& NTNU

Innovation and Creativity

Selection of Open Source Components -
A Qualitative Survey in Norwegian IT
Industry

Marina Marinela Gerea

Master of Science in Computer Science
Submission date: June 2007
Supervisor: Reidar Conradi, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Open-source-software (0SS) becomes more and more used in software products developed by the
industry. The motivation for this can e.g. be to reduce development/maintenance costs and to
shorten time-to-market. There are several technical methods for selecting and evaluating OTS
(Off-the-Shelf] components, but research shows that these methods are rarely used. 0TS
components come in two types: COTS (Commercial-Off-The-Shelf] and 0SS (Open-Source-
Software); this report focuses on 0SS. The amount of systems with open source components is
large and there are many questions to be asked such as: Where and how to find 0SS components?
How to evaluate them? How to learn the components? How to take care of knowledge about the
chosen component? How to make best use of 0SS? What component’s version should be chosen
and what could be done with respect to the maintenance and the new versions of the component?
Without an effective way to select and evaluate 0SS components, the time spent choosing the
correct components may offset the advantages of using them.

This report presents the current state-of-the-art, a research design, and then presents the results
of a survey performed in collaboration with Norwegian IT companies. The survey is based on the
results of an explorative survey performed in the autumn of 2006; the interview guide was
improved and we performed a larger survey. The state-of-the-art focuses on investigating existing
research related to software development processes for component based-systems and OTS
selection processes with the goal of finding research questions for research interviews. The
results of the interviews may help software companies to understand the existing practices and
improve their own processes.

This thesis presents two exploratory research goals and seven research questions. The research
goals are: 1) to explore the company role: integrator of open source components, and 2) to explore
their development processes with focus on 0SS selection processes.

The contributions of this work include a literature study, and new empirical knowledge about 0SS
selection. This knowledge refers to the qualitative answers to the research questions. We have
performed a qualitative descriptive study.

Assignment given: 10. January 2007
Supervisor: Reidar Conradi, IDI

TDT4900 System Engineering, Master Thesis
Spring 2007

Selection of Open Source Components — A Qualitative
Survey in Norwegian IT Industry

Marina Marinela Gerea

Supervisors: Carl-Fredrik Sgrensen and Reidar @onra

Department of Computer and Information Science
NTNU Norwegian University of Science and Technology

® NTNU

Innovation and Creativity

Abstract

Open-source-software (OSS) becomes more and maed s software products
developed by the industry. The motivation for thean e.g. be to reduce
development/maintenance costs and to shorten brmeatket. There are several
technical methods for selecting and evaluating (JO8-the-Shelf) components, but
research shows that these methods are rarely G3e&l.components come in two types:
COTS (Commercial-Off-The-Shelf) and OSS (Open-SeiBoftware); this report
focuses on OSS. The amount of systems with operces@mponents is large and there
are many questions to be asked such as: Whereamdohfind OSS components? How
to evaluate them? How to learn the components? tdotake care of knowledge about
the chosen component? How to make best use of @W8&Pcomponent’s version should
be chosen and what could be done with respecketondintenance and the new versions
of the component? Without an effective way to seden evaluate OSS components, the
time spent choosing the correct components magtatfie advantages of using them.
This report presents the current state-of-thesargsearch design, and then presents the
results of a survey performed in collaboration viitbrwegian IT companies. The survey
is based on the results of an explorative survejopeed in the autumn of 2006; the
interview guide was improved and we performed gdarsurvey. The state-of-the-art
focuses on investigating existing research relédesbftware development processes for
component based-systems and OTS selection proosgkethe goal of finding research
questions for research interviews. The results haf interviews may help software
companies to understand the existing practicesrapcbve their own processes.

This thesis presents two exploratory research gamads seven research questions. The
research goals are: 1) to explore the company irttlegrator of open source components,
and 2) to explore their development processesfedbs on OSS selection processes.
The contributions of this work include a literatugtidy, and new empirical knowledge
about OSS selection. This knowledge refers to thaitgtive answers to the research
questions. We have performed a qualitative deseestudy.

Keywords: Open Source, Open Source Selection, Structutedviews, Survey.

Preface

This report has been written during spring 2007/axs of the course TDT4900 Software
engineering, master thesis at the Norwegian Uniyersf Science and Technology
(NTNU).

The context of the work is within the European ITRFoject, COSI (Co-development
using inner & Open source in Software Intensivedpats). The Norwegian COSI wants
to enable the Norwegian IT sector to fully expliie benefits and advantages of open
source software (OSS).

This work consists of a literature study and a syrabout development processes with
OSS components in Norwegian IT companies. It isi@4darly of interest to discover the
actual OSS selection processes in the industry.

The work was performed under supervision of Dr.|-<Caedrik Sgrensen and Professor
Reidar Conradi. My supervisor, Dr. Carl-Fredrik &mgen, helped me very much by
providing most of the IT companies names in Nonaay then later in getting in touch
with them. | want to thank both Dr. Carl-Fredrikrssen and Professor Reidar Conradi
for providing insightful input and valuable feedkaall the time. The group of people
working on the COSI project at IDI, NTNU was vemtleusiastic and eager to provide
feedback any time | needed it. | was glad to bé gfethe group, even for a short period
of time, and | am grateful to them. | would like tttank to @yvind Hauge from NTNU
and Claudia Ayala from The Technical University ©atalunya who helped me and
encouraged all the time.

| would also like to thank my former colleagues SINTEF Marine Environmental
Technology for their support and encouragemente@ally to Dr. Mark Reed and Dr.
Tore Aunaas.

Last by not least | would like to thank my husb&whstantin Vili, my daughter Carolina
Gabriela and my family for their help and supptrgey gave me the power to overcome
the difficult periods.

We have performed nine interviews during the sp0697. We would like to thank all
the respondents who took time to answer the irgarviFrank Forseth from Visma, Emil
Urnes from Sirius IT, Christer Grimsaeth from TietaEor, Morten Ngrsvold from
WebOn, Eivind Tagseth from Abeo, Trond LindangenifrDKDigital, Jo Arve Aamaas
from Commitment, Robin Smitsrad from Grieg Multineecand Audun Kvasbg from
Riventi.

Trondheim, June, 2007

Marinela Gerea

Vi

Contents

o L R 1 0T U1 o o PSSP 1
I [10 To [Tod 1[0 o PP 1
I A e (0] o] [T o T T 11T = P PSRRSR 1
1.2 The PUrpoSe Of thiS TNESIS......u e e 2
G R Y o] o 1= 2= 1 (1 £ T PRSPPI 3
I @0 o1 1 0 111 0] o TP TSSRRRPPP 4
1.5 REPOI SITUCTUIEunieiii et emee et e e e e e e e et e e e et e e e e 5
PArt 2 — Pre-STUAYcoiiii it et bbb e e e eas 7
AN s (oY i oo U Toiufo] ol (o lo] o1=T 0 1KY UL ot 7
2.1 Historical Background Of OPen SOUICEccceeiiiiiiiiiiiiiiiieeeee e 7
2.1.1 The Early Days of Computers and Open SOUICE...........ccovvvreeervvririnniiiinaeeeenns 7
2.1.2 The Early Days Of UNIXuuiiii e e e e e 7
2.1.3 UNIX and the INTErNELcooiiiiiiiceemmm e et eeee e e e a e e e e e e 8
2.1.4 The Free Software FoOUuNdation ... 8
2.1.5 LINUX — A UNIDX KEINEIcciiiieeeeeee s eeeeee e 8
2.1.6 Apache — An Open WED SEIVET.......... .o seeiieaiieeeeeeeereeeieeesininnnnnnes 9
2.1.7 Mozilla — A Free WeD BrOWSENiammmm it 9
2.2 DefiNition Of OPEN SOUICEuuuuuiiii ittt e e e e ee ettt e e e e e e e e aaaaaeeaaaeeeeeeeanne 9
2.3 Definition Of COMPONENT........uuuiiii ettt e e e e e aeae e eebana s 10
2.4 Definition OF COTS ..o oo e e e e e e e e e e e e aaaeeeeeeaaeeeeeaenenes 10
2.5 OrganizatioNal ISSUESuuuiiiii e e e e e e e e e e e e e e e e eeeeeeneees 11
2.5.1 The Roles in OSS Community and Open SOUr@EEScceeeeeeiieeeeeennnn. 11
2.5.2 OpEN SOUICE LICENSES......cciiiiiiiitcemeemmm e e e e e e e e et 12
2.0 SUIMIMATY ittt ettt e et e e e et e et et e e e et e e e et s e e eea e e e eab s e e e bnaaeeeeabnseeeennneeesnnnanes 14
3. Traditional Models, OSS development process arffoftware Development
Processes for Component Based SyStemMS (CBS) . cerrrrriiiiiieeeeeeereerrieeessinnnsnnnnnnnsnnnes 15
3.1 The Traditional and the Composed Process Madels..............cccoevvviiiiiiiiiiiiiinnnee. 15
3.2 Software Development Processes for ComponesgdB8ystem (CBS).......ccccceeeennn... 16
3.2.1 Software Development Processes using COTS.........oooiiiiiiiiiiiiiiiiinneeeeeeeee 16
3.2.2 Software Development Processes USING OSS . ..vvereiiiiiiiieeeeeeeeeeeeeeeennnnns 71
3.3 SUMMArY @Nd DISCUSSIONuuuuiiiiiiieeeaeae e e e e e e ettt seeee e e e e e e e e e e e e 17
4. OTS SelECHON PrOCESSESccccieeeeeees o e e et e et teeaeaaattta e s s s e eaaaeaaaaaaaaaaaaaaaeeeeresessssnnnnns 19
4.1 Phases of the OTS SeleCtion PrOoCESScceeeiiiiiii e 19
4.1.1 Phases of COTS Selection ProCESS.....cccovveeiieeeeiiiiieeeeeeetcees e eeeeens 19
4.1.2. Phases of OSS SeleCtion ProCESS....oceeiiiiiiiiiiieee e eeeeeeeeiie e 20
4.1.3 Differences between COTS and OSS.....ccccceeeiiiiiie e 21
4.2 General Considerations and Criteria in an O&IBcH0N Process............couvvvvvveeiinennnn. 22
4.3 COTS SeleCtion MethOdS.........oiiiiii s e e e e e e e e e e e e eeeeaaenes 25
A4 SUMMAIY ittt e ettt e e et e e ee e e e e e ettt e e e e e e eetaa e e e e eesssmnaaaeeeeeenssnnaeaeennnnnns 31
e LG T o L= U o o S 33

- Vil -

5. RESEAICH AQENUA.o i ittt e ettt e aarrba s 33

5.1 EMPIriCal Strat@QIeScoiiie i e e e eeie et e e e e e e e e ae s 33
5.1.1 Choice of Research Methods o eeerremee e eeeeeeeiaiiieeennaeeees 34
5.1.2 Population and Sampling Methods.......ccccccevvviiiiiiiiiiiieeee e, 35

5.2 ReSearCh QUESTIONSc.oouuiiiei s cmmmmmmm et s e e e et e e e e e et e e e e e e e e ennar e e e e e eannaeeas 37

5.3 INterview DefiNitiONoooiiiiii e 38
5.3.1 ODBJECE Of STUAY ...evvvviiiiiieee e e e e e e ee e e e e e eeeeeeees 38
TG 2 e V1 o0 1S PPTRUPPRT 38
5.3.3 QUANILY FOCUScoiiiiiiiiiiiiii e e ettt bbb 38
5.3.4 PEISPECHIVE ...uuuiiie i e e e e e e ee e ee et o 2222 e e ettt eaaaa st e s e e e e e e eeeeaaaaaaaaeaaeaeeeennnnnnnns 38
5.3.5 RESEAICH CONEXLciiiiiiiiiiiiii s 38

o) (=1 Y/ LAV o F= T 1T T 39
5.4.1 CoNteXt SEIECHIONcccoi e 39
5.4.2 RESPONUENTSce i eiiiieeeeeeeiie ettt s e e e e e e e e e e e e e e eeeeeaeee s s e e e s 39
5.4.3 INtEIVIEW DESIGNuiiiiiiiii ittt e e e aa e e e e e e e e e e e e eeees 39
5.4.4 Interview LIMItatioNS.........cooouieitmmmmneiiiiiiiieceee et e ernene e e e 39

5.5 COlleCting EVIAENCEuuiiiii ettt e e e e e s s 40

5.6 Analyzing the EVIAENCE..........cco o e e 40

5.7 SUIMIMATY <.ttt ettt e e e ettt e e e et ee bt e e e e e et bmma e e e e e eeesnnn e eeeeennnnns 40

Part 4 — Results, Discussion and CONCIUSIONS ...ccoeeiviiiiiiiiiiiiiiie e e e 41
8. RESUILS oo e e e e et e e e e ae et e e e et e a et b nann s 41

6.1 Create DescCriptive FINAINGSoio e eeee e ettt e e eeeee e s e e e e e e e aaeeaes 41

6.2 RQ1: Who (which role in a company) initiatesl gerforms the work related to

OSS harvesting and when in the development proCess?..........ccoovvvvvvvvevevivennnnnninnn 41

6.3 RQ2: What are the motivations for and expersraf using OSS components? 42

6.4 RQ3: What is the current process of selectiB& @omponents?..........c.ceevvvvvvvvvncineennn. 43

6.5 RQ4: How to find OSS COMPONENTS?..... ittt eeeaneeeeees 44

6.6 RQ5: What are the evaluation criteria whenciiglg OSS components?...................... 44

6.7 RQ6: What versions are considered and howdbwigh new versions?...................... 47

6.8 RQ7: How to maintain the knowledge about tHecti®n processes and the

knowledge about the selected OSS COMPONENTS?.riiiiiiiiiiiiiie e, 48

7. DISCUSSION ottt ettt e e e e e e e e e e e o s e e bbbttt ettt e e e e e e e e e e e e b bbb b bbb e e e e e 51

7.1 Main CONIDULIONS. ... as 51
7.1.1 LItErature STUAYccceeieiiiieieeeceeeee s e e e e e e e e e e e e e e as 51
7.1.2 NeW KNOWIEAGEueeiiiieie et e e 51
7.1.3 A Platform for FUTUIe WOTKoooiiiiiiiiiiiii e 52
7.1.4 Reusable Research Design and Interview GuUIde..............eeeeiiiiiiiiineeeeennennn. 53
7.1.5 RESUILS AISCUSSIONuviiiiiiiiiiiiiieeeeee ittt e e e e e e e e 53

A2V 1 [To 1 Y/ TP 58
7.2.1 ConcCluSioN Validitycccoviiiiiiiiii e e e e e e e e e e e e e e e aeeeeeeeeeeeeenne 58
7.2.2 Internal Validityoooiiiiiiiiiii et 59
7.2.3 CoNSrUCE Validitycce oo e e e e e e e e e e 59
7.2.4 EXternal Validity........cooouuuiuiiiimmmm et e e e e e ee e e e eeeeeenees 60

ARC I L] 010 AVZ=T 0 1= PP PPPTRPIN 60

8. ConclusionNs and FULUIE WOIK............uuuiuimmmeeeiiiiiieiiiiiiiieee e e e e e e e e e e e e eeeeeaaaenees 61

8.1 CONCIUSIONS ..ot e e e e e e e e et e e e e e e aaaas 61

8.2 FULUIE WOTK ..ooiiiieeieiei i 44ttt ettt e e e e e e s e eeeb bbbt et e et e e e e e aeaeeeas 61
=] (=] (=T o = PSSO UPPPPPTTPTRPRPT 63
o AT A o] 01T L Lo = PSR 67
APPENAIX AL GIOSSAIY....eiiiiiiiiiiiei et e ettt ettt bbbt r e e e e e e eaaaaaseaaaeeaaeeeaeeeansennnnes 67
Appendix B: The Open Source DefinitioNceeuveeiiiiiiiieeee e 69
Appendix C: OSS DeVelopPMENTt PrOCESS.........uuuuuuuiiiiiiiieee e e eeeeeeeeeeivet e 71
ApPeNdiX D: INEIVIEW QUITEeveeeeeeiieiesmmeeeeeeeetttiees s s s e e e e e e e e e eeeeeeeeeesssennnnesesennnnnnneeeeeas 73
Appendix E: Help for the INtervieW QUIAEuueiiiiiiiiiiiiiiiiiicie e eeeeeeeeeeeeeeeeeeneeees 85

List of tables

Table 1: Findings from the depth study. ... 2
Table 2: The most relevant findings of the thesiS.........c.ccccoeiii, 5
Table 3 : The content of thiS rePOI.........cuemi i 6
Table 4: Elements of 0pen SOUrCe MAatUrty ...ccceeeeeeeeeeeeiiieeeeeiiiieenn e e eeeeeee e 24
Table 5 : Summary of methods dealing with COTSGRIB.coovviiiiiiiiiiieiieeeeee, 29
Table 6: Norwegian companies grouped DY SiZ€..........cceeiiiiiiiiiiiiieiiiee e 36
Table 7: The distribution of the Norwegian IT com@s integrating OSS components.36
Table 8: Activities and roles in OTS component8&ONevveiiiiiiieeeeeeeeenene. 31.
Table 9: The corresponding questions in the ineenguide for each research question41
Table 10: Our descriptive fINAINGSvvceeeemiiiiiiie e 52
Table 11: RQL, DFL QNd DF2..........ccuueiet e eeeeeeeeeeeeeeaaeeasaaasssssssssssssssseesssseeees 54
Table 12: RQ2 aNd DF3........ ittt s e e e e et e e e e e e e st e e e e e e eesananens 54
Table 13: RQ3 @Nd DF4........oi i ottt e e e e et e e e e e e e aaaa s 54
Table 14: RQ4 and DFS........oiiiiiiiiii oot e e e e e e e e e e st e e e e e e eesaaan s 55
Table 15: RQ5, DF6, DF7, DF8, DF9uviiceeeeeiiiiiiiiiiiieeeee e seeeeee s 55
Table 16: RQ6, DF10, DF11 and DF12........cccutiiiiiiiiiiiiiiiieeeeeeeeeeeeeiee e 57
Table 17: RQ7, DF13, DF14, DF15 and DF16.......cccccciviiiiiiiiiiiiiiiiieeeeeee e 58

-Xi -

List of figures

Figure 1: OTS, OSS and COTS COMPONENTS.....ccummmmmmseeeereeeeeeeeeeeeeeeenrnnnnnnnnseenaeeees 1
Figure 2 : The roles in OPEN SOUICE PrOJECES wmmmmmneeeeeeeerrrerreerrrrrunnnnninseeeeeeaaaaeseaens 12
Figure 3: Phases of OTS SeleCtioN PrOCESS . eeeeerrrriiiiaiaeee e eeeeeeeeeeeeieevieienanneeees 31

Xiii

Xiv

Part 1 - Introduction

1. Introduction

1.1 Problem Qutline

More and more companies use OTS (Off-the-Shelf) pmomants in their daily
software development. The OTS components can heaglisshed into two types: COTS
(Commercial-Off-the-Shelf) and OSS (Open-Sourcaeygmke). As described in
[H.K.N.Leung 2003], “use of commercial-off-the-sh@COTS) products is becoming an
acceptable software development method. With tbheeased number of available COTS
components, the time spent on choosing the apptep@OTS products could easily
offset the advantages of using them”. Therefores tery important to effectively select
COTS components.

Our contributions are: a literature review, a resealesign, a survey, all these with
the goal of discovering better methods to seledt @raluate OSS components that can
help companies in their development processes.recessary to empirically investigate
how software companies select components, in @ffitgorojects and different application
domains.

This research is mainly based on our results froeninterviews performed in the
depth study of autumn 2006.

The contributions from the depth study of autumO@&@re: a literature study which
provides descriptive information about the statehef art, the qualitative answers to the
research questions, a platform for future work nyalior us but also for others who have
similar interest, and an interview guide.

These results are presented as sixteen descripttiags (DF)(see Table 1).

DF1: Usually it is the software architect who iatgs the work related to harvesting. The
work of harvesting is usually done by the softwaegeloper and the final decision about
integrating an OTS component is usually done byegtonanager or software architect.

DF2: The license price is the most important bussnéssue when selecting and
evaluating OSS components, but also the maintenaostas quite important.

DF3: The functionality is the most important tectai issue when selecting and
evaluating OSS components. When the functionatitgrion is met, the quality of code
and design, of architecture and documentation laieimportant. Support for standards
and standard compliance play also an important role

DF4: The availability of component for test and iséhe most important organizational
issue when selecting and evaluating OSS components.

DF5: The fact that people have experience with @S components or that the
components are written in programming languageslpeknow, are also important
issues when selecting and evaluating OSS compaonents

DF6: Unsuitable license and bad code quality aeentfost important properties which
makes a company to discard an OSS component.

DF7: The number of selection processes and the wised for selection is proportional
with the complexity of the component to be integdat

DF8: Companies do not use any formal processeafidoselection of OTS components

DF9: Companies find OTS components by searchingpecialized sites or by searching
using specialized search engines.

DF10: Components are tested before integration dkimg a small prototype.

DF11: It may happen to realize in the end of theettment process that the selected
OTS component is not suitable.

DF12: Companies consider the last or the last stal@rsion when selecting and
evaluating OSS components.

DF13: Companies update to a new version when aaditifunctionally is needed or
when bugs need to be corrected.

DF14: People documents the decision besides sajeatid evaluating OTS components
and this is usually done as part of the producj#otalocumentation.

DF15: Small or medium size companies do not ke&paavledge repository about the
selected OTS components, only the large compawies d

DF16: Usually there are people responsible folQfR& components in each company.

Table 1: Findings from the depth study.

1.2 The Purpose of this Thesis

The purpose of this thesis is described in terma pfoject description, the overall
design goal and several research questions.

The project description contains two clear tasksdo a literature study, and to
prepare a survey. The literature study focusesonbt on purely academic papers, but
also on papers containing aspects of the practiceébe software industry. A special
focus was on papers describing the selection psesesf OSS and COTS. Even if our
focus is on open source components, we investigaaddtypes because they have things
in common and it is interesting to see the diffeeen

Based of the results of the explorative surveygreréd in the autumn of 2006, we
have improved the questionnaire and then perforenedrvey with more respondents,
where the respondents have been drawn randomlydrtarger population. This work is
a gualitative descriptive study since we have inésved only nine respondents. We are
concerned with comparison across company size.

Research method: grounded theory

Grounded theory is one type of qualitative reseandtich is heavily relying on the
data that is collected. It aims to use the datébfolding theoretical constructions unlike
other methods more used in natural sciences whate id used to evaluate existing
hypothesis. By data, we mean transcripts of inésvgi The analysis can be word-by-
word, sentence-by-sentence, or on a more abseeel to find concepts. Another much
used technique is to apply “axial coding” — to glamoncepts along an axis [Strauss and
Corbin1998].

Research goals:
1. Explore the company role: integrator of open sogm®aponents.

2. Explore their development processes with focus election processes of OSS
components.

We want to discover what the selection processeswdien companies integrate OSS

components into a system or application. We areefetring to infrastructure OSS (e.g.

Linux) or open source development tools (e.g. BejMySQL).

The object of study is the process of selectioopgn source components in industry.

Research questions:
RQ1: Who (which role in a company) initiates and parfe the work related to OSS
harvesting and when in the development process?

RQ1.1: Who (which role) initiates the OSS harvesin a company?

RQ1.2: Who (which role) does the work relatedhi® harvesting?

RQ1.3: Who (which role) takes the final decisiomoat integrating an OSS
component?

RQ1.4: When in the development process does deet £8SS-components?
RQ2: What are the motivations for and experiences afqu€)lSS components?
RQ3: What is the current process of selecting OSS coemisf
RQ4: How to find OSS components?
RQ5: What are the evaluation criteria when selectii@s@omponents?
RQ6: What versions are considered and how to deal méth versions?
RQ7: How to maintain the knowledge about the selegtimtesses and the knowledge
about the selected OSS components?

Research context:

The previous depth study was performed in the comtethe ITEA2 COSI project. A
short description of the Norwegian COSI projeqtrssented below:

The Norwegian sub-project is sponsored by the NgraveResearch Council and led
by ICT-Norway. In addition to ICT-Norway, there amtso four industrial partners
(Keymind, Linpro, ITFarm and eZ Systems), and oredamic partner, NTNU.

The goal of the Norwegian COSI project is proceaprovement of development
processes related to open and inner source softveaedopment. The Norwegian project
is further responsible for deliverables to the pean project related to development
processes. Each industrial partner is responsdleeporting their processes related to
open source, and NTNU is gathering these practindsgpresenting them to the European
project.

This thesis has however been performed as sepassarch outside the scope of the
COSI project.

1.3 Apparatus

We collecteda list of Norwegian companigdT companies and non-IT companies
which have a software development unit) by difféen@eans in order to apply stratified
random sampling for finding subjects for interviews

We have used different ways to find these compatinesr size and focus, and we
ended-up with about 620 companies.

We used mostly Internet to find out the main foemsl the size of the companies,
whether a company is IT or not, and whether theysdéiware development and
integration of OSS components or not.

Then we divided the whole list into three sub-g®umased on size and applied
random sampling within the strata of the three gsowf ICT companies. Due to
difficulties to find the right person in non-ICT mpanies, we have only used the ICT
companies. We have divided the IT companies iretigreups because we are concerned
with comparison across company size.

The goal was to have three companies in each grévp.randomly selected
companies from each of the three sub-groups ankl ¢oatact with these companies.
Some companies could either not answer or weradeuthe scope of this study. We
ended up with three subjects in each group (tofalflgspondents). Because we only had
9 respondents for the interviews, our study is itatale. The goal is to discover the
practices about selection of OSS components irdiffierent Norwegian IT companies.
We believe that the sampling method has given better coverage of the practices
within the companies, and thereby a better and daemaepresentation than the
convenience sample from the depth study.

A more detailed description of the population aathgling method of study will be
given in the Part 3 of the thesis.

1.4 Contributions

The contributions of this work can be divided it parts: the literature study and
new empirical knowledge regarding the industriahgbice about selection of OSS
components.

The first contribution is théterature study This study provides descriptive state-of-the-
art information related to traditional models, O8&velopment process and software
development processes for Component Based Syst€@BS)(and OTS selection
processes.

The second and most important contributionnswy empirical knowledgeThis
knowledge refers to the qualitative and quantieanswers to the research questions. We
have performed a qualitative descriptive study.

Having as input several hypotheses and observations the depth study in 2006,
we have improved our questionnaire and perform&dger survey. We have proposed
descriptive findings based on our results, which @esented in Chapter 6. Some of the
most relevant findings are presented below in Table

Issue Descriptive finding
When in the DF2: Large components are usually selected at aly pa
development process arstage during the development process, while small
the OSS components| components can be selected anytime during | the
selected? development process.
Motivations to integrate DF3: Higher quality, shorter time to market, andtcare the
OSS components | principal motivations to integrate OSS components ia
system or application.
Selection process DF4: Companies do not use amgafoprocesses for the

selection of OSS components.

Evaluation criteria | DF6: Matching functionality and standard compliarase
the most important technical issues when evaluam@®SS
component for integration into a system or appiicat
DF7: The vitality is the most important organizagdbissue
of the OSS community when evaluating a component fo
integration into a system or application.

DF9: Unmatched functionality, unsuitable licensd #me
difficulty to integrate are the most important pedjes
which may make a company to discard an OSS componen
Version issues OSS DF11: Companies usually stthedatest stable version
and they only update to a newer version when thetga
update is bigger than the cost to update.

Integration of OSS | DF13: In large companies, replacement of select&$ O

components companies at some point during the developmentegsac
happen less often than in medium size companiesirand
medium size companies this happens less often ithan
small companies. When this happened, then it waallys
done during the development phase and less oftehen
testing phase. Thus, company size has an effedhe
component replacement rate.

—h

Activities after the | DF14: The large companies document the rationahnte
integration of OSS | the choice of the selected OSS component more tt@an

components medium companies. The small companies do not docume
their rationale.
DF15: Most companies keep a knowledge repositoti wi
all the OSS components used in different projestsne
companies keep also information about the seleCi8&
components and they reuse this information later.
DF16: Most companies have a person who is resplensib
for the OSS components, even if this is not alwaysrmal
role.

Table 2: The most relevant findings of the thesis

Our work creates platform for future workor anyone who has similar interests.

We have developed amterview guideand ahelp for the interview guideind
performed several structured interviews to assuggbve it. The help for the interview
guide can easily be changed to a questionnairectrabe used to study a larger sample
and thus be able to get quantitative results wahsiical relevance and thus improve the
external validity of this work.

1.5 Report Structure

This report is structured into several chapters.
Chapter 1)ntroduction is this part of the document.

Chapter 2, 3 and 4 presents Bre-study They contain the results from the literature
review and give an overview over the existing dedacmethods described in literature
for Off-the-shelf (OTS) components.

Chapter 5 presents tliesearch desigrit presents the project timeline, the research
guestions, the empirical strategies used, thevigerdesign, and the research context.

Chapter 6, 7 and 8 present Results, Discussion, and Conclusiarfishe study.

After the references, the last part contains séwappendices like: Glossary, The
Open Source Definition, a section about OSS Devetay Process, the Interview Guide
and a Help for the Interview Guide.

An overview of the content of this report can berfd in Table 3.

Part Chapter Content
Introduction 1 Introduction
2 An introduction to Open Source
Pre-study 3 Traditional Models, OSS Development Process and

Software Development Processes for Component Based
Systems (CBS)

4 OTS Selection processes
Research 5 Research agenda
Results, 6 Results
Discussion and 7 Discussion
Conclusions 8 Conclusions and future work
References - References
Glossary

Appendices The Open Source Definition

OSS Development Process
Interview Guide
Help for the Interview Guide

mooOw>

Table 3 : The content of this report

Part 2 — Pre-study
2. An introduction to open source

This chapter aims to give the reader a short imttdn to open source by presenting
the definition of open source and COTS, followedalshort description of organizational
issues and software development processes.

As indicated already, there are two types of OTi@manents: OSS and COTS (see
below).

Figure 1: OTS, OSS and C@oBponents

2.1Historical Background of Open Source
This section will give a brief history of OSS, wibme of its most important moments.

2.1.1 The Early Days of Computers and Open Source

The computer history starts in the 1940s, when ederp were primarily used for
scientific problem solving [Feller and Fitzgeral@2). The users of computers at the time
were typically scientists with strong mathematical engineering background who
developed their own programs.

During the early 1950s, the use of computers begamspread beyond scientific
problem solving to address the area of businessptatessing. Writing programs at that
time required much creativity and resourcefulndgb® programmer. It was recognized a
major achievement to get a program to run at dlusT if software worked it was shared
widely. In 1953, the Project for Advancement of @ogdTechniques initiative was a
collaboration between the military and aviationustty [Leonard2000]. This is an early
formalized example of free sharing of software. g&thxamples of free sharing of source
code at the time involved user groups at IBM andCDEhe openness of these and other
similar communities was a significant step towdnd foundation of the open source
community we know today.

2.1.2 The Early Days of UNIX

During four weeks in the summer of 1969, Ken Thoompsreated the first version of
an operating system called UNICS (Uniplex Informatand Computing Services). Unics
would later be renamed UNIX [Weber2004]. Certaimipne of the early UNIX
programmers could have foreseen that more thaty grears later, UNIX would remain

a mainstream operating system for researchersproustpplications, major business
software, and perhaps most important the Internet.

2.1.3 UNIX and the Internet

In 1968, Pentagon Defence Advanced Research Pédjgstcy (DARPA) started the
Advanced Research Project Agency Network (ARPANEHJARPA chose Unix for
linking together the ARPANET research nodes.

It was need for a communication protocol within theeta-network, thereby
catalyzing the development of tHi€CP/IP protocols (the rules of communication that
currently underlie the Internet) [Weber2004]. THePYIP protocol was developed by the
Berkeley Software Distribution (BSD) group, was el disseminated, and contributed
to the rapid diffusion of Internet. Other importdnternet utilities that were developed as
part of BSD were Sendmail and BIND.

2.1.4 The Free Software Foundation

One of the most significant milestones in the mswf OSS was the establishment of
the Free Software Foundation (FSF) by Richard @tail in 1985. After resigning from
MIT, Stallman devoted his attention to create aesaf free software products, tA@NU
family. In the GNU manifesto, Stallman (1985) calnihe term “Free software”, thus
formalizing a process that had been going on ielatively ad hoc fashion in the past.
The ambiguity of the word “free”, having both theeaming “unfettered” and “gratis”,
lead to the eventual coining of the term “Open Seudater [Weber2004]. Stallman
wanted to use existing copyright law to guarant@aesbasic rights to all future users of
software. Free, as in freedom not as in gratis, avesof the most important issues. With
this in mind, he formed the widely used Generallieubcense (GPL). Under this license
everyone should have permission to run, copy, modifid redistribute software and the
source code, but you can not add any restrictiotisnds to this freedom.

2.1.5 Linux — A UNIX Kernel

Generally, some of the necessary technology alreayed through GNU. What was
missing for PCs was a UNIX kernel.

In 1991, Linus Torvalds wanted to create a UNDeliperating system for the IBM
PC 386 series. Torvalds succeeded in attractingeat gleal of support worldwide. The
Linux developer's community represents the largesdlaborative project in the world
history.

Ironically, Linux has become more popular than UNibxe operating system on which it
was initially based on and it is currently the megtely ported operating system
available on the PC platform [Webwe2004].

1 TCP/IP means Transmission Control Protocol/InteRretocol. Internet is the inter-connection ofth#
networks in the world. The IP protocol allows thké between the different machines in this network

2 GNU is a computer operating system composed @ntfdree software. Its name is a acronym&NXUs

not Unix,which was chosen because its design is Unix-like differs from Unix by being free software
and by not containing any Unix code. GNU was fouhlg Richard Stallman and was the original focus of
the Free Software Foundation (FSF).

2.1.6 Apache — An Open Web Server

The next milestone in the history of OSS was thesligpment of the Apache HTTP
Server, begun in February 1995 by a group of velerst The Apache server was based
on a series of patches to the web server initiddyeloped by Rob McCool at the
National Center for Supercomputing Applications . The NCSA server had been
popular and many individual webmasters had develop&tensions and patches
[Webwe2004].

The Apache server is, according to the Netcrafvesyrthe most widely deployed
Web server at the time of this writing [Mockus £@02].

2.1.7 Mozilla — A Free Web Browser

One of the most important initiatives in the higtaf Open Source Software is the
Mozilla Project; in addition to the software thathias produced, it had an enormous
impact in promoting corporate and media awarenédheo concept. In January 1998,

Netscape announced that the source code for ttairser would be made available, and
Mozilla was the name chosen for the project. It \masextremely courageous step of
making the source code of their browser availablspecial pair of licenses, the Mozilla

Public License (MPL) and the Netscape Public Liee(NPL), was created for the

project of releasing the source code. Within hoofsthe source code being made
available on March 1998, developers around the dvewtre submitting patches to the
project. By the end of 1998, Netscape was statbrrggain market share.

2.2 Definition of Open Source

There are several views of what Free Software (B8gn Source (OS), Open Source
Software (OSS), Free Open Source Software (FOSS)ree/Libre Open Source
Software (FLOSS) is.

The Free Software Foundation (FSF) and it's piorieiehard Stallman have their
Free Software Definition. The definition refersfour kinds of freedom [Free Software
Foundation2006]:

e The freedom to run the program, for any purpossefom 0);

e« The freedom to study how the program works, andtadato your needs
(freedom 1). Access to the source code is a pretondor this;

* The freedom to redistribute copies so you can fely neighbor;

* The freedom to improve the program, and release yoprovements to the
public, so that the whole community benefits (fre®d3). Access to the
source code is a precondition for this.

The Open Source Initiative (OSI) has on the othaardhits Open Source Definition
[opensource2006]. Bruce Perens [opensource2006gwardefinition of open source as a
pragmatic reaction to the misinterpretation of feedtware as “gratis software”. The
Open Source Definition is currently available insren 1.9, see Appendix B.

The definition contains the following 10 requirerteto products which want to call
themselves open source. The list below is partlgptetl from Understanding Open
Source Software by Mark H. Webbink [Webbink2003]:

* No royalty or other fee imposed upon redistribution
* Availability of source code;

* Right to create modifications and derivative works;

* May require modified versions to be distributedtlas original version plus
patches;

* No discrimination against persons or groups;

* No discrimination against fields of endeavor;

* All rights granted must flow through to/with redibuted versions;

« The license must not be specific to a product;

* The license must not restrict other software;

e The license must be technology-neutral.

2.3 Definition of Component

Components are defined in various ways dependingthen viewpoint. Several
technical definitions exist. The definition of Heman and Council [Heineman and
Council2001] is: A software element that conforms&tcomponent model, which can be
independently deployed and can be composed withoadification according to a
composition standard.

The granularity of the component in practice/maplete is generally the same or
larger than the theoretical defined above. Compisngrouped as .NET, ActiveX/COM,
Java, JavaScript, AJAX, C++/MFC, DLL, and VCL atkeragarded as components in the
industry and in the component marketplace [Comptmoemce2007].

Components can be built in-house, acquired froma{parties, or just be downloaded
from the websites of the OSS communities.

In our study, we investigated the components wiithilar granularity as in industrial
practice and component marketplace. However, weecho exclude infrastructure OSS
(e.g. Linux) and open source development toolsKelgpse).

2.4 Definition of COTS

The terms OSS, COTS, and OTS are used everywhdhe ireport, thus, we need to
provide definitions of these terms.
[Carney and Long2000] consider that the existingelsa COTS and OTS are not
sufficient, and many people do not understand é&xabe meaning of COTS. If a
component was obtained rather than made, then aalied Off-the-Shelf (OTS). A
Commercial-off-the-shelf (COTS) component can belifireble or not. The solution is to
separate attributes along two axesurceandmodification and locate the component in
a graphical space.
Placing a component on tBeurceaxis, the component can be:

* Independent commercial item acquired from a thactyp This is a COTS

e Custom version of a commercial item: Has some aegf€€OTS properties;

e Component produced under a specific contract: dasegdegree of COTS
properties

» Existing component obtained from external sourt@sgxample, a reuse
repository): This is a previously developed compane

« Component produced in-house: This is a totally @3rs component.

10

Placing a component on theodificationaxis, the component can have:

« Very little or no modification.

e Simple parameterization.

e Necessary tailoring or customization.

e Internal revision to accommodate special platfoeguirements:
Include code revision to use special operatingesygirotocols or real-time
constraints.

» Extensive functional recording and reworking:
A drastic modification, fundamental alterationsisas removing safeguards or
internal access control.

OSS components have always the source code opda GOITS components may
either have the source code open or closed (ad8utflICOTS components are shipped
with the source code available). Therefore, impartant to distinguish between a COTS
component and an OSS component. Placing a componethtesourceaxis, shows the
distinction between a COTS and a non-COTS compodrith can be OSS component
or a component produced in house).

2.5 Organizational Issues

2.5.1 The Roles in OSS Community and Open Source djects

People can take different roles in open sourceeptsjlike:joiner, newcomerand
developerKrogh et al.2003]. A joiner is someone who istbe e-malil list but does not
have access to the CVS repository. A newcomerngesoe who has just begun to make
changes in the CVS repository. A developer is sareewho has moved beyond
newcomer stage and is contributing code to theeptoj
Usually, a significant period of observation is esgary for a joiner to contribute to the
technical discussion. A joiner lurk silently on tbeveloper list and learns as much as
possible before making any technical contributioather than entering into the
developing list asking general questions.

There are different roles in an open source prpjadt people can often have several
roles, e.g., both developer and user [BerquistLamagberg2001].

These roles as shown in Figure 2 are:

« The owner of an OSS: is the person (or the group started the project and has
exclusive the right, recognized by the communitiaege, to redistribute modified
versions of the software.

e Core developer: it is a group of core developer® wiite most of the source
code, design, and take the important decisions iop&n source project

» Developers: a wider group than the core developbrsrepairs defects.

* Problem reporters: this is even a larger group

e System testers

» User support: this task is performed mainly by sgmeduct users voluntarily
providing answers to the questions of other users

e Users: it is a huge number of users; in additionirtdividuals, even large
organizations and companies have become userssiBg @SS, these actors are

11

important contributors. Commercial companies tied open source projects
provide additional resources for development argd teepromote the open source
packages and drive them into the mainstream.

The owner of

0SS
Core
developers

Developers

Problem
reporters

System
testers

User support

Users

Figure 2 : The roles in open source projects

2.5.2 Open Source Licenses

Each open source project includes conventionsdhaiarticipants are supposed to
follow. Tacit and not written rules are widely apted in the project community rather
than other legal frameworks. Furthermore, licereesthe most important institution in
the governance structure of open source projeadsdBcorsi and Rossi2003].

A license is basically an agreement between the asd the developer on how
software can be acquired and used. Unlike propyieacommercial software, one of the
hallmarks of OSS is that there are no unit or gat-ficenses — you can take one copy of
the software, and install it on as many machinegaswvant, with no added license cost.
It is not necessary to track licenses.

Opensource.org wWww.opensource.ojg lists 21 approved licenses, which are the
standards licenses that the Open Source Initig@®l) has certified as valid. The base
license determines how a developer can use ansipene software component. From a
commercial firm's perspective, the license mustliekly permit the distribution of
software build from modified source code [Madanmohad De2004].

The most used licenses are:

* GNU General Public License (GNU GPL)
It is the earliest open source license, createtbB0s to distribute the GNU project
software. Most open source software to this dasebien distributed under GPL. It is
a copyleft license. The main characteristic of @GeL copyleft license is its viral
nature: a piece of a GPL code inserted in a givegram forces that program to be

12

protected by the same license agreement; everygnogontaining a piece of code
released under the GPL, must be released und&Rheoo. This license is therefore
controversial.

A company can implement a component under the Gd&nde into a product and
benefit from the component by using the final prdunternally. If, however, an

organization creates a commercial software prodisihg a component licensed
under the GPL, and sell the software, the prodiselfj in its entirety, would be

considered a derivative work as defined by the GPL.

A modified license, the Lesser GPL (LGPL) was adatwhen this proved

impractical. The LGPL differs from the GPL in twaays. Firstly, it is intended for

use with software libraries. Secondly, the softwaray be linked with proprietary
code, which is precluded by the GPL.

Berkeley Software Distribution (BSD)

This is also an early license. The company is eguired to grant any particular
license right. Its main requirement is the retamtamd acknowledgment of previous
contributors’ work.

It is a free license. It is a copy-right licensecémmercial company can take open
source software under a BSD-style license and tusedreate a proprietary product
for which source code is not made available. Mamymercial companies use this
license in their business and software they devaap: Yahoo, Apple, Microsoft.

The Artistic License
The Artistic License was designed to be used spatllif with Perl. The Artistic
License is perhaps best thought of an attemptdateran open source license that
eliminates or mitigates the more controversial etspef the GPL. In particular the
Artistic License differs from the GPL in the follong ways (among others)
[Hecker200]:
 The Atrtistic License encourages users to make noatiibns freely and
publicly available, but allows exemptions from s@crequirement in the cases
where the derived works are used only within anapization and are not
publicly distributed.
* The Artistic License allows the original work or roiked works to be
embedded “invisibly” in a proprietary program. Undlee GPL the proprietary
program would be considered a derived work alsgestito the GPL.

Mozilla Public License (MPL)

The license is a mixture of BSD and GPL. Separate MPL files may be licensed
under other terms. Companies must state MPL teareny file that contain MPL
code.

Apache License

The Apache License (versions 1.0, 1.1, and 2.Q)ires| preservation of the copyright
notice and disclaimer, but it is not a copylefehse - it allows use and distribution of
the source code in both free/open source and gtapyiclosed source software.

13

2.6 Summary

We started this chapter by presenting a brief hystd OSS. It is important to observe the
milestones and how the OSS evolved from its eariags.

We continued by referring to the definition of O35 Appendix B. A definition of
component in general from the technical and malaegppoint of view is also necessary.
Many times, people are confused about the differdretween OSS, COTS, or in-house
components, mainly because they all may have theceocode opened. Therefore, a
definition of COTS and how it is different from OS#d in-house component was
necessary.

Regarding the organizational issues paragraph,important to see the different roles in
open source projects and the most important ingiitun the governance structure of
open source projects (i.e. licenses).

Our research goal is to explore the company rategrator of open source components.
This company role belongs to the “users” role iempource projects.

The open source licenses part gives an overviewtbeemost used licenses. The licenses
are always considered when people select and @¢galpan source components.

14

3. Traditional Models, OSS development process arfsbftware
Development Processes for Component Based SysteiG8§)

We start this chapter by presenting the traditi@mal the composed models usually used
when developing proprietary software, followed bgvelopment processes used when
developing OSS. Very often, proprietary softwarasists of COTS.

There are two types of component-based systems:aS&1 systems and COTS-based
systems. The development processes for OSS-bastdmsy and the development
processes for COTS-based systems have similaatiels differences. However, both
processes are somewhat different from the traditiand the composed process models,
where no components are selected and integratedhetfinal system or application.

3.1 The Traditional and the Composed Process Models

Before reviewing CBS development processes, impoirtant to list the so-called
traditional and composed process models.

Thetraditional process models are:

- Code and Fix Developers begin work without a set of good regmients or a vision,
writing code as long as there is time and moneys Hpproach has no planning and
therefore yields early results. High maintenance mawork effort are the result of this
model. The code developed with this method hasliysp@or quality.

- Waterfall : This model is a sequential, document-driven madhmgy. To advance from
the current phase to the next phase, the projaot teust review and release an artifact in
the form of a document. [Royce87]

- V-model: This model is an extended waterfall model, addngre details on the
validation and verification side. For each phasalévelopment, there is an associated
phase to verify and validate the result produc&erinan V-model]

- Spiral: The spiral model breaks the project down intckk-osented subprojects
[Boehm88]. The advantage of this model is the kiteak of development into small
pieces, so that the areas of highest risk candidethat the beginning of the project.

- Evolutionary Prototyping: In this model, the system starts with an initidéa or
proposal, which is then prototyped and releaseithéocustomer in incremental releases
based on feedback.

The composed (incremental and iterative) process models, whadver several
aggregations, are:

- Unified Process (UP) UP is a risk- and user-driven, architecture-agentterative, and
incremental software development model. The beswknand extensively documented
refinement of the Unified Process is the Rationaifidd Process or RUP.

- Agile models:

* Adaptive Software Development (ASD)The ASD model is an iterative, risk —
and mission- driven, component-based and changeatdl process
[Highsmith99]. It works well for small teams (foup eight people) when
requirements are uncertain or domain knowledgeissing.

» Extreme Programming (XP): The XP model [Kent99] is a flexible, lightweight,
people- and result-oriented development process dtaws for requirements

15

changes at any time during development. XP defirf®esore practices that are,
according to Beck, essential to the success ofRupnsject.

e« Scrum. The characteristics of this process model ares tto have everybody
involved, the requirements from customers are pided, daily meetings with the
customers [Wikipedia.org].

e Crystal Clear: Crystal Clear can be applied to teams of up to 8 oplocated
developers working on systems t.hat are not lifecat. The Crystal family of
methodologies focuses on efficiency and habitaldisycomponents of project
safety. Crystal Clear focuses on people, not pssssor artfifacts
[Wikipedia.org]. The most important and requiredgerties of Crystal Clear are:

o Frequent delivery of usable code to users;
o Reflective improvement;
o Osmotic communication preferably by being co-lodate

Agile methods are a response to the more rigornddraditional approaches to software
development which emphasize the (perceived) impoeaf predictive planning, the use
of appropriate processes and tools, and the needddoumentation. Agilists offer
approaches which stress collaborative practicesge-ta-face communication,
collaboration with the customer and the importaoicéhe individual and the team [Sharp
and Robinson2004].

3.2 Software Development Processes for Componentdza System (CBS)

More and more companies are using components (0E€38S) when developing
systems or applications.

Nowadays there is a significant amount of work tikntifies issues or proposes
frameworks for pursuing further research for impngv new software development
processes for component-based system (CBS).

Most of the research focuses on development presessing COTS. Even if our
focus is on OSS, we also present both the COTSdbdeeelopment process and the
OSS-based development process to observe singfaltit also differences.

Our research goal is to explore the role: integrafoOSS componeatand their
development processes with focus on the selectimteps. Integrating an OSS
component into a system or application is an ingwrtactivity in an OSS-based
development process. In order to understand tleetsa@h process of OSS components it
is important to understand the context in whichs thctivity occurs (i.e. OSS-based
development process).

3.2.1 Software Development Processes using COTS

In [Brownsword et al.2000], the changes requiredddress CBS development are
identified taking into account real-life lessons.
In a custom-development approach, the developmeain tidentifies requirements
(technical and non-technical, other constrainthsas cost and schedule, etc), defines an
architecture, and then undertakes (custom) impléatien. Instead, with COTS-based
systems, developers must consider requirementshitecture, and marketplace

16

simultaneously. Any of the three might affect thlen two, so none can proceed without
knowledge and accommodation of the others. Furtbenthe activities performed for
CBSs are cyclic: these trades-offs recur frequetithpughout the system’s lifetime.
Sometimes the differences between CBS and custemlafement processes are subtle.
Often the differences are not in what is done father how or when or with what
marketplace considerations the CBS activity oceuitisin.

[Morisio et al.2000] report about adopted COTS-dgsecesses and propose a hew one.
New activities identified in COTS-based processes aroduct evaluations, product
familiarization, and vendor interaction (of techalicadministrative and commercial
nature).

[Li2006] shows that the development process usedthm projects using COTS
components is a customization of the traditionaletlgpment process due to the use of
COTS components. It is also indicated that theeesmme common new activities (e.g.
make vs. acquire decision, COTS component seledigamnn and understand the COTS
components) and one new role (e.g. a COTS compdmantledge keeper) is added in
COTS-based development processes. The possiblativas are when and how to
perform these new activities.

3.2.2 Software Development Processes using OSS

In most cases, the process that builds applicabonsxisting OSS is largely similar
with the process of developing COTS-Based Applacwti(CBA). Selecting correct OSS
or COTS, adjusting them as needed, and integrdtiem are essential actions during
system development lifecycle [Huang and Yang206kjwever, there is a significant
difference between OSS-Based Applications (OBAs) @BA development. In building
OBAs, developers not only need to integrate exgstSS, but also need to modify
existing OSS because of their quality or their fiomality. Therefore, developers can not
use the process of developing CBA to build OBAgddiy.
The authors describe a process for building OSSdaspplications (OBAS), it is a
process with several activities:

* Identifying High-level Requirements & Candidate QSS

» Designing High-level Architecture;

* Eliciting Requirements and Establishing Assessraeitéria;
* Assessing OSS according to criteria;

* Adjusting Criteria or High-level Architecture;

» Constructing In-house Products if suitable OSS atcerist;
* Improving and Integrating OSS;

3.3 Summary and Discussion

Before presenting the OTS selection methods, we paovided an overview over the
traditional development process, the software agekent processes using COTS and
OSS in order to understand the context in whichsatect an OSS component.

17

First we presented the traditional development gsses usually used to develop
proprietary software. The development processesl tsecreate OSS components is
described in Appendix C. When integrating COTS &SOcomponents in a system or
application, the development process is more compérause of the need to search,
evaluate, select and integrate one or several coems.

We can observe that the similarities between CO3dset development process and the
OSS-based development process are:

* Select a OTS component
* Learn and understand the OTS component

A common role in both development processes is @wledge keeper of the OTS
component.

The observed difference between the two developmpertgesses is: Vendor interaction
(of technical, administrative and commercial kinfitg) COTS-based processes versus no
vendor interaction for OSS based process.

18

4. OTS Selection Processes

In a COTS-based process, as well as in an OSS-hjasedss, an effective and
efficient COTS product selection process is esaktdithe delivery of the full potential
of CBS development. [H.K.N.Leung2003].

Most studies focus on proposing selection processeb methods to select COTS
components. Since both COTS and OSS componentxquéred from third-parties, the

users usually have no control of the provided fiometlity and evolution of these

components [Li2006]. They believe that most of fpineposed process improvements in
COTS component-based development can also be use@SIS component-based
development.

Everywhere in the report we will refer to the teteelection process” because we
observed from the pre-study that often few comptame searched, which then are
thoroughly evaluated, and at the end one or seaeakelected and integrated into the
final system. When we say selection process, wer rief fact to the whole process of
search, evaluation, selection and integration.

4.1 Phases of the OTS Selection Process

We start this section by presenting the phaseBefCIOTS selection process and the
phases of the OSS selection process.

Even if this thesis is about open source componevgspresent the phases of the
selection process of both COTS and OSS becauseheedthat they share properties.

4.1.1 Phases of COTS Selection Process
According to [Kunda-Brooks1999], there are threag@s of a COTS software selection:

Evaluation criteria definition: The criteria definition process essentially decosgs
the requirements for COTS into a hierarchical oote set. The criteria include
component functionality (what services are provjdexdher aspects of a component’s
interface (such as the use of standards), andtgusdpects that are more difficult to
isolate, such as components reliability, predidiigbiand usability.

In [BoehmOO], four guiding principles tailor a resgments strategy. These ensures that
the requirements arealue; shared-vision- change; and risk-driven The value-
requirements will show how the system will add eatar each stakeholder. Tkbared-
vision requirements help all the stakeholders quicklpdapt to the new situation, while
the precise requirement specifications take more efforchange. Thehange-driven
requirements are important because the requirenchatsge in time; it is also important
to capture the rationale besides decisions, ngtthel final decisions. Still it is need for a
detailed requirements specification to see possibles (isk-driven requirements). The
author also points out that developers need somdelgue principles rather than
inflexible rules to help each project to determthe best combination of requirements
and flexibility for each technical and organizaabsituation.

COTS projects must also accdlaxibility in requirementgdMorisio et al.2000]. At the
moment a COTS is selected, some requirements arednately satisfied, same other
requirements become easy to implement, and otleeanie difficult if not impossible to
obtain. In other words, the selected COTS compodewés the requirements to at least
some extent.

19

Identification of candidate components The identification of candidate components,
also known as alternatives identification, involwbe search and screening for COTS
candidates that should be included for assessméhe ievaluation phase.

If possible, it is timesaving to reuse internalgvdloped components or components used
earlier within the company. COTS identification s@ts of Web search, literature
surveys and product reviews, identification of otheusable system components, and
recommendations from external sources [Morisid.20a0].

In general, evaluating and analyzing all the reté\aharacteristics of COTS candidates
take a great amount of time, typically more thamdbhganization has. Therefore, it is both
necessary and cost-effective to select the mosmigneg candidates for detailed
evaluation [Kunda-Brooks1999].

Evaluation of the criteria for these candidates There are currently three strategies to
COTS evaluation: progressive filtering, keystonenidfication, and puzzle assembly. In
the keystone strategy, products are evaluated stgaikey characteristic such as a vendor
or type of technology. Progressive filtering is teategy whereby a COTS product is
selected from a larger set of potential candidateshich products that do not satisfy the
evaluation criteria are progressively eliminatednir the products list. In the puzzle
assembly model, a valid COTS solution will requiteng the various components of the
system together [Kunda-Brooks1999].

4.1.2. Phases of OSS Selection Process

In [Wheeler2006], it is described a general prodessevaluation of open source
software/Free software (OSS/FS) programs. Thisga®cs based on four steps: identify
candidates, read existing reviews, compare thariggaograms’ basic attributes to your
needs, and analyze the top candidates in more .depth

Identify candidates

The procesgroposes to first look at lists of OSS progranstsiof “generally recognized
as mature” or “generally recognized as safe” OSfgnams.

Further, Wheeler recommends searching on spedlaites as:

http://freshmeat.net/
http://directory.fsf.org/
http://osswin.sourceforge.net/
http://www.theopencd.org/
http://www.koders.com/
http://sourceforge.net/index.php
http://savannah.gnu.org/

Another way is to search using search engines,ceslye Google’s specialized
searches for Linux and BSD.

Read existing reviews

20

It is much more efficient first to learn about @gram’s strengths and weaknesses from a
few reviews than to try to discern that informatijust from project websites. The
simplest way is to use a search engine and seardnfarticle containing the names of
all the identified candidates. It is also indicatedsearch for web sites that cover that
market or functional area and see if there areighd reviews. Three OSS/FS SCM
systems got the most discussion in April 2004: CS&yversion, and GNU Arch. Market
share is thus an important indirect “review” ofragtuct.

Compare the leading programs’ basic attributes to gur needs

First, it is necessary to read the project web witget information about the project.
Next, it is important to evaluate the project onnamber of important attributes:
functionality, cost, market share, support, maiatexe, reliability, performance,
scalability, usability, security, flexibility/custoizability, interoperability, and
legal/license issues.

Analyze the top candidates in more depth

This step is mostly done the same way for both netary and OSS/FS programs. The
same attributes as in the previous step are imgagetl, but people need to spend more
effort by actually trying things out instead of gkireading.

[Madanmohan and De2004] developed an open sourogatent selection model,
which involves three basic stegsillection, incubationandrevision

In the collection step, developers search for open source comporentsexplore the
environment for new ideas and components. This ldhba according to their firm’s
product roadmap.

In the incubation step, developers create and evaluate informatimutathe software
component. They question the collected informatma evaluate component usability
through brainstorming and what-if analysis.

In the revision step, developers critically revise existing comgras through social
selection. This revision involves revisiting thastixig component library, estimating the
value of those components, and deciding whethexdtb or to extend them in order to
meet the customer requirements.

4.1.3 Differences between COTS and OSS

The way the steps are performed in an evaluatiodifferent between OSS/FS
programs and proprietary programs [Wheeler2006h&key differences may be:

* The information available for OSS is usually diéfet from proprietary programs

* OSS can be changed and redistributed by custofieisdifference affects many
factors such as flexibility/customizability and gapt options.

* No hidden defects or features in OSS!

» All the features are available in OSS!

When considering open-source based platforms, tlaeee at least two crucial

differences when compared to more traditionally ppietary platforms [Derick and
West2004]:

21

» The open source solution uses collaborative R&Dsamport in cooperation with
firms whose role is far less central or definede B&D, sales, and support for
the proprietary solution are the responsibilitidsaowell-defined profit-making
enterprise.

* OSS source code is widely disseminated to all &nd brganizations have the
opportunity to modify the software to suit theirmweeds. Often, the migration of
internal changes to the provider is difficult arige tchanged code ends up as
internal responsibility.

4.2 General Considerations and Criteria in an OTS S8lection Process

In [Alves and Castro2001], four main dimensionsutidoe considered in a COTS
selection process: domain coverage, time restrictost rating, and vendor guaranties.
Some can apply to OSS as well.

 Domain Coverage The components have to provide all or part of riguired
capabilities which are necessary to meet essenigbmer’s requirements. The
domain coverage can also apply to OSS, since bGfhSCand OSS must anyway
fulfill the customer’s requirements.

 Time restriction: Software companies usually operate in a very rigid
development schedule, on which their competitivengspends. Selection is a
time consuming activity where a considerable amaingffort is necessary to
search and screen all the potential COTS candidates can also apply to OSS
when companies select components. Whether it is £OT OSS, software
companies still have time restrictions.

» Cost rating: The available budget is a very important variaflee expenses
when selecting COTS products will be influenced fagtors such as: license
acquisition, cost of support, adaptation expereed,maintenance prices.

* Vendor guaranties An important aspect to be considered in the seleactivity
is to verify the technical support provided by tlendor. Some issues have to be
taken into account, e.g., vendor reputation andurntgt number and kind of
applications that already use the COTS, and theactexistics of the maintenance
licenses.

In [Ruffin and Ebert2004], some criteria that OS&stmeet are described:

e Build on and follow mature and commonly used industandards such as de
facto standards like Linux.

* Have a strong OSS community.

* Be broadly supported by several Independent So&wéendors (ISVs) for
distribution, evolution, and support.

* Have a clear, indisputable legal status regardutgjlectual Property Rights (IPR)
and the right to use it.

22

In [Woods and Guliani2005], the elements of opears® maturity (elements that are
direct indicators of the potential difficulties thean be encountered when using open
source) are discussed in Table 4.

Element of maturity

Description

Leadership and culture

It is very important for an open source projech&wve good
leaders and highly knowledgeable individuals.

Vitality of community

The leadership and the vitality of the communitye
correlated. In a good community, everyone finds ething
useful to do, and there is a division between thegept's
developers and users. The size of the communiglsig a
good indicator of a project’s viability.

ar

Quality of end-user
support

Active forums, well-maintained FAQ, and documeradi

that is available through search engine can sdoedd time.

Extent and scope of
documentation

The quality of documentation is another good clbeua a
project’'s work process. It is normal to expect tliae
instructions for installing, running, and fine-tagia piece o
software to be written in clear English.

Quiality of packaging

It is a good indication of mmdtty of a project to have an

installation package that can install the softweaasily on
many different platforms and configurations.

Momentum

Often releases indicate that the progeictive; the users d
not have to wait too long for bug fixes. It is inmf@ont to
check the release history to see if the new reteasemainly
significant or more trivial.

0]

Quality of code and
design

The quality of code and design are important tezdingsues
to consider anytime.

Quiality of architecture

The quality of architectuse also an important technic
issue.

al

Testing practices

Some open source code come witimated, built-in testin
facilities as standard features. The presence ibftests is g
key indicator of good design.

Integration with other
products

All software in the enterprise operates as pasdroécology
meaning that a set of interdependencies cause gmsgto
call on each other.

Support for standards

The programs need to usedast@sibased APIs. Th
problem of dependencies and nonstandard APIs iethoies
addressed in open source projects by having a qmo
download with a pre-selected set of other progrdthe
programs that make up its local ecology).

e

gr

Quality of project site

A good project site carratt more people.

License type

The main license types will be exm@dinn the next sub
chapter

Corporate commitment

Several open source projetish as the Linux operatir

g

system and the Apache Web Server, have enjoyedody

pp

23

from large, established computer companies, inomdBM,
Sun, HP, and Dell.

Table 4: Elements of open source maturity

Some maturity models exist to help organizationsuccessfully implement open source
software. An example is the Open Source MaturitydMo(OSMM) from Navica
[Navica]. OSMM assesses the maturity level of ay product elements: a) software, b)
support, ¢) documentation, d) training, e) produtdegration, and f) professional
services.

[Li2006] shows that:

* Formal selection processes were rarely used

* Functional completeness was regarded to be morertami than architectural
compliance in COTS component selection

« The actual OTS-based development process wasattiédnal process with OTS-
specific activities. The development process wasnidated by existing
company/department rule instead of the decisiamsofg OTS components.

e« The actual OTS component selection can be donéferaeht phases. The main
evaluation processes are familiarity-based or handsgial-based. The phase to
select OTS component depends on the project memiamsiliarity to
components.

Since the results above are based on a large atii@nal survey, it is interesting to
compare them with our results.

[Hauge and Rgsdal2006], “A Survey of Industrial diwvement in Open Source”
shows that:

* Open source components are primarily regarded msnoality software

* High availability of components, source code, antbrmation related to the
components are the most important motivations $amn@gOSS components

» Selection of OSS components is primarily done @sogess based on previous
knowledge, informal searches, and subjective etialsof the components.

The following company roles were investigated ie tihhesis mentioned above: open
source owner, open source participant, inner sopacgcipant, and user of open source
components. User of open source components meaosmgpany which develops
software using open source components and tools.r@e (i.e., integrator of open
source components) is a bit different but it isvaay interesting to compare the results
since approximately the same number of respondemaised in both studies.

An exploratory study based on structured intervigvesformed in India and US
between June and September 2003 [Madanmohan art@e&hows that:

24

e« The teams had no need to look at or modify thecsand did not have enough
resources (knowledge, skills, or manpower) to do so

» If the open source component offers the best swiwdnd reliability for the price,
then it is the most appropriate.

* From the perspective of a commercial firm, thersm must explicitly permit the
distribution of software build from modified sourcede.

The results of [Li2006] and [Hauge and Rgsdal2CG0&] related to our work since they
have also used the “integrator of open source coes” as company role.

The results of [Madanmohan and De2004] are alsde@lto the motivations to integrate
OSS components, which is of interest for us as.well

From these different sources, we observe that thsrethree different segments to be
considered when selecting open source components:

1. Business aspects

2. Technical aspects

3. Organizational aspects
4. Professional aspects

4.3 COTS Selection Methods

According to [H.K.N.Leung2003], there are threeegaties of COTS product
selection methods: thetuition approach, thdirect assessmeapproach and thedirect
assessmentpproach. In thentuition approach, software developers select COTS
products according to their experience and intnjtibs a subjective approach. Most of
the methods belong to thdirect assessmentDA) approach, which selects COTS
components directly from their source. The efficief the direct assessment approach
Is inversely proportional to the product of the ruenof modules in the system to be
developed and the total number of modules in thedidate COTS products. The
problem with these approaches is that they canuiie mefficient when there are many
components to be investigated. The method proposg¢H.K.N.Leung2003] (i.e., the
Domain-based COTS-product selection method) isewdfft from the other methods
based on the intuition and the direct assessmgmbaph because it uses domain models
to avoid the matching among all the available C@d®ponents in the marketplace, and
only compares the COTS that belong to the domahithrepresented by the model, so
they called the method as “indirect assessment”.

A range ofdirect assessmennethods have been proposed for COTS product smlect
[Alves-Castro2001], [Kontio1996], [Maiden and Nc@B¢ [Morisio et al.2000], [Chung
and Kooper2004], [Tran et al.1997], [Fox et al.1]997

OTSO

Kontio [Kontio96] proposed the Off-The-Shelf-Optig®@TSO) selection method. This
method is based on direct assessment.

OTSO assumes that the requirements of the propsgsi@m already exist. But in
practice it is possible that the requirements cabealefined precisely because the use of
some COTS products may require some changes tedou@ements. The main principle

25

followed by OTSO is that of providing explicit defiions of the tasks in the selection

process, including entry and exit criteria. The uitgpare: requirement specification,

design specification, project plans, and orgarizeti characteristics. The outputs are the
selected COTS product, the results of the evalnatind cost models.

OTSO comprises three phases: searching, screenthgwaluation. The searching phase
attempts to identify all potential COTS candidatesthe screening phase, it is decided
which COTS candidates should be investigated furttmethe evaluation phase, COTS

candidates undergo a detailed evaluation. Criferi€ OTS selection are:

functional requirements of the COTS
required quality-related characteristics
business concerns

issues relevant to the software architecture

cooy

The OTSO method uses the Analytic Hierarchy ProqédsP) to consolidate the
evaluation data for decision-making-purposes. AsiBased on the idea of decomposing
a complex, multi-criteria decision-making problemtoi a hierarchy of the selection
criteria. It helps decision makers to structureithportant components of a problem into
a hierarchical structure. The method assumeshatetquirements exist; they are used to
define the evaluation criteria.

CAP

[Ochs et al.2001] created a COTS Acquisition Pre¢€AP) method. CAP is based on
OTSO, but is strictly measure-oriented, allowing fine evaluation towards cost-
efficiency and systematic changes. It consistfiae components:

* The CAP Initialization Component (CAP-IC), whichnsists of: the identification
of criteria, estimation of effort needed to applyeaaluation criteria, set up pf the
measurement plan, and a review step that certli@sall CAP-IC activities have
been conducted correctly.

« The CAP Execution Component (CAP-EC), which exexutee measurement
plan developed in Cap-IC by trying to achieve higlpossible efficiency.

e The CAP Reuse Component (CAP-RC). The only activége is to package and
store all useful information generated during thaatment of a CAP project.

CISD
Tran, Liu and Hummel have proposed tB@®TS-based Integrated System Development
(CISD) model [Tran et al.1997]. This method is labse direct assessment.

The inputs for the selection process are the sységmirements and information about
the COTS products, and the outputs include a pided list of COTS products and the
architecture of the system.

CISD consists of three phases: identification (Wl sub-phases: product classification
and product prioritization), evaluation and integma.

In the evaluation phase, three attributes of theT&€Oproducts are examined:
functionality, architecture, and performance. Titegration phase encompasses all of the

26

development effort that is required to interconrtéet different selected COTS products
into a single integrated system.

PORE

The Procurement-Oriented Requirements Engineer(RPRE) method [Maiden and

Ncubel998], [Maiden et al.2002] integrates techesgfrom requirements engineering,
knowledge engineering, multi-criteria decision-nmakiand feature analysis to guide the
selection of COTS packages. It proposes a condudevelopment process, in which

stakeholders’ requirements acquisition and COTXage selection occur at the same
time. This method is based on direct assessment.

The method uses a progressive filtering strategyereby COTS products initially
selected are then progressively eliminated whey dloenot satisfy the evaluation criteria.
The inputs of the method are the attributes ofGRET'S products, supplier requirements,
and information about product branding, open stadgjaproduct certification, the
development process, reliability, security and dejability. The output is a shortlist of
COTS products. In this method it is not clear heguirements are used in the evaluation
process and how products are eliminated.

CRE

The COTS-based Requirements Engineering (CRE) rdefAtves-Castro2001] was
developed to facilitate a systematic, repeatabté requirements-driven COTS product
selection process. The method focuses on non-bmadtirequirements to assist the
process of selection of COTS products. This methdidised on direct assessment.

The method has four iterative phases: identificatiaescription, evaluation and
acceptance. The identification phase is based aaredul analysis of influencing factors;
there are five groups of factors: user requiremeafgplication architecture, project
objectives & restrictions, product availability aodyanizational infrastructure.

During the description phase, the evaluation gatare elaborated in detalil.

In the evaluation phase, a particular COTS prosuckelected based on estimated cost
versus benefits.

The selection criteria for the CRE method are:

» Domain coverage:
Both functional and non-functional requirements ianportant to meet customer
needs. A special focus is on non-functional regueets.

» Time restriction:
The time available for searching and screeninghallpotential COTS candidates
is limited.

» Cost rating:
Acquiring a license, support cost, expenses adeocigith adapting the product,
maintenance cost should all be within the avail&bidget.

* Vendor guaranties:
The technical support provided by vendor is alspdrtant.

27

A disadvantage of the CRE method is that the datisiaking process can be very
complex.

[IDA

Another work presented in [Fox et al.1997] deswilblee Infrastructure Incremental
Development ApproacliiiDA) for the development of technical infrastture using
COTS products. This approach is a combination ef ¢lassical waterfall and spiral
development models in order to accommodate the sneédCBS development. The
process of selecting COTS products in the [IDAe®lbn two phaseanalysis prototype
anddesign prototypeln the analysis-prototype phase, COTS candidateselected from
each COTS product family. In the design prototypase, the best COTS products from
the earlier phase are selected and evaluated. Basiduation criteria include
functionality and performance.

CARE
The COTS-Aware Requirements Engineerf@ARE) process is described in [Chung and
Cooper2004]. This method is based on direct assagsm

The CARE approach is characterized as agent-odegteal-oriented, knowledge based,
and has a defined methodology, or process. The igo@ define a methodology that
supports the definition and selection of COTS congmbs from a technical view. The
early artifacts for the system under developmeataacounted for including:

* The agents

» Soft-goals: non-functional goals that are achienetiabsolutely but in a “good-
enough” sense)

e Hard-goals: functional goals

* System requirements

e Software requirements

* Architectural elements

The traceability relationships among the artifagte also established and maintained
(e.g., a soft-goal is refined and traced to spesifistem requirements).

All these descriptions are information like thatifiol on marketing brochures for existing
products. These general descriptions are usedtevndi@e if the product appears to be
potentially useful.

This methodology departs from the description & tB(OTS components stored and
maintained in a knowledge base, or repository. s doals are defined, analyzed, and
negotiated, the requirements engineer (RE) seathkagpository for COTS components
that appear to be (possible) matches. As the sysierelops, goals are defined into
requirements and the RE determines if the idedtifiemponents still seem suitable or if
other components seem to be a better fit.

In spite of this methodology pretends to improuweseeby means of a repository of COTS
descriptions, it presents three obvious disadvasta(.) it is not clear how to build this
repository; (2) the maintainability of the reposytds especially difficult taking into
account the rapid evolution of the information atle product and the increasing amount

28

of products in the market and this aspect is nositered, (3) the searching process is
not very efficient having to look for componentsainvidespread range of descriptions.

DBCS

[Leung03] have developed an indirect method: themBia-Based COTS-product

Selection (DBCS) method, which makes use of theiBpalomain model to decide the

suitability of the COTS product. This approach tresgoal to reduce the amount of work
required for the selection process. There are tagicbstrategies for the selection of a
COTS product; depending on whether an applicatienelbpment needs the best
available COTS product: best-fit strategy and {iitsstrategy.

GoThIC

The GoThIC (Goal-Oriented Taxonomy and reuse Itfuature Construction) method
[Ayala and Franch2006] was designed to drive thestaction of OTS domain-
knowledge repositories populated with OTS compaent

The GoThIC method has been structured into sevewites with the ultimate goal of
the method to populate a knowledge base with dda.resulting artifacts can be seen as
a friendly and flexible taxonomy and knowledge bdkat can support the OTS
component selection process. The method deals witiy component searching and is
not intended to address the whole OTS componeects@h process. Therefore, the
method is shortly presented here but not in Table 5

Table 5 : Summary of methods dealing with COTScirle

Methodo Input Selection procedure Selection Reuse of | Descriptiv
logies of criteria knowledg | e criteria
Process e definition
OTSO | - Requirements| -Searching -Functional - N
Specifications | -Screening requirements
- Design -Evaluation -Quality
Specifications characteristics
- Project plans -Business
concerns
-Relevant
software
arhitecture
CAP |- input from|- The CAP Execution The CAP N N
Requirements | Component (CAP; Initialization
Engineering EC): executes theComponent
(RE)/System measurement plan(CAP-IC),
Design(SD) in| developed in Cap-IC| which consists
form of | - The CAP Reuseof: the
requirement Component (CAP: identification
specification RC): the only activity of criteria,
documents foris to package angestimation oOf

29

the respective store all usefu| effort needed
system information. to apply all
component. evaluation
criteria, set ug
of the
measurement
plan.
CISD |- System -Product -Functional
requirements | identification -
- COTS * Classification Architecture/in
Products * Priorization ter-operability
-Evaluation -Fulfill
multiple
requirements
from the
service domain
PORE | - COTS Product -Acquires customer | -Development
attributes requirements process
- Supplier -Multi-criteria -Supplier
Requirements | decision making CMM level
- Product -Rejects non- -
development | compliant COTS Product/suppli
process -Explores other er past record
candidates for new | -Reliability
customer reqgs. -Security
-Dependability
[IDA - COTS from -Analysis prototype | -Functional
each COTS -Design prototype requirements
product family -Performance
CARE | - Soft-goals: -Select candidate -The agents
non-functional | hard-goals -Soft-goals
goals that are | -Preliminary -Hard-goals:
achieved not component matching -System
absolutely but | -Detailed component| requirements
in a “good- matching -Software
enough” sense)| -Select component | requirements
- Hard-goals: -Architectural
functional goals elements
- System
requirements
- Software
requirements
- Architectural
elements
DBCS | - The specific - Best-fit strategy or| -Makes use| of

30

domain model | - First-fit strategy the specific

of the intended domain mode
system to of the intendec
decide the system.

suitability of the
COTS product.

(V) addresses the issue fully (*) deals with thaéssut not fully (-) means not deal with
the issue

The efficiency of the direct assessment approadhviersely proportional to the number
of modules in the system to be developed and tked tmumber of modules in the
candidate COTS products. The cost of selecting moropriate COTS product can be
expensive and hence, may offset the advantagesiraj COTS [Leung03]. We think that
the same applies for OSS components; that it i weportant to select OSS components
in an effective way. We have presented the differmethods dealing with COTS
selection in order to understand them, to be ablpropose questions for the interview
guide, and then to compare our results with thesthoads described in literature.

4.4 Summary

The first three parts of the chapter presentedptisses of COTS selection process
and the phases of an OSS selection process.
Even if this thesis is about open source compona@presented the phases of selection
process of both COTS and OSS. We believe that Hasgs of the COTS selection
process can also apply to OSS in general, evéreretare some differences, e.g., in the
OSS selection process, components are not evalagtedst a key characteristic such as
a vendor.
[Wheeler2006] and [Modanmohan and De2004]| descsjiexific phases for the OSS
selection process. Some phases are also comm@OdE. For example, the incubation
phase for OSS described in [Modanmohan and Ded8Gilar with the “identification
of candidate components” phase for COTS describ@idunda-Brooks1999].

From all the sources described in 4.1, we can @®pm OTS selection process:

v

Criteria Find Evaluate Decid Integrate Maintain
definition [”] candidates || (test) e)

Figure 3: Phases of OTS selection process

The general considerations and criteria in an Qgl&ton process are presented both for
COTS and OSS. Again, it is interesting to undedtidre differences and the similarities
between these two.

Finally, the COTS selection methods and a summéryethodologies dealing with
COTS selection close this chapter.

31

32

Part 3 - Research

5. Research Agenda

This chapter presents the main empirical strategigsfocus on a partly explorative
and partly descriptive survey, since this is thenmmmasearch method used in our project.
We then present the research questions, interviefimition, and the research design,
followed by the research context.

The main activities of this master project are:

Project start-up;

Further elaboration of existing literature;

Improve the interview guide based on the commemtisfeedback from the depth
study project; we have re-write some questions,esarare taken out and some
others were added.

Prepare a list of Norwegian companies (IT compamied non-IT companies

which have an IT department), group the compamedifferent categories to be
able to use stratified random sampling;

Randomly choose a few companies from each strafatake contact for an

interview;

Company visit and interviews;

Analyze and present data and results;

Project deadline.

5.1 Empirical Strategies

There are two types of research paradigms thatiffeeent approaches in empirical
studies:

Qualitative research — is concerned with studyibgas in their natural setting. It
is concerned with discovering causes noticed bysthigects in the study, and
understanding their view of the problem at hand.

Quantitative research — is mainly concerned withrgiflying a relationship or to
compare two or more groups. The aim is to idergtibause-effect relationship.

In the empirical software engineering field, theaee three major types of
investigations (strategies) [Robson93]:

Survey: A survey is often an investigation performed itraspective, when, for

example, a tool or technique has been in use fwhike. The primary means of

gathering qualitative or quantitative data arerwigavs or questionnaires. These
are done through taking a sample which is reprasigatfrom the population to

be studied. The results from the survey are thetyaed to derive descriptive or
explanatory conclusions. They are then generaliagtie population from which

the sample was taken.

33

 Case study:A case study is conducted to investigate a singhdity or
phenomenon with in a specific time space. The rebea collects detailed
information on, for example, one single projectidgra sustained period of time.
Case studies are used for monitoring projectsyiies, or assignments.

* Experimentation: Experiments are normally done in a laboratory emrment,
which provides a high level of control. The objeetis to manipulate one or more
variables and control all other variables at fikeekls.

Surveys and case studies can be both qualitatick carantitative, while the
experiment is most often quantitative.

The general objectives for conducting a surveyisa the following [Babbie90]:

» Descriptive: Descriptive surveys can be conducted to enablertasse about
some population. This could be determining the ridstion of certain
characteristics or attributes.

* Explanatory: Explanatory surveys aim at making explanatory ctasbout the
population. For example, when studying how comparselect open source
components, we want to explain why some prefereaiaptechnique while others
prefer another. By examining the relationship betweifferent techniques and
several explanatory variables, we may try to explahy developers choose one
of the techniques.

» Explorative: Explorative surveys are used as pre-studies througgstigations to
assure that important issues are not overseen.ti@yea loosely structured
questionnaire and letting a sample from the pomraanswer it could do this.
The information is gathered and analyzed, andeékalts are used to improve the
full investigation. In other words, the exploratisiervey does not answer the basic
research question, but it may provide new poss#slithat could be analyzed and
should therefore be followed up in a more focusethorough survey.

5.1.1 Choice of Research Methods

The study in this thesis will be performed aspartly explorative and partly
descriptive survey, because there were no appteprésearch questions based on the
literature study, and because we want to discoger knowledge about selection of open
source components, as outlined in the researchtignesThe purpose of this study is
therefore to answer the research questions by npeirig an explorative/descriptive study
to find new knowledge about selection of open sewamponents and to find support for
the findings in the depth study project.

When designing a research study, [Cooper Zatdndler2001] recommend using a
two stage research design for explorative studiks.first stage is the most explorative;
where the purpose is to define research questindsdavelop a research design. The
second stage is more descriptive and is performeallarger sample of the population.

In the autumn of 2006, we performed the first stagieere a structured interview was
performed on 7 subjects. The interview was choseih@method because it was the best
trade-off between usage of time, and its abilitptovide detailed textual description for
the research questions. The interview was strugtasemuch as possible in order to get

34

comparable results from the respondents. The iletervhad open-ended questions
because of the explorative research question.

5.1.2 Population and Sampling Methods

In this thesis, we have performed the secaagesof the explorative study and try in
addition to find support for the observations amtlihgs in the depth study. We have
interviewed nine respondents (IT companies). Thspordents were drawn randomly
from a rather large list of Norwegian IT compani€ke list of Norwegian companies (IT
and non-IT which are doing software development} wasembled in order to make it
possible to use stratified random sampling. We hesesl the following methods to create
the list of Norwegian companies:

* Re-used a list with IT companies compiled by [LigDP@s part of his sample. This
is about 15% of the total list we assembled. A naetailed description of this
starting list is presented in below ;

e Search in “Yellow pages” to find Norwegian IT comyes;

* Look-up the LinkedIn connections/contacts of th@esuisor Dr. Carl-Fredrik
Sgrensen to find Norwegian companies. The primamntacts either presently
work at a company, or may have previously workedbiher companies; the
ability to also look at the connections of the mmn contacts, resulted in a
snowball effect to enlarge the population since sempanies could be found by
following the links one level further than the ongl contact list. The original
contacts of the supervisor were approximately 2@ the possibility to reach
about 9000 more through the extended network.

* Used magazines (e.g. ComputerWorld and Teknisk ldkigand newspapers to
find Norwegian companies that advertise to emplafgwsare developers (this is
an indication that these either are IT companieghat they at least have a
software development unit).

Below is a short description of the list used iepous studies. The list was originally
provided by ICT-Norway and later compiled and quyationtrolled by Dr. Jingyue Li
[Li2006]:

The list was in the form of an Excel file with sealesheets:

* A sheet with the 50 largest general companies. Thia list with the largest
Norwegian companies (not necessarily IT compargesiiped by focus. Mainly
the company names were provided. We have usedlitbist by adding all these
companies’ names to our own spreadsheet contaaflitige companies.

* A sheet with the 100 largest IT companies. We heseal this sheet by adding all
these companies to our own spreadsheet.

* A sheet of companies with size between 20 and Q8 @mes. We excluded the
dead or merged companies or without software dewedmt, and included the
rest of companies.

35

e A sheet of companies with size between 1 and 19@mees. We excluded the
dead or merged companies or without software dewedmt, and included the
rest of companies.

We replicated the stratification approach of comgsifrom this list. The list was not
up-to-date, thus we had to check the status of eantpany to see if the company still
existed, to find out the actual number of employesmsd whether a company had
migrated from one stratum to another.

Totally, the list ended up with about 620 Norweg@mpanies. Many of these are
not purely Norwegian companies since some are gora@ompanies with an IT
department or sales filial in Norway. The Web wasdito find out the main focus and
the size of the companies, and whether they aif®& aompany or not. After this first step
we were able to group the Norwegian companiesdisated in the Table 6:

IT or non-IT company Size
250 non-IT companies which have a All sizes.
software development unit.
75 IT companies More than 100 employees.
103 IT companies Size between 20 and 99 employees.
116 IT companies Size between 1 and 19 employees

Table 6: Norwegian companies grouped by size

The total number of companies in the Table 6 is. 3% difference between 620 and
544 are companies without published or searchalfidernation (e.g. address, web page)
or companies that merged or just disappeared.

For many of the companies described in Table 6yweee unsure about the size and
whether they are integrating OSS components irgw fystems or applications.

Therefore the next step (done by my supervisor) twasend emails to most of the
companies and ask for information about the sizkvanether they are integrating/using
OSS components or not. About 70% of the compamseweared the email and provided
information about the company size and whether #reyintegrating OSS components
into their systems/applications or not. After thecond step, we were able to group the
Norwegian IT companies as indicated in the Table 7:

Number of the Size Responsg¢ Do integrate OSS
IT companies in rate to
the group the email
75 Larger than 100 employees 56% 22 of 36
103 Size between 20 and 99 employees. 836 20 of 99
116 Size between 1 and 19 employees. 84% 47 of 97

Table 7: The distribution of the Norwegian IT com@s integrating OSS components.

36

We took contact with more than 3 companies in desthuntil we ended up with three
respondents in each group (4 contacts in the list big companies, 5 contacts in the list
with medium size companies and 6 companies inishevith small companies).

We randomly selected three from each of the thmeeigs, and ended up with three
respondents in each group/stratum (totally ninpaedents) selected for interviews.

5.2 Research Questions

The goal of this project is to investigate statdhmf-practice of selection of OSS
components from both the organizational and thegs® point of view. The motivation
is to give guidelines on how to select and evalumte OSS component, based on
experiences and lessons learned from finished ¢isje
A pre-study was performed with the goal to find autat are the actual processes and
selection processes used in OSS component-baseslopment projects in 2006,
followed by a somewhat larger and more generalysituthis thesis.

Research goal:

Explore the following company roletegrator of open source components

We want to discover what the selection processhisnacompanies want to integrate OSS
components into a system or application. The corapbare referred to should neither be
infrastructure OSS (e.g., Linux, MySQL, or Apachei\server) nor open source tools
(e.g., Eclipse, PHP, Perl).

Further, we want to explore their development psses with focus on selection
processes of OSS components.

Company role descriptiorintegrator of Open Source Component is typicalbpmpany
which develops software using open source compsnent

Some high-level activities directly related witlet®TS selection processes and the most
relevant requited roles are described in Tabley&[& et al.2006].

Activity OTS Users Role

Finding Candidate OTS Market Watcher (MW)

Evaluating OTS Candidates| Quality Engineer (GW)

Selecting OTS Component Selector (S)

Documenting the decision Knowledge Keeper (KK)

Table 8: Activities and roles in OTS componentes@bn

We explore all these OTS company roles in our stlrdfact, our research questions try
to relate these roles to the company size.

Research questions:
RQ1: Who (which role in a company) initiates and perfe the work related to OSS
harvesting and when in the development process?

RQ1.1: Who (which role) initiates the OSS harvesgin a company?

37

RQ1.2: Who (which role) does the work relatedhs harvesting?

RQ1.3: Who (which role) takes the final decisiomoat integrating an OSS
component?

RQ1.4: When in the development process does deet £8SS-components?
RQ2: What are the motivations for and experience ofgi€#$S components?
RQ3: What is the current process of selecting OSS coemis
RQ4: How to find OSS components?
RQ5: What are the evaluation criteria when selecti@s@omponents?
RQ6: What versions are considered and how to deal math versions?
RQ7: How to maintain the knowledge about the seleqtimtesses and the knowledge
about the selected OSS components?

5.3 Interview Definition

Conducting an experiment is a labor-intensive téskarder to utilize the effort spent, it
Is important to ensure that the intention with éx@eriment can be fulfilled through the
experiment. In the definition phase, the foundatibthe experiment is determined. The
purpose of this phase is to define the goals axaeriment [Wohlin et al.2000].

5.3.1 Object of Study

The object of study is the process of selectiommén source components in industry.
The interviews want to explore what are the prasticn the industry. This empirical
study is only explorative, but the final goal isfiod out practices that can be used as
input in the decision-making in any improvementkseg software organization [Wohlin
et al.2000].

5.3.2 Purpose

The purpose of the interviews is to evaluate thecgss of selection of open source
components within different companies to find pblkesideviation in process between
smaller and larger companies.

5.3.3 Quality Focus

The quality focus is the effectiveness of the psscdt is very important to discover an
effective way to select components, and that wdwddvery useful for the software
industry.

5.3.4 Perspective

In this empirical study, the perspective is fromstea student and researcher’s point of
view. The interviews are performed by one mastedestt (see Appendix D and E for the
interview guide and a help for the interview guida)t under the supervision of a
researcher. Also, other researchers contributedhéo interview guide with useful
comments.

5.3.5 Research Context

The depth study was performed in the context of Nleewegian COSI project. A
more detailed description of this research comeag presented in Chapter 1. However,
this master thesis has been performed as sepasaarch.

38

5.4 Interview Planning

The interview definition presented in the previ@estion is input for the interview
planning. The output of the interview planninghie interview design.

The interview is designed to provide qualitativesvaears to the research questions.
The design of the interview is explorative with th®ain objective to discover new
aspects of open source, aspects described bygsbaroh questions. In addition, we want
to find support for the findings in the depth stwdyere applicable.

5.4.1 Context Selection

The interview is performed by a student, but unither supervision of a researcher.
The interview addresses real problems in the so&walustry. However, because of the
limited number of respondents, the results arevalitl to a general software engineering
domain.

5.4.2 Respondents

The interviews were conducted at nine Norwegiariwsoe companies, where IT
managers, software architects, or developers wéeeviewed.
The companies were selected usiagdom sampling within strata.
The selected companies have the specified rolgp@m gource, i.e., integrator of open
source components.

5.4.3 Interview Design

The interview guide used is presented in the Appebd We have created a help
description for the interview guide. This descoptiwas not sent to the subjects but
mainly used as a supporting instrument during tierviews. Both the interview guide
and the help for the interview guide were writtarEinglish, even if it were only used to
interview Norwegian software companies.

The interview guide contains both open questiorss @osed questions with predefined
answers to choose from.

During the interview it was possible to ask folloy-questions to further elaborate on
areas where more information was needed.

5.4.4 Interview Limitations

The number of interviews was limited to nine Norveegsoftware companies and
this is a clear limitation for external validity é@nthus generalisation. Performing
interviews is a time consuming task and it is tdiffcult to interview a representative
sample of responding companies. Therefore, thelitalof the results will be discussed
based on the limited number of responding companies

Many problems might occur when designing and periiog an interview. Some
problems are related to the sample of respondenssveaing the interview; other
problems are categorized as non-response or resgores. Non-response errors occur
when the respondent for some reason will not angierinterview. This reduces the
sample size and has impact on the validity of &@sellts. Response errors occur when the
reported data does not match the actual true data.

39

5.5 Collecting Evidence

We will here discuss how we collected the dataiafamation from our interviews.
Totally, it was conducted nine interviews. The camigs interviewed were Visma, Sirius
IT, TietoEnator, WebOn, Abeo, DKDigital, CommitmenGrieg Multimedia, and
Riventi.

The interview guide was in English and thereforecoeducted the interviews in English.
To allow the interview objects to be prepared foe tinterview, we sent them the
questionnaire a few days before the interview. tA# interviews were done by phone.
Each interview was recorded , in addition the witavee marked the answers directly on
the paper version of the interview guide.

Some interview objects started to talk about a ifipequestion without being asked

directly, some were asked.

The average time spent on one interview was abdutidutes.

5.6 Analyzing the Evidence

When the interviews were finished, we analyzedda& by reading the answers but
also listening to the audio records. We found lopthlitative and quantitative results.
To back-up our findings, we included some statesignthe thesis as quotes.
We have analyzed the results also taking into aucthe findings from the previous
survey performed in the depth project.

5.7 Summary

In this chapter, we presented a summary of the meapstrategies with focus on an
explorative and descriptive survey.
Defining the research goal and research quest®as iessential part of the chapter. We
have defined a company roletegrator of open source component$e integrator of
Open Source Components is a company which devedofigzare using open source
components.
We have defined our research questions by idengfyesearch problems in the literature,
but we have also considered what would be benkficrathe software industry. The
interview definition and the interview planning arecessary steps before performing the
interview.

40

Part 4 — Results, Discussion and Conclusions

6. Results

This chapter starts by presenting the link betweach research question and the
corresponding questions from the interview guideTable 9. For example, research
question 1 is answered with the help of the fiostrfquestions from the interview guide.

Research| The corresponding questions in
guestion the interview guide
1,2,3,4
5
6,7
8
0-13
14-16
17-21

N[OOI WIN -

Table 9: The corresponding questions in the ineenguide for each research question

6.1 Create Descriptive Findings

This study is based on an explorative research. @ate we only interviewed nine
respondents, the results cannot be used to testheges, but rather be used to build up
theories and to create hypotheses that later céeshbed on a more representative sample.
Therefore, several descriptive findings will be gaeted based on the results from the
research questions. These descriptive findingsheiltliscussed later versus the findings
obtained in the depth study from autumn 2006, dsd ®@ersus the literature review.
Some of the findings should be checked by furthadiss using a larger sample.

6.2 RQ1: Who (which role in a company) initiates ad performs the work related to
OSS harvesting and when in the development process?

RQ1.1: Who (which role) initiates the OSS harvesgin a company?

RQ1.2: Who (which role) does the work relatedhs harvesting?

RQ1.3: Who (which role) takes the final decisiomoat integrating an OSS
component?

RQ1.4: When in the development process does deet £8SS-components?

This research question is answered by the firsiektpns of the interview guide. We
have asked these first questions as open quesiithsut giving any alternatives.
Regarding the initiation phase, most responderdwared that is theoftwaredeveloper
who does it. Also most respondents answered thattitesoftware developewho does
the work related to harvesting.

The final decision is mostly taken by eitheroftware developeor aleader. A leader can
have one of the roles: chief executive, project esvocompany leader group, or project
architect.As indicated by a respondent from a large compéhg: project team makes a

41

recommendation and is the Chief Executive Manageo Was the final word about
integrating OSS components. The customer is algolvied.” In one medium size
company;,‘it is the software developer who takes the finatidion for integrating small
components and the IT manager for big components.”

A significant difference was observed between thegany sizes:

In all the small companies we interviewed, it ie 8oftware developer who initiates and
does the work related to harvesting, and also t#kedinal decision about integrating
OSS components.

In the medium and large companies much more ralesrentioned. The person who
initiates and performs the work related to harvesin addition to the software developer
can be: project manager, project team, architext,system integrator. The person who
takes the final decision in addition to the sofwvaleveloper can be: chief executive
manager, project owner, the company leader group.

DF1: In small companies, it is the software devedspwvho initiates and does the work
related to component harvesting, and takes the figiecision about integrating OSS
components. More roles (in addition to software d@per) such as: project manager,
project team, architect, system integrator, compaleader, are associated to this
process in medium and large companies.

When asking the question number 4 (“When in thestigpment process does one selects
OSS components?”), we have observed differenceweket the large and small
components, especially in the case of large andumedize companies. The large and
medium size companies tend to select the large onems at an early stage
(requirements/analysis) while the small componeoésn be selected during the
development phase. The small companies do notreiiffate too much between large
and small components; they usually select OSS cosmge in the development phase.
“For small components, it is more an ongoing prages can happen really anytimg”
said one of the respondents from a large compahgrefore we create the following
descriptive finding:

DF2: Large components are usually selected at amlgatage during the development
process, while small components can be selectedtimmgy during the development
process.

6.3 RQ2: What are the motivations for and experienes of using OSS components?

There are many motivations to integrate OSS compsnénto a system or
application. All the three large companies plus sanedium and small companies have
mentioned quality, shorten time to market, and @sstthe principal motivations for
integrating OSS component®ur motivation is to get something we know is ajhh
quality and we want to get it fast. We do not waunt developers start writing programs
from scratch. At least in the Java world we findyveften that the highest quality
libraries are the ones that are open source andthetcommercial. The money has very
little to do with the decision”said one of the respondents from a large company.

42

Other motivations are: full access to the sourceecat is flexible to integrate OSS
components; it is a kind of philosophy in the comp# use OSS instead of COTS, it is
recommended by partners, and it is fun to work @siS.

An interesting observation from a respondent frosmall company is‘The principal
motivations to integrate OSS components are diftedepending on the view point. From
the business point of view, the motivations aretehdime to market and price. From the
developer point of view, the motivations are: doeatation, performance, and flexibility
to integrate.” The other companies did not mention different vpmants.

We could not observe any particular differencesvben the three groups of companies.

DF3: Higher quality, shorter time to market, and sbare the principal motivations to
integrate OSS components into a system or applaati

6.4 RQ3: What is the current process of selecting 8 components?

Most of the companies do not use a formal prooassediection of OSS components.
Even if there is a process for selection of OSSmmmnts, it is not a formal one. Only
one respondent from a large company said thad:have a general development process
which includes the process for selection of OSSpooents. We use Rational Unified
Process (RUP), which contains a lot of methods.”

Regarding the main activities of the OSS seleqbimtess, the answers were quite spread
because of the opened question. Below are lisiedifferent indicated activities:

« Define criteria;

» Establish functional and non-functional requirensent

» Search components internally in the company;

e Check the Internet for libraries or components;

e Check major OSS web sites like SourceForge andptpilarity of the OSS
components;

e Go briefly to forum discussions;

* Check the maturity of the component;

 Check if the company has the necessary competemdateégrate the OSS
component;

« Evaluate the components, and the consequencesgfthem;

* Check licenses;

 Test;

* Integrate.

Some companies have already good knowledge abewxilsting OSS components,
so they do not need to do a real search every tibme respondent from a medium
company said‘Selecting an OSS component is a matter of usirgpleeexperience and
knowledge about OSS components. Usually we knout &8S components, this is part
of our strength.”

43

We have observed that the large companies perfoone activities than the medium
size companies and that the medium size compamiderm more activities than the
small companies.

DF4: Companies do not use any formal processestfa selection of OSS components.

6.5 RQ4: How to find OSS components?

The different kinds of ways to find OSS componentsompanies are:

e Use arepository containing components used before;

e Search on Google, specialized web sites, or at @&Bnunities;
* Use mailing lists;

* Read articles, magazines;

* Read forums and news groups;

* Check the most popular OSS products;

» Recommendations from partners and suppliers;

» Check experiences from other projects.

However, the most common ways to find OSS compaenarg to use a repository with
components used before or to search Google, sppetialeb sites or OSS communities.

DF5: Companies usually find OSS components by séamg repositories containing
components used before, by Web search (Google)cialmed web sites, and OSS
communities.

6.6 RQ5: What are the evaluation criteria when selging OSS components?

We have grouped the evaluation criteria as techimssaes, organizational issues of the
OSS community, and professional issues. We thiak dll these are important. Because
the OSS components always have a community ardwerd,tit is interesting to discover
what organizational issues of the communities congsaare considering. The companies
may have or not have skilled people to change pfe® source code if necessary, the fact
that companies have heard about some OSS companamtalso influence the selection
process. Therefore, it is also important to discovkat professional issues companies
consider when evaluating OSS components.

This research questions is asked by the openediou®9 to 13 in the interview guide.
When asking question 9 (“What technical issuesoisr yocal business unit considering
when selecting an OSS component?”), the most reteasaswers are: a) standards
compliance, b) matching functionality, c) stability) good quality (design, architecture,
and documentation in the case of big componentshaturity level, f) compatibility with
customers systems.

It was no difference between the companies sizaf. F respondents indicated that the

standards compliance was an important technicalieissvhen evaluating OSS
components. Three respondents indicated also “Madiunctionality” as an important

44

issue.“We need to assure that the component is coverrgg requirements, that the
component was used in other projects. We also &dke design quality, architecture
guality, documentation for big components, standards compdid indicated one of the
respondents.

Therefore we can formulate the next descriptivdifig:

DF6: Matching functionality and standards compliamc are the most important
technical issues when evaluating an OSS componemntihtegration into a system or
application.

When asking question 10 (“What organizational issaethe OSS community is your
local business considering when selecting an OS8pooent?”), 8 of 9 respondents
answered that the organizational issues of the G@®8nunity are important. Only one
company said that they are considering none ofotiganizational issues of the OSS
community, that they usually test only the compdsen

The most relevant organization issues indicatedhby8 respondents are (in decreasing
importance): a) the vitality of the community, etquality of end user support, c) the
frequency of releases, d) the availability of bagdies tracking system on project site, e)
the road map, f) the time from the last release;

No difference was observed between company sizes.
Most respondents indicated the vitality of the camity as one of the most important
organizational issues; therefore we can formulagefollowing finding:

DF7: The vitality is the most important organizatial issue of the OSS community
when evaluating a component for integration intosystem or application.

When asking question 11 (“What professional issaegur local business considering
when selecting an OSS component?”), the most netesaswers are (by decreasing
importance): a) people select components they hasedl before, b) people select
components written in programming languages theynkrc) people select components
they have heard about, d) people select compornleatdhave been used with success in
other OSS components or systems, and e) peoplet sedenponents that are well
received in the OSS community.

An important note is that people select componentten in programming languages
they know only when they need to change the socode, as indicated by one of our
respondents:The programming language of the component is remtessarily important
as long you do not need to change it".

Therefore we can formulate the following finding:

DF8: The most important professional issues wherakzating an OSS component are:
-People select components they have used already aReople select components

45

written in programming languages they know when ig necessary to change the
source code.

After finding out what companies mean by “good” O&#nponents, it is also important

to discover what companies mean by bad/unsuitaBl® €omponents, i.e., what kind of
OSS components companies discard.

When asking question 12 (*“What properties make yooal business unit discard an

OSS component?”), the most relevant findings arg dlecreasing importance): a)

unsuitable license, b) difficulty to integrate,ur)matched functionality, d) instability, e)

not proved in other projects, f) no fit into thengmany’s development principles, €) not
mature enough, f) with bad or no documentatioma@ygommercial company supports it,
and e) bad performance.

Unmatched functionality is one of the first, if rtbe first issue which makes a company
to discard an OSS component. This issue is mertibgesome of our respondentsve

try to make sure that a component is adding vatweu$ so the technical requirements
are of course important. Also suitable license (patible with our commercial business)

Is important. If there is very little informatiorbaut the component, then we are quite
skeptical for using it on a long term.”

We could not observe differences between the cogngiaes regarding this issue.

DF9: Unmatched functionality, unsuitable license anthe difficulty to integrate are
the most important properties which may make a canp to discard an OSS
component.

After finding out the evaluation criteria (descrbes technical, organization and
professional issues), and the properties which maksompany to discard an OSS
component, the next question is to find out how pganies evaluate OSS components.
When asking question 13 (“How does your local bessn unit evaluate OSS
components?”), the most relevant findings are (bgrelasing importance): a) do a small
test followed by integration, b) perform reviewsg(earchitectural reviews), c) check
recommendations, and d) check the popularity.

Companies do not always need to evaluate OSS canporn some cases, companies
use known components without being tested befotegiation: “If it is a known
component, then we just use it. If we do not kevcomponent, we make a prototype
and/or try to integrate to see how it workdri other cases, stable and well-proven
components are selected without being tested befdegration“Usually we select
components that are stable, so they do not needpastptypes to show that they are
good enough.”

In some cases, as indicated by one respondenttlonlyig components are evaluatdtl:

it is a small component with a little impact, thevdlopers can just integrate it. We
evaluate only big componentsThis statement is related to DF1 and DF2. Not ahéy
software developer takes the final decision abotgrating, but also performs the
integration. Not only the small components can ledecded anytime during the
development process, but they can also be intefraithout testing. Large components

46

are usually selected at an early stage during thesldpment process and are also
evaluated before integration.

6.7 RQ6: What versions are considered and how to dewith new versions?

This research question is asked by the openedignedt4 to 16 in the interview guide.

A property of an OSS component is its version,dfe is interesting to discover what
version companies consider when selecting OSS coemis.

Asking the question 14 of the interview guide (“\&niversion does your local business
unit usually consider when selecting an OSS commiofe the first time?”), the most
relevant answer is that people select the last ésbwstable version unless it is a good
reason (e.g., missing functionality in the stabésion) to do otherwise. If this is the
case, companies prefer either an older versiomemser version.

“In most cases we select the newest release versdidhe components. If we find any
bugs or problems with it, then we will need to ¢des an older version, said one
respondent from a large company.

No differences were observed between the compaeg segarding this issue. Thus, we
can state the following finding:

DF10: Companies consider the last stable versionentselecting an OSS component
for the first time, unless it is a good reason torwsider either a newer or an older
version.

When asking question 15 (“Which version do you Ugumnsider when re-selecting an
OSS component (for maintaining your system or foew system)?”), it is important to
observe what is the cost and the gain to upgré&ae.a new system, we go to the latest
stable version. For maintaining a system, we stagha latest stable [version] until we
need to fix some security issues or more functignas needed.”said one of the
respondents.

DF11: Companies usually stay at the latest stab&sion and they only update to a
newer version when the gain to update is biggerritae cost to update.

Regarding question 16 (“When does your local bissinenit update to a new version of
the OSS component?”), we have observed some diffese between the different
company sizes. All the three small companies iriditghat they update to a newer
version only when the new functionality is sign#iit or when it is necessary to correct
bugs. The medium and large companies are concetipedt other things in addition,
such as to improve securitjtVe update to a new version when security is bettexv
features are needed, or bugs need to be correcsaili one respondent from a large
company.

DF12: Companies update to a newer version of theSO&mponent when additional

functional is needed or when bugs need to be cotedc The medium and the large
companies are concerned about other things in agtdit

a7

6.8 RQ7: How to maintain the knowledge about the selection rpcesses and the
knowledge about the selected OSS components?

The questions 17 to 21 of the interview guide aated to the integration of OSS
components and activities after the integratio®@8fS components.

We want to discover the possible problems afteegrdtion, if the selected OSS
components have been replaced with other comporantsome point during the
development process.

Asking question 17 (“Has any selected OSS comporeet been replaced with a
different component at some point during the dgwalent process?”), we can observe
differences between the company sizes. In largepeomes, this happens less often than
in the medium size companies. In medium size compathis happens less often than in
small size companies. This can probably be coeél&t the product size as well, since
large companies tend to have larger software ptsdbhan smaller companies. This issue
is, however, a candidate for further studies.

When asking question 18 (“Have you noticed in thd ef the development process that
your selected component is not suitable?”), 4 obk§ondents indicated that this has
happened during the testing phase. If this happemedfirst tried to make it works, if
not, then to find a replacement, and finally to Ibuourselves”, said one of the
respondents.

Only one of the large companies indicated thatasghent of a selected OSS component
with a different component had happened at somet ploiring the development process.

Two medium companies indicated that replacemertdoafiponents had happened both

during the implementation phase and during thenggthase.

All the three small companies indicated that regtaent of components had happened
both during the implementation and testing phase.

DF13: In large companies, replacement of selecte®® companies at some point
during the development process happen less ofteantin medium size companies and
in medium size companies this happens less ofteantin small companies. When this
happened, then it was usually done during the deyshent phase and less often in the
testing phase. Thus, company size has an effe¢chefcomponent replacement rate.

When selecting an OSS component, it is alwaysianae behind. Very often, several
components are evaluated and only one is selettedntegration into a system or
architecture. Therefore, we want to discover if pames document the rationale behind
their choice, how they do this and if they reuss thiformation later.

When asking question 19 (“Do you document the naii® behind your choice of the
selected component?”), half of respondents said/ tde this, even though not
specifically:“maybe we do not document so much about the chbidgewe do document
a little bit about what we have introduced into quoduct like what type of license, the
name, and the version of the componenOther forms of documentation are: a short
note, an application architecture document.

48

Only few respondents said that they reused thsrimétion later. The large companies
document more the rationale than the medium singpanies. The small companies do
not document their rationale at all.

DF14: The large companies document the rationalenb®l the choice of the selected
OSS component more than the medium companies. Theals companies do not
document their rationale.

When asking question 20 of the interview guide (“BPau keep a local knowledge
repository about the selected OSS components®}),Brespondents indicated that they
keep a repository with all the OSS components usélifferent projects. Can either be a
repository with only OSS components or a repositeityh both COTS and OSS. Some
companies do not exactly have a repository with Q®8&ponents; it can béa
repository of projects with the components that melved and the experiences from
using these components.”

Some respondents said that they also have a kindhaivledge repository about the
selected OSS components: a) documents where tfusmiation exists, b) a generic
knowledge repository, c) internal documents thacdbe how to use the components, d)
a document store, e) a WIKI on the web with infotioraabout the selected components.
Almost all respondents indicated that they reuse itiformation later. No differences
between the companies size were observed relatbdstssue.

DF15: Most companies keep a knowledge repositorthvaill the OSS components used
in different projects; some companies keep alsoommhation about the selected OSS
components and they reuse this information later.

When asking question 21 of the interview guide (“®ou have a person who is
responsible for the OSS component (e.g. a knowlddggper)?”), most respondents
indicated that they have such a person, even ifaheays formally. A person can be
responsible for all the components (as indicatedobg respondent from a small
company) or only for some components (as indicétgadne respondent from a large
company).

Another interesting point is thdttypically is one or two of the developers. Buttifs a
very large component, then more people are resptngor it.”

DF16: Most companies have a person who is respolesifor the OSS components,
even if this is not always a formal role.

49

50

7. Discussion

This chapter will discuss the results from the syrwe will start by presenting the
main contributions. Then, a discussion about thkditya of the results will follow.
Finally, improvements of the survey are suggested.

7.1 Main Contributions

The contributions of this thesis can be dividea ifdur parts: the literature study, new
knowledge, a basis for further research, and aal#egesearch design. After presenting
the contributions, we will discuss the results.

7.1.1 Literature study

The first contribution is the literature study. Wihgerforming the literature study, the
focus was on creating a short introduction to opearce by presenting the relevant
issues (e.g. “Historical Background of Open Souxcé€his introduction should help the
reader to better understand the rest of the lilezagtudy.

The selection of OSS components happens as pard ofore general software
development process, thus the chapter “Traditidhatlels, OSS development process
and Software Development Process for Composed B&gstems (CBS)” forms a
process foundation for the state-off-the-art oéstbn of OTS components.

The knowledge gained from the literature study besn used to define the research
questions. When creating the research questionsalways had in mind to define
research questions which could be beneficial ferstftware industry.

7.1.2 New Knowledge

The most important contribution of this thesis &wor improved knowledge, which
has been discovered throughout the study. This ladge can be divided into: answers
to the research questions and descriptive findings.

Answers to the research questions

The answers to the research questions are proindgahpter 6, as qualitative data.
Descriptive findings

We have presented 16 descriptive findings basedhernresults of the interviews we
performed with 9 Norwegian IT companies. Theseifigd cannot be stated as general
practice because we interviewed only 9 respondéniissome of the results may be of
interest to test further in larger studies. Ourcdesive findings are presented below:

DF1: In small companies, it is the software devetogho initiates and does the wark
related to component harvesting, and takes thd @ieaision about integrating OSS
components. More roles (in addition to softwareedeper) such as: project manager,

project team, architect, system integrator, compaagier, are associated to this progess
in medium and large companies.

DF2: Large components are usually selected at €y st@ge during the development
process, while small components can be selectetinayduring the development
process.

DFE3: Higher quality, shorter time to market, andtcare the principal motivations fo

51

integrate OSS components into a system or appicati

DF4: Companies do not use any formal processabéaselection of OSS components

DF5: Companies usually find OSS components by keagcrepositories containin
components used before, by Web search (Google}iadiged web sites, and OS
communities.

'S

DF6: Matching functionality and standards compleiace the most important techni¢

issues when evaluating an OSS component for irtiegrento a system or application.

al

DF7: The vitality is the most important organizat issue of the OSS commun
when evaluating a component for integration ingystem or application.

DF8: The most important professional issues whexluating an OSS component are:

People select components they have used alreadyReaple select components writt
in programming languages they know when it is n&mgsto change the source code.

en

DF9: Unmatched functionality, unsuitable licensel #me difficulty to integrate are th
most important properties which may make a comparmyscard an OSS component.

e

DF10: Companies consider the last stable versioenvgelecting an OSS component
the first time, unless it is a good reason to atgrseither a newer or an older version.

for

DF11: Companies usually stay at the latest stablsion and they only update to
newer version when the gain to update is bigger tha cost to update.

a

DF12: Companies update to a newer version of th8 @&@nponent when addition
functional is needed or when bugs need to be dededhe medium and the lar
companies are concerned about other things iniaddit

al
e

DF13: In large companies, replacement of select®8 Gompanies at some point dur
the development process happen less often thanethium size companies and

medium size companies this happens less often ithamall companies. When this

happened, then it was usually done during the dpwae¢ént phase and less often in
testing phase. Thus, company size has an effébeafomponent replacement rate.

ng
in

the

DF14: The large companies document the rationatentdethe choice of the selects
OSS component more than the medium companies. Tl £ompanies do ng
document their rationale.

D

d
t

DF15: Most companies keep a knowledge repositotly ali the OSS components us
in different projects; some companies keep alsorin&tion about the selected O
components and they reuse this information later.

ed
5S

DF16: Most companies have a person who is resplenfgibthe OSS components, ev|
if this is not always a formal role.

en

Table 10: Our descriptive findings

7.1.3 A Platform for Future Work

Our work tries to answer as many questions as lplesabout the selection of OSS
components. We have gained new understanding waictbe useful for others in further

surveys.

52

7.1.4 Reusable Research Design and Interview Guide

The research design we have developed can be extemadd reused. We have
provided descriptions of our design and our world we have made the interview guide
and the help for the interview guide available ppandix D and E.

7.1.5 Results discussion

Below we compare our results with those from thptldestudy from autumn 2006,
and with those described in literature if any exisind we relate the research questions to
our descriptive findings.

RQ1: Who (which role in a company) initiates and pdorms the work related to
OSS harvesting and when in the development process?

RQ1.1: Who (which role) initiates the OSS harvesgin a company?

RQ1.2: Who (which role) does the work relatedhs harvesting?

RQ1.3: Who (which role) takes the final decisitmoat integrating an OSS
component?

RQ1.4: When in the development process does deet £8SS-components?

As indicated in the depth study from the autumn&0@e did not find a specific
description of this in literature and only one destove finding was createdUsually it

is the software architect who initiates the workated to harvesting. The work of
harvesting is usually done by the software develaped the final decision about
integrating an OTS component is usually done byjeptomanager or software
architect.”

However, in this thesis the first research questtoanswered by two new descriptive
findings, as indicated in Table 11 .
We will use the following notations in the thirdlemn of the next tables:

S means supported by the depth study and SL meppssed by literature.

PS means partly supported by the depth study andnians partly supported by the
literature.

NS means not supported in the depth study and N®aBnsr no supported by the
literature.

- means not asked in the depth study and —L meatnsomered by the literature.

RQ1 | DF1: In small companies, it is the software devetogho initiate§ PS| -L
and does the work related to component harvestingd, takes the
final decision about integrating OSS componentsreMmles (in
addition to software developer) such as: projechagar, project
team, architect, system integrator, company leaaterassociated 1o
this process in medium and large companies.
DF2: Large components are usually selected at dy €age during - | -L
the development process, while small componentsbeaselected
anytime during the development process.

53

Table 11: RQ1, DF1 and DF2

DF1 from the depth study and DF1 from this madtesis are quite similar. In both cases
it is the software developer who does the work afvlsting and the final decision is
taken by a project manager. In the depth studyhewe not analyzed the results by
company size, therefore we have marked “-* for Zable 11 .

Therefore, our results to Research Question 1 idesexisting industry practices about
which role initiates the OSS harvesting in whenthe development process. These
practices need of course to be verified by furtred larger surveys.

RQ2: What are the motivations for and experiencesfaising OSS components?

The second research question is answered in #ssstby DF3, as indicated in Table 12.

RQ2 | DF3: Higher quality, shorter time to marketd awost are the principal- | PSL

motivations to integrate OSS components into aegysir application.

Table 12: RQ2 and DF3

We did not ask this question in the depth studgrdfore we can not compare the
answers to this research question with previousltsesA survey about the industrial
involvement in open source having open source owo@en source participant, inner
source participant, and user of open source conmen&s possible company roles,
[Hauge and Rgsdal2006] indicates that: “High awdity of components, source code,
and information related to the components are tbetnmportant motivations for using
OSS components.” We explored the role: integratoopen source components, while
several roles were explored in [Hauge and Rgsdél2@terefore we think it is natural to
obtain different results.

However, further studies having the integrator pém source components as company
role need to be performed to verify our results.

RQ3: What is the current process of selecting OSmponents?

Based on the answers to this research questiocpuld only formulate one descriptive
finding, as indicated below:

RQ3 | DF4: Companies do not use any formal procefssethe selection of S| SL
OSS components.

Table 13: RQ3 and DF4

This finding was also proved in the depth studye Eiisting literature indicates almost
the same, that formal selection processes are/naseld [Li2006].

Our result to this research question confirms floeeewhat is described in literature and
the finding from the previous depth study. Thisdfitg can be the foundation for future
research.

54

RQ4: How to find OSS components?

Based on the answers to this research questiofgrmeilated a descriptive finding:

RQ4 | DF5: Companies usually find OSS components égrching| PS| PSL
repositories containing components used beforeWap search
(Google), specialized web sites, and OSS commasnitie

Table 14: RQ4 and DF5

DF5 is a bit similar with an observation from thepth study: “Companies find OTS
components by searching on specialized sites aselayching using specialized search
engines.” The similarities are that companies fl@&S components by searching
specialized web sites or by using specialized seangines (Google or others). In the
literature, it is indicated that: “COTS identificat consists of Web searches, product
literature surveys and reviews, identification ofier reusable system components, and
recommendations from external sources” [Morisi@le2000], which partly support our
results.

The results are partly supported by the depth strdthe literature it is described how
COTS components can be found, which has some sitieisawith our results. These
results need therefore to be verified by furthet Emger studies

RQ5: What are the evaluation criteria when selectigp OSS components?

Based on the results to this research questioa,descriptive findings were created, as
indicated in Table 15.

RQ5 | DF6: Matching functionality and standards complamece the most S | PSL
important technical issues when evaluating an O&8ponent for
integration into a system or application.

DF7: The vitality is the most important organizaib issue of the NS | -L
OSS community when evaluating a component for natégn into a
system or application.

DF8: The most important professional issues whesluating an S -L
OSS component are: -People select components theg hseg
already and —People select components written ogramming
languages they know when it is necessary to chérgsource code
DF9: Unmatched functionality, unsuitable licensel dne difficulty| PS | PSL
to integrate are the most important properties Wwhitay make a
company to discard an OSS component.

Table 15: RQ5, DF6, DF7, DF8, DF9

DF6 is also supported by an observation from thehdstudy which indicated thdfThe
functionality is the most important technical issuben selecting and evaluating OSS

55

components. Supports for standards and standardgplance play also an important
role”. In the depth study we have asked the questiong&iternatives and we got the
functionality as an important issue to consider.eWlasking the same question as open
question in the master thesis, only few respondemtiated the functionality as an
important issue. We believe that the functionalgyan important issue for all the
respondents anyway, but many of the respondentsrped to refer to other less obvious
issues like standard compliance. Therefore, D@y supported by the depth study. A
hypothesis from [Li2006] says thd&Functional completeness was regarded to be more
important than architectural compliance in COTS pament selection”This shows that
functional completeness and architectural compéaace the most important technical
issues when selecting COTS. The same issues acated by the depth study and the
actual results, when selecting OSS. Therefore wieevee that is knowledge that
companies with the role of integrator of OSS congmis may be interested in.

DF7 was not supported by the depth study, whicicatdd the availability of component
for test and use as the most important organizati@sue of OSS communities. No
relevant description was found in literature. Theme further studies need to be
performed to find out what organizational issuesh®# OSS community are important
when selecting components.

DF8 is supported by an observation from the depidys “The fact that people have
experience with the OSS component or that the comemmiois written in programming
languages people know, are important issues whégctsgy and evaluating OSS
components”. No relevant description was founditerdture. Since DF8 was supported
by an observation from the depth study, we belteag¢ is knowledge that companies may
be interested in.

DF9 is partly supported by a finding from the depthdy: “Unsuitable license and bad
code quality are the most important properties Wwhisakes a company to discard an
OSS component”ln both cases, unsuitable license was one of tlst mmportant
properties to discard an OSS component. [MadanmahdnDe2004] show thatFrom
the perspective of a commercial firm, the licensistnexplicitly permit the distribution of
software build from modified source codevhich confirms that the license should be
suitable to the company needs. The depth studyttentiterature confirm that unsuitable
license is a property which makes a company toadisan OSS component. However,
further studies need to confirm if also the difftguto integrate is an important property.

RQ6: What versions are considered and how to deal withaw versions?

From the answers to this research question, thinelnfis were created, as indicated in
Table 16.

RQ6 | DF10: Companies consider the last stable versioenwselecting anS | -L
OSS component for the first time, unless it is adjceason to consider
either a newer or an older version.
DF11: Companies usually stay at the latest stabtsian and they only + -L

56

update to a newer version when the gain to upddigger than the cost
to update.
DF12: Companies update to a newer version of th& ©&8nponent S | -L
when additional functional is needed or when bugednto be corrected.
The medium and the large companies are concernaat akther thingg
in addition.

Table 16: RQ6, DF10, DF11 and DF12

DF10 is supported by an observation from the depitly:“Companies consider the last
or the last stable version when selecting and extalg OSS components.No relevant
description was found in literature. Therefore, tesults to this research question
describe interesting and new knowledge about wkation companies consider when
selecting an OSS component for the first time.

We have not asked in the depth study which versiompanies consider when re-
selecting an OSS component (for maintaining a syste for a new system), and no
relevant description was found in literature, tifi@re we could not compare DF11 with
anything. Further studies need to verify our firgdin

DF12 is also supported by an observation from gqahdstudyCompanies update to a
new version when additional functionality is needeavhen bugs need to be corrected”.
No relevant description was found in literature efidiore, the results to this research
question describe interesting knowledge which aangeful for companies.

RQ7: How to maintain the knowledge about the selein processes and the
knowledge about the selected OSS components?

From the answers to this research question, foutirfgs were created, as indicated in
Table 17.

RQ7 | DF13: In large companies, replacement of select8& Gompanies PS| -L
at some point during the development process halgssroften than
in medium size companies and in medium size conegattis
happens less often than in small companies. Whisnhtippened,
then it was usually done during the developmenseland less often
in the testing phase. Thus, company size has actetif the
component replacement rate.

DF14: The large companies document the rational@nbdethe| - -L
choice of the selected OSS component more thanntbdium
companies. The small companies do not documentrétenale.
DF15: Most companies keep a knowledge repositomy all the| NS | PSL
OSS components used in different projects; somepeaoms keep
also information about the selected OSS comporamdsthey reus
this information later.

DF16: Most companies have a person who is resplengip the| S| -L

(D

57

| OSS components, even if this is not always a foroia. |] |

Table 17: RQ7, DF13, DF14, DF15 and DF16

DF13 is partly supported by an observation from deeth study: “It may happen that

companies realize in the end of the developmencga® that the selected OTS
component is not suitable”. No relevant descriptiaas found in literature. Since in the

depth study we were not concerned with comparisomsa company size and no relevant
description was found in literature, further stgdieed to verify our results.

In the depth study we have not analyzed the datoobyany size and we did not have an
equivalent result for the DF14. We only have theesbation*Usually people document
the decision besides selecting and evaluating @h%onents and this is usually done as
part of the product/project documentatiorifNlo relevant description of this was found in
literature. Therefore is difficult to take any ctusion, the result should be verified by
further studies.

DF15 is not supported by one observation from thgtld studySmall or medium size
companies usually do not keep a knowledge repgsitvout the selected OTS
components, only the large companies ddbwever, we could not observe differences
between the company sizes related to this isstleeithesis.

This finding is partly supported by [Ruffin and E2©04]: “Alcatel maintains a
database, which all its engineers can access, inomaexperiences with ‘open source-
like’ that someone in the company has studied (lmitnecessary used).” We could not
find a specific description with comparison acragsmpany size in the literature.
Therefore further studies need to verify our result

DF16 is supported by an observation from the dejptldy “Usually there are people
responsible for the OTS components in each compdrys is new knowledge that can
be interesting for companies who integrate OSS cmapts into their systems or
applications.

7.2 Validity

Validity is related to how much we can trust theules. [Wohlin et al. 2000] state that
adequate validity refers to that the results shdna@dvalid for the population of interest.
First of all, the results should be valid for th@pplation from which the sample is drawn.
Secondly, it may be of interest to generalize #wiits to a broader population.

The four types of validity described in [Wohlin @.2000] are:conclusion internal,
construct,andexternal validity

7.2.1 Conclusion Validity

Conclusion validity is concerned with the relatibipsbetween the treatment and the
outcome [Wohlin et al.2000].
The first threat isLow statistical power Because we had only 9 respondents, the
statistical power of this work is very low. Thisagproblem we are aware of and therefore

58

more thorough studies need to be performesbtdirm if our results have a more general
applicability.

Another threat igFishing and error rate.The researcher may influence the result by
looking for a specific outcome. We do not thinkttive have influenced the results.
Several other threats are presented in [Wohlir.20@0], but these are not relevant for
this study.

The student’s lack of experience creating the unter guide and conducting interviews
is potentially another problem.

7.2.2 Internal Validity

If a relationship is observed between the treatna@dt the outcome, we must make
sure that is a causal relationship, and thatnbisa result of a factor of which we have no
control or have not measured [Wohlin et al. 2000].

The relevant threats are:

e Maturation

Subjects may be affected negatively during therwindg. In our case, subjects may be
tired (some interviews were performed late on thAg) &dnd some subjects may not be so
motivated to answer.

* Instrumentation

This is the effect caused if the artifacts of theeiview are badly designed. We do not
think that the interview guide was badly designed ave helped the respondents with
additional informational when necessary.

» Selection

Depending on how the subjects are selected framnged group, the selection effects can
vary [Wohlin et al. 2000]. We have used stratifiehdom sampling to select the 9
companies. However, we have used a conveniencegtmp, i.e., we have found our
respondents not randomly, but we have chosen tbe we knew or were recommended
by others.

This may reduce the internal validity of the resufdur group of respondents was only
representative for the IT companies, and not ferwinole population of companies that
develop software (we did not interview non-IT comigag with an IT unit) and this may
affect the results. It would have been preferablese the whole population.

7.2.3 Construct Validity

Construct validity concerns generalizing the resoltthe experiment to the concept
or theory behind the experiment [Wohlin et al.2000]
[Jacobsen2005] mentions measuring the right théngnee problem.
Questions and statements in the interview may haeen misunderstood or
misinterpreted because they were improperly phraéede respondents misunderstood
something, they may have answered something else.
We realized that some sentences could be bettasgdhr Since the interview was done by
phone, when people had something unclear, we ¢@ve more information.
[Rabson2003] mentions testing and reviews as trst tvays of ensuring construct
validity. Our supervisors and other researcher® laviewed the interview guide but we
did not test the interview guide before the intews.

59

7.2.4 External Validity

The external validity is concerned with general@at If there is a crucial relationship
between the construct of the cause, and the efthet,result of the study can be
generalized outside the scope of our study? [Wadtlial.2000]

There are three types of interactions with thettneat: people, place and time. The
relevant for us is the people.

Having a subject population not representativetlier population we want to generalize
to, may affect the result. We had only 9 resporsiesntd they are possible not
representative for the larger population.

7.3 Improvements

We think is important to describe ideas of improeamwhich will be useful both for
others when performing further studies:

* Increase the sample size.

» Use the whole population, not only the Norwegiancdmpanies but also the
Norwegian companies with an IT unit.

* Increase the motivation of the respondents.

60

8. Conclusions and Future Work

8.1 Conclusions

Empirical research is performed to verify theorigsyelop new theories, or extend
the existing ones, and improve practice. This siadyainly used to gain understanding
about the selection of OSS components with thenalié goal to improve the software
development practice in industry, particularly taprove the practice of selection of OSS
components. This study does can not be used ditectmprove the practice of selection
and evaluation of OSS components, because furthérlager studies needs to be
performed in the future to support our resultss lanyway a good step toward the final
goal.

We have used the role: integrator of open soureealse this is the most appropriate
for the research we have performed. More and momepanies integrate open source
components in their products because the benefitdaage. Therefore, improving the
practice about the selection of OSS components helg software companies to
decrease the time spent. If the time spent is d@ogel this can offset the advantages of
integrating OSS components.

The results of the interview are presented, 16 rgase findings are formulated based
on this. The literature study was very useful tmgaderstanding about the state-off-the-
art but also to define the research questions.

8.2 Future Work

The interviews can be analyzed further to searcimiare information and knowledge
that could be used to build up theories for furtedies.

As stated already, this explorative study can bedusy others to perform further
surveys. It would be very interesting to perfornmigr but larger surveys in the
Norwegian industry but also abroad and then to @mphe results by country and by
company size. In this way people could share egpees, learn from each other, and
improve their processes to select and evaluate €@8fponents with the ultimate goal to
improve development practices.

61

62

References

[Alves and Castro2001] Alves, C., Castro, J. “CRESystematic Method for COTS
Selection”Proceedings XV Brazilian Simposium on Software fawing 2001.

[Ayala and Franch2006] Ayala, C. and Franch, X.: @oal-Oriented Strategy for
Supporting Commercial Off-The-Shelf Components &ala”, 9th International
Conference on Software Reuse (ICSR 2006). Juné&12aD6. Torino, Italy.

[Ayala et al.2006] Ayala, C., Sgrensen, C.-F., EmarX., Conradi, R. and Li, J.: Open
Source Collaboration for Fostering Off-The-Shelfn@mnents Selection, Accepted at
OSS’07 Limerich, Ireland.

[Babbie90] Barbie, E.:Survey Research Methods, Wadk, ISBN 0-524-12672-3,
1990.

[Berquist and Ljungberg2001]: The power of giftsganizing social relationships in
open source communitiegformation System Journall, pp.305.320, 2001.

[Boehm88] Boehm, B. W.: A Spiral Model of Softwdbevelopment and Enhancement,
IEEE Computer21(5): 61-72, May 1998.

[Boehm00] Boehm, B. W.: Requirements that HandldWKSI, COTS, and Rapid
ChangelEEE Computer33 (7): 99-102, July 2000.

[Bonaccorsi and Rossi2003] Bonnaccorsi, A. and R&s Why Open Source software
can succeed@esearch policy2003, vol. 13, no 7, pp. 1243-1258

[Brownsword et al.2000] Brownsword, L., Obernddrf, Sledge C.A. “Developing New
Processes for COTS-Based Systett2E SoftwareVVol.17, No.;July-August 2000, pp
222-223

[Carney and Long2000] Carney, D. and Long, D.: Wbat You Mean bu COTS?
Finally, a Useful AnswelEEE Computing2000, pp.83-86.

[Chung and Cooper2004] Chung, L., Cooper, K. “DiefinGoals in a COTS-Aware
Requirements Engineering ApproacB¥stem Engineeriny/ol. 7, No.1, 2004

[Componentsource2007] URL: http://www.componentsewgom

[Cooper and Schindler2001] Cooper, D. R. and P.&irdler: Business Research
Methods McGraw-Hill. ISDN 0-07-231451-6, 2001.

[COSI project] URL: http://www.idi.ntnu.no/gruppstl/cosi.html.

63

[Dedrick and West2004] Dedrick, J. and West, J.: Bxploratory Study into Open
Source Platform AdoptiorProceedings of the 87Hawaii International Conference on
System Science2004.

[Feller and Fitzgerald2002] Feller, J. and Fitz¢gerd.: Understanding Open Source
Software Development, ISBN 0-201-73496-6, 2002.

[Fox et al.1997] Fox, G., Lantner, K. and Marcom, & Software Development Process
for COTS-based Information System Infrastructéhec. of IEEE pp. 133-142, 1997

[German V-model] German V-model. URLhttp://www.v-modell.iabg.de/#AU250
2005.

[Hauge and Rgsdal2006] Hauge, @. and Rgsdal, Auiey of Industrial Involvement
in Open SourceMaster thesis at NTNUDepartment of Computer and Information
Science, 2006.

[Hecker200] Hecker, F.: Setting Up Shop: The Bussnef Open-Source Software, URL
http://hecker.org/writings/setting-up-shop

[Highsmith99] Highsmith, J. A.: Adaptive Softwareeielopment: A Collaborative
Approach to Managing Complex Systerrset House PublishingNew York, USA,
1999.

[Heineman and Council2001] Heinman, G.T. and Cdunal.T.: Component-Based
Software Engineering, Putting Pieces Togetletdison-Wesley, 2001.

[Huang and Yang2005] Huang, M., Yang, .L. and Yang,A Development Process for
Building OSS-Based Applications, SPW 2005, LNCSB&}p. 122-135.

[Jacobsen2005] Jacobsen, D. I.: Hvordan Gjennomfdmeersgkelser? Innfgring i
Samfunnsvitenskaplig Metode (2nd. ed.) Hayskolafpet. ISBN 82-7634-663-4, 2005.

[Kent99] Kent, B: Extreme Programming Explained: liface ChangeAddison-Weslegy
1999.

[Kontio96] J. Kontio. A Case Study in Applying a ss¢gmatic Method for COTS
Selectionln Proc. of ICSE-18pages 201-209, 1996.

[Krogh et al.2003] Krogh, G., Spaeth, S., and LakthK. R.: Community, joining, and
specialization in open source software innovatemase studyResearch Poligy2003,
pp. 1217-1241.

[Kunda and Brooks1999] Kunda, D., Brooks, L. “Apiply Socio-Technical Approach

for COTS SelectionProceedings UK Acad Inform Syst Conferente& April 1999,
University of York, pp. 552-565

64

[Leonard2000] Leonard, A.: Salon Free Software eun)j
http://www.salon.com/tech/fspl ast Accessed June 23, 2001.

[Leung03] Leung, H. K. N. and Leung, K. R. P. H.orBain-Based COTS-Product
Selection Method. Component-Based-Software QualMCS 2693, pp 40-63, 2003

[Li2006] Li, J. “Process Improvement and Risk Maaagnt in Off-The-Shelf
Component Based DevelopmeRhD theses at NTNL2006:84, pp 29

[Madanmohan and De2004] Madanmohan, T. R. and Re’Open Source Reuse in
Commercial FirmslEEE Software2004, pp.62-29.

[Maiden and Ncubel998] Maiden, Ncube, C. “AcquiriRgquirements for COTS
Selection”.IEEE Softwarevol. 15, No. 2, March/April 1998.

[Maiden et al.2002] Maiden, N., Kim, H., Ncube, ‘Rethinking process guidance for
Software Component Selection”. LNCS 2255, J.C. Dead A. Gravel (Editors),
Springer-Verlang, New York, 2002, pp. 151-164.

[Mockus et al.2002] Mockus, A., Fielding, R.T. aHdrbsleb, J.D.: Two Case Studies of
Open Source Software Development: Apache and Mgz#MCM Transactions on
Software Engineering and Methodology, Vol 11, N&dy 2002, Pages 309-346.

[Morisio et al.2000] Morisio, M., Seaman, C.B., RarA., Basili, V., Kraft, S., and
Condon, S. “Investigating and Improving a COTS-BhasBoftware Development
Process”.Proceedings International Conference on Softwargibgering 4-11 June
2000, Limerick, Ireland, pp. 32-41

[Murrain2004] Murrain, M.: Choosing and Using Op8ource Software: A primer for
Nonprofits. URL:ht t p: / / www. nosi . net / pri mer / NOSI Pri mer . pdf .

[Navica] The Open Source Maturity Model from Navica
URL.: http://www.navicasoft.com/pages/osmmoverview.htm

[Ochs et al.2001] Ochs, M., Pfahl, D., Chrobok-Dmgpn G. and Nothhelfer-Kolb, B.: A
Method for Efficient Measurement-based COTS Assessnand Selection — Method
Description and Evaluation ResullEEE Software2001, pp. 285-296.

[opensource2006] “The Open Source Definition”,
http://www.opensource.org/docs/definition.php, 2006

[Robson93] Robson, C.: Experiment, Design and Siesi in Psychology, '3 edition,
Penguin Books, London, England, 1994.

65

[Robson2003] Robson, C.: Read World Research. BlaltkPublishing. ISBN 0-631-
21305-8, 2003.

[Royce87] Royce, W. W.: Managing the DevelopmentLafge Software Systems:
Concepts and Technique®roc. of the & International Conference on Software
Engineering Mar. 1987, Monterey, California, USA, pp. 328-338

[Ruffin and Ebert2004] Ruffin, E. and Ebert, C.:itsOpen Source Software in Product
Development: A PrimelEEE Software2004, pp.82-86.

[Scacchi2004] Scacchi, W.: Free and Open Sourceeldpment Practices in the Game
Community,IEEE Software2004, pp.59-66.

[Sharp and Robinson2004] Sharp, H. and RobinsonAHR.Ethnographic Study of XP
Practice Empirical Software Engineerin®, 353-375, 2004.

[Strauss and Corbin1998] Strauss, A. and CorbinBdsics of Qualitative Research:
Second EditionSage PublicationdSBN 0-8039-5939-7, 1998.

[Tran et al.1997] Tran, V., Liu, D. B., and Humm@#,: Component-based Systems
Development: Challenges and Lessons Learirdc. of the 8 IEEE International
Workshop on Software Technology and EngineeringtiR@ Jul. 1997, London, UK,
pp. 452-462.

[Vidyasagar and Chang2004] Vidyasagar, P., Chand)fen Source and Closed Source
Software Development Methodologi¢roceedings of the™4Workshop on Open Source
Software Engineeringiay 2004, Edinburg, Scotland.

[Webbink2003] Webbink, M. H.: Understanding Openuf®e Software. The New South
Wales Society for Computers and the Low Journal 51;1. URL:
http://www.nswscl.org.au/journal/51/Mark_H_Webbimiml.

[Wheeler2004] Wheeler, D.A.: Generally Recognizexl Mature (GRAM) OSS/FS
programs. URLhttp://www.dwheeler.com/gram.htp2004.

[Wheeler2006] Wheeler, D.A.: How to Evaluate OpemuiSe Software / Free Software
(OSS/FS) programs. URtttp://www.dwheeler.com/oss_fs_eval.hi2006.

[Wikipedia.org] URL: http://en.wikipedia.org/wiki/.

[Wohlin et al.2000] Wohlin, C, Runeson, P., Hoshl€3on, M.C., Regnell, B., Wesslen,
A.. Experimentation in Software Engineering, An ramuction, Kluwer Academic
Publishers 2000.

[Woods and Guliani2005] Woods D. and G.Guliani: @pgource for enterprise:
Managing risks, reaping rewards. O’Reilly, 2005 ,6

66

Part 5 - Appendices

Appendix A: Glossary

CBS
Copy-left

COsSlI

COTS
CVS
GUI
Hacker

IDI

ITEA

NTNU

OTS

0SS
Qualitative
Quantitative

Component-based system

Copy-left is a general method for making a praga other work
free and requiring all modified and extended versiof the
program to be free as well.

Co-development using inner & Open source in Sakwatensive
products

Commercial off the shelf

Concurrent Versions Systems

Graphical User Interface

A person who is very skilled at computer prograngrand spends
a lot of time programming

Department of Computer and Information Science
Information Technology for European Advancement
Norwegian University of Science and Technology
Off-the-Shelf

Open Source Software

Concerned with information as text

Concerned with information as numbers

67

68

Appendix B: The Open Source Definition
Introduction

Open source doesn't just mean access to the soanlee The distribution terms of open-
source software must comply with the following eria:

1. Free Redistribution

The license shall not restrict any party from sellior giving away the software as a
component of an aggregate software distributiontaiomg programs from several
different sources. The license shall not requireyalty or other fee for such sale.

2. Source Code

The program must include source code, and musivaligtribution in source code as

well as compiled form. Where some form of a prodsietot distributed with source code,

there must be a well-publicized means of obtairihreysource code for no more than a
reasonable reproduction cost preferably, downlaadila the Internet without charge.

The source code must be the preferred form in whigrogrammer would modify the

program. Deliberately obfuscated source code isahoived. Intermediate forms such as
the output of a preprocessor or translator arahoived.

3. Derived Works

The license must allow modifications and derivedrksp and must allow them to be
distributed under the same terms as the licentieeadriginal software.

4. Integrity of The Author's Source Code

The license may restrict source-code from beingidiged in modified fornonly if the
license allows the distribution of "patch files"twithe source code for the purpose of
modifying the program at build time. The licensestaxplicitly permit distribution of
software built from modified source code. The lsemay require derived works to carry
a different name or version number from the oribswdtware.

5. No Discrimination Against Persons or Groups
The license must not discriminate against any peos@roup of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making afghe program in a specific field of
endeavor. For example, it may not restrict the mogfrom being used in a business, or
from being used for genetic research.

7. Distribution of License

The rights attached to the program must applyltmathom the program is redistributed
without the need for execution of an additionattise by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not dementdhe program's being part of a
particular software distribution. If the program egtracted from that distribution and
used or distributed within the terms of the progglitense, all parties to whom the

69

program is redistributed should have the same gigig those that are granted in
conjunction with the original software distribution

9. License Must Not Restrict Other Software

The license must not place restrictions on othéiwsoe that is distributed along with the
licensed software. For example, the license mustimgist that all other programs
distributed on the same medium must be open-s@afteare.

*10. License Must Be Technology-Neutral

No provision of the license may be predicated oy iadividual technology or style of
interface.

70

Appendix C: OSS Development Process

The process model in Open source software develop(@SSD) is different from
Closed Source Software Development (CSSD) [Vidyasand Chang2004]. CSSD
normally follows a spiral or iterative model of adopment, i.e software development
goes through all phases like planning, design, emplementation, whereas OSSD
follows an evolutionary model for development whtre software never reaches a final
state and keeps on evolving. OSSD is more a cogruor parallel process.

There is, of course, no single OSS developmentgssocHowever, [Feller and
Fitzgerald2002], point out a number of charactessthat are found in the majority of the
OSS projects:

* The OSS process generally involasgge, globally distributed communities of

developers collaborating primarily through the Imet,

 The OSS developers work jparallel;

* OSS development communities often exploit the pai@eer reviewto facilitate

the debugging process;

« OSS projects are generally characterizeddmd, incremental release schedule

as opposite to the proprietary software;

* OSS has attracted a very large pocéxjperienced and esteemed develgpers

* OSS projects are coordinated tighly motivated communities

Despite the many differences from proprietary safty it is important to note that
OSS usually goes through the same stages as agpappiproduct [Murrain2004].
Some key differences between proprietary softwatk@SS are:

* In open source project development, this procesy mappen much more
organically - starting from a single developemore developers who gradually
become interested in the project;

* The pace of open source development can be slowerto the voluntary nature;

* The quality of OSS can be much better than pragmyesoftware (because of
many adopters and testers);

* The version numbering of open source software temtde more conservative.

According to its proponents, open source stylewsao# development has the capacity to
compete successfully, and perhaps in many casedacks traditional commercial
development methods [Mockus et al.2002]. The mdstnomentioned differences
between the open source style development anddtiidonal commercial development
methods are:
 OSS systems are built by potentially large numh#rs/olunteers. However,
currently a number of OSS projects are supportedctaypanies and some
participants are not volunteers;
* Work is not assigned; people undertake the work theose to undertake;
» There is no explicit system-level design, or evetailed design;
There is no project plan, schedule, or list ofwiables.

71

72

Appendix D: Interview guide

Spring 2007
Selection of Open Source Components — A
Qualitative Survey in Norwegian IT Industry

Marinela Gerea

® NTNU

Innovation and Creativity

73

Thank you for deciding to participate in this synadout selection of Open Source
Components (OSS).

Some important definitions we are using in the syrare:

OTS Off-The-Shelf

COTS Commercial-Off-The-Shelf

0SS Open Source Software
In-House-Build Components build by your company.

We are interested to discover the selection proocE€3SS components which are going
to be integrated into a system or application. \Aeeret interested in infrastructure OSS
(e.g. Linux) or open source tools (e.g. Eclipse IQy.).

Please refer to the general process of selecticDS%$ components which is used into
your local business unit.

74

Partl. Who initiates the OSS harvesting and when in
the development process?

1. Who initiates the work related to OSS harvesting in your local
business unit?

2. Who does the work related to OSS harvesting in your local
business unit?

3. Who takes the final decision about integrating an OSS component?

4. When in the development process does your local business unit

normally select OSS-components?
Are there any differences between large, medium and small components?

Part 2. Motivations for using OSS components

5. What are your local business unit motivations for integrating OSS
components into your systems/applications?

75

Part 3. Selection process

6. Does your local business unit use any formal process for selection
of OSS components?

1 No
1 Yes
If yes, which method and how did you find that noeth

7. What is your selection process of OSS?

Please describe the main activities:

Part 4. Finding the OSS components

8. How do you find OSS components?

76

Part 5. Evaluation criteria

9. What technical issues is your local business unit considering when
selecting an OSS component?

10. What organizational issues of the OSS community is your local
business considering when selecting an OSS component?

11. What professional issues is your local business considering when
selecting an OSS component?

12. What properties make your local business unit discard an OSS
component?

13. How does your local business unit evaluate OSS components?

77

Part.6 Version issues in OSS

14. Which version does your local business unit usually consider
when selecting an OSS component for the first time?

15. Which version do you usually consider when re-selecting an OSS
component (for maintaining your system or for a new system)?

16. When does you local business unit update to a new version of the
OSS component?

Part 7. Integration of OSS components

17. Has any selected OSS component ever been replaced with a
different component at some point during the development process?

1 No
1 Yes
If yes, in which phase?

18. Have you noticed in the end of the development process that your
selected component is not suitable?

1 No
1 Yes
If yes:

In which phase?

Did you start building an internal component ingteésearching for an OSS
component?

78

Part 8. Activities after the integration of OSS
components

19. Do you document the rationale behind your choice of the selected
component?

1 Yes
1 No
If yes, please specify how:

If yes, do you reuse this information later? Yes
1 No

20. Do you keep a local knowledge repository about the selected
OSS components?

1 Yes
7 No
If yes, please describe shortly :

If yes, do you reuse this repository later? Yes
1 No

21. Do you have a person who is responsible for the OSS-component
(e.g. a knowledge keeper)?

1 No
1 Yes, we have such a person in our local business

79

Part 9. About the company

1. What is the name of your company or business unit?

Company name :

2. What is the type of company?

3. What is the ownership of your company?

4. What is the staff size of your mother company in your own
country? (full- & part-time persons) ?

5. What is the staff size of your local business unit (full- & part-time

persons) ?
[This staff size may be the same for small and nmadsized companies]

6. How many software developers are working in your local business
unit?

7. What is the main business area of your company?

8. What type of OSS does your company already use?

J

LAMP (Linux, Apache, MySQL, PHP)
Desktop applications (Evolution, FireFox, Opéice, etc)
Development tools
1 Bugzilla
CVS
Subversion
Emacs
GNU Compiler
Other:

(I

[I B I A N A O

80

1 Languages
1 Perl
[PHP
1 Python
] Java
1 Other:
1 Web Application Development/Content Managen{€ope, Plone, Midgard, eZ
Publish, etc)
1 Graphical user interface (GNOME, KDE, XFreeé®)
1 Security (Nessus, Nmap, Open SSH, Open SSltt,S0)
1 Research tools (Octave, R, etc)
1 Other (please specify):
9. How would you describe your software process model?
1 Code and fix (writing code as long there isdiamnd money, without a set of
requirements)
1 Waterfall (a sequential, document-driven metiogy)
1 V-model (extended waterfall model, adding dstan the validation and verification
phase)
"1 Spiral (development into small pieces)
1 Evolutionary Prototyping (the model starts wathinitial idea, which is then
prototyped and released to the customer)
1 Unified Process (risk- and use-driven, architezcentric, iterative and incremental
software development process)
1 Agile models
"1 Adaptive Software Development (ASD) (iterativisk- and mission-driven,
component based, time-boxed process)
"1 XP (flexible, lightweight, people- and resutliemted development process
that allows for requirements changes at any timend development)
"1 Scrum (trying to have everybody involved, taguirements from customers
are priorities, daily meetings with the customers)
1 Other (please specify):

10. How many selection processes do your local business unit
performs by year?

11. How much effort (in person hours) does it take to perform a
selection process?

person hours.

81

Part 10. About the respondent

. How old are you?

<25

26-30
31-35
36-40
41-50
51-60
>60

N A RO

N

. What is your current position in your business unit?

IT Manager

Project manager
Software architect
Software developer

Web designer
Tester/Quality assurance
Other :

N O O A

3. How long have you been working in the current business unit?

Years :

4. How long have you been working with software development?

Years :

5. How long have you been working with OSS?

Years :

6. How many projects using OSS components have you been
involved in?

Number :

7. What is your highest completed education?

1 Bachelor (BSc)
1 Master (MSc)

82

[l Ph.D.
[] Other education :

8. Is your degree software-related (informatics/computer
science/telecommunications)?

[Mark one alternative]

0 Yes
1 No

83

84

Appendix E: Help for the interview guide

Spring 2007
Selection of Open Source Components — A
Qualitative Survey in Norwegian IT Industry

Marinela Gerea

Help file

85

Thank you for deciding to participate in this synadout selection of Open Source
Components (OSS).

Some important definitions we are using in the syrare:

OTS Off-The-Shelf

COTS Commercial-Off-The-Shelf

0SS Open Source Software
In-House-Build Components build by your company.

We are interested to discover the selection procE€3SS components which are going
to be integrated into a system or application. \Aéeret interested in infrastructure OSS
(e.g. Linux) or open source tools (e.g. Eclipse SQY.).

Please refer to the general process of selectiddS$ components which is used into
your local business unit.

86

Partl. Who initiates the OSS harvesting and when in
the development process?

1. Who initiates the work related to OSS harvesting in your local
business unit?

Please select one or several alternatives.
IT Manager

Project manager
Software architect
Software developer
Other (please specify):

N O B O O

2. Who does the work related to OSS harvesting in your local
business unit?

Please select one or several alternatives.
IT Manager

Project manager
Software architect
Software developer
Other (please specify):

OoogQgod

3. Who takes the final decision about integrating an OSS component?

Please select one or several alternatives.
IT manager

Project manager

Software architect

Software developer

Tester/Quality assurance

Customer

Other (please specify):

N Y I B A

4. When in the development process does your local business unit

normally select OSS-components?
Are there any differences between large, medium and small components?

a) For large components

Pre-study
Requirements/Analysis

87

Overall design

Detailed design

Coding

Incrementally throughout the project

b) For small and medium size components

Pre-study

Requirements/Analysis

Overall design

Detailed design

Coding

Incrementally throughout the project

Part 2. Motivations for using OSS components

5. What are your local business unit motivations for integrating OSS
components into your systems/applications?

Licenses are cheaper

Installation cost is smaller

Maintenance cost with OSS is smaller (than witleodoftware)
Learning cost is smaller

To be more independent from the big companiesegrisupport.
Want to support the OSS movement

It is recommended by our partners/customer

Our developers work on open source projects i gpgre time
We want to increase our skills in this area

The market is looking for this

Compliance to standards

Idealism

OSS components are easily available for test aad us

Part 3. Selection process

6. Does your local business unit use any formal process for selection
and evaluation of OSS components?

1 No, our process is based on the intuition aggno

1 Yes
If yes, which method and how did you find that noeth

88

7. What is your selection process of OSS?

Please describe the main activities (searchinges@ng, evaluation, integration e.g):

Part 4. Finding the OSS components

8. How do you find OSS components?
Please select one or several:

1 Get information/the component from a colleafjiexid

1 Look at “generally recognized as mature” OS&pams (i.e.
http://www.dwheeler.com/gram.html

1 Search on specialized sites (please indicatehwdites):

(|

Search using specialized search engines (0eglé’s specialized searches for
Linux)

Read articles, books or magazines

Use your local business unit internal “knowledgse”

Advice from forums or mailing lists

Other (please specify):

(0 I B O A B

Part 5. Evaluation criteria

9. What technical issues is your local business unit considering when
selecting an OSS component?

Matching functionality
Extra functionality
Code quality

Design quality

89

Architecture quality

Documentation quality

Security

Performance

Integration with other software

Have standard-based API
Standards compliance

Programming language/environment

10. What organizational issues of the OSS community is your local
business considering when selecting an OSS component?

Vitality of community

Quality of end-user support

Frequency of releases

Quiality of project site

Availability of roadmap/plan

The availability of component for test and use
Availability of bug-issues tracking system on thejpct site

By Vitality of community we mean: Activity on maig lists/email, Number of
downloads, Number of page views, Time to fix bugsje to implement new
functionality.

11. What professional issues is your local business considering when

selecting an OSS component?

People select components they already have used

People select components they have heard about

People select components written in programminguages they know
Evaluation time

12. What properties make your local business unit discard an OSS
component?

Is ill-suited for the technical skill set of peopksponsible for integrating and
maintaining it.

Little community activity

Does not have momentum

Has unsuitable license

With bad or no documentation

No commercial company supports it

90

13. How does your local business unit evaluate OSS components?

Create prototype software and a temporary integnand testing of the candidate
Use an evaluation process which is well documemedur local business unit
Use a document checklist to evaluate the OSS coemisn

Performe testing and/or prototyping with OSS congmis

Performe code reviews of OSS components

Performe architecture reviews of OSS components

Part.6 Versions issues OSS

14. Which version does your local business unit usually consider
when selecting an OSS component for the first time?

Please select one:

"1 The last stable version
The version that most people use

The version that provides more functionality
Other (please specify):

OO

15. Which version do you usually consider when re-selecting an OSS
component (for maintaining your system or for a new system)?

Please select one:

1 The last stable version

1 The version that most people use

1 The version that provides more functionality
1 Other (please specify):

16. When does you local business unit update to a new version of the
OSS component?

Please select one or several:

1 Each time you release a new version of the systataining one or more OSS
components

1 Each time a new version of the OSS componertnsng

1 When additional functionality is needed

1 When bugs need to be corrected

1 Other (please specify):

91

Part 7. Integration of OSS components

17. Has any selected OSS component ever been replaced with a
different component at some point during the development process?

1 No
1 Yes
If yes, in which phase?

18. Have you noticed in the end of the development process that your
selected component is not suitable?

7 No
0 Yes
If yes:

In which phase?

Did you start building an internal component ingtedsearching for an OSS
component?

Part 8. Activities after the integration of OSS
components

19. Do you document the rationale behind your choice of the selected
component?

1 Yes
7 No
If yes, please specify how:

If yes, do you reuse this information later? Yes
I No

20. Do you keep a local knowledge repository about the selected
OSS components?

92

1 Yes
7 No
If yes, please describe shortly :

If yes, do you reuse this repository later? Yes
1 No

21. Do you have a person who is responsible for the OSS-component
(e.g. a knowledge keeper)?

1 No
1 Yes, we have such a person in our local business

93

Part 9. About the company

1. What is the name of your company or business unit?

Company name :

2. What is the type of company?

[Mark one alternative]
1 Stand-alone: The highest reporting entity wibhparent organization above it
1 Subsidiary: An independent entity with majoiityerest held by a parent.

3. What is the ownership of your company?

[Mark one alternative]

1 Publicly traded on a stock exchange

1 Privately held company

1 Government, education, or non-profit organizatio

4. What is the staff size of your mother company in your own
country? (full- & part-time persons) ?

5. What is the staff size of your local business unit(full- & part-time

persons) ?
[This staff size may be the same for small and omadsized companies]

6. How many software developers are working in your local business
unit?

7. What is the main business area of your company?

[Mark one alternative]

IT/Telecom industry (Ericsson, Nokia, NERA, etc)

Telecom service provider (Telenor, Telefonicear®@e, etc)

Software / IT consulting company (Accenture, Gamini E&Y, TiedoEnator, etc)
Retail product with large degree of embeddetisot (Philips, Sony, etc)
Software health care

Research

Oil company/service company

Other software-intensive company (please spgcify

N Yy O

94

8. What type of OSS does your company already use?

(|

LAMP (Linux, Apache, MySQL, PHP)
Desktop applications (Evolution, FireFox, Opéice, etc)
Development tools

Bugzilla

CVS

Subversion

Emacs

GNU Compiler

Other:
guages

Perl

PHP

Python

Java

Other:
1 Web Application Development/Content Managen{€ope, Plone, Midgard, eZ
Publish, etc)
"1 Graphical user interface (GNOME, KDE, XFree8&,)
Security (Nessus, Nmap, Open SSH, Open SSl,S10)
Research tools (Octave, R, etc)
Other (please specify):

O

1 La

N == Y A I B

OO

9. How would you describe your software process model?

1 Code and fix (writing code as long there isdiamd money, without a set of
requirements)
1 Waterfall (a sequential, document-driven metiogy)
1 V-model (extended waterfall model, adding dstan the validation and verification
phase)
"1 Spiral (development into small pieces)
1 Evolutionary Prototyping (the model starts wathinitial idea, which is then
prototyped and released to the customer)
1 Unified Process (risk- and use-driven, architezcentric, iterative and incremental
software development process)
1 Agile models
"1 Adaptive Software Development (ASD) (iterativisk- and mission-driven,
component based, time-boxed process)
"1 XP (flexible, lightweight, people- and resuliemted development process
that allows for requirements changes at any timend development)
"1 Scrum (trying to have everybody involved, taguirements from customers
are priorities, daily meetings with the customers)
1 Other (please specify):

95

10. How many selection processes do your local business unit

performs by year?
processes.

11. How much effort (in person hours) does it take to perform a

selection process?
person hours.

Part 10. About the respondent

. How old are you?

<25

26-30
31-35
36-40
41-50
51-60
>60

N A RO

N

. What is your current position in your business unit?

IT Manager

Project manager
Software architect
Software developer

Web designer
Tester/Quality assurance
Other :

N O O A

3. How long have you been working in the current business unit?

Years :

4. How long have you been working with software development?

Years :

5. How long have you been working with OSS?

Years :

96

6. How many projects using OSS components have you been
involved in?

Number :

\l

. What is your highest completed education?

Bachelor (BSc)
Master (MSc)
Ph.D.

Other education :

OO

8. Is your degree software-related (informatics/computer
science/telecommunications)?

[Mark one alternative]

0 Yes
1 No

97

