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Abstract

Connectology consist of three basic principles with each their own synaptic learning
mechanism: Hedonism (the Skinner synapse), Anticipation (the Pavlov synapse) and
Reason (the Hume synapse). This project studies the potentials and weaknesses of these
mechanism in visual facial affect recognition.

By exploiting the principles of hedonism, a supervision mechanism was created with
the purpose of guiding the Pavlov synapses’ learning towards the goal of facial affect
recognition. Experiments showed that the network performed very poorly, and could not
recognize facial affects. A deeper study of the supervision mechanism found a severe
problem with its operation. An alternative supervision scheme was created, outside the
principles of Connectology, to facilitate testing of the Pavlov synapses in a supervised
setting. The Pavlov synapses performed very well. The synapses correctly anticipated all
affects, however one of the four affects could not be discriminated from the others. The
problem with discriminating the fourth affect was not a problem with the Pavlov learning
mechanism, but rather of the neuronal representation of the affects. Hume synapses
were then introduced in the hidden cluster. This was done to facilitate the forming of
neuronal concepts of the different facial affects in different areas of the cluster. These
representations, if successfully formed, should allow the Pavlov synapses to both antipate
and discriminate between all facial affects. The forming of concepts did not happen, and
thus the Hume synapse did not contribute to better results, but rather degraded them.

The conclusion is that the Pavlov synapse lends itself well to learning by supervision,
futher work is needed to create a functioning supervision mechanism within the principles
of Connectology, and the application of the Hume synapse also calls for futher studies.



2



Preface

This report is the result of a master’s project within Connectology, at the Department
of Computer and Information Science (IDI) at the Norwegian University of Science and
Technology (NTNU). The outline for the assignment was proposed by Associate Professor
Jørn Hokland at IDI, NTNU.

I would like to thank my supervisor, Jørn Hokland, for his guidance and AV-tjenesten
for use of their digital video camera. I would also like to give a big thanks to Elisabeth
Johansson and Katrina Sponheim for inspiring discussions and many good times.

June 15, 2007

H̊avard Tautra Knutsen

3



4



Contents

1 Introduction 9
1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Theory and model 11

2 Theory 13
2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 History and Connectology . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Hedonism (the Skinner synapse) . . . . . . . . . . . . . . . . . . . 16
2.2.2 Anticipation (the Pavlov synapse) . . . . . . . . . . . . . . . . . . 17
2.2.3 Reason (the Hume synapse) . . . . . . . . . . . . . . . . . . . . . 17

3 Model 21
3.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Image size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 The neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Neural activation function . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Net input to neuron . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Random bursting . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Hume synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Pavlov synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Skinner synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Neural network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Input cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Hidden cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Motor cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.4 Affect neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Supervision using the Skinner synapse . . . . . . . . . . . . . . . . . . . 31

4 Planned experiments 33
4.1 Length of learning cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Performance measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Supervision performance . . . . . . . . . . . . . . . . . . . . . . . 34

5



4.2.2 Pavlov and Hume performance . . . . . . . . . . . . . . . . . . . 34

II Experiments 35

5 Experiment 1 37
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Result 1: No Hume synapses . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Result 2: Hume synapses . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Experiment 2: The supervision mechanism 43
6.1 Learning mechanism parameters . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 Result 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.2 Result 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.3 Result 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.4 Result 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Experiment 3: The Pavlov synapse 53
7.1 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Learning mechanism parameters . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3.1 Result 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.2 Result 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.3 Result 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Experiment 4: Pavlov and Hume synapses 61
8.1 Learning mechanism parameters . . . . . . . . . . . . . . . . . . . . . . . 62
8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.2.1 Result 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2.2 Result 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.3 Result 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

III Conclusion 71

9 Conclusion 73
9.1 Futher work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Source code 77

6



List of Figures

2.1 Simple neural network with two neurons, and a synapse. . . . . . . . . . 13

2.2 A larger neural network topology. . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The retina sweeping over a black rectangle, from the right to the left. The
numbers correspond to temporal position. . . . . . . . . . . . . . . . . . 18

3.1 Neutral face, and the four different facial affects seen in the movie. . . . . 21

3.2 The different facial affects in the movie, and their corresponding supervi-
sion signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Input image reduced by most prominent pixel. . . . . . . . . . . . . . . . 24

3.4 Input image edge detected, then scaled by ordinary algorithm. . . . . . . 25

3.5 Input image scaled by ordinary algorithm, then edge detected. . . . . . . 25

3.6 Sigmoid activation function. . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 The standard Gaussian distribution. . . . . . . . . . . . . . . . . . . . . 27

3.8 Neural network topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.9 Plot of error scaling function, after activation function. . . . . . . . . . . 32

5.1 Topology, experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Pavlov performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) during test phase. . . . . . . . . . . 38

5.3 Skinner performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) over the last two learning periods. . 39

5.4 Pavlov performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) during test phase. . . . . . . . . . . 40

5.5 Input images on top. Image representation of neural drives in the hidden
cluster on bottom. Black pixels represent a neuron with drive 0, and white
pixels a drive of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Simple topology with only motor cluster and supervision mechanism. . . 44

6.2 Supervision signals for the four different affects. . . . . . . . . . . . . . . 44

6.3 Skinner performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) over the last two learning periods. . 45

6.4 Skinner performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) over the last two learning periods. . 46

6.5 Skinner performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) over the last two learning periods. . 47

6.6 Skinner performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) over the last two learning periods. . 48

7



6.7 Skinner synapses after learning phase. The synapses in red all have an
efficacy of around -2.2, while the synapses in gray have efficacies around
-0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.8 Detailed view of the last 50 iterations of the learning phase. Showing
supervision signal, affect neuron drive (error signal) and corresponding
motor neuron drive for the affect “displeased”. . . . . . . . . . . . . . . . 50

6.9 Sum of ∆eij for each frame, over all 50 periods. eij is the synapse between
the affect neuron for “displeased” and its corresponding motor neuron. . 51

7.1 Topology without affect neurons and Skinner synapses. . . . . . . . . . . 53
7.2 Supervision signals for the four different affects. . . . . . . . . . . . . . . 54
7.3 Pavlov performance test. Supervision signal (red), and actual drive of

corresponding motor neuron (green) during test phase. . . . . . . . . . . 55
7.4 Pavlov performance test. Supervision signal (red), and actual drive of

corresponding motor neuron (green) during test phase. . . . . . . . . . . 56
7.5 Pavlov performance test. Supervision signal (red), and actual drive of

corresponding motor neuron (green) during test phase. . . . . . . . . . . 57
7.6 Synaptic efficacies from hidden cluster to each of the motor neurons. Green

represent positive synaptic efficacies, red represent negative. Black is 0. . 58

8.1 Topology without affect neurons and Skinner synapses, with Hume synapses. 61
8.2 Pavlov performance test. Supervision signal (red), and actual drive of

corresponding motor neuron (green) during test phase. . . . . . . . . . . 63
8.3 Input images on top. Image representation of neural drives in the hidden

cluster on bottom. Black pixels represent a neuron with drive 0, and white
pixels a drive of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.4 Input images on top. Image representation of neural drives in the hidden
cluster on bottom. Black pixels represent a neuron with drive 0, and white
pixels a drive of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.5 Pavlov performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) during test phase. . . . . . . . . . . 66

8.6 Input images on top. Image representation of neural drives in the hidden
cluster on bottom. Black pixels represent a neuron with drive 0, and white
pixels a drive of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.7 Pavlov performance test. Supervision signal (red), and actual drive of
corresponding motor neuron (green) during test phase. . . . . . . . . . . 68

8



Chapter 1

Introduction

1.1 Problem description

Connectology - Research Programme for Brain Psychology (Hokland 2006) proposes a
complete connectionist theory of brain-psychology, linking all major principles of neurobi-
ology. Connectology is consistent the two foremost schools of psychology: psychoanalysis
and behaviorism. The theory consist of three basic principles, which are embodied in
three different synaptic learning mechanisms: Hedonism (the Skinner synapse), Antici-
pation (the Pavlov synapse) and Reason (the Hume synapse). This simulation project
within Connectology will study the potentials and weaknesses of the three mechanisms
in visual face affect recognition.

1.2 Previous work

Last year the different synaptic learning mechanisms proposed in Connectology were
tested in two different student projects.

[Knu06] was a study of the Skinner synapse (operant conditioning). The objective was
to determine if the Skinner synapse could explain how the brain at a neural level learns
to satisfy the needs of the body.

It concluded that the Skinner synapse was able to satisfy needs under several different
simulated conditions. E.g. one need, two conflicting needs, needs that changed over time,
etc.

In [KS06], experiments were conducted on simulating how the brain learns to detect and
remember objects, using the Hume and Pavlov synapes. The first part of the project
was see if one cluster, interconnected with Hume synapses, could form an edge detected
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representation of the input image. This worked as expected. Then, more clusters were
added to see what would happen in these. All clusters were intraconnected with Hume
synapses, and fully connected to each other via Pavlov synapses. The result in the
second cluster was an edge detected representation of the edges in the first cluster. In
the subsequent clusters the results were unclear, probably due to an unsharp image in
the first cluster.

The second part of the project was to determine if the network could learn to discrimi-
nate between different types of object, by forming concepts of them in subclusters. The
network was not able to discriminating objects, but instead learned a generalization of
all the objects. The conclusion was that to learn concepts of objects, the Skinner synapse
had to be added.
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Part I

Theory and model
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Chapter 2

Theory

This chapter gives a short introduction to artificial neural networks, Connectology, and
the three basic principles of Connectology. Also this chapter introduces most of the
terminology used in the thesis with regards to the learning mechanisms and artificial
neural networks.

2.1 Neural networks

Figure 2.1: Simple neural network with two neurons, and a synapse.

An artificial neuron is a model of the brains actual neurons. While neurons in the brain
have firing rates (how often a neuron emits an electrical impulse), the artificial neurons
have a drive. The drive is simply a real number between 0 and 1 which represent the
current firing rate. A drive of 0 represents no firing at all, while a drive of 1 means the
neuron is firing at its maximal rate. In fig. 2.1 neuron i is the presynaptic neuron and
neuron j is the postsynaptic neuron, with regards to the synapse eij. The drives of the
neurons are denoted Di and Dj respectively.

In the brain, electrical impulses are transmitted from neuron to neuron over synapses1.
A synapse can either inhibit 2 or excite 3 the postsynaptic neuron.

1More specifically the electrical action potential is transmitted over the synaptic cleft using a chemical
transmitter [ERK00, p.177].

2The synapse contributes to a lower drive/firing rate.
3The synapse contributes to a higher drive/firing rate.
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The artificial synapse is modelled by a single real number, eij, known as the synaptic
efficacy. If a synapse has a negative efficacy, it inhibits the postsynaptic neuron, while a
positive efficacy excites the postsynaptic neuron.

Note that each postsynaptic neuron often has several synapses connected to it, with cor-
responding presynaptic neurons. Also, a neuron can also be both pre- and postsynaptic,
with regard to different synapses.

The drive of a postsynaptic neuron is found by integrating all presynaptic action poten-
tials. If a neuron receives both inhibitory and excitatory action potential, the inhibitory
signal can, if equally large to the excitatory potential, counteract the excitatory poten-
tials, and prevent firing of the postsynaptic neuron [ERK00].

Figure 2.2: A larger neural network topology.

A cluster is a collection of neurons, typically representing various areas of the brain.
Arrows between clusters represent some synaptic connection between the neurons in the
clusters. The two types of connections used in this thesis are:

One-to-one connected. Example:
The first neuron in the input cluster has a synapse only to the first neuron in the hidden
cluster, etc. This results in 36 synapes in case of the topology in fig. 2.2.

Fully connected. Example:
Every single neuron in the hidden cluster has synapses to every single neuron in the motor
cluster. In case of the topology in fig. 2.2 this results in 36 · 36 = 1296 synapses.

Neurons in the motor cluster model the neurons which in animals control muscle fibers.
These neurons are often referred to as motor neurons. These are the neurons from which
the results of the learning can be interpreted.

Neurons in the input cluster typically model need sources4 , or neutralized senses5. The
drive of these neurons will be some numerical representation of the input data.

Since the network is being used to perform supervised learning, there are two phases of

4Examples are glucose receptors (hunger) and thermoreceptors (heat/cold).
5E.g. sight and hearing.
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network operation:

Learning phase The first phase is the learning phase. In this phase a numerical rep-
resentation of the data set is set as the drives of the neurons in the input cluster.
The data is then fed through the network over and over again, and the synaptic
efficacies are tuned in accordance with their respective learning mechanisms.

Test phase The second phase is the test phase. In this phase, the synaptic efficacies are
no longer tuned, and there is no supervision. This phase is used to determine how
successful the neural network has been at learning. The data set is set on the input
cluster, and fed through the network. Then, some interpretation of the drives of
the motor neurons will determine how successful the learning process was.

2.2 History and Connectology

In [Heb49], Donald O. Hebb suggest what is known as the Hebb rule:

When an axon of cell A is near enough to excite a cell B and repeatedly takes
part in firing it, some growth process or metabolic change takes place in one
or both cells such that A’s efficiency as one of the cells firing B, is increased.
(p. 50)

Hebb suggested that the change in synaptic efficacy should be correlated from the actual
drives of the pre- and postsynaptic neuron when these fired simultaneously.

Klopf, in his model of neuronal classical conditioning, proposed some modifications to the
Hebb synapse. Instead of correlating the actual drive of the pre- and postsynaptic neurons
when they fired simultaneously, Klopf correlated sequentiality and first derivatives of the
pre- and postsynaptic neuron drives [Klo88]:

.. earlier changes in presynaptic signal levels should be correlated with later
changes in postsynaptic signal levels. (p. 86)

Similarly to Klopf, the learning mechanisms of Connectology also correlate sequentiality
and changes in drive, rather than synchronicity and actual drive.

Connectology consist of three basic principles, which are embodied in three different
synaptic learning mechanisms: Hedonism (The Skinner synapse), Anticipation (The
Pavlov synapse) and Reason (The Hume synapse).
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2.2.1 Hedonism (the Skinner synapse)

The first principle of Connectology, Hedonism, is inspired by the works of Freud [Fre95]:

“...[it is] the endeavor of the nervous system, maintained through every mod-
ification, to avoid being burdened by Qη 6 or to keep the burden as small as
possible.” (p. 301)

Similarly, Connectology insist that high input from a need source (e.g. hunger- and thirst
receptors) is considered painful, while the lack of input is considered pleasurable.

The actual synaptic learning mechanism is inspired by, and named after, the work of
Skinner [Hok06]:

Burrhus F. Skinner (1904-1990) built a school of psychology on insisting that
behaviors are operant, i.e. that their causes are irrelevant and that their
consequence is reinforcement. (p. 107)

The Skinner synapse is simply takes operant conditioning to the neural level, and can be
summed up as follows:

If a motor neuron performs an action which causes a following decrease in input from a
need source, the synapse between the need source and that particular motor neuron will
be reinforced.

Note that reinforcement only happens when an action of a motor neuron causes decreased
input from a need source [Hok06]:

Thorndike and Skinner both found that the effects of reinforcement and pun-
ishment to be asymmetrical: Reinforcement strengthens behavior, but pun-
ishment does not weaken it. (p. 108)

The resulting synaptic reinforcement either makes the synapse more excitatory, or more
inhibitory, depending on the change in motor neuron drive. If the motor neuron’s drive
change was positive, the synapse will become more excitatory. If the motor neuron’s
drive change was negative, the synapse will become more inhibitory.

This aim is for the synapses to make that same rewarding action more likely to be
performed the next time the input from that particular need source starts to increase.

6Freud used the symbol Qη where Connectology uses the term “drive”
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2.2.2 Anticipation (the Pavlov synapse)

The second principle of Connectology is Anticipation. According to [Hok06] “Deduction
from cause-effects makes ideal anticipation as learned by classical conditioning.”

Classical conditioning was introduced into the study of learning by the Russian phys-
iologist Ivan Pavlov. Pavlov recognized that learning frequently consist of becoming
responsive to a stimulus that originally was ineffective [ERK00].

Classical conditioning can be understood by observing the following example [Hok97,
p.3]:

If a rabbit is repeatedly exposed to a tone (conditioned stimuli CS) just before
it receives an air puff towards the eye (unconditioned stimuli US) which makes
it blink (response R), then it will learn to blink on the sound of the tone.

The Pavlov synapse performs classical conditioning at the neural level, and can be
summed up as follows:

If an increase in presynaptic neuron drive is followed by an increase in postsynaptic
neuron drive, the synapse will become more excitatory. If an increase in presynaptic
neuron drive is followed by a decrease in postsynaptic neuron drive, the synapse will
become more inhibitory.

If one of these situations arise repeatedly, the synaptic efficacy will eventually be strong
enough for the presynaptic neuron to either inhibit or excite the postsynaptic neuron on
its own; even in the absence of the other presynaptic drive(s) which originally caused the
postsynaptic drive change.

2.2.3 Reason (the Hume synapse)

The third and final principle of Connectology is Reason.

To be able compare objects, or decide whether an object resembles another, we require
concepts. The concept of an object is based on the contours of the object, both as felt
by touch and seen by the eyes [Hok06].

Connectology states [Hok06, p.136]:

For example, the visual recognition of an object is based solely on its con-
tours. We may assume that to form a basic concept is to form a neuronal
representation of its external border, that is, to increase excitatory efficacies
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between neurons driven by sensations from the contour of the phenomenon
to be conceptualized.

To illustrate, let’s focus on two neurons which receive input from neighboring areas of
the retina. The retina then sweeps over a black rectangle on a white background, from
right to left. See fig. 2.3.

Figure 2.3: The retina sweeping over a black rectangle, from the right to the left. The numbers
correspond to temporal position.

Keeping in mind that synaptic change comes from sequential changes in drives, it can
be seen in fig. 2.3 that the only times a drive change in a neuron is followed by a drive
change in another (and thus synaptic strengthening can occur) are on the borders of
the rectangle. This means a neural representation of the borders can be formed in the
synapses between the neurons.

According to [Hok06], groups of neurons which correspond to a concept will form subclus-
ters within clusters, with excitatory connections to each other. Several concept may be
accommodated by one cluster. In this case the subclusters representing different concepts
will become mutually inhibiting.

The operation of the Hume synapse can be summed up as follows:

If an increase in presynaptic neuron drive is followed by an increase in postsynaptic
neuron drive, the synapse will become more inhibitory. If an increase in presynaptic
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neuron drive is followed by a decrease in postsynaptic neuron drive, the synapse will
become more excitatory.
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Chapter 3

Model

This chapter describes the model of the neural network used in this project in detail. How
the neurons are simulated, the formalization of the synapses, the network topology, and
the mechanism for supervision. The outline for model, including topology and supervision
mechanism was given by supervisor Hokland.

3.1 Data set

The data set on which the neural network will work, consists of a series of 300 movie
frames (one period), showing a person performing four different facial affects (Glad, Mad,
Surprised and Displeased. See Fig. 3.1). To avoid learning from artifacts in the images
(lighting, shadows, etc.) the series of affects is performed twice in the period (the frames
are not just copied).

(a) Neutral (b) Glad (c) Mad (d) Surprised (e) Displeased

Figure 3.1: Neutral face, and the four different facial affects seen in the movie.

Each of the images are tagged with four different numbers (one for each facial affect) in
the range 0.0 to 1.0. These numbers describe to how large a degree the different affects
are visible in the images. A value of 0.0 means the affect is not visible at all, while a
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value of 1.0 means the affect is fully formed. These numbers will serve as supervision
signals for the different affects. Fig. 3.2 shows the different supervision signals over one
period, with their respective affects below.

3.1.1 Edge detection

When input from the retina reaches the primary visual cortex, there has been some
filtering of information, so that the resulting input to the visual cortext is actually an
edge detected version of the input [ERK00].

To avoid having to reproduce this behavior within the neural network, the input images
are edge detected in advance. This reduces the size of the network necessary, and thus
should also simplify the analysis of the achieved results.

Edge detection was performed by convolving[Gon92] the image using the mask:

1 2 1
2 -12 2
1 2 1

This results in an image with both negative and positive values. To normalize the image
negative values were scaled between 0.0 and 0.5, and positive values were scaled between
0.5 and 1.0. This results in an image with mostly gray pixels, with bright and dark edges
(See e.g. fig. 3.4).

3.1.2 Image size

The images of the face were originally 174x240 pixels large. Preliminary tests of the
network showed that simulation speed was very slow, so it was decided to reduce the size
of the input images to 87x120 pixels. Several approaches to reducing the image size were
tested.

Edge detect, then extract most prominent pixel

With this method, the original images was first edge detected. Then the edge detected
image of 174x240 pixels was divided into 10440 squares of 4 pixels each. To create the
new image, only one of the pixels in each of the 4 pixel squares were chosen. The chosen
pixel was the one which had a value which differed most from 0.5. The thought was that
this might extract the most prominent features.
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(a) Original image (b) Reduced image

Figure 3.3: Input image reduced by most prominent pixel.

As seen in fig. 3.3, the result was not satisfactory. Even for the human eye the affect was
hard to see.

Edge detect, then scale

Since the previous method produced such poor results, it was decided to try an ordinary
scaling algorithm to reduce the already edge detected image.

As seen in fig. 3.4, the result was a bit smoother, but the affect was still hard to see.

Scale, then edge detect

By scaling the image before edge detection, it was hoped that the edges might become
clearer, and the affect thus more easily seen. As seen in fig. 3.5, the result was finally
satisfactory.
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(a) Original image (b) Reduced image

Figure 3.4: Input image edge detected, then scaled by ordinary algorithm.

(a) Original image (b) Reduced and
edge detected image

Figure 3.5: Input image scaled by ordinary algorithm, then edge detected.
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3.2 The neuron

3.2.1 Neural activation function

The activation function is used to normalize the net input to a neuron, so that its value
is in a useful range, in this case between 0.0 and 1.0.

The activation function used in the following experiments is an ordinary sigmoid function:

g(x) =
1

1 + e−x
(3.1)

Figure 3.6: Sigmoid activation function.

Neural drive is given as:

Dt
j = g(nettj + stoct) (3.2)

Where net is the net input to the neuron j at time t, stoc is a stochastic element, and g
is the neural activation function.

3.2.2 Net input to neuron

The net drive input to a neuron is given as:

nettj =
∑
i

Dt
i · etij (3.3)

where Di is the drive of the presynaptic neuron, and eij is the efficacy of the connecting
synapse.
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3.2.3 Random bursting

Hokland in Connectology [Hok06] suggests adding a stochastic element to the neuron, to
account for exploratory behavior and restlessness. As stated in [ERK00, p.209]: “Many
cells in the brain are spontaneously active, as are the pacemaker cells of the heart.”

To simulate this, random numbers are sampled from a standard Gaussian distribution
(Fig. 3.7a), using the polar Box-Muller transformation [Rip87]:

θ = 2π · u1

e = −log(u2)

r =
√

2e

stoctj = r · cos(θ) · 0.1 (3.4)

Where u1 and u2 are sampled from a uniform random function in the interval [0, 1]. In
[Knu06] it was found that too large random bursts would lead to the bursts dominating
eq. 3.2, making the influence of the presynaptic neurons too small. To avoid this, scaling
the results of the sampling down by a factor of 10 was found to yield good results.

Figure 3.7: The standard Gaussian distribution.

3.3 The synapses

See section 2.2 for a less formal description of the learning mechanisms.

3.3.1 Hume synapse

The learning mechanism for tuning the efficacy of Hume synapses is formalized as follows:
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∆etij = −max(0, T t−1
ij ) ·∆Dt

j · βhume (3.5)

where βhume is some constant which determines the learning rate, ∆Dj is the change in
drive of the postsynaptic neuron.

Since each synapse is more sensitive to recent than to past changes [Hok06, p110] a trace
of synaptic efficacy history was used:

T tij = T t−1
ij · (1− αhume) + αhume ·∆Dt

i (3.6)

where ∆Dt
i is the drive change of the presynaptic neuron, and αhume determines the

length of the efficacy history.

3.3.2 Pavlov synapse

The learning mechanism for tuning the efficacy of Hume synapses is formalized as follows:

∆etij = max(0, T t−1
ij ) ·∆Dt

j · βpavlov (3.7)

where βpavlov is some constant which determines the learning rate, ∆Dj is the change in
drive of the postsynaptic neuron, and the synaptic efficacy history trace Tij is:

T tij = T t−1
ij · (1− αpavlov) + αpavlov ·∆Dt

i (3.8)

where ∆Dt
i is the drive change of the presynaptic neuron, and αpavlov determines the

length of the efficacy history.

3.3.3 Skinner synapse

Skinner learning is formalized as follows [Hok06, p110]:

∆etij = −min(0,∆Dt
i) · T t−1

ij · βskinner (3.9)

where βskinner is some constant which determines the learning rate, ∆Dt
i is the drive

change of the presynaptic neuron, and the synaptic efficacy history trace Tij is:

T tij = T t−1
ij · (1− αskinner) + αskinner ·∆Dt

j (3.10)
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where ∆Dt
j is the drive change of the postsynaptic drive, and αskinner determines the

length of the efficacy history.

To avoid a neuron reinforcing itself, Connectology states that ∆T tij should depend only on
that contribution of change to ∆Dt

j that is driven, not by neuron i, but by all other presy-
naptic neurons [Hok06, p110]. To comply with this, the presynaptic neuron’s influence is
removed from ∆Dt

j.

The complete equation for the modified trace T̂ tij is thus:

T̂ tij = T̂ t−1
ij ·(1−αskinner)+αskinner

[
g

((∑
k 6=i

Dt
k · etkj

)
+Dt−1

i · et−1
ij

)
− g

(∑
k

Dt−1
k · et−1

kj

)]
(3.11)

where g is the neural activation function given in Eq. 3.1.

3.4 Neural network topology

Figure 3.8: Neural network topology.
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3.4.1 Input cluster

The input cluster is where the numerical representation of the data set is presented to
the neural network. The input cluster does not consist of neurons, but rather grayscale
pixel values in the range 0.0 to 1.0, where 0.0 is black, and 1.0 is white. Since this cluster
does not have neurons, this cluster can not be intraconnected with Hume synapses.

3.4.2 Hidden cluster

Since the input cluster cannot be intraconnected with Hume synapses, the pixel values
from the input cluster is mapped in a one-to-one relationship onto the hidden cluster.
(The first pixel in the input cluster is connected only to the first neuron in the hidden
cluster, and so on.) As long as the hidden cluster is not intraconnected with Hume
synapses, the drive of the neurons in this cluster will be identical the pixel values in the
input cluster. In case of Hume synapses the input from these will of course be added in
addition to the input from the input cluster.

Since the pixel values are in the range 0.0 to 1.0, and the input to the neurons in the
hidden cluster is transformed through the activation function (Eq. 3.1), the input needs
to be scaled so to still produce values in the range 0.0 to 1.0 after the transformation.
This is accomplished by simply running the pixel values through the inverted activation
function first:

g−1(x) = −ln
(

1

x
− 1

)
; (3.12)

The hidden cluster is fully connected to the motor cluster with Pavlov synapses. Also,
the hidden cluster may optionally be fully intraconnected with Hume synapses.

3.4.3 Motor cluster

The motor cluster consists of four neurons. The goal is for the network to learn to change
the drive of the different motor neurons, depending on which facial affect is shown in the
input cluster. E.g. when the “glad” affect is shown, the green motor neuron (see fig. 3.8)
should increase in drive, and if the “mad” affect is shown, the red motor neuron show
increase in drive, etc.

The motor cluster receives input through Skinner synapses from the affect neurons and
through Pavlov synapses from the hidden cluster.
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3.4.4 Affect neurons

There are four affect neurons, one for each of the facial affects: mad, glad, displeased and
surprised. The affect neurons are part of the supervision mechanism, which is described
in greater detail in section 3.5.

Each of the affect neurons correspond to a certain neuron in the motor cluster (As seen
in Fig. 3.8, the different colors of the affect neurons correspond to a motor neuron with
the same color).

During the learning phase, the affect neurons will always receive input in the form of an
error signal, described in the next section. During the test phase the affect neurons will
only have random bursting.

The affect neurons are fully connected to the motor layer with Skinner synapses.

3.5 Supervision using the Skinner synapse

To guide the learning of the Pavlov synapses between the hidden cluster and the motor
cluster towards the goal of facial affect recognition, a supervision mechanism based on
the Skinner synapse was devised. The Skinner synapse operates under the principle of
hedonism (Section 2.2.1), and as such seeks to minimize the input to its presynaptic
neuron. This is the property the supervision mechanism seeks to exploit.

Error signal

During the learning phase the affect neurons receive input in the form of an error signal.
To exploit the hedonistic nature of the Skinner synapse, this error signal should be high
if the network answers wrongly, and low if the network answers correctly. More precisely,
the error should decrease if the network doing something right, to enable the reinforcement
of the Skinner synapses.

As mentioned in section 3.1, each of the input images are tagged with a number from 0
to 1 describing to how large a degree the affects are visible in the image. These numbers
represent in effect a supervision signal for each of the affects.

To make an error signal fit the principle of hedonism, the error signal for each affect
is calculated based on the difference between the supervision signal of that affect and
the drive of the affect’s corresponding motor neuron. This should encourage the Skinner
synapses to reinforce behavior which makes the drives of the motor neurons mimic that
of their corresponding supervision signal.
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Figure 3.9: Plot of error scaling function, after activation function.

By making the motor neurons mimic the supervision signal, the properties of the Pavlov
synapse will be utilized. As mentioned in section 2.2.2, an increased presynaptic drive,
followed by a change in postsynaptic drive, leads to reinforcement. Since there will
definitely be changes in the presynaptic drive as facial affects form in the input images,
this will almost guarantee learning to happen at the Pavlov synapses.

The error signal is formalized as:

Et
a =

∣∣Sta −Dt
mca

∣∣ (3.13)

where Sa is the supervision signal for affect a, and Dmca is the drive of the motor neuron
corresponding to affect a.

Ea will be values between 0.0 and 1.0. Since these values will be used as the input drive
to a neuron, it will have to be scaled and moved, so that when they are passed through
the activation function (Eq. 3.1), they still produce values between 0.0 and 1.0.

This transformation is done as follows:

Dt
e = (Et

a − 0.5) · 5.0 (3.14)

Note that the inverse activation function is not used here, since the error signal could
at times become exactly 0.0, and ln(0.0) yields −∞, which causes trouble in computer
simulations.

As seen in Fig. 3.9, the output after the sigmoid function is still between 0.0 and 1.0.

32



Chapter 4

Planned experiments

The plan is quite simply to test the network with various parameter permutations, and
see what results this will give, and from the results study the properties of the learning
mechanisms.

The parameters which can be tested are:

• α and β for the three different learning mechanisms.

• Original vs modified Skinner trace (see section 3.3.3).

• Whether to intraconnect the hidden cluster with Hume synapes or not.

The approach to finding good combinations of these will be in part based on previous
experience with the learning mechanisms ([Knu06] and [KS06]), and part brute force
search. It is not considered interesting to show how specific parameter combinations
were arrived at, since the parameters typically have to change as the network topology
changes. However, relationships between, or properties of, the different parameters will
be noted when found.

4.1 Length of learning cycle

Based on previous work, the length of the learning cycle is not very important, as long as it
is not too short. If the learning cycle is too short, the learning rates required to learn in the
short time become so high as to cause instability [Knu06]. In the following experiments
the learning cycle will be 50 periods. One period is the time it takes to present all the
300 movie frames to the neural network. This leads to a total of 300frames ·50periods =
15000 iterations.
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4.2 Performance measurement

To see how well the neural network performs, various graphical representations will be
made of the results of the different mechanisms.

4.2.1 Supervision performance

The goal of the supervision mechanism is for the Skinner synapses to be able to influence
the motor neurons in such a way that the drive of the motor neurons will mimic the
supervision signal of the corresponding affect. To see if this happens, plots of the last
period in the learning phase are made, one for each affect. These plots will show the
supervision signal for the affect, and the drive of the motor neuron corresponding to the
affect. If the supervision mechanism does indeed work, the plot should show the drive of
the motor neuron mimicking the supervision signal.

4.2.2 Pavlov and Hume performance

After the learning phase is complete, a test phase will be run. In the test phase, the
supervision mechanism will not be active. A plot similar to that made for the Skinner
synapses will be made, however, with the influence of the Skinner synapses gone, it should
become clear if the Pavlov synapses has managed to learn recognizing facial affects. The
plot should show the drive of the motor neurons mimicking the supervision signal, even
without the supervision mechanism active.

To see what effect the Hume synapses has on the neurons in the hidden cluster, an image
representation of the drives of those neurons will be made, and presented together with
the corresponding input image. If the Hume synapses, as described in section 2.2.3, can
in fact learn some concept representation in subclusters of the different facial affects, it
should be possible to see different areas with high drive for the different affects.
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Part II

Experiments
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Chapter 5

Experiment 1

Figure 5.1: Topology, experiment 1.

As discussed in chapter 4, this experiment focuses on finding the parameter combinations
which produce the best resutls.

5.1 Results

Various combinations of the different parameters were used, but none yielded results of
any significance. Only the few combinations of parameters which resulted in some hint
of a result are presented here.

37



5.1.1 Result 1: No Hume synapses

After trying hundreds of parameter combinations, most results were disappointingly poor.
The best result without Hume synapses was achieved with this parameter specification:
Parameter Value
αpavlov 0.5
αskinner 0.9
βpavlov 0.01
βskinner 0.25
Modified Skinner trace no

As seen in fig. 5.2 the result is not very good. Drive changes are highly unsystematic.
Only the motor neuron corresponding to the “surprised” affect seems to have some small
drive change. But since the drive spikes elsewhere in the period are just as large, this
result must be said to be non-conclusive.

(a) Affect “glad” (b) Affect “mad”

(c) Affect “surprised” (d) Affect “displeased”

Figure 5.2: Pavlov performance test. Supervision signal (red), and actual drive of correspond-
ing motor neuron (green) during test phase.

To see what the problem might be, a supervision performance plot (section 4.2.1) might
give an idea. As seen in fig. 5.3, there are significant changes in motor neuron drive when
a supervision signal increases. The result is however not a good one. As mentioned in
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section 3.5, the goal is for the supervision mechanism to make the motor neurons mimic
the supervision signal. This does not happen.

(a) Glad (b) Mad

(c) Surprised (d) Displeased

Figure 5.3: Skinner performance test. Supervision signal (red), and actual drive of corre-
sponding motor neuron (green) over the last two learning periods.
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5.1.2 Result 2: Hume synapses

Parameter specification:
Parameter Value
αhume 0.5
αpavlov 0.5
αskinner 0.9
βhume 0.01
βpavlov 0.01
βskinner 0.25
Modified Skinner trace no

Even though there seems to be a problem with the supervision mechanism, it is interesting
to see what adding Hume synapses will achieve.

As seen in fig. 5.4 adding Hume synapses did not change the outcome in any positive
way. Actually the small drive changes noticed in the previous experiment, just ended up
even smaller.

(a) Affect “glad” (b) Affect “mad”

(c) Affect “surprised” (d) Affect “displeased”

Figure 5.4: Pavlov performance test. Supervision signal (red), and actual drive of correspond-
ing motor neuron (green) during test phase.
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To see what changes in drive the Hume synapses caused in the hidden cluster, a plot of
the hidden cluster is made (as discussed in section 4.2.2). As seen in fig. 5.5, all the
Hume synapses seems to do in the hidden cluster is add noise to the input images. No
separate subclusters for the different affects can be seen.

Input cluster:

Neutral Glad Neutral Mad Neutral Surprised Neutral Displeased

Hidden cluster:

Neutral Glad Neutral Mad Neutral Surprised Neutral Displeased

Figure 5.5: Input images on top. Image representation of neural drives in the hidden cluster
on bottom. Black pixels represent a neuron with drive 0, and white pixels a drive of 1.

5.2 Discussion

As seen in fig. 5.3, the motor neuron drives does not mimic the supervision signal.
Instead, the motor neurons have a rather high drive of when the supervision signal is 0.
When the supervision signal starts to increase, the motor neuron drive also increases for
a short while, but then proceeds to decline rapidly and rest at this lower drive while the
supervision signal is 1. When the supervision signal starts to decrease again, the same
thing happens only in the opposite order.

This seems to indicate that either the supervision mechanism is faulty, or the failure to
mimic the supervision signal is a result of the influence of the presynaptic drives of the
Pavlov synapses.

As seen in the plot of drives in the test phase (e.g. fig. 5.2), the Pavlov synapses does
not seem to learn to drive the motor neurons when the facial affects are shown. If the
supervision mechanism is indeed faulty, the Pavlov synapses cannot be expected to learn
to drive the neurons. If the supervision mechanism works, the problem might be with
the synaptic learning mechanism of the Pavlov synapse.

The Hume synapses does not seem to be forming any visually discernable concept sub-
cluster within the hidden cluster. Even though they are not visible in this particular
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visual representation, this does not necessarily mean they are not there. But as long as
the Pavlov synapses are unable to learn to drive the motor neurons properly, no definitive
conclusion regarding the value of the Hume synapses can be made.

Since the results were so poor, it is time to study the individual parts of the neural
network in detail. The first thing to do is to perform a detailed study of the supervision
mechanism without any Pavlov influence. This will give a definitive answer to whether
the supervision mechanism works or not. If the supervision mechanism does indeed work,
a study of why the Pavlov synapses cannot learn based on the supervision will be done.
If the supervision mechanism does not work, a study of the Pavlov synapses will be
performed with an alternate form of supervision.
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Chapter 6

Experiment 2: The supervision
mechanism

This experiment is a detailed study of the supervision mechanism. The goal of the
supervision mechanism is, as mentioned in section 3.5, to provide the Pavlov synapses
with some direction in determining what should be learned. If the supervision mechanism
does not work as planned, the Pavlov synapses cannot be expected to function as planned.

To test this, all parts of the original topology not related to the supervision mechanism
are removed, resulting in a very simple topology (Fig. 6.1). This should make it easier to
see how the supervision mechanism performs, without the influence of the other synapses
polluting the results. If the supervision mechanism does not work, the simpler network
will also make it easier to determine why.

With only the parts vital to the supervision mechanism left in the network, all the
supervision mechanism has to to is to be able to make the motor neuron drives mimic
the different supervision signals (Fig. 6.2).

6.1 Learning mechanism parameters

The Skinner synaptic learning mechanism has only two free parameters: learning rate
(βskinner in Eq. 3.9) and length of synaptic trace history (αskinner in Eqs. 3.10 and 3.11).

A series of tests will be conducted to find the optimal combination of these parameters.
αskinner will be tested in the range of 0.1 to 0.9, and βskinner will be tested in the range 0.1
to 5.0. In section 3.3.3 two different synaptic traces are presented (original and modified).
In [Knu06] the modified Skinner trace proved to perform better in situation where many
synapses competed for control of a single motor neuron. Tests will be performed with
this modification in place, to see what effect this might have on the results.
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Figure 6.1: Simple topology with only motor cluster and supervision mechanism.

Figure 6.2: Supervision signals for the four different affects.
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6.2 Results

6.2.1 Result 1

Parameter specification:
Parameter Value
αskinner 0.1
βskinner 5.0
Modified Skinner trace no

(a) Glad (b) Mad

(c) Surprised (d) Displeased

Figure 6.3: Skinner performance test. Supervision signal (red), and actual drive of corre-
sponding motor neuron (green) over the last two learning periods.

With αskinner at 0.1 and the learning rate βskinner at 5.0, there is a significant change
in motor neuron drive when the supervision signal increases. However, as witnessed in
Experiment 1, the motor neurons cannot mimic the supervision signal.
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6.2.2 Result 2

Parameter specification:
Parameter Value
αskinner 0.1
βskinner 5.0
Modified Skinner trace yes

As seen in fig. 6.4, using the modified Skinner trace did not change the results much.
The only difference between results with and without the trace modification, seems to be
that using the original trace actually gave larger drive changes.

(a) Glad (b) Mad

(c) Surprised (d) Displeased

Figure 6.4: Skinner performance test. Supervision signal (red), and actual drive of corre-
sponding motor neuron (green) over the last two learning periods.
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6.2.3 Result 3

Parameter specification:
Parameter Value
αskinner 0.9
βskinner 0.4
Modified Skinner trace no

As seen in fig. 6.5, increasing αskinner did not improve the results. However the higher
value of αskinner required a lower value of βskinner to avoid instability (instability is shown
in the next result). There seems to be a direct correlation between αskinner and the value
βskinner required to achieve good results.

(a) Glad (b) Mad

(c) Surprised (d) Displeased

Figure 6.5: Skinner performance test. Supervision signal (red), and actual drive of corre-
sponding motor neuron (green) over the last two learning periods.
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6.2.4 Result 4

Parameter specification:
Parameter Value
αskinner 0.9
βskinner 0.6
Modified Skinner trace no

Increasing βskinner too much, in this case 0.6, leads to instability of the network. The
motor neuron drives keep oscillating between 0 and 1 (fig. 6.6).

(a) Glad (b) Mad

(c) Surprised (d) Displeased

Figure 6.6: Skinner performance test. Supervision signal (red), and actual drive of corre-
sponding motor neuron (green) over the last two learning periods.
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6.3 Discussion

While the supervision mechanism was able produce significant changes in the motor neu-
ron drive when the supervision signal changed, it did not meet the goal for the supervision
mechanism. Rather than the motor neuron drive mimicking the supervision signal, the
neurons have a rather high drive (about 0.3) when the supervision signal is 0. When the
supervision signal starts to increase, the motor neurons also increase for a short while,
but then proceeds to decrease quite rapidly, and finally resting at about 0.1 when the
supervision signal is 1. When the supervision signal starts to decrease, the motor neurons
perform the same changes as, only in the opposite order (See e.g. fig. 6.5).

To figure out why this happens, a detailed view of the synaptic efficacies, and what
happens to the different neurons when a supervision signal increases is interesting.

Figure 6.7: Skinner synapses after learning phase. The synapses in red all have an efficacy of
around -2.2, while the synapses in gray have efficacies around -0.05

As seen in fig. 6.7 all synapses have negative efficacies. The synapses between a affect
neuron and its corresponding motor neuron have much larger negative efficacies (-2.2)
than the other synapses (-0.05).

Knowing that all synapses are negative, and given the detailed view of drive changes an
explanation for the behavior can be found.

As seen in figure 6.8, once the supervision signal starts to increase, this leads to a reduction
in the drive of the affect neuron. This happens because the affect neuron is driven by
the error signal, and the error signal decreases when the supervision signal increases to
a value more similar to the motor neuron drive. Now, the decreased affect neuron drive

49



Figure 6.8: Detailed view of the last 50 iterations of the learning phase. Showing supervision
signal, affect neuron drive (error signal) and corresponding motor neuron drive for the affect
“displeased”.

leads the affect neuron to inhibit the motor neurons less, resulting in a higher motor
neuron drive (due to negative synaptic efficacies). However, once the supervision signal
becomes larger than the motor neuron drive, the error signal starting increasing again.
This leads to a higher drive of the affect neuron, and thus it starts to inhibiting the motor
neuron more, leading to a decrease in motor neuron drive. The same thing happens when
the supervision signal starts decreasing, only in opposite order.

So, the main problem seems in fact to be that all the efficacies are negative. For the motor
neurons to have any chance of mimicking the supervision signal, the synaptic efficacies
would have to be able to go from negative to positive in the short amount of time the
supervision signal increases, or is high. As seen in fig. 6.9, the synaptic efficacies always
increase a little when the supervision signal starts to increase, but obviously they do
not manage to change enough for the affect neuron to start to excite the motor neuron,
instead of inhibiting it (as witnessed by the constant motor neuron drives of less than
0.5). When the supervision signal starts to decrease again, similar small efficacy changes
happen, but of course these are also to small to produce any significant results.

Even though the Skinner synapse cannot seem to change fast enough to keep up with the
supervision signal, this does not explain why all the efficacies are negative all the time.
By looking at the efficacy changes (fig. 6.9) in the periods where the supervision signal
is 0, it is clear that most learning which happens in those periods are negative (the area
between the green and red line is larger below 0). This happens due to random bursting
in the neurons. Every time a neuron changes drive favorably (closer to the supervision
signal) the synaptic efficacy becomes just a little more negative, since the supervision
signal is 0 at that time, and negative synaptic efficacies are required to push a neuron
towards 0. Keeping in mind that the supervision signal is 0 about 75% of the time for
each affect, it makes sense that the learning which happen in these periods will be more
significant than the learning which happens in the short periods the supervision signal is
high.
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Figure 6.9: Sum of ∆eij for each frame, over all 50 periods. eij is the synapse between the
affect neuron for “displeased” and its corresponding motor neuron.

So, how would one fix this problem? The solution is of course to increase the learning
rate, so that the efficacies can change more rapidly, and thus are able to go from negative
to positive efficacies, and back, as required. Now, seeing as the learning rates used in
these experiments do not come close to be able to change quick enough, the learning
rate required would have to be quite high. The problem with this is, as seen in fig. 6.6,
that increasing the learning rate too much leads to instability of network, and the neuron
drives keep oscillating between 0 and 1. This makes quite a dilemma. The learning rates
at which the network can operate in a stable fashion, are simply not high enough for the
synapses to adapt to such quickly changing situations.

The good results achieved in [Knu06] with the Skinner synapse only solved problems that
were either static, or changed very slowly (typically over thousands of iterations).

Since the supervision mechanism proved to be unsatisfactory, a study of the Pavlov
synapse must be performed with an alternative form of supervision. The goal of the
supervision mechanism was to use Skinner synapses to drive the motor neurons in such
a fashion that their drive would mimic the supervision signals. Keeping this in mind,
a study of the Pavlov synapse can be performed by removing the Skinner synapses and
affect neurons from the original topology, and simply using the supervision signals as one
of the presynaptic drive inputs to the motor neurons1. This will replicate the best possible
result which could have been achieved with the supervision mechanism, had it worked
flawlessly. With this alternative form of supervision, a study of the Pavlov synapses can
be performed in a perfectly supervised setting.

1This form of supervision does not directly use the principles of Connectology
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Chapter 7

Experiment 3: The Pavlov synapse

In this experiment the Pavlov synapse will be tested. Since the supervision mechanism
did not work (see section 6.3), the Skinner synapses and affect neurons are removed from
the original topology, and an alternate method of supervision described below is used.

Figure 7.1: Topology without affect neurons and Skinner synapses.

7.1 Supervision

Instead of relying on the supervision mechanism to be able to make the motor neurons
mimic the supervision signal during the learning phase, the supervision signals are now
transformed in such a fashion that they can be used directly as one of the presynaptic
drive inputs of their corresponding motor neurons. This is done similar to how the error
signal used as a presynaptic drive input to the affect neurons in previous experiments
(see section 3.5 for details.). Input from the Pavlov synapses and random bursting is also
added, as usual.
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The new equation for drive of the motor neurons, in the learning phase, becomes:

Dt
mca = g(nettmca + stoct + (Sta − 0.5) · 5.0) (7.1)

Where netmca is the net input to a motor neuron (Eq. 3.3) at time t, stoc is a stochastic
element (Eq. 3.4), g is the neural activation function (Eq. 3.1) and Sta is the supervision
signal for the affect corresponding to the motor neuron mca at time t. Simliar to the
error signal described in section 3.5, the supervision signal is scaled and moved to still
produce values between 0 and 1 after the neural activation function.

In the test phase, neural drives will of course be calculated as usual (Eq. 3.2), without
the supervision signal added.

This modification of the network will replicate the best possible result which could have
been achieved with the supervision mechanism, had it worked flawlessly, and makes it
possible to study the Pavlov synapse in a perfectly supervised setting.

Figure 7.2: Supervision signals for the four different affects.

7.2 Learning mechanism parameters

Similarly to the parameters of the Skinner synapse, αpavlov will be tested for 0.1, 0.5 and
0.9. βpavlov will be tested for various values up to 5.0.
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7.3 Results

7.3.1 Result 1

Parameter specification:
Parameter Value
αpavlov 0.5
βpavlov 0.005

(a) Affect “glad” (b) Affect “mad”

(c) Affect “surprised” (d) Affect “displeased”

Figure 7.3: Pavlov performance test. Supervision signal (red), and actual drive of correspond-
ing motor neuron (green) during test phase.

As seen in fig 7.3, it seems the Pavlov synapses are actually able to detect and differentiate
between most affects. The only problem is that the motor neuron corresponding to the
affect “displeased” also reacts on the second glad-affect, and the second surprised-affect.
Also there is a slight change in the glad-neuron when the first displeased affect is shown.
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7.3.2 Result 2

Parameter specification:
Parameter Value
αpavlov 0.5
βpavlov 0.01

(a) Affect “glad” (b) Affect “mad”

(c) Affect “surprised” (d) Affect “displeased”

Figure 7.4: Pavlov performance test. Supervision signal (red), and actual drive of correspond-
ing motor neuron (green) during test phase.

Increasing βpavlov lead to larger drive changes when an affect occurred, but also it increased
the problems of affects registering on the wrong motor neurons.
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7.3.3 Result 3

Parameter specification:
Parameter Value
αpavlov 0.5
βpavlov 0.05

(a) Affect “glad” (b) Affect “mad”

(c) Affect “surprised” (d) Affect “displeased”

Figure 7.5: Pavlov performance test. Supervision signal (red), and actual drive of correspond-
ing motor neuron (green) during test phase.

Increasing βpavlov even futher leads to almost perfect recognition of “glad”, “mad” and
“surprised”. However, the “displeased” motor neuron still reacts when the other facial
affects appear.
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7.4 Discussion

The Pavlov synapse proved to be able to discriminate three out of four affects with great
accuracy (Fig. 7.5). However, to see why the fourth affect (displeased) could not be
discriminated from the others, a futher examination of the results are in order.

A plot representing the synaptic efficacies from the hidden cluster to each of the affect
neurons will hopefully reveal the information required.

(a) Glad (b) Mad (c) Surprised (d) Displeased

Figure 7.6: Synaptic efficacies from hidden cluster to each of the motor neurons. Green
represent positive synaptic efficacies, red represent negative. Black is 0.

As seen in fig. 7.6(d), the problem with the “displeased” affect seems to be that the
synaptic efficacies from the area in the hidden cluster representing the mouth are very
strong. Naturally all input images have edges in the mouth area. Since the input cluster
is connected one-to-one to the hidden cluster, every small movement of the mouth will
lead to drive change of the neurons in the hidden cluster representing the mouth area. It
seems that whenever an affect is performed in the input image the shape of the mouth
changes a little. This change in shape leads to drive changes in the corresponding neurons
in the hidden cluster. These drive changes combined with the strong synapses from that
area to the motor neuron for “displeased”, leads to all facial affects exciting the motor
neuron for “displeased” to some degree.

From this, it seems clear that the reason the network is able to differentiate the other
facial affects, is simply that there are many strong synapses from areas which will not
produce edges in the other facial affects for these affects. This makes the impact of the
edges in the areas in which the affects share edges to be small in comparison. E.g. for
the facial affect “surprised” there are many strong synapses in the areas represting the
horizontal skin folds in the forehead and the raised eyebrows this affect produces (Fig.
7.6(c)). These features do not appear in the other affects, and as such the other affects
will excite the motor neuron representing the “surprised” affect very little.

The Pavlov synapse worked as well as could possibly be expected. The fact that the
motor neuron for “displeased” is excited by all other affects is not a problem with the
Pavlov synapse, but rather with neural representation. The Hume synapse should be
able to form subcluster representing the concepts of the different facial affect within the
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hidden cluster. The resulting subclusters is supposed consist of different neurons. If the
Hume synapses works, the problem of neural representation should be solved, and the
applying the Pavlov synapses between a cluster with Hume-learned concepts, and the
motor cluster, should solve this problem beautifully.

Since the Pavlov synapses work so well, but Hume seems to be required to improve the
results even futher; a few experiments with both Pavlov and Hume synapses will be
conducted.
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Chapter 8

Experiment 4: Pavlov and Hume
synapses

In Experiment 3, the Pavlov synapse alone were able to discriminate between three out
of four affects. As discussed this problem can in theory be solved by introducing Hume
synapses in the hidden cluster, to facilitate concept learning.

This experiment combines the Pavlov and Hume synapses, to see if the Hume synapses
can indeed create some concepts of the different facial affects, leading to the last affect
to be discriminated as well.

Both topology and supervision (see section 7.1) are identical to those in Experiment 3,
except that in the topology the hidden cluster is fully intraconnected with Hume synapses.

Figure 8.1: Topology without affect neurons and Skinner synapses, with Hume synapses.
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8.1 Learning mechanism parameters

Similarly to the parameters of the Skinner and Pavlov synapse, αhume will be tested for
0.1, 0.5 and 0.9. βhume will be tested for various values up to 5.0.
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8.2 Results

8.2.1 Result 1

Parameter specification:
Parameter Value
αhume 0.1
αpavlov 0.5
βhume 0.005
βpavlov 0.01

(a) Affect “glad” (b) Affect “mad”

(c) Affect “surprised” (d) Affect “displeased”

Figure 8.2: Pavlov performance test. Supervision signal (red), and actual drive of correspond-
ing motor neuron (green) during test phase.

As observed in 8.2, with low values of βhume the results are almost identical to those with
the same Pavlov parameters but without Hume synapses (Fig. 7.4, experiment 3).

To see what effect the Hume synapses had on the drive of the neurons in the hidden
cluster, an image representation of the neuron drives in the cluster was made (see section
4.2.2).
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Input cluster:

Neutral Glad Neutral Mad Neutral Surprised Neutral Displeased

Hidden cluster:

Neutral Glad Neutral Mad Neutral Surprised Neutral Displeased

Figure 8.3: Input images on top. Image representation of neural drives in the hidden cluster
on bottom. Black pixels represent a neuron with drive 0, and white pixels a drive of 1.

As seen in fig. 8.3, the only visual difference seems to be that there is now more noise in
the hidden cluster. No distinct subclusters can bee seen for the different affects.
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8.2.2 Result 2

Parameter specification:
Parameter Value
αhume 0.5
αpavlov 0.5
βhume 0.01
βpavlov 0.01

As seen in fig 8.4, increasing αhume and βhume seems to only add more noise to the hidden
cluster. There are still no visually discernable clusters with different drive for the different
affects.

Input cluster:

Neutral Glad Neutral Mad Neutral Surprised Neutral Displeased

Hidden cluster:

Neutral Glad Neutral Mad Neutral Surprised Neutral Displeased

Figure 8.4: Input images on top. Image representation of neural drives in the hidden cluster
on bottom. Black pixels represent a neuron with drive 0, and white pixels a drive of 1.

From fig. 8.5 it seems the Pavlov synapses did not learn from any subtle clusters which
might not be visble. The increased Hume learning results in similar results as before, but
with less drive changes.
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(a) Affect “glad” (b) Affect “mad”

(c) Affect “surprised” (d) Affect “displeased”

Figure 8.5: Pavlov performance test. Supervision signal (red), and actual drive of correspond-
ing motor neuron (green) during test phase.
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8.2.3 Result 3

Parameter specification:
Parameter Value
αhume 0.5
αpavlov 0.5
βhume 0.05
βpavlov 0.05

Here βhume is increased even futher. Also this time βpavlov is increased to perhaps be
better able to pick up on some subclusters not visible to the human eye.

As seen in fig. 8.6, the increase in βhume leads to yet more noise, and still no different
subclusters are active for the different affects.

Input cluster:

Neutral Glad Neutral Mad Neutral Surprised Neutral Displeased

Hidden cluster:

Neutral Glad Neutral Mad Neutral Surprised Neutral Displeased

Figure 8.6: Input images on top. Image representation of neural drives in the hidden cluster
on bottom. Black pixels represent a neuron with drive 0, and white pixels a drive of 1.

As seen in fig. 8.7, with the increased βpavlov the network can still differentiate the three
affects to some degree, but the problem with the “displeased” affect is still present.
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(a) Affect “glad” (b) Affect “mad”

(c) Affect “surprised” (d) Affect “displeased”

Figure 8.7: Pavlov performance test. Supervision signal (red), and actual drive of correspond-
ing motor neuron (green) during test phase.
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8.3 Discussion

Introducing Hume synapses in the hidden cluster seem to only make the situation worse.
In case of a very small βhume the results were very similar to those achieved, with the
same Pavlov parameters, without the Hume synapses (See fig. 7.4 and fig. 8.2). The
larger βhume became, the worse the results got. Increasing βpavlov seemed to help the
situation a bit, but the information which could be extracted by the Pavlov synapses at
the higher learning rate, was essentially the same as without Hume synapses, just a bit
more distorted.

Remember from section 2.2.3, that the Hume synapse is responsible for forming concepts
in the form of subclusters of neurons (within a cluster), which are simultaneously excited
when some similar concept appears in the form of drive. It should also inhibit any other
subclusters which might have formed for other concepts.

As seen in figs. 8.3, 8.4 and 8.6 there seems to be no subclusters which are excited, and
no other subclusters which are inhibited. On the contrary, most neurons in the cluster
seem to be excited all the time, at least for high values of βhume. If the subclusters are
in fact there, they are at least not visually discernable. Increasing βpavlov, was hoped to
maybe enable Pavlov to pick up and learn from any subtle subclusters formed, but this
did not happen. The only thing it did was to learn from what was left of the input image
behind the noise.
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Part III

Conclusion
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Chapter 9

Conclusion

The results of the experiments using the original topology were very poor. There were
minute changes in motor neuron drive in response to a facial affect being shown, but they
could not clearly be distinguished from the genreal noise.

A closer study of the supervision mechanism revealed that this was the reason behind
the poor results. The problem with the supervision mechanism was that the Skinner
synapses could not change their efficacies quickly enough to be able to drive the motor
neurons in a fashion mimicking the supervision signal. If the learning rate was increased
to achieve faster efficacy changes, the network became unstable1 long before sufficient
learning speeds could be achieved.

An alternate approach to supervision, outside the principles of Connectology, was adopted
to fascilitate testing the Pavlov synapse in a supervised setting. The Pavlov synapses
were able to anticipate all affects, but only discriminate between three out of four. The
fourth had problems due to having large synaptic efficacies in an area where all affects
had edges. It is concluded that the Pavlov synapse can indeed anticipate affects, but it
cannot discriminate between phenomenon located in the same area.

The Hume synapse was expected to be able to form concepts of the different affects
in subcluster within the hidden cluster. This did not happen. No visual discernable
subclusters where are excited, and no other subclusters which are inhibited, when the
different affect were shown. In case there were some subtle clusters not recognizable
by the human eye, a high learning rate of the Pavlov synapses were tested to see if
the synapses would pick up on some small drive changes a human could not see, but
this was not successful either. It is concluded that the Hume synapse can not form
subclusters representing concepts, at least not in the manner the synapse was used in
these experiments. This is consistent with the conclusion reached in [KS06].

1Yhe motor neurons started to oscillate between drives of 0 and 1.
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9.1 Futher work

Futher work should go into investigating ways to create a better supervision mechanism
within the principles of Connectology. Also the Hume synapse should get futher attention,
by for example looking into some form of hedonisticly guided learning for the Hume
synapses.
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Appendix A

Source code

File “nn.cpp”

#include <QDir>
#include <QFile>
#include <QStringList>
#include <QTime>
#include <vector>
using namespace std;

#define get(X,Y) X.at(Y)

// Specification
float A HUME, A PAVLOV, A SKINNER;

float B HUME, B PAVLOV, B SKINNER;

bool mod hume, mod pavlov, mod skinner;

// Iterations
const unsigned int supervision delay = 0;

const unsigned int m iters = 50;

int m frame;

int m iter;

const int input size = 87*120;

vector<float> *input;

vector<float> aff, aff old, aff next;

vector<float> hidden, hidden old, hidden next;

vector<float> motor, motor pre, motor old, motor next;

vector<float> sup;
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vector<float> pavlov, pavlov trace;

vector<float> hume, hume trace;

vector<float> skinner, skinner old, skinner trace;

float eff sum hume = 0.0f, eff sum pavlov = 0.0f, eff sum skinner = 0.0f;

vector<float> delta eij pavlov, delta eij skinner;

vector<vector<float> > delta eij affects;

const int GLAD = 0, MAD = 1, SURP = 2, DISP = 3;

inline float delta aff(int i) {
return get

(aff, i) - get

(aff old, i);

}
inline float delta hidden(int i) {

return get

(hidden, i) - get

(hidden old, i);

}
inline float delta motor(int i) {

return get

(motor, i) - get

(motor old, i);

}

#include "nn.h"

void init() {
printf("Init.\n");
// Motor
for (int i=0; i<4; i++) {

motor.push back(0.5f);

motor old.push back(0.5f);

motor next.push back(0.5f);

motor pre.push back(0.0f);

aff.push back(0.5f);

aff old.push back(0.5f);

aff next.push back(0.5f);

sup.push back(0.0f);

}

if (B PAVLOV > 0.0f) {
// Hidden
for (int i=0; i<input size; i++) {
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hidden.push back(0.5f);

hidden old.push back(0.5f);

hidden next.push back(0.5f);

}

if (B HUME > 0.0f) {
for (unsigned int i=0; i<input size*input size; i++) {

hume.push back(0.0f);

hume trace.push back(0.0f);

}
}

// Pavlov hidden->motor
for (unsigned int i=0; i<input size*4; i++) {

pavlov.push back(0.0f);

pavlov trace.push back(0.0f);

}
}

// Skinner affect->motor
if (B SKINNER > 0.0f) {

for (unsigned int i=0; i<4*4; i++) {
skinner.push back(0.0f);

skinner old.push back(0.0f);

skinner trace.push back(0.0f);

}
}

vector<float> a;

for (int j=0; j<4; j++)

delta eij affects.push back(a);

for (int i=0; i<m inputs.size(); i++) {
delta eij pavlov.push back(0.0f);

delta eij skinner.push back(0.0f);

for (int j=0; j<4; j++)

delta eij affects[j].push back(0.0f);

}

printf("done.\n\n");
}

void calc new drives(bool supervise) {
if (B PAVLOV > 0.0f) {

int epos = 0;
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// Hidden cluster
for (unsigned int dj=0; dj<hidden next.size(); dj++) {

hidden next[dj] = -log(1.0f/input->at(dj) - 1.0f);

if (B HUME > 0.0f) {
hidden next[dj] += sample gauss();

for (unsigned int di=0; di<hidden.size(); di++, epos++) {
if (di == dj)

continue;
hidden next[dj] += get

(hidden, di) * get

(hume, epos);

}
}
hidden next[dj] = sigm(hidden next[dj]);

}
}

int hpos = 0, apos = 0;

// Motor cluster
for (unsigned int dj=0; dj<motor pre.size(); dj++) {

motor pre[dj] = 0.0f;

if (supervise && B SKINNER <= 0.0f) {
motor pre[dj] = ((sup.at(dj) - 0.5f) * 5.0f);

}
motor pre[dj] += sample gauss();

if (B PAVLOV > 0.0f) {
foreach(float f, hidden) {

motor pre[dj] += f * pavlov.at(hpos++);

}
}
if (B SKINNER > 0.0f) {

foreach(float f, aff) {
motor pre[dj] += f * skinner.at(apos++);

}
}
motor next[dj] = sigm(motor pre.at(dj));

}

// Affect cluster
if (B SKINNER > 0.0f) {

for (unsigned int i=0; i<aff.size(); i++) {
aff next[i] = 0.0f;

if (supervise) {
aff next[i] = ((fabs(sup.at(i) - motor.at(i)) - 0.5f) * 5.0f);

}
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aff next[i] += sample gauss();

aff next[i] = sigm(get

(aff next, i));

}
}

}

void set new drives() {
for (unsigned int i=0; i<hidden.size(); i++) {

hidden old[i] = get

(hidden, i);

hidden[i] = get

(hidden next, i);

}

for (unsigned int i=0; i<motor.size(); i++) {
motor old[i] = get

(motor, i);

motor[i] = get

(motor next, i);

}

for (unsigned int i=0; i<aff.size(); i++) {
aff old[i] = get

(aff, i);

aff[i] = get

(aff next, i);

}
}

void update efficacies() {
if (B HUME > 0.0f) {

eff sum hume = 0.0f;

int epos=0;

for (unsigned int dj=0; dj<hidden.size(); dj++) { // Dj
for (unsigned int di=0; di<hidden.size(); di++, epos++) { // Di

if (dj == di)

continue;
if (mod hume)

hume[epos] -= fmax(get

(hume trace, epos), 0.0f) * delta hidden(dj)

* B HUME;

else
hume[epos] -= get

(hume trace, epos) * delta hidden(dj)
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* B HUME;

eff sum hume += fabs(get

(hume, epos));

}
}

}

if (B SKINNER > 0.0f) {
eff sum skinner = 0.0f;

int epos = 0;

for (unsigned int dj=0; dj<motor.size(); dj++) { // Dj
for (unsigned int di=0; di<aff.size(); di++, epos++) { // Di

skinner old[epos] = skinner.at(epos);

const float delta = fmin(0, delta aff(di)) * skinner trace.at(epos)

* B SKINNER;

skinner[epos] -= delta;

// Delta pr frame
delta eij skinner[m frame] -= delta;

delta eij affects[di][m frame] -= delta;

// Sum
eff sum skinner += fabs(skinner.at(epos));

}
}

}

if (B PAVLOV > 0.0f) {
int epos=0;

eff sum pavlov = 0.0f;

for (unsigned int dj=0; dj<motor.size(); dj++) { // Dj
const float deltadj = delta motor(dj) * B PAVLOV;

for (unsigned int di=0; di<hidden.size(); di++, epos++) { // Di
if (mod pavlov) {

const float delta = fmax(get

(pavlov trace, epos), 0.0f) *

deltadj;// delta motor(dj) * B PAVLOV;
pavlov[epos] += delta;

// Delta pr frame
delta eij pavlov[m frame] += delta;

} else
pavlov[epos] += get

(pavlov trace, epos) * delta motor(dj)

* B PAVLOV;

// Sum
eff sum pavlov += fabs(get

(pavlov, epos));
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}
}

}
}

void update traces() {
if (B HUME > 0.0f) {

int tpos=0;

for (unsigned int dj=0; dj<hidden.size(); dj++) { // Dj
for (unsigned int di=0; di<hidden.size(); di++, tpos++) { // Di

if (dj == di)

continue;
if (mod hume)

hume trace[tpos] = (get

(hume trace, tpos) * (1-A HUME)) +

(A HUME * delta hidden(di));

else
hume trace[tpos] = ((1 - A HUME) * get

(hume trace, tpos)) + (A HUME *

fmax(delta hidden(di), 0.0f));

}
}

}

if (B SKINNER > 0.0f) {
int tpos = 0;

for (unsigned int dj=0; dj<motor.size(); dj++) { // Dj
for (unsigned int di=0; di<aff.size(); di++, tpos++) { // Di

if (mod skinner) {
float drive = motor pre.at(dj);

drive -= aff.at(di) * skinner.at(tpos);

drive += aff old.at(di) * skinner old.at(tpos);

skinner trace[tpos] = (skinner trace.at(tpos) * (1 - A SKINNER))

+ (A SKINNER * (sigm(drive) - motor old.at(dj)));

} else {
skinner trace[tpos] = (skinner trace.at(tpos) * (1 - A SKINNER))

+ (A SKINNER * delta motor(dj));

}
}

}
}

if (B PAVLOV > 0.0f) {
int tpos=0;

for (unsigned int dj=0; dj<motor.size(); dj++) { // Dj
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for (unsigned int di=0; di<hidden.size(); di++, tpos++) { // Di
if (mod pavlov)

pavlov trace[tpos] = (get

(pavlov trace, tpos) * (1-A PAVLOV))

+ (A PAVLOV * delta hidden(di));

else
pavlov trace[tpos] = ((1 - A PAVLOV) * get

(pavlov trace, tpos)) + (A PAVLOV

* fmax(delta hidden(di), 0.0f));

}
}

}
}

void learn() {
m iter = 0;

for (unsigned int i = 0; i < m iters; ++i) {
for (int f = 0; f < m inputs.size(); ++f, m iter++) {

printf("\rIteration %03d/%03d, of %03d/%03d", i + 1, m iters, f

+ 1, m inputs.size());

fflush(stdout);

const int filenr = f > supervision delay ? f - supervision delay

: 0;

if (supervision delay == 0)

assert(filenr == f);

parse filename(get

(m inputs, filenr));

input = &get

(images, m frame); // read image(file);
calc new drives(true);
set new drives();

update efficacies();

update traces();

write learning data();

}
}
printf("\n");
write delta();

}

void test() {
write spec(m testTs);
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m testTs << "\n# Iter GladS GladA MadS MadA DispS DispA SurpS SurpA TotErrDelt\n";
m testTs << "# --------------------------------------------------------\n";
m iter = 0;

for (int i = 0; i < m inputs.size(); i++, m iter++) {
printf("\rTesting %03d/%03d", i + 1, m inputs.size());

const int filenr = i > supervision delay ? i - supervision delay :

0;

if (supervision delay == 0)

assert(filenr == i);

parse filename(get

(m inputs, filenr));

/// Update all drives..
input = &get

(images, m frame); // read image(file);
calc new drives(false);
set new drives();

write test images();

write test data();

}
printf("\n");

}

int main(int argc, char **argv) {
if (argc != 10) {

qWarning("Wrong arguments count (%d)", argc);

qWarning("%s mH mP mS aH aP aS bH bP bS", argv[0]);

return 1;

}
qsrand(QTime(0, 0, 0).secsTo(QTime::currentTime()));

mod hume = atoi(argv[1]);

mod pavlov = atoi(argv[2]);

mod skinner = atoi(argv[3]);

A HUME = atof(argv[4]);

A PAVLOV = atof(argv[5]);

A SKINNER = atof(argv[6]);

B HUME = atof(argv[7]);

B PAVLOV = atof(argv[8]);

B SKINNER = atof(argv[9]);

init files();

init();

learn();

write weights();
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test();

cleanup files();

return 0;

}
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File “nn.h”

#include <QImage>
#include <QTextStream>
#include <highgui.h>

inline void error(const QString &e) {
qWarning("%s", qPrintable(e));

exit(1);

}

inline float sample gauss() {
float theta = (float)2.0f * M PI * (float)qrand() / RAND MAX;

float e = -log((float)qrand() / RAND MAX);

float r = sqrt(2.0f * e);

return r * cos(theta) * 0.1f;

}

inline float sigm(float x) {
return 1.0f / (1.0f + exp(-x));

}

// I/O related variables
QString m imageBasename;

QStringList m inputs;

QTextStream m sumTs, m errTs, m deltaTs, m testTs, m weightTs;

vector<vector<float> > images;

void parse filename(const QString &filename) {
QStringList parts = filename.section(".jpg", 0, 0).split(" ", QString::SkipEmptyParts);

QString iter = parts.takeFirst();

iter = iter.section(’/’, -1, -1);

bool ok = false;
m frame = iter.toInt(&ok);

if (!ok)
error("Could not parse frame nr from string: "+ iter);

foreach(QString p, parts) {
if (p.startsWith(’g’)) {

sup[GLAD] = p.remove(’g’).toFloat();

} else if (p.startsWith(’m’)) {
sup[MAD] = p.remove(’m’).toFloat();

} else if (p.startsWith(’s’)) {
sup[SURP] = p.remove(’s’).toFloat();

} else if (p.startsWith(’d’)) {
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sup[DISP] = p.remove(’d’).toFloat();

} else {
error("Error parsing filename, part was: "+ p);

}
}

}

void read image(const QString &filename) {
IplImage *img = cvLoadImage(filename.toLocal8Bit(), 0);

if (!img) {
printf("ERROR: Could not load image: %s\n", qPrintable(filename));

return;
}
assert(img->width * img->height == input size);

vector<float> image;

float min = 255, max = 0;

for (int y = 0; y < img->height; ++y) {
for (int x = 0; x < img->width; ++x) {

const int idx = x + img->width * y;

image.push back( (*reinterpret cast<uchar*>(img->imageData + x

+ img->widthStep * y)) );

min = fmin(min, get

(image, idx));

max = fmax(max, get

(image, idx));

}
}
cvReleaseImage(&img);

for (unsigned int j=0; j<image.size(); j++) {
image[j] = ((get

(image, j) - min) / (max - min));

}
images.push back(image);

}

inline QString bts(bool a) {
return a ? "true\n": "false\n";

}

void write spec(QTextStream &out) {
out << "# ---------------\n"<< "# Specification\n"<< "# ---------------\n";
out << "# Modified Hume: "<< bts(mod hume);

out << "# Modified Pavlov: "<< bts(mod pavlov);
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out << "# Modified Skinner:"<< bts(mod skinner);

out << "# Hume L2: "<< bts(B HUME > 0.0f);

out << "# Alpha Hume: "<< A HUME << "\n";
out << "# Alpha Pavlov: "<< A PAVLOV << "\n";
out << "# Alpha Skinner: "<< A SKINNER << "\n";
out << "# Beta Hume: "<< B HUME << "\n";
out << "# Beta Pavlov: "<< B PAVLOV << "\n";
out << "# Beta Skinner: "<< B SKINNER << "\n";
out.flush();

}

void init files() {
QString specstring;

specstring.sprintf("hume%d mh%d mp%d ms%d ah%05.2f ap%05.2f as%05.2f bh%06.3f bp%06.3f bs%06.3f delay%d",

(bool)(B HUME > 0.0f), mod hume, mod pavlov, mod skinner,

A HUME, A PAVLOV, A SKINNER,

B HUME, B PAVLOV, B SKINNER,

supervision delay);

QDir dir;

if (!dir.mkdir(specstring))
error("Could not make dir "+ specstring);

m imageBasename = specstring + "/frames/test";

if (!dir.mkdir(specstring + "/frames"))

error("Could not make dir "+ specstring + "/frames");

// QString learnAvgFilename = specstring + ”/learn avg.txt”;
// QString brainFilename = specstring + ”/brain.dat”;

QDir dsd("/home/h/Projects/affect/dataset/");

// int i=0;
QList<QFileInfo> fis = dsd.entryInfoList(QStringList() << "*.jpg", QDir::Files);

foreach(QFileInfo fi, fis) {
m inputs << fi.absoluteFilePath();

read image(fi.absoluteFilePath());

// if (i++ > 150)
// break;

}
if (m inputs.isEmpty())

error("No input images given..");

qWarning("Got %d input images", m inputs.size());

QFile *sf = new QFile(specstring + "/learn sum.txt");

QFile *ef = new QFile(specstring + "/learn err.txt");

QFile *df = new QFile(specstring + "/learn delta.txt");
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QFile *tf = new QFile(specstring + "/test.txt");

QFile *wf = new QFile(specstring + "/skinner weights.txt");

if (!sf->open(QFile::WriteOnly |QFile::Truncate))
error("Could not open file "+ sf->fileName() + " for writing");

if (!ef->open(QFile::WriteOnly |QFile::Truncate))
error("Could not open file "+ ef->fileName() + " for writing");

if (!df->open(QFile::WriteOnly |QFile::Truncate))
error("Could not open file "+ df->fileName() + " for writing");

if (!tf->open(QFile::WriteOnly |QFile::Truncate))
error("Could not open file "+ tf->fileName() + " for writing");

if (!wf->open(QFile::WriteOnly |QFile::Truncate))
error("Could not open file "+ wf->fileName() + " for writing");

m sumTs.setDevice(sf);

m errTs.setDevice(ef);

m deltaTs.setDevice(df);

m testTs.setDevice(tf);

m weightTs.setDevice(wf);

m sumTs.setRealNumberNotation(QTextStream::FixedNotation);

m errTs.setRealNumberNotation(QTextStream::FixedNotation);

m deltaTs.setRealNumberNotation(QTextStream::FixedNotation);

m testTs.setRealNumberNotation(QTextStream::FixedNotation);

m weightTs.setRealNumberNotation(QTextStream::FixedNotation);

write spec(m sumTs);

write spec(m errTs);

write spec(m deltaTs);

}

void cleanup files() {
delete m sumTs.device();

delete m errTs.device();

delete m deltaTs.device();

delete m testTs.device();

delete m weightTs.device();

}

void write learning data() {
m sumTs << m iter << " ";

m sumTs << eff sum hume << " ";

m sumTs << eff sum pavlov << " ";

m sumTs << eff sum skinner << " ";

m sumTs << "\n";
m sumTs.flush();
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// Error rates and such
m errTs << m iter << " ";

for (unsigned int i=0; i<sup.size(); i++)

m errTs << get

(sup, i) << " ";

for (unsigned int i=0; i<motor.size(); i++)

m errTs << get

(motor, i) << " ";

assert(motor.size() == sup.size());

for (unsigned int i=0; i<motor.size(); i++)

m errTs << fabs(get

(sup, i) - get

(motor, i)) << " ";

for (unsigned int i=0; i<4; i++)

m errTs << aff.at(i) << " ";

m errTs << "\n";
m errTs.flush();

}

void write weights() {
// Write pavlov weight images...
if (B PAVLOV > 0.0f) {

int epos=0;

float min = 1000.0f, max = -1000.0f;

for (unsigned int dj=0; dj<motor.size(); dj++) { // Dj
for (unsigned int di=0; di<hidden.size(); di++, epos++) { // Di

const float eff = get

(pavlov, epos);

min = fmin(eff, min);

max = fmax(eff, max);

}
}
qWarning("Min: %f, Max: %f", min, max);

QStringList imgs = QStringList() << "glad"<< "mad"<< "surprised"<<
"displeased";

epos=0;

for (unsigned int dj=0; dj<motor.size(); dj++) { // Dj
QImage img(87, 120, QImage::Format RGB32);

for (int y = 0; y < img.height(); ++y) {
for (int x = 0; x < img.width(); ++x, epos++) {

float eff = get
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(pavlov, epos);

if (eff < 0.0f) {
eff = eff/min * 255;

img.setPixel(x, y, qRgb(0, (int)eff, 0));

} else {
eff = eff/max * 255;

img.setPixel(x, y, qRgb((int)eff, 0, 0));

}
}

}

QString fn;

fn.sprintf("%s %s effs.png", qPrintable(m imageBasename), qPrintable(imgs.at(dj)));

qWarning("Making imag: %s", qPrintable(fn));

img.save(fn);

}
}

// Print skinner weights..
foreach(float f, skinner) {

m weightTs << f << "\n";
}
m weightTs.flush();

}

void write delta() {
for (int f = 0; f < m inputs.size(); ++f) {

parse filename(get

(m inputs, f));

foreach(float s, sup)

m deltaTs << s << " ";

for (unsigned int i=0; i<delta eij affects.size(); i++)

m deltaTs << delta eij affects.at(i).at(f) << " ";

m deltaTs << delta eij pavlov.at(f) << " ";

m deltaTs << delta eij skinner.at(f) << "\n";
}

}

void write image(vector<float> &neurons, int w, int h, const QString &filename)

{
if (neurons.size() < 1)

return;
float max = -1000.0, min = 1000.0;

for (int i=0; i<w*h; i++) {
max = fmax(max, get
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(neurons, i));

min = fmin(min, get

(neurons, i));

}

IplImage *img = cvCreateImage(cvSize(w, h), 8, 1);

for (int y = 0; y < img->height; ++y) {
for (int x = 0; x < img->width; ++x) {

uchar *pixel = (uchar*)img->imageData + x + img->widthStep * y;

float value = (get

(neurons, x + img->width * y) - min) * 255 / (max

- min);

*pixel = static cast<uchar>(value);
}

}
cvSaveImage(filename.toLocal8Bit(), img);

cvReleaseImage(&img);

}

void write test images() {
if (!m imageBasename.isEmpty()) {

// Write images of clusters
QString midout, affout;

midout.sprintf("%s hid %03d.png", qPrintable(m imageBasename), m iter);

write image(hidden, 87, 120, midout);

QString outout;

outout.sprintf("%s mot %03d.png", qPrintable(m imageBasename), m iter);

write image(motor, 2, 2, outout);

}
}

void write test data() {
m testTs << m iter << " ";

assert(motor.size() == sup.size());

for (unsigned int i=0; i<motor.size(); i++) {
m testTs << get

(sup, i) << " "<< get

(motor, i) << " ";

}
m testTs << "\n";
m testTs.flush();

}
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