
June 2007
Reidar Conradi, IDI
Jon Arvid Børretzen, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Analysis of Software Faults using
Safety-techniques with Respect to the
Software System DAIM

Jostein Dyre-Hansen

Problem Description
Analysis techniques from safety-critical development, such as PHA or HazOp, shall be used on
DAIM, a system used at IME for starting, delivering and finishing master thesis. Documents to be
analyzed are from the specification and design phase of the system development. The results
obtained from using these techniques shall be compared with existing fault reports with actual
faults as have been discovered in the system. These fault reports shall also be treated and
analyzed.

Assignment given: 22. January 2007
Supervisor: Reidar Conradi, IDI

Abstract

In this master’s thesis we have analyzed the software system DAIM, which
is a web-based delivery system used at NTNU in connection with master’s
theses and master students, with respect to software faults. Based on the
documentation from the design stage of the DAIM project we have per-
formed a technique called Preliminary Hazard Analysis (PHA), which is an
analysis technique from safety-critical development. The results from this
analysis have been compared with existing fault reports containing actual
faults discovered in the system. Some of the intention behind our work has
been to find if hazards identified with PHA can be related to actual faults
found in the fault reports. In [17] it is stated that correcting software faults
in later phases of the software development is much more expensive than in
earlier phases and we have performed the PHA to see if some of the faults
could have been avoided. We found that there were some connections be-
tween some of the faults and hazards identified, but the results were not
entirely as expected.

In our previous work [5] we did a similar kind of analysis as we have done
in this work regarding the analysis of fault reports and we have compared
the results from our previous work with some of the results that we have
obtained from this work to see how the distribution of fault types varies
between the projects. The results showed that there were several differences
between the projects, but some similarities were also discovered.

Preface

This master’s thesis was written in the period from January 2007 to June
2007 and is the result of my MSc degree at the Department of Computer
and Information Science (IDI) at the Norwegian University of Science and
Technology (NTNU) in Trondheim.

First I would like to thank my supervisor Jon Arvid Børretzen for his
contribution to this master’s thesis in the shape of excellent guidance, advice
and support. I would like to thank Professor Reidar Conradi for defining the
master’s thesis and helping me getting started. Kai Torgeir Dragland did a
good job assisting me in questions regarding the DAIM system. I will also
give thanks to Professor Tor St̊alhane and members of the BUCS project
for their contribution.

Trondheim, June 2007

Jostein Dyre-Hansen

II

Contents

1 Introduction 1
1.1 Context . 1
1.2 Definition . 2
1.3 Motivation . 2
1.4 Background . 3
1.5 Outline . 4

2 Prestudy 7
2.1 Introduction . 7
2.2 Safety-Critical Systems . 7
2.3 Different Approaches for Managing Faults 9

2.3.1 Faults, Errors and Failures 9
2.4 Fault Analysis . 10

2.4.1 Orthogonal Defect Classification 10
2.5 Requirements . 14

2.5.1 System Requirements 14
2.5.2 Safety Requirements 18

2.6 Hazard Analysis . 19
2.6.1 Failure Modes and Effects Analysis 20
2.6.2 Hazard and OPerability Analysis 21
2.6.3 Event Tree Analysis 23
2.6.4 Fault Tree Analysis 25
2.6.5 Preliminary Hazard Analysis 27

2.7 Summary . 29

3 DAIM 31
3.1 Introduction . 31
3.2 About DAIM . 31

3.2.1 A Brief Development History 32
3.2.2 User-Oriented Development 34

3.3 Functional Requirements . 34
3.4 Summary . 39

III

4 Research Questions and Method 41
4.1 Introduction . 41
4.2 Context . 41
4.3 Research Questions . 42
4.4 Research Method and Process 43
4.5 Data Collection . 43

4.5.1 Fault Reports . 43
4.5.2 Preliminary Hazard Analysis 44

4.6 Classification of Faults and Hazards 44
4.6.1 The Modified ODC Categories 45

4.7 Challenges in Our Work . 48
4.7.1 Little Experience with PHA 48
4.7.2 Inconsistency in the Way Faults are Reported 49
4.7.3 Classification of the Hazards According to Classifica-

tion Scheme . 49
4.8 Summary . 49

5 Hazard Analysis 51
5.1 Introduction . 51
5.2 Our Choice of Hazard Analysis Technique 51
5.3 PHA Sessions . 52
5.4 Results from the PHA Sessions 53

5.4.1 ”Log in” Use Case . 53
5.4.2 Actor: Administrator 54
5.4.3 Actor: System Administrator 58
5.4.4 Actor: Supervisor . 58
5.4.5 Actor: Economy . 60
5.4.6 Actor: Student . 60
5.4.7 Actor: External user 64
5.4.8 Actor: Simulated user 66

5.5 Categorization of the Hazards 66
5.6 Summary . 69

6 Fault Classification and Analysis 71
6.1 Introduction . 71
6.2 Results from the Fault Analysis of DAIM 71

6.2.1 Analysis of Fault Reports from Collection 1 72
6.2.2 Analysis of Fault Reports from Collection 2 74
6.2.3 Analysis of Collection 1 and Collection 2 76

6.3 Results from the Fault Analysis from our Previous Work . . . 79
6.4 Comparison of Results from the Analysis of DAIM and Pre-

vious Work . 80
6.5 Summary . 83

IV

7 Results 85
7.1 Introduction . 85
7.2 The Process of Comparing Hazards and Faults 85
7.3 The Results from the Comparison 86

7.3.1 Algorithm Faults . 86
7.3.2 Assignment Faults . 86
7.3.3 Checking Faults . 86
7.3.4 Data Faults . 87
7.3.5 Environment Faults 87
7.3.6 Function Faults . 87
7.3.7 GUI Faults . 88
7.3.8 Interface Faults . 88
7.3.9 Timing/Serialization Faults 88

7.4 A Brief Summary of the Results from the Comparison 88
7.5 Trends . 89
7.6 Summary . 90

8 Discussion of Validity and Own Contribution 91
8.1 Discussion of Validity . 91

8.1.1 Conclusion Validity 91
8.1.2 Internal Validity . 92
8.1.3 Construct Validity . 93
8.1.4 External Validity . 93

8.2 Own Contribution . 94

9 Conclusion and Further Work 95
9.1 Conclusion . 95
9.2 Further Work . 96

V

List of Figures

2.1 Different phases. 10
2.2 Number of faults in the different stages in the development

process. 12
2.3 The figure illustrates the fault types and associations to the

different process stages. 12
2.4 The relationship between availability, reliability and main-

tainability. 17
2.5 An example of a FMEA scheme. 21
2.6 An example of a scheme used in the HAZOP process. 23
2.7 An example of an event tree. 25
2.8 An example of a fault tree. 28

3.1 Screenshot of the DAIM webpage. 32
3.2 Screenshot of the search functionality on the DAIM webpage. 33
3.3 Use case diagram from the DAIM system. 38

4.1 An excerpt from the DAIM system log. 44
4.2 An excerpt from the manually made DAIM fault reports. . . 45

5.1 Total distribution of hazards with respect to fault types. . . . 68

6.1 Distribution of fault types within Collection 1. 72
6.2 Distribution of fault types within Collection 2. 75
6.3 Total distribution of fault types after joining Collection 1 and

Collection 2. 78
6.4 Total distribution of fault types from Collection O. 80
6.5 Comparison of the total distribution of fault types from DAIM

and Collection O. 82

VI

List of Tables

2.1 Defect types in ODC. 13
2.2 A variant of ODC defect types. 13
2.3 Guide words for HAZOP . 22
2.4 Hazard identification form. 29
2.5 Summary of the hazard analysis techniques 30

4.1 Modified fault types in ODC. 46

5.1 Hazard table for the use case ”Log in” which is common for
all users except from the ”external user”. 53

5.2 Hazard table for the actor”Administrator user” 55
5.3 Hazard table for the actor ”System administrator user” 59
5.4 Hazard table for the actor ”Supervisor user” 59
5.5 Hazard table for the actor ”Economy user” 60
5.6 Hazard table for the actor ”Student user” 61
5.7 Hazard table for the actor ”External user” 65
5.8 Hazard table for the actor ”Simulated user” 66
5.9 Categorizing of hazards according to fault types. 67
5.10 Number of hazards assigned to the different fault types. . . . 67

6.1 Distribution of fault types within Collection 1. 73
6.2 Distribution of fault types within Collection 2. 76
6.3 Total distribution of fault types after joining Collection 1 and

Collection 2. 77
6.4 Total distribution of fault types from Collection O. 79
6.5 Comparison of the fault distribution from DAIM and Collec-

tion O. 81

VII

VIII

Chapter 1

Introduction

This chapter covers the introduction to the master’s thesis and it will include
the context, definition, motivation, background and outline for the rest of
the master’s thesis.

1.1 Context

The context of this master’s thesis is taken from the research project BUCS
(BUsiness Critical Software) [2] which includes participants from IDI (Insti-
tute of Computer and Information Science) at NTNU (Norwegian University
of Science and Technology) in Trondheim and some companies in the Norwe-
gian IT-industry. BUCS is a research project in the area of computer science
with focus on helping developers, users and customers developing safe soft-
ware. The overall goal in BUCS has been to develop methods to improve
support for analysis, development, operation and maintenance of business-
critical systems and the project is financed by NFR (Research Council of
Norway).

In accordance to developing safe software, a system called DAIM has
been developed at NTNU for supporting several processes concerning master
students and master’s theses, and in this master’s thesis we will use a safety
analysis technique for analyzing this system. The method that we will use
is called PHA (Preliminary Hazard Analysis) which is a method used in
the early design phase with the goal of revealing potential dangers in early
project development. The main reason for doing this analysis is first and
foremost to improve the DAIM system, but in addition to this, a master’s
thesis was written last year with another approach when analyzing the DAIM
system. In [11] the author was also concerned with the DAIM system, but
the method used in the analysis process was FMEA which is a method that
deals with analysis of robustness. As stated above we will now use another
method for analyzing the DAIM system.

1

1.2 Definition

The main title of this master’s thesis is stated as:

”Analysis of software faults using safety-techniques with respect
to the software system DAIM.”

A more detailed description follows:

”Analysis techniques from safety-critical development, such as
PHA or HazOp, shall be used on DAIM, a system used at IME
for starting, delivering and finishing master’s thesis. Documents
to be analyzed are from the specification and design phase of the
system development. The results obtained from using these tech-
niques shall be compared with existing fault reports with actual
faults as have been discovered in the system. These fault reports
shall also be treated and analyzed.”

This master’s thesis will consist of a literature study of what exists re-
garding different safety-techniques used today. As can be read above we
have focus on software faults and we will use a hazard analysis technique
called PHA when analyzing the software system DAIM. In addition to this
we have received fault reports from the same system which we will classify
and analyze. The results from the PHA and the analysis of the fault reports
will then be compared and we will try find if there are any connections be-
tween the results from the PHA analysis and the fault report analysis. In
our previous work [5] we did a similar kind of analysis regarding fault anal-
ysis and we will use the results from our previous work and compare them
with the results that we will find in this work.

1.3 Motivation

There are several reasons for doing analysis on software faults. First of all
removing faults in earlier phases in the software development is of interest
of everybody because correcting and removing faults will become more and
more expensive as the project evolves. According to [17], correcting software
faults in later phases of the software development is more expensive than in
earlier phases and the quote below comes from an analysis concerning the
fault correction process in a large-scale SDL production model:

”Faults undetected within the originating phase took approximately
eight times more effort to correct.”

Having in mind that the hazard analysis technique PHA typically is
performed in earlier phases of the system development, this have motivated

2

us to try out the PHA technique to see if PHA can be used to reveal faults
earlier in the system development process of a given system. In this thesis
we will also analyze fault reports from the same system and by doing this we
will get the chance to compare the results from the PHA and the analysis
of fault reports to see if some faults could have been removed earlier.

Aside from the economical aspect there is also a safety aspect related
to analysis regarding software faults. The hazard analysis technique that
we will use in this master’s thesis resides from safety-critical development
where safety is of highest priority. As more and more of the tasks today are
handled by computer systems, there is a need for safe and robust systems
which can handle unforeseen situations. Safety-critical systems such as flight
controller systems are systems that need a high degree of fault prevention,
because of the consequences a fault in these kinds of systems can cause to
the environment. A plane crash can be catastrophal for people, buildings
and the environment. As the aircraft industry becomes more and more
dependant on new technology such as software, the importance of making
technology with as few faults as possible must be the goal to pursue.

Faults occur in most systems and will probably always occur, but if the
faults can be revealed in earlier phases of the development, then both the
economical and safety aspect will be fulfilled in a better way. The expression
”look before you leap, a stitch in time saves nine” may be suitable in this
connection, because safety-critical analysis is much about reducing the risk
for anything unwanted to happen before it actually happens.

1.4 Background

This master’s thesis is mainly devoted to fault analysis in the area of system
development within computer science. Our previous work [5] was also con-
cerned with fault analysis of system development within computer science,
but in a different setting and with different goals. In our previous work we
cooperated with an external actor, namely a Norwegian software company in
the banking and financial sector and we received fault reports from different
projects. The fault reports from the projects were categorized according to
a classification scheme and then analyzed with respect to different criterions
such as what are the most common faults, what faults are considered most
severe and if there were trends between the different fault reports from the
different projects etc. In addition to this it was a literature study regarding
what is being done within fault analysis within computer science with focus
on the terminology used; we found that the terminology used depends on
who has written it and sometimes it is difficult to get a generic understand-
ing of the different concepts because different people see things differently.
For example the terms ”mistake”, ”fault”, ”error”, ”failure”, ”anomaly” oc-
curred several times, but according to the literature the definitions could

3

be different. Another important issue was that of finding a classification
scheme to use for the process of categorizing the different faults. Several
classification schemes exist and they all have weaknesses and strengths. In
this master’s thesis we have taken into account the experiences we gained
from our previous work and we have tried to use some of what we learned
back then.

1.5 Outline

Below we will give the outline of this master’s thesis with information of
what can be found in the different chapters within this master’s thesis:

Chapter 2 - Prestudy In this chapter we will look into different concepts
concerning safety-critical systems. We will give definitions of different
terms often used in this context and we will present different safety-
critical techniques in the area of hazard analysis.

Chapter 3 - DAIM In this chapter we will introduce DAIM which is the
basis for our research study. A brief overview of the system and the
development history will be given in addition to key information that
we will need in the rest our work with this master’s thesis.

Chapter 4 - Research Questions and Method This chapter introduces
the research context and process in the report. We will present the
material to be analyzed and how the material will be analyzed. The
challenges we have met will be presented as well as the choices that
we had to make.

Chapter 5 - Hazard Analysis This chapter contains the results from the
hazard analysis that we have performed in our work. The reasons for
using the particular method that we have used will also be given in
addition to some information regarding the process.

Chapter 6 - Fault Classification and Analysis In this chapter we will
present our results from the classification of the fault reports from
DAIM and we will analyze our findings. We will also compare the
results obtained from the analysis of DAIM with the results from pre-
vious work which also included fault analysis but with different systems
in focus.

Chapter 7 - Results In this chapter we will present the results from our
work and we will point out the most important findings that we have
made.

Chapter 8 - Discussion of Validity and Own Contribution This chap-
ter contains the discussion part of the master’s thesis along with own

4

contributions. The discussion part is closely related to the threats to
the validity of our work.

Chapter 9 - Conclusion and Further Work This chapter will present
the conclusions that we have made in addition to some comments
about what could be interesting to study in further work.

5

6

Chapter 2

Prestudy

In this chapter we will look into different concepts concerning safety-critical
systems. We will give definitions of different terms often used in this context
and we will present different safety-critical techniques in the area of hazard
analysis.

2.1 Introduction

In Section 2.2 we will focus on safety-critical systems and safety in general
and introduce different concepts and definitions. Section 2.3 will describe
some concepts and terms often used in safety-critical analysis such as defini-
tions of the term ”fault”and when to apply different techniques for managing
faults. In our previous work [5] we were concerned with fault analysis and
since this master’s thesis also will contain fault analysis, Section 2.4 will
briefly look into this. Section 2.5 takes into account the different require-
ments that are often referred to in system development as well as safety
requirements. In Section 2.6 we will introduce the concept of hazard analy-
sis and different methods concerning hazard analysis will be presented.

2.2 Safety-Critical Systems

When discussing safety-critical systems it will be natural to define the term
safety first. According to page 2 in [13], safety is defined as:

Safety is a property of a system that it will not endanger human
life or the environment.

The terminology concerning safety varies a lot and the definitions of various
concepts are defined differently in the literature. In [10] a more general
definition of safety is given as:

Safety is freedom from accidents or losses.

7

A safety-related system is defined as [13]:

A safety-related system is one by which the safety of equip-
ment or plant is assured.

Further it is stated that a safety-related system is a synonym for the term
safety-critical system.

The definitions mentioned above are very general, but they contain the
most important issues when dealing with safety-critical systems. Safety-
critical systems are systems that may cause a lot of harm to people and/or
the environment. The main goal in safety-critical systems is to reduce the
risk of anything wrong happening and the impact if something wrong does
happen. Some examples of safety-critical systems can be aircraft flight con-
trol systems or signal systems for trains. If these systems fail, both people
and the environment will probably suffer dependant of how serious the fail-
ure is. Making systems without failures is very difficult and probably not
realistic, but it is important to produce software and hardware that can han-
dle unforeseen problems that appear and try to reduce the impact of these
problems by doing for example thorough analysis before and during software
development. In the example mentioned above with aircraft flight control
systems, the complexity of the system is quite huge and flight accidents may
have catastrophal consequences. The terms faults, errors and failures are
terms that often are used in this context and in Section 2.3.1 we will look
at some definitions.

According to [10], page 244, there is a lack of software safety engineers
with good knowledge of both hardware and software although a few compa-
nies have established system safety engineering positions. Further it is stated
that the software safety engineer should have overall responsibility for anal-
ysis concerning software safety, participating in software design reviews and
also contribute in the process of identifying software hazards and establish
a connection between the system development and the hazard analysis pro-
cess. Establishing an effective safety program in a company is demanding
and it requires systematic methods and organizational controls. In [10] the
chapter 11.1.4 is devoted to issues concerning system safety in organizations
and includes issues such as duties, responsibilities, personnel qualifications,
subcontracting etc. For example it is proposed that the software safety man-
agement and personnel should be included in the safety program from the
start and there should be frequent meeting activity among all the partici-
pants involved to ensure that the different hazards are handled in the best
possible way.

Having employees just focusing on safety issues is desirable, but for dif-
ferent companies this leads to challenges. Small companies may not afford
having persons just focusing on safety issues while big companies may have
the possibility to do that. The key is to have a balance between a proper
degree of safety and the related costs.

8

There exist several methods for analyzing software systems and the dif-
ferent methods have their advantages and disadvantages. Some of the meth-
ods are best suited in certain situations while other methods can be used
in many situations and in Section 2.3 we will describe different approaches
for handling faults. Techniques referred to as hazard analysis are often used
earlier in the system development process and are used for trying to avoid
unwanted situations to happen. In Section 2.6 we will go into detail about
hazard analysis and describe different methods often used; PHA and FMEA
are examples of techniques referred to as hazard analysis. An example of
a technique that is used in later stages of the system development process
including when the system is operative, is inspection of fault reports either
from the system itself, such as system logs, or fault reports created by the
users of the system when they have discovered that something is wrong.
This technique differs from hazard analysis in the way that it is a reactive
way of handling faults while the hazard analysis tries to find treats/hazards
before they occur and is of a more proactive nature. In Section 2.4 we will
say more about classification and analysis of fault reports.

2.3 Different Approaches for Managing Faults

Different approaches for managing faults in a software system exist, and
what approach to use depends on several factors such as how far one has got
in the development process and how critical the system is. In the literature
one refers to different techniques concerning management of faults and from
page 2 in [13] four groups of techniques are described:

Fault avoidance These techniques aim to prevent faults from entering the
system during the design stage. Resources should be allocated in the
design stage and have focus on avoiding faults.

Fault removal This approach deals with methods for finding faults within
the system before it enters service. Software and hardware testing
techniques should be involved in this process.

Fault detection These techniques focus on systems that are operational.
The aim here is to detect faults while the system is running and try
to minimize the effects of the different faults.

Fault tolerance The goal is to make systems that operate correctly even
though faults do occur.

2.3.1 Faults, Errors and Failures

The terminology within the area of computer science varies a lot. In our pre-
vious work [5] we did a study of the differences concerning the terminology

9

Figure 2.1: Different phases.

used and we could conclude with that there are several variances referring to
the terminology used in the literature. Sometimes different authors define
similar concepts differently which makes it harder to get a common under-
standing of the different concepts. In this report we will use some of the
same definitions as we used in our previous work and Figure 2.1 describes
the transitions between the terms fault, error and failure.

On page 2 in [13] some definitions are given and we will use them as a
basis in this report. The definitions:

A fault is a defect within the system.

An error is a deviation from the required operation of the system
or subsystem.

A system failure occurs when the system fails to perform its
required function.

Based on Figure 2.1, one can see that a fault leads to an latent error
where a fault can be a mistake done by the programmer. When the error
is triggered, it produces wrong and erroneous data and this affects the de-
livered service and a failure will occur. One of the goals in safety-critical
development is that latent errors should not result in system failure. There
are several techniques for not letting that happen such as the one obtained
by interconnecting several modules in such way that if one module fails other
modules are ready to take over and system failure has been avoided.

2.4 Fault Analysis

In our previous work [5] we did research on fault reports from online-systems
and we used different techniques when analyzing and classifying the different
fault reports. This section will include some elements from this work as we
will use the same way of categorizing faults as we did in [5]. In Section 2.4.1
we will present the classification scheme that we will use in our work.

2.4.1 Orthogonal Defect Classification

The Orthogonal Defect Classification scheme (ODC) was developed by Ram
Chillarege in 1990 at IBM Research and it is an example of a scheme for clas-

10

sifying faults, or defects, which is the term used in this scheme. The article
[4] says that ”The goal is to provide an in-process measurement paradigm to
extracting key information from defects and enable the metering of cause-
effect relationships. According to [3], ODC gathers and converts data and
information in software defects to valuable measurements in the software de-
velopment process and/or the product. These measurements are then used
for a variety of management and technical purposes. The reasons for using
ODC are among other factors cost reduction, quality improvement, schedule
management, process diagnostics.

With ODC the developer/tester categorizes a defect into classes that
point to the part of the development process which needs attention [4], see
Figure 2.3 1 for an illustration. In the process of software development
the activities are mainly divided into design, code and test, but there exist
variations. It is of importance that the classification schemes must have
consistency between the different stages considering that the different pro-
cess stages sometimes may overlap or that the different releases are being
developed in parallel. In a huge project the different process stages may be
developed by different people and/or different organizations. When the clas-
sification schemes offer consistency between the different stages, it is possible
to look at trends among the various stages. In Figure 2.2 2 one can clearly
see that there is a connection between the different defect types found in
the various stages. As the development project evolves, one can see that the
number of function defects decreases with the various stages taken into con-
sideration that the design stage is performed before the coding and testing
stage. Another interesting aspect according to [4] is that the classification
scheme should be independent of the specifics of a product or organization.
If these two conditions are fulfilled, the classification schemes may provide
relationships and models that are very useful.

In the ODC taxonomy the term attribute is used for categorizing and
an example of such an attribute is the attribute ”defect type”. The user
that corrects the defect chooses the defect type. The different types of
defects should be very obvious and leave no room for confusion. There is
made a distinction between something ”missing” or ”incorrect”. The number
of defect types was initially five, but has been extended to eight and the
different defect types used in ODC are illustrated in Table 2.1 [4].

It should also be mentioned that there exist variants of the ODC clas-
sification scheme. In [7] the ODC classification scheme is extended with 3
more defect types and in this approach we have a total of 11 defect types. In
addition to the fact that 3 more defect types have been added, some of the
original defect types have also been replaced by new defect types. Table 2.2
illustrates the defect types used in [7].

1http://www.chillarege.com/odc/articles/odcconcept/node3.html 17.06.2007 15:00
2http://www.chillarege.com/odc/articles/asqc/node8.html 17.06.2007 15:00

11

Figure 2.2: Number of faults in the different stages in the development
process.

Figure 2.3: The figure illustrates the fault types and associations to the
different process stages.

12

ODC defect types
Function
Assignment
Interface
Checking
Timing/Serialization
Build/Package/Merge
Documentation
Algorithm

Table 2.1: Defect types in ODC.

Variant of ODC defect types
Function
Assignment
Interface
Checking
Build/Package
Documentation
Data
Memory
Environment
Naming conventions
Understandability

Table 2.2: A variant of ODC defect types.

13

2.5 Requirements

In system development projects there are often requirements connected to
the projects which have to be fulfilled for the customer to be satisfied.
Typically one refers to customer requirements which is further divided into
functional requirements and non-functional requirements. In systems where
safety is important there is often attached a document concerning the safety
requirements, which is supposed to stake out what is required from the
system concerning safety issues. These documents state what the system
should do and should not do for maintaining the wanted level of safety. In
Section 2.5.1 we will look closer into some system requirements often re-
ferred to in system development while Section 2.5.2 briefly will introduce
requirements concerning safety.

2.5.1 System Requirements

System requirements may vary a lot from system to system. It all depends
on what kind of system one is dealing with, such as the complexity of the
system, the size of the system and the need for safety etc. The purpose
of the system should absolutely be taken into consideration when deciding
on the system requirements. Some systems have more focus on safety than
others while other systems demand for a high degree of up-time. If these
system requirements are stated early in the process, it might be easier to
fulfill the requirements because they are in focus from the start. There exist
different terms for describing the various general system requirements and
in this section we will base our terminology on the pages 20 to 25 in [13].

The first system requirement that we will take into account is reliability,
which is defined as:

Reliability is the probability of a component, or system, func-
tioning correctly over a given period of time under a given set of
operating conditions.

The requirement reliability may vary a lot from system to system, be-
cause the different systems may have different needs. Some systems are ex-
pected to operate for a long time, maybe for several years and maintenance
may be impossible due to difficult conditions etc. Therefore it is necessary
to have this in mind from the start of the development and take this into
consideration. It is also a matter of money, because systems with a high
degree of reliability are probably more expensive to develop than others.

Availability is another requirement that has to be considered and it is
defined as:

The Availability of a system is the probability that the system
will be functioning correctly at any given time.

14

The two terms availability and reliability are often mentioned in the same
context, but the two terms have quite different meanings. When speaking
of reliability one refers to a period of time while availability refers to a par-
ticular point in time. Reliability does not include any actions for repairing
a system that has been brought down. Said in other words reliability can
be thought of as the time that it will take a component, part or system to
fail while it is operating. Unlike availability, reliability does not take into
consideration the time needed for repair to get the unit back into a working
condition. According to [15], availability can be thought of as the probabil-
ity that the system performs its required function whenever someone calls
it given that the system has not been brought down or is being repaired.
Availability is a function of reliability and maintainability. As an example
one could think of a system that operates correctly 99 hours out of 100
hours, and then one can say that average availability during the period is
99/100, or 99 percent.

System integrity is another system requirement that needs to be men-
tioned in this context and the definition is given as:

The integrity of a system is its ability to detect faults in its own
operation and to inform a human operator.

In Section 2.3 we listed four different groups of techniques for managing
faults and system integrity is related to the group named fault detection.
System integrity is of highest importance in highly safety-critical systems,
such as in railway signalling systems or aircraft controller systems where
the consequences can be catastrophic if something happens that was not
supposed to happen. One have to realize that faults do occur, but the
important thing is to have systems that can handle faults in such a way that
the user of the system is noticed about the fault and then can take actions
based on the error message and make sure that the error is handled in a
reasonable way. The damage the situation may cause, can then be avoided
or at least be reduced to a minimum. Preferably one should create systems
that can handle different faults itself without any human intervention, but
this is easier said than done. There are situations where human attention
might be necessary such as in situations where there are subjective value
judgements involved.

Another important system requirement which deserves some attention is
data integrity and according to [6] data integrity is often defined as:

Data integrity refers to the prevention of unauthorized and im-
proper data modification.

Probably with most of the computer systems in use it is a wish that
there is a high degree of data integrity. The degree of how much integrity
the different systems need varies a lot from system to system. Some systems

15

are quite critical and need a high degree of integrity while other systems are
not that critical demanding a lesser degree of integrity. Even though a high
degree of integrity is preferred, there is also a matter of economy. As stated
earlier in this chapter, it is more expensive to develop a system with a higher
degree of reliability and the same is truth for the requirement of integrity. It
is important to have a reasonable balance between the costs and the degree
of fulfilling the system requirements. Some systems may be too expensive
to develop if all requirements should be too extensively implemented and
companies may prefer to take a higher risk instead of too high development
costs. Then if something happens it may be cheaper to correct the problems
afterwards instead of trying to make a 100 percent fault proof system which
might not even be possible. There are several examples on systems that
need a high degree of integrity such as systems in the area of banking and
finance, military systems and telecom. The consequences of faults related
to integrity can be catastrophal in these systems.

Maintainability is given as another system requirement and there is
given a definition of maintainability and maintenance:

Maintenance is the action taken to retain a system in, or re-
turn a system to, its designed operating condition.

Maintainability is the ability of a system to be maintained.

With most computer systems, maintenance is of high priority for differ-
ent reasons. As new technology comes and requirements change there is a
need for maintenance for keeping the systems up-to-date. Problems arise in
shape of for example failures and maintenance is necessary for correcting the
different faults which have caused failures to the systems. The time needed
for maintenance of different systems varies from system to system and de-
pends on several factors. Systems that are well implemented in the first place
would probably not need that much attention compared to systems not that
well planned and implemented, but this may not be true in all situations.
Other factors such as complexity and size can alone be reasons enough for
maintaining a high level of maintainability for different companies.

When speaking of maintainability it is also appropriate to include the
two terms reliability and availability because the terms are closely related.
From Figure 2.4 [15] we can see that if the reliability is constant and the
maintainability is decreasing, it will result in decreasing availability. If the
maintainability is increasing, the result will be increasing availability. In the
case where the maintainability is constant, increasing reliability will lead to
the availability increases, while decreasing reliability will result in decreasing
availability. As one understands, the system does not only depend on how
frequent the system is out of order, but also the time needed to restore it.
Having this in mind makes it easier to understand that the different system
requirements are closely related and need to be seen and treated as a whole.

16

Figure 2.4: The relationship between availability, reliability and maintain-
ability.

There are several ways to measure the different system requirements
and both qualitative and quantitative approaches exist. With respect to the
maintainability there exist a well known measure, namely Mean Time To
Repair abbreviated MTTR. According to [1] we have that:

The Mean Time To Repair is the arithmetic mean of the
elapsed time between the first status of Incident Reported and
the corresponding status Defect Resolved for the set of all resolved
defects.

As stated in the article [1] one should be careful with comparing measures
like these between companies because there are different viewpoints from
company to company. A random user will probably think of the time to
repair from where he/she reports the failure until it is solved while a company
will measure the MTTR from the moment they receive the fault report from
their own helpdesk.

The term dependability is defined in [9] and we present it here:

Computer system dependability is the quality of the delivered
service such that reliance can justifiably be placed on this service.

In [9] reliability, availability, maintainability and safety are said to be the
measures of dependability. For a system to be dependable, a combination
of the measures just mentioned has to be included and then it is easier to
quantify the dependability. Having mentioned service it will be appropriate
to define it [9]:

The service delivered by a system is the system behavior as it is
perceived by another special system(s) interacting with the con-
sidered system: its user(s).

17

According to [9] the life of a system can be perceived by its users as
being in one of two possible states:

• Service accomplishment, where the service is delivered as specified.

• Service interruption where the delivered service is different from the
specified service.

In this section we have defined the requirements reliability, availability,
system integrity, data integrity, maintainability and dependability. These
requirements are often referred to when speaking of requirements concern-
ing computer systems and should be closely considered when developing
computer systems. If possible all of the requirements should be fulfilled to
a highest possible degree, but this might not always be possible. Making a
system that fulfills all requirements 100 percent costs a lot of money and the
companies involved may be forced to reduce the degree of fulfilment because
of this, resulting in a tradeoff between the cost and the degree of fulfilment.

2.5.2 Safety Requirements

In safety-critical development there is also a need for safety requirements
in addition to the system requirements mentioned in Section 2.5.1. As dis-
cussed in Section 2.2 safety requirements are about avoiding incidents that
can result in accidents which can cause harm to people, property or the en-
vironment. In the context of a computer system where the computer system
deals with safety-critical issues, there might exist a lot of components con-
trolled by the computer system, that could cause harm to the surroundings.
These undesirable incidents are often termed hazards and the term hazard
will be defined in the next Section 2.6.

One of the main issues when dealing with safety is to handle these haz-
ards in the best possible way. There are several stages in the process of
handling hazards and the main stages defined in [13], page 25-26, are:

• Identification of the hazards associated with the system.

• Classification of these hazards.

• Determination of methods for dealing with the hazards.

• Assignment of appropriate reliability and availability requirements.

• Determination of an appropriate safety integrity level.

• Specification of development methods appropriate to this integrity
level.

18

2.6 Hazard Analysis

There are several definitions of the term hazard, but in our work we will
use the definition found in [14]:

A hazard is a state or set of conditions of a system or an object
that, together with other conditions in the environment of the
system or object, will lead to an accident.

Hazards are considered as threats to people and the environment and
some examples of hazards can be a car accident, stroke of lightening, plane
crash, brake failure. These incidents may result in catastrophic consequences
like people being hurt or even killed; buildings and means of transport may
be damaged or destroyed. With all the hazards there is a risk associated
and [14] defines risk as:

Risk is defined as the product of an event’s consequence and
its probability of occurence or as its hazard level (severity and
likelihood of an occurence) combinded with 1) the likelihood of the
hazard leading to an accident and 2) hazard exposure or duration.

Having introduced the term hazard it will be natural to introduce the
compounded term hazard analysis which is, as the name implies, an anal-
ysis of hazards. It is important to accept the fact that hazards will always
exist and hazard analysis is about reducing the risk for the hazards to hap-
pen. There are several steps involved in the process of analyzing hazards
and there exist different approaches. In advance of the hazard analysis it
is important to establish goals or purposes, because the steps to be taken
depend on this. Having defined different goals or purposes, makes it easier
to choose the most appropriate steps in order to make the analysis more
reasonable.

There are different analytical techniques used in the area of hazard anal-
ysis. Each technique provides different viewpoints and some techniques may
be better suited for some kind of tasks than other tasks and therefore it is
important to find the best suitable technique dependant on what kind of
task one shall handle.

According to [10] the techniques most widely used are:

• Failure Modes and Effects Analysis (FMEA)

• Failure Modes, Effects and Criticality Analysis (FMECA)

• Hazard and OPerability studies (HAZOP)

• Event Tree Analysis (ETA)

• Fault Tree Analysis (FTA)

19

• Preliminary Hazard Analysis (PHA)

Section 2.6.1 to Section 2.6.5 will describe these techniques with more
details.

2.6.1 Failure Modes and Effects Analysis

Failure Modes and Effects Analysis was one of the first systematic methods
for analyzing faults in technical systems and is often abbreviated FMEA.
The method was developed by reliability engineers in the late 1950s with
the goal of predicting equipment reliability mainly in military systems. In
its original form it is a variant of reliability analysis that place importance
on successful functioning rather than hazards and risk. Its main goal is to
calculate the overall probability for a product to operate without failure for a
given length of time. Over the years the method has been further developed
and has been used in several areas, but the main content has been the same
with just minor variations dependant on what tasks it was intended to solve
[12] [10].

The FMEA technique is usually performed in the beginning of a system
development project, often in the design phase. The main objective is to
identify parts or properties of a system that need to be improved in order
to satisfy the reliability and safety requirements which are expected. In [12]
there are defined several intermediate goals which we will give in the list
below:

1. Identify every possible failure state for every component in the system.

2. Determine the causes of the failure states.

3. Determine the failure states impact on the system as a whole.

4. Determine the severity of the different fault effects.

The FMEA technique is mainly a qualitative analysis, but could also be
of a quantitative nature when assigning probability and frequency to the
different failure modes. The technique is quite easy and does not involve
a special technique or algorithm, but it requires that the participants have
thorough knowledge of the system [12]. When doing the FMEA analysis
a FMEA scheme for filling out the details concerning the different failures
has to be completed. There exist different kinds of FMEA schemes and an
example3 is given in Figure 2.5.

3www.siliconfareast.com 23.03.2007 15:00

20

Figure 2.5: An example of a FMEA scheme.

Failure Modes, Effects and Criticality Analysis

Failure Modes, Effects and Criticality Analysis, abbreviated FMECA, is
actually an extension of FMEA [12] [13] [10]. The main difference between
FMEA and FMECA is that FMECA contains a more detailed approach con-
cerning the criticality of the failures which involves a description or ranking
of the failures according to criticality.

2.6.2 Hazard and OPerability Analysis

Hazard and OPerability Analysis (HAZOP) is a hazard analysis technique
used in several areas. The technique, which originates from the chemical
industry, was developed in the early 1960s in England and later improved
upon and published by the Chemical Industries Association (CIA).

According to [10] HAZOP is based on a system theory model of accidents
that assumes that accidents are caused by deviations from the design or op-
erating intentions and an example could be that when expecting a forward
flow, a backward flow or no flow at all appears. The technique demands for
creativity in discovering all possible hazards and operating problems that
can occur. HAZOP is of a qualitative nature where the participants sys-
tematically try to identify all possible deviations from the design’s expected
operation and all hazards associated with these deviations. A difference be-
tween HAZOP and the other techniques mentioned in this chapter is that
the other techniques require that hazards are identified before the analysis.

In Figure 2.6 4 an example of a scheme used in connection with the

4http://www.frascati.enea.it 12.04.2007 14:00

21

Guide words Meaning
NO, NOT, NONE The intended result is not achieved, but nothing else

happens (such as no forward flow when there should
be).

MORE More of any relevant physical property than there
should be (such as higher pressure, higher tempera-
ture, higher flow, or higher viscosity).

LESS Less of a relevant physical property than there should
be.

AS WELL AS An additivity occurs in addition to what was in-
tended, or more components are present in the system
than there should be (such as extra vapors or solids
or impurities, including air, water, acids, corrosive
products).

PART OF Only some of the design intentions are achieved (such
as only one of two components in a mixture).

REVERSE The logical opposite of what was intended occurs
(such as backflow instead of forward flow).

OTHER THAN No part of the intended result is achieved, and some-
thing completely different happens (such as the flow
of the wrong material).

Table 2.3: Guide words for HAZOP

HAZOP process is illustrated. The leftmost column contains the guide
words used in the process. There exist different approaches concerning the
guide words and in [10] a list of guide words is given which we have presented
in Table 2.3. In the column Deviation, the deviation from the requirements
specification is given and an example from the table is ”Increased Li flow”.
Given the deviation, it is easier to see what the consequences are and column
Consequences deals with this. The causes for the deviations are described
in the column Causes. The column Existing protection describes what
kind of protection mechanisms that exist if the deviation occurs. The column
Action items or recommendations describes the action to be performed
if a deviation is being present.

The strength of HAZOP is its simplicity and ease of application. In
addition to finding failures HAZOP has the potential to find more complex
types of hazardous events and causes. By using HAZOP there has been
documented a reduction of the number of hazards and problems encountered
in operation [10].

When performing the HAZOP, normally 4-6 persons should be present
in addition to the HAZOP leader and a secretary and the time needed to
perform the analysis depends on the size and complexity of the system to
be analyzed [12]. Normally HAZOP is performed at the point in time where

22

Figure 2.6: An example of a scheme used in the HAZOP process.

the design is finished and after, but there exist variants of HAZOP such as
Preliminary Hazard Analysis (PHA), see Section 2.6.5, which may be used
in earlier phases for revealing what dangers and problems that can arise.

2.6.3 Event Tree Analysis

Event tree analysis (ETA) is a well known technique used in risk analyzes
and this technique has been used in several huge projects such as the Amer-
ican nuclear program WASH-1400 in the 1970s. Event tree analysis may
resemble fault tree analysis in some aspects such as the use of a tree struc-
ture, but the two techniques have a big difference in the way the trees are
constructed; fault trees starts with identifying the top event first while event
trees start with finding initiating events that lead to possible outcomes, ”top
events”. Section 2.6.4 presents fault tree analysis (FTA).

ETA is concerned with finding chains of events that follow from a partic-
ular initiating event which in turn can result in accidents of different kinds.
As can be seen from Figure 2.7, each event has a probability attached to it
which makes it possible to calculate the likelihood of the different events to
happen.

According to [12] an ETA is normally performed in six steps:

1. Identification of initiating event The initiating event can be a fault
of technical or human nature and it is important that the initiating
event could give rise to a chain of possible events.

2. Identification of safety functions The safety functions are the sys-
tems’ defence and are supposed to hinder or reduce the effect of a
initiation event. The people involved in this process will have to iden-
tify all safety functions which can change the result of the initiating
event with respect to what order the events are activated in. Examples

23

can be automatic shutdown systems, alarms in case of fire, procedures
to be followed in emergencies etc.

3. Construction of the event tree There are different standards for draw-
ing the event tree, but normally the event tree is drawn chronologically
from left to right, where the leftmost event is the initiating event which
triggers successor events. For each safety function that is being acti-
vated there are two branches, either ”success” or ”fail”. When the tree
is constructed, one can trace a path through it by choosing a branch
under each successive safety function and a probability for different
accidents can be calculated because each branch has got a probability
assigned to it. Figure 2.7 5 gives an example of an event tree.

4. Description of the resulting chain of events This is a qualitative
part of the analysis where the analyst is supposed to describe the
resulting chain of events. Some of the chains of events show that the
safety functions work as planned and result in situations where the
system continues operation or has to be shut down in a safe way. The
analyst should also rank the consequences according to their severity
and this should be used when assigning resources for improving dif-
ferent parts of the system; some parts need more attention than other
parts of the system etc.

5. Calculation of the probability of the identified consequences If there
exist reliability data for the initiating event and the safety functions,
a quantitative analysis of the system can be performed. Concerning
the initiating event we need information about the number of events
per unit of time and for the safety functions we need a measure of
probability stating that they work satisfactorily when activated.

6. Presentation of the results At the end of the analysis a presentation
of the event tree has to be done.

In accordance with FTA, ETA may also be performed by one analyst,
but preferably it should be performed in a group of two to four persons in
a brainstorming session. At least one of the persons involved should have
experience with ETA analysis and the rest of participants should have good
knowledge to the system. For achieving good quantitative analyzes relevant
reliable data should be present [12]. The ETA process should be introduced
after most of the design of the system is complete [10].

ETA gives a clear picture of the chain of events that follows after a fault in
the system which makes it a suitable technique for improving different parts
of the system as for example safety. As stated above FTA differs from ETA

5http://www.ece.cmu.edu/k̃oopman/des s99/safety critical/Event tree.jpg 15.05.07
13:55

24

Figure 2.7: An example of an event tree.

primarily in the way relationships between events are handled. While FTA
offers a snapshot of the system state pointing out the relationship between
events, ETA focuses on the relationship between sequences of events that
are linked and assigned a probability. In theory event trees are better suited
when working with notions of continuity (logical, temporal and physical)
while fault trees have an advantage when identifying and simplifying event
scenarios. ETA and FTA are together the most used analysis methods in risk
analyzes because of their simplicity and that they both are well documented.

2.6.4 Fault Tree Analysis

Fault Tree Analysis (FTA) was developed by Bell Telephone Laboratories in
the early 1960s in connection with the evaluation of the Minuteman Launch
Control System for missile launch. The aerospace company Boeing adopted
this analysis technique and has developed the technique further [12].

According to [10] FTA is primarily used for analyzing causes of hazards
and not for identifying hazards. FTA is a top-down search event and the top
event of the fault tree has to be identified by other techniques. In contrast to
ETA, discussed in Section 2.6.3, FTA starts with all identified hazards and

25

works backwards to determine potential causes while ETA do the opposite
namely starting with all possible events and based on these determine the
outcome [13]. Normally FTA is performed in four stages [10] and a short
summary follows:

1. System definition This stage includes the decisions of determining the
top event, initial conditions, existing events and impermissible events.

2. Fault Tree Construction When the stage above is finished, the con-
struction of the fault tree begins. Based on the top events, the analyst
use his/her knowledge to find the causal events which leads to the
top event by using logic symbols for describing the causal relations.
Several logical operators exist, for example the ”AND” and ”OR” op-
erators, but there are others too.

3. Qualitative analysis The main task here is to reduce the tree to a
logically equivalent form that shows the specific combinations of basic
events sufficient to cause the top event. The main goal is to find the
minimal cut set.

4. Quantitative analysis The quantitative analysis uses the minimal cut
sets from the qualitative analysis to calculate the probability of occur-
rence of the top event from the probability of the occurrence of the
basic events. The probability of the top event will be the sum of the
probabilities of all the cut sets if they are all statistically independent.

The FTA technique is based on boolean logic and a diagram with boolean
symbols is used to illustrate the relationship between an undesired incident
and its causes. From Figure 2.8 6 which contains a simple fault tree for
a brake system, it can easily be seen that ”Brake Fails” is the top event
which may be the outcome if all of the underlying events occur. As one
can see from Figure 2.8 there are two boolean operators, one ”or” operator
and one ”and” operator, and if the inputs from ”Brake Sensor Fails”, ”Brake
Controller Fails” and ”Brake Actuator Fails” are all true, this will result in
that the top event ”Brake Fails” will be true and the brakes will fail. The
FTA analysis is best suited for discrete events rather than continual events
because of the boolean nature of the technique. The fault tree is actually
a snapshot of the system at one point in time and does not allow for many
changes before the analysis will be difficult to manage.

The FTA analysis can be done by one analyst, but preferably it should
be done in a group of two to four people [12]. At least one of the members
of the group should have experience with fault tree analysis and the rest
of the group should have good knowledge to the system. When doing such
an analysis it is demanded that one have a thorough understanding of the

6http://www.ece.cmu.edu/ 26.03.2007 17:00

26

system operations, the various failure modes of the different system compo-
nents in addition to the effects that these failure modes have on the system.
Such information can for example be achieved from the FMEA process, see
Section 2.6.1, which is being performed in the earlier stages of the system
development. One of the advantages with FTA analysis is that it is easy to
explain to a third party which is not familiar with the analysis and this is
way this method is one of the most used analysis methods in risk analysis.
Another advantage one can get benefit from using this method is that the
person doing the analysis is forced to understand the system very well, and
this may result in that while doing the analysis it might be easier to find
and correct latent faults.

2.6.5 Preliminary Hazard Analysis

Preliminary Hazard Analysis (PHA) is based on a technique developed by
the U.S. Department of Defence (DoD). The technique which handles risk
analysis is widely used and it has proven to be effective within safety related
work done in DoD and safety analyzes of process plants [12].

PHA is normally carried out in an early phase of the development and
the goal is to reveal potential hazards as early as possible in the project
development. After having identified several hazards, actions can be taken
to control the hazards either by eliminating them or reducing their impact
on the system being developed. According to [12], the PHA is normally
executed in three steps:

1. Gather necessary information Considering that the PHA is carried
out in the early design phase, there is probably limited information
regarding the system available and this should encourage the partici-
pants to find information concerning similar systems and experiences
which might be useful to start off with.

2. Execution of the analysis In this phase the analysis of the different
hazards should be executed and it starts with identification of hazards,
critical events and other events that may result in unwanted conse-
quences. The participants involved in the analysis process shall also
identify design criterions or alternatives that can eliminate or reduce
the dangers. After having identified several hazards the participants
have to identify the different causes why the hazards may occur. Fur-
ther the consequences of the different hazards should be registered
and actions to be taken for removing or reducing the possibility of the
hazards to happen have to be stated.

3. Documentation of the results The results from the steps above should
be documented in some kind of a scheme with key information from
the analysis.

27

Figure 2.8: An example of a fault tree.

28

No. Hazard Cause Level Effect Category

1

2

Table 2.4: Hazard identification form.

The PHA is a quick and easy analysis to do and should be executed early
in the design phase of the system. According to [12] the analysis should
be performed by one or two experienced engineers and as stated in item 3
in the list above, they should use a scheme for registering the information
related to the different hazards. In Table 2.4 we give an example of such
a scheme that can be used in the analysis process [10]. There exist several
approaches when performing a PHA and what data to record varies from
approach to approach. In [10] a more detailed scheme is proposed which
includes information such as:

• System, subsystem, unit (equipment grouping where the potential haz-
ard exists).

• Category (hazard level).

• Operational phase when hazardous.

• Organizations responsible for ensuring that safeguards are provided
for the specific hazard.

• Verification methods (tests, demonstrations, analysis, inspection) to
verify that the hazard is effectively controlled.

• Remarks and status of the hazard resolution process. The hazard is
closed when it has been verified that the recommended actions have
been implemented and are effective.

2.7 Summary

In this chapter we have looked at different issues that are important in this
master’s thesis. We have presented issues such as safety-critical systems,
fault analysis, different approaches for managing faults and hazard analy-
sis. Considering that the hazard analysis is one of the main tasks in our
work, we have made a table that summarizes and compares the different
hazard analysis techniques in Table 2.5 according to certain criterions. The
comparison is mainly based on the information given in [12].

29

FMEA HazOP ETA FTA PHA
Formalization High Moderate Moderate High Low
Process Stage Medium Medium Early Late Early
Costs Low Moderate Low Moderate Low
System Info
Requirements

Moderate Moderate High High Low

Complexity
level

Low Moderate Moderate Moderate Low

Experience
required

Moderate Moderate High High Moderate

Table 2.5: Summary of the hazard analysis techniques

30

Chapter 3

DAIM

In this chapter we will introduce DAIM which is the basis for our research
study. A brief overview of the system and the development history will be
given in addition to key information that we will need in the rest our work
with this master’s thesis.

3.1 Introduction

In Section 3.2 we will present the DAIM system which we will analysis in
this master’s thesis. We will give a brief development history and describe
the key functionality of the system. Section 3.3 will describe the functional
requirements of the DAIM system in addition to a diagram of use cases
related to the system. This will be the basis for the analysis in Chapter 5.

3.2 About DAIM

DAIM1 is an abbreviation for ”Digital Arkivering og Innlevering av Mas-
teroppgaver” and is a system used at NTNU for dealing with the adminis-
tration of master students and master theses. The system is supposed to
support the master students in the three phases:

1. Complete the master’s thesis contract

2. Delivery of the master’s thesis

3. End the master study

In addition to support the master students when dealing with the ad-
ministrative details concerning the master’s thesis, DAIM also offers another
functionality. This functionality makes it possible for the people that visits

1http://daim.idi.ntnu.no 10.04.2007 15:00

31

Figure 3.1: Screenshot of the DAIM webpage.

the DAIM webpage 1 to search for master’s theses that have been delivered
over the years. Figure 3.2 illustrates this search functionality where the
term ”safety” has been used to find master’s theses that include this term.
Master theses related to the term ”safety” are then listed on the web page
based on some kind of ranking algorithm that returns master’s theses in
an order according to relevance of the term. Master’s theses that have not
been censored or master’s theses that are classified will not be included in
the result set. Master students may also choose to not publish their master’s
theses.

3.2.1 A Brief Development History

The first version of DAIM was developed by Tapir Uttrykk 2 and the dura-
tion of the project was from late autumn 2004 to spring 2005. This version
was much more simple than the DAIM version that we know today and it
provided only limited functionality. The system provided an interface for
uploading the master’s theses in the format ”PDF” which then was sent to
the print shop for printing. Then a digital copy of the master’s thesis in
addition to some description data was sent to the Department of Computer
and Information Science.

2http://www.uttrykk.no 21.05.2007 12:30

32

Figure 3.2: Screenshot of the search functionality on the DAIM webpage.

In the summer/autumn 2005 the Department of Computer and Informa-
tion Science at NTNU wanted to take part in this project and upgrade the
system, which resulted in that the responsibility was shared between Tapir
Uttrykk and the Department of Computer and Information Science. The
reasons for this were several and we have listed the most important ones
below:

• DAIM was supposed to support the entire process from the start to
the end concerning the master’s thesis.

• Make it scalable such that other Departments at NTNU could be in-
tegrated in the DAIM system.

• Control the process of developing DAIM; meaning that Tapir Uttrykk
should not alone be responsible for the expenses and decisions con-
cerning DAIM.

In August 2005 the process of upgrading the DAIM system started with
design of new functionality and the database for storing master theses. The
implementation started in the end of November 2005 and was supposed to
be finished in the middle of December 2005, but the project was delayed
resulting in that the functionality required for withdrawal of master’s theses
was finished in early January 2006. The deadline for withdrawal of master’s
theses for master students was 15th of January 2006 making the system just
in time to offer its services. The functionality regarding the delivery and

33

administration of master’s theses was developed in the period from January
to February/March 2006 making the system able to handle the deliveries of
master’s theses in June.

3.2.2 User-Oriented Development

One important goal for the DAIM system was to make the system as user
friendly as possible. Several methods were used for trying to achieve this
and in the following we will present some of the methods used.

During the development students and people from the administration
were gathered to perform paper prototyping. This was done to identify the
users needs and expectations and for trying to avoid situations were the users
would not understand how the system should be used. By doing paper pro-
totyping this may have resulted in that the most obvious misunderstandings
have been avoided. As a part of the paper prototyping several interviews
were carried out and the parties involved were given the chance to come
up with suggestions for improvement regarding the logical structure of the
work flow and language used for text fields and buttons. Based on all the
information that came out of this process, the graphical user interface and
the database scheme were developed. Having this information available be-
fore the implementation started, made it easier for the programmer because
he/she did not have to make that many decisions as is the case when the
requirements specification is not properly elaborated. In the case where the
requirements specification is poorly elaborated many of the decisions have to
be taken by the programmer and having in mind that the programmer will
never have the same understanding of the domain as the users of the sys-
tem, this may lead to many problems and misunderstandings. User-oriented
development is one of the main pillars when developing systems that works.
A system can be flawless, but if no one uses the system because of poor
usability the system will still be a flop.

3.3 Functional Requirements

In our work with the DAIM system we have had to take into account its
functional requirements. Here we will present the functional requirements
as use cases because the DAIM system is role-based and use cases are cat-
egorized by various roles. Figure 3.3 which describes the different use cases
and the following textual use cases are taken from [11].

Student

• UC01: Log in. Every internal actor, such as student, administrator,
system, administrator, supervisor and economy have to be logged in
before they can do anything at all. External users who just want to
search for master’s theses at NTNU do not need to be logged in.

34

• UC02: Fill in contract. The required information about a master’s
thesis has to be filled in before deadline for the selection of the master’s
thesis.

• UC03: Create cooperation group. Two or maybe three students can
cooperate in writing a master’s thesis. The students cooperating have
to be added when the contract for the master is filled in.

• UC04: Generate contract/schema. Students can generate contract/schema
if they have filled in all information required and the administrator has
approved the contract. This use case contain three user stories:

– UC04-01: Generate contract for a master of science.

– UC04-02: Generate contract for a cooperation group. This ser-
vice is available when all the students in a group have approved
the cooperation.

– UC04-03: Generate delivery schema. This function is available
when the delivery process is finished.

• UC05: Deliver master’s thesis. Students can upload several files for
their master’s thesis. Two days after delivery, the paper versions of
the master’s thesis are delivered at the institute office. Extra copies
can also be ordered during the delivery process. This use case contains
the following user stories:

– UC05-01: Upload a picture of the front-page for the project.

– UC05-02: Upload an attachment as a zip file.

– UC05-03: Upload a report in PDF format and fill in extra infor-
mation that is related to the paper version, such as total page
numbers, page numbers that will be printed in color, comments
that will be sent to Tapir and/or the institute. In addition, the
decision whether the master’s thesis should be made public or not
is done at this stage.

– UC05-04: Order extra copies of a student’s master’s thesis.

External users

• UC06: Search for master’s thesis. The search module is available for
everybody and does not require login. Master’s thesis will be shown
if:

– Master’s thesis has examination results.

– Students have accepted publishing.

– The master’s thesis is not restricted.

35

Economy

• UC07: Handle payments. The economy role handles every payment
for the master’s thesis. When the actor logs in, the default page will
show the following information:

– UC07-01: A list of master’s theses which still miss the payments
for censoring.

– UC07-02: Change status of master’s theses which have been cen-
sored and the censors have got paid.

– UC07-03: A list of master’s theses with censors having been paid.

– UC07-04: A list of the institute’s ordinary censors.

Administrator and System administrator user
The use cases for both administrator and system administrator are as fol-
lows:

• UC08: Display master’s thesis. The user can get an overview of deliv-
ered master’s theses by choosing a combination of several parameters
or by searching. This use case consists of the following stories:

– UC08-01: The master’s thesis can be chosen by several parame-
ters, such as status of the master’s thesis, or type of study. The
student name, supervisor and the title will be shown.

– UC08-02: The user can also sort the master’s thesis found by
student, supervisor, and title.

– UC08-03: It is possible to search for the master’s thesis by student
name, supervisor, censor, title or the date that the master’s thesis
was delivered, censored date etc.

• UC09: Choose censor. Administrator, system administrator, and su-
pervisor can choose a censor for one specific master’s thesis. The censor
can be found in a list. The supervisors can only choose a censor for
the master’s thesis that they have supervised.

• UC10: Validate information. A master’s thesis has different status,
e.g. ”Registered, but master contract is not ready”, ”Writing the mas-
ter’s thesis”, ”Finished, but the grade is not decided”. Generally, there
are different information that can be validated, dependent on the sta-
tus of the master’s thesis. When a student has filled in the required
information in the master contract, the administrator/system admin-
istrator has to check if the information is correct and then approve
the master contract. If the information is not filled in correctly, the
administrator will have to contact the student and tell him/her what
has to be changed. The delivery process is available for students when

36

the master contract is approved by an administrator or system admin-
istrator. Both actors can change the deadline of the master thesis if
required. The users can also fill in more information that is related to
the master’s thesis, such as comments, the date sent to a censor and
so on.

• UC11: Create/update account. This use case contains the following
user stories:

– UC11-01: Create a student account if the student has not yet
registered.

– UC11-02: Create/Update a supervisor’s account. Information of
registered supervisor can be updated. A supervisor account can
be created if it is not registered.

– UC11-03: Create/Update a censor’s account. A censor account is
created if it does not exist. Information of registered supervisor
can also be updated.

– UC11-04: Find a censor/supervisor by searching.

• UC12: Get information. Both the administrator and the system ad-
ministrator can get information in order to get an overview of all mas-
ter’s theses. This use case includes the following user stories:

– UC12-01: Get an overview of important deadlines for censoring.
– UC12-02: Get an overview of information about restricted mas-

ter’s theses.
– UC12-03: Get an overview of information about secondary-supervisors

and external supervisors.
– UC12-04: Get an overview of information about delivered mas-

ter’s theses.

System administrator
The system administrator can perform the same use cases as the admin-
istrator actor. In addition, the system administrator can carry out some
extended functions as follows:

• UC13: Import data. System administrators can import data from a
local database for students and censors. The data must be saved in
CSV format.

• UC14: Change information. UC14 consists of two user stories:

– UC14-01 Change information for an institute.
– UC14-02 Add an administrator user.

Supervisor

• Choose censor: See use case ”Choose censor” from administrator actor.

37

Figure 3.3: Use case diagram from the DAIM system.

38

3.4 Summary

This chapter contains information concerning the IT-system DAIM, which
we are about to analyze in the following chapters. We have presented key
information such as what kind of system DAIM is, a short development
history and the functional requirements which we will base some of the
analysis in the following chapters on.

39

40

Chapter 4

Research Questions and
Method

This chapter introduces the research context and process in the report. We
will present the material to be analyzed and how the material will be ana-
lyzed. The challenges we have met will be presented as well as the choices
that we had to make.

4.1 Introduction

Section 4.2 presents the context of our work while Section 4.3 states the
research questions that we have decided on. In Section 4.4 we introduce the
research method and process that we have used in our work. Information
about how we collected our data will be given in Section 4.5. Much of
our work has been concerned with classification of faults and hazards and
Section 4.6 has been devoted to the classification scheme that we have used
in our work. We were faced with some challenges in our worked and they
are stated in Section 4.7.

4.2 Context

Our work is mainly concerned with analysis of software development projects
and the use of techniques for identifying faults and hazards. There is a
difference between the concepts ”hazard” and ”fault” and in this master’s
thesis we will try to find if we can see if there are any connections between
the two concepts. From Section 2.6 we have that an hazard can be seen
as a treat to a system and if the developers do not take this treat into
consideration when designing the system, sooner or later it may result in
a system failure. In connection with IT systems there are often reports
generated based on the behavior of the system such as fault reports or the
users/developers of the system may report that something is wrong. Faults

41

retrieved from fault reports manifest themselves in the system as failures seen
from the users or developers point of view and have to be corrected after
they have appeared. The main difference between hazard analysis and fault
analysis is that the former analysis is supposed to foresee problems before
they appear while the latter analysis handle the problems after they have
appeared. Section 2.3.1 and Section 2.4 contain more information concerning
faults and fault analysis.

The software development project that we have chosen to investigate is
called DAIM and it is a system used at NTNU in connection with master
students and master’s theses. More detailed information concerning DAIM
can be found in Chapter 3. One of the goals with this master’s thesis is to
perform a hazard analysis technique called PHA on the DAIM system to
see if this method can be of value with respect to fault analysis and fault
prevention. Even though DAIM has already been implemented and is up
running, we have received specification documents from earlier phases of the
development and the PHA analysis will be performed based on the design
documentation from the system. In addition to the PHA, we have received
fault reports from the same system which we will classify and analyze. Com-
pared to our previous work [5] this work is not of such practical nature and
a company would not get the same benefit as they did in our previous work,
because here we compare different methods and results to see if the meth-
ods lead to the same results, or if some methods discover faults that other
methods do not discover.

4.3 Research Questions

The research questions that we have come up with in this master thesis are
stated below and some of the research questions concern the fault reports
from DAIM and our previous work while some of the research questions are
related to the PHA. RQ4 involves both the fault reports and the PHA.

RQ1: How is the distribution of fault types from the fault
reports analyzed in DAIM?

RQ2: How does the distribution of fault types from the fault
reports analyzed in DAIM differ from the fault reports in our
previous work?

RQ3: What kind of fault types does PHA indicate as possi-
bilities?

RQ4: Does the hazard analysis technique PHA applied to
the DAIM specification documents reveal faults that have
actually appeared in the system?

The research questions will be answered in the chapters that follow.

42

4.4 Research Method and Process

In general our task has been divided into several parts where one of the
parts involved analysis of historical data. We received several fault reports
from DAIM which we were supposed to classify and analyze in the same way
as we did in our previous work [5] but with minor changes. Section 4.6 de-
scribes the classification scheme that we used. In Section 4.5.1 we will take
a closer look at the fault reports that we received from DAIM. We were also
supposed to compare the results from the fault analysis from our previous
work with the results from the fault analysis of DAIM to see if the fault
distributions differed. The next part of our task was to use a fault analysis
technique named PHA on the DAIM system. The PHA technique, which is
described in Section 2.6.5, is a variant of hazard analysis and we have used
this technique with respect to several use cases given in Figure 3.3. The final
part of our task consisted in comparing and analyzing the results from the
PHA process and the analysis of fault reports from DAIM to see how the
methods worked and hopefully point out possible connections between the
methods. In connection with the comparison we thought it might be useful
to classify the different hazards making it easier to compare corresponding
hazards and fault reports. Therefore we used the same classification scheme,
see Section 4.6, concerning the classification of hazards as we did with the
classification of fault reports. There were some challenges related to the clas-
sification of hazards according to this classification scheme and Section 4.7.3
will be devoted to this.

4.5 Data Collection

Considering that we received data from different sources, we found it ap-
propriate to assign Section 4.5.1 for the collection of fault reports and Sec-
tion 4.5.2 for the collection of data related to the preliminary hazard analysis.

4.5.1 Fault Reports

We received two different kinds of collections of fault reports from the sys-
tem developers connected to the DAIM system. The first collection which
is illustrated in Figure 4.1, is a system log that we received in ”.txt” format.
As one can see from the illustration this system log is computer generated
and does not contain too many details. The second collection of fault re-
ports that we received, illustrated in Figure 4.2, included more information
concerning each fault instance, but the numbers of fault instances were ac-
tually quite few. This collection was received in the format ”.doc”. We then
converted the ”.doc” and ”.txt” files into the format used in Microsoft Excel,
namely ”.xls”, because of the possibilities that Microsoft Excel provides con-
cerning statistical analysis. After the conversion we put each collection into

43

Figure 4.1: An excerpt from the DAIM system log.

a separate spreadsheet. Each row in the spreadsheets contained one fault
report and we made a column for each fault report where we categorized the
fault report according to the fault types we were supposed to use. The fault
types that we used in the classification process is given in Section 4.6.1.

4.5.2 Preliminary Hazard Analysis

In Section 5.3 we describe how the sessions of PHA were performed. From
these sessions we made a lot of notes and hazard tables which had to be
reviewed and converted into a digital version. As can be seen from the
hazard tables in Chapter 5, we also added a column that was used in the
classification of the different hazards as an identifier for the different hazards
identified. As the PHA technique normally is performed in the early stages
of the system development, we based our approach of the PHA on the several
use cases in Figure 3.3 which reside from the design stage in the development
of DAIM.

4.6 Classification of Faults and Hazards

We have chosen to use the same classification scheme in this work as we did
in our previous work [5] namely a modified ODC scheme, see Section 2.4.1.
The original ODC scheme was developed in 1992 [4] and has a suitable
number of fault categories which makes it easier to work with compared to

44

Figure 4.2: An excerpt from the manually made DAIM fault reports.

other classification schemes such as the Hewlett-Packard scheme or the IEEE
1044-1993 Anomaly Classification scheme. Considering that we had good
experience with the ODC scheme in our previous work we wanted to continue
using the ODC scheme, but with smaller modifications. In Section 4.6.1 we
will present the modified ODC fault categories used in the classification
process.

4.6.1 The Modified ODC Categories

This section will introduce the fault categories that we have used in the
classification process and they are based on [4] and [8]. The ODC based
fault categories that we will present below coincide with the fault categories
that we used in our previous work [5] and Table 4.1 summarizes the fault
types. In [7] the researchers also added additional fault types, because they
felt it was necessary and in the classification scheme that we will use, we
have also added new fault types. In Table 4.1 the additional fault types are
marked with a ”*”.

Function A function error is one that effects significant capability, end-user
interfaces, product interface, interface with hardware architecture, or
global datastructure(s) and should require a formal design change.
Examples:

1. A function is missing when doing a specific operation.

45

Modified ODC fault types
Function
Assignment
Interface
Checking
Timing/serialization
Relationship *
Documentation
Algorithm
Data *
GUI *
Environment *
Duplicate *
Not fault *
Unknown *

Table 4.1: Modified fault types in ODC.

2. A function produces unexpected and wrong results.

Assignment An assignment error indicates a few lines of code, such as the
initialization of control blocks or datastructures. Value(s) assigned
incorrectly or not assigned at all; but note that a fix involving multiple
assignment corrections may be of type algorithm. Examples:

1. Internal variable or variable within a control block did not have
correct value, or did not have any value at all.

2. Initialization of parameters.

3. Resetting a variable’s value.

4. The instance variable capturing a characteristic of an object (e.g.
the color of a car) is omitted.

5. The instance variables that capture the state of an object are not
correctly initialized.

Interface Interface corresponds to errors in interacting with other compo-
nents, modules or device drivers via macros, call statements, control
blocks or parameter lists. Examples:

1. A database implements both insertion and deletion functions, but
the deletion interface was not made callable.

2. The OO-message incorrectly specifies the name of a service.

3. The number and/or types of parameters of the OO-message do
not conform with the signature of the requested service.

46

Checking Checking addresses program logic which has failed to properly
validate data and values before they are used. Examples:

1. Value greater than 100 is not valid, but the check to make sure
that the value was less than 100 was missing.

2. The conditional loop should have stopped on the ninth iteration.
But it kept looping while the counter was less or equal than 100.

Timing/Serialization Timing/Serialization errors are those which are cor-
rected by improved management of shared and real-time resources.
Examples:

1. Serialization is missing when making updates to a shared control
block.

Relationship Relationship describe errors that occur due to mistakes in
library systems, management of changes, or version control.

Documentation Documentation errors can affect both publications and
maintenance notes. Examples:

1. When the implementation is done correctly according to the de-
sign document derived from the requirements specification, but it
turns out that there is something wrong with the design document
meaning that the requirements specification is misunderstood or
wrong.

Algorithm Algorithm errors include efficiency or correctness problems that
affect the task and can be fixed by (re)implementing an algorithm or
local datastructure without the need for requesting a design change.
Examples:

1. The low-level design called for the use of an algorithm that im-
proves throughput over link by delaying transmission of some
messages, but the implementation transmitted all messages as
soon as they arrived. The algorithm that delayed transmission
was missing.

2. The algorithm for searching a chain of control blocks was cor-
rected to use a linear-linked list instead of a circular-linked list.

Data Data used in the system is wrong or incorrect. Examples:

1. Missing information in reports generated, such as missing page
numbers, duplicated data, such as a string or number repeated
two times make up a data fault.

GUI This type of fault is connected to faults regarding the visual appear-
ance. Examples:

47

1. If a button on a web page contains the name ”Save”, but is sup-
posed to be named ”Next” etc., this qualifies as a GUI fault.

2. The font type and size is wrong.

Environment Environment faults may include faults that occurs in back-
end systems controlled by others. Examples:

1. The server did not respond because it had crashed. This resulted
in that the system could not get the needed data and was not
able to do its tasks.

Duplicate A duplicate error is an error that is reported earlier.

Not fault Sometimes faults may be reported, but due to certain circum-
stances, they do not qualify for being a fault. Examples:

1. When the test data is incorrect.

2. When something is done in compliance with the requirement spec-
ification and is totally correct, but the customer changes his/her
mind and wants a change of some kind.

3. When something is reported as a fault, but the fault can not be
recreated.

Unknown This category is applied to a fault that is difficult to categorize.
Examples:

1. Faults with little or no information is difficult to categorize.

4.7 Challenges in Our Work

We met several challenges in our work and Section 4.7.1 to Section 4.7.3
describe some of the challenges we were forced to deal with.

4.7.1 Little Experience with PHA

We did not have much knowledge about PHA before we started our work
and therefore we had to spend some time learning this technique properly.
Considering that PHA is a technique that requires some degree of creativity,
it may take some time to learn it properly and one has to go back and forth
in the process because one may discover new things at later stages and
previous work has to be updated.

48

4.7.2 Inconsistency in the Way Faults are Reported

The fault reports that we received were of two different kinds; one of the
collections of fault reports were generated automatically from the system
(system log) while the other collection was human made. There were several
differences in the way these collections presented the different fault reports.
The auto-generated fault reports were shorter and more ”cryptic” and they
were harder to understand while the descriptions from the human made fault
reports were easier to understand because they were longer and explained
the faults in a better way. Luckily we got a lot of help from our contact
person in DAIM when we needed it and this prevented us from guessing.

4.7.3 Classification of the Hazards According to Classifica-
tion Scheme

We met some challenges when we classified the different hazards according
to the chosen classification scheme, see Section 4.6.1. In contrast to the fault
reports the hazards were described less detailed and were of a more general
nature and this made it difficult for us to classify some of the hazards. On the
other side some of the hazards contained elements from several fault types
and we ended up classifying some of the hazards as belonging to several fault
types.

4.8 Summary

In this chapter we have introduced the context of our work in addition to
the research questions that we are about to answer in later chapters. The
research method and process has also be been given some attention while
a section has been devoted to the challenges we were forced to deal with.
The classification scheme that we will use throughout this master’s thesis
has also been presented.

49

50

Chapter 5

Hazard Analysis

This chapter contains the results from the hazard analysis that we have
performed in our work. The reasons for using the particular method that
we have used will also be given in addition to some information regarding
the process.

5.1 Introduction

In this chapter we will present the work that we have done concerning the
hazard analysis of the DAIM system. Section 5.2 gives the reasons why
we ended up using the hazard analysis method PHA and Section 5.3 de-
scribes how we carried out the analysis. The results from the analysis will
be presented in Section 5.4.

5.2 Our Choice of Hazard Analysis Technique

Our choice of hazard analysis technique fell on PHA and there were several
reasons for this. Concerning FMEA this technique was performed on DAIM
last year in the master’s thesis [11] and therefore it was no point of doing
this analysis again. Considering that we received documentation from the
design phase of DAIM we had to choose a technique that was best suited
for analysis early in the system development. By looking at Table 2.5 we
see that FTA normally is used later in the development process and since
we are supposed to analyze design documentation this excludes this option.
Then we were left with three options: HazOP, ETA or PHA. The criteria
”System Info Requirement” says something about how well one should know
the system before doing the analysis and from Table 2.5 it is stated that if one
wants to use the ETA technique one needs a high degree of knowledge to the
system before one can do the analysis and we did not have much knowledge
to DAIM before we started. It would probably have taken too long time
to obtain this knowledge of DAIM considering that this master’s thesis is

51

limited to a time span of 20 weeks. The technique HazOP has ”moderate”
assigned to almost every criteria and considering that the ”process stage”
has medium assigned while PHA has ”early” assigned to it in addition to
that the knowledge required for doing an HazOP analysis is higher than
with the PHA, we ended up with PHA. It shall also be stated that PHA
is the most light-weighted safety analysis method among all the methods
mentioned and since the application that we are about to analyze is not a
safety-critical application, this may justify our choice even more.

5.3 PHA Sessions

During our work we had several PHA sessions where we analyzed the dif-
ferent hazards connected to the DAIM system. The number of participants
was not constant, but three of the participants were present at every session.
The group consisted of one project leader, four research fellows, one of the
system developers from the DAIM system and a master degree student. The
professor was the session leader and was in charge of the meetings by us-
ing the blackboard and making questions which stimulated the participants
to discuss what hazards that could occur. After having discussed several
possible hazards we came up with hazards that everyone agreed on and the
session leader wrote the different suggestions on the blackboard. The schema
that we used when analyzing the hazards has the column headers described
as:

Hazard This term describes the hazard or treat that have pointed out to
be a potential problem.

Cause Here we try to find reasonable causes dependant on the hazard iden-
tified.

Consequence We try to figure out what the consequences of the hazard
are.

Action Here we make suggestions about what can be done to prevent the
hazards from happening.

H This column is used as an identifier for the different hazards. Considering
that a hazard can have several causes attached to it, we decided to split
the hazards with respect to this such that for example the hazards H1,
H2 and H3 actually come from the same hazard, but they have been
split into three hazards.

We based our PHA sessions on the use case diagram in Figure 3.3 de-
scribing the DAIM system, where we treated each actor and their use cases
subsequently. The Tables from Table 5.1 to Table 5.8 describe the use cases

52

Hazard Cause Consequence Action H

Unauthorized access
Illegal username in
DB

Destroyed data System feedback H1

User is missing be-
cause of gap in export
from FS

Cannot do what
she/he wants

Manual control rou-
tines

H2

Cannot get access Too strict network
policy

Cannot do what
he/she wants

Use another login sys-
tem (increase com-
plexity)

H3

Table 5.1: Hazard table for the use case ”Log in” which is common for all
users except from the ”external user”.

of each actor and each actor has got its own table. One use case, ”Log in”,
was common for almost all actors and this use case is placed in its own table,
namely Table 5.1.

5.4 Results from the PHA Sessions

In this section we will present our findings from the PHA sessions. Each
actor in the use case diagram will be given a subsection where we include
the corresponding hazard analysis matrix for that actor and some comments
concerning the matrix. As said in Section 5.3 the use case ”Log in” was
common for almost all actors and we will place this use case in a separate
subsection. Our results will be given from Section 5.4.1 to Section 5.4.8.

5.4.1 ”Log in” Use Case

This use case is common for the actors Student, Administrator, Econ-
omy, Supervisor and System administrator while the actor External
user does not have login functionality. Table 5.1 shows the use case ”Log
in”. The hazards related to the ”Log in” use case are several and the most
critical one is related to unauthorized access. If a user logs on to the system
with administrator permissions and the user is not supposed to have ad-
ministrator permissions this can result in unfortunate situations. Data can
be destroyed or changed which will reduce the integrity of the system. The
causes for this may be that someone has hacked into the database or that an
System administrator erroneous has given a user administrator rights. As a
precaution mechanism the system should give some kind of system feedback.
The idea here was that the user who was logged in should have the possibil-
ity to see his/her username somewhere on the web page such that the user
would notice if he/she was logged in with the wrong username. This feed-
back would of course not help in the situation where a hacker was involved,
but here it might be a solution to have some kind of a logging functionality
where every action done by the administrator users are logged with for ex-
ample date, IP addresses and corresponding actions such that it might be

53

possible to rollback the actions performed by an illegal administrator. If a
hacker is involved the IP address might be a good start to find out who is
behind the illegal actions and maybe deny incoming requests from this IP
address for a start etc. Dependant on the criticality of the system, actions
have to be done in accordance to this, meaning that this system is not that
critical as a banking system etc. and one may not want to use too much
resources on finding the hacker, but one want to make sure that this kind of
hacking does not occur again by improving the security in the system.

If an authorized administrator does not have access to the system, this
is classified as a hazard. The reason for this can be that the user is missing
in the database because of a gap in the export from FS (Felles Studentsys-
tem). FS is a system taking care of study administrative data concerning the
students at NTNU 1. Another reason can be that the local user’s network
policy is too strict especially when for example logging in from a remote
location because in some networks the policy is that redirecting is not legal
such as the case is with the DAIM system where DAIM is redirecting to
another system for retrieving necessary information and this will then cause
trouble for all actors that need to log on to the system. The consequences of
the hazard will be that a correctly authorized administrator would not get
access to the system and he/she would not be able to do what he/she wants
to do. A solution to this problem could be to use another login system, but
this may also lead to higher complexity which might not be very desirable.

5.4.2 Actor: Administrator

The hazard analysis table for the Administrator actor is shown in Ta-
ble 5.2. One of the hazards that we identified was that of choosing wrong
external examiner from the list of external examiners when assigning a ex-
ternal examiner to a master’s thesis. The reason can be that the adminis-
trator incorrectly chooses a wrong external examiner for a specific master
thesis because of human error. If for example there is a list with many ex-
ternal examiners and two external examiners have got the same surnames,
there is a chance for choosing wrong external examiner if one is not focused
enough (human mistake). The result will be that wrong external examiner
is assigned for wrong master’s thesis which is unfortunate. An action for
reducing the possibility of this to happen can be that the actor perform-
ing the wrong action gets some kind of feedback from the system such as
a confirmation question; ex. ”Is this information correct? Yes or no”. If
the damage has already happened it should be possible to change the data
in retrospect. Another solution can be to add limitations and logic to the
system such that external examiners only are allowed to be assigned to mas-
ter’s theses in a certain field of interest and by doing this one will reduce the

1http://www.ntnu.no/sa/sfs/studsys/fellessys 05.05.07: 15:25

54

Hazard Cause Consequence Action H

Choose wrong exter-
nal examiner from list

Human error, ”miss”
the right choice

Wrong result (ex-
ternal examiner)

System feedback
External examiner
theme info
Possibility for chang-
ing the external
examiner.

H4

Ignore deficiency or
inconsistence

Human error Save mistakes or
inconsistent data

Check the content:
Spell check
Control of consistency
(dates)

H5

Missing approval Human error Cannot deliver Manual control
”Timeout” (E-mail to
the student/admin)

H6

Cannot find con-
tract/thesis

Severely delayed
Missing info
Wrong search criteria

Missing approval Change proposal,
search if we find 0.
Help to the search
criteria

H7

Person with wrong
permissions/Aliasing
Overwrite user

Creative reuse
”Inherit”

Wrong data
Destroyed data

Training
System feedback
Split functionality
(new/change)

H8

User with wrong per-
missions
Role with wrong per-
missions

......

Generation of incon-
sequent reports [bor-
derline between sys-
tem fault and pro-
gramming fault]

Inconsistent SQL use
(criteria)

Wrong/Misleading
info that not nec-
essarily will be
detected

System test?
Gather similar SQL-
querries

H9

Wrong update of sen-
cor/teacher

Creative reuse Destroyed data H10

Table 5.2: Hazard table for the actor”Administrator user”

55

possibility of choosing a ”completely wrong”external examiner for a master’s
thesis. Making such a solution will increase the complexity of the system,
but it maybe will be worth doing it if this is a huge problem. In the example
above with the two external examiners with the same surnames, one of the
external examiners may be available for master’s theses in the field ”System
development” while the other external examiner is only allowed to censor
master’s theses in the area of ”digital image processing”. Then if wrong ex-
ternal examiner was chosen for the wrong master’s thesis, the system would
have noticed this and could give the actor feedback and ask him/her to cor-
rect the information. The solution just discussed may be ideal in theory,
but difficult to implement in practice.

Another hazard that we found during the sessions was the one related
to displaying master’s theses. A big problem would be if the master thesis
resides in the system, but the Administrator cannot find it.

If a master contract is missing approval from the supervisor, this can
can lead to problems because there is strict policies regarding deadlines in
connection with master’s theses. The reason why the master contract may be
missing approval could be human error such as the supervisor has forgotten
it or is not available because of illness etc. The consequence will be that the
student will not get to deliver his/her master’s thesis and may be delayed
half a year or worse. A way to avoid this to happen is to introduce manual
controls where a person is dedicated to go through the list of students and
check their status concerning approval of master’s thesis. If the time is
running out, the person dedicated to do the manual control has to contact
the student or supervisor to inform them that the master’s thesis needs to be
approved soon. Today one person is assigned to this task and it has worked
fine so far. A suggestion for improvement can be to include information
concerning the status of the supervisors. If one knows that a supervisor will
stay a year abroad or for some reason will be away for a period of time, it
may be a possibility to include functionality regarding this into the system.
Another possibility is to include some kind of a function to the system, where
the system itself checks the date and the list of master’s theses that are not
approved and then if approvals are missing generate a reminder email to
the professors, students, administrators etc. saying that the master’s theses
have to be approved soon.

Another problem can be if the administrator does not find the master
contract because of a critical delay or that the contract is incomplete and
therefore has not been approved and has to be returned to the student for
review. Another reason can be wrong search criteria such as the parameter
”date” is wrong. This will result in missing approval which can be very
unfortunate for the master student. A solution to this might be a useful
search function if the administrator actor does not find anything. Further
it might be an idea to have some kind of a help description for the search
function describing all the parameters the system supports for improving

56

the search functionality and one might get the desired results.
The next hazard we will present is related to the process of creating and

updating a user/role account. If an administrator by mistake gives wrong
permissions to the wrong people this can lead to several problems. On one
side if users with malicious intentions get too many rights they can get access
to data that they were not supposed to have and they can manipulate data
such as unauthorized deletion or modification. This will reduce the integrity
of the system and can have serious consequences. On the other side users
that get too few rights will not be able to do their work because of this.
This hazard is mainly caused by human error and it is difficult to remove.
One suggestion of a preventive action can be to have some kind of review
done by another administrator. Then at least two persons have controlled
the information and it might be safer. This solution may demand for more
work from the administrators and it is not given that they have got time for
this. There has to be a tradeoff between the safety level needed and cost.
It might show that the risk for this to happen is so small that if it actually
happens it would be worth correcting it later.

One hazard that we identified was related to creating and/or updating
a user account. If a user is selected from the list, the information connected
to the user will appear in text fields (editable) below the list. If the Admin-
istrator actor does some changes in these fields, the information concerning
the user chosen in the list will be changed. The threat that we identified was
if the Administrator wants to create a new user and erases the information
of another user resulting in that the information related to the first user
is overwritten. On way to avoid this could be to provide system feedback
saying that for example ”You are about to change the name of user X. Do
you want to continue?” and give the Administrator actor properly training.
Another way to avoid this hazard is to split the functionality concerning
creating/updating user such that creation of a new user is performed in one
place while updating is performed in another place.

We identified a hazard related to the generation of inconsequent reports
because some reports in the DAIM system are made in advance. If someone
makes a query that is a little different from ”normal” this may result in
wrong and misleading information when the information is retrieved. One
easy example describing this could be to make a query ”NAME DATE”which
might give a different result than the query ”DATE NAME”. This kind of
error is related to databases and from SQL one knows that a join function
between two tables can lead to different results dependant on the order the
tables are joined in; A x B may give a different result than B x A. A way
to prevent this may be to gather all SQL queries in one place and make
them as similar as possible. It may also be reasonable to make some scripts
that handle this kind of problems meaning that in the case where a table A
should be joined with table B, the script would instruct the computer to join
A x B in this order and not vice versa. It should be said that this problem

57

may be seen as a coding error and the only way to avoid this problem from
happening is by testing it thoroughly like with any other coding errors.

5.4.3 Actor: System Administrator

The hazard analysis table for the System Administrator actor is shown
in Table 5.3. The two actors System Administrator and Administrator
have several use cases in common, but in the following paragraph we will
only present the use cases that are exclusive for the System Administrator
actor. We will underline that all the use cases and corresponding hazards
mentioned in Section 5.4.2 and Table 5.2 for the Administrator actor also
applies for the System Administrator.

The actor System Administrator has one use case named ”Import data”
which we found interesting considering the possibility of potential hazards.
From Table 5.3 we have identified the hazards ”Wrong data from FS” and
”Inconsequent data” which may occur when importing data from the FS
system. One cause that we have found concerns inconsequent data that
DAIM receives from the FS system meaning that data might be registered
in a wrong format. When the DAIM system receives the data it will produce
an error message saying that something went wrong with the validation of
the data. The line of code that contains the error will not be executed and
the entire file has to be corrected and executed again. For preventing this to
happen it might be necessary to register the data manually, but this will be
less effective. Another possibility is to look at the insertion routines in FS
and try to change them if it is possible. The last action to perform that we
can think of is the possibility to ”clean data”, making a script that removes
the unwanted data, but this can be difficult to do. One possibility could
be to first validate the data, then insert it. Today all these operations are
performed as a whole.

There is always a risk that wrong information will be inserted into the
system because of human error. The result will be that the system con-
tains wrong data which may lead to problems and extra work. One sug-
gestion for avoiding this can be to involve another person to review the
changes/insertions done by the System Administrator actor such that the
data at least is controlled by two persons.

5.4.4 Actor: Supervisor

The hazard analysis table for the actor Supervisor is given in Table 5.4.
From Figure 3.3 it can easily be seen that the use case ”Choose censor” for
the actor Supervisor also is present for the actors System Administrator
and Administrator and we will therefore refer to Section 5.4.2 concerning
the hazards connected to this use case. The second use case related to the
Supervisor actor is ”Log In”which is thoroughly investigated in Section 5.4.1.

58

Hazard Cause Consequence Action H

Choose wrong exter-
nal examiner from list

Human error, ”miss”
the right choice

Wrong result (ex-
ternal examiner)

System feedback
External examiner
theme info
Possibility for chang-
ing the external
examiner

Ignore deficiency or
inconsistence

Human error Save mistakes or
inconsistent data

Check the content:
Spell check
Control of consistency
(dates)

Missing approval Human error Cannot deliver Manual control
”Timeout” (E-mail to
the student/admin)

Cannot find con-
tract/thesis

Strongly delayed
Missing info
Wrong search criteria

Missing approval Change proposal,
search if we find 0.
Help to the search
criteria

Person with wrong
permissions/Aliasing
Overwrite user

Creative reuse
”Inherit”

Wrong data
Destroyed data

Training
System feedback
Split functionality
(new/change)

User with wrong per-
missions
Role with wrong per-
missions

......

Generating incon-
sequent reports
[borderline between
system fault and
programming fault]

Inconsistent use of
SQL (criteria)

Wrong/misleading
info that not neces-
sarily is discovered.

System test?
Gather similar SQL-
queries

Wrong update of
external exam-
iner/professor

Creative reuse Destroyed data

”Wrong” data from FS

Inconsequent data

Inconsequent data in-
put
Fault registered
Wrong format

System gives error
message
The code line is
not executed; have
to execute the file
again.

Manual registering
Change ”inserting”
routines in FS
”Clean data”

H11

Wrong user permis-
sions given

Manual routine Permissions to
wrong person,
safety threat

insert one and one
Possibilites for remov-
ing permissions

H12

Wrong information in-
serted

Manual fault Wrong data External validation
source

H13

Table 5.3: Hazard table for the actor ”System administrator user”

Hazard Cause Consequence Action H
Choose wrong exter-
nal examiner from list

Human error, ”miss”
the right choice

Wrong result (ex-
ternal examiner)

System feedback
External examiner
theme info
Possibility for chang-
ing the external
examiner

Table 5.4: Hazard table for the actor ”Supervisor user”

59

Hazard Cause Consequence Action H

Wrong registration
Wrong registration
and missing undo
possibilities

Wrong presenta-
tion of information
Censor not being
paid

Undo possibilities H14

Table 5.5: Hazard table for the actor ”Economy user”

5.4.5 Actor: Economy

The hazard analysis table for the actor Economy can be found in Table 5.5.
We will refer to Section 5.4.1 regarding the hazards connected to the use case
”Log in”. Besides from the use case ”Log in”, the actor Economy has got one
use case named ”Handle payments” which introduces a hazard. There is a
risk that the Economy actor makes a mistake when registering the different
payments. The consequences from this hazard may be that the system will
contain incorrect information and the external examiners may not receive
the payment they are entitled to or they may receive a lesser amount. Unless
they themselves discover the error it will probably never be corrected and
the external examiners will suffer from this. We found that this may happen
because of human error done by the Economy actor and that the system does
not provide some kind of ”undo” functionality. An action for preventing this
situation may be that the system should provide some kind of a ”undo”
functionality which helps the Economy actor to correct the problem.

5.4.6 Actor: Student

The hazard analysis table for the actor Student can be found in Table 5.6.
As previous stated the ”Log in” use case is common among all actors except
from the actor External user and we will therefore refer to Section 5.4.1
regarding the hazards connected to that use case.

One hazard that we found with respect to the use case ”Fill in contract”
concerns the scenario where the Student actor inserts incorrect values in the
master contract. This may happen because of sloppiness from the student
actor. Another reason may be that the slots where the user is supposed
to insert data does not properly explain what and how the data should be
inserted. Simple examples can be uncertainties concerning the date format
etc. The consequences will be that wrong information will reside in the
system which can cause problems for the parties involved. In the example
where we have the date ”020407” it can be confusing to know how this date
shall be interpreted if the date format is not specified explicitly. Based on
the date it can be of both the formats ’ddmmyy’ or ’yymmdd’. An action for
preventing this to happen is to explicitly give an example close to where the
actor is supposed to insert his/her dates such as ”The date format should
be of the format ddmmyy”. In general the system should provide the user
with the possibility to read through all the data that the user has inserted

60

Hazard Cause Consequence Action H

Wrong value in con-
tract

Sloppiness
MMI
Touch wrong key on
keyboard

Wrong info Read through and ap-
prove info
Rules of consistency

H15

-datafault / typefault Validation fault
Characterset fault

Wrong data in DB Rules of consistency H16

Missing input Failed to see the field Missing data Rules of consistency
Check that the fields
are correctly filled in

H17

Different ways to type
the name of a person

Not pay attention Wrong info Use of usernames
not allowed to change
names

H18

Wrong info in contract
- change name fault
- email
- phonenumber

Unaware
Misunderstanding

Wrong info Get as much as possi-
ble info from FS
Shows contract for ap-
proval

H19

- study program
- branch of study

Interface, pro-
gramming error
(assignement)

Testing H20

Cooperation contract
fault

Wrong input
sloppiness

Wrong info Check agains study
program, usernames
etc.
Check another group
belonging

H21

Mess in the group
composition

People have difficul-
ties when deciding

Inconsistency
within the DB
appliacation hangs

”Correct sequence in
DB-access/writing”
Usermanual
Check groups where
number of members =
1

H22

Change in contract af-
ter having signed

Wrong info Only administration
has access
Status check on files

H23

Cannot deliver mas-
ter’s thesis

Wrong file type Check in system (php) H24

Wrong version/file Wrong master’s
thesis

User has to take care
of oneself

H25

Wrong pdf-type print shop prob-
lems

User has to take care
of oneself,
print shop make con-
tact (phone)

H26

Cannot deliver cor-
rected master’s thesis

Rules The administration
needs to fix it

H27

One person in the
group delivers mas-
ter’s thesis without
consent

Different views in the
group

Wrong delivery The administration
needs to fix it
Function that

H28

Table 5.6: Hazard table for the actor ”Student user”

61

and give him/her a question such as ”Is this information correct” where the
user has to respond with ”confirmed” or ”cancel” etc.

Another hazard related to the use case ”Fill in contract” is if one or more
fields in the contract have been left out. The reason may be that the actor
has overlooked these fields or did not know what to write. This scenario will
result in missing data. An action for preventing the absence of important
data can be to implement functions that check if some fields are not filled
with sufficient information and make the user aware of this. In the situation
where the user fails to fill out some required fields in the schema, a help
text should be provided by the system such that the user at least get a
clue of what is expected to be registered. Today a solution exist and the
user receives a message at the bottom of the web page stating that some
fields are not correctly filled, but according to one of the developers of the
DAIM system, new and improved ways of informing the user of this have
been thought of. A solution could be to put a color on the text fields that
are not filled in correctly making it more visible.

We have identified a hazard related to the inconsequent typing of person
names. In computer systems where a database is used to keep track of people
it is not unusual that users are registered more than one time because of
inconsequence in the way users write their names. One record may contain
the name, while other records contain variances of the same name for the
same person. As examples the middle name may not be present in a record
such that it seems that there are two persons. Someone uses a hyphen in
the name, but sometimes this hyphen may be forgotten for some reason etc.
The cause that we found is based on inattentiveness from the user. The
consequences can be that there exist wrong information in the system, a
person can be named differently such that it seems that it is two persons
instead of one. As a barrier one can use the usernames that the actors use
for logging into the system such that the system ”translate” the username
into the original name.

Another important hazard concerns wrong information in the master
contract such as wrong name, email, telephone number, programme of study
or wrong branch of study. This can be caused by inattentiveness from the
actor or misunderstandings. The consequence will be that the system con-
tain incorrect information. A way to prevent this hazard from happening
can be to get as much as possible of the information concerning the student
actor from the FS system. This system is of administrative character hav-
ing administrative data for students and their studies and importing data
from this system may reduce the possibilities for errors connected to wrong
information regarding the students.

If a master’s thesis is carried out by more than one student, this has to
be taken into account in the master contract and this may lead to a hazard.
The hazard may appear because the student actor introduce incorrect data
because of sloppiness. This results in incorrect information in the system

62

and extra work has to be done to fix the errors. As a way to reduce the
possibility of the hazard to happen the system should provide functions that
check the programme of study and the username of the actor. The system
should also include program logic putting restrictions such that a person
only can belong to one cooperation group. If the person wants to change
his/her cooperation group, then the person has to resign from the group
which he/she is related to for the moment and after this join the new group.
It is important that the user does this in the correct order just mentioned.

Another hazard that we found in connection to cooperation groups was
complications in the composition of the groups. Sometimes people may
have difficulties when deciding to work in a group or not and that there can
be changes in the composition of the groups because people change their
minds from time to time. This may result in inconsistent databases and the
system may be incorrectly updated. An action to prevent hazards in group
relations can first of all be to make a guide or manual stating how to correctly
make changes concerning the composition of the groups. When there are
several changes concerning the composition of the groups it is important to
handle the writing and accessing sequences in the database correctly. In
addition there should be implemented at function that checks the groups
where ”no of members < 2” etc.

If the master contract needs to be changed after a period of time, such
as a change in the problem description etc., this may lead to a potential
problem or an hazard. The causes for this may be that there have been
some changes in the description of the master’s thesis for some reasons.
The consequences may be that wrong information will reside in the system
and for preventing problems of this kind it may be wise to only let the
administrator actor in agreement with the supervisor, have privileges for
changing information such as the problem description etc. Another way for
preventing this hazard to happen is to implement a status check on the files
such that one can see when and what is changed etc. and then it is easier
to ”roll-back” the changes.

When the time has come to deliver the master’s thesis we have identified
one hazard which may occur. According to Figure 3.3 we have a use case
”Deliver master thesis” which may result in the situation that the student
actor may not get to deliver the master’s thesis of various reasons. One
reason could be that the file type submitted is in a wrong format and this
will result in the situation where the master’s thesis does not get delivered
in the worst case. Today the system is implemented in such way that if
this hazard would happen, the user will be informed on the web page giving
the actor another attempt in trying to upload the file. The system should
have implemented a check function that makes sure that the user gets an
error message with an explanation of what is wrong such that the user can
correct this himself/herself. The student actor has a responsibility to make
sure that he/she delivers the correct version/file of the master’s thesis. The

63

consequences of delivering for example a previous version of the master’s
thesis will be that wrong master’s thesis is delivered and if it is an earlier
version it may result in a poor grade. As a preventive action the system
should remind the user of this, but the responsibility lies on the student
actor. Another reason why the master’s thesis might not be delivered is
because of wrong pdf-type. This may lead to problems for the print shop,
but the print shop will try to get in touch with the student and inform
him/her of the problem giving the student a second chance to solve the
problem.

We identified a hazard related to delivering the master’s thesis in a co-
operation group and this hazard may occur when a student actor in the co-
operation group delivers the master’s thesis without consent from the other
student actors in the group. The reasons may be that there are different
opinions in the group or misunderstandings of different kinds. The result
will be that the delivery is wrong and if this happens the administration
has to be contacted for making a solution to this problem. A solution could
be to implement a functionality that makes sure that a person in a coop-
eration group does not get deliver the master’s thesis without consent from
the other group members. When a member of a cooperation group submits
the master’s thesis, a function should be implemented such that an an email
is sent to the other members of the group with a request saying that they
have to log on to the DAIM system and accept or deny the submission. In
the situation where one of the group members does not have the ability to
respond to this request, it might also be useful to implement a function that
gives the actor the possibility to confirm this in advance, said in other words
an auto-confirm possibility.

5.4.7 Actor: External user

The hazard analysis table for the actor External user can be found in
Table 5.7. According to Figure 3.3 the actor External user has one use
case namely ”Search for master’s thesis” and we have found several hazards
connected to this use case.

The first hazard that we identified deals with publishing master theses
that are confidential. Neither the actor External user nor anybody except
from the Administrator actor should have the possibility to find confidential
master’s theses. The reason why this may happen can be that the Adminis-
trator actor has forgot to mark the checkbox ”confidential” when registering
the information concerning the respective master’s thesis. As a consequence
sensitive information may come out. A way to prevent this from happen-
ing is first and foremost to give the people responsible for publishing the
master’s theses properly training in advance. If the damage has happened a
message should be sent to the person responsible such that the person can
correct the error. In the opposite situation where non-confidential master’s

64

Hazard Cause Consequence Action H

Confidential master’s
thesis is published

Missing registration
concerning confiden-
tiality

Leaking sensitive
information

Message to the person
who has registered the
master’s thesis
Training

H29

Non-confidential mas-
ter’s thesis hidden

Wrong registration
concerning confiden-
tiality

Information un-
available

Message to the person
who has registered the
master’s thesis
Training

Missing/Wrong infor-
mation when search-
ing

SQL -> coding error
Wrong presentation
of data

Cannot find what
one is looking for
Group info missing

Bug fix [dette var jo en
reell feil]

H30

Misleading ranking
Missing searchresult

Bad searching algo-
rithm

Risk to not get
wanted informa-
tion
Less effective

improve searching al-
gorithm

H31

Illegal access to
database by using
esc-sequences to do
SQL actions

”Hacking” Could delete or
modify data

Strip esc-sequence,
”wash” input

H32

Table 5.7: Hazard table for the actor ”External user”

theses by mistake are not published, the cause for this is probably the same
as for the one in the previous hazard namely an error in connection with
checking the wrong alternatives concerning ”confidential/no confidential”.
As with the previous hazard the actions to be done is to provide training
programs for the users that deal with this and if the damage has occurred
it is necessary to send a message to the person responsible.

When an external actor is searching for master’s theses, we identified a
hazard related to missing and misleading information concerning the mas-
ter’s theses that are retrieved. If a master’s thesis is authored by several
people in a cooperation group and the information that the external actors
retrieves while searching does not contain this information this may con-
fuse the external actor. The causes for this may be SQL coding errors or
wrong presentation of data. Another cause can be that too little information
is appended to the master’s theses while registering master’s theses. The
consequences can be that the external actor does not find what he/she is
looking for. This hazard was actually a real fault and it was fixed. For the
future it might be useful to revise what information should be attached to
the master’s theses, because the amount of master’s theses increase every
year and new useful parameters may be introduced for limiting the result
set that are retrieved when searching for master’s theses.

When searching for a master’s thesis it may happen that the ranking of
the results is poor and the search results in general is not very good. This
may happen because of a poor search algorithm and the actor External user
may not find what he/she wants or at least it is taking longer time than
expected to find it. This leads to loss of efficiency and a better search and
ranking algorithm should be implemented. We have identified poor ranking
and missing search results as a hazard.

65

Hazard Cause Consequence Action H

Change/Delivery of
wrong data

System administrator
does more than what
he/she is allowed to

Destroy data Improved log to trace
actions

H33

Table 5.8: Hazard table for the actor ”Simulated user”

A hazard related to hacking is based on SQL injections which may be a
potential risk in the DAIM system. As said SQL injections appear because of
hacking and the consequences may be that data can be deleted or modified.
As a preventive action the system should have implemented functions for
stripping escape sequences and ”wash” the input.

5.4.8 Actor: Simulated user

The actor Simulated user is not shown in the use case diagram in Fig-
ure 3.3 because this actor can take every role in the use diagram. The actor
System administrator can log in as every actor and this is known as the
Simulated user. If an actor has some kind of trouble, the System adminis-
trator can log in as this actor and he/she will get the same permissions as
this actor and could see what the problem is. The hazard that we identified
with this actor is the delivery/change of wrong data which may be caused
by misuse from the System administrator. This can result in destroyed or
manipulated data and the user that was simulated may get all the trouble
even though the System administrator was the one doing the wrong actions.
For preventing these things to happen there should be implemented a log
for tracing actions making it is easier to find the actor responsible.

5.5 Categorization of the Hazards

In our work we were supposed to compare the results from the analysis of
the fault reports against the results from the hazard analysis. In accordance
to the analysis of the fault reports, we used the classification scheme from
Section 4.6.1 and classified each hazard according to these categories. Some
of the hazards were assigned several fault types, because they had several
causes related to them in addition to the fact that the descriptions of the
hazards in general were less detailed than the descriptions of the faults from
the fault reports. Some of the hazards in the hazard analysis tables in
Section 5.4 are common for several actors, for example System Administrator
and Administrator, and if this is the case we have only categorized one of
the instances. Table 5.9 shows the results from the process of categorizing
the hazards according to fault type.

In Section 4.3 we stated the research question RQ3 which we will make
an effort to answer in the following. RQ3 is given as:

66

Fault type Hazards

Algorithm H9 H21 H22 H30 H31
Assignment H20
Checking H5 H7 H14 H16 H17 H22 H24
Data H1 H2 H2
Documentation
Duplicate
Environment H11 H16
Function H3 H5 H7 H8 H10 H13 H14 H18 H19 H22 H28 H29 H32
GUI H4 H13 H15 H29
Interface H2
Not fault H12 H23 H25 H26 H27 H33
Relationship
Timing/Serialization H22
Unknown

Table 5.9: Categorizing of hazards according to fault types.

Fault type Number of hazards Number of hazards(%)

Function 13 30,2%
Checking 7 16,3%
Not fault 6 14,0%
Algorithm 5 11,6%
GUI 4 9,3%
Data 3 7,0%
Environment 2 4,7%
Assignment 1 2,3%
Interface 1 2,3%
Timing/Serialization 1 2,3%
Documentation 0 0,0%
Duplicate 0 0,0%
Relationship 0 0,0%
Unknown 0 0,0%
Total 43 100,0%

Table 5.10: Number of hazards assigned to the different fault types.

RQ3: What kind of fault types does PHA indicate as possibili-
ties?

From Table 5.10 we see that 13 of the hazards have been assigned to the
fault type Function, something which is almost twice as much as the second
most used fault type used in the categorization process of the hazards. The
fault type Checking has a number of 7 hazards related to it, while the fault
type Not fault has 6 hazards connected it. The fault types Algorithm and
GUI then follows with 5 and 4 hazards related. Fault types with no hazards
related are Documentation, Duplicate, Relationship and Unknown.

The fault type Function has 30% of the hazard instances assigned to
it and according to Figure 2.2 we can see that faults related to the fault
type Function has most occurrences in the design phase compared to the
other fault types. This seems to be the case in DAIM as well. If we look

67

Figure 5.1: Total distribution of hazards with respect to fault types.

at the distribution of the hazards related to the fault types Checking and
Assignment, we see that they make up a total of approximately 20%. From
Figure 2.2 we see that the number of instances regarding the fault type
Assignment is quite high in the phases Design, Unit Test and Integration
and from the same figure we have that Function faults in the design phase
are more frequent than Assignment and Checking faults which is also the
case in DAIM, see Figure 5.1.

The four fault types Environment, Interface, Timing/Serialization,
Relationship have together a total of approximately 10% of the instances.
This may not be that strange considering that the DAIM system is a quite
independent system that does not communicate with many other systems.
The only system DAIM depends on is Innsida which provides DAIM with
authentication of users.

Concerning the fault types Unknown and Duplicate they both end
up with 0% of the hazards assigned to them. This is not that strange
considering that Unknown is used when we do not have enough information
for the classification and considering that we had a representant from the
DAIM system we had all the information that we needed. With respect
to the fault type Duplicate we did not use this at all even though some
of the actors from the PHA had the same hazards connected to them; the
common hazards were considered as one hazard. This category was mainly
introduced with respect to the fault analysis in Chapter 6, because the fault

68

analysis from our previous work [5] had several instances assigned to it.
There have been none hazards related to the fault type Documenta-

tion and this is reasonable because Documentation fault instances concern
faults in later phases; from Section 4.6.1 we have that Documentation faults
concern faults where the implementation differs from the specification. Con-
sidering that the PHA come from the design phase it is impossible to find
those kind of faults here.

Together the fault types GUI, Data and Algorithm represent a total
of 30% of the hazard instances. Considering that DAIM is a web-based
system it is no surprise that some of the hazards have been assigned to the
fault type GUI. The fault types Algorithm and Data will also be present in
this kind of system.

The fault type Not fault concern instances of hazards that are not
actually faults. It can be that users do things what they are not supposed
to do or ”human error”.

5.6 Summary

This chapter has consisted of one of our main tasks in this master thesis,
namely the PHA of the DAIM system. We have stated our reasons for
choosing PHA a long with how the analysis was performed. The results
from the PHA was interesting and has been given in several paragraphs.

69

70

Chapter 6

Fault Classification and
Analysis

In this chapter we will present our results from the classification of the
fault reports from DAIM and we will analyze our findings. We will also
compare the results obtained from the analysis of DAIM with the results
from previous work which also included fault analysis but with different
systems in focus.

6.1 Introduction

Section 6.2 presents the results from the categorization process of the fault
reports connected to DAIM. In our previous work we did the same kind
of analysis as we have done in this master’s thesis and therefore we have
included our findings from back then in Section 6.3. We then compare the
results from the analysis of DAIM and our previous work and this can be
found in Section 6.4.

6.2 Results from the Fault Analysis of DAIM

We received two different collections of fault reports from our contact per-
son representing the DAIM system. One of the collections of fault reports,
named ”Collection 1” from now on, was a simple system log which provided
limited information concerning the different faults and the respective de-
scriptions while the other collection, ”Collection 2” contained more detailed
information regarding each fault. In Section 6.2.1 we will present the results
from the analysis of Collection 1 and Section 6.2.2 provides the analysis
of Collection 2 while Section 6.2.3 joins the results from the two sections
containing the different collections of fault reports just mentioned. In Sec-
tion 4.3 we stated several research questions and research question RQ1 will
be answered here. RQ1 was stated as:

71

Figure 6.1: Distribution of fault types within Collection 1.

RQ1: How is the distribution of fault types from the fault reports
analyzed in DAIM?

6.2.1 Analysis of Fault Reports from Collection 1

In Figure 6.1 and Table 6.1 we present the fault distribution resulting from
the fault analysis of Collection 1. This collection of fault reports is based
on a system log from the DAIM system and contains system error messages
in a short format. During the analysis sessions we received help from one of
the representatives of the DAIM system, because some of the error messages
were very hard to classify considering that we have not been involved with
the development of the system. From the system log we identified a total
number of 91 fault instances and from Table 6.1 we can easily see that
the fault type Assignment is the fault type most often referred to when
reporting a fault. 25 of a total of 91 fault instances have been assigned to
this fault type and this gives the percentage 27,5%. The fault types Data
and Not fault follow with 20 fault instances each which is approximately
22 % each. Interface, Environment and Algorithm are represented in
13,2%, 9,9% and 5,5% of the occurrences. Checking, Documentation,
Duplicate, Function, GUI, Relationship, Timing/Serialization and
Unknown are not used in the classification process at all and have a total
of 0% occurrences.

72

Fault type Number of faults Number of faults (%)

Assignment 25 27,5 %

Data 20 22,0 %

Not fault 20 22,0 %

Interface 12 13,2 %

Environment 9 9,9 %

Algorithm 5 5,5 %

Checking 0 0,0 %

Documentation 0 0,0 %

Duplicate 0 0,0 %

Function 0 0,0 %

GUI 0 0,0 %

Relationship 0 0,0 %

Timing/Serialization 0 0,0 %

Unknown 0 0,0 %

Total 91 100,0%

Table 6.1: Distribution of fault types within Collection 1.

The most obvious reason why so many fault types have been left out
in the classification process is that the fault reports from Collection 1 orig-
inate from a system log that is automatically computer generated. Even
though the system is developed by people, the system will only do what
the developers have programmed the system to do. As time goes by, new
errors occur and situations not thought of in advance will show up and most
likely the system will not be able to handle these new situations. One of the
main differences between a system log and a human generated fault report
is that that the system does not have the ability to think for itself and it
does exactly what it is told to do while people have the ability to interpret
the data in a subjective matter such that more useful and relevant informa-
tion could be added. In Section 4.6.1 faults referred to as GUI faults are
those faults regarding the visual appearance such as the font type or font
size is wrong etc. These kinds of faults would hardly ever occur in a system
log, because it is a question of appearance from the users point of view and
is of a subjective nature. This may be the most obvious reason why GUI
related faults are completely left out in the classification process. The same
is true for the fault type Documentation which has none fault instances
attached it. We find this very reasonable considering that the system log
does not represent any assessment of the documentation. Considering that
the DAIM system is a quite small system with few developers it might not
be that surprising that the fault type Function has no occurrences. From
Section 4.6.1 we have that ”A Function error is one that effects significant
capability, end-user interfaces, product interface, interface with hardware
architecture, or global data structure(s) and should require a formal design
change”. Having in mind that the DAIM system has been developed by

73

very few engineers, it has probably been easier to get the total overview
and communication between the participants has been easier. In large sys-
tem developments projects with many people involved there is a huge need
for administration and communication something which takes a lot of time.
The fact that the DAIM system is quite a small system with few engineers
involved may be one of the reasons why Function faults are not mentioned
in the fault reports in Collection 1 considering that Function faults are more
severe faults that can be a result of misunderstandings etc. We shall also
add the fact that since we have received the fault reports from a system log
there are several limitations of what can be registered concerning faults that
require for example a formal design change as stated above. The system will
not be able to detect this itself, but the engineers will have to detect this
when evaluating the system.

It is easier to find the reason why the fault type Relationship has a
share of 0% in the analysis. As DAIM only depends on one external system,
namely Innsida1 which is the intranet on NTNU, the probability that faults
would occur is less than in systems where many systems depend on each
other. Timing/Serialization is related to the fault type Relationship and
almost the same answer can be given here as with the fault type Relationship;
namely the lack of dependability from a wide range of other external systems.

The fault category Unknown was useful in our previous work [5] when
we analyzed other projects, but we did not have the same opportunity to
communicate with the developers as we have had in this work. Some of
the fault instances from this work was classified as Unknown because the
fault reports were poorly described, but now we have received help from one
of the representative from the DAIM system such that this fault category
has a share of 0%. Faults of the fault type Duplicate also ends up with
0 fault instances which might not be that strange considering that we in
our previous work analyzed projects of a bigger size where more people were
involved and sometimes the same faults were pointed out by different people,
but in the DAIM system which is quite smaller every engineer have had their
own area of responsibility.

6.2.2 Analysis of Fault Reports from Collection 2

In Figure 6.2 and Table 6.2 we present the fault distribution resulting from
the fault analysis of Collection 2. Collection 2 differs from Collection 1 in
the way that the former contains fault reports that are automatically com-
puter generated, namely a system log from the DAIM system, while the
latter contains manually created fault reports made by the system devel-
opers. The fault reports in Collection 2 have a total number of 26 fault
instances. The fault types Assignment and Not fault are the fault types

1https://innsida.ntnu.no 11.05.07 16:57

74

Figure 6.2: Distribution of fault types within Collection 2.

most referenced to with a percentage share of 19,2% each. Further the fault
types GUI and Environment follow with 15,4% each, Data has 11,5% and
Interface has a share of 7,7% while the three fault types Algorithm, Doc-
umentation and Function are represented in 3,8% occasions each. The
remaining fault types which include Checking, Duplicate, Relationship,
Timing/Serialization and Unknown have no fault instances.

In this collection of fault reports, Collection 2, more of the fault types
have been used when classifying the different fault instances compared to
the classification process of Collection 1. As stated above, 5 of the fault
types have not been referenced to in the classification process while the rest
have been referenced to in a lesser or greater degree. This is a little increase
from Collection 1, described in Section 6.2.1, where 8 of a total number of 14
fault types were not used at all in the classification process. We have found
it reasonable to believe that this may have been a result of more human
intervention. As stated previous, the fault reports in Collection 1 are based
on a system log while the fault reports in Collection 2 are produced manually
by the system developers in the DAIM project. We see from Figure 6.2
that several GUI faults were encountered from the classification process
in Collection 2 which was not the case for Collection 1. The fault type
Documentation is also represented in Collection 1 with one instance. These
two fault types, GUI and Documentation, cannot very easily be revealed
from a system log, such as in Collection 1, but in Collection 2 where the

75

Fault type Number of faults Number of faults (%)

Assignment 5 19,2 %

Not fault 5 19,2 %

GUI 4 15,4 %

Environment 4 15,4 %

Data 3 11,5 %

Interface 2 7,7 %

Algorithm 1 3,8 %

Documentation 1 3,8 %

Function 1 3,8 %

Checking 0 0,0 %

Duplicate 0 0,0 %

Relationship 0 0,0 %

Timing/Serialization 0 0,0 %

Unknown 0 0,0 %

Total 26 100,0%

Table 6.2: Distribution of fault types within Collection 2.

system developers themselves manually have described the faults that have
occurred, it has been easier to point out such faults. This collection of
fault reports contains more information concerning each fault compared to
Collection 1 which made it easier for us to classify each fault instance into
correct fault category. One important aspect of this collection to have in
mind is the small number of faults, namely 26 fault instances, which is
very little and this makes it more difficult for us to generalize the results.
Another weakness with this collection is the short period of time which the
fault reports spans over. Collection 2 is based on a two month period while
Collection 1 spans over a period of approximately 15 months. Considering
the short period of time and the small amount of data makes it harder for
us to conclude with anything, but we think that we have enough data to
present some trends which can be useful.

6.2.3 Analysis of Collection 1 and Collection 2

In Figure 6.3 and Table 6.3 we present the total fault distribution of Col-
lection 1 and Collection 2. We see that the fault type Assignment has
the greatest number of occurrences with 25,6%. Fault instances classified as
Not fault give rise to 21,4% of the fault instances while Data faults follow
closely with a share of 19,7%. The fault types Interface and Environment
are represented in 12,0% and 11,1% of the fault occurrences. The 5 fault
types Checking, Duplicate, Relationship, Timing/Serialization and
Unknown have no occurrences while Documentation and Function have
a share of 0,9% each.

As stated above we observe from Figure 6.3, which contains a graph

76

Fault type Number of faults Number of faults (%)

Assignment 30 25,6 %

Not fault 25 21,4 %

Data 23 19,7 %

Interface 14 12,0 %

Environment 13 11,1 %

Algorithm 6 5,1 %

GUI 4 3,4 %

Documentation 1 0,9 %

Function 1 0,9 %

Checking 0 0,0 %

Duplicate 0 0,0 %

Relationship 0 0,0 %

Timing/Serialization 0 0,0 %

Unknown 0 0,0 %

Total 117 100,0%

Table 6.3: Total distribution of fault types after joining Collection 1 and
Collection 2.

with the total distribution of faults from Collection 1 and Collection 2,
that the fault type Timing/Serialization has no fault instances and we did
not find this very surprising. In our previous work [5] when we analyzed
more complex systems in the banking and financial sector more interaction
between different applications and larger amounts of data were interchanged.
Considering that DAIM is not a very complex system, see use case diagram
in Figure 3.3, and the degree of interaction with other application is minimal
this resulted in null instances of Timing/Serialization faults.

Even though DAIM is a relatively newly developed system, we did not
receive as many fault reports as we thought we would in advance. According
to our contact person in the DAIM system, the main part of the testing has
been performed during development and unit testing has been widely used.
Having in mind that there have been quite few persons involved with the
development of the system, it has been easier to organize the development
and there has been a smaller need for formal communication.

In contrast to our previous work [5] where we classified the different
faults also according to severity, the fault reports that we received from
DAIM did not contain any information regarding severity. This hindered us
from producing statistics concerning the severity.

Faults Not Registered in The Fault Reports

Concerning web browser compatibility DAIM is supposed to work properly
with Internet Explorer, Opera and Firefox and the system is continuously
tested for those web browsers. As we know that web browsers as well as
most technology applications today change from time to time, this results

77

Figure 6.3: Total distribution of fault types after joining Collection 1 and
Collection 2.

in challenges for system developers in general and in our case the system
developers connected to DAIM. Newer versions of web browsers show up
once in a while and they are updated enabling new functionality and use
of new standards while some functionality are disabled and removed. The
web browsers do also give the users choices concerning what functionality
to be enabled and disabled such that the user environment may differ a lot
from user to user which makes it more difficult to make applications that
work no matter how the user environment is. Examples from DAIM related
to this topic is the use of Javascript which is required for the DAIM web
page to work properly and according to one of the developers in the DAIM
project there was also a problem concerning activation and deactivation of
pop-up windows in different web browsers resulting in that the use pop-up
windows was removed from the web page. Even though DAIM is tested
with the three browsers mentioned above, there is a chance that some users
of the system may have extraordinary settings enabled in their respective
user environment causing the DAIM web page not to function properly. As
time goes by some people update their web browsers to newer versions while
some stick to their old versions and this may result in problems in the long
run. The problems that we have discussed in this paragraph are some of
the problems that are not registered in the fault reports received from the
DAIM system.

78

Fault type Number of faults Number of faults (%)

Function 191 21,2 %

Not fault 158 17,5 %

GUI 138 15,3 %

Unknown 87 9,7 %

Assignment 75 8,3 %

Checking 58 6,4 %

Data 46 5,1 %

Algorithm 37 4,1 %

Duplicate 36 4,0 %

Environment 36 4,0 %

Interface 11 1,2 %

Timing/Serialization 11 1,2 %

Relationship 9 1,0 %

Documentation 8 0,9 %

Total 901 100,00%

Table 6.4: Total distribution of fault types from Collection O.

6.3 Results from the Fault Analysis from our Pre-
vious Work

In our previous work [5] we did the same kind of analysis as we have done
in this master’s thesis concerning the fault reports. We received 901 fault
reports from 5 different projects from one company, from now on we name
it Company O, that were developing software for the banking and financial
sector and we classified the fault instances according to the same classifi-
cation scheme as we have used in this work namely the ODC classification
scheme, described in Section 4.6.1. The projects that we received were of
quite similar nature and can be seen as more or less homogenous projects.
When we will compare the results from these projects with the DAIM sys-
tem, see Section 6.4, we will use the term Collection O which includes all
the fault reports from the 5 projects as a whole.

In Figure 6.4 the distribution of fault types from Collection O is shown
graphically while Table 6.4 describes the distribution more exactly. It can
easily be seen that the fault type Function is the fault type with most fault
instances assigned to it and it occurs in 21,2% of all fault occurrences. The
fault type Not fault follows with 17,5% and is closely followed by the fault
type GUI which has a share of 15,3% of all fault occurrences. The fault types
Interface, Timing/Serialization, Relationship and Documentation
were the fault types less used in the categorization process and each category
was assigned approximately 1,0% of the fault instances each.

79

Figure 6.4: Total distribution of fault types from Collection O.

6.4 Comparison of Results from the Analysis of
DAIM and Previous Work

In Section 4.3 we stated research question RQ2 and this question will be
answered in this section. Research Question RQ2 was:

RQ2: How does the distribution of fault types from the fault
reports analyzed in DAIM differ from the fault reports in
our previous work?

The comparison of the fault distribution from the fault reports regarding
DAIM and Collection O can be seen in Figure 6.5 and we see that the fault
distributions differ in many ways, but having in mind that the fault reports
from Collection O comes from 5 different but quite homogenous projects we
could not expect to obtain that similar results. It is important to have in
mind that the DAIM system differs from the projects that we analyzed from
company O in several ways. First of all the fault reports from Collection
O resides from a company in the banking and financial sector something
which implies that different kind of tasks are performed by the system in
comparison to the DAIM system which is a web-based system mainly built
around a database. Another issue to have in mind is that we had several
more fault reports to classify and analyze from company O; exactly 901
fault reports in contrast to 117 fault report from DAIM. The complexity of
the DAIM project is not that high as most of the projects analyzed from
company O and this may be a reason why the results from the comparison

80

Fault Category DAIM (%) Collection O (%) Absolute difference (%)

Documentation 0,9 0,9 0,0

Relationship 0,0 1,0 1,0

Algorithm 5,1 4,1 1,0

Timing/Serialization 0,0 1,2 1,2

Not fault 21,4 17,5 3,9

Duplicate 0,0 4,0 4,0

Checking 0,0 6,4 6,4

Environment 11,1 4,0 7,1

Unknown 0,0 9,7 9,7

Interface 12,0 1,2 10,8

GUI 3,4 15,3 11,9

Data 19,7 5,1 14,6

Assignment 25,6 8,3 17,3

Function 0,9 21,2 20,3

Table 6.5: Comparison of the fault distribution from DAIM and Collection
O.

of the fault reports between the two collections may vary a lot.
From Figure 6.5 we see that the distribution of fault types varies a lot

between DAIM and Collection O and in Table 6.5 the exact values are pre-
sented numerically. The most striking difference seems to be related to the
fault type Function where DAIM has a percentage share of 0,9% in contrast
to 21,2% from the fault reports from Collection O and it is a difference of
20,3%. We think that some of the reasons for this may be related to the fact
that the DAIM project is not that complex as the projects in Collection O
and there are less people involved with the DAIM system. Fault instances of
the fault type Function tend to be more serious faults requiring a formal de-
sign change and when more people are involved in the development process
misunderstandings would normally occur more often. Some of the projects
from Company O were quite complex with several modules working together
and this may have resulted in higher density of Function faults. The fault
type Assignment has a difference of 17,3% between DAIM and Collection
O where DAIM has a share of 25,6% and Collection O a share of 8,3%.
We suspect that this difference may be related to some of the same reasons
mentioned with Function faults. DAIM is a less complex system with a few
numbers of modules and the probability that some big changes are needed is
smaller than in more complex and big systems. Assignment faults are often
faults considered as less severe compared to Function faults and considering
that the DAIM system is not very complex in addition to the fact the there
are few people involved in the development, it is easier to obtain the overall
overview with respect to the implementation of the system and delegation of
tasks and there is a minor need for formal communication. We think that all
the reasons that we have mentioned may explain some of the big difference

81

Figure 6.5: Comparison of the total distribution of fault types from DAIM
and Collection O.

between the fault reports from DAIM and Collection O concerning the fault
type Assignment.

With respect to the fault type Data there is a difference of 14,5% be-
tween the collections of fault reports from DAIM and Company O. According
to our contact person in DAIM some of the fault instances referring to Data
faults were probably related to some ”extra” testing done in connection with
a master’s thesis from last year [11] concerning FMEA analysis. Considering
that the number of fault reports received from DAIM was quite few, this
may have affected the results some. In the fault reports from DAIM the
fault type GUI occurs in 3,4% occasions while the fault reports from Com-
pany O has a share of 15,3% which makes a difference of 11,9%. As stated
in Section 6.2.1 many of the fault reports from DAIM come from a system
log and the system log will hardly be able to discover GUI faults. The fault
instances categorized as Unknown is 0% with respect to the DAIM system
while from Collection O we have that 9.7% of the fault instances have been
assigned to this fault type. During the categorization process of DAIM we
have had more contact with our contact person compared to when we ana-
lyzed the fault reports from Collection O. We did not have this possibility
with Collection O such that sometimes we had to categorize the faults as
Unknown because the fault reports were not very well described.

82

6.5 Summary

In this chapter we have performed the analysis of fault reports from DAIM
and interesting findings were discovered. In addition to the analysis of
DAIM, we also included the results from our previous work which also in-
cluded analysis of fault reports and we compared these results with the
results that we obtained from the analysis of DAIM.

83

84

Chapter 7

Results

In this chapter we will present the results from our work and we will point
out the most important findings that we have made.

7.1 Introduction

Section 7.2 gives some comments concerning how the process of comparing
the hazards and faults has been. In Section 7.3 we give the results from
the comparison of the hazards and faults while Section 7.4 contains a brief
summary of the results. In Section 7.5 we present some trends that were
discovered with respect to faults and hazards in the different phases of the
development.

7.2 The Process of Comparing Hazards and Faults

In the process of comparing the hazards with the faults from the fault re-
ports we met some challenges. Having in mind that the hazards are of a
quite general nature and do not contain details in the same degree as the
fault reports this had to be taken into account when comparing. It was dif-
ficult to find exact matches between the hazards and the fault reports. The
descriptions of the hazards are of a more oral nature compared to the fault
reports which are more specific in the way they are written. We tried to do
the process of comparing the information in the best possible way and we
started out by going through one and one hazard at the time. In Chapter 5
where the hazard analysis tables are given, the rightmost column contains
an identifier of the form ”H??” and we started with the hazard connected to
H1. By looking at Table 5.5 it can easily be determined what fault category
this hazard has been assigned to and based on this we have gone through
the fault instances from the fault reports focusing on fault instances related
to this fault category to see if the hazard have similarities with the different
fault instances. As H1 is categorized as a ”Data” fault, we went through all

85

the fault reports categorized as ”Data” faults and tried to find if there were
some connections between the hazard and the fault instances.

7.3 The Results from the Comparison

We came up with a total number of 33 hazards where 7 of these were as-
signed ”Not Fault”, something which imply that these hazards were not
related to the system but involved user faults. In the following subsections,
Section 7.3.1 to Section 7.3.9, we will present the results from the com-
parison according to fault category. Some of the information given in the
following subsections are based on Table 6.3, Table 5.10 and Table 5.9. In
Section 4.3 we stated a research question RQ4 that involves finding if there
is a connection between hazards from the PHA process and the fault reports
and this research question will be answered in the following subsections.

RQ4: Does the hazard analysis technique PHA applied to the
DAIM specification documents reveal faults that have actu-
ally appeared in the system?

7.3.1 Algorithm Faults

According to Table 5.9 we classified 5 of the hazards to the fault category
”Algorithm”. From the fault reports, see Table 6.3, we have that 6 of the
fault instances was classified as ”Algorithm” faults. We did not find any
connections between the fault instances from the fault reports categorized
as ”Algorithm” faults and the hazards categorized as ”Algorithm” faults.

7.3.2 Assignment Faults

One of the hazards was classified as a ”Assignment” fault while in the fault
reports we classified 30 fault instances to the category ”Assignment” faults.
We did not find any relationship between the hazards and the fault reports.
Having in mind that ”Assignment” faults are normally more detailed and
often closely connected to coding errors, this may be one reason why the
number of ”Assignment” faults is that high for the fault reports, but low for
the hazards. Hazards are of a more general nature and do not include such
level of details.

7.3.3 Checking Faults

The number of hazards categorized as ”Checking” faults was 7 and the num-
ber of fault instances categorized as ”Checking” faults was 0. This means
that there was nothing to compare such that no relation between hazards
categorized as ”Checking” faults and fault reports categorized as ”Checking”
could be proved.

86

7.3.4 Data Faults

From the fault reports we categorized 23 of the fault instances as ”Data”
faults while from the hazard analysis we categorized 3 of the hazards as
belonging to ”Data” faults. The results from the comparison of the fault
reports and hazards categorized as ”Data” faults gave us some interesting
findings. One of the fault reports (F1) has the description Missing user-
name and in the column improvement it is stated that Need to improve the
import from FS. From the hazard analysis we can see that hazard H2 from
Table 5.1 concerns the hazard Unauthorized access and its cause is said to
be User is missing because of gap in export from FS. From these descriptions
we have reason to believe that there is connection between the hazard and
the fault report. We also found that hazard H11 was related to the fault
instance described above (F1). From Table 5.3 we see that H11 is described
with the hazards ”Wrong” data from FS and Inconsequent data. It is stated
that the causes are Inconsequent data input, Fault registered and Wrong for-
mat. Considering that the fault description from the fault report is Missing
username it can be the case that the username is wrongly registered in FS
meaning that a character can be misplaced by another etc.

7.3.5 Environment Faults

The number of fault instances from the fault reports categorized as ”Environ-
ment” faults was 13 while from the hazard analysis we identified 2 hazards
categorized as ”Environment” faults. From Table 5.6 we see that the hazard
H16 is described as Wrong value in contract - datafault/typefault and the
causes are Validation fault and Characterset fault. From the fault reports
we have one fault report (F2) that is described as ÆØÅ in email and in the
improvement column it is stated that Changing of the character set regarding
MIME. We found this partly relevant to the hazard just mentioned, because
it deals with character sets and in a system where one uses two languages
with different character sets this may cause trouble for the system.

7.3.6 Function Faults

We categorized 13 of the hazards to the category ”Function” faults and from
the fault reports we had that one of the fault reports was assigned to the
category ”Function” faults. This fault report instance (F3) has been related
to two of the hazards, namely H22 and H28. The fault description of F3 is
Email was not sent to other members of the group when the cooperation group
was established. Hazard H22, which states Mess in the group composition
and the cause for this People have difficulties when deciding, can be related
to the fault instance F3 which deals with problems regarding cooperation
groups. Hazard H28 can also be related to F3, because it deals with problems
regarding cooperation groups. H28 is described as One person in the group

87

delivers master’s thesis without consent and the cause is given as Different
view in the group. This hazard may not be directly linked to F3, but we
wanted to add this because it deals with issues concerning cooperation in
groups.

7.3.7 GUI Faults

We registered a total of 4 ”GUI” faults related to the hazards and from the
fault reports we had a total of 4 as well. We came up with one weak con-
nection between the hazard H15 and the fault report F4. H15 is described
as Wrong value in contract -datafault/typefault and the cause is stated Slop-
piness MMI Touch wrong key on keyboard. The fault instance F4 is given
as The student did not find the textfield where he/she was supposed to fill in
delivery date and this resulted in wrong values in the contract as stated in
the description of hazard H15.

7.3.8 Interface Faults

We categorized one of the hazards as the fault type ”Interface”. Among the
fault reports there have been identified 14 fault instances related to the fault
type ”Interface”. We did not succeed in finding any connections between the
hazards and the fault instances from the fault reports.

7.3.9 Timing/Serialization Faults

The number of ”Timing/Serialization” faults from the fault reports was 0
and from the hazard analysis we had a number of 1 hazard assigned to the
category ”Timing/Serialization”. Even though we had no instances from the
fault reports categorized as ”Timing/Seralization” we succeeded in finding
another fault fault instance, F16 which is categorized as an ”Assignment”
fault, that can be related to the hazard H22 which is categorized in the
group ”Timing/Serialization” faults. H22 is described as Mess in the group
composition with the cause People have difficulties when deciding while F16
is described as No group members assigned to a master’s thesis - Master’s
thesis 1212 has no students registered.

7.4 A Brief Summary of the Results from the Com-
parison

From the preceding sections, Section 7.3.1 to Section 7.3.9, we did some
findings which we will briefly summarize here. In general we did not find as
many connections as we were hoping for before we started our work. Some
of the reasons may be that DAIM is a newly developed and small system

88

and we did not have that much material to work on, the numbers of fault
reports were few etc.

From the comparison of fault reports and hazard instances we did find
some connections or tendencies and they were related to the fault types
Data, Environment, Function, GUI and Timing/Serialization. None
of the connections we found were very strong, but as we use the term connec-
tions when referring to the findings there were something that related some
of the hazard instances to the fault instances. There were some indications
saying that some of the faults could have been avoided based on the results
from the comparison that we have just done.

7.5 Trends

In this Section we will look at some trends that we have found interesting
concerning faults and hazards identified in different phases.

According to Figure 2.2 and Figure 2.3 we have that fault instances re-
lated to the fault type Function faults occur more often in earlier phases of
the development rather than in later phases; Function faults have most oc-
currences in the design phase while the occurrences decrease as the project
evolves and enters later phases. Considering that the PHA analysis was per-
formed based on documentation from the design phase of the development
of DAIM, wee see from Table 5.10 that hazards assigned to the fault type
Function actually have the highest frequency compared to the rest of the
fault types in DAIM and this shows that the trend from Figure 2.2 actually
coincides with the results from the PHA concerning the fault type Function.
By looking at Table 6.3, which shows the distribution of fault types from the
fault analysis of DAIM, we see that the fault type Function has a share of
approximately 1% of the fault instances and this indicates that the number
of fault instances related to Function faults have decreased as the develop-
ment of the DAIM system has evolved. The fault reports from DAIM was
received after the system has been in operation for a while.

Figure 2.3 states that fault instances of the fault type Assignment belong
to the process of coding. By looking at Figure 6.3 we see that fault instances
classified as Assignment faults have the highest number of occurrences and
having in mind that DAIM has been in service for some time now and that
the system is under continually development, this seems very reasonable.
From Figure 5.1, which originates from the hazard analysis of DAIM, we
can easily see that the number of hazards categorized as Assignment faults
is quite low and considering that Assignment faults usually are more detailed
(and less severe) than Function faults, it seems reasonable that Assignment
faults have that little share of faults in early phases of the development.

Another trend that we discovered concerns the fault type Interface.
From Figure 2.2 we see that the fault type Interface seems to increase in

89

number of occurrences as the project evolves. This tendency can also be
spotted from our different analyzes concerning DAIM; Table 5.10, which
resides from the PHA, shows that hazard instances identified as Interface
faults have a share of 2,3%, while Table 6.3 which comes from the analysis of
fault reports, shows that fault instances referred to as Interface faults have
the share 12,0%. This is an increase of approximately 10%.

Hazards classified as Algorithm faults have been reported in 11,6% of
the occurrences of the different hazards, see Table 5.10, while from Table 6.3
we have that fault instances from the fault reports identified as Algorithm
faults have a share of 5,1%. According to Figure 2.3 we see that Algorithm
faults are related to the process stage ”Low level design”and this seems to be
the case for the DAIM because of the decrease of occurrences as the project
has evolved.

7.6 Summary

In this chapter we have performed the comparison of the results from the
PHA analysis and fault analysis with respect to the DAIM system. We
found some interesting results from the comparison, but not as many as
we had expected. In addition to the comparison we also included a section
about the trends that we found concerning faults and hazards with respect
to different development phases.

90

Chapter 8

Discussion of Validity and
Own Contribution

This chapter contains the discussion part of the master’s thesis along with
own contributions. The discussion part is closely related to the threats to
the validity of our work.

8.1 Discussion of Validity

The question of how valid the results are from scientific work, is a very im-
portant and fundamental issue and needs attention. In [16] four different
kinds of validity types are described and in the following subsections, Sec-
tion 8.1.1 to Section 8.1.4, we will look into the different threats to validity
that the results from this master’s thesis may be suffering from. The four
different validity types are:

• Conclusion Validity

• Internal Validity

• Construct Validity

• External Validity

8.1.1 Conclusion Validity

Concerning conclusion validity it is stated in [16] that: ”The basic principle
is that when you measure a phenomenon twice, the outcome shall be the
same”. Considering that this master’s thesis has involved several tasks we
will briefly look at each task with respect to the conclusion validity. Con-
cerning the hazard analysis PHA we know that this kind of analysis includes
some elements of creativity and experience. Regarding the creativity this
is very person-dependant, but as there were several people with experience

91

from this kind of analysis present during the different sessions, we claim
to have reduced the treat of conclusion validity some, having in mind that
the experienced people may have stimulated the other participants to think
more creatively. The task related to classification and analysis of fault re-
ports does also need some attention, because fault analysis also include some
elements of subjectivity. We felt that we reduced this treat some by having
defined the different fault categories properly in addition to state good ex-
amples of the different categories. In our previous work [5] we experienced
that some of the fault instances were hard to classify because of insufficient
descriptions, but in this work we were lucky to have more contact with the
people involved with DAIM such that the number of fault instances char-
acterized as ”Unknown” became 0%. In addition to this we did some of
the parts in the process of categorization together with our contact person
from DAIM such that we had to agree upon the different fault instances.
With respect to the third part of our task concerning the comparison of the
results from the fault analysis and hazard analysis, this part will also have
to be considered as partly subjective, but as we did some of the comparison
together with our supervisor this led to a common understanding and this
have probably reduced the treat of conclusion validity.

Another treat we have identified regards the issue of ”fishing”which deals
with the situation where one is ”fishing” for a specific result. As we were to
compare the results from the PHA and the fault analysis, we were hoping
to find some connections between the results and this may have lead us to
find ”weak” connections which others would not have found. We think we
reduced this treat some by doing some of the comparison together with or
supervisor who has experience with this kind of work.

8.1.2 Internal Validity

Concerning the internal validity we have found one treat that is partly re-
lated to one of the treats identified in Section 8.1.3 concerning construct
validity and it is named ”maturation”. This treat concerns the effect that
the subjects react differently as time goes by. In our previous work [5] we
did the same kind of fault analysis including classification of faults as we
have done in this work and we might have seen things differently in this
work compared to our previous work concerning the process of classification
of the fault instances. We claim to have reduced some of this treat by hav-
ing the same material present as we had back then; the material concerning
the fault categories consisted of good descriptions of the fault categories in
addition to good examples for illustrating what kind of faults this category
should contain.

92

8.1.3 Construct Validity

From [16] we have a treat described as ”Inadequate preoperational explica-
tion of constructs” which makes a point of the importance of having defined
the correct goals in advance. There is given an example where one is going
to compare two different inspection methods and it is important to have
a clear idea of how to measure this; ”What method is best? The method
with the fewest faults?” etc. In this master’s thesis this could have been a
treat for us as well, but since we actually compare the results obtained by
using two different inspection techniques, it cannot be considered as a treat
of this kind. PHA is a method used earlier in the process of system develop-
ment, such as in the design phase, while fault analysis normally is performed
at later stages, after the system has been operable for a while. With this
master’s thesis we wanted to see if we could find connections between the
results from the inspection techniques, but we did not actually know what
we would find or if we would find anything at all. Our point is that we did
not know exactly what we were looking for. The results that we have come
up with has to be seen in a subjective matter, because other people might
have found other connections than we did. For reducing subjective opinions
we did some of the work concerning the comparison of the results from the
inspection techniques together with our supervisor.

8.1.4 External Validity

External validity concerns the possibility of generalizing the results obtained
from a project outside the project setting. In our work we have analyzed data
from one project and this may conflict some with the ability to generalize
the results. Considering that various companies have their one way of doing
things and that projects differ from project to project, it can be that the
results would have been different if we worked with another project. To our
advantage it shall be stated that the system that we worked with was of a
quite ordinary nature, namely a typical Web-based IT-system. Having this
in mind we think that the results would not necessary vary that much if
another system had been analyzed; at least we think we have reduced the
treat some because of this fact.

Another treat related to external validity and difficulty of generalizing
results that we have found concern the size of the system that we have worked
with. DAIM is a small system with respect to complexity and number of
developers, and we received a few number of fault reports. This may have
affected the distribution of faults, such as less fault instances of the fault
type Function than normal etc. Considering that the system is quite young
it might have been a suggestion to do this kind of analysis later on. PHA
is supposed to be performed during the early stages of a project, but if the
fault analysis had been performed later on it would hopefully have existed

93

more fault reports, but it shall be stated that this would not necessary have
been the case. Performing the fault analysis later on would not necessarily
guarantee more fault reports or big changes in the distribution of fault types.
Luckily we had a very good collaboration with our contact person from
DAIM and the fault reports that we received were of a good qualitative
nature. As stated in Section 8.1.1 the number of fault instances classified
as the fault type Unknown was 0% and this shows that all of the fault
instances were classified even though the number of fault instances was small.
We believe that this may have reduced the treat some.

8.2 Own Contribution

During our work with the DAIM system, we have found some suggestions
for improving the system. One of the suggestions consists of making some
kind of a feedback functionality or a forum on the DAIM web page. If
the users of the system have questions or want to report errors on the web
page, a way to report this should be supported on the web page. Today the
web page displays an email address where the users can give the developers
feedback, but for example in the situation where many users are wondering
about the same questions it might have been a good idea to have some
kind of a forum. Then the developers would avoid receiving many emails
concerning the same issues and they could spend their time on other tasks.
In a forum other users might also comment on other user’s questions such
that the developers do not need to be involved in every occasion, but they
could have an administrator role and correct the forum posts in the case
where a user has given wrong information etc. There exist a web page for
frequently asked questions (FAQ), but as time goes by new issues do occur.
For the moment DAIM only includes master students from the IME faculty,
but according to one of the developers in the DAIM system, it is possible that
DAIM may be rolled out for all master students at NTNU. If this happens,
the number of users will increase greatly and there might be changes in the
system because the different faculties might have their own wishes regarding
new functionality etc.

On the FAQ web page all supported web browser for the DAIM web
page are listed, but the web browser version is not mentioned. As we know
that newer versions of the web browsers occur once in a while and new
functionality is added and some functionality is removed the FAQ web page
should include this kind of information.

94

Chapter 9

Conclusion and Further
Work

This chapter will present the conclusions that we have made in addition to
some comments about what could be interesting to study in further work.

9.1 Conclusion

In this master’s thesis we have done several analyzes with respect to the
IT system called DAIM. We performed a hazard analysis technique called
PHA on DAIM and we categorized the hazards according to the classifi-
cation scheme named ODC. This classification was performed in order to
compare the results from the PHA with the results from our fault analysis
of the DAIM system. The results from the fault analysis of DAIM were
also compared with results from our previous work [5], which also concerned
fault analysis, but these fault reports came from other systems.

We decided on four research questions in our work and in the following
paragraphs we will give brief answers to those. Concerning RQ1 we were
supposed to look at the distribution of fault types in DAIM and we found
that fault instances related to the fault type Assignment had most occur-
rences (25,6%) closely followed by fault instances assigned to the fault types
Not fault (21,4%) and Data (19,7%). The three fault types just mentioned
had a total of approximately 65% of all the fault instances. The five fault
types Checking, Duplicate, Relationship, Timing/Serialization and
Unknown had 0% fault instances assigned to them.

In RQ2 we compared the distribution of fault reports assigned to differ-
ent fault types from DAIM with our previous work and we found that were
several differences. We have from Table 6.5 that the fault type Function is
the fault type with the greatest difference (20,3%) concerning fault occur-
rences between DAIM and our previous work ; the fault types Assignment
and Data follow with a difference of 17,3% and 14,6% between DAIM and

95

our previous work. On the other side of the scale regarding the fault types
with the least difference among the systems we have the fault types Tim-
ing/Serialization (1,2%), Algorithm(1,0%), Relationship (1,0%) and
Documentation (0,0%).

RQ3 concerns the question of what fault types PHA indicates as possi-
bilities and we found some clear tendencies. Hazard instances categorized
as Function faults occurs in 30,2% of the occasions while hazard instances
categorized as Checking, ranked as number two, has a share of 16,3% of
all occurrences. Next we find hazard instances categorized as Not fault
and Algorithm with a percentage share of 14,0% and 11,6%. The fault
types Documentation, Duplicate, Relationship and Unknown have
no hazard instances connected to them.

With respect to RQ4 where we were wondering if PHA actually reveal
faults that appear, we did not find any definitive yes or no’s. From Sec-
tion 7.3 we have that some of the fault instances from the fault reports
might be considered as related to some of the hazard instances. We found
some connections/tendencies between the hazard and fault instances which
might be interpreted in a way saying that some of the faults could have been
avoided if one had focused more on the results from the hazard analysis. But
as we know, the hazard analysis has been performed after the system has
been in service for a while.

We will conclude with that PHA is a good technique for identifying
treats and if we had used this technique on another system with different
material to analyze, the results might have been different. DAIM is a small
and simple system and faults from earlier phases have probably not been
reported as faults at all, because the developers have handled these faults
as they have appeared.

As we see it doing such an analysis before starting the implementation
is by no means meaningless, because it may stimulate the developers to
be more aware of what kind of faults that can occur and by having this in
mind this itself might be of help reducing some of the faults/treats identified
before the process of implementing the system.

9.2 Further Work

Considering that we have found some connections in our work regarding
faults and hazards, it would have been very interesting to perform a PHA
on another system than DAIM; it might have been a good idea to analyze
a more complex system that contained different data material to use in the
process. Since we have performed PHA in this master’s thesis, it might
have been interesting to perform another hazard analysis technique such as
HazOP to see if this technique might be better suited.

96

Bibliography

[1] United Kingdom Software Metrics Association. Quality standards de-
fect measurement manual. 2000.

[2] J. A. Børretzen, T. St̊alhane, T. Lauritsen, and P. T. Myhrer. Safety
activities during early software project phases. Proceedings, Norwegian
Informatics Conference, 2004.

[3] Chillarege. What is odc?
http://www.chillarege.com/odc/odcbackground.html [17.06.07
15:00].

[4] R. Chillarege, I. S. Bhandardi, J. K. Chaar, M. J. Halliday, D. S. Moe-
bus, B. K. Ray, and M. Wong. Orthogonal defect classification - a
concept for in-process measurements. IEEE Transactions on Software
Engineering. Volume 18, Issue 11, Nov. 1992.

[5] J. Dyre-Hansen. Analysis of fault reports from online-systems. Depart-
ment of Computer and Information Science, NTNU, 2006.

[6] IEEE R. Sandhu E. Bertino, Fellow. Database security - concepts,
approaches and challenges. 2(1), january-march 2005.

[7] K. El Emam and I. Wieczorek. The repeatability of code defect classifi-
cations. Proceedings, The Ninth International Symposium on Software
Reliability Engineering, 1998.

[8] IBM. Details of odc v 5.11.
http://www.research.ibm.com/softeng/ODC/DETODC.HTM
[14.06.07 15:00].

[9] J-C. Laprie. Dependable computing and fault tolerance: Concepts and
terminology. 15th Int. Symp. on Fault-Tolerant Computing, 1985.

[10] N. G. Leveson. Safeware: System Safety and Computers, chapter 12,
pages 253–254. Addison-Wesley, 1st edition edition, 1995.

[11] T. H. T. Pham. Websys- robustness assessment and testing. Master’s
thesis, Department of Computer and Information Science, NTNU, 2006.

97

[12] M. Rausand. Risiko analyse. Tapir Forlag, 1991.

[13] N. Storey. Safety-Critical Computer Systems, chapter 1. Addison-
Wesley, 1st edition edition, 1996.

[14] T. St̊alhane and T. Lauritsen. Safety methods in software process im-
provement. 2005.

[15] weibull.com. Relationship between availability and reliability.
http://www.weibull.com/hotwire/issue26/relbasics26.htm
[13.03.07].

[16] C. Wohlin, M. Höst P. Runeson, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation In Software Engineering - An Introduc-
tion. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[17] D. Zage and W. Zage. An analysis of the fault correction process in
a large-scale sdl production model. ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, 2003.

98

