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Problem Description
A personal health record (PHR) is an electronic application that individuals can access, manage
and use to share their health information with authorized people, in a private, secure, and
confidential environment. This may give a more continuous flow of information between the doctor
and the patient, ease surveillance of patients, and help disclose patient degree of compliance and
satisfaction with the suggested treatment. Unlike the PHR, the electronic health record (EHR) is a
tool that seeks to serve information needs of health care processionals.

Information flow between the mentioned systems is thought to ease and improve treatment of the
patient. However, the information is often unstructured, making it difficult to extract the wanted
information. In addition, health record information is often of such a character that it is very
difficult to get an overview of a health history in a short matter of time.

The objective of this thesis is twofold. The first goal is to apply techniques from the field of text
mining on encounter notes in the personal health record to help structure the different parts of
the EHR encounter notes to ease information exchange with the PHR. The second goal is to apply
the structures found in the encounter notes to investigate the applicability of structural
information to present an overview of patient histories.

Assignment given: 22. January 2007
Supervisor: Øystein Nytrø, IDI
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Abstract

This project consists of two parts. In the first part we apply techniques
from the field of text mining to classify sentences in encounter notes of the
electronic health record (EHR) into classes of subjective, objective and plan
character. This is a simplification of the SOAP standard, and is applied due
to the way GPs structure the encounter notes. Structuring the information
in a subjective, objective, and plan way, may enhance future information
flow between the EHR and the personal health record (PHR).

In the second part of the project we seek to use apply the most adequate
to classify encounter notes from patient histories of patients suffering from
diabetes. We believe that the distribution of sentences of a subjective, ob-
jective, and plan character changes according to different phases of diseases.

In our work we experiment with several preprocessing techniques, classifiers,
and amounts of data. Of the classifiers considered, we find that Complement
Naive Bayes (CNB) produces the best result, both when the preprocessing
of the data has taken place and not. On the raw dataset, CNB yields an
accuracy of 81.03%, while on the preprocessed dataset, CNB yields an ac-
curacy of 81.95%. The Support Vector Machines (SVM) classifier algorithm
yields results comparable to the results obtained by use of CNB, while the
J48 classifier algorithm performs poorer.

Concerning preprocessing techniques, we find that use of techniques reducing
the dimensionality of the datasets improves the results for smaller attribute
sets, but worsens the result for larger attribute sets. The trend is opposite
for preprocessing techniques that expand the set of attributes. However,
finding the ratio between the size of the dataset and the number of attributes,
where the preprocessing techniques improve the result, is difficult. Hence,
preprocessing techniques are not applied in the second part of the project.

From the result of the classification of the patient histories we have extracted
graphs that show how the sentence class distribution after the first diagnosis
of diabetes is set. Although no empiric research is carried out, we believe
that such graphs may, through further research, facilitate the recognition of
points of interest in the patient history.

From the same results we also create graphs that show the average dis-
tribution of sentences of subjective, objective, and plan character for 429
patients after the first diagnosis of diabetes is set. From these graphs we
find evidence that there is an overrepresentation of subjective sentences in
encounter notes where the diagnosis of diabetes is first set. However, we
believe that similar experiments for several diseases, may uncover patterns
or trends concerning the diseases in focus.
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1 Introduction 1

1 Introduction

Due to increased use of the Internet, patients now call for the opportunity
to be able to communicate with the public health service online in addi-
tion to traditional methods such as visiting the general practitioner (GP)
(Andreassen et al., 2002). One kind of application that supports some of
these new demands is the personal health record (PHR). This is an online
health record where the patient him- or herself should be able to document
health related actions, and how and to what extent medical treatment works
(Markle Foundation, 2003; Tang et al., 2005).

GPs and other health care actors are supposed to be able to pay attention
to, and give feedback on, the patient’s treatment. A GP may consult the
PHR both in cases where the GP wants to help a patient online, or when
he wants to prepare him- or herself before a patient visit. This is thought
to give increased follow-up of the patient and make it possible to gather
both more correct and a larger amount of information from each patient
(Brasethvik and Kofod-Petersen, 2006; Tang et al., 2005).

While the main target of the PHR is to capture health data entered by
individuals and then give information related to the care of these patients,
the electronic health record (EHR) seeks to serve the information needs of
health care professionals. Even though the PHR and the EHR may be
considered two separate systems, the flow of information between the two
is important and beneficial (Tang et al., 2005; Crawford, 2006). However,
extracting different parts of encounter notes in EHRs is not trivial due their
free-text narrative nature (Røst et al., 2006b).

General usage of the PHR is likely to be dominated by people who suffer
from chronic illness (Szolovits et al., 1994), hence creating a huge amount
of information. The situation is the same for EHR systems, where little or
nothing is offered with respect to future re-use of the data (Nilsson et al.,
2003). Hence, the information load is often too extensive to be able to get
a clear overview and understanding of the information available in a short
matter of time for both systems.

In this report we seek to use text classification methods to help structure
the data to ease the information flow between the EHR and the PHR, and
then use the created classifiers to find ways of presenting the health record
data in ways that may improve access to it and reveal trends.

In the next section we look in more detail into the research questions (RQs)
of this project. In the latter sections of this chapter we present a list of
limitations we consider important during the work, and an overview of the
contents of this report.
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1.1 Objective

In this project we seek to apply techniques from text classification, which is
a subfield of text mining, to find possible solutions to some of the challenges
described above. Text classification is defined as the activity of assigning pre-
defined category labels to new documents based on the likelihood suggested
by a training set of labelled documents (Sebastiani, 2002), and will be further
elaborated in chapters to come.

Encounter notes in an EHR typically consist of four different kind of sen-
tences: Subjective, objective, assessment, and plan sentences (Nilsson et al.,
2003). Based on this structure and the help of techniques from the field of
text classification we seek both to find ways to facilitate the flow of infor-
mation between the EHR and the PHR, and use the created classifiers to
find methods of presenting the huge amount of information in health record
systems. The derived RQs are as follows:

RQ1: Are text classifiers able to discern between different kinds of sentences
in the EHR in order to structure the information flow between the EHR
and the PHR?

RQ2: Is the classifier derived from the work of RQ1 able to present histories
of EHR encounter notes in ways that allow us to detect points of
interest and trends?

Hence, we seek to find methods to structure and abstract the information
to help information flow and information presentation. The background for
these RQs will be further elaborated in Chapter 2.

1.2 Limitations

The field of health informatics is a complex field where one has to take both
technical and domain specific aspects into consideration. Also, in the field
of text mining, there are a number of ways to approach a problem, due
to a wide range of algorithms and work methods. Thus, within the time
schedule of this project, several limitations have to be made. We now look
at the most important limitations in this project:

Data access: Due to limited access to real PHR data, data from an EHR
system must be applied.

Selection of algorithms: There exists a vast amount of algorithms able to
deal with the task of text classification. It is beyond the scope of this
thesis to present a complete overview of the algorithms available, but
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rather present how a few applicable algorithms may solve the stated
tasks.

Tweaking of algorithms: Many algorithms in the field of data mining take
several parameters. Within the scope of the project we will not strive
to find the absolute optimal set of tuned parameters for each algorithm.

SOAP standard: Even though we would like to structure the sentences
strictly in an SOAP fashion, the way GPs have written their notes
makes it far more feasible to classify assessment and plan sentences
together, which we call plan sentences. Hence we classify the notes
into the classes subjective (S), objective (O), and plan (P). This is
further explained in the next chapter.

1.3 Overview

This section gives a short overview of the contents of the subsequent chap-
ters. Description of each chapter:

Chapter 2, Text Mining in Health Records : Presentation of health record
systems relevant to the RQs of this project, and incentives behind the
RQs.

Chapter 3, Data in Profdoc Vision Allmenn : Overview of the EHR data to
be applied in this project.

Chapter 4, Text Mining Techniques : Text classification techniques that may
be used in the process of discerning between classes of sentences.

Chapter 5, Text Mining Tools : Tools that may facilitate the process of text
classification.

Chapter 6, Text Classification Experiment Plan (RQ1) : Plan of text clas-
sification experiments performed in the work of RQ1, i.e., the choice
of algorithms, preprocessing techniques, attribute sets and sizes of
datasets.

Chapter 7, Text Classification Results : Results of experiments performed
in the work of RQ1.

Chapter 8, Text Classification Evaluation and Discussion : Evaluation of re-
sults and statistics of the experiments performed in the work of RQ1,
seeking to answer questions like which is the better classifier, both
when considering preprocessing techniques and not.
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Chapter 9, History Extraction Experiment Plan (RQ2): Plan of experiments
performed in the work of RQ2, i.e., how the use of text classifiers de-
rived from last experiments may be used to create a condensed view
of health record data.

Chapter 10, History Extraction Results : Results of experiments performed
in the work of RQ2.

Chapter 11, History Extraction Evaluation and Discussion : Evaluation of re-
sults and statistics of the experiments performed in the work of RQ2,
seeking to answer questions like whether derived figures may be used
to present a condensed view of the data.

Chapter 12, Conclusion : The most important conclusions of this project.

Chapter 13, Further Work : Overview of some of the further work that we
have identified in this project.
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2 Text Mining in Health Records

In this chapter we present in more detail the background of research question
one and two (RQ1 and RQ2), as presented in Chapter 1. To get a better
understanding of the RQs, we first give a short presentation of the Personal
Health Record (PHR) and look at its content and some of its specific utilities.
Then we give an overview of the Electronic Health Record (EHR) and the
parts of it that we find relevant for this project. Afterwards we present
incentives for RQ1 and RQ2, respectively, in light of the examined systems.
Finally we present some related work, carried out in former research projects.

2.1 The Personal Health Record

In Norway, the research on PHR and the possibility of integrating a PHR
system to both existing and new systems is an ongoing process (Brasethvik
and Kofod-Petersen, 2006). However, implementations of PHRs do exist,
like Indivo. Indivo1(Riva et al., 2000; Tang et al., 2004) is a PHR system
still under development. This project is carried out in cooperation between
Children’s Hospital Boston, Massachusetts Institute of Technology (MIT)
and Harvard Medical School. Indivo’s goal is to develop a secure, distributed
and patient controlled storage for personal health related information online,
but also envisions online communication between the GP and the patient
(Tang et al., 2004).

Due to the immaturity of the PHR we present some background information
concerning the PHR and what requirements it is thought to support, before
we present some of its contents and expected utilities. We do not focus
on matters specific to implementation, but rather on the background and
expectations that the system is thought to meet, which are meant to specify
the RQs of this project.

2.1.1 Background

In the current plan of action from the Norwegian public health service,
Te@mwork 2007 (Norwegian Ministry of Social Affairs and Norwegian Min-
istry of Health, 2004), it is stated that both patients and next of kin should
have the opportunity to get more involved in the treatment. Several re-
search projects have found that online communication between the GP and
the patient strengthens the patient’s possibilities of getting insight into the
treatment, among other aspects in favour of this way of communicating (An-
dreassen et al., 2006; Ball and Lillis, 2000; Stone et al., 2002). Some of the

1Former “Personal Internetworked Notary and Guardian” (PING),
www.indivohealth.org
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reported findings are:

• Ease of communication due to ubiquity and unsynchronised time.

• Easier to talk about personal problems, since sitting face-to-face with
the GP is unnecessary.

• After having reported to the GP, the patients felt relaxed.

• Use of more personalized language, making the patients feel closer to
their GP.

• Higher degree of specification in patient reports, due to optional amount
of time to express themselves.

• More freedom of choice and control.

• More devoted and frequent reporting from patients.

The PHR is an application that supports this kind of communication. Markle
Foundation (2003) defines a PHR as the following:

An electronic application through which individuals can access,
manage and share their health information, and that of others for
whom they are authorized, in a private, secure, and confidential
environment.

Crawford (2006) presents a list of different definitions of PHR, where the
most basic ones are just a piece of paper, or a stand-alone computer. The
PHR that theoretically requires less effort by the patient to populate and
maintain is the “Health Bank” definition:

Health Bank: The “Health Bank” model aggregates data from
multiple providers (insurance companies, hospitals, administra-
tors of prescription drugs, labs, and the patient) in a centralized,
patient controlled data repository. The health bank is responsible
for making the record (or components of the record) available to
authorized users, and for giving the patient a mechanism to iden-
tify who may access what parts of their record, and under what
circumstances.

This latter definition of PHR is in accordance with the definition presented
by Markle Foundation (2003), and will be the definition referred to through-
out this report when speaking of the personal health record (PHR). In the
following sections we seek to give a more thorough explanation of this ap-
plication, presenting its content and utility.
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2.1.2 Contents

The PHR may contain many types of data. Ideally, the PHR should contain
as much relevant data as possible. Also, this data should come from as
many relevant sources as possible. The more comprehensive the data is, the
more useful the data will be to the patient (Tang et al., 2005). However, as
stated by Nilsson et al. (2003), to avoid information overload effort has to be
made to find ways to abstract the information necessary for the user. Tang
et al. (2005) suggest that the PHR should at least contain health related
problems, data about allergies, plans of treatment, family health history,
lifestyle, medications, and lab results. Brasethvik and Kofod-Petersen (2006)
picture a PHR solution consisting of three parts: One part for treatment
plans, one part for patient reports, and one part for document handling.

A knowledge model (Rose, 2006) developed in Unified Modeling Language
(UML) (Fowler, 2003), presented in Figure 1, supports the tripartition pro-
posed by Brasethvik and Kofod-Petersen (2006). In this model one part is
for document handling, another part for plans, and the last part for patient
reports, represented by respectively MyJournal, MyPlan, and MyReport.

The patient reports are the focus of the figure, and should make it possible
for the patient to report to what extent the treatment is in compliance with
what was suggested, and what effects this treatment causes. These effects
may be both objective or subjective, as suggested by Tang et al. (2005), and
depicted in the figure as Subjective effect and Findings. The findings are
further split into Observations and Measure. An effect may be linked to the
execution of an action, i.e., a Concrete action, as depicted in the figure.

The patient should also be able to report if he or she has any hypotheses
concerning the treatment. These hypotheses may for instance be what kind
of treatment the patient finds best, what kind of treatment that does not
work, and other relevant remarks (Rose, 2006).

The plans of the PHR in Figure 1 may further consist of a set of abstract
and concrete actions. In addition each plan has a goal connected to each
action, and may have a superior goal indicating the reasons for carrying out
the plans.

2.1.3 Utility

The PHR is, as mentioned above, an online communication tool between
the GP and the patient, and is thus likely to have the same advantages as
presented in Section 2.1.1. There are, however, other reasons that advocate
the usage of the PHR. An important point is that the patient gets better
and more credible knowledge about his or her health, and may be helped
quickly by the health service (Tang et al., 2005).
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Figure 1: Knowledge model of a PHR. Figure from Rose (2006).
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Another point is that communication is continuous with the usage of the
PHR, in comparison to previous more episodic communication (Tang et al.,
2005). Szolovits et al. (1994) advocate that patient reports may even be used
for ordering appointments at a GP’s office instead of following a predefined
schedule.

Another actor identified to get benefits from the usage of the PHR is the
society as a whole, the treatment payer. It is assumed that increased access
to results of tests and lab results will decrease the number of duplicate test-
ing, and hence save a lot of money (Walker et al., 2005; Markle Foundation,
2003). Markle Foundation (2003) also has other ideas about what the PHR
data may be used for, like looking for pattern in disease- and treatment
history, and surveillance of PHRs making it possible to detect outbreaks of
diseases at an early stage.

The last actor that will benefit from the usage of the PHR is the GP. For
example, if the increased amount of information available is presented to the
GP in a proper way, decisions may be based on more data. This will not
only make it easier for the GP to make decisions, but the decisions made
will also be far more empirically founded. Equally, it will be easier for the
GP to include patient thoughts in the EHR, when patient reports may be
digitally moved between the PHR and the EHR. The latter point is also
likely to far more accurately reproduce the patients thoughts and ideas, as
stated above. In the next section we present the EHR and the parts of it
that we find relevant to this information exchange.

2.2 Electronic Health Record

The PHR, defined in Section 2.1.1, is managed by the individual. In contrast,
the clinician’s record of patient encounters, i.e., the EHR, is managed by the
clinician him- or herself and/or a health care institution. Bemmel and Musen
(1997) define an EHR as:

Administrative and medical patient data electronically stored in
a consistent way. A computer-based patient record may contain
characters, signals, images, and sounds.

Today, generally all GPs in Norway use EHR systems (Norwegian Ministry
of Social Affairs and Norwegian Ministry of Health, 2004), while, as stated in
Section 2.1, PHR systems still remain to be fully implemented. Tang et al.
(2005) picture a solution, over time, in which information may flow seam-
lessly among systems used by authorized health professionals, caregivers,
and the patient, where the patient is granting the authorization to the re-
spective users. An example of an EHR system, Profdoc Vision Allmenn, is
presented in Chapter 3.
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We have now shortly presented the EHR and how it relates to the PHR. In
the coming sections we present the parts of the EHR that we find relevant
in the work of the RQs of this project.

2.2.1 Encounter Notes

Encounter notes in the EHR denoting the diagnostic process usually follow
a predefined structure (Nilsson et al., 2003). We now explain this structure
in conjunction with the diagnostic process, presented by Baerheim (2002).
In the diagnostic process, the patient first typically explains what his or her
problem is to the GP, how the development of the problem has been, and its
duration. The information presented by the patient is written in the EHR
by the GP. This part of the note is known as the subjective (S) part.

Next, the GP comes up with a set of hypotheses of what might have caused
the problems presented by the patient, and elects the most probable hy-
pothesis according to former knowledge about the patient and the subjective
experience presented by the patient. Then the GP looks for findings or tries
to discover characteristics which support the elected hypothesis. If the hy-
pothesis seems to be wrong, the GP will consider other possible hypotheses.
In the other case, if the hypothesis seems to be supported by the findings,
the GP makes a diagnosis. The findings or characteristics found by the GP
are written in the EHR. This part of the note is called the objective (O) part
of the note. The probable diagnosis is also written in the EHR, and is called
the assessment (A) part (Baerheim, 2002).

Based on the diagnosis made by the GP, the GP will suggest a plan of
treatment. This treatment may for instance be how the patient should
behave due to the findings, or for instance writing out a prescription for a
drug. The planned treatment is written in the encounter note of the EHR in
its own plan (P) part (Baerheim, 2002). This note description standard is
known as the SOAP (subjective, objective, assessment, plan) standard, and
is followed by most GPs (Nilsson et al., 2003).

Even though most notes follow this SOAP standard, the input format of the
patient-doctor communication in most commercial EHR systems is rather
unstructured syntactically. This makes it almost impossible to retrieve any
specific part of the note, making it difficult to use for both research and
clinical practice. However, writing unstructured text is easy, and is the
traditional way of documenting patient treatment (Røst et al., 2006b). An
example of an EHR system that does not provide any note structure is the
Profdoc Vision Allmenn EHR system, mentioned above.
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2.2.2 ICPC Codes

Brage et al. (1996); The Norwegian Directorate for Health and Social Af-
fairs (2004) present an overview of the coding system International Classi-
fication for Primary Care (ICPC). In 1978 the World Health Organization
(WHO) took the initiative to implement a new coding system, the ICPC,
to strengthen the service of general practice. The diagnostic components in
ICPC are based on earlier classification systems.

In Norway ICPC was introduced to general practice in 1986. Initially the
use of ICPC codes was limited, but with the introduction of computers in
general practice in about 1990, the use increased dramatically. Since 1992
the use of ICPC codes in general practice has been compulsory.

Over the years, some errors and potential improvements to the ICPC system
was identified. Hence, a new version of ICPC, ICPC-2, has now replaced
the old coding system. This is the coding system which is applied in the
data presented in Chapter 3.

ICPC-2 has a biaxial structure where symptoms, procedures and diseases
are coded into chapters and components represented respectively by a letter
and a two-digit number. In Table 1, the ICPC coding system is presented,
where the horizontal axis represents chapters, and the vertical axis represents
components. In the figure the ICPC code “T90” is given as an example,
which represents a diagnosis for “organ systems”. “T90” indicates “Diabetes
non-insulin dependent”.

General Organ Psychological Social
conditions systems problems problems
(A) (14 chapters) (P) (Z)

Symptoms
(1-29)
Processes
(30-69)
Diagnoses Example:
(70-99) T90

Table 1: The ICPC coding system. “T90”is an example of an ICPC diagnosis
code. Figure adapted from The Norwegian Directorate for Health and Social
Affairs (2004).

2.3 Incentives for RQ1: Data Mining in EHRs

In this section we seek to explain the incentives behind RQ1. There are
several degrees of interconnectivity between the PHR and the EHR. Some
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solutions implement the PHR as a stand-alone application, while others seek
to interconnect the PHR to several sources of information (Tang et al., 2005;
Crawford, 2006). An example of the latter is the “Health bank” definition
of the PHR, described in Section 2.1.1.

The integrated approach, where the PHR and the EHR operate in tandem,
can convey more relevant data to the patient. In addition, integrating the
PHR with the EHR may utilize the good backup systems that exist today
for the EHR systems. Due to the reasons stated above, Tang et al. (2005)
reckon that PHRs integrated with the EHR provide much greater benefits
than stand-alone PHRs. However, concerning this approach, it is important
to note that current Norwegian legislation may impede the dissemination
of such systems. We expect, though, that increased Internet security and
knowledge about the benefits of information exchange may relax this im-
peding legislation.

The patient reports of the PHR may have a structure as the one explained
in Section 2.1.2, consisting of either subjective or objective effects, or state-
ments of actions and hypotheses of the treatment carried out. On the other
hand, the EHR normally has a structure as the one explained above, con-
sisting of a subjective part, an objective part, an assessment part, and a
plan part (Nilsson et al., 2003). When exchange of information is to happen
between the mentioned systems, we picture a solution where there may for
instance be a flow of information between the subjective and objective parts
of the EHR and the PHR, respectively.

The idea of information exchange is illustrated in UML in Figure 2. The
lower part of the figure is a pruned version of the PHR knowledge model,
presented in Figure 1. The upper part of the figure depicts an EHR en-
counter note, with its belonging subjective, objective, assessment and plan
parts. The bold units represent information that may be exchanged, and
the illustrative non-UML double arrows in between denote what respective
parts of the EHR and the PHR the information exchange may take place.
As one may note from the Figure, we picture a solution where the plan part
of the PHR resembles the sum of the assessment and plan part of the EHR.
This is done due to the nature of the documentation of encounter notes,
where the assessment and plan part are often written together, also noted in
a Swedish research project by Nilsson et al. (2003). This trend is confirmed
by the data that we seek to apply in the work of RQ1, presented in Chap-
ter 3. Hence, we picture a solution where information may be exchanged
between Subjective effect and Subjective part, Findings and Objective part,
and Plan and the sum of Assessment part and Plan part. For simplicity, the
latter merging will be referred to as the Plan.

However, due to the unstructured nature of most EHR notes, we find it
difficult both to extract particular parts of the notes, or make additions to
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Figure 2: Overview of how we picture the flow of information between the
EHR and the PHR. The arrows between the bold parts represent what parts
of the respective systems that may be swapped. The lower part of the figure
is adapted from Figure 1 by Rose (2006).
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particular parts of the notes from a PHR. Hence, to make this exchange of
information possible, efforts have to be made to understand the intentions
of the different parts of the EHR encounter notes, to be able to tag each
part of the note to its respective part. E.g., sentences that describe how
the patient feels should be tagged as subjective and measurements should
be tagged as objective.

In this project we seek to apply methods from the field of text mining to be
able to discern between different parts of the EHR notes. In particular, we
seek to apply different techniques to create a good classifier in conjunction
with various preprocessing techniques.

As stated in the previous section, there are several advantages to the free-
text way of documenting patient treatment. It is likely that some of these
advantages apply for patients using PHRs as well. Hence, the text classifi-
cation methods evaluated in this report, are also likely to be applied on raw
text from the PHR.

We have now presented the main incentives for creating a classifier that may
classify the sentences in encounter notes according to a partitioning similar
to the SOAP standard. However, there are also other incentives for carrying
out such experiments, which we will see in the section to come.

2.4 Incentives for RQ2: Data Condensation

In this section we seek to explain the incentives behind RQ2. The sickness
history for a patient having a particular disease is likely to possess a various
number of sentences of subjective, objective, and plan kind. As stated by
Nilsson et al. (2003), little or nothing is done with respect to future re-use
of the data in most EHR systems. Norwegian Ministry of Social Affairs
and Norwegian Ministry of Health (2004) are also concerned about this
problem, stating that the increased access to information also makes some
of the information less available due to information overload. In this second
part of the project we seek to utilize the classifier derived from the work
on RQ1, and investigate if the classifier is able to present histories of EHR
encounter notes in ways that allow us to detect points of interest and trends,
thus seeking to create abstracts of the EHR data.

When performing the experiments associated with RQ2, we assume that the
relative distribution of these notes is dependent on the stage of the disease
in focus. I.e., we expect that for some parts of the patient history, the
frequency of subjective, objective and plan sentences will vary based on the
event taking place.

We picture a solution where we may firstly detect special points of interest
for individual patients, and secondly see trends when evaluating the average
subjective, objective and plan distribution of patients’ history over time.
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E.g., a disease where the number of subjective sentences is decreasing, may
mean that there is little or constant change in how one feels, while the
opposite may mean that the patient is going through a lot of changes. The
first contribution may be helpful through the daily work of the GP, in an
EHR setting, or for a patient, in a PHR setting. The second contribution,
however, will not give any information about specific patients, but may
rather disclose some patterns concerning the disease in focus. To be able
to extract such patient histories related to a disease in particular, we may
utilize the ICPC codes, as presented in Section 2.2.2.

In this study we only consider EHR data, but similar studies would be
interesting to perform for PHR data as well. In the next section we present
some related work that has been carried out.

2.5 Related Work

Several methods of text classification have been applied on medical data.
In EHR systems, attempts have been made to classify the EHR encounter
note itself, according to its corresponding diagnosis codes. This has been
done on both ICPC and ICD diagnosis code systems, with both an algo-
rithmic and a table look-up approach (Røst et al., 2006a,b; Letrilliart et al.,
2000; de Freitas Vale et al., 2003). Other studies have extracted diagnoses
and procedures from patient discharge summaries (Long, 2006), while oth-
ers have tried to classify the contents of discharge summaries into different
categories (Sibanda et al., 2006). Related work concerning the selection of
text classifier algorithms and preprocessing techniques is further presented
in Chapter 4.

A limited amount of literature has been found concerning research of the
distribution of SOAP sentences. Nilsson et al. (2003), however, have investi-
gated the distribution of SOAP, focusing on words to find ways to aggregate
information from EHRs. This work was conducted manually, but may still
serve as a reference of comparison to our work. We have not, however, found
any literature of experiments applying automatic text classification to find
subjective, objective, assessment or plan oriented data to neither PHR nor
EHR data.

Due to the fact that no automatic text classification has been executed
in order to classify encounter notes in the context of SOAP, as far as we
are concerned, we have not been able to find any literature that visualizes
this distribution. However, research has been done on visualizing other
condensed parts of the EHR, like the LifeLines application (Plaisant et al.,
1996), which is capable of presenting an overview of events in the patient
history. The LifeLine application and this research project share the goal of
making patient data more available, but the data presented is of different
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character and hence we acknowledge that techniques from this application
has limited value for this project.

2.6 Summary

In this chapter we have presented the PHR, and what benefits the use of it
may provide. We have also shortly presented the EHR, and its encounter
notes and ICPC codes. Then we have presented the two RQs of this project
in more detail, and the incentives behind these. Finally we have presented
some related work carried out in former research projects. In the next chap-
ter we present the data that we are to use in this project.
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3 Data in Profdoc Vision Allmenn

In this chapter we shortly present the data that we seek to use in this project.
First, we give an overview of the EHR application Profdoc Vision Allmenn,
and then we present some characteristics of data available for RQ1 and RQ2,
respectively.

3.1 Profdoc Vision Allmenn

Profdoc Vision Allmenn2 is an application for GP’s offices, and works as
an interface to a database with EHR data, containing all aspects of patient
treatment. Examples of data units that may be stored in this database may
be family health history, encounter notes, lab results, medical certificates,
medications, prescriptions, diagnosis codes, and economical issues.

In this project we particularly apply two of the information units stored
in the Profdoc Vision Allmenn EHR system: The encounter notes and the
ICPC diagnosis codes, described in the previous chapter. At the Norwegian
Centre for Electronic Health Records (NSEP) we have been given access to
a Profdoc Vision Allmenn health record system from a medium sized GP’s
office in Norway. This system contains data from all consultations between
1992 and 2006. We now look at each of these information units, in light of
respectively RQ1 and RQ2.

3.2 The Data

The Profdoc Vision Allmenn database contains data from 11,944 patients,
constituting 423,288 encounter notes. However, the sentences of the en-
counter notes in the database are by default not classified to be neither
subjective, objective, or plan sentences. In the sections to come we present
the data relevant to RQ1 and RQ2, respectively.

3.2.1 RQ1 Data

To be able to make a text classifier for RQ1, we need preclassified data to
train the classifier. Through manual inspection of encounter notes in the
EHR database, we find that most encounter notes are written in a manner
inadequate for automated class tagging. However, we do find that one GP
in the EHR database has consistently written his journal notes according to
the SOAP structure, dedicating one paragraph to each class. However, this
GP does not follow the SOAP structure in a strict manner. Rather, the GP
seems to structure his encounter notes in an S, O, and A and P together

2http://www.profdoc.com/norge/allmennlege/programvare/
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fashion. This is a common way of writing the EHR encounter notes (Nilsson
et al., 2003).

The S, O, and A and P together structure, provided by this GP, is likely
to greatly reduce the effort by letting us apply automatic methods for clas-
sification, and later check the assigned class values by manual inspection.
In Table 2, a presentation of the distribution of the classified sentences in
the data contributed by this GP may be found. From this table we may
state that the classes are approximately uniformly distributed, with a slight
overrepresentation of the subjective class. The total number of instances is
5,646.

Class Number Percentage
S 2,442 42.9 %
O 1,833 32.5 %
P 1,389 24.6 %
Total 5,646 100.0 %

Table 2: Distribution of the classes subjective (S), objective (O) and, plan
(P) in the data material.

Nilsson et al. (2003) have also carried out research on the relative distribution
of SOAP from another collection of encounter notes. However, this work was
conducted manually, and hence they had the opportunity to separate the
mixtures of assessment and plan information. This study did not focus on
sentences belonging to the different classes, but rather words. Their findings
were that 48.4% of the words belonged to the subjective class, 23.5% were
objective words, 6.8% were assessment words, and 18.4% were plan words.
The relative sum of assessment and plan words is hence 25.2%, yielding a
distribution similar to the one found by our automatic classification. The
dataset associated to RQ1 is referred to as D1.

3.2.2 RQ2 Data

For RQ2 we focus specifically on patient histories containing encounter notes
with the ICPC codes of diabetes, i.e., T89 (diabetes insulin dependent) and
T90 (diabetes non-insulin dependent). We find that 429 patients have at
least one encounter note with a pertaining diabetes diagnosis code, while
221 patients have at least ten encounter notes with a pertaining diabetes
diagnosis code. In total there are 6,924 encounter notes, containing 33,505
sentences, that have a pertaining diabetes diagnosis code. Encounter notes
not associated with a diabetes code are excluded in this dataset. This dataset
is in the following referred to as D2a.
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An almost similar dataset, which we have named D2b, differs in only one
way from the data in D2a: Encounter notes associated with ICPC codes
other than T89 and T90 are also included. As above, 429 patients have
at least one diagnosis code of diabetes, but in this dataset there are 336
patients that have ten following encounter notes after the diagnosis code of
diabetes first occurs in their patient history. In this dataset there is in total
26,252 encounter notes, containing 119,289 sentences.

3.3 Summary

In this chapter we have briefly presented an EHR application whose data we
seek to apply for our research. Table 3 shows an overview of the data pre-
sented in this chapter. In the next chapter we present text mining techniques
that may be applied on this data.

Name Sentences Description
D1 5,646 Automatically tagged data based on the structure

provided by GP.
D2a 33,505 Patient history of exclusively encounter notes

associated with the diagnosis codes of diabetes,
excluding other encounter notes.

D2b 119,289 Patient histories encounter notes associated with
the diagnosis codes of diabetes, including
other encounter notes.

Table 3: Overview of the datasets we are to use in this project. First column
denotes the name of the dataset, the second column denotes the number of
sentences present in that dataset, and the third column gives a description
of the dataset.
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4 Text Mining Techniques

In this chapter we present techniques from the field of text mining to use
in experiments in the work of RQ1 and RQ2. Text classification is a sub-
field of text mining, and is defined as the activity of assigning predefined
classes to new documents based on the likelihood suggested by a training
dataset of preclassified instances (Sebastiani, 2002). The classifier may ei-
ther be evaluated against an own test dataset, or other techniques may be
applied. Text classification has gained popularity in recent years due to the
increase in availability of digital text and better computer hardware capable
of performing classification (Sebastiani, 2005, 2002; Yang and Liu, 1999).

Knowledge engineering, the task of manually defining a set of rules encoding
expert knowledge on how to classify documents under given categories, was
until the late 1980’s the most popular approach to text classification. In
recent years, however, the machine learning approach has gained popular-
ity. The machine learning approach of text classification is the process of
automatically building an automatic text classifier by learning from a set
of previously classified documents. The latter approach has several advan-
tages. First, the accuracy achieved is often comparable to that achieved by
human experts. Second, since no expertise from neither domain experts nor
knowledge engineers is needed to carry out the task, the machine learning
approach of text classification contributes considerable savings in terms of
expert manpower (Sebastiani, 2002). This project seeks to deal with this
latter approach, automatically trying to create a classifier for text classifi-
cation. Sebastiani (2005) defines text classification formally as:

The task of approximating the unknown “target function” Φ :
D × C → {T,F } (that describes how documents ought to be
classified, according to supposedly authoritative expert) by means
of a function Φ : D × C→ {T,F } called the “classifier”, where C
= c1,...,c|C| is a predefined set of categories and D is a (possibly
infinite) set of documents. If Φ (d j, ci) = T, then d j is called a
“positive example” (or a “member”) of ci, while if Φ (d j, ci) = F
it is called a “positive example” of ci.

Text classification has been applied to many different tasks. Sebastiani
(2002) gives an overview of some of them, which we now present:

Document organization: Examples of document organization may be fil-
ing newspaper articles under appropriate sections like politics, home,
news, or lifestyle.

Text filtering: Text filtering is the classification of a dynamic collection of
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texts, e.g., an e-mail filter, trained to identify junk-mail, and classifying
non-junk mail into classes appropriate for the user.

Automatic metadata indexing: Assignment of keywords or keyphrases to a
document, describing its content.

Hierarchical categorization of web pages: Recognizing the contents of web
pages and placing the page in a content tree of branches of special
semantic meaning.

Language identification: Deciding the language of a text of unknown lan-
guage.

Author identification: Authors of texts of unknown or disputed authorship
may be decided based on text classification techniques.

There are not only a number of applications that text classification may be
applied on, but also a number of ways text classification may be performed.
Sebastiani (2002) gives an overview of some of the most important ones. For
example, there is a distinction between single- and multi-label text classifi-
cation. Single-label text classification is the case where exactly one category
must be assigned to each document, while multi-label text classification is
the case where a document may be assigned to several categories. Single-
label text classification is often referred to as binary-classification in cases
where a document must be either assigned to a class or else its complement.
Multi-label classification may be achieved with the usage of algorithms for
binary classification, but not vice versa.

Another option is whether the text classification is category-pivoted or do-
cument-pivoted. Category-pivoted text classification is the act of finding all
documents that should be filed under a category, while document-pivoted
text classification is the act of finding all categories that a document may
be filed under.

There is also a difference between whether the classification is hard or
ranked. In most automatic categorization processes, the “hard” values of
true or false are required, while a ranked decision would be of great help to
a human expert in charge of taking the final categorization decision.

In the following sections we give a presentation of relevant phases in text
classification. An overview of how these phases are related is presented
in the UML (Fowler, 2003) activity diagram in Figure 3. The “forks” in
the figure denote the logic operator OR, while the opposite forks are joins.
The figure depicts the chronological order of which the text classification
operations often take place. However, due to programming feasibility and
tools used, some preprocessing techniques, like stemming, may in reality
take place prior to indexation.
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Figure 3 also presents an overview of the sections to come. First we present
the indexation of the documents, before we look deeper into the extensive
phase of preprocessing. In this report we have chosen to count stemming,
the use of n-grams, the removal of stopwords, tf-idf weighting and trans-
formation of all letters to lowercase as methods of preprocessing. These
preprocessing techniques are, however, not mandatory in order to perform
text classification. When it comes to classifiers, we look at the probabilistic
Complement Naive Bayes (CNB), Support Vector Machines (SVM), and the
decision tree C4.5. Finally we look at ways to evaluate the results obtained
by the classifiers.

Figure 3: UML activity diagram presenting both the flow of operations in
text classification, and the order of the sections to come.

4.1 Document Indexing

A text classification algorithm cannot be used directly on text documents.
Documents have to be indexed. Indexation of a document is a procedure
that maps a text into a compact representation, consisting of the relevant
words, i.e., terms, of the document in addition to its belonging weight. At
the same time as performing indexation, irrelevant tags may be removed
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from the corpus in order to ease further data management.

An index term may either be identified with a single word in the text or n-
grams, explained in Section 4.2.3. The counting of the terms may be referred
to as set of words or bag of words approach, depending on whether they are
counted binary or not (Sebastiani, 2002).

The weight of an index term is its relevance to the document compared to the
other index terms in the document. In other words, it describes how well that
specific index term represents the contents of the document. A document
d j may be represented as a vector of weights ~d j = <w1 j,...,w|τ| j>, where τ is
the set of indexed terms (Sebastiani, 2002; Baeza-Yates and Ribeiro-Netoziri,
1999). The weight of a term may be values like a boolean value indicating
whether the word is present in the document or not, or more advanced like
the tf-idf weighting scheme, presented in Section 4.2.4. An example of the
use of indexed terms is shown in Table 4, where sentence 1 to n is indexed.

Sentence 1: “This is the first sentence.”

Sentence 2: “This is another sentence that we will consider.”

Sentence n: “This is the last sentence.”

Sentence # 1 2 ... n
This 1 1 ... 1
is 1 1 ... 1
the 1 0 ... 1
first 1 0 ... 0
sentence 1 1 ... 1
another 0 1 ... 0
that 0 1 ... 0
we 0 1 ... 0
will 0 1 ... 0
consider 0 1 ... 0
last 0 0 ... 1

Table 4: Example of a binary indexed document, where “1” denotes pres-
ence and “0” denotes absence of a term in the sentence. No preprocessing
techniques, like stemming or removal of stopwords, have been applied on the
data.
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4.2 Preprocessing of Data

In this project we define “preprocessing” to include any action on the data
between the document indexation and the text classification. Several exper-
iments report that preprocessing of the data give boost to the classification
results (Sebastiani, 2002). We now present some of the preprocessing tech-
niques that we seek to use in this project, except from turning all letters to
lowercase, due to its triviality.

4.2.1 Stemming

Stemming is a technique to reduce words to their grammatical roots. A
stem is the part of a word which is left after having removed its affixes (i.e.,
prefixes and suffixes). For instance, the words “connected”, “connecting”,
“connection”, and “connections” all share the stem “connect” (Baeza-Yates
and Ribeiro-Netoziri, 1999).

There are several ways of finding the stem of the words, we will here look
at two of them (Frakes and Baeza-Yates, 1992):

Algorithmic affix removal stemming: This kind of stemming is intuitive, sim-
ple, and can be implemented efficiently. Most important is the removal
of suffixes, because most word variants are created by adding different
suffixes (as seen above). An example of a popular stemming algorithm
is the Porter stemmer (Pomikálek and Rehurek, 2007).

Table lookup: Table lookup consists of looking up the word in a dictionary,
and then returning the root of the word. This kind of stemming may
also deal with word mutations, which are very common in Norwegian,
such as the word “book”: “bok”, “boken”, “bøker, and “bøkene”.

Performing stemming has especially two benefits. First, when words are
represented by their stems, variants are reduced to the same common con-
cept. Thus, one may be able to see new relations between words. Second,
reducing the variants of the words reduces the size of the indexing structure
because the number of distinct index terms, shown in Table 4, is reduced
(Baeza-Yates and Ribeiro-Netoziri, 1999; Sebastiani, 2002).

4.2.2 Stopwords

Stopwords are words which occur frequently in the text and are topic neutral
words such as articles, prepositions or conjunctions (Sebastiani, 2002; Baeza-
Yates and Ribeiro-Netoziri, 1999). The high frequency of stopwords makes
them unsuitable for discriminating between classes, and removal of these
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words also reduces the size of the indexed document. These words are almost
always removed (Sebastiani, 2002). A list of Norwegian stopwords may be
found at the Snowball website3, reproduced in Table 25 in the Appendix.

4.2.3 n-Grams

When only considering single words, we will miss some contextual informa-
tion (Hersh et al., 1998). A solution to this may be to apply n-grams. An
n-gram is a word sequence of length n. In text classification one can add
the most frequent n-grams to the list of index terms. Producing n-grams for
values of n up to three has been reported to improve results in text classi-
fication (Johannes, 1998; Mladenic and Globelnik, 1998), and has also been
used in other text classification experiments (Røst et al., 2006a,b; Sibanda
et al., 2006).

4.2.4 Term Weighting

The term-weighting scheme of tf-idf is by far the most popular one (Sebas-
tiani, 2002), and all best term-weighting schemes use weights which are given
by a variation of this formula (Baeza-Yates and Ribeiro-Netoziri, 1999). The
tf-idf formula both describes how well the term describes the contents of the
document itself, and takes into account whether it is a discriminating term
or a term that occurs in the majority of the documents.

Baeza-Yates and Ribeiro-Netoziri (1999) give an overview of tf-idf weighting.
The term frequency (tf) factor is the factor that measures how well the term
describes the document it occurs in. For term ki in the document d j, this
factor is given by

fi, j =
f reqi, j

maxl f reql, j
, (1)

where freqi, j is the frequency of term ki in document d j. The maxl f reql, j

factor is the maximum number of times a term occurs in a document d j.

The inverse document frequency (idf) factor is the factor that takes into ac-
count the discriminative power of the term considering the other documents
in the collection. This factor is given by

id fi = log
N
ni
, (2)

where N is the total number of documents in the collection, and ni is the

3http://snowball.tartarus.org/index.php
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number of documents in which the index term ki appears. We can thus
calculate tf-idf by

wi, j = fi, j · id fi =
f reqi, j

maxl f reql, j
· log

N
ni
. (3)

4.2.5 Overview

One feature of many preprocessing techniques is their effect of reducing
the dimensionality of the dataset. Dimensionality reduction is the act of
reducing the dimensionality of the vector space, i.e., removing terms. There
are several reasons that high dimensionality of the term space in a text
classification setting is problematic. Firstly, high dimensionality of the term
space reduces the efficiency of the classifier algorithm. Secondly, reducing
the dimensionality prevents overfitting. Overfitting of classifiers is the act of
making the classifier too fit for the training data, making it perform poorer
on the test data, but good at re-classifying the data it has been trained on.

Of the techniques to be mentioned, there are several that may be thought of
as dimensionality reduction techniques, reducing the dimensionality of the
vector space. One example may be the act of turning all letters into low-
ercase, hence making letters of words that are written both in upper- and
lowercase correspond. E.g., if the word “arm” is present in the classifier, we
get a “match” with the word “Arm”, that may exist in a sentence to be clas-
sified. However, dimensionality reduction must be done with care because
one always risks to remove potentially useful information (Sebastiani, 2002).

Techniques like the addition of n-grams, expands the set of attributes. We
are, however, only interested in the most discriminative terms that are cre-
ated by this latter method. In addition, many other less useful terms may
be present in the set of attributes. Hence, one may apply other techniques
to further reduce the dimensionality.

Sebastiani (2002) presents a number of other techniques to reduce the di-
mensionality of the vector space. Among these are methods that reduce
the dimensionality by term selection based on document frequency, or more
complex techniques like information gain, chi-square, mutual information,
among others (Pomikálek and Rehurek, 2007; Sebastiani, 2002). Dimen-
sionality reduction may also be achieved by term extraction, achieved with
techniques like term clustering or latent semantic indexing. However, it is
still an open issue which of the feature selecting methods that is the best
(Pomikálek and Rehurek, 2007). Among these methods, performing the se-
lection of features based on document frequency is both simple and effective
(Sebastiani, 2002). In the next section we present some popular algorithms
for use in text classification.
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4.3 Text Classification Algorithms

Several classification algorithms are suitable for text classification (Witten
and Frank, 2000; Sebastiani, 2002; Joachims, 1998; Sebastiani, 2005). The
data that we would like to classify, presented in Chapter 3, have multiple
classes (i.e., more than two classes), and we must hence choose algorithms
according to this.

We here present three algorithms that we seek to apply for our classification
tasks: Naive Bayes, Support Vector Machines, and C4.5. These algorithms
are from three different classifier families; probabilistic, vector machines,
and decision trees (Sebastiani, 2002), and have all given satisfactory results
in earlier experiments (Joachims, 1998; Dumais and Chen, 2000; Røst et al.,
2006b; Rennie et al., 2003). In addition, these algorithms all possess different
features that we find important in this project. Naive Bayes is a very fast
algorithm, SVM has been reported to outperform all other algorithms in
many applications, and the C4.5 decision tree makes it easy to visualize the
classification process, and has also been reported to perform satisfactorily.

4.3.1 Probabalistic Classification

The Naive Bayes (NB) classifier is widely used for text classification (Han,
2006; Jain et al., 2004; Joachims, 1998; Pomikálek and Rehurek, 2007). NB
uses the assumption that all attributes of the examples are independent
of each other. In spite of this assumption, which may be false in many
real world settings, NB often gives a satisfactory result. There are many
benefits with this classifier such as its low computational cost, its relatively
low memory consumption, and its ability to handle heterogeneous features
and multiple classes. Most important, however, is that it often yields a very
high accuracy, compared to other good classifiers (Witten and Frank, 2000;
Pavlov et al., 2004).

Figure 4: The predictive attributes (X1, X2,...Xk) are conditionally indepen-
dent given the class attribute (C). Figure from (John and Langley, 1995).

What makes NB so efficient is the fact that attributes may be learned sep-
arately, and this simplifies learning. This is advantageous especially in set-
tings where the number of attributes is large (McCallum and Nigam, 1998).
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This is often the case in text classification, where the attributes are terms
in the instances to be classified.

The idea of NB is to apply Bayes’ rule to compute the probability of each
class given the vector of observed values for the predicted attributes. Mc-
Callum and Nigam (1998) present an overview of how classification in NB
is performed. Say, if we are to classify a test case x, then we compute the
probability of each class c,

p(C = c|X = x) =
p(C = c)p(X = x|C = c)

p(X = x)
. (4)

In this equation X=x represents the event that X1=x1 ∧ X2=x2 ∧ ... Xk=xk.
Since attributes are assumed to be conditionally independent and the event
is simply a conjunction of attribute value assignments, we get

p(X = x|C = c) = p(
i

∧
Xi = xi|C = c), (5)

which is the probability that a term x belongs to a class c.

The original NB algorithm takes a vector of binary attributes, indicating
the presence of words. When calculating the probability of a document, the
probabilities of all the present and non-present attribute values are multi-
plied. Good examples of this algorithm may be found in Han (2006).

In another algorithm, Naive Bayes Multinomial (NBM) (McCallum and
Nigam, 1998), the number of the occurrences of each word in the docu-
ment is captured. In this case the probability of a document is calculated
by multiplying the probability of the words that occur. When comparing
NB and NBM one has found that NB outperforms NBM on small vocab-
ulary sizes, but is outperformed by NBM when vocabulary sizes are large
(McCallum and Nigam, 1998).

Rennie et al. (2003) suggest several techniques to improve NB and NBM
further. Their version of the NB algorithm is known as Naive Bayes Com-
plement (NBC). Firstly, they consider the problem that when one class has
more training examples than another, NB will select poor weights, due to
shrinkage of weights for classes with few training samples. This is solved by
Rennie et al. (2003) by introducing a “complement class” formulation of NB.
Secondly, they suggest normalizing classification weights to keep classes with
more dependencies from dominating. This is due to the fact that the mag-
nitude of the weights for classes with strong word dependencies are larger
than for classes with weak word dependencies. Thirdly, they state that NBM
does not model text well and present a simple transform that enables NB
to emulate a power law distribution that is more similar to distributions of
real term frequency.
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4.3.2 Support Vector Machines

Support Vector Machines (SVM) was first introduced by Vapnik (1995),
and was later introduced to text classification by Joachims (1998). The
algorithm has since been a popular algorithm for text classification tasks
(Røst et al., 2006a,b; Sibanda et al., 2006; Pomikálek and Rehurek, 2007),
and has been reported to be both accurate and less prone to overfitting
than other classifiers. However, the training time tends to be slow even for
smaller datasets (Han, 2006).

The idea of SVM, explained by Han (2006), is to find all the decision surfaces
that best separate positive from negative training examples in a dimension.
The decision surface should be at the maximum distance between the closest
training examples from the classes. The training examples that determine
the best decision surface are called support vectors. The idea can be best
understood in a setting where all dimensions of the vectors are linearly
separable, as shown by the straight line in the two-dimensional data in
Figure 5. Figure 5(a) presents a bad separating surface, and Figure 5(b)
presents the best possible separating surface. However, if the data is three-
dimensional, we would be looking for the best separating plane. Similarly we
would be looking for the best separating hyperplane in a multidimensional
dataset.

In the case of linear separable vectors, the classifier of n dimensional vectors
will consist of n-1 decision surfaces. In non-linear hypothesis spaces, as de-
picted in Figure 6, decision surfaces are created by separating the dimension
into multiple dimensions so that each new dimension is linearly separable.

There are several kernels that may be used in the computation of SVM, like
the linear, the polynomial, or the radial basic function (RBF). However, the
resulting accuracy is generally not very dependant on the choice of kernel
(Han, 2006).

4.3.3 Decision Tree Classifiers

C4.5 (Quinlan, 1993) is a successor of the ID3 decision tree algorithm,
and is also widely used in text classification applications (Jain et al., 2004;
Joachims, 1998; Pomikálek and Rehurek, 2007). In C4.5, the tree is con-
structed in a top-down recursive manner, where the training set is recursively
partitioned into smaller subsets as the tree is being built (Han, 2006). Deci-
sion trees are generally easy to understand and interpret, and give a clearer
picture of the decisions made, in comparison to other classifiers. An example
of a decision tree may be found in Figure 7. If we were to classify a given
sentence we could start at the very top of the tree, and move down the tree
according to whether the current word is present or not in the sentence. At
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(a) A bad separating decision surface. (b) The best possible separating deci-
sion surface.

Figure 5: A bad and the best possible separating decision surface is indicated
by the lines, as the minimum distance to any training example is at the
maximum. Figure from Han (2006).

Figure 6: Example of a non-linear space. Figure from Han (2006).
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the leaf nodes, at the very bottom of the tree, the class of the sentence is
decided.

Figure 7: An example of a decision tree of five attributes and three classes,
where “<= 0” means that the attribute is not present, and “> 0” means the
opposite. The decision tree is manually created in .dot code in Graphviz.

At each node of the tree, an attribute selection method is applied to select
the attribute which best separates a given data partition of class-labeled
training data into individual classes. The ideal partition is the one that
makes each partition pure, in the sense that all tuples of a partition belong
to the same class. One such attribute selection method is the information
gain method, where the attribute that minimizes the information needed
to classify the tuples in the resulting partitions is selected. This approach
guarantees that a simple tree is found (Han, 2006).

Gain ratio (Quinlan, 1993), which is applied by C4.5, is a successor of in-
formation gain. A problem with information gain is that it prefers to select
attributes having a large number of values, hence making a large number
of pure small partitions. Gain ratio, on the other hand, solves this problem
by taking the split information into consideration as well, and takes into
account the total number of tuples in the training data when considering
the number of tuples having a special outcome (Han, 2006; Quinlan, 1993).

In the derived tree, many of the branches will reflect anomalies in the training
data, and the classifier may be overfitted (Han, 2006), as explained in Section
4.2. Hence, pruning techniques are often applied to reduce overfitting. In
C4.5 a technique known as pessimistic pruning is applied, which evaluates
how the training data behaves on the unpruned tree. Since the unpruned
tree is often biased to the training data, a penalty is added, and the branches
performing poorest, e.g., measuring the accuracy, are removed (Han, 2006).
In the next section we present some techniques to evaluate a classifier.
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4.4 Classifier Evaluation and Comparison

In this section we first present an alternative way of evaluating a classifier
without using an own predefined test set, as described above. Then we
present several measures to evaluate a classifier, before we finally present
statistical ways to compare the results of the classifiers, and see whether one
result differs significantly from another.

4.4.1 k-Fold Cross Validation

It is often the case that there is only a limited amount of data available.
Then the solution is to reuse the data to get a high number of samples.
One technique that makes this possible is the k-fold cross validation. When
applying this technique, the data is split into k equal sized parts and then
the classification algorithm is trained on all data but one part for each part
(Sebastiani, 2002; Salzberg, 1997). Hence, the dataset is respectively split
into a training and a test set for each iteration. Setting k = 10 has proved
reasonable in most situations.

Finally, after k rounds, the results of each of the k rounds are averaged or
combined in some fashion. This result represents the result of the classifi-
cation algorithm on the given dataset (Sebastiani, 2002; Salzberg, 1997).

4.4.2 Classifier Evaluation

Sebastiani (2005, 2002) presents different measures to evaluate the success
of a classifier. We now look at those presented by Sebastiani (2005):

Training efficiency: Average time to build a classifier from a given corpus.

Classification efficiency: Average time required to classify a document by
means of the classifier.

Effectiveness: Average correctness of the classifier’s behaviour.

When research on text classification is performed, effectiveness is often em-
phasized because of its adequacy for classifier comparison, due to the fact
that efficiency depends on too volatile parameters like hardware and software
platforms. However, in text classification applications all three evaluation
strategies are considered important, but effectiveness tends to be the pri-
mary criterion in such contexts too (Sebastiani, 2005).

The effectiveness must be calculated differently for single- and multiple-
labeled text classification. When considering single-labeled text classifica-
tion, the percentage of correct classification decisions can be calculated. This
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is called calculating the accuracy. However, in a multiple-label text classi-
fication setting the situation is different. In this case categories tend to be
unbalanced, meaning that one category contains far more members than the
other.

In the multiple-label text classification setting, one often considers another
measure, a combination of the precision and the recall. Precision (π) is
defined as the probability that if a random document is classified under a
category, this decision is correct. On the other hand, recall (ρ) is defined as
the probability that, if a random document ought to be classified under a
category, this decision is made (Sebastiani, 2002). Precision and recall are
calculated using the terms true positive (TP), which is the number of docu-
ments that are classified under a category correctly, and true negative (TN),
false positive (FP), and false negative (TN), which are defined similarly.
Table 5 gives an overview of the mentioned terms.

Expert judgments
Yes No

Classifier Yes TP FP
judgments No FN TN

Table 5: The global contingency table. Table adapted from Sebastiani
(2002).

There are, however, two ways precision and recall may be calculated when
the effectiveness is calculated for several categories. Sebastiani (2002, 2005)
presents an overview of these calculations. When performing microaver-
aging, categories (c) count proportionally to the number of their positive
training examples and is calculated as follows:

π =

∑|C|
i=1 T Pi∑|C|

i=1 T Pi + FPi
(6)

ρ =

∑|C|
i=1 T Pi∑|C|

i=1 T Pi + FNi
(7)

Macroaveraging, on the other hand, assumes that all categories count the
same, and is often the method of choice in text classification. Macroaverag-
ing is calculated as follows:

π =

∑|C|
i=1 πi

|C|
=

∑|C|
i=1

T Pi
T Pi+FPi

|C|
(8)
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ρ =

∑|C|
i=1 ρi

|C|
=

∑|C|
i=1

T Pi
T Pi+FNi

|C|
(9)

It is important to look at combinations of recall and precision because most
classifiers can be tuned to emphasize one of these measures at the expense
of the other. A popular way to combine them is by use of the function

Fβ =
(β2 + 1)πρ
β2π + ρ

, (10)

where 0 ≤ β ≤ ∞. Usually β is set to “1”, and thus we get

F1 =
2πρ
π + ρ

, (11)

which is called the harmonic mean of precision and recall, or simply the F
measure. Precision, recall, and F measure are often used as measures to eval-
uate a classifier (Sibanda et al., 2006). However, in cases where the classes
are not too unbalanced, like when deciding whether a web page should be
filed under the category NuclearWasteDisposal, accuracy is a good measure.
This is due to the trivial rejector, i.e., assigning each instance to the most
popular class, yielding a high accuracy (Sebastiani, 2005).

4.4.3 Cross-Classifier Comparison

There are many ways to statistically test whether one text classification
algorithm performs better than another. One solution is to use the sign test
(Yang and Liu, 1999; Wadsworth, 1990) for both micro and macro testing.
The micro level significance test is dominated by the results of common
categories, while the macro level significance test is dominated by the results
of rare categories. The micro level significant sign test is based on the binary
decisions of every document in the classification. This test has the following
notation (Yang and Liu, 1999):

N: Number of binary decisions by each system.

ai: Binary value that measures the success for a system A on the ith decision,
where i = 1, 2, ..., N.

bi: Binary value that measures the success for a system B on the ith decision.

n: Number of times that ai and bi differ.

k: Number of times that ai is larger than bi.
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The macro level significant sign test may use paired F1 or accuracy values
for individual categories. It is computed like the micro level significant sign
test, and has the following notation (Yang and Liu, 1999):

M: Number of unique categories.

ai: F1 score of system A on the ith category, where i = 1, 2, ..., M.

bi: F1 score of system B on the ith category.

n: Number of times that ai and bi differ.

k: Number of times that ai is larger than bi.

The null hypothesis, H0, of these tests is k = 0.5n. This means that half of
the observed ai should be larger than bi. The alternative hypothesis, H1, is
k > 0.5n, meaning that more than half of the observed ai should be larger
than bi. With a confidence level α = 0.05 of a 1-sided sign test, we are
satisfied if there is a 95% probability of an event to occur or not. I.e., the
null hypothesis, H0, is rejected for P values < 0.05, while for P values > 0.05,
H0 cannot be rejected (Yang and Liu, 1999; Wadsworth, 1990).

For large values of n, which is most likely to be the case when observing the
corpus presented in Chapter 3, the P value can be approximately computed
using the standard normal distribution for

Z =
k − 0.5n

0.5
√

n
, (12)

which is called the z score. To find the P value from this score, a standard
normal distribution table must be used. This table may be found in books
of statistics, but is not reproduced in this report. For smaller values of n
and k, one may use a binomial distribution table directly. Table 24, in the
Appendix, shows an example of such a table where n = 10 and θ = 0.5. The
latter means that, given H0, there is no difference between the observations.

4.5 Summary

In this chapter we have presented several techniques that may be considered
important to perform text classification. More specifically we have looked
at techniques of indexation, preprocessing, the algorithms themselves, and
evaluation techniques. In the next chapter we present tools that may facili-
tate the text classification phases.
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5 Text Mining Tools

There exist several tools that ease the process of text mining and information
presentation. These tools make both the mining itself more feasible, due to
the fact that algorithms do not have to be implemented, and facilitate the
extraction of graphs and trees. We here shortly present some tools that we
consider important in this project.

5.1 Weka

Waikato Environment for Knowledge Analysis (Weka)4 is an open source
toolkit, consisting of a collection of state-of-the-art machine learning algo-
rithms for data mining, written in Java5. It provides support for several
phases of data mining, including preprocessing, the mining itself, and the
visualization of the input data and the result of learning. The toolkit pos-
sesses algorithms for classification, clustering, extraction of association rules,
and attribute selection, where especially the classifying part is extensively
developed.

The toolkit has both a command line interface which makes scripting of
research possible and a graphical user interface (GUI) (Witten and Frank,
2000). The standard Weka file format is arff6.

We think that the fact that Weka is an open source programme is especially
important, making it possible to both tweak implemented methods, or cre-
ate our own, contributing to the Weka project. Use of the Weka packages
has obtained good results in several text classification experiments (Jain
et al., 2004; da Silva et al., 2004; Pomikálek and Rehurek, 2007). There are,
however, also other packages of code that one may apply through the Weka
package structure. One of these packages is the LibSVM7 (Fan et al., 2005)
package.

In Table 6, Weka classes found relevant to this project are presented. The
descriptions of the classes are extracted from Witten and Frank (2000). In
this table we have included the entire package path of the classes, while in
the following chapters we will only refer to the classes by their names.

4http://www.cs.waikato.ac.nz/ml/weka/
5http://java.sun.com/
6Example of fictitious training data in this file format may be found in Figure 24 in

the Appendix.
7http://www.csie.ntu.edu.tw˜cjlin/libsvm
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Class Description
weka.classifiers.bayes Builds a Complement Naive Bayes classifier.
.ComplementNaiveBayes

weka.classifiers.meta Optimises classifier parameters.
.GridSearch

weka.classifiers.trees C4.5 decision tree learner (implements C4.5
.J48 revision 8)
weka.core.Stopwords Removes a set of predefined English

stopwords.
weka.filters.instance Removes a range of instances from a dataset.
.RemoveRange

weka.filters.supervised Classifies a dataset and adds the new
.attribute. classification to the same set based on a
AddClassification classifier model.
weka.filters.unsupervised Converts a string attribute to a vector
.StringToWordVector that represents word occurrence frequencies

with several options.
weka.filters.unsupervised Randomises the order of instances in a
.instances.Randomize dataset.

Table 6: Weka classes relevant in this project. The path shows where the
class, whose name is written in boldface, is located in the Weka package
structure. The descriptions of the classes are extracted from Witten and
Frank (2000).
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5.2 NORKOMPLEKS

NORKOMPLEKS8 (Nordg̊ard, 1996) is a Norwegian computational dictio-
nary used in computational linguistics applications. This dictionary contains
conjugations of Norwegian words, covering all linguistically legal forms of
words. Table 7 gives an example of a pattern in NORKOMPLEKS for the
Norwegian verb “̊a suge”, which in English has the meanings “to suck”, “to
absorbe”, “to sap” or “to exploit”. Another example may be the conjugation
“the sun”, which can be written both as “solen” and “sola” in Norwegian.

Pattern Infini-
tive

Imper-
ative

Present Past Past par-
ticiple

Present
participle

1 suge sug suger suget suget sugende
2 suge sug suger sugde sugd sugende
3 suge sug suger saug sugd sugende
4 suge sug suger suga suga sugende

Table 7: Conjugation in NORKOMPLEKS. The table is adapted from
Nordg̊ard (1996).

Stemming (see Section 4.2.1) is an integral part of the preprocessing steps
of text classification. The idea of stemming is to reduce the word to its
“stem”, and may be accomplished by the use of this tool. If we look again
at Table 7, we see that all forms of the word “suge” (i.e., “suge”, “sug”,
“suger”, “suget”, “sugde”, “saug”, “suga”, “sugd” and “sugende”) would be
represented in infinitive as “suge”, i.e., the “stem” of the word. This would
not likely be the case when using an algorithmic stemmer, where for example
the mutated word “saug” would not result in the stem “suge”. Mutation of
words is quite normal in Norwegian, and we find it plausible that ignoring
these words would depreciate the result. Due to the reasons mentioned above
we assume that applying NORKOMPLEKS for stemming will produce the
most satisfactory result.

5.3 Visualization Tools

SigmaPlot9 is a graph tool. These graphs are of high quality, and may be
extracted from Microsoft Excel spreadsheets. The graphs used to present
the results in the subsequent chapters are constructed by use of this tool.

Graphviz10 is another tool that makes visualization of data possible. This
tool enables the creation of decision trees from .dot code.

8Norwegian acronym: NORsk KOMPutasjonelt LEKSikon
9http://www.systat.com/products/sigmaplot/

10http://graphviz.org/
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5.4 Computer Specifications

When executing operations in the field of text mining, the computing power
available is of utmost importance. The increase of computing power available
during the last years has been a prerequisite for recent contributions in
this field (Sebastiani, 2002). However, through our work we find that the
computing power is still of importance, and determine which operations
that are feasible or not. The specifications of the computer used in our
experiments are presented in Table 8.

Feature Value
Processor AMD Athlon(tm) 64 Processor 3500+,

1000 MHz, 512 KB cache
Memory 4 GB
Operating System Fedora Core 6, 2.6.16 kernel

Table 8: Specifications of experiment computer.

5.5 Summary

In this chapter we have presented various tools that we assume both ease the
process of text mining and the visualization of the results. In the following
chapters we present the plan, the results, and the evaluation of the results
obtained during our research on RQ1 and RQ2.
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6 Text Classification Experiment Plan (RQ1)

This chapter presents the plan of our experiments for the text classification
performed in the work of research question one (RQ1). More specifically we
intend to evaluate different classifiers on different amounts of both attributes
and data. This plan includes both what we intend to do, and how we intend
to carry out the experiments. Throughout this chapter we refer to various
Weka classes that we seek to use. An overview of these classes may be found
in Figure 6 in Chapter 5. In this part of the project we only consider the
D1 dataset, presented in Chapter 3.

The plan presented will to a large extent follow the same structure as Chap-
ter 4. However, we only seek to cover the topics that we find important to
obtain the raw results that will be presented in the next chapter, while the
use of the classifier evaluation and comparison techniques will be presented
in Chapter 7. Hence, in this chapter we seek to present the plan of document
indexation, text preprocessing, and the text classification itself.

6.1 Document Collection

To be able to train and test the classifier we need preclassified data. In the
experiments to be described we apply the dataset named D1, presented in
Chapter 3.

In Figure 25 in the Appendix, methods to retrieve the different datasets
are presented. Before performing automatic tagging of each sentence, the
paragraphs of the notes are inspected manually to confirm that they follow
the S, O, and A and P together structure.

Subsequently we automatically tag the different paragraphs of the retrieved
data, D1, so that the paragraphs are assigned to their respective classes.
An example of a classified note is presented in Table 9. The Python source
code for automatic classification is given in Figure 26 in the Appendix.
Afterwards we split the paragraphs into sentences marked with a class-tag
corresponding to the inherent paragraph, as shown in Table 10.

Eventually, after sentence tagging, each sentence’s class-tag is approved by
manual inspection to validate the process. The distribution of the S, O, and
P classes of this classification is presented in Figure 2 in Chapter 3.

The retrieved data is then processed: All punctuation, sentences that consist
only of numbers, and “windows newline” are removed to ease both further
classification and processing. The source code of these operations is shown in
Figure 27 in the Appendix. However, in this figure we also replace all single
digits by the letter “N”. This was not performed in the work of RQ1, because
the sentences contained relatively little numbers, but was of importance
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Class Paragraph pi Sentences s j

S p1 s1, s2, s3
O p2 s4, s5
P p3 s6, s7, s7

Table 9: Presentation of the class-tagged paragraphs and inherent sentences
in a note in the EHR record. The classes are subjective (S), objective (O),
and plan (P). The denotation of the paragraphs and sentences are respec-
tively pi, where 1 ≤ i ≤ 3 and s j, where 1 ≤ j ≤ 7.

Class Sentence si Class Sentence s j

S s1 O s5
S s2 P s6
S s3 P s7
O s4 P s8

Table 10: Class-tagged sentences extracted from the note presented in Table
9. The denotation is the same as in Table 9.

when dealing with the diabetes data in the work of RQ2.

Manual inspection of the EHR data reveals that there are many spelling
errors. Spelling errors may degrade the result, since word recognition will
decrease. However, tools exist that may compare each word to words in a
dictionary, i.e., a medical dictionary, and find the most probable word if an
exact match is not found. However, GPs apply many abbreviations that are
typically not present in such dictionaries. Hence, words that are not present
in the dictionary, but still appear a number of times in the corpus should be
included like any other word. However, the application of such techniques
is outside the scope of this project.

6.2 Indexation and Preprocessing of Data

In this section we look at how we index the dataset and how we apply differ-
ent preprocessing techniques in the work on RQ1. Document indexing may
be considered a prerequisite for text classification, as described in Chapter
4. To be able to apply classification algorithms on the corpus, we make an
indexed file, consisting of each word and its belonging weights by applying
Weka functions. For both the indexation and selection of the attributes with
the highest weight we apply the StringToWordVector class. We now present
an overview of what preprocessing techniques we wish to apply, and how we
may perform them.
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Stemming: NORKOMPLEKS, explained in Section 5.2, will be applied to
perform table lookup stemming. We find it best to perform this prior
to indexation, since this computational dictionary has no interface to
Weka, and is thus performed during classification, as shown in Figure
26 in the Appendix.

Lowercase: Transforming all letters to lowercase is a trivial transition that
may be performed by a single method call in Python prior to indexa-
tion.

Stopwords: Through manual inspection we notice that there are many word
in the corpus that may be considered “stopwords”. Weka does have
the opportunity to add additional lists of stopwords, but it seems to
malfunction. Hence, the list of stopwords may be manually added to
Weka in the Stopwords class. A list of the Norwegian stopwords may
be found in Table 25 in the Appendix.

n-grams: We have not been able to find any open source project that pro-
vides the feature of producing n-grams from the corpus. Hence, we
implement an addition to the Weka open source project. This is pos-
sible by performing some modifications to the StringToWordVector
class, where the different n-grams are added to the set of attributes.
Due to reports (see Section 4.2.3) of best results by using up to tri-
grams, i.e., n = 3, we do accordingly. The additions to the Weka class
are presented in Figures 30 and 31 in the Appendix.

Weighting: We measure the tf-idf weight of each term. This may also be
done by use of the StringToWordVector class.

To vary the number of dimensions, i.e., attributes, taken into consideration,
we also apply the dimensionality reduction technique of selecting the at-
tributes with the highest weights. These weights will normally be the term
frequency of an attribute, i.e., the number of times an attribute occurs in
an instance to be classified. However, when the weighting scheme of tf-idf
is applied, the attributes will be selected accordingly.

6.3 Text Classification

As stated in Chapter 4, Complement Naive Bayes (CNB), Support Vector
Machines (SVM), and C4.5 are algorithms that are adequate for use in text
classification applications. In this project these are the algorithms that we
choose to apply for the further classification due to their different charac-
teristics and features, as described in Chapter 4. Of the probability based
algorithms, we choose to apply CNB over plain NB and MNB due to its
promised superiority when it comes to text classification. Likewise, SVM is



44 6.3 Text Classification

also known as an algorithm that may produce good results, while C4.5, in
particular, facilitates visualization of classifier features, in addition to being
a classifier used in several classification projects, as presented in Chapter 4.

In this project we seek to carry out the classification of CNB and C4.5 with
the Weka classes J48 and ComplementNaiveBayes, respectively. Hence, from
now on the C4.5 algorithm will be referred to as J48. For SVM, we apply the
LibSVM package through the Weka package structure. We will not apply
the Weka GUI, but rather apply calls to different classes from scripts. This
eases the process of automation, the execution of repetitive calls, and later
control of what was actually done. Some of the scripts utilized are later
reproduced in this report.

To select the most appropriate kernel for the LibSVM algorithm, we run
some preliminary experiments. Of the kernels we test, the linear seems to
bias the result too much towards the training data, achieving an accuracy of
over 98% for the training data, but poorly for the test data. The polynomial
kernel, however, does not seem to bias the results that much, but does not
perform as well as the radial basis function. Due to the observed, we apply
the radial basis function kernel for the later LibSVM experiments. This
kernel is also suggested as a good first choice for many applications (Hsu
et al., 2003). However, the choice of kernel does not usually have a large
difference when it comes to the achieved accuracy (Han, 2006).

In general, all data available from the D1 corpus will be used, i.e., all 5,646
sentences, unless otherwise is stated. We now present each of the exper-
iments that we seek to carry out in the work of RQ1. For each of the
experiments we perform cross validation, presented in Section 4.4.1. This
is performed by each of the Weka classifier classes, and makes evaluation
possible without defining a proper test set. An overview of each of the ex-
periments presented may be found in Table 11, presented at the end of this
chapter.

6.3.1 E1: SVM, J48 and CNB with No Preprocessing

In the first experiment, E1, we do not perform any of the preprocessing tech-
niques. Instead we run the algorithms CNB, SVM, and J48 directly on the
complete raw data of D1. For each of these algorithms, we want to vary the
number of dimensions (i.e., attributes) per class taken into consideration by
considering 10, 20, 50, 100, 250, 500, 750, 1,000, 1,250, and 1,500 attributes
per class.
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6.3.2 E2: CNB, SVM and J48 with Preprocessing

In the second experiment, E2, we seek to do the same as in E1, except from
one aspect: All of the preprocessing techniques presented in Section 6.2 are
performed. These results are to be presented as in E1. However, due to the
adding of n-grams, the attribute space is larger than in E1. Hence, we will,
for the algorithms capable, try to include larger attribute sets than what
is stated for E1. In Figure 32 in the Appendix we have appended a script
that shows how the different preprocessing techniques, including use of the
implementation of n-grams, may be run in Weka. Note that in this script,
both the techniques of stemming and letter transformation are performed
apriori.

6.3.3 E3: Comparison of Preprocessing Techniques

The third experiment, E3, focuses on the evaluation of each of the prepro-
cessing techniques, and how they may contribute to the result alone. The
number of attributes per class will be varied like in E1 and E2, but in this
experiment we only consider the algorithm CNB. However, as in E2, we will
try to look at bigger attribute sets when considering n-grams due to the
increased attribute set.

There are many reasons why we only consider the CNB algorithm, where
the most important ones are that it generally produces a very good result,
in addition to its efficiency (Pavlov et al., 2004; Witten and Frank, 2000;
Han, 2006). We also assume that most of the features discovered with the
different preprocessing techniques on CNB may be transferred to the other
classification algorithms. This is due to the assumption that a preprocessing
technique, for instance reducing the dimensionality of the data material, will
produce the same result on different algorithms, but maybe to a different
extent. It would also be interesting to see how each of the preprocessing
techniques appear for example in tandem, but this is also considered to be
outside of the scope of this project.

6.3.4 E4: Varying the Amount of Data

The fourth experiment, E4, considers how different sizes of the datasets
influence the result of the classifiers. In this experiment we consider datasets
consisting of 1,000, 2,000, 3,000, 4,000, and 5,000 instances (i.e., sentences),
for each of the algorithms CNB, SVM, and J48. To remove ranges of the
data instances, we apply the RemoveRange class in Weka.

These experiments will be carried out both when the number of attributes
per class is set to be 100 and 1,000. This is to account for the possibility
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that the classifiers act differently on the same dataset when considering
different numbers of attributes. To account for changes in reporting over
time and distribution of the classes S, O, and P, we randomise the selection
of instances for each sub experiment by use of the Randomize class in Weka.

6.4 Summary

In this chapter we have looked at how we intend to carry out text classi-
fication experiments in the work of RQ2, based on the text categorization
techniques presented in Chapter 4. In Table 11, an overview of each of the
experiments presented may be found. In the next chapter we present the
results of these experiments.
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Exp. Sentences Attributes Algorithms Prep.

E1 All 0, 10, 20, 50, 100, CNB, SVM, no
250, 500, 750, J48
1000, 1250, 1500

E2 All 0, 10, 20, 50, 100, CNB, SVM, all
250, 500, 750, J48
1000, 1250, 1500

E3a All 0, 10, 20, 50, 100, CNB stemming
250, 500, 750,
1000, 1250, 1500

E3b All 0, 10, 20, 50, 100, CNB n-grams
250, 500, 750,
1000, 1250, 1500

E3c All 0, 10, 20, 50, 100, CNB stopwords
250, 500, 750,
1000, 1250, 1500

E3d All 0, 10, 20, 50, 100, CNB td-idf
250, 500, 750,
1000, 1250, 1500

E3e All 0, 10, 20, 50, 100, CNB lowercase
250, 500, 750,
1000, 1250, 1500

E4a 1000, 2000, 3000, 100 CNB, SVM, no
4000, 5000 J48

E4b 1000, 2000, 3000, 1000 CNB, SVM, no
4000, 5000 J48

Table 11: Overview of experiments carried out in association with RQ1. The
denotation of “Exp.”, “Sent.”, “Attrib.”, “Alg.”, and “Prep” is the following:
“Experiment number”, “Number of sentences from corpus”, “Number of at-
tributes (dimensions)”, “Algorithms” and “Preprocessing”; stating whether
preprocessing is to be carried out. When there is more than one attribute
in a table window present, this calls for another run-through of the experi-
ment. E.g., in experiment I we get the number of different sentence numbers
multiplied with the number of different algorithms run-throughs. In other
words experiment 1 needs 11 * 3 = 33 run-throughs.

.
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7 Text Classification Results

In this chapter we present the results obtained from the execution of the
experiment plan of RQ2, presented in Chapter 6. In comparison to the
results presented, the majority class baseline accuracy, which is the accuracy
achieved when classifying all instances as the majority class, S, achieves an
accuracy of 42.9%, as stated in Table 2 in Chapter 3.

All values of F measure, precision, and recall in this report are macro values
(see Chapter 4), unless otherwise stated. This is due to the fact that the
classes of D1 are rather balanced, as presented in Chapter 3, and the aver-
age measures will be almost identical whether they are calculated based on
classes or weighted based on the number of inherent instances. In addition,
when it comes to producing the right result, all classes are of equal value to
us, and should hence count equally.

It is also worth noticing that most graphs in this chapter are presented
logarithmically, meaning that the x-values of the graphs are respectively 10,
100, 1,000 and so forth. This is due to the observation that the performance
of most algorithms changes dramatically between 10 and 250, while the
performance subsequently remains more stable for bigger attribute sets. The
outline of this chapter is based on Table 11 in Chapter 6. We now present
the results of each of the experiments presented in the previous chapter.

7.1 E1: SVM, J48 and CNB with No Preprocessing

In the first experiment we compare the classification algorithms SVM, J48
and CNB on the complete raw dataset of D1. Figures 8 and 9 show the
graphs of the results obtained in E1. The algorithms are compared in terms
of accuracy in Figure 8(a), F measure in Figure 8(b), precision in Figure
9(a), and recall in Figure 9(b). In these graphs the mentioned measures are
presented as functions of the number of attributes per class utilized. The F
measure, precision, and recall are calculated as explained in Chapter 4.

The data values of the graphs described above may be found in Table 26
in the Appendix. Table 26(a) presents the different values obtained for
accuracy and F-measure, while Table 26(b) presents the different values
obtained for precision and recall.

Taking the observed results of all algorithms into consideration, the results
tend to reach a maximum when the number of attributes per class is 1,250.
Hence, in Table 12 we present more detailed results from the different algo-
rithms, when we take this number of attributes per class into consideration.
In particular, the table presents accuracy, F measure, precision and recall
for the classification in general, in addition to the F measure, precision, and
recall for each of the classes S, O, and P.
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(a) Accuracy

(b) F-measure

Figure 8: Accuracy and F-measure from E1.
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(a) Precision

(b) Recall

Figure 9: Precision and recall from E1.
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SVM J48 CNB
Acc. 80.15% 67.25% 81.03%
F 0.793 0.657 0.801
P 0.792 0.658 0.801
R 0.795 0.656 0.803
Class P R F P R F P R F
S 0.849 0.860 0.854 0.767 0.743 0.755 0.853 0.873 0.863
O 0.780 0.728 0.753 0.608 0.660 0.633 0.811 0.733 0.770
P 0.748 0.796 0.771 0.600 0.566 0.582 0.739 0.803 0.769

Table 12: Results obtained from the complete raw dataset of D1, when
the number of attributes per class taken into account is 1,250. The table
presents accuracy (Acc), F measure (F), precision (P), and recall (R) for the
classification in general, for each of the algorithms SVM, J48, and CNB. In
addition, precision, recall, and F measure for each of the inherent classes S,
O, and P is presented. The total number of instances classified is 5,646.

7.2 E2: CNB, SVM and J48 with Preprocessing

This section is organized quite similar to the previous section. The only
difference is that the experiments are not carried out on the complete raw
dataset of D1, but instead on the preprocessed dataset of D1. An overview
of the preprocessing techniques applied may be found in Section 6.2.

In Figures 10 and 11, the graphs of the results obtained in E2 are presented.
The algorithms are compared in terms of accuracy in Figure 10(a), F measure
in Figure 10(b), precision in Figure 11(a), and recall in Figure 11(b). The
data values of these graphs may be found in Table 27(a) and 27(b) in the
Appendix.

Due to the addition of n-grams we tried to carry out experiments on attribute
sets bigger than 1,500. However, because of the increased computational
effort of considering attribute sets of sizes bigger than 1500, and the fact
that both SVM and J48 seemed incapable of taking advantage of further
additions of attributes, only CNB was considered in this setting. Hence,
the graphs of the other algorithms do not have any data values for results
obtained when considering more than 1,500 attributes.

In this experiment we do the same observation as in Section 7.1, recognizing
that the overall best results, taking all algorithms into consideration, seem to
be obtained when the number of attributes per class is set to be 1,250. Hence,
in Table 13, we present more detailed results from the different algorithms,
when we take this number of attributes per class into consideration, as in
Section 7.1.
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(a) Accuracy

(b) F measure

Figure 10: Accuracy and F measure from E2.
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(a) Precision

(b) F measure

Figure 11: Precision and recall from E2.
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SVM J48 CNB
Acc. 77.152% 66.15% 80.53%
F 0.756 0.634 0.797
P 0.774 0.688 0.797
R 0.748 0.623 0.800
Class P R F P R F P R F
S 0.758 0.906 0.826 0.626 0.858 0.724 0.848 0.858 0.853
O 0.805 0.676 0.735 0.695 0.567 0.624 0.817 0.730 0.771
P 0.760 0.662 0.707 0.744 0.443 0.555 0.725 0.812 0.767

Table 13: Results obtained from the preprocessed dataset of D1, when the
number of attributes per class is set to be 1,250. The denotation is the same
as in Table 12. The total number of instances classified is 5,646.

7.3 E3: Comparison of Preprocessing Techniques

In this section we present how the use of different preprocessing techniques
may influence the result when applying the classification algorithm CNB.
Observing the results obtained in E1 and E2, we assume that there is no
practical difference between the results presented in “Accuracy”, and the
results presented as “F-measure”. This is in accordance with Sebastiani
(2005), where it is stated that it is only necessary to consider precision and
recall, and hence F-measure, in cases where the classes are far unbalanced,
as described in Section 4.4.2. An overview of the class distribution may be
found in Chapter 3, where we may acknowledge that the class distribution
is not far unbalanced. Hence, of the results obtained in E3 and E4, we only
present the obtained accuracy.

In Figure 12, the different preprocessing techniques are compared to the
CNB classification algorithm without any preprocessing technique. This
figure is a constellation of five sub figures, each comparing the CNB classifi-
cation on the complete raw dataset with CNB and the following isolated pre-
processing techniques: All letters transformed to lowercase in Figure 12(a),
dataset is stemmed in Figure 12(b), stopwords are removed from the dataset
in Figure 12(c), the terms in the dataset are tf-idf weighted in Figure 12(d),
and n-grams are added to the dataset in Figure 12(e). This is in accordance
with Table 11 in Chapter 6. Note that in the latter part of this experiment
we considered sets of attributes up to 2,500 due to the increased attribute
set caused by the addition of n-grams. The data values that these graphs
are based upon may be found in Table 14.
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(a) CNB on dataset in lowercase. (b) CNB on stemmed dataset.

(c) CNB on dataset without stopwords. (d) CNB on tf-idf weighted dataset.

(e) CNB on dataset with n-grams.

Figure 12: Comparison of CNB with different preprocessing techniques and
plain CNB on the complete raw dataset of D1.
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Attrib. Preprocessing technique
No Lower-

case
Stemm-
ing

Stop-
words

tf-idf n-
grams

10 54.37 57.21 56.70 61.64 54.98 54.37
20 59.19 60.41 61.94 65.02 59.88 59.19
50 66.91 69.98 70.23 69.27 67.22 64.98

100 71.82 73.45 74.18 73.41 71.64 70.12
250 77.03 77.93 78.09 77.10 76.78 75.36
500 79.40 80.02 79.61 78.96 78.87 78.11
750 80.50 80.46 80.16 79.97 80.02 78.91

1000 80.92 80.50 80.32 80.39 79.76 79.79
1250 81.03 80.82 80.36 79.81 80.32 80.48
1500 80.84 80.82 79.63 79.81 79.68 80.80
1750 79.68 81.15
2000 79.68 81.15
2250 79.68 81.42
2500 79.68 78.69

Table 14: Data from the comparison of CNB with different preprocessing
techniques and plain CNB on the complete raw dataset of D1. In the table,
“No” simply denotes that no preprocessing technique is applied.

7.4 E4: Varying the Amount of Data

In this section we present the results of E4: How the result varies depend-
ing on the amount of data available for classification training. We vary
the amount of data from 1,000 to 5,000 instances, running experiments at
leaps of 1,000. These experiments are carried out both when the number of
attributes per class is set equal to 100 and 1,000.

The results of this experiment are presented in Figure 13. Figure 13(a)
considers the case when the number of attributes per class is set to 100, and
Figure 13(b) considers the case when the number of attributes per class is
set to 1,000. The data values of Figure 13 are presented in Table 15.

7.5 Summary

In this chapter we have presented the results of the experiments presented
in Chapter 6. In the next chapter we evaluate the results and see what, if
any, conclusions we can draw from the results obtained.
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(a) Accuracy for 100 attributes per class. (b) Accuracy for 1,000 attributes per class.

Figure 13: Accuracy for the number of data instances between 1,000 and
5,000. We run the experiment with respectively 100 and 1,000 attributes
per class.

Attrib. Inst. SVM J48 CNB
100 1000 72.80 61.40 75.40

2000 73.45 64.85 74.45
3000 72.03 65.20 72.10
4000 72.78 64.83 72.43
5000 72.01 66.39 71.70

1000 1000 61.60 61.70 76.40
2000 65.50 64.40 79.15
3000 73.90 66.20 80.27
4000 74.65 65.70 80.70
5000 80.14 67.19 80.90

Table 15: Data values for E4, as presented in Figure 13.
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8 Text Classification Evaluation and Discussion

In this chapter we evaluate the results achieved in the experiments of RQ2,
presented in the last chapter. In addition we discuss other issues concerning
the procedures applied, before we eventually present a conclusion of the
findings.

8.1 Comparing the Algorithms (E1 and E2)

In this section we evaluate the results of E1 and E2. First, we present some
general characteristics from the results of these experiments, and then we
compare the results obtained by each of the classifiers in E1 and E2. Finally,
we execute a sign test to evaluate some of the findings statistically.

8.1.1 Characteristics of E1

Several interesting characteristics of the data values in Figures 8 and 9,
extracted from Table 26 in the Appendix, may be found by manual inspec-
tion. Concerning the accuracy, we observe that initially, with only a few
attributes to help, SVM seems to perform slightly better than J48, while
CNB performs poorer. At about 50 attributes per class, the J48 classifier
seems unable of benefiting from more attributes, and its performance stabi-
lizes at an accuracy of approximately 67%. Han (2006) explains how proper
calibration of the pruning may improve the accuracy. Hence, during the
experiment setup, we tried to adjust the level of pruning to see if this could
improve the result. However, a heavier pruning resulted in a too general
classifier, and hence performing worse, while the less pruned tree resulted in
overfitting, explained in Section 4.2, and again yielding worse performance.

Both SVM and CNB manage to achieve higher values of accuracy than the
J48 algorithm. CNB, however, seems to be the best classifier when consid-
ering 250 or more attributes per class. Both CNB and SVM perform best
when the number of attributes per class is set to 1,250. The performance
of CNB and SVM decreases for further addition of attributes. This is prob-
ably due to overfitting of the classifier. When the number of attributes is
set to 1,250, SVM, J48, and CNB obtain accuracies at respectively 80.15%,
67.23%, and 81.03%.

Observing the F measure achieved in E1, we note that these values to a
large extent correspond to the achieved accuracy, as stated in Chapter 7.
The factors deciding the F measure, i.e., the precision and recall, also behave
in the same manner, with some minor variations.

Table 12 in the previous chapter presents precision, recall and F measure
of each of the classes S, O, and P, when the number of attributes per class
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is set to 1,250. In general, for all classifiers, the results achieved for the S
class is higher than for the other classes. Many reasons for this exist. First,
as presented in Chapter 3, there is a higher percentage of S classes than
the other two, and hence one may assume that the classifier is better fit at
classifying instances of S, respectively.

Second, because of the S class’ already domination, it is likely to dominate
even more. In cases where the words of a sentence are not present in the
classifier, the sentence is always classified as S. This decision is based on the
assumption that when there are no words to help the classifier, there is a
bigger probability that the sentences belongs to the S class than the O or P
class since the S class is the major class of the training corpus. Hence, the
domination of S causes an even increased domination of this class.

Third, one may assume that terms represented by the S class, represent-
ing the subjective thoughts of a patient, may consist of a more condensed
vocabulary, and may hence easier correspond to attributes present in the
attributes set represented by the S class. Example of such words may be
“feel” and “think”. Hence, we may assume that there is a higher probability
that a sentence of the classes O or P contain words that are not present in
the classifier, and hence may be falsely classified as S in cases where there
is no “match” between the words present in the sentence and the classifier.

Other deviant observations one may make is the low precision and recall,
and hence the F measure, of the P class of the J48 classifier. This means that
this classifier both misclassifies many P sentences as O or S, and misclassifies
many instances of S and O as P.

8.1.2 Characteristics of E2

There are several interesting characteristics that may be found by inspection
of the results of E2 as well. The results of E2 are presented in Figures 10 and
11 in Chapter 7, extracted from Table 27 in the Appendix. When applying
the preprocessing techniques, some techniques make the set of available at-
tributes decrease, while other methods make the set of available attributes
increase. Techniques like applying only lowercase, stemming, and removing
stopwords are techniques that make the set of attributes decrease, while
addition of n-grams makes the set increase. This is further investigated
in Section 8.2.1. The outcome of applying the preprocessing techniques is,
nevertheless, additive concerning the number of attributes available.

Initially, when the number of attributes per class is set equal to 10, all
algorithms perform equally, achieving an accuracy of approximately 61.5%.
Increasing the number of attributes, J48 seems again to be unable of taking
advantage of this, and stabilizes at an accuracy of approximately 66.2%.
This happens when considering more than 50 attributes per class.
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On the other hand, SVM and CNB are both able to further classify on the
attributes added, and continue to increase the accuracy. SVM performs best
at 1,000 attributes per class, obtaining an accuracy of 78.16%. Due to the
computational effort, and the fact that SVM and J48 seems incapable of
handling attribute sets of sizes bigger than 1500, these algorithms are not
taken into account for bigger attribute sets per class than 1,500. Running
such experiments with SVM would also most likely take several days to
complete. CNB, on the other hand, manages to further increase the accuracy
obtained until taking 2,000 attributes per class into consideration, yielding
an accuracy of 81.95%. The accuracy decreases dramatically if we take more
than 2,000 attributes per class into consideration.

Precision and recall, and hence the F measure, of all algorithms behave
to a large extent like the achieved accuracy. However, an exception is the
precision of the J48 classifier, which initially slightly increases, before it
decreases considerably and stabilizes. This indicates that the probability
that a random document is classified correctly decreases.

Like in E1, we look at how the different classes behave when the number
of attributes per class is set to 1,250. These data values may be found in
Table 13 in the previous chapter. Similar to the conclusions drawn in the
previous section, we may conclude that both precision and recall is generally
higher for the S class, and that the results are poorest for the P class. J48
performs particularly poor classifying the P class and the recall is quite low.
This means that the probability that a random document that should be
classified under this class is actually classified as P is low.

8.1.3 Comparing E1 and E2

In this section we seek to compare the results obtained by each classifier in
respectively E1 and E2. Figure 14 presents the result of different classifiers
when the result is preprocessed and not. This figure is extracted based on
Table 26 and 27 in the Appendix. Here we look at how the sum of all
preprocessing techniques influence the result, but we do not try to give any
explanations of the results obtained. Instead this will be done for each of
the preprocessing techniques in Section 8.2.1.

In Figure 14(a), the result of the SVM classifier on the raw and preprocessed
dataset of D1 is presented. Initially, the classifier of the preprocessed data
obtains an accuracy of 61.65%, about 2% better than its accuracy on the raw
data. The accuracy of both graphs in the figure increases with the number
of attributes added per class. However, the accuracy of the classifier built on
the raw data reaches its maximum at 1,250 attributes (80.15%), while the
accuracy of the classifier built on the preprocessed data reaches its maximum
at 1,000 attributes (78.16%).
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(a) SVM

(b) J48

(c) CNB

Figure 14: Comparison of algorithms with and without the use of prepro-
cessing techniques.
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The result of the J48 classifier on the raw and preprocessed dataset is pre-
sented in Figure 14(b). Initially the classifiers share the very same character-
istics, yielding an accuracy increasing with the number of attributes added,
while the accuracy stabilizes above 50 attributes per class. However, the
classifier built on the preprocessed data seems more stable than the other,
performing better initially, but stabilizes at a slightly lower level than the
other, just above 66%. The classifier built on the raw data, on the other
hand, yields in general an accuracy just above 67%.

In Figure 14(c), the result of the CNB classifier on the raw and preprocessed
dataset is presented. Like the classifiers described above, classification of
the preprocessed data achieves a considerably higher accuracy when the
number of attributes is low. Both classifiers in this figure perform better
the more attributes that are added, to a certain point. Between 250 and
1,250 attributes, the classifier of the raw data performs slightly better than
the other. However, beyond 1,250, the classifier of the preprocessed data
performs better, before decreasing dramatically beyond 2,000 attributes.
The other classifier remains stable beyond 1,750 attributes per class, not
having more attributes to take advantage of. The best result for the classifier
built on the raw dataset is achieved at 1,250 attributes (81.03%) while the
other performs best at 2,000 attributes (81.95%).

8.1.4 Sign Test

In this section we evaluate the statistical likelihood of some of the trends
observed above. It is outside of the scope of this project to evaluate each
and every observation made, but we evaluate some of the conclusions that
we find most valuable. More specifically, we would like to evaluate which
algorithm produces the best results in respectively E1 and E2, and whether
the preprocessing techniques produce a better classifier or not, by comparing
each of the algorithms from both E1 and E2. However, we only give attention
the “peaks” of the curves and do not consider the other areas of the graphs.

As stated in Chapter 6, the classes of the corpus are relatively balanced.
Hence, no classes may be called rare, and a weighted statistical test empha-
sizing the common classes, i.e., a micro sign test, will in practice produce
the same statistical result as a macro sign test, valuing the rare classes more
profoundly (Yang and Liu, 1999).

In the corpus, there are only three classes: S, O, and P. A binomial distri-
bution table for n = 3 may give a P value of 0.1250 at best (Wadsworth,
1990). If we choose to use α = 0.05 as the critical value in the statistical
test, there is no way that we may obtain a result below this value, α < 0.05.
This means that the outcome of the classes themselves may not be used as
statistical evidence of a classifier’s superiority or deficiency.
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During the creation of the classifier, the ten-fold cross validation tests the
classifier against ten different folds, i.e., portions, of the data, producing
the final results. This gives us the opportunity to evaluate each of the ten
outcomes of the cross validation, as performed by Kienzle et al. (2006).
Using the result of the folds of the cross validation is vouched for by Han
(2006), and states that the results of each fold may be considered as different
and independent samples.

As stated above, the SVM and CNB classifiers of E1 perform best when
taking 1,250 attributes per class into consideration. The performance of
J48, on the other hand, does practically not change when considering more
than 250 attributes per class. Hence, we evaluate the classifiers taking 1,250
attributes per class into consideration.

Even though the average of the accuracy obtained in E2 is slightly higher
when considering 1,000 attributes than 1,250 attributes, we choose to focus
the sign test on 1,250 attributes, to be able to compare the values of the
folds more easily with the results obtained in E1. Also, the distance between
the result obtained in E2 for respectively SVM and CNB is larger when the
number of attributes equals 1,250 than 1,000. Hence, a statistical valid
result found when the number of attributes per class equals 1,000 is even
more likely to be true when the number of attributes equals 1,250. The
accuracy of the folds of the cross validation of each of the algorithms for
E1 and E2 may be found in Table 28 in the Appendix, where Table 28(a)
presents the results of E1, and Table 28(b) presents the results of E2.

By manual inspection of Table 28, we observe that for both E1 and E2
the accuracy achieved by every fold of SVM and CNB is better than the
accuracy achieved by J48. Similarly, each fold of CNB also performs better
than those of SVM. Hence, recollecting the sign test method of Section 4.4.2,
for all of these observations we get n = 10 and k = 10. With these values,
consulting Table 24 in the Appendix, we achieve P = 0.010. In Table 16,
the different algorithms are compared as proposed by Yang and Liu (1999).

Alg. 1 Alg. 2 E1 E2
CNB SVM � �

CNB J48 � �

SVM J48 � �

Table 16: Comparison of the different algorithms. Denotation: “�” or “�”
means P value ≤ 0.01, “<” or “>” means P value ≤ 0.05, and “˜” means P
value > 0.05.m

Combining the results presented in Table 16, we may conclude that CNB
is superior of both algorithms, and that SVM is superior of J48. Hence,
we get CNB � SVM � J48, when the number of attributes equals 1,250,
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indifferent to whether preprocessing of the data is performed or not.

In Section 8.1.3, we compared each of the classifiers of E1 and E2, to see if
the classifiers yield better results when they are applied on data that are pre-
processed. We now seek to statistically compare each of the algorithms when
the number of attributes per class is set to 1,250. Table 28 in the Appendix
presents the accuracy for each of the folds in the ten-fold cross validation of
classifiers both when the data is preprocessed and not. However, since the
CNB algorithm manages the use of more than 1,500 attributes, we carry out
a statistical test with the number of attributes set to 2,000 as well. This
data is presented in Table 29 in the Appendix.

Through manual inspection of Table 28 and 29, we observe that none of the
folds of SVM produce better results when they are preprocessed, while for
J48, three folds achieve better results when being preprocessed. CNB, on
the other hand, achieve better results for four out of six folds when the data
is preprocessed, taking 1,250 attributes into consideration. All folds produce
better result for CNB when the number of attributes per class equals 2,000.
Applying the same techniques as above, this produces the results presented
in Table 17. Observing the results, we may acknowledge that use of pre-
processing techniques does not necessarily increase the accuracy obtained.
CNB performs better on the preprocessed dataset taking 2,000 attributes
per class into account. Taking 1,250 attributes per class into account, both
CNB and J48 are indifferent to whether preprocessing is carried out. SVM,
on the other hand, performs poorer on the preprocessed dataset than on the
raw dataset.

Alg. 1 Alg. 2 Attrib. E1/E2
SVM SVM preprocessed 1,250 �

J48 J48 preprocessed 1,250 ˜
CNB CNB preprocessed 1,250 ˜
CNB CNB preprocessed 2,000 �

Table 17: Comparison of the result of the algorithms with the raw dataset
and the preprocessed dataset. The denotation is the same as in Table 16.

A number of different techniques exist to ascertain which classifier is the
better. The sign test states that among the tested classifiers, Complement
Naive Bayes is the better one, both when the data is preprocessed or not.
However, two numbers of attributes, 1,250 and 2,000 produce different re-
sults when it comes to the gain of preprocessing the data. This, in addition
to the poor influence of the preprocessing techniques on the other algorithms,
suggest that preprocessing techniques should be used with caution. In the
next section we evaluate how each of the preprocessing techniques influence
the result of CNB.



66 8.2 Preprocessing Techniques

8.2 Preprocessing Techniques

In this section we evaluate how each of the optional preprocessing techniques
influence the result of the CNB algorithm. We consider each of the sub
figures of Figure 12, extracted from Table 14, Chapter 7. Finally we present
two decision trees of the J48 classifier, and seek to find empiric effects of the
different optional preprocessing techniques.

8.2.1 E3: Comparison of Preprocessing Techniques

To start with, performing the simple operation of turning all letters into
lowercase, greatly influences the result when considering a low number of
attributes, but performs almost identical to no preprocessing when consid-
ering a high number of attributes. It is reason to believe that this is caused
by the fact that turning all letters into lowercase decreases the set of at-
tributes, and hence the dimensionality. This again may give a higher degree
of attribute recognition when there is only room for a low number of at-
tributes.

Stemming has to a high degree the same characteristics as the transforma-
tion of all letters to lowercase. It reduces the attribute space, and hence the
result is considerably improved when considering a low number of attributes.
However, considering many attributes the trend is somewhat negative, prob-
ably not giving the same degree of discrimination as when considering the
raw dataset.

Considering the stemming, it is worth noticing that when applying NOR-
KOMPLEKS, we are not able to perform stemming in cases where a con-
jugated word has two meanings, because we are not able to know what
stem the word is built on without performing considerably more analysis of
the text. An example of such a word may be the Norwegian word “hatt”,
which in English may mean both “had” and“hat”. It is likely that correcting
this ambiguity would emphasize the result of the stemming, producing an
even higher result when considering the little attribute set, and vice versa.
Pomikálek and Rehurek (2007) have shown that stemming does not influence
the result dramatically, while other reports have shown that stemming both
tends to worsen and make results better when applied in text classification
applications (Sebastiani, 2002).

The removal of stopwords is the preprocessing technique that gives the high-
est boost to the smaller attribute sets, removing many common words. These
are words that in reality have very little discriminating effect. However, like
stemming, this technique probably also removes some of the discriminat-
ing features of the greater attribute set and performs slightly poorer when
taking this dataset into consideration.
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The weighting technique of tf-idf gives heavier weights to words that occur
more frequently in an instance (i.e., sentence) to be classified. However, in
our experiment, this technique influences the result to a very small extent,
probably due to the nature of the instances to be classified, that very few
sentences contain the same word twice.

Of the preprocessing techniques considered, only the technique of adding
n-grams expands the set of attributes. Hence, we extend the experiment to
include sets of attributes per class up to 2,500. Adding the different n-grams
increases the specialty of each class, making it more difficult to classify with
only a few attributes to help. However, when considering the bigger set
of attributes, this technique improves the result considerably, obtaining the
best accuracy of all preprocessing techniques considered.

Lewis (1992) also tries text classification with phrases, but reports discour-
aging results. This is suggested to happen because phrases do have superior
semantic qualities, but inferior statistical qualities, than classification based
on single terms. Lewis (1992) further states that a classification task based
on phrases will have more terms and synonymous terms, lower document fre-
quency for terms, and lower consistency of assignment because synonymous
terms are not assigned to the same documents. However, the curves pre-
sented in Lewis (1992) only show the result before the curves cross, hence not
presenting the equivalent of the right part of Figure 12(e), where the high-
est obtained accuracy may be found. Other experiments have reported both
positive and negative influence on the result when using n-grams (Pomikálek
and Rehurek, 2007). To shrink the number of dimensions in the attribute
set, Tzeras and Hartmann (1993) remove terms that occur less than three
times in the corpus. This is indirectly the very same as we have done in this
experiment, but the other way, only considering the most frequent terms.

This section exemplifies how some preprocessing techniques work on a given
set of data. It is, however, worth noticing that previous experiments have
shown that the characteristics of the results are dependant on both the
corpus and algorithms used (Pomikálek and Rehurek, 2007).

8.2.2 A Classifier Built on Raw versus Preprocessed Data

In this section we take advantage of one of the most important features of the
J48 classifier: Its intuitive way of presenting the classifier. More information
about decision tree classifiers may be found in Section 4.3.3. Due to the
limited space available in this report, we here only present decision trees
where the number of attributes per class is equal to 10. Taking 10 terms
per class into consideration means that the ten most frequent words for
each class are selected. Sometimes, words from the different classes are the
same, and hence the total number of terms may be less than the number of
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attributes selected multiplied with the number of classes.

In Figures 15 and 16 we have presented the decision tree built on raw data of
D1, where the first figure presents the outline of the tree, and the other figure
presents the pruned top. This tree consists of 16 different terms. However,
several of the terms are used at multiple locations in the tree, thus giving
the impression that the tree contains more terms than what is the case. The
numbers at the leaf nodes indicate the result of the training data. The first
number indicates the number of instances that suit the selection, while the
last number indicates the number of erroneous training instances that are
left there.

If we take a closer look at the words in the tree, we note that many of the
words may be found in the list of the stopwords presented in Table 25 in
the Appendix. In fact, only two of the terms presented in Figure 16 are not
considered stopwords: “us”11 and “vurdering”12.

As seen in Figure 12(c) and explained in Section 8.2.1, the removal of stop-
words increases the performance of the classifier especially when the number
of attributes to help is low. However, of the different terms in Figure 16,
we assume that terms like “om”13 or “over” are words that do not appear
indifferent to its inherent class. The first word, often appearing in a causal
setting, may be overrepresented in the P class, while the other word “over”,
which is a preposition, may be overrepresented in either of the classes S or
O. However, finding the relevance of each of the words of the class is outside
of the scope of this project.

The decision tree of the preprocessed data, presented in Figure 17, consists
of 20 different terms. Here we see that the stopwords are removed, the
stemming has taken place, all words are in lowercase, and n-grams are added
to the corpus, as presented in Chapter 6.

The removal of the stopwords makes the classifier capable of including other
more specific words such as “fremmedlyder”14 or “CRP”15. Concerning n-
grams, we see that the classifier utilizes“hun ha”16 or“han ha”17, and defines
sentences containing these words as a part of the S class. These n-grams
also exemplifies the effect of the stemming; the “ha” term in the n-grams
may appear in other forms, both “har”18 and “hadde”19. Hence, the n-gram
“han ha” both account for “han har“ and “han hadde”. However, as stated

11Norwegian abbreviation for “undersøkelse”. Eng: examination
12Eng: assessment
13Eng: if, in, about
14Eng: Unfamiliar sound
15C-reactive protein
16Eng: she to have
17Eng: he to have
18Eng: has
19Eng: had
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in Section 8.2.1, the “hatt” conjugation of the verb ”ha“ is not included by
the table lookup stemming due to its ambiguous meaning, where it may
mean both “has had” and “hat”.

The two n-grams considered above also call attention in another manner.
Both “han ha” and “hun ha” are n-grams that suggest that the inherent
sentence belongs to the S class. However, “han” and “hun” could have been
swapped to a more common term, like“pp”(personal pronoun), or something
similar. This may probably be done for several types of terms in the corpus,
applying domain knowledge to combine multiple features together reducing
the set of attributes. This technique is known as feature extraction (Wilcox
and Hripcsak, 2003). This work may also be considered beyond the scope
of this project.

At the far lower left end of the tree presented in Figure 17, we see that the
sentences not consisting of any of the words mentioned, are tagged according
to the major class of the sentences left to be classified. In trees consisting
of more terms than the trees showed in Figure 16 and 17, this dramatic
majority voting at the far lower left end of the tree does not take place.
Instead, the majority voting is spread around the tree. These trees are of
sizes not adequate for reproduction in this report.

Figure 15: Outline of a J48 decision tree with up to 10 attributes per class
drawn in Graphviz on the raw dataset.
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Figure 16: Pruned J48 decision tree with up to 10 attributes per class drawn
in Graphviz on the raw dataset.
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Figure 17: J48 decision tree with up to 10 attributes per class drawn in
Graphviz on the preprocessed dataset. Note that the figure has been re-
touched to fit in the report. Hence, the apparent leaf node “bt” continues at
the top of the branch to the right.
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8.3 E4: Varying the Amount of Data

In this section we evaluate the results of E4, presented in Figure 13 in the
previous chapter. We first look into the classification of different sets of
instances when the number of attributes is set to 100, before we look at the
same sets of instances when the number of attributes is set to 1,000.

8.3.1 The Small Dataset of 100 Attributes

When it comes to the amount of data needed for the creation of a good
classifier when the number of attributes is set to 100, the result is somewhat
ambiguous. First, looking at the accuracy of classifying datasets with only
100 attributes in Figure 13(a), J48 is the only algorithm that actually shows
a positive trend when adding more instances to the classifier. However, both
SVM and CNB perform slightly worse when adding more instances to the
dataset. One reason for this negative trend may be that 100 attributes may
be“sufficient”for the classification of 1,000 instances, but does not manage to
discern between as many as 5,000 instances, and hence producing a slightly
worse accuracy.

8.3.2 The Bigger Dataset of 1,000 Attributes

When varying the amount of instances with the number of attributes set
to 1,000, as presented in Figure 13(b), the trend is the same for J48, but
different for SVM and CNB. J48, in fact, performs almost identical to the
experiment considering only 100 attributes, yielding slightly better results
when considering more attributes. This result confirms the result of E1 and
E2, that J48 seems to be incapable of taking advantage of the addition of
more attributes per class.

CNB, and particularly SVM, on the other hand, perform remarkably better
when adding more instances to the classification. The accuracy of CNB
increases moderately when applying more instances, while the accuracy of
SVM increases dramatically. The accuracy of the algorithms SVM, J48
and CNB is respectively 80.14%, 67.19%, and 80.90% for the biggest set of
instances.

Hence, we conclude that in the first experiment, taking 100 attributes into
consideration is not enough to manage the classification of the decreasing
number of instances, while when taking 1,000 attributes into consideration,
the classifiers are capable of taking advantage of the extra instances added.
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8.4 Other Issues

The previous sections explain the results of the work on RQ1. In this section
we consider some other issues concerning the work.

8.4.1 Heuristic Rules for Encounter Note Anatomy

When classifying the sentences, we do not pay any attention to the struc-
ture of the encounter note. Other experiments (Nilsson et al., 2003) and
manual inspection performed by us, validate that encounter notes are of-
ten written in a SOAP sequence. This is a feature of the encounter notes
that could be advantageous to exploit. First, we would have to classify the
sentences according to their belonging encounter notes. For example, we
may picture a sequence of classified sentences sn = {S , S , P, S , S ,O,O, P, P, P}.
Then we assume that by the use of heuristic rules, like letting the clas-
sified sentence fit into its surroundings, the result will improve. In the
example mentioned above one may assume that sentence number three,
the P, is misclassified. Hence one would get a new sequence of sentences
snnew = {S , S , S , S , S ,O,O, P, P, P}.

8.4.2 Domain Knowledge

Applying domain knowledge may give a boost to medical text report classi-
fiers (Wilcox and Hripcsak, 2003). As suggested in Section 8.2.1, some of
the stopwords that are relevant, may in reality have a discriminating value
when it comes to classification. A solution is to let domain experts decide for
each of the classes what terms may be considered most relevant to include,
performing a manual feature selection. Another technique applied by domain
experts is feature extraction (Wilcox and Hripcsak, 2003), where terms whose
meaning is indifferent is substituted by common terms, like when suggesting
that she and he are terms that both describe the same semantics in the
classifier context. This is also exemplified in Section 8.2.2.

Wilcox and Hripcsak (2003) conclude that the use of domain knowledge is a
very important factor concerning the performance of classifiers. On the other
hand, Sebastiani (2002) states that the straight forward approach of applying
a set of previously classified documents yield an accuracy comparable to that
achieved by human experts. The latter does not concern medical data in
particular. However, when applying techniques like feature selection, the
use of human expert manpower is often needed, making the classification
task more expensive (Sebastiani, 2002; Wilcox and Hripcsak, 2003).
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8.4.3 Computational Infeasibility

It is expected that especially the LibSVM algorithm could have performed
a little better with parameter tweaking (Hsu et al., 2003). LibSVM does
provide a package, easy.py, to find the best parameter settings for LibSVM
on a given dataset. This package checks different pairs of parameters, to find
the best performance possible of LibSVM. Weka, on the other hand, has its
own GridSearch class, shortly described in Table 6 in Chapter 5. However,
an experiment with LibSVM on our computer, specified in Table 8 in Section
5.4, uses approximately seven hours to complete on the D1 dataset, taking
1,000 attributes into consideration, making the experiments of RQ1 take
days to complete. Hence, carrying out experiments for the set of parameter
pairs on this dataset would not have been computationally possible within
the scope of the project. A solution, however, could have been scaling down
the data obtaining best parameters for the reduced dataset, possibly at the
expense of obtaining inaccurate parameters. Variation of the algorithmic
variables comes at a cost of computational complexity. In many cases, the
variation will be computationally infeasible (Pomikálek and Rehurek, 2007).

When parameter tweaking takes place, some argue, that in addition to a
training and a test set, one needs a validation set (Salzberg, 1997; Sebas-
tiani, 2002). The problem is, when using a training and a test set, the
parameters will be tweaked to perform as best as possible on the test set,
and hence possibly bias the result. To deal with this problem, Salzberg
(1997); Sebastiani (2002) propose the addition of an extra set when per-
forming k-fold cross validation. More specifically, they propose to first use a
training and a test set to optimize the variables of the algorithms, and then
run the classifier on a validation set, to get an unbiased result.

However, finding the absolute best result possible is not the scope of this
thesis, but rather to find and compare some adequate algorithms to see if
and how applicable algorithms may be used on the available data. Hence, we
did not find the possible gain of performing these tests to justify the effort.

8.5 Conclusion

From the evaluation in this chapter we may conclude that CNB was the over-
all best classifier. It performed best on both the raw and the preprocessed
dataset, achieving accuracies of 81.03% and 81.95%, respectively. SVM also
performed satisfactorily, and yielded accuracies of 80.15% and 78.16% on
the same datasets. On the other hand, J48 failed to take advantage of large
attribute sets and achieved accuracies of around 67% for both datasets.

The overall best result was achieved by CNB on the preprocessed dataset
when considering a specific number of attributes. The other two classifiers
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did not perform best applying the preprocessed dataset. In addition, finding
an adequate ratio between the number of attributes and the size of the
dataset is not straightforward. This suggests that the use of preprocessing
techniques should be applied with caution.

Several observations are made by comparing the different preprocessing tech-
niques on the CNB classifier. Preprocessing techniques that decrease the
set of attributes gives boost to the performance of the small attribute set,
but slightly decreases the performance when considering the larger attribute
set. Oppositely, the preprocessing technique of adding n-grams decreases the
achieved accuracy when applying the smaller attribute set, and increases the
achieved accuracy when considering the bigger set of attributes. However,
from the obtained results, it is not evident which techniques that improve
classification results. It still may be suggested, as above, that the ratio be-
tween the number of attributes taken into account and the size of the dataset
may indicate which preprocessing technique that is most likely to improve
the classification results.

When it comes to the amount of data needed for creating a good classifier,
the results suggest firstly that the number of attributes should reflect the
number of instances in the dataset. E.g., when applying only 100 attributes,
the result does not improve when adding more dataset instances. This is
probably due to the fact that a larger set of instances also requires a larger set
of attributes to discriminate within. However, when the number of attributes
is more in proportion to the number of instances considered, the trend is
that adding more dataset instances improves the classification.

It is evident from the results, that even the best results are not sufficient for
unsupervised automatic classification of sentences between the EHR and the
PHR: Slightly more than four out of five sentences are correctly classified, at
best. This result will most probably not be sufficient for neither a GP using
an EHR nor for a patient using a PHR. However, the accuracy of 81.95%
achieved by the CNB classifier may be considered a marked improvement
over the majority class baseline classification of 42.9%.
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9 History Extraction Experiment Plan (RQ2)

In this part of the project we approach research question two (RQ2), where
the goal is to discover whether the developed classifiers may be used to
get an overview of the patient history. In particular, we seek to give an
overview of how the distribution of sentences of subjective, objective, and
plan character changes over time in patient histories. This we intend to do
both for individual patient, and for groups of patients, presenting how the
average distribution changes over time.

In the following sections we present an overview of preliminary decisions
made and work done related to RQ2. Then we seek to explain how we
may generate a classifier to use on the D2a dataset, and how this classifier
may be evaluated against a classifier built on the D1 dataset. Afterwards
we present how we plan to find the distribution of subjective, objective, and
plan sentences for different diabetes patient histories from D2a and D2b. An
overview of the datasets referred to in this chapter may be found in Chapter
3, while Weka classes referred to are shortly described in Table 6 in Chapter
5.

9.1 Preliminary Decisions and Work

In this section we present some of the decisions made, and work done, prior
to being able to execute the experiments in the work of RQ2. First we
explain why we choose to focus on the disease of diabetes. Then we present
shortly what text classifying techniques and training data we seek to use.
Finally we explain how we processed the data from the database, and how
the manual classification of some of this data took place.

9.1.1 Selection of Disease

In the work of RQ2 we focus on patient histories from patients suffering
from diabetes, as stated in Chapter 2. There are particularly two reasons
to focus on the disease of diabetes. Firstly, this disease has a rather chronic
nature, giving us the chance to see how the structure of the encounter notes
for a given disease changes over time. Secondly, the disease is a relatively
frequent disease in the overall population, hence increasing the statistical
validity of our findings. This was both deduced by our general impression of
this common disease, and the findings in the EHR. In Figure 18 these findings
are presented. The graphs present the relation between the number of visits
a patient has after the diagnosis of diabetes has been set for the first time
and the number of patients that this applies to. The lower graph is created
from the D2a dataset, taking only encounter notes related to diabetes into
account, while the upper graph is created from the D2b dataset, taking all
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encounter notes into account after the diagnosis has been set. The graph
shows that a total of 429 patients in the EHR have at least one encounter
note related to diabetes. This equals 3.6% of the total number of patients in
the EHR dataset. Further, we see that 80 patients have at least 30 encounter
notes related to this disease. These observations confirm both the frequent
occurrence and chronic nature of diabetes.

Figure 18: The lower graph presents the number of patients that contribute
to the classification averages in D2a, while the upper graph presents the
similar for D2b. Hence, the lower graph is relevant for Figure 21(a), and the
upper graph is relevant for Figure 21(b).

Through inspection of the ICPC coding system (The Norwegian Directorate
for Health and Social Affairs, 2004), we find two ICPC codes that are directly
related to the disease of diabetes: T89 (diabetes insulin dependent) and T90
(diabetes non-insulin dependent).

9.1.2 Selection of Text Classifying Techniques

The previous chapter concludes that Complement Naive Bayes (CNB) is the
classifier that achieves best results of the classifiers taken into account. It
also concludes that preprocessing techniques should be used with caution,
due to the problems of finding the correct relation between the number of
attributes and the size of the dataset taken into account. Due to the obser-
vations in Chapter 8, we apply the CNB classifier without any preprocessing
in this latter part of the project.
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9.1.3 Selection of Training Data

The classifier created in the previous chapter is constructed with training
data from the D1 dataset. Even though the D1 dataset shares many of the
characteristics of the datasets D2a and D2b, there are several differences.
On the one hand, the D1 dataset contains encounter notes written by one
specific GP about all kinds of diseases. On the other hand, the diabetes data
contain encounter notes written by several GPs, where the majority of the
data is about one disease. Although many of the diabetes encounter notes
also contain information about other diseases, only notes that contain any
of the diabetes ICPC codes T89 and T90 are included in D2a. Hence, the
nature of the data differ in two dimensions: The semantic content and the
lexical and syntactic way of presenting the data material. Due to this, we
find it appropriate to first validate the CNB classifier created from D1 on
preclassified data from D2a, and then compare it to a CNB classifier built
on manually classified training data from D2a.

Even though D2b consists of other diseases than diabetes to a larger extent
than D2a, D2a also consists of a wide range of other diseases, as we will see
in Chapter 11. Hence, we do not find that it is worth the effort to classify
training data from this dataset in addition to the D2a dataset.

9.1.4 Data Extraction

We extract all encounter notes from patients that suffer from diabetes, as
defined by the diabetes ICPC codes presented above to create the D2a and
D2b datasets.20 For D2a, the encounter notes of these patient histories
that are not related to diabetes are removed. This is not done for the D2b
dataset.

The D2a and D2b datasets are then processed, as in Chapter 6: All punc-
tuation, sentences that consist only of numbers, and “windows newline” are
removed. In addition we replace each number in each sentence of the notes
by the capital letter “N”. This latter transition was not applied in the pre-
vious experiments, but is applied now due to the manual observation of a a
large amount of numbers in the corpus. We assume that by replacing each
of the numbers by this letter, numbers of the same format, e.g., “NNNN” or
“NN”, that are overrepresented in a class, may be used as a way to discern
the notes. These techniques are carried out to ease both further classifica-
tion and processing. The source code of these operations is shown in Figure
27 in the Appendix. The retrieved data is then stored in the arff format,
with the class field empty, for further manual classification to create training
and test data, that later may be applied by Weka.

20Necessary database queries are found in Figure 25 in the Appendix.
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9.1.5 Manual Classification

To evaluate both how the classifier created from D1 and how a newly trained
classifier may perform on D2a, we need to manually classify a number of
instances. In the E4 experiment, we conducted an experiment where we
varied the number of training data instances. When 1,000 attributes were
taken into account, the performance of the accuracy seemed to stabilize
around use of 3,000 training instances, as seen in Figure 13 in Chapter 7.
Hence, due to the human effort of manual classification, and what we have
observed in this figure, we choose to use a set of 3,000 instances from D2a
to both test the CNB classifier created from D1 and for the training and
evaluation with cross validation of a new CNB classifier.

From D2a we select 3,000 random sentences and then classify them manually.
For each sentences we pick the most probable class of S, O, and P, and
assign it to the sentence. Sentences that mainly express beliefs and thoughts
of the patient are classified as subjective (S), while sentences containing
measurements confirmed by the GP, or discoveries performed by the GP are
classified as objective (O). Equally, sentences expressing assessments about
the patient or plans about the further treatment of the patient, such as the
number of tablets of a certain medicine a patient should take each day, are
classified as plan (P) sentences.

In cases where a sentence consists of several subordinate clauses that may
belong to different classes, we split the sentence into two sentences. E.g.,
some sentences contain first an observation of the problem before the plan
is described. In such cases we split the sentence in two, and then each part
of the sentence is assigned to its most probable class.

It may also occur that sentences consist of only one word, or other reasons
that prevents us from being able to classify its content. In such cases the
sentences are deleted from the training corpus. We expect the sentence
splitting and deleting to balance the inclusion or exclusion of sentences, and
no further actions are applied to keep the number of sentences in the training
corpus at precisely 3,000.

Class Number Percentage
S 1094 38.6 %
O 697 24.4 %
P 1061 37.2 %
Total 2852 100.0 %

Table 18: Distribution of the classes subjective (S), objective (O), and plan
(P) of the manually classified subset of the D2a dataset.
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The manually classified sentences are excluded from D2a, which later is to
be used for finding the S, O, and P distribution over time. Experiences
from this process are further explained in Chapter 11. In Table 18, the
distribution of the manually classified subset of D2a is presented. We now
present each of the experiments we seek to carry out in association with
RQ2.

9.2 E5: Classifier for Diabetes Data

In the fifth experiment, E5, we intend to build a classifier that may classify
diabetes specific EHR data. First, we carry out an experiment where we
use the best classifier derived from D1, the CNB classifier, to classify the
set of manually classified data. We take both the classifier trained on the
manually classified subset of D2a through cross validation, and the classifier
built on the D1 dataset, into consideration.

There are several aspects that we need to take into consideration when we
apply a classifier that is trained on another dataset. First, it is important
that the indexed file (explained in Section 4.1) that the classifier is to be
created on and the indexed file to be classified, contain the same attributes.
I.e., the classifier created from D1 must contain the same attributes as the
manually classified data from D2a. Second, to avoid a result biased towards
the test set, the selection of the attributes that these sets should have in
common should be based on the most frequent terms, from the training
set. Selecting the most frequent attributes from the test set will make the
classifier biased towards the test set and make the training set contain many
attributes that are not present in any instances of the training set.

Because of the importance of letting both the indexed training file and the
indexed test file have the same number of attributes, a new classifier has
to be built for each attribute set that the classifier is to be tested on. A
script we created to test a classifier on the preclassified data is presented in
Figure 33. First, StringToWordVector is applied to index both the training
and test data. Then a classifier is built on the indexed data from D1, and
then this classifier is applied on the manually classified data from D2a. The
latter operations are carried out by the use of the ComplementNaiveBayes
class from Weka.

To evaluate a new classifier, we apply the same scripts as in Chapter 6, using
cross validation. However, now we apply the manually classified diabetes
data from D2a, and not the automatically tagged data from D1. As in
Chapter 6, we seek to evaluate the classifiers for the following number of
attributes per class: 10, 20, 50, 100, 250, 750, 1,000, 1,250, and 1,500.
Finally we compare the accuracy achieved by the classifier trained on the
manually classified subset of D2a through cross validation and the classifier
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built on the D1 dataset.

9.3 E6: Extraction of Graphs from Patient Histories

In the sixth experiment, E6, we intend to apply the best classifier created
from the classifier evaluation in E5 on data that was not used for manual
classification from both D2a and D2b. As above, we retrieve sentences from
encounter notes, ignoring the sentences used for manual classification. The
stored instances are not assigned any class; this assignment of classes is the
task of the classifier.

The retrieved dataset consists of a series of sentences, where no other in-
formation is given. To later be able to recreate the structure of each note,
other information for each of the sentences in the dataset is stored as well.

After having retrieved the dataset that the classifier is to classify, we apply
the Weka AddClassification class to add the outcome of the classification
and the sentences to a new dataset. The script is reproduced in Figure 34
in the Appendix. However, unlike before, we are now not able to vary the
number of attributes to take into consideration, because there is no way to
evaluate which number is the best. Taking both the results presented in
Chapter 7 and the fact that we have trained 3,000 instances into account,
we choose to use 1,000 attributes per class.

The final step is to extract the distribution of the S, O, and P classes for
the different patients from the created data files. We would like to be able
to extract both the distribution of these classes of the individual patients,
and the average distribution of all patients, as specified in Chapter 2. This
we seek to do by creating an overview of the distribution of these classes for
each of the encounter notes of each of the patients, as presented in Figure 19.
Based on such a list, we would be able to calculate21 both the distribution
of these classes of individual patient histories, and the average distribution
of all patient histories in addition to its standard deviations.

Patient ID Note ID ICPC S O P
00001 01 T90 4 2 4
...

Table 19: Vectors that show sentence distribution of each relevant encounter
note.

From the standard deviations (s) calculated from the data, we may create
confidence intervals by

Y ± tα/2
s
√

n
, (13)

21Source code of calculation may be found in Figure 28 in the Appendix.
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where n is the number observations made. Calculating the 95% confidence
interval, we get α = 0.05, and hence tα/2 = 1.96 (Wadsworth, 1990).

As well as being able to retrieve the distribution of the classes S, O, and
P, we would also like to retrieve the distribution of the ICPC codes of the
encounter notes, for use in the evaluation of the distribution of the classes.
For increased readability of the ICPC figures, we only retrieve ICPC codes
that appear in at least 2% of the total number of ICPC codes for a visit
number.22

9.4 Summary

In this chapter we have presented how we plan to use the Complement Naive
Bayes (CNB) classifier to classify sentences from EHR encounter notes and
see how the distribution of sentences changes over time, both individually
and on average. Table 20 presents an overview of the steps that we seek to
carry out to meet these goals. In the next chapter we present the experi-
ments’ results.

Exp. Sentences Attributes Algorithms Prep.

E5 From T89/T90 notes 10, 20, 50, 100, CNB old no
250, 500, 750, and
1000, 1250, 1500 CNB new

E6 From T89/T90 patient 1000 CNB no
histories

Table 20: Overview of the history extraction plan. In E5 we evaluate how
different classifiers behave on the diabetes data, while in E6 we use the best
classifier to seek to find the distribution of the classes S, O, and P over time.

22Source code of calculation reproduced in Figure 29 in the Appendix.
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10 History Extraction Results

In this chapter we present the results of the experiments E5 and E6, con-
ducted in the work of RQ2. In comparison with the results presented, the
majority class baseline accuracy, which is the accuracy achieved when clas-
sifying all instances as the majority class, S, achieves an accuracy of 38.6%,
as stated in Table 18 in Chapter 9.

First, we look at how the different classifiers behave on the manually clas-
sified subset of the D2a dataset. Then we present the result of applying
the most appropriate classifier of this experiment on patient histories of pa-
tients suffering from diabetes. An overview of the datasets referred to in
this chapter may be found in Chapter 3.

10.1 E5: Classifier for Diabetes Data

In Figure 19, extracted from Table 30 in the Appendix, we present the result
of the classification of the manually classified diabetes data from the subset
of D2a. The lower graph presents the accuracy of the CNB classifier built on
the prestructured data from the GP (D1), while the upper graph presents
the accuracy of the CNB classifier trained on the manually classified subset
of D2a, and evaluated by cross validation.

Figure 19: Comparison of the CNB classifier built on D1, and the CNB
classifier built on the manually classified subset of D2a.
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10.2 E6: Extraction of Graphs from Patient Histories

Based on the results of E5, we choose to apply the CNB classifier trained on
the manually classified subset of D2a in E6. A more detailed comparison of
the classifiers of E5 is presented in the next chapter.

In Figure 20, extracted from Table 21, we have manually selected a patient
whose history of encounter notes contain a typical distribution of the classes
S, O, and P the first ten visits after the diabetes diagnosis has been set. The
data is extracted from the D2a dataset, hence only containing encounter
notes associated with a diabetes diagnosis. The x-axis in the figure presents
the number of visits after the diagnosis has been set in addition to the ICPC
codes associated with the given encounter note.

Figure 20: Class distribution for a random patient, from the D2a dataset,
for his first ten visits after the diagnosis of diabetes has been set. The x-axis
presents the number of visits after the diagnosis has been set in addition to
the ICPC codes associated with the given encounter note.

In Figure 21, extracted from Table 31 in the Appendix, we present the
average distribution of the classes S, O, and P for the D2a and D2b datasets.
In this figure we also present the pertaining 95% confidence intervals. Figure
21(a) is created from D2a and Figure 21(b) is created from D2b. Hence, in
the first figure only encounter notes that are associated with a diabetes
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Patient ID Note ID ICPC S O P
xxxxx 01 T90 8 3 1

02 T90 0 1 0
03 T90 1 1 0
04 T90 4 1 1
05 T90, K86 5 1 0
06 T90 7 3 0
07 T90 4 0 0
08 T90 4 0 1
09 T90, K86 1 1 2
10 T90, K86 1 2 0

Table 21: Vectors that show sentence distribution of each relevant encounter
note, presented in Figure 20. In addition, the ICPC diagnosis codes pertain-
ing to the given encounter notes are presented.

diagnosis code is presented, while in the latter figure all encounter notes
after the patient was diagnosed with diabetes are shown. These figures are
extracted based on each of the tables for the individual patients, like Table
21.

Since Figure 21(b) does not include encounter notes that do not have a
pertaining diabetes diagnosis code, there are more patients making up the
average scores of the S, O, and P classes for this figure than for Figure 21(a).
An overview of the number of patients that contribute to the average values
is found in Figure 18 in Chapter 9, where the lower graph shows the number
of patients for D2a, and the upper graph shows the number of patients for
D2b. One may also note that since the requirements for the first visit is that
one of the diagnosis codes of diabetes appear, the averages of the first visits
are the same.

10.3 Summary

In this chapter we have presented the results of the experiments presented
in Chapter 9. First we have seen how the classifier built on manually clas-
sified diabetes encounter notes behave in comparison to the classifier built
on general encounter notes on diabetes data. Then we have seen how the
distribution of subjective, objective, and plan sentences appear for differ-
ent kinds of diabetes patient histories using the most accurate classifier for
diabetes data. In the next chapter we seek to interpret these results, and
suggest some probable reasons for the given outcome.
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(a) Diabetes encounter notes only (from D2a).

(b) Diabetes and other encounter notes (from D2b).

Figure 21: Average distribution of the classes S, O, and P given a number
of visits.
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11 History Extraction Evaluation and Discussion

In this chapter we evaluate the results of the history extraction performed
in the work of RQ2. At the end of this chapter we also present some other
issues concerning the procedures applied, and a conclusion of the findings.

11.1 E5: Classifier for Diabetes Data

Manual inspection of Figure 29 suggests that the CNB classifier built on the
manually classified subset of the D2a dataset produces a higher accuracy
than the CNB classifier built on the D1 dataset. In Chapter 8 we found that
the CNB algorithm performed significantly better than the SVM algorithm.
This we even found when the average accuracy achieved by CNB was less
than 1% higher than what achieved by SVM. In E5, however, we observe
that the smallest difference in achieved accuracy between the two compared
algorithms is about 13.25%. Hence, in spite of different sizes of the training
datasets, we assume it is safe to conclude that the CNB classifier built on
the manually classified subset of D2a performs significantly better than the
other, without further investigation of the folds.

11.2 E6: Extraction of Graphs from Patient Histories

Figure 20, in the previous chapter, presents how the distribution of the
classes S, O, and P evolve in the history of encounter notes of a manually
selected patient. We believe that this presentation of a medical history of a
patient may to some degree be helpful both in EHR and PHR settings, where
for instance the subjective graph may give an indication of both time and
encounter note when the patient went through many changes even though
the diagnosis code given was the same. An example may be manual inspec-
tion of note “6-T90” in Figure 20, which reveals that at this visit the patient
had many patient related subjective experiences about the development of
his or her disease. Through graph inspection this point may be revealed
in a short matter of time, without having to browse through numerous en-
counter notes. However, as stated by Tang et al. (2005), there are not only
differences in how GPs and patients abstract information, but also between
different patients. Hence, information should be presented in a way adequate
for the individual.

Figure 21, in the previous chapter, presents the average distribution of the
classes S, O, and P for the D2a and D2b datasets, and the pertaining 95%
confidence intervals. Figure 21(a), extracted from D2a, and Figure 21(b),
extracted from D2b, show rather similar distributions for the classes S, O,
and P, confidence intervals taken into account. However, all curves are
relatively flat. Note that the confidence intervals tend to be larger the
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higher number of visit one takes into account, due to the decreasing number
of patients along the x-axis (see Figure 18). When it comes to Figure 21,
both sub figures show that there is in average a significantly higher number
of S sentences the first time that the diagnosis of diabetes is set, compared
to the rest of the patient history. Afterwards there are no significant changes
when it comes to sentences of class S. Secondly, when it comes to objective
sentences, no significant difference is shown, since the curves are rather flat.
Thirdly, when we consider the plan sentences, the distribution is also quite
flat, except from an initial decrease the first three visits. These observations
account for both of the graphs presented in Figure 21.

The distribution of ICPC codes for the same encounter notes as reflected
upon above is presented in Figure 22, where Figure 22(a) is extracted from
the same data as Figure 21(a), and Figure 22(b) is extracted from the same
data as Figure 21(b). In Figure 22, we have only included the ICPC codes
that appear in more than 2% of the diagnosis codes. Hence, “other”diagnosis
codes are ICPC codes that appear in less than 2% of the encounter notes.
In Table 22, the different diagnosis codes are shortly described.

From the overview of the distribution of ICPC codes for the same data, few
new conclusions about the distribution of sentences may be drawn. Firstly,
in Figure 22(a), that considers the D2a dataset, no change in distribution
of any ICPC codes may be seen. Other interesting observations from this
figure, however, may be that only 60% of diagnosis codes set in encounter
notes dealing with diabetes, are actually related to diabetes, and that many
of the encounter notes dealing with diabetes also deal with elevated blood
pressure. Secondly, Figure 22(b), that considers the D2b dataset, and hence
all encounter notes after the diagnosis code of diabetes is first set, shows that
there is a decrease in the percentage of encounter notes dealing with diabetes
the six first visits after the first diabetes visit. The same decline may be seen
for the number of P sentences in Figure 21(b), without being able to state
any connection other than what is stated. We also note that there seems to
be an increase in depressive disorders for patients suffering from diabetes.
We may suspect that such ICPC codes were supported by an increase in
the number of subjective sentences. However, this is not supported by our
results. This is probably due to the fact that the graphs are dominated by
“other” diagnosis codes, less than 2% of the total, and hence evening out the
results.

11.3 Other Issues

Both during manual and automatic classification, we discovered some issues
that should be further stressed. We here present the most important ones.
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(a) Diabetes encounter notes only (for D2a).

(b) Diabetes and other encounter notes (for D2b).

Figure 22: Average distribution of ICPC codes given a number of visits.
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ICPC Description
L88 Rheumatoid/seropositive arthritis
K74 Ischaemic heart disease w. angina
K77 Heart failure
K78 Atrial fibrillation/flutter
K85 Elevated blood pressure
K86 Hypertension uncomplicated
P76 Depressive disorder
T90 Diabetes non-insulin dependent

Table 22: ICPC codes that appear in the results.

11.3.1 Comparison of the Manually Classified Datasets of D1 and D2a

In Chapter 9 we explained how we carried out the manual classification of
the subset of D2a. A difference between the classifiers evaluated above is
concerning how the data has been classified. While the GP data is struc-
tured, and hence indirectly classified by a GP, the diabetes data is classified
by us. Hence, some of the sentences that we have classified may have another
medical meaning than the one perceived by us, who have limited knowledge
about medical terms.

When it comes to the distribution of the classes S, O, and P for the manually
classified datasets of D1 and D2a, there are also some differences. In Table
2 in Chapter 3 the distribution of these classes is presented for D1, and in
Table 18 in Chapter 9, this distribution is presented for the D2a dataset.
The P class, for instance, is some 12 percentage points larger in the D2a
dataset than in D1. In addition, the fact that the classifiers built on D1
and D2a behave so differently on the same dataset (as shown in Section
11.1), confirm that there is a considerable difference between the D1 and
D2a datasets.

11.3.2 Distribution of Classes in the Classified Dataset

When it comes to the classes S, O, and P, we learn from Figure 21 that
the distribution of the classes is rather skewed: A majority of the sentences
are classified as S. This is in remarkable contrast to the distribution of the
manually classified sentences, presented in Table 18 in Chapter 9. There are
many plausible reasons that may explain some of this overrepresentation of
the class S. Here we may consider many of the same reasons as described
in Section 8.1.1, where we state that the fact that the S class is the largest,
makes it even dominate more. First, a classifier that is built from a training
set with an overrepresentation of the S class, is assumed to be accordingly
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better adequate at classifying S sentences. Second, in cases where the words
of a sentence are not present in the classifier, the sentence is always classified
as S, since this is the most probable class. Third, through manual inspection
we get the impression that the S class has a more condensed vocabulary.
Words in sentences of this class are hence more likely to get a “match”
with words present in the classifier. These considerations apply during the
classification of CNB are explained in more detail in Section 8.1.1. However,
during manual classification of the training data, no sentences are classified
falsely due to mismatch between the words present in the classifier and
the sentence or simply because the sentence is classified as the major class
because there are no words to help. This may explain the fact that the
distribution of the classes of the training data is far more balanced than for
the datasets classified by CNB.

11.3.3 Class Features in Diabetes data

In Figure 23, a J48 decision tree is created from the manually classified
diabetes data from D2a. We have not preprocessed the data before creating
this tree, but to present more relevant attributes we have built the tree
containing up to 20 attributes per class. This is carried out by including the
20 most frequent terms from each class S, O, and P. However, to increase
readability, only the pruned top section of the figure has been included in
this report.

This tree may be compared with both the preprocessed tree presented in
Figure 16 and the non-preprocessed tree in Figure 17 in Chapter 11. Taking
the attributes of these figures into consideration, we may confirm what we
stated earlier: The GP data and the diabetes data are very different. Of the
attributes presented in these figures, the only attributes that reappear are
“prøve”23 and “bt”24.

We also note that the terms “NNN”and “NNNNN”are included in this tree.
These terms are representations of sequences of digits of the sizes three and
five, respectively, as described in Chapter 9. Hence, we see that the deci-
sion tree suggests that the sentence “BT NNNNN” is an objective sentence,
which may be considered true, since this sentence probably considers a blood
pressure measurement of five digits.

An example of a word that is typically found in plan sentences is “Øker”25,
which is probably an indication of that the GP is suggesting to increase the
dosages. A typical word denoting a subjective sentence is “form”26, which

23Eng: test
24Norwegian abbreviation: Blodtrykk, Eng: blood pressure
25Eng: Increases
26Eng: shape
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Figure 23: A J48 decision tree on the raw random diabetes dataset with up
to 20 attributes per class extracted from the retrieved .dot file in Graphviz.
Please note that the decision tree has been pruned to increase readability.

probably informally indicates whether a patient feels fine or not.

When describing the incentives for carrying out RQ2, we stated that making
overviews of the distributions of different classes would be interesting in a
PHR setting as well. We assume, however, that sentences in the EHR are
rather different from sentences that may appear in a PHR. For instance, in a
PHR setting, one may suspect that the subjective notes are often written in
a personal way, like “Tonight I had fever”. In an EHR setting, however, the
GP tends to use more formal words like ”febrile“ or “nocturnal”, even though
the sentence is in nature describing a subjective experience from the patient.
We assume the GP uses other terms than the patient to describe what he
or she is expressing. Hence, there is reason to believe that a classifier built
for EHR data is rather different than a classifier built for PHR data, but
that most text mining techniques used in this project are applicable in both
systems.
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11.4 Conclusion

From the evaluation of the classifiers we may conclude that there is a big
difference between classifiers built on different kinds of EHR data. This
encourages the creation of new classifiers when two datasets are written by
different authors or the diseases in focus are of different character, rather
than reusing classifiers built on slightly different data. This process may
be automated, and hence one may picture that individual classifiers may be
applied for each author and/or topic to classify the information in the best
way possible.

Presenting the distribution of sentences of the classes S, O, and P, may
disclose information about the treatment of individual patients, however, no
empiric investigation is carried out. When it comes to average distribution
of such sentences for the disease of diabetes, we were only able to find very
limited characteristics about diabetes, the disease in focus. However, it
would be interesting to see what this average distribution is like for other
diseases, to discover possible trends in groups of diseases.
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12 Conclusion

This project has focused on two main research questions (RQs). In RQ1
we investigated how classification of sentences in encounter notes of EHRs
may facilitate a more structured exchange of information between EHRs and
PHRs. In the encounter notes we considered the sentences of the character
subjective (S), objective (O), and plan (P). In our work we experimented
with several preprocessing techniques, classifiers, and amounts of data. Con-
cerning this RQ, we found that the classifying algorithm of Complement
Naive Bayes (CNB) produced the best result, both when preprocessing of
the data had taken place and not. On the raw dataset, CNB yielded an accu-
racy of 81.03%, while on the preprocessed dataset, CNB yielded an accuracy
of 81.95%. The Support Vector Machine classifier achieved results compa-
rable to these, but the J48 decision tree algorithm performed considerably
poorer.

In general, we found that the more data that was applied as training data,
the more accurate results the classifiers achieved. However, when it comes
to the use of preprocessing techniques, the results do not speak for them-
selves. Techniques reducing the dimensionality of the datasets seemed to
improve the results for smaller attribute sets, but worsen the results for
larger attribute sets. The trend was opposite for preprocessing techniques
that expanded the set of attributes. However, finding an adequate ratio
between the number of attributes and the size of the dataset is difficult.
Hence, in the work of RQ2 we applied the classifiers without preprocessing.

We conclude that even the best results of the classification are not good
enough for unsupervised automatic classification of sentences between the
EHR and the PHR. However, taking the majority class baseline classification
of 42.9% into account, the accuracy of 81.95% achieved by the CNB classifier
may be considered a marked improvement.

When evaluating different classifiers for use in RQ2, we discovered that
classifiers built on different portions of the EHR data behave very differently.
We assume that new classifiers should be created for portions of EHR data
that are either written by different authors or that focus on different diseases.

In RQ2 we further used the best classifier derived from the work of RQ1,
CNB, to classify encounter notes in sickness histories of patients suffering
from diabetes. First, we managed to extract graphs that show how the
distribution of sentences of the classes S, O, and P evolve over time for
individual patients. We believe further work in this field may facilitate the
identification of special points of interests in individual patient histories.

We then found how the average distribution of the classes S, O, and P evolve
over time for patients suffering from diabetes. From the derived graphs little
may be concluded, except that there is a high number of subjective sentences
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when the diagnosis of diabetes is first made. However, we believe that similar
experiments for several diseases may uncover patterns or trends concerning
the diseases in focus.
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13 Further Work

Through the work presented in this report, we have discovered several areas
that require further research:

PHR data classification: In this project we have presented ways that infor-
mation in the EHR and the PHR may be structured to ease infor-
mation flow between these systems. To make the flow of information
possible it is important that classifiers taking PHR data into account
are developed as well.

Handling spelling errors: We noted that there are quite a few spelling errors
in the corpus. These errors may degrade the result. First, techniques
that handle such errors should be implemented, and second, techniques
that discern between such errors and common abbreviations (typically
not present in a dictionary) should also be implemented.

Groups of preprocessing techniques: In this project we have applied several
preprocessing techniques. The techniques have either been applied
solo, or all together. A topic of further research would be to evaluate
how different preprocessing techniques may influence each other, and
thus how they appear in tandem, groups of three and so on.

Stopword validation: We suspect that several of the words that are part of
the stopwords in reality have a discriminating effect. An example of
such a word may be “om”27, which we assume may be overrepresented
in the plan class. Hence, each stopword should be validated to confirm
its class indifference.

Feature extraction: In the report we showed that the terms “hun ha”28 and
“han ha”29 are typical for the subjective class. As a mean of dimension-
ality reduction, we suggest to replace “han” and “hun” in this setting
with for example “pp” (personal pronoun). Applying domain knowl-
edge to combine multiple features together may probably be done for
several types of terms in the corpus, reducing the set of attributes.

Encounter note anatomy: When we classify the sentences of subjective, ob-
jective or plan character, we do not take into account the position
of the sentence in the encounter note. We assume, however, that sen-
tences of the different classes are to a large extent written among other
sentences belonging to the same class in the encounter note. Hence, we
assume that the surroundings of a sentence may be utilized to decide
the class of a sentence, as described in Section 8.4.1.

27Eng: if, in (time)
28Eng: She to have
29Eng: He to have
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Further classification: It would be interesting to further classify the result of
the classification of the sentences S, O, and P. E.g., observations may
be further classified into what are observations made by the GP, and
what are actual measurements. Plan sentences may equally be clas-
sified into planned medical treatment, and planned treatment based
on change in behaviour of the patient. These are only examples, and
maybe the use of clustering techniques is most appropriate, being able
to disclose groups in the data, unbiased by human beliefs.

Other diseases than diabetes: It would also be interesting to make graphs
that show the average distribution of the classes S, O, and P for other
diseases than diabetes. Equally, other semantic groupings than the
SOAP standard may be considered, also decided by preliminary clus-
tering techniques.

Other time intervals: In the graphs presented in Chapter 9 we have used
“visit” as time intervals. However, it is likely that using another time
interval, like actual time since last visit, could have produced another
result.

Other algorithms: It is a fact that we have only applied a small subset of
all algorithms capable of performing text classification. Hence, the
use of other algorithms may give other results than the ones we have
obtained. In addition, several classifiers may be combined to create
meta classifiers, that together may decide what the most likely outcome
of a classification is.

Mining in sequences: We have not used any data mining technique to evalu-
ate how the distribution of the classes in focus evolve over time. There
are techniques, like the Apriori All (Agrawal and Srikant, 1995), based
on the association rule algorithm Apriori (Agrawal et al., 1993), that
may make this possible. Apriori All has the opportunity of finding
sequential association rules, i.e., rules from the data that statistically
occur more often than others. One such rule may be that persons
who buy a computer, then tend to buy a digital photo camera, and
then a memory card to this camera. Similarly, such rules may disclose
patterns in EHRs or PHRs, concerning both ICPC codes or the notes
structure itself.
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Appendices

A Abbreviations

A Assessment
CNB Complement Naive Bayes
Dn Dataset n
EHR Electronic Health Record
En Experiment n
GP General Practitioner
ICD International Classification of Diseases
ICPC International Classification for Primary Care
NB Naive Bayes
NSEP Norsk Senter for Elektronisk Pasientjournal
O Objective
P Plan
PHR Personal Health Record
RQn Research Question n
S Subjective
SVM Support Vector Machine
UML Unified Modeling Language
Weka Waikato Environment for Knowledge Analysis
WHO World Health Organization

Table 23: List of abbreviations used in the report.
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B Standards

B.1 Binomial Distribution

n k left P k right
10 0 0.0010 10

1 0.0107 9
2 0.0547 8
3 0.1719 7
4 0.3770 6
5 0.6230 5

Table 24: Binomial distribution table where n = 10 and θ = 0.5. Table is
extracted from Wadsworth (1990).

B.2 Arff format

% ARFF file for subjective and objective thoughts, and planned

% treatment.

@relation sop

@attribute class {s, o, p}

@attribute note string

@data

s, ’my foot hurts’

o, ’fever is 37.9’

p, ’take two tablets of paracet three times a day’

p, ...

Figure 24: Example of an arff file for subjective thoughts (S), objective
observations (O) and planned treatment (P).
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C Stopwords

List of stopwords presented in Table 25 is reproduced from http://snowball.
tartarus.org/index.php.

Table 25: List of stopwords.

Norwegian English Norwegian English

og and kan can
i in hans his
jeg I hvor where
det it/this/that eller or
at to (w. inf.) hva what
en a/an skal shall/must
et a/an selv self (reflective)
den it/this/that sjøl self (reflective)
til to her here
er is/am/are alle all
som who/that vil will
p̊a on bli become
de they / you ble became
med with blei became *
han he blitt have become
av of kunne could
ikke not inn in
ikkje not * n̊ar when
der there være be
s̊a so kom come
var was/were noen some
meg me noe some
seg you ville would
men but dere you
ett one som who/which/that
har have deres their/theirs
om about kun only/just
vi we ja yes
min my etter after
mitt my ned down
ha have skulle should
hadde had denne this
hun she for for/because
n̊a now deg you
Continued on next page

http://snowball.tartarus.org/index.php
http://snowball.tartarus.org/index.php
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Table 25 – continued from previous page

Norwegian English Norwegian English

over over si hers/his
da when/as sine hers/his
ved by/know sitt hers/his
fra from mot against
du you å to
ut out meget much
sin your hvorfor why
dem them dette this
oss us disse these/those
opp up uten without
man you/one hvordan how
ingen none ho she *
din your hoe she *
ditt your henne her
blir become hennar her/hers
samme same hennes hers
hvilken which hoss how *
hvilke which (plural) hossen how *
s̊ann such a ikkje not *
inni inside/within ingi noone *
mellom between inkje noone *
v̊ar our korleis how *
hver each korso how *
hvem who kva what/which *
vors us/ours kvar where *
hvis whose kvarhelst where *
b̊ade both kven who/whom *
bare only/just kvi why *
enn than kvifor why *
fordi as/because me we *
før before medan while *
mange many mi my *
ogs̊a also mine my *
slik just mykje much *
vært been no now *
være to be nokon some (masc./neut.) *
b̊ae both * noka some (fem.) *
begge both nokor some *
siden since noko some *
dykk your * nokre some *
Continued on next page
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Table 25 – continued from previous page

Norwegian English Norwegian English

dykkar yours * si his/hers *
dei they * sia since *
deira them * sidan since *
deires theirs * so so *
deim them * somt some *
di your (fem.) * somme some *
d̊a as/when * um about*
eg I * upp up *
ein a/an * vere be *
eit a/an * vore was *
eitt a/an * verte become *
elles or * vort become *
honom he * varte became *
hj̊a at * vart became *
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D Code

D.1 Database calls

def getWriterNotes(self, writer_id):

"""

Get all (pat_id, contact_id, note_id, block_num, block_txt)

tuples from database

"""

return self._executeSQL(’select contact.pat_id, contact.contact_id, ’ +

’note.note_id, note_block.block_num, note_block.block_txt ’ +

’from patient, contact, note, note_block where ’ +

’contact.contact_id=note.contact_id and note_block.note_id = ’ +

’note.note_id and patient.pat_id = contact.pat_id and ’ +

’note.writer_id = %i’ % writer_id)

def getPatientsWithICPCCodes(self, icpc_codes):

"""

Get all pat_id for a set of icpc codes.

"""

result = self._executeSQL(’select distinct contact.pat_id from contact’ +

’where contact.contact_id in (select distinct diagcont.contact_id’ +

’from diagcont, diagnosis where diagcont.diag_id = diagnosis.diag_id’ +

’and diagnosis.diag_code in %s)’ % ("(’%s’)" % "’, ’".join(icpc_codes)))

return [int(x[0]) for x in result]

def getPatientData(self, patient_ids):

"""

Get all (pat_id, contact_id, cont_ts, diag_code, note_id,

block_num, block_txt) tuples

for patients with the given ids.

"""

sql = ’select contact.pat_id, contact.contact_id, contact.cont_ts, ’ + \

’diagnosis.diag_code, note.note_id, note_block.block_num, ’ + \

’note_block.block_txt from patient, contact, diagcont, diagnosis, ’ + \

’note, note_block where patient.pat_id = contact.pat_id and ’ + \

’contact.contact_id = note.contact_id and ’ + \

’contact.contact_id = diagcont.contact_id and ’ + \

’diagcont.diag_id = diagnosis.diag_id and ’ + \

’note.note_id = note_block.note_id and ’ + \

’contact.pat_id in (%s)’ % str(patient_ids)[1:-1]

result = self._executeSQL(sql)

Figure 25: Database calls used to retrieve the information necessary in the
work of RQ1 and RQ2.
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D.2 Python preprocessing code

# For each of the paragraphs classify the sentences

for i, paragraph in enumerate(self.paragraphs):

sentences = self._split_sentences(paragraph)

for sentence in sentences:

j = i + 1

if i > 2:

j = 3

if stem:

sentence = u"%s ’%s’" % (self.SENTENCE_TYPE_CLASS[j], \

’ ’.join(sentence.tokens(stem)))

else:

sentence = u"%s ’%s’" % (self.SENTENCE_TYPE_CLASS[j], sentence.text)

result.append(sentence)

Figure 26: Tagging the sentences in a paragraph.
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def arff_sentences(note, out_filename):

"""

Get ARFF representation of each sentence. I.e. ?, string:

’Patient feels pain’ => "? ’Patient feels pain’"

"""

result = []

numbers = range(10);

#For sentence in paragraph

for sentence in note.sentences():

#Remove punctuation

sentence = "".join([c for c in sentence.text if c not \

in string.punctuation])

#Remove sentences that are only digits

if not (sentence.isdigit()):

#Replace numbers with N

for number in numbers:

sentence=sentence.replace(str(number), "N")

#Remove windows newline

sentence=sentence.replace("\n", " ")

sentence=sentence.replace("\r", " ")

#Append result

result.append(u"%s, ’%s’" % ("?", sentence))

return result

Figure 27: Sentence preprocessing.
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# For each retrieved sentence

for i, line in enumerate(infolist):

basedir_len = len(basedir.split(’/’))

# Do not retrieve new note info if sentence is from same note

if not (line == oldline or not oldline) or i == infolist_len - 1:

nofNotes+=1

# Set variables for note and add result

infolistwords = oldline.split(’/’)

patient_id = infolistwords[basedir_len+1]

noteinfo = infolistwords[basedir_len+2].split(’_’)

note_id = noteinfo[3]

diagnosis_code = noteinfo[1]

result.append(u"%s, %s, %s, %s, %s, %s" % \

(patient_id, note_id, diagnosis_code, s_tmp, o_tmp, p_tmp))

# Set visit to 0 and no relevant ICPC code detected if new patient

if (patient_id != old_patient_id):

j=0

firstDiabNote = False

old_patient_id = patient_id

nofPatients+=1

if (j==0 and (diagnosis_code.find("T90")!=-1 or \

(diagnosis_code.find("T89")!=-1):

firstDiabNote = True

# Add statistical information for note number

if (firstDiabNote == True):

if (j < historylength):

s[j]+=s_tmp

o[j]+=o_tmp

p[j]+=p_tmp

nofPat[j]+=1

for code in diagnosis_code.split(’-’):

if code in icpc[j]:

icpc[j][code]+=1

else:

icpc[j][code]=1

j+=1

# Set tmp counters to zero

s_tmp = 0

o_tmp = 0

p_tmp = 0

# Find and add type of sentence

type = getType(datalist[i])

if(type == ’s’):

s_tmp+=1

elif (type == ’o’):

o_tmp+=1

else:

p_tmp+=1

oldline = line

Figure 28: Getting the number of sentences belonging to the classes S, O,
and P for each note in a patient history.
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# Calculate average for ICPC codes

icpc_output = [""]*historylength

for i, visit in enumerate(icpc):

# Find tot. no. of ICPC codes per visit to calculate average

tot_nof_icpc = 0

for codes in icpc[i]:

tot_nof_icpc+=icpc[i][codes]

# Only storing the ICPC codes that appear in at least 2% of the codes

expose_threshold = 0.02

for codes in icpc[i]:

if (float(icpc[i][codes])/tot_nof_icpc>expose_threshold):

icpc_output[i]=icpc_output[i]+’ ’+codes+’: \

’+str(round(float(icpc[i][codes])/tot_nof_icpc, 3))+’.’

Figure 29: Calculating the average distribution for the ICPC codes, where
we only take the ICPC codes that appear in at least 2% of the total number
of codes into account.
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D.3 Weka Addition

--

* <pre> -G &lt;int&gt; <

* The number of n-grams (default = 1).</pre> <

* <

--

/** <

* The default number n-grams <

*/ <

private int g_nofNGrams = 1; <

<

result.addElement(new Option(

"\tNumber of n-grams (default = 1).", <

"G", 1, "-G <int>")); <

--

* <

* <pre> -G &lt;int&gt; <

* The number of n-grams (default = 1).</pre> <

* <

--

value = Utils.getOption(’G’, options); <

if (value.length() != 0) <

setNofNGrams(Integer.valueOf(value).intValue()); <

else <

setNofNGrams(g_nofNGrams); <

--

* Gets the number of words (per class if there is a class <

* assigned) to attempt to keep. <

* <

* @return the target number of words in the output vector <

* assigned). <

*/ <

public int getNofNGrams() { <

return g_nofNGrams; <

} <

<

/** <

* Sets the n-grams <

* <

* @param nofGrams <

* vector (per class if assigned). <

*/ <

public void setNofNGrams(int nofNGrams) { <

g_nofNGrams = nofNGrams; <

} <

<

--

Figure 30: Additions in Weka to make it possible to add n-grams from GUI
or command line. The figure is extracted by use of the “diff -y” command
in UNIX, and then the irrelevant data is manually removed.
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--

// Tokenize all training text into an orderedMap of "word

for (int i = 0; i < getInputFormat().numInstances(); i++)

Instance instance = getInputFormat().instance(i);

int vInd = 0;

if (!m_doNotOperateOnPerClassBasis && (classInd != -1))

vInd = (int)instance.classValue();

}

// Iterate through all relevant string attributes of th

Hashtable h = new Hashtable();

for (int j = 0; j < instance.numAttributes(); j++) {

if (m_SelectedRange.isInRange(j) && (instance.isMissi

// Get tokenizer

Enumeration st;

if(this.m_onlyAlphabeticTokens==false)

st = new StringTokenizer(instance.stringValue(j

m_Delimite

else

st = new AlphabeticStringTokenizer(instance.str

int nofGrams = getNofNGrams(); <

String[] gramList = new String[nofGrams]; <

<

while (st.hasMoreElements()) {

for(int k = gramList.length-1; k>0; k <

gramList[k] = gramLis <

} <

gramList[0] = ((String)st.nex <

int k = 0; <

word = gramList[0]; <

// Create the n-gram for inclusion

while(k!=gramList.length&&gramList[k]!=null) <

if (k!=0) { <

word = gramList[k]+"_ <

} <

k++; <

<

<

if(!(h.contains(word))) <

h.put(word, new Integer(0)); <

<

Count count = (Count)dictionary <

if (count == null) { <

dictionaryArr[vInd].put(word, <

} else { <

count.count ++; |

} |

Figure 31: Additions in Weka to make it possible to calculate n-grams. Note
that the upper part of the figure presents code that was present in String-
ToWordVector prior to the addition of n-grams, but is added for contextual
reasons. The figure is extracted by use of the “diff -y” command in UNIX,
and then the irrelevant data is manually removed.
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D.4 Clssification Scripts

#!/bin/sh

clear

#

# Classify a dataset with cross validation,

# - performing tf-idf weighting

# - creating n-grams

# - removing stopwords

#

# Parameters:

# -----------

# $1 = training data (that the classifier is to be built upon)

# $2 = indexed training data

# $3 = number of attributes to take into consideration

# $4 = n, in n-grams to include

#

echo "Running all preprocessing techniques "

java weka.filters.unsupervised.attribute.StringToWordVector \

-i $1 -o $2 -c 1 -W $3 -G $4 -T -I -S

java -Xmx2048m weka.classifiers.bayes.ComplementNaiveBayes \

-t tmp/dataset/indexed.arff -c 1 -x 10 -s 1 -i

Figure 32: Script that performs the preprocessing techniques of removing
stopwords, adding n-grams and tf-idf weighting, before it performs Comple-
ment Naive Bayes classification with ten-fold cross validation.
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#!/bin/sh

clear

#

# Create a classifier

#

# Parameters:

# -----------

# $1 = training data (that the classifier is to be built upon)

# $2 = indexed training data

# $3 = test data

# $4 = indexed test data

# $5 = number of n-grams to include

# $6 = number of terms to include

# $7 = classifier model to be made

echo "Indexing manually classified sentences, and sentences"

echo "to be classified..."

java weka.filters.unsupervised.attribute.StringToWordVector \

-b -i $1 -o $2 -r $3 -s $4 -W $5 -G $6 -c 1

echo "Making a ComplementNaiveBayes classifier model..."

time java -Xmx2048m weka.classifiers.bayes.ComplementNaiveBayes \

-t $2 -c 1 -x 10 -s 1 \

-d $7

echo "Using the model to classify data..."

time java -Xmx2048m weka.classifiers.bayes.ComplementNaiveBayes \

-T $4 -c 1 -x 10 -s 1 \

-l $7

Figure 33: Script that creates a new complement naive Bayes classifier.
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#!/bin/sh

clear

#

# Add classified classes to arff file

#

# Parameters:

# -----------

# $1 = indexed test data arff file

# $2 = reordered test data arff file

# $3 = classifier

# $4 = classified arff file

echo "Reordering attributes, putting the classifier attribute"

echo "in the end of the file, to make it adequate for AddClassification..."

java weka.filters.unsupervised.attribute.Reorder \

-R 2-last,1 -i $1 -o $2

echo "Classifying unclassified data, based on input model..."

java -Xmx2048m weka.filters.supervised.attribute.AddClassification \

-serialized $3 -classification \

-remove-old-class -i $2 -o $4 -c last

Figure 34: Script that adds a classification label to the text.
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E Result Data Values

Table 26: Data values obtained in E1.
(a) Fma and accuracy.

Attrib. Accuracy Fma

SVM J48 CNB SVM J48 CNB

10 59.35 58.75 54.37 0.551 0.541 0.498
20 62.70 62.22 59.19 0.598 0.592 0.566
50 70.00 66.68 66.91 0.689 0.653 0.652

100 72.92 66.95 71.82 0.715 0.655 0.706
250 75.68 67.35 77.03 0.741 0.658 0.760
500 77.13 67.32 79.40 0.757 0.657 0.785
750 78.46 67.20 80.50 0.773 0.656 0.796

1000 79.93 67.16 80.92 0.790 0.656 0.799
1250 80.15 67.25 81.03 0.793 0.657 0.801
1500 75.75 67.23 80.84 0.721 0.656 0.797

(b) Precision and recall.

Attrib. Precision Recall
SVM J48 CNB SVM J48 CNB

10 0.596 0.591 0.564 0.556 0.549 0.497
20 0.621 0.621 0.598 0.596 0.591 0.559
50 0.694 0.652 0.676 0.640 0.654 0.644

100 0.716 0.654 0.719 0.714 0.656 0.700
250 0.758 0.659 0.765 0.734 0.657 0.759
500 0.773 0.659 0.787 0.751 0.657 0.785
750 0.777 0.658 0.797 0.771 0.665 0.798

1000 0.790 0.657 0.800 0.793 0.655 0.801
1250 0.792 0.658 0.801 0.795 0.656 0.803
1500 0.760 0.665 0.798 0.719 0.656 0.802
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Table 27: Data values obtained in E2.
(a) Fma and accuracy.

Attrib. Accuracy Fma

SVM J48 CNB SVM J48 CNB

10 61.65 61.41 61.51 0.567 0.565 0.572
20 64.54 64.20 64.61 0.610 0.602 0.614
50 68.77 66.22 69.59 0.665 0.632 0.676

100 72.51 66.29 72.88 0.708 0.636 0.715
250 75.22 66.26 76.71 0.737 0.635 0.756
500 77.36 66.37 78.69 0.760 0.637 0.777
750 77.58 66.17 79.86 0.763 0.634 0.790

1000 78.16 66.15 79.90 0.768 0.634 0.790
1250 77.15 66.15 80.53 0.756 0.634 0.797
1500 74.37 66.19 81.56 0.713 0.635 0.808
1750 81.56 0.808
2000 81.95 0.811
2250 76.16 0.737

(b) Precision and recall.

Attrib. Precision Recall
SVM J48 CNB SVM J48 CNB

10 0.703 0.708 0.683 0.560 0.558 0.563
20 0.704 0.721 0.694 0.598 0.590 0.602
50 0.724 0.718 0.725 0.652 0.618 0.664

100 0.749 0.689 0.741 0.696 0.624 0.707
250 0.758 0.687 0.767 0.729 0.623 0.753
500 0.777 0.690 0.783 0.752 0.625 0.777
750 0.778 0.689 0.792 0.756 0.623 0.792

1000 0.784 0.688 0.792 0.760 0.623 0.792
1250 0.774 0.688 0.797 0.748 0.623 0.800
1500 0.754 0.689 0.807 0.704 0.623 0.811
1750 0.807 0.811
2000 0.811 0.814
2250 0.745 0.734
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Table 28: Accuracy for each of the folds in E1 and E2.
(a) E1 with 1,250 attributes.

Fold 0 1 2 3 4
SVM 80.02 80.97 80.58 80.44 80.73
J48 68.04 68.25 67.66 69.19 67.50

CNB 80.48 80.85 81.45 81.15 81.06
Fold 5 6 7 8 9
SVM 80.00 79.27 79.22 79.56 80.18
J48 67.72 68.03 67.15 67.54 67.22

CNB 80.57 80.51 81.06 80.99 80.94

(b) E2 with 1,250 attributes.

Fold 0 1 2 3 4
SVM 78.61 76.96 78.17 76.52 76.90
J48 68.67 65.84 66.37 65.66 64.25

CNB 80.87 80.55 80.60 81.35 80.37
Fold 5 6 7 8 9
SVM 76.08 77.22 76.89 76.57 76.60
J48 64.42 63.83 65.96 68.44 68.09

CNB 80.09 80.41 79.89 80.87 81.21

Fold 0 1 2 3 4
CNB 79.81 79.11 79.51 80.26 80.10

CNB prep. 81.24 81.50 81.54 82.08 81.19
Fold 5 6 7 8 9
CNB 80.21 80.47 79.79 79.11 80.05

CNB prep 82.11 82.38 81.43 81.75 82.12

Table 29: The accuracy of each of the fold of CNB in E2 for the preprocessed
and the raw dataset when then number of attributes is set equal to 2,000.
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Attrib. CNB on D1 CNB on D2a
10 42.00 57.50
20 33.85 60.40
50 30.10 66.15
100 36.20 68.20
250 33.85 72.85
500 34.35 73.90
750 59.30 72.55
1000 59.30 72.55

Table 30: Data values obtained in E5.
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Visit D2a D2b
S O P S O P

1 3.94 1.06 0.81 3.94 1.06 0.81
2 3.19 1.09 0.66 3.01 0.94 0.63
3 3.10 1.02 0.51 3.27 0.94 0.52
4 3.17 1.15 0.63 3.10 1.01 0.51
5 3.05 1.12 0.65 3.24 0.91 0.55
6 3.03 1.13 0.64 2.90 0.88 0.48
7 3.18 1.10 0.57 3.27 1.04 0.54
8 3.29 1.15 0.61 3.15 0.97 0.50
9 3.28 1.02 0.63 3.19 1.03 0.55

10 3.10 1.03 0.63 3.19 1.03 0.59
11 2.97 1.05 0.63 3.11 0.97 0.56
12 2.89 0.92 0.68 2.98 0.94 0.49
13 2.78 1.15 0.55 3.05 1.05 0.59
14 3.20 1.17 0.53 3.05 0.88 0.56
15 3.02 0.94 0.56 3.18 0.89 0.62
16 3.23 1.13 0.59 3.16 0.93 0.65
17 3.14 0.93 0.50 3.15 1.00 0.50
18 3.24 1.07 0.69 2.98 0.93 0.57
19 3.18 1.13 0.77 3.16 0.88 0.52
20 2.88 0.93 0.75 2.98 0.98 0.58
21 3.13 1.08 0.65 2.86 0.76 0.52
22 3.19 1.14 0.65 3.15 0.96 0.54
23 3.14 1.17 0.67 3.20 0.81 0.52
24 3.33 0.87 0.63 3.23 0.88 0.71
25 3.23 1.00 0.62 3.07 0.85 0.62
26 3.59 0.99 0.81 3.33 0.88 0.53
27 3.13 0.84 0.60 3.02 0.86 0.53
28 3.08 0.66 0.61 3.16 0.74 0.57
29 3.08 0.91 0.66 3.32 0.87 0.60
30 2.94 1.03 0.76 3.08 0.97 0.59

Table 31: Data values obtained in E6.


