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Problem Description
This master's thesis is interdisciplinary in nature and seeks to use known image processing
techniques on a new problem within the biomedical optics field of research. The thesis seeks to
determine if the image algorithms difference, ratio, and principal component analysis (PCA) can
be applied to enhance bruise visibility in hyperspectral images for visual inspection and image
segmentation. Known spectral characteristics form the experimentation basis in addition to
identification through visual inspection. Furthermore, this thesis seeks to segment out the bruises
using the results from the enhancement algorithms using K-means clustering and the watershed
transform. To this end, a series of experiments were conducted to answer the following two
questions:
- Can the difference, ratio, and principal component analysis algorithms be used to enhance
bruises on human skin for visual analysis?
- Can the difference, ratio, and principal component analysis algorithms provide improvements of
bruise segmentation compared to segmentations on the original images?
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Abstract

Hyperspectral images contain vast amounts of data which can provide crucial informa-
tion to applications within a variety of scientific fields. Increasingly powerful computer
hardware has made it possible to efficiently treat and process hyperspectral images.
This thesis is interdisciplinary and focuses on applying known image processing algo-
rithms to a new problem domain, involving bruises on human skin in hyperspectral
images. Currently, no research regarding image detection of bruises on human skin
have been uncovered. However, several articles have been written on hyperspectral
bruise detection on fruits and vegetables. Ratio, difference and principal component
analysis (PCA) were commonly applied enhancement algorithms within this field. The
three algorithms, in addition to K-means clustering and the watershed segmentation
algorithm, have been implemented and tested through a batch application developed
in C# and MATLAB.

The thesis seeks to determine if the enhancement algorithms can be applied to
improve bruise visibility in hyperspectral images for visual inspection. In addition, it
also seeks to answer if the enhancements provide a better segmentation basis. Known
spectral characteristics form the experimentation basis in addition to identification
through visual inspection. To this end, a series of experiments were conducted.

The tested algorithms provided a better description of the bruises, the extent of
the bruising, and the severity of damage. However, the algorithms tested are not
considered robust for consistency of results. It is therefore recommended that the
image acquisition setup is standardised for all future hyperspectral images. A larger,
more varied data set would increase the statistical power of the results, and improve
test conclusion validity.

Results indicate that the ratio, difference, and principal component analysis (PCA)
algorithms can enhance bruise visibility for visual analysis. However, images that con-
tained weakly visible bruises did not show significant improvements in bruise visibility.
Non-visible bruises were not made visible using the enhancement algorithms.

Results from the enhancement algorithms were segmented and compared to seg-
mentations of the original reflectance images. The enhancement algorithms provided
results that gave more accurate bruise regions using K-means clustering and the water-
shed segmentation. Both segmentation algorithms gave the overall best results using
principal components as input. Watershed provided less accurate segmentations of
the input from the difference and ratio algorithms.
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Chapter 1
Introduction

This chapter presents the motivation for conduction this thesis and a summary of
previous work carried out during the autumn of 2006. The problem description with
specified goals is then presented, followed by the scope of the project. The chapter
concludes with outlines for the report.

1.1 Motivation

Hyperspectral images contain vast amounts of data which can provide important
information to applications within a variety of scientific fields. The data size is a
result of high resolution both spatially and spectrally. Development of image scanner
technology is often faster than computer technology, introducing problems related
to computation time and computer memory [35]. However, increasingly powerful
computer hardware has made it possible to efficiently treat more of this information
with respect to both time and storage. This increased usability has led to a number
of new applications. These range from mine detection [5] and earth observation [17]
to forensic science [16]. This thesis focuses on image processing related to forensic
science, more specifically, bruises on human skin. To start things off, a fictional
scenario is presented:

A murder has been committed. Police arrive at the scene and finds a naked lifeless
individual on the ground in a dark alley. Forensic experts are called to the crime
scene to document and collect evidence. They bring with them a newly developed
piece of equipment which looks like a regular camera. Images of the body along with
the surrounding areas are captured. The data is then processed on a laptop at the
scene. The images reveal several important facts to the investigators. First, bruises
on the body are determined to be one hour old. Secondly, deeper bruises not visible to
the human eye are detected. Comparing the shape of bruises and the depth of bleeding
with a database, possible weapons are suggested to the investigators. Thirdly, a small
amount of biological material is detected on the wall next to the victim in one of the
overview images. A DNA sample can then be taken from the spot which otherwise
might have been missed.

This fictional scenario is based on ideas and research concerning hyperspectral
image technology related to forensic science. Although the proposed use is fictional,
some of the features have already been researched extensively. Firstly, in Randeberg
et al. [26, 27] spectroscopic information is used to determine the age of bruises.
Hyperspectral images can combine this feature with spatial information to detect
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and describe the shape of bruises. Secondly, objects that caused bruises might be
identified based on another important discovery: A white spot was observed in the
central zone of bruises. The shape of this white spot seemed to resemble the shape
of the object hitting the skin. Currently, no research regarding image detection of
bruises on human skin have been uncovered. With this in mind different fields of
research were explored in previous work as described in Section 1.2.

Finally, the identification of biological material elsewhere in the crime scene is an
example for further work. To solve this, working with uneven lighting conditions in
non-laboratory environments are among the challenges that must be dealt with.

The fictional scenario presented above gives an example of envisaged use, but
much research remains before such a robust and accurate device can be used in the
field. The motivation behind this thesis is to contribute towards the ultimate goal of
a hyperspectral imaging application for law-enforcement and forensic science. Two
areas that will take research one step closer to this application have been covered in
this thesis. These involve enhancement of bruises on human skin for visual analysis
and segmentation of bruises. The end result can be used as a stepping stone towards
a future where criminals have yet another obstacle to dodge.

1.2 Summary of Previous Work

This thesis follows from a research project conducted by the authors during the au-
tumn of 2006. Since the autumn project is unpublished, key points related to this
thesis is briefly summarised here.

Part of the work was to investigate and identify methods that had previously been
used on bruises on human skin. The prestudy phase uncovered that no such work
had been done, so the search was expanded to include bruise related research from
other fields. Several papers have been published on bruise detection on fruits and
vegetables with the aim to improve food quality and safety [2, 39, 15, 14, 20, 19]. It
was decided to identify some commonly used methods applied in this regard and single
these out for use in this thesis. Ratio, difference and principal component analysis
(PCA) were chosen based on their inclusion in several articles that showed promising
results. The parameters for the selected methods were mostly chosen based on visual
inspection or previous experience. Clustering was suggested as a possible algorithm
for segmentation of bruises in future work.

1.3 Problem Description

This master’s thesis is interdisciplinary in nature and seeks to use known image pro-
cessing techniques on a new problem within the biomedical optics field of research.
The intent of this thesis is therefore not to present new image processing algorithms.
The thesis seeks to determine if the image algorithms difference, ratio, and principal
component analysis (PCA) can be applied to enhance bruise visibility in hyperspectral
images for visual inspection and image segmentation. Known spectral characteristics
form the experimentation basis in addition to identification through visual inspection.
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Furthermore, this thesis seeks to segment out the bruises using the results from the
enhancement algorithms using K-means clustering and the watershed transform. To
this end, a series of experiments were conducted to answer the following two questions:

• Can the difference, ratio, and principal component analysis algorithms be used
to enhance bruises on human skin for visual analysis?

• Can the difference, ratio, and principal component analysis algorithms provide
improvements of bruise segmentation compared to segmentations on the original
images?

To answer the two questions, a software program was developed. This program
was designed to run the presented algorithms in batches. The implemented algorithms
were experimented with using this program. The enhancement algorithms were cho-
sen based on previous work, as was K-means clustering. The watershed segmentation
algorithm was included as it is considered to produce more stable segmentation results
and continuous regions, compared to segmentations based on detection of discontinu-
ities, thresholding, and region processing [7].

1.4 Scope

The work performed in this thesis is interdisciplinary. Fields covered include biology,
biomedical optics, and image processing. The focus is on the application of known
image processing procedures on a new problem related to bruises on human skin. The
intent is to contribute to research in biomedical optics, and not image processing. No
new image processing approaches have been developed. Instead, known algorithms
successfully applied within related areas of research have been transferred to bruise
detection on human skin. Because of the interdisciplinary nature of this research, it
was necessary for the authors to review basic background knowledge of the biomedical
optics field. However, no spectral analysis was performed. Compound identification
etc. is not considered within the thesis problem area.

The experimentation done in this thesis was aimed at testing a wide range of
parameters on the selected algorithms. The goal was not to present a depth study of
the methods, but to examine possibilities for bruise enhancement using the proposed
algorithms.

Image restoration is not part of the scope. Images that contained visible flaws have
been commented, but no further steps have been taken. Images that contained flaws
which might influence results have been evaluated before they were either accepted or
rejected as part of the data set. Because of factors beyond the control of this project,
parts of the available data set were rejected. Details on these factors can be found in
Section 3.1.3.
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1.5 Report Outline

The outline for this report is as follows:

• Chapter 1 gives an introduction to the thesis, a summary of previous work,
and presents the problem description

• Chapter 2 presents background and theory covering an overview of hyperspec-
tral imaging, biomedical optics background material including a brief introduc-
tion to bruises, and finally algorithms for hyperspectral image processing

• Chapter 3 gives a description of cameras used, the available data set, and tools
for data viewing and programming. The chapter also presents other program-
ming oriented aspects, such as adjustment of algorithms for implementation and
an overview of the algorithm batch software that was developed

• Chapter 4 presents the tests that were performed and the approach that was
followed during testing

• Chapter 5 presents the results from the tests that were conducted during
experimentation

• Chapter 6 gives a discussion on the results and validity of the results pre-
sented in the previous chapter. Each test is discussed individually, followed by
a discussion on the overall results, including results not directly related to the
problem description

• Chapter 7 presents a conclusion based on the discussion, and thoughts on
further work and research

• Appendices include tables, figures, source code etc. that provides additional
information to topics covered in this report
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Chapter 2
Theory

This chapter presents the theoretical background used in the implementation and
experiments described in this report. A brief explanation of hyperspectral data and
hyperspectral image processing compared to grey scale images is also covered. Further,
a look into biomedical optics presents some issues regarding preservation of image
cube dimensionality as well as crosstalk and scattering related to human biology.
Basic knowledge of bruises has been included to give the reader some understanding
of what transpires during the creation of a bruise, and the materials that influence its
colouring. Finally the algorithms used for experimentation are presented.

2.1 Hyperspectral Data and Image Processing

Hyperspectral imaging (HSI) is the acquisition of spectroscopy data for each position
in a spatially contiguous image [31, 29]. A typical hyperspectral remote sensing sys-
tem measures hundreds of wavelengths. It is, however, not the number of measured
wavelengths that define a sensor system as hyperspectral, but rather the contiguous
narrow sampling of data. Sensors measuring wide and contiguous, or non-contiguous
wavelengths are not considered hyperspectral. A normal digital RGB (Red, Green,
and Blue) camera uses only three specific wavelength ranges from the red, green, and
blue parts of the visible spectrum and is an example of a non-hyperspectral sensor
system. This difference is illustrated in Figure 2.1, where the white lines signify a
spectral band in the visible spectrum.

Figure 2.1: The top spectrum shows an example of bands (white lines) that could be
captured by a RGB camera, while the lower spectrum gives the same for a possible
hyperspectral camera. The infrared part has been excluded for brevity. Image modified
from original by Deborah S. Krolls [11]



Hyperspectral data can be viewed as a data cube or as an image cube. Figure 2.2
shows an example of an image cube and the spectral information, often referred to
as a spectral vector, which can be found at each spatial position. A band, or layer,

Figure 2.2: The image cube is shown on the left, where x and y gives the spatial
information and λ gives the spectral information. The graph on the right gives an
example of the spectral information that can be found in a single pixel. Image from
Center for Remote Imaging, Sensing & Processing [13]

in the image cube can be described as a monochrome (grey scale) image. The white
lines seen in Figure 2.1 each represent such a monochrome image. Each band spans a
two-dimensional grid where each cell is known as a pixel. Let I(x, y) be one of these
images, where I is a monochromatic image and x and y are the spatial pixel positions
in the image. A hyperspectral image cube can be written as H(I, λ), where H is the
image cube and λ gives the spectral dimension. Alternatively it can be written as
H(x, y, λ). By keeping λ constant while iterating through xn and ym as shown in
Expression 2.1 you address spatial information. The spectral information stored at
each pixel position can be read by keeping x and y constant while alternating λ as
shown in Expression 2.2. Spectral vectors of n bands are n-dimensional.

H(xn, ym, λ) n = 0, 1, ...,Width− 1 m = 0, 1, ...,Height− 1 (2.1)

H(x, y, λk) k = 0, 1, ..., Depth− 1 (2.2)

There are some important differences between hyperspectral image processing and
what might be referred to as ’traditional’ image processing. In ’traditional’ image
processing it is quite common to work on single monochrome images, and this also
works in image cubes by selecting individual bands for processing. However, if this
is done, important spectral information might be lost. This is because pixel values
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in adjacent layers in the image cube might correlate based on that they represent a
sample of one or more specific materials that exist in a pixel position. This correlation
can be used as a basis for identification of materials in hyperspectral images.

2.2 Biomedical Background

This section gives a brief introduction to some of the biomedical background material
that is needed to understand the problem domain. First, an explanation for why it
is necessary to use all the information provided by a hyperspectral imaging system
is given. Secondly, a basic understanding of how a bruise is created and how the
body reacts to the injury is briefly covered. Since the reader might be unfamiliar with
this field, an overview of some of the medical expressions and substances mentioned
in this report can be found in Table 2.1. After the bruise introduction, some of the
challenges related to human skin and the use of light absorption for identification of
different compounds found there is briefly described. Solving these challenges has not
been the focus of this project, but the reader should be aware of their existence.

2.2.1 Preservation of Image Cube Dimensionality

The research involving hyperspectral imaging in medical applications is at an early
phase. Examples of the work that has been done are the publications of Randeberg
et al. [26, 27] relating to age determination of bruises. Compared to the exten-
sive data collections available in i.e. geology through the AVIRIS (Airborne Visi-
ble/Infrared Imaging Spectrometer) project [23], medical standards are virtually non-
existent. Presently it is not known what kind of information is needed, and as such
all bands of the hyperspectral images might contain information that is necessary to
for example divide skin into bruised and non-bruised regions. As research progresses
and application specific wavelengths for required biological materials become better
known, a reduction of the required number of captured bands might be possible.
This would allow cheaper cameras and images with fewer bands. Images with fewer
bands they would require less memory and storage space. This again would improve
processing time.

2.2.2 Bruises

Bruises are typically caused by an impact that rupture blood vessels and cause haem-
orrhages underneath the skin without creating a wound [26]. After the impact, bleed-
ing can continue for some time, and the bruise usually develops within 48 hours [12].
Blood outside the cardiovascular system is recognised as a foreign object by the im-
mune system and this causes it to respond with an inflammatory reaction. Red blood
cells and free haemoglobin molecules are engulfed and the heme oxygenase system
starts to break down the haemoglobin and produce bilirubin and haemosiderin. Pres-
ence of bilirubin will give the bruise a yellow appearance [12]. The colouration of a
bruise also depends on other factors, in addition to metheamoglobin, bilirubin and
other chromophores. These factors include haemorrhage size, the age of a bruise, light
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Table 2.1: Important medical expressions and substances used in this report are listed
in alphabetical order. Characteristic absorptions peaks are given for materials of rel-
evance.

Expression Description Absorption
peak(s)(nm)

Bilirubin A breakdown product of haemoglobin
which gives bruises a yellow colour. The
absorption peak for bilirubin is between
460 nm and 480 nm depending on the
material it is located in. In liquid it can
be found at 460 nm. It is translated 20
nm in dermis, to 480 nm [27]

460(480)

Chromophore Part of a molecule that is responsible
for colour

-

Deoxyheamoglobin Heamoglobin without oxygen (Hb) 555, 760
Heme oxygenase An enzyme that catalyzes the degrada-

tion of heme
-

Haemosiderin An abnormal pigment found in the hu-
man body

-

Melanin The pigment mainly responsible for col-
oration of human skin

No peaks

Metheamoglobin Heamoglobin were the normal Fe2+ is
in the Fe3+ state. This renders it in-
capable of carrying oxygen. It has a
chocolate brown colour.

508, 630

Oxyheamoglobin Heamoglobin with oxygen (Hb02) 542, 576
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scattering in tissue, and skin properties like the amount of melanin. The depth of the
bleeding is also a factor and according to Bohnert et al. [3] there is a distinct differ-
ence between the colouration of shallow and deep injuries. Deep injuries were found
to be bluish, while shallow bruises appeared bright red. However, bruises that origi-
nate in the deeper subcutaneous fatty tissue can remain invisible to human observers
or appear only as swellings. Oxyheamoglobin, deoxyheamoglobin, and melanin are
the most important chromophores in human skin [26]. The different chromophores
are identified through characteristic peaks in the reflectance spectra, which originate
from light absorption in skin.

2.2.3 Melanin-Haemoglobin Crosstalk and Scattering

Crosstalk can be described as a mixing of separate signals which makes them dif-
ficult to identify individually. In human skin, this can occur between melanin and
deoxyheamoglobin with respect to appearance of pigmentation. It has been pointed
out that the perceived skin darkening does not depend only on the concentration of
melanin, but that it is strongly affected by the concentration of deoxyheamoglobin
[34]. This crosstalk effect is expected to make it difficult to visually separate the two
contributing parts. The main reason for this is that the absorption spectrum of deoxy-
heamoglobin in the 630 - 700 nm range is very similar to the absorption spectrum of
epidermal melanin, so whatever light is transmitted has the colour of pigment. Blood
pooling (stasis) alone can also be confused with pigmentation.

Scattering in human skin is mainly attributed to collagen fibres [34]. Scatter-
ing typically forces photons to deviate from an otherwise straight trajectory. Path
length dispersion might influence results since a change in path length changes the
molecularly-specific absorption photons are subjected to. This makes it more difficult
to know where photons observed by a camera originated from within the skin. In
other words, identification of materials might be influenced by scattering.

2.3 Algorithms

This section presents the theoretical background for the image processing algorithms
used in the implementation and experiments described in this report. Changes and
modifications needed to make these algorithms work is covered in Section 3.3.

There are two purposes for performing feature enhancement on the hyperspectral
images in this thesis. The first is to enhance transitions present in the image for
easier visual inspection. The second is to provide a good basis for segmentation by
using the enhanced image. The resulting segmentation can then be used to limit
the data to a region of interest (ROI), for example a bruise. In addition to spatially
locating desirable image features, the amount of spectral analysis and calculation is
then reduced. The spectral analysis (5) has not been a part of this project, but is
included to show what the reduced images can be used for. Figure 2.3 shows the data
flow as described.

Segmentation is defined as a process that given an image, possibly a multi- or
hyperspectral image, consideres every image point and assigns it a label that indi-
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Figure 2.3: The image is enhanced (1) for segmentation. Resulting regions from
segmentation (2) are analysed and regions of interest (ROI) are selected (3). The
ROI are applied to the original image (4). The dotted line indicates the connection
with the original data when using the region of interest on it. Analysis is performed
within the reduced region (5), resulting in a spatial substance mapping.

cates its relation to a group that share some common property. The result of the
segmentation can be called a label image or label map. The segmentation algorithms
are presented in Sections 2.3.3 and 2.3.4.

Watersheds and clustering used as segmentation algorithms differ somewhat, as
watershed segmentation primarily is used on grey scale images, and clustering on
multi layered (banded) images. In a sense, watershed is a two dimensional, or spa-
tial, segmentation algorithm, while clustering is a multi dimensional segmentation
algorithm.

2.3.1 Ratio and Difference

The dual-band algorithms are considered simple and fairly straightforward, so the
explanation will be kept short. The ratio or difference of an image is typically used
to emphasise certain aspects in two images taken from the same area. Difference can
be used to highlight regions of change, while the ratio between two bands can be
used to enhance subtle differences in spectral characteristics [7, 29]. The formula for
difference can be written as:

Gdiff (i, j) = G1(i, j)−G2(i, j) (2.3)

where Gdiff is the resulting image, G1 and G2 are the two input images, while i and
j are spatial pixel position within each image. Care should be taken to retain the
dynamic range in the result image, for example by avoiding negative pixel values as
a result of the difference operation. Details on this subject can be found in Section
3.3.1.

Rationing is the process of dividing pixel values in one image by the corresponding
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pixel values in a second image. This can be expressed as:

Gratio =
G1(i, j)
G2(i, j)

(2.4)

where Gratio is the result image. Rationing is a non-linear transformation and images
that have been transformed cannot be reconstructed back to the original [29].

2.3.2 Principal Component Analysis

A multivariate image is a three way array in which the first two dimensions represent
a spatial plane, and the third dimension is a variable span, like for example temper-
ature, mass, or some other physical or latent property. A hyperspectral image is a
multivariate image in which the third dimension represents different wavelengths.

An important tool for statistical study of multivariate images is the principal
component analysis (PCA) algorithm. PCA is a statistical method often used to
preserve essential information with reduced dimensionality (compression), or to em-
phasise features not discernable in the original data. These properties are beneficial
when working with hyperspectral images, because of the many bands in the image
cube. Adjacent bands in the image cube are generally correlated. This correlation
implies redundancy, since some of the information is repeated [17]. A linear opera-
tion, like PCA, can be applied to give an alternative description of the data, with the
correlation described differently and with less redundancy. This is the principle of
PCA based compression.

The multidimensional nature of hyperspectral images can be represented by a
vector space with as many dimensions as there are spectral bands in each pixel position
[29]. One set of images in the available data set has 160 bands where each band
has a resolution of 500 x 600. This gives a total of 300 000 vectors, each with 160
elements, corresponding to 160 dimensions. These vectors are used to compute the
covariance matrix and mean vector. A two dimensional example is presented next, as
the principle applies to any dimensionality and illustration becomes difficult at higher
dimensions.

The first step in PCA is to find the orthogonal vectors that give the best description
of the data set. These vectors are called eigenvectors, and there is one per dimension.
Each eigenvector has a corresponding eigenvalue that represents how well it fits a data
set. A visual explanation of the concepts can be seen in Figures 2.4 and 2.5. Figure
2.4 shows two eigenvectors for a two dimensional data set.

The first (red colour, the longest) eigenvector points in the direction of the greatest
variance in the data, the second (green colour, the shortest) points in the direction
of the second greatest variance, and so on. The step after finding the eigenvectors
is to reduce the number of dimensions. It is usually sufficient to represent a data
set with 1-10 % of the eigenvectors, since most of the variance, or information, is
contained in the first couple of principal components. Figure 2.5 shows how this is
done, by projecting the input vectors onto an eigenvector. All the data is now along
one axis, which means that the dimensionality has been reduced from two to one.
The alignment of data along the eigenvectors is the mechanism that de-correlates the
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Figure 2.4: Principal Component 1 (marked PC1, the longest) represents the eigen-
vector pointing in the direction of greatest variance. Principal Component 2 (marked
PC2, the shorter) points in the direction of second greatest variance. The data is
plotted as circles.

Figure 2.5: The input vector data is projected orthogonally onto the eigenvector PC1.
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data set [7]. A consequence of this is that an RGB picture which is composed of three
principal components will always contain more information than any combination of
three spectral bands [17].

Listing 2.1 briefly presents the steps in the PCA algorithm [6]. The steps are not
a recipe for implementation, but a high level presentation of the algorithm for easier
understanding.

Listing 2.1: PCA Steps

1 . Reorganize the data . The p i x e l s in the N x M x P image must be

organ i s ed in a s i n g l e row o f v e c to r s . Each p i x e l i s termed an

OBSERVATION and each p i x e l vec to r c o n s i s t s o f VARIABLES. The

r e s u l t i s a MNxP matrix .

2 . Subtract the mean from the data . The mean i s the average ac r o s s

each dimension . This produces a datase t whose va lue s are

centred on o r i go ( zero mean) .

3 . Ca l cu la te the covar iance matrix f o r the data .

4 . Ca l cu la te the un i t e i g env e c t o r s and e i g enva lu e s o f the

covar iance matrix .

5 . Sort the e i g env e c t o r s based from high to low e igenva lue . The

e i g enve c t o r with the h i ghe s t e i g enva lue i s the f i r s t p r i n c i p a l

component , the second h ighe s t i s the second p r i n c i p a l component

, and so on . The matrix E o f e i g env e c t o r s i s formed .

6 . The input data F i s t ransposed with the matrix E o f

e i g envec to r s , r e s u l t i n g in the p r i n c i p a l component image P.

A different approach to calculate the principal components is the Non-linear Itera-
tive Partial Least Squares (NIPALS) algorithm [38]. The NIPALS algorithm does not
calculate all the principal components at once. Instead it calculates the first score (t1)
and the first loading (pT

1 ) from the image data X. These two components represent
the first principal component. To calculate the following components, the residual
data E is the reduction of t1p

T
1 from X. The residual is used to calculate t2 and pT

2 .
The process is repeated for each component.

Principal component analysis seeks to find the eigenvectors that lie along the
maximum variance in the data set X. Partial least squares (PLS) regression and
partial least squares-discriminant analysis (PLS-DA) seeks to find and use a model
of the maximum covariance between the data set X and the model Y . A method
developed and used for statistical purposes, PLS regression combines and generalises
features of PCA and multiple linear regression. The PLS components can like PCA
be found using NIPALS [1, 38, 6].

13



2.3.3 K-means Clustering

Unsupervised classification, or learning, is a term for grouping objects with similar
properties together, without any foreknowledge of those properties. As stated in
literature [32, 29, 4, 35], most often clustering algorithms are used for unsupervised
classification.

Clustering can be used for classification on multivariate images. The image clus-
tering result is an assignment of each spatial position to a spectral class based on the
values of the different points in the image bands. The principle is illustrated in Fig-
ure 2.6. The results of clustering can be used to determine the location and number
of classes present. A supervised connection can later be applied to the results with
available spectral reference data. Clustering algorithms are typically computationally
expensive, but are essential to the analysis of multi- and hyperspectral data [35, 32].

Figure 2.6: The figure illustrates the principle of classification. Each pixel vector is
called an object. The values of the vector correspond to a physical property such as
wavelength. The resulting label map is shown with three labels as an example of a
possible result.

Multivariate image bands can be many different kinds of physical and latent prop-
erties. In literature, temperature, mass, wavelength, and principal components are
mentioned as examples [35, 32]. An important difference in clustering on multivari-
ate images compared to non-image data, is the extra spatial information available.
Spatial information can improve results, but in most cases it is ignored [35].

The K-means clustering algorithm is a widely used deterministic clustering method.
It clusters the given data in K clusters based on the characteristics of each observa-
tion. Each object (pixel) can only belong to a single cluster, and such clusterings are
called hard. The number of clusters can be difficult to determine automatically, and
can only be found manually with a trial and error approach [35].

The algorithm starts out by assigning K random centroids and assign each ob-
servation to the closest centroid. The distance is most commonly measured by the
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Euclidean distance function εδ [10]. Even with random starting centroids, the method
is deterministic, and will result in the same clustering if run until convergence. Af-
ter the initial run, new centroids are calculated by finding the mean of all objects
in the cluster. The algorithm is iterated with new mean centroids until the total
intra-cluster distance sum is minimized. The iterations are commonly limited by con-
vergence (when objects no longer switch clusters), or by setting a limited number of
iterations. Equation 2.5 shows the typical minimization equation:

S =
k∑

i=1

NM∑
j=1

εδ(xj − µi) (2.5)

where S is the resulting distance sum, k is the number of clusters, NM the number
of objects (pixels), xj the j-th object, εδ the distance function, and µi the i-th cluster
centroid.

The Euclidean distance function can be replaced with the simpler square error
function for a simplification of the equation [35]. By not performing the square root
operation of the Euclidean distance, computation time can be saved. This can be
done, since if

√
a >

√
b then a > b.

Listing 2.2 shows a step by step description of the K-means clustering algorithm
for a multivariate image.

Listing 2.2: K-means Clustering Steps

1 . Place K po in t s in to the coord inate space r epre s ented by every

po int / ob j e c t in the image that are being put in c l u s t e r s . These

K po in t s are the s t a r t i n g c en t r o i d s .

2 . Assign each image po int to the c l o s e s t c en t r o id .

3 . Reca l cu la t e the p o s i t i o n s o f the i n i t a l c en t r o id by meaning

over the po in t s a s s i gned to the c l u s t e r s .

4 . Repeat s tep 2 and 3 un t i l no po in t s change group , or the number

o f r epea t s equal I , maximum i t e r a t i o n s .

There are some theoretical concerns with clustering in literature [35, 32]. There
are concerns with using clustering on high resolution images with many multispectral
bands as the complexity and run time increases greatly. If run time can be ignored,
there are still problems regarding noise. K-means clustering is sensitive to noise and
many imaging devices produce outliers and noise due to limited sensor sensitivity,
statistical variations, or signal interferences such as magnetic fields from electrical
equipment. A commonly used solution is signal smoothing [7] which can eliminate
some noise problems, but smoothing will reduce accuracy as pixels are combined with
neighbouring values throughout the image.
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2.3.4 Watershed Segmentation

In this section the watershed transform is presented. The watershed transform is a
widely used and popular method for image segmentation in the field of mathemati-
cal morphology [30]. Watersheds often produce more stable results than other seg-
mentation approaches based on detection of discontinuities, thresholding, and region
processing [7].

The concept of the watershed transformation can be explained by looking at a
real word analogy. Imagine an area of slopes, mountains, and valleys where it is
raining evenly over the whole area. A rain drop hitting any point will travel along
the greatest gradient towards the nearest local minima, or in some points two or more
local minima. The latter would form, at the split point, a topological ridge, or divide
lines. The objective of the watershed transform is to find these watershed lines. The
principle is to allow flooding at a uniform rate through each local minimum from
below. When two catchment basins are about to merge, a dam is constructed to
prevent the merging. In the end, the flooding will cover the entire landscape, and
only the dam tops will be visible above the water. The dam boundaries represent the
watershed lines, and the different lakes are the segmented areas.

(a) Grey Scale Input Image (b) Direct Watershed of Input Im-

age

Figure 2.7: An example of naive input to the watershed transform. The left image
shows a common test image and the right image the results of watershed segmentation.

Typically, a grey scale image directly input to the watershed transform algorithm
would result in a oversegmentation, as there are large amounts of local minima in
standard images. The results from the watershed transformation on an unprocessed
grey scale image can be seen in Figure 2.7. To counter the oversegmentation, different
pre-processing strategies are commonly used. Regions characterised by small grey
value variations typically have small gradients, and therefore gradient images are
often used as input. Another common approach [30, 20] is to threshold the greyscale
input or gradient image, resulting in a black and white mask. That mask is then
morphologically opened (an erosion1followed by a dilation2) with a structural element.
A distance map is then calculated for the resulting image. The Euclidean distance
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from each white (or black) point to the nearest black (or white) point is measured and
stored in an image map. The watershed transform is then performed on the image
map. This method is considered supervised because of the image thresholding, while
the gradient approach is mostly unsupervised.

The watershed segmentation algorithm is defined in Gonzalez et al. [7] by set
operations. Briefly summarised, the flooding level will begin below the lowest value
and in the discrete case iterate upwards until it is beyond the highest grey value. At
any step, the number of points in the catchment basin below the current flooding level
is needed. As the levels rise, the number of points in a region will remain the same or
increase. When the flooding is complete, each group of points in each flooding level is
examined and is classified as one of three types by how it is connected (neighbourhood
connection). Class (i) is valid for the group of pixels forming the local minima, as no
other points are connected to this group at its value or below. Class (ii) is the group
of points that connects only to points in a single catchment basin (or label) at its
value or below. Finally class (iii) points are the points that connect both to points in
its own group at its value or below and points of another catchment basin (another
labelling). Class (iii) is fulfilled for any point that lies along the boundary of a region,
the aforementioned dam analogy.

1Erosion is one of two basic operators in mathematical morphology. The effect of the operator

on a binary image is to erode away the boundaries of regions, where a masking element determines

the degree of erosion. [7]
2Dilation is one of two basic operator in mathematical morphology. The effect of the operator

on a binary image is to gradually add to the boundaries of regions in the image, where a masking

element determines how much the boundaries are enlarged. [7]
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Chapter 3
Implementation

This chapter presents the implementation details. This includes available data, gath-
ering of new data, usage of existing software, implementation details for algorithms,
and application design.

3.1 Materials

This section describes the capture devices and data set available during this the-
sis, limitations of the data acquisition, and radiance-to-reflectance conversion of the
captured data.

3.1.1 Capture Devices

Four different hyperspectral cameras were used to capture the images available to this
thesis. All were developed by Norsk Elektro Optikk AS (NEO, Lørenskog, Norway).
Details on the four specific cameras can be found in Table 3.1. Figure 3.1 shows the
VNIR-1600 hyperspectral camera mounted on a translation device that was used to
capture some of the images.

The cameras capture raw radiance images which are then converted to the ENVI
binary raster format. The format is a flat binary uncompressed format with a separate
header file. The data can be stored, often called interleaved, in three different schemes.
These schemes are described in Section C.1.

A variety of different light sources were used during separate recording sessions
with different results. Details for the light sources can be found in Table 3.2. LS1
gave the best results, since it did not introduce any visible striping to the captured
images. It would have been ideal if LS1 could have been used for all images, since this
would eliminate a variable. This could not be done, because of available hardware
when the images were captured.

3.1.2 Data Set

The data set was used in previous work mentioned in Section 1.2, but it was extended
for this thesis. Details for the complete data set are provided in Section A.1. Three
examples from the data set are presented here. Details on the three image groups
can be found in Table 3.3. The details include an identifier (id) for the image group,
the sex (male (M) or female (F)), and age (in years) of the subject. Comments in
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Figure 3.1: NEO VNIR-1600 Hyperspectral camera mounted on a translation device.
Image from NEO [24].

Table 3.1: System specifications for NEO hyperspectral cameras. For more infor-
mation see the NEO webpage [24]. Two similar VNIR-1600 cameras where used,
differing slightly in spectral range. This gives different band correspondance to certain
wavelengths.

Module VNIR-1600 VNIR-640 SWIR-320i
ID H1a and H1b H2 H3
Detector Si CCD

1600*1200
Si CCD 640*480 InGaAs 320*256

Spectral range 0.4-1.0 µm 0.4-1 µm 0.9-1.7 µm
Spatial pixels 1600 640 320
Spectral sampling 3.7 nm 5nm/10nm 5 nm
Spectral bands 160 128/64 170
Frame rate to HD 120 fps 500/850 fps 350 fps
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Table 3.2: Specifications to the different light sources used to capture images.

ID Details Comments
LS1 DC Halogen 300W diffused No striping
LS2 AC Halogen 2 x 500W Heavy striping effect
LS3 DC SCHOTT KL 1500-T Strongest setting used. Strip-

ing effect. Lightsource converted
from AC to DC.

LS4 AC SCHOTT-FOSTEL LCC Striping effect

the table give information on what the images contain, where and how old potential
injuries are, and which cameras and light sources were used.

Table 3.3: Details on the three sample images and the image collections they where
taken from. Excerpt from Table A.1

ID Sex Age Comments
I1 M 32 A collection of 17 images taken at times ranging from

66 to 421 hours after injury. Images show two visible
bruises on the volar side of the right elbow caused by
paintball bullets. Camera:H1a Light:LS1

I2 M 32 A collection of 17 images taken at times ranging from
66 to 421 hours after injury. Images show two visible
bruises on the volar side of the right elbow caused by
paintball bullets. Camera:H3 Light:LS1

I4 Pig - A collection of 16 images taken at times ranging from
before injury to about 1 hour after. Images show
two bruises caused by paintball bullets. Camera:H2
Light:LS2

Since much of the available data set contained time series observing development
of injuries, it was possible to reduce the number of images used for experimentation.
To get a more efficient experimentation, it was decided to select images that could
represent the data set and retain as much variation as possible. To uniquely identify
these images from their collections, each image was assigned a unique identifier (UID).
The UIDs, file names, and a brief summary for the example images can be found in
Table 3.4, while Section A.2 provides the same for all the selected images. Figure
3.2 shows the three example images. By comparing the list of images available to
the project with the list of selected images for experimentation it should be apparent
that none of the images from I5 through I14 have been included in the last list. The
reasons for this are presented in Section 3.1.3.
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Figure 3.2: Three sample images from the data set. The upper left is a cropped image
(image collection I1, unique id I1-1) at wavelength 573.64nm. The upper right is
an uncropped image (image collection I2, unique id I2-1) at wavelength 1362.67nm.
This image shows the spectralon tile that was cropped from the upper left image. The
lower image is from image collection I4 (unique id I4-3). This image band, from
wavelength 854.68nm, shows two bruises in two control zones, spectralon sample tile,
and surrounding tissue and setup.
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Table 3.4: The file name and a brief summary for the sample images. A unique id
(UID) is assigned to each image that belongs to an image collection as can be seen in
Table A.1. For example, if two images come from image set I1, the first will be labeled
I1-1 and the second I1-2. Excerpt from Table A.2

ID UID File name Comments
I1 I1-1 72h Visible bruises
I4 I4-3 g7s5s6post1 2006 06 02 Visible bruises

14 46 40 VNIR 640 SN4 c.img
I2 I2-1 72h swir Visible bruises

3.1.3 Limitations During Data Acquisition

New images were captured for this project but none were used. The images used are
all from previous work. There are several reasons why no new images were included
and these involve both technical and non-technical issues. If these issues had occurred
individually some of the images could have been used, but the combination of all led
to their exclusion from experimentation. This section presents the limitations faced
when new images were captured.

Availability of the hyperspectral camera system meant that new images could
not be captured before late March. The images that were captured during the first
session used light source LS3 and LS4 which had inadequate strength and introduced
striping effects. Some images captured at a later date used LS1 which provided better
lightning. Details on the light sources used for each image can be found in Section
A.1.

The high resolution of the new images also became a problem because of limitations
in computer hardware and software. When an area of interest was captured, for
example the lower part of an arm, the image size was in excess of one gigabyte.
Before the images could be used, they had to be cropped considerably. Since the
images were captured using a lens with 20 cm focus, the area of skin visible in the
cropped image was considered too small to be of interest (approximately 4 cm * 4
cm). A lens using 100 cm focus distance, as was used for images in I1, would show a
larger area of skin for the same image size.

An initial visual analysis of the new images uncovered noise and scan line shifts
that could not be explained at the time. Two possible answers were later discov-
ered, one related to the equipment and the other to the environment the camera was
situated in. The translation unit (horizontal camera scan movement) showed signs
of being inaccurate. A firmware fix to solve the problem was delivered by NEO in
May. The other possible source was discovered during a session using no light. Noise
could clearly be seen in the captured image. Magnetic fields above normal have been
measured in the laboratory used for image capture. It is believed that the camera
equipment is affected by this interference. This problem was also discovered in May
and it was decided that it was too late to include new images at that time.
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Another issue observed was difficulties for the subject to remain still throughout
the capture time. Movement during acquisition can give apparent scan line problems.
It is believed that this could be a big problem if children are involved. Faster image
acquisition could reduce this problem.

3.1.4 Radiance-to-Reflectance Conversion

Radiance and spectral radiance are the radiometric measures of light passing through,
reflected, or emitted from a surface. Reflectance is the fraction of energy reflected
from a material surface, relative to incident energy and its wavelength. Relative to
incoming energy, the reflectance value is therefore independent of lighting intensity.

Standard digital, multispectral and hyperspectral sensors are all radiance sensors,
covering different ranges of wavelengths. The image radiance function F (x, y, λ) can
be characterized as the product of the two components illumination I(x, y, λ) and
reflectance R(x, y, λ) [7]. The model is shown in Equations 3.1 and 3.2 [7, 17].

Radiance = Reflectance · Illumination (3.1)

F (x, y, λ) = R(x, y, λ) ∗ I(x, y, λ) (3.2)

Reflectance data is available for many substances, for example water, aluminium,
chlorophyll, and hemoglobin among many others. For comparison of the image against
reflectance data, and to lessen the influence of the light sources, the radiance images
are converted to estimated reflectance images. This estimation is based on a Spec-
tralon (Ocean Optics, Duiven, The Netherlands, LabSphere) standard tile present in
the image. The illumination is estimated based on this standard, shown in Equation
3.3:

Iε =
Fs

Rs
(3.3)

where Fs is the Spectralon radiance mean, Rs the Spectralon reflectance, and Iε the
estimated illumination.

A group of pixels containing Spectralon are selected and a mean Spectralon ra-
diance is found. This is divided with the known reflectance for Spectralon over the
same wavelength range. The radiance image is converted to a reflectance image based
on this illumination. This is shown in Equation 3.4:

Ri =
Fi

Iε
(3.4)

where Ri is the reflectance image, Fi the radiance image, and Iε the estimated illu-
mination.

Converting radiance to reflectance images requires accurate spectralon radiance
data. All the images used during experimentation were reflectance images, except
those from data set I2. This is because the images had saturated and corrupt data
in the Spectralon tile. After the reflectance conversion, the image corruption was
multiplied. The images from I2 that were used during experimentation are therefore
radiance images.
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3.2 Tools

This section presents the tools and hardware used. This includes software for data
viewing and presentation, computer hardware available, and the evaluation and final
selection of a framework for algorithm development.

3.2.1 Data Viewer

The data in hyperspectral images can not be visualised directly in colours like standard
RGB-images, because of the multitude of wavelengths or layers in the image cube.
The data present in hyperspectral image cubes are typically beyond the RGB 8-bit
value range, often 16 or 32 bits, and also beyond the display capabilities of standard
computer displays. Hyperspectral images are therefore most often viewed as grey scale
images or pseudo colour images with the value range compressed to an 8-bit range.
Pseudo colour images are simply three bands from the image cube set respectively as
the red, green, and blue component.

Data were visually inspected during the experimentation using ENVI 4.2 (ITT
Visual Information Solutions, formerly Research Systems Inc.)[9] and MATLAB (The
Mathworks Inc.)[18]. ENVI provides tools for visualisation, analysis, and presenta-
tion of all types of digital images. MATLAB has in addition to its computational
environment several image processing and visualisation tools.

Figure 3.3: Left: Histogram of input image. Right: Histogram of 2% linear stretched
input image.

ENVI performs a linear stretch of the input image before displaying it, excluding
2% of the pixel extremities. That means, given an image with 100 pixels, the one
pixel with lowest and the one pixel with highest intensity is excluded. The new lowest
intensity will be interpreted as zero intensity (black) and the new highest as maximal
intensity (white). An example of this stretch is shown in Figure 3.3. The left graph
shows the histogram of the input grey scale image with two vertical lines indicating
the 1% extermity cut on each side. The histogram to the right shows the area between
these lines mapped to the range of integers from 0 to 255.
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3.2.2 Computer Hardware

For the development and execution of the algorithm code needed for the experimenta-
tion, two assigned student computers were used. These two computers differ only in
operating system. Both systems are 32-bit Windows systems, with a default usage of
2Gb physical and virtual memory (2 · 10243 bytes) [21, 22]. Beyond this, applications
must utilise the hard drive for swapping. Aside from the operating system, only the
processor and the physical memory had a direct impact on limitations set for the
experimentation. Because of this, the input data was limited to 100 MB images. A
conversion to double precision was needed for several algorithms, expanding these file
size by a factor of four. The choice of MATLAB as a framework, see Section 3.2.3,
confirmed this limitation, as there is no default hard drive swapping implemented.
The relevant details for the two computers are listed in Table 3.5.

Table 3.5: The specifications of the computers that were used in development and
execution of the implemented algorithms.

Computer 1 Computer 2
Operating System Microsoft Windows XP

SP2 32-bit
Microsoft Windows Vista
32-bit

Physical Memeory 2048MB (2x1024MB) 2048MB (2x1024MB)
Processor Intel Pentium 4 Prescott

(90nm) HT 3.0GHz
Intel Pentium 4 Prescott
(90nm) HT 3.0GHz

Primary Storage Samsung HD080HJ 80Gb
7200RPM hard drive

Samsung HD080HJ 80Gb
7200RPM hard drive

3.2.3 Frameworks

There are two basic approaches for experimental implementation of algorithms. The
first is to implement low and high level functionality, reducing the amount of overhead
and unnecessary code fragments. Due to the amount of programming, this approach
is time consuming and may present other problems such as debugging and difficult
general verification of code. The second approach is to use existing, functional, and
verified frameworks (often termed libraries) and software for underlying functional-
ity, like vector and matrix math. Basing development on pre-built components will
save time and amount of coding needed, but may prove difficult to use because the
framework might be complex and difficult to integrate and the documentation can be
of bad quality or hard to understand.

For this thesis, the second approach was chosen based on a need for experimenta-
tion and less implementation. We chose C# as the programming language, discarding
C++ after a short test implementation period. MATLAB was chosen as algorithm
framework. C++ compared to C# offers more low-level control, but is also harder
to use for simple applications. The usage of MATLAB and C# is considered to have
resulted in a more efficient development process.
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The most important criteria set for the selection of the development method are
shown in Table 3.7. The criteria have been weighted based on their importance. These
criteria are then fulfilled (Y), partially fulfilled (P), or not fulfilled (N). For a simple
and transparent evaluation, each category has been assigned a number. These values
can be found in Table 3.6.

Table 3.6: The values assigned to different levels of importance and different levels of
coverage.

Category Value
High 3
Medium 2
Low 1
Fulfilled (Y) 1
Partially fulfilled (P) 0.5
Not fulfilled (N) 0

The level of importance is multiplied with the level of cover for each criterion and
summed. This method is not purely objective as the fulfilment of each criterion is
subjectively evaluated based on each software’s documentation and user evaluations.
Table 3.8 compares the frameworks and the final ranks.

This evaluation is not an exhaustive study of available libraries or software. Rather
it is a selection based on experience with and knowledge of frameworks and program-
ming languages. The following sections present the evaluated libraries with their
strengths and weaknesses.

Open Computer Vision Library

Open Computer Vision Library, shortened OpenCV, is a free open source library of
programming functions mainly aimed at real time computer vision. Supported by
Intel[8], OpenCV can load at runtime the Intel Integrated Performance Primitives
(Intel IPP), which optimise OpenCV for running on Intel’s processors and chipsets.
OpenCV is mainly written in C++, and is interfaced through C++ also. Libraries for
integrating OpenCV with C# exist, but are mostly unfinished at the time this thesis
was written. The two known wrapper libraries are SharperCV (Rhodes University,
South Africa) and OpenCVDotNet (Interdisciplinary Center Herzliya,Israel).

OpenCV can among other things be used for object identification. One example
can be found in Ozan and Gümüstekin [25] where OpenCV was used to detect a chess
board and to identify inner corners on the board.

OpenCV was evaluated since it contains Principal Component Analysis (PCA).
However, the framework does not support the ENVI standard file format without
integration of GDAL (Geospatial Data Abstraction Library). Also the functions re-
quired to perform PCA currently only supports 8-bit images according to the online
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Table 3.7: Selection criteria for framework software.
Criterion Description Importance
C1 Framework has functional large scale vector

and matrix math.
High (3)

C2 Framework is generally well documented
and/or supported.

High (3)

C3 Framework has external dynamic interface for
integration through programming language of
choice (i.e. Windows DLL).

Medium (2)

C4 Framework has previously implemeted and
documented version(s) of planned algorithms.

Medium (2)

C5 Framework components are individually docu-
mented and correct.

Medium (2)

C6 Framework has large scientific user base. Low (1)
C7 Framework has previously implemeted and

documented version(s) of data format load and
store.

Low (1)

C8 Framework has previously implemeted and
documented version(s) of data viewer.

Low (1)

C9 Framework has documented high processing
performance.

Low (1)
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documentation [33]. The available hyperspectral data set contains only unsigned 16-
bit images. These limitations could be solved, for instance by writing a load and write
module for the ENVI format and by modifying internal methods. It is believed that
the time cost of implementing this would exceed the time available.

The documentation for OpenCV is good for introduction to the framework, and
all functions are individually documented. For information on the internals of each
function, the source code is referenced. The documentation is however considered
of lesser quality than for example the documentation of MATLAB which also shows
examples and more detailed information for each function. No technical support
is available, but there is a mailing list and an active forum for asking additional
questions. A scientific and a commercial user base for OpenCV exists, but primarily
it consists of developers who work on personal projects or small projects and need a
real-time image processing framework.

Insight Segmentation and Registration Toolkit

The Insight Segmentation and Registration Toolkit, abbreviated ITK, is an open
source software system incorporating many mid and high level segmentation and
registration algorithms. The focus of ITK is on medical applications, although the
toolkit is capable of processing other data types. The ENVI standard file format is
not supported, but there is support for implementing and integrating loaders for other
data storage formats. As ITK is open source it benefits from a large self-sustaining
community, a recognisable feature in good open source software. Simple and quick
reporting of issues and a dedicated user base with expert knowledge is a valuable
resource for the toolkit.

The core developer team of ITK is a scientific team with background in com-
puter vision and medical imaging. The developers offer function documentation and
technical support via direct and indirect communication, but as the project is still in
development the communication can be slow and the documentation under continuous
change.

ITK is entirely written in C++ and follow a strict templated style of implementa-
tion, resulting in cross-platform compatibility and easier integration as the developer
can address all functionality in the same fashion. There are no C# wrappers avail-
able. Visualisation of the data or general graphical user interfacing must be handled
through other frameworks, as ITK only contains processing algorithms, general struc-
tures, and IO.

All data structures in ITK are considered N-dimensional matrices. To some degree
vector and matrix math is implemented, but not completely. Principal component
analysis and partial least square regression are not implemented. The framework
enables implementation of your own algorithms and filters, and the documentation
and introduction contains examples of this.

It is suggested in the documentation and user mailing list that ITK is slower
than OpenCV, MATLAB, and IDL, partly due to the N-dimensional nature of ITK
implementations. Beyond code alterations for issues discovered and discussed by
the users, ITK is not performance optimised. ITK algorithms are mainly coded for
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multiple processor systems, and in such an environment it may outperform single
processor algorithms, such as a majority of MATLAB algorithms.

ITK was considered for this thesis based on a light introduction through previous
courses as a medical computer vision toolkit, the unified constructs and templates
which eases the development usage over time, and the proven handling of the amounts
of data needed for hyperspectral image analysis. Also, one of the needed algorithms
is already implemented. ITK was not chosen, as it lacked full support for vector and
matrix math in addition to possibilities for viewing, loading, and storing of the data.

MATLAB

MATLAB (The Mathworks Inc. International) is an interactive computation environ-
ment and a high-level programming language. The MATLAB programming language
is constructed specifically for matrix and vector operations, and core functionality
is performance and memory optimised. It runs on Windows and Linux with both
32-bit and 64-bit architectures. MATLAB is not written for a single scientific field.
It finds uses in fields such as algorithm prototyping, signal and image processing,
communications, statistics etc.

MATLAB is supported and updated regularly. Latest available version at the
time of writing was MATLAB 7.4 (R2007a). In addition to extensive literature and
in-product documentation, a large user community exists. The community, called
MATLAB Central, is an open exchange of files and information related to MAT-
LAB. Developers at Mathworks are encouraged to reply directly to user questions at
MATLAB Central. The users typically range from undergraduates to research doc-
torates, and the community contribution is high relative to the number of users and
comparable software.

The documentation of MATLAB as a whole and its individual components are
considered of very high quality. There are tutorials for beginners, intermediate users,
and advanced users available directly in the application and also online. Each function
has documented input arguments, output arguments, and function behaviour. There
are also one or more examples of usage for every function.

MATLAB contains many directly usable algorithms for this thesis, such as PCA,
watershed segmentation and other simple image processing operations. Other func-
tionality such as PLS, Clustering, and data read and write can be found or adapted
from source code available at the user community’s file exchange. MATLAB’s core
functionality is extended through licensed toolboxes that add relevant functionality,
for example the Image Processing Toolbox. Natively, MATLAB can show colour and
grey scale images quickly, and MATLAB has as mentioned in Section 3.2.1 been used
for inspection and presentation of data.

One toolbox, the MATLAB Compiler, enables compilation of MATLAB code for
integration with other laguages and applications. MATLAB can initiate and call any
linked library, and can in itself create linked C and C++ libraries in addition to stand
alone applications. On Windows, the resulting DLL-file can be called from C, C++,
and C#. MATLAB is however an interpreted language, meaning it is translated to
machine instructions at run time. Because of this, compiled code can not be run
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without MATLAB or MATLAB Component Runtime (MCR) installed. The MCR
functions as a runtime interpreter of deployed code, and is freely available for download
and distribution.

Interactive Data Language

IDL, short for Interactive Data Language, is a scientific programming language and
environment sold and licensed by ITT Visual Information Solutions, formerly the sub-
sidiary Research Systems Inc. The image analyser ENVI, previously mentioned used
as a data viewer in Section 3.2.1, is fully implemented in IDL. The language is con-
structed specifically for interactive processing of complex data, such as hyperspectral
and multispectral images. The interactivity, usage, and target user base are similar
to that of MATLAB mentioned in the previous section. The syntax of IDL is similar
to the programming language FORTRAN.

Several of this thesis planned algorithm implementations require vector and matrix
math, and IDL is written and optimised around a vector and matrix math core. IDL is
written for Windows, Mac OS, and Linux and supports 32-bit and 64-bit architectures.
In addition some of its core functions support multithreading. Function arguments
are all passed by reference, to conserve memory. All these factors are considered
performance enhancing.

IDL is a commerical product and is directly supported by the developing company.
The documentation for IDL is extensive, and contains detailed information, example
usage, and known limitations. The user base of IDL, and often ENVI, are scientific
users with high technical knowledge, and there exists a user knowledge base and
contribution web site, infoNET. Compared to the number of files available and active
users at MATLAB Central, infoNET is a considerably smaller user community.

IDL can be interfaced with external languages such as ActiveX control, Windows
Component Object Model (COM), and Java. Programs and libraries in other lan-
guages can be called directly from IDL.

For the development of ENVI, several tools were developed for imaging purposes
and later integrated into the base functionality of IDL. PCA, watershed, ratio, and
difference exists in IDL or are available on the user community site. Clustering and
PLS could not be found readily implemented in IDL. Data loading and storing is well
implemented and documented in IDL, and the product information states that most
formats known can be loaded and written.

One previously famous usage includes the management, analysis, and presentation
of the multispectral imaging data from the two Mars Exploration Rovers. A set of
IDL routines was developed by scientists and engineers at Cornell University called
MERtools, used for monitoring camera health, data tracking, and data analysis.

The usage of ENVI and IDL required a license and a hardware USB-key. During
this thesis, only one key was available, and this is seen as a limitation of development
with IDL. Distribution is possible using the IDL Virtual Machine, a free runtime
framework for compiled IDL code. There are clear similarites between the IDL Virtual
Machine and the MATLAB Component Runtime.
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SciCraft

SciCraft (Chemometrics and Bioinformatics Group, NTNU, Norway) is a open source
data analysis software. The framework gives developers and users access to statistical,
chemometrical, and partially imaging functions through a building-block user inter-
face. At the time of writing, the software was listed by its developers as immature
and incomplete. SciCraft is aimed at providing solutions for data analysis rather than
technical issues such as loading and storing in different formats.

The documentation is comparable to the development of the main software. It can
be characterised as unfinished, and has not been updated for the last big revision of
SciCraft. The documentation is based on the Wiki technology, enabling active users
to add, edit, and correct information.

The developers of SciCraft at this stage offer per user answers and support. There
is no user community site beyond the documentation Wiki at the time of writing.
SciCraft can however utilise many other language inputs such as MATLAB code
files through a unified interface, and this gives it the combined input of several user
communities.

Based on the programming language R, also known as GNU S, SciCraft has the
basis for good performance. R is optimised for statistical computing, graphics, and
large scale vector and matrix math.

SciCraft contains implementations of PCA and PLS, but not clustering, snakes,
or image arithmetic operations. The ENVI file format is currently not supported in
SciCraft.

The SciCraft user interface is based on GTK, a cross platform graphical user
interface framework. No data viewer beyond plots is currenty implemented.

Evaluation Conclusion

The summary of each framework’s fulfilment of the requirements is shown in Table 3.8.
Based on the evaluation criteria in Table 3.7, MATLAB was chosen as environment
for algorithm development. The compiled algorithms can be interfaced from most
programming languages. C# was chosen as the programming language for its high
level structure and easy user interface design, discarding C++ after a short test
implementation period.
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Table 3.8: Framework comparison with weighted criteria from Table 3.7. The frame-
works can fulfil the singular criterions completely (shown with a Y), partially (shown
with a P), or not (shown with a N). The final ranks can be seen in the bottom row,
where 1st is the top rank.

Criterion Weigth OpenCV ITK IDL MATLAB SciCraft
C1 High Y P Y Y Y
C2 High P P Y Y P
C3 Medium Y Y Y Y Y
C4 Medium P N P Y P
C5 Medium P P Y Y P
C6 Low N Y Y Y P
C7 Low N N Y P N
C8 Low N N Y Y N
C9 Low P P Y Y N

Ranked 3rd 4th 2nd 1st 5th

3.3 Implementation Details for Algorithms

This section presents the details surrounding the implementation of the three enhance-
ment algorithms and the two segmentation algorithms described in Chapter 2. The
concerns and changes of implementing the theoretical methods are presented here.
Where deemed necessary, reader friendly pseudo code is presented in a listing.

Ratio and difference were implemented in C# and experimented with through the
batch program also written in C#. Principal component analysis, K-means cluster-
ing, and watershed segmentation were implemented in MATLAB, compiled using the
MATLAB Compiler, and experimented with through the batch application presented
in Section 3.4.

3.3.1 Ratio and Difference

The arithmetic operations ratio and difference are performed on a pixel-by-pixel basis
between two images in the presented implementation. For ratio, there is a common
image processing problem when applying Equation 2.4 to the input. The problem
arises when the value of the denominator pixel equals zero. Dividing by zero is not
defined. The zero value must be meaned by its neighbours (called biased), or more
commonly, incremented by a value, for example 1 if the image is of an integer data type
[7]. Consider a denominator approaching zero. The resulting fraction will approach
infinity regardless of nominator value. In a discrete image, infinity is undefined, and
typically has a range of 0 through T, where T, for example, equals 65535 for unsigned
16-bit integers. The solution of the divide-by-zero problem is to reduce the range to
1 through T. The increment is hardly discernable from the zero intensity, and does
not introduce the white noise pixels that can occur from setting the resulting divide-
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by-zero fraction to the maximum range value. Instead it will simply leave the value
as it exists now if the divisor is zero. This approach is not mathematically accurate,
but will produce acceptable results.

Conserving the image range from the original image to the resulting image is
important with arithmetic operations. The result image of for example ratio often
ends up with a significant number of low pixel values. Image detail variation can be
lost if the values are naively multiplied and rounded. To minimise loss and to ensure
an effective use of the available value range, the stretch shown in Equation 3.5 was
used.

Pout = (Pin − c)(
b− a

d− c
) + a (3.5)

Pout is the resulting pixel value, while Pin is the input pixel value. The lower
and upper pixel value limits are a and b respectively, while c and d is the lowest and
highest pixel value, respectively, currently found in the input image.

To preserve the dynamic range of images while applying Equation 2.3, a simplified
version of Equation 3.5 is used [7]. This can be written as:

Gdiff (i, j) = (b + G1(i, j)−G2(i, j))/2 (3.6)

where Gdiff is the resulting image, b is the largest value possible for any given
pixel, G1 and G2 are the two input images, and i and j are spatial pixel position within
each image. Using this simple equation prevents negative values and retains the same
dynamic range in the result images as in the originals. It is assumed that both input
images have the same dynamic range for both algorithms. No source code for the
ratio and difference algorithms has been included in the appendix as it considered
being sufficient with the formulas mentioned.

3.3.2 Principal Component Analysis

Memory limitations restricted the use of internal MATLAB principal component anal-
ysis algorithm. Therefore, interface code was written both for the MATLAB PCA
method and a independent NIPALS algorithm. Both were compiled with the MAT-
LAB Compiler and used through the batch application.

The NIPALS algorithm computes the principal components iteratively, and uses
less memory than the calculation of covariance matrix and eigen vectors, as described
in Section 2.3.2. However, the numerical approximation of the eigenvector projection
is slow. The pre set limit (a small number, typically between 10−6 and 10−7) is
approached in smaller steps for each principal component, and therefore using the
MATLAB PCA algorithm was preferred. The NIPALS algorithm is presented as
pseudo code in Listing 3.1. The source code for the PCA and NIPALS PCA code can
be found in Sections D.1.1 and D.1.2.

Listing 3.1: NIPALS Pseudo Code

1 % NxMxP input image i s transformed in to NMxP

2 % and s to r ed in matrix X
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3 X = reorderData ( inputData )

4

5 for i := 1 to numberOfPrincipalComponents

6 {
7 % se t u to the f i r s t row vec to r o f X

8 u := X(1 , a l l )

9 cur rentError := Inf

10 % run u n t i l e r ror sma l l e r than

11 % l im i t ( approaches zero )

12 while cur rentError > l im i t

13 {
14 % pro j e c t X onto u to f i nd

15 % corresponding l oad ing v

16 v := (X∗u ’ ) /(u∗u ’ )

17 % normal ize the l e n g t h o f l oad ing

18 % vec to r v to 1.0

19 v := v / | v |
20 % s to r e the score vec t o r u in to uo ld

21 uold := u

22 % pro j e c t the matrix X onto v to

23 % f ind new score vec t o r u

24 u := (X’∗ v ) /(v ’∗ v )

25 % transpose u from 1xn to nx1

26 u := u ’

27 % d i f f e r e n c e between the prev ious

28 % score s and the curren t s core s

29 d := uold − u

30 % convergence o f s core s

31 cur rentError := | d |
32 }
33 % s to r e the c a l c u l a t e d l oad ing

34 s c o r e s ( i ) := u

35 % s to r e the c a l c u l a t e d l oad ing

36 l o ad ing s ( i ) := v

37 % f ind the r e s i d u a l

38 E := X − ( v∗u )

39 X := E

40 }

3.3.3 K-means Clustering

As mentioned, K-means clustering was implemented in MATLAB. The variables for
the experimentation are a range of clusters and a range of iterations. Simplified
pseudo code is presented in Listing 3.2. By default and used in the implementation,
MATLAB uses the Euclidean distance calculation for the clustering. The function
script implemented in this thesis can be seen in Section D.2.

Listing 3.2: K-means Clustering Pseudo Code
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1 % NxMxP input image i s transformed in to NMxP

2 % and s to r ed in matrix X

3 X := reorderData ( inputData )

4

5 % for a l l the va l u e s in CLUSTERS

6 for each c l u s t e r in CLUSTERS

7 {
8 % for a l l the va l u e s in ITERATIONS

9 for each i t e r a t i o n in ITERATIONS

10 {
11 % use the MATLAB kmeans a l gor i thm

12 c l u s t e rRe su l t ( i , j ) := kmeans ( X , c l u s t e r , i t e r a t i o n )

13 save ( c l u s t e rRe su l t )

14 }
15 }

3.3.4 Watershed Segmentation

Watershed segmentation was implemented using thresholding, morphological open-
ing, the dilation-erosion difference (called the Beucher-gradient), and the watershed
transformation.

The morphological opening used a structural disk element with a radius of six.
The element size was determined through inital testing on single bruise images to
find at which size the features were sufficiently morphologically opened. For the
Beucher-gradient, a square 3x3 structural element was used.

The input images were stretched between their minimum value and maximum
value, and their range normalised to the range from 0.0 to 1.0. Listing 3.3 shows
pseudo code for our watershed segmentation algorithm using MATLAB’s watershed
function. Code for the full implementation can be found in Section D.3.

Listing 3.3: Watershed Segmentation Pseudo Code

1 % the input image (a grey s c a l e image ) i s normal ised

2 greyImg := normimage ( greysca le Image )

3 % ad ju s t the image range so t ha t maximum va lue i s

4 % pure white , and minimum b l a c k

5 adjImg := imadjust ( greyImg )

6 % for a l l the p i x e l s in the image

7 for each p i x e l i in adjImage

8 {
9 % th r e s ho l d the image wi th the prede f ined t h r e s ho l d input

10 % r e s u l t i n g thresho ldImg i s a l o g i c a l image wi th 1 or 0 ( t rue

or f a l s e )

11 thresholdImg ( i ) := adjImage ( i ) > prede f inedThresho ld

12 }
13 % the two s t r u c t u r a l e lements are de f ined

14 elementSquare := ones ( 3 , 3 )
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15 elementDisk := d i sk ( 6 )

16 % the t h r e s ho l d image i s morpho l o g i ca l l y opened wi th the d i s k

e lement

17 openImg := d i l a t e ( erode ( thresholdImg , elementDisk ) , e lementDisk )

18 % f ind the Beucher−g rad i en t us ing the 3x3 s t r u c t u r a l e lement

19 beucherImg := d i l a t e ( openImg , elementSquare ) − erode ( openImg ,

elementSquare )

20 % f ind the d i s t ance from every b l a c k p i x e l to the neare s t whi te

p i x e l

21 distanceImg := d i s t ance ( i nv e r t ( beucherImg ) )

22 % use the watershed transform on the d i s t ance image

23 labe l Img := watershed ( distanceImg )

3.4 Application Design

This section gives an overview for the design of an application that was created and
used during the experimentation. First, some background and a fictional story is
presented to explain possible use. This is followed by a brief look at the underlying
functionality.

It was decided to create a batch program that could set up as many tests as
required and run these sequentially. This was done as some of the algorithms are
computationally expensive. The batch program allowed all tests to be set up at the
end of the day, and during the night. User input is given through a simple graphical
user interface (GUI). The two windows in the GUI can be seen in Figure 3.4. An
unobstructed view of the main window can be found in Section B.1. No data view
functionality was implemented. A fictional user interaction is presented to give a
simple example of possible use for the batch program:

Meet Tim. Tim wishes to run some algorithms on a selection of images containing
bruises. When the application starts, Tim is presented with the window in the back
of Figure 3.4. He presses the ’Open’ button and loads three image metadata files into
the program. Tim can then see the available files in the ’Input images’ box to the
left. He selects ’397h.hdr’ and presses the ’Add pipeline’ button. This opens the lower
window. This window allows Tim to set up a processing pipeline. A pipeline is a series
of algorithms run on the same image in a specified order with specific parameters.

Tim wants to run the difference algorithm, so he selects it from the ’Available
algorithms’ list. He sets the desired parameters and adds the algorithm to the pipeline
by pressing the ’Add’ button. Tim is now able to see the added algorithm with the
specified parameters in the ’Algorithms to be run’ list. The output filename can also
be seen in the ’Output filename’ box. After Tim adds the desired algorithm, he presses
the ’Finish’ button and is brought back to the first window. He is now able to see the
pipelines in the ’Algorithm pipelines’ list. When Tim is satisfied with the number of
pipelines, he presses the ’Run All’ button. After the program completes, Tim returns
to find all his problems solved.

A simplified class diagram showing core functionality is presented in Figure 3.5.
Only elements that help the reader to understand core functionality are presented,
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meaning that some classes present in the program are omitted from this diagram.
All the classes presented, except the MATLAB package was implemented in C#.
The program is built around a ’BatchController’. Among other things, the controller
contains a list of available algorithms and images. The two most important functions
of the controller are to start the graphical user interface (GUI), and to start the batch
program.

The images are read and written through an I/O module, which currently only
supports the ENVI file format. Support for other file formats can be included by
implementing the ’Input/Output’ interface. The ’Image’ class contains the informa-
tion related to images in two fields called ’metaData’ and ’data’. Metadata includes
height, width etc., while data is the actual image points stored in an array. Only
ENVI headers are supported. If other file formats are needed, they should inherit
from ’Metadata’. All the algorithms are implemented from the ’Algorithm’ interface,
which forces them to have a universal run method that the ’BatchController’ can call.
The run method takes an image as input and returns the treated image.

Of the algorithms, ratio and difference were implemented in C#, while PCA, NI-
PALS PCA, clustering, and watershed were implemented in MATLAB. The wrapper
classes contain individual set of parameters for each algorithm along with a method
that uses subprograms coded in MATLAB. These subprograms are made in the Mi-
crosoft Windows Dynamic-link library (DLL) format, which is a standard for intra-
and subprogram communication and reusable components.
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Figure 3.4: The two windows used in the batch program.
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Figure 3.5: A simplified class diagram showing core funtionality.
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Chapter 4
Experimentation

This chapter gives an overview of the tests that were done during experimentation.
First, a list of the algorithms that were tested is presented to give a brief overview.
Secondly, general guidelines for result analysis are presented before each algorithm is
described in the same order as listed. The algorithms that were tested are:

• Difference - Initial tests were run on selected images, to determine parameters
for further testing. These parameters were then applied to the images in Section
A.2

• Ratio - Initial tests were run on selected images, to determine parameters for
further testing. These parameters were then applied to the images in Section
A.2

• Principal Component Analysis - Algorithm was applied to the images found
in Section A.2. Also tested on three radiance images, to examine any differences
between reflectance and radiance images

• Clustering - Initial tests were performed on a reflectance image and the princi-
pal components of the same image to determine parameters for further testing.
Identified parameters, if any, were used on a reflectance image of another sub-
ject, and the principal components of that reflectance image

• Watershed - Segmentation was performed on four grey scale images with the
intention of segmenting out the two (possibly three) bruises present in the im-
age. Three of the four input grey scale images were the best results from the
enhancement algorithms, and the fourth was a single band from the reflectance
image were the bruise was clearly visible

Results are commented based on a visual analysis, and divided into two main
categories. These are positive (+) and negative (-). This classification is subjective,
meaning that other observers might get different results. When a result is judged to
be positive it is mainly because bruises are clearly visible or because results seemed
promising for further bruise segmentation. A result that does not clearly show bruises
or contain a high level of noise is judged to be negative. If results are lacking bruises,
but show other interesting features, like blood vessels, they were marked as negative.
The features were commented upon, and some images that displayed interesting prop-
erties, other than bruises, are presented. Other results might be valuable for future
work. Any further selection beyond (+) and (-) is specified were this is necessary.
Unless stated otherwise, all images used for testing were reflectance images.



4.1 Difference

Input parameters for the difference algorithm are two bands from an image cube.
Each image cube contains 128 or more bands, and it was decided not to test and
analyse the complete range of permutations. An image cube with 128 bands would
give 16256 permutations. The experimentation was split into two phases for testing
of the difference algorithm. The first phase determined parameters on a reduced data
set, and the second phase used these parameters on a larger set of images.

For the first phase, two images were selected from the larger set: A VNIR (Visible
and Near Infrared) image (I1-1) and a SWIR (Short Wave Infrared) image (I2-1).
Details on the full set can be found in Section A.2. The SWIR and VNIR images
represent the total spectral range of the full data set. I1-1 is a reflectance image,
while I2-1 is a radiance image. The reflectance image of I2-1 was not satisfactory for
experimentation, as described in Section 3.1.4.

To select parameters (bands) for the first phase, two different approaches were
used:

1. Approach one: Band selection based on absorption peaks.

2. Approach two: Band selection based on visual inspection of all bands.

The first approach utilise information from biomedical optics related to some of the
different compounds that might be found in a bruise. Information on the compounds
can be found in Table 2.1. Section A.3 details the connection between wavelength
and band number. If an absorption peak falls between two bands, the bands above
and below are listed. For experimentation, the band below was selected.

The absorption peaks in Table 2.1, are only considered valid for reflectance images,
as the lighting is expected to alter amplitude in radiance images. Because of this
radiance image I2-1 does not fit the first approach, and will be exempt from this test.

Table 4.1 shows the different permutations that were tested in the first phase. Note
that only the first combination is listed for testing in reverse order. This was done
to verify that the algorithm was running correctly. If parameters are interchanged
in the difference algorithm, it will produce the mathematical inverse. Inverse images
of already produced results do not provide new information. By avoiding the reverse
order, the number of permutations was halved.

Bilirubin has one absorption peak which is affected by contributions from sub-
cutaneous transport of bilirubin by lymphatic flow followed by diffusion into dermis
[27]. Both possible absorption peaks found in Table 2.1 were tested.

The second approach is based on visual inspection of all bands in an image cube.
This approach was used on both I1-1 and I2-1. Based on similarities regarding bruise
visibility, bands were gathered into groups. The groups and their description can be
found in Section A.4 and Section A.5 for image I1-1 and I2-1 respectively. One or two
bands were chosen randomly from each group and then tested against one another.

The parameters found from the two approaches were used to run tests on I1-1 and
I2-1. The results were then analysed and divided into positive and negative groups,
following the guidelines presented in the introduction to Chapter 4. If more than four
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Table 4.1: The different permutations that were tested on image I1-1.

Parameter one Parameter two
Deoxyheamoglobin Oxyheamoglobin
Oxyheamoglobin Deoxyheamoglobin
Bilirubin Deoxyheamoglobin
Bilirubin Metheamoglobin
Bilirubin Oxyheamoglobin
Deoxyheamoglobin Metheamoglobin
Oxyheamoglobin Metheamoglobin

positive results were obtained, four were chosen amongst the positive results. This
selection was done by comparing bruise visibility. Those with the most visible bruises
were selected, unless a result with similar details and more visible bruises already had
been selected.

After deciding on parameters in the first phase, the second phase was to apply the
selected parameters to all images listed in Section A.2 not already tested. Algorithm
parameters were adjusted for variations between the different cameras in accordance
with the information in Section A.3, which details the connection between wavelengths
and bands for each camera model.

4.2 Ratio

The approach used for the ratio algorithm is very similar to that of difference, with
minor changes. Ratio was also divided into two phases, and parameters were selected
in the same manner. The only change was with regard to the inverse. Interchanging
parameters does not produce the mathematical inverse, but it was suspected that the
two images would contain more or less the same details with brightness variations
similar to the inverse. For that reason, parameters for phase one was selected using
Table 4.1 for ratio as well.

4.3 Principal Component Analysis

The principal component analysis (PCA) was tested on all images found in Section
A.2. The principal components for each image were then analysed with respect to
bruise visibility. The number of principal components computed is the same as the
number of bands in the original image cube. Other interesting features were com-
mented along with bruise visibility. Three radiance images was also tested and com-
pared with their reflectance counterparts. This was done to see how results would
differ if radiance images had been used as opposed to reflectance images.
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4.4 K-means Clustering

Similarly to the difference and ratio algorithms, K-means Clustering was tested in two
phases. The first phase was a test of a wide range of parameters on reflectance image
I1-1 and a selection of principal components from reflectance image I1-1. The input
parameters for the algorithm are the number of clusters in the output and number of
iterations. The clustering parameters used for the first phase can be found in Section
A.9.1. They range from 2-50 clusters and 1-125 iterations.

If the parameters proved successful on the input image, they were used on another
image of the same type for verification with a different individual, i.e. successful
parameters on the principal components of a VNIR image would be tested on the
principal components of another VNIR image. Image I1-1 was used in the first phase,
and image I4-3 in the second phase.

4.5 Watershed Segmentation

Details on the theoretical part of watershed segmentation can be found in Section
2.3.4, and implementation details in Section 3.3.4.

Wathershed segmentation was performed on four grey scale images. Three of
the images were the subjectively evaluated best results from the three enhancement
algorithms difference, ratio, and principal component analysis. The fourth was taken
from band 47 of the reflectance image I1-1. This band has been visually identified
as one of the bands with best feature contrast, i.e. clearly visible bruises. The band
from the original image was tested to get an indication of whether the enhancements
algorithm had a positive or negative impact on segmentation. The varying parameter
for the implementation presented in this thesis is the thresholding value. For the four
images, the thresholding value was varied from 0.0 to 1.0 with 0.05 in increments.

Results were evaluated based on area in the input image covered by the segmenta-
tions. For example if the segments covered only the upper half or only the centre of a
bruise, the segmentation was regarded as less successful than a segmentation covering
the entire visible bruise.

4.6 Summary

This chapter concludes with a quick summary of what has just been presented. Dif-
ference, ratio, and clustering all used two phases. The first phase was used to test
parameters on a reduced number of images. The second phase then used these pa-
rameters on other images. PCA was tested on all the reflectance images and three
radiance images. Watershed was used on three selected result images and one original
image. An overview of the algorithms and the images they were applied to can be
seen in Table 4.2. All the images, except three, are reflectance images. If a Xis used,
it means that the algorithm at the top of the column was used on the image in the
corresponding during experimentation. Not tested (NT) means that an image was
going to be tested but was omitted. This could happen if a preliminary requirement
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was not fulfilled, for example, image B was only tested if a positive result from image
A was observed. Otherwise testing on image B would be omitted. At the bottom of
Table 4.2 there are some rows that require additional explanation. PCA (image id)
means the PCA result image from for example I1-1. The last three rows are the best
results (BR) from the algorithms specified within parentheses.
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Table 4.2: The images with unique id (left column) and the algorithms that used them
as input. If a Xis given, it means that an image was used during experimentation of
by an algorithm. Not tested (NT) means that an image was going to be tested but was
omitted.

Image ID D
iff

er
en

ce

R
at

io

P
C

A

C
lu

st
er
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g

W
at

er
sh

ed

I1-1 X X X X X
I1-1 (radiance) X
I1-2 X X X
I1-3 X X X
I2-1 X X X
I2-2 X NT NT
I2-3 X NT NT
I3-1 X X X
I3-2 X X X
I3-2 (radiance) X
I3-3 X X X
I4-1 X X X
I4-2 X X X
I4-3 X X X NT
I4-3 (radiance) X
PCA (I1-1) X
PCA (I4-3) X
BR (ratio) X
BR (difference) X
BR (pca) X
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Chapter 5
Results

This chapter presents the results from applying the algorithms described in this report
to images. The chapter has been divided into sections, were each section is named
after the algorithm used. For ease of reading, the algorithms are presented in the
same sequence as in Chapter 4. To limit the number of images presented here, only
a selection of important images is shown in this chapter. A textual presentation is
given for all result images.

5.1 Difference

The results from the difference algorithm have been divided into three sections to
facilitate reading. The two first cover results from phase one and phase two. Details
on the phases can be found in Section 4.1. Each section contains positive and negative
results. The final section presents some observations that are not directly related to
bruise enhancement.

5.1.1 Phase One - Initial Test Results

An overview of the positive results observed during the initial testing (phase one) can
be seen in Table 5.1. The complete list featuring all results from parameters tested
can be found in Section A.6.1.

Four parameters were supposed to be selected for each image in phase one for
further use in phase two. Only two parameters for image I1-1 matched the selection
criteria used for selection, since the other positive results were similar to the two
chosen. For I2-1 there was one parameter that gave a positive result. Table 5.2 shows
the parameters that were used further in phase two. The two parameters used on
image I1-1 were chosen based on absorption peaks, while the one used on I2-1 was
chosen based on visual inspection of all bands.

Result images from the difference algorithm using the parameters from Table 5.2
can be found in Figure 5.1 and in Section B.2.1 for image I1-1 and I2-1 respectively.

Figure 5.1(a) shows band 47 of the original image, whose wavelength is approx-
imately at the second absorption peak for oxyheamoglobin. The oxyheamoglobin
wavelength is well suited for the display of bruises. Figure 5.1(b) shows two bright
circular bruises, while (c) have dark bruises. Figure 5.1(b) displays a ’racoon’ effect
around the bruises, while (c) has a dark area below the bruises and in the upper left
corner. Skin structure has been lost in both images.



Table 5.1: An overview of the positive results from the initial testing during phase one.
Using absorption peaks for band selection is called approach one, while band selection
based on visual inspection is called approach two. Approach one is not applicable to
image I2-1, since it was captured using camera H3. The absorption peaks used for
approach one are outside the range used by camera H3.

Image Approach One Approach Two Comments
I1-1 8 of 28(28,6%) 0 of 12(0%) Two visible bruises
I2-1 N/A 1 of 6(16,7%) Two visible bruises. Ap-

proach one not applicable.
See caption for details.

Table 5.2: Three parameters (bands and wavelengths) that gave the most promising
result images for the difference algorithm. Excerpt from tables in Section A.6.1.

UID Bands (wavelength) Comments
I1-1 22-38 (480nm-542nm) Two visible bruises surrounded by a dark area
I1-1 47-29 (576nm-508nm) Two clearly visible bruises. Loss of skin struc-

ture
I2-1 110-142 (1443nm-1604nm) Linearly stretched. Two visible bruises
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Section B.2.1 presents a single result image from the experimentation on SWIR
image I2-1. The bruises show as bright circles against a dark arm.

(a) I1-1 original, band 47

(b) Band 22 and 38 (c) Band 47 and 29

Figure 5.1: The original image and two positive results from phase one using the
difference algorithm on image I1-1. Parameters that were used are listed below each
image

Figure 5.2 shows an example of two negative result images from I1-1, while Section
B.2.1 presents the same for I2-1.

Figures 5.2(a) and (b) show results containing bruises that are difficult to discern
from the rest of the image. Figure 5.2(a) also contains a high degree of ’salt-pepper’
noise 1. One bruise is visible in Figure 5.2(b), however the other bruise is indiscernible.
Two bright areas can be seen below and approximately on the location of the missing
bruise.

The negative results from I2-1 contained no discernable noise but the bruises are
weakly visible. Blood vessels are visible in one of the images.

5.1.2 Phase Two - Extended Test Results

After parameters had been selected in phase one, they were applied to the rest of the
images found in Section A.2. Results from that test can be found in Section A.6.2.
Table 5.3 shows an overview of the number of positive results for each parameter.
The result images have been grouped together based on similarities in visual contents.
Images that contained known bruises are presented first, followed by images that were
either taken before injury or before the injury was possible to observe visually.

1Salt-pepper noise are randomly occurring white and black pixels in images.
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(a) Band 42 and 38 (b) Band 97 and 29

Figure 5.2: Two negative results from phase one using the difference algorithm on
image I1-1. Parameters that were used are listed below each image.

Table 5.3: An overview of the positive results from phase two using the difference
algorithm. The table is divided into two rows. The first shows result from images with
visible bruises, the second from images with no visible bruises. A positive result on
an image with no visible bruise is considered a false positive, hence a low percentages
is considered good. The last column is only valid for images from I2, because of the
camera used (H3). There are no images captured by camera H3 that did not contain
visible bruises.

Content 480nm-542nm 576nm/508nm 1443nm-1604nm
With visible bruise 2 of 5(40%) 2 of 5(40%) 2 of 2(100%)
No visible bruise 0 of 3(0%) 0 of 3(0%) -
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Figure 5.3 shows nine images. The images in the top row are the originals, while
the two rows below them are result images from the difference algorithm. Figure
5.3(a) shows a weakly visible square bruise, (b) shows a single circular bruise, while
(c) shows two circular bruises. The uppermost bruise in (c) has a dark centre, making
internal contours hard to see. Figures 5.3(f) and (i) both show clearly visible bruises
and both internal and external contours are visible. These were the only two judged
to be positive in this figure. Figure 5.3(e) shows a visible bruise, but its difficult to
discern contours. The same can be said for (h), but it also shows a dark ring, in the
area of the bruise, surrounding a brighter ring, which again surrounds a dark centre.
The square shaped bruise is weakly visible in both (d) and (g). Striping effects are
visible in all the result images.

The images used during phase one, I1-1 and I2-1, are both part of time series. Two
additional images were also taken from each series. Both I1-1 and I2-1 were captured
72 hours after injury, while the other images are from 192 and 397 hours after injury.
Section B.2.2 presents result images from I1-2, I1-3, I2-2, and I2-3. Bruises are visible
for I1-2, but difficult to discern for I1-3. This is also true for the result images from
the difference algorithm, where results from I1-2 shows more visible bruises compared
to results from I1-3. I1-2 was judged to have positive result images, while they were
judged to be negative for I1-3. The left bruise from I1-2 results has lost its contour
compared to the right bruise.

The result images from I2-2 and I2-3 both have visible bruises, but they are weaker
for I2-3. Both result images show bright bruises against a dark arm and they both
contain striping effects. Result images were deemed positive, even for I2-3, since an
improvement over the original can be seen.

Section B.2.2 also covers results that had no clearly visible bruise in the original
image. None of the tested parameters produced false positives. This means that there
was no clear indication of bruises before or after testing. There are some marks that
could be interpreted as a weakly visible bruise, both in the originals and the results,
but since these cannot be determined to be bruises in either, they are considered to
not contain visible bruises.

5.1.3 Other Observations

This section presents some observations that contained results not directly related to
bruise enhancement. A brief example of what happens when the parameters for the
difference algorithm are reversed is also presented.

Figure 5.4 shows a result image from I2-1. Blood vessels with a varying degree of
thickness can be seen.

Two example result images from image I1-1, with their parameters reversed, are
presented in Section B.2.3. The image to the left is similar to the inverse of the
image to the right and vice versa, which is expected. A reversal of parameters in
the difference algorithm produces the mathematical inverse. This example result was
used as a visual confirmation of this theory.
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(a) I3-3 original, band

35

(b) I4-2 original,

band 28

(c) I4-3 original,

band 28

(d) Band 15 and 28 (e) Band 15 and

28

(f) Band 15

and 28

(g) Band 35 and 21 (h) Band 35 and

21

(i) Band 35

and 21

Figure 5.3: Three original images and six result images. The images at the top row are
the originals, while the two rows below them are results from the difference algorithm
using two sets of parameters. Parameters that were used are listed below each image.
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Figure 5.4: A result from the difference algorithm showing visible blood vessels. Pa-
rameters used were band 20 and 62.

5.2 Ratio

The ratio and difference algorithms have both been tested in two phases. For this
reason, the results of the ratio algorithm and results of the difference algorithm are
presented in the same manner.

5.2.1 Phase One - Initial Test Results

An overview of the positive results observed during the initial testing (phase one) can
be seen in Table 5.4. The complete list featuring all results from phase one can be
found in Section A.7.1 Four parameters were selected from the positive results using

Table 5.4: An overview of the positive results from phase one using the ratio algorithm.
Using absorption peaks for band selection is called approach one, while band selection
based on visual inspection is called approach two. Approach one is not applicable to
image I2-1, since it was captured using camera H3. The absorption peaks used for
approach one are outside the range used by camera H3.

Image Approach One Approach Two Comments
I1-1 22 of 28(78,6%) 6 of 12(50%) Two visible bruises
I2-1 N/A 0 of 6(0%) Two visible bruises. Ap-

proach one not applicable.
See caption for details.

image I1-1, but no positive results were observed for image I2-1. Since there were no
parameters selected from testing of image I2-1, phase two was not conducted on the
images I2-2 and I2-3. The four selected parameters that were used in phase two can
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be found in Table 5.5. Result images from applying the selected parameters to image
I1-1 can be found in Figure 5.5.

Table 5.5: Four parameters (bands and wavelengths) that gave the most promising
result images for the ratio algorithm. Excerpt from tables found in Section A.7.2.

UID Bands (wavelength) Comments
I1-1 22/38 (480nm/542nm) Two bright obvious bruises with dark

areas surrounding them
I1-1 47/29 (576nm/508nm) Two obvious bruises. Lost some skin

structure
I1-1 47/97 (576nm/760nm) Two bruises and a possible bruise are

emphasised
I1-1 70/47 (747nm/576nm) Two clearly visible bruises and an ad-

ditional possible bruise

Figure 5.1(a) shows band 47 of the original I1-1 image with two dark circular
bruises. All result images show these two bruises, either as dark or bright circles.
Figure 5.5(a) shows a ’racoon’ effect around the bruises, while (c) and (d) show a
triangle shape below and between the two bruises. Possible blood vessels are visible
on the left side of (c) and (d), while some hair is weakly visible on the right side of
(a), (c), and (d). There is noise in the background of all result images.

Examples of some of the results that were deemed negative can be found in Figure
5.6 and in Section B.3.1. Figures 5.6(a) and (b) both have barley visible bruises.
There is noise on the right side of both images, while (a) has noise on the left side as
well. Figure 5.6(a) has also lost skin structure details.

Section B.3.1 presents two examples of negative results from the initial testing of
image I2-1. Both images show bruises that are difficult to discern. Hair is visible in
both images.

5.2.2 Phase Two - Extended Test Results

The parameters that where selected in phase one, were applied to the rest of the
images. These can be found in Section A.2. A table showing results from this test
can be found in Section A.7.2. Table 5.6 shows an overview of the number of positive
results for each parameter. The images presented in this section have been grouped
together based on similarities in visual content. Images with bruises are presented
first, followed by some examples of images that did not contain clearly visible bruises.

To facilitate comparison, images of tissue on a pig with visible bruises are gathered
into Figure 5.7 which contains 15 result images. Column one (left column) shows the
original images. From the top, these contain a bright square bruise, a dark circular
bruise and finally two dark circular bruises. Each row shows four result images for
each original image. The top row contains negative result images in addition to (l).
Figure 5.7(l) was judged to be negative since the lower bruise is weakly visible. The
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(a) Band 22 and 38 (b) Band 47 and 29

(c) Band 47 and 97 (d) Band 70 and 47

Figure 5.5: Four positive results from phase one using the ratio algorithm on image
I1-1. Parameters that were used are listed below each image.

(a) Band 42 and 38 (b) Band 97 and 29

Figure 5.6: Two negative results from phase one using the ratio algorithm on image
I1-1. Parameters that were used are listed below each image.
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Table 5.6: An overview of the positive results from phase two using the ratio algo-
rithm. The table is divided into two rows. The first shows result from images with
visible bruises, the second from images with no visible bruises. A positive result on an
image with no visible bruise is considered a false positive, hence a low percentages is
considered good.

Content Wavelengths (nm)
480/542 576/508 576/760 747/576

With visible bruise 3 of 5(60%) 3 of 5(60%) 3 of 5(60%) 4 of 5(80%)
No visible bruise 0 of 3(0%) 0 of 3(0%) 0 of 3(0%) 0 of 3(0%)

rest were judged to be positive result images. All result images contain some striping
effect, but images in column two the most. Result images in the fourth column are
similar to their respective originals. Most bruises in the result images show as either
a bright or dark version of the original bruise. Figure 5.7(m) shows an example where
parts of the bruise have a different brightness than the immediately surrounding area
which is also part of the bruise.

The result images from I1-2 and I1-3 can be found in Section B.3.2. Bruises are
less visible in the result images from I1-3 compared to those from I1-2. All the results
from I1-3 were judged negative, while those from I1-2 were judged positive. There is
however a difference in bruise visibility in the result images from I1-3, ranging from
non-existent to close to positive. Band 22 and 38 along with 47 and 29 gave less
visible bruises than band 47 and 97 along with band 70 and 47. The same can be
said for I1-2, but it is not as obvious. Blood vessels seem to show equally well when
comparing result images from I1-2 to I1-3.

Section B.3.2 also covers results from images of the pig that had no clearly visible
bruise in the original image. None of the tested parameters produced false positives.
This means that there was no clear indication of bruises before or after testing. There
are some marks that could be interpreted as a weakly visible bruise, both in the
originals and the results, but since these cannot be determined to be bruises in either,
they are considered to not contain visible bruises.
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(a) I3-3 original,

band 35

(b) Band 15 and

28

(c) Band 35 and

21

(d) Band 35 and

72

(e) Band 70 and

35

(f) I4-2 origi-

nal, band 28

(g) Band 15

and 28

(h) Band 35

and 21

(i) Band 35

and 72

(j) Band 70

and 35

(k) I4-3 origi-

nal, band 28

(l) Band 15

and 28

(m) Band 35

and 21

(n) Band 35

and 72

(o) Band 70

and 35

Figure 5.7: Three original images and 12 result images. All the images are of a pig
with visible bruises. The images in the left column are the originals, while each row
show results from using the ratio algorithm with different parameters on the original
images. Parameters that were used are listed below each image.
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5.2.3 Other Observations

This section presents some results not directly related to bruise enhancement. These
might prove valuable for later research both with bruises and in other areas. A brief
example of reversed parameters for the ratio algorithm is also covered.

Figure 5.8 shows some results from the testing with image I2-1. Figure 5.8(a)
shows possible blood vessels, some thick and dark, others a bit thinner. Striping
effects and some noise is visible. Figure 5.8(b) shows hair, but no blood vessels or
bruises. A bright spot can be seen on the lower part of the arm.

(a) Band 20 and 62 (b) Band 62 and 110

Figure 5.8: Two results from I2-1. The one to the left shows blood vessels while the
one to the right show hair with no blood vessels or bruises. Parameters that were used
are listed below each image.

Section B.3.3 presents two result images from image I1-1 with their parameters
reversed. The image to the left is similar to the inverse of the image to the right and
vice versa.

5.3 Principal Component Analysis

This sections presents the results from applying the principal component analysis on
the images described in Section A.2. All the images are reflectance images, except
those from the I2 image series, which are radiance images. Three images where
tested using both the reflectance version along with the radiance version. All the
reflectance images results are presented first, followed by the radiance images results.
Finally some results not directly related to bruise enhancement are presented. A
complete list of all images tested and their comments can be found in Section A.8.
The complete list also shows comments on results that have been excluded, since they
did not contain any visible bruises. These are not shown in the result section. Table
5.7 gives an overview of the number of positive result images that were observed for
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both reflectance images and radiance images. Principal components that were judged
to contain too much noise is not included in the percentages. This means that if the
first 10 components out of 160 are the only ones with an acceptable signal-to-noise
ratio, only the 10 first are considered when calculating the percentages. These 10
principal components can contain visible bruises or no bruises at all.

Table 5.7: An overview of the positive results from testing with PCA. The table is
divided into two rows and two columns. The first shows result from images with
visible bruises, the second from images with no visible bruises. The first column shows
the positive results for the reflectance images, while the second shows the same for
radiance images. A positive result on an image with no visible bruise is considered a
false positive, hence a low percentages is considered good.

Content Reflectance Image Radiance Image
With visible bruise 12 of 49(24,5%) 17 of 55(30,9%))
No visible bruise 0 of 10(0%) 0 of 6(0%)

5.3.1 Reflectance Image Results

The reflectance images results have been grouped together, based on similarities in
visual contents. Some result images from image series I1 is presented first followed by
result images from images series I3 and I4. A couple of examples of negative results
conclude this section.

Figure 5.9 shows results from image I1-1, I1-2, and I1-3. The two first had positive
result images, but I1-3 had only negative result images. The three result images from
I1-3 were included to show the result images that were considered best among the
negative result images. They were judged to be negative since only one bruise is
visible. The originals can be found in Figure 5.1(a) for the first image and in Section
B.2.2 for the two last. Almost all the images show at least one clearly visible bruise.
Figure 5.9(f) does not show any bruises clearly, but shows the left bruise reasonably
well compared to the original. The right bruise is either not possible to see or weakly
visible in Figures 5.9(f), (g), and (h). Figure 5.9(c) shows a thinner right bruise
compared to (a), (b), (d), and (e). Blood vessels are visible in (a), (c), (e), (f), and
(h), but (c) and (h) show thinner vessels connected to the bruises. Hair is clearly
visible in (c) and visible in (f), (g), and (h). A triangle shaped area can be seen below
and between most of the bruises, but is most clearly in (a). Figure 5.9(h) shows blood
vessels in this area. Some noise can be seen in (b) and (e). Principal component (PC)
4 gave positive results for all the images, while PC5 gave positive results for two. No
other PCs gave similar results.

Results from I3-3, I4-2, and I4-3 are shown in Figure 5.10. All bruises are clearly
visible, except Figure 5.10(g) which is similar to the original. For this reason (g) was
judged to be negative, but was included as it was the best result image from I3-3.
The result images from the other two images were judged to be positive. The same
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(a) I1-1 PC4 (b) I1-1 PC5

(c) I1-2 PC4 (d) I1-2 PC7

(e) I1-2 PC10

(f) I1-3 PC4 (g) I1-3 PC5

(h) I1-3 PC8

Figure 5.9: Eight result images from using PCA on I1-1, I1-2 and I1-3. The original
image used and the principal component (PC) presented are listed below each image.
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goes for striping effects, which is clearly visible in all the images except (g). Figure
5.10(d) has lost most skin structure details, but was considered a positive since it
clearly separates the bruise from the rest of the image. The area of the bruise varies
in the different principal components. PC2 gave positive results for all the images,
while PC3 gave positive results for two. PC26 and 27 was only considered positive
for one image. No other PCs gave similar results.

(a) I4-2 PC2 (b) I4-2 PC3 (c) I4-2 PC26 (d) I4-2 PC27

(e) I4-3 PC2 (f) I4-3 PC3 (g) I3-3 PC2

Figure 5.10: Seven result images from using PCA on I3-3, I4-2, and I4-3. The original
image used and the principal component (PC) displayed are listed below each image.

Figure 5.11 presents two example result images that were considered to have a
too low signal-to-noise ratio. The bruises are visible in (a) and weakly visible in (b).
Both images were still judged to be unacceptable since both images show too much
noise all across the images. The heavy stripes in (a) also contributes to the verdict.
Figure 5.11(b) show possible blood vessels. General for most principal components
higher than 5 is heavy to all consuming salt/pepper noise.
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(a) PC7 (b) PC13

Figure 5.11: Two result images from using PCA on I1-1. They were judged to have
too low signal-to-noise ratio. The principal component (PC) displayed are listed below
each image.

5.3.2 Radiance Image Results

The radiance image results can be divided into two parts. The first covers the three
radiance images that were tested to give a foundation for comparing with their re-
flectance counterparts. The second part covers the testing of images from I2, which
was not converted to reflectance. This is a summary of the radiance results. The
images and a more detailed description of them can be found in Section B.4.

The radiance images from I1 had most interesting information in PC3, 4 and 5,
but some additional components had interesting features to. Bruises were clearly
visible in all the result images, with minor differences to the right bruise. The right
bruise looks a bit smaller, but has better contours. Two, or maybe three, different
kinds of blood vessel networks can be seen. These have varying thickness and level
of branching. PC4 shows hair clearly visible. PC3 and PC4 seem to contain much of
the same information, but with seemingly inverted colours.

Result images from radiance image I4-3 had good results in PC3 and PC4, even
though one bruise in each was slightly difficult to discern. Surprisingly, some positive
results were found in PC107, 108, and 109 as well. These have bruises more visible
than PC3 and 4. The bruises have different sizes in the components.

Radiance image I3-2 was also tested, but none of the principal components pro-
duced positive results. No images were included from this test.

Three radiance images were originally supposed to be tested from set I2, in a
similar manner to set I1. Heavy striping effects and image corruption meant that
only I2-1 was included in the report, since the other had inadequate quality. Positive
results comes later compared to I1-1, and the first came at PC7. After that, results
came spaced out between PC15 and PC29. The bruises are clearly visible in all the
images, but the right bruise has lost some contour and is difficult to discern in most
of the positive results. Blood vessels are visible in all result images, but it seems like
two different networks. One has thicker vessels than the other. Hair is visible in PC7.
All result images contain heavy striping effects and some corruption in the lower part.
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5.3.3 Other Observations

This section presents some observations not directly related to bruise enhancement.
Figure 5.12 shows some of the other interesting results. Figures 5.12(a), (c), (d),

and (e) show visible blood vessels. Hair is visible in (b), (c), and (d). Figure 5.12(b)
shows possible skin surface details. It is also possible to make out a network which
might be capillaries or individual skin cells. Figures 5.12(c) and (d), which are from
the same PC show similar details, but with different brightness. The hair and blood
vessels have inverted colours. The left bruise is clearly visible in (c) and weakly visible
in (d). In (a) and (b), the left bruise is difficult to discern and no bruises are visible
in (e). Some noise is present in all the images.

(a) I1-1 PC8 (Radiance image) (b) I1-2 PC3

(c) I1-2 PC6 (d) I1-3 PC6

(e) I2-1 PC10

Figure 5.12: Five result images showing blood vessels and hair. The original image
used and the principal component (PC) displayed are listed below each image.
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5.4 K-Means Clustering

The results of the K-means clustering testing are presented in two parts. First the
results from the initial testing phase are presented, and results from phase two are
presented in further testing. Details of the experimentation can be found in Section
4.4.

5.4.1 Phase One - Initial Test Results

The initial testing were as described performed on reflectance image I1-1 and the
results from the principal component analysis of image I1-1. The latter will be ab-
breviated PCA-I1-1. The results for the reflectance image will be presented first.
The parameters clusters and iterations were varied. All the details on the specific
variations can be found in Section A.9.1.

In all tests on both images, a variation between the initial iteration and the fol-
lowing iterations can be observed. The variation becomes less noticeable as the it-
erations increase in number as less and less pixels change clusters and the clustering
approaches convergence. The initial variation and reduction of variation was expected
as described in 2.3.3.

The results for reflectance image I1-1 with low cluster values (1-6) was character-
istically undersegmented, but the background and foreground was clearly and com-
paring to the original image fairly accurate. For high cluster values (25-50), the result
was an oversegmentation of the image. An example of undersegmentation can be seen
in Figure 5.13(a), and oversegmentation is shown in Figure 5.13(b).

Cluster values between 8 and 16 all show an acceptable number of continuous
segmented regions, but only three segmentations in this parameter range produced
bruise segments for the reflectance image, and none were considered adequate for
further processing. These three parameter pairs are listed in Table 5.8. A table of
the remaining result details can be found in Section A.9.

Table 5.8: The parameters that provided bruise segments to some degree on K-means
clustering of reflectance image I1-1.

Clusters Iterations Comments
10 1 Part of left edge of the left bruise in a single

segment. Right bruise not discernable.
14 1 Part of right edge of the left bruise in a single

segment. Right bruise not discernable.
16 8 Small part of left edge of the left bruise in a

single segment. Right bruise not discernable.

The clearest and most complete segmentation was achieved with 40 clusters after
one iteration. This was, however, an oversegmented image and the result was not
considered useful. Image I1-1 at 40 clusters with 1 iteration is shown in Figure 5.14.
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In 5.14(a) each colour represent a region. Figure 5.14(b) shows the bruise region in
red overlaid the original image.

(a) Undersegmentation (b) Oversegmentation

Figure 5.13: Undersegmentation and oversegmentation examples for the clustering
algorithm on reflectance image I1-1.

(a) I1-1 with individual regions coloured

randomly

(b) I1-1 with bruise regions overlaid on

original image

Figure 5.14: Reflectance image I1-1 oversegmentation example and overlay of bruise
region on original image. Number of clusters was 40 at one iteration.

The results for clustering on the 10 first principal components of image PCA-I1-1
were similar to the results from the original reflectance image I1-1. Undersegmentation
was clear on the results from using 2 to 6 clusters. Oversegmentation dominates the
results from 25 to 50 clusters. For cluster amounts from 8 to 20 the segmentation
again have large continuous regions and the amount of regions seems adequate for
further processing. For this input image there are six pairs of parameters within that
range that resulted in partly segmented bruises. These are listed in Table 5.9. None
of the results in the range separate both bruises in separate regions. In Figure 5.15
the edges of the left bruise are shown in black. This image is the result of 16 iterations
with 20 clusters. The image has been edited to enhance the visibility of the region.
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Figure 5.15: The image shows the best selection of the left bruise with 16 iterations
in 20 clusters. The image has been enhanced for focus on the region in question.

Table 5.9: The parameters that provided bruise segments to some degree on K-means
clustering of 10 first components of PCA on reflectance image I1-1.

Clusters Iterations Comments
8 4 Part of left edge of the left bruise in a single

segment. Right bruise not discernable.
16 1 Part of right edge of the left bruise in a single

segment. Right bruise not discernable.
20 1 Full left edge of the left bruise in a single seg-

ment. Right bruise not discernable.
20 8 Part of left edge of the left bruise in a single

segment. Right bruise not discernable.
20 16 Full upper edge and part of lower edge of the

left bruise in a single segment. Right bruise
not discernable.

20 32 Full upper edge and part of lower edge of the
left bruise in a single segment. Right bruise
not discernable.
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Using visual inspection of the principal components of reflectance image I1-1,
the bruise was found to be predominant in the fourth and fifth components. Using
this a priori information as input for the clustering algorithm, the bruises were clearly
segmented with intact and single or multiple regions. Equally to testing on reflectance
image I1-1 and the first 10 principal components of that image, small amounts of
clusters, from 2 to 5 resulted in undersegmentation. Oversegmentation began earlier
with this input data, at 20 clusters. Indications of region splits in areas apparently
continuous began at 16 clusters. For all iteration values larger than 1 (beyond random
starting point) and for all cluster values (2-50), the bruises are clearly segmented in
few separate regions. Table 5.10 summarises the results. A cluster value of 8 was the
first parameter to segment the bruises and surrounding tissue out without including
the triangle shape in the lower image. The noise levels with 8 clusters were low. Figure
5.16 shows three result images from the clustering, and an overlay image showing only
bruise segmentation on the original image.

(a) Results from using 2 clusters. Con-

verged after 13 iterations.

(b) Results from using 8 clusters and 100

iterations (did not converge).

(c) Results from using 20 clusters and 16

iterations (did not converge).

(d) Overlay of bruise and tissue re-

gions from Figure 5.16(b) on original

image.

Figure 5.16: The images shown depict the best segmentations of the bruises when
clustering on a selected subset fom the principal components of reflectance image I1-
1.
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Table 5.10: The parameters that provided full and good segmentation of the two bruises
present in the image using principal components 4 and 5 of reflectance image I1-1 as
input. The results are given for iteration values > 2. The quality of the results are
summarised in the last column.

Clusters Comments
2-4 Undersegmented. One segment covered

bruises, centre, and some surrounding tissue.
The triangle region below the two bruises was
marked in the same segment.

5 Undersegmented. One segment covered
bruises, centre, and some surrounding tissue.
Upper part of the triangle region below the
two bruises was marked in the same segment.

6-7 One segment covered bruises, and one segment
centre and some surrounding tissue. Points
on the triangle below the two bruises were
marked in the bruise segment.

8 One segment covered bruises, and one segment
centre and some surrounding tissue. Points
on the triangle below the two bruises were
marked in the tissue segment, therefore dif-
fering from the last result.

10 Elevated noise levels. One segment covered
bruises, and one segment centre and some sur-
rounding tissue. Points on the triangle below
the two bruises were marked in the bruise seg-
ment.

12-14 Elevated noise levels. One segment covered
bruises, and one segment centre and some sur-
rounding tissue. Points on the triangle below
the two bruises were marked in the bruise seg-
ment.

16-25 Oversegmented. High noise levels. One com-
mon segment for the two bruises, one for the
surrounding tissue. Points on the triangle be-
low the two bruises were marked as a tissue
segment with an unclear border.

30-50 Oversegmented. High noise levels. One com-
mon segment for the two bruises, one for the
surrounding tissue. Points on the triangle be-
low the two bruises were marked as a tissue
segment with an unclear border.
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5.4.2 Phase Two - Extended Test Results

From the results of the initial testing of K-means clustering, the most distinct seg-
mentation was achieved using a relative small number of principal components from
the reflectance image I1-1. The parameters that gave the clearest segmentation of
the two bruises were eight clusters and more than one iteration. These parameters
were therefore tested on the 10, five, and three first principal components of the re-
flectance image I4-3. The results can be seen in Figure 5.17. The number of iterations
parameter was intentionally set very high to achieve algorithm convergence.

The three principal component images used as input for the K-means clustering
algorithm all produced similar clustering results after converging; The upper bruise
was marked in all results as a large contiguous region. Some spatially separate points
on the lower bruise were labelled like the upper bruise. The lower bruise has a spatially
separate centre region, framed by a wide circle. Inside the circle, a central part of the
bruise edge forms an incomplete circle.

(a) PC3 of re-

flectance image

I4-3 for refer-

ence.

(b) Converged

clustering of the

first 10 principal

components.

(c) Converged

clustering of the

first 5 principal

components.

(d) Converged

clustering of the

first 3 principal

components.

Figure 5.17: The images shown depict the third principal component for reference
and the results of using 8 clusters and letting the algorithm converge for a number of
principal components from reflectance image I4-3.

5.5 Watershed Segmentation

The results of the watershed segmentation on the four input images are presented in
this section. As described in Section 4.5, the four input grey scale images were:

(i) Band 47 of the reflectance image I1-1

(ii) The difference of band 47 and 29 from reflectance image I1-1

(iii) The ratio of band 70 and 47 from reflectance image I1-1
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(iv) Principal component 4 of reflectance image I1-1

For all the input images and all threshold level values (in the range 0.0 to 1.0 with
0.05 increments), the final watershed segmentation was calculated and overlaid on the
input image. The overlaid images can be seen in row four of Figure 5.18 which also
shows some of the steps in the segmentation for each of the input images.

For image (i), a thresholding value of 0.3 gave the best final watershed result. Fig-
ure 5.18(a) shows the black and white thresholded image. The geodesic morphological
opening with the thresholded image as a mask resulted in Figure 5.18(e). The open-
ing removed all small and thin single features. The Beucher-gradient and following
distance image are not shown in the figure. Watershed on the distance image resulted
in Figure 5.18(i) and the following overlay on the original image, Figure 5.18(e). Us-
ing a threshold level of 0.3 was the only level that yielded separate regions for the
bruises, seen as two circular regions covering a small area in the watershed and overlay
pictures.

Example results for image (ii) can be seen in column two of Figure 5.18. A
threshold value of 0.60 resulted in a good watershed region for the left bruise, and
a partial segmentation of the right bruise. The geodesic morphological opening with
the thresholded image as a mask resulted in Figure 5.18(f), and this opening removed
much of the surrounding un-sharp thresholded points, and left the bruise regions, one
closed section, and one open.

For image (iii), column three of the figure, a thresholding value of 0.75 provided
the best separation of arm, bruise edges, and bruise centres. A third region was also
segmented out, shown in yellow in Figure 5.18(k). The segmentation resulted in a
slightly small region for the left bruise, and a slightly oversized region for the right
bruise.

Image (iv), the last column, a threshold value of 0.70 resulted in the best bruise
segmentation. The results overlay can be seen in Figure 5.18(p). The segments
covered the central and surrounding parts of the bruise, and the edges seemingly
covered the bruised area completely. A larger version of this image can be found in
Section B.5.

Table 5.11: The threshold values that gave the best watershed segmentation for each
input image.

Image Value
(i) 0.30
(ii) 0.60
(iii) 0.75
(iv) 0.70
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Chapter 6
Discussion

The difference, ratio, and PCA algorithms are capable of enhancing bruise visibility.
The enhancements can prove valuable in visual inspection and classification. Given
good parameters, the enhancement algorithms clustering and watershed can provide
very good results for further segmentation of image features. This chapter discusses
strengths and weaknesses of the project and algorithms and provides a brief compar-
ison between the methods. Other interesting observations are presented at the end of
the chapter.

For the sake of brevity, this chapter sometimes refers to difference, ratio, and
principal component analysis as the ’three algorithms’.

6.1 Validation

This section presents a validation of the project and the experimentation. It is based
on the validity evaluation described in Wohlin et al. [37]. Only the topics that were
deemed most relevant for this project have been included and discussed. The two
main areas covered are conclusion validity and construct validity. Conclusion validity
is concerned with the relationship between the treatment and the outcome, while
construct validity is concerned with the relation between theory and observation.
The validity threats for this project are as follows:

• Low statistical power: The power of a statistical test is the ability of the
test to reveal a true pattern in the data. A low statistical power increases the
risk for an erroneous conclusion and makes it difficult to reject an erroneous
hypothesis

• Fishing: Searching for specific results are considered a threat, since the analyses
are no longer considered independent and the researchers may influence results
by looking for specific outcomes

• Reliability of measures: The validity of an experiment is highly dependent
on the reliability of the measures. The basic principle is that when you measure
a phenomenon twice, the outcome shall be the same. Objective measures are
more reliable than subjective ones

• Reliability of treatment implementation: There is a risk that the imple-
mentation is not similar between different subjects or different occasions. The
implementation should be as standard as possible
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• Mono-method bias: Using a single type of measures involves a risk that
if measure gives a measurement bias, then the experiment will be misleading.
Different types of measures can be cross-checked against each other

The last validity threat relates to construct validity, while the rest relates to conclusion
validity. The validity threats are presented in the same order as listed.

The data set is considered to yield a low statistical power for prediction of future
algorithm results. This is because of the low number of independent subjects and
images that was tested. To remedy this, all the images in time series could have been
used to increase the number of images, but this was not done. The similarities between
the subject and the injuries would not increase the statistical power related to general
bruise detection on humans. It would give more information on time sensitivity for
the algorithms, but this was not the focus of this project. New images with a greater
variance in bruise shape and colour were captured to increase the statistical power for
this thesis. Unfortunately, several factors that were beyond the control of this thesis
led to the exclusion of all new images from the test set. These factors are described in
Section 3.1.3. Because of the actual size of the data set, conclusions must be treated
more as indications or guidelines for what might be successful in later work. It is
recommended to extend the data set for further work and to include more variation
with regard to bruise type and skin colour.

Fishing could influence results because of the subjective nature of visual inspection
and because of knowledge available to the observers. The observations were done by
the writers and it was known in advance if an image contained a visual bruise or not.
This could for example lead an observer to see bruises that an independent observer
would be unable to identify. To reduce this validity threat, both writers inspected the
initial result images, while two independent observers were used on selected images.
Future work related to visual enhancement of bruises could conduct larger tests using
external observers to reduce this threat further and as a success measurement.

Visual inspection is not known to be a reliable measure because of its subjective
and therefore error prone nature. Result images that were deemed positive for one
observer might be classified as negative by another. As was mentioned in the previous
paragraph, two observers were used on all the result images and two independent
observers were used on a selected number of result images. This increase the reliability
of the measurements but there is room for improvement. A larger observer group
would improve this measurement still. The reliability of treatment implementation
is considered to be a validation threat to this project. This is because of the many
cameras, light sources, and environments used during image acquisition. It is believed
that these factors can be considered as variables in the experimentation, and therefore
might influence results. In previous work related to bruise detection on apples and
cucumbers, these factors were kept the same for all images [2, 20, 39, 15]. Two DC
150W halogen light sources, situated at different angels compared to the object of
interest, were used in the previous work on apples and fruits. For the most part, only
a single light source or two with almost identical angel were used on the images in the
available data set. It is believed that the setup that uses two light sources at different
angels will reduce shadow effects and give better images. One type of light source
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using the setup described in previous work on apples and cucumbers, along with one
type of camera and one environment is believed to be the best basis for further work
on bruise enhancement and segmentation on humans.

Visual analysis was the only measurement used in this thesis which increases the
validation threat of mono-method bias. If other types of measurements had been done,
they could have been cross-checked against the visual inspection measurements. The
low statistical power provided by the available data set means that most results only
can be treated as indications. Alternative measurements, objective or subjective,
would not change this fact. A larger data set may make this validation threat more
important to address.

6.2 Individual Algorithm Evaluation

In this section, the algorithms and their results are discussed individually.

6.2.1 Difference

A higher percentage of good results were observed for approach one compared to
approach two during the initial testing (phase one) for image I1-1. Approach one is
band selection using absorption peaks, while approach two is band selection through
visual inspection of the image cube. The higher percentage can probably be explained
by the bands used in the first approach, since they are based on absorption peaks of
important compounds. Some of these contribute to bruise visibility. Related work
has been done on cucumbers, where absorption peaks for known compounds were
successfully used to enhance surface damage [2, 15]. This corresponds with the higher
number of positive results from approach one. Even though the percentage of positive
results using approach one is higher than that of approach two, it is still considered
to be a low value. More exhaustive experimentation should be carried out on a bigger
image test set. This is expected to alter the percentages in favour of using absorption
peaks (approach one).

For tests of the difference algorithm on image I2-1, a single positive enhancement
was observed. The two specific bands input to the algorithm were identified by visual
inspection. A different choice of bands might increase the percentage of positive
results. Future work could include more extensive tests involving alternative bands.

The following parameters are recommended for future studies. They represent the
set of wavelengths that provided the best results across the images tested.

• Bilirubin (480 nm) and oxyheamoglobin (542 nm)

• Oxyheamoglobin (576 nm) and metheamoglobin (508 nm)

The parameters listed gave the best enhancement results for image I1-1 in phase
one, but mixed negative and positive results for the rest of the images in phase two.
I1-2 and I1-3 both show bruises, but they become difficult to discern from surrounding
tissue as the time after injury increases. Result images from I3-3 and I4-2 show no
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significant improvement over the original input, and in some cases visibility deterio-
ration can be observed. Results for image I4-3 show bruises as well as the original,
however the contours are better for the upper bruise.

The bands (a single parameter pair) found using visual inspection of bands (ap-
proach two) provided marginally better bruise visibility compared to the original I2
images. Both images resulted in a positive enhancement of the bruise features. This
resulted in a 100% positive rate for I2-2 and I2-3. This is not expected to hold for
a test on larger data set. Only two images were tested using this one parameter. In
total, this gives a very low statistical power for predicting further positive results.

A reversal of parameters in the difference algorithm produces the mathematical
inverse. A small test was performed during experimentation which confirmed that
this holds for the implemented algorithm.

An interesting result is shown in Figures 5.3(f) and 5.3(i). In the original bands,
the upper bruise is shown as dark with a faint, light internal ring. The lower, smaller
bruise is dark with a clear white centre. In both figures mentioned, the bruises have
clear centres and a clear ring surrounding the bruise. The central spot most likely
covers the area of the most severely damaged tissue. This is in accordance with
Randeberg et al. [26, 27].

6.2.2 Ratio

As was observed with the difference algorithm, a higher percentage of positive results
were observed for approach one compared to approach two during the initial testing
(phase one). This was as expected since a priori knowledge of important compounds
were used to identify bands in the first approach. This seems to be consistent with
work done on cucumbers where specific absorption peaks corresponding to different
compounds found in the object of interest were used [2, 15]. A different selection of
bands or a larger test set for approach two might result in higher percentage, but it
will most likely only match approach one at best.

No positive results were observed for image I2-1 using specific bands selected by vi-
sual inspection. The selection of alternative bands could give positive results. A more
exhaustive study involving different image bands is needed before any conclusions can
be drawn.

The reversal of parameters for the ratio algorithm was expected to result in ap-
proximate inverse images, or more accurately an enhancement of the same features
in the opposite intensity direction. A small test was carried out to visually confirm
the assumption. As can be seen by the example in Section B.3.3, the dark features
of the first image (left) are similar to light features of the second image (right) and
vice versa. As the results were found to be similar for the reversed parameters, it
was possible to half the amount of parameters that were to be tested. The image
inverse is easy calculated later if needed. However, this appearance of inversion is not
a mathematical inverse, as it is for the difference algorithm.

The combination of wavelength 576 nm and 760 nm gave result images with sim-
ilarities to the original bands for images I3-3, I4-2, and I4-3. This can be seen by
comparing column one and column four in Figure 5.7. A more interesting result was
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obtained for I1-1 during the initial testing with these parameters. As for the men-
tioned images, there are some similarities between the original image and the result
image. A reversal of the parameters would most likely give a result image with bright
bruises on a dark arm, probably similar to that of Figure 5.7(o). Because of this,
it might be possible to remove the parameters used from future tests, as it would
probably give similar results to Figure 5.7(n) with the parameter order reversed. It
could be argued that the parameters applied to 5.7(n) should be removed from future
testing instead, but these are based on absorption peaks and the parameters used on
image 5.7(o) are based on visual inspection.

By comparing the result images from I1, it is possible to see how the different
parameters respond to bruise ageing. Using the wavelengths 480 nm and 542 nm and
the wavelengths 576 nm and 508 on image I1-3, it was difficult to discern any signs of
the bruises. This is probably related to the choice of wavelengths, which corresponds
to the absorption peaks of bilirubin, oxyheamoglobin, and metheamoglobin. Both the
concentration of bilirubin and the oxygenation in a bruise decrease with time [28].
This is probably why the bruises go from clearly visible in I1-1 to almost gone in I1-3.
Influence from metheamoglobin is probably the reason that the bruises show slightly
better using the last two wavelengths.

With this in mind, the following parameters are recommended if the ratio algo-
rithm is used in future work:

• Bilirubin (480 nm) and oxyheamoglobin (542 nm)

• Oxyheamoglobin (576 nm) and metheamoglobin (508 nm)

• Deoxyheamoglobin (760 nm) and oxyheamoglobin (576 nm)

However, if bruises are recorded over longer periods, for example more than 192
hours after injury, or if a bruise is old, it seems like the last set of wavelengths would
give the best results. The ratio between deoxyheamoglobin and oxyheamoglobin has
been applied to human bruises before, although using the lower absorption peak for
deoxyheamoglobin (555 nm) [26].

An interesting observation can be made in Figure 5.7(m). The image shows a
noticeably brighter ring inside a dark bruise region. The bruise centre is also dark.
This ring follows the contours of the most severely damaged skin tissue, where the
point of impact caused vessel damage [26]. The bruise features can be extracted and
used to describe and identify the impacting object. This could be a useful tool in
forensic science or in a diagnostical application.

6.2.3 Principal Component Analysis

The principal component analysis (PCA) produced some good bruise enhancements
for visual inspection, and as an input image for further segmentation. The results are
highly dependent on which principal component (PC) is chosen. PC1 never produced
positive results in the conducted tests. This might be because the bruise was treated as
noise and because PC1 can be considered as a noise-reduced ’mean’ image [6]. Clear,
visible bruises were predominantly found in PC2 to PC5, although not consistently
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for all images. This seems to be in accordance with previous experiments were PC3
and a combination of PC2 and PC3 were used as foundation for bruise detection
on apples [39, 20]. Bruises and chilling injuries on cucumbers were found in PC1
[2, 15]. A clear exception to this pattern can be seen in PC107, PC108, and PC109
from PCA on radiance image I4-3. Even though these components retain very low
variance, they still showed clearly visible bruises. This reflects the importance of
visually inspecting all principal components using one’s knowledge of the study area
when selecting principal components[17]. For bruise detection and enhancement this
involves looking for principal components where the bruise is clearly visible. Using
the magnitudes of the eigenvalues as an indicator of information content might not
produce satisfactory results.

It was not possible to identify a single principal component which produced posi-
tive results for all the images tested. A possible reason for this could be the changing
light sources, different capture devices, different subjects (human and pig), and differ-
ent environments. In related work, when a principal component was chosen for bruise
detection on apples and cucumbers, the same camera and light setting were used in
a controlled environment for all the captured images [15, 2, 20, 39]. The subjects
under inspection were also quite similar, being either apples or cucumbers. There
were some variations in apple skin colour. Literature confirms that the properties of
a PCA model often is problem-dependent [6]. Control of these parameters is impor-
tant and desirable for a future system. It should also be noted that fruit have less
complex skin composition compared to humans (crosstalk and scattering) and this
could impact robustness with regard to choice of principal component. Taking these
limitations into account might imply that PCA is not well suited for automated bruise
enhancement and detection in the field. Further testing on a wider more controlled
set should be carried out.

A bruise might turn out bright or dark in a principal component depending on the
direction of the eigenvector. Figures 5.12(c) and (d) show two result images displaying
PC6 from image I1-2 and I1-3 respectively. Care should be taken if simple operations
like thresholding are used in automated systems, since bruises might end up below or
above any pre set threshold. User input might be required.

The colour of a bruise is not only dependent on the heme catabolism, but also
the depth of injury [3]. Contents found in the different principal components might
suggest that a non-invasive approach using PCA could record depth information of
various features. Some principal components show blood vessels, while others show
bruises. Bruises and blood vessels exist at different depths, and this could possibly
be seen in different PCs. PCs that show smaller or enlarged extents of a bruise could
also be considered. The PCs that show both bruises and blood vessels in the same
principal component, at the same time could suggest that this is not possible. Further
work is required before any conclusions can be drawn. In vitro studies involving tissue
phantoms with known structures could be used to investigate the relation between
PCA components and depth resolution. This approach might have several applications
within e.g. dermatology or plastic surgery.

Comparing principal components of reflectance images and radiance images, it is
easy to see that they contain different information. This is a natural consequence of
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the adjustments done to the reflectance image compared to a radiance image. The
radiance image seems to show certain blood vessel networks that are not visible in the
reflectance image (I1-1), and seemingly more components contain useful information.
This can perhaps be reflected by the slightly higher percentages (30,9% compared to
24,5%) of positive results found in the radiance images. These percentages should be
considered with some care, as they are based on a visual analysis with bruise visibility
in mind and the number of images is considered low (4 radiance and 9 reflectance
images). If reflectance images contain interesting information in fewer components,
they are more suited for data reduction. For bruise enhancement and detection it
seems like both radiance and reflectance images could be used giving different results.

6.2.4 K-means Clustering

The results for the K-means clustering algorithm are presented in Section 5.4. This
section will first discuss the clustering parameters, and then the results are compared.

A significant difference was observed between the first and following iterations
on all input images. This corresponds with the theoretical background and imple-
mentation details, as MATLAB’s clustering method uses random starting centroids.
As the number of iterations increased, and thus approached stability and conver-
gence, the segmentations changed decreasingly each iteration. Because fewer points
are reassigned per iteration in clustering, there is reason to believe that results with
medium to high clustering numbers are accurate enough for visual determination of
good results. For further development it should be considered to let the algorithm
always converge. This would also enable reproducible results, but would introduce a
significant increase in algorithm run time.

As clustering is a per-pixel algorithm, it was expected and shown that high val-
ues of clustering, generally more than 20 clusters, resulted in many small regions,
appearing as noise, termed oversegmentation. Equally, undersegmentation gave good
information on the general shape of the foreground and background, but failed to
provide any relevant information on the smaller bruise features.

For the reflectance image I1-1, no results were considered adequate, and very few
results showed fragments of bruises. The three best results are listed in Table 5.8.

For 10 and 14 clusters with one iteration, the positive result can be classified as a
coincidence. The results appeared only for the first iteration, and following iterations
showed no bruise segments.

The most reliable result for reflectance image I1-1 was found with 16 clusters and
8 iterations, the maximum number of iterations tested for this amount of clusters.
The results show only parts of the left bruise, and no discernable features of the right
bruise. No pair or range of parameters was considered valid for further testing on
reflectance image I4-3. The bruises were not predominant enough in the images to
simply be labelled as the same region.

The clustering results, for the valid range of cluster numbers, all grouped bruises
and surrounding tissue. In earth observation by hyperspectral imaging, clustering has
been used successfully on reflectance images [35, 17]. Unlike previous known usage on
vegetation and inorganic materials, the image point vectors on a bruised forearm are
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spectrally very similar to each other. This similarity between image points is believed
to be the cause of the inadequate clustering results for the reflectance images.

The results from the clustering algorithm on the first ten principal components of
image I1-1 gave few good positive results. The results are presented in Table 5.9. As
written in the above paragraph, a iteration value of one hold little credibility, as the
starting centroid positions are random, and therefore the results are not reproducible.
As none of the results for the first ten principal components showed the right bruise,
the test had no usable resulting parameters. The bruise was clearly visible in 2 of
the 10 components, and it might be reasoned that the parameter range tested did not
cover values that could result in a good segmentation. The results from this test can
therefore not be considered conclusive.

Using principal components four and five from reflectance image I1-1 as a two
banded input image, the resulting segmentations were significantly better. For a wide
range of cluster values, including values that gave over- and undersegmentation, the
bruises and surrounding tissue were extracted. The high contrast regions of the bruises
in all of the input image bands are the reason for this successful segmentation. The
best result of all clustering parameters was the result from using 8 clusters and the
default of 100 iterations. The lower triangle shape seen in the two principal component
images did not end up in the same segment as the bruises, but were grouped with
the immediate surrounding bruise tissue. In Figures 5.16(b) and 5.16(d) the quite
accurate segmentation is shown.

The results indicated that 8 clusters were a sensible cluster count, with a high
number of iterations, thus approaching clustering convergence. Testing these values
on the ten, five, and three first principal components of image I4-3 resulted in good
segmentations of the bruises for all three inputs. This is an indication that the first
principal components contained enough bruise features enabling a good segmentation.
For reflectance images, choosing the three or five first principal components could give
good results, but this requires further testing. Automatic settings of the parameters is
not recognised as a good solution [35], and trial and error testing for each application
is considered a good solution.

A clear problem using the principal component approach is the selection of prin-
cipal components with high contrast features. There was never an intention of using
the algorithm unsupervised, but keeping a low number of parameters is believed to
have resulted in a more thorough experimentation for the relatively few inputs. The
minimum parameters are a sensible number of clusters and a suitable data subset.
The algorithm iterations are considered less important as the algorithm should be al-
lowed to converge. Based on the testing, the number of clusters may need a per-image
setting.

As mentioned, the clustering algorithm facilitates segmentation, or grouping, and
also has a possible usage in substance identification depending on the input data
[35]. Clustering can provide a understanding of relationships that may exist between
image points. A clustering method targeted at clustering spectroscopic data for tissue
analysis could be developed and tested in future work. A spectral and spatial signal
smoothing could help reduce the observed noise in the clustering results[39], providing
a better spatial grouping, but may also influence the spectral identification process to
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an unacceptable degree.

6.2.5 Watershed Segmentation

The results from the watershed segmentation experiments show that using input im-
ages with low bruise contrast will result in segmentations that can be characterised
as incomplete, not covering, or too large. This is the case for the (i) input band
47 and the (ii) difference of band 47 and 29 from reflectance image I1-1. The first
provided a minimal coverage of the bruises at a thresholding value of 0.30, and the
latter segmentation was considered incomplete as it only partly covered the bruises.

The (iii) ratio of band 70 and 47 and (iv) principal component 4 of reflectance
image I1-1 were the two inputs with the highest bruise feature contrast, and provided
the best two segmentations. They both covered the bruise, had separate centres,
and a small separate region for the lower triangle region. This indicates that higher
feature contrast directly leads to a better segmentation result. A less naive thresh-
olding approach could be used preparing the input for watershedding, for example
local adaptive thresholding. The possibility for other algorithms that could provide a
parameterless implementation should be investigated.

6.3 Comparisons and General Observations

A comparison of the algorithms, and observations relating to more than one algorithm,
are discussed in this section. Some of the topics covered are enhancement of already
visible bruises, detection sensitivity related to age of bruises, and possible bilirubin
presence, dubbed the ’racoon’ effect.

It is important to understand that operations on physical properties, such as
wavelength, are dependent on simple connections to produce for example good bruise
enhancements. Enhancement methods that use simple arithmetic’s (add, subtract,
divide, and multiply) on physical properties can not be expected to enhance beyond
the simple connections in the data. Methods that work on latent statistical proper-
ties of the physical variables can bring forward and enhance variables, connections,
and statistical patterns in the data [4, 6]. PCA is the only tested enhancement algo-
rithm based on statistical principles. PCA provided the best improvements for further
segmentation. However, a visual inspection was needed to identify the principal com-
ponents that showed an enhancement. The PCA is as mentioned therefore considered
problem-dependent [6].

Positive results were found using ratio, difference, and PCA on original images that
contained clearly visible bruises. For the image I3-3, the enhancement algorithms gave
no positive results. This image contains visible damage from a square pendulum. The
damage can be characterised as a bruise, however this bruise is more difficult to see
compared to the circular bruises found in e.g. image I4-3. This damage was caused
by high velocity paintballs, and the difference can most likely be attributed to the
difference in mass and speed of the impacting object. No other images with weak or
undetermined bruising resulted in improved bruise visibility.
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One possible exception was observed. The triangle shown in Figures 5.5(c) for
ratio and 5.9(a) for PCA, is possibly a bruise. The cause of this possible bruising
is unknown, and it could have been inflicted prior to the experiment. As there were
no other observations that indicated possible bruising, and the visibility and contrast
of the bruise in I3-3 were not enhanced, the algorithms ratio, difference, and PCA
only enhanced already visible bruises. The two injury causes (paintballs and square
pendulum) were the only two represented in the data set, and thus represented in
the experimentation. Additional types of bruising with different haemorrhage depths,
shapes, and sizes could help establish a possible relationship between the enhancement
capabilities of the algorithms and type of bruise. Further research might define a clear
connection.

Seemingly, the algorithms ratio, difference, and PCA, with the following watershed
segmentation and partly clustering are sensitive to ageing of bruises. When a bruise
occurs, the immune system responds with an inflammatory reaction. Red blood cells
and free haemoglobin molecules are engulfed and the heme oxygenase system starts to
break down the haemoglobin and produce bilirubin and haemosiderin [26]. In short,
this gives changing colours over time until the damage is repaired and the bruise is no
longer visible. If ratio, difference, and PCA are influenced by the initial visibility of a
bruise, they would also be affected by the diminishing visibility observed as a bruise
ages. This seems to correspond with result images observed during experimentation.
Result images from I1-1 show clearly visible bruises for all three algorithms. The
bruises are less visible in the result images from I1-2 and clearly weaker in the result
images from I1-3. Previous work on cucumbers also shows that the detection accuracy
for ratio, difference, and PCA was affected by time passed after bruising [2, 15]. The
visibility reduction can not be seen for other features such as blood vessels in the
ratio result images. This could be yet another indication that ratio, difference, and
partly PCA are only able to enhance already visible bruises. The sensitivity to bruise
age might also indicate that the algorithms are unsuited for detection of older, healed
injuries.

When the results from this thesis are compared with previous work related to
cucumbers and apples, it is important to keep in mind that there are important
differences between the bruised subjects. Humans tend to vary more than for example
apples, even though both can display different skin colours. The human skin and
underlying tissue is more complex than that of apples. Effects like scattering and
cross talk can probably affect results on humans to a greater degree than on apples
(if any).

There are some interesting observations to be made when comparing result images
from I1. The ’racoon’ effect seen in Figure 5.1(b) and in Figure 5.5(a) might be
attributed to bilirubin, which give bruises a yellowish colour. If a bruise has presence
of bilirubin it can be an indication of the age of a bruise [12]. The ’racoon’ effect might
be useful in further work to determine bruise age by showing existence and extent of
bilirubin presence. If a series of images are captured it could also be used to determine
diffusivity of various compounds in skin. The ’racoon’ effect can be observed in result
images from I1-1 (72 hours after injury) but it is practically gone in the result image
from I1-2 (192 hours after injury) using the same parameters. By observing the rate
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of decline of concentration and extent, it could be possible to determine diffusivity.
However, according to Randeberg et al. [28] the bilirubin concentration should not
be much lower after 192 hours compared to 72 hours. The concentration was found
to increase up to about 168 hours (seven days) and then decrease after that, but it
did not disappear completely after 192 hours. After 397 hours it would probably be
significantly lower and not show very well. This last observation seems to correspond
better with the result images. The discrepancy for I1-2 can be explained by individual
variations in the subjects.

Previous work related to bruise detection on cucumbers and apples have among
other things compared ratio, difference, and PCA. As mentioned above, it seems like
the three algorithms are sensitive to the ageing of bruises. In Ariana et al. [2] ratio
and difference was preferred over PCA, because their classification accuracy was more
stable over time. Ratio also showed a better accuracy compared to difference during
the first couple of days, but that changed on day three. Other work within the same
field of research shows that the detection accuracy of ratio and PCA are comparable,
but ratio showed slightly better discrimination rate during the two first days [15].
The experimentation in this report does not contain enough samples to verify any of
these results, but some interesting observations were done. The left bruise in I1-3 can
be seen in some of the result images from the three algorithms, while the right bruise
is difficult to discern in all the result images from I1-3. This could indicate that the
three algorithms have similar detection potential for human bruises, but a broader
data set is needed before anything conclusive can be said.

The difference algorithm was the only one that gave positive results for all the
images in I2. Therefore it is not possible to compare result images with the two
other algorithms. Result images from the difference algorithm show that both bruises
can be enhanced, but they are difficult to discern in the result image from I2-3. A
better light source could provide better PCA results and alternative bands could give
better results for the ratio algorithm. Further work is needed to investigate these
possibilities.

Ratio and difference is much faster than PCA and provides similar results for some
parameters. They are also easier to implement. This is not unexpected and corre-
sponds with results from work related to bruises and chilling injuries on cucumbers
[2, 15]

According to the percentages showing positive results in Chapter 5, it seems like
the ratio algorithm is better than the difference algorithm during phase one. For
phase two it looks like it outperforms both difference and PCA. Care must be taken
while interpreting these numbers however. They are not meant as a performance
measurement, but a summary of the tests that were done on each of them. For ratio
and difference the percentages show how many positive results were observed during
each phase. The percentages for PCA show how many principal components with
an acceptable signal-to-noise ratio contained visible bruises. A direct comparison is
therefore not applicable, but some interesting information can still be gathered. The
enhancement quality is not directly reflected through the percentages, but they give
some indications on how many positive results can be found through visual analysis of
certain parameters. Based on the parameters tested, there are more positive results
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for ratio than for instance the difference algorithm. For this thesis, however, it is
more important with one really good result, than many just acceptable ones. Based
on this criterion, all the algorithms show potential. When the result images from ra-
tio, difference, and PCA was used further by clustering and watershed, PCA seemed
to provide a better base for segmentation. For visual enhancement of bruises the three
algorithms all gave some satisfactory result images. To get a performance measure-
ment, an extended test using suited input parameters for clustering and watershed
should be done. A larger data set and an automated system for bruise detection and
classification would be beneficial. The algorithms tested in this thesis may provide
important components in such a system.

The enhancement results used for segmentation experimentation were chosen based
on bruise visibility. This is also the case for the band from the reflectance image I1-
1 tested with both K-means clustering and the watershed segmentation algorithm.
Both methods for segmentation provided several good bruise segmentations on the
three enhanced images given a wide range of parameters. However, used directly on
the reflectance image, neither clustering nor watershed segmentation provided good
results.

The best result from clustering is directly comparable to the best results of the
watershed segmentation, as can be seen in Figures 5.16(d) and 5.18(p). The common
trait for these two images is the prior use of PCA for enhancement. The grey scale (two
dimensional) results from ratio and difference were not used on the multidimensional
clustering algorithm, but when tested with the watershed segmentation, both provided
segmentations superior to those of the original reflectance image.

6.4 Other Observations

Difference, ratio, and PCA all produced result images with content that might provide
valuable information for later research. This research might not necessarily be related
to bruises. Two topics are covered in this section; blood vessels and hair.

All three algorithms gave result images which emphasized blood vessels for images
from I1 and from I2. Blood vessels of varying thickness can be observed in Figures
5.12(c) and (e). The varying thickness probably means that the algorithms can show
different kinds of blood vessels like veins and arterioles. These blood vessels exist at
separate depths, which is another indication that depth information could be found
using the three algorithms. The images showing blood vessels could be used to map
the layout of for example arteriole networks before surgery.

Hair is observed using all three algorithms as well. The bright hair in Figure
5.12(d) is one such example. Since the hair has a clearly different colour compared
to the arm, it would be fairly easy to separate the hair using for example threshold-
ing. With some additional work, this could be useful to, for example, inspect results
after a hair removal treatment. It could be used as a measurement for success by
comparing results before and after or to detect regorwing hair. Treating the same
area sequentially as hairs begin to regrow increase the number that are permanently
removed [36].
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Chapter 7
Conclusion and Further

Work

Hyperspectral imaging has in this thesis proven to be a useful technology platform
for a more accurate characterisation of bruises on human skin. The tested algorithms
provided a better description of the bruises, the extent of the bruising, and the severity
of damage. However, the algorithms tested are not considered robust for consistency of
results. It is therefore recommended that the image acquisition setup is standardised
for all future hyperspectral images. A larger, more varied data set would increase the
statistical power of the results, and improve test conclusion validity.

Results indicate that the ratio, difference, and principal component analysis (PCA)
algorithms can enhance bruise visibility for visual analysis. However, images that con-
tained weakly visible bruises did not show significant improvements in bruise visibility.
Non-visible bruises were not made visible using the enhancement algorithms. Future
work may include the development or use of enhancement algorithms that find and
improve latent statistical relationships and connections present in the data.

Results from the enhancement algorithms were segmented and compared to seg-
mentations of the original reflectance images. The enhancement algorithms provided
results that gave more accurate bruise regions using K-means clustering and the water-
shed segmentation. Both segmentation algorithms gave the overall best results using
principal components as input. Watershed provided less accurate segmentations of
the input from the difference and ratio algorithms.

The enhancement algorithms provided interesting results that should be considered
in future studies. Skin structures like fine lines, blood vessels and hair density were
visualised with good contrast compared to the original images. The distribution of
skin chromophores like bilirubin or oxyhemoglobin was also clearly visualised using
the present methods. These features might have several diagnostic applications within
medicine, e.g. in diagnosis and treatment monitoring of vascular skin disorders.
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Appendix A
Tables

This chapter presents tables that provide additional information for the report.

A.1 Description of Available Data Set

Table A.1 shows details of the available data set. Details include an id for the image
or image collection, the sex (Male(M)/Female(F)) and age (in years) of the subject.
Images of items were marked not applicable (N/A) where necessary. Finally the
comments give information on what the images contain, where and how old potential
injuries are and which camera and light source was used.

Table A.1: This table shows details on the available hyperspectral data set for this
thesis.

ID Sex Age Comments
I1 M 32 A collection of 17 images taken at times ranging from 66 to

421 hours after injury. Images show two visible bruises on
the volar side of the right elbow caused by paintball bullets.
Camera:H1a Light:LS1

I2 M 32 A collection of 17 images taken at times ranging from 66 to
421 hours after injury. Images show two visible bruises on
the volar side of the right elbow caused by paintball bullets.
Camera:H3 Light:LS1

I3 Pig - A collection of 13 images taken at times ranging from before
injury to about 1 minute after. Images show two bruises
caused by pendulum with two differently shaped weights; a
rounded tip and square shape. Camera:H2 Light:LS2

I4 Pig - A collection of 16 images taken at times ranging from before
injury to about 1 hour after. Images show two bruises caused
by paintball bullets. Camera:H2 Light:LS2

I5 M 24 Image show bruises on the dorsal side of the right upper arm
caused by American football play. Image captured about 60
hours after injury. Camera:H1b Light:LS1

Continued on next page
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ID Sex Age Comments
I6 M 24 Image show bruises on the dorsal side of the left forearm

caused by American football play. Image captured about 16
hours after injury. Camera:H1b Light:LS1

I7 M 24 Image show a bruise on the right lower back caused by Amer-
ican football play. Image captured about 16 hours after in-
jury. Camera:H1b Light:LS1

I8 F 8 Image shows multiple bruises on the left calf caused by a
moped accident. Image captured about 4 hours after injury.
Camera:H1b Light:LS3

I9 M 24 2 images that show a possible bruise on the volar side of
the left upper arm. Injury occurred during consumption of
alcohol. Image captured about 12 hours after injury. In-
spection 4 days later showed no visible bruise. Camera:H1b
Light:LS3

I10 M 25 2 images that shows the volar side of the left hand. This
is a reference image and it is not supposed to contain any
bruises. Camera:H1b Light:LS3

I11 M 25 Image show the dorsal side of the right forearm. This is a ref-
erence image and it is not supposed to contain any bruises.
Image contains some birthmarks. Camera:H1b Light:LS3

I12 M 23 Image show the dorsal side of the left forearm. This is a ref-
erence image and it is not supposed to contain any bruises.
Some unidentified marks can be seen at the elbow. Cam-
era:H1b Light:LS3

I13 F 30 Image shows the dorsal side of the right forearm. This is
a reference image and it is not supposed to contain any
bruises. Camera:H1b Light:LS3

I14 N/A N/A 3 images of a colour reference chart. Camera:H1b Light:LS4

A.2 Selected Images for Experimentation

Table A.2 shows the images that were used for experimentation. The table gives
names and comments for the selected images. A unique id (UID) is assigned to each
image that belongs to an image collection as can be seen in Table A.1. For example,
if two images come from image set I1, the first will be labeled I1-1 and the second
I1-2.
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Table A.2: Details on the images selected for experimentation

ID UID File name Comments
I1 I1-1 72h Visible bruises
I1 I1-2 192h Visible bruises
I1 I1-3 397h Visible bruises
I2 I2-1 72h swir Visible bruises
I2 I2-2 192h swir Visible bruises
I2 I2-3 397h swir Visible bruises
I3 I3-1 g7 s1 s2 pre 2006 06 02

10 16 59 VNIR 640 SN4 c.img
Before injury

I3 I3-2 g7 s1 s2 post 2006 06 02
10 44 58 VNIR 640 SN4 c.img

Possible bruise

I3 I3-3 g7 s1 s2 post 2 2006 06 02
11 09 35 VNIR 640 SN4 c.img

Visible bruises

I4 I4-1 g7s5s6post1 2006 06 02
13 28 05 VNIR 640 SN4 c.img

Before injury

I4 I4-2 g7s5s6post1 2006 06 02
13 41 27 VNIR 640 SN4 c.img

Visible bruise

I4 I4-3 g7s5s6post1 2006 06 02
14 46 40 VNIR 640 SN4 c.img

Visible bruises
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A.3 Absorption Peaks and Corresponding Bands

Table A.3 shows the connection between absorption peaks and bands. If a wavelength
is between two bands, both the one above and below is included.

Table A.3: This table shows which band corresponds to important wavelengths for the
different cameras used. Note that the compound bilirubin has only one peak, one for
liquids (460 nm) and one for dermis (480 nm)

Material Absorbtion
peak (nm)

VNIR-
1600
H1a

VNIR-
1600
H1b

VNIR-640 SWIR-320i

Bilirubin 460 16,17 14,15 11,12 -
Bilirubin 480 22 20 15,16 -
Deoxyheamoglobin 555 42 40,41 31 -
Deoxyheamoglobin 760 97 97 72,73 -
Metheamoglobin 508 29,30 27,28 21,22 -
Metheamoglobin 630 62 61,62 46,47 -
Oxyheamoglobin 542 38,39 37 28,29 -
Oxyheamoglobin 576 47,48 46,47 35,36 -
Random band 747 70 93,94 70 -
Random band 1443 - - - 110
Random band 1604 - - - 142

A.4 Visual Inspection of Bands in Reflectance VNIR

Image

Table A.4 shows the result after a visual inspection of reflectance image I1-1. The
comments serve as an aid for band selection when parameters for ratio and difference
where chosen. The group shows which band range is described in the comments.
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Table A.4: Details on the contents found in the different bands of image I1-1.

Group Comments
[1, 22] Weakly visible bruise
[23, 54] Increasingly visible bruises, with peaks at band 38 an 47.

The visibility of the bruises diminishes after that
[55, 105] No visible bruises. Some changes in brightness between the

different bands. Blood vessels are visible in these bands
[106, 160] One bruise weakly visible. Increasing level of noise towards

the final bands. Otherwise similar to [55, 105]

A.5 Visual Inspection of Bands in Radiance SWIR

Image

Table A.5 shows results of visual inspection of radiance image I2-1. The comments
serve as an aid for band selection when parameters for ratio and difference where
chosen.

Table A.5: Details on the contents found in the different bands of radiance image I2-1.

Group Comments
[1, 14] Dark with varying amounts of banding effects
[15, 47] One weakly visible bruise. Blood vessels visible
[48, 103] Two visible bruises. Blood vessels are visible in the first

layers
[103, 117] No visible bruises or blood vessels
[118, 153] Two visible bruises
[154, 170] Dark with varying amounts of banding effects

A.6 Difference

Additional tables related to experimentation with the difference algorithm are pre-
sented in this section.

A.6.1 Phase One - Initial Test Results

Table A.6 shows results from phase one using absorption peaks as parameter selection
criteria. Table A.7 shows results when parameters were selected based on visual
inspection. The results are commented based on a visual inspection which serves as
the basis for further use in phase two. If the parameters give an interesting result
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(Int.), it is marked with a +, otherwise a - is given. Table A.6 is divided into sections,
each starting with the compounds used as the basis for parameter selection.

Table A.6: The parameters tested on image I1-1 using the difference algorithm.

Parameters Comments Int.
* Deoxyheamoglobin, Oxyheamoglobin and Oxy-

heamoglobin, Deoxyheamoglobin
*

42-38 Plenty of noise. Difficult to spot bruises -
42-47 Lost skin structure, but the bruises are easy to see.

Quite noisy
-

97-38 Some skin structure, but only one visible bruise.
Bright areas around the bruises. Can see some blood
vessels. Similar to (97-47).

+

97-47 Some skin structure, but only one visible bruise.
Bright areas around the bruises. Can see some blood
vessels. Similar to (97-38)

+

38-42 Loss of skin structure. No bruises visible -
38-97 Loss of skin structure. One bruise barley visible.

Arm is dark against bright background. Similar to
(47-97)

-

47-42 Loss of skin structure, but easy to observe two
bruises. Much noise

-

47-97 Loss of skin structure. One bruise barley visible.
Arm is dark against bright background. Similar to
(38-97)

-

* Bilirubin, Deoxyheamoglobin *
16-42 Loss of skin structure. Two bruises visible +
16-97 No visible bruises. Some visible blood vessels. Simi-

lar to a brighter (22-97)
-

22-42 Loss of skin structure. Two bruises visible. -
22-97 One weakly visible bruise. Some visible blood ves-

sels. Similar to (16-97)
-

Bilirubin, Metheamoglobin *
16-29 Two bruises weakly visible. Loss of some skin struc-

ture
-

16-62 No visible bruises. Visible blood vessels and hair -
22-29 Loss of some skin structure. Weakly visible bruises -
22-62 No visible bruises. Visible blood vessels -

* Bilirubin, Oxyheamoglobin *
16-38 Similar to (22-38) +
16-47 Similar to a darker (22-38) +
22-38 Two visible bruises surrounded by a dark area +

Continued on next page
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Parameters Comments Int.
22-47 Loss of some skin structure. Two strongly visible

bruises surrounded by a dark area
+

Deoxyheamoglobin, Metheamoglobin *
42-29 Two clearly visible bruises. Loss of some skin struc-

ture. Similar to (47-29)
+

42-62 Weakly visible bruises. Some blood vessels are visible -
97-29 One weakly visible bruises. Some blood vessels are

visible
-

97-62 No visible bruise. Some blood vessels are visible -
* Oxyheamoglobin, Metheamoglobin *

38-29 Two visible bruises. Lost some skin structure. Simi-
lar to (47-29)

+

38-62 Similar to (47-62), but with slightly less visible
bruises

-

47-29 Two clearly visible bruises. Loss of skin structure +
47-62 Two weakly visible bruises. Visible blood vessels and

some hair
-

Table A.7: Different parameters that were tested using the difference algorithm. The
parameters where chosen based on a visual inspection of all the layers in image I1-1
and I2-1.

UID Parameters Comments Int.
I1-1 70-38 Similar to (90-47) -
I1-1 70-47 Similar to (90-47), but the least visible

bruise is showing better
-

I1-1 90-38 Similar to (90-47) -
I1-1 90-47 One visible bruise, but the second is dif-

ficult to see
-

I1-1 121-38 Somewhat similar to (121-47), but less
visible bruise

-

I1-1 121-47 One weakly visible bruise and some
blood vessels

-

I1-1 140-38 Similar to (121-47), but less visible
bruise

-

I1-1 140-47 Similar to (121-47), but with more noise
on the arm

-

I1-1 121-70 Two visible bruises and visible blood
vessels, but they are difficult to discern

-

I1-1 121-90 Blood vessels and bruises are dark and
unclear

-

Continued on next page

97



UID Parameters Comments Int.
I1-1 140-70 Two weakly visible bruises -
I1-1 140-90 Two weakly visible bruises, but they are

difficult to discern
-

I2-1 20-62 No visible bruises. Visible blood vessels -
I2-1 20-110 One weakly visible bruise -
I2-1 20-142 No visible bruises -
I2-1 62-110 Two weakly visible bruises -
I2-1 62-142 No visible bruises -
I2-1 110-142 Linearly stretched. Two visible bruises +

A.6.2 Phase Two - Extended Test Results

Table A.8 shows the results from phase two using parameters slected in phase one.
Each image tested is identified by a unique id (UID), and a brief explanation to each
image is given before it is tested. The interesting coloumn (Int.) shows if a result is
judged to be positive or negative.

Table A.8: Results from the extended testing using the difference algorithm

UID Parameters Comments Int.
I1-2 * 192 hours after injury. Bruises are vis-

ible
*

I1-2 22-38 Two bruises visible. Left bruise is more
visible, but right bruise has more detail.
Loss of some skin structure

+

I1-2 47-29 Two bruises visible. Left bruise is more
visible, but right bruise has more detail.
Loss of some skin structure

+

I1-3 * 397 hours after injury. Bruises are
weakly visible

*

I1-3 22-38 Two bruises difficult to dicern. Noise
and loss of skin structure

-

I1-3 47-29 Two bruises difficult to dicern. Right
bruise slightly more visible than right.
Dark spots on left side and some bright
spots on right side

-

I2-2 * 192 hours after injury. Two bruises vis-
ible

*

I2-2 110-142 Two bruises weakly visible +
I2-3 * 397 hours after injury. Two bruises

weakly visible
*

Continued on next page
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UID Parameters Comments Int.
I2-3 110-142 Two bruises weakly visible +
I3-1 * Before injury. No visible bruises, but a

mark or a discolouration can be seen in
square s1

*

I3-1 15-28 No visible bruises -
I3-1 35-21 No visible bruises. Dark -
I3-2 * Right after injury. No visible bruises,

but possible invisible bruises
*

I3-2 15-28 No visible bruises -
I3-2 35-21 No visible bruises -
I3-3 * A square shaped bruise from a pendulum

is visible in square s2
*

I3-3 15-28 Weakly visible bruise -
I3-3 35-21 Weakly visible bruise -
I4-1 * One possible bruise in square s6. Strong

specular light
*

I4-1 15-28 No visible bruise -
I4-1 35-21 No visible bruise -
I4-2 * One circular bruise is visible. Strong

specular light
*

I4-2 15-28 Visible bruise, but slightly difficult to
discern because of possible light influ-
ence (specular light)

-

I4-2 35-21 Visible bruise -
I4-3 * Two circular bruises are visible. Strong

specular light
*

I4-3 15-28 Two bruises visible. The upper bruise
is somewhat more difficult to spot

+

I4-3 35-21 Two bruises clearly visible +

A.7 Ratio

Additional tables related to experimentation with the ratio algorithm are presented
in this section.

A.7.1 Phase One - Initial Test Results

Table A.9 shows results from phase one using absorption peaks as parameter selection
criteria. Table A.10 shows results when parameters were selected based on visual
inspection. The results are commented based on a visual inspection which serves as
the basis for further use in phase two. If the parameters give an interesting result
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(Int.), it is marked with a +, otherwise a - is given. Table A.9 is divided into sections,
each starting with the compounds used as the basis for parameter selection.

Table A.9: The parameters tested on the base image I1-1 using the ratio algorithm.

Parameters Comments Int.
* Deoxyheamoglobin, Oxyheamoglobin

and Oxyheamoglobin, Deoxy-
heamoglobin

*

42/38 Loss of some skin structure. Plenty of
noise. Difficult to distinguish bruises
from the rest

-

42/47 Loss of some skin structure. Plenty
of noise. Bright bruises on dark back-
ground

+

97/38 One bruise visible and one slightly vis-
ible

+

97/47 Accentuation of bruises in addition to a
possible bruise (somewhat fuzzy)

+

38/42 Loss of some skin structure. Plenty of
noise. Difficult to see bruises

-

38/97 Accentuation of bruises in addition to a
possible bruise. Similar to (47/97)

+

47/42 Loss of skin structure. Plenty of noise.
Two dark bruises are visible

+

47/97 Two bruises and a possible bruise are
emphasised. Similar to (38/97)

+

Bilirubin, Deoxyheamoglobin *
16/42 Two obvious bruises with dark areas

around. Similar to (22/42)
+

16/97 No visible bruises, but dark areas where
the visible bruises are supposed to be.
Same goes for the possible bruise. Sim-
ilar to (22/97)

+

22/42 Two obvious bruises, with dark areas
around them. Similar to (16/42)

+

22/97 No visible bruises, but dark areas where
the visible bruises are supposed to be.
Same goes for the possible bruise. Sim-
ilar to (16/97)

+

* Bilirubin, Metheamoglobin *
16/29 Similar to a brighter (22/29) +
16/62 No visible bruises. Some visible blood

vessels
-

Continued on next page
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Parameters Comments Int.
22/29 Bright contours around two bruises.

Dark areas around. Plenty of noise in
the edges

+

22/62 No visible bruises, but dark areas where
the bruises are supposed to be

-

Bilirubin, Oxyheamoglobin *
16/38 Similar to a brighter (22/38) +
16/47 Similar to (22/38) +
22/38 Two bright obvious bruises with dark

areas surrounding them
+

22/47 Similar to a dark (22/38) +
* Deoxyheamoglobin, Metheamoglobin *

42/29 Two visible bruises. Loss of skin struc-
ture

+

42/62 Two visible bruises and a possible
bruise. Some blood vessels are visible.
Dark

+

97/29 One vaguely visible bruise, in addition
to some blood vessels

-

97/62 Difficult to spot bruises. Dark -
Oxyheamoglobin, Metheamoglobin *

38/29 Similar to (47/29), but with some addi-
tional dark areas

+

38/62 Similar to (47/62) +
47/29 Two obvious bruises. Loss of some skin

structure
+

47/62 Two clearly visible bruises. Some visi-
ble blood vessels

+

Table A.10: Different parameters that were tested using the ratio algorithm. The
parameters where chosen based on a visual inspection of all the layers in image I1-1
and I2-1.

UID Parameters Comments Int.
I1-1 70/38 Similar to (70/47) +
I1-1 70/47 Two clearly visible bruises and also a

possible bruise
+

I1-1 90/38 Similar to a brighter (90/47) -
I1-1 90/47 Two slightly visible bruises. Lost some

skin structure
-

Continued on next page
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UID Parameters Comments Int.
I1-1 121/38 Two visible bruises and also a possible

bruise. Not very clear
+

I1-1 121/47 Similar to (121/38) +
I1-1 140/38 Similar to (121/38), but the bruises are

smaller and less visible
+

I1-1 140/47 Similar to (121/38), but the bruises are
smaller and less visible

+

I1-1 121/70 Similar to (140/70) -
I1-1 121/90 Similar to (140/90) -
I1-1 140/70 Two weakly visible bruises. Very dark. -
I1-1 140/90 Two visible bruises and visible blood

vessels, but very dark
-

I2-1 20/62 Linearly stretched. Clearly visible
blood vessels

-

I2-1 20/110 No visible bruise. Similar to (62/110) -
I2-1 20/142 Two visible bruises. Similar to (62/142) -
I2-1 62/110 No visible bruise. Bright area might be

heat related
-

I2-1 62/142 Two visible bruises -
I2-1 110/142 Linearly stretched. No visible bruises -

A.7.2 Phase Two - Extended Test Results

Table A.11 shows the results of applying a set of parameters on the selected image
set. Details listed include which images have been tested and which parameters that
were applied. More information on the images can be found in Section A.2 and A.1.
The comments briefly explain the results using a certain set of parameters, while the
interesting (Int.) column gives a summary of the comments. Two different categories
are used in the Int. column: + (positive) and - (negative). Operations used to enhance
further for visual inspection is also documented (i.e. additional linear stretching). All
images had their spectralon cropped away before analysis. Each new test images is
preceded with a brief explanation of what can be seen in the untreated image.

Table A.11: Results from the extended testing using the ratio algorithm

UID Parameters Comments Int.
I1-3 * 397 hours after injury. Bruises are

weakly visible
*

I1-3 22/38 No visible bruises -
I1-3 47/29 Weakly visible bruises -

Continued on next page
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UID Parameters Comments Int.
I1-3 47/97 Two weakly visible bruises. Bruise to

the left is more visible than the one to
the right. Dark triangel shape is visible
between the bruises

+

I1-3 70/47 Two visible bruises, but details are dif-
ficult to observe. Bright triangle shape
is visible between the bruises

+

I3-1 * Before injury. No visible bruises, but a
mark or a discolouration can be seen in
square s1

*

I3-1 35/72 Linearly stretched. No visible bruises.
The mark is slightly visible

-

I3-1 15/28 No visible bruise or mark. Some noise
on the letters on the leg

-

I3-1 35/21 Linearly stretched. No visible bruises
or mark.

-

I3-1 70/35 No visible bruises or mark -
I3-2 * Right after injury. No visible bruises,

but possible invisible bruises
*

I3-2 35/72 Linearly stretched. No visible bruises -
I3-2 15/28 No visible bruises -
I3-2 35/21 Linearly stretched. No visible bruises -
I3-2 70/35 No visible bruises -
I4-1 * One possible bruise in square s6. Strong

specular light
*

I4-1 35/72 Linearly stretched. One possible bruise
weakly visible

-

I4-1 15/28 No visible bruises -
I4-1 35/21 Linearly stretched. No visible bruises -
I4-1 70/35 One possible bruise weakly visible -
I3-3 * A square shaped bruise from a pendulum

is visible in square s2
*

I3-3 35/72 Linearly stretched. Bruise is visible,
but no improvements compared to orig-
inal

-

I3-3 15/28 Bruise is weakly visible -
I3-3 35/21 Linearly stretched. Bruise is visible,

but no improvements to original
-

I3-3 70/35 Linearly stretched. Bruise is visible,
but no improvements compared to orig-
inal

-

I4-3 * Two circular bruises are visible. Strong
specular light

*

Continued on next page
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UID Parameters Comments Int.
I4-3 35/72 Two clearly visible bruises +
I4-3 15/28 Two visible bruises, but s6 is clearer

than s5
-

I4-3 35/21 Linearly stretched. Two visible bruises.
Grey ring seems to follow the contour
of the bruise

+

I4-3 70/35 Two bruises clearly visible +
I4-2 * One circular bruise is visible. Strong

specular light
*

I4-2 35/72 One bruise clearly visible +
I4-2 15/28 One bruise visible. The bruise and the

surrounding area is much brighter than
surrounding tissue. Some bruise details
is lost

+

I4-2 35/21 One bruise slightly visible. An un-
known dark circle surrounds the bruise

+

I4-2 70/35 One bruise visible. The bruise and the
surrounding area is much brighter than
other tissue in the cropped image. A
dark area can be seen around half the
bruise

+

I1-2 * 192 hours after injury. Bruises are vis-
ible

*

I1-2 22/38 Two bruises visible +
I1-2 47/29 Two bruises visible +
I1-2 47/97 Two bruises visible. Dark triangel

shape is visible between the bruises.
Some blood vessels visible

+

I1-2 70/47 One bruise clearly visible. The right
bruise is visible, but more difficult to
discern than the left one. Bright trian-
gel shape is visible between the bruises.
Some blood vessels visible

+

A.8 Principal Component Analysis

Table A.12 shows results from testing with PCA. Principal components (PC) that
where judged to contained to much noise are not listed in the table.
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Table A.12: Results from a visual inspection of principal components (PC) of different
images. PC indicates which component is beeing inspected. The radiance images
follow directly after their reflectance counter parts.

UID PC Comments Sum
* * Male arm with two circular bruises at

72 hours after injury
*

I1-1 1 No visible bruises. Hair and some blood
vessels are weakly visible. Dark

-

I1-1 2 One bruise is visible. Hair and some
blood vessels are visible

-

I1-1 3 Two bruises are visible. Difficult to
distinguish bruises from blood ves-
sels. Hair and some blood vessels are
strongly visible

-

I1-1 4 Two bruises strongly visible. Hair is
weakly visible

+

I1-1 5 Two bruises are strongly visible. Loss
of some skin structure. No hair visible

+

I1-1 6 No bruises visible -
I1-1 10 No bruises visible. Some possible blood

vessels are visible. Some noise
-

I1-1 * Radiance image *
I1-1 1 No visible bruises. Dark -
I1-1 2 One weakly visible bruise. Similar to

PC1, but with more details. Dark
-

I1-1 3 Two bruises visible, with different
strengths. Some contour lost on left
bruise. Hair is visible

+

I1-1 4 Similar to an inverted PC3 +
I1-1 5 Two clearly visible bruises. A trian-

gle shape visible between and below the
bruises. Hair is visible

+

I1-1 6 Two bruises visible, but the right one
has lost its contour. A triangle shape
visible between and below the bruises.
Some hair visible

-

I1-1 7 One bruise weakly visible. Bright lines
could be blood vessels. Some hair
weakly visible

-

I1-1 8 Bruises are difficult to dicern from the
rest of the image. Some bright ’branch-
ing’ effects observed on the arm

-

Continued on next page
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UID PC Comments Sum
I1-1 9 Two bruises visible, but the left is diffi-

cult to discern
-

I1-1 10 Two bruises weakly visible. Some hair
visible

-

I1-1 11 Two bruises clearly visible. Bright lines
observed on the arm

+

I1-1 17 Two bruises clearly visible. Some noise +
I1-1 18 Two bruises clearly visible. Some

’racoon’ effect seen around the bruises.
Some bright lines on the arm. Some
noise

+

I1-1 45 Two visible bruises. Noisy +
I1-1 143 Two visible bruises, with some dark ar-

eas scattered around them. Some noise
+

I1-2 * Male arm with two circular bruises at
192 hours after injury

*

I1-2 1 No bruise visible. Dark -
I1-2 2 One bruise weakly visible -
I1-2 3 One bruise visible, but difficult to dis-

cern. Hair is clearly visible. Black spots
similar to the bruise can be seen on the
arm

-

I1-2 4 Two bruises visible. The left bruise has
lost some contour- Hair and some blood
vessels are vissible

+

I1-2 5 One bruise visible, but difficult to dis-
cern from arm. Hair visible

-

I1-2 6 One bruise visible. Possible blood ves-
sels and hair visible

-

I1-2 7 Two bruises visible. Left bruise has lost
some contour

+

I1-2 8 Two bruises visible. Bright spots else-
where on the arm makes the bruises dif-
ficutl to discern

-

I1-2 9 No visible bruises. Some bright lines
observed

-

I1-2 10 Two bruises visible. Some noise +
I1-2 11 Two bruises visible, but they are diffi-

cult to discern. Noise
-

I1-2 12 Two bruises visible, but right bruise is
difficult to discern. Noise

-

I1-2 13 Two bruises weakly visible. Noise -
Continued on next page
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UID PC Comments Sum
I1-2 14 Two bruises weakly visible. Noise -
I1-2 15 No visible bruises -
I1-3 * Male arm with two circular bruises at

397 hours after injury
*

I1-3 1 No bruises visible. Dark -
I1-3 2 One bruise weakly visible -
I1-3 3 One bruise visible. Dark lines could be

blood vessels. Hair visible
-

I1-3 4 One bruise visible -
I1-3 5 Left bruise very visible, but with some

contour losses. Right bruise is weakly
visible. Hair is visible

-

I1-3 6 One bruise barley visible. Some blood
vessels visible, but the hair is clearly
visible

-

I1-3 7 Similar to PC6, but with less blood ves-
sel details

-

I1-3 8 Left bruise very visible, but with some
contour losses. Right bruise is difficult
to discern. Hair is visible

+

I1-3 9 No bruises visible. Possible blood ves-
sels and hair visible

-

I1-3 21 No visible bruises -
I1-3 22 No visible bruises. Some possible blood

vessels visible. Noise
-

I1-3 24-26 No visible bruises -
I1-3 29 No visible bruises -
I2-1 * Male arm with two circular bruises at

72 hours after injury
*

I2-1 1 Two weakly visible bruises -
I2-1 2 Two weakly visible bruises. Some blood

vessels visible
-

I2-1 3 No visible bruises. Some blood vessels
visible

-

I2-1 4 One bruise weakly visible. Blood ves-
sels visible

-

I2-1 5 No visible bruises. Visible blood vessels -
I2-1 6 One bruise visible. Heavy striping ef-

fects
-

I2-1 7 One bruise visible. Some hair and blood
vessels visible. Striping effects

+

I2-1 8 Similar to PC7, but brighter. One
bruise visible, but difficult to discern

-

Continued on next page
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UID PC Comments Sum
I2-1 9 No visible bruises. Some visible blood

vessels
-

I2-1 10 No visible bruises. Visible blood vessels -
I2-1 11 One visible bruise, but difficult to dis-

cern. Some blood vessels visible
-

I2-1 12 Similar to PC10, but with less details -
I2-1 13 One weakly visible bruise. Some strip-

ing effects
-

I2-1 14 Two weakly visible bruises. Some blood
vessels. Heavy striping effects

-

I2-1 15 Two visible bruises +
I2-1 23 One clearly visible bruise and one diffi-

cult to discern. Some blood vessels vis-
ible. Heavy striping effects

+

I2-1 25 Similar to PC23. Heavy striping effects -
I2-1 28 Similar to PC23, but with slightly less

visible bruises
-

I2-1 29 One bruise very visibleThe other has
lost some contour, but is still visible.
Blood vessels visible

+

I2-1 71 One bruise visible. Some blood vessels
visible. Heavy striping effect

-

I2-2 * Male arm with two circular bruises at
192 hours after injury

*

I2-2 13 Two visible bruises, but image is cor-
rupted by vertical lines

-

I2-2 * No further tests done on image I2-2 be-
cause of corruption in all principal com-
ponents

*

I2-3 * Not evaluated because of heavy corrup-
tion in all principal components

*

I3-1 * Pig before injury. No visible bruises *
I3-1 1 No visible bruises -
I3-1 2 No visible bruises. No or little shadow

effects. Striping effect
-

I3-1 3 No visible bruises. Dark, wiht a bright
spot at the bottom. Stripping effect

-

I3-2 * Pig right after injury. No visible
bruises

*

I3-2 1 No visible bruises -
I3-2 2 No visible bruises. No or little shadow

effects
-

Continued on next page
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UID PC Comments Sum
I3-2 3 No visible bruises. No or little shadow

effects. Striping effect
-

I3-2 * Radiance image *
I3-2 1 No visible bruises -
I3-2 2 No visible bruises. Striping effects -
I3-2 3 No visible bruises. Striping effects -
I3-2 4 No visible bruises. Dark area at the

bottom
-

I3-2 5 No visible bruises. No or little shadow
effects. Heavy striping effects

-

I3-2 6 No visible bruises. Bright spot where
there is a dark spot in PC4

-

I3-3 * Pig with a single square bruise *
I3-3 1 No visible bruises -
I3-3 2 One visible bruise. No or little shadow

effects
-

I3-3 3 One weakly visible bruise. Striping ef-
fects

-

I4-1 * Pig with possibel bruise *
I4-1 1 No visible bruises -
I4-1 2 Linearly stretched. One possible bruise

weakly visible. Striping effects
-

I4-1 3 Possibel bruise weakly visible. Heavy
striping effects

-

I4-1 9 No bruise visible. Dark with a bright
spot

-

I4-2 * Pig with one circular bruise *
I4-2 1 One weakly visible bruise -
I4-2 2 One clearly visible bruise +
I4-2 3 One clearly visible bruise. Striping ef-

fects
+

I4-2 26 One clearly visible bruise. Striping ef-
fects and heavy noise

+

I4-2 27 One clearly visible bruise. Striping ef-
fects and heavy noise. Most details
have disapeared

+

I4-3 * Pig with two circular bruises *
I4-3 1 Two bruises visible. Possible shading

effect
-

I4-3 2 Two bruises clearly visible. The lower
bruise is partially surrounded by a dark
area. This might be influence from the
light source. Some striping effects

+

Continued on next page
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UID PC Comments Sum
I4-3 3 Two bruises clearly visible. Little or no

visible influence from the light source
with respect to shading or specular
light. Some striping effects.

+

I4-3 4 Two bruises visible. Possible specular
light from the light source

-

I4-3 * Radiance image *
I4-3 1 Two visible bruises, but the bottom one

is weak
-

I4-3 2 One bruise visible. Top bruise dissa-
pears in bright area

-

I4-3 3 Bottom bruise very visible, but top
bruise is difficult to see. Some striping
effect

+

I4-3 4 Two bruises visible. Top bruise is more
visible than bottom bruise. Striping ef-
fect

+

I4-3 5 Two bruises weakly visible. Striping ef-
fect

-

I4-3 6-7 Two bruises weakly visible. Heavy
striping effect

-

I4-3 8 Two bruises visible, but contours are
difficult to see on the bottom bruise.
Striping effect

-

I4-3 9 Similar to PC8, but much brighter -
I4-3 10-16 Two bruises visible, but heavy striping

effects
-

I4-3 107 Two dark clearly visible bruises. Strip-
ing effects

+

I4-3 108 Two bright visible bruises. Some strip-
ing effects and noise. Bottom bruise is
brighter than top one

+

I4-3 109 Two dark clearly visible bruises. Strip-
ing effects

+

A.9 K-Means Clustering

Tabels related to experimentation with the K-means clustering algorithm is presented
in this section.

110



A.9.1 Experimentation Parameters

The parameters used as input for the K-means clustering algorithm are listed in Table
A.13. The table also shows if the clustering converged and at what iteration number
this occured during the experimentation.

Table A.13: Details on the input parameters for K-means clustering and notes on
convergence

Clusters Iterations Comments
2 1,2,4,8,16 Converged after 10 iterations
3 1,2,4,8,16 Converged after 15 iterations
4 1,2,4,8,16,32 Converged after 18 iterations
5 1,2,4,8,16,32,100 Converged after 61 iterations
6 1,2,4,8 No convergence
7 1,2,4,8 No convergence
8 1,2,4,8,250 Converged at 124 iterations
9 1,2,4,8,16 No convergence
10 1,2,4,8 No convergence
12 1,2,4,8,16 No convergence
14 1,2,4,8 No convergence
16 1,2,4,8,16 No convergence
18 1,2,4,8 No convergence
25 1,2,8 No convergence
30 1,2,8 No convergence
40 1,2,8 No convergence
50 1,2,8 No convergence

A.9.2 Initial Phase Results

This section presents parameters that gave positive clustering segmentations. Table
A.14 shows parameters from testing on reflectance image I1-1, while Table A.15 shows
parameters from testing on the first 10 principal components of reflectance image I1-1.
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Table A.14: The parameters that gave a positive clustering segmentation of one or
more bruises for reflectance image I1-1.

Clusters Iterations Comments on Result Segmentations
10 1 Upper half of left bruise marked, no marks for right bruise.
14 1 Right half of left bruise marked, no marks for right bruise.
16 8 Left edge of left bruise marked weakly, no marks for right

bruise.
18 2 Less than half of area on upper and lower edge of left bruise

marked, no marks for right bruise.
18 4 Less than half of area on upper and lower edge of left bruise

marked, no marks for right bruise.
18 8 Less than half of area on upper and lower edge of left bruise

marked, no marks for right bruise.
25 2 (Oversegmented) Half of left bruise selected with upper and

lower edge, no marks for right bruise.
25 8 (Oversegmented) Less than half of left bruise selected with

upper and lower edge, no marks for right bruise.
30 8 (Oversegmented) Left half of left bruise selected, no marks

for right bruise.
40 1 (Oversegmented) Entire edge of bruise marked with un-

sharp edges in two regions. Left part of right bruise marked
in one unsharp region..

40 2 (Oversegmented) Entire edge of bruise and center marked
with unsharp edges. Left part of right bruise marked in one
unsharp region.

40 8 (Oversegmented) Left half of left bruise and center marked.
Left part of right bruise marked.

50 1 (Oversegmented) Edges on left half of right and left bruises
selected.
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Table A.15: The parameters that gave a positive clustering segmentation of one or
more bruises for the first 10 principal components of reflectance image I1-1.

Clus. Iters. Comments on Result Segmentations
8 4 Some of right edge of left bruise marked.
16 1 Some of right edge of left bruise marked.
20 1 Full right edge of left bruise marked.
20 8 Some of left edge of left bruise marked.
20 16 Full upper edge and partial lower edge of left bruise selected.
20 32 Full upper edge and partial lower edge of left bruise selected.
25 2 (Oversegmented) Some of left edge of left bruise marked.
25 16 (Oversegmented) Some of right edge of left bruise marked.
25 32 (Oversegmented) Full left bruise marked in two regions.
30 1 (Oversegmented) Left half of left bruise marked. Left part

of right bruise marked in one unsharp region.
30 4 (Oversegmented) Left half of left bruise marked. Left part

of right bruise marked in one unsharp region.
30 16 (Oversegmented) Left half of left bruise marked. Center

part of right bruise marked in one unsharp region.
30 32 (Oversegmented) Left half of left bruise marked.
40 4 (Oversegmented) Left half of left bruise marked. Left part

of right bruise marked in one unsharp region.
40 8 (Oversegmented) Left half and upper edge of left bruise

marked in two separate segments.
40 16 (Oversegmented) Left half and upper edge of left bruise

marked in two separate segments.
40 32 (Oversegmented) Edge and center of left bruise marked in

single segment. Segment slightly bigger than visual bruise.
50 2 (Oversegmented) Left half and upper edge of left bruise

marked in three segments.
50 4 (Oversegmented) Left half and upper edge of left bruise

marked in three segments. Left side of right bruise marked
in single region.

50 8 (Oversegmented) Left half and upper edge of left bruise
marked in two separate segments.

50 16 (Oversegmented) Left half and upper edge of left bruise
marked in two separate segments.

50 32 (Oversegmented) Left half and upper edge of left bruise
marked in two separate segments.
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Appendix B
Figures

This chapter presents figures that provide additional information for the report.

B.1 Application Design

The main window for the batch program can be seen in Figure B.1. The white window
to the left show available images, while the one to the right shows the images that
has been added to the pipeline. The algorithm that will be applied to the images
can be seen after the image names. The message console prints messages to the user
while the program is running. The ’Run All’ button starts the batch and runs all the
algorithms currently in the pipeline.
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Figure B.1: The main window for the batch program.

B.2 Difference

Additional figures related to experimentation with the difference algorithm are pre-
sented in this section.

B.2.1 Phase One - Initial Test Results

This section presents the result image from I2-1 using the selected parameter and a
couple of negative results from the selection process.

Figure B.2(a) shows band 142 of the original I2-1 image, while (b) shows the
positive result. The bruises show as bright circles against the black arm. Some
stripping effects are observed.

The negative results from I2-1 contained no discernable noise, but as Figures
B.3(a) and (b) show, bruises are weakly visible. Blood vessels are visible in (a).
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(a) I2-1 original, band 142 (b) Band 110 and 142

Figure B.2: One positive result image from phase one using the difference algorithm
on image I2-1. Parameters that were used are listed below each image

(a) Band 20 and 110 (b) Band 62 and 110

Figure B.3: Two negative results from phase one using the difference algorithm on
image I2-1. Parameters that were used are listed below each image
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B.2.2 Phase Two - Extended Test Results

This section presents results from the difference algorithm using I1-2 and I1-3, followed
by the results using I2-2 and I2-3. Results from images containing no clearly visible
bruises are presented at the end.

Figures B.4(a) and (b) show band 47 from the original reflectance images at 192
and 397 hours after injury respectively. Bruises are visible in (a), but difficult to
discern in (b). Figures B.4(c) and (e) show two bruises, but the left has lost its
contour compared to the right bruise. The bruises are difficult to see in both Figures
B.4(d) and (f).

(a) I1-2 original, band 47 (b) I1-3 original, band 47

(c) Band 22 and 38 (d) Band 22 and 38

(e) Band 47 and 29 (f) Band 47 and 29

Figure B.4: Four result images using I1-2(a) and I1-3(b). The left side show results
from I1-2 captured 192 hours after injury. The right side show results from I1-3
captured 397 hours after injury.

Figures B.5(a) and (b) show band 142 from the original radiance images at 192
and 397 hours after injury respectively. Bruises are visible in (a), but they are weakly
visible in (b). Both (c) and (d) show bright bruises against a dark arm and both
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contain striping effect.

(a) I2-2 original, band 142 (b) I2-3 original, band 142

(c) Band 110 and 142 (d) Band 110 and 142

Figure B.5: Image (c) shows results from I2-2(a) captured 192 hours after injury.
Image (d) shows results from I2-3(c) captured 397 hours after injury.

Figure B.6 shows results that had no clearly visible bruise in the original image.
None of the tested parameters produced false positives. This means that there was
no clear indication of bruises before or after testing. Three example parameters and
their result images can be seen in Figures B.6(d), (e), and (f). None show any clear
signs of bruises. The originals can be seen above each picture. Striping effects are
visible in all the result images.

B.2.3 Other Observations

Figure B.7 shows two result images from image I1-1 with their parameters reversed.
Figure B.7(a) shows dark bruises, while (b) show bright bruises. All bruises are clearly
visible.

119



(a) I3-1 original, band 35 (b) I3-2 original, band

35

(c) I4-1 original,

band 35

(d) Band 35 and 21 (e) Band 35 and 21 (f) Band 35 and 21

Figure B.6: Six images taken from a pig were there are no clearly visible bruises. The
originals show in (a), (b), and (c), while the images below them show three example
parameters.
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(a) Band 47 and 29 (b) Band 29 and 47

Figure B.7: An example of two results with their parameters reversed.

B.3 Ratio

This section presents additional figures related to experimentation with the ratio
algorithm.

B.3.1 Phase One - Initial Test Results

This section presents two negative results from the initial testing of image I2-1. Fig-
ures B.8(a) and (b) show bruises that are difficult to discern. Hair is visible in both
images, but most clearly in image (b).

(a) Band 62 and 142 (b) Band 110 and 142

Figure B.8: Two negative result images from phase one using the ratio algorithm on
image I2-1. Parameters that were used are listed below each image.
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B.3.2 Phase Two - Extended Test Results

This section presents three example result images from images containing no clearly
visible bruises, followed by results from testing on image I1-2 and I1-3.

Figure B.9 shows three result images from images of the pig that had no clearly
visible bruises in the original image. None of the tested parameters produced false
positives, meaning that there was no clear indication of bruises before or after testing.
Some striping effect is observed in Figure B.9(c). The original images can be found
in Figures B.6(a), (b), and (c).

(a) I3-1, band 35 and

72

(b) I3-2, band 35

and 72

(c) I4-1, band

35 and 72

Figure B.9: Three result images of a pig with no clearly visible bruises.

The left column of Figure B.10 shows results taken at 192 hours after injury (I1-2),
while the right column shows results taken at 397 hours after injury (I1-3). Figure
B.4(a) shows band 47 of the original I1-2 while (b) shows the original of I1-3. Two
visible circular bruises can be seen in the original of I1-2, but they are more difficult
to discern for I1-3. The same goes for the corresponding result images. Bruises are
visible in Figures B.10(c), (e), and (g), while they are a little weaker in (a). Figure
B.10(b) does not show any bruises while (d) have two barely visible bruises. The
bruises are slightly more visible in (f) and (h) compared to (d). Possible blood vessels
are visible in (e), (f), (g), and (h), along with a triangle shape below and between the
bruises. All images contain noise in the background.

B.3.3 Other Observations

Figure B.11 shows two result images from image I1-1 with their parameters reversed.
Figure B.11(a) shows two dark circular bruises surrounded by a weak brighter ’racoon’
effect. The same can be seen in (b), but with bright bruises and a darker ’racoon’
effect.

122



(a) Band 22 and 38 (b) Band 22 and 38

(c) Band 47 and 29 (d) Band 47 and 29

(e) Band 47 and 97 (f) Band 47 and 97

(g) Band 70 and 47 (h) Band 70 and 47

Figure B.10: Eight result images using selected parameters on image I1-2 and I1-3.
The left column show results from I1-2, while the right column show results from I1-3.
Parameters that were used are listed below each image.
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(a) Band 47 and 29 (b) Band 29 and 47

Figure B.11: Two results from I1-1 with reversed parameters.

B.4 Principal Component Analysis

This section presents the results from using PCA on radiance images. Three radiance
images were tested to build a foundation for a brief comparison between using radiance
images and reflectance images. The results from these radiance images are covered
first. Following this is the result images from testing on images from I2.

Figure B.12 shows eight positive results from testing on radiance image I1-1. In-
teresting results are found in PC3 to five, but also in later components. All the results
display the bruises clearly, but with some minor differences to the right bruise in (a)
and (b) and in both the bruises in (h). The bruises look a bit smaller in (h), but
they have better contours. One set of blood vessels can be seen in (a) and (b), while
(c) through (g) show a different network of blood vessels. Dark lines in (c) can be
yet another set of blood vessels. The ’racoon’ effect can be seen in (f) and partly in
(e) and (h). Hair is clearly visible in (b) and a little less visible in (a) and (c). Fig-
ures B.12(a) and (b) contains much of the same details, but with seemingly inverted
colours.

Figure B.13 shows positive results from testing with PCA on image I4-3. PC3 and
PC4 gave good results, even though one bruise in each was slightly difficult to discern.
Surprisingly, some positive results were found in PC107, 108, and 109 as well. These
have bruises more visible than PC3 and 4. The bruises have different sizes in the
principal components. Striping effects are visible in all components, but most clearly
in PC4.

Three radiance images were originally supposed to be tested from set I2, in a
similar manner to set I1. Heavy striping effects and image corruption meant that
only I2-1 was included in the report, since the others had inadequate quality. Figure
B.14 shows five positive results from image I2-1. Positive results comes later compared
to I1-1, and the first came at PC7. After that, results came spaced out between PC15
and PC29. The bruises are clearly visible in all the images, but the right bruise has
lost some contour and is difficult to discern in all but result (b). Blood vessels are
visible in all result images, were Figures B.14(a) and (e) show two kinds of blood
vessel networks. One has thicker vessels than the other. Hair is visible in (a). All
result images contain heavy striping effects and some corruption in the lower part.
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(a) PC3 (b) PC4

(c) PC5 (d) PC11

(e) PC17 (f) PC18

(g) PC45 (h) PC143

Figure B.12: Eigth positive results from radiance image I1-1. The principal component
(PC) displayed are listed below each image.
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(a) PC3 (b) PC4 (c) PC107 (d) PC108 (e) PC109

Figure B.13: Five positive results from radiance image I4-3. The principal component
(PC) displayed are listed below each image.

(a) PC7 (b) PC15 (c) PC23

(d) PC25 (e) PC29

Figure B.14: Five positive results from radiance image I2-1. The principal component
(PC) displayed are listed below each image.
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An example of one of the corrupted results that led to the exclusion of I2-2 and
I2-3 can be seen in Figure B.15.

Figure B.15: An example of a corrupted principal component (PC13) from image I2-2

B.5 Watershed Segmentation

A larger version of the best watershed segmentation result can be seen in Figure B.16.

Figure B.16: Watershed segmentation (threshold=0.7) overlay on PC4 of reflectance
image I1-1.
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Appendix C
Format Descriptions

This appendix presents the file formats.

C.1 Interleave Formats

There are three common ways of organizing image data for storage in multispectral
and hyperspectral images. Band Interleaved by Line (BIL), Band Interleaved by Pixel
(BIP), and Band Sequential are the names of these storage schemes. Data stored like
this is often preambled by metadata, most often a header file, that gives information
about samples, lines, bands and interleave method. BIL, BIP, and BSQ are not iamge
formats, but data storage patterns.

C.1.1 BSQ

Band sequential (BSQ) stores image points band by band. The entirety of band 1 is
stored before any values of band 2 are stored and so on. This format is optimal for
spatial X, Y access.

C.1.2 BIP

Band interleaved by pixel (BIP) is similar to BIL in that it alternates bands before all
pixels in a band has been stored. In BIP pixel 1 of all bands are stored in sequence,
followed by pixel 2 for all bands and so on. This format is optimal for spectral Z

access of the data.

C.1.3 BIL

Band interleaved by line (BIL) stores image points band by band for each line (row).
For example given a 500x600x160 hyperspectral image, the first 500 image points
would be from the first row of band 1, the next 500 from the first row of band 2
and so on. This format is not optimized, and provides a compromise in performance
between BSQ and BIP. Although this depends on application and data requested from
the file.
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Appendix D
Source Code

In this chapter, the source code for the algorithms principal component analysis
(PCA), K-means clustering, and watershed segmentation are listed. In addition,
helper functions are appended at the end of the seection.

D.1 Principal Component Analysis

The principal component analysis was implemented using the readily implemented
PCA algorithm in MATLAB, and NIPALS. Both are listed in the following sections.

D.1.1 MATLAB PCA

The following listing shows the implementation using the MATLAB PCA method.

Listing D.1: PCA MATLAB Code

1 function [ msglength , msg ] = pca ( inname , outname , ncomponents )

2 %PCA This func t i on w i l l l oad a hyp e r s p e c t r a l p i c t u r e g iven by the

path to

3 %the b inary con ta in ing the data ( not the header ) , and run PCA on

i t and

4 %s to r e the components

5

6 % method t imer s t a r t

7 e0 = cputime ;

8

9 % attempt to read the image , c a l c u l a t e the PCs and wr i t e them out

10 % e l s e , r epor t an error

11 t ry

12 % conver t the argument to an 32− b i t i n t e g e r

13 ncomps = int32 (str2num( ncomponents ) ) ;

14 % read the data to X and conver t i t to s i n g l e p r e s i c i on

15 % (32− b i t f l o a t i n g po in t )

16 X = hs i r ead ( inname ) ;

17 X. data = s i n g l e (X. data ) ;

18

19

20 % conver t the two dimensiona l matrix o f v e c t o r s to a one

dimenional
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21 % vec to r o f v e c t o r s . E. g . NxMxP becomes NMxP.

22 X = columnize (X) ;

23

24 % ca l c u l a t e the p r i n c i p a l components us ing the MATLAB method

25 [COEFF,SCORE] = princomp (X. data , ’econ’ ) ;

26 X. data = SCORE;

27 X. s co r e = COEFF;

28

29 % conver t the data back to NxMxP from NMxP

30 X = decolumnize (X) ;

31 % normal ise the data between 0 and 65535 and s t o r e i t as

unsigned

32 % 16− b i t i n t e g e r s

33 X. data = uint16 (normim(X. data , 0 . 0 , 6 5 5 3 5 . 0 ) ) ;

34

35 % remove the pseudo co l o r d e f a u l t bands from the image header

36 i f i s f i e l d (X. hdr , ’defbands’ )

37 X. hdr=rmf i e l d (X. hdr , ’defbands’ ) ;

38 end

39

40 % i f the number o f r e que s t ed components i s sma l l e r than the

data

41 % then l im i t the c a l c u l a t e d data

42 i f ncomps<X. hdr . bands

43 X. data = X. data ( : , : , 1 : ncomps ) ;

44 X. hdr . bands = int32 ( ncomps ) ;

45 end

46

47 % wr i t e the data to the g i v e f i l ename

48 h s iw r i t e (X, outname ) ;

49

50 % return a tag formated message to the c a l l i n g method

51 msg = ’<error >false </error >’ ;

52 msg = [ msg , ’<numprincomps >’ , ncomponents , ’</numprincomps >’ ] ;

53 catch

54 msg = ’<error >true </error >’ ;

55 msg = [ msg , ’<lasterror >’ , lasterr , ’</lasterror >’ ] ;

56 end

57

58 % append time e l ap sed to the output message

59 e0 = cputime − e0 ;

60 msg = [ msg , ’<elapsed >’ ,num2str( e0 ) , ’</elapsed >’ ] ;

61 msglength = int32 ( numel (msg) ) ;

D.1.2 NIPALS

The following listing shows the implemented NIPALS algorithm for approximating
the PCs.
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Listing D.2: NIPALS for PCA MATLAB Code

1 %func t i on [ outname , nim , nim cropped ] = pcaNipa l s ( inname ,

n comps )

2 %func t i on outname = pcaNipa l s ( inname , n comps )

3 function pcaNipals ( inname , n comps )

4 %PCANIPALS Function f o r l oad ing and performing PCA on an ENVI

hyp e r s p e c t r a l

5 %image .

6 %Arguments :

7 % inname <s t r i n g > − input f i l ename with path o f b in ( not hdr )

8 % outname <s t r i n g > − output f i l ename o f image

9 % nim <c e l l > − output l o ad in g s

10 % nim cropped <c e l l > − output cropped l oad in g s

11

12 %% Quick arguments check

13 i f nargin ˜= 2

14 error ( ’Usage: pcaNipals(binaryfilename ,num_components)’ ) ;

15 end ;

16

17 %% Load

18 disp ( ’Step 1: Reading data’ ) ;

19 t ry

20 [ i1 , d00 , dtype , outname ] = hyper load ( inname ) ;

21 clear d00 dtype ;

22 catch

23 disp ( ’An error occured. pcaNipals aborting.’ ) ;

24 %s = l a s t e r r o r

25 return ;

26 end

27

28 dims = s ize ( i 1 ) ;

29 %disp ( ’ S ta tus : F i l e read ’ ) ;

30 disp ( [ ’ Dimensions: ’ ,num2str( dims (1 ) ) , ’x’ ,num2str( dims (2 ) ) , ’x’

,num2str( dims (3 ) ) ] ) ;

31

32

33 %% Columnize

34 disp ( ’Step 2: Columnize data’ ) ;

35 %X = myim2col ( i1 ) ;

36

37 t0 = 1 ;

38 X = zeros ( dims (1 ) ∗dims (2) , dims (3 ) ) ;

39 for i =1:dims (1 )

40 for j =1:dims (2 )

41 X( t0 , : ) = i 1 ( i , j , : ) ;

42 t0 = t0+1;

43 end ;

44 end ;
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45

46 clear f i l ename i j t0 i 1 ;

47

48 %% NIPALS

49 disp ( ’Step 3: NIPALS iterations’ ) ;

50 dim = s ize (X) ; %dimensions o f da t a s e t

51 %n comps = 15; %number o f p r i n c i p a l components

52 i f i s c h a r ( n comps )

53 n comps = st r2doub l e ( n comps ) ;

54 end

55 s c o r e s = zeros (dim (2) , n comps ) ; %score matrix ( on ly as l a r g e as

needed )

56 l o ad ing s = zeros (dim (1) , n comps ) ; %load in g s matrix ( on ly as l a r g e

as needed )

57 e r r = 1 ; %curren t error i n i t

58 l im i t = 10ˆ−7; %the cut o f f l im i t

59 %disp ( ’ S t a r t i n g NIPALS i t e r a t i o n s ’ ) ;

60

61 t i d3 = cputime ;

62 for i =1:n comps

63 t i d1 = cputime ; %timer f o r e s t ima t ing runtime o f i t e r a t i o n s

64 u = X( 1 , : ) ; %s e t t i n g u to a row vec to r o f X

65 while ( err>l im i t ) %run u n t i l e r ror i s approaching zero

66 v = (X∗u ’ ) /(u∗u ’ ) ; %pro j e c t X onto u to f i nd corresponding

l oad ing v

67 v = v/norm( v ) ; %normal ize the l e n g t h o f l oad ing vec t o r v

to 1.0

68 uold = u ; %s to r e the score vec t o r u in to uo ld

69 u = (X’∗ v ) /(v ’∗ v ) ; %pro j e c t the matrix X onto v to f i nd

score vec t o r u

70 u = u ’ ; %transpose u from 1xn to nx1 ( cou ld have done t h i s

in prev ious s t ep ) , but e a s i e r to understand code f o r

o t he r s

71 d = uold−u ; %d i f f e r e n c e between the prev ious score s and

the curren t s core s

72 e r r = norm(d) ; %convergence o f s core s

73 %disp ( [ ’ Error i s : ’ , num2str ( err ) ] ) ;

74 end ;

75 s c o r e s ( : , i ) = u ;

76 l o ad ing s ( : , i ) = v ;

77 e r r = 1 ;

78 %X = X−(v∗u) ;

79

80 % matmult −−> Out ( i , j ) = sum( r=1,n) ( a ( i , r )∗b ( r , j ) )

81 dv = s ize ( v ) ;

82 mat m = dim (1) ;

83 mat n = 1 ;

84 mat p = dim (2) ;

85 rvec = 1 : mat n ;
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86 %aj =1:mat p ;

87 a i =1:mat m ;

88 t i d2 = cputime ;

89 %for a i =1:mat m

90 for a j =1:mat p

91 resm = (v ( ai , rvec ) ∗u( rvec , a j ) ) ;

92 X( ai , a j ) = X( ai , a j ) − resm ;

93 end ;

94 t i d2 = cputime − t i d2 ;

95

96 pr = ( i /n comps ) ∗ 100 ;

97 disp ( [ ’ ’ ,num2str( pr ) , ’% complete (’ ,num2str( i ) , ’/’ ,num2str(

n comps ) , ’)’ ] ) ;

98 t i d1 = cputime − t i d1 ;

99 disp ( [ ’ One iteration took ’ ,num2str ( ( t i d1 ) ) , ’ seconds.’ ] ) ;

100 disp ( [ ’ Of this , matmult used ’ ,num2str ( ( t i d2 ) ) , ’ seconds.’

] ) ;

101 end ;

102 t i d3 = cputime − t i d3 ;

103 disp ( [ ’ Total iteration time was ’ ,num2str ( ( t i d3 ) ) , ’ seconds.’ ] )

;

104

105 %% Cleaning

106 disp ( ’Step 4: Cleaning’ ) ;

107 clear a i a j an d dim dv e r r i l im i t mat m mat n mat p pr rvec u

uold v %resm

108

109 %% Output / u t pu t t

110 disp ( ’Step 5: Writing components to PNG’ ) ;

111 close a l l ;

112 nim = c e l l ( n comps ) ;

113 nim cropped = c e l l ( n comps ) ;

114 for a i =1:n comps

115 temp1 = normim( mycol2im ( l oad ing s ( : , a i ) , [ dims (1 ) dims (2 ) 1 ] ) ) ;

116 %hardcoded cu t t i n g o f s p e c t r a l on

117 temp2 = normim( temp1 ( 2 2 0 : 1 : dims (1 ) , : ) ) ;

118

119 nim{ a i } = temp1 ;

120 nim cropped{ a i } = temp2 ;

121

122 o u t f i l e = [ inname , ’outputCropped’ ,num2str( a i ) , ’.png’ ] ;

123 imwrite ( temp2 , o u t f i l e , ’PNG’ ) ;

124 o u t f i l e = [ inname , ’outputUncropped’ ,num2str( a i ) , ’.png’ ] ;

125 imwrite ( temp1 , o u t f i l e , ’PNG’ ) ;

126 end ;

127 %disp ( ’ Resu l t s wr i t t en . ’ ) ;

128 clear a i o u t f i l e temp1 temp2 ;
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D.2 K-means Clustering

The Listing D.3 shows the implementation of K-means clustering using the MATLAB
kmeans method. Listing D.4 shows an example usage of the code in MATLAB.

Listing D.3: Clustering MATLAB Code

1 function [ c l u s tCe l l , imgCell , d e s cCe l l ] = c l u s t e r i n g ( f i l ename ,

c l u s t e r s , i t e r a t i o n s , bands )

2 % CLUSTERING

3 % fi l ename − path to the h yp e r s p e c t r a l ENVI f i l e

4 % c l u s t e r s − a parameter v ec t o r o f c l u s t e r numbers

5 % i t e r a t i o n s − a parameter v ec t o r o f i t e r a t i o n numbers

6 % bands − vec t o r o f what bands in the input image shou ld be used

7 input = hs i r ead ( f i l ename ) ;

8 counter = 1 ;

9

10 for c l u s=c l u s t e r s

11 %pick out the data from the input t ha t shou ld be used

12 data = input . data ( : , : , bands ) ;

13 dims1 = s ize ( data ) ;

14 for i t e r=i t e r a t i o n s ;

15 run fo r = 1 ;

16 % a loop t ha t w i l l keep t r y i n g the curren t parameters

17 % un t i l they work ( matlab c l u s t e r i n g i s temperamental )

18 while run fo r

19 t ry

20 %the kmeans r e s u l t s are s t o r ed in the c l u s t e r c e l l

21 c l u s tC e l l { counter}=kmeans ( s i n g l e ( myim2col ( data ) ) ,

c lus , . . .

22 ’maxiter’ , i t e r , ’display’ , ’iter’ ) ;

23

24 %the c l u s t e r r e s u l t s are co loured

25 imgCel l { counter}=labe l 2 r gb ( mycol2im ( c l u s tC e l l {
counter } , . . .

26 [ dims1 (1 ) dims1 (2 ) 1 ] ) ) ;

27

28 %COMMENTED OUT the c l u s t e r r e s u l t s are shown

29 %f i gu r e , imshow ( imgCel l { counter }) ;

30

31 %the parameters are s t o r ed wi th the same index

32 de s cCe l l { counter }=[’Iterations=’ ,num2str( i t e r ) , . . .

33 ’-Clusters=’ ,num2str( c l u s ) ] ;

34

35 %i f a l l t h i s goes we l l , then end the whi le−l oop

36 run fo r = 0 ;

37

38 %increment the counter

39 counter = counter + 1 ;

40 catch
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41 lasterr

42 run fo r = 1 ;

43 end ;

44 end ;

45 end ;

46 end ;

Listing D.4: Clustering MATLAB Code Usage

1 >> [ c l u s t e rC e l l , co lourImageCel l , d e s c r i p t i o nCe l l ] = c l u s t e r i n g ( ’c:\

prosjekt\datasett\VNIR\72h’ , [ 4 8 ] , [ 1 0 100 ] , [ 3 8 47 ] ) ;

2 >> figure , imshow ( co lour ImageCe l l { 1 } , [ ] ) ;

3 >> figure , imshow ( co lour ImageCe l l { 2 } , [ ] ) ;

D.3 Watershed Segmentation

The Listing D.5 shows the implementation of watershed segmentation using the MAT-
LAB watershed transform. Listing D.4 shows an example usage of the code in MAT-
LAB. As implemented, the results will be written to image files on the harddrive in
the location given by the prefix input.

Listing D.5: Watershed Segmentation MATLAB Code

1 function wshed ( f i l ename , band , outputpre f ix , inver t , a l t l e v e l )

2 %WSHED watershed s c r i p t core func t i on

3 %

4 % Usage : wshed ( f i lename , band , o u t p u t p r e f i x )

5 % −−>f i l ename − path to the h yp e r s p e c t r a l b inary in ENVI format

6 % −−>band − the band in the h yp e r s p e c t r a l image t ha t w i l l be used

as a

7 % gre y s c a l e input

8 % −−>ou t p u t p r e f i x − the path and f i l e n amep r e f i x o f the outputed

PNGs

9 % −−>i n v e r t − i n v e r t the p i c t u r e ? 1 or 0

10 %

11 % This func t i on w i l l perform app l i c a t i o n ad ju s t ed watershed

segmentat ion

12 % a f t e r mathematical morphology opera t i ons on the o r i g i n a l image .

13

14 i f nargin˜=4 && nargin˜=5

15 error ( ’ArgumentError’ ) ;

16 end ;

17 %

18 % Read the h yp e r s p e c t r a l image ( might be s low )

19 I = hs i r ead ( f i l ename ) ;

20

21 %

22 % Get the band we wish to proces s
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23 orgImage ( : , : ) = normim( I . data (200 :end , : , band ) ) ; %with crop

24 %orgImage ( : , : ) = normim( I . data ( : , : , band ) ) ; %wi thout crop

25

26 %

27 % Adjust the image con t ra s t

28 % ( wi thout l o o s i n g range , s t i l l doub l e [0−1])

29 adjImage = imadjust ( orgImage , s t r e t ch l im ( orgImage ) , [ ] ) ;

30 i f i n v e r t

31 adjImage = imcomplement ( adjImage ) ;

32 end

33

34 %

35 % Threshold the image

36 l e v e l = 0 . 7 5 ; %de f a u l t t h r e s h o l d va lue

37 i f nargin==5

38 l e v e l = a l t l e v e l ;

39 end

40 bwAdjImage = im2bw( adjImage , l e v e l ) ;

41

42 %

43 % Mathematical morpholpgy

44 %s t r u c t u r a l element , a d i s k wi th rad ius o f 6

45 r ad i = 6 ;

46 s q s i z e = 3 ;

47 seDisk = s t r e l ( ’disk’ , r ad i ) ;

48 seSquare = ones ( s q s i z e , s q s i z e ) ;

49 %opening the image wi th s t r u c t . elem .

50 openImage = imopen (bwAdjImage , seDisk ) ;

51 %masking the image (no p i x e l s added , on ly removed )

52 openImage = openImage & bwAdjImage ;

53 %Beucher−g rad i en t

54 beucherImage = imd i l a t e ( openImage , seSquare ) − imerode ( openImage ,

seSquare ) ;

55

56 %

57 % Watershed Segmentation ( l a b e l i n g o f r e g i ons in b inary image ,

t r i v i a l

58 % usage )

59 dist Image = bwdist (˜ beucherImage ) ;

60 waterImage = watershed ( dist Image ) ;

61 l abe l Image = labe l 2 r gb ( waterImage , ’jet’ ) ;

62

63 imwrite (normim( orgImage ) , [ outputpre f ix , ’_output1_original.png’ ] , ’

PNG’ ) ;

64 imwrite (normim( adjImage ) , [ outputpre f ix , ’_output2_adjusted.png’ ] , ’

PNG’ ) ;

65 imwrite (normim(bwAdjImage ) , [ outputpre f ix , ’_output3_thresholded(’ ,

num2str( l e v e l ) , . . .

66 ’).png’ ] , ’PNG’ ) ;

138



67 imwrite (normim( openImage ) , [ outputpre f ix , ’_output4_thresholded(’ ,

num2str( l e v e l ) , . . .

68 ’)_morphOpened(disk ,radius’ ,num2str( r ad i ) , . . .

69 ’).png’ ] , ’PNG’ ) ;

70 imwrite (normim( beucherImage ) , [ outputpre f ix , ’_output5_thresholded(’

,num2str( l e v e l ) , . . .

71 ’)_morphOpened(disk ,radius’ ,num2str( r ad i ) , . . .

72 ’)_morphBeucher(square ,size’ ,num2str( s q s i z e ) , . . .

73 ’).png’ ] , ’PNG’ ) ;

74 imwrite (normim( distImage ) , [ outputpre f ix , ’_output6_thresholded(’ ,

num2str( l e v e l ) , . . .

75 ’)_morphOpened(disk ,radius’ ,num2str( r ad i ) , . . .

76 ’)_morphBeucher(square ,size’ ,num2str( s q s i z e ) , . . .

77 ’)_bwDistance’ , . . .

78 ’.png’ ] , ’PNG’ ) ;

79 imwrite (normim( waterImage ) , [ outputpre f ix , ’_output7_thresholded(’ ,

num2str( l e v e l ) , . . .

80 ’)_morphOpened(disk ,radius’ ,num2str( r ad i ) , . . .

81 ’)_morphBeucher(square ,size’ ,num2str( s q s i z e ) , . . .

82 ’)_bwDistance_watershed’ , . . .

83 ’.png’ ] , ’PNG’ ) ;

84 imwrite ( labelImage , [ outputpre f ix , ’_output8_thresholded(’ ,num2str(

l e v e l ) , . . .

85 ’)_morphOpened(disk ,radius’ ,num2str( r ad i ) , . . .

86 ’)_morphBeucher(square ,size’ ,num2str( s q s i z e ) , . . .

87 ’)_bwDistance_watershed_rgbLabled’ , . . .

88 ’.png’ ] , ’PNG’ ) ;

Listing D.6: Watershed MATLAB Code Usage

1 >> wshed ( ’c:/prosjekt/datasett/VNIR_reflectance/72h_reflectance’

, . . . 47 , ’c:/prosjekt/png_wshed/72h_reflectance’ ) ;

D.4 Helper Functions

This section presents the code implemented as a framework around, or helper functions
of the experimentation. This includes funcationality such as reading and loading the
hyperspectral data, reordering the hyperspectral data from NxMxP to NMxP (called
columnize and decolumnize), and other structural implementations.

D.4.1 ENVI Image File Reader

The following listing reads the ENVI data from the given filename into a hyperspectral
image structure, called HSI in the code.

Listing D.7: ENVI Image File Reader Code

1 function [ X ] = hs i r ead ( f i l ename )
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2 %HSIREAD This func t i on w i l l read a hyp e r s p e c t r a l image o f the ENVI

format

3 %given a v a l i d path to the f l a t b inary f i l e , not the header . The

header

4 %w i l l be found and parsed f i r s t

5

6 % I n i t i a l data se tup

7 X. f i l e p a t h = f i l ename ;

8 X. isDataRead = 0 ;

9 X. isHeaderRead = 0 ;

10

11 % Contro l o f v a l i d i t y f o r v a r i a b l e ‘ f i l e p a t h ‘

12 i f ˜ i s c ha r ( f i l ename )

13 error ( ’Error 400: Filename is not a char array.’ ) ;

14 else

15 %disp ( [ ’ Loading f i l e ’ , f i l ename ] ) ;

16 end

17

18 % Exis tance o f input f i l e

19 X. headerpath = s t r c a t ( f i l ename , ’.hdr’ ) ;

20 r f i l e h a n d l e = fopen (X. headerpath , ’r’ ) ;

21 reduced = f i l ename ( 1 : (max( s ize ( f i l ename ) )−4) ) ;

22 i f r f i l e h a n d l e == −1

23 X. headerpath = s t r c a t ( reduced , ’.hdr’ ) ;

24 r f i l e h a n d l e = fopen (X. headerpath , ’r’ ) ;

25 i f r f i l e h a n d l e == −1

26 error ( ’Error 404: Header file not found.’ ) ;

27 end ;

28 end ;

29

30 % Read header

31 X. hdr = hs iheader read (X. headerpath , r f i l e h a n d l e ) ;

32 X. isHeaderRead = 1 ;

33 fc lose ( r f i l e h a n d l e ) ;

34 % Al l o ca t e memory

35 X. volume = prod (X. hdr . dims ) ;

36 dims = X. hdr . dims ;

37 X. data = zeros ( dims (2 ) , dims (1 ) , dims (3 ) ,X. hdr . dtype ) ;

38 % Read data

39 X. columnized = f a l s e ;

40

41 f i l e h a n d l e = fopen ( f i l ename ) ;

42 switch X. hdr . i n t e r l e a v e

43 case ’bsq’

44 for alpha =1:1: dims (3 )

45 temp = fread ( f i l e h and l e , ( dims (1 ) ∗dims (2) ) , X. hdr .

dtype ) ;

46 t e l l e r = 1 ;

47 for x=1:1: dims (2 )

140



48 for y=1:1: dims (1 )

49 X. data (x , y , alpha ) = temp( t e l l e r ) ;

50 t e l l e r = t e l l e r + 1 ;

51 end

52 end

53 end

54 case ’bip’

55 for x=1:1: dims (2 )

56 temp = fread ( f i l e h and l e , ( dims (1 ) ∗dims (3) ) , X. hdr .

dtype ) ;

57 t e l l e r = 1 ;

58 for y=1:1: dims (1 )

59 for alpha =1:1: dims (3 )

60 X. data (x , y , alpha ) = temp( t e l l e r ) ;

61 t e l l e r = t e l l e r + 1 ;

62 end

63 end

64 end

65 case ’bil’

66 for x=1:1: dims (2 )

67 temp = fread ( f i l e h and l e , ( dims (1 ) ∗dims (3) ) , X. hdr .

dtype ) ;

68 t e l l e r = 1 ;

69 for alpha =1:1: dims (3 )

70 for y=1:1: dims (1 )

71 X. data (x , y , alpha ) = temp( t e l l e r ) ;

72 t e l l e r = t e l l e r + 1 ;

73 end

74 end

75 end

76 otherw i s e

77 error ( [ ’error: type was’ , i n t e r l e a v e ] ) ;

78 end

79 X. isDataRead = 1 ;

80 end

81

82 %% INTERNAL FUNCTIONS

83 function [ hdr ] = hs iheader read ( headerpath , fh )

84 %HSIHEADERREAD This i n t e r n a l f unc t i on w i l l read the header o f the

85 %hype r s p e c t r a l image and re turn a s t r u c t con ta in ing the read data .

86 %tag s = { ’ samples ’ , ’ l i n e s ’ , ’ bands ’ , ’ header o f f s e t ’ , ’ f i l e type ’ , ’

data type ’ , ’ i n t e r l e a v e ’ , ’ b y t e order ’ , ’ x s t a r t ’ , ’ y s t a r t ’ , ’

d e f a u l t bands ’ } ;

87 datatypes = {’bit8’ ’int16’ ’int32’ ’float32’ ’float64’ ’uint16’ ’

uint32’ ’int64’ ’uint64’ } ;

88 hdr . dims = [0 0 0 ] ;

89 while 1

90 l ine = fget l ( fh ) ;

91 i f ˜ i s c ha r ( l ine )
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92 break

93 end

94 [ head , t a i l ]=strtok ( l ine , ’=’ ) ;

95

96 %remove t a i l i n g whi t e space

97 head = s t r t r im ( head ) ;

98

99 switch head

100 case ’samples’

101 [ f , s ] = strtok ( t a i l ) ;

102 hdr . dims (1 ) = st r2doub l e ( s ) ;

103 hdr . samples = st r2doub l e ( s ) ;

104 case ’lines’

105 [ f , s ] = strtok ( t a i l ) ;

106 hdr . dims (2 ) = st r2doub l e ( s ) ;

107 hdr . l i n e s = st r2doub l e ( s ) ;

108 case ’bands’

109 [ f , s ] = strtok ( t a i l ) ;

110 hdr . dims (3 ) = st r2doub l e ( s ) ;

111 hdr . bands = st r2doub l e ( s ) ;

112 case ’header offset’

113 [ f , s ] = strtok ( t a i l ) ;

114 hdr . o f f s e t = st r2doub l e ( s ) ;

115 case ’file type’

116 [ f , s ] = strtok ( t a i l ) ;

117 hdr . f type = s t r t r im ( s ) ;

118 case ’interleave’

119 [ f , s ] = strtok ( t a i l ) ;

120 hdr . i n t e r l e a v e = s t r t r im ( s ) ;

121 case ’byte order’

122 [ f , s ] = strtok ( t a i l ) ;

123 hdr . byteorder = s t r t r im ( s ) ;

124 case ’x start’

125 [ f , s ] = strtok ( t a i l ) ;

126 hdr . x s t a r t = st r2doub l e ( s ) ;

127 case ’y start’

128 [ f , s ] = strtok ( t a i l ) ;

129 hdr . y s t a r t = st r2doub l e ( s ) ;

130 case ’data type’

131 [ f , s ] = strtok ( t a i l ) ;

132 hdr . dtype = st r2doub l e ( s ) ;

133 hdr . dtypenumber = hdr . dtype ;

134 switch hdr . dtype

135 case 1

136 hdr . dtype = datatypes (1 ) ; %8− b i t by t e

137 case 2

138 hdr . dtype = datatypes (2 ) ; %16− b i t s i gned

i n t e g e r

139 case 3
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140 hdr . dtype = datatypes (3 ) ; %32− b i t s i gned long

i n t e g e r

141 case 4

142 hdr . dtype = datatypes (4 ) ; %32− b i t f l o a t i n g

po in t

143 case 5

144 hdr . dtype = datatypes (5 ) ; %64− b i t doub l e

p r e c i s i on f l o a t i n g po in t

145 case 6

146 error ( ’2x32-bit complex not supported’ ) ;

147 %2x32−b i t complex , rea l−imaginary pa i r o f

doub le p r e c i s i on

148 case 9

149 error ( ’2x64-bit double precision complex not

supported’ ) ;

150 %2x64−b i t doub l e p r e c i s i on complex , rea l−
imaginary pa i r o f doub l e p r e c i s i on

151 case 12

152 hdr . dtype = datatypes (6 ) ; %16− b i t unsigned

i n t e g e r

153 case 13

154 hdr . dtype = datatypes (7 ) ; %32− b i t unsigned

long i n t e g e r

155 case 14

156 hdr . dtype = datatypes (8 ) ; %64− b i t unsigned

i n t e g e r

157 case 15

158 hdr . dtype = datatypes (9 ) ; %64− b i t unsigned

long i n t e g e r

159 otherw i s e

160 error ( ’unknown data type’ ) ;

161 end

162 hdr . dtype = hdr . dtype {1 ,1} ; %make dtype in t o char from

c e l l ( l i k e c a s t i n g )

163 case ’description’

164 hdr . d e s c r i p t i o n = readIns ideBracket ( t a i l , fh ) ;

165 case ’wavelength’

166 hdr . wavelength = readIns ideBracke t ( t a i l , fh ) ;

167 [ s1 s2 s3 s4 s5 ] = regexp ( hdr . wavelength , ’[{]{1}\s

*([0 -9]+[.]{1}[0 -9]+)’ ) ;

168 hdr . minfreq = st r2doub l e ( s5 {1}{1} ) ;

169 [ s1 s2 s3 s4 s5 ] = regexp ( hdr . wavelength , ’

([0 -9]+[.]{1}[0 -9]+)\s*[}]{1}’ ) ;

170 hdr . maxfreq = st r2doub l e ( s5 {1}{1} ) ;

171 clear s1 s2 s3 s4 s5 ;

172 case ’default bands’

173 hdr . defbands = readIns ideBracket ( t a i l , fh ) ;

174 otherw i s e

175 end
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176 end

177 end

178

179

180 function s = readIns ideBracket ( l i , f i l e h )

181 dOpen = 1 ;

182 s = l i ( 2 :end) ;

183 i f ˜isempty ( s t r f i n d ( s , ’}’ ) )

184 dOpen = 0 ;

185 end

186 while dOpen

187 l ine = fget l ( f i l e h ) ;

188 i f ˜ i s c ha r ( l ine )

189 error ( ’D: met end of file inside open bracket. misformed

header file.’ ) ;

190 end

191 %check i f end o f d e s c r i p t i o n s e c t i on

192 s = s t r c a t ( s , l ine ) ;

193 i f ˜isempty ( s t r f i n d ( l ine , ’}’ ) )

194 dOpen = 0 ;

195 end

196 end

197 end

D.4.2 ENVI Image File Writer

The following listing writes the given ENVI data to the filename.

Listing D.8: ENVI Image File Writer Code

1 function h s iw r i t e ( hs i , out f i l ename )

2 %HSIWRITE Wil l wr i t e the g iven @hsi to the path and f i l ename g iven

by

3 %@outf i lename .

4

5 %%%%%%%%%%%%%%%%%%%% VENI − i came ( aka prepare to wr i t e )

6 temp1 = f ix ( clock ) ;

7 temp2 = [ date , ’-’ ,num2str( temp1 (4) ) , ’-’ ,num2str( temp1 (5) ) , ’-’ ,

num2str( temp1 (6) ) ] ;

8

9 i f nargin==1

10 out f i l ename = [ h s i . f i l e p a t h , ’-matlab -’ , temp2 ] ;

11 %disp ( [ ’ Outf i lename s e t to : ’ , ou t f i l ename ] ) ;

12 e l s e i f nargin==2

13 %disp ( [ ’ Outf i lename input : ’ , ou t f i l ename ] ) ;

14 else

15 error ( ’Error -ArgumentNumberIncorrect’ ) ;

16 end

17
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18 dataFilename = out f i l ename ;

19 headerFilename = [ out f i l ename , ’.hdr’ ] ;

20

21 clear out f i l ename temp1 temp2 ; %c l ean ing : )

22

23 %%%%%%%%%%%%%%%%%%%% VIDI − i saw ( assemble the header )

24 s1 = hs iwr i t eheade r ( h s i . hdr , headerFilename ) ;

25 i f ˜ s1

26 error ( ’Error -WritingHyperspectralHeader’ ) ;

27 end

28

29 %%%%%%%%%%%%%%%%%%%% VICI − i conquered ( wr i t e the data )

30 t ry

31 mult ibandwrite ( u int16 ( h s i . data ) , dataFilename , ’bil’ ) ;

32 % fhb = fopen ( dataFilename , ’w’ ) ; %empty the f i l e f o r

wr i t i n g or c r ea t e new f i l e

33 % dims = hs i . hdr . dims ;

34 % swi t ch h s i . hdr . i n t e r l e a v e

35 % case ’ bsq ’

36 % for a lpha =1:1: dims (3)

37 % for x=1:1: dims (2)

38 % for y=1:1: dims (1)

39 % fw r i t e ( fhb , h s i . data ( x , y , a lpha ) , ’

uint16 ’ ) ;

40 % end

41 % end

42 % end

43 % case ’ bip ’

44 % for x=1:1: dims (2)

45 % for y=1:1: dims (1)

46 % for a lpha =1:1: dims (3)

47 % fw r i t e ( fhb , h s i . data ( x , y , a lpha ) , ’

uint16 ’ ) ;

48 % end

49 % end

50 % end

51 % case ’ b i l ’

52 % for x=1:1: dims (2)

53 % for a lpha =1:1: dims (3)

54 % for y=1:1: dims (1)

55 % fw r i t e ( fhb , h s i . data ( x , y , a lpha ) , ’

uint16 ’ ) ;

56 % end

57 % end

58 % end

59 % otherw i s e

60 % error ( [ ’ e r ror 3 ( not known i n t e r l e a v e ) : type was

’ , i n t e r l e a v e ] ) ;

61 % end
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62 % f c l o s e ( fhb ) ;

63 fc lose ( ’all’ ) ;

64 catch

65 error ( ’Error -WritingHyperspectralData’ ) ;

66 end

67 end

68 %%%%%%%%%%%%%%%%%%%% in t e r a l f unc t i on s

69 function su c c e s s = hs iwr i t eheade r ( hdr , h d r f i l e )

70 t ry

71 fh = fopen ( hd r f i l e , ’w’ ) ; %empty the f i l e f o r wr i t i n g or c r ea t e

new f i l e

72

73 fpr intf ( fh , ’%s\r\n’ , ’ENVI’ ) ;

74 i f i s f i e l d ( hdr , ’description’ )

75 fpr intf ( fh , ’description = %s\r\n’ , hdr . d e s c r i p t i o n ) ;

76 end

77 i f i s f i e l d ( hdr , ’dims’ )

78 fpr intf ( fh , ’samples = %d\r\n’ , hdr . dims (1 ) ) ;

79 fpr intf ( fh , ’lines = %d\r\n’ , hdr . dims (2 ) ) ;

80 fpr intf ( fh , ’bands = %d\r\n’ , hdr . dims (3 ) ) ;

81 end

82 i f i s f i e l d ( hdr , ’offset’ )

83 fpr intf ( fh , ’header offset = %d\r\n’ , hdr . o f f s e t ) ;

84 end

85 i f i s f i e l d ( hdr , ’ftype’ )

86 fpr intf ( fh , ’file type = %s\r\n’ , hdr . f type ) ;

87 end

88 i f i s f i e l d ( hdr , ’interleave’ )

89 fpr intf ( fh , ’interleave = %s\r\n’ , hdr . i n t e r l e a v e ) ;

90 end

91 i f i s f i e l d ( hdr , ’byteorder’ )

92 fpr intf ( fh , ’byte order = %s\r\n’ , hdr . byteorder ) ;

93 end

94 i f i s f i e l d ( hdr , ’xstart’ )

95 fpr intf ( fh , ’x start = %d\r\n’ , hdr . x s t a r t ) ;

96 end

97 i f i s f i e l d ( hdr , ’ystart’ )

98 fpr intf ( fh , ’y start = %d\r\n’ , hdr . y s t a r t ) ;

99 end

100 i f i s f i e l d ( hdr , ’dtypenumber’ )

101 fpr intf ( fh , ’data type = %d\r\n’ , hdr . dtypenumber ) ;

102 end

103 i f i s f i e l d ( hdr , ’defbands’ )

104 fpr intf ( fh , ’default bands = %s\r\n’ , hdr . defbands ) ;

105 end

106 i f i s f i e l d ( hdr , ’wavelength’ )

107 fpr intf ( fh , ’wavelength = %s\r\n’ , hdr . wavelength ) ;

108 end

109 fc lose ( fh ) ; %c l o s e i t
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110 su c c e s s = true ; %a l l good so far , then complete

111 catch

112 su c c e s s = f a l s e ;

113 end

114 end

D.4.3 Image Columnizer and Decolumnizer

The fist following listing shows the code for the reorganisation of the data from a
matrix of pixel vectors into a single row vector of pixel vectors. The second listing
shows the code for converting the row vector back into the inital spatial image span.

Listing D.9: Image Reshaping Code - Columnize

1 function [ h s i ] = columnize ( h s i )

2 % DECOLUMNIZE w i l l decolumnize any 3d image

3 % i . e . a 300000 x160 w i l l become 500 x600x160

4 dims = s ize ( h s i . data ) ;

5 i f ˜ h s i . columnized

6 t0 = 1 ;

7 i f i s a ( h s i . data , ’uint16’ )

8 ot = zeros ( dims (1 ) ∗dims (2) , dims (3 ) , ’uint16’ ) ;

9 e l s e i f i s a ( h s i . data , ’single’ )

10 ot = zeros ( dims (1 ) ∗dims (2) , dims (3 ) , ’single’ ) ;

11 else

12 ot = zeros ( dims (1 ) ∗dims (2) , dims (3 ) , ’double’ ) ;

13 end ;

14 for i =1:dims (1 )

15 for j =1:dims (2 )

16 ot ( t0 , : ) = hs i . data ( i , j , : ) ;

17 t0 = t0+1;

18 end ;

19 end ;

20 hs i . data = ot ;

21 clear ot ;

22 hs i . columnized = true ;

23 end

Listing D.10: Image Reshaping Code - Decolumnize

1 function [ h s i ] = decolumnize ( h s i )

2 % DECOLUMNIZE w i l l decolumnize any 3d image

3 % i . e . a 300000 x160 w i l l become 500 x600x160

4 t0 = 1 ;

5 i f hs i . columnized

6 dims = [ h s i . hdr . dims (2 ) h s i . hdr . dims (1 ) h s i . hdr . dims (3 ) ] ;

7 output = zeros ( dims (1 ) , dims (2 ) , dims (3 ) , ’single’ ) ;

8 for i =1:dims (1 )

9 for j =1:dims (2 )
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10 output ( i , j , : ) = hs i . data ( t0 , : ) ;

11 t0 = t0+1;

12 end ;

13 end ;

14 hs i . data = output ;

15 clear output ;

16 hs i . columnized = f a l s e ;

17 end

D.4.4 ENVI Image File Crop

The following listing cropes the loaded hyperspectral image.

Listing D.11: Image Crop Code

1 function [ h s i ] = hs i c r op ( hs i , yrange , xrange , zrange )

2 %HSICROP

3 % Crops the h yp e r s p e c t r a l s t r u c t u r e and updates the f i e l d s

4 hs i . data = hs i . data ( yrange , xrange , zrange ) ;

5 hs i . hdr . dims = [ numel ( xrange ) numel ( yrange ) numel ( zrange ) ] ;

6 hs i . hdr . samples = hs i . hdr . dims (2 ) ;

7 hs i . hdr . l i n e s = hs i . hdr . dims (1 ) ;

8 hs i . hdr . bands = hs i . hdr . dims (3 ) ;

9 hs i . volume = prod ( h s i . hdr . dims ) ;

D.4.5 ENVI Image File Viewer

The following listing shows the code for an implemented function for viewing bands
of the hyperspectral image in MATLAB.

Listing D.12: Image Viewer Code

1 function hsishow ( h s i , l ayer , showAlsoInverted )

2 %HSISHOW

3

4 switch nargin

5 case 2

6 i f ˜ i s s t r u c t ( h s i ) | | ˜ i snumer ic ( l a y e r )

7 error ( ’TwoInputsFormatError’ ) ;

8 end

9 showAlsoInverted = f a l s e ;

10 case 3

11 i f ˜ i s s t r u c t ( h s i ) | | ˜ i snumer ic ( l a y e r ) | | ˜ i s l o g i c a l (

showAlsoInverted )

12 error ( ’ThreeInputsFormatError’ ) ;

13 end

14 otherw i s e

15 error ( ’ArgumentNumberError’ ) ;

16 end
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17

18 p i c tu r e = normim( h s i . data ( : , : , l a y e r ) ) ;

19 p i c tu r e ad ju s t ed = imadjust ( p i c ture , s t r e t ch l im ( p i c tu r e ) , [ ] ) ;

20 p i c t u r e i n v e r t e d = 1 .0 − p i c tu r e ;

21 p i c t u r e ad j u s t e d i nv e r t e d = 1 .0 − p i c tu r e ad ju s t ed ;

22 %pic tu r e c ropped = normim( h s i . data (94 : end , : , l a y e r ) ) ;

23 %p i c t u r e c r opp ed i n v e r t e d = 1.0 − p i c t u r e c ropped ;

24

25 r0 = [min( p i c tu r e ( : ) ) max( p i c tu r e ( : ) ) ] ;

26 r1 = [min( p i c t u r e i n v e r t e d ( : ) ) max( p i c t u r e i n v e r t e d ( : ) ) ] ;

27

28 r2 = [min( p i c t u r e ad ju s t ed ( : ) ) max( p i c t u r e ad ju s t ed ( : ) ) ] ;

29 r3 = [min( p i c t u r e ad j u s t e d i nv e r t e d ( : ) ) max(

p i c t u r e ad j u s t e d i nv e r t e d ( : ) ) ] ;

30

31 f i 1 = figure ;

32 imshow ( p ic ture , r0 ) ;

33 t i t l e ( [ ’Picture (normal) band ’ ,num2str( l a y e r ) ] ) ;

34 f i 2 = figure ;

35 imshow ( p i c tu r e ad ju s t ed , r2 ) ;

36 t i t l e ( [ ’Picture (normal adjusted 2%) band ’ ,num2str( l a y e r ) ] ) ;

37

38 i f showAlsoInverted

39 f i 3=figure ;

40 imshow ( p i c tu r e i nv e r t ed , r1 ) ;

41 t i t l e ( [ ’Picture (inverted) band ’ ,num2str( l a y e r ) ] ) ;

42 f i 4=figure ;

43 imshow ( p i c tu r e ad ju s t ed i nv e r t ed , r3 ) ;

44 t i t l e ( [ ’Picture (inverted adjusted 2%) band ’ ,num2str( l a y e r ) ] )

;

45 wa i t f o r ( f i 3 ) ;

46 wa i t f o r ( f i 4 ) ;

47 end

48 wa i t f o r ( f i 2 ) ;

49 wa i t f o r ( f i 1 ) ;
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