
June 2007
Maria Letizia Jaccheri, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Open Source Software: critical review
of scientific literature and other
sources

Marc Querol del Amo

Problem Description

Open source software has received enormous attention by practitioner, research, and education
communities. Different actors have different goals and even different understanding of what the
"open source phenomen" means. In this work the candidate will have to provide a critical roadmap
of the literature, printed and online, about open source software.

Assignment given: 01. February 2007
Supervisor: Maria Letizia Jaccheri, IDI

Copyright c© 2007 Marc Querol.

First Edition. Some Rights Reserved.

This work is licensed under the terms of Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported license available from
http://www.creativecommons.org/. Accordingly, you are free to copy, distribute,
display, and perform the work under the following conditions: (1) you must give the
original author credit, (2) you may not use this work for commercial purposes, and
(3) you may not alter, transform, or build upon this work.

Abstract

This thesis presents the results of a survey of Open Source Licensing literature.
It aims to assist the reader in choosing the best license for his/her business. For
this reason, the content of this thesis can be divided into: (i) an open source
licensing overview, (ii) the explication of the main features of the most popular
open source licenses, (iii) the consequences of using one or another and (iv) the
critical or controversial issues related to Open Source Licensing.

Furthermore, at the end of the thesis, the reader can find the method we followed
to collect, classify and analyze the relevant information for the purpose of the
survey.

Key words: Open Source Licensing, Open Source Licenses, Licenses conse-
quences, critical review of Open Source literature, systematic review of Open
Source literature, survey of Open Source literature, why to use an Open Source
License, reason to use an Open Source License, advantages of Open Source Li-
censes, advantages of Open Source Licensing, consequences of Open Source Li-
censes, consequences of Open Source Licensing, how to choose an Open Source
License, choosing an Open Source License.

i

Preface

This master thesis is the result of one semester of work, from February to June
2007, at the Norwegian University for Science and Technology (NTNU). In addi-
tion, this master thesis has to let me finish my studies of Computer Engineering
at the Technical University of Catalonia (UPC).

I would sincerely like to thank my supervisor, Professor Letizia Jaccheri, for her
guidance throughout this thesis. I would also like to thank the vice-dean for
International Affairs of the Faculty of Informatics of Barcelona, Professor Núria
Castell, for giving me the opportunity of studying abroad.

I also have to mention the name of some friends, who have helped me with LaTeX:
Eric Gutiérrez, Bernardino Casas and Marc Musquera. A special mention for
Anna Torrents, Albert Torras and Xavier Orduña, who supported me through
difficult times.

Finally, I also have to sincerely thank Brian Andersen and Chris Mueller, two
English native speakers, for their patience answering my grammatical and ortho-
graphical doubts.

Trondheim, June 2007

Marc Querol

iii

The world is a book, and those
who do not travel read but a page.

Saint Augustine

Contents

Contents vii

List of Figures xiii

List of Tables xv

I Introduction 1

1 Introduction 3

1.1 The purpose of this thesis . 4

1.2 Content and Structure . 4

II Open Source Licensing 7

2 What is Open Source Software? 9

2.1 Free Software: The origins of Open Source Software 9

2.2 The Open Source Initiative . 10

2.3 What makes a license Open Source? 10

2.3.1 The Open Source Definition 10

2.3.2 What is not required in Open Source Licenses? 12

2.4 What is not Open Source? . 12

2.4.1 Public Domain, Shareware and Freeware 12

vii

viii CONTENTS

3 Open Source Licenses 15

3.1 Licenses classification . 15

3.1.1 Classification based on functional differences 15

3.1.2 Classification based on historical origins 16

3.2 Popularity of the Open Source licenses 17

3.3 Most popular Open Source Licenses 18

3.3.1 GNU General Public License (GPL) 18

3.3.2 GNU Lesser General Public License (LGPL) 18

3.3.3 The BSD style Licenses . 18

3.3.4 The Apache License . 19

3.3.5 The Artistic License . 19

3.3.6 The Mozilla Public License 20

3.3.7 The Common Public License (CPL) 20

3.3.8 Common Development and Distribution License (CDDL) . 21

3.3.9 The Q Public License (QPL) 21

3.3.10 Creative Commons Licenses: Extending the philosophy . . 21

3.4 Mixing code from different licenses 21

3.5 Summary . 22

4 Advantages, Disadvantages and Consequences 25

4.1 Why use an open Source License? 25

4.2 Which is the best license for a specific project? 26

4.3 Consequences of Restrictive and Permissive Licenses 28

4.4 Consequences and Reasons . 29

4.4.1 Reasons to use the GPL 29

4.4.2 Reasons to use the LGPL 29

4.4.3 Reasons to use the BSD style license 29

4.4.4 Reasons to use the CPL 30

CONTENTS ix

4.4.5 Reasons to use the CDDL 30

4.4.6 Reasons to use the other licenses 30

5 Controversial issues and trends 33

5.1 Open Source Licenses - copyright license or contract? 33

5.2 Cross-jurisdictional issues in Open Source licenses 34

5.3 Other critical issues and trends 34

6 Conclusions 37

III Thesis Development 39

7 Overview of the Thesis Development 41

7.1 What is a Critical Review? . 41

7.1.1 Importance of a Critical Review 42

7.1.2 Feature of Critical Reviews 42

7.2 The Review Process . 42

7.3 Planning . 43

7.3.1 Development of a review Protocol 43

7.3.2 The Research Question . 44

7.3.3 The Review Protocol . 44

7.4 Conducting the review . 44

7.4.1 Identification of the Research 44

7.5 Final remark . 45

8 The Review Process 47

8.1 The Review Protocol . 47

8.1.1 Background . 47

8.1.2 The Research Question . 47

x CONTENTS

8.1.3 Search Strategy . 48

8.2 Documenting the search . 50

8.2.1 Classification of the articles 51

8.3 Reporting the results . 52

8.3.1 Problems with reporting the results 52

IV Conclusions 53

9 Conclusions 55

Glossary 57

Bibliography 59

Index 63

A Analysis and classification of the articles 65

B Summaries of the articles 69

B.1 Setting up shop: the business of Open-Source Software 69

B.2 Open source databases move into the marketplace 70

B.3 A model of Open Source Software Style R&D on business 71

B.4 Open source license alternatives for Software Applications 71

B.5 The Digital Dilemma . 71

B.6 The transformation of Open Source Software 72

B.7 Open Source Projects: Output per Contributor 73

B.8 The Scope of Open Source Licensing 73

B.9 Open Source & Free Software Licensing 74

B.10 The Rise of Open Source Licensing 74

B.11 Which Open Source license should I use for my software? 74

CONTENTS xi

B.12 Acceptable protection of software intellectual property 76

B.13 Evaluation of Public Software Licenses 76

B.14 A Primer on Open Source Licensing Legal Issues 79

B.15 Open Source Intellectual Property Rights - Issues and Trends . . 83

B.16 Copyright and Open Source Software Licensing 86

B.17 The true meaning behind Open Source Licenses 91

B.18 A framework for understanding the impact of GPL copylefting . . 92

B.19 Evaluation of Open Source licensing models 92

B.20 Why you shouldn’t use the Library GPL for your next library . . 96

B.21 Open Source Licensing . 96

B.22 Open Source Software Development: An Overview 98

List of Figures

3.1 Functional differences . 16

A.1 Classification of articles 1/3 . 66

A.2 Classification of articles 2/3 . 67

A.3 Classification of articles 3/3 . 68

xiii

List of Tables

3.1 Open Source license popularity in Sourceforge.net 17

3.2 Licenses compatibility with GPL 22

3.3 Free and open source license rights matrix 23

8.1 Documents found in IEEE Explorer: open source licenses 50

8.2 Documents found in IEEE Explorer: survey licenses 50

8.3 Documents found in ACM: open source licenses 51

8.4 Documents found in ACM: survey licenses 51

B.1 Classification of restrictions imposed by various licenses 84

B.2 Free and Open Source license rights matrix 89

B.3 Free and Open Source license popularity in Sourceforge 90

B.4 Most popular mass market licenses 93

B.5 Company specific licenses and GNU GPL 94

B.6 Open Source licensing models . 99

xv

Part I

Introduction

1

Chapter 1

Introduction

Open Source Software has increased in popularity in the latest years, and as
a result, new software businesses have appeared. Open Source is a new way
to release software that considerably differs from the traditional way of selling
software applications. It has many advantages1 but it is important to take into
consideration several aspects2 before starting to use, modify or distribute such
products.

Licensing is an important aspect of Open Source Software. Although all Open
Source Software has common characteristics3 (defined by the Open Source Initia-
tive), there are several kinds of licenses. These licenses differ in the rights they
grant to the users and developers who are willing to use, modify or redistribute
the licensed code. Therefore, businesses that misunderstand the license clauses
of an Open Source product can face serious consequences. A business can also
be damaged due to, for example, the rights allowed to competitors.

Licensing is therefore a crucial issue in Open Source Software. This work will
thus attempt to resolve the main question relating to the different forms of Open
Source licensing available: exposing the advantages and disadvantages of the main
Open Source Licenses, we will try to assist the reader in choosing the proper Open
Source License for his/her business.

1Some advantages of Open Source Software: less dependance on vendors, easier to customize,
lower cost, reusability and continuous improvement.

2Aspects of the Open Source Software: Organization issues, Software Development process,
business models and licensing.

3Free redistribution and access to the source code are the main common characteristics. See
the others in subsection 2.3.1, page 10.

3

4 CHAPTER 1. INTRODUCTION

1.1 The purpose of this thesis

The purpose of this thesis is to provide a critical roadmap of the literature,
printed and online, about Open Source Software. Since Open Source is not a
single concept and there is a lot of literature written, we have focused on a specific
part of the Open Source Software: licensing. To do that, we have proposed the
following research question:

Research Question:

What are the different Open Source Licenses and what are their con-
sequences?

The books, papers and articles found have been classified and analyzed. In ad-
dition to this, the extensive answer to the research question has been reported.

We will discuss about:

• what the most representative Open Source licenses are

• the consequences of using them (advantages and disadvantages)

• what considerations should be taken in order to choose an Open Source
license

• what controversial issues of open source licensing exist

At the end, an overview of the research process is also included.

1.2 Content and Structure

This thesis consists in 4 parts distributed in a total of 9 chapters:

1. Introduction: contains one chapter and presents this thesis.

2. Open Source Licensing : contains the results of our critical review. It is
formed by 5 chapters:

• What is Open Source Software? where the principles of Open Source
are described.

• Open Source Licenses where the main features of the most popular
licenses are explained.

1.2. CONTENT AND STRUCTURE 5

• Advantages, disadvantages and consequences where the reader can
learn the reasons to use one or another license.

• Controversial issues and trends where critical issues and possible trends
are explained.

• Conclusions where the main ideas of Open Source Licensing are un-
derlined.

3. Thesis Development : contains the development of the thesis. Its 2 chapters
are:

• Overview of the Thesis Development : contains an introduction to crit-
ical reviews and to the research process.

• The Review Process : where the specific review done for this thesis is
explained.

4. Conclusions : contains one chapter of the same name.

• Conclusions: where the reader can see the conclusions of this critical
review.

Part II

Open Source Licensing

7

Chapter 2

What is Open Source Software?

2.1 Free Software: The origins of Open Source

Software

Free Software is a term coined by Richard Stallman and the Free Software Foun-
dation (FSF) to refer to software that can be used, studied, and modified without
restriction, and which can be copied and redistributed in modified or unmodi-
fied form either without restriction, or with certain requirements to ensure that
further recipients also have these freedoms. [Wikb]

According to Richard Stallman and the FSF, software is Free Software if people
who receive a copy of the software have the following four freedoms:

• The freedom to run the program, for any purpose (freedom 0).

• The freedom to study how the program works, and adapt it to your needs
(freedom 1). Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor (freedom
2).

• The freedom to improve the program, and release your improvements to
the public, so that the whole community benefits (freedom 3). Access to
the source code is a precondition for this. [PTFSF]

9

10 CHAPTER 2. WHAT IS OPEN SOURCE SOFTWARE?

2.2 The Open Source Initiative

Since the word “free” can have the meaning of gratis, some users of the Free
Software community created the term Open Source to avoid ambiguities. Free
in Free Software referred to free as “liberty” not as “gratis”. The Open Source
Initiative (OSI), created in 1998 by Eric S. Raymond and Bruce Perens [Wikc],
presents The Open Source Definition to determine whether a software license can
be considered Open Source or not.

It is important to note that Open Source and Free Software are not synonymous,
although they have common characteristics. The FSF explains it in the following
way:

“For the Open Source movement, the issue of whether software should
be open source is a practical question, not an ethical one. As one per-
son put it, “Open source is a development methodology; free software
is a social movement.” For the Open Source movement, non-free soft-
ware is a suboptimal solution. For the Free Software movement, non-
free software is a social problem and Free Software is the solution.”
[FSF]

As a result, there are Open Source licenses that have been approved by the Open
Source Initiative and by the Free Software Foundation and other licenses that
have only been approved by one of these organizations.

2.3 What makes a license Open Source?

2.3.1 The Open Source Definition

The Open Source Definition says that the distribution terms of Open Source
Software must comply with the following criteria: [SI]

1. Free Redistribution. “The license shall not restrict any party from sell-
ing or giving away the software as a component of an aggregate software
distribution containing programs from several different sources. The license
shall not require a royalty or other fee for such sale.”

2. Source Code. “The program must include source code, and must allow
distribution in source code as well as compiled form. Where some form
of a product is not distributed with source code, there must be a well-
publicized means of obtaining the source code for no more than a reasonable

2.3. WHAT MAKES A LICENSE OPEN SOURCE? 11

reproduction cost preferably, downloading via the Internet without charge.
The source code must be the preferred form in which a programmer would
modify the program. Deliberately obfuscated source code is not allowed.
Intermediate forms such as the output of a preprocessor or translator are
not allowed.”

3. Derived Works. “The license must allow modifications and derived works,
and must allow them to be distributed under the same terms as the license
of the original software.”

4. Integrity of The Author’s Source Code “The license may restrict
source-code from being distributed in modified form only if the license al-
lows the distribution of “patch files” with the source code for the purpose
of modifying the program at build time. The license must explicitly permit
distribution of software built from modified source code. The license may
require derived works to carry a different name or version number from the
original software.”

5. No Discrimination Against Persons or Groups “The license must not
discriminate against any person or group of persons.”

6. No Discrimination Against Fields of Endeavor “The license must
not restrict anyone from making use of the program in a specific field of
endeavor. For example, it may not restrict the program from being used in
a business, or from being used for genetic research.”

7. Distribution of License.“The rights attached to the program must apply
to all to whom the program is redistributed without the need for execution
of an additional license by those parties.”

8. License Must Not Be Specific to a Product “The rights attached to
the program must not depend on the program’s being part of a particular
software distribution. If the program is extracted from that distribution and
used or distributed within the terms of the program’s license, all parties to
whom the program is redistributed should have the same rights as those
that are granted in conjunction with the original software distribution.”

9. License Must Not Restrict Other Software “The license must not
place restrictions on other software that is distributed along with the li-
censed software. For example, the license must not insist that all other
programs distributed on the same medium must be Open Source Software.”

10. License Must Be Technology-Neutral “No provision of the license may
be predicated on any individual technology or style of interface.”

12 CHAPTER 2. WHAT IS OPEN SOURCE SOFTWARE?

2.3.2 What is not required in Open Source Licenses?

The Open Source Definition is not as extensive as typical software licenses. There
are no requirements on license compatibility, warranties or formalities either:
[Väl05]

Moral Rights: Open Source Definition does not say anything about attribution
and reputation.

Patent and other intellectual property licenses: Open Source Definition
places essentially requirements on copyright but not on other intellectual property
rights. Apparently, the requirements of royalty-free use, distribution and modifi-
cation imply that a patent or a trademark that requires royalty payments cannot
exist. However, it seems to allow that a licensor licenses his patent without roy-
alty to the open source community, whereas he collects royalties from the users
of another proprietary software that implements the same patented invention.

Controlled rights ownership: Open Source licenses do not require controlled
rights ownership.

Warranties: In the Open Source Definition, no warranties are required.

Compatibility: The Open Source Definition only defines a criteria to certify
software licenses. As it is not a standards specification, it is possible that some
open source code cannot be combined with another open source code, since the
respective licenses of the open source codes are not compatible with each other.

Formalities: The Definition does not require that licenses should be legally
binding or enforceable. The validity of any provision depends on its legal en-
forceability.

2.4 What is not Open Source?

2.4.1 Public Domain, Shareware and Freeware

Some software is released freely into the public domain and the author has no
copyright rights, whereas Open Source not. Open Source Software is governed
by a license and the owners of the copyright in the software continue to own
the copyright and assert their rights thereto. In Open Source Software, people
receive a software license that gives them more rights than they have become
accustomed to expect under commercial software licenses, such as the possibility
of modifying the code and even redistributing it.

Freeware or Shareware often has the connotation of being “free”. They are free

2.4. WHAT IS NOT OPEN SOURCE? 13

because of the price, not because of the availability of their source code. Actually,
their licenses usually have many of the restrictions found in commercial licenses.
[Ken01]

Chapter 3

Open Source Licenses

3.1 Licenses classification

Even though there are many different Open Source Licenses, it is possible to group
them according to how derivative works1 are treated (functional differences) or
according their historical origins. [Väl05]

3.1.1 Classification based on functional differences

The licenses classification depending on functional differences is as follows:

• Highly restrictive licenses: licenses with strong reciprocity obligations

• Restrictive licenses: licenses with standard reciprocity obligations

• Permissive licenses

The Standard Reciprocity Obligation means that the distribution terms
of the source code must be maintained. Such licenses are commonly called as
copyleft. If the source code is modified, the licenses terms cannot be changed.
However, if the source code is combined with other source code to create a new
work, the Standard Reciprocity Obligation does not apply to the combined work.

The Strong Reciprocity Obligation extends the standard reciprocity obliga-
tion: even adaptations and derivative works must keep the license terms intact.
These licenses are considered to have a “viral” or “contagious” effect.

1A derivative work is a work based upon one or more preexisting works.

15

16 CHAPTER 3. OPEN SOURCE LICENSES

The Permissive licenses allow free distribution, copying and modifying. Li-
censes terms of the derivative works can be different and there are no reciprocal
requirements.

Figure 3.1: Functional differences

3.1.2 Classification based on historical origins

The classification based on the historical origins of the licenses is this one:

• GNU licenses

• Academic licenses

• Community licenses

• Corporate licenses

The GNU licenses were introduced by Richard Stallman and the Free Software
Foundation in the 1980s. They are licenses with a strong ideological message.
These licenses are familiar to developers, but attorneys have become hesitant
about GNU licenses for their vague language and uncertain implications. In
addition to this, GNU licenses are not compatible with many other open source
licenses.

Academic licenses have their origins in the University of Berkeley. They are
short and rather clear in language. Academic licenses are permissive and mostly
compatible with other Open Source licenses.

3.2. POPULARITY OF THE OPEN SOURCE LICENSES 17

Community licenses typically originate from some major Free Software project.
The two most popular licenses are the Artistic License, distributed with the Perl
programming language, and the Apache License. The Perl programming license
is ambiguous. Legally, the Apache License is considerably more rigid than the
Artistic License taking into account patents and trademarks.

The first major Corporate license was introduced by Netscape in 1998 when
the open source code of its browser was released. The Corporate licenses are
typically very detailed addressing issues such as patent and trademark licensing,
copyright to code contributions and many formal issues not included in other
Open Source licenses.

3.2 Popularity of the Open Source licenses

The following table shows the popularity of the Open Source Licenses at Source-
forge.net in July 2005. By that time, the number of projects registered in Source-
forge.net were higher than 110.0002, but only 65.362 were approved by the Open
Source Initiative. The rest of the projects were either proprietary licensed soft-
ware not approved by the Open Source Initiative or projects under the public
domain. [Cha05]

License name Quantity Percentage

GNU General Public License 45101 69%
GNU Library or Lesser General Public License 7388 11%
BSD License 4724 7%
Artistic License 1230 2%
MIT License 1195 2%
Apache Software License v1.1 968 1%
Mozilla Public License 1.1 827 1%
Common Public License 503 1%
Apache License V2.0 452 1%
Total 62388 95%

Table 3.1: Open Source license popularity in Sourceforge.net

Throughout an empirical analysis of Sourceforge, Lerner and Tirole [LT05] found
that projects geared toward end-users tend to have restrictive licenses, while those
oriented toward developers tend to have more permissive licenses. In addition to
this, Freshman and Gandal [FG05] observed that the output per contributor in
Open Source programs is much higher when licenses are less restrictive.

2In June 2007, the number of registered projects in Sourceforge.net is higher than 149.000.
[Sou]

18 CHAPTER 3. OPEN SOURCE LICENSES

3.3 Most popular Open Source Licenses

3.3.1 GNU General Public License (GPL)

The GNU General Public License explicitly requires that derivative works be
distributed under the terms of the GPL License and also that derivative works
may only be permitted to be distributed under the terms of the license. [St.04]

One of the the most important requirements of GPL is that the Open Source
code always be made available for the recipient of the software.

The GPL license does not mean to give away anything for free. It is not forbidden
to sell a work licensed under GPL. Furthermore, if a company is the only one
who has written code for a certain GPL application, this company owns the full
copyright of the code. As a a result, this company can distribute the code under
whatever licenses it wishes. This is called Dual Licensing and consists in releasing
software under different licenses.

For large collective projects, where each contributor owns the copyright to their
pieces of source code, it would be unreasonable to consider Dual Licensing. There-
fore, these large projects will be GPL forever. [Ing]

3.3.2 GNU Lesser General Public License (LGPL)

The GNU Lesser General Public License was created with the purpose of per-
mitting a certain class of programs, generally subroutine libraries, to be licensed
under an FSF license but be permitted to link with non-GPL sofware. [St.04]

As the GPL, the LGPL ensures the distribution of the licensed code will be under
the same license model, but it lets users extend the LGPL-licensed source code
with proprietary modules. [WL01]

Therefore, the GNU Lesser General Public License is a software license option
available to commercial software developers without the obligation to release all
of their software source code in derivative works. [Fle04]

3.3.3 The BSD style Licenses

The BSD (Berkeley Software Distribution) style licenses are the least restrictive
of the Open Source licenses.

Under the BSD Licenses, distribution of source code is permitted but not man-
dated for derivative works. Therefore, programs under the BSD Licenses can be

3.3. MOST POPULAR OPEN SOURCE LICENSES 19

combined with proprietary software.

The BSD Licenses allow redistribution and use of source code and object code
with or without modification so long as the redistribution of source code retain
required copyright and other notices and the disclaimer of warranties and limi-
tation of liability clauses.

The original BSD License (prior to 1999) had certain attribution requirements,
including mandatory attribution of naming of contributors in advertising of soft-
ware using the code. [Ken01] After removing this clause, the only substantial
difference with the MIT License is the nonattribution provision. This provision
requires prior permission for the use of the name of the creator and it protects the
reputation of the creator from being explicitly associated with derivative versions
of the program. Such restrictions permit creators to protect themselves from the
injury to their reputations that can result from association with a defective or
poorly written program, while still allowing others to use or modify the work.
[St.04]

The BSD Licenses are considered by many to be more “free” than the GPL
because they permit developers to release derivative works under whatever license
they prefer. In other words, the BSD Licenses do not contain copyleft terms. This
is the reason why the BSD type of licenses is attractive to commercial developers.
[Ken01]

3.3.4 The Apache License

The older Apache License version 1.1 is very similar to the BSD-License, but
includes a requirement for the acknowledgement of the creator’s contributors
of the software. The Apache License version 2.0 is more complex. It includes
provisions for patent rights granted by the license and the use of other licenses
for derivative software. The Apache License version 2.0 also explicitly defines
“Contributions” that are special modification of the software provided to the
licensor of the software for its inclusion into the original one. If accepted, the
modifications will become part of the original software and will fall under the
same license. [Cha05]

3.3.5 The Artistic License

The Artistic License was designed to maintain control over the Perl project while
encouraging participation in the project and innovation outside the project. The
Artistic License is ambiguous, self-contradictory and virtually impossible to inter-
pret. [Cha05] One problem with the Artistic License is that although it prohibits

20 CHAPTER 3. OPEN SOURCE LICENSES

sale of the software, it also allows an aggregate distribution of the Artistic Li-
censed software with another piece of software. Interpreted literally, someone can
defeat the license by merely including a trivial piece of software together with
the licensed software. [Cha05]

Under the Artistic License, it is possible to modify the source code and make it
private if the standard version is also supplied with the modified files; or, if the
modified files have been renamed and the standard version still works. [Ken01]

The Artistic License does not require distributing derivative works under the
same terms when a company uses them internally. [WL01]

3.3.6 The Mozilla Public License

The Mozilla Public License can be regarded as a hybrid of ideas between the
GPL and the MIT/BSD Licenses. MPL-licensed code can be combined with
code under another license.

The MPL divides a software work into an Open Source part (called “Covered
Code”) and anything a contributor adds. The arrangement allows any developer
to add his own files and distribute them with the covered code, provided he does
not modify the covered code. However, if he does modify the covered code, he
must distribute the modified code under MPL.

The MPL is considered one of the better drafted Open Source licenses and is used
in many open source projects including the popular Firefox browser. [Cha05]

3.3.7 The Common Public License (CPL)

Introduced by IBM, the Common Public License has some terms that are similiar
to the GNU General Public License. However, there are significant differences.
The first one is that one may compile a program under the CPL without modifi-
cation and license it under a proprietary license. The second one is that the CPL
requires the contributor to grant a royalty-free license to all recipients.

As in the GPL, the CPL imposes to make the source code to the modified pro-
grams available. [Wika] [webb]

The Eclipse Public License (EPL) is a license derived from the Common Public
License. The difference between the CPL and the EPL is that the EPL does not
terminate any patent licenses granted by a Contributor to a recipient, if this
recipient has instituted a patent litigation against the mentioned contributor.
[weba]

3.4. MIXING CODE FROM DIFFERENT LICENSES 21

3.3.8 The Common Development
and Distribution License (CDDL)

The Common Development and Distribution License is based on the Mozilla
Public License and makes it reusable without modification. The CDDL is a
copyleft license that provides open source protections and freedom and also enable
creation of larger works for commercial purposes.

The CDDL allows files released under CDDL to be linked with files released under
other licenses. The MPL license allows the same practice, but unfortunately, the
MPL is not a “template” license allowing reuse by others.

Therefore, Solaris found it necessary to create the CDDL to license its software
and to have a template for reducing the proliferation of other licenses with similar
clauses to MPL. [webc]

3.3.9 The Q Public License (QPL)

The Q Public License was designed by the Norwegian firm Trolltech to govern
the distribution of its software, the Qt toolkit. The most significant feature is
that QPL requires that the modified Open Source distributions be distributed as
patches. [WL01]

3.3.10 Creative Commons Licenses: Extending the Open
Source philosophy

The Creative Common Licenses were not written for use in connection with soft-
ware. However, it is interesting to mention them since they are designed to
encourage creators of works to make their work available for public use. The
Creative Common Licenses provide a solid basis for licensing the “Open Source”
use of texts, music, web sites and films. [St.04]

3.4 Mixing code from different licenses

It is possible to mix code from different licenses provided they do not contain
incompatible clauses. As mentioned in section 2.3.2 page 12, Open Source li-
censes may be incompatible since the Open Source Definition is not a standards
definition.

22 CHAPTER 3. OPEN SOURCE LICENSES

Given that the GPL is the most popular Open Source license, it is interesting to
show what licenses are compatible with the GPL. See table 3.2.

Open Source License GPL-compatible

GNU Lesser General Public License X
MIT License X
BSD License (current version) X
Apache 2.0 ×
Artistic License (original version) ×
Mozilla Public License ×
Common Public License ×
Eclipse Public License 1.0 ×
Common Development Distribution License ×
Q Public License ×

Table 3.2: Licenses compatibility with GPL

3.5 Summary

In this chapter, the most representative Open Source Licenses have been ex-
plained, taking into consideration the main features of each license. The table
3.3 obtained from Sau Sheong Chang [Cha05] is a good comparison between the
rights that some of the explained licenses grant.

3.5. SUMMARY 23

F
re

ed
om

s
or

R
es

tr
ic

ti
on

s
P

ub
lic

M
IT

/
A

pa
ch

e
A

pa
ch

e
A

rt
is

ti
c

M
P

L
1.

1
G

P
L

L
G

P
L

C
lo

se
d

So
ur

ce
D

om
ai

n
B

SD
1.

1
2.

0

H
as

co
py

ri
gh

t
ow

ne
r

×
X

X
X

X
X

X
X

X
C

op
yr

ig
ht

ac
kn

ow
le

dg
em

en
t

×
X

X
X

X
X

X
X

X
Fr

ee
ly

co
py

an
d

us
e

as
-i
s

X
X

X
X

X
X

X
X

×
D

is
tr

ib
ut

e
m

od
ifi

ed
ve

rs
io

ns
w

it
h

th
e

sa
m

e
lic

en
se

X
X

X
X

X
X

X
X

×
D

is
tr

ib
ut

e
m

od
ifi

ed
ve

rs
io

ns
un

de
r

th
e

sa
m

e
lic

en
se

X
X

X
X

X
×

×
×

×
L
in

k
w

it
h

co
de

un
de

r
di

ffe
re

nt
lic

en
se

X
X

X
X

X
X

×
X

×
M

us
t

in
cl

ud
e

so
ur

ce
co

de
in

th
e

di
st

ri
bu

ti
on

×
X

X
X

X
X

X
X

×
G

ra
nt

s
lic

en
se

e
pa

te
nt

ri
gh

ts
×

×
×

X
×

×
X

X
×

D
is

cl
ai

m
er

of
w

ar
ra

nt
y/

lim
it

at
io

n
of

lia
bi

lit
y

×
X

X
X

X
X

X
X

X
N

on
-e

nd
or

se
m

en
t

pr
ov

is
io

n
×

×
X

X
×

X
×

×
N

A
R

ec
ip

ro
ci

ty
ob

lig
at

io
ns

fo
r

de
ri

va
ti

ve
w

or
ks

×
×

×
×

×
X

X
X

×
(c

op
yl

ef
t)

N
um

be
r

of
w

or
ds

in
lic

en
se

do
cu

m
en

t
(c

om
pl

ex
it
y

N
A

16
7

/
29

4
15

81
77

1
36

66
29

56
40

20
V

ar
ie

d
of

th
e

lic
en

se
)

22
2

T
ab

le
3.

3:
Fr

ee
an

d
op

en
so

ur
ce

lic
en

se
ri

gh
ts

m
at

ri
x

Chapter 4

Advantages, Disadvantages and
Consequences of Open Source
Licensing

4.1 Why use an open Source License?

The unlimited improvement of software is a major key of the Open Source prod-
ucts. However, why would a software company be interested in releasing its
products under Open Source Licenses? Even though this company cannot get
revenues using traditional software licenses and fees, it can find other ways of
generating revenues and profits based on the value it provides to its customers:
[Hec99]

• Support Sellers: Revenue comes from media distribution, branding, train-
ing, consulting, custom development, and post-sales support.

• Loss Leader: A no-charge Open Source product is used as a loss leader for
traditional commercial software.

• Accessorizing: A company distributes books, computer hardware, and other
physical items associated with and supportive of Open Source Software.

• Service Enabler: Open Source Software is created and distributed primarily
to support access to revenue-generating online services.

• Brand Licensing: One company charges other companies for the right to
use its brand names and trademarks in creating derivative products.

25

26CHAPTER 4. ADVANTAGES, DISADVANTAGES AND CONSEQUENCES

• Sell It, Free It: A company’s software products start out their product life
cycle as traditional commercial products and then are continually converted
to Open Source products when appropriate.

• Software Franchising: This combines several of the preceding models (in
particular Brand Licensing and Support Sellers). A company authorizes
others to use its brand names and trademarks in creating associated or-
ganizations doing custom software development in particular geographic
areas or vertical markets. The company might also supply franchises with
training and related services in exchange for franchise fees of some sort.

4.2 Which is the best license for a

specific project?

There are several kinds of licenses, but how can we know which one we should use
to release our software? Lawrence Rosen, an attorney and computer specialist
who was executive director and general counsel for the Open Source Initiative,
posed several questions that a company should ask itself in order to decide what
kind of license is better for its business. [Ros01]

• Do you intend to make money from licensing the software or from providing
ancillary services like installation and training?

Answer: proprietary software.

• What degree of freedom are you willing to grant to your licensees to modify
your software?

Answer:

– BSD-type imposes virtually no restrictions on licenses; they can mod-
ify the licensed software and create proprietary versions without re-
striction.

– GPL-type rquires the licensee’s modifications to be licensed back under
the same license; this is good for community contribution.

– MPL-type imposes an intermediate level of freedom; modifications to
individual files containing licensed code must be licensed back; but
new files that simply work with the licensed code need not to be.

• Are you willing to grant warranties that the software will be “merchantable”
or “fit for a particular purpose”?

4.2. WHICH IS THE BEST LICENSE FOR A SPECIFIC PROJECT? 27

Answer: If the software is royalty-free, you probably can’t afford a warranty.
However, you can charge your Open Source Software to provide warranties
and other services.

• Is your software so well known that the main asset you need to protect is
your trademark rather than your code?

Answer: Apache License is an excellent example. You are allowed to do
almost everything with the Apache code, but you will have to change the
name. If you have a trademark to protect, make sure your license contains
appropriate terms relating to that.

• Have you considered the possibility of Dual Licensing?

Answer: you may want to license your software under GPL and simulta-
neously provide a proprietary version for those of your customers who are
afraid of the GPL’s inheritance features; this can be treated as a revenue
opportunity.

• Have you considered using different licenses for different parts of your soft-
ware?

Answer: client software might be distributed under an MPL-like license, but
server software might be distributed under a proprietary license. That way,
you could make money from the bigger customers that will pay to license
your server software, and simultaneously build a large customer base with
free clients.

• What is it about your software that you are really trying to protect? Is it
the code itself, or the standards that are implemented using that software?

Answer: A license like SISSL (Sun Industry Standards Source License) al-
lows anyone to develop modifications of licensed software as long as the li-
censee complies with all requirements set out by a standards body; a licensee
who elect not to comply with the specification must publish a royalty-free
reference implementation of the modifications so that the standard cannot
be abducted by another company.

• Are there any patents that relate to your software?

Answer: if so, you will have to consider licensing your patents along the
code.

All these questions are not enough to correctly choose the right Open Source
License for some specific software. It is true that they give a good idea about
how to face the problem of the license choice. It is also true that more details
about the consequences of choosing each licenses will be exposed. However, if

28CHAPTER 4. ADVANTAGES, DISADVANTAGES AND CONSEQUENCES

the reader wants to release a product under an Open Source License, we suggest
that he ask for advice from specialists in Open Source Licenses.

4.3 Consequences of Restrictive and Permissive

Licenses: A first approach

Before starting to explain the main reasons to use one or another license, it is
interesting to look at the conclusions found by Lerner and Tirole [LT05] and by
Fershtman and Gandal [FG05]:

• Projects geared toward end-users tend to have restrictive licenses, while
those oriented toward developers are less likely to do so.

• Projects that are designed to run on commercial operating systems and
whose primary language is English are less likely to have restrictive licenses.

• Projects that are likely to be attractive to consumers -such as games- and
software developed in a corporate setting are more likely to have restrictive
licenses.

• Projects with permissive licenses attract more contributors.

• The output per contributor is much higher when licenses are less restrictive.

• On average, firms that employ software with restrictive licenses supply fewer
proprietary products than firms that employ software with less restrictive
licenses.

From these conclusions, we can extract that a company should use permissive
licenses if it wants a large number of developers to help improve its software.
Furthermore, the work of each developer will be also higher since the output per
contributor is higher with permissive licenses.

However, if a company wants to release software geared toward end-users, it
would be reasonable that it uses restrictive licenses, since the projects derived
from this software are also under restrictive licenses (containing copyleft clauses).

In addition to this, it is important to note that permissive licenses allow source
code to become proprietary and their derivative works do not need to be under
the same license. Therefore, a company can be damaged if it releases source code
under permissive licenses and a competitor takes advantages of it.

4.4. CONSEQUENCES AND REASONS 29

4.4 Specific consequences of each license and

the reasons to use it

4.4.1 Reasons to use the GPL

The main reasons to use the GPL: [Ing]

• The code developed in a GPL project will stay GPL forever and nobody
will be able to use your source code in his/her own proprietary software.

• Dual Licensing is possible, providing (in exchange for money) an alternative
license for those who not accept the GPL requirements.

See the subsection 4.4.6 page 31 to see how the GPL-source code cannot remain
available in Web Services. However, this problem might be resolved in the new
version of the GPL license (GPLv3) that should appear within this year. [Ing]

4.4.2 Reasons to use the LGPL

The main reason to use the LGPL license is to allow the “normal use” of the
Open Source Software by everyone. Even though it lets users extend the LGPL
source with proprietary modules, it is very convenient for a library that will be
used for many different applications. [Ing] [WL01]

Richard Stallman argues that using the GPL license makes the library available
only for free (and Open Source) programs. Therefore, the use of the GPL for a
library gives Free Software developers an advantages over proprietary develop-
ers. Nevertheless, if the library’s features are available for proprietary software
through other alternative libraries, it is not useful to use the ordinary GPL license
since it does not give Free Software any particular advantage. [Sta99]

4.4.3 Reasons to use the BSD style license

The main reason to use this kind of licenses is its permissiveness. A company
can do whatever it wants with the code. Relicensing with proprietary licenses is
allowed since it is not mandatory to redistribute the source code. Nevertheless, it
is important to verify if the license contains any advertising clause that requires
to give the appropriate credit to the copyright holders of the copied code. [Ing]

30CHAPTER 4. ADVANTAGES, DISADVANTAGES AND CONSEQUENCES

4.4.4 Reasons to use the CPL

The main reasons to use the CPL are that: [webb]

• It is possible to make proprietary versions of the CPL code unless it has
been modified.

• It is also allowed to link the CPL code with proprietary modules.

• It is only mandatory to redistribute the CPL source code if it has been
modified.

• The improvements of the source code will be always available.

It is important to note that an enterprise that modifies the CPL code cannot
keep it proprietary since it is mandatory to redistribute the modified CPL-source
code.

4.4.5 Reasons to use the CDDL

The main reasons to use the CDDL are that: [webc]

• It is a copyleft license that protects the files licensed under CDDL from
becoming proprietary.

• It is possible to create proprietary programs linking proprietary modules
with CDDL code since the non CDDL files do not need to be licensed
under the CDDL.

4.4.6 Reasons to use the other licenses

Some of the licenses explained in the section 3.3 have not been exposed in this
section. According to the Open Source Initiative, some of them have been su-
perseded and others are redundant with more popular licenses1. There are also
licenses that are not reusable because they are related to a specific software prod-
uct or company2.

In addition, it is important to note that the use of some licenses can be assessed
based on for their vast use in similar projects. A well-known license in the

1The Mozilla Public License and the Apache Software licenses are examples of superseded
licenses.

2The Nokia Open Source License is an example of a non-reusable license.

4.4. CONSEQUENCES AND REASONS 31

developer community will be more attractive for developers than another license
that is not.

Web Server Licenses

Even though Web Server Licenses are not among the most popular, it is interest-
ing to see when they can be useful.

The Affero General Public License3 is a Web Server License. The Affero
General Public License is identical to the GPL, but with the added requirement
that publishing the software as a web service also requires providing an opportu-
nity for users to download the source code. Under a GPL license, if the code is
published as a webserver for users to enjoy, it is not necessary to distribute the
source code, since there is no redistribution of software to the users. [Ing]

3The Affero General Public License is a Free Software license, but not an Open Source
License.

Chapter 5

Controversial issues and trends

Open Source Licenses have been created to extend and preserve users’ rights.
However, some problems may arise due to the way that Open Source Licenses
have been redacted and the fact that different countries have different laws. There
are also critical points related to the development model and the trustworthiness
of Open Source Software for consumers. This chapter will thus present and
explain important controversial issues and interesting trends.

5.1 Open Source Licenses - copyright license or

contract?

If Open Source licenses are copyright licenses or legal contracts is yet to be de-
termined. Although both legal contracts and copyright licenses have different
enforcements (one which is covered through the contract itself, and the other
which is through copyright legislation), both enforce the same terms and condi-
tions of the licenses. However, one noticeable difference is that without a legal
contract, licensors can revoke their licenses at any point in time, subject to eq-
uitable rules. This has some serious repercussions if the software is already well
known in the market as the licensor is not obliged to continually provide the
software under the same license.

In addition to this, it is not clear if all Open Source licenses can be considered
valid contracts, althought similar to closed source licenses have been accepted as
valid contracts, albeit controversially. Interestingly, if a contract does not exist
for Open Source licenses, sometimes copyright laws of certain countries impose a
harsher criminal offence on copyright infringers; therefore it would seem that it
is to the benefit of the licensee not to use this as a defense against enforceability

33

34 CHAPTER 5. CONTROVERSIAL ISSUES AND TRENDS

of Open Source Software licenses. [Cha05]

5.2 Cross-jurisdictional issues in Open Source

licenses

A major issue with the copyright is the issue with the applicability of the law
in different countries. Copyright laws are territorial and generally do not cross
borders: [Cha05]

1. Most Open Source licenses are written in English and in fact assume certain
facts that are only applicable in US laws. However, in many countries, there
are laws that mandate the use of the national language for legal documents
including licenses and contracts.

2. Legal background which copyright law is derived from. In countries that
derive laws from English legal system, copyright arose from the economic
rights of copywriters and publishers while most continental European coun-
tries derive copyright from the concept of droit d’auteur, which focuses on
the moral rights of the original author.

3. Warranties and disclaimers. In certain countries, especially European coun-
tries, general disclaimers are not valid in a contract due to provisions for
unfair terms in contracts.

4. The possible different interpretation of derivative works across different
countries.

5.3 Other critical issues and trends

1. The exclusion of warranties for software defects in most Open Source li-
censes should cause organizations considering the adoption of Open Source
Software to carefully consider how quality and reliability can be assured.

2. Since the enhancement of reputation is an important motivating factor in
Open Source Software development, software authors might benefit from
more uniform international recognition of their right to assert authorship
and their right to avoid derogatory treatment as author of a work.

3. Quality and reliability characteristics of Open Source Software raise con-
cerns for organizations in areas where certification is needed such as in

5.3. OTHER CRITICAL ISSUES AND TRENDS 35

mission-critical activities or medicine. The lack of formal tools for testing
should lend a note of caution to those considering the use of Open Source
Software.

4. An organization that has been granted a software patent for some algo-
rithm or implementation is granted the rights to charge royalties for use, or
may force others to cease distribution of software that employs the scheme
covered by the patent. Open Source Software is vulnerable to this form of
restriction since all source code is publicly-available.

5. Peer-review of public software is an advantage, but successful outcomes still
depend on the motivation of properly-skilled individuals to methodically
study, probe and fix Open Source Software problems. [Fle04]

6. Open Source Licenses do not provide that the licenses are perpetual. This
omission may cause problems at a later point when a court determines
that an Open Source License respect to a program has expired because the
“reasonable” duration is over. [Ken01]

Chapter 6

Conclusions

Licensing is an important aspect of Open Source Software. Although all Open
Source Software has common characteristics (defined by the Open Source Initia-
tive), there are several kinds of licenses. We can classify them depending on its
redistribution requirements:

• Permissive licenses (such as the BSD) impose virtually no restrictions on
licenses and it is possible to modify the licensed software and create pro-
prietary versions without restriction.

• Restrictive licenses (such as the MPL) impose an intermediate level of free-
dom since modifications to individual files containing licensed code must
be relicensed under the same terms, but new files that simply link to the
licensed code do not need to be.

• Highly restrictive licenses (such as the GPL) require that any derivative
work or any work that links to the licensed code must be relicensed under
the same terms. It is good for community contribution.

Depending on the business, it should be better to use one or another type of
licenses. When a company owns all the rights to specific software, Dual Licensing
is possible, and consists in releasing software under different licenses. Companies
can take different kind of benefits thanks to the different licenses terms.

As seen in the chapter 4, a company should use permissive licenses if it wants a
large number of developers to help improve its software. Furthermore, the work of
each developer will be also higher since the output per contributor is higher with
permissive licenses. However, a company can be damaged if it releases source
code under permissive licenses and a competitor takes advantages of it.

37

38 CHAPTER 6. CONCLUSIONS

If a company wants to release software geared toward end-users, it would be
reasonable that it uses restrictive licenses, since the projects derived from this
software are also under restrictive licenses.

As explained in the chapter 5 some problems may arise due to the way that Open
Source Licenses have been redacted and the fact that different countries have
different laws. Disclaimer clauses are not allowed in many countries and they
also have a negative impact on the confidence that users give to Open Source
Software.

Part III

Thesis Development

39

Chapter 7

Overview of the Thesis
Development

This part of the thesis contains an overview of the development of the thesis. To
document it, we find interesting to start explaining what a critical review is, its
steps and what kind of data we can extract with it. Afterwards, we will explain
in detail all the steps followed to write this thesis.

It is important to mention that the thesis development has been based on the
paper: “Procedures for Performing Systematic Reviews” by Barbara Kitchenham
[Kit04]. Actually, the following sections of this chapter summarize the most
important points of a critical review exposed by Kitchenham.

7.1 What is a Critical Review?

A critical review is a means of evaluating and interpreting all available research
relevant to a particular research question, topic, area or phenomenon of interests.
It contains three phases:

• planning the review

• conducting the review

• reporting the review

41

42 CHAPTER 7. OVERVIEW OF THE THESIS DEVELOPMENT

7.1.1 Importance of a Critical Review

A critical review synthesizes existing work in manner that is fair and seen to be
fair.

7.1.2 Feature of Critical Reviews

• Critical reviews start by defining a review protocol that specifies the re-
search question being adressed and the methodes that will be used to per-
form a review.

• Critical reviews are based on defined search strategy that aims to detect as
much of the relevant literature as possible.

• Critical reviews document their search strategy.

• Critical reviews require explicit inclusion and exclusion criteria to asses each
potential primary study.

• Critical reviews specify the information to be obtained from each primary
study including quality criteria by which to evaluate each primary study.

7.2 The Review Process

The stages associated with planning the review are:

1. Identification of the need for a review

2. Development of a review protocol

The stages associated with conducting the review are:

1. Identification of the research

2. Selection of primary studies

3. Study quality assessment

4. Data extraction and moinioring

5. Data synthesis

Reporting a review is a single stage phase.

7.3. PLANNING 43

7.3 Planning

The need for a critical review arises from the requirement of researchers to sum-
marize all existing information about some phenomenon in a thorough and unbi-
ased manner. This may be in order to draw more general conclusion about some
phenomenon than is possible from individual studies, or as a prelude to further
research activities. Prior to undertaken a critical review, researches should ensure
that a critical review is necessary. See the following checklist:

• What are the review’s objectives?

• What sources were searched to identify primary studies? Were they any
restrictions?

• What were the inclusion/exclusion criteria and how were they applied?

• What criteria were used to assess the quality of primary studies and how
were they applied?

• How were the data extracted from the primary studies?

• How were the data synthesized? How were differences between studies
investigated? How were data combined? Was it reasonable to combine the
studies? Do the conclusions flow from the evidence?

7.3.1 Development of a review Protocol

A review protocol specifies the methods that will be used to undertake a spe-
cific critical review. A pre-defined protocol is necessary to reduce the possibility
researcher bias.

The components of a protocol:

• Background. The rationale for the survey.

• The research question that the review is intended to answer.

• The strategy that will be used to search for primary studies including search
terms and resources to be searched, resources include databases, specific
journals, and conference proceedings. An initial scoping study can help
determine an appropriate strategy.

44 CHAPTER 7. OVERVIEW OF THE THESIS DEVELOPMENT

• Study selection criteria and procedures. Study selection criteria determine
criteria for including in, or excluding a study from, the critical review. It is
usually helpful to pilot the selection criteria on a subset of primary studies.
The protocol should describe how the criteria will be applied.

• Study quality assessment checklists and procedures. The researchers should
develop quality checklists to assess the individual studies. The purpose of
the quality assessment will guide the development of checklists.

• Data extraction strategy. This should define how the information required
from each primary study would be obtained. If the data require manipula-
tion or assumptions and inferences to be made, the protocol should specify
an appropriate validation process.

• Synthesis of the extracted data. This should define the synthesis strategy.
This should clarify whether or not a formal meta-analysis is intended and
if so what techniques will be used.

• Project timetable. This should define the review plan.

7.3.2 The Research Question

A critical issue in any critical review is to ask the right question.

7.3.3 The Review Protocol

PhD (or master) students should present their protocol to their supervisors for
review and criticism.

7.4 Conducting the review

7.4.1 Identification of the Research

Generating a search strategy:

• Reference list from relevant primary studies and review articles.

• Journals, grey literature and conference proceedings.

• Research registers.

7.5. FINAL REMARK 45

• The Internet. It is also important to identify specific researchers to ap-
proach directly for advice on appropriate source material.

Documenting the Search:

• The review must be documented in sufficient detail for readers to be able
to assess the thoroughness of the search.

• The search should be documented as it occurs and changes noted and jus-
tified.

• The unfiltered search results should be saved and retained for possible re-
analysis.

• Study selection criteria are intended to identify those primary studies that
provide direct evidence about the research question.

• Contents of Data Collection Forms

– Name of the review

– Date of Data extraction

– Title, authors, journal, publication details

– Space for additional notes

7.5 Final remark

In the case of a single research (such as PhD student), the most important steps
suggested to undertake are:

• Developing a protocol

• Defining a research question

• Specifying what will be done to address the problem of a single researcher
applying inclusion/exclusion criteria undertaking all the data extraction.

• Defining the research strategy.

• Defining the data to be extracted from each primary study including quality
data.

• Maintaining lists of included and excluded studies.

• Using the data synthesis guidelines.

• Using the reporting guidelines

Chapter 8

The Review Process

After having explained the different steps to perform a critical review, we can
proceed to explain and document the specific review related to this thesis.

8.1 The Review Protocol

8.1.1 Background

As explained in the introduction, Open Source Licensing is a crucial issue of the
Open Source Movement. There are many licenses and the consequences of using
one or another are very different.

Many papers discuss Open Source Software. However, very few discuss the spe-
cific topic of the Open Source Licensing. Therefore, we considered that it was
very interesting to perform a critical review of the existing literature linked to
the Open Source Licensing in order to better understand the topic.

8.1.2 The Research Question

The Research Question that we wanted to answer was:

Research Question: What are the different Open Source Licenses
and what are their consequences?

47

48 CHAPTER 8. THE REVIEW PROCESS

8.1.3 Search Strategy

Reliable Sources

To perform the search, it was important to determine the resources that would
be consulted. A list of reliable sources of Software Engineering topics is showed
bellow:

IEEE Xplore (http://ieeexplore.ieee.org/)

• IEEE Computer

• IEEE Software

• Transactions on Software Engineering

ACM Digital Library (http://www.acm.org/)

• International Symposium on Empirical Software Engineering

• International Conference on Software Engineering

• Transactions on Software Engineering and Methodology

Springerlink (http://www.springerlink.com)

• Empirical Software Engineering

ScienceDirect (http://www.sciencedirect.com/)

• Information and Software Technology

BRINT database (http://portal.brint.com/)

Google scholar (http://scholar.google.com/)

CiteSeer (http://citeseer.ist.psu.edu/)

Key Words

We also defined the key words to find the information in the above mentioned
databases. The key words were the following:
open source, oss, license, licensing, consequences, implications, survey, review.

8.1. THE REVIEW PROTOCOL 49

Inclusion/Exclusion criteria

Finally, we defined the inclusion/exclusion articles criteria:

How to include or exclude an article?

• Reading the title article and the abstract

– Does the abstract mention issues linked to OSS1 licensing?

∗ YES - First look at the full text looking for the parts that talk
about OSS licensing.

· Does it give useful information for our Research question?
YES - Article Included
NO - Article Excluded

∗ NO - Article Excluded

• Reading the references of already selected articles, we could also find more
articles

Analysis and classification

The important data to be recorded for each selected article / paper / book was:

• Title

• Author

• Publisher / Journal / Conference

• ISSN number

• Year

• Month

• Pages

• Topic

• Date of Data extraction

• Why I included this

• Time needed for analysis

1Open Source Software.

50 CHAPTER 8. THE REVIEW PROCESS

• Summary - synthesis of the main points of the text making emphasis in the
OSS licensing part.

8.2 Documenting the search

After having defined the review protocol, we could start the research process. We
started consulting the mentioned databases, and the number of papers found was
very disappointing.2 See tables 8.1 and 8.2.

Journals / Conferences / Transactions Documents found Total %

IEEE Computer 3 476712* 0,0
IEEE Software 13 476712* 0,0
Transactions on Software Engineering 0 476712* 0,0

* Documents of different publications mixed.

Table 8.1: Documents found in the IEEE Explorer database using the key words:
open source licenses

Journals / Conferences / Transactions Documents found Total %

IEEE Computer 0 476712* 0,0
IEEE Software 0 476712* 0,0
Transactions on Software Engineering 0 476712* 0,0

* Documents of different publications mixed.

Table 8.2: Documents found in the IEEE Explorer database using the key words:
survey licenses

The results obtained in the first consulted database were very poor. We had only
found 16 documents. However, it did not mean all of them were useful for our
research. We had to include or exclude them to our review following the criteria
defined in the Review Protocol.

Using the other databases and other key words, we tried to find more articles.
The results were not much better. However, it is interesting to note the results
found on Transactions on Software Engineering and Methodology and Interna-
tional Conference on Software Engineering. See tables 8.3 and 8.4.

2The Search was performed at the end of February 2007.

8.2. DOCUMENTING THE SEARCH 51

Journals / Conferences / Transactions Documents found Total %

Trans. on Software Engineering and Methodology 102 258 39,5
International Conference on Software Engineering 860 2950 29,1

Table 8.3: Documents found in the ACM Digital Library database using the key
words: open source licenses

Journals / Conferences / Transactions Documents found Total %

Trans. on Software Engineering and Methodology 35 258 13,5
International Conference on Software Engineering 337 2950 11,4

Table 8.4: Documents found in the ACM Digital Library database using the key
words: survey licenses

In the first moment, we thought that the results obtained from the ACM database
were much better. However, after performing the inclusion and exclusion criteria,
few documents were kept for a posterior analysis.

The other key words mentioned in the Review Protocol and combinations of
them were used in order to find more documents. We did not record all these
researches, but the obtained results were not satisfying either.3

After having summarized some of the articles, we decided to proceed with the
data collection throughout the articles references.

8.2.1 Classification of the articles

When an article, paper or book passed the criteria for being studied in this critical
review, all the important data were recorded in a table.4 See figures A.1, A.2,
A.3 in the appendix (page 66).

After recording an article, it was analyzed. This analysis consisted in a carefully
reading and a posterior summary of the article. However, since the extracted
information had to be useful to answer the research question, there were long

3During the time of collecting data, I was more worried about trying to find more documents
than recording searches. This is the reason why I do not show more searches in this report.

4All electronic documents were stored.

52 CHAPTER 8. THE REVIEW PROCESS

articles which contained very little information and their summaries were much
more shorter than other shorter articles that contained much more interesting
information for this research.

See appendix B page 69 to see all the summaries. Books were only underlined
and not summarized, because of their length.

8.3 Reporting the results

After having done the research of articles and extracted their most important
information related to the research question, we had to write the results. As seen
in part II, the answer to our research question has been reported.

In order to write the results, we started by thinking what we wanted the reader
to learn with this thesis. Afterwards, using the different summaries and extra
data obtained from the Internet, the Open Source Licensing part was performed.

8.3.1 Problems with reporting the results

The Research Question was “What are the different Open Source Licenses and
what are their consequences?”. However, were the articles found enough to fully
answer this question?

We decided to explore the Open Source Initiative web site to see what were the
different Open Source licenses accepted at the present time. We found that some
of the most relevant licenses, such as the CPL and the CDDL, had not been
explained in the articles found.

Therefore, searching on the Internet, interesting data related to those licenses
were found and reported. We visited the official web sites of the licenses creators.

Part IV

Conclusions

53

Chapter 9

Conclusions

Through this thesis, the results of a critical review of Open Source Software
literature have been presented. Since Open Source Software has different aspects
and the thesis had to be performed in one semester, we focused the review on
Open Source Licensing.

In order to find relevant information to answer the question “What are the dif-
ferent Open Source Licenses and what are their consequences?”, we established a
specific protocol to assure the validity of the data and to avoid bias. We decided
to follow the steps explained in “Procedures for Performing Systematic Reviews”
[Kit04].

We found some relevant articles related to Open Source Licensing that helped us
to answer our research question. However, we think that a good work could not
have been done if we had not visited web sites not defined in our protocol. Was
it a mistake to not follow the protocol in some specific cases?

A critical review has to be performed throughout the analysis of primary studies.
However, we did not have enough primary studies to write a consistent report
answering our research question. We did not analyze licenses to extract conclu-
sions, since we are not expert attorneys, but we tried to find the necessary data
on the Internet. Principally, we obtained the information from official pages of
the licenses creators.

In short, this thesis is a well-documented work aimed to explain the main Open
Source Licenses and consequences of their use. If we did not make any mistake
defining the protocol, the information reported in this thesis must be reliable.
It is true that we allowed some exceptions to the protocol, but we were always
taking into account the reliability of the sources with the main goal of improving
the content of the thesis.

55

Glossary

Contract: an official written agreement.

Copyleft: the distribution terms of the source code must be maintained.

Copyright: if a person or an organization holds the copyright on a piece of
writing, music, etc., that person or organization is the only one who has
the legal right to publish, broadcast, perform it etc., and others must obtain
their permission to use it or any part of it.

Critical review: a means of evaluating and interpreting all available research
relevant to a particular research question, topic, area or phenomenon of
interests.

Derivative work: a work based upon one or more preexisting works.

Dual Licensing: to release the same software product under different license
terms.

Free Software: software that can be used, studied, and modified without re-
striction, and which can be copied and redistributed in modified or unmod-
ified form either without restriction, or with certain requirements to ensure
that further recipients also have these freedoms.

Freeware: copyrighted computer software which is made available for use free
of charge, for an unlimited time.

License: an official document that shows that permission has been given to do,
own or use something.

Open Source Software: software whose source code is available under a license
(or arrangement such as the public domain) that permits users to use,
change, and improve the software, and to redistribute it in modified or
unmodified form.

Patent: an official right to be the only person to make, use or sell a product or
an invention.

57

58 CHAPTER 9. CONCLUSIONS

Public Domain: comprises the body of knowledge and innovation (especially
creative works such as writing, art, music, and inventions) in relation to
which no person or other legal entity can establish or maintain proprietary
interests within a particular legal jurisdiction.

Shareware: copyrighted computer software, accompanied with a request of pay-
ment, which is made available for use free of charge during a limited period.

Trademark: a name, symbol or design that a company uses for its products and
that cannot be used by anyone else.

Bibliography

[Agr02] P. Agrain. A framework for understanding the impact of GPL copy-
lefting vs. non copylefting licenses. 2002.

[Ane99] J. Anez. The true meaning behind open source licenses. 1999.
Online: http://www.suigeneris.org/writings/1999-10-04.html,
accessed on March 24th, 2007.

[Cha05] S. S. Chang. Copyright and Open Source Software Licensing. 2005.
Online: http://law.bepress.com/expresso/eps/773, accessed on
March 24th 2007.

[Cue05] L.É. Cuellar. Open source license alternatives for software applications:
is it a solution to stop software piracy? 2005. ACM Southeast Regional
Conference. Proceedings of 43rd annual southeast regional conference.

[Dav01] R. Davis. The digital dilemma. 2001. Communications of the ACM.

[FG05] C. Fershtman and N. Gandal. Open Source Projects: Output per Con-
tributor and Restrictive Licensing. 2005.

[Fit06] B. Fitzgerald. The transformation of Open Source Software. MIS Quar-
terly, 2006.

[Fle04] S. Flemming. Open Source Intellectual Property Rights. Issues and
Trends. 2004. Online:
http://www.cs.otago.ac.nz/research/publications/oucs-2004-

14ver2.pdf, accessed on March 24th, 2007.

[FSF] GNU Project. The Free Software Foundation. Why ”Free Software” is
better than ”Open Source”. Online:
http://www.gnu.org/philosophy/free-software-for-

freedom.html, accessed on May 23rd 2007.

[Hec99] F. Hecker. Setting up the shop: The business of opensource software.
IEEE Software, 1999.

59

60 BIBLIOGRAPHY

[Ing] H. Ingo. Open Source Licensing.
Online: Online:http://www.asptoday.com/Content.aspx?id=2397,
accessed on March 26th 2007.

[Ken01] D.M. Kennedy. A Primer on Open Source Licensing Legal Issues: Copy-
right, Copyleft and Copyfuture. 2001.
Online: http://www.denniskennedy.com/opensourcedmk.pdf, ac-
cessed on March 24th 2007.

[Kit04] B. Kitchenham. Procedures for Performing Systematic Reviews. Tech-
nical report, Software Engineering Group Department of Computer Sci-
ence Keele. University Keele, 2004.

[LT05] J. Lerner and J. Tirole. The scope of Open Source Licensing. Journal
of Law, Economics and Organization, 2005.

[OV02] V. Oksanen and M. Välimaki. Evaluation of Open Source licensing
models for a company developing mass market software. 2002. Helsinki
Institute for Information Technology.

[Oz98] E. Oz. Acceptable protection of software intellectual property. a survey
of software developers and lawyers. Information & Management, 1998.

[Pau04] L.D. Paulson. Open Source databases move into the marketplace. IEEE
Computer, 2004.

[PTFSF] GNU Project. The Free Software Foundation. The Free Software Def-
inition.
Online: http://www.gnu.org/philosophy/free-sw.html, accessed
on May 20th 2007.

[Ros98] D. Rosenberg. Evaluation of public software licenses. 1998.
Online: http://www.stromian.com/Public_Licenses.html, ac-
cessed on March 20th 2007.

[Ros01] L. Rosen. Which Open Source license should i use for my software?
Online:
http://www.rosenlaw.com/html/GL5.pdf, accessed on March 20th,
2007, 2001.

[SI] Open Source Initiative. The Open Source Definition.
Online: http://www.opensource.org/osd.html, accessed on May
20th 2007.

[Sou] Sourceforge.net.
Online: http://sourceforge.net/, accessed on June 4th 2007.

BIBLIOGRAPHY 61

[St.04] A. M. St. Laurent. Understanding Open Source & Free Software Li-
censing. O´Reilly, 2004.

[Sta99] R. Stallman. Why you shouldn’t use the library gpl for your next
library. Online:
"www.gnu.org/philosophy/why-not-lgpl.html, accessed on March
24th, 2007, 1999.

[Ued06] M. Ueda. A Model of Open Source Software Style R&D on Business.
2006. International Conference on Software Engineering Advances.

[Väl05] M. Välimäki. The Rise of Open Source Licensing. A Challenge to the
Use of Intellectual Property in the Software Industry. Turre Legal Con-
sulting, 2005.

[weba] Eclipse website. Eclipse Public License (EPL) Frequently Asked Ques-
tions.
Online: http://www.eclipse.org/legal/eplfaq.php#CPLEPL, ac-
cessed on May 23th 2007.

[webb] IBM website. Common Public License (CPL) Frequently Asked
Questions. Online:
http://www.ibm.com/developerworks/library/os-cplfaq.html,
accessed on May 22th 2007.

[webc] OpenSolaris website. FAQ: Common Development and Distribution
License (CDDL). Online:
http://www.opensolaris.org/os/about/faq/licensing_faq/

#whatis, accessed on May 22th 2007.

[Wika] Wikipedia. Common Public License.
Online: http://en.wikipedia.org/wiki/Common_Public_License,
accessed on May 22th 2007.

[Wikb] Wikipedia. Free Software.
Online: http://en.wikipedia.org/wiki/Free_software, accessed
on May 20th 2007.

[Wikc] Wikipedia. Open Source Software.
Online: http://en.wikipedia.org/wiki/Open_source_software,
accessed on May 20th 2007.

[WL01] Ming-Wei Wu and Ying-Dan Lin. Open Source Software Development:
An overview. IEEE Computer, 2001.

Index

copyleft, 15, 19, 21, 23, 28, 30, 57
copyright, 12, 17–19, 23, 29, 33, 34, 57
Creative Common Licenses, 21

derivative work, 15, 16, 18–20, 28, 34,
37, 57

dual licensing, 18, 27, 29, 37, 57

Free Software, 9, 10, 17, 29, 31, 57
Free Software Foundation, 9, 16
Freeware, 12, 57

Open Source Initiative, 3, 10, 17, 26,
30, 37, 52

Open Source Licenses, 3, 4, 10, 12, 15,
17, 18, 20, 22, 25, 28, 33–35, 38,
52, 55

Apache License, 17, 19, 27
Artistic License, 17, 19, 20, 22
BSD License, 17–20, 22
CDDL, see Common Development

and Distribution License
Common Development and Distri-

bution License, 21, 30, 52
Common Public License, 17, 20, 22,

30, 52
CPL, see Common Public License
Eclipse Public License, 20, 22
EPL, see Eclipse Public License
GNU General Public License, 17–

20, 22, 23, 26, 27, 29, 31, 37
GNU Lesser General Public License,

17, 18, 22, 23, 29
GPL, see GNU General Public Li-

cense

LGPL, see GNU Lesser General Pub-
lic License

MIT License, 17, 19, 22
Mozilla Public License, 17, 20–23,

26, 27, 37
MPL, see Mozilla Public License
Q Public License, 21
QPL, see Q Public License

Open Source Software, 3, 4, 9, 12, 27,
29, 33–35, 37, 38, 47, 55, 57

public domain, 12, 17, 57, 58

Shareware, 12, 58

63

Appendix A

Analysis and classification of the
articles

The first column of each figure is an index to the summary of the article. For
example, the first article “Setting up shop: the business of Open-Source Software”
is summarized in the appendix B, section 1 (B.1).

65

66 APPENDIX A. ANALYSIS AND CLASSIFICATION OF THE ARTICLES

Figure A.1: Classification of articles 1/3

67

Figure A.2: Classification of articles 2/3

68 APPENDIX A. ANALYSIS AND CLASSIFICATION OF THE ARTICLES

Figure A.3: Classification of articles 3/3

Appendix B

Summaries of the articles

B.1 Setting up shop: the business of Open-Source

Software

Frank Hecker
[Hec99]

The author of this article wants to show how companies can take advantage of
giving free software to their customers instead of selling it in the traditional way.

Reading this article, we notice that OSS has many advantages and very few
disadvantages. Using examples such as Netscape or Linux (and GNU-project),
the writer encourages companies to follow similar strategies, since it is important
to know how to motivate and coordinate developers without exerting coercion.

Although you cannot get revenues using traditional software licenses and fees,
you can find other ways of generating revenues and profits based on the value
you are providing to customers:

• Support Sellers: Revenue comes from media distribution, branding, train-
ing, consulting, custom development, and post-sales support.

• Loss Leader: A no-charge Open Source product is used as a loss leader for
traditional commercial software.

• Accessorizing: A company distributes books, computer hardware, and other
physical items associated with and supportive of Open Source Software.

• Service Enabler: Open Source Software is created and distributed primarily
to support access to revenue-generating online services.

69

70 APPENDIX B. SUMMARIES OF THE ARTICLES

• Brand Licensing: One company charges other companies for the right to
use its brand names and trademarks in creating derivative products.

• Sell It, Free It: A company’s software products start out their product life
cycle as traditional commercial products and then are continually converted
to Open Source products when appropriate.

• Software Franchising: This combines several of the preceding models (in
particular Brand Licensing and Support Sellers). A company authorizes
others to use its brand names and trademarks in creating associated or-
ganizations doing custom software development in particular geographic
areas or vertical markets. The company might also supply franchises with
training and related services in exchange for franchise fees of some sort.

The text also provides you few lessons of how implement an OSS strategy talking
about: code sharing, third-party technology, code sanitization, encrypt control
and product development process.

From the point of view of F. Hecker, “Open Source Software is a “new” business
tool that offers the potential to achieve results that are impossible with traditional
software development practices alone”.

B.2 Open source databases move into the mar-

ketplace

Linda Dailey Paulson
[Pau04]

L.D. Paulson, the author of this article, shows several aspects of OSS Databases,
including development, organizational models, cost and licensing advantages.

Furthermore, the reader can see in the article that the adoption of OSS Databases
by enterprises is increasing in a significant way.

To end, we must say that Jeff Jones, director of Strategy for IBM Software
Group’s Information Management Solutions Unit, recognizes that “the Open
Source Movement is getting companies to think about cost effectiveness”.

B.3. A MODEL OF OPEN SOURCE SOFTWARE STYLE R&D ON BUSINESS71

B.3 A model of Open Source Software Style R&D

on business

Masashi Ueda
[Ued06]

Masashi Ueda analyses OSS licenses by cluster analysis and finds the importance
of standards. In his analysis, we can see that over 70% of OSS projects registered
on SorceForge.net adopt the GPL. Due to these results, the author deduces that
perhaps it is important to have a standard. He demonstrates mathematically
his hypothesis showing the reduction of cost achieved using an OSS style R&D
instead of independent R&D.

B.4 Open source license alternatives for Soft-

ware Applications

Is it a solution to stop software piracy?

Luis E. Cuéllar
[Cue05]

Luis É. Cuellar explores licensing options available for OSS and analyzes the
impact of theses licenses on commercial applications. He also suggests that the
OSS is a legal alternative to software piracy and software license infringements
since the motivation behind the illegal duplication of copyrighted software works
could be removed completely.

B.5 The Digital Dilemma

Randall Davis
[Dav01]

R. Davis, a professor in the computer science department at MIT, shows in his
article the problems that intellectual property laws can produce.

The dilemma arises because of the easy mechanisms for reproducing digital in-
formation. The author proposes some suggestions that can help to reduce intel-
lectual piracy, showing in the same time the strengths and weaknesses of each
solution:

72 APPENDIX B. SUMMARIES OF THE ARTICLES

• Technological solution: Encryption, but strong encryption requires substan-
tial costs.

• Business models: think in new business models:

– Give away the product; make money from an auxiliary service.

– Give away the product; sell updates.

– Give away one piece that promotes another (i.e. Adobe Reader).

– Offers extreme customization.

– Offer a mass-market product at a low price and high volume, along
with frequent improvements.

• Multiple perspectives: look the problem from several views (law, technol-
ogy, market, economics, psychology and public policy).

However, any of these solutions are not the panacea. R. Davis says that “Authors
and publishers will continue to do their work in the presence of some unauthorized
reproduction” and emphasizes the difficulty of finding ways to motivate individual
creation at the same time that we preserve benefits of creation for the common
good.

B.6 The transformation of Open Source Soft-

ware

Brian Fitzgerald
[Fit06]

Throughout this paper, Brian Fitzgerald wants to show us the new movement
of OSS that he defines as OSS 2.0. There are substantial differences between its
free software antecedent (FOSS) and the already mentioned OSS 2.0.

The OSS 2.0 searches a balance between the Open Source values and the way
of making money with value-added services related to Open Source projects.
Actually, OSS 2.0 looks for a high-quality product that can be available for all
type of end-users meanwhile in the FOSS projects, FOSS developers were also
the users of the software developed.

In OSS 2.0, the development process becomes less bazaar-like since the strategic
planning becomes very important. Analysis and design are much more planned
and there are developers who are paid for their contribution on OSS.

B.7. OPEN SOURCE PROJECTS: OUTPUT PER CONTRIBUTOR 73

More sophisticated business models have appeared. Customers will want a pro-
fessional service and they will pay for it. In FOSS, support was obtained from
forums or mailing lists and, sometimes, from a competent third-party provider.

Licensing is also an important matter in OSS 2.0. Actually, proprietary compa-
nies have realized of the importance of adopting an OSS strategy and they try
to produce licenses in order to comply with the OSS definition.

B.7 Open Source Projects: Output per Con-

tributor and Restrictive Licensing

C. Fershtman and N. Gandal
[FG05]

The authors of this paper examine how the type of license and other factors
affect output per contributor in Open Source projects. They make a division
between restrictive licenses, “moderately restrictive” licenses and “nonrestrictive”
licenses. They also argue that the different type of licenses may provide different
incentives for developers to participate in Open Source projects and to exert
effort. They demonstrate it concluding that “the output per contributor in Open
Source programs is much higher when licenses are less restrictive. The results also
suggest a status/signaling motivation for participation in Open Source projects
with restrictive licenses”.

It is also important to say that this paper mentions Lerner and Tirole (2005)
study to expose that “open projects that run on commercial operating systems
and projects that are designed for developers tend to use less restrictive licenses,
while projects that are targeted for end users tend to use more restrictive li-
censes”. Furthermore, “on average, firms that employ software with restrictive
licenses supply fewer proprietary products than firms that employ software with
less restrictive licenses”.

B.8 The Scope of Open Source Licensing

Josh Lerner and Jean Tirole
[LT05]

This paper presents an empirical analysis of the determinants of license choices
using the SourceForge database (a compilation of nearly 40.000 Open Source
projects). Throughout this analysis, the authors prove that:

74 APPENDIX B. SUMMARIES OF THE ARTICLES

• Projects geared toward end-users tend to have restrictive licenses, while
those oriented toward developers are less likely to do so.

• Projects that are designed to run on commercial operating systems and
whose primary language is English are less likely to have restrictive licenses.

• Projects that are likely to be attractive to consumers -such as games- and
software developed in a corporate setting are more likely to have restrictive
licenses.

• Projects with unrestricted licenses attract more contributors.

B.9 Open Source & Free Software Licensing

Andrew M. St. Laurent
[St.04]

Not summarized – book

B.10 The Rise of Open Source Licensing - A

Challenge to the Use of Intellectual Prop-

erty in the Software Industy

M.Välimäki
[Väl05]

Not summarized – book

B.11 Which Open Source license should I use

for my software?

Lawrence Rosen
[Ros01]

Lawrence Rosen, an attorney for Open Source companies and projects, writes
several questions that a company should ask itself in order to decide what kind
of license is better for its business. The questions and answers are:

B.11. WHICH OPEN SOURCE LICENSE SHOULD I USE FOR MY SOFTWARE?75

• Do you intend to make money from licensing the software or from providing
ancillary services like installation and training?

Answer: proprietary software.

• What degree of freedom are you willing to grant to your licensees to modify
your software?

Answer:

– BSD-type imposes virtually no restrictions on licenses; they can mod-
ify the licensed software and create proprietary versions without re-
striction.

– GPL-type rquires the licensee’s modifications to be licensed back under
the same license; it is good for the community contribution.

– MPL-type imposes an intermediate level of freedom; modifications to
individual files containing licensed code must be licensed back; but
new files that simply work with the licensed code need not to be.

• Are you willing to grant warranties that the software will be “merchantable”
or “fit for a particular purpose”?

Answer: If the software is royalty-free, you probably can’t afford a warranty.
However, you can charge your Open Source Software to provide warranties
and other services.

• Is your software so well known that the main asset you need to protect is
your trademark rather than your code?

Answer: Apache license is an excellent example. You are allowed to do
almost everything with the Apache code, but you will have to change the
name. If you have a trademark to protect, make sure your license contains
appropriate terms relating to that.

• Have you considered the possibility of dual licensing?

Answer: you may want to license your software under GPL and simulta-
neously provide a proprietary version for those of your customers who are
afraid of the GPL’s inheritance features; this can be treated as a revenue
opportunity.

• Have you considered using different licenses for different parts of your soft-
ware?

Answer: client software might be distributed under an MPL-like license, but
server software might be distributed under a proprietary license. That way,
you could make money from the bigger customers that will pay to license
your server software, and simultaneously build a large customer base with
free clients.

76 APPENDIX B. SUMMARIES OF THE ARTICLES

• What is about your software that you are really trying to protect? Is it the
code itself, or the standards that are implemented using that software?

Answer: A license like SISSL allows anyone to develop modifications of
licensed software as long as the licensee complies with all requirements set
out by a standards body; a licensee who elect not to comply with the
specification must be publish a royalty-free reference implementation of the
modifications so that the standard cannot be abducted by another company.

• Are there any patents that relate to your software?

Answer: if so, you will have to consider licensing your patents along the
code.

B.12 Acceptable protection of software intellec-

tual property. A survey of software devel-

opers and lawyers

Effy Oz
[Oz98]

This article reports the results of a survey on optimal legal way to protect devel-
oper’s rights to their intellectual property in the US. It exposes the differences
between copyright and patents and it also shows the preferences of software de-
velopers and attorneys. Even the differences, the conclusion is that both groups
would prefer a special law for software intellectual property, the scope of which
should be broader than that of copyrights but narrower than that of patents.

B.13 Evaluation of Public Software Licenses

Donald K. Rosenberg
[Ros98]

Donald K. Rosenberg introduces free software licenses. He does not go into the
license in detail; he just wants to show the main purposes of each license and its
results. The author also discusses about the kind of licenses that different software
(applications, toolkits, libraries and Operating Systems) that interactive should
have. Finally, he also discusses about forking and its causes.

The GNU General Public License (GPL) gives the users three rights:

B.13. EVALUATION OF PUBLIC SOFTWARE LICENSES 77

• to copy the software and to give it away

• to change the software

• to have access to the source code

You can also charge for distribution costs of the program and source code. Pro-
prietary products that simply link to GPL software are allowed to remain pro-
prietary; only derivative works need to be licensed under GPL.

There is a loophole for commercial software: the LPGL:

• it protects GNU libraries from being incorporated into proprietary software

• it protects proprietary libraries from the viral effect of the GPL

The BSD license allows you to take the source code proprietary.

The Free Edition License from Qt is like the GPL, except that:

• no modifications are permitted to the Qt library

• no commercial distribution is permitted

Looking at the license details, under the Qt Free Edition License, the developer
could:

• write his own free (or Open Source) license allowing free distribution and
modifications, or

• use the GPL or the LGPL

However, there is an immediate problem: under the GPL, you cannot distribute
the Qt library with your application because the Qt library is itself not under the
GPL, so you cannot combine the code. If you want to use the BSD license, you
have also problems, since BSD allows you to distribute the code only in binary
form and it is not allowed by the Qt Free Edition License.

Commercial users must buy the Qt toolkit under the Professional Edition Li-
cense. That way, they obtain the Qt toolkit and the right to distribute unlimited
runtimes.

No modifications of the toolkit are permitted. Therefore, forking is prevented.

78 APPENDIX B. SUMMARIES OF THE ARTICLES

Moreover, we could call the Qt Free Edition License a “Change-of-State” License,
since if your application changes its status from free to commercial, it needs a
different license.

Aladdin’s Ghostscript splits itself into different free/commercial versions. There
is the Aladdin Ghostscript commercial version. The free versions are the Aladdin
Free Public License and GNU Ghostscript. The Aladdin Free Public License
resembles the GPL and has additional restrictions: you cannot accept money for
the free program except for cost of disks and copying.

Scriptics, which commercializes the Tcl/Tk toolkit, pays its in-house developers
workers with the benefits of the commercial version. However, it wants to attract
new users through the free version.

The Apache License says:

• no source code distribution requirement

• you can combine Apache code with other code

The Mozilla Public License (MPL) divides software into files, which are separated
into:

• the Open Source part (called “Covered”) and

• anything the user adds

The arrangement allows the developer to add his own files and distribute them
with the Covered files, provided he does not modify the Covered files. If he does
modify the Covered files, then he must distribute those modified files under Open
Source MPL rules.

Under the Artistic License, you can modify the source code and take it private if
you also supply the standard version of Perl with yours; or, if you are careful to
rename modified files so that the standard version still works.

B.14. A PRIMER ON OPEN SOURCE LICENSING LEGAL ISSUES 79

B.14 A Primer on Open Source Licensing Legal

Issues: Copyright, Copyleft and Copyfu-

ture

Dennis M. Kennedy
[Ken01]

Dennis M. Kennedy briefly explains the fundamentals of Open Source, how the
Open Source licensing works and its implications. He also makes a historical
introduction of the Open Source Movement and he poses some questions about
possible problems or controversies of the Open Source way of licensing. The
definition of Open Source and the analysis of the four main categories of licenses
are also included.

The Open Source Definition

Open Source is characterized by:

1. Free Distribution. “The license may not restrict any party from selling
or giving away the software as a component of an aggregate software dis-
tribution containing programs from several different sources. The license
may not require royalty of other fee for such sale.”

2. Source code. “The program must include source code, and must allow
distribution in source code as well as compiled form. Where some form of a
product is not distributed with source code, there must be a well-publicized
means of downloading the source code, without charge, via the Internet.
The source code must be the preferred form in which a programmer would
modify the program.”

3. Derived Works. “The license must allow modifications and derived works,
and must allow them to be distributed under the same terms as the license
of the original software.”

4. Integrity of the Author’s Source Code. “The license may restrict
source code from being distributed in modified form only if the license
allows the distribution of ’patch files’ with the source code for the purpose
of modifying the program at build time.”

5. No Discrimination Against Persons or Groups. “The license must
not discriminate against any person or group of persons.”

80 APPENDIX B. SUMMARIES OF THE ARTICLES

6. No Discrimination Against Fields of Endeavor. “The license must
not restrict anyone from making use of the program in a specific field of
endeavor.”

7. Distribution of License. “The rights attached to the program must apply
to all to whom the program is redistributed without the need for execution
of an additional license by those parties.”

8. License Must Not Be Specific to a Product. “The rights attached to
the program must not depend on the program’s being part of a particular
software distribution.”

9. License Must Not Contaminate Other Software. “The license must
not place restrictions on other software that is distributed along with the
licensed software.”

Public Domain, Shareware and Freeware

Some software is released freely into the public domain and the author has no
copyright rights, whereas Open Source does not. Open Source software is gov-
erned by a license and the owners of the copyright in the software continue to
own the copyright and assert their rights thereto. In Open Source Software, peo-
ple receive a software license that give them more rights than they have become
accustomed to expect under commercial software licenses.

Freeware or shareware often has the connotation of being “free”. They are free
because of the price, not because of the availability of their source code. Actually,
their licenses usually have many of the restrictions found in commercial licenses.

Taxonomy of Licenses

The Open Source licenses all have in common a requirement that source code be
made available and that users of the software have the right to make derivative
works. The licenses all disclaim warranties and many make an effort to limit
liabilities. However, we can distinguish four main categories. The main differ-
ence among them is their permissiveness and whether derivative works can be
proprietary.

The GPL Licenses

The important feature of the GPL is that it does not allow for GPL software
to be mixed with non-GPL software without making the non GPL-software also
subject to the terms of GPL. The GPL does not allow modifications to be taken

B.14. A PRIMER ON OPEN SOURCE LICENSING LEGAL ISSUES 81

private. Under the GPL, source code must be released and derivative works must
be also released under the terms of the GPL. If a licensee distributes modifications
of a program, source code must be made available and there is to be no fee other
than copying and similar charges.

The BSD Licenses

The least restrictive of the Open Source licenses. Under the BSD licenses, dis-
tribution of source code is permitted but not mandated for derivative works.
Therefore, programs under the BSD Licenses can be combined with proprietary
software. The BSD licenses allow redistribution and use of source code and ob-
ject code with or without modification so long as the redistribution of source
code retain required copyright and other notices and the disclaimer of warranties
and limitation of liability clauses. The original BSD License had certain attribu-
tion requirements, including mandatory attribution of naming of contributors in
advertising of software using the code.

The BSD Licenses are considered by many to be more “free” than the GPL
because they permit developers to release derivative works under whatever license
they prefer. In other words, the BSD Licenses do not contain copyleft terms. This
is why the BSD type of licenses are attractive to commercial developers.

The Mozilla Public License and Related Commercial Licenses

Under the Mozilla Public License, commercially licensing derivative works is per-
mitted. Changes to covered program sources must be made freely available to
anyone. The Mozilla Public License does not contain the copyleft provisions of
the GPL. Additions of covered source code that form a “larger work” may be
licensed differently and published or not even published at all.

Other Open Source licenses

Variations of the above mentioned.

Choosing an Open Source License

As a practical matter, there is an encouragement to use the GPL, the BSD
Licenses, or the LGPL. In other specialized cases, such as the Apache software or
Perl, certain licenses and approaches of licensing have been used for a long period
of time and it is better to use the licenses that are commonly used in the area
of software programming, in part due to the level of comfort with the licenses in

82 APPENDIX B. SUMMARIES OF THE ARTICLES

the programmer community.

In general, anyone wanting to release software under an Open Source license
must spend a significant period of time becoming very familiar with the licenses,
learning the strengths and weaknesses for the particular situation, and determin-
ing and whether releasing under an existing Open Source license is acceptable
or whether to start the process of developing a new license that fits the Open
Source Definition and is also attractive to programmers. Obviously, Open Source
developers will be more comfortable working on standard known licenses rather
than trying to learn the nuances of a customized license agreement for a particu-
lar project. As a practical matter, only large software players as IBM and others
will have the clout to create new type of licenses.

Multiple Licensing

It is permissible for a copyright owner to release source code under an Open
Source license and to release a proprietary version of the software under the
standard commercial licenses in order to make money.

Ownership

In Open Source development, the general principle is that the author of the code
remains the copyright owner and he simply applies the Open Source license to
his code.

Controversial Issues

GPL and other licenses do not provide that the licenses are perpetual. This omis-
sion may cause problems at a later point when a court determines that an Open
Source license with respect to a program has expired because the “reasonable”
duration is over.

The fact that the Open Source licenses are not signed and not negotiated may
arise questions.

The potential applicability of consumer protection laws may also have an impact
on warranties for Open Source warranties.

B.15. OPEN SOURCE INTELLECTUAL PROPERTY RIGHTS - ISSUES AND TRENDS83

Developments in copyright law and, in particular, UCITA1, can have important
unintended consequences for the Open Source licenses.

B.15 Open Source Intellectual Property Rights

- Issues and Trends

Stewart Fleming
[Fle04]

This article examines Open Source licenses and their impact on copyright and
intellectual property rights and the associated legal risks. In addition to this,
there is an introduction about the Open Source phenomenon movement and the
motivational factors governing Open Source participation.

Motivational factors

• Individual

– Intellectual challenge

– Desire to improve the greater good

– Expectation of improved employment prospects

– Desire for fame and associated publicity

• Academic Institution

– Costs accounted for

– Expectation of greater prestige

– Encouragement of staff development

– Outlet for intellectual capital of the organization

• Commercial Enterprise

– Excess of R&D expertise/capability

– Reduction in operational cost by benefiting from collaborative activity

– Outlet for intellectual capital of the organization

84 APPENDIX B. SUMMARIES OF THE ARTICLES

License OSI GPL Redistribution Charging Copyleft
Compatible Compatible

Licensee may not
Licensee must charge for the code Derived

GPL X X guarantee availability or royalties, but work is subject
of entire code may charge for to GPL

distribution cost

LGPL X X As above As above ×

BSD X X No restriction No restriction ×

MIT X X No restriction No restriction ×

Licensee must
guarantee availability

MPL X X of source code for at Royalty-free X
least 12 months after

first availability

Table B.1: Classification of restrictions imposed by various licenses

Licenses

BSD - Open Source license with few restrictions and no impact on derived works.
It requires only that attribution of copyright be made in the distributions of the
software. It specifically excludes any software warranties and disallows the use
of the original organization in any advertising or promotion of derived works.

MIT - Open Source license with few restrictions and no impact on derived works.
It requires only that a copyright notice be included with copies or substantial
extracts of the software and excludes warranties.

The risk with unrestricted licenses such as BSD or MIT models is that a licensee
can produce a derived work and not release improvements or enhancements, which

1The United States Uniform Computer Information Transactions Act (UCITA) is a proposed
law to create a clear and uniform set of rules to govern such areas as software licensing, online
access, and other transactions in computer information. In particular, UCITA attempts to
clarify and/or codify rules regarding fair use, reverse engineering, consumer protection and
warranties, shrinkwrap licenses, and their duration as well as the transferability of licenses.
http://en.wikipedia.org/wiki/Uniform Computer Information Transactions Act

B.15. OPEN SOURCE INTELLECTUAL PROPERTY RIGHTS - ISSUES AND TRENDS85

might be useful to the wider community.

Mozilla Public License - include clauses that are intended to deal with the software
patent issue where source code that infringes on a software patent is deliberately
or inadvertently introduced to a project.

GNU GPL - incorporate the copyleft provision. Derived works are licensed under
the same license.

LPGL - no copyleft provision. This is a free software license option available
to commercial software developers without the obligation to release all of their
source code in derived works.

Critical issues and trends

The article concludes exposing some critical issues and trends about Open Source:

1. The exclusion of warranties for software defects in most Open Source li-
censes should cause organizations considering the adoption of Open Source
Software to carefully consider how quality and reliability can be assured.

2. Since the enhancement of reputation is an important motivating factor
in OSS development, software authors might benefit from more uniform
international recognition of their right to assert authorship and their right
to avoid derogatory treatment as author of a work.

3. Quality and reliability characteristics of Open Source Software raise con-
cerns for organizations in areas where certification is needed such as in
mission-critical activities or medicine. The lack of formal tools for testing
should lend a note of caution to those considering the use of Open Source
Software.

4. An organization that has been granted a software patent for some algo-
rithm or implementation is granted the rights to charge royalties for use, or
may force others to cease distribution of software that employs the scheme
covered by the patent. Open Source Software is vulnerable for this form of
restriction since all source code is publicly-available.

5. Different interpretation of derivative laws for different courts

6. Peer-review of public software is an advantage, but successful outcomes still
depend on the motivation of properly-skilled individuals to methodically
study, probe and fix Open Source Software problems.

86 APPENDIX B. SUMMARIES OF THE ARTICLES

B.16 Copyright and Open Source Software Li-

censing

Sau Sheong Chang
[Cha05]

This paper describes the past and present of legal software protection and traces
the history of the Open Source Software Movement. The Open Source Licenses
are compared and explained and some questions about the legal enforceability of
them are also posed.

GNU Licenses

The GPL license allows the software be distributed and modified without addi-
tional permission from the licensor. The license ensures that the licensees are
aware that the software is distributed without warranty. The license frees the
software from restrictive patents.

GPL prevents any software licensed under GPL to be combined with other piece
of software not licensed under GPL or not compatible with GPL.

GPL also encourages separate written agreements between two parties to estab-
lish warranties or contracts for maintenance, as one of the business models in
Open Source is the provision of warranties and software maintenance.

LGPL specifically allows LGPL-licensed software libraries to be linked with non
GPL- licensed software, including closed sourced software. However, GNU Project
encourages the use of GPL.

Open Source Definition

The main concepts are:

• Free redistribution

• Access to source code

• Open modification of the source code

• No discrimination against persons or group of persons

• No discrimination against any fields of endeavor

• Be technology-neutral

B.16. COPYRIGHT AND OPEN SOURCE SOFTWARE LICENSING 87

The MIT and BSD License

The MIT License basically grants all of the rights of a copyright holder including
the exclusive right to commercially exploit and create derivative works. The only
two conditions imposed are that the copyright and permission notices must be
included in the copies of the software and a general disclaimer of warranty.

The BSD License is only slightly more restrictive: the name of the organization
that created the software or it contributors cannot be used to endorse or promote
the software without prior written permission.

The MIT and BSD licenses are OSI-Certified licenses and GPL-compatible li-
censes, although the original BSD license is not GPL-compatible.

The Apache License

The older Apache License version 1.1 is very similar to the BSD-License, but in-
cludes a requirement for the acknowledgement of the creator’s contributors of the
software. The Apache License version 2.0 is more complex. It includes provisions
for patent rights granted by the license and the use of other licenses for derivative
software. The Apache License version 2.0 also explicitly defines ’Contributions’
that are special modification of the software provided to the licensor of the soft-
ware for its inclusion into the original one. If accepted, the modifications will
become part of the original software and will fall under the same license.

The Apache licenses are OSI-certified but are not GPL-compatible.

The Artistic License

The Artistic License was designed to maintain control over the Perl project while
encouraging participation in the project and innovation outside the project. The
Artistic License is ambiguous, self-contradictory and virtually impossible to in-
terpret. One problem with the Artistic License is that although it prohibits sale
of the software, it also allows an aggregate distribution of the Artistic Licensed
software with another piece of software. Interpreted literally, someone can de-
feat the license by merely including a trivial piece of software together with the

88 APPENDIX B. SUMMARIES OF THE ARTICLES

licensed software.

The Mozilla Public License

The Mozilla Public License can be regarded as a hybrid of ideas between the GPL
and the MIT/BSD licenses. MPL-licensed code can be combined with code under
another license. MPL is not a GPL-compatible license but it is OSI certified.

The MPL divides a software work into an Open Source part (called “Covered
Code”) and anything a contributor adds. The arrangement allows any developers
to add his own files and distribute them with the covered code, provided he does
not modify the covered code. However, if he does modify the covered code, he
must distribute the modified code under MPL.

The MPL is considered one of the better drafted Open Source licenses and is
used in many Open Source projects including the popular Firefox browser.

B.16. COPYRIGHT AND OPEN SOURCE SOFTWARE LICENSING 89

F
re

ed
om

s
or

R
es

tr
ic

ti
on

s
P

ub
lic

M
IT

/
A

pa
ch

e
A

pa
ch

e
A

rt
is

ti
c

M
P

L
1.

1
G

P
L

L
G

P
L

C
lo

se
d

So
ur

ce
D

om
ai

n
B

SD
1.

1
2.

0

H
as

co
py

ri
gh

t
ow

ne
r

×
X

X
X

X
X

X
X

X
C

op
yr

ig
ht

ac
kn

ow
le

dg
em

en
t

×
X

X
X

X
X

X
X

X
Fr

ee
ly

co
py

an
d

us
e

as
-i
s

X
X

X
X

X
X

X
X

×
D

is
tr

ib
ut

e
m

od
ifi

ed
ve

rs
io

ns
w

it
h

th
e

sa
m

e
lic

en
se

X
X

X
X

X
X

X
X

×
D

is
tr

ib
ut

e
m

od
ifi

ed
ve

rs
io

ns
un

de
r

th
e

sa
m

e
lic

en
se

X
X

X
X

X
×

×
×

×
L
in

k
w

it
h

co
de

un
de

r
di

ffe
re

nt
lic

en
se

X
X

X
X

X
X

×
X

×
M

us
t

in
cl

ud
e

so
ur

ce
co

de
in

th
e

di
st

ri
bu

ti
on

×
X

X
X

X
X

X
X

×
G

ra
nt

s
lic

en
se

e
pa

te
nt

ri
gh

ts
×

×
×

X
×

×
X

X
×

D
is

cl
ai

m
er

of
w

ar
ra

nt
y/

lim
it

at
io

n
of

lia
bi

lit
y

×
X

X
X

X
X

X
X

X
N

on
-e

nd
or

se
m

en
t

pr
ov

is
io

n
×

×
X

X
×

X
×

×
N

A
R

ec
ip

ro
ci

ty
ob

lig
at

io
ns

fo
r

de
ri

va
ti

ve
w

or
ks

×
×

×
×

×
X

X
X

×
(c

op
yl

ef
t)

N
um

be
r

of
w

or
ds

in
lic

en
se

do
cu

m
en

t
(c

om
pl

ex
it
y

N
A

16
7

/
29

4
15

81
77

1
36

66
29

56
40

20
V

ar
ie

d
of

th
e

lic
en

se
)

22
2

T
ab

le
B

.2
:

Fr
ee

an
d

O
pe

n
So

ur
ce

lic
en

se
ri

gh
ts

m
at

ri
x

90 APPENDIX B. SUMMARIES OF THE ARTICLES

License name Quantity Percentage
GNU General Public License 45101 69%
GNU Library or Lesser General Public License 7388 11%
BSD License 4724 7%
Artistic License 1230 2%
MIT License 1195 2%
Apache Software License v1.1 968 1%
Mozilla Public License 1.1 827 1%
Common Public License 503 1%
Apache License V2.0 452 1%

Table B.3: Free and Open Source license popularity in Sourceforge

Open Source Licenses - copyright license or contract?

If Open Source licenses are copyright licenses or legal contracts is yet to be
determined. Although both legal contracts and copyright licenses have different
enforcements, one which is thoroughly covered by the contract itself, and the other
is through copyright legislation, both enforces the same terms and conditions on
the licenses. However, one noticeable difference is that without a legal contract,
licensors can revoke their licenses at any point in time, subject to equitable rules.
This has some serious repercussions if the software is already well known in the
market as the licensor is not obliged to continually provide the software under
the same license.

In addition to this, it is not clear if all Open Source licenses can be considered
valid contracts but similar to closed source licenses have been accepted as valid
contracts albeit controversially. Interestingly, if a contract does not exist for Open
Source licenses, sometimes copyright laws of certain countries impose a harsher
criminal offence on copyright infringers; therefore it would seem that it is to the
benefit of the licensee not to use this as a defense against enforceability of Open
Source Software licenses.

Cross-jurisdictional issues in Open Source licenses

A major issue with the copyright is the issue with the applicability of the law
in different countries. Copyright laws are territorial and generally do not cross
borders.

Problems:

B.17. THE TRUE MEANING BEHIND OPEN SOURCE LICENSES 91

1. Most Open Source licenses are written in English and in fact assume certain
facts that are only applicable in US laws. However, in many countries, there
are laws that mandate the use of the national language for legal documents
including licenses and contracts.

2. Legal background which copyright law is derived from. In countries that
derive laws from English legal system, copyright arose from the economic
rights of copywriters and publishers while most continental European coun-
tries derive copyright from the concept of droit d’auteur, which focuses on
the moral rights of the original author.

3. Warranties and disclaimers. In certain countries, especially European coun-
tries, general disclaimers are not valid in a contract due to provisions for
unfair terms in contracts.

4. The possible different interpretation of derivative works across different
countries.

B.17 The true meaning behind Open Source Li-

censes

Juancarlo Añez
[Ane99]

J. Añez analyzes and compares briefly several Open Source licenses. Before that,
he mentions the public domain and explains that any work placed in the public
domain has the same legal status as one for which the legal copyright term has
elapsed: you can include public domain software in your own work, modify it,
copy it and talk about it in publications and conferences.

The least restrictive licenses (BSD and MIT) reserve only the right to disposition,
but they grant ample rights of use, creation of derivative works and redistribution.
One of the most restrictive licenses (GPL) force derivative works to be licensed
under GPL. Another restrictive license, the Java Community Source License, re-
stricts the use that can be made of the software (free use to research); other uses
require that compatibility tests be made and royalties be paid. The XML4J Eval-
uation License restricts the use to that which is “lawful and non-commercial”.
Surprisingly, there are also licenses that completely prohibit executing the soft-
ware.

If you want to distribute your software commercially but do not want to distribute
the source of the modifications you made, use a license such as the MIT or the

92 APPENDIX B. SUMMARIES OF THE ARTICLES

BSD one. GPL and LPGL are good choices if you don’t mind distributing your
source code. Licenses like the Java Community Source License are so complicated,
and it’s better to contact a specialized lawyer.

B.18 A framework for understanding the im-

pact of GPL copylefting vs. non copyleft-

ing licenses

Philippe Aigrain
[Agr02]

This paper discusses the consequences of licensing choices, especially, for publicly
funded software. It argues that GPL copylefting serves the public good espe-
cially for software that can play a critical role in the activities of the information
society. So, in publicly funded efforts, copylefting licenses should clearly be pre-
ferred. However, for private efforts, the choice is not clear: it will depend on
whether companies want short term benefits in terms of take-up or the user trust
effects of copylefting, as well as the long term sustainability of this approach.
In practice, companies that choose non-copylefting licenses may take the risk of
getting proprietary competitors. Therefore, dual licensing that clearly establish
two types of dissemination can be the solution.

B.19 Evaluation of Open Source licensing mod-

els for a company developing mass market

software

Mikko Välmimäki and Ville Oksanen
[OV02]

The target of this article is to explain when and how Open Source licenses make
economic sense for enterprises. To do that, the article contains a preliminary
evaluation of several frequently used Open Source licenses and licensing models
from the perspective of a company developing mass market software products for
competitive markets.

The article starts explaining what the most popular licenses are and the relevant
economic attributes describing mass market software.

B.19. EVALUATION OF OPEN SOURCE LICENSING MODELS 93

License GNU GPL LGPL BSD/MIT/PD Commercial
Type Persistent and viral Persistent All permissive All restrictive

Popularity 67% among OS 10% among OS 12% among OS NA
Derivate works Only GPL GPL or LGPL No restrictions Not allowed

Bundling Only GPL No restrictions No restrictions Restricted
Patenting Free licensing required Free licensing required Not covered Restricted

Table B.4: Most popular mass market licenses

Ownership of rights

Afterwards, there is a discussion about rights and ownership. It is important
to know who the ownerships of rights is since it allows companies to price the
software, change its licensing policy and distribute with different licenses. How-
ever, Open Source licenses could “dilute” the ownership and even eliminate the
possibility of relicense the software.

Who is the author? The article makes a distinction between:

• Distributed incremental development with no coordination. In this case,
every contributor has copyright to his contribution (bundled work and au-
thorship)

• Focused and centrally controlled development. In this case, every contrib-
utor has copyright to the work as a whole (joint authorship)

• Complete rewriting of existing works. In this case the rewriter(s) have copy-
right to the new work overriding all previous copyrights (new authorship)

However, with distributed development, there is the employment relationships
problem. According to many national laws, the employer owns automatically all
copyright and therefore the employee cannot license his work without permission
of his employer. Consequently, software under a persistent license may actually
infringe some third party company’s copyright without anyone’s consent. (The
employer cannot own the copyright of software having a persistent license).

Therefore, a company should obtain all rights to the product it wishes to license
and make sure there are no hidden liabilities in code contribution from unknown
third parties (Rights clearing). Alternatively, under all permissive licenses the
copyright ownership does not restrict any successive third party. It is necessary

94 APPENDIX B. SUMMARIES OF THE ARTICLES

only to make a little modification to the software in order to license it with new
terms as a whole.

There are two ways to clear rights:

• Rewrite the software. It is legally the safest way.

• Obtain rights with a license term of a specific contract. There are legal
risks possible.

Licenses combinations: A specific problem with GNU GPL licenses is that it is
incompatible with many other licenses.

IBM public Mozilla Sun Industry Nokia Open
License License Public Standards Source License

License Source License

Type All permissive Persistent Persitent Persistent
and viral and viral and viral

Typical use Open Sourced programs Mozilla-project OpenOffice Research
from IBM projects funded

by Nokia

GNU GPL- No No No No
compatible

Table B.5: Company specific licenses and GNU GPL

Development process

The articles also talks about the implications of the license choice to development.

Licenses should give incentives for developers and they should also give possibil-
ities for controlling the project.

Permissive licenses allow the development results to be commercialized by any
third party without any compensation paid to developers.

The main possibilities to control the development process are:

• Closed Source controlled by license

• Open Source controlled by leadership

B.19. EVALUATION OF OPEN SOURCE LICENSING MODELS 95

Product distribution

The market focus on software should be perhaps the most important factor af-
fecting the license selection.

If a product is aimed at end-users, the benefits from choosing an Open Source
license are little if none. Therefore, the license terms can be restrictive. The
situation is slightly different if the target platform is Linux or some other free
operating systems where most of the competing products are under Open Source
licenses.

For developers and other third parties the license should be more permissive to
maximize the incentives to get third party support for the product.

Many companies who release their software under persistent licenses also sell
the same software under commercial license to those who do not want to be
bind by the terms of the restrictive licenses (Dual Licensing). There may also
be substantial switching costs when a company or project changes its licensing
policy.

When does Open Source licensing make sense?

The results of the paper, suggests some questions when making a license choice:

• Market focus. For end-users the license terms may be more restrictive but
for developers the terms must be rather permissive.

• Software patenting. GNU GPL and LPGL licenses are incompatible with
software patents.

• Competition and leadership. The risk with a permissive license is that if the
project does not have strong leadership it may be hijacked by a competitor.

• Third party developers. GNU GPL is incompatible with most types of
commercial add-on products.

• Rights clearing. Distributed and Open Source development processes re-
quire rights and clearing with costs and benefits.

96 APPENDIX B. SUMMARIES OF THE ARTICLES

B.20 Why you shouldn’t use the Library GPL

for your next library

Richard Stallman
[Sta99]

R. Stallman provides reasons for not using the LGPL. The main difference be-
tween the GPL and LGPL is that LGPL permits the use of the library in pro-
prietary programs; whereas a library under the GPL license makes the library
available only for free programs. Therefore, using the GPL for a library gives free
software developers an advantage over proprietary developers, since these cannot
use the library. Nevertheless, if the library’s features are available for proprietary
software through other alternative libraries, it is not useful to use the ordinary
GPL license since it doesn’t give free software any particular advantage.

B.21 Open Source Licensing

Henrik Ingo
[Ing]

Henrik Ingo introduces some of the common Open Source licenses, explaining
what the main consequences of the licenses are.

Licenses

In the GPL license, redistribution is allowed and will always be bound by the
same GPL requirements, the most important of which is that Open Source code
always be made available. The GPL doesn’t require you to give away source code
to everybody on the Internet. It requires that you give it to the recipient (for
example, the customer) of your software. The GPL does not mean that you have
to give away anything for free. Actually, if your company is the only one who
has written code for a certain GPL application, you own the full copyright for it.
Therefore, you can distribute it under whatever license you wish (Dual Licens-
ing). For large collective projects, where each contributor owns the copyright to
their pieces of source code, it would be unreasonable to consider Dual Licensing.
Therefore, these large projects will be GPL forever.

With the LGPL, the library itself must be always distributed with some source
code, including any bug fixes or changes you have made. But the applications

B.21. OPEN SOURCE LICENSING 97

using the library need not be: they can even be closed source. This is very
convenient for a library that will be used by many different applications.

The Berkeley Software Distribution License (BSD) essentially says: “You can do
whatever you want and there is no warranty”. Other very similar licenses are the
MIT license and the X license.

The difference between a BSD-style license and GPL license is that a BSD license
doesn’t require you to distribute source code.

Sometimes, the BSD license might contain “the advertising clause”. If so, you
must give appropriate credit to the copyright holders of the code you have used
for your applications.

The Affero General Public License is like the GPL, but with the added require-
ment that publishing the software as a web service also requires you to provide
an opportunity for your users to download the source code. Under a GPL license,
if you publish code in your own webserver for your users to enjoy, you don’t have
to distribute the source code, since you’re not distributing copies of your software
to anyone.

Another option is to mix code from different licenses. Many of the licenses are
just incompatible, so it is important to carefully consider which projects you will
use for your software.

Choosing a license

The two main reasons to choose the GPL license are that:

• The code developed in a GPL project will stay GPL forever and nobody
will be able to use your source code in proprietary software.

• You could do “Dual Licensing”, providing (in exchange for money) an al-
ternative license for those who not accept the GPL requirements.

The main reason to use the LGPL license is to allow the “normal use” of your
Open Source Software by everyone. If you used the GPL, developers who do not
accept the GPL requirements could not use your Open Source Software.

The BSD-style licenses are simple and short. They are not incompatible with
other licenses. However, you cannot feel bad if your software under BSD-style
licenses is incorporated into proprietary software.

Apache-style licenses are similar to BSD licenses. They are used by people who
take licensing more seriously and who consider the BSD-style licenses not enough.

98 APPENDIX B. SUMMARIES OF THE ARTICLES

Apache-style licenses are used by organizations such as the Apache Foundation
or IBM.

B.22 Open Source Software Development: An

Overview

Min-Wei Wu and Ying-Dar Lin
[WL01]

This article briefly explains different aspects of the Open Source Software De-
velopment. In theses aspects, we can find the Licensing models, which fall into
three general categories: free - the program can be freely modified and redis-
tributed; copyleft - the owner gives up intellectual property and private licensing;
and GPL-compatible - licenses are legally linked to the GPL licensing structure.

In addition to this, we can find some common Open Source license models:

• GPL - It ensures distribution of any derivative work under the same license
model.

• LGPL - It lets users extend the source with proprietary modules.

• BSD - It offers free code distributions and allows covering derivative works
under different terms as long as the necessary credit is given.

• MPL - It requires distributing derivative works under MPL, which means
that derivative work loses patent rights but still can enjoy private licensing.
However, a module that MPL covers cannot legally be linked together with
a module that GPL covers.

• Netscape Public License - It is a MPL extension that permits Netscape
to use your added code even in its proprietary versions of the program.

• Qt Public License - A noncopyleft free software license, QPL requires
distributing any modified source distributions only as patches.

• Artistic License - Nearly identical to the GPL, AL doesn’t require dis-
tributing derivative works under the same terms when a company uses them
internally.

B.22. OPEN SOURCE SOFTWARE DEVELOPMENT: AN OVERVIEW 99

Licensing model Free Software Open Source Copyleft GPL-compatible Examples
GPL X X X X CVS
LGPL X X Partial X GNU C library
X11 X X × X XFree86
Python X X × X Python
BSD X X × × Apache, Sendmail
MPL/NPL X X × × Mozilla
QPL X X × × Qt
Sun Industry Standard X X × × Commercial-version
Source License (SISSL) Star-Office
Artistic License(AL) × X × × Perl
Apple Public Source × X × × Darwin
License (APSL)

Table B.6: Open Source licensing models

