretty good grasp of the phe-
nomena — and I am certain that the knowledge I have obtained will help me in
my future endeavors.

I would like to thank my supervisor, Professor Eric Monteiro, for his invaluable
feedback and support during these past two years, and my co-supervisor, Thomas
Osterlie, for his motivating pep-talks and sound insights. I would also like to
thank the developers of the two projects Amarok and Gallery for their time and
hospitality.

Last, but not least, I’d like to thank my parents for finally giving in and buying me
that lousy Remedy 1486 computer, so I could hack new levels for Nibbles while
the other kids were out playing soccer.

Trondheim, November 2007

Tor Arne Vestbg

Table of Contents

Abstract i
Preface \
1 Introduction 1
1.1 Problem Definition oL 2
1.2 ProjectScope 3
1.3 ReportOutline 4

| Theory 7
2 An Overview of Open Source 9
2.1 Historical Background L 9
2.1.1 The Free Software Foundation. 11

2.1.2 TheRiseoflLinux 11

2.1.3 TheOpenSourceRebels 12

2.1.4 Open Source and Free Software Today 14

2.2 Licensing of Open Source Software 14
2.2.1 CopyrightBasics 15

2.2.2 The Open Source Definition 16

2.2.3 The BSD, MIT/X and Apache Licenses 19

224 TheGNUGPLandLGPL 19

2.2.5 SoftwarePatents L. 21

2.3 Examples of Open Source Projects 23
2317 Linux ... 23

232 TheGIMP 24

233 Eclipse 25

2.4 Open Source and Motivation, 26
2.4.1 Who Participates oL 26

2.4.2 What Makes People Participate 26

2.5 Characteristics of Open Source Development 28

2.5.1 Opennessand JoyfulHacking 29

viii

Software Quality in the Trenches

2.5.2 Leadership and Organization 30
2.5.3 Coordination and Cooperation 31
2.5.4 Frequent Releases and Parallel Debugging 32

2.6 Commercial Use of Open Source Software 33
2.6.1 BusinessModels, 33
2.6.2 Utilizing Open Source 36

2.7 Summary ... e e e e 37
Software Quality 39
3.1 Perspectives and Approachesto Quality 39
3.1.1 Quality Attributes L 41
3.1.2 Process Improvement 44

3.2 PeerReviewing 45
3.2.1 In Scientific Publishing 46
3.2.2 InSoftware Development 47

3.3 OpenSourceQuality 47
3.3.1 Quality Practices 48
3.3.2 Possible Problems 0oL 52

3.4 Summary ... e e 53
Knowledge Management 55
4.1 AShortHistory 55
4.2 Typologies of Knowledge 56
4.2.1 Tacitand Explicit Knowledge 57
4.2.2 Individual and Social Knowledge 58

4.3 Managing and Sharing Knowledge 59
43.1 TheSpiralof Knowledge 59
4.3.2 Communitiesof Practice. 62

4.4 Knowledge and Informatics 62
45 Summary ... e e 64
Case Study 65
Methodology 67
5.1 Information Systems Research 67
5.1.1 Ontology and epistemology 68
5.1.2 Approaches and Methods 69

5.2 TheResearchProcess 70
5.2.1 ChoosingMethods 70
5.2.2 CaseSelection 71

5.2.3 DataCollection 73

Table of Contents

5.2.4 DataAnalysis
5.3 Evaluation

6 Research Setting
6.1 Amarok
6.1.1 TheCodecWars
6.1.2 Media Playersin General
6.1.3 Background and History of Amarok
6.1.4 Project Structure and Organization
6.1.5 Quality Practices and Development Infrastructure
6.2 Gallery. e
6.2.1 Image Galleriesin General
6.2.2 Birth and Development of the Gallery Project
6.2.3 Project Structure and Organization
6.2.4 Quality Practices and Development Infrastructure
6.3 Summary

7 Case Vignettes
7.1 Amarok ...
7.1.1 Isthe Glass Half Full or Half Empty?
7.1.2 | Want Amarok for Video!
7.1.3 Allow ‘flagging’ of files (labels)
7.2 Gallery e
7.2.1 To Scale or Not To Scale (That is the Question)
7.2.2 RequestforReview.
7.2.3 Peer Review Software in Action

1l Analysis

8 Discussion
8.1 ConceptualizingBugs
8.2 Proactive vs. Reactive Peer Reviewing
8.3 DivisionoflLabor

9 Conclusion
9.1 FurtherWork

Bibliography

A Open Source Licenses
A1 The Open Source Definition
A2 TheBSDLicense
A3 TheMIT/XLicense

78
80

83
83
83
85
86
89
90
91
92
94
96
96
99

101
101
102
104
106
109
109
114
116

Software Quality in the Trenches

A4 The Apache license 150
A.5 The GNU General Public License 153
A.6 The GNU Lesser General Public License 160

Chapter 1

Introduction

Open source software has gone trough several shifts in the past two decades.
From starting out as a lone hacker’s dream of an ecosystem of free software —
via charismatic evangelists and an almost religious grass root ‘movement’ — it has
turned into a multi billion dollar industry, with companies such as Red Hat and
MySQL based entirely around selling open source software.

Giants like Sun Microsystems and IBM have also picked up on the trend — and
are in fact the two largest business contributors to open source software today
(Ghosh, 2007). Sun has released both their office suite OpenOffice and the So-
laris operating system as open source, and recently open sourced the Java pro-
gramming language. IBM has open sourced their development environment
Eclipse, and are investing large sums in projects such as Apache and Linux —
some sources say $100 million annually (Ghosh, 2007). At the same time these
companies are being criticized for exploiting open source developers as mere third
party contractors, trying to rub oft some magic ‘open-source-dust’, while not re-
ally living up to the true spirit of open source. The recent case of Sun imposing
severe restrictions on projects who want to certify their open source Java imple-
mentations is an example of this clash.

Meanwhile, success stories like Firefox and Linux (the poster boys of open source
software) are gaining the movement mainstream acceptance, even to the point
that the average Joe wants to install Linux without knowing what it is. As I’'m
writing this, one of Norway’s largest tabloid newspapers VG has an article on their
website’s front page reporting that Wal-Mart will start selling cheap computers
with Linux pre-installed. The author notes that “this is a clear sign that the oper-
ating system is ready for the masses” — which is an ironic prediction coming from
a newspaper that normally cannot be accused for reporting from the forefront of
technology.

Governments are also starting to realize the power of open source. On the 15th
of December 2006 the Norwegian minister of government administration and
reform Heidi Grande Rays, presented her vision for the future of Norwegian ICT
industry, in which she encouraged public administration to adopt open source and

Software Quality in the Trenches

open standards when possible. Critics were quick to point out that the vision —
although a step in the right direction — lacked any formal commitment. Even
s0, this shows that open source plays an increasing part of our lives, both for the
general consumer and for large organizations.

1.1 Problem Definition

HEN PROPONENTS of open source are asked to explain the success of
their movement they often point to the superior quality of the soft-
ware produced (Raymond, 1999a; Vixie, 1999). With horror-stories

of traditional software engineering projects gone awry looming in the background
this is a tempting argument, but not everyone is that easily convinced. A closer
inspection of this claim reveals a firm belief that open source projects have fewer
defects, better performance, and improved security over closed source software
(Wheeler, 2007).

These advantages are attributed to the somewhat untraditional approach to release-
management. Instead of waiting months or even years between each release, open
source projects strive to provide users with fresh builds of the software — often dai-
ly/nightly, or at least weekly. This is meant to foster the effect first described by
Eric Raymond in his essay The Cathedral & The Bazaar, that “Given enough
eyeballs, all bugs are shallow” (Raymond, 1999a, p. 30).

Later coined as Linus’s Law, this quote refers to the idea that if enough people
can study the source code you are bound to find and fix all the lurking bugs —
because each person will inadvertently test a slightly different code-path than the
next. This massively distributed debugging-process has been argued to be one of
the key reasons for the quality of open source software, because bugs that would
otherwise linger deep inside the code are found and fixed by helpful users of the
software (Raymond, 1999a; Dibona et al., 1999; Feller and Fitzgerald, 2000).

While it is hard to dispute the success of projects like Linux and Apache (Miller
et al., 1995; Halloran and Scherlis, 2002; Reasoning, 2003), and studies have
found user-participation in open source projects to be very high (Zhao and El-
baum, 2003), research into the nature of this participation — providing empiri-
cal evidence for Linus’s Law and how it affects code quality — is limited at best
(Michlmayr et al., 2005).

At first glance the eyeballs-analogy may seem beautifully ingenious: you just add
thousands of bug-catching users to the assembly-line, and they will proceed to
fix and check oft all the bugs as they pass by — leaving a bug free product at
the end of the line. But, from a knowledge perspective this description seems
rather simplistic and naive — almost like an echo from the early days of knowledge
management when the solution to every organizational problem was to centralize
the knowledge of all the workers in huge data centers and databases. In both
cases the subject matter is assumed to be factual and explicit — something that
can be transfered and stored easily. It is my convictions that this is not the case,

1.2 Project Scope

and that there is a lot more to open source quality assurance than just throwing
thousands of eyeballs at the code. Unfortunately, without knowing more about
the underlying mechanisms, and how they play out in practice, it is very difficult
to draw any conclusive lessons for improvement of the open source process, or
for adoption in the wider software community.

Based on this dilemma I propose the following problem definition:
What are the day-to-day quality assurance practices of open source projects?

This definition is further broken down into three main research questions:
RQI: How do developers conceptualize and classify the nature of bugs?
RQ2: How is peer-reviewing employed in the quality assurance process?
RQ3: How are communication-tools affecting quality assurance practices?

The existing literature on quality aspects of open source development has so
far been largely focused on surveys (Zhao and Elbaum, 2000, 2003; Halloran
and Scherlis, 2002; Michlmayr, 2005; Porter et al., 2006) — with one notable ex-
ception, namely the case study by Mockus et al. (2002) of development practices
in Apache and Mozilla (Shaikh and Cerone, 2007).

My goal is to add to that body of knowledge by doing an interpretive case study of
two open source projects — Amarok and Gallery — over the course of 12 months.
The choice of lesser known projects like these two follows in the footsteps of
similar studies (Monteiro et al., 2004) — deemphasizing the heroic success-stories
and instead bringing out the day-to-day activities that keeps the wheels turning.
Using direct observation — combined with data mining of online sources such as
mailing lists and bug trackers — I aim to provide rich descriptive accounts of the
day-to-day quality assurance practices in these two projects. Hopefully I will be
able to answer some of the questions above, and perhaps challenge some of the
slogans and mantras of blind Raymondism (Bezroukov, 1999) in the process.

1.2 Project Scope

PEN SOURCE has been studied from a wide range of fields, including

psychology (Hertel et al., 2003), business management (von Krogh

et al., 2003), information systems (Bergquist and Ljungberg, 2001),

and software engineering (Mockus et al., 2002). Due to the time constraints

of the Master’s programme, I have limited the scope of the literature review to

include software engineering and information systems. This excludes computer-

supported cooperative work, a field adjacent to software engineering, which could
also have been explored.

Empirically I have limit the number of cases to two, and my data collection scope
to the period from January 2006 to August 2007 — to not get overwhelmed by
the amount of data. I also decided against participating heavily in the projects

Software Quality in the Trenches

under study (despite it being a tempting challenge), due to the risk of ’going
native’ and ending up with badly prepared action research instead of a solid case
study.

Access to the various communication-mediums and tools for the two projects was
for the most part open — except for two cases where I was not granted access. The
first was the developer-only IRC channel for the Amarok project (described fur-
ther in Chapter 5), and the other was the security-related mailing list for Gallery
project (which the developers preferred to keep private). Restricted access is a
common problem when adopting the role of an outside observer instead of par-
ticipating actively in the project (Walsham, 1995) — but all things considered I
believe I observed the majority of the picture.

1.3 Report Outline

HE BODY of this thesis is divided into three main parts: theory, case study,
and analysis. Each part is in turn divided into a small number of chapters
by topic. Following the advice of Cornford and Smithson (1996) each

chapter starts out with a brief introduction to what the chapter will cover, before
moving on to the actual content. A short summary has also been added to some
of the chapters where appropriate, to recapitulate key points.

The chapters are as follows:

Chapter 2 presents a systematic overview of open source, ranging from history
and well known projects to licensing, motivation, and development practices.

Chapter 3 considers software quality from both the traditional software-engineering
approach, and as peer-reviewing in open source projects.

Chapter 4 shows how knowledge management has evolved in the past two decades,
and introduces important concepts such as tacit knowledge and communities of
practice.

Chapter 5 describes the research process, from start to finish, and evaluates the
end result using the principles of Klein and Myers (1999).

Chapter 6 gives an introduction to the two case study projects, Amarok and
Gallery, focusing on history, organization, and development practices.

Chapter 7 presents excerpts from the data material, illustrating interesting find-
ings and situations from the two cases.

Chapter 8 analyses observations from the two cases based on the problem defi-
nition and research questions presented in this chapter.

1.3 Report Outline

Chapter 9 concludes the thesis and suggests topics for further study.

In addition, Appendix A contains full verbatim copies of the open source licenses
discussed in Chapter 2, for quick reference.

Part |

Theory

Chapter 2

An Overview of Open Source

From a distance open source may seem both mysterious and contradicting. Why
on earth are people dedicating their precious time to produce software that has
no apparent marked value, openly cooperating with developers around the world,
and still being able to produce quality software? This chapter aims to lift the veil
of open source and answer these questions.

We will start off with the history of open source, before moving on to core issues
such as licensing and motivation. Along the way we will introduce some well
known examples of open source projects, to get some initial context. Then we
will discuss some of the notable characteristics of open source development, such
as the approach to debugging and release management, before finally closing
the chapter with a look at how open source can be leveraged from a business
perspective.

2.1 Historical Background

HE HISTORY of open source can be traced back to the 60s and early 70s,
with the early mainframe hackers!. These people were not criminals — like
the word hacker is used today — but employees of respected scientific or-

ganizations like MIT, CMU, Standford and Xerox PARC, working on everything
from Al to the early version of the Internet. Back then there was no such thing
as commercial off-the-shelf software, so if you needed a job done you usually had
to write the software yourself, or ask some wizard to do it for you. The source
code for these applications was happily shared between friends and colleagues —
basically because there was no intensive not to do it.

That all changed drastically in the early 80s due to the commercialization of the
IT industry. Suddenly doing AI research and selling Unix distributions was hot
business, and people found themselves increasingly left with binary only version of

A hacker in this context refers to a programmer who uses clever tricks to solve an issue based on a
solid understanding of the problem (Hannemyr, 1998).

10

Software Quality in the Trenches

the software they purchased. This was bad news for all the computer savvy hackers
around the world, because now they had to go through the official vendor each
time a piece of software broke down or had an annoying bug — instead of just
fixing it themselves. The situation was complicated by software vendors often
spending considerable time fixing a bug (just like today), or ignoring the request
because the user base it affected was too small. Some people even argued, on
ideological grounds, that the lack of source code was a violation to the freedom
of the people using the software.

One of these people was Richard Stallman. As a
former researcher of MIT’s Al lab he had seen co-
worker after co-worker being hijacked from the lab
to well paid jobs in the growing IT industry. His
fear of a world without sharing of source code was
so strong that he decided to take it upon himself
to provide an alternative. In his mind software
should be free, as in freedom to run the software
for any purpose, study it and adapt it (which re-
quires source code), and redistribute it to anyone
you want, even with changes applied.

These principles were formulated into the now well
known GNU General Public License, which uses
copyright law to secure these freedoms. The cru-
cial part of the license that makes this possible is
the term that states that any changes to the software also have to be distributed
under the GPL. This effectively removes the risk of someone taking a GPL’ed
software package and closing it for the rest of the world, because once you license
something under GPL it will never loose that license. While this may seem a bit
strict it is worth noting that the GPL says nothing about whether or not the soft-
ware can be distributed for a fee — so charging 100$ for a download, or 10008
for a physical CD, is perfectly legal (although perhaps frowned upon) as long as
you provide the source code too.

Figure 2.1: Richard Stallman

The first step in Stallman’s plan to create an ecosystem consisting entirely of free
software was building a platform for all the other software — ie. an operating
system and its system utilities and compiler. But he was soon faced with the
paradox that if he was to develop a new operating system he had to do it on an
existing platform. In a rare moment of pragmatic clairvoyance he realized that
for the operating system to gain any momentum it had to offer something to its
users right from the start. So, Stallman decided to make the OS compatible with
Unix — the hacker-OS of choice at the time. That way people could work on
Unix while developing software for the new free operating system. His plan was
to build the support tools first, and then finish off with the OS kernel once all
the support applications were in place. The new OS was playfully named GNU,
which is a recursive acronym for “GNU’s Not Unix” (Stallman, 1985).

Of the more notable tools Stallman created back then is the text editor Emacs,
and the C-compiler gee. Both are in widespread use today, and gcc is the standard

2.1 Historical Background

11

compiler on almost any platform — apart from Windows, where it’s only second
to Microsoft’s own compiler.

2.1.1 The Free Software Foundation

As Stallman’s ideas about free software spread, other people joined his efforts, and
in 1985 they decided to form a non-profit corporation called the Free Software
Foundation (FSF). This was supposed to be an umbrella-organization for future
GNU development, and they also hired internal programmers — financed though
the sale of cassettes and CDs containing free software. This is a good example
of how Stallman doesn’t oppose charging for distribution, as long as the software
distributed is free.

Following the founding of the FSF the GNU development really took off, and
by the late 80s most of the essential libraries, system utilities and user applica-
tions were done. But one important part was still far from being complete: the
operating system kernel, where the real voodoo happens. Development of the
HERD-kernel, as it was named, was delayed over and over again, and it actually
didn’t boot properly until the year 1994! Even today there has still not been any
release of a complete, working, version of the kernel, and most of the develop-
ment has stalled.

2.1.2 The Rise of Linux

So, if an operating system needs a kernel to even
boot, and the development of HERD never re-
sulted in anything usable, how can I be typing this
thesis on a computer running a free software ker-
nel? The answer lies in a quirky Finish computer
science student named Linus, who in 1991, upset
about the lack of a working free kernel, set out to
write his own, inspired by Andrew Tannenbaum’s
Minix and SunOS (Torvalds and Diamond, 2002).

For Linus this was just as much an exercise in doing
software architecture as it was the need for a free
operating system, but luckily he decided to release
the kernel under a GPL-license, which meant that
other people could benefit from his efforts. His
newsgroup post about the release is now a classic quote, and quite remarkable
seen in light of todays situation:

Figure 2.2: Linus Torvalds

“P'm doing (just a hobby,
won’t be) [...] it probably never
will support anything other than AT-havddisks”

12

Software Quality in the Trenches

Linus’ release sparked an immediate interest from the many GNU developers
around the world, who hungry for a complete free operating system quickly com-
bined the existing GNU applications with Linus’ kernel into what is now known
as GNU /Linux — or Linux for short. This adoption was probably one of the rea-
sons for the stalled HERD development, since the Linux kernel was just as free,
and actually worked. The fact that GNU ended up with “someone else’s kernel”
has always been a soft spot for Stallman, who consequently refers to Linux as
GNU /Linux — to flag his contribution.

2.1.3 The Open Source Rebels

Despite the success of Linux and other free software projects not everyone ap-
proved of Stallman’s ideological approach. Especially the term fiee software was
seen as problematic, because the average Joe, and the software industry in partic-
ular, read this as a demand for software at no cost, or gratis. This made it difficult
to “sell” the idea of free software to companies writing commerical software, and
free software was by large seen as a direct threat to the established software in-
dustry.

One of the people worried about the direction of
the free software movement was a guy named Eric
Raymond, who in 1997 wrote a classic essay ti-
tled The Cathedral and the Bazaar. In the essay
he described some of the mechanisms and practi-
cal implications of developing software in the spirit
of free software. He argued that distributed and
open development of software was superior to the
old model of “building cathedrals”, and used Linux
(which had gained a lot of momentum by then) and
his own project fetchmail as examples.

The essay made a huge impact in the software com-

Figure 2.3: Eric Raymond ~ munity, partly because he was the first person to put

into words all the positive effects everyone was see-

ing. One company who took particular notice was Netscape Communications,

who had played with the idea of releasing their web browser Netscape Communi-

cator as open source. Their problem was how to do it successfully, so they hired
Eric Raymond to help them make the move.

The collaboration resulted in the release of Mozilla (the browser engine) as open
source in March 1998 — an event described in The Economist as the “computer-
industry equivalent of revealing the recipe for Coca-Cola” (Economist.com, 1998).
But Netscape didn’t use Richard Stallman’s GPL license for their release. Instead
they chose a license created by Eric Raymond and Bruce Perens, where the “vi-
ral” clause about derived works having to use the same license was removed. This
effectively meant that anyone, even Microsoft, could copy the source code, make

2.1 Historical Background

13

modifications to it, and then release everything as a closed source project — much
like proprietary software.

This was a huge shot to Stallman’s idea of keeping software free for all eternity,
but also understandable in light of Raymond’s wish to promote open source as
more than an ideology. Suddenly free and open source software was also a tool
for improving the software development process. At the time Netscape was given
a lot of heat for what they did, and most software houses thought they were mad,
but time has proved them right, and Mozilla (better known as Firefox to end
users) is today a highly successful browser with a large community support.

In the culmination of the Mozilla release Eric Raymond and Bruce Perens formed
the Open Source Initiative as a way to promote the new way of thinking of free
software. They formalized the term “open source” by creating a meta-license
which described what a license had to include to be an “Open Source license”.
This meta license was based on the same principles as the Mozilla release, so not
only does the GPL and other “viral” licenses conform to it, but also more relaxed
licenses like the BSD license and the original Mozilla license.

The new term quickly grew popular, and is today the most used term for this
phenomena (Google.com, 2007). Stallman did of course oppose of the new
term, even though he admitted that the use of the word “free” was problematic,
and has today completely disassociated himself from the term. It is tempting to
interpret some of his frustration as coming from no longer being the guru on free
software, and having his operating system baby “stolen” by Linus Torvalds and
Linux, but this is something he has only partly admitted to.

Because of the obvious clash of camps and feeling surrounding these terms,
the academic community has chosen to use the neutral term Free/Libre /Open
Source Software (FLOSS) when describing the phenomena. This incorporates
both the notion of freedom (/bre is French for freedom), and the focus on open-
ness of the source code. For the rest of this thesis I will mix and match these
terms for the sake of language flow, but without adding any deeper “political”
meaning to it than what the FLOSS term does.

MY ROOM AND BRING IT OME TQ ME WHEN ITS DONE I'lL MAKE YOU REGRET IT.

I'LL DO THE WASHING UP IN YOU GLYS WANT IT WASHED, YOU TWO WASH UIP OR, BY THUNDER,
WATCH YOUR STEP.

[of
DOWN WHEN IT'S FINISHED AND I'LL TELL YOU IF IT'S CLEAN

Figure 2.4: The personalities of the three FLOSS gurus are often subject to jokes in
the community, as seen in this comic titled “Everybody loves Eric Raymond”.

14

Software Quality in the Trenches

2.1.4 Open Source and Free Software Today

In recent times open source has become somewhat of'a buzz word, and marketing
departments around the globe have realized that associating with the term brands
them as “one of the good guys”. This has of course both positive and negative af-
fects on the community — exchanging increased awareness for a possible decrease
in credibility — but most people see through the FUD? of the big companies and
recognize the ones who are truly working in the spirit of free software.

Many companies, especially hardware vendors like IBM and Sun, have realized
that supporting free software helps selling their platform, because including free
software is an added bonus for their customers. Others have based their business
model around professional services — supporting well known FLOSS software
packages. And of course you have the skeptics, usually large traditional software
houses, who see free software as a threat to the whole business. Microsoft has al-
ways been the bad boy of these, much thanks to an internal memo that was leaked
where Microsoft employees discuss how they best can withstand the competition
from open source: “OSS poses a direct, short-term revenue and platform threat to
Microsoft, [and] the intrinsic parallelism and free idea exchange in OSS has ben-
efits that are not replicable with our current licensing model [...]” (Catb.org,
1998).

Despite these forces work-

. . . Project Type License
Ing aganst 1t, Qpen sourFC Firefox Web browser Mozilla Public License
has become a major player in Linux Operating system GNU GPL
the software ﬁCld, and many Eclipse Development IDE Eclipse Public License
successful projects have been Apache Web server Apache License
realized (Reasoning, 2003). g_penOff'ce g':'cte to:ts éii"étel_sser oL

. . imp oto editing
Table 2.1 to the right lists WlE Media player N BT
some of the more well known 0GG Vorbis ~ Sound codec Public domain

projects, including their type
and the licenses they employ. Table 2.1: Examples of some open source projects

2.2 Licensing of Open Source Software

NE OF the few obvious factors of why open source has not crumbled or
eroded from the constant pressure from big software companies (many
would say the opposite has happened) is the use of open source licens-

ing. Pioneered by Richard Stallman, the GNU General Public License and similar
texts have successfully ensured that the spirit of open source has been passed on
through code for the past 30 years. We will now take a look at the legal mech-
anisms that makes this possible, and study some of the more popular licenses in
detail.

Fear, uncertainty, and doubt — a sales or marketing strategy of disseminating negative (and vague)
information on a competitor’s product.

2.2 Licensing of Open Source Software

15

The majority of this section is based on reading the excellent book Understanding
Open Source and Free Software Licensing by Laurent (2004). For quick reference,
the full text of the individual licenses can be found in Appendix A, but are also
available online from

2.2.1 Copyright Basics

Copyright is, as the word suggests, the right to make copies of a given artistic
or intellectual creation, or work. More specifically it is a set of exclusive rights
regulating the use of the creation — such as the right to display it, modity it,
or commercially exploit it. Because copyright is protected by law it does vary
from country to country and region to region, but the law has been consoli-
dated through agreements such as the World Trade Organization and the Berne
Convention, and is generally considered a universal law.

One does not have to register, or in any way mark the work for the copyright
to come into effect. The copyright is automatically attached to every original
expression of an idea — for example as I’m writing these words. If I were to draw
a drawing on a napkin of a dog with 5 legs it would probably not be considered
art, but would still be subject to copyright law. Still, it is customary to add a
note such as “Copyright © 2007 Tor Arne Vestbg” to the work, to really signal
that you claim copyright (but again, is is not mandatory). The copyright usually
expires 50-100 years after the death of the author, and will then go into public
domain, which means free for all to use as they see fit.

Copyright is often confused with patents, which is slightly different beast. The
first deals with the expression of an idea — for example “pink dog with 5 legs,
acryl on canvas, 50x50cm” — and there can be several other expressions, by other
artists, as the copyright only regulates one particular expression. Patents on the
other hand regulates the actual idea, and prevents anyone from commercially
exploiting this idea, independently of the medium. If I had a patent on dogs
with 5 legs, I could legally prevent other artists from painting such dogs, singing
about them, or even breeding one. Because of their more general nature, patents
require a strict registration process and do not last as long as copyrights. In recent
years it has become more and more evident that the patent system is not suited
for the digital age. It has long been accepted that you cannot patent scientific
truths or mathematical expressions of it because they are the building blocks for
everything else, but there is a growing trend — especially in the United States —
to approve software patents that are so general that they span much more than
their supposed intent. Needless to say, allowing patents such as “a method for
digital transmission of data”, where the “method” is actually just copying bits in
memory, would be disastrous for further innovation in the software field. We will
return to a more thorough discussion of software parents in Section 2.2.5.

Finally, related to the two concepts copyrights and patents, are trademarks, which
regulate the use of logos and brand names. Since trademarks have a small rele-
vance to open source licensing they will not be discussed further in this thesis.

http://www.opensource.org/

16

Software Quality in the Trenches

Copyright Patents Trademark

Original works of expression Ideas and inventions Brand identity

Protects against commercial Protects against commercial Protects against commercial
exploitation of original works exploitation of ideas and exploitation of brand names,
such as paintings, novels and inventions without the authors logos, or other identifiers of
source code without permission. tradable goods.

permission.

| paint a dog. | can stop others I invent a hammer which never | brand my hammer

from displaying, copying, or misses. | can stop others from “NailMaster3000™". | can
otherwise commercially producing and selling any kind prevent anyone from naming
exploiting my painting. of hammer based on my idea. their products anything similar.

Table 2.2: Comparison of intellectual property protection mechanisms

When buying a piece of proprietary software, for example the latest Microsoft
Office3, it comes with a Zicense. The license states that Microsoft claims copyright
for the work (the software), and then proceeds to list the rights and obligations of
the user. Most of the time the only right you have as a user is to run the software —
sometimes only at one of your computers at a time. Your obligations includes not
copying the software, not modifying it, and not sharing it with others. Software
licenses often include other terms, such as warranties, disclaimers, and prohibition
on reverse engineering, but these terms are part of the contract between you and
the software company, and is not protected by copyright law.

When downloading or buying a piece of open source software the situation is
similar, but at the same time very different. Open source software also comes
with a license, and like proprietary licenses it starts off by claiming the copyright
of the work, but it then proceeds to give the user almost any right. You can of
course run the software, but you can also study it, modify it, and share it with
others. The only obligation opposed on the user is usually that any redistribution
of derived works are licensed under the same license as the original, which is a
strong contrast to the proprietary license. This way of using copyright law as
a tool to turn the situation around to benefit the user instead of the author is
playfully called copyleft, marked by the symbol o.

Table 2.2 above compares the three mechanisms of intellectual property protec-
tion discussed in this section. We can clearly see how copyleft borrows heavily
from copyright — apart from the ‘minor’ detail that the protection is used to share
and give away the artistic expression for free.

2.2.2 The Open Source Definition

As described earlier in Section 2.1.3 the Open Source Initiative formalized the
basic ideas of opens source licensing into a meta license, which describes what a
license has to include to qualify as an open source license. The definition serves
as a certificate, allowing companies and others to brand their software as “Open

“Microsoft Office is a trademark of Microsoft Corporation.” This notice is required when naming
brands under trademark, and the owner of the trademark is required to sue anyone not upholding
this notice or else they will lose the trademark. That’s why you see these disclaimers everywhere —
even in this thesis which will never be read by a Microsoft lawyer.

2.2 Licensing of Open Source Software

17

Source” knowing that since the license they use is OSI approved their software is
also in line with the spirit of open source. As such, the Open Source Definition is
a good introduction to the principles of open source licensing, and I will now go
through and comment the points of the license before moving my discussion to
details of the individual licenses.

The Open Source Definition (OpenSource.org, 2006a) has the following 10
points:

1. Free Redistribution

This point ensures that anyone can share the software with the rest of the
world, also called distribution. It is important to note that the word “free”
does not refer to price, but to liberty. In fact, you are completely free to
charge people for the distribution of the software, and many companies
have this as their primary business model.

2. Source Code

Any distribution of the original software has to include the source code, or
make the source easily available in some other way, so that changes to the
software is possible. The source code has to be in a readable and practical
form — not obfuscated or mangled beyond human understanding.

3. Derived Works

Not only must the source code be available, as ensured by the previous
point, but modifying and distributing the modified code must be allowed.
The point does not say whether or not the modifications have to be released
under the same license as the original software, but it does allow such a
requirement too.

4. Integrity of The Author’s Source Code

This point permits the license to include a moderation of the previous point,
requiring modifications and derived works to be clearly separated from the
original author, for example by distributing them under a new name.

5. No Discrimination Against Persons or Groups

By preventing discrimination against persons or groups the open source
definition ensures that any open source license is in line with the wider
philosophy of open source — openness and sharing. This point would for
example prevent a license from limiting the use of the software to only one
side of a heated debate, such as abortion clinics vs. abortion activists.

6. No Discrimination Against Fields of Endeavor

This point is related to the previous, but focuses on the context of the
software’s usage. For example does this point ensure that the software can
be used both in volunteer organizations as well as in businesses.

18

Software Quality in the Trenches

7. Distribution of License

This point ensures that the license is of such a nature that it can be redis-
tributed without requiring any modifications to be valid. This makes open
source licenses easy to use, as the only action required of the user is to
include a direct copy of the license with any new distributions.

8. License Must Not Be Specific to a Product

This part of the open source definition exists to ensure that the license does
not limit distribution to a specific software vendor. If the software has an
open source license anyone can distribute it, so for example Company A
can not stop Company B from making money selling the same software as
Company A just because Company A was the first one to do so.

9. License Must Not Restrict Other Software

This point prevents the license from restricting and regulating software writ-
ten by other authors. This could for example happen if the software was
released as part of a larger software package, where the license stated that
all the software in such a package had to be open source software too. Such
a restriction is not permitted by the Open Source Definition, so an open
source license would have to allow distribution regardless of context.

10. License Must Be Technology-Neutral

Finally, the last point relates to that of Distribution of License, ensuring
that the license is transferable in any medium, and not be dependent on
technologies such as digital signing, or on-line acceptance forms.

As we have seen in the points above the Open Source Definition covers most
issues that could affect the free and open distribution of software. The website
of the Open Source Initiative lists a whooping 58 licenses that conforms to the
OSD (OpenSource.org, 2006b) — but only a handful of these are for general use.
Figure 2.5 bellow lists some of the more popular licenses:

80 % —
i 66 %
60 % —
40 %
20% —
1 58% 6.5%
: 1.6 % 1.4 %
0% —L—1 ' 0 - ' '
BSD MIT/X Apache GPL LGPL

Figure 2.5: Distribution of licenses at Freshmeat (Freshmeat.net, 2007)

We will now take a closer look at these licenses, and see how they compare to the
Open Source Definition, starting with the most basic ones.

2.2 Licensing of Open Source Software

19

2.2.3 The BSD, MIT/X and Apache Licenses

The BSD license was one of the earliest open source licenses. Although created
long before the Open Source Definition, it does qualify as open source software.
The license was originally used for the Berkeley Software Distribution — a UNIX
distribution created by the University of California, Berkeley — but is has later
been used in numerous other projects and is still widely used today.

One of the reasons for its success is ironically the relaxed attitude towards propri-
etary software. The license allows people to incorporate the code in proprietary
projects, and does not require that derived works be distributed as open source
(in accordance with point 3 of the OSD). In effect, code licensed under a BSD-
license can go “closed-source” at any time.

One example of this is how the TCP/IP-stack in Microsoft Windows is based
on Berkeley UNIX, but without any of Microsoft’s improvements leaking back
to the open source world. The laxed attitude of the BSD license may seem puz-
zling, as sharing is part of the spirit of open source, but must be seen in light
of how Berkeley UNIX was developed: as a research project with hopes to be
commercialized, and funded by U.S. Government grants.

The original BSD license had a clause that required any advertisements for soft-
ware licensed under the BSD license to include the text “This product includes
software developed by the University of California, Lawrence Berkeley Labora-
tory”. This may have made sense for Berkeley UNIX, but not for other projects.
On top of that people started adding their own version of this clause, causing
a nightmare every time you wanted to advertise something that maybe included
some BSD-licensed software. As a result the clause was removed in an amendment
in 1999.

The MIT /X-Windows license is very similar to the revised version of the BSD
license (with no advertisement clause), and is as basic as you can get while still be-
ing open source. The license doesn’t even include a statement of non-attribution
(point 4 in the OSD), meaning that the original author’s name can be used to
promote derived works.

The Apache License on the other hand does include such a non-attribution clause,
and also requires the original author to be credited, but is otherwise virtually
identical to the revised BSD license.

2.2.4 The GNU GPL and LGPL

If the BSD license is relaxed and business-minded then the GPL is its strict and
ideological cousin, who does not see kindly on mixing proprietary and open
source software. The GNU General Public License (GPL) was drafted by Richard
Stallman and the Free Software Foundation to be used for the GNU project and
other free software projects, and is the most widely used open source license today
(see Figure 2.5 on the opposite page).

20

Software Quality in the Trenches

The main point separating the BSD-family and the GPL-family is that the GPL re-
quires @/l derived works to be licensed under the GPL too, and does not permit
the mixing of GPL-code and proprietary code. This is why the GPL is some-
times described as viral, because it forces anyone who modity or build upon GPL-
licensed code to also license their software under the GPL if they release it. The
purpose is to keep software free — forever — something that it has succeeded in
doing for several decades.

The GPL also has a half brother named the GNU Lesser General Public License
(LGPL). This license was originally named the Library GPL, but was renamed
because of confusion over its purpose. It differs from the GPL in one important
point, and that is that it allows static and dynamic Lnking with proprietary soft-
ware. What this means is that proprietary software can build upon code released
under the LGPL — but only by referencing it in its original form. Any changes to
the LGPL’ed code will trigger the part of the license that requires redistribution
under the same license.

This loop-hole might seem odd coming from the Free Software camp, but the
rationale makes perfectly sense. If a free platform (such as Linux) has a library
which provides functionality that is not available on proprietary platforms like
Windows, then the library is a strong incentive to switch operating system, and
should be licensed under the GPL. But if the library is not unique, and only
replicates something that already exists on competing proprietary platforms, then
there is nothing to gain from keeping it strictly GPL. In that case there is more
to gain from allowing proprietary software to use the library, drawing proprietary
software to the platform which will fill the gaps until open source replacements
can be made.

An example is Adobe Acrobat Reader. If the Linux system libraries (like the GNU
C library) were GPL, Adobe would either have to open source their Acrobat
software (not very likely), or not deliver Acrobat for Linux at all (which would
be a disadvantage for Linux). Instead, since the C libraries are LGPL, Adobe can
keep the source closed, and the Linux community can enjoy a PDF reader while
working on their own open source version (Gnu.org, 1999).

Considering that both the GPL and the LGPL are strict on how the licensed
code can be used and reused in derivative works it is interesting to note that it
also limits what kind of code can be merged back into GPL-projects. If you hold
the copyrights of the to-be-merged code you can of course re-license it as GPL
and then include it in a GPL-project. But if the code is licensed under another
open source license you might not always be able to combine the two without
breaking one or both of the licenses.

That’s where the notion of GPL-compatibility comes into play. Only a limited
number of open source licenses are compatible with the GPL, and it is generally
recommended to not use non-compatible licenses because it makes merging code
harder. One example of a license which is not GPL-compatible is the Apache
license, due to some fine print about patents. Another is the original BSD license,
which conflicts on the point of the advertisement clause.

2.2 Licensing of Open Source Software

21

A summary of the five licenses discussed in this section can be found in Table 2.3
below. The first three — the BSD, MIT /X, and Apache licenses — are often grouper
together under the name permissive licenses, because they all allow combining
with proprietary software, and changes can be kept closed source. The latter two
— the GPL and LGPL - are known as restrictive licenses, because they are rather
strict about how the code is re-used.

Requirement/characteristic BSD MIT/X Apache GPL LGPL
Can be combined with proprietary software v v v = v
Changes to the source must retain same license = = = v v
Must credit the original author’s work - - v - -
Protects integrity of original author v = v = =
Can be combined with GPL software v v = v

Table 2.3: Comparison of OSl-approved open source licenses. Note that only the mod-
ified BSD license is GPL compatible, and that the LGPL only allows combining with
proprietary software through linking.

2.2.5 Software Patents

The patent system was originally created in Italy, back in the late 15th century, to
accommodate mechanical inventions. It then spread to England and further on
through colonization. The United States got their Patent Act in 1790, and has
since been one of the most aggressive patent regimes in the world. A patent is only
governed by national laws, so companies usually register patents with multiple
patent offices.

Once a patent has been approved it is enforced through civil lawsuits, and these
can get fairly messy. The owner of the patent usually seeks monetary compensa-
tion for the infringement, but also has to prove to the court that the patent was
in fact patentable in the fist place. The infringer may point to prior art, showing
how the invention was not novel when patented, or argue that the patent is too
obvious, or not even patentable subject matter (scientific theories, mathematical
methods).

Another way to fight a law suit is to bring up counter-patents that the original
patent owner might infringe on themselves. Such a deadlock situation usually
results in a settlement where both companies agrees to not sue each other. This
practice has led to what can be best described as patent-harvesting — an arms race
where companies patent anything and everything (and even buy patents from
other companies) as to have a large ‘portfolio’ of patents to use for counter suits
in case they are sued themselves (Fogel, 2005). Many companies also use these
portfolios to bully smaller companies, who don’t have the resources to regis-
ter and keep track of possible patent infringements. Such tactics can hardly be
described as good sportsmanship, and far from the spirit of the original patent
system.

One area where this situation is particularly noticeable is in the software field,
where software patents are a big controversy. Many would say that software in-

22

Software Quality in the Trenches

ventions falls under non-patentable subject matter, along with scientific theories
and mathematical methods, but the United States and many other countries al-
low software patents. This has resulted in patents such as the infamous Ama-
zon ‘l-click patent’, where Amazon got the exclusive right to let their customers
make purchases with a single click. This may seem too obvious a technique for
patenting, but it was nevertheless granted, and 20 days later Amazon filed a law-
suit against Barnes and Noble, one of their biggest competitors. After a cou-
ple of rounds in the courts Barnes and Noble was found to be infringing on
the patent, and had to remove their “Express Lane” shopping cart. The ruling
spawned a massive boycott of Amazon, led by the Free Software Foundation,
and it became a symbol of how damaging software patents can be. Interestingly,
Paul Barton-Davis, one of Amazon’s founding programmers, has later referred to
the patent as “a cynical and ungrateful use of an extremely obvious technology.”
(Equalarea.com, 1996).

Today, 8 years later, software patents are as controversial as ever, especially due
to the patent-debate in Europe. So far the EU has been reluctant to grant soft-
ware patents, and for example rejected the Amazon 1-click patent, but they have
granted other similar patents, and there are strong forces lobbying for opening
up the legislation. There are also interest groups who work against the pro-
posed changes, arguing that software patents will favor large corporations over
the smaller, and pointing to the danger of granting patents that are valid for 20
years in such a fast-moving field (NoSoftwarePatents.com, 2007). The vast ma-
jority of programmers, open source or not, are also against software patents and
think they should be abolished (Burton, 1996).

The many problems with software patents can also be felt on the open source
community. In contrast to copyrights and trademarks, which can be solved by
rewriting the implementation or changing the name, patents are so general that
when faced with a lawsuit the only realistic option is to remove the feature all
together. Fighting back using expensive lawyers is not really an option for the
vast majority of open source projects. This has caused projects to steer away from
known patented algorithms, even if these are the only way to solve a problem.
The situation is also preventing hardware vendors from opening up their drivers,
which would benefit the Linux community, because they are afraid that competi-
tors will find reasons, if if ever so minor, to sue them for patent infringements.

The open source community has tried to fight back by including clauses in the
licenses that discourages authors to patent their inventions. One example is the
GPL, which has a clause that explicitly states that patent infringements can not
invalidate the terms and obligations of the GPL. This means that any contradic-
tions can only be solved by not distributing the software anymore. The Apache
license takes this further by requiring that the distributor gives an amnesty for
any patents they hold which can be covered by the code. The interesting part is
that if for some reason company A decides to break that amnesty by suing com-
pany B, their own amnesty from other authors is automatically revoked, meaning
that they would expose themselves from lawsuits from company C and D. Similar

2.3 Examples of Open Source Projects

23

tricks are used in the revised GPL, version 3.0, but as the license is currently only
a draft we have yet to see the effects of this change.

The future of software patents and open source seems uncertain — especially
thanks to the FUD of big players like Microsoft, who recently made a statement
saying that anyone using Linux was bound to be infringing one some kind of
Microsoft patent. This has provoked the Linux community to launch the cam-
paign “Show us the Code”, pressing Microsoft to step up and detail the patent
infringements. So far Microsoft has ignored the challenge, but unfortunately for
OSS-proponents this particular incident is most likely a sign of things to come.

2.3 Examples of Open Source Projects

HERE ARE literally thousands of open source projects, and more are started
every day. The open source website Freshmeat lists over 40 000 active
projects, and the mother of all open source repositories SourceForge

hosts a whooping 162 855 projects (SourceForge.net). This includes everything
from large user applications and operating systems to small tools, utilities and
libraries. Many of them are Linux centric, and make up the Linux operating sys-
tem, while others are cross platform, or written for Windows or Mac specifically.
To gain a better understanding of the wide range of applications available I will
now present three well known examples.

2.3.1 Linux

The Linux operating system is by far the best known
open source project today, but talking about Linux
as one entity is imprecise at best. The project
actually consists of thousands of sub-projects and
packages with varying licenses (most of them open
source) — together forming what is known as a Linux
distribution. At the heart of any Linux distribution
is the Linux kernel, which is the part that does all
the low level gritty stuff like managing process time Dot

and allocating memory. This is the part that Linus

Torvalds originally created, and any reference to Linux as an operating system
usually means the Linux kernel plus a variety of user applications.

As described in Section 2.1.2 Torvalds created the Linux kernel in 1991 as a
hobby project, because he wanted to run something similar to the university
SunOS computers at his home workstation. Version 0.01 was released in Septem-
ber 1991, and by December it had reached version 0.10. The kernel was far from
being usable for mission-critical applications like web-servers — but it worked. As
more and more developers joined his efforts the project grew fast, and in March
1994 they released version 1.0 — a complete replacement for UNIX.

24

Software Quality in the Trenches

Because of the increased attention following the frequent releases Linus Torvalds
had to accept some criticism for his choice of architecture — among others from
the creator of Minix, Andrew Tannenbaum. The argument was that a monolithic
kernel (one big piece) was outdated and would not work very well. Many would
say time has proven this wrong. Today millions of computers are running Linux
(Li.org, 2007), and the platform has become a multi-billion dollar industry. Big
businesses are investing heavily in hardware infrastructure running Linux; desktop
users are catching on, and even my cell phone runs Linux. It’s probably safe to
say that Linux has much of the credit for the success of open source.

2.3.2 The GIMP

Another popular open source program is the photo
and image editor The GIMP - short for General
Image Manipulation Program. Image editors are
used both by photographers for digital dark room
@ cditing and by graphic artists for creating original
art or touching up existing works. The industry
work-horse in this field has always been the propri-
etary software package Adobe Photoshop, but to this day the only supported
platforms have been Mac and Windows. This is where The GIMP tries to provide
an alternative.

The project was actually started as a last minute delivery in a course in compiler
technique. The authors, Peter Mattis and Spencer Kimball, who at the time were
attending Berkeley, wanted to do something fun instead of the boring class exer-
cises, so they started writing an imaged editor. As the project grew they leveraged
other relevant courses as an excuse to add new features, and nine months later, in
February 1996, they released the first public version. The release was accompa-
nied by a public mailing list, which helped spawn a massive user following. One
of these users was Larry Ewing, who used The GIMP to draw the now famous
Linux penguin ‘logo’ depicted in the previous section.

The initial release of GIMP used the commercial widget toolkit MOTTIE, so the
first thing Peter and Spencer focused on after the release was replacing this with
a free toolkit. Since they didn’t find anything suitable at the time they decided
to create their own, and ended up with what is now known as GTK+ — a toolkit
that forms the base of not only The GIMP but also huge software packages like
the desktop environment GNOME. Version 1.0 of The GIMP was released in
June 1998, utilizing the new GTK+ toolkit, and sporting advanced features such
as user macros and a plug-in architecture. Although the original authors were no
longer actively involved in the project it had grown enough for other developers
to step in and take over.

Today The GIMP is providing a very solid alternative to commercial alternatives,
and has placed itself as the de facto image editor on Linux. It also works on both
Windows and Mac thanks to the cross-platform support in GTK+.

2.3 Examples of Open Source Projects

25

2.3.3 Eclipse

Eclipse is an integrated development environment
(IDE) built on the Java platform. The purpose of an
IDE is to integrate the various tools used when de-
veloping software, such as text editors, compilers, and
debuggers — relieving the programmer from the end-
less switching of contexts. The software also usually
provides added functionality such as a GUI-designer,
code browsing, and version control. The early IDEs
were mostly language specific, but recently the trend has moved towards multi-
language generic environments such as Microsoft Visual Studio, KDevelop and
Eclipse.

The Eclipse platform has a quite different story than the two previous examples.
Unlike Linux and The GIMP, Eclipse did not start out as a pet project by bored
university students. It was actually founded as a proprietary project in 1998 by
a large corporation — IBM — as a way to help out customers who were frustrated
by the cohesive sets of tools provided by the company. IBM set out to create
a commercial IDE that could compete with the marked leader, Microsoft Visual
Studio*, and their tactic was simple; create a Java IDE better then all the others,
and then use that to attract customers to the general platform.

But their plan did not work out as well as planned. The platform was immature,
so customers were reluctant to switch and invest in something they did not know.
As a result IBM decided in November 2001 to open source Eclipse — to increase
exposure and accelerate adoption. They created a consortium of eight commercial
software vendors, led by IBM, who all agreed to use, promote, and build products
on top of Eclipse. This worked well for some time, but due to the dominating role
of IBM the model was changed three years later to an independent foundation.
The Eclipse Foundation was formed in 2004, and soon after they released Eclipse
3.0

Today Eclipse is considered one of the best Java IDEs out there. It also has
solid support for languages like C**+, Python, PHP, and Ruby, technologies like
Web services and embedded development, and thanks to the plug-in architecture
and its open source license it is fairly easy to leverage the existing infrastructure
to build new tools. This thesis was written using the open source BIEX edi-
tor TgXlipse, which runs on top of the generic Eclipse platform. Eclipse also
maintains its strong business focus through the Eclipse Foundation, which today
consists of 18 member organizations. Each member has committed to provide
at least eight full-time employers working on Ecipse, and some heavy annually
funding. This focus has also affected how the Eclipse platform is developed, as
most of the contributers are employees of member organizations. The project has
received some flack for its bureaucratic and rigid development process (compared
to more loosely coupled project), but judging from the results this seems to work
well for Eclipse.

* The name Eclipse is said to mean “To Eclipse Visual Studio”

26

Software Quality in the Trenches

2.4 Open Source and Motivation

ACK IN the 60s and 70s the average free software hacker was usually em-
ployed in a scientific institution like a university or a research lab, and
wrote and shared code because there was no other way. Today the situa-

tion is a bit different. We will now look at what kind of people participate in open
source projects, and what motivates them to share both their time and the code
they produce without any direct monetary rewards.

2.4.1 Who Participates

There has not been any direct large-scale studies on the demographics of open
source participation, but we can use other related studies to get an understanding
of who all these nice people are.

Hertel et al. (2003) did a study of contributers to the Linux kernel, and found
that an overwhelming majority of the respondents were males of Western back-
grounds (Europe, The United States and Australia), with an average age of 30.
Similar results were found in a study by Lakhani and Wolf (2005), which also
showed that most of the respondents had a solid background in IT - typically as
computer science students or as professional software developers. These results
coincide with an earlier study by Hars and Ou (2001), where the respondents
were male (95%), in their 20s (50%), and almost half of them were working as
professional programmers.

In the past few years business involvement in open source projects has grown
significantly, and it is not unusual to have paid employees working full time on an
open source project. This is also reflected in the studies mentioned earlier. For
example did Lakhani and Wolf (2005) find that almost 40% of the respondents
were either paid directly for their work or were allowed by their boss to work on
a project during their regular working hours.

2.4.2 What Makes People Participate

The key question is then why people devote their precious time to contribute
to open source projects, or as phrased by Lerner and Tirole “Why do top-notch
programmers choose to write code that is released for free?” (Lerner and Tirole,
2001, p. 821). The classic stereotype depicts these programmers as altruistic
and kind souls, who improve our software without asking for anything back, and
surely many would like to fit that stereotype. Even though the reality of the
situation is perhaps not that far oft, it’s still interesting to reveal some of the
deeper motivations and mechanisms of open source development.

As noted in the previous section there is a growing interest from the IT indus-
try to participate in open source projects. Such involvement has been studied
in depth (Dahlander and Magnusson, 2005; Rgsdal and Hauge, 2006), and the

2.4 Open Source and Motivation

27

involvement usually stems from either heavy reliance on open source IT infras-
tructure, or because the company is providing/selling solutions based on free
software (Lakhani and Wolf, 2005). I will not go into the details of business
motivations here, but rather focus on motivation of individual developers doing
volunteer work. We will however return to the business side of things in Sec-
tion 2.6.

Raymond (1999b) was one of the first to reflect on the wider issue of motivation,
pointing out the striking similarity to what anthropologist describe as gift cultures.
In these cultures there is an abundance of resources, leading to an economy not
based on exchange of money or commodities, but rather the giving of gifts. The
act of gift-giving becomes a symbolic action used to define social structures, where
part of the effect comes from the expectancy of a returned gift. This resemblance
has been developed further by Bergquist and Ljungberg (2001), who argue that
there is a notable difference between gift-giving in primitive cultures and that of
open source development. They also downplay the dependencies created by gift-
giving, and focus more on the importance of socializing new contributers to the
gift culture — especially the process of peer reviewing.

When discussing human motivations in psychology it is common to distinguish
between intrinsic and extrinsic motivations (Aronson et al., 2001). Acting on
imtrinsic motivations is doing something for its own sake — ie. for its inherent
satisfactions — for example because it is “fun” and “makes you feel good”. This
type of motivation is linked to the human need to feel competent and fulfilled,
and includes doing something good for a community (due to socialized norms).

The other type of motivation — extrinsic — is rooted in external incentives for
behaviour, with the basic idea that if the benefits exceeds the costs then the be-
haviour will follow naturally. Here we find direct payofts such as financial gains
and increased utility value of the application, but also delayed rewards such as
possible career advancements and improved skills.

Using these two distinctions as a rough basis we can summarize some empirical
studies of open source development. Raymond does agree that the metaphor of
a gift culture does not fully explain the mechanisms of open source development
(Raymond, 1999b, pg. 82), so having empirical data to enlighten the situation is
of great help.

One such study is Hars and Ou (2001), who did a web survey of participants
in various open source projects — 389 persons in total. The authors found that
intrinsic motivations like the joy of programming and identification with a com-
munity were outweighed by extrinsic motivations — especially that of improving
a software product for own personal use. Another important factor was building
human capital, such as knowledge, for future monetary rewards. In a study of
the Linux kernel the participants reported a strong desire to be identified with
the kernel project and the wider Linux community, as well as wanting to improve
their own software (Hertel et al., 2003).

This mix of intrinsic and extrinsic motivations was also found in a recent study
by Lakhani and Wolf (2005), who followed the same approach as Hars and Ou

28

Software Quality in the Trenches

(2001), using cross-project surveys in multiple iterations. They found that the
single most important determinant of project participation (hours per week) was
the sense of personal creativity and joy of hacking. As any programmer will tell
you, being “in the zone” can in fact be highly creative and easily make you lose
track of time®, which should be an obvious motivation factor for project par-
ticipation. Adding to this were factors such as improving programming skills,
giving something back to the community, and identifying with the philosophy of
FLOSS. Lakhani and Wolf also reported that monetary payment were a factor,
but surprisingly they found no negative impact on intrinsic motivations from also
having extrinsic motivations. This is usually the case in experimental settings (for
example getting paid to do a task will make you enjoy the task less), but not in
the survey results. Being paid to do FLOSS development can in fact be just as
creative and joyous as volunteer work.

As we have seen there are many vary-
ing motives for participating in open
source projects — some of which are

Type Motivational Factor
Intrinsic Joy of programming
Community identification

summarized in Table 2.4 to the right. Community obligations
Lakhani and Wolf describes FLOSS Feelings of accomplishment
development as “a creative exercise Extrinsic ~ Need for software improvements

. Monet d
leading to useful output, where the D
Self-marketing

creativity is a lead driver of individual Improved skills

effort”. This fits well with what von Professional recognition

Hippel and von Krogh refer to as the

“private-collective” innovation model Table 2.4: Motivational factors in FLOSS
— which is a merge of the classic “private investment” model of intellectual prop-
erty protection and the “collective action” model of collaboration and sharing
(von Hippel and von Krogh, 2003). The volunteer participants invest their time
and resources in OSS projects for personal enjoyment and to solve their own soft-
ware problems, while at the same time sharing their innovations with the open
source community. This is of course only one way to look at it, but illustrates
how open source development can be seen for many different perspectives.

2.5 Characteristics of Open Source Development

HEN LOOKING at the history of open source as presented in Section 2.1

— with its rebels and free thinkers — and the seemingly complex mo-

tivations of participation in such projects — from the simple joy of

programming to monetary rewards — and all this combined with a myriad of li-

censes and legal fine-print, it is only fitting to wonder how this can result in the

argueably successful projects presented in Section 2.3. What is it with open source

development that unites all these elements into developer-communities that can
produce solid software packages like Linux?

As a programmer myself I can testify to that. Nothing beats pulling an all-nighter and fixing a
particularly hairy bug or adding a much needed feature.

2.5 Characteristics of Open Source Development

29

Eric Raymond used his landmark essay The Cathedral and The Bazaar to de-
scribe how open source has more to it than just great visions and ideology. It is
also a viable software development model — with many advantages over traditional
software engineering practices (Raymond, 1999a). Raymond playfully contrasted
the two by comparing traditional proprietary in-house development to building
cathedrals — “fully crafted by individual wizards or small bands of mages work-
ing in splendid isolation” — and open source development to swarming bazaars —
“babbling of differing agendas and approaches” (Raymond, 1999a, p. 21). Al-
though often cited, this analogy has received its fair share of criticisms, and many
authors have argued that open source development practices are really not that
different from traditional software engineering (Fuggetta, 2003, 2004; Fitzger-
ald, 2006). This has probably become even more true in recent years — as business
involvement has increased. But then again, even the original release of Mozilla
was financially motivated and commercially supported.

Still, there are some characteristics of open source development that are — if not
unique — then at least peculiar enough to warrant further study. I will now present
some of these characteristics, using Raymond’s original arguments as a basis for
the discussion.

2.5.1 Openness and Joyful Hacking

It might seem obvious, but the single most important condition for open source
development is openness and transparency — starting with the source code itself.
It is the foundation for experimentation and innovation, and it is not unusual to
find that the source is also the primary basis for technical discussion (as opposed
to requirement specifications or diagrams). The openness often extends to other
areas of the development too, such as design documents and communications
logs, as they are expected to be easily accessible for project members. The focus
on openness has led many people to believe that open source projects are less
secure (as adversaries can scrutinize the code for possible attack vectors) but this
fallacy has been debunked many times (Witten et al., 2001; Di Giacomo, 2005;
Hoepman and Jacobs, 2007). Making the source code openly available lets people
find and fix more bugs — not exploit them — and the net effect is more secure
software, at least in the long run.

One of the most used explanations for why OSS has been successful is that the
developers not only work on the code but are also users of the application. Ray-
mond states that “Every good software starts with a developer’s personal itch”
(Raymond, 1999a), and Paul Vixie describes open source projects as “a labor of
love” (Dibona et al., 1999). Both of these statements point to the fact that having
developers who are highly motivated (either because something is annoying them
or because they are inspired), and who also can see the problem from a user’s
standpoint, is a good step towards a successful application. This can be traced
back to the motivational factors of Section 2.4, where intrinsic motivations like
the joy of programming was combined with the extrinsic motivation of improving
an application you use yourself.

30

Software Quality in the Trenches

2.5.2 Leadership and Organization

With Raymond’s portrait of the OSS bazaar development model as “babbling
of differing agendas and approaches” it is only natural to wonder how all these
voices can result in concise and solid systems such as the Linux kernel or the
Apache web server. At some level there has to be a mechanism that unites the
voices and keeps the direction stable. In most OSS projects this is typically a
charismatic leader, such as Linus Torvalds, or alternatively a committee such as
the Apache Foundation. In either case the founder of the project usually has a
dominant role in deciding the direction and high level goals of the project.

Mockus et al. (2002) did a study of two successful open source projects, Apache
and Mozilla, and found that the core developers in these projects were responsible
for 80% of the code produced dealing with new features. They also had the largest
influence on what made it into the code base. Adding to this core was a group
(about 10 times as big as the core) of developers dealing mostly with fixing bugs,
and then a group of people (100 times the size of the core group) doing bug
reporting.

This symbiotic relationship between core developers and more peripheral devel-
opers is a strong determinant of a project’s success, as a lone core group focusing
only on adding new features will have a hard time fixing enough bugs to make
the product stable and usable for others. It also makes it easier for people to join
and contribute to OSS projects - starting out with reporting bugs and fixing small
problems and then later progressing to more advanced tasks as they rise in ranks
and experience. The implicit ‘rituals’ that users have to go through to become
project developers are known as joining scripts (von Krogh et al., 2003), and they
typically involve getting to know the culture of the project and the day-to-day
activities.

Having a leader or committee is of course no guarantee for keeping a project
on a steady course. Both developers and users must respect the leadership, and
feel that their opinions and contributions are valued and taken seriously. Without
that confidence the motivation for reporting bugs or making patches is dimin-
ished, as there is a good chance that the work you do will be ignored and in vain.
Sometimes disagreements between strong personalities in a project with conflict-
ing goals result in a so called fork, where one of the developers starts a new project
with a new name, but based on the same code as the original project.

A possible consequence of a fork is that one or both of the projects die out. This
may happen when they loose too many peripheral developers and users — as they
get tired of choosing sides — or because the fork takes time away from develop-
ment. These obvious negative effects of forking is a strong incentive to avoid
forking at all costs, and it is usually frowned upon unless there was a valid reason
for the fork. The Linux project, which in theory is vulnerable to fragmentation
and forking (because of its size and many facets) has solved this by actively sup-
porting sub-projects while still keeping them under the common Linux umbrella
to strengthen the community feeling and branding.

2.5 Characteristics of Open Source Development

31

2.5.3 Coordination and Cooperation

We have seen that FLOSS projects have a ‘guiding star’, to ensure a common
direction. But with the source code readily available for anyone to hack on, what
is preventing developers from stepping on each others toes and tearing down the
code others have built? Coordinating a large number of developers like this would
normally be subject to Brook’s law (Brooks, 1995), so how do they avoid using
all their time on making sure everyone is up to sync? Gutwin et al. (2004) showed
that there is indeed a high degree of coordination in open source projects, but
that it has a large implicit element. Coordination is maintained through group
awareness — of everything from who’s who and what they are working on at
the moment to future plans and who is knowledgeable about a certain topic or
technology.

Maintaining group awareness in distributed work-situations is usually accom-
plished through mechanisms such as explicit communication, i.e telling someone
directly what you plan to do, observation, where you learn what others are do-
ing by observing discussions or actual work, and feedthrough, where you form a
picture of the current situation based on work that’s already been done.

Gutwin et al. showed that even though OSS projects are geographically dis-
tributed they do not usually employ strict partitioning of the code base. This may
come as a surprise, as it makes coordination even more critical, but must be seen
in light of the agile nature of open source development, where anyone should be
able to fix a bug, no matter which module it is located in.

They also discovered that the usage of e-mail lists, chat, and CVS-logs was cen-
tral to the day to day awareness of the project participants. Not only was the
e-mail lists used for explicit communication such as announcements and direct
questions, but they were also an important source for learning through observa-
tion. Discussions on the list gave a good overview of who was working on what —
not only for the people directly involved in the discussion but also for the people
‘watching’ from the side-line — and this often happened as a byproduct of the real
subject of the discussion, for example a technical issue.

So the awareness was basically “free”, as a consequence of another required ac-
tivity, namely fixing bugs. Also, changes to the CVS controlled code base was
automatically sent out to a separate mailing list, and by observing the activity on
that list the developers got the feedthrough effect discussed earlier. Finally, the
lists made it very easy to ask questions because you didn’t have to first figure out
who was the expert in the area. You just posted a message to the list, and the
relevant person would answer you.

32

Software Quality in the Trenches

2.5.4 Frequent Releases and Parallel Debugging

This quick feedback loop gained from using CVS-logs and e-mail lists brings us
over to another important characteristic of open source development, namely
the focus on short time-to-market and frequent releases — casually referred to
as “release early, release often” (Raymond, 1999a). The idea is that instead of
working for months or even years until you have a ‘bug-free’ and perfect product
you instead give the users the choice of how cutting edge they want to be. They
can choose to use the latest development version directly from the source code
repository, or they can use the more stable weekly/monthly releases. By doing
release-management this way you increase the chance of finding bugs because
more users are exposed to the unfinished source code, and it also helps building
a group of peripheral developers as described by Mockus et al. (2002).

This practice of frequent releases foster what is known as parallel debugging, or as
coined by Raymond as Linus’s Law; “Given enough eyeballs, all bugs are shallow”
(Raymond, 1999a, p. 30). What he refers to is the often observed situation of a
user finding a bug, but not understanding why it is happening. The user will then
pass the information over to the community, where sooner or later some other
user is bound to realize why the bug is happening, just because of the sheer size
of the community — and the bug gets fixed. Having thousands of user looking at
and experimenting with the source code basically increases the number of code
paths that are tested and debugged.

When the cause of a bug has been found, or a new feature is added, a patch is
submitted to the mailing list describing how to fix the bug. The patch is usually
in the form of one or more diff-files, describing only the incremental changes
between the original code and the patched code. An example of a diff file is
provided in Listing 2.1 below.

Listing 2.1: Example of diff file. Added lines are noted by a plus sign and removed
lines with a minus sign. The surrounding lines are there for context and can be limited
to for example three lines above and below changes.

—— main—old.c Tue May 1 12:43:34 2007
+++ main—new.c Tue May 1 12:47:28 2007
@@ -2,6 +2,6 @@

int main(int argc, chars argv[])
{
— printf("Hello, World!\n");
+ printf("So_Long, _and_Thanks_for_All_the_Fish!\n");
return 0;

oI B o S L N I S

}

—
S

This notation makes it easy to see what is added and removed, and thus al-
lows more efficient quality assurance of the code. The quality assurance hap-
pens through a process called peer reviewing, where the patch is evaluated and
improved by fellow developers on the mailing list. When the patch has been
accepted by all developers it is finally committed into the common code base
permanently.

2.6 Commercial Use of Open Source Software

33

The peer reviewing process is well known from science, where most journals and
conferences are peer reviewed, but it also has a place in software-engeneering.
Weinberg argued for looking over each others code as early as 1998, and in re-
cent years this technique has been adopted by agile methods such as extreme
programming (XP), where the technique pair programming involves co-locating
two developers physically with only one computer and keyboard. This forces
the developer who’s not typing at the moment to inspect the other’s code. The
practice of quality assurance through peer reviewing is an important part of open
source development, and we will get back to this in detail in Chapter 3.

2.6 Commercial Use of Open Source Software

THE gut reaction for any company to the principles of open source is
usually that it has to be bad for business — at least this was the case in the
early years. We will now look at how open source can be leveraged from

a business-perspective — both for shrink-wrap-vendors and in-house development.

2.6.1 Business Models

Before considering business models for open source software it can be helpful to
take a step back and look at how the traditional IT economy works. What most
people associate with the software industry is run-of-the-mill over-the-counter
shrink wrapped software packages like Microsoft Office or computer games. This
model is based on selling Zicenses — not the software itself — giving the user basic
rights such as running the software and receiving limited support. The customer
will normally think that they own the software, but this is not the case. This model
can of course be scaled up, resulting in what is known as enterprise software,
where licensing fees can easily reach millions of dollars. In both cases the software
is produced for its sale value, meaning that the vendor will receive direct, or
indirect (through service agreements), monetary rewards for producing it.

Surprisingly the sale-value based revenue model only accounts for a small portion
of the software written each year; conservative estimates say about 10% (Ray-
mond, 1999c¢). The majority of software it actually written for its use value, for
example to support a company’s primary business domain. This kind of soft-
ware is traditionally developed and maintained by in-house programmers or hired
consultants, and usually only has one real user — the company that initiated the
development. In this group we find everything from banking systems to web por-
tals — plus the numerous enterprise resource management (ERM) and customer
relations management (CRM) systems around the