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The Project Description

It is accepted that it is difficult to formalize a theory of how humans repre-
sent knowledge [1]. However, there are theories on symbolic representations
and also on sub-symbolic representations. The Symbol grounding problem
is a well known problem of symbolic representations [2].

Early work on sub-symbolic knowledge representations started with the
work of Rumelhart et al. [3]. Later, RAAMs were proposed by Pollack [4] to
provide a connectionist representation of symbol structures. Elman showed
that hierarchical categorization can emerge from a sequence of words fed
into a neural network, namely SRN (Simple Recurrent Network) [5]. These
categories represent lexical classes.

The work relevant to categorization is extended to work on evolution
of language or origins of language recently [6]. However, different from
the earlier work by Pollack and Elman, the main purpose of this work is
not to propose means of representing symbolic structures by sub-symbolic
(connectionist) means but to conceptualize objects of the real world. In
[7], conceptualization or categorization of reality is equated to ’meaning’.
The representation of meaning is achieved by representing each object in an
agent’s environment by employing a feature set. That is, objects are con-
ceptualized by features and discriminated by discriminating features among
conceptualizations.

This project requires a survey on the literature for conceptualization
models including above stated ones, [8, 9, 10] and others as the first step. In
[11], in Section 3 and Figure 1, a model of ”concept to concept associations”
is presented. However, a conceptualization model that is used to represent
each concept has to be either borrowed from the existing literature or needs
to be designed before the associations between concepts can be implemented.
The later stage is to provide the associations between the concepts. The
association models can be inspired from associative networks or a network
that would represent Hebbian way of strengthening and weakening of weights
between concepts.
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Abstract

In this theses, the role of conceptual representations in higher level
cognition is investigated. In the field of AI much work has been done
on conceptual representations. I review important parts of this work
before presenting a framework for utilizing conceptual representations
in higher level cognitive function. It is proposed that algorithms are
represented non-symbolically in the brain and that they employ non-
symbolic concepts in their computation, the result being that more
complex though arises. Three levels of cognition is proposed, with em-
phasis being on the conceptual level where the proposed non-symbolic
algorithms reside and high level human thinking occurs. A case study
on novelty detection in and between modalities is also presented.
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1 Introduction

The motivation for this thesis was to investigate the role of conceptual rep-
resentations in higher level cognitive behavior within the context of parallel
distributed processing (PDP). Much work has been done on how to achieve
conceptual representations in PDP networks. The literature on how to em-
ploy them in higher level cognitive behavior is more sparse. A literature
study on conceptual representations from the fields of AI, psychology and
neurophysiology was undertaken to gain insights as to the nature of con-
ception. The relevant of which is presented in this thesis. The concept is a
complex issue. It affords categorical inferences allowing us to construe the
world. Using PDP one can glean aspects of the concept, how it arises and its
processing. PDP was thus chosen as the methodology for this project, the
objective being knowledge and an implementation employing concepts in its
processing. Two case studies were performed: One investigating the role of
algorithms in high level thought. The other, investigating how novelty can
be used to validate associations. That is, how can an agent know that some
patterns of activity are meaningful while others are just noise?

This thesis is structured as follows: In part 1 an overview of the relevant
literature is presented. We will see how semantic task performance arises
from hidden layer representations in PDP networks. This will make the
concept more concrete, grounding our discussion in hidden layer representa-
tions. Then we will view the concept as arising from perceptual simulations
within the theory of perceptual symbol systems (Barsalou, 1999). This will
enlighten the means by which a perceptual theory of cognition can support
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the complexities of thought. Next the issue of dimensionality of the rep-
resentation is reviewed, making evident that stimuli must be reduced for
generalization to occur. Afterwards, the issue of cognitive control is dis-
cussed, showing how conception may arise due to dopamine and prefrontal
cortex interaction. Then, categorical perception is introduced and how cat-
egorization may influence perception is rewieved.

This comprises the foundation on which the my work is presented. Based
on this I will in part 2 present a framework in which algorithms are rep-
resented. These algorithms are non-symbolic and they operate on non-
symbolic concepts and if-then rules to achieve higher level thought. An
implementation of a non-symbolic summation algorithm is also presented
showing the feasibility of the approach. Based on the information previ-
ously reviewed I will also speculate as to where and how these algorithms
are learned, but since this is a complex issue it is left out of the simulation.
The next section discuss how novelty can allow an agent to know whether it
has seen a perceived instance before without explicitly referencing memory.
Then some shortcomings of the novelty model is identified and a solution
is proposed. Before conclusions are presented, language’s involvement in
conception is discussed.
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Part I

Overview of relevant litterature
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2 Semantic cognition

In Rogers & McClelland (2006) a parallel distributed processing (PDP) ap-
proach is taken to semantic cognition. Semantic cognition is a complex
phenomenon exhibiting behaviors still to be reconciled by a functional the-
ory of cognition. They successfully show how PDP can account for many
of these behaviors and thus add to the promise of PDP as a tool for inves-
tigating cognitive phenomena and implementing conceptual systems. I will
in this section review some of the simulations they present. Specifically, we
will see how semantic performance in PDP networks arise from similarity
based generalization on patterns of activity in the hidden layers of neural
networks. This will provide us with a powerful tool for understanding the
nature of distributed representations in neural networks. Before we con-
tinue, a formal description of a semantic task is necessary. I will borrow this
from Rogers & McClelland (2006)):

“We define semantic tasks as those that require a person to pro-
duce or verify semantic information about an object, a depiction
of an object, or a set of objects indicated verbally (e.g., by a
word). By semantic information, we refer to information that
has not previously been associated with the particular stimulus
object itself (though it may well have been associated with other
objects), and that is not available more or less directly from the
perceptual input provided by the object or object depiction.”
(p.2)

Thus, verifying that a depicted object is a cat, or that it can purr, are
clearly semantic tasks as long as the information has not previously been
directly associated with the particular picture. However, verifying that two
depicted cats are the same color is not a semantic task as the judgment can
be made directly from the pictures (Rogers & McClelland, 2006)).

2.1 A PDP theory of semantic cognition

In PDP a set of simple processing units is interconnected with a set of
weights. The units represent information by having a level of activity and
convey this information by passing the activity to neighboring nodes scaled
by the weight between them. The knowledge is thus encoded in the weights
while the “state of the world” is encoded in the activity of the processing
units. This is informed by, and is very similar to, neurons in the brain form-
ing synapses with each other. Information in the network can be represented
using either localist or distributed representations. When using localist rep-
resentations, a single instance is represented as “owning” a unit—A unit is
“turned on” when the instance is present—, while in distributed represen-
tations several units are used in representing an instance and each instance
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is uniquely identified by a specific pattern of activation over these units.
Distributed representations are particularly important to similarity based
generalization as gradients of similarity can be learned. The networks learn
by adjusting the weights between individual processing units in small incre-
ments according to an error measure. Sets of units are typically gathered
in layers representing meaningful properties of the world while weights be-
tween these layers represents a learned mapping from one layer to the next.
The maximum and minimum activity a unit can reach is constrained by
an activation function transforming the sum of inputs a unit receives. In
localist encodings a units is often “turned on” by setting the activity of its
unit to this maximum, while it is “turned off” by setting it to its minimum.
In this and later sections, a type of networks coined feed forward networks
will be investigated. In figure 1 there is an illustration of a feed forward
neural network. The picture is from Rogers & McClelland (2006) and is the
semantic system our discussion will be centered around. It is treated as a
simplified model of of experience with objects in the world and of spoken
statements about these objects (Rogers & McClelland, 2006). The network
has five layers of which two are input layers (item & relation), two are hidden
layers(representation & hidden), and one is an output layer (attribute). The
job of the network is to learn a set of weights able to map a pattern presented
at the input layer(s) to an intended pattern at the output layer(s). Since
the network has hidden layers it must also discover the necessary activation
patterns across these layers to perform this task. The network thus learns
an internal representation of the items presented to the network. The item,
relation and attribute layers uses localist encoding. Units in the item layer
represents an animal or plant and stands for an occurrence of the object it-
self, not its name. In the representation layer each unit in the representation
layer represents the context in which the item is encountered, while the units
in the attribute layer represents the predicted consequence of an encounter
with the item in a given context. When the network has been trained suf-
ficiently it will complete proposition such as canary ISA with living thing,
animal, bird and canary.

There are some important issues to discuss before continuing. These
concern , by what means does the network arrive at the internal represen-
tations, what issues arise from using localist encoding, and what kind of
learning does our system do. The assumption here is that information from
all modalities converge in a common semantic representational system. As
we will see later, this results in an amodal representation. The use of lo-
calist encoding implies that the world has already been categorized before
arriving to this semantic system, and as such, the network can be viewed as
learning facts about concepts. That is, it learns facts about concepts and
then generalizes to instances due to the semantic knowledge of some under-
lying system. Thus some underlying system has done a lot of the semantic
task for us in that they have associated a perceived object with a category.
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Figure 1: This figure shows the architecture of the network we will discuss
here. There are however some units in the output layer that are not shown.
These are the units naming the instances presented to the input layer and
are the names at the input in the figure, the indermediate names fish, bird,
flower and tree, and the superodinate names animal and plant. The context
unit for probing names is not show either—ISA context. This picture was
originally presented in (Rogers & McClelland, 2006).
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It is reasonable to assume that the task of categorizing a perceived object
such as a bird requires the knowledge that birds has wings, a beak and legs,
and as such (at least some of) the knowledge present in our network has
to be present in some underlying system. However, as stated in Rogers &
McClelland, (2006) the inputs can be seen as a course discretization of the
perceptual similarity relation among the perceived objects. Still this issue
remains since the act of encoding encountered birds as similar would still
require semantic knowledge of birds (an ostrich and a canary differ some-
what in perceptual similarity). The use of localist encoding also constrains
the network in that novel instances can not be presented to the input. This
however, is gracefully circumvented by a technique called back propagation
to representation (Rogers & McClelland). Using this technique the repre-
sentation for a novel instance in the representation layer is induced from
its attributes and a context, and as such, the concept pretty animal can be
represented.

The type of learning this system does is reminiscent to a person slowly
learning from interacting with the environment over time. As the network
interacts with its environment, the weights are adjusted in small increments
using online learning. Fast learning such as a person being told that a
perceived object is an animal is done using back propagation to representa-
tion, for then storing the derived representations in a fast learning system,
a function attributed to the hippocampus.

The network presented will learn the weights necessary to map patterns
at the input layers to the intended patterns at the output layer and in the
course of this learning also develop internal representations of the instances.
These internal representations are distributed, and as such, similarity is en-
coded as a continuous parameter (as opposed to the localist layers). Another
important point is that the network discovers the hierarchical structure of
the domain on its own based on similarity relations among the presented
patterns. Thus one escapes the inherent perils of explicitly structuring the
agents internal world (Brooks, 1991)

2.2 Progressive differentiation of internal representations

An interesting property of PDP networks is that their internal representation
develop in a coarse to fine manner resembling the conceptual development of
a child. Because of PDP’s resemblance to the human brain it offers impor-
tant insights as to why this happens in a child’s brain. Understanding the
process of progressive differentiation also gives us a better understanding of
what properties in the world influences learning in PDP networks and thus
why learning proceeds as it does. It turns out that coherently covarying
properties in the patterns presented to the network guides the fine to coarse
differentiation of the internal representations and thus what properties are
learned first. This happens because the properties that covary the most with
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each other will contribute to an error in the same direction while the more
idiosyncratic properties will tend to cancel each other out. Another factor is
that the error back propagates more strongly through weights representing
meaningful mappings. For example, when learning starts all the weights are
initialized to random values, and as a result all the patterns will derive the
same internal representation. The property living in Figure 1. will thus
produce an error on the same direction for all patterns (they are all living
things) while the property swim will vary across the instances (only the fish
can swim). Once living has been learned, the properties reliably separating
the animals from the plants will be the ones with the most coherent error
signal and thus guide learning. The internal representations now separate
into animals and plants. As mentioned above there is another factor also in-
fluencing this fine to coarse differentiation: the errors back propagate more
strongly through weights representing meaningful mappings. With reference
to figure 1, the magnitude of the changes made to the weights feeding into
the representation layer depends on how this will help reduce the error on
the output nodes. This again depends on whether the weights feeding for-
ward from the representation layer can make use of the induced changes.
The errors will thus back propagate more strongly through the weights rep-
resenting properties the network has learned or is currently focusing on.

It is worth to notice that although the frequency of a property in the pat-
terns presented to the network does influence the ease of which it is learned,
it is how the property covaries with other properties in the patterns that
enforces the hierarchical structure of the internal representations. It should
also be clear from this discussion that properties common to all patterns
does not induce any hierarchical structure of the internal representations.
As these properties are among the first to be learned, the internal represen-
tations are still very similar and the error from these properties will cause
them to change in almost the same way.

In Rogers & McClelland (2006) they showed that by adding noise to the
network weights the process ran in reverse with specific level categories being
lost first, thus closely mirroring the effects seen in semantic dementia. The
effect was attributed to specific level categories occupying a smaller repre-
sentational space than intermediate and superordinate categories. Specific
level categories are the categories for each instance (e.g. mouse and canary).
intermediate level categories are the ones intermediate in the hierarchy (e.g.
tree and fish), and superordinate categories are the top level ones (i.e. an-
imal and plant). Intermediate categories will later be referred to as basic
level categories also.

Thus, when noise was induced, representations of specific level categories
ended up outside their representational space and thus induced an incorrect
or more general naming response. PDP networks thus discovers the hierar-
chical structure intrinsic to the presented stimulus. This discovery proceeds
in a coarse to fine manner throughout learning, while the process is reversed
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when the network is lesioned.

2.3 Salience of coherently covarying properties

We have so far seen that the network structures its internal representations
based on coherent covariation of properties in the patterns taught to the net-
work. An interesting questions is how this influences generalizations from
novel instances. Consider birds, they all have legs, a body, a head, and
wings; However, the fact that birds have wings are more important to the
concept birds then the fact that it has legs. It has been observed that at nine
months of age, children are able to discriminate between perceptually similar
objects from different categories at a superordinate level, but failing at this
at a more intermediate level. Eleven month old children however succeed at
discriminating at a more intermediate level (Rogers & McClelland, 2006).
The ability to discriminate on the basis of semantic properties not directly
available from the perceived stimulus seems to develop in a coarse to fine
manner as the infant has more experience with the world. To investigate how
the network in Figure 1 faired with respect to this task Rogers & McClelland
(2006) trained the network on a set of plants and animals. The plants were
divided into trees and flower; The animals into birds, fish, and mammals.
During the course of training the network was never taught to activate any
name units for the instances, so any hierarchical representation arising was
the result of the network discovering the hierarchical nature of the domain
based on its covarying properties (such as can fly, has skin, etc). They also
trained a version of the network above employing distributed representa-
tions for the item layer. The patterns introduced to the item layer of this
network were produced to respect perceptual similarities directly observable
from a static environment. Thus all flower patterns were more similar to
each other than they were to the tree patterns, but more similar to the
tree patterns than they were to the fish patterns. Both networks discovered
the same internal hierarchical representation. The distributed network thus
represented all flowers (or birds, fish, etc) as equal in the sense that they clus-
tered together in the representational space. The weights projecting from
the item layer to the representation layer thus served the function of group-
ing together perceptual different items on the basis of a few abstract shared
properties not present in the input (Rogers & McClelland). This shows how
the output representations are responsible for shaping the internal represen-
tations in the network. It also makes clear a separation of function in the
network: The weights from the item layer to the representation layer maps
perceived instances in the world into conceptual representations while the
weights projecting forward from the representation layer are responsible for
categorical inferences. There is however an important point to mention: in
the simulations presently discussed, all output patterns were, even within a
category, slightly different from the other patterns—This was true for both
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the distributed and localist version. The resultant conceptual representa-
tions for all patterns were thus slightly different from each other. A concept
in this respect is a region of internal space occupied by representations from
the same category, while each single representation is a conceptualization of
a perceived object.

To test how the networks generalized from novel inputs they devised
twenty novel patters: five trees, flowers, birds and fish. These patterns were
made in such a way that four of the patterns (habituation patterns) within a
group were similar to each other and different from any other pattern, while
one pattern (test pattern) within each group was dissimilar from the others
within the group but very similar to the habituation patterns from a cross
category group (intermediate level) and a cross domain group (superordinate
level). The cross category and cross domain similarities were based on more
idiosyncratic perceptual similarities, while the test patterns’ similarity to the
within category habituation patterns were based on coherently covarying
properties. A test pattern for bird might share big and green with the
fish habituation patterns while sharing wings with all the bird habituation
patterns. It was thus more similar to the fish with respect to appearance
while conceptually being more similar to the birds.

The simulation recorded the internal representations from the novel stim-
ulus during different stages of training. They presented the four habituation
patterns for a category, recorded the activation patterns, and computed the
centroid of these patterns. Then, the within category test item was presented
and its distance to the centroid recorded. The same was done for the cross
category and cross domain instance. The distance between the centroid and
the different test items was interpreted as a measure of how novel the model
found the test items with respect to the habituation patterns. From these
distances, the probability for the model choosing an object from a contrast-
ing domain was computed. The model chooses to explore the stimulus it
finds more novel. Both simulations showed a coarse to fine differentiation of
the internal representations during learning. The probability for choosing
the contrasting stimulus started out with being near chance, but as training
proceeded it first started to reliably choose the between category item from
the contrasting global domain, and later the between category item from
the contrasting intermediate domain.

The model had grouped the within category test items as more similar
to the habituation patterns even though the between category test items
were perceptually more similar. The model thus construed as similar those
patterns sharing coherently covarying properties, while treating as dissimilar
patterns sharing many more properties with the habituation patterns (These
properties did not covary with the properties of the habituation patterns).
It would seem that the model lends special weighting to the coherently
covarying properties.
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2.4 Typicality and frequency effects

In Rogers & McClelland (2006) typicality and frequency effects are inves-
tigated with respect to a phenomenon called basic level categories. Basic
level categories are often intermediate categories—Somewhere between the
superordinate and specific categories. They have been observed to be among
the first children learn to name during early stages of lexical acquisition.
However, during this stage they also show a tendency to overextend these
categories to similar but semantically unrelated objects. Adults have been
shown to prefer naming at the basic level for typical category members while
more atypical members are named at a more specific level. For example, bird
is a basic level category which adults usually prefer to use when naming a
typical instance such as a canary, a penguin, however, is often named with
its more specific name—Penguin. People are also faster at producing nam-
ing responses for basic level categories. With expertise basic level category
effects tend to disappear with the experts preferring to name at a more spe-
cific level. In semantic dementia, basic level effects give away for naming at
a more specific level as the disease proceeds.

Some of this seems to conflict with the coarse to fine differentiation of
knowledge we have previously discussed. For example, how can basic level
category labels be among the first to be acquired when the internal hier-
archy first acquire the general categories? How can there be a preference
for basic level categories during lexical acquisition, while superordinate cat-
egories being the ones most resistant to damage? Rogers & McClelland
(2006) shows that typicality and frequency coupled with the properties pre-
viously discussed can account for all of this. To be able to manipulate the
level at which the network in Figure 1. named instances they added three
new ISA units to the relation layer. These were ISA-general, ISA-basic and
ISA-specific. In the ISA-general context, the network was trained to re-
spond with a general name while all other name units having zero as their
target. The same was true for the other two contexts except for the required
naming response being the one they imply. The frequency of pattern pre-
sentation during learning was manipulated such that basic level names were
the target for an instance three times more often than specific or general
names. The rest of the contexts were manipulated in such a way that they
appeared almost as often for animal and plant items (the difference was in-
significant). During training the network showed a preference for naming
at the basic level with this naming unit being on an average the one most
strongly activated. The difference between activation of the basic unit and
the general- and specific unit was greatest during early stages of training and
became attenuated as training proceeded. The basic level was, however, al-
ways the one showing the highest activation. When noise was introduced
to the weights, performance degraded in a fashion similar to dementia with
basic level responses giving away to general ones.
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To investigate the importance of frequency on the results above, the
simulation was run again with all naming responses being equally frequent.
In early stages of training there were still, on an average, some basic level
advantages. However, as training proceeded, the difference between the
naming levels became negligible. At a closer inspection it turned out that the
naming behavior of the network depended on the typicality of an item, with
typical items exhibiting basic level advantages and atypical ones showing
advantages for the specific level. That is, items sharing many properties
with the prototypical element of their basic level category were the ones
showing basic level advantages. Typicality is thus enough for the model to
exhibit basic level advantages while naming frequency further facilitates this
process.

In the introduction to this sub section it was mentioned that basic level
advantages were attenuated with expertise—Experts prefer to name at a
more specific level and are also faster at verifying properties at the specific
level. Rogers & McClelland (2006) investigated the effects of expertise by
making the network an expert on different basic level categories. This was
achieved by making items from the domain of expertise appear more fre-
quently than the other items in the training set. Two different levels of
expertise were investigated. At one level, items in the expert domain was
eight times more frequent than in the novice domain, at the other level
they were sixteen times more frequent. Basic level names were three times
more frequent than specific and general ones. The network showed a strong
tendency to name at the basic level in the novice domain, while activation
levels in the expert domain were almost equal for the specific and basic level
names. Expertise thus attenuated the basic level advantages. Moreover,
the mean Euclidean distance between the internal representations of the
items in the expert domain, and between the items in the novice domain
was recorded. The representations in the expert domain had a larger dis-
tance between them than did the ones in the novice domain. Expertise had
thus differentiated the items in the expert domain more. In a simulation
similar to the one above except that only a single item was the one most
frequently presented, naming responses to this item was shown to occupy a
larger semantic subspace than other items from the same category. That is,
when the internal representation of the familiar items was slowly translated
towards the representation for an item from the same category, the naming
response for the familiar item was the one being the most active over the
largest distance of space. Also, when queried for basic level names at differ-
ent stages of training with different items, the network showed a tendency
to overextend the name of the familiar item to semantically related items
during early stages of training. During degradation, the familiar name was
misapplied to other items more frequently than the name for more novel
items. This effect became stronger with the amount of noise introduced.

The network thus exhibits behavior similar to that observed in human
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subjects. It exhibits basic level advantages for highly typical items. As
these items are named more frequently with their basic label this advantage
becomes stronger. During degradation, the naming responses for specific
and basic level names are the first to go while the general names are more
persistent; familiar names are also overextended more frequently. Basic level
advantages also become attenuated with expertise. What are the properties
of the network responsible for this behavior? Since items being similar
receive representations close in internal space, similarity based generalization
causes their specific properties to interfere with each other during learning.
The properties they share, however, does not interfere with each other and
are thus easier to learn. As the frequency of presentation increases, the
network receives more pressure to differentiate each of the frequent items. As
a result, similarity based generalization does not cause as much interference
and the specific properties are easier to learn. Since the main structuring
force guiding the internal representations still is coherent covariation, the
general categories occupy the largest region of internal space and is therefor
more resilient to noise. Because frequency of presentation induces a greater
separation of familiar items, the same effect causes them to be overextended
during degradation.

2.5 Conclusions

In this section we have seen that semantic task performance can arise in
PDP networks as a result of similarity based generalization of regions of in-
ternal representational space. These regions correspond to groupings in the
hierarchical structure of the domain as dictated by the coherently covarying
properties of the instances taught to the network.
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3 Perceptual symbol systems

As opposed to classical amodal symbol systems such as frames and semantic
nets, Barsalou (1999; 2003a; 2003b) presents a perceptual theory of cogni-
tion in which perceptual symbols gets integrated into simulators capable
of simulating all aspects of a concept. This section will present this theory,
Perceptual Symbol Systems (PSS), and look closer on some of the important
aspects of it. Specifically we will see:

• how perceptual symbols gets extracted from experience and integrated
into a simulator,

• how these simulators combine productively

• how they support abstract thought and propositional construal,

We will start with an account of how this theory is different from classical
amodal symbol systems and recording systems, then move on to perceptual
symbols, how they get integrated into simulators, and how these simulators
can support higher level cognitive functions such as abstract thought and
propositions. This section draws heavily on material from Barsalou (1999).

3.1 Classical symbol systems vs. PSS

Classical symbol systems relies on a process called transduction to derive
a symbolic account of presented stimulus. Upon perceiving a chair, the
transduction process may deliver a schematic representation of a chair which
is then manipulated by the conceptual system according to its syntactic
properties. These systems propose a modular account of cognition in which
the conceptual system is its own module separate from perception, a module
wherein all symbols are arbitrarily related to the states from which they
came, thus being amodal. In contrast to this, PSS represents symbols as
records of perceptual states in the modality they belong: the perceptual
symbol for a perceived chair is represented in the vision modality, while the
sound it makes when pushed along the floor is represented as a perceptual
symbol in the auditory modality. As an agent perceives scene with a chair
in it, a perceptual state will arise in the vision modality. Selective attention
focuses on certain aspects of this state such as the chair and its parts (seat,
legs, material it is made of, etc.) and stores records of them in long-term
memory as a perceptual symbol. Later on, these symbols can be retrieved
and reenacted in either off-line processing (e.g. thinking about a chair) or
on-line processing (e.g. filling in missing parts of a partially occluded chair
during perception). These perceptual symbols are modal and analogical.
Why is best described in Barsalou’s (1999) own words:

“They are modal because they are represented in the same sys-
tems as the perceptual states that produced them. ...Because
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perceptual symbols are modal they are also analogical. The
structure of a perceptual symbol corresponds, at least somewhat,
to the perceptual state that produced it”.

Since perceptual symbols are modal and analogical, they avoid the symbol
grounding problem (Harnard, 1993) inherent to all classical symbolic the-
ories. I will borrow from Harnard (1993) to explain the symbol grounding
problem:

“the real problem of symbol grounding is that the interpreta-
tion of the symbols, whether or not it is unique, is not intrinsic
to the symbol system: It is projected onto it by the mind of
the interpreter, whereas that is not true for the thoughts in my
mind.”

The analogical modal symbols thus avoid the symbol grounding problem
because meaning is derived by their appearance and relations among the
symbols are reflected by this appearance.

Another issue with these systems was put forward by Brooks (1991) :

“...each animal species, and clearly each robot species with their
own distinctly non-human sensor suites, will have their own dif-
ferent Merkwelt. Second, the Merkwelt we humans provide our
programs is based on our own introspection. It is by no means
clear that such a Merkwelt is anything like what we actually use
internally–it could just as easily be an output coding for com-
munication purposes (e.g., most humans go through life never
realizing they have a large blind spot almost in the center of
their visual fields). The first objection warns of the danger that
reasoning strategies developed for the human-assumed Merkwelt
may not be valid when real sensors and perception processing is
used. The second objection says that even with human sensors
and perception the Merkwelt may not be anything like that used
by humans.” (p 144)

It should be noted that some of this argument also applies to connec-
tionism as well. Connectionism has its roots in knowledge about the human
brain—Neurons and how they function. However, an artificial feed forward
neural network is by no means biologically plausible. First of all, there are
many types of neurons in the brain, they are interconnected in many differ-
ent ways and they use many different types of neuro-transmitters to convey
information. Second, back propagation, a commonly used training method,
is also biologically implausible. Neural networks are simplifications of the
neuronal architecture in the human brain, and when chosen to represent in-
telligence one assumes that intelligence can be represented with them. Also,
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by selecting a specific learning method (e.g. back propagation) you implic-
itly constrain how the internal world of the agent is structured. However,
as opposed to classical symbolic theories of cognition, connectionism does
not explicitly structure the internal world of the agent, this world will, as
we have seen, develop depending on the chosen interconnectivity, learning
method, and the agents interaction with the world.

Regarding modality, Barsalou makes a claim about feed forward neural
networks particularly important to this theses: He claims that that con-
ceptual representations in feed forward neural networks are amodal. This
would mean that implementing a modal conceptual system using feed for-
ward neural networks is impossible—After all, the conceptual representa-
tions are amodal. This claim is based on two facts: First of all, hidden layer
activity in feed forward neural networks are usually interpreted as concep-
tual representations. Second, before training the networks, their weights are
initialized to small random values, thus optimizing training. If the weights
were initialized to zero the networks could not learn. Now, Barsalou claims
that because the hidden layer activity is often interpreted as conceptual rep-
resentations, one has a modular architecture where the conceptual system
is separated from the perceptual system; That is, the perceptual system
resides on the input layer while the conceptual system on the hidden layer.
The conceptual representations are arbitrarily related to the perceptual sys-
tem because they reside in a different module and the weights between the
modules are seeded with random numbers. That is, because the weights are
randomly seeded at each trial, the resultant representations will vary from
learning trial to learning trial, and within each trial their representation will
be arbitrarily related to the perceptual system. However, he admits there
to be certain invariants between learning trials (Barsalou, 2003a). In an
earlier section we saw that the organization of the conceptual representa-
tions depend on the similarity structure of the instances presented to the
network. That is, similar instances will be close in conceptual space wile
dissimilar instances will be farther apart. Also, the amount of space “allo-
cated” to an instance depends on its frequency of presentation, while how
easy an instance is to learn depends on how similar it is to other instances.
The information presented in that section would seem to suggest that even
though the resultant conceptual representations are arbitrarily related to
the training instances, their relation to each other depends on the similarity
structure of the domain and stays invariant from trial to trial. Moreover, it
is these invariants that support the conceptual representations performance
in semantic cognition (e.g. basic level advantages in lexical acquisition).
The overall error of the network on a given trial may vary depending on the
initial weights (e.g. given a certain number of training epochs, the network
may reproduce the required pattern of activity on the output units with
differing level of precision), the performance of the network in semantic cog-
nition, although dependent on the overall error, is invariant from trial to
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trial given that the network reaches a certain level of precision.
This suggests that the initial weights, influencing the time it takes to

reach a certain level of precision, does not influence the properties of the
representations that justify their conceptual interpretation. These proper-
ties are invariant of the initial weights and depend on the similarity structure
of the domain and frequency of presentation. With this said, it is still true
that conceptual representations are arbitrarily related to the original per-
ceptual states. In fact, this can not be disputed. However, with the previous
discussion as a reference, the arbitrariness of these conceptual representa-
tions are not considered as an issue in this thesis as this does not seem to
influence the behavior of the system of interest here.

There is one last point I would like to make with respect to the modal
interpretation of symbols/hidden layer activity. Later in this thesis auto-
encoders (Hinton, 1990) will be used to derive hidden layer representations
in different modalities. In one of the simulations, one auto-encoder has
an intended interpretation as the visual modality while another has an in-
tended interpretation as the auditory modality. In each modality, the hidden
layer representations develop with respect to similarities in the domain of
this modality. When a representation is present at the hidden layer of the
modality from where it came, it has a valid interpretation in that it will
produce as valid response, as well as having relations to other representa-
tions in that modality reflecting what is learned about them. If I were to
present this pattern to the other modality, this would not be true. With
respect to this I pose the following question: Is it not the modal interpreta-
tion (by the system) of a symbol that justifies its modal interpretation by us.
This question is not answered here, but it reflects underlying assumptions
of simulations and discussions to come. That is, a pattern of activity will
be given a modal interpretation by the system in which it has meaningful
relationships to other patterns and has valid effects.

It is now time to continue our discussion about the important differences
between classical symbol systems and PSS. Symbol grounding and the ex-
plicit structuring of the agents internal world was mentioned as problems
inherent in symbolic approaches. Symbolic approaches, however has some
very powerful properties; After all they have been intensely studied and used
for many years with logic dating all the way back to the Aristotle (syllo-
gisms). Symbolic systems has a clear semantics, they support productivity,
and they lend themselves gracefully to computation. By having a clear se-
mantics and supporting productivity, symbolic systems have the power to
express almost anything. By productivity I am here referring to the ability
to combine a finite set of symbols in an infinite number of ways. Symbolic
systems do this effortlessly, while connectionist approaches has been rather
lacking in this respect. However progress have been made:

Pollack (1990) showed with his recursive auto associative memory (RAAM)
that connectionist approaches also support productivity. Hook (2005) has
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proposed that microscopic loops between the basal ganglia, cerebellum and
cerebral cortex might support recursion. If this is so, a connectionist ap-
proach to recursion should also be possible by mimicking this architecture.
Associative chains can express chains of instances linked together. In Love
(1999) asynchronous timing information is utilized to represent complex
structures such as John hit Ted. BoltzCONS (Touretsky, 1990) can rep-
resent lisp-like lists. Even though connectionist approaches support pro-
ductivity, it is often time consuming and awkward with respect to symbolic
approaches. PSS, as we soon will see, supports this as effortlessly and grace-
fully as symbolic approaches. However, an implementation of PSS has, to
my knowledge, yet to be.

It would seem that a perceptual theory of cognition escapes the prob-
lematic issues of symbolic theories while offering a promise of successfully
implementing its more powerful features. With the previous discussion of
semantic cognition as a reference, connectionism provides a powerful means
to implement a perceptual theory of cognition. The next section will show
that PSS offers a powerful description of how such a system must act to
capture the complexities of thought.

3.2 Simulators

As records of related perceptual states get extracted by selective attention
and stored in long-term memory as perceptual symbols, they become inte-
grated into a simulator. This happens by storing the perceptual symbols
in a frame. In the frame, spatial and content information is represented
separately:

“At one level, volumetric regions of an object is represented ac-
cording to their spacial layout. At another level, the content of
these subregions are represented as specializations.” (Barsalou,
1999. p 590).

As more and more information accumulates in a subregion, this subre-
gion constitutes a simulator of its own able to simulate different aspects of
the region. Between specializations of the same subregion, inhibitory con-
nections evolve, while excitatory connections evolve between specializations
of different subregions belonging to the same instance. This way simulators
for concepts such as chair, car, etc., develop. Event sequences also become
organized into frames. When this happens the different subregions of the
frame represents events being temporally separate. If an agent thinks about
a specific chair, perceptual symbols for that chair is reenacted in their re-
spective modality, a simulation has been run. A simulator thus is a concept,
while a simulation a conceptualization. The chair can be simulated from
different angles, with different materials and different colors. A simulator
thus can simulate all aspects of a concept and also extend reality by adding
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features to it never seen. An infinite number of simulations can be produced
from a simulator. In addition to the perceptual symbols for the four sen-
sory modalities (vision, audition, haptics and olfaction), perceptual symbols
for introspective and proprioceptive sensations also become integrated into
simulators.

Frames also support the notions of framing and background-dependent
meaning. In framing a focal concepts is specified relative to a background
concept and can not be specified independently of it. In background-dependent
meaning, a focal concept changes as its background concept changes. A
frame supports framing by organizing the background knowledge necessary
to understand the focal concept. The entity frame for human organizes the
background knowledge necessary for understanding foot. The perceptual
symbols accessed when simulating a foot depend on the background frame
and will vary depending on whether a human or dog is simulated in the
background. Frames thus support background-dependent meaning.

Results from FMRI studies indicate that concepts are highly multimodal
engaging modalities important when interacting with its respective members
in the world. When people think about a hammer, activity can be seen in
the motor areas of the brain. When they think about a bird, activity in
the visual areas of the brain can be seen. However, the areas being active
are typically not areas active in actual perception, they are immediately
adjacent within the same modality-specific system (Barsalou, 1999). Brain
damage can induce category-specific impairments affecting either living or
non-living things. This has been attributed to a possible functional-visual
separation of knowledge (Farah & McClelland, 1991). Also, when areas if
the brain processing visual information is damaged, peoples performance
in categorizing artifacts relying mostly on visual information degrades (e.g.
birds). If motor areas of the brain is damaged, performance drops when
categorizing tools. This support the contention that modalities important
in processing an instance also are important in representing that instance.
Important to the representation of a hammer is the perceptual symbols for
how it feels to hold and how it is used. For birds, visual aspects is important.
A simulator is therefor highly multimodal, simulating all modal aspects of
a concept.

As stated in the last section, PSS supports productivity. Productivity
is the ability to combine a finite set of symbols in an infinite number of
ways. Barsalou (1999) proposes that productivity can be done in PSS by
having simulators for relations among objects. A simulator for the relation
above can be used to simulate “a lamp above a chair”. This simulation can
be combined with the relation left of to produce the simulation of “a lamp
above a chair to the left of a table”. By combining different simulators an
infinite number of simulations can be produced.

When viewing an instance in a scene, information about this object is
projected onto simulators in memory. If a simulators’ frame contains a sim-
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ulation of the instance or if it can produce a novel simulation fitting that
instance well, this simulator will become active. This constitutes a type to-
ken mapping in which the perceived instance is a token mapped to its type (a
simulator). This process can be construed as mapping the perceived instance
onto the predicate ISA(chair, instance a) and then producing the proposi-
tion it is true that the perceived instance is a chair. PSS thus supports
propositions. The agent has also engaged in categorization by assigning a
category (simulator) to the perceived instance. The simulator bound to the
perceived instance contains a tremendous amount of information about it
and therefor allows the agent to draw categorical inferences.

Barsalou (1999) also provides an account of how PSS might support ab-
stract concepts such as truth and falsity. Important to an abstract concepts
is a simulated background event sequence framing the concept. The abstract
concept is a focal part of this sequence. Also important to the abstract con-
cept is the perceptual symbols for introspective states. The concept of truth
arises from validating event sequences against observed events. As an ex-
ample an agent might be told that there is a cup on the table. As a result
the agent will perform a simulation of this and try to establish its truth by
mapping it to a perceived situation. Propositional construal is therefor im-
portant to abstract concepts. As an agent performs this sequence of events
on a number of occasions, the introspective symbols arising from running
the simulation, mapping it to a perceived scene and verifying its truth, be-
comes organized into a simulator for the concept of truth. In time the agent
learns to simulate the experience of truth.

In PSS, language is also perceptual. As a person hear, speak, and read
words, simulators for them develop. These simulators become connected
with the simulators for their referents in the world. This way, language
serves as a powerful means of building complex simulations and conveying
them to other people.

3.3 Conclusions

In this section we have seen how a perceptual theory of cognition can be as
expressive as classical symbolic theories while avoiding their inherent prob-
lems such as the symbol grounding problem. Another important problem
with classical symbolic theories is that they are brittle and cumbersome.
That is, they do not exhibit graceful degradation in the presence of error,
and as the complexity of the modeled domain grows, so does the difficulty of
modeling the domain. This section has also offered much information as to
what a concept is: a concept arises by a skill for producing context-specific
representations of a category (Barsalou et. al., 2003b). This implies that the
concept itself is not represented but arises from the behavior of the system.
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4 Dimensionality of representations

The dimensionality of the representational space is an important issue as
the number of examples necessary for reaching a given level of performance
grows exponentially with the underlying representation space (Edelman &
Intrator, 1997). This is known as the curse of dimensionality. Thus, when
implementing a perceptually grounded conceptual system one would need
some way of reducing the dimensionality of the incoming stimulus, lest con-
fusion prevail. Consider the task of human vision: “the immediate successor
of the retinal space in the processing hierarchy is, in primates, a million-
dimensional space spanned by the activity if the individual axons in the
optic nerve ”(Edelman & Intrator, 1997) . One could argue that all the
information necessary to discriminate perceived objects are present in this
million-dimensional space, and as such, no reduction is needed. There are,
however, several obvious reasons why to prefer a reduction of the stimuli:

As noted above, as the number of dimensions goes down, the number of
examples needed for reaching a given level of performance goes down. Thus,
if a low dimensional representation (LDR) is extracted, subsequent cognitive
processing will be better able to generalize. If the process responsible for re-
ducing the dimensions is sensitive to informative dimensions and insensitive
to uninformative dimensions, the resulting LDR will be more informative.
For example, the process could compress highly correlated dimensions while
possibly emphasizing dimensions being, for some reason, salient. Subsequent
cognitive processing would thus, in addition to be relieved of dimensional
pressure, be relieved of possibly distracting dimensions. In this section, a
well known solution for unsupervised dimensionality reduction will be re-
viewed: auto-encoders.

4.1 Unsupervised dimensionality reduction

An auto-encoder (Hinton, 1989) is a feed forward neural network comprising
three or more layers. The input and output layers has the same number of
units while at least one of the internal layers has a number of units less than
this. During training the auto-encoder is taught to reproduce at its output
units, the same pattern as presented to its input units. Because of the inter-
nal layer, being narrower than the original stimulus, the network is forced
to discover an internal representation with a lower dimensionality than the
original. This dimensionality reductions is afforded by the compression of
redundant features in the input (Hinton, 1989; Gluck & Meyers, 1993). That
is, units correlated across the presented instances can be represented with
fewer (possibly one) units at the internal layer. Another interesting property
of these internal representations is that they are topology preserving (Edel-
man & Intrator, 1997; DeMers & Cottrell, 1993). With topology preserving
I refer to the intrinsic relations among the stimuli being preserved to some

23



degree in the internal representations. Envision plotting a set of points on a
rubber sheet and then crumbling the rubber sheet together—The resulting
ball is our high dimensional space. Our internal representation unfolds this
paper without tearing it—Thus being topology preserving—but may stretch
the rubber in some places—Thus not being isometric. The auto-encoder be-
ing topology preserving has a very interesting implication: Stimuli being
close in the original space will be close in the internal space. The likeli-
hood of two stimuli being treated as similar (evoking the same response)
is related to their distance in psychological space (Sehpard, 1987). Stimuli
being similar will thus be conceived as being similar by the cognitive system
operating on this LDR. In the discussion on semantic cognition we saw how
typicality and frequency influenced the internal representations of neural
networks. Typicality influenced how easy an item was to learn as well as
what properties of it was emphasized by learning. Frequency of exposure
moved an item further apart from its similar items, affectively allocating a
larger piece of internal space to it and allowing its more individual properties
to be emphasized. If the hidden layer units is our psychological space, then
familiar items will be more distinctive than unfamiliar ones. Thus allowing
cognition to better focus on these.

We will now return to the issue of dimensionality reduction, specifically
the issue of non-linear mappings between the original and internal space.
An auto-encoder only having one hidden layer can only learn linear map-
pings into the internal space. If an extra layer is added between the hidden
and the input layer, the network can learn non-linear representations (De-
Mers & Cottrell, 1993), and thus possibly reducing the dimensionality even
more. This might introduce strange consequences in similarity judgment
though. For example, envision a string whose endpoints connect forming a
circle. When reducing the dimensionality of this circle to one dimension, the
endpoints will be disconnected and the string straightened. The endpoints,
touching each other in the original space, will now be perceived as being on
different sides of this one-dimensional space.

4.2 Conclusions

I conclude this section with noting that reducing the dimensionality of a high
dimensional input stimuli is important as it influences cognition’s ability
to generalize. Auto-encoders provide a means to this reduction as well as
preserving similarities among the stimuli. This similarity will however be
distorted such that familiar objects are perceived as being more distinct than
others. This reduction is done in an unsupervised way due to the network
learning the identity-mapping. In a later section we will revisit properties
of auto-encoders and discuss how they can explain some of the effects seen
in categorical perception when extended with a supervised component. In
fact, this extension makes it more similar to the network in figure 1., and
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it is by virtue of this that it will be able to capture some effects seen in
categorical perception.
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5 Cognitive control

We have so far seen how conceptual representations can emerge in artificial
neural networks. We have looked at different aspect of these representations
such as the internal hierarchy arising from coherent covariation (Rogers &
McClelland, 2006), the redundancy compression arising in auto encoders
(Gluck & Meyers, 1993; Japkowicz, 1995). We have also looked at Barsalou’s
perceptual theory of cognition, perceptual symbol systems (Barsalou, 1999;
Barsalou, 2003a; Barsalou, et. al., 2003b). However, the notion of control
has yet to be mentioned. The human mind has the ability to represent
a vast amount different goals, contingencies and abstract categories. For
example, when told to jump each time someone claps their hands, a person
is able execute this behavior even in the presence of distractions. This kind of
performance is not captured very well in the sort of gradual learning we have
thus far seen. A feed forward neural network would not be suitable as for
each change of activity, the old state is erased. An Elman network (Elman,
1990) could represent the changing nature of behavior over time, but it does
not seem likely that it could effortlessly represent this sort of abstract tasks
“out of the box”. In Barsalou’s perceptual symbols system, a simulation
could be run as a result of the command. When someone then claps their
hands, the resultant auditory and visual states would bind to the simulation
causing the proposition “someone clapped their hands” to be validated. A
“jumping” simulation could then be run contingent on the validation of
this proposition. Where are these decisions made? Since the goals and
contingencies would need to be resistant to noise it seems unlikely they would
reside in the different modalities in the brain as perceptual states—They
would easily get erased as new perceptual states arise due to bottom up
interference from the world. Also, neurons in these areas of the brain does
not maintain their activity over long periods of time, a property important to
representing goals. We will next turn our attention to the PFC for answers
to this question.

5.1 Cognitive control through dopamine and prefrontal cor-
tex interaction

To find some answers we will here take a closer look on a theory of Cognitive
Control proposed by Miller & Cohen, 2001; Braver & Cohen, 2000). The
prefrontal cortex (PFC) is a collection of neocortical areas receiving projec-
tion from virtually all cortical sensory systems, motor systems, and many
subcortical structures (Miller & Cohen, 2001). This makes it a perfect place
for behavior guiding rules to be seated (i.e., from here they can influence
an abundant array of processing aspects). People with PFC damage seem
to act on a whim, and are impaired in keeping with internal goals. They
seem to have problems with adhering to newly learned rules, while old rules
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and behaviors seem intact. These old rules, however, may be executed on a
whim. The Stroop task is a task at which people with PFC damage show
deficits. In this task a subject is shown a word for a color (e.g., Green)
depicted in some color (e.g., green, red, etc). If the color the word names
differ from its depicted color, the subject is faced with conflicting stimu-
lus in which naming the written color is behavioral salient. This suggest
they have difficulty adhering to the goal or rule of the task in the face of
a stronger (more competitive) stimulus (Miller & Cohen 2001). The task
itself illustrates one of the fundamental aspects of cognitive control and goal
directed behavior (Miller & Cohen, 2001):

“the ability to select a weaker, task-relevant response (or source
of information) in the face of competition from an otherwise
stronger, but task-irrelevant one.”

How does the PFC select task-relevant responses in the face of stronger
task-irrelevant ones? By building one the fundamental principle that pro-
cessing in the brain is competitive, Miller & Cohen (2001) proposes the
following function of the PFC in the service of cognitive control:

“the active maintenance of patterns of activity that represent
goals and the means to achieve them. They provide the bias
signals throughout much of the rest if the brain, affecting not
only visual processes but also other sensory modalities, as well
as systems responsible for response execution, memory retrieval,
emotional evaluation, etc. The aggregate effect of these bias
signals is to guide the flow of neural activity along pathways that
establish the proper mappings between inputs, internal states,
and outputs needed to perform a given task.”

Patterns of activity in the PFC can thus serve the function of selective
attention by influencing the features of a scene to be attended through ex-
citatory connections (Miller & Cohen, 2001). The neurons being influenced
are then able to win over their competitors by mutual inhibition. It can
serve as a place for representing goals and the context of a situation, and
thus also serving the function of working memory. The PFC thus seems
critical in tasks such as learning the association between a specific situation
and a response. However, as this task is frequently executed, it gets “pushed
down” and the behavior gets more automated.

Miller & Freedman et. al. (2002) performed two experiments to inves-
tigate the role the PFC in representing rules and categories. In the first,
monkeys performed a delayed-match-to-category (DMC) task. To create
the test images three species of cats and three breeds of dogs were morphed
resulting in a large set of parametric blends of the prototype images. A
specific morph belonged to the category it was the most of (i.e., it was a
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cat if it was over 50% cat). This allowed the experiment to capture the
sharp category boundaries often present in the real world. After training
the monkeys performed at about 90% correct. They recorded activity in
the lateral PFC and found many examples of neurons seeming to encode
category membership.

In the second they trained monkeys to respond differently depending on
whether a match or non-match rule was in effect. If the match rule was in
effect and two subsequent pictures matched, the monkeys released a lever,
if they did not match, the lever was released. The reverse was true for the
non-match rule. Cues signifying the same rule were taken from different
modalities while cues signifying different rules were taken from the same
modalities. This allowed responses to the physical properties of the cue to
be disambiguated from responses to the rule the cue signified. The most
prevalent activity across the PFC was reported to encode the current rule.
Rapid plasticity of the PFC neurons was also reported. That is, the neurons
showed tuning to the specific task after very few learning trials.

The above evidence supports the view that the PFC is engaged in rep-
resenting rules and categories. It also shows that the neurons in the PFC
can exhibit plasticity, important in fast learning. The PFC is also known
to support active maintenance in the face of interference (Miller & Cohen,
2001). It thus exhibits the main properties important for cognitive control.
There is still one issue to be addressed: how does the system learn what to
represent and when to update that representation? Braver & Cohen (2000)
propose that dopamine (DA) projections to the PFC serves to gate access of
context representations into active memory through simple neuromodulatory
effects on processing units in the PFC. Midbrain DA neurons respond to an
unpredicted reward, as learning proceeds DA responses migrate until they
coincide with the stimulus predicting reward, and cease their activation to
the now predicted reward. DA activity is also inhibited if the predicted
reward fails to appear, if it appears earlier than expected DA activity is in-
creased. (Braver & Cohen, 2000; Miller & Cohen, 2001) . DA activity thus
seems to encode prediction error (Miller & Cohen, 2001). DA neurons can
thus gate information that predicts reward into the PFC while also serving
as a learning signal for strengthening the association between this informa-
tion and the response of the DA neurons. This system thus learn what to
gate into the PFC and when to update the representations inside the PFC.
Braver & Cohen (2000) also presents an implementation of such a system
successfully learning what to gate, to keep it memory in the face of distract-
ing stimulus, and to give the right response at the right time, proving the
validity of the approach. The weights intrinsic to the PFC and the weights
from the stimulus to the PFC are however kept constant, thus leaving out
the mechanism by which active maintenance arises.
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5.2 Conclusions

The PFC thus is a perfect region of the brain in which to represent rules,
goals and categories due to its interconnectivity and inherent properties.
The representations in the PFC can be learned through interaction between
the PFC and DA systems. These rules affects processing in other parts
of the brain by exerting a biasing influence. As these rules are frequently
executed they get “pushed down” and become more automated. The PFC
thus seems to be important in both representing and achieving conceptual
representations, as well as discovering the more abstract relationships among
them. A closer look on this possible aspect of the PFC will be taken at a
later point in the thesis.
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6 Categorical perception

Categorical perception is the phenomenon that people tend to perform bet-
ter in discrimination tasks when the stimuli comes from different categories.
This phenomenon suggest that the way we categorize the world, in turn in-
fluences the way we perceive the world. In this section I will discuss ways in
which cognition might influence perceptual learning through categorization.
The reason for saying ’might’ is that the observed effects of category learn-
ing on perception may be a result of changes in some higher level cognitive
system (e.g., a higher sensitivity for learning categories in the PFC) and
thus not a result of the perceptual system adjusting to facilitate category
learning. This introduction to categorical influences on perceptual learning
is synthesized from Goldstone (1994). Next, a short review of results of an
experiment investigating this phenomenon is presented. This experiment
is originally presented in Goldstone (1994). Then a model of hippocampal
function proposed by Gluck & Meyer (1993) to explain stimulus condition-
ing in animals is presented and the ways in which this model might explain
some of the results previously seen is discussed.

The first issue of perceptual learning we will discuss is that of preex-
posure. Preexposure is coined to describe the phenomenon that people are
better able to perform discriminations on stimuli when they have previously
been exposed to the stimuli. That is, by being exposed to a set of pictures
before engaging a discrimination task, the subjects perform better at this
task even though they received no feedback during preexposure as to how the
stimuli should be discriminated. It would seem that the perceptual system
becomes primed to the different stimuli.

The next issue relates to the process enabling people to become bet-
ter at discriminating the stimuli. This is the issue of whether acquired
equivalence of acquired distinctiveness is the process responsible. Acquired
equivalence is the process by which sensitivity to the irrelevant dimensions
of the stimuli is desensitized. For example, before category learning is en-
gaged, the subjects discriminate all stimuli equally well, but after category
learning, sensitivity to stimuli not straddling categories is lost. One account
of evidence for this effect is that infants (2 months old) show sensitivity
to differences between speech sounds they loose by the age of 10 months
(Goldstone, 1994). Acquired distinctiveness is the opposite of this effect
and thus denotes heightened sensitivity to the stimuli straddling category
boundaries. This could happen by the perceptual system being sensitized
to changes along a category relevant dimension at the category boundary.
Acquired similarity could happen by the perceptual system being desensi-
tized to changes along an irrelevant dimension and also by desensitization
to changes inside a category along a relevant dimension. This brings us to
the next issue: whether an entire dimension must be sensitized or if local
regions can receive sensitizing.
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If an entire dimension must be sensitized to an equal degree, than people
receiving category training should afterward be equally able to discriminate
stimuli within and between a category when than stimuli varies along the
relevant dimension. However, even if an entire dimension must be sensitized,
it is possible that the some regions becomes more sensitive to changes than
others. For example, it could be that sensitivity is heightened more at the
category boundary than within a category.

An issue remaining is that of integral dimensions. With integral dimen-
sions, attending to one dimension without attending to the other dimension
is rather difficult. With separable dimensions, this is easy. Integral dimen-
sions, such as the brightness and saturation of color, has been argued to
be psychologically fused (Goldstone, 1994). One would thus expect that
changes in sensitivity to one integral dimension would also apply to the
other. However, it could also be that pressure from categorization “defuses”
these dimensions and only the relevant one become (de)sensitized. Also,
since integral dimensions are easy to focus on at the same time, it could be
that separate dimensions compete more with each other for attention then
do integral ones.

To investigate the nature of categorization’s influence on perceptual dis-
crimination, specifically with respect to the issues mentioned above, Gold-
stone (1994) undertook a series of experiments. The specifics of the ex-
periment is not important here so I will outline only the general points:
Subjects were placed into groups, where each group categorized the stimuli
according to different measures. There was one group of size-categorizers,
one group of brightness-categorizers, one group that categorized based on
both dimensions (thus having four categories). The categorizers first went
though a training stage were they were presented with a stimuli and had to
guess what category it belonged to and then received feedback as to whether
the guess was correct or not. After training they went through a discrim-
ination trial were they had to judge whether two subsequently presented
stimuli were the same or different. There was also a control group who did
not receive any category training before the discrimination trial. Size and
brightness is separable dimensions, so an experiment differing only in the
categorization relevant dimensions was also undertaken. The dimensions for
this experiment was the integral dimensions brightness and saturation. By
comparing how well the subjects fared at categorization within and between
experiments, the nature of how category learning influenced perceptual dis-
crimination was determined.

The results from the experiment with separable dimensions showed that
acquired distinctiveness asserted its influence on the categorization relevant
dimension. There was also local sensitization within the relevant dimension
with sensitivity being highest at the category boundary. The effect on the
irrelevant dimensions differed between the size-categorizers and brightness-
categorizers, with the results showing a null effect and acquired equivalence
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respectively. For the categorizers relying on both dimensions, acquired dis-
tinctiveness was found for both dimensions with local sensitization within
the dimensions (sensitivity being the highest at the category boundary).
However, acquired distinctiveness was lower when both dimensions were rel-
evant than when only one was relevant. There was thus competition between
the separable dimensions when they both were relevant.

The results from the experiment with integral dimensions were similar
to the ones just presented. However, when only one dimension was relevant,
acquired distinctiveness was also found for the other. Also, when both di-
mensions were relevant, no competition between the dimensions were found.
These results confirm the idea that focusing on several dimensions is easy
when they are integrated, and also that when attention is placed on one
such dimension, attention on the other follows.

6.1 Hippocampal Mediation of Stimulus Representation

In Gluck & Meyer (1993) a computational model of hippocampal function in
mediating stimulus representations are represented. The models learn what
cues presented within a context predicts a specific outcome. The model
incorporates two representational constraints assumed to reside in the hip-
pocampus. These constraints are redundancy compression and predictive
differentiation. The issue of redundancy compression has been discussed
earlier, but for clarity I will repeat it here: redundancy compressions is the
process by which correlated units in the input is compressed into a more
compact representation (possibly a single unit). As earlier in this thesis,
redundancy compressions is achieved here by employing an auto-encoder.
Predictive differentiation is the process by which cues that predict a spe-
cific outcome causes the internal representations to separate themselves from
other representations not containing the cue. This is achieved by augmenting
the auto-encoder with an extra output unit denoting the predicted outcome.
The role attributed to the hippocampus is to derive representation used for
learning associations in other brain areas.

The process of predictive differentiation will result in acquired distinc-
tiveness when the Euclidean distance between the stimulus representations
in internal space is the measure of similarity. This measure of similarity is
assumed in the rest of this section. When training this model on stimulus
predicting different outcomes, the dimensions being predictive will acquire
distinctiveness because of the internal representations being separated to
accommodate similarity based generalization—They separate to avoid in-
terfering with each other. Acquired distinctiveness would be highest at the
category boundary because of the error signal changing drastically at this
point forcing the two categories apart in representational space. As we have
already seen, expertise with a category in PDP networks causes the repre-
sentations belonging to this category to drift apart in representational space.
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As such local sensitization within a category along the relevant dimension
would also occur. It would also be natural to assume that the pressure
to differentiate between category representations would be larger than the
differentiation of within category differences, and therefor that local sensi-
tization of within category items will be smaller than between categories.

The process of redundancy compressions is the same as acquired equiva-
lence. When training this model on stimulus predicting different outcomes,
the amount of acquired equivalence would depend on the nature of the stim-
uli. For example, consider the model previously being taught to categorize
based on brightness. If it now was required to categorize based on size,
brightness would not be a good criterion for separating the internal space
and acquire equivalence.

Competition between dimensions when categorizing along two dimen-
sions would be present until the internal space has separated enough to
avoid interference (this assumes they were close enough to interfere with
each other when learning started). During the early stages of training, the
error signal from the predictive units will be more likely to interfere with
each, both within and between instances. However, as the representations
gain distinctiveness along the relevant dimensions, this effect will decrease.

With respect to integral dimensions it is not easy to see how this model
can facilitate the result reported by Goldstone (1994). Within the context
of stimulus conditioning using localist encoding the model supports this
though. Gluck & Meyer (1993) show that if the model is first trained with
stimulus A and B not predicting any outcome at all, these representations
will become compressed with the background context. This compression of
the two cues could be a way two stimuli become fused. If later, the model
is trained with A predicting an out come (B is not presented during this
training) then some of the predictions inferred from A will transfer to B.
However, in the current context both dimensions are present during training
and the training method would thus discover that B is not predictive of the
outcome.

6.2 The effect of language on perceptual discrimination in
artificial neural networks

In this section some results from (Cangelosi & Parisi, 2001) will be presented.
How conceptual representations can influence language have previously been
considered. We have seen how typicality and frequency of presentation can
affect naming responses of PDP networks by the effect they have on the con-
ceptual organization. The effects of language on the internal representations
of a network will now be discussed . Specifically, how language has a ben-
eficial effect on non-linguistic behavior. In Cangelosi & Parisi (2001) a set
of agents were evolved using a genetic algorithm. Using a two segment arm,
the agents were required to manipulate two different objects. If object A was
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present, the default action was to push it away, for object B, the default was
to pull it towards itself. The agent was controlled by a neural network receiv-
ing proprioceptive, retinal, and language input. At the output the network
was required to produce motor/muscle signals to control the arm. Without
going into detail on connectivity and training regime (the description of the
different conditions for the simulations are simplified here), I will mention
that the networks was evolved in three different conditions: no language,
late language and early language. In the no language condition, the agent
was required to perform the default action associated with the objects. In
the late language condition the agent received language input after being
trained for a 1000 epochs in the no language condition. The agent could re-
ceive as linguistic input either noun, default verb, opposite verb, noun and
default verb, or noun and opposite verb. There was also an epoch without
language input in the language conditions. The early language condition
was similar to the late language condition except for that language was in-
troduced at epoch zero.

Results showed that the late language condition was the most success-
ful, followed by the no language condition. With respect to these results,
Cangelosi & Parisi proposed that for language to have a beneficial effect,
the cognitive behavior on which it will be grounded must be evolved before
it is introduced. Interestingly, the beneficial effects of introducing language
was also present when the network did not receive any linguistic input.
The introduction of language had thus allowed the network to structure
its internal world more efficiently. To investigate further the effects of lan-
guage, the average within and between category distance for the objects
were computed for the no language, noun only, verb only, and noun+verb
trials in the late language condition. Between category distances were big-
ger for language trials than the no language one. For the within category
distance, the distance was smallest for the language conditions. Verb only
and verb+noun showed the strongest effects. Thus, with the introduction
of language, the categories acquired similarity within, while they acquired
distinctiveness between. Moreover, the verbs were the greatest contributors
to this effect. Cangelosi & Parisi attributed this to the fact that nouns only
covary with the objects while verbs covary with the action to be performed,
thus further facilitating efficient internal representations.

6.3 Conclusion

We have reviewed results from Goldstone (1994) showing how category learn-
ing influences perception. For separable dimensions, the categories acquire
distinctiveness along the relevant dimensions. Along the irrelevant dimen-
sions, the results were inconclusive showing both a null effect and acquired
similarity. When both dimensions were relevant for categorization, the di-
mensions competed with each other for distinctiveness. For integral di-
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mensions the relevant dimensions and irrelevant dimensions acquired dis-
tinctiveness. When both dimensions were relevant for categorization, no
competition was present. Along the relevant dimensions, there were also
local sensitization with acquired distinctiveness also within a category. The
within category distinctiveness was smaller than between category. PDP
offers a way to understand some of these phenomena. The results for inte-
gral dimensions are however harder to explain. Cangelosi & Parisi (2001)
showed how language can influence perceptual tasks. The introduction of
language caused the internal representations to be further sculpted in the
image of precision. The internal representations thus received within cate-
gory similarity and between category distinction, suggesting that language
is an important factor in conceptual representations. The beneficial effects
of language was also present when the network did not receive any linguistic
input.
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Part II

Framework and case studies
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7 Non-Symbolic Algorithms

This far we have reviewed how to achieve conceptual representations and
what properties they exhibit. In Rogers & McClelland (2006) conceptual
representations were achieved by employing distributed representations at
the hidden layer of a neural network. These representations elicited behavior
similar to human behavior in semantic tasks. In Barsalou (1999; 2003a;
2003b) a concept is represented as a simulator. An object in the world
belongs to a simulator that can produce a simulation of it matching the
perceived entity to some degree. These simulators are far more flexible than
the hidden layer representations we have seen and support a wide range of
complex behavior. In fact, simulators can develop for all perceptual states
arising and integrate these states both spatially and temporally. As such,
simulators can develop for any perceivable aspect of the world and any
introspective aspect of the agent.

In this section a framework for the use of conceptual representations in
high level cognitive function will be presented. That is, how PDP might
be engaged in high level cognitive behavior such as algorithms, planning,
and language production. This will be done within the framework of non-
symbolic algorithms and non-symbolic concepts (Veflingstad & Yildirim,
2007). Within this framework it is assumed that algorithms exist in the
human brain, that they are represented non-symbolically and that they op-
erate on non-symbols. High level cognitive function can thus be represented
without the use of any symbols by employing non-symbolic algorithms and
concepts. It is further proposed that a thought simply requires the acti-
vation of concepts. To frame our discussion I will present three levels of
cognition proposed in (Veflingstad & Yildirim, 2007):

1. Stimulus-Response level: This is the level where there is a
direct functional mapping from the sensations of a situa-
tion to behavioral outcomes. For example, a robot might
be wired up to avoid obstacles conforming to a particular
pattern of activations across proximity sensors.

2. Conceptual Level: This is the level where there is formation
of concepts in parallel to a functional mapping from the sen-
sations of a situation to behavioral outcomes. For example,
a robot might be wired up to avoid obstacles conforming to
a particular pattern of activations across proximity sensors
and in the meantime it forms the concept of obstacle. The
obtained concepts are employed in high level cognitive tasks
e.g. thinking, planning, decision-making.

3. The Language Level: This is the symbolic level and there is
a functional mapping from the conceptual level to the sym-
bolic language level. For example, a robot maps a concept
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of obstacle to the word “obstacle” (p. 29)

Even though these levels are believed to be the major ones, their ac-
tual separation is vague. For example, it might be possible that concepts
are formed at level 1 while level 2 is left with the function of using these
concepts. The material we have reviewed this far also suggest that level 3
and 2 have a top down effect on the functioning of the lower levels. For
example, the acquisition of concepts influence how the world is perceived
(Goldstone, 1994), while the acquisition of language makes the conceptual
representations more precise (Cangelosi & Parisi, 2001). I would like to
stress that even though level 3 is termed symbolic its processing need not
be symbolic as similarity based generalization can possibly rid the need for
symbols. That is, whether or not the brain function symbolically is still a
debate in the field of AI. Here it is proposed reasoning can be done without
the use of any symbols. This, however, does not exclude the possibility of
symbolic processing also being present in the brain.

The focus of this section will be on how an agent might utilize the con-
cepts it forms during navigation in high level cognition. Since level 2 is
attributed with this function it this level the discussion will be centered
around and it is here the proposed non-symbolic algorithms reside. If the
algorithm is not represented symbolically and it does not manipulate sym-
bols, how is it represented and what does it manipulate? In the section on
semantic cognition we saw how PDP can represent semantics. In fact, when
the network in Figure 1 produces an output pattern as a result of a presented
item and relation pair, it is actually completing a proposition. Completing a
proposition can be seen as executing an algorithm. This would suggest that
an algorithm can be represented within PDP. We have further seen that
the semantic behavior arises from similarity based generalization suggest-
ing that our algorithms should operate on distributed representations. It is
thus proposed that non-symbolic algorithms operate on non-symbolic con-
cepts, achieved by employing distributed representations such as the hidden
layer representations we have seen earlier. I would like to stress that the
distributed representation is not a concept but a specific conceptualization.
The concept arises from the system through similarity based generalization.
However, for simplicity distributed representations will be referred to as con-
cepts here. This is justified because each step of the algorithm is assumed
to operate on sets of patterns, treating them similarly. When I refer to,
for example, the concept of cold it is this set I am referring to. A step in
an algorithm often involve decision making, and, as such a step in an non-
symbolic algorithm can be an if-then rule. An if then rule is essentially a
classification, and is therefor represented with a feed forward neural network
here. Also, an action is also a concept and might therefor also be a step in
the algorithm. I will now describe how algorithms may be acquired using a
bathing algorithm from Veflingstad & Yildirim (2007) as an example.
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7.1 Representation and acquisition of algorithms

We will now consider the case of a child learning an algorithm through its
experience with the world. Specifically, the child experiences cold lakewater
and as a result of this does an evasive maneuver, stimulus-response in nature.
The algorithm can be represented in english as:

1. sense the lakewater

2. if the lakewater is cold then get out of the lakewater

The first step of the algorithm consists of the concepts sense and lakewa-
ter. The second, involves an if then rule having the concepts lakewater and
cold as its inputs and the concept get out of as a result. sense and get out of
are action concepts. As the child senses the lakewater the concept sense is
active. It is assumed that the child has previous experience with these things
and thus has these concepts in its brain. During execution of step 1 sense
and lakewater is active. These to concepts being simultaneous active cor-
responds to the thought “sensing lakewater”. The execution of this step
causes the actual sensing of the water at level 1. As a result, lakewater
and cold becomes active. sense is now out of context and is assumed to
have lost some or all of its activity. The concepts lakewater and cold being
simultaneously active corresponds to the thought “the lakewater is cold”.
As a result of the lakewater being cold, the child feels physical discomfort
and gets out of the water. This behavior happens at level 1 and as a result
of this, get out of becomes active at level 2. When this happens for the
first time, the child has no knowledge of this causality and can not predict
this outcome. However, as a result of these concepts being simultaneously
active, a causal link starts to form between lakewater, cold and get out of.
This link is the if-then rule and captures the causality among the concepts.
Once this link has formed, step 2 will be executed when the concepts in its
precondition are active, allowing the child to plan ahead. This link can for
example help forming thoughts such as “if the lakewater is cold, I should get
out of it”. Also, the resulting action get out of needs and argument so that
the child knows what to get out of. A conceptual relevance link must must
therefor be present. This is not a physically present link, but represents a
construal of the situation. This could for example be that the child observes
the sequence of which the concepts becomes activated and thus understands
that it is the “cold lakewater”’ that elicits the “get out of” action.

This demonstrates how algorithms can be acquired by experiencing the
world. These algorithms algorithms can then be applied to produce more
complex thought allowing the agent to reason about the world. However,
what is the process allowing this learning to take place? Does cognition sim-
ply associate blindly everything that cooccurs? This would make learning

39



very hard, and make learning temporal associations impossible. I will pro-
pose in accordance with previously reviewed material that cognitive control
(Braver & Cohen, 2000; Miller & Cohen, 2001; Miller & Freedman et. al.,
2002 ) guides the process. Patterns of sustained activity in the PFC can as-
sert selective attention honing sensation into informative grains. The PFC
could thus be responsible for focusing on the relevant concepts during learn-
ing (as well as the relevant aspects of the concepts). Consider the algorithm
above: for learning to be successful, irrelevant aspects of the environment
must be excluded and the causality must be in the right direction. In ac-
cordance with the PFC function reviewed earlier it is here assumed that
the relevant aspects are filtered out by excitation of the relevant concepts
(and possibly inhibition of the irrelevant ones) and gating of the relevant
information into the PFC. The causality of the situation is construed by
DA neurons learning/knowing that the cold lakewater is a good predictor of
the get out of action. In this example, it might be that prediction learning
is unnecessary since the cue and result are simultaneously active, and that
this learning is done by some other process construing the meaningful causal
relationship. It might thus be the PFC which construes the conceptual rel-
evance while also being the place where the algorithm is first represented.
The algorithm will later be pushed down to more autonomous areas of the
brain if the algorithm is executed repeatedly. This could happen by the
child experiencing the same situation again or by the child exercising its
new thought skill (executing the algorithm in the PFC).

To investigate the feasibility of this approach a non-symbolic summa-
tion algorithm was implemented. The aspect of cognitive control, being a
complex issue, was left out. The simulation thus investigates the feasibil-
ity of learning long addition employing conceptual representations. This
simulation has previously been presented in (Veflingstad & Yildirim, 2007).
Because of its relevance it is repeated here.

7.2 Non-symbolic Summation

We have seen that the concepts that represent sensations can be associated
with concepts that represent actions. We need to be able to simulate this as-
sociation while representing the basic elements of algorithms using artificial
neural networks. Towards this end a Non-Symbolic summation algorithm
was implemented simulating an agent doing long addition. The simulation
employed two neural networks. One, an auto-encoder learning the identity-
mapping on 256 pixel grayscale images of the digits from zero to nine deriving
a conceptual representation of the numbers seen (Figure 2). These images
are not intended to represent the retinal activation patterns produced when
perceiving a digit. The simulation assumes a nonverbal numerical represen-
tational system extending across different modalities. Evidence supporting
this contention is presented in (Jordan & Brannon, 2006). Since the auto-
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encoder is too simple a system to perform this task, the images are intended
to represent all instances having a numerical interpretation known to the
agent. The other network, henceforth called the summation network, was a
four-layered feed-forward network taught to map the conceptual representa-
tions of two numbers and a carry to a conceptual representation of a number
and a carry out (answer), thus carrying out the actual summation (Figure
3). To add two numbers the following steps was performed: Starting with
the lowest order digits, one digit from each number was presented to the
auto-encoder in turn. After each presentation, the conceptual representa-
tion derived on the conceptualization layer was copied to its corresponding
position on the input neurons of the summation network. If these were the
first digits to be added, carry in was set to the conceptualization of zero.
If not, the conceptualization present at carry out was copied to carry in.
Then activation was fed forward and the activation on the output neurons
corresponding to the answer was copied to the conceptualization layer of
the auto-encoder and decoder. This was the first digit in the answer. This
process was carried out until there were no more digits to add and carry
out was zero. The corresponding Symbolic expression of the summation
algorithm can be given as follows:

1. Sense two digits from two numbers visually.

2. If there are no more digits to add and carry out is zero, display sum-
mation in a visual form.

3. Else, sum the two digits and the carry into a number and a carry.

4. Go to Step 1.

The auto-encoder was a five layered neural network, the middle layer
being the one representing the concepts. The input and output layers had
256 neurons each. The two layers on each side of the middle layer had
60 neurons each, and the middle layer had 15 neurons. The network was
trained using back-propagation for 10000 epochs with a learning rate of
0.01. At each epoch, the digits from zero to ten were presented. Weights
were updated after each presentation of a digit. After presentation of a
digit and before feeding activation forward, Gaussian noise with a mean of
zero and a standard deviation of 0.2 was added to the input neurons. The
summation network had 45 input neurons (3 * 15), 37 neurons in each of
the two hidden layers, and 30 output neurons (15 * 2). It was trained using
back-propagation for 10000 epochs with a learning rate of 0.01. At each
epoch, every combination of two digits and a carry out of 200 possibilities
were taught. Each digit having 10 possible values ranging from 0 to 9 leads
to 100 possibilities for the digit pairs to be added. Having a carry value 0
or 1 increases the number of possibilities for digit pairs to 200. No Gaussian
noise was added. Weights were updated after each combination. In both
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Figure 2: Auto-encoder

Figure 3: Summation network

networks, every hidden and output neuron also had a constant bias of one
with a modifiable weight.

We ran the simulation ten times and averaged the results. After 10000
epochs the sum of squared errors was 1.83 and 3.16 in the auto-encoder and
the summation network respectively. To test the performance of the sum-
mation network, training was turned off each 500th epoch and 1000 summa-
tions trials were performed. At each summation trial two random numbers
in the range 0-999 were selected and summed according to the procedure
described above. The performance was recorded in the following manner:
Failure to produce the correct carry or answer was an error. Each answer
and carry produced was decoded in the auto-encoder. Then, for each image
in the dataset, the sum of absolute differences with respect to the decoded
image was computed. The image in the data set with the smallest sum of
absolute differences was interpreted as the summation networks intended
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Figure 4: The activation pattern for the conceptualizations

Figure 5: Errors during summation and training.

answer/carry. If this was incorrect an error was recorded. A reconstruction
error was also computed as the average of the absolute differences computed
above. After 4500 epochs the number of errors stayed below 3 and at epoch
10000 it dropped to zero. The reconstruction error after 10000 epochs was
3.11. Figure 4 shows the activation pattern for the conceptualizations.

This shows that the network had almost perfectly learned non-symbolic
summation, the only “error” being an inability to produce an answer identi-
cal in appearance to the digits learned (an absolute difference of 3.11 is very
close though). Figure 5 shows the change in squared sum and summation
error over 10000 epochs, maximum error obtained being around 3500 when
averaged for 10 runs.
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7.3 Conclusion

In this section it was proposed that algorithms can exist in the human
brain and that they are represented non-symbolically. It was shown how
they can be acquired through observing the causality in the domain and by
construing meaningful relationships among concepts. These algorithms can
be represented by employing distributed representations in neural networks
and they employ concepts in their processing. When an algorithm has been
acquired it may help to produce complex thought and may thus be used
in planning. It is thus proposed that algorithms are essential in reasoning.
The PFC is a region of the brain suitable for acquiring these algorithms. As
these algorithms are used frequently, they will be “pushed” down to more
autonomous areas of the brain, thus releaving the need of attention.
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8 Novelty detection in and between modalities

The ability for an autonomous intelligent agent to detect whether some per-
ceived instance is novel is important to intelligence. Within every novel
instance lies the promise of learning something new which may be of im-
portance to the agent—the purpose for which it was created. Also, if the
agent is endowed with a multi-modal conceptual system, then novelty can
be measured across different modalities allowing the agent to know in what
way it previously has experienced the perceived instance and thus what to
expect from the world. Knowing in what ways it has not experienced the
perceived instance allows it know what kind of information it can gain from
investigating the instance. Novelty can also serve as an attentional factor
causing an agent to explore instances perceived as novel. For example, af-
ter children have been habituated with a set of artifacts and then given a
choice between a novel artifact and an artifact similar to the ones in the
habituation set, they tend to choose the novel one (Rogers & McClelland,
2006). In Rogers & McClelland (2006) this was modeled by computing
the Euclidean distance between the conceptual representation of the novel
instance and the centroid of the conceptual representations of a set habitu-
ation instances. This measured the novelty of an item with respect to the
current context. In NASA’s OASIS project (Castan̋o, R et. al) novelty de-
tection is used to identify science opportunities. In-situ rover’s are given the
ability to classify whether a perceived rock is novel and use this informa-
tion in prioritizing what rocks to sample. The OASIS project used a hybrid
approach utilizing distance-based k-means clustering, probability-based and
discriminative methods. However, one could also measure novelty by how
well an agent is able to conceptualize the world. This approach would not
require the maintenance of a context or any reference to memory. If such a
novelty is available for conception it can explore the world with a preference
for the unknown. Novelty is thus a natural way of endowing an agent with
curiosity, the result being an agent “intent” on discovering the world. Here
we will investigate such a novelty measure. The only information used to
determine this measure is the information present in the network weights.

8.1 Novelty as reconstruction error

The approach taken here utilizes auto-encoders (Hinton, 1989) to derive
compressed hidden layer representations of presented stimulus. The hidden
layer representations gets compressed because a hidden layer narrower than
the input/output layer is used, reducing the dimensionality of the presented
stimulus. This has two important advantages:

• The dimensionality gets reduced by taking advantage of redundant
information; That is, correlated features in the input stimulus. In
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other words, redundancies gets compressed allowing further processing
to easier focus on the more relevant properties of the stimulus.

• A low dimensional representation (LDR) avoids what is known as the
curse of dimensionality: The number of examples necessary for reli-
able generalization grows exponentially with the number of dimensions
(Edelman,, S. & Intrator, N., 1997) .

During training an auto-encoder it is taught to reproduce on its output units
the same patterns as presented on its input units. Thus, after sufficient de-
gree of training, a pattern presented to the network which reproduces a
pattern on the output units with low error, will most likely be a pattern
similar to one taught, while one with high error will be an unfamiliar one.
A threshold function of the error signal can thus be used to judge novelty.
In Elman (1988) this technique is used to recognize learned syllables in con-
tinuous speech. In Japkowicz (1995) it is applied to several other problems
with success.(NOTE:Should mention some if the problems) In this article
the technique is extended to include a link between two modalities (vision
and audition) allowing the agent to both decide whether it has seen the
presented instance before and if it has heard a word associated with the
instance before. A simulation is implemented to investigate the following
points:

• Will a link between modalities be able to function reliably throughout
training? A fully conceptual system would have to learn, and thus
update its internal representations, continuously. Moreover, small er-
rors in conceptual representations would be expected to have a higher
impact than errors in input representations—The redundancies are
compressed. As a result, a link between modalities (working on con-
ceptual representations) might be unable to function to an acceptable
degree of precision.

• How resistant will this conceptual system be to noise?

• If our agent sees a familiar instance it does not have a word associ-
ated with, will the link infer a novel conceptual representation in the
auditory modality?

• Is it possible to find a general procedure to derive the threshold func-
tion for deciding novelty.

The three first points above relates to the precision of the link between
the modalities, the last one to a method for implementing an agent able to
detect novelty.
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8.2 The simulation

The purpose of this simulation is to investigate how well a link between
two modalities fares in novelty detection. I wanted the modalities to be
perceptually grounded while not having to deal with the complexities of
implementing an auditory system able to deal with differing word lengths,
stress and pronunciation. As a result, input to the to modalities was rep-
resented as pictures. Input to the vision modality was pictures of numbers
while pictures of words (the words for the different numbers) was the input
to the audition modality. As a result, the two modalities differ only in their
number of input units (size of the pictures) and the appearance of their
input pictures.

Two auto-encoding networks are employed in implementing the two
modalities, vision and auditory (figure 6). Their function is to derive hidden
layer conceptual representation of presented pictures, and to be noise resis-
tant and able to generalize. The link between the modalities is implemented
using a bidirectional feed forward network (figure 6). Its job is to learn a
mapping in both directions between the conceptual representations. The
link is made bidirectional because the network having its conceptual repre-
sentation inferred has no way of deciding its novelty—The novelty measure
is the difference between the input and output of the network. A bidirec-
tional link allows the activity of the inferred concept to flow back to the
original network; the difference between the original and resulting activity
is the novelty measure. It is thus the link which is responsible for deriving
the inter-modal novelty measure. Both the auto-encoders had one hidden
layer consisting of 40 units, their number of input/output units depended
on the size of the pictures they were trained on. The link had three layers
in both directions, the hidden in both directions having 40 hidden units.
The input to the vision modality was 256 pixel gray scale images of num-
bers. These numbers were separated into three sets: A training set used for
training the network and testing performance, a set called the “similar set”
used for testing performance, and a set called the “novel set” also used for
testing performance. These sets are listed under “Numbers” in table 1. The
input to the audition modality was 250 pixel gray scale images of words. As
opposed to the vision modality, the audition modality had only one set of
pictures, a training set consisting of the words for the numbers from zero to
ten. This set is listed as “training set” under “Words” in table 1.

As is apparent from table 1 the size of the “Numbers” and “Words”
training set is different. This was chosen to allow the simulation to know
some numbers only by sight. When perceiving these numbers during test-
ing, whether or not the link infers a novel representation in the audition
modality can be investigated. The “Similar” and “Novel” sets were present
for performance testing. The “Similar” set consisted of the numbers from
zero to five in italic font thus only being slightly different than the learned
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Figure 6: This figure shows the architecture of the networks. The ellipsis’s
marked blue has a conceptual interpretation.
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Numbers Words
Training set Familiar set Novel set Training set

0 0 45 zero
1 1 46 one
2 2 47 two
3 3 48 three
4 4 49 four
5 5 five
6 six
7 seven
8 eight
9 nine
10 ten
11
12
13
14
15
16
17
18
19
20

Table 1: The “training set” is the set used to train the vision modality. The
familiar set is equal to the six first entries in the training set except the
numbers are written in an italic font. The novel set is very different from
anything the number-network is taught. The word set is the training set for
the audition modality.
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numbers. The Novel set was very different from anything taught to the
modalities.

All the networks was trained using back propagation with a learning rate
of 0.02 and online weight update. Also, all hidden and output layers had a
constant bias of one with modifiable weights. Gaussian noise with a mean of
zero and a standard deviation of 0.2 was added to the presented patterns in
the vision modality during training. The networks were trained for 10,000
epochs, each one learning the patterns in the training sets. This was done
according to the following recipe:

The numbers in the “Numbers” training set was presented to the vision
modality in ascending order. If, at each presentation of a number there
was a word at the corresponding index in the Words trainings set, then this
word was presented to the audition modality and the link between the two
networks was updated using the two conceptual representations as input
and target (both representations functions as both target and input because
the link is bidirectional). As an example, when the vision modality was
presented with the number 1, the audition modality was presented with the
word “one”, then weights were updated in all networks. When the vision
modality was presented with the number 20, only weights in the vision
modality was updated.

I have yet to give a formal definition of how the novelty measure is com-
puted. This is simply the sum of absolute differences between the input and
the output of the network:

f(x) = sum(i = 1)n|Xi − Yi|] (1)

In equation (1)Xi is the ith input unit and Yi is the ith output unit. Every
100th epoch, learning was turned off and the performance of the networks
was tested in the following manner:

1. All the numbers in the training set was presented to the vision modal-
ity in ascending order. For each presented number, the novelty was
computed according to equation (1) and recorded. Then the image in
the Numbers training set the image on the output units was closest
to was computed. The image it was closest to was the image in the
“Numbers” training set it had the lowest sum of absolute differences
with. If the image was closest to itself (it had associated correctly)
activation was fed through the link, then from the hidden layer of the
audition modality to its output layer. If the image associated wrong,
an error was recorded. The novelty measure for the link was recorded
using equation (1) with X being the original hidden layer pattern of
the audition modality and Y being the pattern produced by the link.
Also, the image in the “Words” training set the image on the output
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units of the audition modality was closest to was computed in the
same manner as above 1. If this image had the same index as the
image currently presented to the vision modality, the association was
correct; if not, an error was recorded.

2. All the numbers in the Numbers similar set was presented to the vision
modality in ascending order. Performance was recorded in the same
manner as above (an association was deemed correct if the similar
“image” with index one associated with the image at index one in the
“Numbers” training set)

3. All the images in the “Numbers” novel set was presented to the vision
modality. Only the novelty measure was recorded (No association error
or novelty for the link was computed).

No noise was added during testing. Also, during phases 1 and 2 above, if
the number presented to the vision modality associated wrong then no value
was present for novelty and failure for that instance in the audition modality
during the current epoch. To remedy this a novelty and failure of -1 was
recorded. The simulation was run ten times and the results averaged with
missing values treated specially: If at any epoch, a missing value existed for
an instance, then the average for that instance during the current epoch was
-1 for both the novelty measure and failure.

From the averaged result an upper bound on correctness was computed
separately for each modality in the following manner:

The averaged results from each epoch was sorted in ascending order
according to the novelty measure. Then the list was traversed until an entry
with a failure larger than zero was found. If the entry before this one had
a fail of zero, then that entries novelty measure was the upper bound on
correctness. If it had a fail of minus one, the upper bound on correctness
was zero. The results for the vision modality is shown in figure 7, the
audition modality in figure 8.

As noted in the section above I also wanted to investigate how resistant
to noise the link was. Therefor the simulation was run again in the same
manner as above except that Gaussian noise with a mean of zero and a
standard deviation of 0.2 was now added each time a picture was presented
to the vision modality during performance testing. The results for the vision
modality is shown in figure 9 and for the audition modality in figure 10.

8.3 Results and discussion

A simulation of intra-modal and inter-modal novelty detection was run. The
purpose of the simulation was to investigate how well will the link would

1This was only computed if there was a number to word association for the current
number.
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Figure 7: This plot shows the novelty measure for all the patterns presented
to the vision modality. The upper bound on correctness is also plotted.
It is clear from this graph that the network behaves correctly on patterns
inducing much higher novelty than the patterns it was trained on (red).

Figure 8: This plot shows the novelty for pictures presented to the audition
modality. Note that in this plot, some pictures have missing values for
certain epochs and as a result are plotted with a novelty of -1. From this plot
one can clearly see a big separation of patterns that has word association
(red) and patterns that does not (blue). However, The upper bound on
correctness (purple) follow the red lines (the patterns the link and audition
modality actually learned) much closer than in figure 7
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Figure 9: This plot shows the novelty measure for all pictures presented
to the vision modality when Gaussian noise was added. The separation
between the learned and novel pictures is not as pronounced as in figure 7.
Also it is clear that at certain epochs the network actually behaves erroneous
as the upper bound on correctness (purple) is lower than some of the learned
words (red).

Figure 10: This plot shows the novelty measure for all pictures presented to
the audition modality when Gaussian noise was added. Interestingly, this
plot is more similar to its corresponding noiseless case than figure 9 with
respect to increase in novelty. There is some erroneous behavior where the
upper bound on correctness (purple) is lower than than the novelty measure
for some of the learned images. Note that missing values are plotted with a
novelty of -1.
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function throughout training, how noise resistant the system would be, if the
system would correctly handle pictures not having a word association and
if it was possible to find a general procedure to derive a threshold function
for deciding novelty. The simulation shows that the link, although behaving
differently than the auto-encoder, functioned well throughout training. The
main difference was that the link enforced a stricter judgment on novelty
(the upper bound on correctness was much closer to the novelty measure
of learned pictures) and that it needed almost twice as many epochs as the
auto-encoder to reach a level where it behaved correctly. However, the link
also enforced a much smaller separation of learned and similar pictures than
did the auto-encoder, something which would in part be responsible for the
upper bound being stricter. Also, differing from epoch to epoch, between
two and three similar pictures associated correctly in the auto-encoder, while
only between one and two in the link. This would also be a factor influencing
the upper bound on correctness in the link. This would seem to suggest that
the link generalizes to higher degree (but also with higher error), although
the simulation was not detailed enough to suggest why the link had a higher
error on associations for pictures in the similar set.

When noise was introduced into the system the separation between the
different picture sets in the vision modality was much less pronounced and
associations on the similar picture set in the vision modality had a higher
error. Interestingly, the noise seems to influence the novelty measure of
the learned and similar picture sets more than the novel picture set —The
simulation does not offer any clues as to why this is so. The noise also
causes the networks to associate learned pictures wrong, thus implying that
an agent operating in a noise environment would from time to time either
falsely judge learned images as novel, or associate learned images wrong
(this would depend on the threshold function for judging novelty). This
erroneous behavior is also present in the link, however, novelty measures
seems some what unaffected of the noise. Although the simulation being to
crude to offer any explanation of this behavior, it would be safe to assume
that one reason for the novelty measures seeming unaffected by the noise
would be that much of the noise is filtered away before activity reaches the
hidden layer of the vision modality. It would seem that introduction of noise
would affect both the selection of a threshold function and the ability of an
agent to make correct associations.

On the issue of whether the link would be able to correctly induce novel
conceptualizations in the audition modality when the conceptual represen-
tation present in the vision modality had no word association, the answer
is yes. From the plot in figures 8 and 10 on can clearly see a separation
between pictures with and without a word association. This behavior also
seems to be very noise resistant.

As to the selection of a threshold function for deciding novelty, one an-
swer is evident from the behavior shown in figures 7 to 10: The threshold
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should be selected as a function deciding on the arithmetic mean of the
novelty measure of the learned images multiplied with a function of two
variables (possibly more). Moreover, the two variables would be how much
training the network(s) has received (the current epoch) and how noisy the
environment is. How the function of the current epoch and amount of noise
added will behave is left unspecified here. This function would bound how
strict the system would be in its judgment on novelty with respect to time.
Function (2) below is the function for deriving the threshold, function (3)
decides on this threshold.

f(m, e, σ) = m ∗ g(e, σ)
e = current epoch
m = arithmetic mean of novelty measure
σ = standard deviation of noise

(2)

n(x) =

{
0 x < f(m, e, σ)
1 x ≥ f(m, e, σ)

x = the novelty measure to decide on
(3)

The results presented here, although qualitative in nature, offers promis-
ing evidence supporting intra-modal and inter-modal novelty detection using
the method outlined above. However, in the presence of noise, performance
degraded and some erroneous behavior emerged. There are however a few
questions relevant for further investigation left unanswered. It seems perti-
nent they are voiced here:

• How can the function g(e, σ) be specified so it optimizes performance?
It is highly probable that an agent operating in a real environment
would encounter situations with differing amount of noise. If provided
with a signal mirroring the amount of noise, one would want a function
behaving optimally in all situations encountered.

• How will the method hold up in more complex domains? The simula-
tion run here operated in a very simple environment. Will the method
function well in a real-world scenario?

• How can this approach be extended to allow “many to many” relation-
ships? There is one great flaw evident in this approach with respect
to intra-modal novelty detection: It can only handle “one to one” re-
lationships. The reason for this is that feed forward neural networks
can only handle “many to one” relationships when the input and out-
put units are interpreted as distributed patterns (i.e not using localist
encoding or several clusters as input or output). The situation is even
worse here since the link is bidirectional (i.e can only handle “one to
one” relationships).
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9 Novelty as an attentional guide

In the last section we saw that novelty can function as a continuous “type-
checking” parameter. That is, using a novelty measure, the validity of an
association can be assessed and compared with other associations. Using
novelty, a system of PDP networks can thus validate associations as well as
compare them to each other, guiding simulations along a path from probable
to less probable associations. However, the links presented in the last simu-
lation was unable to represent “many to one” associations. A wast amount
of links would thus have to exist as each concept can include an immense
number of conceptualizations, each possibly differing in associations to other
conceptualizations in ways not relevant to the concept. Consider a car sim-
ulator: it has the ability to simulate a wast amount of different cars, each
one possibly differing in the parts it is made up of. So this approach could
prove to be untenable. However, if we have a link able to represent “many
to many” associations this would no longer be a problem. The problem is
now that it is not clear how to select among association that are more or less
plausible. Using the network in figure 1 this is not a problem. In this net-
work, the most plausible association will be the original one, while varying
among associations can be seen as moving the pattern of activation on the
hidden layer. Barsalou’s (1999) solution of increasing excitatory connections
between regions in a simulator and increasing inhibitory connections within
regions, seems more natural. For example, in the previous simulation (7.2),
inhibitory connections would develop within the hidden layers of the vision
and audition modality, while excitatory connections would develop between.
If this was a massively recurrent system, then upon thinking of a number,
its most typical word association would appear on the hidden layer of the
audition modality after activation has circulated for a period. To simulate
another word association (if it exists) patterns of activity in the PFC could
inhibit synaptic activity sustaining this pattern while exciting synaptic ac-
tivity that do not, thus causing the pattern to settle on another attractor.
This is in line with Barsalou (1999) proposing that selective attention fo-
cus on regions of simulations, thus guiding the simulation. The novelty of
a perceived instance would now be the sum of errors on the output layer
of the auto-encoder while the novelty of an association between concepts
would be proportional to the amount of PFC influence. Novelty modeled
this way supports both autonomous learning and autonomous exploration.
That is, if the agent is modeled in such a way that it will investigate closer
any object inferring novelty into the system, it would explore the world
autonomously. The nature of this novelty tells the systems what type of
information it lack and thus how the object should be investigated. DA
neurons are known to encode novelty, so it is here assumed that the novelty
in the system is reflected in DA activity in charge of gating information into
the PFC. However, as the agent explores the environment with the goal of
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reducing novelty, it further develop its abilities to conceptualize the world.
This can happen as a result of perceptual similarity as well as discovering
relationships among perceived objects. The discovery of relationships is here
also attributed to DA neurons learning what properties predict predict re-
ward, or the meaningful causal relationships among the properties. During,
off-line processing, the guiding of a simulation along more or less probable
associations can be seen as choosing among more or less novel associations
where the novelty is proportional to the PFC’s influence on processing. This
is analogous to the amount of attention necessary for thinking a thought.

10 Simulation and language

We have previously seen how introduction of language into the conceptual
system causes further differentiation of between category representations
and increased similarity of within category representations (Cangelosi &
Parisi, 2001). In Cangelosi & Riga (2006) they show how language can help
acquisition of higher level behavior through grounding transfer. For ex-
ample, an agent is first taught to execute the actions CLOSE LEFT ARM
and CLOSE RIGHT ARM. After this behavior has been acquired the agent
learns that “PULL [is] CLOSE LEFT ARM [and] CLOSE RIGHT ARM”.
This new behavior is the acquired by associating the new word PULL with
the actions associated with the words CLOSE LEFT ARM and
CLOSE RIGHT ARM. This process of grounding transfer can be seen as an
implementation of Barsalou’s (1999) symbol productivity mechanism (Can-
gelosi & Riga 2006). That is, the agent simulates the low order actions and
then associates these simulations with the PULL action. Language thus
seem to be important both in acquiring efficient conceptual representations
and for acquiring more complex behavior. We will now consider how lan-
guage might be important in imagination in the context of simulation.

Consider running a simulations of concepts that do not have perceptible
referents in the world. For example, I might now tell you to imagine two new
colors called A and B. These colors are distinct from each other and all other
colors. It does not seem feasible that these concepts are represented within
the color simulator because there does not exist any perceptual symbols
for them in the vision modality. It would be much more sensible that by
parsing in the sentence, the concepts A and B becomes integrated into a
new simulator guided by the syntax of the sentence in same way as the
grounding transfer above. They could thus possibly be represented by a
simulation of their name combined with the construal of them being colors
in the abstract relationship “distinct” to each other and all other colors.
It is hard to see how such abstract thought can appear without the use of
language in a perceptually grounded system. This suggest that language
plays an important role in all aspects of concepts. That is, concepts can be
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acquired by experiencing the world and discovering meaningful relationships
in it, but language optimizes the conceptual representation, allows easier
acquisition of new behavior and facilitates abstract thought. Or to put
it in the context of perceptual simulation, language increases the skill for
producing context-specific representations of a category.
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Part III

Conclusions
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11 Conclusions and discussion

In this thesis we have investigated what concepts are and how they may be
represented. We have seen that conceptual representations can be achieved
by employing distributed representations in a hidden layer of a neural net-
work. A pattern of activity is in this respect a conceptualization while the
concept(s) it belongs to is a region of space treated alike by similarity based
generalization. That is, the conceptualization may still have its individual
properties only attributed to itself, but the properties relevant to the concept
are shared among the representations in that region of space. These regions
of space are allocated as dictated by coherently covarying properties of the
domain, and thus constitutes a hierarchical representation of it. In this hier-
archical representation, the most general concepts occupy the largest amount
of space, with their subordinate concepts distributed in clusters allocated
inside this space. This hierarchic representation is discovered in a coarse to
fine manner, mirroring the conceptual development of a child. Properties
being highly typical for a concept are, however, easier to learn and may thus
be acquired before properties of concepts superordinate to them, mirroring
basic level advantages in lexical acquisition. These typical properties show
a higher level of activation throughout training. Frequency of presentation
also influences how easy a concept or pattern is to acquire. Frequency of
presentation causes a higher pressure to differentiate the instance, thus allo-
cating a larger amount of space to it. This in turn facilitates the learning of
its individual properties, thus attenuating the basic level advantages. The
properties that covary coherently in the domain becomes more salient than
other properties. This allows concepts to be acquired based on especially in-
formative properties, thus possibly overlooking perceptual similarity. When
noise was introduced into the system, the hierarchy broke down in a fine to
coarse manner. These effects are all due to similarity based generalization
and the coarse to fine differentiation of conceptual distinctions, and support
many findings in semantic cognition. PDP thus serve as a good starting
place for achieving conceptual representations.

By viewing concepts as simulators (Barsalou, 1999; Barsalou, 2003a;
Barsalou, 2003b), they are a skill to produce context-specific representations.
This is also true of the hidden layer conceptual representations, although
depending on whether the context is predictive. A simulator is comprised
by a set of modality specific perceptual symbols extracted from perceptual
states. Barsalou (1999) also offered valuable insights as to how simulators
can support productivity and abstract thought.

We have also seen how categorization can influence perceptual discrim-
ination (Goldstone, 1994). By acquiring categories, the category relevant
boundaries acquire distinctiveness with emphasis on the category boundary.
For separable dimensions, the irrelevant dimension may receive acquired
acquired similarity, however, one null effect was also found in (Goldstone,
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1994). For Integral dimensions, the irrelevant dimension also acquired dis-
tinctiveness. When two dimensions were relevant for categorization, the
separable dimensions competed with each other, while the integral did not.
Based on results from (Gluck & Meyers, 1993) I have proposed that a predic-
tive auto-encoder can account for the results found for separable dimensions.
During categorization learning, the stimuli along with the assigned category
is processed by a predictive auto-encoder. The result is that predictive
dimensions acquire distinctiveness while redundant ones acquire similarity.
Whether or not the irrelevant dimension acquire similarity will thus depend
on whether it has previously been predictive. Language is another factor
influencing perceptual discrimination. When language was introduced into
the system it had a profound influence on the conceptual representations
(Cangelosi & Parisi, 2001). The representations acquired within category
similarity and between category distinctiveness. The effect was largest for
verbs, but was also present during non-linguistic processing. Language thus
helped the network perfect its conceptual skills with respect to non-linguistic
behavior. In Cangelosi & Riga (2006) language was used to implement
grounding transfer. This is a process where new behavior is acquired by
grounding it in previously learned behavior. This was achieved in the guid-
ance of language. This could also be seen as an implementation of Barsalou’s
(1999) productivity mechanism. The involvement of language in simulating
abstract thought has also been discussed. With reference to cangelosi &
Parisi (2001) and Cangelosi & Riga (2006) it seems that language has a
profound effect on conceptual processing.

Dimensionality of the representation is another important factor in con-
ceptual representations. As the dimensionality increases, the number of
examples necessary to reach a given level of performance increases exponen-
tially (Edelman & Intrator, 1997). Auto-encoders is a common method for
unsupervised dimensionality reductions which also preserves the topology of
the original domain. The dimensionality is reduced by compressing redun-
dant information thus allowing conception to focus on the relevant aspect
of the representation.

We have also reviewed a theory if prefrontal cortex function suggesting
its implication in guiding computation along processing specific pathways
and also in acquiring categories and rules (Miller & Freedman, et. al., 2002;
Miller & Cohen, 2001; Braver & Cohen, 2000). The PFC thus seems es-
sential in conception. However, as the rules learned in the PFC is executed
frequently, they get “pushed” down to more autonomous areas of the brain
and thus become more autonomous. The PFC will thus be most involved
in behavior requiring attention, among which acquiring concepts certainly
belongs.

A framework for higher level cognitive behavior from Veflingstad &
Yildirim (2007) was introduced. This framework was introduced within
three levels of cognition: the stimulus-resonse level, the conceptual level
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and the language level. Within this framework it is proposed that algo-
rithms exist in the brain and that they are represented non-symbolically at
the conceptual level. They operate on non-symbolic concepts and makes
decisions using feed forward networks modeling an if-then rule. By em-
ploying distributed representations these algorithms exhibit the properties
we have this far discussed and will thus exhibit semantic task performance.
These algorithms help experiencing more complex thought and are engaged
in higher level cognitive tasks such as planning. A simulation of a non-
symbolic summation algorithm was presented showing the feasibility of the
approach. It was proposed that the PFC is in charge of learning these algo-
rithms, but as they are frequently executed they get “pushed” down to more
autonomous areas of the brain and thus no longer require as much attention
to be executed.

Novelty was proposed as a means of autonomous exploration and a con-
tinuous “type checking” parameter. Novelty is an informative and important
“signal” as it allows one to assess knowledge of a perceived instance without
any explicit reference of memory. This was implemented in a simulation as
the sum of differences between the input pattern and the output pattern of
an auto-encoder. The simulation showed that novelty could be reliably as-
sessed within and between modalities as long as the environment was noise
free. When noise was introduced, the performance dropped. The simula-
tion was, however, very constrained as the link between the modalities only
supported “one to one” relationships. It was therefor suggested that novelty
of associations was better assessed as the amount of selective attention the
PFC must exert in order for a pattern of activity in a massively recurrent
system to settle into a new attractor. It should be mentioned that novelty is
here interpreted very broadly. It might be possible that a specific association
has been observed many times but that some other association overrides it
in the system. This association would thus not be novel in that it has not
been experienced but in that it has not been learned to a sufficient degree.
Novelty is here also used as an assessment of which of two associations are
least familiar. Novelty in this respect would thus be a measure of the amount
of stress a current line of processing introduces in the system.

From the material presented in this thesis I will in line with Barsalou
(2003b) conclude that the concept arises from a skill for producing context-
specific representations. This skill arises from interacting with the world and
observing meaningful relationships and properties within it. As this skill
improves, perception is affected in a way further facilitating this skill. Once
this skill has reached a certain level, language can be acquired, improving
this skill even more. This in turn, probably facilitates further acquisition
of language. Within reference to the three levels proposed there seems to
be a circular dependency between the layers with the concept arising from
this interaction. However, since conception can arise simply by similarity
based generalization, language would not seem necessary for conception. It
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does seem important in the complex conceptual abilities to humans though.
Even though it is here concluded that the concept emerges from the skill of
the system, this does not mean that it can not be investigated as patterns
of activation. As wee have seen, much can be learned from these patterns.
They can also be employed in algorithms achieving more complex thought.
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Abstract 
In Artificial Intelligence community, algorithms and 
symbols are accepted as the two sides of the same coin. On 
the other hand, there is a long lasting debate between the two 
significant approaches to AI, namely Symbolic AI and 
connectionism, on whether the human brain functions 
symbolically or not. In this work, we are proposing that 
algorithms and symbols are not necessarily the different 
sides of the same coin and that they appear separately. Thus, 
non-symbolic algorithms can exist. We further proceed to 
extend the idea of existence of non-symbolic algorithms to 
their existence in the human brain. We also present the 
representation of steps in an algorithm and the concepts on 
which those steps operate. The non-symbolic algorithms are 
high level and they can be part of either conscious or non-
conscious thinking. We also elaborate on different levels of 
cognition and especially on what we call the conceptual 
level where high level human thinking happens and where 
the proposed non-symbolic algorithms reside.  

Introduction 
Reasoning and behaviour are the two aspects that are 
assigned to cognitive systems. Proving theorems, thinking, 
planning, language production are tasks which belong to 
the reasoning aspect of cognition. On the other hand, 
movement generation and coordination are tasks that 
belong to behaviour aspect of cognition.  Parallel 
distributed processing or connectionism has been more 
successful with tasks relevant to the behavior aspect of 
cognition. In this paper, we investigate into their role 
relevant to the reasoning aspect of cognition within the 
scope of non-symbolic algorithms and non-symbolic 
concepts.  

More explicitly we can propose three levels of 
cognition: 
Stimulus-Response Level: This is the level where there is a 

direct functional mapping from the sensations of a 
situation to behavioural outcomes.  For example, a 
robot might be wired up to avoid obstacles conforming 
to a particular pattern of activations across proximity 
sensors.  

Conceptual Level: This is the level where there is   
formation of concepts in parallel to a functional 
mapping from the sensations of a situation to 
behavioral outcomes. For example, a robot might be 
wired up to avoid obstacles conforming to a particular 

pattern of activations across proximity sensors and in 
the meantime it forms the concept of obstacle.  The 
obtained concepts are employed in high level cognitive 
tasks e.g. thinking, planning, decision-making. 

The Language Level: This is the symbolic level and there 
is a mapping from the conceptual level to the symbolic 
language level. For example, a robot maps a concept of 
obstacle to the word “obstacle”.  

We believe that the current research in the field of 
cognitive science points to the above three levels in 
cognition.  However, although we believe these levels are 
the major ones, the relation between levels is an issue 
under research in cognitive science including researchers 
from the fields of Artificial Intelligence, robotics, and 
complex systems. It is still vague how these levels are 
separated from each other. For example, if sensory-motor 
systems and conceptual representations are proven to be 
tightly related, the formation of concepts will be part of 
level 1, and level 2 will be left with the function of using 
formed concepts in higher level cognitive functioning.  

The research relevant to level 1 is grouped under 
sensory-motor actions or reactive behaviors.  If the foot of 
a new born infant touches cold lake water, the infant will 
take its foot away in a reactive way. Since it is newly born, 
it has not yet formed concepts such as “lake water”, “cold”, 
“move away” etc. As it grows, it will form these concepts 
and will be able to utilize these concepts in forming 
thoughts such as “lakewater is cold” and this capacity is 
the subject matter of level 2. Relevant work that points to 
the possibility of level 2 is found in [Ziemke et al., 2005; 
Tani and Nolfi, 1999]. Rogers and McClelland (2006) 
suggest hidden layer representations in artificial neural 
networks as conceptual representations. Cangelosi (2004) 
uses similar representations to conceptualize world and 
also addresses the mapping from the conceptual layer to 
the language level.  

The relations between levels are formulated in the 
following questions: 
What is the relation between sensory-motor systems to 

conceptual representations? Are conceptual 
representations different in kind from those computed 
within the perceptual input systems and motor output 
systems that feed into and out of them? 

What is the relation of language to conceptual distinctions 
in thought? What is the dependency on language for the 



determination of the content of a person’s internal 
representation of a concept? 

These questions are raised in [Hampton and Moss, 2003] 
without claiming the 3 levels above and giving references 
to relevant work. Barsolau (2003) proposes that perceptual 
simulations represent concepts.  One other important point 
relevant to conceptual representations is whether they are 
modality specific or amodal. 

In this paper, we address level 2 within the scope of 
non-symbolic algorithms and non-symbolic concepts. Our 
aim is to show the possible role of conceptual level in tasks 
other than conceptualizations during navigation. How can 
an agent utilize the concepts it forms during navigation in 
tasks that require cognition at a higher level than 
navigation? Such tasks do not require navigation 
necessarily, but are more directed towards pure thinking 
such as planning, algorithm learning, decision making, etc. 
As to our knowledge, there is not yet much work done that 
attempts to achieve high level forms of thinking utilizing 
the conceptual representations that are based on 
connectionism. On the other hand, Elman (1990) proposes 
work that moves from symbolic language to conceptual 
representations using connectionism. Our example to 
explain non-symbolic algorithms and non-symbolic 
concepts will involve an agent that senses the lakewater as 
cold, and conceptualizes the world it experiences in the 
meantime. However, our implementation is about 
employing concepts in a summation task.  

Before embarking on this explanation an elaboration on 
what we mean by Non-Symbolic algorithms and Non-
Symbolic concepts is in order. For this purpose we have 
devoted the next section. After this, we explain the basic 
elements of the Non-Symbolic algorithms in terms of their 
representations. The penultimate section presents our case 
study on summation which was implemented in the form 
of Non-Symbolic algorithms and Non-Symbolic concepts. 
Last, we give our conclusions. 

Non-Symbolic Algorithms and Non-Symbolic 
Concepts 

In this work, we claim that there can be non-symbolic 
algorithms; that is, algorithms need not necessarily be 
represented symbolically and they do not necessarily need 
to do symbol manipulation. This claim requires that 
algorithms and symbols need not be the two sides of the 
same coin. The claim is valid both for artificial and natural 
intelligence. Algorithms compose the higher levels of 
cognition.   

If algorithms need not be represented symbolically and 
need not necessarily manipulate symbols, how are they 
represented and what do they manipulate? These questions 
are posed both for computational and natural intelligence.  

We will first elaborate on the answer to the second 
question. We propose that non-symbolic algorithms can 
operate on non-symbolic concepts which are also 
represented non-symbolically. A non-symbolic concept 
representation is achieved by employing distributed 

representations which have been studied and applied for 
numerous kinds of problems in the connectionism 
literature (Hinton, McClelland & Rumelhart, 1986). In 
distributed representations, the particular pattern used to 
represent an item is determined by the nature of that item, 
and so similarities and differences among the items to be 
represented will be directly reflected in similarities and 
differences among the representations themselves [van 
Gelder, 1991, p41]. There is supportive evidence in [Chao, 
et al., 1999] for distributed representations in human 
temporal cortex. 

Concepts can be considered as discrete categorizations 
(Gårdenfors, 2000), as opposed to sensation and perception 
that can be considered as continuous categorizations. 
Concepts can be seen as a discretization of the perceptual 
space [Gershenson, 2004]. 

In distributed representations, a cluster of neurons is 
involved in the representation of a concept (Dorffner, 
1989). It is different from local representations where only 
a single neuron is responsible for representing a concept. 
Representing non-symbolic concepts by using distributed 
representations is valid both for natural and artificial 
intelligence. 

Before we elaborate on the answer to the first question 
also, we will give a definition of an algorithm and indicate 
some of its important aspects. An algorithm is defined as 
follows: 

“An algorithm is a step by step procedure for 
performing a task, solving a problem or accomplishing 
some end”  

An important aspect of an algorithm in this definition is 
that it is composed of steps. We define a step as a process 
which starts and ends its execution at a certain point in 
time; that is, a step is carried out for a period in time and 
another step can be invoked for execution when its 
execution is finished. This aspect of a step does not 
necessarily require that steps always need to be carried out 
in sequence. Steps can be carried out in parallel and this 
aspect will neither conflict with the fact that a step starts 
and ends at a certain point in time nor with the fact that it 
lasts for a period of time.  

In addition to the above stated aspects, an algorithm can 
be either learned or innate but we are not going to 
elaborate on this aspect any further in this paper. Also, 
since algorithms are supposedly already existent in the 
human brain according to our non-symbolic algorithm 
approach, then what is left is to carry out the steps in an 
algorithm when required.  

In the next section, we will explain how non-symbolic 
algorithms might be represented in the agent’s brain 
(answer to the first question) and how they might 
manipulate or operate on non-symbolic concepts. 

Representation of Non-Symbolic Algorithms:  
Basic Elements 

In this section we will choose to present examples to 
introduce our general model or framework which 



represents non-symbolic algorithms and the concepts that 
the non-symbolic algorithms operate on.  

The use of hidden layers in artificial neural networks has 
been proposed for implementing distributed 
representations in semantic cognition for representing 
concepts. However, as to our knowledge, utilizing 
represented concepts and investigating their role in high 
level cognition such as thinking, planning, algorithms etc.  
has rarely been worked on. A recent work which represents 
concepts using distributed representations and uses them 
for high level cognition is given in [Rogers and 
McClelland, 2006]. 

At this point, it is almost clear that a step in an algorithm 
can be an action. Also, we propose If-Then rules as steps in 
an algorithm.  

In an If-Then rule, certain inputs are expected to cause 
certain outputs and for that reason, it embodies a decision-
making process. As a result, in computational intelligence, 
an If-Then rule can be represented by using a feed forward 
neural network. Then, the concepts in the inputs of the 
neural network would represent the “If” part of the If-Then 
rule whereas the concepts in the outputs of the neural 
network would represent the “Then” part of the If-Then 
rule. Finally, correct decision-making would require 
training the neural network in such a way that, certain 
inputs of the neural network could be mapped to the 
corresponding outputs of the network. 

On the other hand, such a decision-making mechanism 
is not necessary in representing an action. A representation 
that helps differentiate an action from another action would 
be enough to represent actions. For that reason, distributed 
representations are also useful in representing actions and 
concepts involve actions in our work. This approach is in 
line with some previous Artificial Intelligence work that 
presents ways of representing concepts and where actions 
are also accepted as concepts. Having said that, we can 
now propose that representations of objects in the real 
world, our sensations from the real world and actions are 
all concepts that we human beings form through our life 
times. In this paper, we do not discuss whether concepts 
are part of animal cognition although, in some animals 
such as mammals (dogs, cats, primates), we believe it to be 
so.   

Returning back to our goal of presenting means of how 
algorithms can be represented in an agent’s brain, we will 
examine a bathing algorithm. The algorithm consists of 
two steps: 

1) Sense the lakewater. 
2) If the lakewater is cold then get out of lakewater. 

The first step of the algorithm consists of the concepts 
of “sense” and “lakewater”. The second step is an If-Then 
rule and it has concepts of “lakewater” and “cold” in the 
precondition part of the rule and the concepts of “getoutof” 
and “lakewater” in the action part of the rule.  

If the lakewater is really cold then sensing the lake 
water physically while being in the lakewater will activate 
the concepts of “lakewater” and “cold”. 

We assume that concepts of “lakewater” and “cold” are 
already in the agent’s brain because we assume that the 
agent who senses the lakewater now has probably already 
had previous sensations of a lakewater and its being cold. 
On the other hand, we propose that forming the thought of 
“lakewater is cold” simply requires the activation of both 
of these concepts at the same time.  

Since both of “lakewater” and “cold” are concepts and 
that they do not involve a decision making process, an 
activation pattern in a neuron cluster for each of these 
concepts can be dedicated to representing them. The 
concept of “cold” corresponds to a sensation drawn from 
the lakewater whereas the “lakewater” itself is an 
observation or a sensation from the real world.  

As an example the activation pattern in Figure 1 might 
be representing the concept of “cold” whereas the 
activation pattern in Figure 2 might be representing the 
concept of “warm” in the same neuron cluster. Note that 
the representation of the concept of “warm” requires the 
activation of a different set of neurons if the same neuron 
cluster is used for the representation of the concept of 
“cold”. It is also the case that some of the neurons in both 
representations overlap in their activations for representing 
the two concepts.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First, “sense the lakewater” step in the algorithm is 
executed.  The execution of this step will cause the two 
levels of cognition. At high level cognition (conceptual 
level), the concepts of “sense” and “lakewater” will be 
activated (Figure 3). This will correspond to the execution 
of the first step of the algorithm as well as the thought of 
“sensing lakewater”. At the low level, sensing of lakewater 
will be achieved.  

 
 
 

Figure 1. A cluster of neurons that represent the 
concept of ”cold”. 

Figure 2. The same cluster of neurons that represent 
the concept of  ”warm”.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figure 4, it is shown that sensing the environment 
physically invokes the patterns of activations of the 
concepts of “lakewater” and “cold” at the same time 
(activation of the concepts are indicated by the gray color) 
meaning that these two concepts are related to each other, 
in this case “lakewater is cold”. Since the agent in the 
lakewater has possibly experienced a cold lakewater 
earlier, it is assumed that the representation of each of 
these concepts in a corresponding cluster already exists. 
Sensing the environment causes the activation of the 
corresponding representation for each of the concept. In 
addition to that, sensing each of these concepts 
simultaneously cause the simultaneous activation of these 
concepts. This way, not only the agent physically senses 
the lakewater as cold but also forms a high level thought 
which is “lakewater is cold” as part of its high level 
cognition and as part of its thinking while executing the if-
then rule. 

  The thinking of each concept refers to the activation of 
gray neurons as one experiences the coldness through 
his/her early life. 

 
 
 
 
 
 
 
 
 
 
 

The next step to execute is the If-Then rule (Figure 5). 
The action part of the If-Then rule can be activated once its 
precondition is true. Its precondition became true after the 
activation of concepts of “lakewater” and “cold”. In the 
current situation, action “sense” is out of context and for 
that reason, even if it might be still active, it will not be 
part of the execution of the current step. Thus, it is 
highlighted with lighter gray color during the execution of 
the second step. 

 
In the If-Then rule of Figure 5, each of the concepts of 

“lakewater” and “cold” will be activated as a result of 

sensing “lakewater” and sensing it to be “cold”. In addition 
to that, the physical incomfort of the agent’s body caused 
by the coldness of the lakewater will cause the action of 
“getting out of” the lakewater. The action of “getting out 
of” at the low level of cognition corresponds to the concept 
of “getoutof” at the high level of cognition. There is not a 
causal link from the concepts of “lakewater” and “cold” to 
the concept of “get out of” when for the first time, an agent 
feels a lakewater as cold and gets out of it.  

In Figure 5, by the end of the execution of the first step, 
the “sense” concept will not be activated any longer. 

 However, all three of these concepts are activated as 
one senses or experiences them. Also, a causal link will 
begin to form between the concepts of “lakewater” and 
“cold” and the concept of “get out of” during the first 
simulatenous experience of these concepts  as in   Figure 6 
(As the two concepts and the “get out of” concept are 
experienced simultaneously in time). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The forming of a causal link might help to experience a 
thought such as “if the lakewater is cold, I should get out 
of it”. In (Jordan & Brannon, 2006), a research on 
multisensory representation of numbers in 7 month old 
infants is reported. The multisensory representation 
reported seems to be the equivalent of what we refer to as 
distributedly represented concepts in this paper. The 
behaviour of the infants seem to correspond to an 
execution of an innate rule when they hear the voices of 2 
or 3 women. The rule can be expressed as follows: 

 
If 2 women’s voices are heard, look at 2 women’s faces. 
 
We believe that an infant might also have the conceptual 

representations of “women”, “voice”, “face” in addition to 
the number they are reported to be representing. However, 
if one of the infants could reply in response to a question 
such as ”Why did you choose to look at 2 women’s faces 
instead of 3?” by saying “I heard 2 women’s voices and 
that is why I looked at 2 women’s faces”, then they would 
be forming a high level thought.   

In the bathing algorithm example, a thought can appear 
for example just before we really get into the water and 
will help us plan ahead about what to do if the water is 
cold. This situation can also be interpreted as learning what 
to do under different circumstances. 

Cold 
Sense 

Lakewater 

get out of 

Figure 4.  Sensing the lakewater activates the concepts of 
”lakewater” and “cold” at the same time. 

Cold 
Sense 

Lakewater 

Figure 3.  Sensing the lakewater activates the concepts of 
”lakewater” and “cold” at the same time. 

input from the 
environment 

 
 
 

Lakewater Cold 

 
physical 
sensing 

conceptual 
level 

Figure 5. The execution of the second step. Note that the 
physical discomfort of an agent’s body causes the  
execution  of the “get out of” action concept. 



We also need to remember that the action part of the If-
Then rule in the bathing algorithm will be executed 
automatically when the concepts in its preconditions are 
activated after the formation of the causal link as in Figure 
6. As a result,  the model which we are presenting here 
both refers to how high level thought of an agent might be 
generated in addition to the proposal that it is a model of 
representing algorithms.  

Also, in Figure 6, someone “gets out of” lake water and 
for that reason, a link (conceptual relevance link but not 
physical) must be present between “lakewater”, “cold” and 
“get out of” concepts in addition to the earlier mentioned 
causality link so that the agent knows what to “get out of” 
(Figure 7).  
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The execution of the second step. Note that the 
concepts of “lakewater” and “cold” together cause the 
execution of the “get out of” action concept. 

In Figure 7, the conceptual relevance link is not 
composed of physically present links. The concepts of 
“lakewater” and “cold” will still be active at the time the 
“get out of” becomes activated. As we proposed earlier, 
simultaneously active concepts contribute to the generation 
of a particular thought and for that reason the three active 
concepts would correspond to the “get out of cold lake 
water” thought when they are all active simultaneously 
when once “get out of” concept becomes active as a result 
of the activation of the two other concepts, namely 
“lakewater” and “cold”. 

This approach presents a model of thinking and how 
thought might be produced without the use of any symbols.  

On the other hand, there can be a physically present 
conceptual relevance link. A physically present conceptual 
relevance link is important when one concept needs to be 
activated as a result of the activation of another concept. 
We have already explained a situation as such while we 
gave the example of the automatic activation of “get out 
of” concept as a result of the activation of concepts of 
“lakewater” and “cold”. A physically present conceptual 
relevance link is named as a causal link in this paper. 

In addition to that example, a non-action concept might 
cause the activation of another concept automatically. As 
an example, the concept of “my bag” will activate the 
concept of “black” since my bag is black and it will stay 
black until I replace it with another bag with a different 
color. Sometimes the simultaneous activation of concepts 

will be enough to generate a thought but sometimes 
physical conceptual relevance links will be necessary to 
activate some other concepts as a result of activation of a 
particular concept.  

Also, when it comes to the point that one thing is 
permanently a feature of the other and hence thinkable 
from the thought of the other, then it will be necessary to 
have physical causal links between two concepts. My red t-
shirt is an example where red and my t-shirt are relevant 
concepts and red is a feature of my t-shirt.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A more complicated causally relevant concept 
activations is given in Figures 1 and 2 of (Yildirim, 2005). 
The arrows in the figures correspond to physical causally 
relevant concept links.  

Non-symbolic Summation 
In Figure 5, we have seen that the concepts that represent 
sensations can be associated with concepts that represent 
actions. In the figure, the action concept “get out of” is 
associated with the concepts of “lakewater” and “cold”. 
The association provides the activation of the action 
concept “get out of” as a result of activations of concepts 
of “lakewater” and “cold” at the same time. The 
association is not bidirectional though.  

We need to be able to simulate this association while 
representing the basic elements of algorithms using 
artificial neural networks. Towards this end we have 
implemented a Non-Symbolic summation algorithm 
simulating an agent doing long addition. The simulation 
employed two neural networks. One, an auto-encoder 
learning the identity-mapping on 256 pixel grayscale 
images of the digits from zero to nine deriving a 
conceptual representation of the numbers seen (Figure 8). 
These images are not intended to represent the retinal 
activation patterns produced when perceiving a digit. The 
simulation assumes a nonverbal numerical representational 
system extending across different modalities. Evidence 
supporting this contention is presented in (Jordan & 
Brannon, 2006). Since the auto-encoder is too simple a 
system to perform this task, the images are intended to 

Figure 7. The execution of the second step. The conceptual 
relevance link between “lakewater”, “cold” and “get out of” 
concepts. 
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represent all instances having a numerical interpretation 
known to the agent. A simulation on how to achieve a 
common numerical representation for all instances 
perceived would deserve an article of its own. 

The other network, henceforth called the summation 
network, was a four-layered feed-forward network taught 
to map the conceptual representations of two numbers and 
a carry to a conceptual representation of a number and a 
carry out (answer), thus carrying out the actual summation 
(Figure 9).  

To add two numbers the following steps was performed: 
 
Starting with the lowest order digits, one digit from each 

number was presented to the auto-encoder in turn. After 
each presentation, the conceptual representation derived on 
the conceptualization layer was copied to its corresponding 
position on the input neurons of the summation network. If 
these were the first digits to be added, carry in was set to 
the conceptualization of zero. If not, the conceptualization 
present at carry out was copied to carry in.  Then activation 
was fed forward and the activation on the output neurons 
corresponding to the answer was copied to the 
conceptualization layer of the auto-encoder and decoder. 
This was the first digit in the answer. This process was 
carried out until there were no more digits to add and carry 
out was zero. 

The corresponding Symbolic expression of the 
summation algorithm can be given as follows: 

 
1. Sense two digits from two numbers visually. 
2. If there are no more digits to add and carry out is 

zero, display summation in a visual form. 
3. Else, sum the two digits and the carry into a number 

and a carry. 
4. Go to Step 1. 
 
The auto-encoder was a five layered neural network, the 

middle layer being the one representing the concepts. The 
input and output layers had 256 neurons each. The two 
layers on each side of the middle layer had 60 neurons 
each, and the middle layer had 15 neurons. The network 
was trained using back-propagation for 10000 epochs with 
a learning rate of 0.01. At each epoch, the digits from zero 
to ten were presented. Weights were updated after each 
presentation of a digit. After presentation of a digit and 
before feeding activation forward, Gaussian noise with a 
mean of zero and a standard deviation of 0.2 was added to 
the input neurons.  

The summation network had 45 input neurons (3 * 15), 
37 neurons in each of the two hidden layers, and 30 output 
neurons (15 * 2). It was trained using back-propagation for 
10000 epochs with a learning rate of 0.01. At each epoch, 
every combination of two digits and a carry out of 200 
possibilities were taught. Each digit having 10 possible 
values ranging from 0 to 9 leads to 100 possibilities for the 
digit pairs to be added. Having a carry value 0 or 1 
increases the number of possibilities for digit pairs to 200. 
No Gaussian noise was added. Weights were updated after 

each combination. In both networks, every hidden and 
output neuron also had a constant bias of one with a 
modifiable weight.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We ran the simulation ten times and averaged the 

results. After 10000 epochs the sum of squared errors was 
1.83 and 3.16 in the auto-encoder and the summation 
network respectively. To test the performance of the 
summation network, training was turned off each 500th 
epoch and 1000 summations trials were performed. At 
each summation trial two random numbers in the range 0-
999 were selected and summed according to the procedure 
described above. The performance was recorded in the 
following manner: 

Figure 9. Summation Network. 

Figure 8. Auto-encoder. 
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Failure to produce the correct carry or answer was an 
error. Each answer and carry produced was decoded in the 
auto-encoder. Then, for each image in the dataset, the sum 
of absolute differences with respect to the decoded image 
was computed. The image in the data set with the smallest 
sum of absolute differences was interpreted as the 
summation network’s intended answer/carry. If this was 
incorrect an error was recorded. 

A reconstruction error was also computed as the average 
of the absolute differences computed above. 

After 4500 epochs the number of errors stayed below 3 
and at epoch 10000 it dropped to zero. The reconstruction 
error after 10000 epochs was 3.11. Figure 10 shows the 
activation pattern for the conceptualizations. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. The activation pattern for the conceptualizations  
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Errors during summation and training. 
 

This shows that the network had almost perfectly 
learned non-symbolic summation, the only “error” being 
an inability to produce an answer identical in appearance to 
the digits learned (an absolute difference of 3.11 is very 
close though).  Figure 11 shows the change in squared sum 
and summation error over 10000 epochs, maximum error 
obtained being around 3500 when averaged for 10 runs. 

 

Conclusion 
Our aim is to show the possible role of conceptual level 

in tasks that require conceptualizations. Navigation is a 
task where an agent can form conceptualizations. 
However, how can an agent utilize the concepts it forms 
during navigation in tasks that require cognition higher 
level than navigation? Such tasks do not especially require 
navigation but are more directed towards thinking such as 
planning, algorithm learning. As to our knowledge, there is 
not yet much of such work that attempts to achieve high 
level forms of thinking utilizing the conceptual 
representations that are based on connectionism. For that 
reason, we presented a way of how distributed 
representations can be employed in a higher level cognitive 
function which is representation of algorithms in an agent’s 
brain and execution of them. The algorithms are non-
symbolic in nature and they employ non-symbolic 
concepts. One such algorithm is a bathing algorithm and 
we have shown how that algorithm can be expressed non-
symbolically instead of employing text-like symbolic 
representations. The execution of such an algorithm refers 
to the activation of concepts in it considering a current step 
and flow of activations through causal links from concepts 
to concepts.  In general, concepts might be represented and 
associated with each other in order to represent steps in an 
algorithm and create thoughts. One another such algorithm 
is summation algorithm. We have implemented that 
algorithm to show that implementation of non-symbolic 
algorithms is feasible using non-symbolic concepts in a 
high level cognitive task such as summation. We employed 
associative neural networks for that purpose.  
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Abstract. Future space exploration can utilize artificial intelligence as an integral part of next generation space rover 
technology to make the rovers more autonomous in performing mission objectives. The main advantage of the 
increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by 
reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space 
exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one 
of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing 
approach. We use the Mars rovers, Sprit and Opportunity, as a starting point for proposing what rovers in the future 
could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The 
chosen space exploration application for this paper, novel rock detection, is only one of many potential space 
exploration applications which can be optimized (through reduction of the frequency of rover-earth communications, 
collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology 
compared to existing approaches.  

Keywords: Space Rover, Novel Rock Detection, Artificial Intelligence, Non-Symbolic Algorithms and Concepts, 
Connectionism. 
PACS: 87.17.Aa; 87.18.Sn; 87.19.La; 89.20.Ff; 89.75.-k; 91.60.-x. 

INTRODUCTION 

In this paper, we are proposing the use of an artificial intelligence model based on non-symbolic algorithm and 
concepts for performing appropriate tasks on space exploration missions. The specific space exploration application 
is novel rock detection. The model that we propose uses the Parallel and Distributed Processing (PDP) approach of 
Artificial Intelligence (AI) and Cognitive Science Research (Rumelhart et al., 1986). A detailed description of non-
symbolic algorithms and concepts which form the basis for the model can be found in previous work (Yildirim and 
Beachell, 2006). 

Parallel Distributed Processing or Connectionism is an alternative or complementary approach in Artificial 
Intelligence to a Symbolic or Classical approach (Garson, 2002). The reason for choosing Connectionism is that 
Symbolic approaches are unable to perform common sense reasoning or to exhibit knowledge of rudimentary 
physical reality, such as how things change over time (Luger, 2005). 

In a space exploration application such as novel rock detection, a rover uses intelligence provided by our model to 
obtain knowledge of rudimentary physical reality and carry out common-sense reasoning. Thus, a rover will be able 
to make more decisions on it own (autonomy) and therefore use more efficiently the time it is awake to carry out 
more space exploration at a lower cost. This is due to the potential for rovers with a higher level of artificial 
intelligence to autonomously perform more exploration tasks (decide to use a rock abrasion tool, use instruments to 
scan geological samples, perform an imaging scenario, etc.) in a given time period. The model also enables a rover 
to optimize the use of on-board resources (Estlin et al., 2005) in order to complete or extend the mission and to adapt 



to their environments to ensure their survival in space. Specifically, some of the ways that rover autonomy can be 
leveraged to increase efficiency and reduce costs are: 

(1) By reducing the dependency of the rover on time consuming communications with earth and thus allowing 
a rover to carry out more tasks for longer periods of time when awake. 

(2) By reducing the frequency of command and control communications between rover and earth, there may be 
a reduced requirement for resources for monitoring and controlling the rovers at the command centers on 
earth. 

(3) By finding which geological samples are distinct or unique when there may be multiple discoveries of the 
same rocks, the rover reduce that duplicate scientific data is stored and downloaded to earth. 

As stated above, Connectionism rather than Symbolism seems to be a better approach to equip rovers with 
intelligence and required autonomy. Utilization of the proposed model to the novel rock detection application 
emphasizes a rover’s capacity to conceptualize its environment and, form associations between its 
conceptualizations while it is executing innate (embedded) algorithms. The algorithms are represented in the form of 
concepts and associations between concepts.  

Connectionist or neural models of intelligence emphasizes the brain’s ability to adapt to the environment in which it 
is situated by modifying the relationships between individual neurons. Rather than representing knowledge in 
explicit logical sentences, the computational model embedded in the rover mimics the human brain by capturing 
knowledge implicitly, as a property of patterns of relationships (Luger, 2005). The model represents reality in a 
distributed manner. For those reasons, it is much easier for a connectionist approach to represent reality although it 
is often perceived to have graded values or be incomplete.  

Some of the work on building autonomous robots for space applications include large scale assembly in space 
(Simmons et al., 2000), exploration of Mars with a federation of Intelligent robots (Goldberg et al., 2003), and Mars 
autonomy project (Singh, 2000). All of these are based on symbolic approaches of AI. However, as to our 
knowledge, none of these work or any others present a way of enabling a rover to infer its own rules and algorithms 
and utilize them for adapting to its environment.  

In the rest of the paper, we first present the application of the basic principles of the proposed model for a novel rock 
detection application. Secondly, we present the architecture of the proposed model. Lastly, we give conclusions and 
propose future work.  

BASIC PRINCIPLES OF THE MODEL APPLIED TO NOVEL ROCK DETECTION  

The novel rock detection application uses our non-symbolic algorithm and concepts model to analyze rock samples 
and determine if the rock has been encountered previously. The rover uses its sensory equipment to examine or 
sense the rock sample and provide inputs to the model to form conceptualizations of the rock samples.  

If the rover determines that a rock sample is novel with one sensory analysis, then it can decide to do more extensive 
analysis and scanning of the rock sample. This requires that rovers are equipped with advanced visionary and 
sensory equipment. The assumption is that the data collected about novel rocks can contribute to the research on 
origins of solar systems and the universe. In the coming sections, we will present what in a rover’s environment can 
be conceptualized, how it can be conceptualized, and what kind of algorithms such explorers can be equipped with 
for space exploration tasks (Smith, 2005). 

Non-Symbolic Concepts 

A non-symbolic concept representation is achieved by employing distributed representations which have been 
studied and applied for numerous kinds of problems in the Connectionism literature (Hinton, McClelland, and 
Rumelhart, 1986). In distributed representations, a cluster of neurons is involved in the representation of a concept 



(Dorffner, 1989). It is different from local representations where only a single neuron is responsible for representing 
a concept.  

As an example of distributed representations, the activation pattern in Figure 1 might be representing the concept of 
“Mineral Composition A” whereas the activation pattern in Figure 2 might be representing the concept of “Mineral 
Composition B” in the same neuron cluster. Note that the representation of the concept of “Mineral Composition A” 
requires the activation of a different set of neurons in the same neuron cluster where the representation of the 
concept of “Mineral Composition B” also exists. It is also the case that some of the neurons in both representations 
overlap in their activations for representing the two concepts. Then, the thinking of that concept refers to the 
activation of shaded/colored neurons which have been pre-wired together as a rover detects Mineral Composition A 
in a rock using a spectrometer for example. 

 

 

 

 

 
FIGURE 1. A Cluster of Neurons That Represent the 
Concept of  “Mineral Composition A.” 

FIGURE 2. The Same Cluster of Neurons That Represent 
the Concept of  ”Mineral Composition B.” 

In the next section, we will explain how non-symbolic algorithms might be represented in a rover and how they 
might manipulate or operate on non-symbolic concepts 

Non-Symbolic Algorithms 

This section will give insight into how non-symbolic algorithms are represented in a space exploration rover such 
that the rover is able to detect novel rocks. The representation of steps in an algorithm is closely tied to 
representation of non-symbolic concepts on which a non-symbolic algorithm operates. A rover’s non-symbolic 
algorithm can be composed of steps each of which is either an action step or an If-Then rule.  

We will first explain how an If-Then rule can be represented non-symbolically. In an If-Then rule, certain inputs are 
expected to cause certain outputs and for that reason, it embodies a decision-making process. An autonomy which 
will be embodied in a rover in the form of computational intelligence can represent an If-Then rule by using a feed 
forward neural network. The inputs of the neural network then represent the values of the concepts in the 
preconditions of the “If” part of the If-Then rule. The outputs of the neural network represent the values of the 
concepts in the “Then” part of the If-Then rule. Correct decision-making requires training the neural network in such 
a way that certain inputs of the neural network are mapped to the corresponding outputs of the network. 

On the other hand, such a decision-making mechanism is not necessary in representing an action. A representation 
that helps differentiate an action from another action would be enough to represent actions. For that reason, 
distributed representations which are used for representing concepts are also useful in representing actions. 

In summary, we can take representations of objects in the real world, sensations from the real world and actions all 
as concepts and employ distributed representation to represent them. It is assumed that the following two 
mechanisms are in place for a rover to be able to represent non-symbolic algorithms and concepts: 

a) A mechanism that help robot filter what exactly it is to categorize from what is out in the world. As sensory 
inputs are categorized and conceptualized, the resultant categories and concepts are perceptually grounded 
and refer to things in the real world. Relevant work can be found in (Steels, 1996; 1997). 

b) A mechanism that holds concepts and categories. This mechanism can be hard-coded in advance in the 
rover’s memory. 



Regarding point a), human beings are good at selecting relevant and necessary information while categorizing the 
world as a necessary aspect of their cognition (Sloman, 2005). A rover can categorize rocks, mineral composition, 
and grain among others. Regarding point b), although it is not known how human beings achieve this aspect of 
cognition, it is possible to propose means of achieving it computationally and in a way that supports distributed 
representations. Relevant work is found in (Steels, 1997; Steels, 1996; Cangelosi, 2003; Ziemke, Jirenhed, and 
Hesslow, 2005).  

Returning back to our goal of presenting means of how non-symbolic algorithms can be represented in a space 
exploration rover, we will examine a novel rock detection algorithm. This algorithm can be embedded in the rover 
as an innate non-symbolic algorithm. The algorithm consists of two steps which can be expressed in natural 
language representation: 

- Sense the rock (with spectrometers, microscope, color imaging system, etc.). 
- If the rock is a New Rock Type, has a New Mineral Composition or New Grain Size/Shape, then it is novel.  

 
A space rover equipped with different sensory instruments like a camera (imaging), microscope and spectrometer 
would develop non-symbolic concepts in the respective modalities of its “brain” responsible for processing sensory 
input from these devices (Singularity, 2001). For each of the concepts in the above algorithm, an activation pattern 
in a neuron cluster is dedicated to represent each concept in the form of a distributed representation. The concepts 
are “Rock”, ”New Rock Type”, “New Mineral Composition”, “New Grain Size/Shape” and “Novel”. The first step 
of the non-symbolic algorithm is an action concept “Sense” which operates on the concept of “Rock”. 

The rover will activate the concepts of Sense and Rock during the execution of the first step of the algorithm. At the 
end of execution of the first step, the rover will have sensed the rock by means of a camera, spectrometer and 
microscope. For this example, we will, for simplification purposes, only consider the concepts of “Rock” and “New 
Mineral Composition” which are produced and/or activated as a result of spectrometer analysis.  

 If the rock sample is found to have a unique combination of minerals (as a result of spectrometer analysis) at the 
point in time that it is “sensed”, then a new non-symbolic concept is formed. For purposes of explanation, we will 
call this concept “New Mineral Composition” although that concept name has no significance in a non-symbolic 
concept representation. If in a rock sample, an existing (familiar) combination of minerals is detected, a previously 
formed concept is activated again. The “Sense” concept will become inactive by the end of the execution of the first 
step while the concepts of “Rock” and “New Mineral Composition” will remain active. An activated concept is 
indicated by an oval formed by dashed lines in Figure 3, 4 and 5. 

                                     

                                      

 
 

 

 

 

FIGURE 3.  Sensing the Rock Activates the Concepts of “Rock” and “New Mineral Composition” at the Same Time. 

The next step in the novel rock detection algorithm is to execute the If-Then rule as represented in Figure 4. The If-
Then rule operates on concepts of “Rock”, ”New Rock Type”, “New Mineral Composition”, and “New Grain 
Size/Shape”. All of these concepts except “Novel” are the concepts that occur in the precondition part of the rule. 
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The concept of “Novel” is in the action part of the rule. Once any of the concepts in the precondition part of the If-
Then rule are activated, the action part of the If-Then rule can be activated, that is the concept of “Novel” becomes 
active. The level of activation is “graded” according to how many of the concepts of the precondition part are 
activated, i.e. the highest activation level occurs if all three of the concepts are activated and the lowest activation 
level occurs if only one of the three concepts is activated. The amplitude of activation can be digitalized to the 
desired degree of grading of the novel concept by using a threshold. 

In the If-Then rule representation of Figure 4, only the spectrometer relevant concept “New Mineral Composition” is 
shown. Thus, the concept of “Novel” is activated as a result of activation of concepts of  “Rock” and “New Mineral 
Composition”. This is due to a causal link from the precondition concepts to the action concept. In this example, the 
causal relation is innately embedded in the rover. However, there can be situations where a rover will have to 
associate some concepts as a result of other concepts and hence form its If-Then rules itself as it explores its 
environment autonomously.  

 

 

 

 

 
 
FIGURE 4. The Execution of the Second Step of a Non-Symbolic Algorithm - The Activation of Two Precondition Concepts 
Causes the Activation of the Novel Concept. 

Figure 5 shows the modalities and related concepts involved in novel rock detection. The conditions under which the 
concept of “Novel” is activated or it is not activated have been explained previously for the Spectrometer modality. 
The other modalities function the same way. Familiar in the context of a concept means that the neural network has 
determined that the information from the sensors is identical or similar to a rock previously encountered in the 
mission. 

 
 

 

 

 

 

 

FIGURE 5. Different Modalities are Causally Linked to Concept “Novel.” 

When a rover comes across a rock sample, it first investigates a rock sample by Color imaging modality. If this 
causes the activation of the novel concept, the rover investigates the rock further with other modalities.  
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Contrary to our model based on connectionism which can conceptualize features, a rover based on a symbolic 
approach like NASA’s OASIS (Castafio, 2003) is more formalized since it makes predictions/decisions based on a 
feature vector extracted through some image processing routine (transduction). The designers therefore limit the 
cognitive world of the rover to the expressional power these feature vectors endow. Thus, if some unforeseen feature 
is important for successful cognitive processing, the rover would operate sub-optimally in its environment. A 
connectionist approach would only be limited by its sensory equipment and the associations it is capable to make. 

ARCHITECTURE OF MODEL FOR NOVEL ROCK DETECTION  

The ability of the model to detect novel rocks will require training of the neural networks. This can be done on earth 
before launch of the rover on a spacecraft by using data from earth or data collected by probes or rovers that have 
previously visited the destination planet or moon or similar celestial bodies. However, since a high incidence of 
rocks encountered in space exploration may be different than those rocks on which the data for the neural networks 
are trained on, the model may at the beginning of the mission falsely conclude that a rock is novel when in reality 
sensing information for a similar (now familiar) rock has been stored and downloaded to earth previously by the 
rover. However, as the mission progresses, the rover will become more and more accurate in determining what rocks 
have not been encountered before and avoid collecting, storing, and downloading duplicate data on rocks. Thus a 
rover can autonomously decide not to do more scanning of a particular rock and discard the duplicate data thus 
avoiding valuable resources (communication link, power, etc.) and time necessary for downloading the less useful 
information to earth. This time can be used to find more novel rocks or to perform other space exploration tasks. 
This is extremely important when taking into consideration that space rovers are resource limited compared to 
similar rovers or robots on earth.  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. Three Modalities (Each Represented by a Neural Network) Representing Inputs from Sensing Systems for 
Activation of a Concept Called “Novel” in a Novel Rock Application. 

The rover is exposed to a database of rock images and rock samples first on earth and then in space. The rock 
images are analyzed by Color imaging and rock samples are analyzed by Microscope and Spectrometer modalities. 
The analysis provides the features which are used by modality neural networks to generate conceptual 
representations. For example, the Color imaging modality will extract the features of color, shape and radius of a 
rock and generate conceptual representation for the features (Figure 6). Color imaging feature extraction is based on 
work described in Castafio. The Spectrometer modality will extract minerals that can exist in a rock sample as 
features and generate conceptual representation from these features obtainable from that modality. The mineral types 
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are indicated by Mineral 1, …, Mineral n labels in the Figure 6. The Microscopic modality will extract grain size 
and grain shape as features of a rock sample. Please note that in the three modality neural networks of Figure 6; the 
circles represent input, inner, and output layer nodes and each circle can stand for multiple nodes. More specifically 
for the input and output nodes, each circle can stand for multiple nodes of a feature and hold digital values. All of 
the inner layer nodes in the modality neural networks hold analog values. 

Autoassociative neural networks are good at making associations and matching patterns (Callan, 1999) and therefore 
the modality neural networks are implemented as autoassociative networks to be able to detect a novel rock. That is, 
there is a corresponding autoassociative neural network for each modality where the representations at the 
inner/hidden layer of the neural network hold the conceptual representations obtained from the features of the 
corresponding modality. For example, the autoassociative network for Color imaging modality autoassociates 
(maps) the patterns (values) from the input nodes for the features of color, shape and radius to the same features at 
the output nodes. The neural network for this modality obtains a conceptual representation for “Rock Type” concept 
from these features at the hidden layer of the neural network shown as in Figure 6. The corresponding 
autoassociative networks of the other two modalities produce conceptual representations for “Mineral Composition” 
and “Grain Shape/Size” concepts relevant to the Spectrometer and Microscopic modalities respectively.   

There is also a separate neural network where the conceptual representation for the “Novel” concept is held. The 
second step of the novel rock detection algorithm requires that there is a main neural network which maps 
conceptual representations from all modalities into the concept of “Novel”. This network is the one shown by bold 
lines in Figure 6. Please note that in the main neural network, the circles represent input, inner, and output layer 
nodes and each circle can stand for multiple nodes. All of the nodes in the main neural network hold analog values. 

All of the neural networks in Figure 6 are trained with existing knowledge of rocks on earth. For that reason, for 
example, the neural network which is used to generate conceptual representations of a Rock Type will generate the 
same hidden layer pattern for a previously trained (radius, shape, color) feature set. The feature set has already been 
autoassociated to the same feature set by training while the rover is on earth. However, a new feature set that was 
not used for training the neural network before can not be autoassociated with itself at the outputs of the network 
when it occurs the first time in operation on a mission. For that reason, training will be required to autoassociate the 
feature set with itself and generate a conceptual representation of it at the hidden layer of the network. 

The conceptual representations that are either distinct or not and that are obtained from the modality neural networks 
are the inputs to the main network. The main network will be trained on earth to associate a familiar conceptual 
representation set from three of the modalities with a pattern of all zeros at the output layer. The training will be 
done for all familiar rock samples. A pattern of zeros at the output layer means that the conceptual representation set 
obtained from three modalities for a rock sample is not novel. If the representation set is new, then it will generate a 
pattern of activation at the output nodes of the network which is not all zeros. Then a training algorithm such as 
backpropogation algorithm will be used to train the network to obtain a pattern of activation at the output nodes that 
represents the concept of Novel. The pattern will be kept at the output nodes for a while and then the network will be 
trained to have a pattern of all zeros at the output layer. This is necessary in case a similar conceptual representation 
set from three modalities occur at the inputs again, the network does not recognize the set as novel.  

After training the main network for novelty, the “Novel” concept will have the strongest level of activations in its 
active nodes in its pattern at the outputs of the neural network in case of all the conceptual representations are 
generated for the first time. Each of the conceptual representations will activate the Novel concept to a certain 
degree whereas activation of all of these concepts simultaneously will increase the levels of the active nodes in the 
concept of Novel to the highest degree meaning that the rock sample is novel to the highest degree. 

The links between the input and the hidden layer nodes, the links from the hidden layer nodes to the output nodes 
and the hidden nodes themselves represent the causal link shown in Figure 5 by black color.  

CONCLUSION 

In this paper, we proposed a novel rock detection application for space exploration which could be implemented 
using our model based on non-symbolic algorithms and concepts. The model gives an insight into how a system 
onboard a space rover, in some ways similar to the human brain, can represent and utilize non-symbolic concepts 



and algorithms to perform tasks. Being based on connectionism, the model makes use of the desirable properties of 
connectionist approach.  

In general, neural networks which implement connectionism-based solutions to AI exhibit robust flexibility and 
decision making intelligence in the face of challenges posed by the real world or even space exploration. In this 
paper, we presented the ability of rovers to better use its resources for space exploration tasks by reducing the 
frequency of communications, most importantly exchanges related to control from earth. This makes a rover more 
productive when in an awakened mode. In the next paragraph, the other main advantage which is related to 
determining which geological samples are distinct or unique such that only distinct scientific data is stored and 
downloaded to earth. 

While our model when applied to the novel rock applications is not better than other computational approaches at 
storing and downloading data on a particular rock, its strength is that it autonomously can determine what rocks are 
novel or distinct.  The mission objective with our novel rock application is to collect scientific data on rocks that are 
encountered in space and at the same time avoid collection of data on rocks that are similar to or identical to rocks 
encountered earlier. This enables the rover to maximize its resources toward the objective of collecting as much 
unique data on rocks encountered on a planet or moon as possible. 

Not all tasks of the novel rock detection application are suited to be realized by our model. Therefore an optimal 
rover should include different systems equipped with models of artificial intelligence based on Connectionist and 
Symbolic approaches. Additionally, the rover should include software based on multi-level abstraction models, 
object-oriented methodologies and design patterns that are found in today’s robotic platforms (Nesnas et al., 2006).  
An example of a task that is better suited to a Symbolic approach is an image processing functionality such as the 
color imaging system on the rovers currently exploring Mars. This system or a new generation of it can supply the 
inputs to our model to generate conceptualizations of the rover’s environment. 
 
Using concepts represented in a distributed manner and using connectionism as a basis for making agents intelligent 
and adaptive to their environment is a state of the art research area in the Artificial Intelligence and cognitive science 
fields (Rogers and McClelland, 2004). We believe that our research contributes to enhancing the state of the art in 
this area. Our research is most likely among the first to present a model and an overall framework where distributed 
concepts, connectionism and our proposed non-symbolic algorithms are used for high level cognitive 
functioning/processing for a large scale application. 

Possible future work includes the use of our model in other space exploration applications that can benefit from our 
approach, a threat detection and avoidance application, and further development of our model to provide rovers with 
better adaptation and autonomy. Within future work, the model can be extended to encompass prediction and 
planning cognitive faculties which may provide supplementary intelligence or backup systems to current solutions 
for autonomous planetary mobility.  
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