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Problem description

Exception handling mechanisms are an important part in achieving robust and
reliable software.

The project will look into what makes exception handling mechanisms diffi-
cult to use. Next, the project will focus on methods for achieving better control
over exception handling.
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Abstract

Exception handling suffers from a fluke in its evolution. Some time in the
1970’s, a researcher called Goodenough introduced the exception handling

mechanism, known today as the try...catch construct.
At about the same time, two fellows called Parnas and Würges published a
paper about ”undesired events”. This paper appears forgotten. The funny

thing is, Parnas and Würges effectively described how to use exception
handling mechanisms.

There is a need to respond to this undesired event. Exception handling suffers
from lack of design guidelines and a number of inconsistencies with the

object-oriented paradigm, among other things. The thesis’ main contribution
is creating a library of exception challenges and the evaluation of safety
facades, an approach that introduce an architecture and guidelines for

designing exception handling. Through qualitative evaluation, this thesis
shows how safety facades form an interesting new approach to exception

handling.



Preface

This thesis is the result of implementing the Feynman Problem Solving Algo-
rithm:

1. Write down the problem

2. Think very hard

3. Write down the answer

Incidentally, the algorithm proved insufficient. A big thanks to my super-
visor, Dr. Tor Stålhane, for his suggestions and help. Although I haven’t been
his most frequent visitor, each visit left me both inspired and informed.
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Chapter 1

Introduction

1.1 Introduction

In modern programming languages like C++, C# or Java, error handling is
likely in the form of exception handling. Error handling has always been dif-
ficult. Exception handling is a step forward from return codes, global error
values and gotos, but introduce new problems. So many problems in fact, that
in 1982 a doctoral dissertation[8] was written arguing that exception handling
constructs

• are more difficult to read

• permits non-local transfers of control, reintroducing the dangers of the
goto and the problem of clearing up

• creates a rift between a mathematical function and a software function,
and makes reasoning about programs more difficult

• may be used to deliver information to a level of abstraction where it
ought not be available, violating the principle of information hiding,

• If a list of possible exceptions is made part of a procedure’s interface,
that interface is thereby complicated, and interfaces are the very part of
a program which one wishes to keep as small and simple as possible.
On the other hand, if exceptions are not so specified then the dangers of
using them are increased, and many of the advantages of strong typing
are lost.

The opinion of Black [8] was overly pessimistic in my opinion. While I disagree
with his final conclusions, the problems he listed are still highly relevant.

While it is widely accepted that exception handling has a number of prob-
lems, it is the best we currently have available[38, 72].

Exception handling constructs contains three elements:

• The protected block, containing the code that may raise an exception.

• The catch clause, that determines what exceptions should be caught.

• The recovery code, or exception handler.

2



Example 1.1.1 (The try...catch construct).
try {

// This may raise an exception
doSomething();
doSomethingElse();

} catch (SomeException e) {
// Triggered if SomeException is raised.

}

In this thesis I will examine why exception handling is so hard to get right,
focusing on object-oriented software systems. I will compile a library of chal-
lenges with exception handling.

Having established that, I will examine a number of solutions that have
been proposed to make exception handling more effective. In particular, I will
evaluate safety facades.

Safety facades[66] organizes a system into risk communities. Each commu-
nity is wrapped by a safety facade that handles all exception handling. The
safety facade is replaced depending on the needs of the risk community users.
A composition manager may be responsible for picking the correct safety fa-
cade, e.g. one designed for batch mode vs. interactive mode.

The article describing safety facades is light on details, and while the idea
appears interesting, it is still in an early stage of development.

My thesis will show that safety facades is a viable framework for systems
with exception handling. This assertion will be backed up through

• existing knowledge from similar solutions,

• theoretical effects on a number of identified exception handling prob-
lems, and

• implementation experiments.

1.2 Prestudy: Exception handling in practice

During the autumn of 2006, I did a minor survey to see how the software in-
dustry uses exceptions. I sent out e-mails to nine professionals1, counting four
”senior developers”, three ”junior developers”, one ”system architect” and one
”requirements engineer”. The e-mail, written in Norwegian, asked the follow-
ing questions:

Do you have written guidelines on the use of programming lan-
guage features?

Do you have corresponding guidelines for how your software prod-
ucts should be designed, and for the software development pro-
cess?

In what degree does these guidelines mention error handling and
exception handling? Are there any requirements on how excep-
tions should be used or designed? Are these of the type ”avoid
catch(Exception e)”, or do they include requirements for architec-
ture/design?

1All recipients were aquaintances.
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All nine answered my e-mails. Five respondents answered they did not have
exception handling guidelines for their systems. Four of these had no guide-
lines at all, except for standard Java programming guidelines. One answered
that exception handling guidelines were used in one of the projects he worked
on. The remaining three respondends answered the following:

Large software company, business software: Guidelines contained in a lan-
guage independent document describing programming guidelines and
code conventions. An internal Wiki expands on these guidelines.

Large software company, communications software: Only the java program-
ming guidelines are used, but an exception handling framework has been
explicitly designed into one of the current projects. Extensive rules for the
development process and software design, but no guidelines for excep-
tion handling.

Consultant, large firm: ”Exception handling is very important”, states that ex-
ception handling is handled early in their software projects.

The mini-survey also showed that smaller companies have fewer guide-
lines

than larger companies. Only three respondents had an offensive approach
to exception handling.

Only one respondent claimed to have well documented guidelines that also
focused on exception handling. Unfortunately these guidelines were consid-
ered business secrets and could not be disclosed.

1.3 Research methodology

This thesis consists of three stages of research:

1. A chart of challenges for exception handling.

2. A chart of possible solutions to the challenges.

3. Evaluation of the Safety Facade architecture.

Stage one and two will in large parts be the result of an extensive survey of
the literature. The information gained from these surveys will provide back-
ground knowledge for stage three.

Stage three will be a qualitative evaluation of the safety facades. This eval-
uation poses a bit of a problem. The original description of the safety facades
lacks detail, and appears to be at an early stage of development. To my knowl-
edge, there are no reference solutions or other systems with safety facades
available for study. Developing some example implementation appears to be
neccessary. The safety facade evaluation will consist of the following parts:

• A qualitative evaluation on how the safety facades affect known excep-
tion handling challenges.

• A qualitative evaluation of safety facades vs. software compartments, a
similar, more tested design approach.
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• Java example code, to uncover pitfalls and provide reference code.

The purpose of this research is not to find detailed information on the ef-
fects that follows by using safety facades in a real environment. At the current
stage of development, I believe safety facades benefits from experiments and
theoretical examination. Having taken care of common pitfalls, and created
example solutions and guidelines, safety facades will be better prepared for
further experimentation.

Research method evolution

At an early stage, it became clear that while safety facades were highly inter-
esting, there was minimal information available, no reference solutions, and
no known implementations. Although I later found that a third party J2EE li-
brary ha implemented support for a version of safety facades, I have found no
software that have used this implementation. In addition, I found a number of
research papers describing how exception handling affects software develop-
ment, but no single paper gave ”the complete view”.

As a result, I decided to begin by collecting the background information
now in the chapters Challenges and Proposed Solutions. During this work, I
found the proposed design approach called safety facades, and decided to ex-
amine it. The overall objective did not change much, my goal has been to find
a way to make exception handling easier to use.

Informatics research methods

Being a product of human behaviour, software engineering tools and method-
ologies must be empirically tested[69]. Theoretical discussions and experi-
ments are useful only up to a certain point.

Depending on the research questions, it seems most relevant to use lab ex-
periments or a case studies to evaluate safety facades empirically.

A lab experiment is by nature limited in scope, but allows greater control
than both case studies and action research. A lab experiment involving safety
facades could involve either refactoring an existing system of limited size, or
design a system from scratch. Implementing a system from scratch may be too
time consuming and would introduce additional variables.

A case study would cover a larger problem than a lab experiment. The best
situation would be to observe a real software development project, in part or
entirety. If the group of test subjects have worked on similar projects earlier,
those may prove useful as a baseline.

The products, or software, could be evaluated for

• measurable benefits, quantitatively or qualitatively,

• how the system’s structure is affected, qualitatively

Focusing on the human aspect, possible topics are

• what problems the test subjects encountered,

• effectiveness, or did safety facades affect the number of work hours

• how the test subjects interpreted the safety facade information

5



The main point here is to do the testing in an environment that is as real
as possible, and that the research method is mostly dependent on the research
questions. There are two objects that may be researched, the construction pro-
cess and the final product.
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Chapter 2

Background

2.1 Terminology

This section will introduce basic terminology related to exception handling. I
will start with basic quality attributes, continue with general terminology, and
conclude with definitions related to exceptions in object-oriented software.

Terms such as error, exception and reliability are ambiguous due to differ-
ent use within the software engineering community. Other terms have subtle
differences, like error vs fault.

Terms like error and reliability implies measuring a system’s observed be-
haviour against its desired behaviour. In practice, measuring actual behaviour
against a specification.

Definition 2.1.1. specification. A document that specifies, in a complete, pre-
cise, verifiable manner, the requirements, design, behaviour, or other charac-
teristics of a system or component, and, often, the procedures for determining
whether these provisions have been satisfied. [10, p. 69]

There are two problems with specifications. First, specifications are hard
to get right[19]. Incorrect or insufficient specifications lead to software with
unwanted behaviour, despite conforming to the specification. Second, specifi-
cations are not written to include all possible system inputs and states. Because
they are hard to discover, exceptional situations are less likely to be included.

To create a solid point of reference for discussing desired and undesired
behaviour of a system, some simplifications are neccessary. I assume specifica-
tions to be correct and comprehensive. This paper does not discuss the issue of
understanding and implementing a specification correctly.

The lack of specification for undefined exceptional behaviour will be dis-
cussed later.

2.1.1 Quality Attributes

Reliability and robustness is closely related to error handling. While several
definitions exist[62, p. 11], the following definitions are sufficient for my pur-
poses:
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Definition 2.1.2 (reliability). The ability of a system or component to perform
its required functions under stated conditions for a specified period of time[10,
p. 62].

This implies that reliability concerns whether a system is able to perform
its tasks as required by a specification. Robustness on the other hand, focuses
on what would happen if the system were subject to abnormal situations:

Definition 2.1.3 (robustness). The degree to which a system or component can
function correctly in the presence of invalid inputs or stressful environmental
conditions. [10, p. 64]

Robustness may be considered a subattribute of reliability. While robust-
ness concerns the possibility that unexpected input may crash a system, reli-
ability concerns the ability of a system to function as desired. Exception han-
dling is closely related to both.

2.1.2 Error, Fault and Failure

There are subtle differences between the words error, fault and failure. These
words are also used differently depending on context. Some definitions are in
order.

Definition 2.1.4. An error is the symptom or manifestation of a fault in soft-
ware. The error may be observed as an invalid measurement, result or unan-
ticipated behaviour.

Example 2.1.1. A method M in object A is reading from a file. While read-
ing, invalid input is detected. An exception is propagated1 to the caller of M .
Reading is aborted, but the file resource is not freed. The error is observable
through resource leakage.

While errors are measured directly, their source is often difficult to identify.
Note that this paper does not consider hardware faults.

Definition 2.1.5. A fault is the underlying cause for an error, e.g. erronenous
code or a design problem.

Example 2.1.2. Recall the above example. The fault exists in the error handling
code of method M , which does not close the file resource.

Having defined a fault and the measurable error, we need to be able to
discuss the system-wide implications of these.

Definition 2.1.6. A failure is the inability of a system to deliver services as
stated by the specification[10, p. 32]. A failure may either be soft or hard. A
soft failure implies a degraded state, with partial functionality available. A
hard failure ”results in complete shutdown of a system”[10, p. 36].

Example 2.1.3. The system in the former example will experience a failure
when file resources are depleted. If the system crashes or becomes inopera-
ble, it suffers a hard failure.

1Defined in section 2.3
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It is only relevant to discuss failure of a system in relation to a given specifi-
cation. As stated in 2.1, this paper assumes specifications to be correct.

Having defined error, now consider error handling code:

Definition 2.1.7 (Error handling code). The parts of a software system respon-
sible for detecting and handling abnormal situations in the system or in its
environment.

Error handling is a part of any non-trivial system. Note the difference be-
tween error tolerance (the system does not fail upon input errors) and fault
tolerance (the system does not fail, despite the presence of software faults2.)

2.2 Error handling

Traditional error handling in a procedural language typically consists of calling
a function and checking its return value (or other known side effects).

Example 2.2.1 (Error handling in C with return values).
int foo() {

if (do work() == −1) {
// Handle errors from do work()

} else if (more work() == −1) {
// Handle errors from more work()

} else if (. . .) {
. . .

}
}

A value may also be returned through a function parameter passed by ref-
erence, or using status values like the global errno variable in C and C++.

Example 2.2.2 (Error handling in C with global error variable).
int foo() {

int work result = 0;
do work();
if(errval) {

// handle error for do work()
// . . .
return −1;

}
work result = more work();
if(errval) { 10

// handle error for do workQW
}
// do something useful with work result
// . . .

}

Buhr and Mok [16] highlights some of the drawbacks with traditional error
handling.

• A caller must explicitly test return values or status flags.

2Paraphrased from [10, p. 33]
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• These tests will be located throughout the program, reducing readability
and maintainability.

• It may be difficult to determine if all error cases are handled.

• Removing, changing or adding return or status values is difficult as the
testing is coded inline.

2.3 Exception handling

The origin of software exception handling is probably hardware traps. A hard-
ware trap is used to signal a CPU that a some special event has occurred. Upon
a hardware trap, or signal, the operating system triggers a special handler that
processes the event. This might be a notice that the hard disk has completed a
data request.

Exception handling mechanisms was introduced in the 1960’s and spread
through focus on software reliability during the mid-1970’s[63]. Much of the
terminology used today is attributed Goodenough in his 1975 paper ”Excep-
tion Handling: Issues and a proposed notation”[30].

The word Exception have several meanings within the computer science
dicipline. It may describe a hardware exception (e.g. divide by zero), an ab-
normal situation in the software state, or as a programming language object
representing an error situation. The latter example may indicate a manifesta-
tion of the two former situations.

Buhr and Mok begin their article[16] with ”(...) but there is hardly any
agreement on what an exception is.” Their paper avoids the problem of defin-
ing an exception by considering the exception handing process as a whole,
and exception is a component of an exception handling mechanism (EHM).
An EHM is used for directing control flow after an abnormal situation has been
detected.

This text looks into how to best make use of the exception handling mech-
anism. This text will consider exceptions as normal objects, as in Java, C# and
C++.

With the list of problems in the previous section in mind, it is clear that an
exception handling mechanism must (quoted from [16])

1. alleviate testing for the occurrence of rare conditions throughout the pro-
gram, and from explicitly changing the control flow of the program

2. provide a mechanism to prevent an incomplete operation from continu-
ing, and

3. be extensible to allow adding, changing and removing exceptions.

Exception handling mechanisms includes special exception handling con-
structs to the programming language. Code for normal situations are separated
from code handling abnormal situations. This contrasts traditional error han-
dling, where the programming language provides few or no error handling
features.

Exception handling adds a second exit option to the interface of subcompo-
nents. A function may return either return normally or raise an exception. That
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Figure 2.1: Conceptual model of exception handling, from [27]

is, the function may abort its execution and signal its caller that an abnormal
situation occurred.

Statements that may throw exceptions may be wrapped in a protected block.
Each protected block has one or several handlers thattriggers on exceptions
raised within the block. The handler is tasked with getting the running pro-
gram back to a normal state. It may also re-raise the exception, or raise a new
exception.

Exceptions raised without an enclosing protected block are propagated out
of the current subroutine. The propagation continues to higher level compo-
nents until an appropriate handler is found. If no appropriate handler is found,
the program is terminated. During propagation, the stack is unwinded as nec-
cessary.

The languages C++, C# and Java use similar language constructs for excep-
tion handling with the try...catch construct. Other languages use different
syntax, but the main principles are the roughly the same.

In Example 2.3.1, exceptions of type SomeException are handled by the as-
sociated handler block. Other exceptions are propagated to a higher level. It
is also possible to define handlers that trigger on any thrown exception, see
Section 3.4.1.

Example 2.3.1 (The try...catch construct).
try {

// This may raise an exception
doSomething();
doSomethingElse();

} catch (SomeException e) {
// Triggered if SomeException is raised.

}

If doSomething() raises an exception, the exception type is compared to
SomeException. If it matches, control is turned over to the catch-block. If not,
the exception is propagated to a higher level component.
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Example 2.3.2 (The try...catch...finally construct).
try {

// This may raise an exception
doSomething();
doSomethingElse();

} catch (SomeException e) {
// Triggered if SomeException is raised.

} finally {
// This is always executed.

}

The finally block is always executed, regardless if an exception was raised
or not. To see what happens if an exception is raised within a finally block, see
Section 3.4.3.

When the catch-block is completed, control is turned over to the first state-
ment following the entire try..catch block. That is, control does not return to
the try-block.

The approach above is called the termination model. Two other approaches
exist, the resume model and retry model. These are mostly abandoned today, after
being susceptible to programming errors. In addition, both models may be
simulated using the termination model. E.g., the retry model may be simulated
by combining a loop with a try..catch block.

In the try...catch example, the exception is internal if it is handled within
the current stack frame. If the exception escapes the current component (method,
procedure, function), it is an external exception, and becomes part of the compo-
nents interface. A programming language may require external exceptions to
be explicitly added to the interface, called checked exceptions. This enables the
compiler to check for unhandled exceptions during compilation.

2.3.1 Special Exceptions

Some exceptions should not be caught. In Java, they are called Errors, and
are thrown by the JVM, signalling critical failures like stack overflow, mem-
ory depletion or coding errors. In C#, similar semantics are carried by, among
others, the StackOverflowException and ExecutionEngineException. These excep-
tions cannot be caught by a normal catch clause in C#. Errors may be caught in
Java, but it is highly discouraged.

2.3.2 Object Oriented exception handling

C# and Java are highly object-oriented. The exceptions are complete objects,
and may contain fields and methods like any other object. In C++, there are
fewer restrictions for exceptions, although there are guidelines. In other lan-
guages, exceptions may be defined as some type of signal, a primitive data
type, or as a special symbol. That is, exceptions may have different properties
than other user-defined data types.

In both C# and Java, all exceptions have a single supertype. In Java, this is
the class Throwable. Checked exceptions are subtypes of Exception (subtype
of Throwable), unchecked exceptions are suptypes of RuntimeException (itself
derived from Exception). Abnormal situations signalled by the Java Virtual
Machine derive from the Error class (subtype of Throwable). C# has a similar
but different hierarchy, with only unchecked exceptions.
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From this hierarchy, a large tree of exceptions are supplied with the Java
system. Programmers may add their own exceptions to the tree.

When exceptions are objects, they may contain methods and fields. This
makes it possible for an exception to provide a wide array of information to its
handlers.

Subsumption is relevant for exceptions as well. A catch-clause of the type
E may trigger when an exception of type E itself is raised, and when a subtype
of E is raised. Accordingly, a catch clause for Throwable in Java, will trigger
on any raised exception.

Example 2.3.3 (Example of subsumption).
class AppException extends Exception { . . . }

class AppConfigException extends AppException { . . . }

// . . .

try {
doSomething(); // Throws AppConfigException

} catch (ApplicationException ae) {
// Triggers on ApplicationConfigException by subsumption 10
// Restore state, handle problem . . .

}

2.3.3 Interface exceptions

Exceptions are separated into two groups, internal exceptions and external ex-
ceptions. Internal exceptions are handled within the subroutine it was raised.
External exceptions are propagated outside the subroutine it was raised.

However, unlike normal return values, exceptions do not neccessarily need
to be declared in the interface. Programming languages may require all or
some exceptions to be declared, or may not require declarations at all. Ex-
ceptions that must be declared are called checked exceptions, and those who do
not are called unchecked exceptions. When exceptions are explicitly specified,
they may be called interface exceptions. This is ambiguous though, since both
checked and unchecked exceptions are part of the interface.

The words checked and unchecked are related to the compiler’s type checking.
The compiler may easily ensure that a checked exception is either handled or
propagated. Unchecked exceptions are not subject to the compiler’s control.
Data-flow analysis (DFA) may be used for analyzing the flow of unchecked
exceptions, but the analysis is imprecise.

Methods that throw checked exceptions, must explicitly declare these in the
method interface. The exception type may not be enough information: Under
what circumstances can the exception be raised? What state will the compo-
nent be in when the exception is raised?

When working with proprietary libraries and COTS software, the source
code may be unavailable. Without thoroughly documented interfaces, the ex-
ceptional behaviour will be unknown. Even when source code is available (e.g.
OSS), the code may still be too vast to investigate properly.

Stroustrup [68, p. 936] recognizes the problem of object states when throw-
ing exceptions. First consider the two following guarantees:
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• No guarantees: If an exception is thrown, any container being manipu-
lated is possibly corrupted.

• Strong guarantee: If an exception is thrown, any container being manip-
ulated remains in the state in which it was before the standard-library
operation started.

Both are unacceptable, the latter because rollback is costly and might be im-
possible. Stroustrup designed the objects in his C++ Standard Library (STL) to
conform to one of the following exception-safety guarantees:

• ”Basic guarantee for all operations:” The basic invariants of the standard
library are maintained, and no resources (...) are leaked.

• ”Strong guarantee for key operations:” In addition to the basic guarantee,
the operation succeeds or has no effects (...)

• ”Nothrow guarantee for some operations: In addition to providing the ba-
sic guarantee, some operations are guaranteed not to throw an excep-
tion.”

Generally, the minimal requirement for any method is the basic guaran-
tee. In addition, it should be clear from the exception context what state the
originating object has after raising the exception, and if possible how the ex-
ceptional situation might be resolved. For instance, a collection of objects are to
be manipulated, but the operation fails half-way. The exception context should
describe how far the operation got before crashing. It will then be possible for
the caller to retry the operation on the remaining objects, revert the changes or
perform good logging.

2.3.4 Checked vs unchecked exceptions

The choice of checked vs. unchecked exceptions has major implications for
modifiability and cohesion. Unfortunately, there are no clear lines separating
the types.

Authorative sources on Java[51] suggest the following division of responsi-
bilities:

Checked: Exceptions that signal an exceptional situation which might be treat-
able.

Unchecked: Exceptions that signal an untreatable situation.

This raises the question: What is treatable, and what is not? A method
raises exceptions it does not know how to handle. How does the method
know if an exception is ”treatable” at all? The article contains a detailed list
of criteria for each type. One of these are that all projects should define an
unchecked ProgrammingException that is the root for programming mistakes,
e.g. NullPointerException. Although one of the clearest and thorough pieces of
documentation on the use of checked vs. unchecked exceptions, there are still
room for mistakes.

Proponents of Design by Contract divide the responsibilities like this:

Checked: Errors that are part of the contract.

14



Unchecked: If the contract (assumptions) are broken.

This can be shown to give almost the same division as the guidelines above.
Here, the division is determined by a methods contract. Programming errors
breach the contract and results in unchecked exceptions. Business level excep-
tions (e.g. withdrawMoney() throws NotEnoughMoneyException) are defined in
the contract, and implemented as checked exceptions.

Another issue is deciding when to convert a checked exception to an unchecked
one and vice versa. This problem appears when exceptions are abstracted dur-
ing propagation. A FileNotFoundException is checked, but a missing configura-
tion file would indicate an incorrect installation. Here, the exception would be
converted into the unchecked InstallationException.

Experts disagree whether checked exceptions are good or bad[49, 65, 70, 71,
72]. The only major modern programming language using checked exceptions
is Java, while unchecked exceptions are found in several languages, includ-
ing C++, C# and Python. Some research has been done on introducing both
checked exceptions and contracts to C#[38].

In short, proponents of checked exceptions claim they add important in-
formation to method interfaces and that the drawbacks are avoidable through
good guidelines and standards. Opponents of checked exceptions claim they
are only syntactic sugar and greatly reduce modifiability. In my opinion, the
biggest problem with checked exceptions is deciding when to use them. This
is solved by standardized guidelines and better education of programmers.

2.3.5 Runtime performance

Exception handling has implications for runtime performance, both before and
after an exception is thrown. Exceptions are, ideally, rarely thrown, so any
performance loss should be postponed until an exception pops up.

During normal execution, information about where to find exception han-
dlers is maintained. One approach is adding appropriate pointers to the stack
frame. When an exception is thrown, the exception object is created. Next, a
search for the closest fitting handler is performed. The trigger clause of each
handler in the active stack frame must be examined. If no handler is found, the
stack is unwinded and the search continues. When propagating the exception,
finally blocks may also need to be executed.

The point is, throwing an exception is resource intensive, while adding
try...catch blocks are not.

In real-time systems and other systems where runtime performance is im-
portant, the overhead of throwing exceptions is a problem[37]. One solution is
to sacrifice initialization costs in favor of more predictable resource use when
throwing exception, i.e. make it easier to find handlers.

Another solution is to minimize the number of exceptions that are thrown.
This will also increase the predictability of a program, according to Amey and
Chapman [5]. [68, p. 937] introduce the ”Nothrow guarantee” for exception
safety.

In the next part, I will look further into the challenges of exception han-
dling.

15



2.4 Software Architecture

What is software architecture? From Bass et al. [7] we have the following defi-
nition:

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software ele-
ments, the externally visible properties of these elements, and the
relationships among them.

Ideally, a system’s architecture is a set of elements that interact using well-
documented interfaces. The less ideal end of the scale is the well-known big
ball of mud with spaghetti code.

Architecture is the abstract definition of a system. Although the elements
of an architecture might be implemented as objects, they need not be. The
architecture shows structure and purpose, while the implementation defines how
the system works.

If single objects are not really of interest, then what role has exceptions in
the software architecture? Quite an important one, it seems. This is illustrated
in the interface documentation template suggested by Bass et al. [7, p. 212]:

4. Exception definitions These describe exceptions that can be raised
by the resources on the interface. (...) Common exception handling
behaviour can also be defined here.

Bass et al. [7] documents the flow of exceptions in the component-and-
connector view for fault tolerance. This is quite interesting. Specific error sit-
uations shows up as early as during architectural design. It should not be too
surprising though, since it is already known that exceptions may have global
implications. It is prudent to get an overview of error situations at an early
stage of development.
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Chapter 3

Challenges

What makes exception handling difficult? In this chapter, I will present sev-
eral of the contributing factors to exception problems. I will begin with general
issues, like complexity, readability and availability of proper tools. Follow-
ing this introduction, object-oriented design, implementation and architecture
level problems will be presented.

3.1 General issues

Getting a grip on the exceptional control flow is hard. It is difficult to find all
possible error situations and exceptions that a method might raise. Getting er-
ror handling right is well known to be difficult. Perhaps the foremost challenge
with exception handling, is that any exception may have global implications in
the software. To the individual software developer and architect, exception
handling requires different solutions than traditional error handling.

Any statement may possibly raise an exception. With traditional error han-
dling, it is known that a function may report an error a return code, in a param-
eter, or in a global error variable. Exceptions on the other hand, may be raised
from any statement, and they may be handled at a completely different place
than where the function is returned.

It has even been suggested that exception handling makes it harder to dis-
tinguish between good and bad code[20]. With traditional error handling, it is
easy to see if the return values are handled or not. Not neccessarily so with
exceptions.

During a code review experiment[6], 42 participants were asked to identify
problems with the code, including exception handling. The code was altered
to contain bugs. One of these was an empty catch clause, which only 7 par-
ticipants identified as an error. The paper points out that exception handling
was the last point on the checklist 1, which may have resulted in ”the fatigue
effect”.

1Software inspections are typically carried out with a checklist with what to look for. In this
case, the two last questions were:

• Are all relevant exceptions caught?

• Is the appropriate action taken for each catch block?
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Programmers must also learn new idioms, patterns and techniques to make
best use of the new language constructions. Considering this, it is interesting to
note the near complete lack of focus on the subject in education and literature.

Most introductory software engineering textbooks appear to marginalize
or ignore error handling. A few mention that error handling is important, or
mention techniques from the fault tolerance dicipline, like n-version program-
ming. Exception handling design is almost completely missing, except in a few
books (like Budgen [14, p. 200], Meyer [46] and Braude [12]

Modelling languages, like UML, also lack support for exceptions. The latest
UML version 2.0 (2004-2005) added support for modelling exceptions in activ-
ity and sequence diagrams. Some researchers argue for even better support
[32, 57].

3.1.1 Analysis tools

Techniques like data flow analysis becomes less accurate because branching
from exceptions is added[67]. More complex algorithms are required to get
good analysis results. Source code analysis is used by, among other things,
code optimalization techniques in compilers, test-coverage computations and
by visualization tools.

Software may be analyzed statically or dynamically. Static analysis allows
examination without actually running the software, and includes control-flow
analysis, data-flow analysis and control-dependence analysis. Dynamic analy-
sis is performed by running the software, and is used by debuggers and pro-
filers. Static analysis is faster and easier to perform, but gives approximated
results. Dynamic analysis is slower, but may collect more accurate data.

Control-flow analysis

Control-flow analysis results in a control-flow graph, and determines ”for each
program statement s, those statements in the program that could follow s in
some execution of the program”[67]. Control-flow analysis is essential for sev-
eral other techniques, including data-flow analysis and control-dependence
analysis. . Exception handling enables almost any statement to branch off to
an exception handler. The analysis must also consider the catch- and finally-
blocks.

Data-flow analysis

Data-flow analysis is a generic term for ”techniques that compute data flow
facts, such as definition-use pairs, reaching definitions, available expressions,
and live variables”[67] at various stages of the program. Compilers use several
data-flow techniques when performing various optimizations, like subexpres-
sion elimination and copy propagation[3].

Data-flow techniques must be updated to handle two new situations. First,
exception propagation may cause different code to be executed, adding new
definition-use pairs. Second, use of the exception variables needs to be in-
cluded in the definition-use pairs. The latter requires connecting where excep-
tions are thrown with where they may be caught.
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Control-dependence analysis

From Sinha and Harrold [67], ”control-dependence analysis determines, for
each program statement, the predicates that control the execution of that state-
ment.” It is used for program slicing (used by debuggers, regression testing,
etc).

Most algorithms for control-dependence analysis performs intraprocedural
analysis. However, finding all statements that may trigger a catch clause would
require interprocedural analysis.

Tools

Analysis and testing of exception handling constructs requires well-implemented
algorithms to be able to reason about the exception flow. The problem is that
exception handling constructs may cause arbitrary changes in control flow,
both within procedures (intraprocedural) and across procedures (interproce-
dural). There is a some literature describing how exception handling affects
software analysis and testing[13, 23, 24, 26, 42, 59, 61, 67, 73, 74], but good tools
have yet to emerge from this research. Most tools are proof of concepts and
lack the quality required for common use[52].

3.2 Object-Oriented design

Exception handling may conflict with many of the goals of object-oriented
design (OOD). Miller and Tripathi [49] studied how exception handling and
object-oriented design work together. In their work, four major areas of con-
flict were introduced:

• Complete exception specification

• Partial states

• Exception conformance

• Exception propagation

3.2.1 Complete exception specifications

Complete exception specifications is an interesting notion. Most programming
languages only include exception types in object interfaces — if exceptions are
mentioned at all. The result is interfaces with insufficient information describ-
ing exception flow. Four extensions are suggested, to provide complete excep-
tion specifications. Quoted from [49]:

• Exception masking: how is the abstract state of an object af-
fected if the implementation masks an exception.

• Exception consistency: each exception that can be signaled has
an associated meaning that is consistent regardless of the sig-
naling location.

• Exception context: what is the exception context provided for
each signaled exception
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• Object state: the state of the object immediately prior to the
exception signaling is indicated within the exception context.

The two last points needs further explanation. Exception context is in a later
article, the authors explain that ”An exception context corresponds to an exe-
cution phase or region of a program.”[48]

Object state is normal upon normal exists. An exception occurrence may
need to put the object in an invalid state of some sort. The object may require
instructions from another component to choose recovery action. This should
be a part of a complete interface specification.

3.2.2 Partial states

Consider a composition of objects with a defined structure, for instance a di-
rected acyclic graph. A composition is in a partial state when each object in
the composition has a valid state, but some relationships between objects are
invalid.

When objects are added or removed, invariants for the linked list must be
maintained. If an exception occurs when adding or removing objects, the com-
position may be left in a partial state.

Individual objects may be left in a partial state, when a method operating
on its data is aborted by an exception. This leaves the objects internal pointers
in an undefined, probably invalid state.

3.2.3 Exception conformance

With object-oriented inheritance, a parent object P may be used in place of a
more specialized child object C . That is, object C is conformant with P because
it implements (as a minimum) the same interface as P . Miller and Tripathi
[48] introduce exception conformance for the special case when objects P and C
are exception types. Exception conformance is useful, but may conflict with
normal object-oriented ideas. From Miller and Tripathi [48]:

The difference between exception handling and normal object-orientation
is that methods can be overloaded to have similar meaning in a
wide variety of situations, but exception information (particularly
for errors) generally needs to be specific.

(...) There is a conflict between exception conformance and com-
plete exception specification. To have a complete specification im-
plies exception conformance, but to allow evolutionary program
development suggests exception non-conformance, which in turns
suggests an incomplete exception specification.

Although Miller and Tripathi has a point, it is not always relevant. Excep-
tions may be useful, even when they are not specific. The usefulness of infor-
mation contained by an exception is not immidiately determined by how spe-
cific an exception is defined. An IOException may provide enough information
in many situations, and still make room for ”evolutionary program develop-
ment.” An IOException becomes insufficiently specific only when the low-level
error is neccessary to choose the appropriate recovery action.
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3.2.4 Exception propagation

Exceptions may change the program control flow. Suppose method P raises
an exception to its caller Q . Method Q regains control, even if P has not com-
pleted all its instructions. Normally, Q would expect that P had completed,
but now the programmer must consider how to handle an exceptional return
from P .

3.2.5 Object-Oriented goals

How does exception handling affect the central object-oriented concepts ab-
straction, encapsulation, modularity and inheritance?

Abstraction

Miller and Tripathi [48] divides abstraction into generalization of operations and
composition. Exception handling supports generalization of operations by en-
abling callers to decide what should happen in case of abnormal situations.
The downside is that exceptions may break the abstraction by disclosing inter-
nal information.

The second form of abstraction is composition. A composition may consist
of a composition object C , which is an interface to the composition, and objects
arranged in a structure, e.g. a linked list or a tree where some invariants must
be maintained.

An object in a composition may raise an exception — but how should the
exception be propagated? Standard EHMs only allows an exception to prop-
agate upwards the call-chain. It may be neccessary to notify the composition
object C , or one or more members of the composition. If an external caller
has direct access to the objects in the composition, the exception would not be
registered by the composition object C . Additionally, indivitual objects in the
composition may not know which other objects to notify.

Figure 3.1: Conceptual view of a composition where exceptions are thrown
from within the composition. The dotted lines illustrate exception propaga-
tions not supported by EHMs.
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Encapsulation

Encapsulation hides the internal structure of an object, and presents its users
with an interface containing a subset of the objects resources. If clients of the
object use ”inside information” to circumvent the interface, the encapsulation
is broken and the interface is in practice extended to include the inside infor-
mation. This will have a major impact on modifiability, as well as modularity.

Exceptions may violate the encapsulation through disclosing

• conceptual information, e.g. how the object is constructed,

• from where the exception is signalled, or

• pointers to internal data.

It may be impossible to completely maintain the encapsulation of an object
when using exceptions. Exceptions must by nature disclose some internal in-
formation to describe what has gone wrong.

Modularity

Modularity is accomplished when a change in one software component (or
module) does not require changes in another component. Miller and Tripathi
[48] states three exception related problems related to evolution through incre-
mental changes:

• Exception Evolution: When new specialized exceptions are created as
subclasses of existing exceptions. Old handlers may be triggered by these
exceptions which may not handle the exceptional occurrence correctly.

• Function Evolution: When the functionality of a method is changed, ”(...)
unchanged modules may have to cope with new exceptions that are in-
troduced by the new functionality.”[48]

• Mechanism evolution: When the implementation of a method is changed,
the existing exception types may become overloaded with new seman-
tics. They may signal new situations or require different handling.

Checked exceptions should also be mentioned here. Recall that all checked
exceptions thrown by a method must be declared in the method interface.
Adding or changing checked exceptions may require updating a large num-
ber of methods. Opponents of checked exceptions claim the increased de-
pendencies far outweighs the advantages[72]. Proponents claim checked ex-
ceptions are a useful tool and does not negatively affect modifiability if used
properly[71].

Inheritance

There are also two problems related to inheritance. First, a subclass may attempt
to specialize error handling from one of its parents methods. If the original
exceptions do not contain enough information for specialization, the subclass
may need to reimplement the entire parent method to throw specialized excep-
tions.
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Second, suppose a parent class calls a virtual method that is reimplemented
by a subclass. The parent may require new handling code for exceptions thrown
by the new method. This would require reimplementing the parent method.

3.3 Exceptions and Architecture

Software architecture literature describes exception handling in context of the
fault-tolerance dicipline. The main focus is how the architecture can be de-
signed to minimize the impact on faulty components.

Current architectural description languages delegates actual error handling
to the lower level components. Research is being done to examine how one can
include more of this functionality in the architecture itself[28, 29, 34].

The following issues are somewhat related to the implementation level, but
their implications are on an architectural level.

3.3.1 Anonymous Exceptions

Aanonymous exceptions are often described in the ADA literature. If an ex-
ception is propagated outside its scope, it becomes anonymous. Where the
anonymous exception occurred will be unknown, and it can only be caught by
when other2.

A similar problem exists in other languages. If an exception is propagated
outside its scope, its type may be unknown and it cannot be explicitly caught.
Fortunately, unlike in ADA it may still be possible to extract an error message
and stack trace.

3.3.2 COTS and external components

Anonymous exceptions are especially interesting when externally written com-
ponents are included in the software, i.e. COTS and OSS, or simply legacy
code.

Closed or unknown source code will throw unexpected exceptions. Inter-
face documentation for exceptions is typically sparse. The exceptions a method
may throw is either unknown or limited to a list of checked exceptions.

3.3.3 Exception abstractions

Abstraction is important, also for exceptions. When propagating an exception,
an exception’s semantics should always conform to the surrounding code. Fail-
ure to create a proper hierarchy of exceptions risk creating a spaghetti of excep-
tions flowing around in the system.

Example 3.3.1. An SQLException might be abstracted as DatabaseException or
DataStoreException. Higher layers probably does not know anything about
SQL, why should they receive an SQLException?

Abstraction has the additional advantage of reducing the number of ex-
ceptions flowing across the architectural elements. For instance, Robillard and

2Equivalent to catch(Throwable t) { ... } in Java
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Murphy [60] shows how they reduced the number of exceptions in Jex from 70
to 14 through sound design of the exception hierarchy.

3.4 Implementation level

Programmers make errors for a number of reasons, from simple typing errors
and poor use of programming language features, to complex errors made from
lack of overview and invalid assumptions. This part will examine mistakes that
are known to happen regularlyBundy and Mularz [17], Howell and Vecellio
[33], McCune [45], Müller and Simmons [51].

Some of these examples are elsewhere described as anti-patterns, the op-
posite of software design patterns like Singleton, Observer, Visitor, etc. Anti-
patterns are bad solutions to specific problems and demonstrate typical pitfalls.

3.4.1 Plain abuse

These mistakes are either directly harmful, like the empty catch clauses, or are
used in a confusing way, like using exception handling for normal control flow.

Normal control flow

Exceptions are reserved for abnormal situations. For normal control flow, stan-
dard langugage mechanisms should be used. A classic example is using an
ArrayIndexOutOfRangeException3 to indicate the end of an array during itera-
tion.

Example 3.4.1.
int[ ] numbers = {1, 2, 3, 4, 5, 6}; // Initialize array with integers
int sum = 0;
int i = 0;
try {

while(true) {
sum += numbers[i]
i++;

}
} catch (ArrayIndexException aie) {

// Reached end of array 10
}

Raising an exception is resource intensive: An exception object must be
created, a handler must be found and the handler must be set up correctly.
Using this mechanism as a part of normal execution is inefficent and complex.

Using exceptions for normal control flow may also cause confusion whether
a signaled exception is an error condition or a normal situation. In the example
above, the ArrayIndexOutOfRangeException could have signaled an actual error
when accessing the array. That situation would be masked as we are finished.

Early papers did consider using exception handling for normal control flow[30].

3Array index out of range
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Null handlers

Null handlers are an easy way to avoid handling an exception, or postpone the
decision of how an exception should be handled[33]. This is a special case of
Invalid Propagation Termination, see Section 3.4.3.

A checked exception must either be caught or or declared in the interface
of the methods that may raise it. In the example below, the programmer ex-
pects the configuration file to be present at all times. By silently swallowing
the exception, the code is not cluttered with throws sentences and lets the pro-
grammer avoid or postpone writing a handler.

The FileNotFoundException would be suppressed, but the error would im-
midiately resurface when attempts are made to read from the FileReader.

Example 3.4.2.
try {

FileReader fr = new FileReader("myprog.conf");
} catch(FileNotFoundException e) { }

Usually, this exception would have to be propagated up the call chain until
a gui-module or other component could display an error message (or automat-
ically regenerate the configuration file with default values).

A stopgap measure is to rethrow an unchecked exception. This ensures
the exception is noticed, while still postponing writing a good handler, and
prevents the system from continuing in a corrupted state[51].

A single exception for everything

Application specific exceptions add great value to the existing hierarchy of
builtin exceptions. The new exceptions enables transfer of exception infor-
mation as well as maintaining information hiding. However, rethrowing all
exceptions as a single application specific exception is a design bug.

Example 3.4.3.
public void myMethod() throws ApplicationBaseException {

try {
. . .
} catch (IOexception ie) {

throw new ApplicationBaseException(e.getMessage());
}
. . .

}

Müller and Simmons [51] argues this reduce the usefulness of checked ex-
ceptions in Java. In effect, all exceptions would become either checked or
unchecked, and the throw clauses would give little information to the caller.

The catch-all clause

In Java, all exceptions derive from the superclass Throwable, while unchecked
exceptions derive from RuntimeException. In C++, most standard library excep-
tions derive from exception. A catch-all clause is a catch clause for any exception,
as demonstrated in Example 3.4.4. The C++ equivalent is catch(...) {}.
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Example 3.4.4 (Catch-all in Java).
try {

// do something
} catch (Exception e) {

// Recover.
}

There are several dangers with this approach:[31]

• The handler will be triggered for all exceptions, including the unexpected
ones.

• No exceptions are propagated. If your code does not handle a specific
exception, it may be masked (or swallowed, disappear). This is difficult
to detect during testing.

• Even though all exceptions are currently handled properly, later modifi-
cations may introduce new exceptions that require different handling.

• Debuggers may be thrown off track. Exceptions are caught by the catch-
clause, even if they are not actually handled.

In some exceptional situations (pun intended), the catch-all construct may
be appropriate. It should only be used after considering the side effects. One
such use is a last resort handler, to perform logging, rescue user data or dis-
playing an error message before crashing.

A stop-gap measure to fix some of these issues is demonstrated in Exam-
ple 3.4.5. By immidiately rethrowing the exception, the stack trace is not lost,
while some cleanup is possible. This might be a possible app

Example 3.4.5 (Less dangerous catch-all).
try {

// do something
} catch (Exception e) {

// Recovery code.

throw; // Rethrows e
}

In practice, most catch-clauses should look like Example 3.4.6

Example 3.4.6 (Better rewrite).
try {

// do something
} catch (FileNotFoundException e) {

// Recovery code.

// . . .
// Signal to callee if neccessary,
// by return value rethrowing the
// exception or throwing a
// new exception. 10

}
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Asserts in catch clauses

Assertions are typically used to verify the state of internal data and pre- and
postconditions of functions during development and testing.

Example 3.4.7 (Simple assert() example.).
#include <assert.h>
// . . .

float divide(int dividend, int divisor) {
assert(dividend != 0);

return dividend/divisor;
}

If dividend is zero, the program will crash immidiately, rather than crash or
fail at some arbitrary place. In Java, a failed assert will throw the unchecked
exception AssertionException.

Assertions are usually disabled in production systems. Assertions may be
enabled at the flick of a switch (e.g. Java) or the system may need to be recom-
piled (e.g. C++ software). Shore [64] argues assertions is an excellent tool and
should always be turned on.

Mixing assertions and exceptions may introduce pitfalls. If an assert were
used in a catch clause, it would result in an empty catch clause in the produc-
tion system.

Asserts are not a replacement for exceptions. In Java, unchecked exceptions
may be used.

3.4.2 Information loss

Exceptions are a great source of information for debugging. During exception
propagation, a stack trace should be assembled, and logging performed where
appropriate. Many languages, including Java and C#, create a stack trace au-
tomatically.

Stack trace

When an exception is propagated, its propagation path is recorded in a stack
trace. When exceptions are rethrown, the stack trace must be preserved. Java
1.4 added support for exception chaining.

Example 3.4.8 (Exception Chaining).
void read() throws ServerUnavailableException {

. . .
try {

. . .
} catch(SocketException se) {

// Only get message, lose stack trace.
throw new ServerUnavailableException(se.getMessage());

}
}

10
void read() throws ServerUnavailableException {

. . .
try {
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. . .
} catch(SocketException se) {

// Wrap old exception, retain stack trace
throw new ServerUnavailableException(se.getMessage(), se);

}
}

The former example will lose the trace while the latter will add the stack
trace to the new exception.

Incomplete logs

In context of Java, Müller and Simmons argues exception logs should contain
the most information possible to facilitate debugging:

We see no need for restraint here, since the cause for the problem
could potentially be anywhere in the system, and a resolution of the
problem has highest priority.

Exceptions should only be logged once, but as much information as possi-
ble should be included. Some issues in regard to logging are

• individual instances of exceptions logged several times

• insufficient information (e.g. ”Module X crashed”)

• missing state information

• incorrect information

• irrelevant information

Java programs has the advantage that the JVM rarely crashes, which en-
sures a correct stack trace. C++ programs are prone to crashing while propa-
gating exceptions. This raises a number of implementation issues. When de-
signing a system for logging, robustness is a primary requirement. The logging
subsystem must not be affected by errors in other parts of the system.

3.4.3 Other issues

Invalid Propagation Termination

Empty catch clauses, or null handlers, were introduced above. Another variant
is shown in the example below. Here, a stack trace is printed, but no attempt
is done to return the system to a valid state. The problem is that the user is
unlikely to see the stack trace. Even if he did, he would not recognize it as a
problem, thinking ”Excellent, it didn’t crash”, and continue to use the system.

Example 3.4.9.
try {

. . .
} catch (AppException e) {

e.printStackTrace();
}
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Writing exception handlers requires thorough knowledge of the operation
that failed, as well as the surrounding system. To properly handle an exception,
the system must be returned to a valid state. Some of the corrective actions that
the handler must consider are:

• release resources (e.g. memory, file pointers)

• maintain invariants of methods and collections

• revert an incomplete operation

• retry an operation

• safely terminate the program

Improper or missing release of resources is a regular problem. In a recent
study of ”mistakes that involve resource leaks and failures to restore program-
specific invariants”, Weimer [73] analyzed 4 MLOC, finding almost 1200 bugs.

In the example below, an exception raised at line 6, would leave rs still open.
Moving the two close statements to the finally block is not a solution. In case
of an exception at line 5, the statements rs.close() and ps.close() will fail
because rs and ps are uninitialized.

Example 3.4.10.
Connection cn; PreparedStatement ps; ResultSet rs;
try {

cn = ConnectionFactory.getConnection(/* . . . */);
StringBuffer qry = . . .; // do some work
ps = cn.prepareStatement(qry.toString());
rs = ps.executeQuery();
. . . // do I/O-related work with rs
rs.close(),
ps.close();

} finally { 10
try { cn.close(); } catch (Exception e1) { }

}

The example is adapted from Ohioedge CRM4, by Weimer [73]. Some form
of incremental control is neccessary. Resources must be released in the proper
order, and only released if actually acquired. Two solutionsWeimer [73, p. 25]
are,

• nested try-finally blocks.

• sentinel values or run-time checks, i.e. only run rs.close() if rs is not
null and opened.

Suggestions have been made for language enhancements that allows automa-
tion of this bookkeeping. More on this in Section 4.4.

4An open-source CRM system.
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Checked and unchecked exceptions

Java is the only widely used language with both checked and unchecked ex-
ceptions. Other languages, like C++ and C#, has only unchecked exceptions.

Using only checked or unchecked exceptions should be considered a design
flaw in Java.

Introducing too many checked exceptions, will result in code littered with
throws clauses. Changeability and maintainability would suffer, since every
propagated exception would need to be specified at every method interface
along the propagation path.

By only using unchecked exceptions, you get no assistance from the compiler
to identify unhandled exceptions. You also lose exception information that
would otherwise be included in the method interface.

Inconsistent use of the two types of exceptions is difficult to avoid without
clear guidelines for their use. See Section 2.3.4.

Exception semantics

An exception should have the same meaning no matter where it is thrown. It
may abstract a number of situations, but these should be clearly defined and
closely related.

Example 3.4.11. A NullPointerException in Java should never be used to signal
an empty stack. According to its specification, this exception class is thrown
when null is supplied where an object is required. Similarly, an IOException
signals a number of different error conditions, but they are all I/O-related.

Exceptions that are not part of the built-in framework must also carry equal
semantics regardless of where they are thrown. Three remedies are

• unambiguous naming schemes

• well documented exceptions

• a well-designed exception hierarchy

Exception semantics must also be balanced so they are not too general in
order to make proper use of catch clauses. If you regularly need to run tests on
an exception to deduce the actual error, the exception may be too general.

Uncaught exceptions

If an exception is thrown, but no valid handler is found, your program will
crash. This is undesirable, although better than masking it with an empty catch
clause. Doing so may leave your program running in an invalid state (Section
3.4.3).

During development and maintenance, new exceptions may surface ”all
over the place”. Handlers for these may be overlooked, removed or misplaced.
Detecting these defects are not trivial, since you need to know how each excep-
tion may be propagated. Data-flow analysis may help, but the information it
produces is not accurate.

30



Disclosure of implementation details

An exception signals that something wrong happened in a component. To
make recovery or logging possible, some information must be passed along
the exception. Any information may be passed, from an integer to a large data
structure.

Example 3.4.12. The Java ArrayIndexOutOfBoundsException signals an attempt
to access an invalid array index. Its ”payload” is simply the invalid index num-
ber.

Although a bit contrived, if propagated outside of the current class or mod-
ule, this exception would expose how the internal data structure is imple-
mented (an array).

The disclosure of implementation details is a violation of information hiding
and abstraction principles, but is often unavoidable when using exceptions [49].
The need to convey information must be balanced with the neccessity of infor-
mation hiding. Consider also that the throwing method has no control over
how far an exception might propagate.

In the example above, it would be better to throw something like a RangeEx-
ception or the built-in IndexOutOfBoundsException. The former would hide the
fact that the internal implementation uses a numbered scheme for accessing
elements.

Disclosure of internal data

While Section 3.4.3 concerns hiding structure and concepts, now consider how
internal data might be exposed.

Exceptions contain fields and methods like other objects. The fields are used
to convey the exception context. This information should not include pointers
to internal data in the throwing object, as it would break the information hiding
and add unwanted dependencies.

Insufficient information for handling

An exception must carry enough information for correct handling. The in-
formation should be readily available. Sometimes, the exception type itself is
enough information.

Example 3.4.13. The NullPointerException conveys enough information just by
being raised. This exception is thrown by the JVM when an attempt is made to
dereference a null pointer. The stack trace in combination with the exception
type will pin-point the place and type of the error.

An error during an HTTP connection requires signaling both that an error
has occurred, as well as the HTTP status code. The HTTPException stores the
HTTP status code and makes it available to its handlers.

The type of information is important as well. Error codes, file names, in-
dexes, state of the operation and other types of information contained in the
exception context should be conveyed as an appropriate data type. Many ex-
ceptions simply provide a human readable error message. This is unfortunate,
because it is prone to changes, hard to standardize (even Oxford Press does not
standardize English) and often leads to string parsing hacks.
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Example 3.4.14. The HTTPException solves this problem by providing the error
code via getStatusCode() as well as a human readable error message through
the toString() method.

Unfortunately, even the Java API contains many exceptions that only use a
readable string. Bloch has little good to say about parsing exception messages:

In the absence of such methods, programmers have been known to
parse the string representation of an exception to ferret out addi-
tional information. This is extremely bad practice. Classes seldom
specify the details of their string representations; thus string repre-
sentations may differ from implementation to implementation and
release to release. Therefore code that parses the string represen-
tation of an exception is likely to be nonportable and fragile. [9,
p. 173]

Mapping from return codes to exceptions

Howell and Vecellio [33] found many bugs when converting between different
error handling paradigms. When implementing a Java-application that use
a C-library, it may be useful to perform a conversion perform a conversion
fromm error codes to exceptions. The problem however, is that programmers
tend to forget that return codes may change.

When return codes (and error codes like errno) are converted, it is important
to convert all existing error codes, as well as safeguard against new error codes.
In the example below, the default block makes sure that any unexpected error
codes are not lost.

Example 3.4.15.
class NativeC {

public static native read data();
static { System.loadLibrary("NativeC"); }

}

class Example {
public void doWork() throws DataFileException, DataValueException {

int retcode = NativeC.read data();

switch retcode { 10
case 0: // ok

break;
case 1: // File not found

throw new DataFileException();
break;

case 2: // Invalid data
throw new DataValueException();
break;

default: // Handle unexpected situations
throw new ProgrammingException("Unexpected return code " 20

+ retcode + " from NativeC.read_data()");
}

}
}
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Propagation from within handlers

Almost every line of code may raise an exception, including statements within
catch and finally blocks. Programmers tend to forget this small fact, accord-
ing to Howell and Vecellio [33].

The finally block in C# and Java, shown in the example below, is especially
important to look into. The purpose of the finally block, is to guarantee that a
particular bit of code is always executed, even in the presence of exceptions.

Now, suppose the ProgrammingException was thrown, and the finally block
is executed. What would happen if the ”cleanup code” were to raise an excep-
tion?

Example 3.4.16.
try {

// do something
} catch (IOException e) {

// Rethrow as new exception
throw new ProgrammingException("message", e);

} finally {
// Cleanup code.
// Always executed, even if exception is thrown from try/catch

}

The original exception will be discarded and replaced with the exception
thrown from within the finally block, which is most likely not what you would
want. Where appropriate, it should be considered to add a nested try..catch.
This is possible both in the catch- and finally-blocks. Avoid propagating checked
exceptions from the finally block.
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Chapter 4

Proposed Solutions

The previous chapter highlighted a number of exception handling issues that
plague software development. In this section, I will look at possible solutions
to many of these problems. The solutions are mostly found in scientific journals
and conference proceedings. Some tools are available for practicioners, like the
Fault Simulator and Ballista, introduced in Section 4.2 below.

Exception handling should be managed through the entire development
process. This requires control of exception usage in both the development pro-
cess as well as individual phases. As early as requirements engineering it is
possible to gather information on how the software may fail, possible errors
from the environment.

It is neccessary to standardise how exceptions are defined, designed and
used in the system. Choosing techniques for elaborating exceptional require-
ments, design, and testing promotes consistent exception handling use. As I
have shown earlier, it is difficult to manage exception flow and behaviour. In-
terfaces often contain insufficient exception information for proper handling.
This makes it especially beneficial to promote uniform behaviour.

4.1 Exception identification

Knowledge of exceptional or abnormal situations that a system could experi-
ence or cause is important for two reasons. First, this information is key for
correct handling of abnormal situations. Thus, abnormal situations should be
found during requirements engineering. The second situation is testing, where
it is also neccessary to know what abnormal situations there are, and how they
should be handled by the system.

Unfortunately, imagining every possible error situation a system might en-
counter is notoriously difficult. To understand why, Maxion and Olszewski
[43] points to cognitive science and the study of human errors.

Human errors may be classified into two categories. Doing something the
wrong way is a commission error, while forgetting to do something is an omis-
sion error. A review of nuclear power plant incidents(Maxion and Olszewski
[43], quoting Reason [58]) showed that near 70% of omission errors are related
planning, testing, modification and recall, tasks that are similar to designing
software and charting exceptions.
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Checklists are a simple way to prevent omission errors, but they are more
useful for concrete tasks than ”find all possible error scenarios”. When they
are too long, they become difficult to remember. Also, checklists tends to make
their users less imaginative.

Another technique is mnemonics. The CHILDREN mnemonic[43] lists dif-
ferent faults that a system might encounter. The author suggests using this
mnemonic to initiate a fishbone diagram, often used for brainstorming.

C omputational problem
H ardware problem
I /O and file problems
L ibrary function problem
D ata input problem
R eturn-value problem: func or proc call
E xternal user/client problem
N ull pointer and memory problems

Table 4.1: The CHILDREN mnemonic

Some techniques have been adapted for software from other engineering
diciplines. These are group activities that all use some formal procedures to
encourage thinking about error situations. I will briefly present a few of these:

• Failure Mode and Effects Analysis (FMEA)

• Fault Tree Analysis (FTA),

• HAZard and OPerability analysis (HAZOP), and

• Safety cases

Failure Mode and Effects Analysis (FMEA)[35, p. 433], were developed by
German rocket scientists in the 1940’s. The software adaptation use a subset of
the modern FMEA. FMEA is a step-by-step process that begins with defining
the system and reliability requirements, before determining how its compo-
nents may fail and the estimated rate of failure. This is used to estimate how
the failures effect the entire system, and results in suggestions for design im-
provements. Software FMEA is used to evaluate both early and later design,
and gives estimates on the software’s properties. Highly simplified, FMEA
attempts to answer the following, for a system’s components:

• Failure mode: ”In what ways could this subsystem or component fail?”.

• Effects of failure: What effects would the failure have, as perceived by
the customer?

Fault Tree Analysis[35, p. 440] were also a result of rocket science, this time
from the Bell Laboratories’ work on the Minuteman ICBMs in the 1960’s. Fault
trees answer how a failure is triggered. A tree is constructed for each failure,
e.g. Web page not displayed, which is the root node. Using logic gates like
AND and OR, the basic events that lead up to the failure may be graphed. A
web page may fail to appear because of the basic events ”Network unavail-
able” and the web page has either never been visited, or has been expunged
from a local cache.
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Hazard and operability analysis (HAZOP) were originally developed for
the chemical processing industry. It has since been adapted for a number for
other applications, and research is being done on using it in software engineering[18].
HAZOP is a group activity, where guide words are used to encourage thinking
around how the system handles abnormal situations. If the guide word less
is used while examining a network connection, one may come to realize that
the system should be tested with degraded network speed or high packet loss.
Both general as well as software engineering or project guide words may be
used.

A safety case is a set of arguments to support the claim that a component
hold a certain property. This provides a structure on which to organize safety
claims.[18, 43].

A variation on safety cases is the dependency case[43]. A dependency case
provides an argument that a component is guarded against certain exceptions
(or hazards). Maxion and Olszewski [43] suggests using a HAZOP process in
combination with the CHILDREN mnemonic to find abnormal situations.

4.2 Testing and analysis

Analysing exception flow in software requires good knowledge of how the ex-
ception flow affects the system. Sinha and Harrold [67] describes in depth how
control-flow analysis and control-dependence analysis is affected by excep-
tion handling mechanisms. To illustrate, consider that a try..catch..finally
may be entered in four ways and the try, catch and finally blocks have five, four
and two possible branches respectively. An algorithm for calculating control
dependencies in software with exceptions is also presented. Allen and Hor-
witz [4] contains a similar model.

The two papers acknowledge that their static analysis techniques still suffer
from inaccuracies — false positives as well as false negatives. False positives
and false negatives are typical problems for static analysis algorithms.

Robillard and Murphy [61] presents a model that ”encapsulates the mini-
mal concepts necessary” for a developer to reason about exception handling
in a programming language. The model is useful for researchers, and appears
to have been used during development of the analysis tool JeX. JeX uses static
analysis techniques to generate a visualization of exception flow.

Nguyen and Sveen [52] examined JeX as well as analyzer plugins for Team-
studio and IBM Websphere Studio. The tools are claimed to be ”insufficient”.
JeX is still experimental and is described by Nguyen and Sveen [52] (in 2003)
as outdated. The IDE plugin for Teamstudio contains little exception handling
support, but is customizable. Of these three, the WebSphere studio plugin ap-
pears to be the most promising tool — it detects a number of antipatterns and
exception handling errors using control-flow and data-flow analysis.

Fu and Ryder [26] tracks exception objects rather than exception types with
their DataReach analysis algorithm. This reduced false positives considerably,
though execution time increased around tenfold.

Some newer tools are the Fault Simulator from Compuware1 and Microsoft’s
FxCop[31, 36]. Two experimental plugins[26, 41] for the Eclipse IDE has also

1http://www.compuware.com/products/devpartner/fault-simulator.htm
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been made. The former is a lint-clone that performs static analysis of the soft-
ware and produces a list of warnings. The latter adds visualization and various
IDE enhancements to Eclipse. Microsoft has hinted they are going to add ex-
ception analysis support for Visual Studio .NET[36].

The tools above use control-flow and data-flow analysis or simpler tech-
niques to identify problems in code. The theoretical grounding is sound, but
false negatives and false positives are still a problem for these algorithms.

4.3 Dynamic analysis tools

Dynamic analysis performs tests or measurements on running software. Prime
examples are profilers, debuggers and test suites. Some approaches are:

• Monitoring during normal execution (e.g. debuggers)

• Black-box fault-injection

• White-box fault-injection

Debuggers are excellent for collecting information and modifying a a run-
ning system. Another approach is to instrument code with loggers, like the
well-known println(). This can be automated to make a program log whenever
an exception is thrown or propagated. By hooking into the compiler, instru-
mentation is added when the program is compiled, completely automating
this task. Ohe and Chang [53] demonstrates the value of such logging in com-
bination with a gui tool for monitoring.

Ballista performs black box robustness testing of API-level functions. For
each data type in the function declarations, a set of values is defined. A func-
tion with a single integer parameter would be called a number of times, each
time with a different input value, typically 0, -1, lowest int, highest int, etc.
A robustness failure occurs when a parameter or combination of parameters
cause the function to crash.

Pan [54] examined the robustness of POSIX2 implementations in 15 oper-
ating systems. On average, 82% of the robustness failures were caused by the
input from a single parameter. Mukherjee and Siewiorek [50] suggests robust-
ness tests should be organized into hierarchies for better reusability and con-
sistency.

Fault Injection by injecting exceptions is a different approach. With this tech-
nique, program source code or machine code is altered to throw exceptions at
various points. The testing shows how the exceptions are handled, or that they
are not handled. Fault injection require the software to be recompiled between
each test, and preferably that the software may be automated.

Software Fault Injection is often the only way to accomplish a high test cov-
erage in systems with exception handling. Many exceptions are very hard to
trigger in a testing environment, like connection errors or resource depletion.

Compared to dynamic analysis, static analysis require fewer preparations
and setup, and is much less resource intensive. Dynamic analysis may be more
difficult to use and is slower, but solves different problems than static analysis.
In Figure 4.3, static analysis and fault injection techniques are compared.

2POSIX is an API standard for operating systems. The purpose is to encourage application
portability by providing a set of standard functions.
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Fault Injection Both Static Analysis
Simulated hw faults File sys race conditions Invariant checking
Prod/on-line use Memory Management Formal verification
Automated ”black-box” testing Ret.value handling Model checking
Recovery meth. trig/verification Code style/method. analysis

Table 4.2: Capabilities of fault injection and static analysis, from [13].

4.4 Programming language features

Several researchers have suggested improved exception handling constructs.
The general opinion is that the current mechanisms leave much room for im-
provement.

4.4.1 Automating management of resources

As established earlier, proper cleanup is a problem in the case of exception
occurrences. To help this problem, Weimer [73] suggests compensation stacks.
These are based on ideas from the database literature, compensating transactions
and linear sagas.

Compensating transactions reverse previously committed transactions. Sagas
ensure that a series of actions will either be completed, a1a2a3a4a5, or rolled
back with appropriate compensations, a1a2a3c3c2c1. CompensationStack objects
store compensations for a series of actions.

When an ”action” has completed, its associated cleanup is executed. The
entire stack (all compensations) are executed when the stack goes out of scope3,
when an exception is thrown but not handled, or at the programmer’s dis-
cretion. Interfaces are annotated with compensation requirements, e.g. when
opening a file, the compensating fp.close(); is added to the stack of com-
pensations, ready to be executed when the current scope ends — or when the
programmer desires.

Microsoft’s .NET provides the IDisposable interface combined with the using
keyword[21, p. 247]. An object that implements IDisposable may be initialized
upon entry to the using-block. When exiting the using-block, its Dispose()
member will be called, and the object is marked for garbage collection. This
approach is comparable to compensation stacks, although simpler.

Resource dependencies may be organized in a tree structure. By releasing
a single parent node, all its children would be released first. Park and Rice
[55] claims their Framework for Unified Resource Management is more flexibla
than compensation stacks, partly because of the tree structure. Their solution
is implemented without the need for language support.

Unfortunately, I believe this makes their solution less intuitive to use, and
require more complicated code than both compensation stacks and the C# so-
lution.

The D programming language allows code to be triggered when exiting
a scope[1]. The scope statement is used to define the code, which may be
triggered on normal exists (success), exceptional exits (failure) or any exit
(exit). The last defined scope-statement is executed first.

3Remember the stacks themselves are implemented as ordinary objects
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Aspect-Oriented Programming may be used in a similar fashion.

4.4.2 Contracts

Programming with contracts allows the programmer to explicitly state invari-
ants, that may in turn be validated at run-time and compile-time. This helps to
guarantee that objects are left in a valid state even when exceptions are raised.

Contracts are added to object- and method interfaces, and may specify pre-
conditions and postconditions for both input parameters and internal states.
Spec#[38] is a variant of C# with support for contracts, including checked ex-
ceptions. Checked exceptions implements the ICheckedException interface. A
method may be declared like this:

Example 4.4.1. class Connection {
/*. . .*/

public string ReadMessage(int bytes)
requires bytes > 0 ;
throws SocketClosedException

ensures unchanged (this ^ Connection) ;
/*. . .*/

}

The value of the parameter bytes must be larger than zero. If a Socket-
ClosedException is thrown, ensures unchanged will guarantee that all fields
in the current object that are members of the class Connection are unchanged.
This is just a few examples of how contracts may be used.

One objection to contracts should be mentioned. Because the contracts are
explicitly stated, modifying the source code may require the contracts to be
updated, possibly resulting in a ripple effect that spans many methods in a
call chain. On the other hand, contracts may provide valuable information for
maintenance programmers.

4.4.3 Checked exceptions for module interfaces

Methods that throw checked exceptions must declare these in their interfaces.
Changes to a method that throws a checked exception, may require updating
the interfaces of all its callers.

It has been suggested that checked exceptions might be omitted for module-
internal function calls. Here, module is used loosely. External function calls on
the other hand, may originate from code that is written by programmers with
less information about the called module. The programmers that know the
module, may have easy access to its methods and may have better knowledge
of its implementation. Methods with different user requirements allows differ-
ent amounts of interface information.

Malayeri and Aldrich [41] suggests that only module interfaces should re-
quire checked exceptions to be declared. This simplifies the use of checked
exceptions inside the module, while retaining the exception declarations for
external users. An analysis tool is used to verify that checked exceptions are
declared at module interfaces.
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4.4.4 Anchored Exception Declarations

Anchored exception declarations is another attempt at reducing the extra work as-
sociated with keeping checked exceptions updated. The idea is simple, instead
of declaring each method to throw a specified exception, the programmer sim-
ply states ”this method A throws the same checked exceptions as B”.

Example 4.4.2. void f() throws like g(), like h();
void f(A a) throws like a.g() propagating (E1, E2);
void f() throws like b().g() blocking (E1, E2);

In the above example, two declarations are shown from an implementation
suggested by van Dooren and Steegmans [70]. The first function throws the
same exceptions as g() and h(). The second function only propagates the ex-
ceptions E1 and E2 from a.g(). The third function throws the same exceptions
as b().g(), except for E1 and E2.

4.4.5 Bound Exception Handlers

Exceptions are caught by types, not by their source. In some situations it might
be useful to be able to catch exceptions by matching both exception type and
source type[15]. This may help to make exception handling code easier to read.

Example 4.4.3. try {
. . . logFile.write(); . . . dataFile.write(); . . . tmpFile.write(); . . .

} catch( logFile.FileError) {. . .} // Bound
catch( dataFile.FileError) {. . .} // Bound
catch( FileError) {. . .} // Unbound

Without bound exceptions, the example above would have required a sin-
gle try..catch block around each write()-call. Buhr and Krischer [15] shows
that if bound exceptions are desired, they must be implemented as part of the
language.

The idea of choosing handlers based on exception context has previously
been used in languages like Lisp, Smalltalk and Beta. These implementations
are more generic than suggested by Buhr and Krischer [15], where the handler
selection algorithm may be replaced with arbitrary code.

Earlier approaches has not updated the exception context during propa-
gation. That is, with fixed bindings, the object bound to the exception is not
updated. As I have shown earlier, adjusting the exception type to the appro-
priate abstraction level during propagation is important. The same issue exists
with the bound object.

Transient bindings, introduced by Buhr and Krischer [15], allows automati-
cally updating the bound object during propagation. This may be done manu-
ally by the programmer, by catching and reraising exceptions, or be integrated
into the language. If integrated, the algorithm is simple. When the bound ob-
ject is not visible in the next stack frame, the it is replaced with the current
object. This ensures proper information hiding. Fixed bindings on the other
hand, may propagate a responsible object outside of its scope, allowing a han-
dler to circumvent information hiding.
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Buhr and Krischer [15] believes bound exceptions are better aligned with
object-oriented design, since handling may be based on the originating, or re-
sponsible, object. The exact implications on code quality is not examined by
the authors.

4.4.6 Rescue Handlers

It has been established that one of the problems with exception handling is that
callers may be unaware of all exceptions that a method throws. If a method is
changed to throw a new exception, the caller must be updated to handle the
new exception, or risk invalid handling of this exception.

Rescue Handlers[47] are provided for situations where an exception is thrown,
but no handler is found. If a caller does not know how to handle an exception,
the exception handling mechanism will search for a rescue handler in the orig-
inating object, allowing some form of error handling. An exception may also
have a global rescue handler.

A rescue handler may attempt recovery actions, including a rethrow with a
different exception type. Support for the rescue handlers must be added to the
programming language.

4.4.7 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) allows code to be triggered on events, like
every time a method is called, upon leaving a method, throwing an exception,
etc.

One purpose of AOP is removing duplicate code. Logging exception throws
becomes very simple with AOP — simply provide the command for logging,
and state that this code should be run whenever an exception is thrown. Even
better, it is possible to attach different snippets of code to different exception
types, and their subtypes.

AOP has been demonstrated for a number of programming languages, in-
cluding Java. First, the programmer writes AOP-code. One way of using AOP
is to write AOP-annotated Java code, and then use a tool to generate standard
Java code before compiling.

Example 4.4.4[39] shows how an aspect can be used to add code before and
after methods. Here, the set-methods is wrapped with calls to println().

Example 4.4.4. // Connect the setters aspect to the following methods
crosscut setters(): Point &

(void set(int x, int y) |
void setX(int x) |
void setY(int y))

static advice setters() {
before {

System.out.println("Entering a setter");
} 10
after {

System.out.println("Exiting a setter");
}

}
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Example 4.4.5[25] demonstrates an aspect that is triggered when an SQLEx-
ception is thrown by the method Connection.setAutoCommit().

Example 4.4.5. public aspect ConnectionPoolHandler {
pointcut setManualCommitHandler() :

call(* Connection.setAutoCommit(. .));
declare soft : SQLException : setManualCommitHandler();
after(Connection con) throwing (SQLException e) :

setManualCommitHandler() && target(con) {
con.close();

}
}

Researchers differ in their views on using AOP for exception handling. Lip-
pert and Lopes [39] claims that AOP provides an excellent way to simplify
exception handling. They found that there were mainly three reactions to an
exception occurrence: ”log and ignore”, ”set the return to a default value” and
”throw an exception of a different kind”. In an experiment where AOP was
introduced to an existing system, 414 exception handlers (2070 LOC) were re-
placed with 31 catch aspects (200 LOC).

Filho et al. [25] on the other hand, makes a convincing argument against
AOP. In their experiments, they found that AOP did not reduce the amount
of exception handling code. Additionally, because the aspects, that contain
the code, are separated from the normal callchain, it is more difficult to find
where an exception is handled. To make use of AOP, the authors believes AOP
should be included early in the development process. Adding AOP on top of
an existing system appears to have little value.

4.5 Design

It seems that exception flow should be a part of software design methods. Var-
ious ideas are floating around in academia, from architecture description lan-
guages with support for exception handling, to architectural patterns and de-
sign guidelines.

Architecture design languages could be extended with exception handling
information. The Architectural Exceptions Reasoning and Analysis (AEREAL)
framework[24] attempts to introduce exception handling into an architecture.
This separates exception handling on the architectural level from the rest of
the system and enables some automated verification of the exception handling.
Unfortunately, this approach requires extra work, including a formal, textual
description of the architecture. Issarny and Banâtre [34] suggests a similar ap-
proach.

Garcia and Rubira [28] use computational reflectivity4 to separate exception
handling from normal behaviour and provide common information and han-
dling. A similar approach is suggested for workflow-driven web applications[11].

Introducing exceptions in the architecture promotes early exception design.
The models above would help in this way, but they do not appear ready for
widespread use yet. They also require the introduction of special languages

4A separate architectural layer monitors meta-information and may alter the system structure
and behaviour at runtime.
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and tools. Although interesting, the models only discuss tools for introducing
exceptions into architecture, not exception handling design.

The following sections will look into approaches for good exception han-
dling design. I will start with an article from 1976 that still has not been out-
dated.

4.5.1 Undesired Events

In 1976, Parnas and Würges [56] published their paper on designing software
to handle undesired events. This was the same year as Goodenough published
his seminal paper on exception handling constructs in programming languages.
However, while the recovery block and termination model were embraced by
language designers, the design paper of Parnas and Würges appears bypassed
by practitioners. This is unfortunate, because while Goodenough mainly de-
scribes the language constructs, Parnas and Würges describes how to use the
constructs.

Parnas and Würges [56] discusses how a system should be structured to
”[facilitate] the introduction of recovery and diagnostic algorithms.” The ter-
minology is different from what is used today. They coin the term undesired
event (UE) to cover about the same as exception or abnormal situation. This is to
avoid the ambiguities of the term error5.

Normal code should be separated from error handling code. By placing
error handling code separately, it is easier to facilitate information hiding and
changes later during development. Traps are used to transfer control to the
error handling routine when an error is detected. In a modern language, ex-
ception handling would be used.

Parnas and Würges [56] advocates complete module interfaces. As an ”aid
to [undesired event] anticipation”, the authors state a list of considerations.

• Limitations on the Values of Parameters

• Capacity Limitations

• Requests for Undefined Information

• Restrictions on the Order of Operations

• Detection of Actions Which are Likely To Be Unintentioned

• Sufficiency: ”The conditions above are sufficient to guarantee that, if
none of them applies, [the function completes] without violating any
module limitations. Further, [if no trap occurs] (...) the value of the func-
tion (if any) will not be ’undefined’.”6

• Priority of Traps: If several errors occurs at once, which error is signalled?

• Size of the ”Trap Vector”: What context information is made available.

• State After the Trap

5Recall Section 2.1.2
6Note that the routine may still fail, but the reason would be some internal error rather than

invalid input.
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• Errors of Mechanism: When the module fails. It may be needed to dis-
close information hidden by the module’s abstraction.

The situation with errors of mechanism requires a further explanation. How
much information should the caller receive? What information is available
at all? If the undesired event is completely unexpected, perhaps caused by a
programming error, the actual cause and effects of the error would be hard
for a program to find. While it is easy to simply report ”failure” and crash the
system, it is often possible to report information usually hidden by abstraction.
What records were changed? What sectors on the disc have gone bad?

One suggestion from Parnas and Würges is to report a failure classification
along with the UE, so the following information is available to the user:

• Did the value of any function change?

• Is it worthwhile to retry?

• Are other functions than the current one affected by the error?

• Is the module in ”a state consistent with the specifications”, or is it in an
unknown or invalid state?

In addition, all undesired events are divided into crashes and incidents. Inci-
dents are expected and were corrected successfully, all other errors are crashes.
Now, the important question is — what constitutes a recovery?

The idea here is to assign degrees of UEs, where ”[e]ach degree corresponds
to a set of predicates which must be satsfied if recovery is to be considered
successful”.

Example 4.5.1 (Degrees of UE recovery). Consider a browser encountering a
problem while downloading a web page. The following degrees of recovery
might be performed:

1. Display the webpage (possibly without some missing documents). If the
HTML document was not successfully downloaded,

2. perform some guesswork to be able to display the HTML-code and other
objects that were downloaded. If the HTML document was not down-
loaded at all,

3. display an error message or an empty document. In case of an internal
error,

4. report the problem to the user and terminate the program.

The recovery attempts in the above example have different costs and re-
sults. Different situations might require a different order of the elements, or
skip some or all of the recovery attempts. Two solutions are suggested. Al-
ternative one is distributing multiple versions of the module, with different
error handling strategies. Alternative two allows external access to recovery
functions, so that the individual error handler may choose its own strategies.
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4.5.2 Software Compartments

Software compartments were suggested for ADA in 1990[40] and revived for
Java in 2000[60]. Litke, quoted by Robillard, states that compartments ”(...)
makes reasoning about program behaviour easier by reducing the complexity
of relationships and makes modification of error-tolerating code easier.” [40,
p. 405]

The main point with software compartments is that a compartment, con-
taining one or more modules, objects, packages etc, has a clearly defined ex-
ception interface. Components usually coincide with the components of the
software architecture.

Compartments throw abstract exceptions. These exceptions are used by the
compartment clients, and require knowledge of the compartment. Thus, ab-
stract exceptions should not be propagated to a layer that does not have knowl-
edge of the raising compartment.

Robillard and Murphy state the following guidelines for establishing ex-
ception interfaces:

1. Only use exceptions: Do not use return codes and global error codes for
error handling.

2. Document exhaustive interfaces: Every exception that may be propa-
gated, must be specified, both checked and unchecked.

3. Specify precise error semantics: Specify the precise semantics of every
exception type. This is difficult and may not be neccessary in the case of
hierarchial types, see the next item.

(a) Design exception interfaces for change: Choose exception semantics
that allows extension by subtypes. ”This approach gives the client
the option of either handling only the more general supertype ex-
ception or handling the more specific subtype exception.”[60, p. 6]

4. Determine re-mappings for exceptions: The semantics of an exception
must be updated during propagation to fit the surrounding system.

5. Avoid using system-defined exceptions as abstract exceptions.

6. Do not propagate abstract exceptions: Map to new a new exception when
crossing compartment boundaries.

7. Do not raise abstract exceptions except in a compartment’s entry points.
Re-map intra-compartment exceptions at compartment boundaries.

Catch-all clauses7 are used to ensure that only abstract exceptions is propa-
gated across compartment boundaries. Exceptions caught here would indicate
a programming error, and would be mapped to an exception like Program-
mingException8

How are abstract exceptions chosen to make room for later modifications?
As established during my discussion of challenges with exception type sub-
sumption9, the new subtypes would risk being handled incorrectly.

7One of few acceptable uses, cf. Section 3.4.1
8See Section 2.3.4.
9See Section 3.2.5
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Fortunately, the approach with software compartments reduce the number
of exceptions[60] and promotes exceptions with ”wide” semantics.

Robillard and Murphy [60] does not answer how the system may correct it-
self when an exception occurs, only that a composition that raises an exception
should be in a known state. Although the terminology is different, the paper
that is presented next tries to solve this by wrapping every compartment with
a safety facade, and placing exception handling in this wrapper.

Unfortunately, it is not clear if the author of the following paper knew of
the idea of software compartments.

4.5.3 Safety Facades

Siedersleben [66] suggests grouping one or more components or modules into
risk communities. Each community is wrapped by a safety facade (SF) that
performs error handling. The safety facade is replacable. A composition man-
ager may be tasked with selecting the appropriate SF.The risk communities are
comparable to the compartments of the previous section.

Gathering the exception handling code in the safety facade simplifies re-
placing a component’s exception handling strategies to fit various applications,
and helps to maintain information hiding.

When deciding upon risk communities, a set of abstract exceptions is defined.
These are the only exceptions that may be raised by a safety facade.

To its users, a safety facade implements a set of functions that may either
return normally or fail safely. From Siedersleben [66]:

1. Normal result: The method was successful, which includes results that are
errors from the view of the application, such as the withdrawal rejected
for lack of funds. It is not disclosed to the caller whether an exception
handling was required (...).

2. Final and safe failure: The method has finally failed; all repair attempts
were unsuccessful and all measures for limiting the damage were per-
formed. Further repair attempts are useless; the sole remaining option
for the caller is to abort.

The downside with safety facades is that exceptions cannot easily be ig-
nored. Exceptions are propagated to the safety facade, which makes returning
control to the component difficult. For situations where ignoring an exception
is acceptable, a try..catch block may need to be used in the component.

In principle, constructing a safety facade is simple. From [66],

1. Implement a new class SF that implements a suitable subset of the inter-
faces exported by the encapsulated component C.

2. When implementing SF call the original methods of C from a try-catch
block.

The safety facade does not and should not have access to the protected com-
ponents private data. Each component may instead provide an interface for di-
agnostics and repair (D&R interface). The interface may provide services like
status information, resetting or shutting down the component. The actual ser-
vices is tailored for each component, and some components may not need a
D&R interface at all.
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Figure 4.1: Safety Facade and Composition Manager[66].

In case of complex exceptions, D&R experts may handle groups of excep-
tions, e.g. an SQL-expert as well as a Network expert. The D&R expert objects
is provided access to the D&R interface of the component they are designed for.
Siedersleben [66] does not go into detail how these experts could be structured,
whether they are provided by the component or simply is a way of structuring
the safety facade.

Safety facades should be used in combination with the following rules: [66]

1. Distinguish Errors and Exceptions. To a file handling routine, EOF is
an error, but is still a normal result. Exceptions are abnormal, and their
handling is deferred to the next security facade.

2. Handle Errors Locally. Errors Are Never Propagated.

3. Return Errors Via Return Values (e.g. null). If This Is Not Possible, Return
Errors as Checked Exceptions.

4. Signal Exceptions as Early as Possible.

5. Security Facades Catch Exceptions and Handle Them — Nobody Else.

6. Compose Components to Risk Communities.
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Chapter 5

Safety Facades in Depth

At first glance, safety facades (SF) appear to solve a number of the exception
handling problems I described earlier:

• Fewer global implications when throwing exceptions.

• The number of exceptions are reduced.

• No uncaught exceptions.

• Lower coupling between normal and exceptional code.

• Better information hiding.

These are so far only assumptions. Unfortunately, the paper by Siedersleben
[66] is brief, presenting the highlights while leaving the reader to fill in the
details. This chapter will describe these details, through

• examining the author’s claims,

• comparing safety facades with existing methods,

• discussing the theoretical effect on identified exception handling chal-
lenges, and

• example code and design.

Although there is little information on safety facades, similar ideas have
been floating around a long time, including software compartments[40, 60],
mentioned earlier. Also, a version of safety facades has been implemented in
the third-party J2EE library EL4J[2].

5.1 Introductory findings

Siedersleben [66] states three advantages and one disadvantage of using safety
facades. These are a good place to start examining the effect of introducing SFs.
Following a short elaboration on these claims, I will look into other properties
of safety facades.

48



5.1.1 Siedersleben’s claims

• + Information hiding is preserved.

• + Promotes reuse.

• + Simplifies the development process.

• - Raised exceptions terminate the current method.

Information hiding is preserved. The SF guarantees that exceptions are con-
tained within the risk community, effectively hiding implementation details.
Handling of the exceptions is also contained within the SF. Actions on a pro-
tected component is performed using the Diagnosis and Repair interface, fur-
ther improving information hiding. Even if some implementation details is
exposed by the component, its users is not affected.

Reuse of protected components is easier, because a components exception
handling is easily replacable. Rather than providing specialized components,
it may be enough to implement a specialized safety facade.

The development process is simplified. Adding complete exception handling
may be postponed to a later stage during development. Usually, this is consid-
ered to be dangerous and is prone to leave null handlers (Section 3.4.1). With
safety facades, the exception handling code is separated from normal code,
reducing the number of catch clauses to be updated and keeping them close
together. Siedersleben [66] states ”It is possible to start with very simple excep-
tion handling, adding more handling when neccessary.”

Resuming execution after an exception has been encountered is not trivial.
The exception is raised to the safety facade, aborting the running method. At
this point, the safety facade cannot return control to the point where the excep-
tion was raised. Using a D&R interface, the partially executed operation may
be rolled back if applicable and retry.

To continue from where the exception was raised, Siedersleben [66] sug-
gests wrapping a catch clause around the critical call. This catch clause may
call an exception handling method in the safety facade. That requires a mecha-
nism for a component C to retrieve its safety facade. The composition manager
or the safety facade may provide C with a reference to the safety facade.

5.1.2 Design effects

I expect a number of changes in software structure:

• Longer distance from where an exception is raised to where it is handled.

• Handlers have reduced access to the data structure where the exception
originated.

• Exception handling code becomes a separate component.

• Fewer exceptions propagated from each risk community.

• The process of making exceptional code is separated from normal code.

• ”Cleanup code” is separated from ”what to do next”-code.
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5.1.3 Exceptions vs. return values

Robillard and Murphy [60] is determined that only exceptions should be used
for error handling, leaving return codes and global error values to the history.
The safety facade guidelines however allow return codes. Both sides may be
considered. On one side, return codes

• are excellent for simple error reporting,

• requires less code,

• uses less resources than exceptions, and

• are familiar and well known to programmers.

On the other side, return values are prone to being ignored. In case of errors
that must not be ignored, or for relaying complex information, checked ex-
ceptions are more appropriate. My opinion is that return codes are useful for
returning error information, simply because they are easier to use, and they
would probably be used even if disallowed by project guidelines.

In languages without checked exceptions, errors should probably be re-
ported using return values, leaving exceptions for ”truly exceptional situations
or errors that should not be ignored.”[44, p. 199]

5.1.4 Refactoring

What happens when safety facades are introduced by refactoring? Risk com-
munities have much in common with software compartments (See Section 4.5.2).
Refactoring programs with software compartments showed three resource in-
tensive tasks[60],

1. Define exception interfaces, the ”abstract exceptions” that are allowed to
propagate between compartments. This is the most resource intensive
task.

2. ”Setting up exception guards at compartment boundaries to prevent unan-
ticipated exceptions from escaping compartments”, and

3. ”tracking down meaningful exception sources to map them into the ex-
ception interfaces”

The first activity is a part of creating safety facades, even though methods
may only complete successfully or fail safely. When a method fails, some in-
formation should be provided to its caller. How to do this, is not described by
the original paper by Siedersleben.

Setting up exception guards is analogous when designing safety facades.
Tracking down exception sources is an important part of designing safety

facades. Safety facades are responsible for any and all exceptions raised by
its risk community. The act of mapping exceptions is downplayed. A safety
facade favours handling exceptions rather than propagating them.

Robillard and Murphy [60] found refactoring to be fruitful on both simple
and more complex programs. The biggest difference between safety facades
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and compartments is the distribution and responsibilities of exception han-
dling code. Software compartments ensure that architectural components ex-
change a small set of well defined exceptions. Safety facades additionally hides
much of the exception handling from other components. This introduces addi-
tional costs with refactoring and moving existing exception handling code, as
well as adding some transaction control and D&R interfaces.

The amount of refactoring depends on the size of the system and the re-
sources available. In one extreme, the existing code could be handled as COTS
or OSS, creating a safety facade as a wrapper with minimal change to the com-
ponents internal exception handling.

Introducing safety facades

Is it possible to use safety facades as drop-in replacements of their protected
components? Consider the situation where a safety facade is added to an exist-
ing system, wrapping a single component MyComponent. While safety facades
export the same normal interfaces as its component, the exception interface is
different. Initially, this does not appear to be a problem. In Example 5.1.1, both
MyComponent and MyComponentSF implement the interface correctly. Note
that type compatibility requires that the safety facade is a subclass of its pro-
tected component, or that they implement the same interface.

Example 5.1.1. public interface IMyComponent {
public void foo() throws IOException() { . . . }
public void bar() throws FileNotFoundException() { . . . }

}

public class MyComponent implements IMyComponent {
public void foo() throws IOException() { . . . }
public void bar() throws FileNotFoundException() { . . . }

} 10

public class MyComponentSF implements IMyComponent {
public void foo() { . . . }
public void bar() { . . . }

}

Having considered this, safety facades do have different semantics and re-
sponsibilities than the protected component. Example 5.1.2 shows the inter-
faces of a simple component and its safety facade. How may MyComponent be
replaced by its safety facade in ComponentUser.doWork()? At first glance, sim-
ply changing doWork() to make use of MyComponentSF is sufficient. The catch
clause would no longer be triggered, while the normal code is unaffected.

Example 5.1.2.
public class MyComponent {

public void foo() throws IOException() { . . . }
public void bar() throws FileNotFoundException() { . . . }

}

public class MyComponentSF {
public void foo() { . . . }
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public void bar() { . . . }
}

10
public class ComponentUser {

public void doWork() {
MyComponent mc = new MyComponent();

try {
mc.foo();

} catch (IOException e) {
// Do something smart.

}
} 20

}

There are however many situations where the safety facade cannot be a
drop-in replacement of an existing component:

• The risk community consists of more than one component.

• Errors need to be reported. Unlike exceptions, errors is passed as return
values or Checked Exceptions.

• Changes in the underlying component may result in different behaviour.

5.1.5 COTS and OSS

Commercial Off The Shelf software is usually distributed without source code.
If using Open Source Software, the source code is available, but major changes
to the software may still be out of the question. Local changes to OSS may be
time consuming, and makes upgrading to newer releases harder.

In this situation, safety facades would have little control over a components
internal exception handling. SFs are still very useful, because they provide
protection against unexpected exceptions from the COTS software, as well as
hides specific exception handling information from the surrounding system.

5.2 Selected challenges

Chapter 3 started with readability of exception handling code. Safety facades
does not change the fundamental exception handling constructs, but does help
exceptional code stand out by placing it in a separate component. During in-
spection, this component would have to be inspected as a separate component,
rather than as a part of normal code. Safety facades appear to have a positive
effect on many of the previously discussed challenges.

Code complexity may be reduced. A component’s exception handling code
is consolidated in the safety facade, rather than being placed in bits and pieces
all ofter the component. On the other hand, it increases the distance from the
exception occurrance to its handler.

Simply introducing better structured design of exception handling would
be expected to have a positive impact on many of the challenges that have been
discussed earlier.
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5.2.1 Object Oriented Design

Previously I established that exception handling conflicts with a number of
concepts in object-oriented design (See Section 3.2). Some of these are tackled
directly by safety facades:

Partial States

A safety facade service will either succeed or fail, leaving no room for par-
tial states. That having said, protected components may be in a partial state
between the raising of an exception and it being caught and handled by the
facade.

To achieve complete exception specifications, four pieces of information is needed:

Exception masking: The safety facade will either complete an operation, or
report a failure. Exceptions of consequence to the underlying system will
not be masked.

Exception consistency: The process of designing a system with safety facades
makes explicit attention to abstract exceptions. This ensures consistent
use of exception types.

Exception context: Not directly affected.

Object state: Safety facades aim to maintain a known state. If its protected
components enter an unrecoverable state, it may shut down and refuse
to provide further services.

Safety facades does not provide complete exception specifications. The prob-
lem is caused by the relationship between exception handling and the object-
oriented paradigm. Design choices cannot solve this problem alone. What
safety facades does, is to reduce the problem, rather than provide a complete
and foolproof solution.

Abstraction

One issue with abstractions is that internal structures of a composition is un-
available for an external exception handler. An exception may need to be prop-
agated between objects in a composition, to update its internal structure. Nor-
mally, information about the implementation should be hidden. In case of
safety facades, it is possible to leak more information than would usually be
recommended out of concern for increased cohesion.

Encapsulation

Encapsulation concerns how information and pointers to internal data may be
abused to break information hiding. By using safety facades, exceptions that
may expose information is caught and abstracted. In many cases, the safety
facade attempts to handle errors rather than propagate them.

As earlier, this does not remove the problem, but appears to reduce it.
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Modularity

As stated before, modularity is accomplished when a change in one software
component does not require changes in another component. Safety facades
affects modularity by grouping components into risk communities, providing
a single access point to its protected components.

Inheritance

Inheritance problems does not appear to be directly affected by safety facades.

5.2.2 Implementation issues

Of the implementation issues, most were caused by lack of education, human
errors and shortcuts. I would propose that many of these problems would
disappear with education and some structure in designing of the exception
handling.

Some of the problems are affected by safety facades. First, one would expect
the number of null handlers to be reduced. Empty catch clauses and catch-
all clauses are usually used to postpone or ignore exceptions. Where safety
facades are used, it is less of a problem to introduce null handlers — just place
them in a safety facade. These are easy to find and correct later.

Inconsistent exception semantics, disclosure of information or uncaught ex-
ceptions are effectively contained within a safety facade. These situations may
still cause trouble, but the exception types are enclosed within the risk commu-
nity where they are thrown.

The last problem presented in Section 3.4, was Propagation from within han-
dlers. Exceptions may be raised from within catch..finally blocks. It is criti-
cal for a safety facade to avoid unintended exception propagation.

5.2.3 Development Process Integration

Børretzen et al. [18] introduced safety activities like HAZOP and FMEA into
the RUP development process. Safety facades would benefit from being used
in conjunction with these methods. An important early activity when design-
ing the risk communities, is finding the abstract exceptions. Techniques like
HAZOP and FMEA are excellent for finding exceptions.

Safety facades may be designed and implemented iteratively. At an early
stage, risk communities are identified along with the software architecture. At
later stages, exception handling functionality can be implemented in iterations.

5.3 Example use

To examine the properties of safety facades further, some experimental imple-
mentations will be presented. A version of safety facades have been a part of
EL4J, a third-party J2EE library, since late 2005. This implementation will also
be examined.
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5.3.1 The StatusMonitor

A very simple safety facade is presented in the Status Monitor program. For
source code, see Appendix A.1. In this example, a rudimentary safety facade,
the WebMonitorSF (line 46), is presented. No D&R interface is used, and the
exception handling is limited to an unintelligent ”make five attempts”.

Notice that the I/O class does not contain any exception handling. If an I/O
error occurs, an IOException is thrown. This would likely signal a problem with
connecting to the web server. If an exception is caught by the safety facade, the
test will be tried again. This may reduce false positives caused by local network
problems.

If the web page is downloaded successfully, the http return code is 200.
Other possibilities includes the 500 Server side error, 404 Resource not found,
and 403 Permission denied. In our case, these signal a server side error.

5.3.2 EL4J

EL4J is a third party open source J2EE1 library made by ELCA2.
EL4J provides a number of exception handlers[22, p. 71]:

• RethrowExceptionHandler: Forwars the exception to the caller.

• SimpleLogExceptionHandler: Logs the exception and its source.

• SequenceExceptionHandler: Invokes one exception handler after another
until one succeeds.

• RetryExceptionHandler: Retries the same invocation several times.

• RoundRobinSwappableTargetExceptionHandler: Iterates over a list of
different exception handlers. Run time configurable.

Using one of the existing exception handlers, it is trivial to define a safety fa-
cade without writing actual code.

In addition, EL4J has a context exception handler, that decides exception han-
dling based on the context.

As a freely available J2EE-extension, the EL4J may be used in any J2EE-
project.

1http://java.sun.com/javaee/
2http://www.elca.ch/
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Chapter 6

Conclusion

In this thesis, I presented the background, and the difficulties associated with
exception handling. Then I looked at possible problem solutions, before exam-
ining safety facades.

The first part of the thesis presented a large body of research on challenges
with exceptions. The challenges spanned from simple implementation pitfalls,
to more serious conflicts between exception handling and the object-oriented
paradigm.

A body of proposed solutions were also presented. Out of these, safety
facades was chosen for further study.

Safety facades are simple in principle. Services provided through safety
facades will either complete normally, or fail safely. Exception handling is relo-
cated from the components to their safety facades. Different contexts have use
for different exception handling. This is accomplished by replacing the safety
facade.

I have also shown how safety facades have a positive effect on many of the
problems that is introduced by exception handling code. Most notably, safety
facades is a simple concept to understand and is one of few solutions that add
structured thinking to exception handling.

Unlike a number of other solutions, security facades does not require up-
dates to the programming language or special tools. This is an important ad-
vantage..

6.1 Further work

A logical next step is to perform empirical testing on groups and individuals.
There are a number of interesting questions, including

• Is the method easy to understand and use?

• How is the software structure affected?

• Are there measurable effects on code complexity?

• Is safety facade code easier to read?
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The experiments could contain refactoring, making modifications to code with
and without safety facades, and designing a system from scratch.

Safety facades should be a part of the development process. One of the early
activities when using safety facades, is deciding risk communities and the ab-
stract exceptions that should flow between them. This requires that exceptions
are found at an early stage, and that safety facades is included early in the de-
sign phase. Some work has been done to add safety activities to RUP. Similarly,
safety facades may be added to RUP or a similar development process as well.

The EL4J framework appears very interesting. Unfortunately, I did not dis-
cover it until the last week before the deadline for this thesis. Exception han-
dling in EL4J is part of the architecture.
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Appendix A

Code examples
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A.1 StatusMonitor.java

The StatusMonitor is a simple, though a bit contrived application created to
demonstrate how a safety facade might be used.

import java.net.HttpURLConnection;
import java.net.URL;
import java.io.IOException;
import java.util.Date;
import java.text.SimpleDateFormat;

/**
* StatusMonitor is a simple, contrived, application that monitors
* the status of a web site. A safety facade is used to
* manage errors reported by a class responsible for performing 10
* network I/O.
*/

public class StatusMonitor {
public final static int ONE MINUTE = 60000;
public final static String WEB PAGE URL = "http://www.example.com/";

WebMonitorSF msf;

public StatusMonitor(String url) {
msf = new WebMonitorSF(url); 20

}

public void start() {
while(true) {

String state = msf.test() ? "up" : "DOWN";
System.out.println(getDateTime() + " " +

WEB PAGE URL + " is " + state);
try {

Thread.sleep(ONE MINUTE);
} catch (InterruptedException e) { } 30

}
}

public String getDateTime() {
return "[ " + new SimpleDateFormat("yyyy.MM.dd HH:mm:ss")

.format(new Date()) + " ] ";
}

public static void main(String[ ] args) {
StatusMonitor m = new StatusMonitor(WEB PAGE URL); 40
m.start();

}

}

class WebMonitorSF {
WebMonitor m;

public WebMonitorSF(String url) {
m = new WebMonitor(url); 50

}

public boolean test() {
int attempts = 0;
while(attempts < 5) {

try {
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return m.test();
} catch (IOException ioe) {

// The exception is ignored,
// we only care about 60
// working vs not working.

}
attempts++;
try {

Thread.sleep(1000);
} catch (InterruptedException e) { }

}
return false;

}
} 70

class WebMonitor {
String urlstr;

public WebMonitor(String url) {
// Todo: Validate url.
this.urlstr = url;

}

/** 80
* Perform a test by downloading the specified URL.
*
* return true if response code 200, else false.

*/
public boolean test() throws IOException {

URL url = new URL(urlstr);
HttpURLConnection http =

(HttpURLConnection) url.openConnection();
http.setConnectTimeout(2000);

90
http.connect();
http.getContent();

if(http.getResponseCode() == 200) {
return true;

} else {
return false;

}
}

} 100
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