
May 2007
Torbjørn Skramstad, IDI
Gunnar René Øie, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Evaluating Security in Open Source
Consumer Applications

Carlos Ballester Lafuente

Problem Description

The aim of this Master Thesis is to develop a software security guideline that will be used for
evaluating methods and measuring security in open source projects with a high security
implication. One such example is healthcare applications, where the privacy and security are
crucial factors.
After developing this guideline, it will be tested against a healthcare software open source project
(Indivo) that is being currently developed for the management of patient health records. Security
and trust are essential for such an application.
This software involves several usage contexts, several kind of users (patients, doctors,
pharmacists) plus system administrators, and it has several components both self-developed and
COTS (commercial off-the-shelf).
Implications for other products designed and used in similar fashion will be explained.
Results of evaluation with the guideline will be presented, and if severe security issues are found,
they will be reported to the developers.

Assignment given: 26. January 2007
Supervisor: Torbjørn Skramstad, IDI

Evaluating Security in Open Source Consumer Applications

For my parents, without them I would be nothing,
for my family

and for my friends.

 1

Evaluating Security in Open Source Consumer Applications

Abstract

Introduction
The aim of this Master Thesis is to develop a software security guideline that

will be used for evaluating methods and measuring security in open source

projects with a high security implication such as healthcare applications for

example, where the privacy and security is a crucial factor.

Background Theory
First section of thesis is focused on presenting the appropriate background

theory that will be needed for a good understanding of the rest of the thesis, like

vulnerabilities, common security attacks, definition of the client-server

technology, risk analysis and specific theory about Indivo and the healthcare

field.

Methods
The method chosen to develop the guideline was the waterfall model as time

was quite limited and only one iteration could be done. That’s why no other

methods like the spiral model were used, as they require several iterations until

achieving functionality.

Results
After applying the guideline, several vulnerabilities were found, like session

hijacking or capturing login information on real time. The guideline proved to be

useful in revealing serious security issues that should be fixed, and into

describing the purpose and the logic of decisions made in early stages like

organizational or design stage.

Conclusion
Both the development of the Security Guideline and the posterior testing of the

guideline were considered successful, as a working methodology was

established and several security issues were revealed in Indivo.

 2

Evaluating Security in Open Source Consumer Applications

 3

Evaluating Security in Open Source Consumer Applications

Preface

This report is a Master's Thesis at the Department of Computer and Information

Science (IDI) at the Norwegian University of Science and Technology (NTNU).

The thesis is part of a research project carried out by the NSEP about an Open

Source Consumer Application for the healthcare field, which is used to manage

patient health records, called Indivo.

Parallel to this thesis, there is other research work being done about access

control over the same application.

I would like to thank my supervisor, Gunnar René Øie, for the help and

guidance throughout the entire thesis. I would also like to thank Professor

Torbjørn Skramstad, Professor Øystein Nytrø, research fellow Lillian Røstad for

all the good information given about Indivo and to William Simons and Tim

Tisdall as well as the rest of Indivo mailing lists participants for kindly answering

my questions about problems with Indivo.

Trondheim, June 2007

Carlos Ballester Lafuente

 4

Evaluating Security in Open Source Consumer Applications

Contents

1. Introduction ... 9

1.1 Motivation.. 9

1.2 Project Context... 10

1.3 Problem Definition ... 10

1.4 Report Outline .. 10

2. Background Theory .. 12

2.1 Computer Security ... 12

2.2 Vulnerabilities... 13

2.3 Security Attacks ... 14
2.3.1 Buffer Overflow Attacks ... 15
2.3.2 DoS – Denial of Service... 16
2.3.3 IP Spoofing & Man-in-the-Middle ... 16
2.3.4 SQL Injection.. 17
2.3.5 Cross Site Scripting (XSS)... 18
2.3.6 Directory Transversal... 19
2.3.7 Session Hijacking... 20

2.4 Web Services .. 21
2.4.1 XML.. 21
2.4.2 SOAP ... 22
2.4.3 WSDL... 22
2.4.4 UDDI .. 22

2.5 Open Source and Closed Source ... 23
2.5.1 Open Source.. 23
2.5.2 Closed Source.. 23

2.6 Distributed Object Platform... 24
2.6.1 CORBA .. 24
2.6.2 RMI... 25

2.7 Client – Server Architecture.. 25
2.7.1 Two Tier Architecture... 26
2.7.2 Three Tier Architecture .. 26

2.8 Cryptography.. 27
2.8.1 Symmetric Cryptography ... 28
2.8.2 Public Key Cryptography ... 28

2.9 Security Evaluation Standards ... 29
2.9.1 Common Criteria.. 30

2.10 Risk Management... 31

2.11 Healthcare Related Theory.. 32
2.11.1 EHR ... 32
2.11.2 Indivo ... 33

 5

Evaluating Security in Open Source Consumer Applications

3. Research Method .. 35

3.1 Background Theory Research Method .. 35

3.2 Guideline Research Method.. 36

3.3 Testing Methodology ... 37

4. Security Guidelines... 38

4.1 General Guidelines... 39
4.1.1 Secure the weakest link ... 39
4.1.2 Defense in Depth ... 40
4.1.3 Fail Securely .. 40
4.1.4 Use the Least Privilege .. 41
4.1.5 Compartmentalize.. 41
4.1.6 Keep it Simple .. 41

4.2 Organizational Guidelines... 42
4.2.1 Who Should do Software Security ... 42
4.2.2 Setting out the Testing Plan... 43
4.2.3 Keeping up with the testing effort: Retesting ... 44
4.2.4 What to Retest ... 44

4.3 Design Guidelines .. 45
4.3.1 Choosing a Programming Language ... 46
4.3.2 Choosing a Distributed Object Platform... 47
4.3.3 Choosing an Operating System... 49
4.3.4 Closed Source vs. Open Source.. 50
4.3.5 Risk Management .. 52

4.4 Implementation Guidelines ... 55
4.4.1 Code Review.. 55
4.4.2 Using COTS... 57
4.4.3 Using and Reusing Trusted Components.. 57

4.5 Post Implementation Guidelines .. 58
4.5.1 Penetration Testing.. 58
4.5.2 Configuration Management.. 62

5. Practical Application and Results of the Guideline.............................. 63

5.1 General Guidelines in Indivo... 63

5.2 Organizational Guidelines in Indivo ... 64
5.2.1 Selecting the security person... 64
5.2.2 Setting the Test Plan.. 65
5.2.3 When and what to Retest... 67

5.3 Design Guidelines in Indivo .. 68
5.3.1 Choosing the Programming Language .. 68
5.3.2 Choosing a Distributed Object Platform... 69
5.3.3 Choosing an operating System.. 69
5.3.4 Risk Analysis.. 70

5.4 Implementation Guidelines in Indivo ... 73
5.4.1 Code Review.. 73
5.4.2 Commercials Off-the-Shelf... 75

 6

Evaluating Security in Open Source Consumer Applications

5.5 Post Implementation Guidelines in Indivo... 77
5.5.1 Penetration Testing.. 77

6. Discussion ... 90

7. Conclusion and Further Work.. 96

7.1 Further Work... 96

Appendix A: References.. 98

 7

Evaluating Security in Open Source Consumer Applications

List of Figures

Figure 1: Buffer Overflow [26]... 15
Figure 2: Session Fixation Attack [27] .. 20
Figure 3: Web Services. [28] .. 21
Figure 4: CORBA Server [29] ... 24
Figure 5: Java RMI [30] .. 25
Figure 6: Two Tier Architecture [31] ... 26
Figure 7: Three Tier Architecture [32]... 27
Figure 8: Public Key encryption/decryption [33] ... 29
Figure 9: Risk Management [16]... 32
Figure 10: Indivo 3-tier architecture [14] ... 33
Figure 11: Waterfall model for the guideline ... 36
Figure 12: Configuration for FindBugs.. 73
Figure 13: FindBugs result report. .. 74
Figure 14: Server Fingerprint.. 78
Figure 15: Port Scan results. .. 78
Figure 16: Web Scarab... 79
Figure 17: Numerical analysis for session IDs.. 80
Figure 18: Distribution analysis for session IDs.. 80
Figure 19: Changing an Indivo request... 81
Figure 20: Accessing an administrative interface. .. 82
Figure 21: Indivo Error message. ... 83
Figure 22: Accessing unintended files. ... 84
Figure 23: Capturing login information.. 85
Figure 24: Editing request to forge a stolen SessionID. ... 86

List of Tables

Table 1: Vulnerability severity ranking, impact and control for Indivo. …………………72

 8

Evaluating Security in Open Source Consumer Applications

1. Introduction

An Open Source consumer application is a piece of software whose source

code is made available to the public through a special kind of license that

permits users to study, modify and make improvements in the application, as

well as to redistribute it in its original shape or in a modified way.

Open Source consumer applications, as all the rest of the software, are

exposed to a high amount of security threats, but this becomes a bigger

problem for this kind of software because as the code is available to everyone,

it is easier to search and to find flaws and security holes on them.

1.1 Motivation

Each day software security becomes more and more important. Usually, people

tends to put more efforts or to emphasize on network security, but we should

realize that no matter how strong our network security is, if the software running

inside our machines is not secure (i.e. it has some kind of bug, flaw that allows

the code to be exploited), attackers will always find the way to break security.

Lets say you can try to protect your network with a really good firewall with a

really methodical configuration; even if the firewall is 100% perfect, if some of

the software allowed to connect through the firewall is not secure, attackers will

have an easy way to get into, without you even noticing it, not to say that the

firewall itself can have some security flaw.

There are several reasons why developing a guideline about software security

is interesting:

1. Security is the main system’s feature to protect confidential data, only

developing and having secure software, confidential data will be as safer as

possible. And that’s really a crucial factor for a lot of software nowadays.

2. It should teach software designers that software security is an important thing to

take care about from the very beginning, and not only trying to fix security holes

with patches, after software has already been released.

 9

Evaluating Security in Open Source Consumer Applications

1.2 Project Context

The thesis is part of a research project carried out by the NSEP about an Open

Source Consumer Application for the healthcare field, which is used to manage

patient health records, called Indivo.

Parallel to this thesis, there is other research work being done about access

control over the same application.

Because of the data that this kind of program deals with (personal health record

information), security on this context is a crucial factor.

1.3 Problem Definition

The aim of the thesis is to develop a guideline for software security that will be

used for evaluating methods and measuring security in open source projects

with a high security implication.

The guideline will not only cover evaluating and measuring security after the

development of the product, but also in the very early stages of its development.

Developing secure software is something that must be carried out since the

very first stage of development of a piece of software.

Checking security only afterwards and patching the product, is not only an extra

effort that can be saved if security is present in the early life of a product, but

also it can introduce new security flaws in the product that would need

subsequent patches.

After the guideline will be fully developed, it will be tested against an Open

Source Software Application for the healthcare field (Indivo), which is still in

development stage.

1.4 Report Outline

The structure of the report is as follows:

• Chapter 2 presents background theory about security, common

technologies used in application development and specific Indivo and

healthcare theory.

 10

Evaluating Security in Open Source Consumer Applications

• Chapter 3 gives a brief presentation and summary of the methods used

in the development of this thesis.

• Chapter 4 develops the main point of this thesis, the Security Guideline.

• Chapter 5 applies the Security Guideline to a real application: Indivo.

• Chapter 6 is a discussion of the thesis and of the results obtained when

testing the guideline.

• Chapter 7 gives conclusions for the thesis and proposes further work

that can be done.

• Appendix A contains the references used in the development of the

thesis.

 11

Evaluating Security in Open Source Consumer Applications

2. Background Theory

This chapter gives a theoretical background for the thesis, defining the most

important concepts and areas that are needed for a good understanding of

subsequent chapters.

First of all, I give an overview about what Computer Security is. After what is a

vulnerability is defined and after having this information, I explain what Security

Attacks are, and the possible types of attacks.

The chapter continues with a fast overview of Web Services, and after this, the

two ways of developing software are presented: Open source and Closed

source.

I then present some of the most important Distributed Object Platforms, to

continue after this with an overview of the Client - Server architecture. I continue

describing what Cryptography is and we give a short view on cryptographic

methods.

After this, I describe what a Security Evaluation Standard is and why not to use

Common Criteria on the security evaluation of this thesis is discussed. This

chapter continues introducing some theory and concepts of what Risk

Management is and its importance in security evaluation.

Last but not least, I introduce some important theory background about

healthcare and Indivo healthcare application for a better understanding of the

analysis part of the thesis.

2.1 Computer Security

“The only truly secure system is one that is powered off, cast in a block of

concrete and sealed in a lead-lined room with armed guards - and even then I

have my doubts”. - Eugene H. Spafford [1]

Computer security is defined as the ability of protecting information and system

resources respecting crucial concepts as confidentiality, integrity,

authentication, and availability. This definition not only includes the information

“per se”, but also other computer elements such as disks, CPU and programs.

 12

Evaluating Security in Open Source Consumer Applications

Confidentiality ensures that information is not accessed by unauthorized

persons. Usually this is obtained by the use of access control and cryptography.

Integrity refers to the fact that information is not modified by unauthorized

persons in a way that is not possible to detect by rightful owners/recipients of

that information.

Authentication is any process by which you verify that someone is who they

claim they are. This usually involves a username and a password, but can

include any other method of demonstrating identity, such as a smart card, retina

scan, voice recognition, or fingerprints [2].

Availability refers to the ability of using the information or resource desired in a

given moment. The loss of availability, if caused by an attack, is often referred

as DoS – Denial of Service.

Poor computer security is caused by vulnerabilities in software. This allows a

malicious user to exploit the vulnerability through an attack.

2.2 Vulnerabilities

A security vulnerability is a flaw in a product that makes it infeasible - even

when using the product properly - to prevent an attacker from usurping

privileges on the user's system, regulating its operation, compromising data on

it, or assuming ungranted trust as said in Microsoft TechNet [3].

Often, the word vulnerability and attack are used without difference, but note

that an attack is possible because of a vulnerability; they are different things

and we need to keep them separately.

Simple said vulnerabilities provide the entry point for an attacker to launch an

attack.

There are many kind of vulnerabilities, and description of every vulnerability is

out of the scope of this thesis. The following examples of vulnerabilities are only

for better understanding of the theory for the reader.

 13

Evaluating Security in Open Source Consumer Applications

Cross Site Scripting Flaws occur whenever an application takes user supplied

data and sends it to a web browser without first validating or encoding that

content.

Injection Flaws occurs when user supplied data is sent to an interpreter as part

of a command or query. The attacker’s hostile data tricks the interpreter into

executing unintended commands or changing data.

Improper Error Handling occurs when applications can unintentionally leak

information about their configuration, internal workings, or violate privacy

through a variety of application problems. Attackers use this weakness to

violate privacy, or conduct further attacks.

Unvalidated Input occurs when information from web requests is not validated

before it is used by a web application. Attackers may exploit vulnerabilities of

this kind to attack back end components through a web application.

These are only few vulnerabilities of the many existing. These vulnerabilities

and many more existing, provide an “attack launch point” for the malicious user.

A good and very complete overview of application vulnerabilities can be found

in OWASP website [4].

2.3 Security Attacks

A security attack is an action towards a system to exploit a vulnerability. Usually

the aim of an attack is to gain access to confidential information that the

attacker is not allowed to see or to get, or to gain the control of a system in an

illegitimate way.

Knowing how attacks work is important for being able to understand how

computer security works.

In the following part of this section I will describe how several important well

known attacks work.

 14

Evaluating Security in Open Source Consumer Applications

2.3.1 Buffer Overflow Attacks

“On many C implementations it is possible to corrupt the execution stack by

writing past the end of an array declared auto in a routine. Code that does this

is said to smash the stack, and can cause return from the routine to jump to a

random address. This can produce some of the most insidious data-dependent

bugs known to mankind.” Aleph One [5]

Buffer overflows occur when a function in an application fails to check the size

of the input data. If the input data size is bigger than the size the application has

reserved for the data, it doesn’t fits and overwrites other memory locations in

the execution stack as can be seen in Figure 1.

Figure 1: Buffer Overflow [26]

a) Program before invoking function A.

b) Function A is invoked and it books space for buffer B.

c) Input in buffer B is bigger than it can hold, resulting in other memory locations

of execution stack being overwritten (grey color).

This situation by itself only will make the program to crash, nothing more.

The dangerous situation occurs when the attacker uses the overflow to

overwrite the return address with the address of some other piece of code, that

when executed, will result in giving the control of the machine to the attacker.

 15

Evaluating Security in Open Source Consumer Applications

2.3.2 DoS – Denial of Service

Basis for this attack is that executing code takes time.

As Andrews and Whittaker [6] say, for each function called by the Web server,

the application or the database a certain number of processor cycles are used

in executing that function.

If that operation is long lived and the operating system cannot switch to any

other task, the machine will be tied up servicing only that request. Even if the

machine is multithread or multiprocess, if we can flood it with enough request to

service long running operations, we can deny other users from accessing the

service that the machine is offering.

This kind of attack is called DoS or Denial of Service.

The Denial of Service attack violates directly one of the principles of computer

security, the availability.

2.3.3 IP Spoofing & Man-in-the-Middle

IP Spoofing consists in forging the IP address of the packets going from the

attacker’s machine to the victim’s machine, so the victim will think that packets

actually come from another machine different than the one they are coming

really.

This attack is useful when trying to appear as a trusted host to get benefits from

what that trust relation offers for the rightful machine.

The difficulty on IP Spoofing attacks relies in that the response is sent to the

forged IP and not to the attacker’s machine, so attacker should be quite skilful

to get back that response, or to be in the same network that the victim’s

machine to be able to capture the packets that are being sent to the forged IP

machine.

IP Spoofing is used as part of more sophisticated attacks like Man-in-the-Middle

attacks, where the attacker’s machine is in the middle of the communication line

between two other hosts A and B (the victims).

By forging the IP address of the packets the attacker can make to believe the

victim machine A that he is the victim machine B and to make that the victim

machine B thinks that he is the victim machine A, thus being able to view,

capture and modify every piece of information that will go from A to B without

any substantial effort, becoming that way the “Man-in-the-Middle”.

 16

Evaluating Security in Open Source Consumer Applications

2.3.4 SQL Injection

This attack can be launched against any application that uses user-supplied

input to dynamically construct SQL queries against a database.

The problem here relies in the attacker trying to trick the application into

changing the nature of the query by entering SQL artifacts into that user input,

giving him unrestricted access to the database.

This attack is more easy and clear to understand when looking through an

example about how to conduct this attack:

Lets suppose that login into some system is achieved by performing a SQL

query against a database with the login information that the user provides. That

means that the SQL query is constructed dynamically with the input that user

supplies, in this case a login username and a password.

The query that will retrieve user information with the database would look like

this:

SELECT userdata FROM userinfo

WHERE userid = ‘id’

AND password = ‘pwd’

User controlled strings in that query are the ones between single quotes.

Normally, user would have to put both the userid and the password correctly for

the SQL query to result in a successful login. But a skilled attacker can use SQL

language to make that the query will give him access not even knowing the

userid.

In SQL the double dash operator means a comment (--). Therefore we can alter

the construction of the query by inserting specific SQL tokens into the user input

fields. If in the userid field we would type ‘ OR 1=1 -- the following query will be

generated:

SELECT userdata FROM userinfo

WHERE userid = ‘ ‘ OR 1=1

As anything “ORed” with a true statement like 1=1 (that is always true), is

evaluated like true, we would obtain the userdata from every user at the

database without having to know any single userid or password. Note that with

 17

Evaluating Security in Open Source Consumer Applications

the double dash (--) we manage to make the password part of the query to be

interpreted as a comment and thus not taking part in the real query that will be

sent to the database [6].

In the same way, we can alter queries to create new users on a database, to

drop tables of a database or whatever thing that SQL sentences can permit.

2.3.5 Cross Site Scripting (XSS)

This attack is based on the fact that websites often echo the data that is entered

at some other place within the application. The problem is when that data

doesn’t contain simple HTML plaintext but some kind of script that will be

executed into other machines visiting the site. Moreover, the biggest problem

comes when that data that other people’s machine will view is possible to be

entered by a totally random person.

Let’s take the example of the guestbooks at websites. Usually, users are free to

write whatever they want, and other users will read that comments. But with

HTML tags such as <script> one attacker can supply data that will be seen by

other users in the shape of a script, which will be executed in the victim’s

machine.

The effects of a XSS attack can vary from simple annoyance to complete

account compromise.

The most severe XSS attacks involve disclosure of a users session cookies.

Other damaging attacks include the disclosure of end user files, installation of

trojan horses, redirecting a user to some other page or site, and modifying

presentation of content.

As Andrews and Whittaker explains in their book [6], retrieving a user’s active

cookie is as simple as embedding in some user data input, a script like this:

<script>

document.write(“<img src=http://attacker.com/

px.gif?cookie=”+document.cookie”)

</script>

 18

Evaluating Security in Open Source Consumer Applications

When another user will visit a page that displays that malicious input, the

attacker’s server log, where that image is hosted, will store his session id when

the victim’s browser is requesting the image so the attacker can get valid

session identifiers in real time.

2.3.6 Directory Transversal

As OWASP website [4] explains, this category of attacks exploits various path

vulnerabilities to access files or directories that are not intended to be accessed.

This attack works on applications that take user input and use it in a "path" that

is used to access a file system. If the attacker includes special characters that

modify the meaning of the path, the application will misbehave and may allow

the attacker to access unauthorized resources.

This type of attack has been successful on web servers, application servers,

and custom code.

The most basic Directory Traversal attack uses the '../' special character

sequence to alter the location of the request. By using this special character an

attacker might be able to retrieve a file directly that he was not supposed to

have access to.

Another approach is to target the application itself. Most commonly the use of

parameters being passed by the application can be exploited. Such data can

come from user input or application data being passed between pages. Let’s

take the example of: http://victim.com/getfile.asp?file=xxxfile.htm.

We can observe from the above that “getfile.asp” takes a parameter to navigate

through the application; in this case, the file location is xxxfile.htm. We can use

this knowledge to attempt the retrieval of getfile.asp's source code by

submitting: http://victim.com/getfile.asp?file=getfile.asp.

We can combine these two approaches to try to access every file we want into

the server.

 19

Evaluating Security in Open Source Consumer Applications

2.3.7 Session Hijacking

The attacker’s objective in session hijacking is to masquerade as another user

by stealing that person’s identifying credentials and using them for his own

profit. The most common way of achieving this is to steal the user’s session

identifier by diverse methods. It is also possible not to steal but to give directly a

user a “compromised session”.

Attacks taking part on this particular attack can involve Cross Site Scripting to

get session identifiers in real time as it was discussed previously, monitoring

network traffic or guessing future session identifiers because of poorly

implemented session handlers.

Another particular way of developing this attack is to do what is called “session

fixation”. This particular way of session hijacking attack, involves stealing the

session ID before the legitimate user will ever get it. With this technique, the

attacker is able to take the session from the legitimate user every time is

profitable to do so. For this purpose, attacker should get a valid session ID and

provide it to a user by giving a link to the web page with the session ID already

included in the link. Because the session is a valid one, the victim doesn’t notice

the difference. However, the difference is that in this case, attacker can assume

the victim’s identity in any moment.

Figure 2: Session Fixation Attack [27]

 20

Evaluating Security in Open Source Consumer Applications

2.4 Web Services

The W3C [7] defines a Web service as a software system designed to support

interoperable Machine to Machine interaction over a network. Web services are

frequently just Web APIs that can be accessed over a network, such as the

Internet, and executed on a remote system hosting the requested services.

The W3C Web service definition encompasses many different systems, but in

common usage the term refers to those services that use SOAP-formatted XML

envelopes and have their interfaces described by WSDL.

Figure 3: Web Services. [28]

Four technologies take part on web services: eXtensible Mark-up Language

(XML), Simple Object Access protocol (SOAP), Web Services Description

Language (WSDL) and Universal Discovery Description and Integration (UDDI).

2.4.1 XML

EXtensible Mark-up Language (XML) is a simple, very flexible text format

derived from SGML (ISO 8879). Originally designed to meet the challenges of

large-scale electronic publishing, XML is also playing an increasingly important

role in the exchange of a wide variety of data on the Web and elsewhere [7].

XML uses a similar tag structure as HTML; however, whereas HTML defines

how elements are displayed, XML defines what those elements contain. While

HTML uses predefined tags, XML allows tags to be defined by the developer of

the page. Thus, virtually any data items, such as "id," "price" and "vendor" can

be identified, allowing Web pages to function like database records. By

 21

Evaluating Security in Open Source Consumer Applications

providing a common method for identifying data, XML supports business-to-

business transactions and has become "the" format for electronic data

interchange and Web services.

2.4.2 SOAP

Soap is a way to transport XML from one end point to another. It supports

almost every standard transmission protocol such as TCP, HTTP, and SMTP.

The aim of SOAP is to provide an envelope to XML messages so they can be

carried by a variety of transport mechanisms.

SOAP messages are divided into two parts, the header and the body.

2.4.3 WSDL

WSDL is an XML-based service description on how to communicate using web

services. The WSDL defines services as collections of network endpoints, or

ports. WSDL specification provides an XML format for documents for this

purpose.

Messages are abstract descriptions of the data being exchanged, and port

types are abstract collections of supported operations. In this way, WSDL

describes the public interface to the web service.

WSDL is often used in combination with SOAP and XML Schema to provide

web services over the Internet. A client program connecting to a web service

can read the WSDL to determine what functions are available on the server.

Any special datatypes used are embedded in the WSDL file in the form of XML

Schema. The client can then use SOAP to actually call one of the functions

listed in the WSDL [8].

2.4.4 UDDI

UDDI is a platform-independent, XML-based registry for businesses worldwide

to list themselves on the Internet. UDDI is an open industry initiative enabling

businesses to publish service listings and discover each other and define how

the services or software applications interact over the Internet.

 22

Evaluating Security in Open Source Consumer Applications

It is designed to be interrogated by SOAP messages and to provide access to

Web Services Description Language documents describing the protocol

bindings and message formats required to interact with the web services listed

in its directory [8].

2.5 Open Source and Closed Source

"As far as firms are concerned, they should take strict measures to ensure that

sensitive information is only transmitted via secure media.... If security is to be

taken seriously, only those operating systems should be used whose source

code has been published and checked, since only then can it be determined

with certainty what happens to the data." [9]

Open source and closed source are two approaches to the control, exploitation

and commercializing of computer software.

Open source approaches differ from the traditional model of software licensing

by allowing other individuals and organizations to view and modify the source

code, and in many cases, resell the software without providing royalties to the

original authors of the software, or under some open source licenses without

even requiring that they credit the original authors of the software.

2.5.1 Open Source

Open-source software is an antonym for closed source software and refers to

any computer software whose source code is available under a license (or

arrangement such as the public domain) that permits users to study, change,

and improve the software, and to redistribute it in modified or unmodified form. It

is often developed in a public, collaborative manner. It is the most prominent

example of open source development [8].

2.5.2 Closed Source

Closed source refers to any program whose license does not meet the definition

of Open-source software. Generally, it means only the binaries of a computer

program are distributed and the license provides no access to the program's

 23

Evaluating Security in Open Source Consumer Applications

source code, rendering modifications to the software technically impossible for

practical purposes. The source code of such programs is usually regarded as a

trade secret of the company [8].

2.6 Distributed Object Platform

These days, client/server applications are being built with software systems

based on distributed objects. These technologies provide for remote availability

of resources, redundancy and parallelism [10].

2.6.1 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard

defined by the Object Management Group (OMG) that enables software

components written in multiple computer languages and running on multiple

computers to interoperate [8].

CORBA inserts program code into a “pack” containing information about the

capabilities of the code inside and how to call it. The resulting objects can then

be called from other programs (or CORBA objects) across a network.

CORBA uses an interface definition language (IDL) to specify the interfaces that

objects will present to the world. CORBA then maps from IDL to a specific

implementation language like C++ or Java.

Figure 4: CORBA Server [29]

 24

Evaluating Security in Open Source Consumer Applications

2.6.2 RMI

JAVA Remote Method Invocation (RMI), it’s a mechanism offered by Java to

invoke a method remotely.

Using RMI, a program can export an object. From that moment, the object is

available for every client to connect to it and to use its methods.

The way RMI works is very similar to CORBA with the exception that RMI can

be only used with Java coded servers. In the other hand, it provides passing

object by reference and automated garbage collection, something that CORBA

doesn’t have.

Figure 5: Java RMI [30]

2.7 Client – Server Architecture

Client - server is network architecture which separates a client (often an

application that uses a graphical user interface) from a server. Each instance of

the client software can send requests to a server. Specific types of servers

include web servers, application servers, file servers, terminal servers, and mail

servers. While their purposes vary somewhat, the basic architecture remains

the same.

The term client/server was first used in the 1980s in reference to personal

computers (PCs) on a network. The actual client/server model started gaining

acceptance in the late 1980s.

The client/server software architecture is a versatile, message-based and

modular infrastructure that is intended to improve usability, flexibility,

interoperability, and scalability as compared to centralized, mainframe, time

sharing computing.

 25

Evaluating Security in Open Source Consumer Applications

A client is defined as a requester of services and a server is defined as the

provider of services. A single machine can be both a client and a server

depending on the software configuration [11].

2.7.1 Two Tier Architecture

As can be seen in figure 6, with two tier client/server architectures, the user

system interface is usually located in the user's desktop environment and the

database management services are usually in a server that is a more powerful

machine that services many clients.

Processing management is split between the user system interface environment

and the database management server environment. The database

management server provides stored procedures and triggers.

Figure 6: Two Tier Architecture [31]

2.7.2 Three Tier Architecture

This architecture consists, as shown in figure 7, of three logical tiers, namely the

presentation tier, application tier and the data tier.

The first tier, the presentation tier, is responsible for presenting data to end

users or systems. This tier includes web browsers and web servers. They may

also include application components that create the page layout.

The second tier, the application tier, is the engine of a web application. It

performs the business logic, like processing user input, making decisions,

 26

Evaluating Security in Open Source Consumer Applications

obtaining more data, and sends data to the presentation tier which presents it to

the user.

The third tier is the data tier, which is used to store things needed by the

application, and acts as a repository for both temporary and permanent data.

Figure 7: Three Tier Architecture [32]

2.8 Cryptography

As Kessler says [12], in data and telecommunications, cryptography is

necessary when communicating over any untrusted medium, which includes

just about any network, particularly the Internet.

Within the context of any application-to-application communication, there are

some specific security requirements, including:

Authentication: The process of proving one's identity.

Privacy/confidentiality: Ensuring that no one can read the message except

the intended receiver.

Integrity: Assuring the receiver that the received message has not been altered

in any way from the original.

 27

Evaluating Security in Open Source Consumer Applications

Non-repudiation: A mechanism to prove that the sender really sent this

message.

Cryptography, then, not only protects data from theft or alteration, but can also

be used for user authentication.

There are, in general, two types of cryptographic schemes typically used to

accomplish these goals: secret key (or symmetric) cryptography and public-key

(or asymmetric) cryptography.

In all cases, the initial unencrypted data is referred to as plaintext. It is

encrypted into ciphertext, which will be decrypted into usable plaintext again.

2.8.1 Symmetric Cryptography

 With symmetric cryptography, a single key is used for both encryption and

decryption.

With this form of cryptography, it is obvious that the key must be known to both

the sender and the receiver. The biggest difficulty with this approach, of course,

is the distribution of the key.

Secret key cryptography schemes are generally categorized as being either

stream ciphers or block ciphers.

Stream ciphers operate on a single bit (byte or computer word) at a time.

A block cipher is so-called because the scheme encrypts one block of data at a

time using the same key on each block.

Among the symmetric cryptography algorithms, the most important are:

DES (Data Encryption Standard) with all its variants like tripleDES or DESX.

AES (Advanced Encryption Standard).

2.8.2 Public Key Cryptography

Public key cryptography, also known as asymmetric cryptography, is a form of

cryptography in which a user has a pair of cryptographic keys - a public key and

a private key.

 28

Evaluating Security in Open Source Consumer Applications

The private key is kept secret, while the public key may be widely distributed.

The keys are related mathematically, but the private key cannot be practically

derived from the public key. A message encrypted with the public key can be

decrypted only with the corresponding private key.

The biggest advantage is that private key never needs to be distributed, thus

making a lot easier to keep it secret.

Anyone can encrypt a message using the public key, but only the holder of the

private key related to the public one can decrypt the message. Secrecy

depends on the secrecy of the private key.

Figure 8: Public Key encryption/decryption [33]

Among the public key algorithms, probably the most famous is the RSA

algorithm that has that name due to the initials of its creators, Rivest, Shamir

and Adleman.

2.9 Security Evaluation Standards

For security evaluation purposes, entities and governments have created what

are called security evaluation standards, which are used to certify that a piece

of software is secure enough according to that standard.

In this section I will present the most important one, the Common Criteria, and

after, why not to use such a standard in the development of our security

guideline will be discussed.

 29

Evaluating Security in Open Source Consumer Applications

2.9.1 Common Criteria

The Common Criteria (CC) is an international standard (ISO/IEC 15408) for

computer security. Unlike standards such as FIPS 140, Common Criteria does

not provide a list of product security requirements or features that products must

contain.

Instead, it describes a framework in which computer system users can specify

their security requirements, vendors can then implement and/or make claims

about the security attributes of their products and testing laboratories can

evaluate the products to determine if they actually meet the claims.

In other words, Common Criteria provides assurance that the process of

specification, implementation and evaluation of a computer security product has

been conducted in a rigorous and standard manner [8].

For the development of this guideline, Common Criteria will not be used

because Open Source Applications are in constant development and change

and can be used under many computer configurations, and Common Criteria

only certifies that a product is secure under certain configuration specified by

the vendor and for a specified severity of threats only.

As Viega and McGraw say [10], “although the Common Criteria is certainly a

good idea, security evaluation is unfortunately not as simple as applying a

standard protection profile to a given target of evaluation. The problem with the

Common Criteria is evident right in its name. That is, “common” is often not

good enough when it comes to security.”

 30

Evaluating Security in Open Source Consumer Applications

2.10 Risk Management

Risk management is the process of measuring, or assessing, risk and

developing strategies to manage it. Strategies include transferring the risk to

another party, avoiding the risk, reducing the negative effect of the risk, and

accepting some or all of the consequences of a particular risk.

In ideal risk management, a prioritization process is followed whereby the risks

with the greatest loss and the greatest probability of occurring are handled first,

and risks with lower probability of occurrence and lower loss are handled later.

In practice the process can be very difficult, and balancing between risks with a

high probability of occurrence but lower loss vs. a risk with high loss but lower

probability of occurrence can often be mishandled [8].

As said in [13], risk analysis can be divided in three processes: risk

assessment, risk mitigation and evaluation and assessment.

Risk assessment is the first process in the risk management methodology.

Organizations use risk assessment to determine the extent of the potential

threat and the risk associated with an IT system.

The output of this process helps to identify appropriate controls for reducing or

eliminating risk during the risk mitigation process.

Risk mitigation, the second process of risk management, involves prioritizing,

evaluating, and implementing the appropriate risk-reducing controls

recommended from the risk assessment process.

Because the elimination of all risk is usually impractical or close to impossible,

using the least-cost approach and implement the most appropriate controls to

decrease mission risk to an acceptable level, with minimal adverse impact on

the organization’s resources and mission, is the usual method.

The need for evaluation and assessment comes with the fact that in most

organizations, the network itself will continually be expanded and updated, its

components changed, and its software applications replaced or updated with

newer versions. In addition, personnel changes will occur and security policies

are likely to change over time.

 31

Evaluating Security in Open Source Consumer Applications

These changes mean that new risks will surface and risks previously mitigated

may again become a concern. Thus, the risk management process is ongoing

and evolving.

Figure 9: Risk Management [16]

2.11 Healthcare Related Theory

As the analysis part of this thesis is conducted against an Open Source

Software Application for the healthcare field, which is used to manage electronic

health records, some specific healthcare related theory is needed. In this

section a fast overview on EHRs (Electronic Health Records) and on Indivo will

be done.

2.11.1 EHR

An electronic health record (EHR) is a distributed personal health record in

digital format. The EHR provides secure, real-time, patient-centric information to

aid clinical decision-making by providing access to a patient's health information

at the point of care.

An EHR is typically accessed on a computer or over a network. It may be made

up of health information from many locations and/or sources, including

electronic medical records (EMRs).

 32

Evaluating Security in Open Source Consumer Applications

An EHR almost always includes information relating to the current and historical

health, medical conditions and medical tests of its subject. In addition, EHRs

may contain data about medical referrals, medical treatments, medications and

their application, demographic information and other non-clinical administrative

information [8].

2.11.2 Indivo

Indivo is a personally controlled health record system developed by the

Children's Hospital Informatics Program (CHIP).

The Indivo system is based on a 3-tier architecture: Indivo client, Indivo server

and the Store. A communication protocol is developed for client-server

communication. The client interface is a PHP web based interface. Java RMI

handles the communication between the Indivo server and the Store.

Figure 10: Indivo 3-tier architecture [14]

Some of the most notorious characteristics of Indivo are [14]:

• Personally controlled

• Distributed

• Web-based

• Ubiquitously accessible to the nomadic user

• Built to public standards

• Open-source

 33

Evaluating Security in Open Source Consumer Applications

 34

Evaluating Security in Open Source Consumer Applications

3. Research Method

In this chapter, I am going to describe the research methods employed to

develop this mater thesis.

First of all, I will describe the research methodology for the theory background

part, and after this, the methodology for the development of the security

guideline will be introduced.

Finally I will describe the methods I will use to test the guideline against Indivo,

an Open Source Consumer Application for the healthcare field.

3.1 Background Theory Research Method

For the Theory Background part of this thesis, first of all an initial schema of

important theory concepts related with the content of this thesis was made.

After this, looking through the initial schema, the most important and relevant

topics for the good understanding of the thesis were selected, discarding those

that were too general or not that relevant.

After this first step, the remaining topics left in the schema were discussed with

the thesis teacher and final adjustments on the schema were made, changing

some topics and adding some relevant information that was not included yet.

Gathering of information for the theory background was made through the

reading and summarizing of several topic-related books like [6] or [10] and

through the search on Internet in general information websites or specialized

security websites like OWASP or insecure.org.

Finally, like for every chapter of this thesis, the Background Theory part was

sent to thesis teacher for feedback and readjustments.

 35

Evaluating Security in Open Source Consumer Applications

3.2 Guideline Research Method

During the development of the guideline, work will be done according to the

waterfall method, as shown in figure 11.

Figure 11: Waterfall model for the guideline

The waterfall model particularly expresses the interaction between subsequent

phases in a development process. It is important to be aware that before

moving on to a subsequent phase, feedback should be received to assess that

everything is correct.

The reason why the waterfall model has been chosen for the development of

the guideline, as opposed to various alternatives, is that there is time to do only

one iteration, and in another model like spiral model, more than one iteration is

needed.

For the design and implementation of the guideline several books and other

relevant sources (internet, mailing lists, etc…) related to the subject of this

thesis - the security in software - will be used to get the most important keys

about building and testing secure software.

 36

Evaluating Security in Open Source Consumer Applications

3.3 Testing Methodology

As said in earlier chapters, the testing of the guideline will be done against an

Open Source Consumer Application for the healthcare area called Indivo.

As this application is already in beta testing stage, not all the guideline will be

applied, the part of the guideline referring to the security during design stage will

be skipped mostly on the testing.

For this stage of the thesis, it will be necessary to collect much information

about vulnerabilities in specific pieces of software and about how to exploit

those vulnerabilities.

All this research and information will be conducted searching in specialized

pages such as Security Focus, Secunia or Cert website.

After the guideline will be tested against Indivo, results obtained will be

presented and conclusions will be drawn.

 37

Evaluating Security in Open Source Consumer Applications

4. Security Guidelines

“There are two ways of constructing secure software: One way is to make it so

simple that there are obviously no deficiencies, and the other way is to make it

so complicated that there are no obvious deficiencies. The first method is far

more difficult.” adapted from C. A. R. Hoare

In this chapter the main focus of this thesis, the Security Guideline, will be

developed.

This security guideline is intended to evaluate security on Open Source

Consumer Applications.

Overall, this guideline is a compilation of general and not so general “touch

points”, methods and techniques that are well organized in sections and that

provide a good methodology for testing and evaluating security in Open Source

Consumer Applications.

But this guideline can be used to evaluate security almost in every piece of

software pretty much, open or not, despite the points that imply testing parts of

the project that obviously are not available to every person willing to evaluate

security on a closed source product.

Now, and before going deep into the guideline, I will present the structure that

will conform it.

First of all general guidelines, that are common sense concepts, will be

introduced.

After this, I will describe organizational guidelines, that involve the planning of

the security evaluation tasks such as who is the most appropriate person to

evaluate security, how to keep up with new vulnerabilities and fixes and so on.

Once organizational guidelines are done, it will be the turn for design guidelines

to be taken into consideration. These will include orientation for design

decisions like which programming language to choose, risk management and

more.

Then, implementation guidelines will follow, including among several subjects

code review or using and reusing trusted components.

 38

Evaluating Security in Open Source Consumer Applications

Last but not least, post implementation guidelines will close this chapter,

including the testing of the product part, or the importance of a correct

installation of the product and the necessary technologies to make it run.

4.1 General Guidelines

This part of the guideline is intended to give few really general touch points on

security.

That they are general doesn’t mean that they are not important, and one should

always check them in order to have a stable “starting point” to go further in the

security analysis of an application.

As Viega and McGraw [10] say, there are some guiding principles that can help

to improve the security outlook of an application. Following I will describe those

principles in the order the authors use in the mentioned book.

4.1.1 Secure the weakest link

It is said that security is like a chain. Putting it simple, a software security

system is only as secure as its weakest component, the same that a chain is

only as strong as its weakest link.

If someone is preparing to attack an application or system, he will try to attack

the weakest part of it, because it will be easier to break into it.

The weakest part of your system can be the software, or it can be its

surrounding infrastructure such as other technologies needed to make that

software run or some service you might be offering and that it is not secure.

The way to act is to fix first the weakest components, and not the ones that are

easier to fix, like lots of people do.

Of course, this strategy can be applied forever, because after securing the

weakest component, the next insecure item will become the weakest one. 100%

security is never attainable, but securing the most obvious weak parts first is

always a good practice to keep in mind.

Securing the weakest parts of your system first always pays off.

 39

Evaluating Security in Open Source Consumer Applications

4.1.2 Defense in Depth

“Have a series of defenses so that if an error isn’t caught by one, it will probably

be caught by another”. MacLennan

The idea behind defense in depth is to provide more than one defensive

strategy, so if one of them will fail or will result inappropriate, a subsequent

defensive layer will mitigate the attack.

It is important to make sure that various layers of security in a system works

together in harmony to supplement each others functionality, but also to

overlap, so that if one should fail, another layer will prevent a total compromise

of the system, as said in OWASP [15].

4.1.3 Fail Securely

Any complex system has failure modes. Failure is unavoidable and should be

planned in detail. What is avoidable are security problems related to failure.

Many systems, when failing, exhibit insecure behaviors, and that’s what should

be tried to avoid.

Any security mechanism should be designed in such a way that when it fails, it

fails closed. That is, it should fail to a state that rejects all subsequent security

requests rather than allow them. [15].

When a system fails, it may be a problem that it reveals critical system

information as the error messages can contain information of weaknesses on

the system that can be used by an attacker such as revealing the name and

fields of a database.

Detailed error messages should therefore never be sent to the client, but rather

to a system administrator, or to a log.

 40

Evaluating Security in Open Source Consumer Applications

4.1.4 Use the Least Privilege

The principle of least privilege is based in that only the minimum access

necessary to perform an operation should be granted, and only during the

minimum amount of time necessary.

When you give access to parts of a system, there is always the possibility that

the privileges associated with that access will be abused.

4.1.5 Compartmentalize

The basic idea behind compartmentalization is to minimize the amount of

damage that can be done to a system by breaking up the system into as few

units as possible while still isolating code that has security privileges

This principle has to be used in moderation; segregating each little bit of

functionality will make your system or application almost impossible to manage.

4.1.6 Keep it Simple

Complexity increases the risk of problems. Avoiding complexity, you avoid

problems at the same time.

A complex design is never easy to understand, and is therefore more likely to

include subtle problems.

Complex code tends to be harder to maintain as well. To stay out of this kind of

trouble, design and implementation should be as straightforward as possible in

a software development process.

Simplicity can be attained by making all security operations go through one or

more choke-points where the traffic going through it will be checked, instead of

implementing complex and elaborated security controls that subtracts usability

to the final application.

 41

Evaluating Security in Open Source Consumer Applications

4.2 Organizational Guidelines

This part of the guideline looks at the key decisions that need to be made while

planning the organization of the project.

These decisions involve choosing the person or persons to carry out the

security supervision and testing effort, setting out the testing plan and deciding

when and under which circumstances to retest and what to include in the

retesting effort.

4.2.1 Who Should do Software Security

As Gary McGraw says [16], as it stands in many organizations, software

security is nobody's job.

Developers, architects, and other builders are often unaware of security and

possess little in the way of software security knowledge. When their software

suffers from security failure, they don't often feel responsible, arguing that

security is up to the people in operations who install and operate the software

they create.

When a security problem happens because of bad software, there really is

nobody to hold responsible. The standard security people in operations are not

really at fault (it's not their broken software), and neither are the software people

(they're not security people). Organizationally, this is a textbook management

problem.

In an “utopic” environment, software security should be everyone’s job. In a

more realistic one, setting up a team that will be in charge of the software

security can make a big difference to solve the problem.

Network security specialists are not the correct option, even if they know a lot

about how software operations work, usually they don’t know enough about

software itself to make a good software security practitioner. Put simple, they

lack knowledge about compilers, language frameworks, software architecture,

testing, and several other things necessary to be a solid software person.

 42

Evaluating Security in Open Source Consumer Applications

The correct option in this situation is to use experienced software developers to

put them at the front of a security team. Security is easier to learn than software

development, and a person already being a software developer will have more

acceptance among the other developers, as they tend only to pay attention to

fellow developers than rather an outsider who has little idea about software

developing.

Hiring external security consultants to form people in security issues is an

option than despite being expensive, is worth to do because it always pays off.

As open source applications usually can rely not only on its development team

but also on an interested community of people that are going to make use of it,

and the code is available to everyone, another suitable option could be that

people from that community with enough security interest and background took

care of the security evaluation in a free and collaborative way.

If many people work on the security of an application individually, security

issues that maybe someone will not find out, will be found by others, making

this alternative also an interesting one.

4.2.2 Setting out the Testing Plan

A test plan can be as large as several hundred pages or as simple as a single

piece of paper.

Doing a really documented test plan can be good as it contains a

comprehensive analysis of the system and it can be really helpful, but it can

also be the most consuming time task in the project, slowing down the process

and getting obsolete quite fast as keeping up-to-date with a really huge test plan

requires a lot of efforts.

As Steven Splaine says [17], the testing team should decide at what level of

detail a test plan ceases to be an aid and starts to become a net drag on the

project’s productivity.

The security team should be able also to change the testing plan in light of

newly discovered information such as previous test results that can reveal some

 43

Evaluating Security in Open Source Consumer Applications

other problems, allowing this way the testing effort to focus on more important

and in-need-of-attention areas.

One should see the testing effort as an iterative task in which the last iterations

are not defined at all, and they will get defined once the results of previous

iterations will appear, making this way the effort more effective.

4.2.3 Keeping up with the testing effort: Retesting

Many security practitioners make really good test plans, but forget about a really

important part of the testing effort, the retesting.

Applications require continuous testing when they go live, because of the

frequent changes that happens in applications and the technology surrounding

them, and because of the often discovery of new vulnerabilities.

As Steven Splaine says [17], even if the functional requirements of a system

remain unchanged, a system that was deemed secure last week may become

insecure next week.

This can happen because of an unknown exploit becomes suddenly know to the

attacker community, because additional devices are added to the system, but

can be miss configured, because of installing a patch or a service pack that

might change settings or open new security holes, because passwords maybe

expiring and being reseted to shorter and easier ones, or even because such a

trivial thing as people getting not sensitive to security alerts due to the high

amount of false alarms.

It is when this kind of events occurs that retesting should be carried out.

Security testing should not be regarded as a one-time event, but rather as a

recurring activity that will keep going on as long as the system remains active.

4.2.4 What to Retest

The security team should consider each test that has been used previously

during the application’s initial testing effort as a possible candidate for

 44

Evaluating Security in Open Source Consumer Applications

conforming the set of tests that should be carried on in a regular basis after the

system goes live.

“Regression tests are usually intended to be executed many times and are

designed to conform that previously identified defects have been fixed and stay

fixed, that functionality that should not have changed has indeed remained

unaffected by any other changes to the system, or both”. - Steven Splaine

The determination about if to repeat or not certain test depends really much on

how the previous problems that the test revealed were fixed and in the

likelihood of that problems reappearing.

4.3 Design Guidelines

After describing the organizational guidelines, we go on into a new section, the

design guidelines.

This part of the guideline focuses on the security efforts that should be done

during the design stage of the application.

This includes which programming language to use, which distributed object

platform to choose if needed, which operating system to use, discusses about

choosing to develop the application as an open source project or as a closed

source one and the advantages or disadvantages that it involves and it includes

also a crucial part of the software security, the risk management stage.

The decision of including the risk assessment in this section has been taken

due to the convenience that risk assessment should be done in the earliest

stage of the product development that is possible, and the design stage is the

most appropriate one.

 45

Evaluating Security in Open Source Consumer Applications

4.3.1 Choosing a Programming Language

As Viega and McGraw say [10], the single most important technology choice

most software projects face is which programming language or set of languages

to use for implementation.

The choosing of a specific language can be determined by several factors or

requirements like needing efficiency or representation power.

This ends up usually in choosing C or C++ because of efficiency requirements,

not considering that other languages can be more secure for implementing the

application and still to meet the efficiency requirements.

Other big reason for choosing certain languages is based on the comfort or

familiarity that the software developer has with that language.

But making those choices usually indicates really a poor view and not much

worries about security, and not much people takes a while to think about the

benefits that using other languages can bring to the project.

One of the biggest mistakes companies make when choosing the programming

language for a product is not to consider the impact that the language will have

over the software security.

This section doesn’t intends to give the definitive answer about which language

to use, first of all because that could be considered advertising a specific

language, secondly because security of a programming language depends a lot

on how the language is used (i.e. some software developer can use a language

with built-in security but due to the lack of knowledge not to use the feature, and

other software developer can perhaps use a “less secure” language but due to

great knowledge on it and being really careful, to develop a more secure

application) and also because the aim of this section is to give a general advice

about what to look at when choosing the programming language to develop an

application.

Of course, if having good knowledge about several programming languages

and knowing how to take profit of their security features, the wiser choice would

be to pick one with built-in security, exception handling and that sort of features

 46

Evaluating Security in Open Source Consumer Applications

that when used properly would make your application more secure, like Java or

C#, in detriment of C, C++ or others that doesn’t provide that features.

For a more detailed language comparison, you can take a look in [18].

In conclusion, when it comes to choose a language to develop an application it

is important to think carefully which one offers better security features, but as

important as this is also to know how to use properly the language selected and

not to be less careful when the language implements aids like exception

handling because of thinking that “the language will take care about it for me”.

4.3.2 Choosing a Distributed Object Platform

As Viega and McGraw say [10], these days, client-server applications are being

constructed with software systems based on distributed objects, such as

CORBA, DCOM or EJB using RMI.

These technologies provide with remote availability of resources, redundancy

and parallelism with much less effort than old-fashioned programming.

When thinking about software security, each of these technologies has different

security features that should be considered when choosing which Distributed

Object Platform to use.

The aim of this section is not to point out which one specifically to choose, as

each application has different needs, but to make clear in which way each of

these technologies provide security.

4.3.2.1 CORBA

CORBA implementations can come with security service or not, it greatly varies

from one implementation to another, having the worst case, you will not have

any security implemented, you may have security only half the way in some

implementations, or to find an implementation with full security features

implemented. Of course the recommendation is to get a fully secure

implementation.

 47

Evaluating Security in Open Source Consumer Applications

CORBA defines two levels of security, level 1 is intended for applications that

need to be secure but where the code itself doesn’t need to be aware of

security issues, and level 2 that supports more advanced security features.

CORBA allows as the most significant feature secure communications using

cryptography. CORBA also provides authentication services, which can be

made transparent to the application.

Access to particular operations, such as the ones of an administrative interface

for example, can be restricted in CORBA, and it has a wide set of possibilities

when managing privileges in a distributed system, allowing great flexibility on

what an object can do with those privileges.

4.3.2.2 DCOM

DCOM is the equivalent of CORBA but only working in Microsoft platforms.

Security features in DCOM are quite similar to CORBA ones even if they look

totally different.

Authentication, data integrity, and secrecy are all wrapped up into a single

property called the authentication level. Authentication levels only apply to

server objects, and each object can have its own level set.

Authentication level range goes from 1 to 7, being 1 the lowest (no

authentication or security at all), and 7 the highest security level (called packet

privacy-level authentication, which fully encrypts all data and authenticates each

packet). The range left in the middle of levels 1 and 7 increases step by step

security until reaching level 7.

It is not the purpose of this guideline to describe each level on detail but only to

give a general vision, the advice is to consult Microsoft support page [19] for a

better and deeper view of those levels.

4.3.2.3 EJB and RMI

As Viega and McGraw say in [10], Enterprise Java Beans (EJB) are Java's

version of a distributed object platform. EJB client/server systems make use of

Java's Remote Method Invocation (RMI) implementations for communication.

 48

Evaluating Security in Open Source Consumer Applications

While the EJB specification only provides for access control, most

implementations usually provide encryption facilities that are configurable from

the server environment.

EJB’s access control system consists in moving access control decisions into

the domain of the person assembling the application. That way someone not

associated with development can specify the policy.

A critical security issue to note is that EJB implementations are built on top of

RMI, and may inherit any problems associated with RMI implementations.

In the past, RMI had a poor reputation for security because RMI was configured

to allow clients to download required code automatically from the server when it

wasn’t present. This feature was generally an all-or-nothing toggle and the

negotiation was possible before a secure connection had been established.

It is for this reason that Viega and McGraw don’t recommend in their book [10],

the use of EJB and RMI at all.

But security in RMI has evolved as you can check in java.net Krishnan

Viswanath’s article [20], and these issues have been corrected, making it a

totally valid choice as well as the rest of previously described technologies.

4.3.3 Choosing an Operating System

In this section, I will provide some advice about what to think on when choosing

an operating system.

Yet again, it will not point out a specific operating system, because as before it

happened with the programming language section, it is not only about the

selected operating system but also a lot about how the selected system is

configured and administrated.

As CERT® Coordination Center says [21], if you have knowledgeable staff, you

may choose to use freely available OS versions so that you can maintain or fine

tune the product to meet specific requirements. You might have more

confidence in the modified OS because you were responsible for making

changes or closely involved in the implementation of patches or workarounds. If

you know about a vulnerability and understand the problem, you may want to

 49

Evaluating Security in Open Source Consumer Applications

apply fixes immediately to the source code rather than wait for an upgrade or

patch to be released through other channels.

If you select freely available OS versions and don't have the resources to

maintain software in-house, it's important to know that you could be placing your

system at a high risk of compromise.

If you do not have the time or expertise to modify and maintain an operating

system in-house, you might choose a commercial vendor product. When you

buy a commercial operating system, you can purchase a service contract to

provide you with patches, upgrades, and other customer assistance.

Alternatively, you could buy third-party service or select products from vendors

who implement fixes and make patches publicly available.

When choosing an operating system, there are many things you need to

consider like availability of source code vs. binaries, availability of technical

expertise (internal and external), maintenance and/or customer support,

customer requirements and usability and cost of software, hardware, and

technical support staff.

No matter the choice you make, you should first carefully review and

understand the needs of your organization or customer base in terms of

resources, cost, and security risk. The best advice is to compare the available

products and services to your needs, and then determine what product best

matches your needs.

4.3.4 Closed Source vs. Open Source

“Given enough eyeballs, all bugs are shallow”. – Eric Raymond

The point about choosing to develop an application as open or closed source

has been discussed a lot.

The truth is, however, that once again not any of the two approaches is

definitely more secure and that secure applications can only be developed with

good security practices and with being careful when developing it.

In one side, one might think that developing as open source makes applications

more safe, as their code is reviewed by many people making this way easier to

 50

Evaluating Security in Open Source Consumer Applications

discover possible vulnerabilities and to fix them in less time, making more

difficult for the “bad guys” to exploit them, and also because if you understand

the code, you can even fix the vulnerability by yourself without having to wait for

a patch release.

But this fact is true also the other way around, as open source application’s

code is available to everyone, it is also easier for the malicious user to discover

vulnerabilities and thus, exploiting them in an easier way.

In the other side, closed source applications rely in what is called “security by

obscurity”, which is a double edged weapon.

It is true that for a malicious user, is far more difficult to find a vulnerability

without being able to take a look into the code, and it also makes difficult to

develop an exploit for it, as a good understanding of what the code is doing is

necessary to do that.

But it is also true that it is possible to use reverse engineering to discover how

the code is working, and there is also the problem that once the vulnerability is

found, users of the application are totally unprotected against attacks exploiting

that vulnerability until the vendor of the application releases the fix for it.

Also, relying in security by obscurity might lead to mistakes like implementing

self-made security solutions thinking that as no one knows how they work, no

one will be able to break them. But that doesn’t mean that they are more secure

that an already implemented one and well known, if it has proven to be secure

already.

Put simple, it would not be clever to develop a cryptographic algorithm by

yourself for an application, because even if no one knows how it works, it is

likely that it will be not as safe as some of the already implemented algorithms

like DES, as good cryptographic algorithms remain good even if people know

how they work.

As Jason Miller says [22], although you can take an open source project,

compare it against a closed source project, and say that one is more secure

than the other based on some number of observations or measurements, this

determination will probably be based on factors other than the nature of the

project's open or closed source code.

Secure design, source code auditing, quality developers, design process, and

other factors, all play into the security of a project, and none of these are

directly related to a project being open or closed source.

 51

Evaluating Security in Open Source Consumer Applications

Neither closed source nor open source is inherently more or less secure than

the other, making a blanket statement such as that would be foolish. The best

conclusion that one can make on this subject is that the two methodologies are

not "better or worse", but instead, different from one another. I don't believe that

you can answer that question any better.

4.3.5 Risk Management

As said in “A Risk Management Guide for Information Technology Systems”

[13], Risk Management is the process that allows IT managers to balance the

operational and economic costs of protective measures and achieve gains in

mission capability by protecting the IT systems and data that support their

organizations’ missions.

Risk management involves three stages: risk assessment, risk mitigation, and

evaluation and assessment.

4.3.5.1 Risk Assessment

Risk assessment is the first process in the risk management methodology.

Organizations use risk assessment to determine the extent of the potential

threat and the risk associated with a project.

The output of this process helps to identify appropriate controls for reducing or

eliminating risk during the risk mitigation process.

Risk assessment can be divided into several steps, although some of them can

be carried out concurrently.

First step is used for system characterization. Characterizing a system

establishes the scope of the risk assessment effort, delineates the operational

authorization (or accreditation) boundaries, and provides information (e.g.,

hardware, software, system connectivity, and responsible division or support

personnel) essential to define the risk.

The gathering of this information can be done through questionnaires,

interviews to personnel and/or project’s documentation review.

 52

Evaluating Security in Open Source Consumer Applications

After this step, the next one is to determine the possible threats, vulnerabilities

and its sources by developing a list of system vulnerabilities (flaws or

weaknesses) that could be exploited by the potential threat-sources.

Recommended methods for identifying system vulnerabilities are the use of

vulnerability sources, the performance of system security testing, and the

development of a security requirements checklist.

Next to this step comes to set the likelihood of that threat sources to exploit the

vulnerabilities.

To get a global rating that indicates the probability that a potential vulnerability

may be exploited by the correspondent threat source the following factors must

be considered:

• Threat source motivation and capability

• Nature of the vulnerability

• Existence and effectiveness of current controls.

After considering these factors, a severity level rated from low to high will be

assigned to the vulnerability.

The next major step in measuring level of risk is to determine the adverse

impact resulting from a successful threat source exploiting a vulnerability.

This impact can be described in terms of loss or degradation of any, or a

combination of any, of the following three security goals: integrity, availability,

and confidentiality.

Last step of the risk assessment is to develop control recommendations that

could mitigate or eliminate the identified risks, as appropriate to the

organization’s operations, are provided. The goal of the recommended controls

is to reduce the level of risk to the system and its data to an acceptable level.

The control recommendations are the results of the risk assessment process

and provide input to the risk mitigation process, during which the recommended

procedural and technical security controls are evaluated, prioritized, and

implemented.

As not all the possible controls can be implemented to reduce loss, a

cost/benefit analysis should be conducted for the proposed controls, to

 53

Evaluating Security in Open Source Consumer Applications

determine which of the controls can be justified by the reduction in the level of

risk.

4.3.5.2 Risk Mitigation

Risk mitigation involves prioritizing, evaluating, and implementing the

appropriate risk-reducing controls recommended from the risk assessment

process.

Risk mitigation is also divided into several steps, but the implementation of the

previously mentioned security controls is the task of the application’s

development team, and to carry out the cost/benefit study is a task for the

management section of the project, so I will not go into more deep in this

section.

4.3.5.3 Evaluation and Assessment

In most projects, the application itself will continually be expanded and updated,

and its surrounding technologies will maybe change from time to time. In

addition, personnel changes will take place eventually and security policies are

likely to change over time.

These changes mean that new risks will appear and risks previously mitigated

can become a real risk again. That’s why the risk management process is

always in a loop that goes on during all the lifecycle of the application.

Risk management should be conducted and integrated in the lifecycle of the

application because it is a good practice and supports the project’s business

objectives or mission.

There should be a specific schedule for risk management, but the process

should also be flexible enough to allow changes such as major changes to

policies and/or new technologies.

 54

Evaluating Security in Open Source Consumer Applications

4.4 Implementation Guidelines

Once finished with the design guidelines, we move into the implementation

stage guidelines

This part of the guideline focuses on the security efforts that should be done

during the implementation stage of the application.

In this section I will talk about code review, using COTS (Commercial Off-The-

Shelf) and the convenience of using and reusing trusted components.

4.4.1 Code Review

“Debugging is at least twice as hard as programming. If your code is as clever

as you can possibly make it, then by definition you're not smart enough to

debug it.” - Brian Kernighan

Programmers make little mistakes all the time like a missing semicolon or

placing an extra parenthesis. Most of the time, such mistakes have no more

repercussion than the compiler noting the error and after the programmer fixing

the code. After this, the implementation process continues and subsequent

similar errors are fixed in the same way. This quick cycle of feedback and

response doesn’t appear to happen with most security vulnerabilities, which can

remain hidden for a long time before someone actually discovering them. And

the longer a vulnerability remains hidden, the more expensive is to fix it

properly.

To solve this problem is when code review comes into action.

There are two ways of reviewing code, manually and with the aid of automated

reviewing tools.

Manual code review is an extremely time-consuming activity, and to do it

effectively one must first know how security vulnerabilities look before being

able to start to manually review the code, not to mention that applications often

have more than one hundred thousand lines of code, making the task virtually

impossible to perform or requiring more than one person to perform the review.

 55

Evaluating Security in Open Source Consumer Applications

As McGraw says in [16], static analysis tools compare favourably to manual

audits because they're faster, which means they can evaluate programs much

more frequently, and they encapsulate security knowledge in a way that doesn't

require the tool operator to have the same level of security expertise as a

human auditor.

Just as a programmer can rely on a compiler to enforce the finer points of

language syntax consistently, the operator of a good static analysis tool can

successfully apply that tool without being aware of the finer points of security

bugs.

Automated code scanning tools go through the code, searching for common

patterns that might cause a vulnerability to appear, comparing the code with

some set of fixed rules that they have (i.e. like searching for the function strcpy()

in c coded applications as it is well known that the use of this function can lead

to buffer overflows easily), and after performing the analysis they present a list

of results that include all that pieces of code that matched their rules.

Using an automated scanning tool, although, doesn’t means to run it and to

have the work already done.

The output generated by an automated scanning tool stills need the manual

verification of a human, although the work is quite smaller as the places to look

at are already listed, saving you the time that takes to go through all the code.

Usually the output of these tools needs to be checked as they usually produce

what is called false negatives, that mean that the tool is not perfect enough to

discover every single vulnerability, and false positives, that mean that some

times what is reported as a vulnerability, depending on the context of the

application is not such vulnerability.

There's no way for any tool to know automatically which problems are more or

less important to you, so there's no way to avoid looking through the output and

deciding which issues should be fixed and which ones carry an acceptable level

of risk.

Apart from this, no automated scanning tool can tell you design issues such as

if password’s security enforcement is good enough or not, just to put an

example.

In conclusion, both self-expertise and a good code scanning tool are needed.

 56

Evaluating Security in Open Source Consumer Applications

4.4.2 Using COTS

Commercial off-the-shelf (COTS) defines the software products or technologies

that are already made and available for sale, lease, or license to the general

public. They are often used as alternatives to in-house developments.

The motivation for using COTS components is that they will reduce overall

application development costs and involve less development time because the

components can be bought or used for free (if they are open source), instead of

being developed from scratch.

But using COTS can be a double edged weapon, because apart from the good

features that using COTS bring like reducing costs and development time, they

can also introduce in your application or system security vulnerabilities, as no

one assures you that a particular COTS that you are using is vulnerability free.

When using COTS, the best measure is to check as much as possible if the

component looks to be secure and if it has been in use for some time without

presenting security issues, basically, to check if it can be trusted or not.

And this is what the next section is about, using and reusing trusted

components.

4.4.3 Using and Reusing Trusted Components

When it comes to use components that have not been developed in-house, it is

clever to make sure before using them that they have been tested by people

you trust or with a solid security reputation, and that there haven’t been

published documents with relevant vulnerabilities about them.

As said in OWASP [4], the more successful a component has proven itself to be

over time, the better reason to reuse it. Many people developing computer

systems have gone through the same kind of problems, and may have invested

large amounts of time researching and developing robust solutions to them. In

many cases, components have been improved through an iterative process.

 57

Evaluating Security in Open Source Consumer Applications

Using and reusing trusted components makes sense both from a resource

stance and from a security viewpoint. When someone else has proven they got

it right it is beneficial to take advantage of it.

Let’s put as example the case of cryptographic libraries or algorithms. Well-

used libraries and algorithms are much more likely to be more robust than

something implemented in-house, because people are more likely to have

noticed implementation problems.

4.5 Post Implementation Guidelines

To finish this guideline, I will proceed to present the post implementation

guidelines.

These guidelines are to be applied after the implementation of the application,

and they will test the security through penetration testing, which is a good

method to check the security of the application in its real environment.

Also the importance of a correct configuration of the system will be discussed.

4.5.1 Penetration Testing

As said in OWASP [4], having tested the requirements, analyzed the design and

performed code review, it might be assumed that all issues have been caught.

Hopefully, this is the case, but penetration testing the application after it has

been deployed provides a last check to ensure that nothing has been missed.

Penetration testing can be divided in several steps which will be explained next.

4.5.1.1 Information Gathering

The first phase in penetration testing is focused on collecting as much

information as possible about the application. Information gathering is a

necessary step of a penetration test.

 58

Evaluating Security in Open Source Consumer Applications

Using tools like search engines, scanners, sending simple HTTP requests, or

specially crafted requests, it is possible to make the application to discover

information by sending back error messages or revealing the versions and

technologies used by the application.

4.5.1.2 Authentication Testing

Second step in penetration testing should be authentication testing. Testing the

authentication schema means understanding how the authentication process

works and using that information to circumvent the authentication mechanism.

First thing that can be tested here is if there are default user accounts that

usually some technologies just create for the first login and that should be

changed the first thing always, but sometimes can remain there just by mistake

and pairs of users/password that can be guessable by dictionary testing.

After this, next step is to try to gain authentication by brute force methods. This

step usually takes too much time and can make the application to block the rest

of the attempts after some invalid tries.

Next to this, directory traversal testing should be used to try to find a way to

bypass the application and gain access to system resources. Typically, these

vulnerabilities are caused by misconfiguration.

Another possible test to perform is to check how the application manages the

forgotten password functionality or if the “remember me” function is present, as

this might mean that password is being stored somewhere or that a cookie is

being stored to remember your session.

4.5.1.3 Session Management Testing

Session management covers all controls on a user from authentication to

leaving the application.

Checking how an application handles session management and understanding

it is important as it can reveal vulnerabilities that can provide a way to hijack a

session or to make a replay session attack.

 59

Evaluating Security in Open Source Consumer Applications

One of the ways to achieve this is by session token manipulation, which

consists in modify a session token (i.e. hidden field, cookie or sessionID) so the

session management system will think that we are a user we are not, thus being

able to access in an illegitimate way the information that only that user should

be able.

Another is to check if session token is transmitted from the client to the server in

an encrypted transport by default. If that transmission is not done over a secure

protocol like SSL or it is not encrypted before being sent, it can be exposed to

eavesdropping.

4.5.1.4 Data Validation Testing

As said in OWASP Testing Guide [23], the most common application security

weakness is the failure to properly validate input from the client or environment.

This weakness leads to almost all of the major vulnerabilities in applications,

such as interpreter injection, locale/Unicode attacks, file system attacks and

buffer overflows.

The data must be validated by the application before it’s trusted and processed.

The goal of this step is to test if the application actually does what is meant to

do and does not do what its not.

To perform this step, many tests can be done, including every existing injection

vulnerability test, overflows or cross site scripting.

Several of these attacks have been explained in the theory part of the thesis

and it remains out of the scope of this guideline to explain every single attack

that can be carried out.

4.5.1.5 Denial of Service Testing

What a Denial of Service (DoS) attack is has been already explained in the

theory part of the thesis

.

There are types of vulnerabilities within applications that can allow a malicious

user to make certain functionality or sometimes the entire application server

unavailable. These problems are caused by bugs in the application, often

resulting from malicious or unexpected user input.

 60

Evaluating Security in Open Source Consumer Applications

The first DoS case to consider involves a common defense to prevent brute-

force attacks on user passwords. The most usual measure against this is to lock

an account from use after between three to five failed attempts to login. This

means that even if a legitimate user tries to provide his valid password, he will

be unable to login to the system until his account has been unlocked. This

defense mechanism can be turned into a DoS attack against an application if

there is a way to predict valid login accounts.

Another way to achieve a DoS is to find some buffer overflow that will crash the

application, thus making the service unavailable.

Also, if the application allows the user to determine how many of an object to

create on the application server and it doesn’t sets any upper limit, a malicious

user can make the server to run out of memory.

A DoS case can appear also if the user can provide the input for a loop control

variable, as he can make an infinite or high resource consuming loop to run.

Summing up, every user action that can make the application to crash or to

consume high amounts of resources can result on a DoS case.

4.5.1.6 Web Services Testing

"By 2005 Web services shall have reopened over 70% of the attack paths

against internet-connected systems, which were closed by network firewalls in

the 1990's" – Gartner

The vulnerabilities in web services are similar to other vulnerabilities such as

SQL injection, information disclosure and leakage but they also have unique

XML/parser related vulnerabilities.

The first of these vulnerabilities involves XML not functioning properly when it’s

malformed. The XML message must be well formed in order to be successfully

parsed. Malformed messages may cause unhandled exceptions to occur.

Other possible attack might be for an attacker to craft an XML document that

contains malicious elements in order to compromise the target system. In this

way, the attacker can include in the message the code needed to exploit an

SQL injection in the web service, for instance.

 61

Evaluating Security in Open Source Consumer Applications

4.5.2 Configuration Management

Checking security on the application is important, but it would not be worth

anything if the system where application is running is missconfigured.

Configuration management consists in checking that everything is configured as

it should be, so system security will be as higher as possible.

Among the actions that should be performed are turning off all features by

default, as they are well known by attackers and can be used to gain illegitimate

access to the system, always change default passwords in system’s running

applications as much of them come with default passwords that are well known,

to encrypt network communications to prevent data leakage, to check in a

regular basis the latest security vulnerabilities published and to apply the latest

security patches.

Every system is unique and has different applications running, making

impossible to provide a “general secure configuration”.

 62

Evaluating Security in Open Source Consumer Applications

5. Practical Application and Results of the
Guideline

In this chapter, the previously developed guideline will be applied to an Open

Source consumer application called Indivo.

The aim of this section is to demonstrate how to apply the guideline to an open

source consumer application. The results obtained from the testing of the

guideline with Indivo will be used to discuss the application’s possible security

issues and to test the guideline itself to check if it is working as expected.

The guideline is intended to be applied from the very first stage of development

of an application.

As Indivo is an application that is already in its beta-testing stage and already

under development and continuous change, some parts of the guideline can’t

be applied as intended, because some decisions have already been taken.

The guidelines previous to the implementation guidelines just will be discussed

in terms of correctness on the decisions already made by the developing team

of Indivo.

Indivo is an Open Source Consumer Application for the medical field developed

by the Children’s Hospital of Boston. Its main purpose is to manage data from

electronic health records. Because of the nature of this data and the high

degree of privacy and confidentiality that it requires, security is a crucial factor

on this application.

5.1 General Guidelines in Indivo

The security guideline on this thesis starts with some general advice called

General Guidelines.

The security guideline on this thesis is not only intended to actively test the

security of an application but also to give advice about good practices while

developing applications.

These general guidelines are nothing that you can directly apply, but some

basic principles that developers have to keep in their minds during all the

application development.

 63

Evaluating Security in Open Source Consumer Applications

That’s why they can’t be directly applied to Indivo as the rest of the guidelines,

and they will be skipped during the practical part.

5.2 Organizational Guidelines in Indivo

In this part, the organizational guidelines previously developed will be applied

on Indivo.

5.2.1 Selecting the security professional

As starting point, I will address the issue of who should take care of the security

on Indivo. Obviously, in this particular case, I will be the one testing the security

of Indivo, as that is the purpose of the practical part of this thesis.

As I said in this part of the guideline, the most suitable person for taking care of

the security of an application should be a quite experienced software developer

with security formation, as in software security, good understanding of software

development process is important.

As open source applications usually can rely not only on its development team

but also on an interested community of people that are going to make use of it,

and the code is available to everyone, another suitable option could be that

people from that community with enough security interest and background took

care of the security evaluation in a free and collaborative way.

If many people work on the security of an application individually, security

issues that maybe someone will not find out, will be found by others, making

this alternative also an interesting one.

In this particular case, my background as student of master on computer

science makes me to match both cases, as I am not only experienced in

software developing and interested in security, but also I form part of that

“community” developed around Indivo as one of the aims of this thesis is to test

security on it.

 64

Evaluating Security in Open Source Consumer Applications

5.2.2 Setting the Test Plan

In this subsection of the guideline the basic testing plan has to be presented

and developed.

This section is not intended to make penetration testing directly but to explain

the basis and the steps that will be followed in the whole testing effort.

In the case of being able to perform various iterations on the testing effort, the

test plan can be changed according to newly discovered security issues that

remained hidden in the first test plan development.

In this particular case, only one iteration is going to be performed, so the test

plan will be set up only once and will remain unchanged.

5.2.2.1 Introduction

The goal of this test plan is to check whether the Open Source Consumer

Application called Indivo presents or not security issues that might be

dangerous for the confidentiality and privacy of the data it manages, and

therefore, solved.

In order to achieve this goal, risk analysis, code review and penetration testing

will be performed.

5.2.2.2 Features to be tested

• Client-side application security

• Client-side to server-side application communication security

• Server-side application security

• Support technologies security

• System and configuration security

5.2.2.3 Test Approach

The first step will be to make a risk analysis in order to determine which

features carry higher risk for the application and which lower, so the testing can

focus more on those that can represent a higher risk.

 65

Evaluating Security in Open Source Consumer Applications

After getting the risk analysis results, the second step will be performing code

review. In order to do this, I will use a code review application for Java code

called FindBugs, which will reveal which parts of the code can represent

potential dangers for the security of the application.

Last step will be to perform penetration testing. Penetration testing will be

divided on two parts, one focused exclusively over Indivo, and the second

focused on finding vulnerabilities in the surrounding technologies that Indivo

needs to run.

The penetration testing involves:

On Indivo

Use a proxy (WebScarab - OWASP) to check for possible vulnerabilities as

unsafe session IDs, trying to modify requests to server before they leave the

client, modifying parameters sent to server, changing hidden fields, etc.

Perform checks to search for possible SQL or XML injections (both in the

BerkeleyDB database and the MySQL database), perform checks for Cross Site

Scripting and check for directory transversal vulnerabilities that could make an

attacker to access files that he is not intended.

Use a sniffer or a packet capture tool to intercept communication between client

and server to check if relevant data can be disclosed.

Use brute forcing and dictionary based attacks on the logging system to check if

it’s possible to repeatedly login with the same username and to break into the

application.

On the surrounding technologies

Check vulnerability tracking lists such as CERT, Secunia, Securityfocus, etc, to

find possible issues and vulnerabilities with the surrounding technologies that

Indivo uses.

As Indivo needs certain versions of those technologies and most of them are

not last versions, it might be possible to exploit old vulnerabilities on those

products.

 66

Evaluating Security in Open Source Consumer Applications

Check for vulnerabilities on following products:

• Apache Tomcat 5.5

• Apache 2.0

• Java 1.5

• PHP 5.1.2

• Java Bridge 3.0.7

• MySQL Server 5.0

5.2.3 When and what to Retest

If testing is an important part of the security practice, retesting has at least the

same importance.

Something that has been tested and proved to be safe can become unsafe

suddenly because a lot of factors including a change in the configuration or

operating system, a new patch for the application, a new vulnerability that

suddenly appears and before no one knew of, etc.

As Indivo is on beta testing at the moment, and a lot of things are still being

implemented or recoded and a lot of functionality being added, retesting of

Indivo should happen each time that a new version is released or major relevant

changes are made. Put simple, at this stage of development, retesting should

be performed each time that the application’s development cycle starts a new

iteration. This way, the accumulation of possible vulnerabilities is avoided,

which is unlike to happen if retesting only happens when final product would be

released.

In this stage, in my opinion everything included in the original test plan should

be retested without exception and the newly found issues should be added to

the original test plan, as the application is under constant implementation

changes and that changes can affect not only a single part of the application but

the whole application.

After Indivo will be already in the production stage (it will be fully operative and

not in beta stage), retesting should happen with a fixed periodicity and should

be more focused on finding out and testing the new vulnerabilities that have

appeared on vulnerabilities tracking lists since last tests and in some important

 67

Evaluating Security in Open Source Consumer Applications

security issues such as password’s strength, and proper configuration of the

system and the application. Also retesting should be carried out every time a

new update or patch is released.

5.3 Design Guidelines in Indivo

The design guidelines are to be applied in the design stage of the application.

As Indivo is already out of this stage because it is already in beta testing and

implementation, the guidelines will not be applied as supposed but will be used

to compare them with the decisions already taken in Indivo and to determine the

correctness of those decisions.

5.3.1 Choosing the Programming Language

Choosing a programming language to develop an application is one of the most

important decisions during the design stage.

Indivo server has been developed in Java, and that has several advantages

from a security point of view.

Java provides the possibility of restricting application’s resource access by the

use of security policies.

Java provides mechanisms to enforce strong memory protection. These

mechanisms remove the possibility of either maliciously or inadvertently reading

or corrupting memory locations outside boundaries of the program. As a result,

applications cannot gain unauthorized memory access to read or change

contents.

Java provides full support for encryption and digital signatures, making use of

powerful encryption technology.

Java provides good rule enforcement as it is completely object-based. By using

objects and classes to represent corporate information entities, it is possible to

explicitly state the rules governing the use of such objects.

Java does a fairly reasonable job making programmers to catch the errors and

exceptions that might be thrown, mitigating this way unhandled exceptions that

might make the application to crash.

 68

Evaluating Security in Open Source Consumer Applications

Apart from all the security features, Java code is fully portable to different

operating systems, making the choice of using Java for Indivo even more

recommendable.

As for Indivo client interface, it has been developed in PHP. Maybe the most

natural option would have been developing the interface in jsp, as the rest of

Indivo is coded under Java.

 PHP is a language that has not that many security features as jsp, but in the

other hand is a really popular web development language and it is in continuous

upgrade.

5.3.2 Choosing a Distributed Object Platform

Indivo uses Java RMI to encapsulate the communication between the server

and the IO Store.

The option here is simple; there are only two distributed object platforms

suitable in this case, Java RMI and CORBA.

As Indivo is already implemented using Java, the most natural choice in my

point of view is to use Java RMI as distributed object platform.

In terms of security, both platforms provide good security measures that despite

being implemented using different mechanisms, accomplish their goal in a

proper way.

But it is more likely that using Java RMI, as the development team is already

used to work under Java, and RMI is simpler to work with, since the developer

does not need to be familiar with the Interface Definition Language of CORBA,

fewer mistakes will be made during the implementation, thus reducing this way

the possibility of implementation flaws.

5.3.3 Choosing an operating System

Indivo is designed to run under whatever operating system that can handle Java

and Apache Tomcat and Apache Server, which, as far as I know every

Operating System can.

I will not evaluate this point as to choose operating system is quite an open

choice and the evaluation would be the same as the advice I gave on the

guideline part. The wiser decision is to choose an operating system that fits the

 69

Evaluating Security in Open Source Consumer Applications

needs of your company and that you have enough resources and experience to

maintain and to keep fully under control.

5.3.4 Risk Analysis

The purpose of this risk analysis is to get a clear view of the potential

threats/vulnerabilities Indivo can be exposed to, to rate them in a severity scale

with a range from low to high impact and to propose a possible solution to

minimize them or to make them disappear.

5.3.4.1 System Characterization

First step is to get the system characterization to establish in a better way the

scope of the risk analysis.

Hardware

Acer Laptop with processor IntelCoreDuo@1,66MHz, 1 Gb of RAM. Direct

connection to Internet through a Broadcom 10/100 net card and wireless card

also operative.

Software

Windows XP Professional edition Service Pack 2, with Norton Protection

(Antivirus + Firewall)

Indivo version 3.0 beta running under Apache Tomcat 5.5 and Apache Server

2.0, with Java 1.5, PHP 5.1.2, Java Bridge 3.0.7 and MySQL Server 5.0.

5.3.4.2 Vulnerability list

Second step is to get a list of possible vulnerabilities.

• Session ID’s might be guessable.

• Indivo should work over https but also works over http.

 70

Evaluating Security in Open Source Consumer Applications

• Possibility of accessing server side files like .xml’s files can disclose

important information.

• Error messages can disclose internal database structure or server way

of operating (product versions, other technologies server is using).

• Indivo uses surrounding technologies (PHP, Apache, Java, etc) that only

can be exact versions (i.e. only PHP 5.1.2 can be used, not other).

• Possible attacks like SQL injection or XSS might be possible.

• Unsafe, unused or test code might be found among Indivo source code.

• Password complexity is not enforced, asking only for up to 5 or more

character passwords.

5.3.4.3 Vulnerability severity rating, adverse impacts and control
recommendations.

In this last step, I will present the severity rating of the vulnerabilities, its

possible adverse impact and control recommendations to mitigate or eliminate

the possible vulnerability.

Rating should be done also by risk probability, because risk is severity *
probability.

Unfortunately to know the probability of a certain risk, more than one iteration is

required, because it is not easy to measure the probability before effectively

trying to exploit the vulnerability.

As the scope of this thesis involves only one iteration, only a severity rating will

be done.

Threat Effect Possible Solution Severity
Session ID’s might
be guessable

Possible risk of
session hijacking

Session ID’s should
be unique, never
reused, randomly
generated and
nearly impossible to
guess from an
obtained sequence
of previous ID’s

High

Indivo should work
over https but also
works over http

Transmission of
data in plain text
with the possibility
of obtaining
username/password

Use https protocol
always to provide
encrypted
communication

High

 71

Evaluating Security in Open Source Consumer Applications

pairs by a sniffer or
by a in-the-middle
proxy

Possibility of
accessing server
side files like .xml’s
files can disclose
important
information

Attacker can get
important
information about
how the Indivo
server operates

Keep server side
important and not-
relevant-for-
anyone-else files
inaccessible to other
than the server
machine

Medium

Error messages can
disclose internal
database structure
or server way of
operating (product
versions, other
technologies server
is using)

Attacker can get
extra entry points
with the newly got
information

Error messages
should be totally
neutral and not to
reveal any
important
information

Medium

Indivo uses
surrounding
technologies (PHP,
Apache, Java, etc)
that only can be
exact versions (i.e.
only PHP 5.1.2 can
be used, not other).

Being unable to
update to more
recent versions of
this products might
end up in well
known
vulnerabilities
being used to attack
the server.

Implement Indivo
in a way that is
compatible with
new versions of the
same technologies

High

Possible attacks like
SQL injection or
XSS might be
possible

Attacker can maybe
fake other user’s
identity or make
other users to
execute some
unwanted actions

Check if Indivo is
vulnerable to this
attacks

High

Unsafe, unused or
test code might be
found among Indivo
source code

Attacker can check
the source code as it
is an open source
project which code
is available to
everyone, and
exploit some
vulnerability in the
code.

Perform a source
code review in
order to check for
possible unsafe or
repeated code.

Medium

Password
complexity is not
enforced, asking
only for up to 5 or
more character
passwords

Passwords might be
easy to brute force,
leading to unwanted
access.

Ask not only for a
minimum length
(higher than 8
characters) but also
for combinations of
letters, numbers and
special characters.

Medium

Table 1: Vulnerability severity ranking, impact and control for Indivo.

 72

Evaluating Security in Open Source Consumer Applications

5.4 Implementation Guidelines in Indivo

In this part of the security guideline I will evaluate the correctness of the source

code on Indivo server with the help of a source code review tool for Java code

called FindBugs, and the COTS used on Indivo.

5.4.1 Code Review

To review the source code of Indivo server I have used an automated source

code reviewing tool for Java called FindBugs. The usage of the tool is really

easy and intuitive. The first step was defining a name for the project and to add

both the jars that were part of Indivo and the source code files (.java)

corresponding to that jars. In the next image you can see how I did this.

Figure 12: Configuration for FindBugs

After doing this, FindBugs proceeds to analyze all the classes inside the jars in

order to find the relevant bugs and to match those bugs with the corresponding

lines that match the bugs in the source code files.

 73

Evaluating Security in Open Source Consumer Applications

Once this is done, a result screen with the bugs sorted by kind of bug is

presented. When clicking on a specific bug, FindBugs shows the information

about the bug, some advice on how to correct it and the source code lines

where the bug was found highlighted. The results of Indivo source code review

can be seen in the next image as they are presented by FindBugs.

Figure 13: FindBugs result report.

After getting the results, I checked manually all the reported bugs, taking out the

bugs that the program suggested that could be false positives or that were not

security relevant but only performance relevant.

Following, I will comment briefly the most important bugs found after the code

review.

Bad Practice

Under the category of dropped or ignored exception FindBugs gives to results

of methods that ignore exceptions, thus making possible that an uncaught

exception might appear making the application to crash.

 74

Evaluating Security in Open Source Consumer Applications

Correctness

Under the category of infinite loops, FindBugs reports an infinite recursive loop

that might cause a stack overflow with the risk of the program crashing.

Under the category of null pointer dereference FindBugs reports five results that

might make the program to cause a NullPointerException making it to crash.

Two of these results might be false positives.

Malicious Code Vulnerability

Under this section FindBugs reports eight possible fields that are not final but

should be. A mutable static field that is not final could be changed by malicious

code or by accident from another package. The field should be made final to

avoid this vulnerability.

5.4.2 Commercial Off-the-Shelf

In this section, the security of the COTS that Indivo uses will be discussed, so a

better understanding can be achieved.

The first COTS that I will analyze is the database system that Indivo store uses.

This is an open source technology called BerkeleyDB and it has been

developed by SleepyCat.

Berkeley DB is notable for having a simple architecture. Programs access the

database using in-process API calls. It does not support SQL or any other query

language, nor does it support table schema or table columns. A program

accessing the database is free to decide how the data is to be stored in a

record; BerkeleyDB puts no constraints on the record's data.

Choosing BerkeleyDB as main data storage has several advantages and it is a

technology that has proven to be really safe. BerkeleyDB has not been reported

any known vulnerability or security issue, and as it is accessed by API calls and

doesn’t supports any query language, it is immune to injections.

Indivo uses Xajax 0.2.4 implementation for integrating AJAX on the PHP

interface. Xajax is an open source PHP class library that allows you to easily

create powerful, web-based, AJAX applications using HTML, CSS, JavaScript,

 75

Evaluating Security in Open Source Consumer Applications

and PHP. Applications developed with Xajax can asynchronously call server-

side PHP functions and update content without reloading the page.

Xajax 0.2.4 version was recently reported with one Cross-site Scripting

vulnerability with bugtraq ID 24006.

Xajax is prone to an unspecified cross-site scripting vulnerability because the

application fails to properly sanitize user-supplied input.

An attacker may leverage this issue to execute arbitrary script code in the

browser of an unsuspecting user in the context of the affected site. This may

help the attacker steal cookie-based authentication credentials and launch other

attacks. The proposed solution is to upgrade to Xajax 0.2.5.

Indivo uses Log4j implementation for logging events at runtime. With log4j it is

possible to enable logging at runtime without modifying the application binary.

The log4j package is designed so that these statements can remain in shipped

code without incurring a heavy performance cost. Logging behavior can be

controlled by editing a configuration file, without touching the application binary.

No vulnerabilities for Log4j have been reported.

Indivo uses Sun XACML implementation for management of access policies.

XACML is an XML-based language for access control that has been

standardized in OASIS. XACML describes both an access control policy

language and a request/response language. The policy language is used to

express access control policies (who can do what when). The request/response

language expresses queries about whether a particular access should be

allowed (requests) and describes answers to those queries (responses).

No vulnerabilities for Sun XACML have been reported.

Indivo uses various Apache commons-framework packages, like commons-

logging, commons-beanutils, commons-collections, etc.

No vulnerabilities for these packages have been reported.

Indivo uses the Avalon framework included now in Apache Excalibur project.

The Avalon Framework consists of interfaces that define relationships between

commonly used application components, best-of-practice pattern enforcements,

and several lightweight convenience implementations of the generic

components. No vulnerabilities for the Avalon framework have been reported.

 76

Evaluating Security in Open Source Consumer Applications

5.5 Post Implementation Guidelines in Indivo

In this section penetration testing will be performed against Indivo as stated in

the Test Plan design in the organizational guidelines.

5.5.1 Penetration Testing

Penetration testing will be divided into two sections:

• On Indivo

• On the surrounding technologies of Indivo

5.5.1.1 Testing Indivo

First step on penetration testing is to gather as much information as possible

about the application. Of course, in this concrete case all the information is

already known, but I will perform some tests to gather information about the

server and applications working on it anyways. It is always a good way to see

which information actually an attacker can get.

First of all, I will proceed to fingerprint the server. To fingerprint the server

means to get information about the kind of server and the version. This can be

achieved by sending an http request directly and looking at the response

headers, or by the use of automated tools.

I will use a tool called HttPrint to gather information. The result can be seen in

the following image.

 77

Evaluating Security in Open Source Consumer Applications

Figure 14: Server Fingerprint.

As can be seen in the image, the program gave as result that the server is an

Apache server version 2.0.59 and moreover, that it is running PHP 5.1.2 and

that it is running on a Windows system (Win 32).

This kind of information can provide an attacker of an entry point to our

application by trying to exploit known vulnerabilities of the server version

discovered.

By using a common port scanner, we can check for more applications running

in the target machine. Using a regular port scanner, we obtain the following

results.

Figure 15: Port Scan results.

 78

Evaluating Security in Open Source Consumer Applications

As it can be seen in the previous image, the scanner detects MySQL service

running on port 3306 (default MySQL port), and an alternative http server on

port 8080, that it is easy to assume it is Apache Tomcat, as it usually runs on

that port.

Once this has been done, I will proceed to evaluate Indivo first using a proxy

called WebScarab, developed by OWASP. A proxy is basically a program that

acts as intermediate between the client and the server, allowing you to monitor

all the traffic going from the client to the server and the other way round, letting

you to modify that data either before being sent to the server or before reaching

the client. It also has much other functionality like testing strength on session

IDs or revealing all hidden fields of the client side application so you can freely

modify them in order to obtain some undesired result.

In the following image, you can see an overview picture of WebScarab.

Figure 16: Web Scarab.

The first thing I will try is to analyze the strength of Session IDs because if

session IDs are guessable in some way, security of Indivo could be

compromised seriously.

 79

Evaluating Security in Open Source Consumer Applications

To perform this task, I will use one of the functions of WebScarab, which

permits to store several different session IDs and after that analyzing them and

getting a statistic summary on their regularity and predictability. To feed

WebScarab with enough IDs, I log in and out repeatedly forcing the session ID

to regenerate and storing each ID in WebScarab.

After this process WebScarab perform an analysis and show the following

results, captured in the following images.

Figure 17: Numerical analysis for session IDs.

Figure 18: Distribution analysis for session IDs.

As it can be seen, Indivo session IDs are totally random and they don’t follow

any identifiable distribution pattern. This makes Indivo session IDs difficult to

guess.

 80

Evaluating Security in Open Source Consumer Applications

After analyzing session IDs, I will try to search for hidden fields in Indivo that

can be changed in order to obtain some advantage. I will do this using

WebScarab tool to automatically reveal hidden fields.

After trying different hidden fields found in “Edit Personal information” template,

“Add annotation” template and others, no relevant hidden field that could be

exploited was found.

After searching for hidden fields, next step to take will be to try to modify

requests sent to Indivo server. Using WebScarab I will try to change those

requests and the methods they ask for, to see if a regular user can access

methods that he is not intended to use.

In order to find methods that a regular user is not able to use, I log in as

administrator of the system and I try to create a new user, to see the method

that is invoked. This method results to be “showEnrollmentForm”.

 After this I try to modify a simple request to the server from a user of the group

patients, and to add the previous method.

Figure 19: Changing an Indivo request.

 81

Evaluating Security in Open Source Consumer Applications

The result of doing this is a regular user being able to access a private administrative

interface, as shown in the following image.

Figure 20: Accessing an administrative interface.

After doing this, I try to create a new user, but the access policy doesn’t allow

me to do this. Anyway, being able to access an administrative interface as a

regular user is not safe in terms of application security, and administrative

interfaces should be protected.

After this step, I will try using WebScarab to send malformed requests to the

server in purpose to cause errors and to see if errors can disclose important

information. The result of this action ends up in what can be seen in the next

image.

 82

Evaluating Security in Open Source Consumer Applications

Figure 21: Indivo Error message.

As can be seen in the error message, Indivo reveals way too much information

about the directory structure. Errors should be as brief as possible and never to

show relevant information about the structure of the server. Revealing directory

structures of the server can end up in a directory transversal exploitation to

retrieve a file that a normal user is not intended to get access to.

Next two steps will be checking data input validation vulnerabilities such as SQL

injections and Cross-site Scripting.

As previously said on the COTS section, Indivo uses BerkeleyDB as storage

medium. BerkeleyDB doesn’t use any querying language nor tables or rows or

columns, and is not possible to inject it in anyway. It uses an API to perform the

actions and stores data in a text encrypted file.

The other place that can be checked for injection is the log database that stores

successful logins with their username and session ID, but as the query is not

constructed until the username and password have been verified against the

BerkeleyDB, it is not possible to inject, as whatever trial to inject in user or

password fields will result on an unsuccessful login and the query against the

MySQL database will not be constructed at all.

To check for Cross-site scripting vulnerabilities, I have tried to insert scripting

language (like <script>alert(document.cookie)</script>) in fields that after being

edited are displayed again to the same user or to others (like insurance notes).

Trying this has brought not any successful result as Indivo seems to filter

scripting language in a way it is not displayed again to any user at all. For

 83

Evaluating Security in Open Source Consumer Applications

example, in the case of the insurance notes instead of displaying an alert, it

displays an empty note.

After this, I will try to browse through the server directory structure to see if

relevant documents that are not intended to be accessed can be actually

retrieved in some way.

By the error messages given by Indivo, one can more or less get a quite

accurate directory structure. After browsing through it for a while, a lot of

documents of the Indivo UI can be accessed, including the document were

Indivo stores the access profiles and policies: “ping-security-profiles.xml”, like

can be seen on the following image.

Figure 22: Accessing unintended files.

After this step, next thing to do is to check the integrity of the communications

between the client and the server. Usually, for this a tool called packet sniffer is

used, but as the testing environment has the client and the server on the same

machine, I will be using a proxy that will intercept communications between

client and server, as usually sniffers cannot intercept communications going

through the loopback interface inside the computer.

 84

Evaluating Security in Open Source Consumer Applications

The first thing to try is to login and to intercept the packet sent to the server with

the login information. The result of this action can be seen in the next image.

Figure 23: Capturing login information.

As can be seen, Indivo works by default over http, making the transference of

the login data to the server over plain text, thus being possible to capture that

information to impersonate a legitimate user.

The next thing I am going to try is to intercept a session ID and to try to use it to

hijack the session of a legitimate user.

First step is to use the sniffer, or in this case the proxy to intercept a login

packet. Obviously, it would be easier just using the login information on the

packet, but the aim of this is to check whether Indivo permits to use a session

ID more than once at the same time or not, and if it is enough to provide a valid

session ID to access the session of a user or login information is also needed.

After intercepting the packet, I get a valid session ID (PHPSESSID=

896e578bffa76c6ed1e5490c2caea342) that is just being used by a user that

logged in right now.

After this, I open a new browser and I directly enter the address of the Indivo

viewer (http://localhost/indivo-ui/viewer.php). I intercept the request with the

proxy, and I change it so the session ID that I stole will be sent with the request,

as you can see in the following image.

 85

Evaluating Security in Open Source Consumer Applications

Figure 24: Editing request to forge a stolen SessionID.

As the result of all this process, I end up logged as administrator (it was the

user’s session ID I did the experiment on and that I stole), and I am able even to

create a new user.

This proves that stolen Session IDs can be used as long as the legitimate user

is still logged in and the session doesn’t time-out.

Last set of tests will try to discover whether is possible or not to use automated

password cracking tools to conduct a dictionary attack or a brute force attack

against the login system.

As far as I have tried, not any remote password cracker works with Indivo, as

Indivo login form doesn’t use a regular method like post or get, but uses an own

developed method called processForm(), thus making impossible to send

automatically passwords through regular methods like post/get.

Anyways, I tried by hand to make incorrect logins by hand to check if it is

possible to repeatedly login with the same user without blocking the access

after several tries. The result is that you can login in an incorrect way as many

times as you would like with the same user.

In consequence, if someone would write a remote tool that would be able to

automate the login process, it would be totally possible to attempt to perform a

dictionary attack or a brute force cracking on the Indivo login system.

 86

Evaluating Security in Open Source Consumer Applications

5.5.1.2 Testing Indivo’s Surrounding Technologies

In this section, I will address the vulnerabilities that exist for each of the

technologies Indivo uses to run. For this, pages like Security Focus or Bugtraq

will be used.

The main problem here relies in that Indivo needs specific versions of those

technologies, making impossible to upgrade to newer and safer versions.

Apache Tomcat 5.5

Apache Tomcat presents two vulnerabilities, one that permits cross-site

scripting and another that permits directory transversal attacks.

As explained on Security Focus webpage [24],

Apache Tomcat's documentation web application includes a sample

application that is prone to multiple cross-site scripting vulnerabilities

because it fails to properly sanitize user-supplied input.

An attacker may leverage these issues to execute arbitrary script code in

the browser of an unsuspecting user in the context of the affected site.

This may allow the attacker to steal cookie-based authentication

credentials and to launch other attacks. The only solution is to upgrade to

last version of the product (v. 6.0.11).

The other vulnerability consists on Apache HTTP servers running with the

Tomcat servlet container are prone to a directory-traversal vulnerability

because it fails to sufficiently sanitize user-supplied input data. Exploiting

this issue allows attackers to access arbitrary files in the Tomcat webroot.

This can expose sensitive information that could help the attacker launch

further attacks.

Apache Server 2.0.59

Only one vulnerability can be found in Apache Server 2.0.59, Apache

"mod_alias" URL Validation Canonicalization Vulnerability.

In words of Secunia [25],

 87

Evaluating Security in Open Source Consumer Applications

this vulnerability can be exploited by malicious people to bypass certain

security restrictions and disclose potentially sensitive information. The

vulnerability is caused due to a canonicalization error in the "mod_alias"

module in the handling of case-sensitive alias directive arguments on file

systems supporting case-insensitive directory names. This can e.g. be

exploited to disclose the source code of applications placed in the "cgi-

bin" directory on certain non-default configurations where the ScriptAlias

directive references a directory inside the document root by accessing an

URL with a capital directory name (e.g. "CGI-BIN"). The solution consists

in editing the configuration to ensure that alias directives (e.g. ScriptAlias)

references directories outside of the document root.

Java 1.5.0_08

Java version 1.5.0_08 doesn’t present any known vulnerability according to

Bugtraq, Secunia or SecurityFocus.

PHP 5.1.2

PHP 5.1.2 presents multiple vulnerabilities (44), and it is not worth to comment

one by one, as they are too many, and information can be easily found on

SecurityFocus webpage [24].

Java Bridge 3.0.7

Neither SecurityFocus nor Secunia can find any security issue on Java Bridge

3.0.7

MySQL 5.0.37

The following security vulnerabilities for MySQL 5.0 can be found in Secunia

webpage [25]:

MySQL Two Privilege Escalation Security Issues, that consists on two

security issues that have been reported in MySQL, which can be exploited

by malicious users to gain escalated privileges. It is possible for a user to

rename a table without having DROP privileges and it is possible that

 88

Evaluating Security in Open Source Consumer Applications

stored routines defined with SQL SECURITY INVOKER do not change

back privileges when returning and can be invoked by users to gain

escalated privileges.

MySQL IF Query Denial of Service Vulnerability, that consists on an error

when handling specially crafted IF queries, which can be exploited to

crash the server (Denial of Service attack).

 89

Evaluating Security in Open Source Consumer Applications

6. Discussion

Security is an important topic, not only to Open Source Consumer Applications,

but to all kinds of computer system or software. The reason why consumer

applications need to focus on security is because they tend to contain sensitive

information that should not be compromised.

This is even truer when talking about web applications like Indivo, because

being accessible in a remote way, puts them in a special position. The fact that

they are open to attacks potentially launched by anyone connected to the

Internet implies that a heavy load of threat countermeasures needs to be

employed in order to protect confidential data.

It is important to understand that security is not something that may be added to

an application after a complete development process. This is not only a risky

idea, but also a great increase on the development effort, as modifying an

already implemented application requires much more work than to integrate

security through all the application’s lifecycle, from the earlier stages of

development until the last one.

Some people argue that integrating security all the way through the

development process is costly as well, and it does require some extra time and

effort, but the truth is that it saves you from unwanted results at the end of the

development cycle.

Applications do need security, and the best way to make sure that they are

developed in a way that confidential data is as safe as it can be, is making sure

you pay attention to the potential security issues that might arise from the very

beginning.

The main chapter of this thesis is the development of a Security Guideline. The

developed Security Guideline is not only useful to avoid well-known threats and

vulnerabilities, but it also encourages integration of security practice from the

beginning of the application’s lifecycle, that will result in a more secure

application, so it may in fact help prevent future threats as well.

The Security Guideline includes general guidelines that should be present

during all stages of the application’s development, and also specific guidelines

for every specific stage of the application’s lifecycle.

About the guideline applicability, personally I didn’t find any place after the first

iteration that should need improvement, but I do believe that if applied to a full

 90

Evaluating Security in Open Source Consumer Applications

project, or applied by a more experienced expert, then more areas of

improvement should be found.

After developing the guideline, the next step taken has been to try the guideline

over a real application. There is no better way to check if something is working

than to try it on a real environment.

To try the guideline, an Open Source Consumer Application for the healthcare

field called Indivo was chosen. The high confidentiality that the data this

application manages requires made it a good target to test the guideline.

Of course, it would have been much better to apply the guideline from the

beginning on an application that was in its earliest stage of development, but to

perform this, great amount of time would have been required, as I would have

had to go through all the development of an application, and it was not possible

to spend that much time.

That’s why some of the sections of the Security Guideline were not applied as

intended, but just used to check if decisions already taken in the development of

Indivo made sense and were good choices.

The sections that could be applied as intended were the design of the test plan,

the risk analysis, the code review and the penetration testing part both in Indivo

and in the surrounding technologies.

The test plan was developed trying not to leave anything important that should

be checked out of the scope, but also trying not to make it too big as the

amount of time to develop the thesis was limited.

After having applied the Test Plan to Indivo, and because of the results

obtained, I think that it was complete enough to achieve a reasonable security

evaluation, but that maybe with more time I could have gone in more deep for

example in the code review, as making a good code review implies having a full

understanding of the application’s code, so one can check the real severity of

the issues discovered by the automated code reviewing tool, and to discard in a

more confident way the false positives.

About the risk analysis, after seeing the results of the penetration testing, I think

I assessed quite in an accurate way which could be the risks that Indivo might

be exposed to.

 91

Evaluating Security in Open Source Consumer Applications

The scope of the thesis only involved one iteration on the testing of the

guideline, and that’s why I classified the risks by severity and not by risk, that

requires to know also the probability of a given vulnerability, as risk is

severity*probability. Usually to know the probability of a vulnerability being

exploited more than one iteration is needed, as the first iteration is used to

evaluate if the vulnerability is easy to detect and to exploit.

A good example of how the first iteration can evaluate the probability of a

certain vulnerability being exploited is for example the case of session ID’s

being guessable. After the first iteration, it has been proved that session ID’s on

Indivo are random and don’t follow any particular distribution, thus being difficult

to guess. This fact would set the probability for that particular vulnerability

happening really low. In the other hand, after first iteration probability for the

vulnerability of the login information being intercepted and exploited should be

set really high as it is something easy to perform.

The code review was carried out using an automated code reviewing tool called

FindBugs. From the results obtained, I only commented the bugs that affected

security of the application directly, as the ones that were only a matter of code

correctness and efficiency fall out of the scope of this thesis.

As said before, this section should need improvement as the time limited me on

getting a deep understanding of the source code of Indivo, thus making not

possible to determine totally whether the found bugs were truly a security

menace or not.

Last but not least, I will comment the results obtained in the penetration test

section. This section was the most satisfactory in my point of view, as it not only

revealed several security issues, but let me to practice a real penetration test,

which gave me a better understanding on how several vulnerabilities work and

made me to improve my knowledge and creativity a lot.

The first step of the testing involved getting the characterization of the system to

evaluate. This was not a real necessary task as all the characteristics of the

system were already known, but it is a good way to check which information an

outsider attacker can get of the system.

The second step was to use a proxy between the client and the server to check

several issues like strength of session IDs, changing hidden fields to reveal if it

 92

Evaluating Security in Open Source Consumer Applications

is possible to take advantage of it to perform some unwanted action, changing

methods on the requests sent to Indivo and sending malformed requests to

make Indivo display error messages in purpose to check if relevant information

was disclosed.

After analyzing several session IDs, it has been proved that they are random

enough and they are not distributed in a fixed pattern that could make them

guessable; Indivo’s session IDs present a high degree of strength.

Changing hidden fields didn’t allow performing any unwanted action, as they

didn’t modify relevant information, and when they did, Indivo access policy

denied the action.

Changing the methods inside the requests sent to Indivo resulted in the

possibility of accessing administrative interfaces that should be not accessible

to regular users. This cannot be considered a high risk degree as any action

made with that interfaces was denied by Indivo’s access policy. This fact

doesn’t mean that it is not in fact a vulnerability that should be fixed, as

administrative interfaces should have restricted access to regular users.

By sending malformed requests to Indivo, I made Indivo to display error

messages that contained way too much information about the server’s directory

structure. This should be fixed as it can be used to carry directory transversal

attacks with the result of accessing unintended files.

Next step was to perform various checks to find out if Indivo was vulnerable to

injection, to cross-site scripting attacks, and if by browsing through server

directories files that shouldn’t be accessed could be accessed.

Because of the nature of the data storage that Indivo uses (BerkeleyDB), it was

not possible to perform any injection attack on Indivo. Trying to embed scripting

languages in parts of Indivo that could be displayed back to other users or to

the same, didn’t worked for the cross-site scripting checks, as Indivo seems to

filter this by not displaying scripts.

Because of the errors displayed by Indivo, it is not difficult to get in mind a quite

accurate directory structure of the server. By exploiting this, I was able to

access the access policy file on the server. This should be fixed, as accessing

this kind of files is totally unacceptable and should be restricted.

After this checks, the next step is to check the integrity of the communications

between the client and the server. In a normal testing scenario, this would be

done with a packet sniffer or a packet capture tool, but in this case, as both

 93

Evaluating Security in Open Source Consumer Applications

client and server are in the same machine and communications use the

loopback interface, regular sniffers cannot capture this kind of traffic and using a

proxy between client and server was decided for evaluation purpose.

By intercepting the packets that were going from the client to the server, login

information could be fully retrieved. This is a direct consequence of Indivo

working over http by default, and not by https. This is a really important security

issue and should be fixed.

By intercepting random packets, I got a session ID from a session that was

currently active. I used this ID to try to perform a session hijack attack. By

addressing my browser directly to the Indivo viewer, intercepting the packet

requesting this action and modifying it inserting the session ID previously stolen,

I managed to get inside the session of another user and to perform whatever

action I wanted. This is a severe security issue that should be fixed, maybe not

allowing two sessions in the application with the same session ID. I also

checked if this attack worked once the legitimate user logged off, but it didn’t,

which means that Indivo does a good work eliminating used session IDs.

Last step of the penetration testing on Indivo involved using brute force and

dictionary attacks to go through Indivo’s login system. This couldn’t be

performed with the existing automated tools as Indivo uses not regular methods

like GET or POST to send the login information form, but an own developed

method called processForm().

What I was able to try by hand is to introduce repeatedly incorrect login

information for the same user, to check if after several incorrect logins Indivo

blocks the user account. The result was that Indivo allows to introduce unlimited

times incorrect login information. This could end up in someone developing a

self-made automated tool to try to crack Indivo’s login system. It could be solved

by implementing a two stage login or a delay on login.

Test of the surrounding technologies that Indivo needs to run was made simply

querying databases of known vulnerabilities as SecurityFocus, Secunia or

Bugtraq. This investigation revealed that several of the technologies that Indivo

needs to run were affected by well known bugs.

Indivo requires specific versions of several products, making their update totally

impossible, and this represents a security issue, as long as some of those

vulnerabilities are only solved in newer versions of the same product, and this

makes the system running Indivo exposed to several security issues that cannot

 94

Evaluating Security in Open Source Consumer Applications

be avoided. The only solution is that Indivo should be made more flexible in the

versions of the technologies it needs to run.

 95

Evaluating Security in Open Source Consumer Applications

7. Conclusion and Further Work

The aim of this Master Thesis was to provide a better understand on how to

develop secure Open Source Consumer Applications through the development

of a Security Guideline and the test of this Guideline on a real Open Source

Consumer Application.

One of the most important things that should be always present while

developing an application from the first stage is to integrate security in every

stage of development, from the first to the last. The philosophy of patch-after-

development has been proved to be more expensive and inefficient.

In my point of view, both the development of the Security Guideline and the

posterior testing of the guideline have been successful, as a working

methodology has been established and several security issues have been

revealed in Indivo.

When working on this thesis, I have experienced the difficulty of finding

information on how to effectively assess security in applications, in addition to

descriptions of vulnerabilities, threats, and countermeasures. I therefore hope

that my thesis will provide information that will be useful for those who are to

develop a consumer application, both open source, like the one evaluated in

this thesis, and closed source, as the fundamental principles for security are the

same. As the Security Guideline is platform independent, it can be applied to

every application.

7.1 Further Work

Further work that could be done after this thesis is to test the guideline on a

starting project that is in its first stage of development, so the guideline can be

totally tested and applied to more than one iteration. This way I believe better

results could be achieved, and also the guideline could be updated and

redesigned in the steps that will be find out that don’t work as intended.

 96

Evaluating Security in Open Source Consumer Applications

 97

Evaluating Security in Open Source Consumer Applications

Appendix A: References

[1] Eugene H. Spafford, director of the Purdue Center for Education and Research in
Information Assurance and Security.

[2] Apache Website,
http://httpd.apache.org/docs/1.3/howto/auth.html.

[3] Microsoft TechNet Security,
http://www.microsoft.com/technet/archive/community/columns/security/essays/
vulnrbl.mspx.

[4] OWASP Website
http://www.owasp.org/

[5] Smashing The Stack For Fun And Profit, Aleph One
http://insecure.org/stf/smashstack.html.

[6] Andrews and Whittaker, How to Break Web Software, Addison-Wesley (2006).

[7] World Wide Web Consortium (W3C)
http://www.w3.org/

[8] Wikipedia, The free Encyclopedia
http://en.wikipedia.org

[9] European Parliament, Temporary Committee on the ECHELON System
http://fas.org/irp/program/process/europarl_draft.pdf p.69.

[10] Viega and McGraw, Building Secure Software, Addison-Wesley (2002).

[11] Carnegie Mellon, Software Engineering Institute
http://www.sei.cmu.edu/str/descriptions/clientserver.html

[12] Gary C.Kessler, An Overview on Cryptography (1998)
http://www.garykessler.net/library/crypto.html

[13] Stoneburner, Goguen and Feringa, A Risk Management Guide for Information
Technology Systems, NIST (National Institute of Standards and Technology) (2002)

[14] NTNU Indivo Wiki
http://hiwiki.idi.ntnu.no/hiwiki/index.php/PING_Discovery:_Pilot_implementasjon
_og_utforskning_av_PING

[15] The Open Web Application Security Project - The Guide project,
http://www.owasp.org/documentation/guide/guide_downloads.html

[16] Gary McGraw, Software Security – Building Security in, Addison-Wesley.

[17] Steven Splaine, Testing Web Security, Wiley Publishing (2002).

 98

http://en.wikipedia.org/wiki/Gene_Spafford
http://en.wikipedia.org/wiki/Purdue
http://en.wikipedia.org/wiki/Information_Assurance

Evaluating Security in Open Source Consumer Applications

[18] Jason Voegele webpage, http://www.jvoegele.com/software/langcomp.html

[19] Microsoft Support Centre, http://support.microsoft.com/kb/176799/en-us

[20] Krishnan Viswanath, The New RMI (2005),
http://today.java.net/pub/a/today/2005/10/06/the-new-rmi.html

[21] CERT® Coordination Center, Choosing an Operating System
http://www.cert.org/tech_tips/choose_operating_sys.html

[22] Jason Miller, Open Source versus Closed Source Security (2004),
http://www.securityfocus.com/columnists/269

[23] OWASP Testing Guide v2. © 2002-2007 OWASP Foundation,
http://www.owasp.org/images/e/e0/OWASP_Testing_Guide_v2_pdf.zip

[24] SecurityFocus, http://www.securityfocus.com

[25] Secunia, http://www.secunia.com

[26] http://www.cs.ucla.edu/~kohler/class/05f-osp/notes/fig19-01.jpg

[27] http://www.awprofessional.com/content/images/chap4_0321369440
/elementLinks/04fig17.jpg

[28] http://en.wikipedia.org/wiki/Image:Webservices.png

[29] http://content.answers.com/main/content/wp/en/thumb/8/8f/400px-
Corba_Server.png

[30] http://en.wikipedia.org/wiki/Image:JavaRMI.JPG

[31] http://scitec.uwichill.edu.bb/cmp/online/CS22K/images/twotier.gif

[32] http://scitec.uwichill.edu.bb/cmp/online/CS22K/images/threetier.gif

[33] http://content.answers.com/main/content/wp/en-
commons/thumb/e/e9/280px-Public_key_encryption.svg.png

 99

http://today.java.net/pub/au/288

