
June 2007
Jon Atle Gulla, IDI
Darijus Strasunskas, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Ontology-driven and rules-based
system for management and pricing of
family of product.

Vincent Dedeban

Problem Description

Currently, Sales department at DNV Software division is using a catalogue of products and each
responsible person has locally implemented package composition rules often using MS Excel
spreadsheets (i.e. stand-alone solution). A certain need is to have a centralized system to manage
composition and pricing of packages. Therefore, it is necessary to find a flexible way to define
possible configurations of the packages that can be integrated and sold. The task is to create
ontology-driven and rules-based system for management and pricing of family of product.
Consequent sub-tasks are as follows. Investigate existing semantic technologies applicable for the
task, their pros and cons; analyse state-of-the-art in management of product families; implement
and validate the method based on the case provided by DNV Software.

Assignment given: 09. January 2007
Supervisor: Jon Atle Gulla, IDI

Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics and Electrical

Engineering

Department of Computer and Information Science

Master of Science Thesis

Ontology-driven and rules-based

system for management and

pricing of family of product

by

Vincent DEDEBAN

Supervisor: Jon Atle Gulla Co-Supervisor: Darijus Strasunskas

Trondheim, 2007

Abstract

This report presents an approach to product family management using semantic

technologies. There is a need for more flexible configuration management and pricing,

explicitly representing domain knowledge and configuration rules.

The thesis investigates requirements, needs and current issues to support product

family in order to figure out the best candidate technologies. Ontology and rules are

chosen to carry out the project. Our approach is applied to a case study provided

by Det Norske Veritas Software, a company offering solutions for maritime, offshore

and process industries. The contacts with the company have strengthened our work

as the client helped us to clarify the problem and validate the suggested method.

The report discusses pros and cons of semantic technologies applied in this con-

text. Semantic technologies and rules help to create highly flexible system that

allows supporting product family engineering. Our work highlights consistency im-

provements and redundancy diminution in features models.

iii

Preface

This Master’s thesis was submitted to the Norwegian University of Science and Tech-

nology (NTNU), Department of Computer and Information Science. The workload

in this thesis is 30 European Credit Transfer System (ECTS) credits. It will be part

of my year of study as an erasmus student at the NTNU.

It is the result of a thesis problem given by Det Norske Veritas AS. The work was

carried out during the spring semester 2007, starting in January 2007 and ending in

June 2007.

I would like to thank Darijus Strasunskas my co-supervisor and co-author on

the paper ”An Ontology-Centric Approach for Flexible Configuration and Pricing of

Product Families” presented at the First International Workshop on Semantic Tech-

nology Adoption in Business. Your advises and comments have been very valuable

throughout the thesis. Furthermore I would like to thank Espen Wien,Ketil Aamnes,

and Kjell Tangen from Det Norske Veritas for their help.

v

Contents

Abstract iii

Preface v

Contents i

1 Introduction 1
1.1 Background . 1
1.2 Project task and goals . 2
1.3 Constraints . 3
1.4 Structure of the thesis . 3

2 Settings and background 5
2.1 Working settings . 5

2.1.1 Layered architecture . 5
2.1.2 Brix . 6

2.2 Product Family . 9
2.2.1 Definition . 9
2.2.2 Variability dimensions . 9
2.2.3 Variability level . 10
2.2.4 The product family engineering 11
2.2.5 Summary . 14

2.3 Requirements and needs . 14
2.3.1 Functional requirements . 14
2.3.2 Non functional requirement 15
2.3.3 Needs . 15

2.4 Restrictions . 16
2.5 Summary . 17

3 State of the art 19
3.1 Current technical solution . 19

i

ii CONTENTS

3.1.1 BigLeve software Gears . 19
3.1.2 Pure::Variant . 20
3.1.3 Kumbang . 20

3.2 Unsolved problems/Current issues 20
3.3 Summary . 22

4 Candidate technologies 23
4.1 Semantic web . 23

4.1.1 Component . 23
4.1.2 Motivation to use semantic web technologies 25

4.2 Ontology in more details . 26
4.2.1 Elements of an ontology . 26
4.2.2 Ontology types . 27
4.2.3 Web ontology languages . 28

4.3 Rule based system . 31
4.3.1 Theory . 31
4.3.2 Motivation to use rule-based system 33

4.4 Software development using semantic technologies 34
4.4.1 Semantic web in systems and software engineering 34
4.4.2 Semantic web enabled software engineering 35

4.5 Summary . 36

5 Product family pricing calculator 39
5.1 System definition . 39

5.1.1 Actors . 39
5.1.2 Use cases . 40

5.2 System overview . 42
5.2.1 Components . 42
5.2.2 Product selection . 43
5.2.3 Pricing . 44
5.2.4 Package management . 45

5.3 Technical overview . 46
5.3.1 System design . 46
5.3.2 Implementation . 50

5.4 Summary . 57

6 Evaluation of the approach and system 59
6.1 Objectives . 59
6.2 Results . 60

6.2.1 Incremental development and evaluation 60
6.2.2 Final prototype validation 61

6.3 Summary . 69

iii

7 Conclusions and future work 71
7.1 Discussion and future work . 71
7.2 Conclusion . 72

Bibliography 75

Appendices 79

A Thesis resources and constraints 81
A.1 Resources . 81
A.2 Economy . 81
A.3 Thesis lifespan . 81

B Detailed use cases 83
B.1 UC:Create offer . 83
B.2 UC:Delete offer . 84
B.3 UC:Save offer . 84
B.4 UC:Open offer . 85
B.5 UC:Select offer . 86
B.6 UC:Modify offer . 86
B.7 UC:Add package to offer . 87
B.8 UC:Price package . 87
B.9 UC:Select package . 88
B.10 UC:Generate report . 88
B.11 UC:Manage Users . 89

B.11.1 Create user . 89
B.11.2 Delete user . 90
B.11.3 Manage the roles of one user 90

B.12 UC:Create package . 91
B.13 UC:Delete package . 91
B.14 UC:Update package . 92

C Components interaction 93
C.1 Price a package . 93
C.2 Create a package . 93

D Guide to choose a Semantic Web Toolkit 97
D.1 Comparison Criteria . 97

D.1.1 License . 97
D.1.2 API-Paradigm . 97
D.1.3 Query-Languages . 98
D.1.4 Model Storage . 98
D.1.5 Supported Databases . 98

iv CONTENTS

D.1.6 Supported Serialization Formats 98
D.1.7 Reasoning Support . 98
D.1.8 RDF Server . 99
D.1.9 Other Features . 99

D.2 Toolkit Comparison . 99
D.3 Conclusion . 100

E Prototype user interface 101
E.1 Web site component . 101
E.2 Package management tools . 101

E.2.1 Package creation tool . 102
E.2.2 Ontology editor . 103

F Tests 109
F.1 Package selection . 110
F.2 Price calculation . 111

F.2.1 Normal pricing calculation 111
F.2.2 Web site adaption to a change in pricing scheme 112
F.2.3 Customize pricing options test 113

F.3 Package creation . 113
F.3.1 Consistency of a new package 113
F.3.2 Variability support during the configuration 116

F.4 Family creation . 117
F.4.1 Family creation test . 117
F.4.2 Feature type support . 118
F.4.3 Family architecture consistency 119
F.4.4 Redundancy test . 120

List of Symbols and Abbreviations 121

List of Figures 122

List of Tables 124

Chapter 1

Introduction

1.1 Background

Mass Customization is the new paradigm that replaces mass production, which
is no longer suitable for today’s turbulent markets, growing product variety, and
opportunities for commerce [4]. Mass customization proactively manages prod-
uct variety in the environment of rapidly evolving markets and products. Mass
customizers can customize products quickly for individual customers or for niche
markets. Using the same principles, mass customizers can Build-to-Order both
customized products and standard products without forecasts, inventory, or pur-
chasing delays. This concept is the new battlefield of lot of software engineering
companies to adapt quickly to a user specific demand. In this context the ratio-
nale of developing products families with respect to match customer desires have
been well recognized in both industry and academia.

Build a family of products1 is an efficient way to adapt to the products di-
versity; it also decreases risks by using approved components in the firm. The
rationale to build family of products can be viewed as the combination of the
knowledge about the market and of business rules to combine the products. Com-
puters systems can obviously support this rationale.

An innovative way to do it should be an ontology-driven and rules-based sys-
tem. The two technologies match with the problem definition. The business rules
are a common field of research because much of the backlog in the IT departments
of organization is due to the need for frequent updates of the business logic in
existing applications. An externalization of the business rules maintenance can
avoid translation errors in converting the policy changes into programming code,
and save the IT staff from making constant updates. Ontologies are in both com-

1Products family, Family of products and Product line are used interchangeably in the report
with the same meaning.

1

2 CHAPTER 1. INTRODUCTION

puter science and information science a data model that represents a domain and
are used to reason about the objects in that domain and the relations between
them. Main advantages of semantic technologies adoption in software engineering
are as follows: reusability and extensibility of data models, improvements in data
quality, discovery and automated execution of workflows.

The master thesis presented in this report has been done at DNV Software
that is the commercial software house of DNV (Det Norske Veritas). The com-
pany is a market leader in software development for the maritime, offshore, and
process industries. In order to support mass customization in its way to sell
products DNV is trying to implant a branding structure (i.e. family of prod-
ucts). Motivation for the work is to facilitate and centralize configuration and
pricing of product families by employing semantic technologies.

1.2 Project task and goals

The following paragraphs are taken from the project problem text. Currently,
Sales department at DNV Software division is using a catalogue of products and
each responsible person has locally implemented package composition rules often
using MS Excel spreadsheets (i.e. stand-alone solution). The information related
to the offers are store using the SalesForce software 2. A certain need is to have a
centralized system to manage composition and pricing of packages. Therefore, it
is necessary to find a flexible way to define possible configurations of the packages
that can be integrated and sold. The task is to create ontology-driven and rules-
based system for management and pricing of family of product. Consequent
sub-tasks are as follows. Investigate existing semantic technologies applicable for
the task, their pros and cons; analyze state-of-the-art in management of product
families; implement and validate the method based on the case provided by DNV
Software.

This thesis deals with concepts such as product family, rules, semantic tech-
nologies and their interconnections. The work done present semantic technology
adoption and deployment in practice. The case study tests the hypothesis that
semantic web and rules can help to manage and price products families and
tries to identify problems solved and caused by the usage of the approach pre-
sented here to support the family of products. We used the case study as a way
to help identify questions, develop measures concerning the semantic technolo-
gies and their adoption. We hope that our work will serve to safeguard future
research/development as a part of the results of this master thesis has been
published as post-proceedings of the First International Workshop on Semantic
Technology Adoption in Business – STAB’07 [11].

2http://www.salesforce.com/products/

1.3. CONSTRAINTS 3

1.3 Constraints

This section will present the initials motivations of DNV concerning the Master
Thesis. The thesis’ wishes are turned into requirements later (see chap: 2.3).
DNV would like the result of the master thesis to:

• Be used by the sales people in DNV Software to create the pricing offers to
customers;

• Help the salesperson to select ”the right” offer according to the branding
structure (packages and products);

• Incorporate the rules described in the pricing scheme;

• Be develop using the DNV technology including the rule engine

• Be web based;

• Be accessed from the Internet using the DNV’s security technology;

• Be role based with one role for a super user and another for a sales person;

• Have an interface to the CRM software used by DNV (SaleForce).

1.4 Structure of the thesis

This document is structured in 7 parts that enable to follow and to understand
the research process accomplishment. The 7 parts are as follows:

1. Introduction. this chapter presents the project and the context of the
project.

2. Settings and background. This part present the product family concept
and technological environment in Det Norske Veritas. Goal of this part is
to identify requirements. The requirements are the basis for the rest of the
project.

3. State of the art in managing family of products. This chapter tries to
identify the current issues of the existing solutions.

4. Candidate technologies. This chapter investigates the motivations to use
semantic and business rules technologies to support the management and
pricing of the family of products.

5. Presentation of our system. Based on the previous chapters we present the
system we designed to answer the identified problems.

4 CHAPTER 1. INTRODUCTION

6. Evaluation of the approach and system chapter. In this chapter we evaluate
the results generated by the case study.

7. Conclusions and future work.

8. Appendices. They present more detailed information than in the core of the
report. The appendices comport informations about the thesis resources
and constraints, the use cases, the interactions between the components
within the system, a guide to choose a semantic toolkit, screen shots of the
final prototype graphical interface, and the detailed tests done to evaluate
our approach.

Chapter 2

Settings and background

The goal of this chapter is to present the technical context in DNV and the
product family concept. The chapter is concluded with a set of requirements,
needs and restrictions for the future system.

2.1 Working settings

Working with DNV is a unique chance to strengthen our work as the client helped
us to validate our concepts. Nevertheless this collaboration implies also to follow
the company way of working. All software produced at DNV Software follow the
company’s architecture. All the softwares have to use the tools provided by the
DNV Software’s BRIX1 technology. In order to define requirements we need to
understand two essential architectural components:

• The layered architecture that is in use in all the software (even BRIX).

• Brix. A framework that serves as a basis for all the software developed in
DNV.

2.1.1 Layered architecture

DNV Software has developed a high quality layered architecture (see figure: 2.1)
for their products. The architecture is based on three main layers and a data
layer. Three-Layered Services Application, as presented here, is basically a re-
laxed three-layered architecture. The three layers are:

1http://www.dnv.com/software/workflow/brixFoundation.asp

5

6 CHAPTER 2. SETTINGS AND BACKGROUND

• Presentation. The presentation layer provides the application’s user inter-
face (UI). Typically, this involves the use of Windows Forms for smart client
interaction, and ASP.NET technologies for browser-based interaction.

• Business. The business layer implements the business functionality of the
application. The domain layer is typically composed of a number of com-
ponents implemented using one or more .NET - enabled programming lan-
guages.

• Data The data layer provides access to external systems such as databases.

Figure 2.1: DNV’s layered architecture

2.1.2 Brix

Brix is DNV Software’s framework providing solutions that handle the life cycle of
client industry knowledge. Brix enables to capture, spread, and improve industry
knowledge by providing a portal to the best engineering practice. Brix combines
how the client’s business processes and business rules with the services needed
to fulfill the business objectives. Brix can be considered as a set of components
like: Brix Explorer, Brix Project Manager, Brix security etc. The idea behind
Brix is to provide the tools that have to be used to guarantee a high quality of

2.1. WORKING SETTINGS 7

the software. Brix is used in all of the new DNV’s applications. The figure 2.2
describes the different components and their interrelations.

Figure 2.2: Brix framework organization

The two main components are a workflow process manager and a rules engine.
The workflow manager enables to define complex process in order to coordinate
people, applications and information. Using the Brix workflow manager, anyone
can create a business process (see figure: 2.3). A business process is defined as a
set of activity; each activity has a responsible, dependencies to others activities,
and dataflow between activities. Each activity is carried out by performing some
actions that use services in applications.

The Brix rules engine enables to externalize the logic of a program into a
rule base (set of rules). The Brix rule engine has the ability to do a backward
chaining. The backward chaining allows answering to complex question. The
backward chaining is a simple mechanism in fact it starts with a list of goals (or
a hypothesis) and works backwards to see if there are data available that will
support any of these goals. An inference engine using backward chaining would

8 CHAPTER 2. SETTINGS AND BACKGROUND

Figure 2.3: Business process for BRIX Workflow

search the inference rules until it finds one which has a Then clause that matches
a desired goal. If the If clause of that inference rule is not known to be true,
then it is added to the list of goals (In order for a goal to be confirmed the data
that confirms this new rule must be provided). For example the rules engine (see
figure2.4) can be used to define the Tic-Tac-Toe game logic.

Figure 2.4: Screen shot of BRIX Rule Editor

The collaboration with DNV offers the opportunity to use a robust industrial
strength. It offers also the opportunity to use tools such as the rule engine to
implement our system.

2.2. PRODUCT FAMILY 9

2.2 Product Family

Goal of this section is to define the concept of product family. It will serve as a
basis to find some requirements, needs, and restrictions for a system that has to
manage product family.

2.2.1 Definition

A product family can be defined as a method that creates an underlying archi-
tecture of an organizations product. It provides an architecture that is based
on commonality and similarity. The various products can be derived from the
basic product family, which creates the opportunity to reuse and differentiate on
products in the family. The family of products concept came from the factories
to the software industry. The goal is to minimize the cost of a new product de-
velopment, instead of developing the product from scratch; the components are
reused to assemble a new product. All the products within a family are charac-
terized by some common points but also by their differences (called variance).
The management of this variance is a big issue to carry out the management of
families of products. For example cars are made using common elements such as
wheels, but they can have differences (different motor, air conditioned...). One
difficulty to create a family of products is to choose some parameters to define
the family.

This paradigm is not new it was first presented by David Parnas [26] in 1976,
it has been studied since the end of the 70’s but it has become more and more
important with projects like ESAPS [1], CAFE [2], FAMILIES [3], and with the
conferences SPLC (Software ProductLine Conference) and PFE (Product Family
Engineering). In the literature exists a consensus on the definitions of a family
of products. A family of products is a set of products with common properties
that respond to a specific domain. A domain is characterized by a set of concepts
and terms understandable by the users of this sector. A family of products is
characterized by two concepts [33]:

• Variability. The variability gathers all the properties that differ within the
members of the family.

• Commonality . The commonality gathers all the properties that are true
for all the members of the family.

Commonality and variability are the central concepts in the family of products.

2.2.2 Variability dimensions

In this section, we discuss more in detail the variability concept than the one
of commonality. This is justified by the fact that the management of variability

10 CHAPTER 2. SETTINGS AND BACKGROUND

Figure 2.5: Dimension of variability in Product Family

requires more effort than the one of the commonality. In fact variability asks to
be identified, but mechanisms for the variability management have to be done.
Even if the Family of products is a new paradigm, the management of variability
is not a new problem and several techniques of conception and programming allow
managing it. The particularity of the variability in the family of products is that
the variability must be specified explicitly and it is part of the Family of products
architecture. In the family of products the variability has two dimensions: Time
and Space [9, 20](see figure: 2.5).

• Time. The variation in time represents the variation of one product from
one version to one other.

• Space. The variation in the space represents the variation between products
of the same family.

2.2.3 Variability level

The variation points can be used to model different level of abstraction; for
example the concept can be used to distinguish between product capabilities,
the operating environment, domain technologies and implementation techniques.
While product capabilities are general terms that also customers can understand
and select the desired functionality from, implementation techniques are usu-
ally hidden from customers and used by application engineers that implement

2.2. PRODUCT FAMILY 11

products or product artefacts. Therefore, mappings between features on the di-
verse levels can be modelled through taxonomic and compositional relations and
dependencies.

2.2.4 The product family engineering

The family of products concept is widely used in the industry because it allows
developing a lot of products quite fast. As it is defined in the literature [12] the
product family engineering is based on three phases:

• The product management.

• The domain engineering.

• The product engineering.

Product management

The product management phase consists in defining the scope of the product
family regarding some economical criteria. At the end of this phase we know
what should and should not be inside the product family.

Domain engineering

The domain engineering consists of developing and constructing the assets (for
example an asset can be an element that allows developing software, for example a
specification document, models, code etc.) that will be reused for the construction
of products. It is a development for the reutilization. The domain engineering
consists in three distinct steps [12]: analysis, conception and establishment of
the domain. The goal of the analysis of the domain is to study the domain of
the family of products to identify the commonality and the variability between
the products. It exists several methods for the domain analysis, the more known
is FODA [21]. The domain in FODA is described in a model of characteristics
(a characteristic is called feature), specified in the form of a tree of which the
vertex represent the domain characteristics and the arches specify composition
links between the characteristics. FODA distinguishes different characteristics or
type for the feature (see section: 2.2.4). The Figure 2.6 shows a model example of
characteristic FODA of a family of products of cars. Each characteristic in the di-
agram corresponds to a concept of the domain. The obligatory characteristics are
represented by rectangles with full circles, while the optional characteristics are
represented by rectangles with empty circles. The characteristic Air-conditioning
in the model FODA of this figure is optional. There exist three types of motors
in the example family: electric, gasoline or diesel; this is specified by an alter-
native characteristic Motor with three characteristic Electric variants, Gasoline,

12 CHAPTER 2. SETTINGS AND BACKGROUND

Figure 2.6: Example of feature model with FODA

and Diesel. An alternative characteristic is represented by a circle arch through
the arches of the characteristic variants. The goal of the domain conception is to
establish a generic architecture for the family of products. There is not consensus
on the definition of such architecture. The architecture of a family of products is
usually defined as a standard architecture that behaves components, connectors
and constraints. For the family of products, the architecture should be as a refer-
ence architecture that serves to make each product. Identified variability during
the domain analysis must be specified explicitly in the family architecture. The
Domain engineering enables to establish the generic architecture defined in the
domain conception that will be reused for the construction of each product.

Feature Types
A feature is a prominent or distinctive user-visible aspect,quality or characteris-
tic of a product or a system [21]. There exists a consensus in the literature about
the different types of features. The diverse types of features are:

• Mandatory features are present in all products that belong to the product
family in the modeled domain.

• Optional features may or may not be included in a product. If an optional
feature is not part of the product, all sub-features of that feature are also
excluded.

• Alternative features represent a choice between a set of features from which
exactly one has to be chosen. For example the Motor type in figure 2.6 is
an alternative feature.

2.2. PRODUCT FAMILY 13

• Multiple features capture the possibility to choose multiple features from a
set of features, but at least one has to be chosen.

Constraints/Dependencies between Features
The variability in the family of product is characterized by constraints between
the variations points (features). In fact, the resolution of a variation point can
influence the resolution of other variation points. The resolution of a variation
point can :

• Requires. Features can be required by other features - i.e. the existence of
the required feature is needed for the former one.

• Excludes: Features may exclude each other. This happens when two fea-
tures can not be selected together, e.g. when the system components that
realize these features are incompatible. This is a mutual exclusion.

• Recommends: A weak form of the requires relation is a recommendation.
The existence of features can be recommended for other features. This can
also be seen as the semantics of a default value.

• Discourages: Contrary to the latter, features may be discouraged for other
features in the system. This is a weak form of the mutual exclusion. Hence,
it describes that a feature is not chosen per default.

These constraints are part of the family architecture but very few methods
and tools are able to actually define these constraints.

Product engineering

In the product engineering the results of the domain engineering are used for the
construction of a specific product, also called derivation. As mentioned above,
the results of domain engineering (the models of characteristics, the generic ar-
chitecture, and the components) contain variability, the derivation of a special
product has therefore need of decisions (or choices) associated with these varia-
tion points. The product engineering is characterized by how the derivation of
the domain is done. A common way to do it is to use a configuration mechanism.
Configuration is a well known approach to support the composition of products
from several parts. The configuration of technical systems is one of the most
successful application areas of knowledge-based systems [16]. The configuration
has to be performed in an incremental approach, where each step represents a
configuration decision and possibly includes testing, simulating or checking with
constraint techniques. However, applying configuration methods to software sys-
tems is in an early stage. First attempts are described in [28]. The configuration
mechanism can be for example to specify constraints on the features.

14 CHAPTER 2. SETTINGS AND BACKGROUND

2.2.5 Summary

The family of products (see section 2.2.1) is a complex concept and we can figure
out several fundamental issues in order to manage the product family. We have
to define some shared elements within a product family. These elements can
be common features from the sales/customer perspective or common product
structures from an engineering perspective. There is also a necessity to define
basics elements that make a product different from another. From a customer
perspective it could be some feature or tools that are selectable. This issue is
normally solved in the domain engineering (see section 2.2.4). Concerning the
product engineering (see section 2.2.4) the main issue is to define a configuration
mechanism that specifies rules for and means of product variation derivation.

2.3 Requirements and needs

This section present both the wishes of the sales department in DNV and the
needs to support the product family. These requirements and needs are the result
of a collaboration with DNV. Requirements and needs are gather in a table (see
table: 2.1) with a code and their priority. Each requirement has an assigned
priority. The different priorities are:

• Low. If a requirement has low priority then the requirement has not to be
fulfilled to consider the project as successful for the client.

• Medium. If a requirement has medium priority then the requirement would
be fulfilled if only I could. These requirements are considered as good ideas.

• High. If a requirement has high priority then the requirement must to be
fulfilled to consider the project as successful.

2.3.1 Functional requirements

The functional requirements specify particular behaviors of a system. Functional
requirements are:

• The system has to help the sales people to select the offer corresponding to
the client needs.

• The system has to create the pricing offers to customers.

• The system has to support the products family engineering. For example
we can imagine one application for the domain engineering and one for the
product engineering (see section 2.2.4).

2.3. REQUIREMENTS AND NEEDS 15

2.3.2 Non functional requirement

The non functional requirements figured out are as follows:

• Concerning the pricing of an offer one need is to provide a pricing structure
that can be trusted and shared.

• The system has to use the Brix technology. Especially the Brix rule engine
and the Brix web frame work.

• The system has to integrate the rules described in the pricing scheme.

• The system should be web based in its final version.

• The system should provide the ability to login in its final version.

• The system should provide an interface with the software SalesForce.

2.3.3 Needs

Goal of this section is to define high level needs that must be fulfilled in order to
be in accord with the settings and background. Technical needs are:

• The future system has to allow business knowledge to be maintained by
domain experts without requiring programming skills.

• Several applications may share knowledge about the family of products.
The family of products is a model of the domain and it should be possible
to use this model to do different tasks.

• The knowledge has to be easy to maintain on a corporate level. A change
in the family architecture or in the rules for the pricing of this family must
be propagated in all applications using it.

• The system has to support the variability inherent to the family of products
concept.

• The system has to support the product engineering helping producing co-
herent packages.

This list is not exhaustive but it will help to choose among the available tech-
nologies usable for the case.

16 CHAPTER 2. SETTINGS AND BACKGROUND

Id Description Priority

R01 The system has to help the sales people to select the offer
corresponding to the client needs.

High

R02 The system has to integrate the rules described in the pricing
scheme

High

R03 The system has to create the pricing offers to customers High
R04 The system has to use the Brix technology High
R05 The system has to support the products family engineering. High
R06 The system has to be role based with one role for a super

user and another for a sales person
Medium

R07 The system should be web based in its final version Medium
R08 The system should provide the ability to login Medium
R09 The pricing rules should be trusted and shared. Medium
R10 The system should provide an interface with the software

SalesForce
Low

N01 The future system has to allow business knowledge to be High
maintained by domain experts without requiring program-
ming skills.

N02 A change in the family architecture or in the pricing High
rules must be propagated in all applications using it.

N03 The system has to support the variability inherent to the
family of products concept.

High

N04 The system has to help to produce coherent packages. High
N05 Several applications may share knowledge about the family

of products.
Low

Table 2.1: Requirements and needs Table

2.4 Restrictions

Goal of this section is to define the boundaries of the project. It is important to
focus on some part of the problem as the time span for the thesis is quite short
(see section A.3). Here is a list of points that specify what is in the scope of the
thesis and what is not:

• Variability dimension (see section 2.2.2). Only the space dimension will be
considered in the thesis. This is not useful to consider the time dimension
because the variation of one product from one version to one other is not
important to create pricing offers. They are done one the latest version of
each product. It must just affect the integrity of the existing offers.

• Variabiltiy level (see section 2.2.3). The variability level has been remove
form the scope of the thesis due to the duration of the thesis. Anyway it

2.5. SUMMARY 17

should be important to enable everybody to use the system independently
of is knowledge.

All the others points of the product family are in the scope of the thesis and will
be defined in the next parts of the report.

2.5 Summary

This chapter described settings, requirements and needs that constraint our work.
Next step is to figure out some current issues in managing product family in order
to investigate which technologies will offer the best coverage of these requirements
and needs.

Chapter 3

State of the art

Goal of this chapter is to serve as a basis to find the best available technology
to support the case study presented by DNV. That is why this section presents
the state of the art in product family and the unsolved problems and the current
fields of interest concerning the product family paradigm.

3.1 Current technical solution

There are some available products on the market for the management of the
family of products. In this section we will present an non exhausting list of the
existing products.

3.1.1 BigLeve software Gears

Gears1 is used to create a software production line capable of producing all of
the products in a software product line portfolio. A Gears software production
line comprises three key elements:

• Software Assets are configurable software artifacts such as source code,
requirements, and test cases engineered to be reused across the product
line.

• Product Feature Profiles model each product in the portfolio in terms of
optional and varying feature choices specified for the product line.

• The Gears Configurator automatically assembles and configures the soft-
ware assets, guided by the product feature profiles, to produce the products
in the portfolio.

1http://www.biglever.com/

19

20 CHAPTER 3. STATE OF THE ART

3.1.2 Pure::Variant

The pure::variants2 Edition targets at individual developers as well as small to
medium sized developer teams. It supports creation, management and evalua-
tion of all necessary models and uses XML based data formats for model storage.
Pure::Variant is available as a plug-in for the OpenSource Eclipse3 Integrated
Development Environment (IDE), which is a well known cross-platform develop-
ment tool. Since pure::variants supports the extensibility of Eclipse, customers
can easily perform functional enhancements and appearance changes if required.
Pure::Variant process starts with the selection of a compatible set of features.
This selection can be done by different type of users. Based on this selection the
system helps the user to find a suitable solution. The last part of the process is
to create the customized solution.

3.1.3 Kumbang

Kumbang is build using a domain ontology (see section 4.2.2) for modeling vari-
ability in software product families. Kumbang ontology is based on three layers
of abstraction. At the highest level of abstraction is the meta layer that contains
the modeling concepts. The next layer is the model layer that contains Kum-
bang models. The entities that appear in Kumbang models are termed classes
and are instances of metaclasses. Finally, the third layer, instance layer, contains
the instances of the classes appearing at the model layer [6]. In addition to the
ontology Kumbag has a Tool for Configuring product families.

3.2 Unsolved problems/Current issues

The state of the art products presented above face some difficulties to handle
the Product family concept. They face unsolved problems or current issues that
will need further work to correct them. Current issues in product family are as
follows:

• The evolution of the domain. In order to define the family architecture most
of the methods specify a set of commonalities (see section 2.2). But archi-
tectural evolution can be particularly challenging when it concerns product
family architecture. Especially when the core of the family architecture
evolves due to a major common requirements or upgrades. In fact the set
of commonalities that is assumed to be stable can become unstable over
the time. This problem implies a maintenance effort to have the domain
model up to date. On good example the example to illustrate the need to
handle the evolution of the domain is the example presented in [17]. This

2http://www.pure-systems.com/
3http://www.eclipse.org/

3.2. UNSOLVED PROBLEMS/CURRENT ISSUES 21

example talk about routers in telecommunication networks. These routers
are dynamically configured but in order to establish the required connection
they need to be stable (i.e. they are enduring in the domain model).

• Consistency of the data. The consistency of the data is an issue, in fact
it is difficult to check if the data in the product family architecture are
consistent or not. This problem is tightly linked with the evolution of the
domain.

• Feature modeling problems. The Feature modeling is a common way to sup-
port family of products nevertheless this approach has numerous problems
cited in [10]. Among these problems we find:

– Insufficient consideration of variability in feature-artefacts.

– The Reasons of Variability that are capture in the feature get lost.
This problem leads to an impossibility to reuse the feature in the same
context. The article [10] gives the example of an Asian limousine that
has an optional feature A, because the feature is considers as optional
in Asia. The design of a new Asian car can consider and reuse the fact
that A is not mandatory in Asia. But if the information is lost then
it is no more possible to reuse it.

– A high similarity among the product lines leads to a high redundancy
among the feature models.

• Family of product engineering supported by workflow system [30]. One ele-
ment that is in the scope of current and future research concerning product
family is to model the process to derivate the products family architecture.
In fact as we seen in section 2.2.4, product management is used in domain
engineering that it is used to construct a specific product. All this process
can be supported by a workflow system. This is a simple idea but very few
existing product actually are supported by a workflow system.

• Complex management of the family architecture. To have a more under-
standable architecture we can use an abstraction mechanism called filtering
and view generation. A difficult problem to solve concerns the management
of consistency among all views, especially if generated views must be stored
and kept up to date [22]. One other problem with this kind of mechanism
is that software engineers often do not know all consequences of the choices
they make in the derivation process. As lot of relations between the enti-
ties in the family architecture are hidden. In other words the selection of
one variation points can have some undesired side effects. This lead to one
other issue called Implicit properties.

22 CHAPTER 3. STATE OF THE ART

• Implicit properties. A core issue involves the large number of implicit prop-
erties (e.g. dependencies) of variation points and variants, properties that
are undocumented and either unknown or only known by experts.

• The testing of the family architecture has emerged as one field of interest by
is own in the last few years and a non negligible part of todays conferences
is accorded to the subject.

3.3 Summary

This chapter is the second step of our method. It figured out some current issues
to support family of products. In the restrictions section we defined as out of
boundaries the time dimension of the variability (see section 2.4) so we will not
focus on the evolution of the domain problem. Core problem that we assign in
this project are the consistency of the data and the issues concerning the features
models. Next step in our project is to investigate candidate technologies that
fulfilled needs and requirements (see chapter 2) but also enable to solve current
issues listed in this chapter.

Chapter 4

Candidate technologies

Goal of this section is to present some candidate technologies that can help to
solve some current issues for the product family paradigm (see section 3.2). For
each technology we will highlight the benefits to use in the case study provide by
DNV. The semantic web technologies and the rules technologies are introduced
in order to discover possible advantages to use them in the context of the case
study.

4.1 Semantic web

The Semantic Web is an extension of the current web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation. Today most of the data are generally hidden away in HTML files.
It could be useful in some contexts, but not in others. The problem with the
majority of data on the Web in this form is that it is difficult to use on a large
scale, because there is no global system for publishing data in such a way as it
can be easily processed by anyone.

4.1.1 Component

The W3C1 web pages on the Semantic Web include a diagram labeled Architec-
ture. This diagram, sometimes called the Semantic Web layer cake (see figure
4.1). Each layer is seen as building on and requiring the ones below it. The W3C
has developed, or is in the process of developing, standards and recommendations
for all these layers. Descriptions provided in the following sections are based on
the semantic web tutorial by Ivan Herman [19].

1http://www.w3.org/2001/sw/

23

24 CHAPTER 4. CANDIDATE TECHNOLOGIES

Figure 4.1: Semantic Web layer cake

XML

XML is an evolution of HTML which is a language for describing the layout of
documents. XML describes the structure of the document. XML allows authors
to create their own markup (e.g. < AUTHOR >), which seems to carry some
semantics. The problem is that for a computer the user’s tag do not carry any
semantic. A computer cannot infer, what an author is and how the concept
author is related to a concept person for example.

RDF

The RDF metadata model is based upon the idea of making statements about
resources in the form of subject-predicate-object expressions, called triples in RDF
terminology. The subject denotes the resource, and the predicate denotes traits
or aspects of the resource and expresses a relationship between the subject and
the object. All sentences are triples of the form (Property Subject Object) in
which the Property is a binary relation, the Subject is a URI reference and the
Object is either a URI reference or a literal 2. RDF includes a resource Class
and properties type, subclassOf, etc. RDF Schema is a framework that provides
a means to specify basic vocabularies for specific RDF application languages to
use. But RDF has some limitations for example in RDF there is no cardinality
constraints, there is no possibility to specify the disjointness of classes, as well
there are no axioms and negations.

2Example: (creatorOf http://www.w3.org/Lassila Ora Lassila)

4.1. SEMANTIC WEB 25

Ontology

Ontologies have moved beyond the domains of library science, philosophy, and
knowledge representation. Ontology attracts attentions across many fields in
computer science recently. There exists no consensus on definition about ontol-
ogy. Anyway we can define an ontology as an explicit representation of a concep-
tualization, the conceptualization includes a set of concepts, their definition and
inter-relationships. In many cases, the term ontology is another name denoting
the result of familiar activities like conceptual analysis and domain modeling. The
roles of ontology vary from knowledge management to semantic interoperability.
One important reason for that ontology attracts so much attention recently is
the Semantic Web, since ontology is considered the key enabler of Semantic Web.
More details about the ontology are given in the section 4.2.

Logic and Proof

The logic and proof layer is used to establish the consistency and correctness of
data sets and to infer conclusions that are not explicitly stated but are required
by or consistent with a known set of data. Proofs trace or explain the steps of
logical reasoning.

Trust

The trust layer is a means of providing authentication of identity and evidence
of the trustworthiness of data, services, and agents.

4.1.2 Motivation to use semantic web technologies

The advantages of the semantic web have been in the focus of the researchers for
few years now. They are present in the literature for example the article [34] lists
some of these advantages in the context of Internet commerce. The advantages
related with the case study are:

• Reasoning : Ontologies offer the opportunity to process reasoning, and query
on data. This quality can help to manage the product family architecture.
In fact the reasoning can be potentially used to support the product engi-
neering (see section 2.2.4) and even help to improve the domain engineering
support (i.e reasonning can help to fulfill requirement R05).

• Sharing : One of the main goals of the ontologies is to be machine under-
standable, to be processed by web agents. This particularity offers lots of
possibilities to share the family architecture as expressed in the need N05.

• Knowledge management : refers to a range of practices used by organi-
zations to identify, create, represent, and distribute knowledge for reuse,

26 CHAPTER 4. CANDIDATE TECHNOLOGIES

awareness, and learning across the organizations. Knowledge management
is characterized by key concepts such as: Tacit versus explicit knowledge
[24], Knowledge capture stages, Ad hoc knowledge access. Knowledge man-
agement programs may lead to greater innovation, better customer experi-
ences, consistency in good practices and knowledge access across a global
organization, as well as many other benefits, and knowledge management
programs may be driven with these goals in mind. The ontology can bring
lot of benefits for the management for the product families. In fact an
ontology can be used to enable the evolution of the domain, and a good
management of the domain complexity.

• Vocabulary flexibility and standardization: Theoretically, ontology tech-
niques allow users to flexibly choose the words they like. Since users are
diverse and it is hard to require them to fully know the standards, this
advantage could be interesting. In practice, [13] demonstrated in a finan-
cial group how to create a central vocabulary within an ontological context,
to standardize the concepts, and to improve the communications between
different departments. Flexibility and standardization seem conflicting. In
fact they reflect different developmental stages of semantic web. In the
initial stage, vocabulary standardization could be prioritized, whereas with
the emerging and maturity of ontology mapping or manipulation tools the
advantage of vocabulary flexibility will show up.

4.2 Ontology in more details

Goal of this section is to present the elements of an ontology, a classification of
the different types of ontology, and the existing ontology languages.

4.2.1 Elements of an ontology

An ontology typically is built using four constructs [19, 5]:

• Classes.

• Attributes.

• Relations.

• Instances.

Classes
Classes or Concepts are abstract groups, sets, or collections of objects. They may
contain individuals, other classes, or a combination of both. The classes of an
ontology may be extensional or intensional. A class is extensional if and only if it

4.2. ONTOLOGY IN MORE DETAILS 27

is characterized solely by its membership. More precisely, a class C is extensional
if and only if for any class C’, if C’ has exactly the same members as C, then
C and C’ are identical. If a class does not satisfy this condition, then it is in-
tensional. While extensional classes are more well-behaved and well-understood
mathematically, as well as less problematic philosophically, they do not permit
the fine grained distinctions that ontologies often need to make. For example,
an ontology may want to distinguish between the class of all creatures with a
kidney and the class of all creatures with a heart, even if these classes happen to
have exactly the same members. Some others particularity exist for example the
partition.

Attribute
Objects in the ontology can be described by assigning attributes to them. Each
attribute has at least a name and a value, and is used to store information that
is specific to the object it is attached to. If an ontology do not define attributes
for the concepts it will be a taxonomy or a Controlled Vocabulary . These are
useful, but are not considered true ontologies.

Relations
An important use of attributes is to describe the relation between objects in the
ontology. Typically a relation is an attribute whose value is another object in
the ontology. The most important type of relation is the relation is-superclass-of,
the converse of is-a, is-subtype-of or is-subclass-of. This defines which objects
are members of classes of objects. For example an elephant is a mammal which
implies that it is an animal.

Instances
Instances or Individuals are the basic, ”ground level” components of an ontology.
The individuals in an ontology may include concrete objects such as people, ani-
mals, tables, automobiles, molecules, and planets, as well as abstract individuals
such as numbers and words. Strictly speaking, an ontology need not include any
individuals, but one of the general purposes of an ontology is to provide a means
of classifying individuals, even if those individuals are not explicitly part of the
ontology.

4.2.2 Ontology types

Different types of ontologies exist depending on level of generality [15].

• Top-level ontologies or Upper ontologies are models of the common objects
that are generally applicable across a wide range of domain ontologies. It
contains a core glossary in whose terms objects in a set of domains can

28 CHAPTER 4. CANDIDATE TECHNOLOGIES

be described. There are several standardized upper ontologies available for
use, including Dublin Core3, GFO4, OpenCyc ResearchCyc5, SUMO6, and
DOLCE7.

• Domain ontologies. A domain ontology (or domain-specific ontology) mod-
els a specific domain, or part of the world. It represents the particular
meanings of terms as they apply to that domain.

• Task ontologies. A task ontology models a specific task. An example of
task ontology is provided in [23].

• Application ontologies. These ontologies are not reusable as they are specific
to one application.

4.2.3 Web ontology languages

DAML

The firsts ontology languages were DAML and OIL [18, 7, 5]. DAML is a schema
language that can be used to constrain and describe data following the RDF data
model. To put it another way: DAML is an RDF schema language. RDF already
has a schema language, called RDF Schema, and DAML is an extension of this
language. The value of DAML is thus that it allows one to describe RDF data,
and so makes it possible to add more semantics to the data. What DAML adds
to RDF Schema is additional ways to constrain the allowed values of properties,
and what properties a class may have. In addition, it provides some properties
that can be truly useful to generic software, which are:

• daml:samePropertyAs, which makes it possible to say that two RDF prop-
erties from different schemas are in fact the same property.

• daml:inverseOf, which can be used to say that one RDF property is the
inverse property of another. This means that together the two properties
describe a relationship both ways, and so provides some of the two-way
semantics of topic map associations. This mechanism does not work very
well for relationships that are not binary, however.

• daml:TransitiveProperty, which is a property type which other property
types can subclass to make it clear that they are transitive.

DAML strengthens the RDF schema language, and adds a little bit of semantics
on top.

3http://dublincore.org/
4http://www.onto-med.de/en/theories/gfo/index.html
5http://www.cyc.com/
6http://www.ontologyportal.org/
7http://www.loa-cnr.it/DOLCE.html

4.2. ONTOLOGY IN MORE DETAILS 29

OIL

OIL is very similar to DAML as it is also an extension of RDF Schema, and
the capabilities of OIL and DAML are very similar. OIL is a proposal for a
web-based representation and inference layer for ontologies, which combines the
frame-based languages with the formal semantics and reasoning services provided
by description logics. The two main precursors of OIL are:

• DL describes knowledge in terms of concepts and role restrictions that are
used to automatically derive classification taxonomies. The main effort of
the research in knowledge representation is in providing theories and sys-
tems for expressing structured knowledge and for accessing and reasoning
with it in a principled way. Frame language is a metalanguage. It ap-
plies the frame concept to the structuring of language properties. Frame
languages are usually software languages.

• Frame languages are rather focused on the recognition and description of
objects and classes, and relations and interactions are considered as ”sec-
ondary”. In general, frame in this context means something that can be or
has to be fulfilled. In such sense, for example: Object-oriented program-
ming languages are frame languages, but also every grammar is a frame lan-
guage. Frames are Roughly similar to the object-oriented paradigm, they
represent classes with certain properties called attributes or slots whereas
they do not have methods. Frames are thus a machine-usable formalization
of concepts or schemata.

The two languages have been gathered to form the DAML+OIL language. DAML+OIL
was developed by a group which was jointly funded by the US Defense Advanced
Research Projects Agency (DARPA) under the DAML program and the Euro-
pean Union’s IST funding project. As its predecessors DAML+OIL is a semantic
markup language for Web resources. It is build on earlier W3C standards such as
RDF and RDF Schema, and combines the strengths of each of DAML and OIL.

OWL

The OWL Language is a research-based revision of the DAML+OIL web ontol-
ogy language [5]. OWL is intended to be used when the information contained
in documents needs to be processed by applications, as opposed to situations
where the content only needs to be presented to humans. OWL can be used to
explicitly represent the meaning of terms in vocabularies and the relationships
between those terms.

OWL sub-Languages
OWL currently has three sub-languages: OWL Lite, OWL DL, and OWL Full.

30 CHAPTER 4. CANDIDATE TECHNOLOGIES

Figure 4.2: Ontology languages evolution.

These three increasingly expressive sub-languages are designed for use by specific
communities of knowledge engineers and users. OWL Lite supports those users
primarily needing a classification hierarchy and simple constraints. For example,
while it supports cardinality constraints, it only permits cardinality values of 0
or 1. It should be simpler to provide tool support for OWL Lite than its more
expressive relatives, and OWL Lite provides a quick migration path for thesaurus
and other taxonomies. OWL DL supports those users who want the maximum
expressiveness while retaining computational completeness (all conclusions are
guaranteed to be computed) and decidability (all computations will finish in fi-
nite time). OWL DL includes all OWL language constructs, but they can be
used only under certain restrictions (for example, while a class may be a subclass
of many classes, a class cannot be an instance of another class). OWL DL is so
named due to its correspondence with description logic, a field of research that
has studied the logics that form the formal foundation of OWL. OWL Full is
meant for users who want maximum expressiveness and the syntactic freedom
of RDF with no computational guarantees. For example, in OWL Full a class
can be treated simultaneously as a collection of individuals and as an individual
in its own right. OWL Full allows an ontology to augment the meaning of the
pre-defined (RDF or OWL) vocabulary. It is unlikely that any reasoning software
will be able to support complete reasoning for every feature of OWL Full. Each
of these sublanguages is an extension of its simpler predecessor, both in what can
be legally expressed and in what can be validly concluded. The following set of
relations holds. Their inverses do not.

4.3. RULE BASED SYSTEM 31

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

4.3 Rule based system

Using a set of assertions, and a set of rules that specify how to act on the assertion
set, a rule-based system can be created. Rule-based systems are fairly simplistic,
consisting of little more than a set of if-then statements, but provide the basis
for so-called expert systems which are widely used in many fields. The concept
of an expert system is this: the knowledge of an expert is encoded into the rule
set.

4.3.1 Theory

The rule-based systems use a simple technique. The system examines all the
rule conditions (IF) and determines a subset, the conflict set, of the rules whose
conditions are satisfied. One of the rules within the conflict set is triggered (fired).
Which one is chosen is based on a conflict resolution strategy. When the rule is
fired, any actions specified in its THEN clause are carried out. This loop of firing
rules and performing actions continues until one of two conditions are met: there
are no more rules whose conditions are satisfied or a rule is fired whose action
specifies the program should terminate [14].

Conflict resolution

Which rule is chosen to fire is a function of the conflict resolution strategy. Which
strategy is chosen can be determined by the problem or it may be a matter of
preference. In any case, it is vital as it controls which of the applicable rules
are fired and thus how the entire system behaves. There are several different
strategies, but here are a few of the most common:

• First Applicable: If the rules are in a specified order, firing the first ap-
plicable one allows control over the order in which rules fire. This is the
simplest strategy. But there is a risk that of an infinite loop on the same
rule happens. In fact if the working memory remains unchanged after the
rule has been fired then the conditions of the first rule have not changed
and it will fire again and again. To solve this, it is a common practice to
suspend a fired rule and prevent it from re-firing.

32 CHAPTER 4. CANDIDATE TECHNOLOGIES

• Random: Though this strategy do not provide the predictability or con-
trol of the first-applicable strategy, but it does have its advantages. Its
unpredictability is an advantage in some circumstances (such as games for
example). A random strategy simply chooses a single random rule to fire
from the conflict set. Another possibility for a random strategy is a fuzzy
rule-based system in which each of the rules has a probability such that
some rules are more likely to fire than others.

• Most Specific: This strategy is based on the number of conditions of the
rules. From the conflict set, the rule with the most conditions is chosen.
This is based on the assumption that if it has the most conditions then it
has the most relevance to the existing data.

• Least Recently Used : In this strategy each of the rules is accompanied by a
time or step stamp, which marks the last time it was used.

• ”Best” rule: For this strategy to work, each rule is given a weight, which
specifies how much it should be considered over the alternatives. The rule
with the most preferable outcomes is chosen based on this weight.

Chaining

This section explains the two different chaining methods applicable to chain rules.

Forward-Chaining
Rule-based systems, are adaptable to a variety of problems. In some problems,
information is provided with the rules and the Artificial intelligence (AI) follows
them to see where they lead. An example of this is a medical diagnosis in which
the problem is to diagnose the underlying disease based on a set of symptoms (the
working memory). A problem of this nature is solved using a forward-chaining,
data-driven, system that compares data in the working memory against the con-
ditions (IF parts) of the rules and determines which rules to fire (see figure 4.3).

Backward-Chaining
In other problems, a goal is specified and the AI must find a way to achieve that
specified goal. For example, if there is an epidemic of a certain disease, this AI
could presume a given individual had the disease and attempt to determine if its
diagnosis is correct based on available information. A backward-chaining, goal-
driven, system accomplishes this. To do this, the system looks for the action in
the THEN clause of the rules that matches the specified goal. In other words, it
looks for the rules that can produce this goal. If a rule is found and fired, it takes
each of that rules conditions as goals and continues until either the available data

4.3. RULE BASED SYSTEM 33

Figure 4.3: Forward chaining process (source [14])

satisfies all of the goals or there are no more rules that match (see figure 4.4).

Which method to use?
Of the two methods available, forward or backward chaining, the one to use is de-
termined by the problem itself. A comparison of conditions to actions in the rule
base can help determine which chaining method is preferred. If the average rule
has more conditions than conclusions, that is the typical hypothesis or goal (the
conclusions) can lead to many more questions (the conditions), forward-chaining
is favored. If the opposite holds true and the average rule has more conclusions
than conditions such that each fact may fan out into a large number of new facts
or actions, backward-chaining is ideal.

If neither is dominant, the number of facts in the working memory may help
the decision. If all (relevant) facts are already known, and the purpose of the sys-
tem is to find where that information leads, forward-chaining should be selected.
If, on the other hand, few or no facts are known and the goal is to find if one of
many possible conclusions is true, use backward-chaining.

4.3.2 Motivation to use rule-based system

The main reasons to use rules in the case study are:

• Declarative Programming : The rule based system can be used to easily

34 CHAPTER 4. CANDIDATE TECHNOLOGIES

express solutions to hard problems, and consequently have those solutions
verified (rules are much easier to read than code). Rule systems are capable
of solving hard problems, yet providing a solution that is able to explain
why a ”decision” was made. This is not so easy with other types of AI
systems. Regarding to the needs (see section 2.3.3) and requirements (see
section 2.3) this particularity can allow sale person to trust the system.
Moreover the quality and trustability of the system is improved using rule-
based system because the usage of rules create a repository of knowlegde.
This means its a single point of truth, for business policy (for instance).

• Logic and Data Separation: Using a rule-based system implies that the data
are in the domain objects, and the logic is in the rules. This is fundamen-
tally breaking the object oriented coupling of data and logic (this can be
an advantage as well as a disadvantage depending on your point of view).
The upshot is that the logic can be much easier to maintain as there are
changes in the future, as the logic is all layed out in rules. In the case study
regarding to the needs N01 and N02 (see section 2.3.3), it seams that it is
an advantage.

• Tool Integration: There exists numerous tools on the market that provide
ways to edit and manage rules and get immediate feedback, validation and
content assistance. Auditing and debugging tools are also available. DNV’s
Brix Rule engine and rule editor (see figure 2.4) allow all these operations.
The integration with these tools should answer to the requirement R04.

• Understandable rules (readable by domain experts): By creating object
models that model a problem domain, rules can look very close to nat-
ural language. They lend themselves to logic that is understandable to
domain experts who may be non technical (as all the program plumbing is
in the usual code, hidden away). This is clearly an advantage because this
particularity permits to fulfill the need N01 (see section 2.3.3).

4.4 Software development using semantic technologies

Goal of this section is to show that are attempts of employing semantics web
technologies in closely related area to product family. This section will present
recommendations from the W3C and workshops which interest is the usage the
semantic web to support software development.

4.4.1 Semantic web in systems and software engineering

The W3C gives some ideas to use the semantic web for software development
among them we find this idea:Verifying Feature Models using OWL. The

4.4. SOFTWARE DEVELOPMENT USING SEMANTIC TECHNOLOGIES 35

idea is based on the publications [32, 31]. Features are prominent and distinc-
tive user visible characteristic of a system. Systems in a domain shared common
features and also differ in certain features. A feature model consists of a feature
diagram and other associated information (such as rationale, constraints and de-
pendency rules). However, the lack of a formal semantics and reasoning support
of feature models has hindered the development of this area. Industrial experi-
ences show that methods and tools that can support feature model analysis are
badly appreciated.

A feature diagram (see figure: 2.6) provides a graphical tree-like notation that
shows the hierarchical organization of features. We can use OWL to represent
all of them (see the OWL codes below). For example, we can represent ”F is a
mandatory sub-feature of C” with the following OWL DL axiom :

<owl:Class rdf:about="C"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasF">

<owl:someValuesFrom rdf:resource="#F">

</owl:Restriction>

</owl:Class>

and represent ”F is an optional sub-feature of C” with the following OWL DL
axiom :

<owl:Class rdf:about="F"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasC">

<owl:someValuesFrom rdf:resource="#C">

</owl:Restriction>

</owl:Class>

By representing feature models as OWL axioms, the consistency of feature con-
figurations can be automatically checked by Description Logic-based Semantic
Web reasoning engines [31].

4.4.2 Semantic web enabled software engineering

The advantages of semantic technologies in software engineering include reusabil-
ity and extensibility of data models, improvements in data quality, and discovery
and automated execution of workflows. The Semantic Web can serve as a plat-
form on which domain models can be created, shared and reused. This subject
is approached in the International Workshop on Semantic Web Enabled Software
Engineering (SWESE8). This workshops tries to find answers to questions shuch

8http://www.mel.nist.gov/msid/conferences/SWESE/

36 CHAPTER 4. CANDIDATE TECHNOLOGIES

as: Could the Web-based, semantically rich formality of OWL be combined with
emerging model driven development tools to provide improvements in both the
process and product of software development activities?, How to integrate OWL,
UML and the Model Driven Architecture (MDA)? MDA and Product family are
very close concepts. The popularity and power of the MDA approach has been
used in many software developments in particular in product family. In paral-
lel, Semantic Web language standards have arrived with substantial tool support
that also provide a means of describing models, but providing different capabili-
ties than the models typical of MDA tools. The members of these workshops try
to investigate the advantages of bridging these approaches. The mains topics of
interest of the SWESE’s members are:

• Visions for Semantic Web driven software engineering;

• Tools developed or being developed for software engineering using SW lan-
guages;

• Integration or application development projects combining Software Engi-
neering techniques and Semantic Web tools or languages;

• Integration of UML, object oriented programming languages and Semantic
Web languages Ontologies for software engineering;

• Feature modelling and ontologies;

• Ontology reasoning for software engineering;

• Ontology-Driven Architecture: How to introduce Semantic Web technology
into mainstream development processes.

Regarding to these topics of interests it is obvious that there are efforts to use
the semantic web in tightly related concept to the product family paradigm.

4.5 Summary

This section highlights some potential pros to use semantic technologies and rule
base system in the case study. First the rules can help to fulfill the require-
ments R02, R03, R09 and the need N01 by separating logic and data and by
providing understandable knowledge. The semantic technologies and especially
the ontology web language may help to support the family of products. In fact
the semantic technologies are useful to manage knowledge and they ability to
process reasoning, and query on data can improve domain and product engineer-
ing (see section 2.2.4). That are the motivations to use these technologies in our
project.

4.5. SUMMARY 37

Figure 4.4: Bacward chaining process (source [14])

Chapter 5

Product family pricing calculator

The previous chapters gave a solid background on product family and on the
problems related to the master thesis subject. In the past chapters we analyzed
the best available technologies to support the creation of a centralized system
to create offers according to the product family. Next step is to define how the
system should interact with the users to achieve business requirements and needs
(see section 2.3 and section 2.3.3). Goal of this chapter is to reflect the decisions
taken during the design and sketch out the implementation phase carried out.

5.1 System definition

The goal of this section is to define the system to create in a more structured
way. This section answers to important questions like: who will use the system?
or how will the system used?

5.1.1 Actors

Based on the client’s requirements and needs we can define two types of users:

• Sales people. The sales people use the system to build a pricing offer. This
means that they must be able to create, save and modify an offer. The
system must allow them to find the package corresponding to the client
demand, and to price this package.

• Administrator. An administrator manages the system’s user accounts, man-
ages the DVN’s branding structure, and he is able to manage the way to
compute the price of each package.

39

40 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

Figure 5.1: Use cases for a sales person

5.1.2 Use cases

Use case (UC) diagrams are a way to structure the client requirements. They
can be used to show the interaction between the system and actors. A use case
should include all the alternative outcome of a system interaction. A use case is
a first step to clarify the system interactions and it defines good basis to start
the system architecture. The core of the report contains only top level use case
diagram in order to make the system easy to understand. The detailed use cases
are attached in appendix B.

Sale people use cases

The sales people are application users i.e. they just use the system to find pack-
ages, compute price or manage their offers. The diagram present in figure 5.1
shows the interactions between the sales people and the system. The use cases
defined in the figure 5.1 relate the requirements R01, R02, R03, R04.

Administrator use cases

An administrator is a domain expert or knowledge worker that maintain the
pricing rules and the families architectures. The diagram present in figure 5.2
shows how the administrator interact with the system. The table 5.2 relate the
use cases with the requirements.

5.1. SYSTEM DEFINITION 41

Figure 5.2: Use cases for an administrator

42 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

Id Name Related requirements Related needs

UC01 manage users R08
UC02 delete package R05 N01, N02, N03
UC03 modify package R05 N01, N02, N03
UC04 select package R01
UC05 create new package R02, R05 N01, N02, N03, N04
UC06 create pricing rules R02 N01, N02
UC07 create package composition R05 N01, N02, N03, N04
UC08 check consistency N04
UC09 create new family R05 N01, N02, N03, N04

Table 5.1: Administrator use cases related to requirements and needs

5.2 System overview

The goal of this section is to give an overall presentation of the system; to explain
the main ideas that are used in our solution to achieve the goals of the thesis.
A constant effort has been done to enable to develop a system to manage and
price the family of products that does enable a hight variability. More details
and justifications are presented in the next sub sections.

5.2.1 Components

The system has two users (see section 5.1.1). These users interact with the
system using different components. Goal of this section is to present the different
components and how they fit all together. The system has four components:

• Web site. sales people interacts through web site. It allows creating offers
and generating a paper version of an offer. A offer contains a set of packages
that have been priced.

• Ontology. The role of the ontology is to be the operational data for the
web site. The web site uses the ontology as a database component. The
ontology encodes all constraints of the system. The ontology is also used
by the others components.

• Rules editor. The rules editor is a DNV’s software (see section 2.1.2). This
component is used to create the pricing rules for the packages.

• Packages management tools. This component aims to support the fam-
ily of products engineering (see section 2.2.4). The domain engineering is
supported by an ontology editor (see section 5.3.1) whereas the product en-
gineering is supported by a configurator tool. The ontology editor is used

5.2. SYSTEM OVERVIEW 43

to manage the family architecture (i.e. manage the ontology). The config-
urator enables to create, delete and edit packages. It uses the ontology as
basis for all the operations it makes, but it also edits the ontology creating
instances of class.

The system is built around an ontology. In our system a data author (i.e. an
administrator) creates operational data based on a pre-existing ontology. The
operational data are stored in the ontology itself. Application users then interact
with the web site component to perform analysis or query on the operational
data in order to find a package and calculate its price (see appendix C). The links
between the components and the interactions the users can have with them are
simplified in the figure 5.3. The architecture is inspired by the Neutral authoring
scenario presented in the paper [29]. In the figure 5.3 the package management
tool uses the ontology, and also changes it. In the package management tools
the steps to be applied on the ontology to derivate a family architecture are
encoded. The tool has no constraints defined; all the constraints are encoded in
the ontology.

Figure 5.3: Application’s components use

5.2.2 Product selection

In order to help the sales persons to choose the right package according to a
specified branding structure we came up with the idea of a tool using feature
model. One benefit of this approach is that it computes the possible packages
based on the decisions made by the user. That really helps the sales person to
choose the right package by decreasing the number of available packages after each
feature selection. Typically, the user starts by selecting features that represent
the functionalities of the desired package. As soon as the user has made the

44 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

Figure 5.4: Pricing model

first decision, the system starts to compute the impacts of these user decisions
to reduce the number selectable packages. Decisions can be made on an abstract
level using customer understandable terms or on ”Technical” level using expert
understandable terms.

5.2.3 Pricing

The pricing ability is one of the core reasons that bring DNV Software to provide
the project. There is a need to have a flexible structure, which follows some
pricing rules for the pricing of the packages. Flexibility and rules seem difficult
to integrate. It is not the case because the system allows having different rules
for each package. These rules are shared between all the sales persons. The
challenge was to find an architecture that allows defining different pricing rules
and different options for these rules at the package level. Facing this problem we
came up with a simple but very adaptive model (see figure 5.4).

A rule base is a set of rules. These rules follow the syntax of the DNV rule
engine (see section 5.3.2). The pricing options are just a set of options that
the users have to give to the rules in order to provide a result. Each package
can have a different set of pricing options. An example of pricing option is a
percentage of discount according to the client. The strengths of this model is that
event the way to display the pricing options and the type (integer, string,positive
integer...) of attended entry is stored in persistent data (Pricing Options) with a
low complexity level that permits to everyone to change the pricing options. We
can define in the pricing options if the percentage of discount must be selected
among predefined values from a DropDownList or just enter in a TextBox.

5.2. SYSTEM OVERVIEW 45

5.2.4 Package management

The package management is a core point of the project. In fact it has been
specified in the requirement that the system must help to manage the package
composition and architecture. The package management is supported by the
package management tools.

Packages composition management

The management of the packages composition includes:

• Create a new package. This is provided a piece of software that we devel-
oped. This piece of software is presented in the next sub-section.

• Delete a package.

• Change a package.

Create a new package
To create a package we came up with the idea of a configurator using feature
model. Configuration activities consist of making decisions about the desired
product based on the products features. The configuration tool is used to ensure
a consistent, complete and correct solution. In our approach the features, pack-
ages, and program to sell (that will be called ”Tool” in the rest of the document)
are represented in a model (see figure: 5.5).

Figure 5.5: Configurator model

The realized relation is a further bidirectional dependency that expresses that
features are supported by Tools in an n-to m mapping: one feature can be sup-
ported by one or more artifacts and the other way round one or more features can
be realized by one artifact. This relation is useful to check the model consistency.
In fact the Tools that are in the composition of a package realize a set of features.
This set has to be the same as the set of feature defined by the relations Has
Features. In other words a package have to be described by features that are

46 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

supported by the tools that compose the packages. The overall functioning of a
package creation is simple (see figure 5.6). We were not able to find a domain
expert capable to define exclusions between tools. So the constraints of exclusion
between tools are not yet supported by the system and therefore, they are not
represented in the figure 5.5.

Delete or change an existing package
When deleting an existing package some offers that include the deleted package
can become inconsistent with the data. It is the same problem when changing an
existing package. Consequently, there is a need to handle versions of the ontology.
At the development stage the ontology versioning is not supported. Further work
is required in order to investigate and integrate a tool for robust versioning of an
ontology, a candidate here is the PROMT tool [25].

Family architecture management

Each instance of a package is based on a family architecture. It is a difficult
process to define the architecture (see section 2.2.4). In our solution the ability
to manage the families of products structure is provided using an ontology editor
(see section 5.3.1).

5.3 Technical overview

The goal of this sub section is to reflect some important technical aspects of the
prototypes that has been developed.

5.3.1 System design

This section presents important decisions that we made during the design phase
of the project. In the design phase we established the architecture (see section
5.2.1). During this phase we expanded upon the information established in the
requirements and in the use cases.

Ontology Language

In this section we will study which ontology language is the most suitable to
implement the family of products ontology. OWL has three sub languages (see
section 4.2.3). As each sub-language is an extension of its simpler predecessor we
can stop to look at the superior languages as soon as we find a suitable OWL sub-
language to represent the ontology. We know that a package can have numerous
features that describe it. OWL Lite supports cardinality constraints, but it only
permits cardinality values of 0 or 1. If we admit that OWL Lite is suitable
to represent the packages then it implies that OWL Lite being able to support

5.3. TECHNICAL OVERVIEW 47

Figure 5.6: Package creation process

the set of features for each package. It is equivalent to the assertion OWL Lite
permits cardinality value ∗; that is absurd. OWL Lite is not suitable to represent
the packages.

48 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

In order to evaluate the OWL DL we took the sub part of definition of the
Description Logic expressiveness it is based on and we compare with the sub part
of the Description Logic expressiveness needed to represent the product family.
OWL DL provides the expressiveness of SHOIND plus functional properties.
SHOIND means:

• S. An abbreviation for AL and C with transitive properties. C means
Complex concept negation.AL means Attributive language. This is the
base language which allows:

– Atomic negation (negation of concepts that do not appear on the left
hand side of axioms).

– Concept intersection.

– Universal restrictions.

– Limited existential quantification.

• H Role hierarchy (subproperties - rdfs:subPropertyOf).

• O Nominals. (Enumerated classes of object value restrictions - owl:oneOf,
owl:hasValue).

• I Inverse properties.

• N Cardinality restrictions (owl:Cardinality, owl:MaxCardinality).

• D Use of datatype properties, data values or data types.

The ontology language to pick has to support at least :

• H to create the hierarchy that characterize the DNV’s branding structure.

• S and O in order to enable the package management tool to infer the
possible tools for a set of features and vise versa.

• D and functional properties in order to be able to use the ontology as
operational data.

According to this enumeration OWL DL is suitable to support the ontology
development. Moreover OWL FULL is not well supported by reasoning, (i.e.
reasoning is indecisive).

5.3. TECHNICAL OVERVIEW 49

Guide to choose a Semantic Web Toolkit

Traditional programming languages like CSHARP and knowledge engineering
ones (based on LISP, PROLOG, etc.) have more and more difficulties to inter-
act. Traditional programmers and knowledge engineers often don’t understand
each other. Their tools poorly understand each other too. Knowledge engineers
are experts in formal logic and other domains of mathematical theory and work
in terms like concept, fact, hypothesis, goal variable, frame, fuzzy logic, certainty
factor, etc. On the contrary, software engineers work in common terms like pro-
gram, declaration, statement, memory, procedure, stack, assignment, etc. That
is why it has been a real challenge to find the good semantic web toolkit to use in
the web site code. After some evaluations that are presented in the appendix D
we choose the SemWeb toolkit. This choice has been motivated by the fact that
SemWeb supports the SPARQL1 query language and also because it supports
numerous databases and serialization formats.

Ontology editor

Ontology editors are applications designed to assist in the creation or manip-
ulation of ontologies. They often express ontologies in one of many ontology
languages. Some provide export to other ontology languages. The choice of the
ontology editor was important because this editor will be used to construct the
ontology that will be utilized by the web site component and by the package
management tools. Among the most relevant criteria for choosing an ontology
editor are the degree to which the editor abstracts from the actual ontology rep-
resentation language used for persistence and the visual navigation possibilities
within the knowledge model. Next come built-in inference engines and informa-
tion extraction facilities, and the support of upper ontologies such as OWL-S,
Dublin Core, etc. Another important feature is the ability to import and export
foreign knowledge representation languages for ontology matching. Among the
most famous ontology editor we find:

• KAON2 (single user and server based solutions possible, open source, from
IPE Karlsruhe),

• Ontolingua3 (Web service offered by Stanford University),

• Protege4 (Java-based, downloadable, open source, many sample ontologies,
from Stanford University),

1http://www.w3.org/TR/rdf-sparql-query/
2http://kaon.semanticweb.org/
3http://www.ksl.stanford.edu/software/ontolingua/
4http://protege.stanford.edu/

50 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

• OntoEdit5 (Web service offered by the University of Karlsruhe)...

We made our choice based on a web page 6 and on the home page of each
relevant editor. After this study we choose the Protege editor.

Protege is a free, open-source platform that provides a growing user commu-
nity with a suite of tools to construct domain models and knowledge-based appli-
cations with ontologies. At its core, Protege implements a rich set of knowledge-
modeling structures and actions that support the creation, visualization, and
manipulation of ontologies in various representation formats. Protege can be
customized to provide domain-friendly support for creating knowledge models
and entering data. Further, Protege can be extended by way of a plug-in archi-
tecture and a Java-based Application Programming Interface (API) for building
knowledge-based tools and applications. This extensibility of Protege is a great
opportunity to develop the package management tools.

5.3.2 Implementation

This section presents informations about the implementation phase.

OWL for the product family

Here we illustrate the definition and usage of features and commonalities and
discuss these aspects in more details. The conceptualization and definition of
the domain establish a generic architecture for the product families that defines
components, connectors and constraints. For the product family, the architecture
serves as a reference point while creating each product. Variability must be
specified explicitly in the architecture. As we saw it has been defined four types
of features within the feature concept (see section 2.2.4). For the mandatory
and optional feature we can replicate the method presented in the chapter 4.4.1.
Nauticus Early Design (system that integrates computer aided design (CAD) and
analysis, thereby enabling ship designers to perform contract and classification
design faster and better) has to have as mandatory feature CAD. This assertion
can be represented using OWL by the axiom:

<owl:Class rdf:about="#Nauticus">

<owl:equivalentClass>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#CDA"/>

<owl:onProperty rdf:resource="#hasMandatoryFeature"/>

</owl:Restriction>

</owl:equivalentClass>

5http://www.ontoknowledge.org/tools/ontoedit.shtml
6www.xml.com/2002/11/06/OntologyEditorSurvey.html

5.3. TECHNICAL OVERVIEW 51

</owl:Class>

The optional features can be represented using the method presented by the W3C
in the section 4.4.1. Alternative and multiple features we used our approach is
based on the Pattern two in [27]. The section presents an example to illustrate
how we represent the alternative features. In the example the targeted activity
is the alternative feature. This feature has two sub features Tanker Builder and
Offshore. Sesam is a package which targeted activity is offshore. The schema 5.7
represents how the ontology is constructed. The multiple features are represented
using the same pattern but without the restriction disjoint for the sub classes.

52 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

Figure 5.7: Example of alternative feature.

5.3. TECHNICAL OVERVIEW 53

License type Factor A

Node locked 0.6
Dongle 0.7
Network 1.0

Table 5.2: Factor A table

Rules

Rules are used to compute the price of the packages. Each package can have
different pricing options to pass to the rules. A general concept that is applied to
all the products is that the calculated price is found from multiplying the basic
price of a product by factors. These factors can depend on the license type, the
maintenance, the installation type etc. An example of pricing for the products of
the family Nauticus is provided bellow. Nauticus is a family of solutions for ship
early design integrating 3D computer assisted design (CAD) and ship analysis
systems. The calculated price is computed using this formula:

Price = Basicprice ∗ FactorA ∗ FactorB ∗ FactorC ∗ FactorD (5.1)

The factor A depends on the license type. The different types of license are:

• Node locked. This license allows one program to be accessed at any time
on a designated PC.

• Dongle license. This license allows one program to be accessed at a time
on the PC where the dongle is installed.

• Network. A n-User network license allows n copies of a licensed program
to be accessed at any time.

Values for the factor A can be found using the table 5.2. The Factor B depends
on the Type of license and on the number of users. For the network license the
factor B can be found using the table 5.3. If the license type is dongle or node
locked then the factor B can be found using the table 5.4. The factor C depends
on the network installation. If the license type is not network then the factor c
is 1.0 otherwise it can be found using the table 5.5.
The Factor D depends on the duration of the license. The different alternatives
are:

• Purchase. For purchase the client is granted perpetual rights of use for the
last program version received. Program maintenance and support for one
year is included in the purchase price. The factor D is then 1.0.

54 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

No. of users in network Individual factor Factor B accumulated

1st user 1.0 1.0
2nd user 0.75 1.75
3rd user 0.5 2.25
4th user 0.4 2.65
5th user 0.4 3.05

6th - 10th user 0.3
11th onwards 0.2

Table 5.3: Factor B for network license

No. of users dongle or nor locked Individual factor Factor B accumulated

1st user 1.0 1.0
2nd user 0.75 1.75
3rd user 0.5 2.25
4th user 0.5 2.75
5th user 0.5 3.25

6th - onwards 0.4 each

Table 5.4: Factor B for non network license

Network installation Factor C

Single LAN 1.0
Additional LAN Start counting at

2nd user on previous LAN
WAN 1.25

Table 5.5: Factor C table

• Lease-Purchase. A lease purchase contract is the same as a purchase con-
tract, but the price is paid over 3 years. At the end of the period the client
has the same perpetual rights of use as if purchase. In this case the Factor
D is 0.52.

• Annual Rental. A rental agreement gives access to the programs for one
year at a time. In this case the Factor D is 0.46.

The tables enable us to find the values of each factor. For example if a client
wants to buy a Nauticus product with a Network License for 3 users, and he

5.3. TECHNICAL OVERVIEW 55

wants to install the product in a WAN, and he wants to sign an annual rental
contract then the price will be:

Price = Basicprice ∗ 1.0 ∗ 2.25 ∗ 1.25 ∗ 0.46 (5.2)

Rule implementation.
Rules express business knowledge. They are defined in a declarative language:
the rule system enables administrators to express their domain knowledge and
store them in a rule base which is used by the website component. The rule
system consists of editor for editing rules and application interfaces as well as a
runtime environment for rule execution. A rule is a conditional statement in a
general form:

If <premise> then <consequent>

The rules are logically chained because predicate defined as the consequent in
one rule is used as premise in another rule. The rule bellow define that if the
license type is Node locked then the factor A is 0.6 and the consequent CalcA is
true. If a Rule uses CalcA in the premise then the premise of this rule will be
considered true.

<rule>

<comment></comment>

<rulename>NodeLockedLicense</rulename>

<vardec>

<varname>license</varname>

<vartype>string</vartype>

</vardec>

<vardec>

<varname>a</varname>

<vartype>double</vartype>

</vardec>

<source></source>

<priority>0</priority>

<premise>

<preactions />

<atomic>?license=="node-locked";</atomic>

<trueactions>

<action>?a:=0.6</action>

</trueactions>

<falseactions />

</premise>

<consequent>

<named>

56 CHAPTER 5. PRODUCT FAMILY PRICING CALCULATOR

<name>CalcA</name>

<argument>?license</argument>

<return>?a</return>

</named>

</consequent>

</rule>

In the Nauticus case presented upon the rules to calculate the price need five
arguments (basic price, license type, number of users, installation type, and con-
tract type). For example one option for the rule for Nauticus is the License type
that can have three values (Dongle, Node Locked, and Network). The web site
component uses the options to display some graphical elements to the sales per-
sons so it is mandatory that the web site is configured to figure out how to display
the possible values for each option. For example the user can choose the license
type from a list or he can just enter text in a TextBox. That is why we decided to
save in the ontology the way to display each option. For example in the Nauticus
example we decided that the license type has to be chosen from a list. In order
to keep the web site code independent of the number and the type of the pricing
options we made the choice that all the rule bases will have as starting rule a rule
that follow this declaration: double calcprice(HashTable pricingOptions, Double
basicPrice).

Web site

We implemented the web site using ASPNET and CSHARP. The main challenge
was to learn a new language. We had some difficulties to understand the page
life cycle and client side scripts. But the help provided by all the people at
DNV Software allowed us to carry out the task. The web site uses the ontology
as a database component. All the work done with the ontology is done using
the SemWeb toolkit (see section 5.3.1). Some screen shots of the web sites are
provided in appendix (see appendix E.1).

Package creation tool

The package creation is a piece of software that enables to create new packages
based on the products family architecture. We agreed with the sales person
at DNV that the package creation tool (or Configurator) has not to be web
based. That is why this tools is a local tool. We used the protege API to do the
development. The mains problems that we have encountered are to understand
how to use the protege API and how to link the data to JTable model. Some
screen shots of the web sites are provided in appendix (see appendix E.2.1).

5.4. SUMMARY 57

5.4 Summary

Our approach differs from existing tools that supports the product family since we
are using the semantic power of OWL to support the management and the pricing
of product families, whereas most of them are based on XML. The ontology
is the central component of our system it encodes the domain knowledge and
restrictions. The product family pricing calculator is dived in two distinct parts:

• The management of families architectures and packages which is done by
an administrator using the package management tools. The package man-
agement tools support the domain engineering doing ontology management
with an ontology editor, but it also supports the product engineering using
a configurator.

• The usage of the knowledge encoded in the ontology. The ontology is used
as operational data to make pricing offers. The web site component allows
application users (i.e. sales people) to find, and price packages.

This approach enables to separate the product family architecture from its usage
(for example a price calculation). Our system is ontology-driven and rules based
system that allows to manage composition and to price packages. Next step is
to evaluate and to analyze the results of the implementation to figure out if the
system has fulfilled the requirements and needs and whether it helps to solve
current issues in managing family of products.

Chapter 6

Evaluation of the approach and

system

This chapter evaluates the results of running our system on different problem
scenarios. This evaluation is done based on the unsolved problems by the existing
solutions that support family of products (see section 3.2) and on the potential
benefits to use semantic technologies (see section 4.1.2) and rules (see section
4.3.2). This chapter also analyzes those results. Analysis consists of both pointing
out interesting result and trying to explain them.

6.1 Objectives

Our project is driven by the hypothesis that the semantic technologies can sup-
port the family of products. Our method was to find how the unsolved problems
of the current solutions to support the family of products can be tackled by the
usage of the semantic technologies. Based on a practical case we would like to
verify this hypothesis by comparing it with the observed outcomes. We seek to
figure out some best practices to:

• Improve the variability consideration within the products family architec-
ture.

• Minimize redundancy of feature models when two family have a high level
similarity.

• Ensure consistency of the feature model.

We consider at least in part our case study as an exploratory case study as it
is based on a client demand and it might be lead to a large scale implemen-

59

60 CHAPTER 6. EVALUATION OF THE APPROACH AND SYSTEM

Figure 6.1: Spiral development method

tation. Exploratory case studies help to identify questions, select measurement
constructs, and develop measures; they also serve to safeguard investment in
larger studies. In order not to make premature or inappropriate conclusion we
would like to use our project to identify potential future research directions.

6.2 Results

Goal of this section is to present the relevant users remarks done testing the
prototype (see section 6.2.1) and attempts to analyze them.

6.2.1 Incremental development and evaluation

The project has been conducted using spiral development method [8] which is
composed of four steps:

• Understanding the requirements.

• Prototype conception.

• Prototype building phase.

• Prototype test.

This method is very useful because it allows to take in account the customer
remarks. In this method the requirements are not defined during the first phase

6.2. RESULTS 61

of the project. They are in an evolution process, in fact they become more and
more precise while the time goes. Following this method we had bi-weekly meet-
ings with the clients. During these meetings problems and issues together with
possible solutions were discussed. Our evaluation aims to figure out the pro and
cons of our approach. To achieve this goal we did a qualitative evaluation con-
fronting users to the prototypes to allow to validate the concepts. Our evaluation
method has been based on tests and questionnaires.

6.2.2 Final prototype validation

This section presents the qualitative evaluation of the final prototype made by the
users, i.e. analyze and discussion of the feedback from the users (customer). Dur-
ing this evaluation we try to relate evaluation questionnaire and analysis to the
requirements and needs (see section 2.3) and unsolved problems/current issues
(see section 3.2). The evaluation has been done using test cases and question-
naires. This section will only present the relevant tests according to our research
objectives. Detailed tests are available in the appendix F. In this section the test
are presented using the template table (see table 6.1).

Test name ———

Summary ———

Assigned requirements ———

Results ———

Remarks ———

Table 6.1: Test template

Package selection

This section presents the relevant test to evaluation the selection of one package
that correspond to the use case UC04. This functionality is important for the
system as it assigns the high requirement R01 and because it is used to create
pricing offers. We did some tests to evaluate the reactions of the system to users
actions in abnormal cases. Meanwhile in order to present the package selection
search capability we will just present a general test. This test is described bellow.

62 CHAPTER 6. EVALUATION OF THE APPROACH AND SYSTEM

Test name Package selection test

Summary This test is a search of one package based on a set of features.

Assigned requirement R01

Results The system helps users to find a convenient package.

Remarks Some users think that it should be good to update the tree
of features to reflect the current features selection (some fea-
tures may exclude or require others features). In lot of case
the sales people know at least partially what package they are
looking for (i.e. from which family the package is a member)
so it should be possible to select a family and then update
the three of features according to the family architecture.

Table 6.2: Package selection test

Price calculation

The price calculation is an important part of the project as it has been among
the roots reasons that bring DNV to offer us the case study. Requirements con-
cerning the pricing became more and more precise while the time goes. The first
general requirements were have been defined in early stage of the project (see
section 2.3). The validation of previous version of the prototype released new
requirements such as ”The system to allow to specify custom pricing options for
each tool that compose a package”. Our set of tests consequently changed. We
tested the requirements related to the pricing in collaboration with the users.
The most relevant tests are presented bellow.

Package creation

The package creation corresponds to product engineering phase defined in the
family of product engineering (see section 2.2.4). Our system support it using
a configurator tool. The most relevant tests to verify that our system covers
the requirements and needs that we figured out in the settings and background
section 2.3.3 are presented bellow.

6.2. RESULTS 63

Test name Normal pricing calculation

Summary In this test we evaluate the ability of our system to create
correct pricing offers

Assigned requirements R02, R03, R04, R07, R09

Results Only the price of tools include in the offer is computed.
The prices are correct according to the rules.

Remarks The execution speed can be slow some time.

Table 6.3: Normal pricing calculation test

Test name Web site adaption to a change in pricing scheme

Summary In this test we evaluate the ability of the web site
to adapt to a change in the pricing scheme.

Assigned requirements R02, R03, R04, R06, R07, R09

Assigned needs N01, N02, N05

Result The web site can adapt itself to a change in the pricing op-
tions. The prices computed reflect the changes made in the
pricing rules.

Remarks None.

Table 6.4: Web site adaption test

Family creation

The family creation or modification corresponds to the domain engineering phase
(see section 2.2.4). During our meetings the client expressed the wish that only
one person could create new family of products. We did tests to create a fam-
ily, to add restriction to a family, to test the consistency of families architecture
and to test redundancy between two similar families. All the family architecture
management corresponds to ontology management.

64 CHAPTER 6. EVALUATION OF THE APPROACH AND SYSTEM

Test name Customize pricing options test

Summary This test enables to check if the system enables to have spe-
cific pricing options (i. e. customize options) for each tool
within a package composition.

Assigned requirements R02, R03, R04, R07

Result The pricing is done according to the customize options if
defined.

Remarks None.

Table 6.5: Customize pricing options test

Test name Package consistency test

Summary The test verifies that the system insures the consistency of
the packages

Assigned requirements R05

Assigned needs N01, N04

Results The system supports the product engineering.
The system insures the consistency of the packages.

Remarks Discussions happened in order to define if the set of features
describing the packages has to be included in the set of fea-
tures supporting by the tools or not (i.e. Is a composition of
tools superior in terms of features supported to the sum of
the features supported by each tool?)

Table 6.6: Package consistency test

Pricing rules definition

The pricing rules are defined using the DNV rule engine. The test of the rules edi-
tor has been done by the DNV BRIX development team. We based our evaluation
on the experience of the DNV’s engineers. It should be easy to define rules using
the rule editor as we figured out that the system has to allow business knowledge
to be maintained by domain experts without requiring programming skills. The

6.2. RESULTS 65

Test name Variability support during the configuration

Summary This test verifies if the family architecture is taken in account
during the creation of a new package (i.e. variability during
the product engineering)

Assigned requirements R05

Assigned needs N03

Results The system supports the product engineering. The family
architecture is respected but the variability support needs to
be improved.

Remarks The users have to know by advance the family architecture
in order to be able to modify the preselected set of features
as the configurator does not indicate the feature type. It
implies that the people that create the architecture and the
new packages have to be the same.

Table 6.7: Variability support during the configuration

main problem with the rules is not technical-aspect related, but mainly to define
them. In fact it has been difficult to find domain experts that are able to define
the rules.

Results analysis

Goal of this section is to analyze the results from the final prototype evaluation,
to create the links between the results, the requirements (see section 2.3), the
needs (see section 2.3.3) and the unsolved problems (see section 3.2). This sec-
tion will be the basis for the next chapter (i.e. conclusion and further work).

Fulfilled Requirements
Here the objective is to show that the prototype answers to the client’s require-
ments. This part of the analysis presents a table (see table 6.12) that summarizes
which requirements are supported by which functionalities. The requirements
R06, R07 are partially fulfilled. Because only the web site component is web
based, the package creation and family management are not. The requirement
R08 is tot supported as the system does not provide any interface with SalesForce.

Supported needs

66 CHAPTER 6. EVALUATION OF THE APPROACH AND SYSTEM

Test name Family creation test

Summary The goal of this test is to find out if our system supports the
domain engineering and if it is easy to manage the families.

Assigned requirements R05

Assigned needs N01

Results The system supports the domain engineering. It is possible
to create new family and to instantiate it.

Remarks The users expressed difficulties to understand the logic in the
ontology.

Table 6.8: Family creation test

Test name Feature support test

Summary The goal of this test is to check the ability of the system to
support a change in the features within a family architecture.

Assigned requirements R05

Assigned needs N01, N03

Results The system supports the domain engineering. It is possible
to change a family architecture (i.e. add features).

Remarks The users have to have knowledge about the patterns to use
in the ontology to create new features.

Table 6.9: Family creation test

This section presents the links between the needs and the final version of the
prototype. Our system:

• Supports the family of products engineering (see section 2.2.4). The prod-
uct engineering is supported by our configuration tool whereas the domain
engineering is supported using the ontology editor.

• Allows the business knowledge to be maintained by domain experts without
requiring programming skills using the rule editor (see figure 2.4), and one

6.2. RESULTS 67

Test name Family consistency test

Summary This test aims to verify if the system enables to find incon-
sistency in the family architecture.

Assigned requirements R05
Assigned requirements N01

Results Our system helps to find inconsistencies.

Remarks The users said that it is difficult to understand why a family
is inconsistent. Sometime it is challenging to find the reason
of the inconsistency error.

Table 6.10: Family consistency test

Test name Redundancy test

Summary The goal of this test is to verify how the system helps to
handle redundancy between to family architectures.

Assigned requirements None

Results The system infers the best structure (i.e taxonomy) in order
to minimize the redundancy between two very similar families

Remarks The system helps to find redundancy but it does not correct
it. The user has to correct the problem himself.

Table 6.11: Redundancy test

ontology editor.

• Enables to automatically propagate a change in the family architecture or
in the pricing rules to all applications.

• Provides a rigorous pricing structure. But the client choose to have only
one knowledge worker (i.e. the administrator), it implies that the rules
are easy to trust if the administrator is trusted. Meanwhile it might be a
problem to find one person that centralize all the knowledge of the domain,
maybe the domain engineering should be supported by a collaborative task.

68 CHAPTER 6. EVALUATION OF THE APPROACH AND SYSTEM

Requirement Id Functionality that support the requirement

R01 Feature based search (see screen shot E.3).
R02 Pricing rules.
R03 Pricing calculation (runtime compilation and execution of the

rules.)
R04 Brix rule engine is used for the pricing and the Brix web

framework is used for the web site component.
R05 Role of administrator (knowledge worker) and sales person

(web site user).

Table 6.12: Fulfilled requirements table

Problems solved
Our approach helps to solve some current issues in supporting the family of
products. The tests have shown that the consistency of the data is improved
by using semantic technologies. The consistency of a family of products can
be checked using a reasoner. Moreover the system forbids to create incoherent
packages using our configurator tool.

Our prototype helps also to solve numerous problems of the feature models.
It helps to reduce the redundancy between two very similar families by inferring
the best family hierarchy structure. If this structure is adopted it will decrease
the redundancies by using the inheritance mechanism.
The variability within the family of products concept is well supported even if it
can be improved (see remarks in the tests). The usage of semantic technologies
and rules open new possibilities without any cons.

Functionalities improvement
The final prototype evaluation has shown that our approach supports all the
high prioritized requirements and needs. However, some improvements of the
functionalities are needed. First some remarks made during the tests lead us to
think that the features based search offered by the web site component (see screen
shot E.3) have to be modified. The feature based search should be improved by
handling the events of selection of one feature or one family. In fact if the selection
of a feature occurs then the feature tree will need to be updated to reflect this
selection. For example if the user select the features diesel for a motor it should
be impossible to select an other fuel type, so we have to remove the other fuel
types from the features tree. In the same way it should be possible to select a
family and automatically update the tree of features according to the features
describing the family architecture.

Secondly the configurator tool helps to create new packages; the process to

6.3. SUMMARY 69

create a new package is first to select a family architecture and then the system
displays the features corresponding to the family architecture. The configurator
could be improved by offering a better support of the different type of features.
For example instead of selecting all the alternative features it should interact
with the user and ask which optional features have to be selected. To achieve
this improvement the configurator has to use more the semantics defined in the
ontology.

Finally our system support the creation of new families with an ontology
editor but it seems that there is a need to mask the concepts of the OWL language.
In fact the creation of new family and new feature implies to use restrictions like
disjoint or SomeValueFrom that are difficult to understand by non computer
scientists. A plugging to the ontology editor to manage the architectures of the
families could improve the domain engineering support. This plugging should
help users to create all type of features and restrictions (see section 2.2.4).

6.3 Summary

The evaluation has been done using a spiral method (see section 6.2.1) to verify
that our approach can help to support the product family. We did a qualitative
evaluation of our work. By completing tests the client allowed us to find out
which requirements and needs are supported by our system. Moreover based
on the remarks made during the tests we also figured out which functionalities
needed to be improved. Next step is to conclude our work and to express future
work to be done.

Chapter 7

Conclusions and future work

This chapter concludes our work. Our hope is to help others who are interested
in a similar problem, both by analyzing the successes and the failures of our
approach. In the last part of the chapter figures out some directions and further
work for the field of study.

7.1 Discussion and future work

Goal of this section is to highlight the pro and cons of our approach but also to
find out some directions for further research.

Our approach highlights some direct benefits adopting semantic web tech-
nologies to manage and price product families. For example the lack of a formal
semantics and reasoning support of feature models has hindered the develop-
ment of solution to support family of products. Industrial experiences show that
methods and tools that can support feature model analysis are badly appreci-
ated. But by representing feature models as OWL axioms (see section 5.3.2), the
consistency of the family architecture can be automatically checked. Moreover
this enable the configurator tool to create only consistent packages. The problem
of redundancy between highly similar families is solved using a reasoner to infer
the best family taxonomy and using the inheritance mechanism. It seems that
the semantic technologies really help to handle the family of products concept by
the family architectures consistency and by improving the coherence of the new
product created by the product engineering phase.

Our approach has shown some shortcomings of using semantic technology.
First after the tests of the pricing of the packages it has been remarked that the
execution speed can be low. It can be a problem in a system that interacts directly
with components as DNV BRIX or DNV Rule Engine. Further work should
investigate the impact of the system architecture on the system’s performance to

71

72 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

find the source for the low execution speed.
Other drawbacks come directly from the OWL syntax. For example, OWL

does not provide explicit declarations of ontology entities. This caused numer-
ous misunderstandings in the past, and it makes defining an intuitive structural
integrity check for OWL ontologies more difficult.

Working on this project we saw the difficulty to develop software using se-
mantic technologies. There is a gap between ”traditional” programming and
knowledge engineering which is getting wider and wider. Traditional program-
mers and knowledge engineers often don’t understand each other. We felt the
need to change the traditional development method to adapt to the semantic web
paradigm. In fact it has been difficult to find knowledge experts to define the
concepts of the ontology and pricing rules. Moreover it has been quite difficult
to find toolkit to integrate semantic technologies to classic programming.

There is a large amount of research concerning the way to derive the products
family architecture. But there are very few works that study the impact of
semantic technologies on this process. In our approach the semantic technology
does not model the process to derivate the family architecture but influences it
(see section 5.2.4). This area might need some further investigation.

7.2 Conclusion

The boundaries of the project did not include the evolution of the variability in
the time. But the ontology evolution and versioning is a huge field of research.
Moreover it is coupled with the product family architecture evolution. Therefore,
one of the certain future works is to enable our system to manage co-evolution of
ontology and architecture of product family, in order to find some best practices
in this domain. This research project started out with the goal of developing a
product family management using semantic technologies. Based on the evaluation
of the final prototype, we can quite confidently say that we are on the right
track. Because the flexibility in defining knowledge and in supporting family
engineering is a very important criterion, the use of semantic technology and rules
is a solution to this problem. The main research question of this project was to
find technologies that can offer a better support for the family of product concept
than the existing solutions. We came out with a method to find requirements,
needs and unsolved problems in order to figure out which technologies are the
most suitable for the management and pricing of product family. Our method has
resulted in a prototype based on a case study provided by DNV Software. The
prototype was the first step. We showed that we have had a working architecture
to create such a system. The next step now would be to further develop the
product family pricing calculator to make it become convenient for an industrial
usage in DNV software. Our system encodes the knowledge in an ontology but

7.2. CONCLUSION 73

it also encodes the way to process this knowledge in rules. As a consequence our
approach provides value to the products family enabling to improve the quality
of features models and to improve flexibility in managing knowledge.

Bibliography

[1] ESAPS project http ://www.esi.es/esaps/, 1999. [cited at p. 9]

[2] CAFE project, http ://www.esi.es/en/projects/cafe/cafe.html, 2001. [cited at p. 9]

[3] FAMILIES project, http ://www.esi.es/en/projects/families/, 2003. [cited at p. 9]

[4] D. M. Anderson. Build-to-Order Mass Customization, the Ultimate Supply Chain
and Lean Manufacturing Strategy for Low-Cost On-Demand Production without
Forecasts or Inventory. 2004. [cited at p. 1]

[5] G. Antoniou, E. Franconi, and F. van Harmelen. Introduction to semantic web
ontology languages. In Reasoning Web, Proceedings of the Summer School, Malta,
2005, number 3564 in Lecture Notes in Computer Science, Berlin, Heidelberg, New
York, Tokyo, 2005. Springer-Verlag. [cited at p. 26, 28, 29]

[6] T. Asikainen, T. Mnnist, and T. Soininen. Kumbang: A domain ontology for mod-
elling variability in software product families. Adv. Eng. Inform., 21:23–40, 2007.
[cited at p. 20]

[7] S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not enough. 2001. Presented
at First Semantic Web Working Symposium. [cited at p. 28]

[8] B.W. Boehm. A spiral model of software development and enhancement. 1998.
[cited at p. 60]

[9] J. Bosch, G. Florijn, D Greefhorst, J. Kuusela, H. Obbink, and K. Pohl. Variability
issues in software product lines. page 1119. Fourth workshop on Product Familly
Engineering, 2001. [cited at p. 10]

[10] S. Buhne, K. Lauenroth, and K. Pohl. Why is it not sufficient to model requirements
variability with feature models? Technical report, Software Systems Engineering
Institute for Computer Science and Business Information Systems (ICB) University
of Duisburg-Essen, 45117 Essen, Germany. [cited at p. 21]

[11] V. Dedeban and D. Strasunskas. An ontology-centric approach for flexible configu-
ration and pricing of product families. 2007. [cited at p. 2]

[12] W.U. Eisenecker and Czarnecki. Generative Programming : Methods, Tools,and
Applications. 2000. [cited at p. 11]

75

76 BIBLIOGRAPHY

[13] C. Fillies, G. Wood-Albrecht, and F. Weichardt. A pragmatic application of the
semantic Web using SemTalk, Proc.Intl World Wide Web Conf (WWW). 2002.
[cited at p. 26]

[14] J. Freeman-Hargis. Rule-based systems and identification trees: Introduction to
rule-based systems. 2005. [cited at p. 31, 33, 37, 122]

[15] N. Guarino. Formal ontology and information systems. In Proceedings of FOIS98,
pages 3–15, June 1998. [cited at p. 27]

[16] A. Gunter and C. Kuhn. Knowledge-Based Configuration - Survey and Future Di-
rections. Germany, 1999. [cited at p. 13]

[17] S. Haitham and Hamza. On the impact of domain dynamics on product-line de-
velopment. Technical report, Department of Computer Science and Engineering
University of Nebraska, Lincoln, NE 68588-0115. [cited at p. 20]

[18] J. Hendler and D. L. McGuinness. The DARPA Agent Markup Language. IEEE
Intelligent Systems, November 2000. [cited at p. 28]

[19] I. Herman. Introduction to the semantic web (tutorial). Technical report, Interna-
tional Conference on Semantic Web Digital Libraries, Bangalore India, February
2007. [cited at p. 23, 26]

[20] J-M. Jzquel. 2nd international conference on aspect-oriented software develop-
ment. In Model-driven engineering with contracts, patterns, and aspects, March
2003. [cited at p. 10]

[21] K. Kang and al. Feature-oriented domain analysis (foda) feasibility study. Technical
report, Software Eng. Inst and Carnegie Mellon Univ Pittsburgh, 1990. [cited at p. 11,

12]

[22] P. Lago and H. van Vliet. Observations from the recovery of a software product fam-
ily. Technical report, Vrije Universiteit, Amsterdam, The Netherlands. [cited at p. 21]

[23] Mitsuru, Kazuhisa, Osamu, and Riichiro. Task ontology: Ontology for buildingcon-
ceptual problem solving models. [cited at p. 28]

[24] I. Nonaka and H. Takeushi. The knowledge-creating company. Technical report,
1995. [cited at p. 26]

[25] N.F. Noy and M.A. Musen. Ontology versioning in an ontology management frame-
work. IEEE Intelligent Systems 19 (4), pages 6–13, July 2004. [cited at p. 46]

[26] D.L Parnas. On the design and development of program families. IEEE Transactions
on Software Engineering, March 1976. [cited at p. 9]

[27] A. Rector. Representing specified values in owl: value partitions and value sets.
Technical report, W3C Working Group, May 2005. [cited at p. 51]

[28] T. Soininen, J. Tiihonen, T. Mnnist, and R. Sulonen. Towards a general ontology
of configuration, artificial intelligence for engineering design, analysis and manufac-
turing. Cambridge University Press, pages 357–372, December 1998. [cited at p. 13]

77

[29] M. Uschold and R. Jasper. A framework for understanding and classifying ontology
applications. Technical report, The Boeing Company, 1999. [cited at p. 43]

[30] I. Vanderfeesten, W. van der Aalst, and H. Reijers. Modelling a product based
workflow system in cpn tools. Technical report, Technische Universiteit Eindhoven,
Department of Technology Management, PO Box 513, 5600 MB Eindhoven, The
Netherlands. [cited at p. 21]

[31] H. Wang, L. Y. Fang, J. Sun, and H. Zhang. A semantic web approach to fea-
ture modeling and verification. In 1st Workshop on Semantic Web Enabled Soft-
ware Engineering (SWESE’05), Galway, Ireland, Nov 2005. LNCS, Springer-Verlag.
[cited at p. 35]

[32] H. Wang, Y.F. Li, J. Sun, H. Zhang, and J. Pan. Verifying feature models using
owl. Journal of Web Semantics. [cited at p. 35]

[33] M.D. Weiss and C.T. Robert Lai. Software Product-Line Engineering : A Family-
Based Software Development Process. Addison-Wisley, 1999. [cited at p. 9]

[34] Y. Zhao and K. Sandahl. Potential advantages of semantic web for internet com-
merce. Technical report, Dept of Computer and Information Science, Linkping
University, S-58183, Linkping, Sweden. [cited at p. 25]

Appendices

79

Appendix A

Thesis resources and constraints

A.1 Resources

To help with carrying out the project, the resources below are provided:

• Laptop with administrator privilege,

• Full access to all the source code in DNV software,

• Visual studio 2005 and the Perforce source control.

• Help provided by the engineers working for DNV.

A.2 Economy

The economy of the project lies in terms of hour use. Based on an average number
of hours per week and on the duration of the master thesis, 880 hours for the all
task, sets the economic boundaries of the project.

A.3 Thesis lifespan

The thesis starts the 9th of January and ends the 6th of June 2007. Deadline for
project report printing is set to the 6th of June 2007.

81

Appendix B

Detailed use cases

This appendix presents the detailed use cases (UC] that have been used for the
implementation phase. Each use case is described using a template. This tem-
plate includes:

• Use Case Name. The use case name provides a unique identifier for the use
case.

• Summary. The summary section is used to capture the essence of the use
case.

• Preconditions. A preconditions section is used to convey any conditions
that must be true when a user initiates a use case.

• Triggers. The Triggers section describes the starting condition(s) which
cause a use case to be initiated.

• Basic course of events.

• Alternative paths. Exceptions, or what happens when things go wrong, are
described in the alternative paths.

• Postconditions. The post-conditions section summarizes the state of af-
fairs after the scenario is complete. A scenario guarantees that its post-
conditions are true at the end of the scenario.

B.1 UC:Create offer

Use Case Name: Create Offer.
Summary: This use case defines the process to create a new offer.
Preconditions: None

83

84 APPENDIX B. DETAILED USE CASES

Triggers: The use case is trigger by the user.
Basic course of events:

1. The user enters a name for the offer to create.

2. The system creates the offer and adds it to the available open offers.

Alternative paths:

1. The system detects that the name entered by the user is not correct.

2. The system displays an alert to inform the user that the offer cannot be
created.

3. Go to step 1 (Main Path)

Postconditions: A new offer is created and it is open and available to be se-
lected.

B.2 UC:Delete offer

Use Case Name: Delete Offer.
Summary: This use case defines the process to delete an offer.
Preconditions: The offer to delete has to be opened.
Triggers: The use case is trigger by the user.
Basic course of events:

1. The user chooses an offer to delete.

2. The system deletes the offer.

Alternative paths: None
Postconditions: The offer does not exist anymore.

B.3 UC:Save offer

Use Case Name: Save Offer.
Summary: This use case defines the process to save an offer.
Preconditions: None
Triggers: The use case is trigger by the user.
Basic course of events:

1. The user chooses an offer to save.

B.4. UC:OPEN OFFER 85

2. The system saves the offer.

Alternative paths:

1. The system detects that an offer that has the same name already exists.

2. The system replaces the old offer by the new one.

Postconditions: The offer is saved on the server and it is available to be opened
later.

B.4 UC:Open offer

Use Case Name: Open Offer.
Summary: This use case defines the process to open an offer.
Preconditions: None
Triggers: The use case is trigger by the user.
Basic course of events:

1. The user click on a button that opens his file system.

2. The user chooses one offer in his file system.

3. The system opens the offer.

Alternative paths:
First alternative case:

1. The file chosen by the user is not an offer.

2. The system shows a pop up message that informs the user that the file does
not correspond to an offer.

3. Go to step 1 (Main path).

Second alternative case:

1. The file chosen by the user is an offer and an offer that has the same name
is already in the open offers list.

2. The system ask if the user wants to replace the open offer by the new offer.

3. If the response is yes then the system deletes the old offer.

4. Go to step 3 (Main path).

Postconditions: The offer is opened and available in the open offers list to be
selected later.

86 APPENDIX B. DETAILED USE CASES

B.5 UC:Select offer

Use Case Name: Select offer.
Summary: This use case defines the process to select an open offer.
Preconditions: The offer to select is already in the open offers list
Triggers: The use case is trigger by the user.
Basic course of events:

1. The user click on the offer to select.

2. The system shows the details of the selected offer.

Alternative paths: None
Postconditions: The offer is selected.

B.6 UC:Modify offer

Use Case Name: Modify Offer.
Summary: This use case defines the process to modify an offer.
Preconditions: the offer is selected.
Triggers: The use case is trigger by the user.
Basic course of events:

1. The user changes the client’s name and address and or the offer name.

2. The user adds or changes the packages within the offer.

3. The user saves the changes made to the offer.

4. The system saves the offer.

Alternative paths:

1. The system detects that the name entered by for the offer the user is not
correct.

2. The system displays an alert to inform the user that the offer cannot be
created.

3. Go to step 1 (Main Path)

Postconditions: The modification made are saved and the modified offer is
available.

B.7. UC:ADD PACKAGE TO OFFER 87

B.7 UC:Add package to offer

Use Case Name: Add package to Offer.
Summary: This use case defines the process to add a package to the selected
offer.
Preconditions: the offer is selected.
Triggers: The use case is trigger by the user.
Basic course of events:

1. The user chooses to add a package to the offer.

2. The user computes the price for one package.

3. The system adds the package to the offer.

Alternative paths: None
Postconditions: The package is added to the selected offer.

B.8 UC:Price package

Use Case Name: Price package.
Summary: This use case defines the process to compute the price of one
package.
Preconditions: the package which price has to be computed must be displayed.
Triggers: The use case is trigger by the user.
Basic course of events:

1. The user selects the tools that he wants to include in the pricing calculation.

2. The user defines the pricing options to apply to calculate the price.

3. The user saves the changes made to the offer.

4. The system computes the price of the package and displays it.

Alternative paths:

1. The pricing options are not correct.

2. The system displays an alert to inform the user that the price cannot be
computed.

3. Go to step 2 (Main Path)

Postconditions: The pricing options are defined and the price can be recom-
pute when needed.

88 APPENDIX B. DETAILED USE CASES

B.9 UC:Select package

Use Case Name: Select package.
Summary: This use case defines the process to select a package in the branding
structure.
Preconditions: none.
Triggers: The use case is trigger by the user.
Basic course of events:

1. The user chooses a set of features that the desired packages has to fulfill.

2. The system infers which packages can fulfill the set of features selected by
the user.

3. The user selects one package.

4. The system displays the package composition.

Alternative paths:
First alternative path:

1. The user selects more than one package.

2. The system displays an alert to inform the user only one package at the
time can be displayed.

3. Go to step 2 (Main Path)

Second alternative path:

1. The system infers that there is no package that corresponds to the selected
features.

2. Go to step 1 (Main path).

Postconditions: The package composition is displayed to the user who can
compute the price for the package.

B.10 UC:Generate report

Use Case Name: Generate report.
Summary: This use case defines the process to generate a report from one
offer.
Preconditions: the offer is selected.
Triggers: The use case is trigger by the user.
Basic course of events:

B.11. UC:MANAGE USERS 89

1. The user chooses to create a report.

2. The user chooses where in his file system he wants to save the file.

3. The user chooses a name for the file to save.

4. The system saves the report.

Alternative paths: None
Postconditions: The report is available in format .doc.

B.11 UC:Manage Users

This use case included three use cases:

• Create a user.

• Delete a user.

• Manage the roles of one user.

B.11.1 Create user

Use Case Name: Create User.
Summary: This use case defines the interactions between an administrator
and the system to create a new user.
Preconditions: The user is an administrator.
Triggers: The use case is trigger by the administrator.
Basic course of events:

1. The administrator chooses to create a new user.

2. The administrator enters the informations concerning the user to be created
(login, password,email ...).

3. The user chooses a set of role for the new user (administrator, salesperson).

4. The administrator creates the new user account.

Alternative paths:

1. The system cannot create the new user account.

2. The system displays a warning to the administrator.

3. Go to step 2 (Main path).

90 APPENDIX B. DETAILED USE CASES

Postconditions: The user account is created and the new user can user the
web site.

B.11.2 Delete user

Use Case Name: Delete User.
Summary: This use case defines the interactions between an administrator and
the system to delete one user.
Preconditions: The user is an administrator.
Triggers: The use case is trigger by the administrator.
Basic course of events:

1. The administrator chooses the user account to delete.

2. The system deletes the accounts.

Alternative paths: None
Postconditions: The user account is deleted.

B.11.3 Manage the roles of one user

Use Case Name: Manage roles.
Summary: This use case defines the interactions between an administrator and
the system to manage the roles of one users.
Preconditions: The user is an administrator.
Triggers: The use case is trigger by the administrator.
Basic course of events:

1. The administrator chooses the user account to modify.

2. The system displays a checkbox list of possible roles (the selected user’s
roles are checked).

3. The administrator chooses the set of roles to affect to the account.

4. The system modifies the roles of the selected user account.

Alternative paths: None
Postconditions: The roles of the user account are changed.

B.12. UC:CREATE PACKAGE 91

B.12 UC:Create package

Use Case Name: Create package.
Summary: This use case defines how an administrator can create a new package.
Preconditions: The user is an administrator.
Triggers: The use case is trigger by the administrator.
Basic course of events:

1. The administrator chooses the place of the package t o create in the brand-
ing structure.

2. The administrator enters the name of the package.

3. The administrator chooses a set of features to define the new package.

4. The system infers the tools that correspond to the feature and adds them
to the package composition.

5. The administrator creates the pricing rules and options for the packages (or
it will inherited the rules and the options of its parent package).

6. The system saves the new package.

Alternative paths:

1. The set of tools inferred by the system does not correspond to the admin-
istrator needs.

2. The administrator modifies the set of features and the set of tools of the
package.

3. The system checks the concordance between the set of tools and the set of
features.

4. If the previous step is ok then Go to step 5 (Main path).

Postconditions: The package is created and available to be used in the offers
that the sales people will make.

B.13 UC:Delete package

Use Case Name: Delete package.
Summary: This use case defines how an administrator can delete package.
Preconditions: The user is an administrator.
Triggers: The use case is trigger by the administrator.
Basic course of events:

92 APPENDIX B. DETAILED USE CASES

1. The administrator chooses a package.

2. The administrator chooses if he wants to delete the sub packages of the
package chosen package.

3. The system delete the package and the hierarchy of sub packages of the
package and creates a new version of the ontology.

Alternative paths:

1. The administrator decides not to delete the sub packages of the package.

2. The system by a system of ”bootstrap” attaches the sub packages of the
selected package to the parent of the selected package. and create a new
version of the ontology.

3. Go to step 3 (Main path).

Postconditions: The package is deleted.

B.14 UC:Update package

This package is not detailed because the interactions between the administrator
and the system are nearly the same than in the use cases Create package and
Delete package. The use case update package is just a combination of the two
previous use cases.

Appendix C

Components interaction

This appendix presents sequence diagrams (see figures C.1 and C.2) based on con-
crete scenarios. They show the interaction between objects over the progression
of time.

C.1 Price a package

This section presents a sequence diagram based on a usage scenario. Goal of this
sequence diagram is to show the interaction between the sales people, the web
site and the ontology. The scenario’s steps from a sales person point of view are:

1. Login into the web site.

2. Select a set of features that describe the searched package.

3. Start the search.

4. Select one result of the search.

5. Enter pricing options and choose a composition for the pricing.

6. Click compute pricing.

C.2 Create a package

This section presents a sequence diagram based on a usage scenario. Goal of
this sequence diagram is to show the interaction between an administrator, the
configuration and the ontology. The scenario’s steps for an administrator are:

1. Star the configurator.

93

94 APPENDIX C. COMPONENTS INTERACTION

2. Select a family architecture basis.

3. Start the creation of a new package.

4. Click find corresponding tools.

5. Click create new package.

C.2. CREATE A PACKAGE 95

Figure C.1: Sequence diagram for pricing a package

96 APPENDIX C. COMPONENTS INTERACTION

Figure C.2: Sequence diagram for creating a package

Appendix D

Guide to choose a Semantic Web

Toolkit

This appendix presents some Semantic Web toolkits for the .NET platform and
gives an overview about the features of each toolkit, the strength of the develop-
ment effort and the toolkit’s user community.

D.1 Comparison Criteria

This chapter explains the comparison criteria.

D.1.1 License

License under which the toolkit is distributed.

D.1.2 API-Paradigm

This criteria describes which general API-Paradigms are offered for manipulating
RDF data. The different paradigm are:

• Dataset- or Named Graphs-centric APIs allow you to represent and query
RDF datasets.

• A model-centric API only allows you to load, save and delete whole RDF
models. Through a statement-centric API, RDF data is manipulated as a
set of RDF triples each consisting of a subject, predicate, and object. Usual
methods are model.addStatement() or find(S,P,O).

97

98 APPENDIX D. GUIDE TO CHOOSE A SEMANTIC WEB TOOLKIT

• A resource-centric API presents a RDF model as resources having proper-
ties. Usual methods are resource.addProperty() or model.listResources().
The ontology-centric view is an extension to the resource-centric-view by
adding direct support for the kinds of objects expected to be in an ontol-
ogy: classes (in a class hierarchy), properties (in a property hierarchy) and
individuals. An ontology-centric API might offer methods to list its super-
and sub-classes or instances of a class.

D.1.3 Query-Languages

List of all RDF query languages supported by the toolkit. A comparison of
different Semantic Web query languages is found here. Support for SPARQL
means that the toolkit supports at least some features of the standard RDF
query language currently developed by DAWG.

D.1.4 Model Storage

List of stoage alternatives for RDF data. Possible values are:

• Memory, if data is only stored in memory and has to be serialized to
XML/RDF or N3 for persistence.

• DB, if the toolkit supports storing data in a standard relational or object-
relational database.

• File, if the toolkit stores data in its own proprietary file format. A scalability
report on triple store applications has been published by the MIT Simile
Project. The SWAD-Europe has also published a report about Open Source
RDF storage systems.

D.1.5 Supported Databases

List of supported databases or name of the database abstraction layer used.
Supported Serialization Formats Supported serialization formats for reading
and writing RDF models. An overview about different RDF serialization formats
is found here. Information about GRDDL is found here. A comparison how
different toolkits handle the W3C RDF Test Cases is found here.

D.1.6 Supported Serialization Formats

Supported serialization formats for reading and writing RDF models.

D.1.7 Reasoning Support

Ontology-languages supported by the toolkit to infer implicit statements. A lan-
guage is already listed if most of the inference rules of the language are supported

D.2. TOOLKIT COMPARISON 99

by the toolkit. A comparison how different toolkits handle the W3C OWL Test
Cases is found here.

D.1.8 RDF Server

Indicator if the toolkit contains some kind of RDF server, which allows models
to be queried over the web using HTTP or SOAP. For more information about
RDF servers and data access protocols see W3C DAWG work on protocols.

D.1.9 Other Features

Additional features of the toolkit that aren’t captured by other criteria.

D.2 Toolkit Comparison

This section lists the toolkits for the .NET platform and makes a comparison of
these toolkits according to the criteria defined in the previous chapter.

100 APPENDIX D. GUIDE TO CHOOSE A SEMANTIC WEB TOOLKIT

Drive EulerSharp Spiral SemWeb
0.751

Thea-VBA

3.3 1.1.33 0.34 0.751
License LGPL W3C MIT Creative GNU GPL

License License Commons
Attribution
License

API Statement Model Resource Statement Triple
Paradigm centric centric centric centric centric

Ontology
centric

Query N3QL SPARQL
Languages , RSquery
Model Storage Memory Memory Memory Memory Memory

, DB , DB
Supported MySQL MySQL
Databases ,PostgreSQL

,SQLite
Supported RDF/XML

N3
N3 RDF/XML RDF/XML RDF/XML

Serialization N-Triples , N3
Formats , Turtle

, NTriples
Reasoning RDFS

OWL
RDFS RDFS

Support
RDF Server SPARQL

Protocol
Other RDF tool-

bar
Built-in
support

Supports Native

Features for IE for FOAF quads MS-Excel
, RSS and
RdfCal

interface

Table D.1: Toolkits comparison Table

D.3 Conclusion

Regarding the table we chose SemWeb as the toolkit to use in the web site
component (see section 5.3.1) to make the link with the ontology. Our choice has
been done basing on the fact that SemWeb supports the SPARQL query language
and also because it supports numerous databases and serialization formats.

Appendix E

Prototype user interface

Goal of this appendix is to give an overview of the user interface for each com-
ponent of our solution.

E.1 Web site component

This section presents some screen shots of the graphical user interface offered by
the web site component. The user interface is the result of the collaboration with
the sales people in DNV. Four screen shots are presented:

• Login page (see figure E.1).

• The main page (see figure E.2) of the web page where we can see the search
frame on the left, the tabs on the top and the main frame where the packages
are displayed.

• The search frame (see figure E.3).

• A pricing calculation. This screen shot is a zoom of the main frame of the
figure E.2 after the pricing of one package.

E.2 Package management tools

The package management tools support the creation of new packages using the
package creation tool (also called configurator). The package management tools
support the domain engineering using the protege editor. Consequently we will
provide screen shots of both tool.

101

102 APPENDIX E. PROTOTYPE USER INTERFACE

Figure E.1: Web site login page

Figure E.2: Web site main page

E.2.1 Package creation tool

This section presents some screen shots of the graphical user interface offered by
the Package creation tool.

E.2. PACKAGE MANAGEMENT TOOLS 103

E.2.2 Ontology editor

The Protg-OWL editor enables users to build ontologies for the Semantic Web,
in particular in the W3C’s Web Ontology Language (OWL). The editor offers
numerous tabs (classes, properties, instance). This section present only one screen
shot of the protege editor. More screen shoots are available on the protege web
page 1.

1http://protege.stanford.edu/overview/po-screenshots.html

104 APPENDIX E. PROTOTYPE USER INTERFACE

Figure E.3: Web site search frame

E.2. PACKAGE MANAGEMENT TOOLS 105

Figure E.4: Screen shot of a pricing calculation

106 APPENDIX E. PROTOTYPE USER INTERFACE

Figure E.5: Family selection

Figure E.6: Package creation

E.2. PACKAGE MANAGEMENT TOOLS 107

Figure E.7: Ontology of Product Family in Protege editor

Appendix F

Tests

Goal of this appendix is to present the detailed tests done for the evaluation of
the final prototype. Each test is described using the template bellow.

• Information

– Name of test case that allows to quickly understand test case purpose
and scope.

– Requirement which is covered by the test case.

– Purpose contains short description of test purpose, what functionality
it checks.

• Test case activity

– Initialization describes actions, which must be performed before test
case execution is started. For example, we should open some file.

– Actions step by step to be done to complete test.

– Input data description

• Results

– Expected results contains description of what tester should see after
all test steps has been completed.

– Actual results contains a brief description of what the tester saw after
the test steps has been completed.

– Remarks.

109

110 APPENDIX F. TESTS

F.1 Package selection

• Information

– Name. Package selection test.

– The test case covert the requirements ”The system has to help the
salesperson to select the offer corresponding to the client needs”.

– Purpose. Goal of the test is to figure out if the features search provide
by the web site offer a good help to the sales people. The users can
search for packages using the left frame of the default page of the web
site (see figure E.3).

• Test case activity

– Initialization. We have to create some packages that are define by
features in order to provided the information for the search.

– Actions step by step to be done to complete test.

1. Open the web site.

2. Login as a sales person.

3. Select a set of features.

4. Click on the button that update the list of packages that corre-
spond to the set of features selected.

5. Select a package and display it.

• Results

– The only package corresponding to this feature should be Rule Check
Package.

– Actual results are the same as the expected results.

– Remarks. The users affirmed that the system helped them to find a
convenient package. Meanwhile some users think that it should be
good to update the tree of features to reflect the current features se-
lection (some features may exclude or require other features). Another
remark was that in lot of case the sales people know at least partially
what package they are looking for (i.e. from which family the pack-
age is a member) so it should be possible to select a family and then
update the three of features according to the family architecture.

F.2. PRICE CALCULATION 111

F.2 Price calculation

F.2.1 Normal pricing calculation

• Information

– Name. Normal price calculation test.

– The test validates three requirements:

∗ The system has to integrate the rules described in the pricing
scheme

∗ The system has to create the pricing offers to customers

∗ The system has to use the Brix technology

– Purpose. Goal of the test is to figure out if the rules defined using the
rules engine give the right result according to the pricing options. This
test tests the rules and how the web site understands the information
about the pricing options that is encoded in the ontology.

• Test case activity

– Initialization. In order to start the test the package FEA Bulk has to
be selected and displayed.

– Actions step by step to be done to complete test.

1. Select the optional tool Presel and remove the preselected tool
Genie ext CGEO.

2. Enter the following pricing options (number of users=5, offer type=
lease purchase, installation type = WAN, License type= network,
discount = 0,5). The pricing options are visible at the bottom of
the screen shot E.4.

3. Click on the button to compute the prices of the tools within the
packages.

• Results

– Expected results:

∗ Only the price of tools include in the offer have to be computed.

∗ The prices have to be right according to the rules.

– Actual results are the same as the expected results.

– Remarks. Performing this test the sales people concluded that the
results are correct but it has been observed that the response time to
give a price can be quite long.

112 APPENDIX F. TESTS

F.2.2 Web site adaption to a change in pricing scheme

• Information

– Name. Change pricing options test.

– The test tests if the two needs listed bellow are supported:

∗ The future system has to allow business knowledge to be main-
tained by domain experts without requiring programming skills.

∗ A change in the family architecture or in the rules for the pricing
of this family must be propagated in all applications using it.

– Purpose. Goal of the test is to figure out if a change in the ontology
concerning the pricing options will be taken in account by the web site
component.

• Test case activity

– Initialization. Open the ontology with ontology editor and select the
select the tab instances.

– Actions step by step to be done to complete test.

1. Select the instance Rule check package and then find the rule base
attached to this package.

2. Select the corresponding rule base

3. Remove the value Discount from the list named hasPricingOp-
tions.

4. Select the instance License Type of the class PricingOptions.

5. Change the value of hasDisplayType to TextBox.

6. Open the web site.

7. Login.

8. Display the package rule check package.

9. Do a normal price calculation.

• Results

– Expected results:

∗ The pricing option License type has to be enter in a text box.

∗ There is no pricing option discount.

∗ Only the price of tools include in the offer have to be computed.

∗ The prices have to be right according to the rules.

– Actual results are the same than the expected results.

– Remarks. None.

F.3. PACKAGE CREATION 113

F.2.3 Customize pricing options test

• Information

– Name. Customize pricing options test.

– The test tests three requirements:

∗ The system has to integrate the rules described in the pricing
scheme.

∗ The system has to create the pricing offers to customers.

∗ The system has to use the Brix technology.

– Purpose. Goal of the test is to figure out if it is possible to define
custom pricing options for one tool.

• Test case activity

– Initialization. In order to start the test the package FEA Bulk has to
be selected and displayed.

– Actions step by step to be done to complete test.

1. Select the optional tool Presel and remove the preselected tool
Genie ext CGEO.

2. Enter the following pricing options (number of users=5, offer type=
lease purchase, installation type = WAN, License type= network,
discount = 0,5).

3. Click on the button to define custom pricing options for the tool
Xtract.

4. Enter the options (number of users=1, offer type= purchase, in-
stallation type = LAN, License type= network, discount = 0).

5. Click on the button to compute the prices of the tools within the
packages.

• Results

– Expected result: The price compute for the tool xtract has to be equal
to the basic price of this tool.

– Actual results are the same than the expected results.

– Remarks. None.

F.3 Package creation

F.3.1 Consistency of a new package

• Information

114 APPENDIX F. TESTS

– Name. Package consistency test.

– The test verifies if the system allows to produce consistent packages
(i.e. the set of features that is supported by the tools within the
composition of a package is compatible with the set of features that
describe this package).

• Test case activity

– Initialization.

– Actions step by step to be done to complete test:

1. Open the package management tool.

2. Select the family of product Nauticus to create a new package.

3. Select the feature Rules gestion as optional feature.

4. Define the tool HSLC has mandatory for the new package.

5. Select a rule based.

6. Click on the button create new package.

• Results

– Expected results:

∗ The system has to preselect the tools Rule check as optional, 3D
bean and basic ship modeler as mandatory.

∗ When the user will click on the button create new package the
system has to explain that because the tool HSLC is mandatory
tool for the new package then the package has to be described by
the feature fatigue calculation.

– Actual results. The system displays the good message. It is impossible
to create a package which tools support more features than it has to
describe itself (see figure F.1).

– Remark. This test was a success because the system does not allows to
create inconsistent packages. But some discussions happened in order
to define if the set of feature describing the packages has to be included
in the set of features supporting by the tools or not. This remark is
equivalent to ask the question: Is a composition of tools superior in
terms of features supported to the sum of the features supported by
each tool?

F.3. PACKAGE CREATION 115

Figure F.1: Error when creating a new package

116 APPENDIX F. TESTS

F.3.2 Variability support during the configuration

• Information

– Name. Product family variability in package creation test.

– The test case verifies if the system supports the variability inherent
to the family of products concept and if it supports the product engi-
neering phase (see section 2.2.4).

– Purpose. Goal of this test to figure out if the variability contained in
the features (alternative, multiple or mandatory) is well supported by
the package management tool.

• Test case activity

– Initialization. None.

1. Open the tool.

2. Select the family named Sesam. This family is a family of products
that support the offshore industry.

3. Click on the button to create an new package in this family.

4. Look the preselected features for the new packages.

• Results

– The expected results are:

∗ Only features defined in the family architecture have to be prese-
lected.

∗ The mandatory features have to be preselected.

∗ No alternative features have to be selected at the same time.

– Actual results:

∗ The features preselected correspond to the family architecture.

∗ The multiple features are all preselected without asking without
asking to the user if he wants to include them in the new package.

∗ The optional features are all preselected as optional for the new
package without asking to the user if he wants to include them in
the new package.

– Remarks. The users have to know by advance the structure of the
features in order to be able to modify the preselected set of features.
it implies that the people that will create the architecture and the new
packages have to be the same.

F.4. FAMILY CREATION 117

F.4 Family creation

F.4.1 Family creation test

• Information

– Name. Family creation.

– This test verifies if the system support the domain engineering and if
the knowledge is easy to maintain.

– Purpose. Goal of this test is to check if it is easy to create new family
using the ontology editor. It verifies also that the inheritance between
family architecture works properly. We would like to verify also that
the web site is updated when a new family is created.

• Test case activity

– Initialization. Open the ontology with protege.

– Input data description

1. Open the class tab in protege.

2. Create a sub class to the class Nauticus.

3. Enter a name to the class.

4. Add the restriction ”hasMandatoryFeature some Rules”.

5. Save the ontology.

6. Create an instance of the Class using the package creation tool.

7. Login to the web site.

8. Verify that the new family is represented in the family three in
the search frame (see screen shot E.3).

• Results

– Expected results. We expect that the new family inherit the restriction
from Nauticus, that the rules feature is preselected when using the
package creation tool and that the web site reflect the changes made
to the ontology.

– Actual results are concordant with the expected results.

– Remarks. The administrator expressed that the concepts of the ontol-
ogy language used (i.e. OWL) are not easy to understand.

118 APPENDIX F. TESTS

F.4.2 Feature type support

This test needed a pre formation to explain the users the patterns to create
features (see section 5.3.2).

• Information

– Name. Feature creation.

– This test verifies if the system support the creation of the different
types of features.

– Purpose of this test is to collect the remarks of the users.

• Test case activity

– Initialization. Open the ontology with protege.

– Input data description

1. Open the class tab in Protege.

2. Create a new sub class to the class Family.

3. Create a new mandatory feature for the new Family.

4. Create a new optional features for the new Family.

5. Create a new multiple features for the new Family.

• Results

– Expected results. We expect the users to be able to create the new
family.

– Actual results it is possible to create all the features types but we
observed that it was not easy for the users to understand the steps to
add a feature to one family.

– Remarks. The administrator expressed that the patterns to use for
the different types of features are difficult to understand.

F.4. FAMILY CREATION 119

F.4.3 Family architecture consistency

• Information

– Name. Family consistency test.

– This test verifies if the system enable to detect inconsistency in a
family architecture.

• Test case activity

– Initialization. Open the ontology with protege. Run the reasoner.

– Input data description

1. Open the class tab in protege.

2. Select a class.

3. Add inconsistent restrictions.

4. Run the consistency.

• Results

– Expected results. The consistency test has to detect the error.

– Actual results it is possible to find that there is an error in the ontology.

– Remarks. The users said that it is not easy to understand why a family
is or is not consistent and where to find the consistency error.

120 APPENDIX F. TESTS

F.4.4 Redundancy test

• Information

– Name. Redundancy in family architecture.

– This test verifies how the system helps to handle redundancy in feature
model.

• Test case activity

– Initialization. Open the ontology with protege. Run the reasoner.

– Input data description

1. Open the class tab in protege.

2. Create a sub class of family.

3. Add the same restrictions than the Nauticus class.

4. Add others restrictions.

5. Run the consistency.

6. Click on Classify taxonomy.

• Results

– Expected results. The computed taxonomy has to classify the new
class under the class Nauticus. In other words the reasoner has to
infer the right parent for the new family in order to inherit part of its
architecture.

– Actual results correspond to the expected ones.

– Remarks. The system helps to find redundancy but it does not correct
it. The user has to correct the problem himself.

List of Symbols

and Abbreviations

Abbreviation Description Definition

FODA Feature-Oriented Domain Analysis page 11
DNV Det Norske Veritas page 2
XML eXtensible Markup Language page 24
RDF Resource Description Framework page 24
URI Uniform Resource Identifier page 24
OWL Ontology Web Language page 29
DAML DARPA Agent Markup Language page 28
OIL Ontology Inference Layer or Ontology Interchange

Language
page 28

DL Description Logic page 29
AI Artificial Intelligence page 32
SWESE Semantic Web Enabled Software Engineering page 35
MDA Model Driven Architecture page 36
UML Unified Modeling Language page 36
W3C World Wide Web Consortium page 34
UC Use Cases page 40
API Application Programming Interface page 50

121

List of Figures

2.1 DNV’s layered architecture . 6
2.2 Brix framework organization . 7
2.3 Business process for BRIX Workflow 8
2.4 Screen shot of BRIX Rule Editor . 8
2.5 Dimension of variability in Product Family 10
2.6 Example of feature model with FODA 12

4.1 Semantic Web layer cake . 24
4.2 Ontology languages evolution. 30
4.3 Forward chaining process (source [14]) 33
4.4 Bacward chaining process (source [14]) 37

5.1 Use cases for a sales person . 40
5.2 Use cases for an administrator . 41
5.3 Application’s components use . 43
5.4 Pricing model . 44
5.5 Configurator model . 45
5.6 Package creation process . 47
5.7 Example of alternative feature. 52

6.1 Spiral development method . 60

C.1 Sequence diagram for pricing a package 95
C.2 Sequence diagram for creating a package 96

E.1 Web site login page . 102
E.2 Web site main page . 102
E.3 Web site search frame . 104
E.4 Screen shot of a pricing calculation . 105
E.5 Family selection . 106
E.6 Package creation . 106

122

123

E.7 Ontology of Product Family in Protege editor 107

F.1 Error when creating a new package . 115

List of Tables

2.1 Requirements and needs Table . 16

5.1 Administrator use cases related to requirements and needs 42
5.2 Factor A table . 53
5.3 Factor B for network license . 54
5.4 Factor B for non network license . 54
5.5 Factor C table . 54

6.1 Test template . 61
6.2 Package selection test . 62
6.3 Normal pricing calculation test . 63
6.4 Web site adaption test . 63
6.5 Customize pricing options test . 64
6.6 Package consistency test . 64
6.7 Variability support during the configuration 65
6.8 Family creation test . 66
6.9 Family creation test . 66
6.10 Family consistency test . 67
6.11 Redundancy test . 67
6.12 Fulfilled requirements table . 68

D.1 Toolkits comparison Table . 100

124

