
June 2006
Eric Monteiro, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Case Study of a Norwegian Scrum
Project

Alf Børge Bjørdal Lervåg





Problem Description
Do a case study of an agile project in Norway.

Assignment given: 20. January 2006
Supervisor: Eric Monteiro, IDI





Abstract

In this paper I present a case study of a Norwegian development project where the

development team adopted practices from Scrum in the middleof the development

effort. My study shows that the developers were happy with this new development

method, and among other things thought it gave them a better focus and structure

for their work. Since the team only adopted practices from the Scrum method,

I look at the differences between their method and Scrum and suggest a few im-

provements to their method based on my knowledge of Scrum anddevelopment

methods in general.



Preface

I wanted to learn more about agile software development, andafter a few talks

with my teaching supervisor (Monteiro), we agreed to searchfor a live project

I could use for a case study. Monteiro got me in contact with Torgeir Dingsøyr

from SINTEF Department of Software Engineering, Safety and Security (SINTEF)

who, despite his paternity leave, agreed to contact some of the companies he was

involved with and ask if they could help me out.

Since proximity would make the study easier, we tried to find companies that were

located in Trondheim first, but in the end we had to broaden oursearch to include

Oslo. Both Dingsøyr and I were searching for companies during this time, but

neither of us found any good prospects.

Just when I was about to give up and study an open source software project in-

stead, Dingsøyr contacted me and said he had found a project for me. After this

things moved very fast. Two researchers at SINTEF combined the start of my

study with the start of one of their own projects and booked a meeting with Leader

1 and Senior 2 from Company 2. This meeting was primarily for the researchers

from SINTEF but it gave me a convenient entrance to Company 2.

Acknowledgements

First of all I would like to thank Developer 1 for his quick andcomprehensive

replies to my questions during the last weeks before my deadline. Many thanks to

my teaching supervisor, Eric Monteiro, for his advice and help with making this

paper possible. Torgeir Dingsøyr, without whom I would not have had a project

to study; Tore Dybå and Geir Kjetil Hanssen from SINTEF who let me piggyback

on one of their own projects to give me a comfortable introduction to Company

1. I would like to thank Leader 1 who opened the doors for me, all the people I

talked with at Company 1 and finally Customer 1 and the development team who

treated me so well during the study.

I’m very grateful for the help from the people who read through the drafts of

i



my paper and gave me valueable feedback; Magni Onsøien, Eli Toftemo, Einar

Ryeng, Mathiasm Lidal and Truls Tangstad. Thanks for pointing out my stupid

errors without poking too much fun at me.

ii



Contents

1 Introduction 1

2 Development Methods 3

2.1 Definitions and Explanations . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Iterative and Incremental . . . . . . . . . . . . . . . . . . 5

2.2 Sequential Development Methods . . . . . . . . . . . . . . . . . 5

2.2.1 The Waterfall model . . . . . . . . . . . . . . . . . . . . 7

2.3 Incremental Development . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 The Spiral model . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Evolutionary Prototyping . . . . . . . . . . . . . . . . . . 10

2.4 Agile Development Methods . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Extreme Programming (XP) . . . . . . . . . . . . . . . . 13

2.5 Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.3 Scrum Artifacts . . . . . . . . . . . . . . . . . . . . . . . 19

iii



2.5.4 Sprints . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.5 Project Startup . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.6 Project Completion . . . . . . . . . . . . . . . . . . . . . 26

3 Case Study 27

3.1 The Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Company 1 . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Company 2 . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 The Team . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.4 The Customer . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 The Product . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Method Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Why Base the Method on Scrum? . . . . . . . . . . . . . 33

3.3.2 The Adoption . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The Development Method . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 The Roles . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 The Backlogs . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.4 Priority-Assignment Meeting . . . . . . . . . . . . . . . 36

3.4.5 Sprint Pre-Planning Meetings . . . . . . . . . . . . . . . 36

3.4.6 Sprint Planning Meetings . . . . . . . . . . . . . . . . . . 37

3.4.7 Sprints . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



3.4.8 Planning Poker . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.9 Project Completion . . . . . . . . . . . . . . . . . . . . . 39

4 Research Method 41

4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Validity of my Research Data . . . . . . . . . . . . . . . . . . . . 43

4.4 Analysis of My Work . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Principle 1 . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Principle 2 . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.3 Principle 3 . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.4 Principle 4 . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.5 Principle 5 . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.6 Principle 6 . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.7 Principle 7 . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Analysis 50

5.1 Observed differences . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Project Startup . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 The Roles . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.3 The Product Backlog . . . . . . . . . . . . . . . . . . . . 51

5.1.4 The Sprint Backlog . . . . . . . . . . . . . . . . . . . . . 52

5.1.5 Sprint Planning Meeting . . . . . . . . . . . . . . . . . . 52

5.1.6 Daily Stand-up Meetings . . . . . . . . . . . . . . . . . . 53

5.2 Reasons for the differences . . . . . . . . . . . . . . . . . . . . . 53

v



5.2.1 Backlog . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Sprints . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.3 Sprint Planning Meetings . . . . . . . . . . . . . . . . . . 55

5.3 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 The Product Backlog . . . . . . . . . . . . . . . . . . . . 56

5.3.3 Meetings at the End of the Sprint . . . . . . . . . . . . . 57

6 Conclusion 58

6.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 What Have I Learned from this Project? . . . . . . . . . . . . . . 60

A The Research 61

A.1 The First Visit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1.1 Day 1, Thursday . . . . . . . . . . . . . . . . . . . . . . 61

A.1.2 Day 2, Friday . . . . . . . . . . . . . . . . . . . . . . . . 62

A.1.3 Day 3, Monday . . . . . . . . . . . . . . . . . . . . . . . 63

A.1.4 Day 4, Tuesday . . . . . . . . . . . . . . . . . . . . . . . 63

A.2 Second visit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2.1 Day 1, Monday . . . . . . . . . . . . . . . . . . . . . . . 64

A.2.2 Day 2, Tuesday . . . . . . . . . . . . . . . . . . . . . . . 65

A.2.3 Day 3, Wednesday . . . . . . . . . . . . . . . . . . . . . 66

A.3 Interview with Customer 1 . . . . . . . . . . . . . . . . . . . . . 66

vi



B Interview Guides 67

B.1 Developer Interview Guide . . . . . . . . . . . . . . . . . . . . . 67

B.2 Customer Interview Guide . . . . . . . . . . . . . . . . . . . . . 68

vii



List of Figures

2.1 Level of Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Waterfall Model . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Boehms Cost of Change Curve . . . . . . . . . . . . . . . . . . . 8

2.4 Boehms Spiral Model . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Overview of the Scrum method. . . . . . . . . . . . . . . . . . . 18

2.6 Product Backlog . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Project Burndown Chart . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Sprint Burndown Charts . . . . . . . . . . . . . . . . . . . . . . 23

viii



Chapter 1

Introduction

Do you know what agile software development is? Does it soundfamiliar? I

suspect it does. Recently agile methods have become more andmore popular. A

search on google for “agile software development” gives 16 000 000 results. What

is often considered the opposite of agile is sequential software development. Just

for fun, I did a search for this on google and it gives 10 600 000results. While

this doesn’t prove anything, it does indicate that agile software development has

indeed become popular.

How about Scrum? No, I’m not talking about rugby1, I’m talking about the soft-

ware development method. Since google only gives 629 000 results when search-

ing for “scrum software development” I guess you might not have heard of it.

Neither had I before I started this project.

Anyway, in Chapter 2 I give an introduction to these conceptsso don’t worry if

this was completely new to you.

When we’re all on the same page regarding development methods, I tell the story

of this little project and the people involved. This is covered in Chapter 3. Here

I look at how a small team of developers in Norway adopted parts of the Scrum

method during their project. By choosing to adopt only what they felt was nec-

essary and at their own pace, they are now exploiting some of the benefits of this

1In case you’re not familiar with rugby, Scrum is the name of how a game begins

1



agile development method.

In Chapter 4 I discuss some the research methods I have used toconduct this

study.

Finally, in Chapter 5, I try to analyze the results in light ofdevelopment theory

and the books and articles I have read concerning how to best develop software.

2



Chapter 2

Development Methods

A development method is commonly referred to as a collectionof ideas and prac-

tices for planning, designing and developing IT-systems. The word methodology

and model is also sometimes used to describe the same thing, but since these dif-

ferent terms cause more confusion than clarification I will avoid the term method-

ology completely, and limit my use of the word model to where it is part of the

name of the method I write about.

McConnell says that any approach to programming constitutes a method no matter

how unconscious or primitive the approach is [McC04, p657].He adds that the

point of most methods is to reduce communication problems (see Section 2.1.1).

I start this chapter with a few definitions and explanations to avoid misunderstand-

ings. Then I cover the sequential development methods, the incremental develop-

ment methods and finally the agile development methods. For each of these I give

one or two examples. Finally I use an entire section on the Scrum method since

this is the development method that was used in the project I studied.

3



2.1 Definitions and Explanations

In this chapter and the chapters that follows I will use a few terms that in some

cases mean different things to different people. See for instance the first paragraph

in this chapter for an example. To avoid misunderstandings Itry to define the

words and terms I use that I believe might cause problems.

2.1.1 Formalism

As the size of the development team increases, McConnell argues that the number

of communication paths increases multiplicatively, proportionally to the square of

the number of people [McC04, p650]. As the number of communication paths

increases, so does the amount of time spent communicating and the risk of com-

munication mistakes increases. His conclusion is that larger-sized projects need a

way to streamline communication or limit it in a sensible way.

A typical approach for streamlining communication is to formalize the commu-

nication in documents. Different development methods havedifferent levels of

formalism, as illustrated in Figure 2.1.

Formalism is also dependant on the criticality of the project, as argued by Cock-

burn [Coc02, p162]. If the consequence of a failure in the program will lead to

injuries or death then the required level of formalism is higher than if the result is

a few hours of lost work.

Figure 2.1: Development methods have different levels of formalism. The Water-
fall model (see Section 2.2.1) is very formal, while Evolutionary Prototyping (see
Section 2.3.2) is very informal.

4



2.1.2 Iterative and Incremental

In the articleIterative and Incremental Development: A Brief History[LB03],

Larman and Basili makes a very good summary of the history of Iterative and

Incremental Development. Here they write that while some prefer to reserve the

phraseiterative developmentmerely for rework, it usually also implies evolution-

ary advancement.

Despite their definition I have decided to use the phraseiterative developmentfor

rework, and the phraseincremental developmentfor evolutionary advancement

since this makes it easier for me to separate between the concepts.

2.2 Sequential Development Methods

The Sequential Development methods are, as the name implies, methods that go

through a set of phases sequentially until the software is complete and delivered.

These methods usually include, but are not limited to

• Requirements Specification

• Design

• Code

• Test

• Release

They have been very popular in some fields since they make it easier to write

concrete contracts where the developers promise to deliverthe product specified

in the requirements specifications within a certain deadline. This makes it easier

to make a budget for the project and the corporation feels safe because they have

a binding contract promising a delivery.

Most sequential methods assume that you can predict the requirements and design

needs early in the development project, and that these do notchange during the

project life time. If this assumption is true, which is probably the case for some

5



but far from all projects, then it is obviously best to collect the requirements and

plan a design that fits these requirements as early as possible.

However, experience has showed that it is very difficult, if not impossible, to

make perfect predictions. Usually, one encounters issues and learn new things

that make it necessary to redo or change the plans during development. Also,

with sequential methods it is very difficult to exploit what the developers learn

during development since the cost of changing the requirements and design is too

high to allow anything but critical changes.

There are several reports that show that sequential methodshave a high risk of

failure. According to Larman and Basili [LB03], the Standish Groups “CHAOS:

Charting the Seas of Information Technology” report [Joh99] that looked at 23

000 projects to determine failure factors shows that the topreason for failure was

associated with “waterfall practices” (sequential development). Another study of

a sample of the Department of Defences (DoD) software spendings in 1995 by

Stanley J. Jarzombek [Jar99] shows that 75% of the projects failed or were never

used. Note that DoD projects were expected to use a sequential development

method at that time period.

Leisham and Cook [LC02] makes a convincing argument of how the process of

gathering requirements needs to be iterative, since the chance of getting it right

on the first try is minimal. Often the customer has preconceived notions that he

considers obvious and therefore doesn’t mention on the firstround, and what is

said by the customer isn’t always what the developer hears. The result is that the

requirements are wrong or incomplete and the resulting product does not deliver

what is needed.

Most sequential methods have a high level of formalism, usually in the form of

separate documents for each phase of development. Because of this they are some-

times referred to as document driven or plan-driven methods.

6



2.2.1 The Waterfall model

Royce presented what has later become known asThe Waterfall modelin his pa-

per “Managing the Development of Large Software Systems” [Roy70] in 1970.

It divides the software development process into seven distinct phases that are

sequentially dependant on each other, see Figure 2.2. Royceargues that there is

a need for iterative interaction between the various phasesand that these itera-

tions should not be confined to the successive steps. This argument was based on

Royces experience that predictions and planning often are wrong or incomplete

and that when this is discovered at later phases there is a need to go back and fix

the problem before moving on.

It should be noted that Royce wrote his article under the constraint of the government-

contracting models, and that he himself was a supporter of incremental develop-

ment (see Section 2.3) [LB03].

Figure 2.2: What is usually considered the Waterfall model.This is actually a
simplified model presented by Royce [Roy70]. In the article Royce presents this
simplification only to criticise it and present an improved model.

As mentioned earlier, much of the argumentation for using the Waterfall model

7



(and sequential methods in general) is based on Boehms Cost of Change Curve (See

Figure 2.3) which is presented in his book “Software Engineering Economics”

[Boe81]. He shows that the cost of changing requirements or fixing defects rises

exponentially as the project nears completion. Boehm argues that since changes

are much cheaper early in the project one should use extra time here and, with the

help of proper planning, minimize the necessary changes later when they are too

expensive.

Figure 2.3: Boehms Cost of Change Curve, a graphical representation of how the
cost of fixing defects rises exponentially the later it is done in the development
project. (Figure taken from [Bec00, p21].)

2.3 Incremental Development

As mentioned above, most sequential methods contain some iterations or rework

of previous steps based on knowledge acquired in later steps. Still, the plan is

to deliver the complete product in one go, usually after years of development.

When usingincremental developmenton the other hand, the plan is to do several

iterations where each iteration accomplishes something ofvalue.

Hans van Vliet [vV00, 52] writes that if users are shown a working system at an

8



early stage and are given the opportunity to try it out, problems are detected at

an early stage as well. Giving users a chance to influence and modify the design

will help make the system features reflect the users real requirements and make

the system easier to use.

Most modern development methods incorporate incremental development, but I

will limit myself to presenting the classicalSpiral modeland a more drastic ap-

proach called Evolutionary Prototyping.

2.3.1 The Spiral model

Boehms Spiral model [Boe88] is the classical example of an incremental method.

It builds on the Waterfall model, but instead of being document oriented it is risk

oriented. In each increment you identify the sub-problem which constitutes the

biggest risks, and then you resolve this.

The Spiral model adapts itself based on the risks involved and can be coupled

with the various methods discussed in this chapter by focusing on different risks.

[vV00, p62]. For instance, in a project where the user interface and performance

requirements are considered low risk while the budget and schedule predictability

and control are high risk, the Spiral model would result in something that looks

like a sequential method. However, in a project where the user interface or user

decision support requirements are high risk while the budget and schedule pre-

dictability and control are low risk, then the Spiral model will adapt and be more

equivalent to the evolutionary methods (see below).

Figure 2.4 should make it obvious why the method is called theSpiral model. Note

how the cost of the project increases as the project moves on.One of the important

decisions that should be done in the risk analysis step is to decide whether the

project should be terminated or not. This gives the stake holders a chance to cancel

the project if the project leader can’t convince them that itwill be profitable.

9



Figure 2.4: Boehms Spiral model of the software process

2.3.2 Evolutionary Prototyping

Using the term evolutionary in regard to development was introduced by Tom Gilb

in his book “Software Metrics” [Gil76] in 1976. According toLarman and Basili

[LB03] it is one of the first books to discuss the themes incremental design and

evolutionary delivery properly.

Gilb writes that

A complex system will be most successful if it is implementedin

small steps and [. . . ] each step has a clear measure of successful

achievement as well as a “retreat” possibility to a previoussuccessful

step upon failure. You have the opportunity of receiving some feed-

back from the real world [. . . ], and you can correct possible design

errors [. . . ].

The development team is supposed to work close together withthe user and dis-

cover the requirements based on discussions and cooperation. This helps the user

10



feel more involved in the project and leads to a deeper understanding of what is

possible, something that can lead to higher quality requirements [vV00, 55].

McCracken and Jackson describes this in their article “LifeCycle Concept Con-

sidered Harmful” [MJ82]. They recommend delivering a product for experimen-

tation or actual use, based on the earliest and most tentative requirements of the

customer. Development then proceeds in cooperation with the user as insight into

the user’s own environment and needs is accumulated. The development proceeds

with delivering a series of modifications to the first prototype which gradually

evolves into the final product.

They point out that when using this method a formal specification might be un-

necessary, and that the prototype itself can furnish this specification if there is a

need to reimplement the product for some reason.

2.4 Agile Development Methods

The dictionary1 defines agile as follows

ag-ile (adj.)

1. Characterized by quickness, lightness, and ease of movement;

nimble.

2. Mentally quick or alert: an agile mind.

Even though methods that can be classified as agile have existed since at least

1968 [LB03], the term agile software didn’t exist until 2001when it was coined

by the Agile Alliance [All01]. The founders of the Agile Alliance were all work-

ing on different software development methods that tries tohandle the problem

with unpredictable and unstable requirements. Naturally,they didn’t agree on a

single method for developing software, but they did agree onthe agile manifesto

(see below) and to use the word agile to describe the similarities between their

methods.
1I usedwww.dictionary.com [Online; accessed 17-December-2005]

11

www.dictionary.com


The agile methods assumes that there will be unpredictable changes during the de-

velopment and that it is better to focus on ways to adapt and handle these changes

instead of trying to predict them. Kent Beck [Bec00] uses theterm embrace

changeto describe this attitude.

While these methods can be considered a subset of the incremental methods, there

are several things that make them stand out and supports the choice of gathering

them under a new name. The agile manifesto [All01] by the founders of the Agile

Alliance tries to define this:

We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to changeover following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

See Cockburn [Coc02, p216–218] for an explanation of the agile manifesto and

its implication.

One of the things the agile methods have in common is the use ofvery short

iterations. Where the Spiral model is usually used with iterations from 6 months

to 2 years [Boe88], most agile methods advocate iterations shorter than 1 month

[Coc02, p179]. The reason for this is that shorter iterations cause less damage

(cost) if the result after the iteration is defective (misunderstandings or design

flaws). It also makes it easier to accommodate customer collaboration since the

customer can be involved and see the progress at the end of each iteration, and is

even asked whether he would like to change the priorities or requirements for the

next iteration.

Agile methods also aim for a formality level that is as low as possible. This is

a result from the agile manifesto. The focus is to create working software, not

12



documentation. Reducing the amount of documentation (formalism) as much as

possible frees time to make better software. Note that this doesn’t mean that

you shouldn’t write documentation. Some documentation is always required and

should be delivered, however documentation that isn’t usedshouldn’t be written.

[Coc02]

2.4.1 Extreme Programming (XP)

XP is a lightweight [method] for small-to-medium-sized teams devel-

oping software in the face of vague or rapidly changing requirements.

– Kent Beck [Bec00, p.xv]

The core of XP is the so called enabling practices as described by Fowler [Fow01]

and presented below. These practices could be said to flattenthe change curve

described above enough to defend a simple design for today instead of a complex

design for tomorrow [Bec00]. Later argumentation by Cockburn [Coc00] claims

that XP in fact doesn’t flatten this curve but that the flattened curve could be

seen as a representation of the Cost of Change in XP compared to sequential

development. However, the practices increases the chancesof catching problems

as early as possible and fixing them as soon as they are caught [Coc00].

The practices of XP are not new or revolutionary as Beck writes in his article

“Embracing Change With Extreme Programming” [Bec99]. What’s new in XP

is the insight that the practices work better together and that being disciplined in

using these practices will make it possible to adapt to changing requirements.

Notice how for instance refactoring is made possible because of continuous inte-

gration and testing, how testing and simple design is enforced by pair program-

ming and so forth.

Beck enumerates 13 practices in his article [Bec99] and 12 practices in the book

[Bec00]. I only cover a subset of these practices and refer the reader to the article

for a good introduction to the method and the book for a good explanation of the

philosophy and rationale of the method, in addition to a goodintroduction to the

method.

13



Testing

According to the article [Bec99], this can be considered the heart of XP. The

developers should write automatic tests for their codeprior to writing code. This

helps designing the code so that it is easy to test, and when the test (usually more

than one) runs you know that your code is done and you can move on to the next

task with confidence that your code works like it should. Before you check in

your code you need to make sure that all the tests run. If they don’t, then you have

broken something and need to fix it first.

In addition to the developers writing tests, XP also specifies that the customers

should write tests. These tests are used by the developers tohelp them understand

the requirements better as well as by the customer at the end of an iteration to

verify that the functionality delivered matches the requirements specified.

Pair Programming

When I talk to people about XP, their first thought is often “ah, pair program-

ming”. I guess the reason for this might be because the idea ofpair programming

is quite extreme. I imagine it can be quite hard to convince a customer that two

programmers working with only one keyboard and monitor is aneffective use of

resources. However, according to XP it is.

Legend has it that “two heads work better than one”. Programming is a complex

and difficult job (see for instance the article “No Silver Bullet” in [FPB78]), so

having two people cooperate should make this complexity easier to handle and

produce a better result. [Bec00, pp100–102]

Another reasons why pair programming is a good idea, is that when people are

tired or under stress they will be tempted to skip some of the other practices.

Chances are the other person on the pair programming team will object to this and

make sure the practices are followed. [Bec00, pp100–102]

14



Refactoring

According to Erich Gamma [Fow00, xiii] the term was conceived in Smalltalk2

circles but was soon adopted into other programming camps.

Refactoring is a disciplined way to clean up code and improvedesign without

changing the functionality of the code. Martin Fowler writes this in his book

“Refactoring” [Fow00] and states that as code is modified andchanged, the design

will deteriorate and eventually it will be inviable to maintain the code anymore,

unless you practice refactoring.

Since XP is all about changing the code and design when you need it, refactoring

is a crucial practice.

The Planning Game

Instead of a lengthy requirements specification phase, XP employs what is called

“The Planning Game”. At the beginning of the project about a month is spent

exploring the requirements and deciding what should be built, and how to build

it. During this phase the developers work closely together with the potential users

and the customer to learn what is required. A set of use cases is compiled and

the developers estimate how much time is needed to implementthe individual use

cases.

The customer chooses what use cases are most important and should be completed

first, and the developers start working on these. At the end ofthe iteration, the

customer is presented with the completed product incrementand decides what

goes in next.

Small Releases

Like most other agile methods, XP focuses on releasing a small set of valuable

features often. Each feature delivered should be complete and tested. In other
2The pioneering object-oriented programming system developed in 1972 (Source: The Free

On-line Dictionary of Computing).

15



words, short iterations and valuable functionality delivered after each increment.

Simple Design

As mentioned earlier, software development is complex. Since humans have a

limited ability to deal with complexity, XP preaches the KISS3 principle for de-

sign. Do the simplest thing that works today. If you need something more tomor-

row, then wait until then before you change the design to accommodate it.

On-site Customer

To make up for the low formality on the requirements, XP says that the team

should be able to ask a representative from the customer whenever they need extra

information. Thus, if a developer is unsure of whether he hasunderstood the use

case he’s working on he should be able to discuss the case withthe user with as

little overhead as possible. That is, stand up and go to the office next door or

similar.

Continuous Integration

As mentioned undertestingthe developers should never commit code that doesn’t

pass the tests. This is related to the practice of continuousintegration. The code

in the repository should compile and work4 at all times.

When you are working on your local version of the code, you want to be able to

do changes everywhere in the code so that you can practice refactoring. However,

this increases the chances of conflicting changes. The practice of continuous in-

tegration minimizes this problem since the worst that can happen is that you lose

an hour or two of work. In most cases the conflicts will be easy to fix.

3Keep It Simple, Stupid. Seehttp://en.wikipedia.org/wiki/KISS principle
4all tests pass

16

http://en.wikipedia.org/wiki/KISS_principle


2.5 Scrum

Since the project I have studied used a method based on Scrum,I will cover this

development method in some detail and thus give it a Section on it’s own even

though it is one of the agile methods.

According to Ken Schwaber [Sch03, p xvii], one of the originators of the Scrum

method, scrum is a process for managing complex projects. Hestresses that it isn’t

just limited to software development. However, software development projects

have a tendency to be very complex [FPB78] and so Scrum is wellsuited for

managing them.

2.5.1 Overview

The Scrum method is incremental. Each increment is calleda sprintand is rec-

ommended to last for four weeks. Before the sprint, there is asprint planning

meetingwhere the customer decides what features should be implemented in the

upcoming sprint. During the sprint, the team meets daily at ashort meeting called

a scrum or thedaily stand-up meeting. At the end of a sprint, asprint review

meetingis held where the customer gets to see what was accomplished during the

sprint. The team can also hold asprint retrospective meetingwhere they look at

the process and tries to find out what went well and what can be improved.

Schwaber uses Figure 2.5 to visualise the flow of the method. The upper circle

represents the daily activities of the team members, while the lower circle repre-

sents the development activities that occur during a sprint.

2.5.2 Roles

There are three different roles in a Scrum project; thecustomer, theteamand the

scrum master.

17



Figure 2.5: Overview of the Scrum method.

The Customer

The customers job is to represent all the stake holders in theproject. There can be

more than one person in this role, and they are responsible for funding the project

as well as creating and prioritizing the list of wanted functionality that should

drive the development effort. This list is theproduct backlogand is described

further below.

The Team

The team is responsible for developing the functionality requested by the cus-

tomer. The team is self-managing and responsible for figuring out how to best

turn a product backlog into an increment of product within aniteration. They

carry the responsibility of the success of each iteration and the project as a whole.

18



The Scrum Master

Unlike the usual project leader role, where the project leader usually takes the

blame when the project gets delayed or don’t deliver according to expectations,

the scrum master is only responsible for one thing; the Scrumprocess. His job is

to help the customer and the team to understand and apply Scrum to the project.

He should help adapt the method to the company culture and make sure that it is

being used properly.

He is also responsible for taking care of impediments so thatthe team can con-

centrate on actually developing software.

According to Schwaber [Sch03], the Scrum master role isn’t necessarily full time

and so he can for instance be assigned more than one project orwork on the team

as a developer.

2.5.3 Scrum Artifacts

Since Scrum is an agile method, it follows that the formalityof the project is as

low as possible. However, it is considered important that the customer can see the

project progress since this improves their motivation and involvement. Also, the

team needs some formality to help them cooperate and focus their work.

The artifacts of Scrum are

• the product backlog

• the project burndown chart

• the sprint backlog

• the sprint burndown chart

• the impediments list

19



The Product Backlog

This could be considered equivalent to the requirements specifications we know

from the methods presented above, but there is one big difference. Instead of

a long description of each requirement, the product backlogonly has a single

sentence description of each requirement. This sentence should be enough to

remind the customer and the developers of what the feature is.

The Product Backlog is a list of such single sentence requirements. It isthe cus-

tomersresponsibility to keep it prioritized and updated. The customer adds re-

quirements to this list and then the team is responsible for estimating how long

it will take to implement the. An example of a product backlogis shown in Fig-

ure 2.6.

Figure 2.6: A product backlog maintained in Microsoft Excel. Figure taken from
www.mountaingoatsoftware.com.

The Project Burndown Chart

This is a simple two dimensional graph with the work remaining on the Product

Backlog as they axis and the time elapsed since project startup as thex axis.

The graph should give a visual representation of the projectspeed. It can also

20

www.mountaingoatsoftware.com


be (and usually is) used to see when the project will be completed at the current

development speed as can be seen from Figure 2.7.

Figure 2.7: Example of a project burndown chart made by BrianMar-
ick, http://www.testing.com/cgi-bin/blog/2004/10/21. No-
tice how the projection of when the project is completed is hand drawn. Marick
did this to emphasize that it is only a projection.

The Sprint Backlog

This is a list of tasks maintained and compiled bythe teambased on the items

from the product backlog that were selected to be part of the sprint. The list is

similar to the product backlog, but there is a big difference. Where the items on

the product backlog are features requested by the user, the sprint backlog is a list

of tasks the developers must do to implement the items that the customer chose

from the product backlog. The customer doesn’t need to know about the items on

the sprint backlog.

A general rule for the tasks on the sprint backlog is that theyshould be relatively

short, i.e. between one hour and two days. This makes it easier to estimate the

21

http://www.testing.com/cgi-bin/blog/2004/10/21


tasks, something that makes the sprint burndown chart (presented below) more

accurate.

The Sprint Burndown Chart

This is quite similar to the Project Burndown Chart, only that it measures the

progress of the sprint instead of the project.

If all goes well, the sprint burndown chart should look like Figure 2.8 (a). How-

ever, in most cases, it looks more like Figure 2.8 (b). This isbecause the team

usually discovers tasks they did not consider but that must be added to the sprint

backlog. Since the chart displays the amount of work remaining and not the

amount of work completed, the graph can in fact increase fromone day to the

next.

The burndown chart will in most cases provide ample warning if the team is in

over its head and the sprint is too large to complete in time. When this is discov-

ered, the team should discuss the issue with the customer andthe customer can

choose whether to abort the sprint or decide what backlog item can be moved back

into the product backlog. In the last case, the team will end up with a new sprint

backlog that they should be able to complete on time. This will be illustrated on

the burndown chart by a sudden drop of the graph.

Impediment List

An impedimentis something that is holding back development in some way or

another. As mentioned above, it is the scrum masters responsibility to deal with

any such impediments. This list is simply a set of tasks that the scrum master uses

to track the impediments that needs to be solved.

22



Figure 2.8: Examples of Sprint Burndown Charts used in the Scrum process.

2.5.4 Sprints

As mentioned above, all work is done in sprints lasting four weeks. Each sprint is

started with a planning meeting divided in two sessions of atmost 4 hours each,

as explained below.

How the team works during the sprint is not specified, however, Schwaber has

written that XP compliments Scrum nicely [MS02]. XP covers engineering prac-

tices but doesn’t go into detail on management practices andScrum doesn’t cover

engineering practices but is quite clear on management practices. The way I see

it, Scrum can be considered a replacement of the planning game in XP.

23



The Sprint Planning Meeting

In the first session, the Customer chooses high priority items from the product

backlog that should be completed in the upcoming Sprint. Thecustomer explains

the items to the team and they give an estimate on how long it will take to complete

it. The sprint backlog is filled so that the sum of the item estimates is about the

same as the available work time of the team during the upcoming sprint.

Here is an example. The customer has selected 5 items from theproduct backlog

to be included in the upcoming sprint. The team discuss theseitems and decide

what needs to be done to complete them. This will result in an initial set of

tasks for each item that together constitute the sprint backlog. I say initial since

the developers will surely discover new tasks during the sprint that must also be

included in the sprint backlog.

In the second session, the team breaks the selected backlog items into smaller

work sized tasks that are inserted into the sprint backlog. The customer should be

available for questions and clarifications during this process.

The Daily Activities

During the sprint, the developers work on the items in the sprint backlog. Ev-

ery day the developers synchronize their progress in a dailyScrum meeting that

should last no longer than 15 minutes. During the meeting, all the developers will

tell the others what they did since the last Scrum, if there are any impediments

obstructing their work and what they are planning on doing until the next Scrum.

Another important day to day activity is updating the sprintbacklog and burndown

chart.

Sprint Review Meeting

At the end of the sprint, the team meets with the customer and presents the result

of the sprint. The users demonstrates the functionality they have completed and

24



get feedback from the customer.

If the demonstrated functionality is what the customer wanted then this gives the

team a feeling of accomplishment as well as the customer a proof that the project

is moving in the right direction. If the demonstrated functionality isn’t quite what

the customer was looking for it is now easy to explain how it isdifferent and what

should be done next. In some cases it is enough to make a few changes while in

other cases the implemented functionality must be discarded.

Sprint Retrospect Meeting

The intention of this meeting is to help the team improve their development pro-

cess. The meeting is attended by the team, the scrum master and the customer

(optional). During the meeting the team members take turns saying what went

well during the last sprint, and what could be improved. After all team members

have had their say, they prioritize the possible improvements and discuss them in

order. The meeting should not last more than 3 hours.

2.5.5 Project Startup

Ken Schwaber has had much success with his kick-starting of Scrum projects

as described in the book Agile Project Management with Scrum[Sch03]. This

process goes as follows.

The Scrum Master works with the customer and prepares a backlog. Then the

Scrum Master, the Customer and the Team uses one day to go overthis backlog.

During this first day the customer explains the items in the backlog to the team,

and the team estimates how much work it would take to implement this. The

customer then prioritizes the items in the backlog and divides the backlog items

into sprints.

The following day is the first day of the first sprint. This firstsprint isn’t very

different from the following sprints, except that the first part of the sprint planning

meeting has already been completed.

25



The team is now in complete control and have one task, namely to deliver the

functionality the customer has requested. The sprint has begun.

2.5.6 Project Completion

As the project moves on and sprints are being completed, the customer will receive

increments of the product. If the customer realizes that theproduct is good enough

and that further development is unnecessary, then he shouldbe able to stop the

project. Depending on the contract that has been negotiated, there can be a penalty

fee for premature termination of the project.

26



Chapter 3

Case Study

To discover whether an agile approach works well in a real world setting, I con-

ducted a case study of a project Company 1 is running with a team of software

developers from Company 2. See Appendix A for a thorough description of how

the case study was conducted. In this chapter I present the results of my study.

I start out by presenting the involved parties and the history of the project. Then I

write about how and why they adopted the new method. Following this I describe

the development method I observed. I complete the chapter with a description of

what might happen to the project and the team in the future.

3.1 The Actors

A Software Development project usually has a number of involved parties, or

actors as they are sometimes called.

In this case we haveCompany 1, who saw the need for the software;Company

2, the consulting firm that was hired by Company 1 to implement the software;

the teamof developers who were sent by Company 2 to develop the requested

software and finallythe customer, a group of people who work for Company 1

and is responsible for the project.

27



3.1.1 Company 1

Company 1 is a very large company responsible for planning, building and main-

taining roads. They are also responsible for the supervision of cars, trucks and

other road-users.

3.1.2 Company 2

Company 2 is a Norwegian consultant firm who specializes in software develop-

ment and object oriented programming. The employees are mostly highly edu-

cated and the firm have a reputation of only employing skilleddevelopers with at

least three years of past programming experience.

The firm was established in 1999 and have since grown to become70 employees

(source Developer 1).

3.1.3 The Team

The development team from Company 2 have grown and shrunk during the project

period. It started out with only one developer, then it grew to six people for

a while. For a summary of the project history, see Section 3.2.2. To keep the

involved developers anonymous I will call them Developer 1 to 8.

Developer 1 was the first developer on the project and is stillworking on it. Devel-

oper 7 and 8 worked on the project in 2003, but were moved to different projects

at the end of the year. Developer 2 joined the team in August 2004 and have been

working on it since then. Developer 3 and 4 joined the projectin September 2005

and Developer 5 and 6 joined in December the same year. In May 2006 Developer

4 and 6 were moved to a different project.

Today the team consists of four developers, three male and one female (Developer

5), working full time on the project. The developers work at Company 1 in two

adjacent offices in a floor dedicated to consulting firms working on projects for

28



Company 1. The offices are big enough that two people can work next to each

other on different tasks, which is what the team were doing when I observed them.

From my observations, they seem to be a friendly group that respect each other

and have fun together. My interviews give the same impression, for example in the

interview with Developer 5 when I asked if she felt accepted by the other devel-

opers she answered “Absolutely. They are forthcoming and helpful. . . ”. Earlier in

the interview she asserted that she was very glad she got to work in that team.

3.1.4 The Customer

While it can be argued that Company 1 is the customer, I chooseto use this term

to describe the people from Company 1 who is responsible for the project and

who interact with the team. From my interview withCustomer 1, there are three

people from the company who make up this group. I call them Customer 1 to 3.

Customer 1 is the person who is most involved with the team, Customer 2 is the

project leader and Customer 3 is the person who cooperates with Customer 1 to

prioritize and maintain the product backlog.

3.2 The Project

The project started in 2002 and consisted of developing an electronic replacement

for the vehicle control process. This process is currently based on filling out and

handling forms, something that is both time consuming and error prone.

I present a brief overview of the product to give the reader animpression of what

the team was working on, and then I summarize the history of the project as pre-

sented to me by Leader 1 and Developer 1 from Company 2.

29



3.2.1 The Product

The product Company 2 was hired to develop was a complete solution for vehi-

cle control. The system should support vehicle controls performed in a hall for

scheduled controls, or by the road side for sampling tests.

Some of the problems Company 1 had with the old system, was that it was hard

to follow up and check if vehicles that didn’t pass the control were fixed after

the control. Vehicles driving long distances were sometimes stopped and checked

several times during the trip.

The solution Company 2 is developing consists of a PDA1 with software for con-

ducting the control, a web interface for scheduling controls and server software

for storing and managing the control data as well as for connecting the system to

various databases for looking up information regarding thevehicles and drivers.

The user interface for conducting controls was designed so that the user should be

able to do as little typing as possible. One of the ways this was achieved was by

utilizing a bar code scanner on the PDA. The user scans the barcodes on the vehi-

cle license plate and driver license, upon which the system retrieves information

regarding this vehicle and driver from the central server over a wireless network.

When the user has registered all necessary data, he proceedswith filling in the

results of one of several pre-defined tests.

After the control is completed, a receipt is printed on a printer in the controllers

car and the data is sent to the server for storage and later follow up action. The

printing of the receipt is also done using the network, so thecontroller never has

to connect the PDA to any other device during the control.

1Personal Digital Assistant, aka handheld computer. A smallcomputer the size of a calculator.
Usually has a touchscreen and can be considered the technological equivalent of a sixth sense or
Filofax.

30



3.2.2 History

The project was started in August 2002 when Developer 1 and Leader 1 worked

out the requirements specification. This work was completedat the end of Novem-

ber or the beginning of December the same year and given to Developer 7 and De-

veloper 8. They created a proposed solution which was approved January 2003.

The project was staffed with a development team consisting of Developer 1, De-

veloper 7 and Developer 8. They delivered a pilot version fortesting in August

2003 after which Developer 8 was moved to another project. Testing and bug

fixing continued into September.

In September Developer 7 was moved to another project as well. Developer 1

continued working on improvements and changes to the systemas well as training

the users. The system was supposed to be tested during the autumn of 2003 and

then put into test service at the start of 2004, but in January2004 the infrastructure

was proved to be unstable and the release was postponed. Among other things, the

GPRS2 network did not work well enough to maintain the VPN3 connection that

was required to access the database with information about drivers and vehicles.

The VPN solution was discarded during the Summer of 2004 and it was decided

that a different security scheme had to be developed.

Developer 1 continued the system development during Spring2004 while waiting

for the network problems to be fixed. During this period the functionality and

ambitions of the project increased.

In August 2004 Developer 2 was added to the project to help addfunctionality

and improve the code quality. Development of an SSL4 authentication solution to

replace the discarded VPN solution was started.

The product was put into test service in January 2005. Pilot testing was conducted

and finally terminated in June 2005 due to problems with the service environment;

the GPRS network and the main portal infrastructure were unstable. During this

2General Packet Radio Service, used for data communication over the mobile phone network
3Virtual Private Network, used to provide a secure channel over an insecure network
4Secure Sockets Layer, used for authentication and encryption of web pages and many other

internet services.

31



period there were several releases of the product, and the final release before the

summer was considered functionally stable (e.g. all necessary functionality was

present). It took until December 2005 for the main portal infrastructure to become

fully operational. The GPRS infrastructure wasn’t reported stable until February

2006.

In August 2005 a refactoring of large parts of the data model and user interface

was initiated. This resulted in a new release candidate November 2005.

Developer 3 and Developer 4 were added to the project in September 2005 to

implement new features. The scope of the product was increased to support dig-

ital tachographs, a system for keeping track of how long truck drivers have been

driving without taking breaks5.

The Scrum method for project management was adopted in October or November

2005 to improve coordination of the different project activities as a result of the

project growth. This is covered more thoroughly in Section 3.3.

After a presentation of the product on Iceland, December 2005, an initiative by

Company 2 to internationalize the product was started. Developer 5 and Developer

6 were employed and put to work on this task. They started using the Scrum

method and took part in the Sprint planning meetings of the main development

group in February 2006.

I requested permission to study the project and, after a few phone calls and emails,

was invited to visit Company 2 in March. This visit is described in detail in

Appendix A.

The internationalization work was completed in May 2006, freeing two develop-

ers. Developer 4 and Developer 6 were moved to different projects while Devel-

oper 5 replaced Developer 4 in the main development group.

I made another visit in May (see Appendix A for details). The project was, ac-

cording to Customer 1, proceeding as planned, and they will hopefully start using

the product in September or October 2006.

5I have not looked into the details, but there are regulationson how much long a truck driver
can drive without resting.

32



3.3 Method Adoption

As can be seen from Section 3.2.2, Scrum was adopted near the end of 2005 as an

effort to improve the coordination of the different projectactivities.

In the interview with Developer 1, he said that while they were two developers

it was easy to coordinate their work. When the team grew to four developers,

they worked for a while as two teams. After a while this lead toconflicting and

overlapping changes, so they decided to reorganize themselves into one team.

3.3.1 Why Base the Method on Scrum?

Prior to the implementation of Scrum, one of the other development teams work-

ing for Company 2 reported good results from implementing Scrum in their project.

Agile methods and Scrum had been discussed at staff meetingsat Company 2, so

the method was known to the developers of the project and theycould talk to

coworkers who had first hand experience with this method.

As a result of the above, the team decided to adopt scrum, but at their own pace and

premises instead of uncritically by the book. (Source: Interview with Developer

1).

3.3.2 The Adoption

From my interviews I learned that the team had a presentationof the Scrum devel-

opment method from another employee at Company 2. This presentation lasted

for about an hour and was a presentation of how the method had worked for an-

other team from Company 2.

In addition to this presentation, Developer 1 read the article “Agile Project Man-

agement with Scrum” by Dafydd Rees [Ree04] that described the Scrum method.

The other team members that I talked to had not read any documents about Scrum.

Before they adopted the new method, they maintained a list ofdevelopment tasks

33



in a spreadsheet. This list of tasks was moved to their product backlog which they

maintain in a tool called JIRA6.

3.4 The Development Method

Based on observations, questions and interviews, I have constructed the following

description of the development method the team is using today.

3.4.1 Overview

It is an iterative and incremental method with iterations lasting 2 weeks and re-

leases done at least once every 6 months but with no set interval as far as I could

tell. The method is inspired by the Scrum method described inSection 2.5, but

there are some differences which I will point out in Chapter 5.

Every iteration, or sprint as the team calls it, starts out with a planning meeting.

After this meeting the team has a concrete list of tasks that should be completed

by the end of the sprint. The developers show up at work between 7 and 9. At 10

they get together for a daily stand-up meeting, after which they continue working

on their tasks.

3.4.2 The Roles

During my observation I noticed two different roles on the project. The team and

the customer. These were modelled after the roles in Scrum, and were similar

enough that a description would be a repetition of what I wrote in Section 2.5.2.

In the interviews and discussions the team said that Developer 1 also had the

Scrum Master role, however I did not have a chance to observe this during my

visits.
6Seehttp://www.atlassian.com/software/jira/ for more information on this

tool.

34

http://www.atlassian.com/software/jira/


3.4.3 The Backlogs

The team had two backlogs, or lists of tasks; the product backlog and the sprint

backlog. The first was a list of tasks of different sizes and importance that the

team should work on to complete the product. The list had approximately 150

tasks when I conducted my study. The second was a list of tasks, selected from

the product backlog during the sprint planning meeting, that should be completed

during the current sprint.

The sprint backlog was initially a subset of the product backlog, but it often

changed during the sprint as new tasks were discovered and added. This reflects

what is written in Section 2.5.

When the customer or users found errors or missing features they wanted to add

to the product, they sent an email to the developers (throughthe customer or a

mailinglist). These requests were added to the product backlog by the team and

the customer were then responsible for assigning a priorityto the item. (Source:

Interview with Customer 1).

During a discussion about the product backlog I learned thatthe idea behind the

product backlog that was used on this project was very different from the one used

in Scrum. The goal in Scrum is to complete all the items in the product backlog,

eventually delivering a finished product to the user and ending the development7.

The team didn’t agree with this way to treat the product backlog. Instead, the

product backlog would always have many tasks. There is always something that

needs to be done on a software system. It can be adding features, improving

features, fixing features, improving design, etc. Because of this, the team did not

aim to end up with an empty backlog. Instead, they expected the backlog to reflect

how mature the project was. A very mature project will have many bugfixing and

maintenance tasks, while an immature project will have morefeature tasks. To

paraphrase Developer 1

An empty backlog means that the project is dead

7this is not necessarily how it is done, but that was how we talked about it during this discussion

35



3.4.4 Priority-Assignment Meeting

While I have not been able to observe one of these meetings, both Customer 1

and Developer 1 informs me that they meet at every sprint to discuss the product

backlog and assign priorities. For practical reasons thereis no regular day and

time for this meeting.

During this meeting they assign priorities to all new feature requests and bug

reports from the users. They discuss the progress of the project and the direction

of the development.

3.4.5 Sprint Pre-Planning Meetings

Thursday or Friday at the end of the sprint the team has a meeting right after the

stand-up meeting. Unfortunately I wasn’t able to observe one of these meetings,

so my knowledge about this meeting is scarce. What I do know I got in an email

from Developer 1. He says that during this meeting they definea goal for the

next sprint, and they do some coarse planning. The goals are reached in dialogue

with the customer. If the customer needs a bugfix release, they set this as their

goal. Often the goal is obvious, for instance to do a new release, to add support

for a new important feature, etc. If any of the developers have tasks they wish

to include in the sprint, they can bring this up at the meetingand do a vote on

whether to include them or not.

It seems that this is also the meeting where they adapt their method by including

new practices (from for example Scrum or XP). They also discuss their current

practices and decide whether to keep or discard them.

At the end of this meeting, the top-priority tasks are divided between the develop-

ers. They then have to present these tasks during the group estimation process at

the sprint planning meeting.

36



3.4.6 Sprint Planning Meetings

Before the sprint planning meeting, the tasks with the highest priorities were dis-

tributed among the team members who prepared a short presentation of what the

tasks implied and how they could be accomplished. The tasks should also be esti-

mated and checked if they were duplicates or made obsolete oraffected by earlier

changes.

At the meeting, the team members presented their list of taskand discussed the

tasks that weren’t completely clear. They seemed to cooperate very well in select-

ing tasks and balancing the amount of work they scheduled forthe coming sprint

with the amount of work they would be doing in the sprint. At the end of the

meeting when they were doing selecting tasks, they quickly decided who would

update the software system they used for keeping track of thetask, as well as their

documentation system8.

During my study, the team adopted theplanning pokerpractice as described in

Section 3.4.8. This changed the meeting to a large degree. Now the meetings

were longer and the tasks were discussed in more detail than earlier. To make this

possible they also distributed the tasks that would be considered for the upcoming

sprint among the team members prior to the meeting. They thenhad to present

their task and explain why it should be part of the sprint, or why it could wait and

so on.

3.4.7 Sprints

During the Sprint, tasks were worked on, completed and movedfrom the sprint

backlog list to a list of items for testing and then on to a listof completed items

when the test had been run and approved by a different developer than the one

who wrote the code.

Because my study focused mostly on the development method and not the coding

8I have not written about these systems since I didn’t consider them very important to the
development method.

37



practices, I don’t cover how they worked with the code from day to day. However,

I did notice that the developers talked to each other and at times moved between

the offices to discuss the code with one of the other developers.

The Stand-Up Meetings

The stand-up meetingswere held around a tall table in a cafeteria in the ground

floor of the building. On my first visit, the meetings were heldat 09:00. On

my second visit they were held at 10:00. They started, when everybody arrived,

with one of the team members telling what they did yesterday and what they were

planning on doing today. Then, clockwise, everybody did thesame.

I noticed that the landscape in the cafeteria was open and at times noisy, but this

didn’t seem to bother the team. At times I had a hard time picking up what was

said, but this was probably because I stood a bit outside of the circle and they did

not talk directly at me but with each other. When I asked why the meetings were

held in the cafeteria, I was told it was because the coffee there was better than the

one near their offices.

Once or twice when I was there, someone brought up an impediment which was

keeping them from completing their task. An example of how one of these imped-

iments were dealt with is when Developer 5 was unsure of how the design of the

network communication protocol worked. This made it hard for her to implement

the task she was working on. After the stand-up meeting the team members held

a design meeting where they explained this design. While themeeting was pri-

marily for Developer 5, I got the impression that the other developers also learned

a bit from the meeting as they had to consult the source code several times during

this presentation.

The Burndown Chart

The Burndown Chart gave a visual representation of this, as descibed in Sec-

tion 2.5.

38



3.4.8 Planning Poker

One of the problems with estimating tasks is that it is hard toestimate correctly,

since it is easy to overlook subtasks. One way to fix this is to use group estimation

where the tasks are evaluated by a group. A problem with this is that often the

developer who knows the code best is quickest with his estimate, and when an

estimate is given the other developers trust that the estimate is good.

The way planning poker works, is similar to group estimation. The difference is

that now all the developers must estimate the task and write down their estimate.

When everyone is ready, the players show their estimate at the same time. [Gre02]

Now the person with the highest estimate and the person with the lowest estimate

must explain why they believe their estimate is correct. After a short discussion,

everybody usually have a better understanding of the task, the estimate is often

better than using regular discussion, and finally all the developers must join in

the estimation. This gives the junior developers more practice since they might

otherwise keep quiet during regular estimation. [Gre02], [Coh05, pp56–57].

3.4.9 Project Completion

I have not been able to observe how the project ends. I have notasked questions

about this to the developers either, but I did talk about whatwill happen next in

my interview with Customer 1. He says that the product will hopefully be shipped

in September or October this year.

After release, the product will be actively maintained and updated for years. To

paraphrase the customer

I consider this a life time project. If you deliver a product and say

“here you go” and don’t maintain it properly then it will be upto

date for a few months before you have to say “good-bye”. The rules

change all the time; we get a “bible” with 1200–1500 pages every

other year, so there are a lot of changes.

39



Customer 1 did not know whether the current development teamwill be kept

during maintenance, but he thought there might be some changes since the project

will be moved to a different part of the organization.

40



Chapter 4

Research Method

As described in the introduction, the objective of this study was to learn more

about how agile software development is practiced in Norway. Through talks

with my councilor we concluded that the most appropriate research method for

me would be an interpretive case study.

I start this chapter with a section on research method theory. Following this I give

an overview of what I have done to collect data for my study. I discuss the validity

of my data and to conclude the chapter I do a post-hoc analysisof my research

using the seven principles that Klein & Meyers present in their article [KM99].

4.1 Theory

Robert Galliers [Gal94] roughly divides information system (IS) research into

two groups, the scientific and the interpretive. The former is mostly used when

the object of the study can be observed objectively and the scientist can generalize

from the study. These studies usually involves proving or disproving a hypothesis

that is decided upon before the research is started. Interpretive research methods

take into consideration that what is observed is also interpreted by the observer,

and that this interpretation will influence the research.

41



Chen and Hirschheim [CH04] has done a literature study of 1893 articles released

between 1991 and 2001. Their research showed that 81% of all IS research is done

using traditional scientific methods. Galliers and Frank Land [GL87] pointed out

this trend in 1987 and argued that there is a tendency to favorthe traditional re-

search methods even when interpretive methods would give better results. They

say that for IS research it is often appropriate to include behavioral and organi-

zational considerations. While this increases the complexity and decreases the

precision of scientific studies, it goes well with the interpretive research methods.

My research is interpretive. I have conducted a case study where I have observed,

interviewed and gathered information that I have structured and interpreted in

this paper. As a result, this paper is far from objective. I have tried to make

my preconceived notions as transparent to the reader as possible by including

the story of how the study started (Section 1) and how I performed my research

(Appendix A).

In a further attempt to increase the quality of my research, Ihave done a post-hoc

analysis of it using the seven principles that Klein & Meyerspresent in their article

[KM99].

4.2 The Study

One of the biggest problems with conducting empirical research is that the re-

searcher is biased. If he/she didn’t already have an opinionon or an interest in the

subject matter why research it?

Before I started my study I believed (and I still do) that agile methods are better

than the sequential methods I knew about from earlier in my studies. Yes, there

are scenarios where agile methods are impractical, but in small to medium sized

teams with non-critical (loss of money, not life if the software fails) development

projects I believe agile is the way to go.

The data collection was done using semi-structured interviews, observations from

meetings I participated in and of course general observations made while I was

42



Date Object Details
2006-03-17 Developer 6 (Junior) A semi-structured interview about his

experience with joining the project and
the development method.

2006-05-23 Developer 1 (Senior) A semi-structured interview about the
project, development method, etc.

2006-05-23 Developer 2 (Senior) A semi-structured interview about the
project, development method, etc.

2006-05-24 Developer 3 (Senior) A semi-structured interview about the
project, development method, etc.

2006-05-24 Developer 5 (Junior) A semi-structured interview about the
project, development method, etc.

2006-06-12 Customer A semi-structured interview about the
project, development method (as seen
by the customer), the customers experi-
ences, etc.

Table 4.1: An overview over the different interviews I performed during the study.

visiting Company 2. In addition I’ve received some of my datathrough email

correspondence with Leader 1, Developer 6 and Developer 1.

During my study I did two visits to observe and interact with the development

team. The first visit was from March 16th and lasted until March 21st. The second

visit was from May 21st and lasted until May 25th. For a detailed rendition of

these visits, see Appendix A. To give an overview I’ve summarized the interviews

in Table 4.1, the meetings I attended in Table 4.2 and other sources in Table 4.3.

4.3 Validity of my Research Data

As mentioned in Appendix A, I didn’t do a good job at taking notes during my

second visit. Because of this I had to trust my memory to some degree when

I reconstructed the sequence of events during the study. So it is prudent to ask

whether this has affected the validity of my research data.

For very detailed information like the length of meetings, my numbers are approx-

imations and should not be considered very accurate. When I did my observations

43



Date and
Length

Place Participants Details

2006-03-16
2h40m

Company 2 Leader 1, Senior 2,
2 researchers from
SINTEF

Discussion of cooperation
between SINTEF and
Company 1, introduc-
tion to the company and
project.

2006-03-16
3h

Company 2 Employees of
Company 2

Staff meeting. Mostly un-
related to the project.

2006-03-16
2h

Company 2 About 10 develop-
ers from Company
2

Interest group on Ruby on
Rails. Unrelated to the
project.

2006-03-17
1h10m

Company 2 Leader 1 and De-
veloper 6

Presentation of the project.

2006-03-17
1h

Company 2 Developer 6 More information on the
project, questions and an-
swers.

2006-03-18
4h

Company 1 Developers 1-4, 6
and Senior 1

Sprint Planning Meeting
and discussion of devel-
opment methods and prac-
tices.

2006-03-19
15m

Company 1 Developers 1-4 Stand-up Meeting

2006-05-22
15m

Company 1 Developers 1,3,5 Stand-up Meeting

2006-05-22
4h

Company 1 Developers 1-3,5 Sprint Planning Meeting

2006-05-23
15m

Company 1 Developers 1-3,5 Stand-up Meeting

2006-05-24
15m

Company 1 Developers 1-3,5 Stand-up Meeting

Table 4.2: An overview over the different meetings I attended during the study.

44



Source Type Details
Leader 1 Email History of the project

Developer 1 Email History of the project
Developer 1 Email Summary of the development method
Developer 6 Email Introduction to the project
Developer 1 SMS1 Answers to short questions

Table 4.3: An overview over other important sources for information during the
study.

I did not focus much on details; instead I wanted to concentrate on the big picture.

Here I have been more thorough. When I have been in doubt aboutmy observa-

tions, I have either sought assistance from one of the Developers or I have decided

not to include that piece of information.

Because of this I believe that my research data is valid.

4.4 Analysis of My Work

To judge the quality of interpretive research, Klein & Meyers [KM99] has pre-

sented 7 principles they believe should be used to validate interpreted case studies.

I’ve done a post-hoc analysis of my research using these principles.

4.4.1 The Fundamental Principle of Hermeneutic Circle

To quote Klein & Meyers,

This principle suggests that all human understanding is achieved by it-

erating between considering the interdependent meaning ofparts and

the whole that they form.

What this means can be made clearer with an example. Considerthe sentence

“they are playing football”. For most Norwegians, this sentence would give an

image of people running around on a field while trying to kick around ball into a

goal. On the other hand, most Americans would imagine peopleon a field trying

45



to get an egg shaped ball over a line or a mark. Due to a different interpretation of

the word football, the word playing gets a different meaning. Extra information

could change the meaning further, for instance if it is clearfrom the context that

“they” are not engaged in sports at all, then the meaning mustbe metaphorical.

They might be throwing ideas back and forth. . .

This principle is the overreaching principle that the following six principles are

built on, and it is used to make sure that there are no gaps or unresolved contra-

dictions in the research material.

Since I can find no gaps or contradictions in my research I believe that by fulfilling

the other principles I have also fulfilled this principle.

4.4.2 The Principle of Contextualization

As explained above, the contextual information is paramount in how you interpret

the data. To be able to understand the current situation, we need to know the

historical and political context.

I have done my best to give a historical context in Section 3.2.2. This was re-

constructed from emails and conversations, so it is all secondhand information.

However, I see no reason why I would be given false information regarding the

projects history. My two main sources for the history chapter was Leader 1 and

Developer 1. However, the information I gathered from Customer 1 did not con-

flict with this, so in conclusion I believe my contextual history is sound.

I have not dug as deep into the political context between Company 1 and Com-

pany 2. However, since my study is focused on the developmentteam and their

interaction with each other and the customer, this doesn’t seem to be relevant. I

could have looked more into the economical context of Company 2, since my in-

terview with Customer 1 shows that the resources Company 2 spent on the project

were less than Customer 1 thought necessary. However, I don’t consider this very

relevant for the study.

46



4.4.3 The Principle of Interaction Between the Researchersand

the Subjects

This principle states that the researcher should reflect upon how the research data

has been constructed through the interaction between the researchers and the par-

ticipants.

As I show in Section 4.2, the development team did not seem to have any problems

with having me around. They were helpful and gave me all the information I asked

for. The only situations where I felt that my presence might have caused the team

to act different from normal was during lunch. I would have expected more “shop

talk”, but found that the discussions seldom went into detail about the design and

code they were working with. I suspect that this might have been because I was

there, but it might also have been the normal behaviour.

When I was just observing, I had the impression that the team didn’t really notice

that I was there. During interviews and talks I tried to avoidarguing with their

opinions and rather encourage them to explain their point ofview. While I sus-

pect that I wasn’t always successful at this, I believe the majority of my data is

untainted by it.

4.4.4 The Principle of Abstraction and Generalization

I have not done any abstractions or generalizations, so thisprinciple doesn’t apply

to my research.

4.4.5 The Principle of Dialogical Reasoning

This principle states that the researchers might have pre-conceptions about what

he expects to find, and that this can affect the resulting dataor leads him/her to

revise his/her pre-conceptions. There can be several cycles of this.

In Section 4.2 I state my bias for the reader, so the reader is aware of my pre-

conceptions. Further, while I originally believed that theteam had a lot to learn

47



about agile methods as a result of finding out that they hadn’tread any literature

on Scrum, I revised my opinion based on the interview with thecustomer and

realized that the team were in fact doing a type of agile development and that my

original pre-conception was flawed.

4.4.6 The Principle of Multiple Interpretations

This principle doesn’t apply to my research since I only haveone narrative and

my research shows no signs of a possibility for multiple interpretations.

4.4.7 The Principle of Suspicion

In this final principle, Klein & Meyers require me to be sensitive to possible biases

and systematic “distortions” in the narratives collected from the participants.

What I need to ask myself as a result of this principle is if what I have been told

is the truth or if it might be distorted by the customer or the team to make them

look better? (Or for some other reason.) I need to be suspicious of the data I’m

fed and look for inconsistencies and indications that what I’m told is exaggerated

or similar.

It is of course possible that the project members, upon hearing of my arrival and

study, agreed upon a story to make them self look better. However, I consider this

unrealistic. Since I have done interviews with 5 team members and nothing I have

heard have made me aware of conflicting informations, and given that what the

customer told me in his interview fit with what I had learned inearlier interviews,

I believe that what I have been told is true.

When I constructed the history of the project, I sent an emailto Developer 1 who

had been on the project since the beginning. However, for some reason the email

got lost and it took two weeks before he replied. During this time I had sent a

request to, and received this data from Leader 1. I now had thesame information

from two separate sources that did not know (at least, I didn’t tell them) that I

48



received the same information from the other source. While the data I received

focused on different details, there were no conflicting data.

49



Chapter 5

Analysis

I start out my analysis by looking at the differences betweenthe Scrum method

and the method employed by the team. Keep in mind that the teamdid not aim

to implement the entire Scrum method at once (see Section 3.3.1), so some of the

Scrum practices are yet to be implemented.

When I have established some of the differences, I will try toexplain the reason

for the differences. Finally I conclude the chapter with a few suggestions on how

the team can improve their development method.

5.1 Observed differences

During my study, I realized that there were quite a few differences between the

method employed at Company 2 and the Scrum method as I understood it from

the book [Sch03]. See my description of Scrum in Section 2.5 as well as my

description of the method I observed in Section 3.4 for a reminder of how I see

the two methods.

50



5.1.1 Project Startup

I haven’t read any books or articles on how to adopt scrum in mid project, so it is

hard to say whether the team did this “by the book” or not. I suspect that the way

the team simply used their existing task list as the initial product backlog might

not be the “right way”, but it is obvious that this made the transition to the new

method easier.

The alternative would probably be to sit down with the customer and create a

completely new product backlog. It would probably take about a day to create the

product backlog this way; e.g. 8 hours more than what the teamspent on this.

The biggest difference with these two methods must be how theeasy solution

makes the method change less intruding for the customer, since the alternative

requires that the team introduce him to the Scrum method and convince him that

this is not a waste of time.

5.1.2 The Roles

The team and the customer worked pretty much as I expected (except for the sprint

planning meeting as described below).

The scrum master role seems crucial in projects where the team members and

customers are new to the method. At least if the goal is to use Scrum by the book.

The acting scrum master in this project wasn’t trained to do this job, and therefore

it can’t be expected of him to be able to carry it out correctly. Since the team did

not aim to implement Scrum by the book, having a proper scrum master might not

be necessary.

5.1.3 The Product Backlog

A quick look at theproduct backlogshows a long list of tasks. When talking with

the team, it became clear that their understanding of the product backlog was quite

51



different from the one in Scrum. The team said that the product backlog wasn’t

supposed to become empty. If it did, that would mean that the project was dead.

In Scrum, the goal is to complete all the items in the backlog.

Another difference is that in Scrum, the project backlog is alist of functional and

non-functional requirements made by the customer. He should be able to read the

backlog and easily assign and change the priorities of the items (i.e. the items

should be written in a language understandable by the customer). The items on

the teams product backlog were smaller and much more technical. They were

mostly written for the developers, not the customer.

A consequence of the last difference is that sprint review meetings will be af-

fected. While the team didn’t perform sprint review meetings during my visits,

the practice might be adopted later. As described in Section2.5.4, the user should

be able to tell whether the team delivered the promised backlog items or not. With

the current backlog this would be quite hard since many of thetasks are technical

and have to do with the design and internals of the program.

5.1.4 The Sprint Backlog

I didn’t observe any differences between the sprint backlogused by the team and

the one described in the literature.

5.1.5 Sprint Planning Meeting

The customer did not attend the sprint planning meetings. Inthe interview with

Customer 1 it becomes clear that the reason for this is that they have too many

things to do, so the project gets less attention than it should have. However, the

interview also indicates that such a meeting could be possible if the team insisted

on it.

The first part of the sprint planning meeting is not done on this project. Instead,

there is a separate priority-assignment meeting as described in Section 3.4.4.

52



Customer 1 was also available for questions and clarifications whenever the team

needed this and provided a single point of contact, making iteasier for the team

to get the information they needed.

In addition he was active in facilitating field testing as well as performing planned

testing of the product.

As covered in Section 2.5, these meetings are divided in two distinct sessions.

The first with the customer; the second for the team. Each session is not to last for

longer than four hours, and after the first session the sprintis considered started.

The planning meetings I attended did not resemble this description. The customer

did not attend and consequently part one could not be done as described even if

they wanted to. The second part of the meeting was closer, butthis part was also

different from what I described in Section 2.5.

Instead of splitting the items from the product backlog intotasks for the sprint

backlog, tasks from the product backlog were re-estimated and a subset was cho-

sen as the sprint backlog.

5.1.6 Daily Stand-up Meetings

I didn’t observe any differences here.

5.2 Reasons for the differences

Why doesn’t the Company 2 team follow the Scrum method by the book? Is

it only because they haven’t read it, or are there other reasons that makes their

situation better suited for the solutions they have found?

An easy answer would be that the customer wasn’t involved enough to actually

perform the necessary practices, however my study seems to indicate that there

was in fact a rather good customer involvement.

53



I’ll look into each of the roles, practices and artifacts that I’ve covered and finally

I’ll try to make a summary and conclusion.

5.2.1 Backlog

As I covered in 3.4.3, the team moved their list of tasks directly into the prod-

uct backlog when they adopted the backlog from Scrum. This set the standard

for backlog items and this easy solution combined with theirunderstanding of

the backlog when they created it is the cause for the difference between Scrums

product backlog and the teams product backlog.

Since the team experienced positive effects of the new way towork with a product

and sprint backlog, they were happy with it and didn’t see anyreason to believe

that they were doing it wrong.

I believe the impact of this difference is big. First and foremost, the backlog is

supposed to belong to the customer, not the team. Giving the customer a backlog

that he understands and can identify with makes it easier forhim to make changes

to it and select what should be worked on next. The current backlog is quite

technical in addition to being very long. This makes it infeasible for the customer

to go over it in its entirety and change the priorities very often.

The current practice is that the customer prioritizes new items that are added to

the backlog, while existing backlog items are left as they are. While this gives the

customer some power over what should be worked on, it does notcome close to

what it should be.

5.2.2 Sprints

I wrote above that the length of the sprint should be four weeks. In an interview,

Ken Schwaber [Con06] argues against sprints lasting longeror shorter than this.

He asserts that four weeks is the longest period of time that the Customer will be

able to wait and still feel involved in the project, while it is the shortest amount of

time that a team can deliver a decent amount of valuable functionality.

54



However, my research shows that the team were happy with two week iterations

and that their attempt to use three week iterations had proved inefficient. My

interview with Developer 3 shows that when they tried three weeks they lost focus

and ended up with with a feeling that they didn’t accomplish more than they would

during a two week iteration. This lead them to returning to the two week iteration.

I believe the reason for this difference is related to the product backlog. Since

the tasks in the product backlog are smaller, I figure the sprints end up smaller as

well. This is because with “Scrum sized” backlog items, the team would select

maybe between 5 and 10 features to work on. These would be divided into a

sprint backlog and work would ensue. As the team works, they will encounter

small victories as they can see that their work on the tasks lead to product backlog

items being completed. That is, they have two levels of completion; small items

for day to day work, and product backlog items once or twice a week which shows

progress and provides inspiration.

Since the team only have the small items, they do the day to daywork, but they

don’t get the pleasure of seeing the product backlog items (or functionality) work-

ing. This makes it harder to keep the focus over longer periods of time.

5.2.3 Sprint Planning Meetings

This difference is such that the practice of breaking the product backlog items into

sprint backlog items was unnecessary for the team since the items were already of

an appropriate size for the sprint backlog.

The reason why these meetings were different from the ones inScrum might be

related to the differences in the Backlog as well as the fact that the Customer did

not partake in the meetings. As our interview with the customer shows, it should

be possible to get regular meetings with a representative. Another reason that I

believe is more probable, is that since the team has no properScrum Master and

understanding of the method, they don’t really see a problemwith the current

situation. They get a prioritized list from the customer andthen they’re left in

peace to work on this list. The group seemed to be quite happy with this solution.

55



They did mention that the customer wasn’t as involved in the project as might

have been preferred, but this might be because they know thatthey’re supposed to

have a highly involved user.

5.3 Possible Improvements

These suggestions are given in light of my observations and knowledge of devel-

opment methods. So, while some of them should be quite good, others might be

naive.

5.3.1 Training

It seems that none of the developers on the team received any education on the

scrum method. Since such knowledge would equip the developers with ideas

and proven solution to common problems, I believe that this could help the team

improve their method further.

5.3.2 The Product Backlog

While I can’t show any evidence for this, I suspect that a product backlog that

contains features and change requests written by the customer is a better solution

than the one employed by the team. This would provide both theteam and the

customer with a clearer impression of the project progress,and it would make it

easier for the customer to prioritize the tasks.

Since the project has been operating with the current product backlog for over a

year, and the customer doesn’t seem to think of it as a problem, I think the team

would do best if they did not change this during the rest of this project. However, I

recommend that they look into using the scrum product backlog on future projects.

56



5.3.3 Meetings at the End of the Sprint

The team had a meeting at the end of the sprint which I called the sprint pre-

planning meeting (Section 3.4.5). During this meeting the team accomplishes

tasks found in both the sprint review meeting and the sprint retrospective meeting

from scrum. The reason why Scrum divides this in two meetings, is that the

customer only needs to participate at the first meeting. Separating these meetings

make it easier to invite the customer since the meeting is shorter and more relevant

to them.

To be able to have the customer attend regular meetings, the team need to make

sure that the meetings are valuable to the customer. The firststep in accomplish-

ing this is to remove things from the meeting agenda that isn’t relevant to them.

The sprint review meeting seems to me to be something that canbe inspiring for

both the customer and the team, and so I recommend trying to move the items

that belong in this meeting from the sprint pre-planning meeting and bring in the

customer for a demonstration of what was accomplished during the sprint.

If this works and the customer manages to attend this meeting, it should be easier

to have him attend the sprint planning meeting later.

57



Chapter 6

Conclusion

My first impression when I observed the major differences between the method

employed by the team and what I knew was “right” after readingabout XP and

Scrum, was that this team didn’t really get it. They hadn’t read the books and they

didn’t even seem embarrassed about it.

However, during my interview with Customer 1, this impression changed a bit.

Yes, I still have a hard time understanding why they haven’t taken the time to read

more about the method they are inspired by, but for some reason the customer

seemed very happy with their work. To paraphrase him

We just tell Developer 1 and the others that “this is the way wewant

it”, and that’s the way it ends up

and when I asked him to sum up and tell me how the cooperation between the

customer and the developers was he said (again, I paraphrase)

Fantastic! (. . . ) They don’t know about the inspections and rules, and

because of that they see the project in a different way than I do. This

results in discussions leading up to very good solutions. A lot of good

things have come out of the fact that both we and the developers have

to think in new ways. I think this is very good.

Now if we look at the agile manifesto (see Section 2.4), it says

58



. . . we have come to value: individuals and interactions overprocesses

and tools

So, while I believe that the team can learn a lot from reading more about de-

velopment methods, I have come to realize that the team knowshow to develop

software, and they are doing a good job at being flexible and adapting their method

to suit their customer. Since the goal of the Scrum method is to make the customer

happy, the team is already doing a fine job at it.

My interviews with the developers shows that they think the development method

they are using is a step forward from their previous experiences. This leads me

to believe that they will share their positive experiences with their friends and

colleagues and be eager to use a similar method in the future.Maybe this is the

reason why agile development methods are getting so popular? We all know that

a happy customer makes for good PR.

Given the situation the team were in when they adopted Scrum,I think they did a

fine job at it. Most likely they would have ended up with a different result if they

were guided by a Scrum Master, and maybe this result would have been better, but

my impression is that the team is effective and deliver what the customer wants.

Since this is the goal of any development method I can’t really justify criticising

them.

Can they improve further? I suspect they will. They are continuously improving

their method and learning from each other and from their coworkers.

6.1 Future Research

One of the questions that is left unanswered from this study,is what the con-

sequences of the product backlog difference was (Section 5.1.3). It should be

possible to do a controlled experiment that would answer this question. I suspect

that the Scrum product backlog would make it easier to discuss the tasks with the

customer, but to find out for sure, the question must be researched further.

59



6.2 What Have I Learned from this Project?

During these months of inspiration, writers block, discouragement, writing, en-

couragement and finally panic I have learned a lot about development methods,

doing interpretive research, conducting interviews and thesis writing.

If I had the chance to do this thesis again, there are a quite a few things I would

have done differently. The most pressing of these is the timedevoted to the case

study and the amount of interviews I did. I realize that one ofthe reasons why I

had such a hard time writing on the thesis was that I didn’t understand the case

properly. Only after my interview with the customer did I realize this. Thanks to

Developer 1, I was able to send emails with questions and havethem answered

the following day, something that I believe saved my project.

Looking at the quality of my first interviews and the quality of my last interview is

also an eye opener. It seems that doing interviews takes practice and that I didn’t

have any.

60



Appendix A

The Research

In this chapter I give a summary of my visits to the team and howmy interview

with the customer came about.

A.1 The First Visit

During the first visit I spent much of the time getting familiar with the people and

company culture of Company 2. I tried to learn what the company was expecting

from me in return for letting me study them as well as getting an overview of the

development method the team were using. My goal was to establish a connection

so that I could come back later to do a more thorough study on the topics that I

found interesting during this visit.

A.1.1 Day 1, Thursday

I arrived at Company 2 around 11:30 together with the researchers from SINTEF

(see the preface). We were received by Leader 1 and Senior 2 who led us to their

meeting room. Here we ate lunch and, while I stayed mostly in the background,

the others discussed a research project they were engaged inas well as many other

topics regarding agile software development and software development in general.

61



After this meeting the researchers from SINTEF left while I stayed and sat in on

the company’s bi-weekly staff meeting. This meeting wasn’tvery relevant for the

study, but it helped me attain my goal of establishing a connection. In addition

it gave me an impression of the company and employees, something I felt would

make it easier to understand what I observed.

Finally there was a workshop for those interested in learning Ruby on Rails, a new

technology that has become very popular recently. I joined in on this since I was

curious on how this technology worked and also because I wanted the people in

Company 2 to become familiar with having me around.

A.1.2 Day 2, Friday

I started out this day with a meeting with Leader 1 and Developer 6. Developer

5 was supposed to attend as well, but she had called in sick. During this meeting

I got an in depth presentation of the project I was to study. Wealso discussed

what my paper would cover and what Leader 1 was interested in learning from

my study.

After this meeting Developer 6 spent some time answering some of my questions

regarding the project and how the team worked. This session was especially useful

for me since it became a very informal discussion of topics I felt that I had a good

understanding of. It built my confidence quite a bit and made me feel more at

home.

I ate lunch together with the other people at Company 2 and gotto meet a few

of the other developers that worked there. The discussion was not very work

oriented this day since five or six of the people there were going on a skiing trip

the following weekend and they were eagerly discussing thistrip and trying to

convince others to join in.

After lunch I did what might be called a very unstructured interview with Devel-

oper 6. I intended to do another semi-structured interview with him later when

I knew more about what would be interesting for my paper, but since he wasn’t

available on my second visit this never happened.

62



A.1.3 Day 3, Monday

I observed Developer 6 work and prepare for the sprint planning meeting that

we were to attend at Company 1 after lunch. This didn’t take very long since

Developer 5 was still sick. The rest of the time before the meeting he spent writing

software while I read about the Scrum development method.

Senior 1 was going to participate in the meeting so he joined us when we left

for Company 1 around 11. We arrived just in time for lunch and ate together

with the team that were stationed there. The food was good andwe had a very

interesting conversation about development methods and Senior 1 told us about his

experiences while working for Thoughtworks in London. Unfortunately I didn’t

take any notes of what was said. By now all the members of the team had met me

and seemed to be comfortable with having me around as they acted friendly and

made me feel very welcome.

After lunch we started the sprint planning meeting. There were five developers

present and two observers; me and Senior 1. The reason why Senior 1 was present

was to introduce the team to a new way of doing task estimationcalled planning

poker. I’ve written about this in Section 3.4.8. I took notesbut didn’t say much

except once or twice during a discussion about agile methods. It was clear that

this planning meeting was different from the norm as they hadSenior 1 present

and much of the discussion was about different agile practices they could use

to improve their method. They did however describe to us observers how these

meetings usually went.

A.1.4 Day 4, Tuesday

I arrived at Company 1 at 10:00 to participate in the daily stand-up meeting. This

was the first time I was able to observe one of these meetings.

The rest of the day I spent writing out my notes and trying to decide what I should

focus on in the rest of my study. I didn’t pay much attention onhow the developers

worked except to note that the two most senior developers were in one office and

63



the two newest developers were in an adjacent office.

During lunch Customer 1 joined us at our table and I got to talkto him a bit about

his impression of the development project. He had only good things to say about

the project and the team and seemed more annoyed at his own organisation for not

devoting more resources to the project so that it could move faster. He said that

there were people in the field who were eagerly awaiting the new product and that

he was really looking forward to being able to give it to them.

A.2 Second visit

On my first visit I followed my councilors advice about continuously taking two

sets of notes in a diary; what I observed and my own thoughts and feelings. On

my second visit I was not as smart. I did take notes and I recorded the interviews

I performed, but I did not take notes on most of the other events during this visit.

When I’m writing this chapter I realize that my councilors advice was a very

good one since the notes I considered unimportant have been agreat help for

remembering what I did during the first visit. Luckily the second visit is quite

recent and due to this I was able to reconstruct the days of it pretty well.

A.2.1 Day 1, Monday

I arrived at Company 1 at 10:00 to participate in the daily stand-up meeting. The

meeting was quite surprising to me as I expected to see Developer 1, 2, 3 and 4.

However, Developer 4 had been replaced with Developer 5 and Developer 2 was

at the dentist and couldn’t make it to the meeting.

After the meeting I learned that Developer 4 had been moved toanother project

very suddenly. The internationalisation task was completeand Developer 5 had

been moved to the main team while Developer 6 was now working on some other

project.

64



At the stand-up meeting Developer 5 reported an impediment that led to a design

meeting straight after. I sat in on this meeting but didn’t really learn anything

interesting except for the fact that they did a good job getting the new developer

up to speed and made her feel like part of the team. Developer 2arrived during

this meeting but decided to work on his tasks instead of joining in.

I ate lunch with the team, but we didn’t discuss anything related to the project.

After lunch I participated in the sprint planning meeting. As mentioned above,

they decided to try out a new estimation technique at the planning meeting I ob-

served. This was the fourth meeting they did when using this method and so they

were quite effective by now. I learned that they were only doing 50% of the tasks

using this estimation technique however since they were helping out a study of

whether this technique resulted in better estimates.

The meeting was done at 16:00 and that was the end of the day. I talked to Devel-

oper 1 about the possibility of doing a few interviews duringthe next few days.

We ended up with scheduling interviews with Developer 1 and Developer 2 on

Tuesday and the last two on Wednesday.

A.2.2 Day 2, Tuesday

After the stand-up meeting I made ready for my first interview. Developer 1 de-

cided to go first and we started at 10:30. The interview lastedfor 30 minutes and

after a 5 minute break I did the interview with Developer 2. I found the second

interview harder, but all in all I was quite satisfied with my interviews.

It was now time for lunch, so we went to eat at the cafeteria. Asusual we all sat

together and talked about different things. The topic was not very work related.

I spent the rest of the day transcribing the interviews and left work at around

16:30. On my way out I met Customer 1 again and I used the opportunity to ask

whether he was available for an interview the following day.He said that he’d try

to fit it in but that he couldn’t promise anything. He told me that if we couldn’t

make it then I should contact him and we could arrange an interview some other

65



time.

A.2.3 Day 3, Wednesday

This was the final day of my second visit. My day started as usual with the stand-

up meeting. After this I spent some time improving my interviews based on what I

had learned from the first two interviews. I scheduled the days interviews for after

lunch since I was trying to fit in the interview with the customer. Unfortunately

he couldn’t make it.

Lunch went as usual, todays topic was what you could use the extra long weekend

for.

The interviews went pretty well, they were a bit shorter since I was more focused

on what I wanted to know and also since Developer 3 and Developer 5 were rela-

tively new compared to the others so I didn’t ask them much about the history of

the project.

I spent the rest of the day transcribing interviews, and leftaround 17:30. I left to-

gether with Developer 1 and we discussed the project, my research and the Scrum

method. I talked to him about what thoughts I had formed so farand he gave me

some feedback on this.

A.3 Interview with Customer 1

I contacted Customer 1 on the 29th of May to schedule an interview. He was

busy but we made an appointment to get back to each other on the1st of June.

We finally managed to do an interview on the 7th of June. He picked me up on

campus and drove me to a location his company had near by.

I got a lot of interesting information from this interview toback up and tear down

some of my theories. We spent about 30 minutes on the interview, after which

he drove me back to campus. During the drive we talked about the project and I

wished him luck with it and thanked him profusely for his time.

66



Appendix B

Interview Guides

Since the case I studied was a project that had been running for some time before I

entered the scene, there was a lot of interesting events and decisions I didn’t have

the opportunity to observe. To form an idea of what these events and decisions

were and how they were handled, I interviewed some of the people involved. For

Developer 1-3 and 5 I used the first interview guide. For the customer I used the

next one. I did not use an interview guide in my interview withDeveloper 6.

B.1 Developer Interview Guide

• Når begynte du på dette prosjektet og i hvilken rolle?

– Mer om prosjektet da: Utviklingsmetodikk, besetning, kundeforhold,

...

– Hadde du noen erfaring i bruk av denne utviklingsmetodikken?

– Hadde du noen erfaring i bruk av Scrum eller andre smidige metoder?

• Hvordan opplevde du overgangen til å bruke Scrum?

– Var du delaktig i bestemmelsen?

– Kom det overraskende på deg?

67



– Fikk du noen kurs eller annen opplæring i metodikken?

– Var du positivt innstilt til denne måten å jobbe på?

• Hva var førsteinntrykket ditt av Scrum?

– Hvordan har dette inntrykket endret seg?

• Hva synes du er positivt med Scrum?

• Hva synes du er negativt med Scrum?

• Hvordan er kommunikasjonen innad i teamet fungerer?

– Kan Scrum ha påvirket måten dere kommuniserer på? Positivt eller

negativt?

• Hvordan er kommunikasjonen utad mot kunden?

– Har Scrum noen innvirkning her?

B.2 Customer Interview Guide

• Hvordan ble kunden innvolvert?

• Hvilken rolle har kunden i forbindelse med prosjektet?

• Hvilken autoritet har kunden?

• Hvem bestemmer hva som er viktig og som skal bli gjort i forbindelse med

produktet?

• Hvordan går kunden frem for å få gjort endringer i produktet?

• Hvordan vet kunden hva som blir utviklet?

• Hvilke erfaringer har kunden fra tidligere utviklingsprosjekter?

• Er ikke med på planleggingsmøte, hvorfor?

• Kunne du vært med på et fast møte med utviklingsteamet annenhver uke?

Hver måned?

68



• Forhold til Scrum?

• Ansvarsforhold?

• Rolle

• Involvering

• Erfaringer

– Tidligere

– Prosjektet

– Metodikk

• Resultat

• Problemer

69



Bibliography

[All01] Agile Alliance. Manifesto for agile software development, 2001. [On-

line; accessed 17-December-2005].

[Bec99] Kent Beck. Embracing change with extreme programming. Computer,

1999.

[Bec00] Kent Beck.eXtreme Programming Explained. Addison-Wesley, 2000.

[Boe81] Barry W. Boehm.Software Engineering Economics. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1981.

[Boe88] Barry Boehm. A spiral model of software developmentand enhance-

ment. InIEEE Computer, volume 21, pages 61 – 72. IEEE, May 1988.

[CH04] WenShin Chen and Rudy Hirschheim. A paradigmatic andmethodolog-

ical examination of information systems research from 1991to 2001.

Information Systems Journal, 14:197 – 235, 2004.

[Coc00] Alistair Cockburn. Reexamining the cost of change curve, 2000. [On-

line; accessed 18-December-2005].

[Coc02] Alistair Cockburn. Agile Software Development. Addison-Wesley,

2002.

[Coh05] Mike Cohn.Agile Estimation and Planning. Prentice Hall, 2005.

[Con06] Conchango. Scrum faq.Web, 2006. [Online; accessed 18-April-2006].

[Fow00] Martin Fowler.Refactoring. Addison-Wesley, 2000.

70



[Fow01] Martin Fowler. Is design dead? InExtreme programming examined,

pages 3 – 17. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2001.

[FPB78] Jr. Frederick P. Brooks.The Mythical Man-Month: Essays on Software

Development. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1978.

[Gal94] Robert D. Galliers. Choosing information systems research approaches.

In Information System Research. Issues, methods and practical guide-

lines, pages 144 – 162. Blackwell scientific publications, 1994.

[Gil76] Tom Gilb. Software Metrics. Little, Brown, and Co., 1976.

[GL87] Robert D. Galliers and Frank F. Land. Choosing appropriate informa-

tion systems research methodologies.ACM, 30(11), 1987.

[Gre02] James Grenning. Planning poker.Web, 2002.

[Jar99] Stanley J. Jarzombek. Proceedings of the fifth annual joint aerospace

weapons systems support, sensors and simulation symposium. Govern-

ment, Printing Office Press, 1999.

[Joh99] Jim Johnson. Turning chaos into success.Web, 1999.

[KM99] Heinz K. Klein and Michael D. Meyers. A set of principles for conduct-

ing and evaluating interpretive field studies in information systems.MIS

Quarterly, 1999.

[LB03] Craig Larman and Victor R. Basili. Iterative and incremental develop-

ment: A brief history.IEEE June 2003, 2003.

[LC02] Theron R. Leishman and Dr. David A. Cook. Requirements risks can

drown software projects.CrossTalk April 2002, 2002.

[McC04] Steve McConnell.Code Complete. Microsoft Press, 2 edition, 2004.

[MJ82] Daniel D. McCracken and Michael A. Jackson. Life cycle concept con-

sidered harmful.SIGSOFT Softw. Eng. Notes, 7(2):29 – 32, 1982.

71



[MS02] Kane Mar and Ken Schwaber. Scrum with xp.Web, 2002.

[Ree04] Dafydd Rees. Agile project management with scrum.Web, 2004.

[Roy70] Winston W. Royce. Managing the development of largesoftware sys-

tems: Concepts and techniques. InTechnical Papers of Western Elec-

tronic Show and Convention (WesCon), 1970.

[Sch03] Ken Schwaber.Agile Project Management with Scrum. Microsoft

Press, 2003.

[vV00] Hans van Vliet.Software engineering (2nd ed.): principles and prac-

tice. John Wiley & Sons, Inc., New York, NY, USA, 2000.

72


