
June 2006
Reidar Conradi, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

A Survey of Industrial Involvement in
Open Source

Andreas Røsdal

Problem Description
The students should perform a literature study related to open source, and industrial involvement
in open source. Based on this literature study, the students should create a survey in the context
of the COSI project. This survey should aid the work of describing current OSS involvement, and
OSS related processes.

Assignment given: 13. January 2006
Supervisor: Reidar Conradi, IDI

Abstract
This thesis presents results of an explorative survey of industrial involvement in open source.
The survey is performed in collaboration with participants from the European ITEA project,
COSI1 (Co-development using inner & Open source in Software Intensive products).

The survey was performed to explore aspects of industrial involvement in open source,
as industrial management of open source project, industrial use of open source components,
related development, and communication processes, and industrial relationships to the open
source community.

The survey is based on a study of open source literature, structured interviews of IT industry
personnel, and a questionnaire. Three Norwegian companies participated in the interviews,
which were used to explore different interesting issues, and to provide input and feedback to
the questionnaire. The questionnaire collected answers from industrial partners in the ITEA
COSI project.

Our research has an explorative research goal, and five research questions. Each research
question sheds light on an interesting topic, and their answers will be presented accordingly.
These answers are in form of both of qualitative and quantitative answers, but primarily
descriptive information.

It has been found that companies participate in open source related development with
the roles, open source owner, open source participant, inner source participant, and user of
open source components. These roles are explained, together with the answers to the five
research questions. We start with a presentation of the motivations behind use of open source
components, and the selection processes used to find, and evaluate these components. Then,
experiences from companies which have started their own open source projects will be discussed.
Next, we describe the use of software development methodologies from open source, within
companies. We present results related to the impact open source have on company internal
development processes. Finally, industrial participation in open source projects by companies
will be analyzed.

The answers to the research questions form parts of the contribution of this thesis. Some
of these results are used to create guidelines for open source management, and open source
component selection. We have also proposed twelve hypotheses, based on our findings. These
hypotheses will work as a basis for future studies together with other results and our research
design. Future studies may include distribution of the questionnaire to a larger and more
representative sample, focus on fewer issues, and use of other research methods to shed light
on these issues.

Keywords: Open Source, Open Source Development Practices, Inner Source Software De-
velopment, Open Source Component Selection, Industrial Open Source Management, Industrial
Involvement in Open Source, Structured Interviews, Survey

1Project web site: http://itea-cosi.org/

Preface
The assignment for this thesis is given by the Department of Computer and Information Science
(IDI) at the Norwegian University of Technology and Science (NTNU). The context of the work
is within the European ITEA project, COSI (Co-development using inner & Open source in
Software Intensive products). The COSI project wishes to investigate industrial involvement in
open source, and industrial use of open source software, and open source development practices.

This thesis has been written during the spring of 2006, and it is part of the authors’ MSc
in Computer Science. Andreas Røsdal has completed TDT4900 Master Thesis, and Øyvind
Hauge has completed TDT4735 Software Engineering, Depth Study.

Our work consist of a literature study, and a survey of industrial open source involvement,
hence the title, A Survey of Industrial Involvement in Open Source. The survey has been
performed with the assistance of the COSI partners. They have given us the chance to interview
them, and they have responded to our questionnaire. The literature study, and the results from
the survey, will be used as an input to deliverables in the COSI project.

We would like to thank our supervisors Professor Reidar Conradi and Dr. Carl-Fredrik
Sørensen for their guidance and advice towards the completion of this thesis. We would also
like to thank the partners in the Norwegian COSI project, for allowing us to work with such an
interesting topic. In particular the people who welcomed us warmly at Keymind, Linpro, and
eZ systems, especially Audun Jensvoll, Thomas Malt, Vidar Langseid, and Aleksander Farstad.
We would also like to thank all the respondents who took the time answer the questionnaire,
and ICT Norway for letting us use their survey tools.

Trondheim June 21, 2006

Øyvind Hauge Andreas Røsdal

i

ii

Contents

I Introduction 1

1 Introduction 3
1.1 Rationale and Background . 3
1.2 The Purpose of this Thesis . 5
1.3 Our Contributions . 6
1.4 Content and Structure . 6

II Prestudy 9

2 An Overview of Open Source 11
2.1 What Is Source Code? . 11
2.2 What Is Open Source Software? . 12

3 Historical Background of Open Source 15
3.1 Hacker Culture . 15
3.2 The Internet . 15
3.3 UNIX . 16
3.4 GNU and the Free Software Foundation . 16
3.5 Linux . 17
3.6 Apache . 17
3.7 Mozilla and Open Source . 17
3.8 Summary . 18

4 Open Source Practices 19
4.1 OSS Avoids Reinventing the Wheel . 20
4.2 Making It Interesting for People to Join . 20

4.2.1 How Do People Join Open Source Projects? 20
4.2.2 Why Do Individuals Participate in Open Source Projects? 20

4.3 Who Are Involved in Open Source Projects? . 22
4.4 Communication in Open Source Communities 22
4.5 Open Source Licenses . 23

4.5.1 Open Source License Types . 23
4.5.2 Challenges with Licensing in Open Source 25

4.6 Open Standards . 25
4.7 Summary . 26
4.8 Challenges . 26

iii

5 Software Development in Open Source Communities 27
5.1 Organization of Open Source Projects . 27
5.2 Software Development Process . 28

5.2.1 Roles in Open Source Communities . 29
5.2.2 Project Start-up . 30
5.2.3 Requirements Specification . 31
5.2.4 Software Design and Implementation . 31
5.2.5 OSS Release Process . 32
5.2.6 Tool Support . 32

5.3 Inner Source Development . 33
5.3.1 Characteristics of Inner Source Development 33
5.3.2 Inner Source Development Practices . 34

5.4 Summary . 34

6 Commercial Use of OSS 37
6.1 Open Source Business Models . 37
6.2 Commercial Utilization of OSS . 38

6.2.1 Motivations of Companies Using OSS 40
6.2.2 Dual Licensing . 40

6.3 Relationships between Companies and OSS Communities 41
6.4 Summary . 41

7 Developing Software with OSS Components 43
7.1 Survey of OSS and COTS Usage in Norwegian Companies 43
7.2 Development of Software Using OSS . 44
7.3 Selection of OSS Components . 45
7.4 Summary . 47

8 Initiating, Managing and Supporting Open Source Projects 49
8.1 Commercial Open Source Project Start-up . 49
8.2 Managing and Supporting Open Source Projects 50
8.3 Summary . 50
8.4 Challenges . 50

III Research 53

9 Overview of the Research Process 55
9.1 The Research Process . 55
9.2 Project Timeline . 56
9.3 Presentation of the Research . 56

10 Reviewing the Literature 59
10.1 Sources . 59
10.2 Selection and Evaluation . 60

11 Research Questions 61
11.1 Research Goal and Research Questions . 61
11.2 Elaboration of the Research Goal and Research Questions 62

iv

12 Research Design 65
12.1 Choice of Research Strategy . 65

12.1.1 Qualitative Studies . 66
12.1.2 Quantitative Studies . 67
12.1.3 Choice of Research Methods . 67

12.2 Approaches to Creating a Survey . 68
12.2.1 Inductive or Deductive Reasoning . 68
12.2.2 Longitudinal or Cross-sectional Study 68
12.2.3 Descriptive or Causal Study . 68

12.3 Interview Design . 69
12.3.1 Respondents . 69
12.3.2 Relation to Research Questions . 69
12.3.3 Interview Design Application . 69
12.3.4 Interview Limitations . 70

12.4 Questionnaire Design . 70
12.4.1 Respondents . 70
12.4.2 Relation to Research Questions . 71
12.4.3 Questionnaire Design Application . 72
12.4.4 Questionnaire Limitations . 73

12.5 Summary of Research Design . 73

13 Research Context and Study Objects 75
13.1 The COSI Project . 75
13.2 Norwegian COSI . 77

13.2.1 Keymind . 77
13.2.2 Linpro . 78
13.2.3 eZ systems . 78

14 Collecting Evidence 79
14.1 Interviews . 79
14.2 Questionnaire . 80

14.2.1 Improving the Questionnaire . 80
14.2.2 Implementation and Distribution of the Questionnaire 81

14.3 Problems while Collecting Data . 82
14.4 Feedback from the Respondents . 82

15 Analyzing the Evidence 85
15.1 Interview . 85
15.2 Questionnaire . 85

IV Results and Conclusions 87

16 Results 89
16.1 Overview of Results . 89
16.2 RQ1: Using and Evaluating OSS Components 90

16.2.1 Using Commodity OSS . 90
16.2.2 Motivations behind Using OSS Components 90
16.2.3 Selection Process . 92
16.2.4 Finding OSS Components . 94
16.2.5 Evaluating OSS Components . 94

v

16.2.6 Information Sources . 95
16.2.7 Evaluation Criteria . 95
16.2.8 Summary and Challenges Related to Using OSS Component 98

16.3 RQ2: Companies Initiating and Managing OSS 99
16.3.1 Motivation for Making an Open Source Product 99
16.3.2 Possible Advantages and Disadvantages Owning an Open Source Product 100
16.3.3 Making an Open Source Product . 103
16.3.4 Communication in OSS Projects Managed by Companies 105
16.3.5 Discussion of OSS Management and Related Challenges 106

16.4 RQ3: Inner Source Development . 106
16.4.1 Characteristics of Inner Source Development 107
16.4.2 Structure of ISS Projects . 107
16.4.3 Inner Source Development Process . 108
16.4.4 Communication in Inner Source Development Projects 109
16.4.5 Motivations for Using Inner Source Development 110
16.4.6 Discussion of Inner Source . 110

16.5 RQ4: Development Processes when Using OSS 111
16.5.1 Interview: OSS Related Development Processes 111
16.5.2 Questionnaire: Development Processes in Companies Related to OSS . . 113
16.5.3 Discussion of Development Processes . 114

16.6 RQ5: Open Source Participation by Companies 115
16.6.1 Activity and Contributions . 115
16.6.2 How Satisfied Is the Industry with OSS? 116
16.6.3 Motivation . 116
16.6.4 Communication between Companies and the OSS Projects 117
16.6.5 Licenses . 117

17 Discussion 119
17.1 Main Contributions . 119

17.1.1 Literature Study . 119
17.1.2 New Knowledge . 119
17.1.3 Platform for Future Work . 121
17.1.4 Reusable Research Design . 121
17.1.5 Significance of Results . 121

17.2 Goal Achievement . 122
17.2.1 Evaluation of Answers to the Research Questions 122
17.2.2 Summary . 124

17.3 Validity . 125
17.3.1 Internal Validity . 125
17.3.2 External Validity . 126
17.3.3 Construct Validity . 127
17.3.4 Conclusion Validity . 128
17.3.5 Reliability . 128

17.4 Improvements . 128

18 Conclusion and Future Work 131
18.1 Conclusion . 131
18.2 Future Work . 132

Index 134

vi

Glossary 135

Bibliography 137

V Appendices 145

A The Open Source Definition 147

B Questionnaire 149

C Interview Guide 193

D Guidelines 211
D.1 Selecting and Evaluating OSS Components . 211
D.2 Initiating and Managing an OSS Product . 214
D.3 Inner Source Development Projects . 216

vii

viii

List of Tables

1.1 The content of this thesis . 7

4.1 Individual motivations for open source participation 21

5.1 OSS development method compared to other methods. 28

9.1 Timeline of the research . 56
9.2 Research process and relevant chapters . 57

10.1 Journal databases . 59
10.2 Open Source Workshops . 60
10.3 Web Resources . 60

11.1 Research Goal and Research Questions . 61
11.2 Company roles in open source involvement . 63

12.1 Summary of research design . 73

13.1 The COSI partners . 76

14.1 Interview objects . 79

15.1 Distribution of respondents . 86

16.1 OSS Sources on the Internet . 94
16.2 Number of participants in an ISS project. 107

17.1 Our proposed hypotheses . 120

ix

x

List of Figures

1.1 Efficient and effective development . 4

5.1 The layered structure of open source projects 29
5.2 Overview of the open source development process 30
5.3 The Mozilla development roadmap showing mayor release dates for two branches 32
5.4 Relationship between Open and Inner Source 33

6.1 Open Source business models . 37
6.2 Developing software internally versus acquired from OSS 38
6.3 Classification of software according to source and modifiability 39

7.1 Motivation for using OSS or COTS in Norwegian companies. 44
7.2 A selection model for OSS . 46
7.3 Possible ways to integrate OSS and commercial software 47

13.1 Prediction of the percentage of parts in embedded software 76
13.2 Efficient and effective development . 77

14.1 Conformit web-interface when designing a questionnaire 81
14.2 Conformit web-interface as seen be respondents 82

16.1 Selection process of OSS components . 93
16.2 Share of income in a traditional and an OSS business model 101
16.3 A big market with a small share and a small market with a big share 102
16.4 Communication methods used in OSS projects managed by companies. 105
16.5 Example of Inner source development process 108
16.6 Communication methods used in ISS projects 109
16.7 Communication methods used when companies participate in OSS projects . . 117

xi

xii

Part I

Introduction

1

Chapter 1

Introduction

The size and complexity of modern software is constantly increasing. Glass states that "for
every 25% increase in problem complexity, there is a 100% increase in complexity of the software
solution" (Glass 2002, 19). In most software, only a small part of the software is differentiating
and adds extra value to the product, compared to the competitors’ products. The remaining
parts of the software are either infrastructure, or common to the domain. These parts of the
software could be acquired elsewhere to reduce the challenges related to the increasing size
and complexity. Another recent trend is that open source software (OSS) development and
the use of OSS software have increased during the last couple of years. For example, the OSS
project Apache has 66% of the market share for web servers (Raja and Barry 2005; Karels
2003). Creating a survey on industrial involvement in open source will shed light on this new
and interesting area, which can bring many benefits to companies, and participants in OSS.

1.1 Rationale and Background

The ITEA COSI1 project (Co-development using inner & Open source in Software Intensive
products) has observed a shift in software development, to more cooperation, new coalitions,
and more collaboration with open source communities. These forms of network-enabled col-
laborations create new challenges for software developers. COSI acknowledges the success of
several open source products, but notices at the same time that the advantages and drawbacks
of integrating OSS into software are not well understood (Lacotte 2004).

The overall goal of the COSI project is to understand how industry can benefit and learn
from open source software and development practices. NTNU is part of the Norwegian COSI
project, providing experience and knowledge, primarily related to empirical research in soft-
ware engineering. NTNU has through its participation in the COSI project been given the
responsibility, of leading some of the work, describing current industrial involvement in open
source, and open source related processes. These baseline descriptions can be gathered from
relevant literature and from the industrial partners’ current processes.

Another observation made by the COSI project, is how companies can achieve more efficient
software development. This can be achieved by using commodity OSS or by developing this
commodity software in cooperation with others. Parts of solutions which do not give any
competitive advantage can be replaced by OSS or by partner-developed software. This situation
is presented in Figure 1.1 where cooperative development is shown in the middle area. The
figure will be explained in detail, later in this thesis.

1Project web site: http://itea-cosi.org/

3

4 1. Introduction

Figure 1.1: Efficient and effective development(van der Linden 2005)

To better understand the aspects of open source, described in the goals of the COSI project,
it is necessary to perform a literature review, and create a research design. The research
design should aid the work of describing the industrial partners’ open source related processes.
The distribution of the COSI partners over several countries, pose an extra challenge to the
researchers. It is therefore important to benefit from NTNU’s long traditions in doing empirical
software engineering research.

The industrial partners participating in the COSI project have through their involvement
in the project, agreed to participate in empirical studies to reach the goals of the COSI project.
In particular, the Norwegian partners will be closely involved with the studies performed by
NTNU. These partners include the companies Keymind, Linpro, and eZ systems. Keymind is a
six person consultancy company, with the main business unit in Lillehammer. They are focused
on developing, maintaining, and supporting IT health care solutions. eZ systems is a company
with business units in several countries, with the main office in Skien. The company owns and
manages their Open Source Content Management System, eZ publish. Linpro is probably the
largest open source based consulting company in Norway, and is situated in Oslo. These three
companies are participating in the COSI project because of their OSS related role. Further,
there are a larger number of international partners participating in the COSI project. These
are companies and academic institutions from a wide range of countries. These companies and
the Norwegian partners will be described in more detail in Chapter 13.

A Survey of Industrial Involvement in Open Source

1.2. The Purpose of this Thesis 5

1.2 The Purpose of this Thesis

The purpose of the research performed in this project, is described in terms of a project
description, an overall research goal, and five research questions. This study explores use
of open source software and practices in the industry, as described in the original project
description.

The students should perform a literature study related to open source, and
industrial involvement in open source. Based on this literature study, the
students should create a survey in the context of the COSI project. This
survey should aid the work of describing current OSS involvement, and OSS
related processes.

The project description contains two clear but relatively open ended tasks: doing a literature
study, and preparing a survey. Since the COSI project is a project with industrial partners,
we chose to focus on aspects of the literature related to industrial involvement in open source,
and industrial utilization of open source. We further chose to base our research goal on our
findings in the literature, as we will describe later.

While reviewing the open source literature, we found few descriptions of true empirical
research. If the industry is going to learn from open source, more empirical research will be
necessary. Because of the shortage in the literature, we chose to do an explorative study of
industrial open source involvement. Based on our original project description and our findings
in literature, we formed the overall research goal. We elaborated five research questions based
on this goal. The elaboration of the research goal and the research questions is fully explained
in Chapter 11, but we will also provide the research goal and the research questions here.

Research Goal:
Explore the following four roles: open source owner, open source participant, inner
source participant, and user of open source components. Explore the relationships
these roles have to the open source community, their development processes, their
communication processes, and their motivations behind assuming these roles.

Research Questions:
Research Question 1: Why do companies use OSS components, and how do they
find and evaluate these components?
Research Question 2: Why do companies choose to make their products Open
Source, and how can this be done successfully?
Research Question 3: Why and how do companies use development methodologies
from Open Source, in ISS development?
Research Question 4: How does the use of OSS influence the development processes
of companies?
Research Question 5: How and why do companies participate in the development
of OSS projects controlled by a community outside the company?

Øyvind Hauge and Andreas Røsdal

6 1. Introduction

1.3 Our Contributions

The contributions of this work can be divided into four parts: the literature study, new knowl-
edge, a basis for further research, and a reusable research design.

The first contribution is the literature study. This study constitutes the second part of this
thesis. The results of this study will be used as an input to deliverables in the ITEA COSI
project.

The second and most important contribution is new knowledge. This knowledge is first of
all, in form of both qualitative and quantitative answers to our five research questions. We
have also proposed twelve hypotheses based on our results. These hypotheses and our results
are described in Chapter 16. The knowledge is applied in form of guidelines, for management
of open source products, inner source projects, and selection and evaluation of open source
components. These guidelines are enclosed as Appendix D.1, D.2, and D.3.

The third contribution is also important. While our work answers some questions, new and
interesting questions can be formed based on this work. Our work base a platform for future
work both for us, and the COSI project. Ideas for future work are provided in Section 18.2.

The fourth contribution will aid us and the COSI project in future work. We have developed
a reusable research design, primarily in form of a questionnaire. This design can be developed
further and reused. This will save us for a lot of work when we continue research in the COSI
project. Our research design is described in Chapter 12, our interview guide is attached as
Appendix C, and our questionnaire is available in Appendix B. The questionnaire is also
implemented in a Web-based tool.

1.4 Content and Structure

This thesis consists of five parts distributed in a total of 18 chapters.
Part one, Introduction, is this part of the document and it contains one chapter.
Part two is the Prestudy. It contains the results from our literature review. Chapter 2 gives

an overview and an introduction to the phenomenon, open source. This overview is followed
by a short summary of the historical background of open source in Chapter 3. Chapter 4
discusses some characteristics of open source, and open source communities. These character-
istics are followed by a presentation in Chapter 5 of some of the development practices used in
open source software development. In Chapter 6, we present commercial use of open source,
before we continue with software development using open source components, in Chapter 7.
The second part is concluded by Chapter 8 and industrial involvement in open source where
companies initiate, manage, or support open source projects.

Part three presents the Research of this thesis. We start the third part by presenting our
research process in Chapter 9. This research process is followed by a description of our literature
review, in Chapter 10. Based on the literature review and the original project description, we
arrive at the research questions described in Chapter 11. In Chapter 12, we present our research
design. This chapter includes both the rationale behind the chosen research design, and the
final design. In Chapter 13, we present the context of our work, and the companies we visited.
The two last chapters contain a description of how we collected data, Chapter 14, and how we
analyzed these data, Chapter 15.

Part four presents the Results and conclusions. Chapter 16 contains results for each of the
research questions. Each research question is given a dedicated section in that chapter. After
the results have been presented, the results are summarized and discussed in Chapter 17. This
discussion contains the most important results, a discussion of the validity of the results, as
well as a critical evaluation of the goal achievements. Finally, Chapter 18 concludes this work
with conclusions and suggestions for future work.

A Survey of Industrial Involvement in Open Source

1.4. Content and Structure 7

Part five contains appendices like the interview guide, the final version of the questionnaire,
the open source definition, and our guidelines.

An overview of the content in this thesis can be found in Table 1.1.

Part Chapter Content
Introduction 1 Introduction

Prestudy

2 Overview of Open Source
3 Historical Background
4 Open Source Practices
5 Software Development in OSS Communities
6 Commercial Use of OSS
7 Software Development with OSS
8 Industrial Involvement in OSS Projects

Research

9 Research Process
10 Literature Review
11 Research Questions
12 Research Design
13 Research Objects and Context
14 Data Collection
15 Analysis

Results
16 Results
17 Discussion
18 Conclusion and Further Work

Appendices

A The Open Source Definition
B Questionnaire
C Interview Guide
D Guidelines

Table 1.1: The content of this thesis

Øyvind Hauge and Andreas Røsdal

8 1. Introduction

A Survey of Industrial Involvement in Open Source

Part II

Prestudy

9

Chapter 2

An Overview of Open Source

The following chapters will present an overview of what open source is, its history and how
the open source communities work, all according to the available literature. Writing such an
overview is not a trivial task because of several issues. It is difficult because of the wide diversity
in the open source community. SourceForge.net, http://sourceforge.net/, is probably the
biggest open source repository online with close to 120 000 registered projects and more than 1.3
million registered users1. The projects vary from big successful projects with several hundred
contributors to small one-man projects that are left to die. Secondly, open source is a fairly
new concept. The term ’open source’ is less than ten years old, thus open source an arena for
research is still in its youth. Thirdly, most of the research has focused on relatively few, big
and successful projects (Monteiro, Østerlie, Rolland, and Rørvik 2004).

Because of the big variety and the so far fairly limited, and perhaps un-nuanced, empirical
research in this field, this presentation will only cover what is presented and commonly accepted
in the literature. There have been written vast amounts of papers about open source, but fairly
few researchers have done empirical work related to open source. Many publications are built on
other researchers’, limited, empirical work and treat idealistic, economic or other non software
engineering issues. Because of the big scope of open source and the amount of papers written
about open source, we have of course not been able to review all available literature. For a
description of how we found our sources please see Chapter 9.

We believe that the world of open source is both bigger and more varied that what literature
describes, but we will anyhow present our findings by starting with a definition of open source.
Open source is in our eyes three things, it is the software, licensed with an open source license;
a set of development practices used to develop this software; and it is the community around
this software. When we use the term open source we mean the open source software, unless
otherwise is specified.

This part of the thesis includes a definition of what open source software is followed by a
short overview of the history of open source in Chapter 3, before we continue with other topics
related to the community, open source licenses, and to the development practices in Chapter
4 and Chapter 5, industrial involvement in open source is discussed in Chapter 6, 7 and 8.

2.1 What Is Source Code?

Computers can only calculate with binary numbers, 0 and 1. In the childhood of computing
all programs were written as 0s and 1s. This was a tedious work with many sources of errors.
The programming languages have evolved, incorporated higher abstractions, and become more

1May 2006

11

12 2. An Overview of Open Source

similar to natural language, but the computer still uses binary numbers for all its calculations
and operations. To be able to execute a program, normally written by a programmer in a
high level programming language, the source code, has to be compiled by a compiler to an
executable binary file. Source code is the text files, written by a programmer normally in a
high level programming language, making the basis for a compiled binary file the computer
can execute.

2.2 What Is Open Source Software?
There are several views of what Free Software (FS) , Open Source (OS), Open Source Software
(OSS), Free Open Source Software (FOSS) or Free/Libre2 Open Source Software (FLOSS) is.

The Free Software Foundation (FSF) and it’s pioneer Richard Stallman have their Free
Software Definition (Free Software Foundation 2006) which gives the requirements to a piece
of software to be considered free software. Stallman and FSF had an idealistic mind when
these requirements were written and it is important to underline that it is free as in freedom,
not as in gratis or free beer (Free Software Foundation 2006). The definition refers to four
kinds of freedom (Free Software Foundation 2006).

• The freedom to run the program, for any purpose (freedom 0).

• The freedom to study how the program works, and adapt it to your needs (freedom 1).
Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbour (freedom 2).

• The freedom to improve the program, and release your improvements to the public, so
that the whole community benefits (freedom 3). Access to the source code is a precondi-
tion for this.

The Open Source Initiative (OSI) has on the other hand its Open Source Definition (open-
source.org 2006b). The Open Source Definition was written as a pragmatic reaction to the
misinterpretation of free software as "gratis software". It has its roots back to 1998 when it
was originally drafted by Bruce Perens(Perens 1998). The Open Source Definition is currently
available in version 1.9, see appendix A.

The definition contains the following 10 requirements to products which want to call them-
selves open source. The list below is partly adopted from Understanding Open Source Software
by Mark H. Webbink (Webbink 2003).

• No royalty or other fee imposed upon redistribution.

• Availability of the source code.

• Right to create modifications and derivative works.

• May require modified versions to be distributed as the original version plus patches.

• No discrimination against persons or groups.

• No discrimination against fields of endeavour.

• All rights granted must flow through to/with redistributed versions.

• The license must not be specific to a product.
2Libre is Spanish for free, as in freedom

A Survey of Industrial Involvement in Open Source

2.2. What Is Open Source Software? 13

• The license must not restrict other software.

• The license must be technology-neutral.

Most of the popular open source licenses like, General Public License (GPL) and "Lesser"
General Public License (LGPL), Mozilla Public License (MPL), MIT license, Apache Software
License and New BSD license, all comply to these requirements. A full list of in all 583 licenses,
can be found at http://www.opensource.org/licenses/.

Free Open Source Software (FOSS) and Free/Libre Open Source Software (FLOSS), try to
unite the two terms Free Software and Open Software. Richard Stallman said "I recommend
the term Free/Libre Open Source Software as a way they can mention both movements and
give equal weight to both", in an interview with Indymedia at the School of Informatics,
Edinburgh University, on 27th May 2004 (Indymedia 2004). The term FLOSS originates from
the European Commission project, Free/Libre and Open Source Software Study, initiated by
Rishab Aiyer Ghosh. The project can be found at http://flossproject.org/.

We do not want to address the disagreement between the pragmatic view on Open Source
and the idealistic view on Free Software in this thesis. As a consequence we adapt the term
FLOSS to cover the understanding of both the open source and the free software community.
Throughout this thesis the terms Free Software, Open Source, and Open Source Software (OSS)
could be used interchangeably and all of them should be understood as FLOSS, unless specific
distinction between the terms is explicitly made.

3February 2006

Øyvind Hauge and Andreas Røsdal

14 2. An Overview of Open Source

A Survey of Industrial Involvement in Open Source

Chapter 3

Historical Background of Open
Source

This chapter will give a brief overview of the history of open source, some of its most important
moments and products, and provide some references for further reading.

3.1 Hacker Culture

In the early computer age most of the software development was performed by scientists and
engineers who found it normal to share and exchange research results as well as software
(von Krogh and von Hippel 2003). It was hard to get a program to work and to be effective
thus sharing was natural. Sharing allowed other scientists and engineers to improve, change,
and play with code written by others. In 1953, the Project for the Advancement of Coding
Techniques (PACT) was formed between Lockheed, Douglas and North American Aviation. It
was probably the first code sharing initiative across company borders (Leonard 2000). The
openness in this and other similar communities was an important part the hacker culture,
making the foundation of the open source community we know today. A hacker is not a person
who breaks security measures, but "someone who loves to program and enjoys being clever
about it." (Stallman 1999, 53)

3.2 The Internet

One of the motivations behind what we today know as the Internet was to be able to share
knowledge and programs between the participants (Tuomi 2003). In 1968, Pentagons Defence
Advanced Research Project Agency (DARPA) started the Advanced Research Project Agency
Network (ARPANET). In 1969, the first Request for Comment (RFC) was published, allowing
interested and skilled people outside the core group to provide feedback in form of corrections
or wishes. This was the start of a trend of openness in the history of the Internet.

During the seventies many of the ARPANETs major research centres wanted to get con-
nected. Many of these organizations had different and incompatible hardware platforms, and
this incompatibility lead to the development of the platform independent TCP/IP. TCP/IP
later replaced the old communication protocols in ARPANET in 1983.

The Internet, built on TCP/IP, provided scientist and engineers a communication platform
where they could cooperate over distances. The Internet also allowed them to share both
research results and software, and it has served both researchers and open source enthusiasts

15

16 3. Historical Background of Open Source

as a necessary infrastructure. This infrastructure gives them a place where they can work and
share their results. The open source movement would not have been what we know today
without the Internet.

3.3 UNIX
During four weeks of the summer of 1969, Ken Thompson wrote the first version of an operating
system called UNICS (Weber 2004), later renamed to UNIX. It is said that Thompson wrote
UNIX because he had a personal itch, he wanted to play his favorite computer game, Space
Travel, on a PDP-7 (Feller and Fitzgerald 2002).

Keeping UNIX clean and simple was seen as very important and it was constructed with
the ’Keep it simple, stupid.’ philosophy in mind (Raymond 2001). When they made the first
manual for the operating system another important trend was started. A person was assigned
to each subprogram as an owner, or responsible (Weber 2004). Having different owners in
a growing system, lead to another important feature, modularity. It was important to build
simple and well functioning systems that worked together.

Users in the community around UNIX started to create and provide software and tools that
could run on the UNIX platform. One example is the Berkeley Software Distribution (BSD)
which was made in 1977. The BSD distribution incorporated many Internet utilities like BIND
and Sendmail (Feller and Fitzgerald 2002). These utilities are today part of the backbone of
the Internet.

The BSD distribution of UNIX contained large parts of code written by AT&T. All the
releases of BSD came with the code and because some of it was written by AT&T you needed
an AT&T license to have legal access to it. When AT&T shifted towards a more commercial
focus in 1984 the openness of BSD became a problem (Weber 2004). AT&T wanted to benefit
from their rights to the distribution by charging a license fee.

In parallel to the development of UNIX, the development of the Internet and the TCP/IP
protocol took place. A UNIX implementation of TCP/IP was developed at Berkeley and
became part of the BSD distribution. As a result of AT&Ts commercial actions, Berkeley,
re-released the TCP/IP stack in a release called Networking Release 1(Weber 2004). This was
a true open source product with a liberal license, later called BSD-style license.

The popularity of this release led to the idea of rewriting all of the BSD-code resulting in an
almost finished operating system, released as Networking Release 2. The system was released
with the hope that someone else would finish it (Weber 2004).

The break-up between AT&T and Berkeley lead to a long legal battle which was not resolved
until the early nineties. This again, made a lot of developers getting more ideological ideas
around code sharing and free software. Many of these developers started working on other
projects like for instance Linux.

3.4 GNU and the Free Software Foundation
In the early eighties, MIT licensed code created by employed hackers to a commercial company.
This restricted access to the source code of that software, even to the ones who made it (von
Hippel and von Krogh 2003).

Richard Stallman, a programmer working at the MIT Artificial Intelligence Laboratory, was
stressed by this and in 1983 he announced the GNU project (Barahona, Quiros, and Bollinger
1999). He later wrote the GNU Manifesto explaining the goals of the GNU project and in
1985 he formed the Free Software Foundation. The Free Software Foundation was (and still
is) an idealistic organisation supporting the free software movement, and especially the GNU
project. Stallman wanted to use existing copyright law to guarantee some basic rights to all

A Survey of Industrial Involvement in Open Source

3.5. Linux 17

future users of software. Free, as in freedom not as in gratis, was one of the most important
issues. With this in mind he formed the widely used General Public License (GPL). Under this
license everyone should have permission to run, copy, modify and redistribute software and the
code of software, but you cannot add any restrictions or limits to this freedom.

The Free Software Foundation has created several widely used programs like GNU Emacs,
the GCC compiler, the GDB debugger and many others.

3.5 Linux

In 1991, just a short while after the release of the Networking Release 2, Linus Thorvalds started
to work on the Linux operating system. Inspired by the Minix operating system, created at
the Vrije University of Amsterdam by Andrew Tanenbaum, he wanted to create a UNIX-like
operating system for PCs. Later the same year, he released the source code for the Linux
kernel onto an Internet use-group (Weber 2004). Together with the code he left a note asking
for help, comments or modules that could be added to the kernel. The kernel attracted high
numbers of interested people who gave comments, fixed bugs, and in other ways participated
in the community leading to a release of the 1.0 version in 1994.

The most important Linux feature was sociological. The new development model was
unique. Linux was developed by huge numbers of volunteers coordinated through the Internet
(Raymond 2001).

Linux is today one of the most successful open source projects ever, with a big share in
the desktop, server and embedded market. An IDC forecast in 2004 reported a 26 % annual
growth in the Linux market, including servers, PCs and packaged software over the next
five years (Abramson 2004). Analytical companies and other, less serious sources, have also
estimated the market share of Linux. It is probably impossible to find the exact answer, but
the popularity of Linux is without doubt increasing.

3.6 Apache

The Apache HTTP Server is another of the most important developments in the open source
history with a reported market share of close to 70% (Netcraft 2006). The development of the
Apache server started after Rob McCool left the development team of the National Centre for
Supercomputing Applications (NCSA) http server in 1995. The NCSA server was at the time
the most popular http server, but when McCool left the development stopped.

Many webmasters had made their own patches and contributed to the server. Some of
these webmasters started to organize via email to coordinate the distribution of the patches to
the server and later formed the Apache Group (Fielding 1999). All modifications to the server
are voted over by this group and the server’s further development is thereby controlled by this
group (Østerlie and Rolland 2003).

The Apache Group later became the Apache Software Foundation (ASF) http://www.
apache.org/. The ASF is a non-profit corporation which oversee several important open
source projects like the HTTP Server , ANT, Tomcat and several others.

3.7 Mozilla and Open Source

In January 1998, Netscape released the source code of their browser and named the project
Mozilla (Feller and Fitzgerald 2002). Netscape was quickly loosing market share to Microsoft
and Internet Explorer and they had to do something. Inspired by Eric Raymond’s paper
The Cathedral and the Bazaar(Raymond 2000), Netscape released the code open to everyone.

Øyvind Hauge and Andreas Røsdal

18 3. Historical Background of Open Source

Within hours after the release, people around the world were submitting patches(Feller and
Fitzgerald 2002).

The Free Software Foundation’s free software was not immediately an industrial success and
the term open source was seen as a replacement. The term open source came from a brain-
storming session at Palo Alto, California related to Netscape’s kick-off of the Mozilla project in
1998 (opensource.org 2006a). The definition of open source was later formed by Bruce Perens
(Perens 1998), currently available in version 1.9 at http://opensource.org/ (opensource.org
2006b).

Open Source movement acknowledge the same licenses as the Free Software Foundation.
The Open Source movement differentiates itself from the Free Software Foundation primarily
in philosophical matters, emphasizing more on the practical benefits of such licenses instead of
the moral issues (von Krogh and von Hippel 2003).

3.8 Summary
We have seen that the open source movement has its roots back to sixties when scientists and
engineers shared results and software. The arrival of the Internet made sharing and coordi-
nation over distances easier. By using the Internet in their distributed ’Linux development
model’, the Linux community grew to produce one of the most successful open source products
ever.

UNIX was a starting point for many of the later events in the history of open source.
Stallman’s idealistic Free Software Foundation wanted to make a free clone of UNIX. The term
’open source’ came as a pragmatic reaction to ’free software’ when Netscape as a commercial
actor started to release source code through the Mozilla project.

Some of the literature paint a very idealistic and almost heroic picture of the open source
communities, are these pictures really true? Are, other or maybe more nuanced stories told
elsewhere in literature? With the entry of more and more companies and a growing focus in
media it is likely that the open source movement and the communities are changing, but into
what?

A Survey of Industrial Involvement in Open Source

Chapter 4

Open Source Practices

There are many different open source projects and it is hard to state characteristics that are
valid for all for them. We will anyhow present and discuss some general characteristics of open
source communities and open source development in this chapter.

Open source development and is said to be many things. We get the following list of
properties by combining qualities and characteristics from (Mockus, Fielding, and Herbsleb
2002, 310), (Feller and Fitzgerald 2002, 84) and (Weber 2004).

• OSS reduces the number of times the wheel is reinvented

• OSS development takes advantage of large numbers of volunteers by making it interesting
to join and participate. Note that more and more companies are also participating in
OSS projects.

• OSS includes involvement of both advanced users and highly talented and motivated
developers.

• The OSS communities provide prompt feedback to user and developer contribution.

• OSS solves the developers’ problems or, what Raymond called, personal itches.

• OSS utilizes truly independent peer review.

• OSS makes use of extremely rapid release schedules and solves problems in parallel when-
ever possible.

• In OSS development, work is not assigned; people undertake the work they choose to
undertake.

• There is neither explicit system-level design, nor detailed design in OSS projects.

These statements are probably not true for all open source projects. (Monteiro, Østerlie,
Rolland, and Rørvik 2004) state that there is a tendency to exaggerate the uniqueness of open
source software development compared to traditional software development. This view is also
supported by (Fuggetta 2003). The amount of quality research, done by different researchers
on differing projects, we discovered through our literature study was unfortunately quite small.
This supports the views of Monteiro et al. and Fugetta.

The first four statements, related to reuse, motivation, participants, and communication
will be discussed in this chapter. In addition to discussing these characteristics, we will also
present some of the most common open source licenses, some license related issues, and briefly
discuss open standards. The last five statements, related to development processes, will be
discussed in the next chapter.

19

20 4. Open Source Practices

4.1 OSS Avoids Reinventing the Wheel
It is quite obvious that open source reduces the need for reinventing the wheel. Open source
allows developers and users to reuse solutions to problems in form of software and code.

Many open source products have been said to be highly innovative. It is easy to mention
successful products like Linux, Apache, MySQL and other, but are they innovative? Open
source has been accused for never inventing the wheel in the first place. The open source
movement has been accused for primarily re-implement ideas created by others. Linux could
for instance use UNIX as a template when it was first developed, and Apache was not the
first web-server available on the Internet. Klincewicz surveyed 500 of the most active projects
registered at Sourceforge.net and found that the technical newness or innovation in these
projects was low (Klincewicz 2005). Questions have also been asked about innovation since
it is normally a small number of people who write most of the code (Mockus, Fielding, and
Herbsleb 2002). As a consequence of this, many OSS projects are the result of one, or a few
highly motivated and inspired visionaries who lead the project (Divitini, Jaccheri, Monteiro,
and Trœtteberg 2003).

4.2 Making It Interesting for People to Join
How and why people join open source projects will be discussed in this section. Motivations
behind participation in open source communities are one of the few things where some empirical
work has been done.

4.2.1 How Do People Join Open Source Projects?
Joining an open source community as a developer is like joining any other community. You
have to seek it out, start being active in it and learn its rules to be accepted into it. To get
to know a community, you could start browsing the web pages of the community, participate
in forums and mailing lists, and read relevant documents. von Krogh et al. describe joining
scripts which people follows to be accepted into a community (von Krogh, Spaeth, and Lakhani
2003). Following these joining scripts means to understand what the community expects of
one’s behavior as a newcomer and to participate in the technical discussions in forums and
mailing lists. Newcomers can also be accepted on the background of code contributions, or
what the authors call feature gifts, to the community. When accepted, a newcomer take on
tasks primarily related to their prior knowledge or prior work.

Berquist and Ljungberg say that newcomers have to be socialized into the community’s gift
culture (Bergquist and Ljungberg 2001). Giving code as a gift to the community is something
that has to be learned. In return for the gifts, the individuals will get a reputation and
thus more respect and status. The reputation based structure, or meritocracy, of open source
projects will be discussed further in chapter 5.

4.2.2 Why Do Individuals Participate in Open Source Projects?
Most open source communities consist of individuals but we will also briefly investigate com-
pany participation in open source communities in Chapter 6 and 8.

Developers in open source projects use their own resources, knowledge, and experience to
create public value in what is called the "private-collective" innovation model (von Hippel and
von Krogh 2003). The risk and costs are put on the individual while the benefit is given to the
public. What makes people spend their spare-time working for others?

There are several explanations to this phenomenon, arguing that the participants get pri-
vate benefits from their contribution. (von Hippel and von Krogh 2003) argue that the private

A Survey of Industrial Involvement in Open Source

4.2. Making It Interesting for People to Join 21

benefit has to exceed the effort a developer puts into the work they do. (Lakhani and von
Hippel 2002) show that the community members of the Apache community see that the learn-
ing benefits of providing online user-support to other users out-weights the work of doing it.
Other benefits from working in open source could for instance be money, status, enjoyment, or
affiliation with the community.

Several studies have been performed on this topic, for instance (Lakhani and Wolf 2005) on
selected projects from SourceForge, (Hars and Ou 2002) on selected individuals from different
open source forum, (Hertel, Niedner, and Herrmann 2003) on developers around the Linux
kernel, and the Floss study led by Rishab Aiyer Ghosh for the European Commission (Ghosh
2002). These studies are performed within a small part of the open source community and the
results may not be valid for the whole community, but they still give us valuable indications
of the motives driving individuals who participate in open source projects.

The motivational factors shown in these studies are often divided into extrinsic and intrinsic
motivations. Extrinsic motivation is when a person is rewarded or encouraged by something
outside the person. This could for instance be getting a job through participation in an open
source project, getting paid, solve a software problem or a personal itch, improve programming
skills, or to get respect and status. Extrinsic motivation can be divided into immediate pay
off and future rewards. Intrinsic motivation on the other hand is to do something for your
own satisfaction or enjoyment. This could be things like being creative, acting according to
community norms, or increasing the welfare of others.

(Hertel, Niedner, and Herrmann 2003) reported the desire to be identified with the Linux
community, improve their own software and career, get status, support the Linux community,
pure enjoyment, and the wish to improve Linux tools because of earlier time losses as the most
important motivational factors. (Lakhani and Wolf 2005) found that enjoyment, being able
to be creative together with the need for intellectual stimulation, and improving programming
skills were the most important reasons for participation in open source. (Hars and Ou 2002)
found reasons like enjoyment, altruism or idealism, identification with community, direct com-
pensation or anticipated return, learning, showing their skills and personal need for product to
be the most important reasons for participation. The FLOSS reported learning and knowledge
sharing as the most important motivations (Ghosh 2002). A summary of these motivational
factors is presented in Table 4.1.

Intrinsic Motivation
Need to feel competent
Altruism: increase the welfare of others
Community identification
Enjoyment-based

Extrinsic Motivation
Future rewards Revenues from related products and services

Increasing human capital learning and improving
skills
Self-Marketing or career advancement
Peer recognition

Immediate payoffs Salary or payment
User-need for particular software

Table 4.1: Individual motivations for open source participation

Øyvind Hauge and Andreas Røsdal

22 4. Open Source Practices

The studies mentioned above, also report that about 20 % to 40 % of the responding
developers get paid on a regular or irregular basis for their work within open source projects.
Some get paid directly for their efforts while others use some of their day-job time working
with OSS projects.

There are as presented above, several different factors behind participation in an open
source project. It is not possible to say that one reason is more important than the others
because the researchers highlighted different motivations as the most important ones. It is
most likely that most participants are motivated by more than one factor as well.

4.3 Who Are Involved in Open Source Projects?
The OSS community is no longer consisting of hackers and ideologist only. The participation
of companies is growing. (Dahlander and Magnusson 2005) describe how Nordic software
companies take part in open source projects as part of their business strategy. There are
growing numbers of paid developers participating in OSS projects, as seen in the previous
section.

The studies by (Hertel, Niedner, and Herrmann 2003), (Lakhani and Wolf 2005), and (Hars
and Ou 2002) may as mentioned not be representative for the whole open source community,
but they have some interesting points. Almost all the respondents are men and most of them
are between 20 and 40 years old with an average age around 30 years. A majority is reported
to have a college degree or higher. Around 50 percent is working within the IT-industry.
Other interesting groups were students and people who had programming as a hobby. The
respondents were from several countries with a majority from North-America and Europe.
Similar characteristics are described in the European Commissions FLOSS report from 2002
(Ghosh 2002).

By looking closer at the people involved in open source projects, we see that they are
motivated, skilled, and many of them are also users of the application. This gives them good
understanding of the problem domain. Many have an outside job (Mockus, Fielding, and
Herbsleb 2002; Ghosh 2002), many are members of more than one project (Hars and Ou 2002),
and some are paid to take part in the projects.

4.4 Communication in Open Source Communities
Informal hallway conversations, as well as organized and scheduled meetings, generally take
place online in a publicly visible manner (Scacchi 2002). The open source communities are
massive users of tools like chat, email, web-forums and mailing lists.

(Gutwin, Penner, and Schneider 2004) describe how simple text based communication tools,
like mail lists and chat, are used to maintain group awareness. Awareness involves knowing
who you work with and what they do. The authors emphasized that it was important to the
members of the community to keep information public. Keeping the information open makes
it easier to join a discussion since the history of the discussion is available online. Gutwin et.
al. further reported that email was heavily used by the community members. Developer can
use email and mailing lists to find out what is happening with a component, find the expert
in an area, to get answers to their questions, to inform others of what they were doing, to
get feedback on code (Jørgensen 2001), and to keep track of what the others are doing. The
authors further emphasized the significance of overhearing discussions on mailing lists as a
awareness tool.

The community members also used the mailing lists to get answers to questions. Posting
a question was done assuming the right person would answer (Gutwin, Penner, and Schneider
2004). This allows the one who knows the answer, and who has time to respond, to answer it,

A Survey of Industrial Involvement in Open Source

4.5. Open Source Licenses 23

and it prevents the top experts from being flooded with questions. In the Apache community
user-to-user support is free and done by the users themselves. (Lakhani and von Hippel 2002)
reported that one of the reasons why people responded so quickly in this community was
because most of the time they already knew the answer to the question and answering it did
not take much effort. This construct is of course dependent of a certain mass of people, and
it could be fragile if nobody knew the answer to the question, or nobody bothered to answer
it. In a study of the FreeBSD community, (Jørgensen 2001), reported that it could be hard to
start a discussion and to get feedback on code-commits if you were not part of the inner circle
of developers.

Email is used quite a lot, but on the other hand, (von Hippel and von Krogh 2003) noted
that much of the communication in a community happens beyond public email. (Monteiro,
Østerlie, Rolland, and Rørvik 2004) show that IRC is used to a greater extent than email in
the Gentoo project. (Divitini, Jaccheri, Monteiro, and Trœtteberg 2003) take it further and
argue that a lot of the political play actually happens privately.

Since community members mostly use informal communication tools it could be necessary
to divide the community into groups. In the Apache web server, the core group is fairly
small, and they are able to keep clean interfaces towards the other groups, thus making the
groups independent. The small size of the groups, and the independence between them, allow
informal communication and process to be used (Mockus, Fielding, and Herbsleb 2002). On
the other hand, the Mozilla project has a bigger core team and higher dependency between the
groups. Because of the group’s size and the dependency they have to use more formal means
to coordinate their work (Mockus, Fielding, and Herbsleb 2002).

Acknowledging that not all OSS projects are equal, is important, also when it comes to
communication. (Crowston and Howison 2005) show that the, centralization of communications
vary widely in open source development teams. Some projects were completely centralized,
meaning that all communication, from everyone, was directed to just to one person. Other
projects had a fairly high decentralization, meaning that the communication happened between
several or many people.

4.5 Open Source Licenses

The normal purpose of copyright and licenses in software development is to protect creative
work from others by making it illegal to copy or change a program. In open source, the purpose
of licensing is "to deny anybody the right to exclusively exploit a work" (Laurent 2004, 4), or
to preserve the user’s freedom to do what she wants with the software. Open source licenses
give the user freedom to use, change and redistribute the program. At the same time many of
these licenses force the user to release any modifications under the same license.

There are a lot of different licenses in the open source community and some of the most
popular ones will be presented below. All licenses presented can be found at OpenSource.org’s
home page at http://www.opensource.org/licenses/index.php.

4.5.1 Open Source License Types

GNU General Public License (GPL)

GPL is perhaps the most popular OSS license with more than 50 0001 registered projects at
SourceForge.net (SourceForge.net 2006) and more than 28 000 registered projects at fresh-
meat.net (freshmeat.net 2006). It was created by Richard Stallman and The Free Software

1All numbers are from February 2006

Øyvind Hauge and Andreas Røsdal

24 4. Open Source Practices

Foundation to be used with many of the FSF’s projects like GNU Emacs, GCC and BASH.
Even though it is a FSF license, it is certified by the Open Source Definition.

The GPL grants the user the four freedoms described in section 2.2 including the freedom
to change and redistribute GPL software in any way she would like, as long as the modified
versions and the source code are distributed under GPL as well. This viral behaviour is also
called copyleft. The GNU project defines copyleft as ’...a general method for making a program
or other work free, and requiring all modified and extended versions of the program to be free
as well.’ (GNU Project 2005)

GNU Lesser General Public License (LGPL)

Another popular OSS license, with more than 8 000 registered projects (SourceForge.net 2006),
is the LGPL. LGPL was also created by FSF and Stallman, and it is a license meant to be used
with libraries. It is not as restrictive as the GPL. LGPL software can be used with other free
or proprietary software as a linked library. But if the original software is modified or extended,
the derived versions have to use LGPL as well.

Stallman recommends using GPL to give free software developers an advantage over pro-
prietary developers. By using GPL, every derivative product must be distributed freely as well
(Feller and Fitzgerald 2002, 20).

Berkeley Software Distribution (BSD) and the MIT License

There are more than, 5000 projects registered with the BSD license, and more than 1300
registered projects with the MIT license at SourceForge.net (SourceForge.net 2006). Both
licenses are more liberal than the GLP license. The BSD license has three requirements to
modified versions of software (University of California 1999). It is equivalent to the MIT license
(Massachusetts Institute of Technology 2006) except from the last no-endorsement clause.

• Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the name of the original authors nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

The Artistic License

The Artistic License was designed to be used specifically with Perl, and have an emphasis on
the rights of the copyright holder. It is because of this perhaps not the most suitable license
for free software development (Laurent 2004). It is still used by more than 1300 projects at
SourceForge (SourceForge.net 2006).

Mozilla Public License (MPL)

MPL was first created when Netscape was released as a free and open product in 1998. MPL
allows code with MPL to be combined with code licensed under another license. This is
prohibited by GPL which requires all code to be GLP code. BSD on the other hand permits
BSD code to be combined with code under other licenses. Code copied or changed under the
MPL is required to stay under the MPL.

A Survey of Industrial Involvement in Open Source

4.6. Open Standards 25

MPL has also worked as a basis of other licenses like the Apple Public License, the Nokia
Open Source License, and the Sun Public License.

Apache Software License

The Apache license is similar to both the MIT and the BSD license allowing distribution and
modification with few restrictions. It allows redistribution under other licenses as long as the,
restrictions in the Apache license is still complied.

Public Domain

Public domain is not actually a license. It refers to artistic works without an owner or with no
legal restrictions to its use. Or as Rosen said, "It is simply “free”, as in the terms “free beer”
and “free speech”." (Rosen 2002) It is quite popular at SourceForge with close to 2000 projects
registered with this license or more correctly lack of license (SourceForge.net 2006).

4.5.2 Challenges with Licensing in Open Source

There are several challenges related to open source licenses. First of all, there are many of
them. The number of licenses makes it hard to have a complete overview of all of them,
when they can be used, what they permit, what they forbid, and how they can be combined.
Some licenses require that the same license is used with all new or extended versions of the
software. All this may lead to fear, uncertainty and doubt among the users of open source
software. Companies in particular need to be careful not to make any mistakes using code
or components licensed with an open source license in their proprietary products, since most
open source licenses forbids this.

This leads to another challenge, enforcing the licenses. Since most of the software is written
by people without their own legal department, it could be hard for them to enforce their rights
to their own intellectual property. There have been examples of law suits where owners of open
source products have sued, and won over software vendors misusing their software (Gonzalez
2005).

A third challenge is patents and patenting. Since licenses only cover copyright aspects
and not patents, open source software could be vulnerable to patenting. If someone outside
the open source community patents software constructs used in the open source software, the
community could be forced to remove these parts of their software. This again would make
the license worthless (Gonzalez 2005). It is therefore important to keep software and the ways
of constructing it open and available to the open source community, and perhaps even patent
ideas to be able to share them.

4.6 Open Standards
Licenses, intellectual property and patents are very important issues related to open source.
Open standards have high relevance and importance to open source as well. Open standards
are also important to preserve the user’s freedom and independence.

Sutor defines a standard as ’a blueprint or a set of plans that can be implemented’ (Sutor
2006). He further states that high transparency, high community involvement, democratic the
creation processes, low costs for software developers and customers related to the standard,
and high degree of freedom are characteristics of a true open standard. The more restrictive a
standard is the less open it is.

(Perens 2006) says that the following characteristics must be met for an open standard: It
must be available and it must be free, free as in freedom. The standard cannot discriminate

Øyvind Hauge and Andreas Røsdal

26 4. Open Source Practices

anyone or anything. It must be allowed to extend the standard. It is at the same time,
necessary with licenses that protect the standard from sub-versioning with purpose of making
everyone dependent of the new sub-versions.

Having an open standard can allow anyone to implement them, thus increase compatibility
between different providers and platforms giving both the customer and the developer greater
freedom.

4.7 Summary
In this chapter we have looked at some particularly interesting aspects of the open source com-
munity, who, how and why people do participate in OSS communities, how they communicate
in OSS communities, and some open source licensing practices. Individuals who participate in
open source projects are motivated by both intrinsic and extrinsic motivational factors, and
many developers also get paid by their employer to contribute to the open source project.

These individuals, participating in open source development, use simple informal text-base
communication tools like email, web-forums, and chat. These communication tools are used
together with other tools, like CVS and Bugzilla, to support and co-ordinate the development
process.

4.8 Challenges
When a company participates in open source, what is it motivated by? We will look a bit
at company motivations in chapter 6. Do for instance companies value the possible learning
effects from open source participation? The developers employed in a company what do they
get from participating in an open source project through their day time job? How many of
these employees participating in an open source project, is actually getting paid to do so?
How do companies get involved in OSS communities and which companies participate? The
questions related to company participation in OSS are many.

When companies participate in open source projects do they use the same tools as used in
the communities, and do they participate actively in other community activities, like answering
to forum postings and emails? How companies communicate with open source communities is
an interesting issue.

Another interesting issue is open source licenses. These are made to secure the user’s
freedoms. When companies use open source components are they aware of, are they able to
differentiate, and do they respect, the licenses used in open source projects?

A Survey of Industrial Involvement in Open Source

Chapter 5

Software Development in Open
Source Communities

The software development practices used in OSS projects have some similarities and some dif-
ferences with commercial software development. In this section, the characteristics of software
development typically used in open source projects will be described. Since open source com-
munities are so diverse, it is impossible to describe a single common practice which applies to
all OSS projects. Therefore, the most important aspects which are common to typical success-
ful OSS projects will be reported. Further, the development process will be described in the
perspective as seen though the COSI-project: how the software development practices in open
source communities are relevant to the Norwegian software industry. The use of typical OSS
development practices inside companies will be described in the coming section as inner source
development.

5.1 Organization of Open Source Projects

Most open source projects are organized by either, individuals, groups, organizations or com-
panies. Most of the large open source projects like The Apache Web Server, BIND, FreeBSD,
Sendmail and Eclipse are organized by organizations like Apache Software Foundation, Free
Software Foundation, Eclipse Foundation Inc, Python Software Foundation and others (Feller
and Fitzgerald 2002). Many of the smaller projects are organized by individuals using, for
instance, SourceForge or other free hosting services as a home for their projects. Last but not
least more and more projects are organized by companies using open source as part of their
business strategy.

A study of two open source projects, Mozilla and FreeBSD, by (Holck and Jorgensen 2005),
shows that most work in those projects are performed as one-man projects, where a single de-
veloper works on implementing a particular feature. With closed source it is only the developers
in the company who have access to the code and it is only they who can read it, understand
it, find errors in it and correct it. They will most likely get complaints from customers when
something is wrong, but the developers do not get any further help from the customers finding
the defect. With open source, everyone who is skilled enough can read and understand the
code, find errors and eventually fix them. As Eric Raymond famously wrote, "Given enough
eyeballs, all bugs are shallow" (Raymond 2000), meaning that when many developers read and
try to understand the code they will discover and fix all bugs.

27

28 5. Software Development in Open Source Communities

5.2 Software Development Process
The following is an overview of some of the most important characteristics of the development
process which will be described subsequently:

• Contributions are made from many volunteer developers which implement new function-
ality according to their skills and interests.

• OSS development has a unique contribution process. Typically developers have control
over particular modules in the system, and have responsibility for reviewing changes to
those modules.

• Many phases of the process are performed less formally, and are instead implied activities.

• Developers are often globally distributed, which means that development must be coor-
dinated well.

• The OSS development process has similarities to agile development.

• Development occurs asynchronously between developers, often though the use of a col-
laboration infrastructure which includes mailing lists, source code repositories and bug-
reporting systems. Further, development is parallel and concurrent, with less clearly
defined phases than a traditional iterative or waterfall model.

• Quality assurance is handled in the development process though peer review, a specialized
release process and early testing by users.

A study by (Potsar and Chang 2004) describes the open source development model as an
evolutionary model, which changes over time according to the interests of the involved people.
Development is performed by many developers concurrently. This is quite unlike commercial
software development, which often is structured more in phases. Coordination of developers is
therefore essential in order to develop software while working on the same source code while
not being present physically at the same place.

Agile methods Open Source development Plan-driven methods

Agile, knowledgeable, collo-
cated and collaborative

Agile, globally distributed,
knowledgeable and collabora-
tive

Plan-oriented, adequate
skills, access to external
knowledge

Small teams and products Large teams, small products Large teams and products

Inexpensive refactoring Inexpensive refactoring Expensive refactoring

Designed for current require-
ments

Open, designed for current requirements Designed for current and new
requirements

Table 5.1: OSS development method compared to other methods, according to (Warsta and
Abrahamsson 2003).

Warsta et al. has compared open source development with other development methods,
and found that it was similar in many ways to agile development. Agile software development
has the four following characteristics (Warsta and Abrahamsson 2003): Primarily the devel-
opment method is incremental, with small releases which are available frequently. Next, it is
cooperative, where developers and customers cooperate closely during development. Further,
the development method is straightforward, meaning it is lightweight and easy to use. Finally,
it is able to adapt to changes easily. According to (Warsta and Abrahamsson 2003), OSS
shares these characteristics to a large extent. Table 5.1 compares the open source development
method with agile and traditional plan-driven methods.

A Survey of Industrial Involvement in Open Source

5.2. Software Development Process 29

5.2.1 Roles in Open Source Communities

Figure 5.1: The layered structure of open source projects

For open source projects to be successful it is important to have a base of developers,
testers, users and interest around the project. Projects which do not manage to create such a
critical mass, will get in to problems and most likely close.

In a big community, do everyone contribute equally? Open source communities are often
described to have hierarchical or onion like structure with several layers (Crowston, Annabi,
Howison, and Masango 2004; Mockus, Fielding, and Herbsleb 2002; Scacchi 2004). The teams
consists of a core with relatively few developers, up to 10-15, who contribute close to 80 %
of the code (Mockus, Fielding, and Herbsleb 2002), co-developers, bug-fixers, bug-reporters
and users or free riders. This leaves the OSS projects with a pyramid like staffing, where the
group below is larger by an order of magnitude than the one above. On the top we have one
or few project owners, together with a small group of core developers, then a bigger group of
developers and bug-fixers, yet a bigger group of active users who participate in the community
reporting bugs, reading forums, news and so on, and at the bottom we have free riders, or
normal users as in figure 5.1.

Many open source projects are organized as meritocracies, for example the Apache project.
This means that the developers who have contributed the most valuable and high-quality code
also are the ones who make the most important decisions. As in the example of the Apache
project, new members of the project are added formally when they are nominated by an existing
member and receives a unanimous vote (Fielding 1999).

The OSS development process is made possible though the cooperation of a number of
people. Figure 5.2 shows the most important roles which are involved in this process, based on
a study of two open source projects by (Holck and Jorgensen 2005). OSS is typically developed

Øyvind Hauge and Andreas Røsdal

30 5. Software Development in Open Source Communities

Figure 5.2: Overview of the open source development process(Holck and Jorgensen 2005).

though an interaction between developers, users, reviewers and committers. These people rely
on a technological infrastructure to cooperate, manage the source code, reported defects and
testing.

Developers, is anyone who contributes code to the project, and can be volunteers or em-
ployed by a company managing the project. Volunteers can typically choose which task they
want to work on, based on skills and interests. The interaction between a developer and a
user is important in this model. There is a cycle where developers contribute code to the
software, which then is committed to the source code repository, and tested by users (Holck
and Jorgensen 2005). If the user finds any faults, this is reported back to the bug-tracking
system.

It is common for open source projects to practice module ownership. This means that
a developer has the responsibility for accepting new code to a particular module. The roles
reviewer and committer are central to the quality assurance in OSS projects. The reviewer
must check the code from developers, and decide if it is of good enough quality. This process
can take several iterations before the code is accepted by the reviewer. The committer is the
person responsible for adding or changing the source code repository. By having a different
person reviewing and committing code written by another developer, this is hoped to increase
the quality of the code. However, it also results in additional work, so it is not practiced in all
OSS projects. (Holck and Jorgensen 2005)

5.2.2 Project Start-up

An open source project is normally formed by an individual or a small group having an idea
or a problem they want to solve (von Krogh and von Hippel 2003), or as put by Raymond
"Every good work of software starts by scratching a developer’s personal itch" (Raymond
2000). Stallman on the other hand, says that new software is planned; it is not impulsive

A Survey of Industrial Involvement in Open Source

5.2. Software Development Process 31

creations (Stallman 1999, 64).
An early version of the product is made freely available on the internet together with the

source code and mailing lists (von Hippel and von Krogh 2003). People can download the code,
play with it, make modifications to it and post ideas and code-contributions on the mailing list
and the project website. The contributions can be reviewed and used by anyone interested. If
the value of the contribution is high it can be included in the project code.

The project code is normally guarded by trusted developers who function as gatekeepers
(von Krogh, Spaeth, and Lakhani 2003). For instance, the Apache server uses a voting mech-
anism to decide which code is to be integrated into the main release (Mockus, Fielding, and
Herbsleb 2002), others may have a person responsible for a module or a piece of code.

5.2.3 Requirements Specification

Creating a requirement specification is typically an implied activity in a OSS project. Many
OSS projects are also designing software where the requirements are already clear, because
there is often software which provides the same functionality, according to a study by (Scacchi
2004). The study showed that the requirements where created as a by-product of discussions
between developers. These discussions took place on mailing lists and other communications
forms, but were never formally described in documents. In fact, (Potsar and Chang 2004)
states that the requirements are already known by open source developers before they start
an OSS project. This is because many OSS projects are started because individual developers
discover areas where software can improve a situation, and develop a solution themselves. This
is quite unlike most commercial software projects, which have to interview users and customers
in order to discover the requirements.

5.2.4 Software Design and Implementation

The design phase of OSS is often performed in parallel with the implementation. This means
that there is often no formal software and architecture design documentation, which can lead
to a system which is difficult to maintain because the implementation diverges from the design.
(Potsar and Chang 2004)

OSS is often implemented trough a process called continuous integration (Holck and Jor-
gensen 2005), which means that developers integrate new functionality into the system at the
same time. The free access to the source code has an important impact on the development
process, and is one of the critical factors which distinguish it from traditional commercial
software development. Software for version control is therefore critical in order to manage
and coordinate the development when multiple users and developers have the opportunity to
modify the source code. The tools CVS and Subversion are commonly used for this purpose
by OSS projects. According to (Scacchi 2004) the version control system coordinates devel-
opment, and manages which additions to the software that should be made. It also prevents
conflicting modifications to an extent.

One can question how OSS projects are able to successfully create software without a clear
design phase. The following three reasons are proposed by (Narduzzo and Rossi 2004):

• The design of many OSS systems are based on reusing the architecture of existing mod-
ular software. This enables fast development and the possibility to reuse other code,
in addition to avoiding unanticipated design-problems to occur because of using a new
design.

• When OSS projects develop new software where there is no design to reuse, the archi-
tecture evolves from a draft into a useful modular architecture over time.

Øyvind Hauge and Andreas Røsdal

32 5. Software Development in Open Source Communities

• Since the source code is available and code is not owned by any entity, developers can
systematically improve multiple modules in a system in order to improve the architecture.

5.2.5 OSS Release Process

A central part of the open source development process, and how it ensures quality, is the release
process. Frequent releases are made in order for users to get access to new functionality as early
as possible, and defects are reported by the users back to the developers (Hang, Hohensohn,
Mayr, and Wieland 2004). Figure 5.3 shows how a release process in the open source project
Mozilla is organized. There are two branches of development. The topmost branch is the stable
branch for version 1.0, where no new functionality is added and only defects are removed. The
development branch at the bottom of the figure is where new functionality is added. Before
a major release is made, there is a period of feature freeze, when no new functionality can be
added. This is to ensure that the software receives sufficient testing before it is released.

Figure 5.3: The Mozilla development roadmap showing mayor release dates for two
branches.(Mozilla OSS project 2002)

5.2.6 Tool Support

(Gutwin, Penner, and Schneider 2004) describe that many communication tools are used by
developers in OSS projects. This is a necessity because, people are often distributed globally,
and they are often working in parallel. Asynchronous communication tools such as email,
mailing lists, forums and web pages are used, as well as synchronous tools such as chat.

Further, there is a wide range of software engineering tools used by OSS projects. This
includes software modeling tools for creating UML diagrams, such as Dia. Defect-tracking
systems such as Bugzilla are also used, which is a online system to coordinate information
about defects, suggestions and support-requests from users.

For software configuration management, (Scacchi 2004) states that tools such as CVS and
Subversion, are used in OSS projects. Such tools are used to coordinate development between
several people, and are also used to mediate control over which code changes that are accepted.

A Survey of Industrial Involvement in Open Source

5.3. Inner Source Development 33

Figure 5.4: Relationship between Open and Inner Source(Dinkelacker, Garg, Miller, and Nelson
2002)

.

5.3 Inner Source Development

Inner source development (ISD) uses aspects of open source software engineering inside a
business unit, company, or consortium. The software developed is only open and available to a
closed consortium of partners. This development methodology has been described by the COSI
project, which characterizes the development as an "open, concurrent model of collaboration"
where the source code is made available to the participants (van der Linden 2005). It can be
thought of as a special case of an open source community, where the participants are involved
based on their role in the company or business unit.

ISD has for instance been used in a project at Hewlett-Packard, where this form of develop-
ment was used to develop and maintain approximately two dozen software systems (Dinkelacker,
Garg, Miller, and Nelson 2002). Another case study of using open source development method-
ologies inside a company has been performed by (Gurbani, Garvert, and Herbsleb 2006). This
case study has shown that companies can benefit from using open source development practices,
and suggested specific success criteria for inner source development.

The experiences from these studies will make the foundation for describing the advantages
and challenges of ISD. However, there are few other experiences with using inner source de-
velopment in real projects. This is therefore an interesting topic for the survey which will be
performed as part of this thesis.

Figure 5.4 shows the relationship between open and inner source. The figure suggests that
inner source is shared on the corporate intranet, controlled source is shared with partners, and
open source is shared with anyone on the Internet.

5.3.1 Characteristics of Inner Source Development

Sharing of the program source code is an important characteristic of ISD, which reduce the
amount of code which is reinvented by several different people in the same company. A common
repository of source code can be reused in several projects, which improves code reliability and
quality (Dinkelacker, Garg, Miller, and Nelson 2002).

Distribution of development teams in different organizations and geographic locations can
be made easier by using ISD (van der Linden 2005). Further, by using inner source it is easier
for a company to start, or change collaborations with other development teams at different

Øyvind Hauge and Andreas Røsdal

34 5. Software Development in Open Source Communities

departments or companies. This is because developers, who already have participated in ISD
inside as a partner, will already be familiar with the source code repository, development tools
and coding standards (Dinkelacker, Garg, Miller, and Nelson 2002).

Shared, community debugging is another characteristic of ISD. It has been reported to
increase code quality, because of the large number of testers and because the developers repu-
tation is at stake (Dinkelacker, Garg, Miller, and Nelson 2002).

The following success criteria for inner source projects have been suggested by (Gurbani,
Garvert, and Herbsleb 2006):

• Technologies are shared between several product groups.

• Software requirements are not well understood.

• Different product groups customize software to their needs.

• The software has a modular architecture, so it will be possible to merge changes from
several contributors.

5.3.2 Inner Source Development Practices
The following development practices are common OSS development practices used inside a
company using ISD (Dinkelacker, Garg, Miller, and Nelson 2002; van der Linden 2005):

• Developers can choose the task that they are working on in the source code shared as
inner source. This can be a challenge to organize, because of the responsibility this puts
on the developers.

• Developers own and control modules in the software. The owners of different modules
can be located at different locations.

• Early and frequent releases of the software, with source code included. This allows
developers to get fast feedback on new releases.

5.4 Summary
Chapter 5 has been about several aspects of software development in open source communities.
First the organization of typical open source projects was discussed. It was shown that open
source projects are organized either by individuals, groups, organizations or companies, and
that most projects are one-man projects.

Secondly the development process used in open source projects has been explained in detail,
covering all phases and relevant roles in the process. The development process was claimed
by literature to be globally distributed, performed in parallel, and with many similarities with
agile development. However, it should be noted that open source projects are very diverse, so
the open source development process described here is not used in all projects.

Finally inner source development was presented as a way for companies to use aspects of
open source software engineering inside a company.

It has been shown that software development in open source communities is quite unlike
traditional commercial software development. Based on the research described in this chapter,
there are several topics which can be investigated further and become the basis for a research
question. How can companies use and benefit from the development processes described in
this chapter? Very little information has been published about inner source development.
This is therefore an attractive area to be studied further, if the appropriate study objects are
available. "Architecture, development model, license models, business models, tool support,

A Survey of Industrial Involvement in Open Source

5.4. Summary 35

and infrastructure are strongly related." (Deng, Seifert, and Vogel 2003) How does the use
of open source development processes, tools, software, and source code have an impact on
companies using such methodologies?

Øyvind Hauge and Andreas Røsdal

36 5. Software Development in Open Source Communities

A Survey of Industrial Involvement in Open Source

Chapter 6

Commercial Use of OSS

Several studies shows that commercial companies are increasingly using OSS as an impor-
tant part of their software and interacting with the open source community as part of this
process(Karels 2003; Rossi and Bonaccorsi 2005; van der Linden 2005). There are many chal-
lenges related to using OSS for commercial purposes, so choosing the correct strategy for using
such software is important. The payoffs can be considerable if used properly. This chapter will
focus on the commercial aspects of using OSS in a software company which develops and uses
software.

6.1 Open Source Business Models
To make profit on OSS is inherently difficult because the software itself is available at no
cost. There are some business models which have been used successfully, most of which can
be grouped in the two categories Distributors and Retailers, and OSS-related services, as
illustrated in Figure 6.1, which is based on a survey by (Ghosh 2002).

Figure 6.1: Open Source business models (Ghosh 2002).

The business model used by most Linux distributors is based on software integration. These
companies operate by interacting with the many open source communities, collecting software
and package the software as a product (Karels 2003). This means that several OSS software
packages, libraries and components are integrated as a complete and usable product. This
has the advantage that the company does not have to develop a complete operating system.

37

38 6. Commercial Use of OSS

OSS is often only available for download on the Internet, so these companies can earn money
by distributing the software on CD-ROM. However, since the software is available freely, con-
vincing customers to purchase the software is difficult, and therefore the margins can be low.
Brand building and advertising is therefore important. There are many companies based on
this model which sells the operating system Linux and FreeBSD. Red Hat Software is an exam-
ple of a successful company using this business model, developing and distributing the Linux
operating system (Ghosh 2002).

The business model called "Niche and speciality OSS distributors" in figure 6.1 have a
business model based on developing specialized software in cooperation with an open source
community. According to the study, the most typical product from companies using this
business model is specialized software such as applications, development and administrative
tools. The cooperation is often in a form of symbiotic relationship as described in Section 6.3.
This business model is used by for example ActiveState, which cooperates with the communities
surrounding the programming languages Perl and Python, selling additional services.(Ghosh
2002)

The business model labeled "Retailers of OSS distributions and complementary products",
is based on selling the software from OSS distributions, in addition to documentation and other
related products to the mass market. Linuxbutikken is an example of a business using this
model in Norway (Ghosh 2002).

Providing support for customers and users of OSS is also a common business model. While
many open source communities provide a form of support through mailing-lists, companies
often depend on more reliable support provided as a service. Therefore the companies involved
in the development of OSS also have a great deal of knowledge about their products, and can
use this knowledge to provide customers with support (Karels 2003).

6.2 Commercial Utilization of OSS

Figure 6.2: Developing software internally versus acquired from OSS, according to the COSI
project (van der Linden 2005).

A Survey of Industrial Involvement in Open Source

6.2. Commercial Utilization of OSS 39

Companies manufacturing software develop and use software from a variety of sources.
The software which is developed internally in a company is an important part of the total
software package. This software is important for the competitive advantage that a company
has over its competitors. The differentiating software developed internally at the company is
what differentiates it from the products of other companies. However, a company can also
use software which is developed by other sources, such as commercial-off-the-shelf components
and open source components. Such components are often used by many companies, and are
considered to be commodity, accessible by several companies. If the software is acquired
from other sources and is used by companies in the same business area it is referred to as
basic for business, while if the software is commonly used by all businesses then it is referred
to as commodity. The COSI project depicts this trade-off between using differentiating and
commodity software as shown in Figure 6.2. If a company is developing software internally
which it could have acquired through other sources, it is inefficient because the software could
have been acquired at a lower cost than developing it inside the company. On the other hand,
if a company publicly releases differentiating software which is developed internally, then the
company would loose money because other companies also get access to this software. The
figure suggests that for a company to efficiently develop software, it must develop differentiating
software internally, and acquire commodity software from other sources, such as OSS or COTS
(van der Linden 2005).

(Behlendorf 1999) states that software can be classified according to a spectrum where
infrastructure is at one end of the spectrum, and end-user applications at the other. According
to the spectrum, most OSS is likely to be classified as infrastructure, while commercial software
is classified towards the end-user end of the spectrum. This is in accordance with the figure
created by COSI shown in Figure 6.2, which recommends that commodity software should
be open source, while differentiating software should be developed internally in the company.
Acquiring software components from other sources than those developed "in-house" often puts

Figure 6.3: Classification of software according to source and modifiability(Carney and Long
2000).

Øyvind Hauge and Andreas Røsdal

40 6. Commercial Use of OSS

restrictions on the amount of changes a company can make to those components. (Carney and
Long 2000) illustrate the extent to which a software component can be modified as shown in
Figure 6.3. Software developed in-house can be modified freely, compared to software developed
externally by contract or by another company where there are fewer possibilities for making
modifications. In this context, OSS is developed by a source other than the company, or in
some form of cooperation with the company. As a result, the company has access to modify
the software freely, depending on which open source license is used.

6.2.1 Motivations of Companies Using OSS

There are many reasons why a commercial company would be interested in using OSS, in
addition to the fact that the software is available at almost no cost. Rossi et al. has performed
a survey (Rossi and Bonaccorsi 2005) on the motives for Italian companies using OSS. The
result of the survey was that two categories of motivation were observed within the companies.
One type of motivation is extrinsic, which is an external factor which motivates the activity,
such as profit. The other motivation is intrinsic, meaning that the pleasure of performing
the activity itself is the cause of the motivation, such as performing creative and mentally
challenging activities such as software development. The survey showed that extrinsic motives
did have high importance for the companies. The extrinsic motives will be discussed first (Rossi
and Bonaccorsi 2005).

Reduced time to market for a product is an important commercial motive for a company to
use OSS. By re-using existing software, this means that the company will not have to pay the
price of developing this software internally. This means that the company will get access to new
technology and features more quickly (Goldman and Gabriel 2005). Further, OSS contributes
to innovation and new technology even for small companies (Rossi and Bonaccorsi 2005).

The open source community can contribute to maintenance, improvements and support
for the software. However this is not necessarily true, since it can be difficult to plan what
the community contribution will be. The community involvement depends upon many fac-
tors, such as the complexity of the software, because volunteer developers can have problems
understanding a very large software system (Goldman and Gabriel 2005).

OSS can have higher quality than the alternatives, because of certain aspects of the de-
velopment process. In particular with frequent releases, defects are likely to be found quickly
and removed. Further, since the source code is available, defects can be found more easily and
repaired by members of the open source community (Goldman and Gabriel 2005).

Intrinsic motives for companies are that the company has similar values as the open source
movement, and that source code and knowledge in the company should be shared with the
open source community (Rossi and Bonaccorsi 2005).

6.2.2 Dual Licensing

Copyright holders can choose which license they want to use for their products. If a software
vendor has developed a product all by herself she can use whichever license she wants. Some
choose to use both a proprietary license and an open license, this is called dual licensing.

A dual license model gives the freedom of choice by allowing you to choose between a
proprietary license and an open license (Meeker 2005). If you choose the open source approach
the software can be licensed under for instance GPL. This license requires you to share you
derived products and code with the community but you can acquire the software for free.

If you want to protect your modified software you can choose a proprietary license. By
choosing a proprietary license you will most likely have to pay for the software and the code,
but you are free to do whatever you want with it without having to share it with the community.

A Survey of Industrial Involvement in Open Source

6.3. Relationships between Companies and OSS Communities 41

Several companies have chosen this approach, Trolltech license the Qt framework under
GPL and under their own proprietary license. eZ, MySQL and others do the same for their
products. They release the product to the community with an open license, for instance GPL,
and they also release it with a proprietary license to customers, who do not want to share their
changes with others.

6.3 Relationships between Companies and OSS Commu-
nities

There are several approaches to organizing the relationship between a software company and
an open source community. A case study performed by Dahlander (Dahlander and Magnusson
2005), shows that the relationship can take one of three forms: a symbiotic, commensalistic or
parasitic relationship. These are stereotypical relationships, so real companies may have a role
which is somewhere in between the three forms.

In the symbiotic relationship, both the software company, and open source community
gains benefits from the relationship. This means that both parties take part in decision mak-
ing, and sharing of resources and knowledge. The case study showed that companies using
the symbiotic approach try to return benefits to the OSS community, through the release of
internally developed source code and providing infrastructure to the OSS community. This
was the case with MySQL, which is a database system which is developed cooperatively by an
OSS community and a software company.

The commensalistic relationship is one where either the software company or the OSS com-
munity gains benefits, while the other does not benefit or take harm from the relationship. This
can be achieved if the software company uses the software produced by the OSS community,
while not being involved in the actual software development itself.

The parasitic relationship is one where either the software company or the OSS community
is positively affected by the relationship, while the other can be negatively affected by the
relationship. This relationship should be avoided, and has not been seen in practice in the case
study by Dahlander.

6.4 Summary
This chapter has looked at the commercial use of OSS in companies. It has been shown that
software can be built as a combination of acquiring OSS as commodity software and developing
differentiating closed-source software in Section 6.2. There are many pitfalls and tradeoffs to
be made when deciding which parts of the software to base on OSS, so further studies on this
topic would be interesting.

Further a way to classify the relationship between a company and an OSS community has
been described as, either, parasitic, symbiotic or commensalistic. Future studies could be done
to find out how these different relationships give a company influence in an OSS community,
and how these can be used to create a successful relationship for a company interested in
participating in OSS development.

Moreover several commercial motives were described in this chapter. Which of these motives
are most important for companies, and what types of motives do these include?

Finally business models used by companies participating in OSS, has been introduced.
Further studies on how the business models influences the choice of software licenses and
interaction with the OSS community can be performed.

Øyvind Hauge and Andreas Røsdal

42 6. Commercial Use of OSS

A Survey of Industrial Involvement in Open Source

Chapter 7

Developing Software with OSS
Components

This chapter will present usage of OSS components, and how companies typically use and
select such components. Some selection processes for OSS components will be described, as
well as how OSS components are used by companies. This will be shown through a recent
study performed on Norwegian companies using OSS. Open source and commercial software
development have been described as complimentary activities, where each can extend and
benefit from the other (O’Reilly 1999).

7.1 Survey of OSS and COTS Usage in Norwegian Com-
panies

A survey on Norwegian software companies using OSS and COTS has been performed in
2006. The survey was performed by the Research Council of Norway, ICT Norway, Innovation
Norway and NTNU. The survey was answered by 138 companies, where 55 companies answered
a voluntary section about the usage of OSS and COTS. As part of this thesis, access to relevant
results was provided for analysis.

Of the 55 companies which responded, 41.8% answered that the company was using com-
ponent based development with COTS, while 50.9% answered that they were using component
based development with OSS. Further, 90.9% of the companies answered that they were sys-
tematically reusing internally developed components or other products. Figure 7.1 shows the
motivation these companies had for choosing to use OSS or COTS based development. The
motivation "Lower costs" was agreed upon by almost 80% of the respondents, indicating that
the vast majority of respondents agree that using OSS or COTS contribute to reduced costs.
This is a expected since OSS is available at no or low cost. Based on the data, it is not spec-
ified why not 100% of the respondents answered that using OSS or COTS was a motivation
for reducing costs. It can be hypothesized that there are other costs than the cost of acquiring
the software is a factor which increase the costs of using OSS and COTS, such as the cost
of selecting the OSS or COTS components from a variety of sources. "Shorter development
time" and "More standardized products" was also answered by the majority of respondents as
motivations for using OSS and COTS. This is also as expected, because reusing finished soft-
ware components means less of the code has to be implemented by the developers themselves.
Finally "Improved quality" was chosen by fewer respondents, indicating that this motivation
was not as important as the other motivations.

43

44 7. Developing Software with OSS Components

Figure 7.1: Motivation for using OSS or COTS in Norwegian companies

7.2 Development of Software Using OSS

There are several motivations for companies to acquire OSS and use it as an important part of
the software development as described in the previous section. In this section, the focus will
be on how OSS is used in software development by companies.

One approach to using open source software is to use it as Off-The-Shelf components. Off-
The-Shelf (OTS) has been stated to be increasingly used by software companies according to
a study by (Conradi and Li 2005). OTS can be either commercial, called COTS, or open
source. COTS, is short for Commercial-Off-The-Shelf. In this report a software product with
the following characteristics will be referred to as COTS (Torchiano and Morisio 2004):

• COTS, is not developed at the same place which it is used.

• COTS can be both open source and closed source. In this report, only the aspects of
COTS related to open source will be relevant.

• COTS, is not commodity software which is distributed with the operating system.

• COTS, is integrated into the software being developed.

• COTS, is not controlled directly by the developers which use it.

A survey by (Conradi and Li 2005) has investigated certain aspects of how off-the-shelf
components are used in industrial projects. The survey showed that all OSS was delivered
with the source code, while one third of COTS components were provided with source code.
However, the survey found that the components were rarely modified, even if the source code
was available.

A Survey of Industrial Involvement in Open Source

7.3. Selection of OSS Components 45

Another survey by (Li, Bjornson, Conradi, and Kampenes 2004) performed on 16 Norwe-
gian software projects, shows that the companies were increasingly using COTS in the hope
that it would result in faster time-to-market and increased productivity. The survey indicates
that COTS has to be taken into account in the development process. (Li, Conradi, Slyngstad,
Torchiano, Morisio, and Bunse 2005) therefore proposed a revised COTS-based software de-
velopment process. The revised development process contains four proposed activities related
to using software components, which will be described in more detail later:

• Deciding whether to acquire an OSS component, or develop software with the same
functionality internally in the company, referred to as a build vs. buy decision.

• Selecting the best suited OSS components from a variety of competing alternatives.

• Learning to develop software based on the selected OSS components.

• Integrating the selected OSS components into the system which will be developed.

Build vs Buy Decision

Based on empirical results, (Reifer, Basili, Boehm, and Clark 2003) state that there are many
aspects of using COTS which need to be considered before it can be used. The study shows
that the maintenance cost of software based on COTS is more than or equal to the cost
of developing customized software. Using COTS is therefore not always the best solution,
especially in systems which have a long expected life-time. Before deciding to use COTS, it is
therefore common to decide whether to build the component from scratch or acquire it from
other sources, such as OSS. This decision should be made early in the development process
(Li, Bjornson, Conradi, and Kampenes 2004).

7.3 Selection of OSS Components
It is recommended to have a selection process to decide which OSS components to use. Three
selection processes will therefore be described. (Li, Bjørnson, Conradi, and Kampenes 2004)
has performed a survey of selection processes in Norwegian IT companies, which provided
relevant results about how companies select their components. An important result from this
survey was that companies did not use any formal process for selecting COTS components.
Further, the selection processes used in a project depended upon the context of the project.
One reason companies did not use a formal selection process was that developers already had
experience with some COTS components, and this experience was important in the decision of
which components to choose. The results of the survey showed that out of 30 respondents, 16
were using an experience based selection process, while 11 were using a hands-on trial-based
selection process.

Experience based selection

The first method by (Li, Bjornson, Conradi, and Kampenes 2004), is a selection-process based
on familiarity with existing COTS components. If a project member is already familiar with
a COTS component from a previous project, then this was a key factor for choosing that
particular component again.

Hands-on trial-based selection

The second method by (Li, Bjornson, Conradi, and Kampenes 2004) is a trial-based selection
process. This method was used because hands-on trial was stated to be the only way developers

Øyvind Hauge and Andreas Røsdal

46 7. Developing Software with OSS Components

could trust the quality of the components. Further, this trial enabled developers to learn using
the components. The Internet is used to find candidate components, and then a small number
of these are downloaded and evaluated. This method is hands-on trial-based, and is described
with the following steps (Li, Bjørnson, Conradi, and Kampenes 2004):

1. The Internet was first used to search for components, using keywords of the required
functionality.

2. If many candidates were found, then 2-3 were selected based on brief reviews of them.
Important selection criteria in this step are cost and marketplace trends.

3. Finally, a trial-version of each candidate is downloaded and tested locally.

Formal selection process

A third and more formal method for selection of OSS is proposed by (Madanmohan and De’
2004), which is found in Figure 7.2. The process is based on three activities, which can be
performed several times: Collection, Incubation and Critical Revision.

Figure 7.2: A selection model for OSS (Madanmohan and De’ 2004).

The collection activity involves searching for new components from several sources. The
incubation activity is when the developers themselves evaluate the components, while critical
revision involves rethinking the usage of the components in a critical way to decide if the
components need to be modified to fulfil new requirements as the system evolves.

Understand how to use the OSS components

According to (Li, Bjornson, Conradi, and Kampenes 2004), it is necessary to learn and under-
stand new software components before they can be used. This is easier to than in commercial
components, because the source code of the component is available.

A Survey of Industrial Involvement in Open Source

7.4. Summary 47

Figure 7.3: Possible ways to integrate OSS and commercial software, by (Deng, Seifert, and
Vogel 2003).

Integration of Open Source with Commercial software

There a different ways to develop software which is based on open source and commercial
software in some combination. Figure 7.3 shows possible approaches for achieving this. The
development can be driven by either open source or commercial software as the core. There is
also a distinction between tightly coupled OSS and non-OSS components. Depending upon the
license associated with the component, it can either be tightly coupled and heavily modified, or
lightly coupled, only used as a "black box" (Deng, Seifert, and Vogel 2003). In order to integrate
the OTS components, it is common to create additional code related to the integration, which
is called glue-ware (Li, Bjornson, Conradi, and Kampenes 2004).

7.4 Summary
There are many areas related to using OSS in component-based software development which
could have been studied further. In the future work section of (Li, Bjornson, Conradi, and Kam-
penes 2004), studying "the actual COTS-based development processes" has been suggested.
In addition, several challenges related to developing software based on OSS components have
been described (Reifer, Basili, Boehm, and Clark 2003).

The study performed by (Li, Bjornson, Conradi, and Kampenes 2004) about usage of OSS
components, selection of OSS components and some of the risk factors of using OSS have been
described. Further, statistics from the survey performed by ICT Norway described in this
chapter has provided information about Norwegian companies using OSS and COTS, and the
motivations behind these decisions.

By repeating some relevant topics of these two surveys, it is hoped to verify the results
from those surveys, as well as provide more qualitative information about current usage and
challenges.

Øyvind Hauge and Andreas Røsdal

48 7. Developing Software with OSS Components

A Survey of Industrial Involvement in Open Source

Chapter 8

Initiating, Managing and
Supporting Open Source Projects

Industrial involvement in open source can take several forms. We are only interested in the
involvement related to the companies which develop software, either by managing open source
projects of by participating with development efforts in a project run by others. This is
unfortunately not well described in the literature. Some information can be found at home
pages like MySQL, Trolltech, Sleepycat, Jboss, Ez, and others, but this information is not
always objective or complete. It seems to be a clear need for more research (and scientific
publications) related to how companies initiate, develop, and control open source products.
We will present some findings from the literature and information from the product providers
in the next sections.

8.1 Commercial Open Source Project Start-up

Open source projects initiated by individuals normally start with something small as presented
in Chapter 4. Open source projects initiated by companies can be started in at least three
ways, as an original idea, either as an idealistic idea or a business idea, as the last possibility
of a failing project, or as a project without economical potential.

Releasing a product as open source when you do not intend to make money of it makes
sense. This has been done with several tools and applications which do not have any particular
value to the company owning it. The product may benefit their customers and releasing the
product may give the company some credit. If it does not, the company is at least not losing
any important intellectual property.

The start of the Mozilla project was quite the opposite. As we saw in chapter 3, the
Mozilla project was started in 1998 when Netscape saw that they were loosing the browser
war against Microsoft and Internet Explorer. Netscape announced that they were giving away
their browser for free, with the source code (Hamerly, Paquin, and Walton 1999). People at
Netscape then established Mozilla.org as a separate organization. Mozilla.org was meant to
act as a coordinator for everyone working with the Mozilla software. An interesting challenge
related to releasing the software as open source, was removing proprietary components which
were included into the browser. When the browser was made open source, all the components
still under proprietary licenses had to be replaced.

The third option is having an idea and releasing the product with clear idealistic or business
goals in mind. Sleepycat Software was started to guarantee the quality of their open source
database, Berkeley DB. According to Sleepycat’s web page, Margo Seltzer and Keith Bostic

49

50 8. Initiating, Managing and Supporting Open Source Projects

formed Sleepycat Software in 1996 because the users of their database wanted commercial
support and new features (Software 2006). Cygnus Solutions is another company started by
entrepreneurs who saw the potential in open source (Tiemann 1999). In the late 80’s John
Gilmore, Michael Tiemann, and David Henkel-Wallace created Cyguns Solutions providing
commercial support, maintenance, and ports to new platforms for several GNU products.
They did not primarily have their own products but they provided services to other open
source products at the same time as they developed these products further. Having your own
product as an open source product could give you the same advantages. Open source products
can have the advantage of having an active community around the product and you can focus
on delivering services to the product instead of selling licenses.

8.2 Managing and Supporting Open Source Projects

Management of the Mozilla project was done by people from both inside and outside of
Netscape. The browser was organized in modules and every module had its "owner" (Hamerly,
Paquin, and Walton 1999). These owners were found both inside and outside of Netscape. Con-
trolling the modules allowed the owners to decide whether to accept or reject code-proposals
to a module. These decisions were based on the quality of the code and whether the licenses
were compatible with the Netscape Public License (NPL) or not.

Many open source projects supported by companies can also be managed by organizations
outside the company itself. Many companies support open source projects through foundations
like The Apache Software Foundation 1, Eclipse2, Mozilla 3 or the Free Software Foundation 4.
These foundations work more or less independently from the industry supporting and managing
the development of their respective open source products.

On the other hand, when industry supports open source projects more directly, they can
contribute with for instance development effort, infrastructure, or funding. As an example,
IBM claims that they have supported more than 120 open source projects including Linux
with more than $1 billion (IBM 2006).

8.3 Summary

We have seen that industrial open source projects can be initiated in at least three different
ways as an original idea, as the last possibility of a failing project, or as a project without
economical potential. We have also shown some examples of how industrial open source projects
are managed.

8.4 Challenges

An important observation is that it is surprising to see how few research publications we have
been able to find about company initiation of, control of, and participation in, open source
communities. Most of the information available is written by the companies themselves and it
is most of the time not any quality research.

Another, interesting thing to note is that several of these relatively small open source
companies have been bought by bigger companies. Redhat bought Cygnus back in 1999 and
JBoss announced on their web page, April 10th 2006 that Redhat were going to aquire JBoss.

1http://apache.org/
2http://apache.org/
3http://www.mozilla.org/
4http://www.fsf.org/

A Survey of Industrial Involvement in Open Source

8.4. Challenges 51

Oracle announced on their web page the February 14th that they were buying Sleepycat. Is
this a constant trend? Are small open source companies with good ideas, swallowed by bigger
companies?

Open source projects were said to be started because a problem were ’scratching a de-
velopers itch’. Is this true for projects started by companies as well? Firstly, are companies
driven by the same motives or ’itches’ as individuals or do they have other motives, and in
case which? Secondly, how are projects started in a company setting? How is the decision to
make a product open source taken? Are products started as open source projects or are they
made open source at a later stage?

Øyvind Hauge and Andreas Røsdal

52 8. Initiating, Managing and Supporting Open Source Projects

A Survey of Industrial Involvement in Open Source

Part III

Research

53

Chapter 9

Overview of the Research Process

This part of the thesis contains a description of our research. We start by presenting an
overview of the research process. In the following chapters we describe important steps in this
process. We discuss issues related to the research question, the research design, the context
of our research, and how we collected and analyzed our data. For a complete overview of the
content of this part, please see Section 9.3.

9.1 The Research Process

The original project description was presented in the introduction of this thesis. We selected our
research process with this description in mind. (Remenyi, Williams, Money, and Swartz 1998)
describe an eight phase research process for research in business and management. We adopted
this process with some minor modifications inspired by the process described by Jacobsen
(Jacobsen 2005). The eight phases in (Remenyi, Williams, Money, and Swartz 1998, 64-65)
are:

1. Reviewing the literature

2. Formalizing a research question

3. Establishing a methodology

4. Collecting evidence

5. Analyzing the evidence

6. Developing conclusions

7. Understanding the limitations of the research

8. Producing management guidelines and recommendations

These phases should be self explaining and the reader is advised to consult the book for
further descriptions of the process. It is important to notice that several of these phases will
go in parallel and that the work is iterative.

55

56 9. Overview of the Research Process

Activity Date
Project start-up 15th of January
End of literature review 25th of February
Preliminary research question 1st of March
First version of the questionnaire 9th of March
Company visits and interviews 13th-15th of March
Final version of the questionnaire 31st of March
Distribution of the questionnaire 7th of April
Questionnaire deadline 15th of May
Project deadline 21st of June

Table 9.1: Timeline of the research

9.2 Project Timeline
This section contains an overview of the major activities in this project. These activities are
explained further in the remaining of this, and the next part of the thesis.

In the beginning of the project, we sketched a plan similar to the timeline show in Table
9.1. We put time-slots instead of exact dates in this plan because a lot of the work is highly
related. The work was also done in parallel and in iterations. For instance, the literature study
which said to be finished the 25th of February was improved and change after this date as well.
The changes occurred because of new knowledge or feedback from colleagues or supervisors.
The work was performed using short term goals which were agreed on, on a daily or weekly
basis.

9.3 Presentation of the Research
Our process and the outcome of our process are presented as follows. A description of our
literature study can be found in Chapter 10, and the result of this literature study can be
found in the second part of this thesis. The formalization of the research question and the
final research question can be found in Chapter 11. The research design and a theoretical
foundation for this design can be found in Chapter 12. The context of the study, and the study
objects are presented in Chapter 13. We conclude this part of the thesis with collection and
analysis of the evidence in Chapter 14 and 15.

A Survey of Industrial Involvement in Open Source

9.3. Presentation of the Research 57

Process step Relevant parts
Reviewing the literature Chapter 10 and the prestudy
Formalizing a research question Chapter 11
Establishing a methodology Chapter 12
Collecting evidence Chapter 14
Analyzing the evidence Chapter 15
Developing conclusions Chapter 17
Understanding the limitations of the research Chapter 17
Producing management guidelines and recommen-
dations

This thesis

Table 9.2: Research process and relevant chapters

The sixth and the seventh step of the process, development of conclusions, and understand-
ing the limitations of the research, can be found in Chapter 17. Both steps are included in the
discussion of our findings, and the chapter is in the next part of the thesis.

The last step of the process is packaging and presentation of the research. The presentation
of our work is this thesis, and how we wrote this thesis will not be explained in any further
detail. A summary of the steps in the research process and the relevant parts of this thesis can
be found in Table 9.2.

Øyvind Hauge and Andreas Røsdal

58 9. Overview of the Research Process

A Survey of Industrial Involvement in Open Source

Chapter 10

Reviewing the Literature

Conducting a literature survey is part of the original problem description, presented in the
introduction. By carrying out such a study, we will fulfil parts of our requirements to this thesis,
it will help us to broaden our knowledge about open source, and give us a good theoretical basis
for building further research. The literature study will further provide input to the research
question and the choice of a research design. How we performed our literature study will be
presented in this chapter. The result of this literature study is presented in the pre-study part
of this thesis.

10.1 Sources
Material for the state of the art survey was found in many ways, through several different
sources. These sources and how we searched them will be described in this section.

As a starting point we used articles from the curriculum of both IT8003 Advanced Topics
Regarding IT and Organizations and TDT10 Software Technology COTS and Open source
software. Broadening this search was done by searching several journal databases, as presented
in Table 10.1, with different search words. The terms we used while searching were both
wide and more specific. The term "open source" is one extreme, and terms like "open source
community joining" would be a more specific search term.

Journal Database URL
The ACM Digital Library http://portal.acm.org/portal.cfm
EBSCOhost Electronic Journals Service http://ejournals.ebsco.com/Home.asp
ScienceDirect http://www.sciencedirect.com/
JSTOR - The Scholarly Journal Archive http://www.jstor.org/
Computer and Information Science Papers CiteSeer
Publications Research Index

http://citeseer.ist.psu.edu/

IEEE Xplore: Dynamic Home Page http://ieeexplore.ieee.org/Xplore/
dynhome.jsp

Table 10.1: Journal databases

In addition to these journal databases we reviewed papers from several workshops and
conferences as shown in Table 10.2, and from internet resources and Web journals as shown in
Table 10.3.

59

60 10. Reviewing the Literature

Workshop name URL
1st Workshop on Open Source Software Engineering http://opensource.ucc.ie/icse2001/
2nd Workshop on Open Source Software Engineer-
ing

http://opensource.ucc.ie/icse2002/

3rd Workshop on Open Source Software Engineering http://opensource.ucc.ie/icse2003/
4th Workshop on Open Source Software Engineering http://opensource.ucc.ie/icse2004/
5th Workshop on Open Source Software Engineering http://opensource.ucc.ie/icse2005/
C & T 2003 Workshop on Open SourceSoftware
Movements and Communities

http://opensource.ucc.ie/ct2003/

Table 10.2: Open Source Workshops

Site name URL
The Free Software Foundation http://www.fsf.org/
Open Source Initiative (OSI) http://opensource.org/
opensource.ucc.ie: resources for researchers http://opensource.ucc.ie/
Free / Open Source Research Community http://opensource.mit.edu/
First Monday - Peer reviewed journal on the Internet http://www.firstmonday.org/

Table 10.3: Web Resources

Articles were also found after recommendations from fellow students, researchers and su-
pervisors. Last and perhaps most importantly, references in the articles we evaluated were
searched for other interesting references.

In addition to articles and Web resources, we also searched the library at the university,
using the BIBSYS tool at http://ask.bibsys.no. We searched the database for particular
books, with open searches, and with more specific search words.

Lastly, we also used Google 1 and Wikipedia 2 to some extent to find pointers to literature
and more information about specific topics. This information was always cross-checked with
other sources, preferably with the source of the information.

10.2 Selection and Evaluation
Based on our project description, we tried to select papers relevant to industrial involvement
in open source. This manual selection would of course influence the result of the literature
study. Because the amount of papers published where open source is mentioned is quite large,
it is nearly impossible to read everything. There have been published open source related
papers, in many different fields, but we are primarily interested in software engineering and
preferably empirical work. We have therefore only selected papers which we found relevant to
this focus. The selection was performed by evaluating the title of the paper, or more often
also the abstract, introduction and conclusion. The number of citations was also taken into
account when using CiteSeer, and sometimes also which other papers, the paper cited.

1http://www.google.com
2http://en.wikipedia.org/wiki/Main_Page

A Survey of Industrial Involvement in Open Source

Chapter 11

Research Questions

We will in this chapter first present our final research questions, followed by a short overview
of how they were defined.

11.1 Research Goal and Research Questions

A high-level research goal is defined to determine the overall purpose of the research. Based on
this goal, several research questions are defined to fulfil the research goal. The research goal
and questions are presented in Table 11.1.

Research Goal:
Explore the following four roles: open source owner, open source partici-
pant, inner source participant, and user of open source components. Explore
the relationships these roles have to the open source community, their de-
velopment processes, their communication processes, and their motivations
behind assuming these roles.
Research Questions:
RQ1: Why do companies use OSS components, and how do they find and
evaluate these components?
RQ2: Why do companies choose to make their products Open Source, and
how can this be done successfully?
RQ3: Why and how do companies use development methodologies from
Open Source, in ISS development?
RQ4: How does the use of OSS influence the development processes of
companies?
RQ5: How and why do companies participate in the development of OSS
projects controlled by a community outside the company?

Table 11.1: Research Goal and Research Questions

61

62 11. Research Questions

11.2 Elaboration of the Research Goal and Research Ques-
tions

Based on the literature study, the goals of the COSI project (Chapter 13) and the objectives
of this thesis (Chapter 1), we started to form a research goal, and possible research questions.
These proposals were evaluated in collaboration with our supervisors and several of the pro-
posals were rejected, primarily because of time constraints, but also because it is important to
limit the scope of this thesis.

On one hand we have the results from the literature survey. We found that industrial
involvement in open source is poorly described in the literature. The literature survey also
showed that literature paints a somewhat unbalanced picture of open source. On the other
hand we have the overall goal of the COSI project, which is to better understand how open
source, and open source practices can be utilized in a commercial setting. Finally, we have the
responsibilities of NTNU in the COSI project, which is to establish a baseline of current open
source practices in industry. This includes both describing the industrial partners’ processes
and reviewing work described in research literature.

We saw that we could best contribute to NTNU’s work, to the COSI project, and to
improve the knowledge about open source by conducting a literature survey, and by doing
more empirical work related to industrial involvement in open source. To better understand
industrial involvement in open source it is necessary to empirically explore their relationships
to open source.

We have identified four open source related roles that a company can have in the COSI
setting. A company can either, own and manage an open source product, it can participate in
inner source development, it can participate in open source development, or it can use open
source components provided by a community without actively participating in the community.
An overview of these roles can be found in Table 11.2. We defined these roles based on the
COSI documentation, our literature review, information about the Norwegian partners in the
COSI project, and conversations between one of the authors of this thesis and employees from
the partners in the COSI project. These conversations took place at the COSI kick-off meeting
in Netherlands between January 17th and 19th.

The literature did not provide any unexplained phenomenon we could try to explain or any
clear hypotheses we could test. Based on the observations from the literature, we saw that we
needed to explore these four roles further to be able to observe new phenomenon, propose new
hypotheses, and build new theory. The literature study showed that many aspects of open
source are closely related, and it did not discover any clear focus areas. The COSI project tries
to cover several aspects of open source. The focus of our study will be software development,
but we cannot leave out all other aspects. We believe that including some aspects beside
software development, and doing a broader study will provide us and the COSI project the
best results. It is very important not to loose focus, but since we do not exactly know what
we are looking for, we fear that if we focus too much we might overlook important issues.

We wanted to explore the four roles described in Table 11.2, the motivations behind assum-
ing these roles, and the processes a company can be involved in when having these roles. We
have thus formed the explorative research goal in Table 11.1. Based on this high-level research
goal, research questions can be created to fulfil that goal. Exploring every aspect of these roles
is impossible, so some areas have to be prioritized.

Reuse of components, and component selection, is something that is normal to traditional
software development. Industry has started to use more and more OSS components as well.
We wanted to explore why they use OSS components, how they find them, and how these
components are evaluated. This resulted in RQ1.

Giving away your software for free as open source does not sound smart, or is it? More and

A Survey of Industrial Involvement in Open Source

11.2. Elaboration of the Research Goal and Research Questions 63

Role Description
Open Source Man-
ager

An open source manager is a company which controls the devel-
opment of a product, licensed with an open source license. The
company controls or manages access to the code and it decides the
further development of the product.

Open Source Par-
ticipant

An open source participant is a company which participate in the
development of an open source product controlled by others. Par-
ticipation can take several forms, from core development effort, to
requesting assistance from the community around the product.

Inner Source Par-
ticipant

An inner source participant is a company which uses open source
development practices in a closed consortium of partners, for in-
stance several companies working together, several departments in
a company working together.

Open Source Com-
ponent User

An open source component user is a company which develop soft-
ware using open source components without participating actively
in the community around the community. The component is thus
used as any other components acquired from any other component
provider.

Table 11.2: Company roles in open source involvement

more companies, like Trolltech, MySQL, Sleepycat, and others, have started to use this business
model. We want to understand the advantages and disadvantages of this model. In addition,
we want to understand the challenges of making a product open source. To understand this
better we formulated RQ2.

Inner source software (ISS) development is a fairly new term, and it is not described in
detail, in literature. We wanted to explore the characteristics of ISS. This made us formulate
RQ3.

Inner source software development is related to the use of OSS development practices in
a smaller setting. How is software developed by companies using OSS components, and how
is software developed by companies which participate in OSS development? What are the
characteristics of this kind of software development? We wanted to explore OSS related software
development, and RQ4 was formulated because of this.

Communicating in the open source communities is primarily done by simple text based
tools like email and chat. How do companies who are involved in open source related software
development communicate? We wanted to explore this issue, and we formulated RQ5.

By doing explorative research on these issues related to industrial involvement in open
source, we intend to provide guidelines for open source involvement, share our experiences
with the industry, and create a platform for further research.

Øyvind Hauge and Andreas Røsdal

64 11. Research Questions

A Survey of Industrial Involvement in Open Source

Chapter 12

Research Design

The research design is the blueprint for the collection, measurement, and analysis of data, and
will be used to answer the research questions (Cooper and Schindler 2001).

This chapter will present the research design of this thesis. The rationale behind choosing
this research design will be described first. Next, the relevant research methods involved in
this research design will be explained. The main research methods which will be described,
includes interviews and a questionnaire. The research design of these survey methods will be
described subsequently.

12.1 Choice of Research Strategy

The research design is based on the research questions of this thesis, found in Chapter 11.
Based on these research questions, relevant research methods and procedures will be chosen.
The research goal was stated to be explorative, where the purpose of the research goal is to
produce new knowledge about a topic which is relatively unknown.

There are three empirical strategies which are commonly used when performing research
in software engineering: experiment, case study and survey. An experiment is a formal and
controlled investigation within a laboratory environment, which provides better control over the
results than the two other methods. Experiments are often used to confirm existing theories.
A case study is often used to monitor and observe projects. Case studies can be used in
projects to compare the effects of a new method, compared to a baseline before that method
was introduced. A survey is an investigation usually performed in retrospect, and the most
common survey methods used to collect information is through interviews or questionnaires
(Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000). Which of these strategies would
be most suited to answer the research questions, given the constraints of interacting with the
companies participating in the COSI project? Since it is the least costly strategy for the
participating companies, and can be performed within the time-constraints of this thesis, it
was decided to perform a survey.

A survey can be either descriptive, explanatory or explorative (Wohlin, Runeson, Höst,
Ohlsson, Regnell, and Wesslén 2000). In a descriptive survey, the research questions are al-
ready known, and the survey will describe a situation or some characteristics of a population.
Explanatory surveys try to find reasons and causal relationships between observations. In ex-
plorative surveys the research questions are not clearly defined, and such surveys are performed
when the topic is not clearly understood. Explorative surveys are further useful when it is not
known which problems that can occur during the study (Cooper and Schindler 2001).

Explorative research questions can be solved by performing exploratory studies. The study

65

66 12. Research Design

in this thesis will be performed as an explorative survey, because there were no appropriate re-
search questions based on the literature study, and because we want to discover new knowledge
about open source development, as outlined in the research questions. Although the literature
study has shown that previous studies have been performed on some aspects of open source,
this study will concern areas where there is very little published research; such as the focus
on open source projects managed by companies and inner source software development. The
purpose of this study is therefore to answer the research questions by performing an explorative
study to find new knowledge about open source.

When designing a research study, (Cooper and Schindler 2001) recommend using a two
stage research design for explorative studies. The first stage is the most explorative one, where
the purpose is to define research questions and develop the research design. The second stage
is more descriptive and is performed on a larger sample of the population. Based on the
explorative research goal and questions, it was decided that first a qualitative study should be
performed on a small number of respondents, followed by a qualitative and quantitative study
on more respondents, based on the information learned during the first part. These methods
will be described in the following section.

12.1.1 Qualitative Studies

Qualitative and quantitative studies are two research approaches which will be used to collect
information for this study. The difference between the two approaches is that qualitative
methods collect information as text, while quantitative methods collect information as numbers.
Both methods are used for performing empirical studies, and each of them are used in different
situations depending on the desired result (Jacobsen 2005).

The output from a qualitative survey is typically a textual description of a particular
situation or object being studied. The following research methods are often used in qualitative
studies(Cooper and Schindler 2001; Jacobsen 2005; Wohlin, Runeson, Höst, Ohlsson, Regnell,
and Wesslén 2000):

Interview

In-depth interview is the most commonly used qualitative method. An interview is performed
when a respondent and a researcher has a dialog where information about the respondent is
collected. The interview can have various degrees of being structured, ranging from a conversa-
tion without strict structure or order, to a fully structured interview with predefined questions
and alternatives for the answers. Expert interviews can also be performed, where people with
specific knowledge about a topic is interviewed. Another common form of interview is a group
interview.

Observation

Observation of the study objects, for a first hand observation of the participants in the study.
For example, it is possible to observe how developers cooperate and perform their work using
a particular development process.

Case studies

A case study, which is an investigation of a single object or phenomenon, is often performed
within a limited time period. It is common to perform case studies on specific software projects,
and collect data at specific times to measure the effect of new techniques or methods. Case
studies are typically longitudinal, which will be described in section 12.2.

A Survey of Industrial Involvement in Open Source

12.1. Choice of Research Strategy 67

Other Qualitative Methods

One qualitative method is document analysis from secondary information sources, for example
analyzing requirement specifications. Another method is to perform an ethnography, which is
a study of how a cultural group describes itself.

12.1.2 Quantitative Studies

Quantitative research on the other hand, has the goal of measuring, counting or comparing
objects. Research objects are observed in their natural setting, searching for definitions and
meaning (Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000). The output of a
quantitative study is typically the measured numbers of the situation or object being studied,
or statistics describing a sample taken from a larger population.

The following research methods are commonly used in quantitative studies (Jacobsen 2005):

Questionnaire

Questionnaire is the most common quantitative method, and can be both quantitative and
qualitative. Information can easily be collected from a large number of respondents, and the
results can be compared. Information can be standardized by creating questions which are
answered by the respondent by selecting the answer from a list of alternatives created by the
researcher. Important concepts have to be operationalized, which means to create concrete
questions about more abstract concepts. The answers from the respondents can then for
example be analyzed statistically.

Other Quantitative methods

Other quantitative methods can include studies of secondary data, such as processing and
analyzing a database of defects reported from users.

12.1.3 Choice of Research Methods

Based on the preceding research methods and explorative research goal, and questions, it was
decided to first perform a structured interview, followed by a questionnaire.

The interview was chosen as a qualitative method because it was the best trade-off be-
tween usage of time, and its ability to provide detailed textual description for the research
questions. First, the conditions for the study was that three Norwegian companies presented
in chapter 13, participate in the COSI project, and therefore have agreed to participate with
some employees in a limited time period. An interview would therefore provide sufficiently
detailed information in a relatively short period of time. Further, given that very little was
known about the companies before this study began, an interview would allow the respondents
to answer, elaborate, and clarify their situation and role during the interview. Finally, given
that interviews are the most common qualitative method, and therefore most likely to be fa-
miliar to the respondents, it was decided to perform an interview. The interview should be
structured as much as possible, to get comparable results from the respondents, and because
the research design of the interview then can be used as a basis for creating and improving
the research design for the questionnaire. However, the interview must also have open-ended
questions because of the explorative research question. See section 12.3 for the design of the
interview.

The questionnaire was chosen as a qualitative and quantitative method, because it is the
most cost-efficient way to get information from the potentially large number of companies
participating in the COSI-project. Since the companies are distributed in several different

Øyvind Hauge and Andreas Røsdal

68 12. Research Design

countries, they can respond to an electronic questionnaire over the Internet. Analyzing and
comparing the quantitative results from the questionnaire will then be possible. Questionnaires,
as a survey method, can contain both quantitative and qualitative questions depending on what
information is required. See section 12.4 for the design of the questionnaire.

12.2 Approaches to Creating a Survey

Surveys can have an inductive or deductive strategy, and be either longitudinal or cross sec-
tional, descriptive or causal, and have other characteristics which are decided during the design
of a survey. This section will clarify some of these design decisions. These are philosophical
issues related to the way people can observe the reality, and how a survey best can describe
the reality. (Jacobsen 2005) describes two perceptions of reality: the positivistic view which
implies that reality can be studied objectively, in opposition to the hermeneutic view, based
on understanding which implies that the reality is made and interpreted by people. Since this
survey has the goal of describing reality both qualitatively and quantitatively, it is necessary
to be aware of the limitations and choose the most suited research methods.

12.2.1 Inductive or Deductive Reasoning

Deduction is a form of reasoning where the conclusion follows from the reasons given, opposed
to induction, where the conclusions are drawn from facts or evidence (Cooper and Schindler
2001).

Deductive research is based on existing experiences and theory, while inductive studies
create theories from their own observations. Qualitative studies are often based on deductive
reasoning, for example in the case of a questionnaire, because information must be ordered
before the survey is performed, for example the alternatives for answers must be prepared
beforehand. Therefore, deductive reasoning can only create a limited amount of new knowledge
within the scope decided beforehand by the researchers (Jacobsen 2005).

Inductive research on the other hand are more open to new knowledge than deductive
studies, and are useful for exploring topics which are unknown in advance (Jacobsen 2005).

The study performed as part of this thesis will use aspects of both inductive and deductive
research. As a consequence of the explorative research goal, inductive reasoning will be used
to a large extent to create conclusions based on evidence from the interviews. Further, both
inductive and deductive reasoning will be used to create conclusions based on the questionnaire.
The questionnaire is deductive, in that it will be designed based on a literature study of existing
research studies, but also inductive since there will be open ended qualitative questions.

12.2.2 Longitudinal or Cross-sectional Study

The study will be cross sectional, rather than longitudinal. This means that the study will
represent the situation reported by the responding companies at a specific point in time, rather
than comparing changes over time (Cooper and Schindler 2001). This decision is already given,
because of the limited time-period available for this thesis. Future studies could be performed
to compare the results from this study, to perform a longitudinal study which would reveal
long-term trends and changes.

12.2.3 Descriptive or Causal Study

Studies can be descriptive, which describes the, who, what, where and when of a particular
research area. Studies can also be causal, which search for causal relationships between vari-

A Survey of Industrial Involvement in Open Source

12.3. Interview Design 69

ables, why certain decisions are made (Cooper and Schindler 2001). The study in this thesis
will aim to be both descriptive and causal.

12.3 Interview Design
The interview is designed to provide qualitative answers to the research questions. The design
of the interview is explorative, where the main objective is to discover new aspects of open
source related to the research questions. The lessons learned from the interview will be used
to create a questionnaire, which is described in the next section. The process of creating the
research design for the interview has therefore been closely related and mixed with the design
of the questionnaire.

12.3.1 Respondents
The interviews were conducted at the three Norwegian software companies Keymind, Linpro
and eZ Systems, where developers and managers were interviewed. These respondents will be
described further in Chapter 13.

The companies were selected using convenience sampling, which means that the companies
were selected because they participate in the COSI project in Norway, and therefore are avail-
able for interview. However, selection of respondents is related closely to how much the results
of the interview can be generalized to a wider range of companies (Wohlin, Runeson, Höst,
Ohlsson, Regnell, and Wesslén 2000). All companies have reported that they have a role in
OSS, so the respondents are taken from the correct population of companies. However, three
companies will not be representative for all companies with a role in OSS, and this has a big
impact on how the results can be generalized. The validity of the results will be discussed and
elaborated upon in the next part of this thesis.

When performing an interview with three companies, it will be possible to focus on the
special and unique aspects of these companies, rather than searching for results that can be
widely generalized (Jacobsen 2005).

12.3.2 Relation to Research Questions
The interview is supposed to further improve and fulfil the research goal from Chapter 11,
as well as further improve the research design for the questionnaire. Therefore, the research
questions were not fully formalized before the interviews began, since the interviews were
supposed to help define them. The research goal was more formalized before the interviews
began.

Based on initial descriptions given from the companies, it was already hypothesized that
these companies had the roles open source manager, open source participant, and user of open
source components. This would be verified during the interview.

Each part of the interview would explore the relationships these roles have to the open source
community, their development processes, their communication processes, and their motivations
behind assuming these roles, since this was the initial purpose of the research goal.

12.3.3 Interview Design Application
Next the high-level interview design had to be applied to create an interview which could be
performed with respondents.

An interview guide was created to give an overview of the topics that should be covered
by the interview. This guide can be found in Appendix C. The interview would be structured
to a large extent, with predefined questions, containing both multiple-choice questions with

Øyvind Hauge and Andreas Røsdal

70 12. Research Design

predefined answers and open ended questions. During the interview it will still be possible to
ask follow-up questions to further elaborate on any areas where more information is needed.
A structured interview is easier to analyze, and will ensure that the respondents are answering
questions about the topics which were planned (Jacobsen 2005). The interview guide was
written in Norwegian to be used during interviews with native Norwegian respondents.

The interview would provide information which should be used to create the questionnaire.
Therefore, the interview guide contained questions from an early version of the questionnaire,
which would be refined through the interviews to create the final questionnaire.

12.3.4 Interview Limitations

There are many problems which can occur when designing and performing an interview, and
these effect the validity of the results. Some of the problems are related to the sample of
respondents answering the interview, while other limitations can be categorized as non-response
and response errors.

Performing interviews is time-consuming, so it is difficult to interview a representative
number of responding companies. This means that the validity of the results will have to be
discussed when analyzing the results.

Non-response errors occur when the respondent for some reason will not answer the inter-
view. This reduced the sample size, and has an impact on the validity of the results. Response
errors occur when the reported data does not match the actual true data. These errors can
occur if the respondent does not answer the questions accurately or completely. People of-
ten over or underestimate measures. Response errors can also occur if the interviewer makes
mistakes, such as not following the interview guide (Cooper and Schindler 2001).

12.4 Questionnaire Design

A questionnaire is a very common way to collect both qualitative and quantitative data from
a large number of respondents. The information can be standardized, which makes it possible
to compare results from different respondents. This section will describe the design of the
questionnaire used in this study. The final questionnaire can be found in Appendix B, in paper
format. The questionnaire will also be available in an online format, containing the same
questions. The final questionnaire in Appendix B also contains answers from respondents, to
limit the number of pages used for attachments.

12.4.1 Respondents

The respondents to the questionnaire will be all companies participating in the COSI project.
These companies are located in different countries, so business units at different locations may
submit separate responses. The number of companies participating in the COSI project is
approximately 16. There is also a small number of research institutions participating in the
COSI projects, although most of these will not have a role in OSS. These respondents will be
described further in Chapter 13.

The companies were selected using convenience sampling, with participation in the COSI
project as the only selection criteria. This selection is not representative for any larger pop-
ulation of companies, so the results will mainly be valid for the participating companies only.
However, the sample size for the questionnaire is larger than the sample size for the interview,
which will have a positive effect on the validity of the potential results.

A Survey of Industrial Involvement in Open Source

12.4. Questionnaire Design 71

12.4.2 Relation to Research Questions

The questionnaire should reflect all aspects described in the research goal and research ques-
tions. Based on the research questions and the results from the interview, the four roles open
source owner, open source participant, inner source participant, or user of open source com-
ponents should be further explored. These are very diverse roles, so it became apparent early
during the design of the questionnaire that these were separate, partially overlapping roles, and
that this had to be reflected in the research design. It was also assumed that companies could
have several roles, based on the initial description given from the companies about themselves.

After having performed the interview, the four roles described in the research goal had
become more clearly understood, and these four roles became the basis for the organization of
the questionnaire. The four parts of the questionnaire will be described next, and how they
are related the structure of the questionnaire to the research questions and literature study.

Initiating and Managing OSS

This part of the questionnaire is related in the role ’Open Source Manager’ described in the
research goal, and its sole purpose is to answer research question 2. The part contains questions
based on Chapter 8 from the literature study. The literature study found many unanswered
questions related to companies initiating and managing OSS projects, which will be elaborated
upon in this part of the questionnaire.

Participating in Inner Source Development

Inner source development has been discussed in section 5.3 in the literature study, and is also
one of the roles companies take related to OSS according to the research goal. This part of the
questionnaire will answer research question 3.

The part about inner source in the questionnaire is highly explorative because very little
information is written about the topic in published articles, and none of the companies par-
ticipating in the interview-part of this study have stated that they participate or use inner
source.

Interacting with or Participating in OSS Communities

This part will describe the aspects of companies interacting with or participating in OSS com-
munities, related to communication processes and relationships to the open source community
of the research goal. This part of the questionnaire is related to research question 5. The
questions will be based on the literature study in Chapter 5. These questions will validate the
existing research in company interaction with OSS communities, and possibly discover new
facts about the topic in explorative, open-ended questions. The motivational factors for such
involvement will be important.

Developing Software with OSS Tools and Components

This part of the questionnaire is related to the role OSS component user in the research goal.
Questions will be mostly quantitative, with some open ended questions in addition. This part
of the questionnaire is related to research question 1 and 4.

A large part of these questions will be related to exploring development processes which
are used for selecting OSS components by companies. Some questions will be based on the
literature study in Chapter 7, while other questions will be reused from a survey titled ’Survey
on Risk Management in OTS-based Development in IT Industries in Several Countries’ (Li,
Conradi, Slyngstad, Torchiano, Morisio, and Bunse 2005) at NTNU. The authors of that survey

Øyvind Hauge and Andreas Røsdal

72 12. Research Design

have given permission to reuse and compare the questions and results of relevant parts. The
reused questions can be found in the final questionnaire as part of questions 42 and 50. This is
a deductive form of reasoning, where the existing results from the previous study are compared
with new observations from the COSI companies.

12.4.3 Questionnaire Design Application
This section will describe how the questionnaire was created by applying the design with
methods commonly used in questionnaires.

Filter questions

The questionnaire has several parts including a part for each role described in the research
question, as well as a part to collect information about the respondent, product and company.
Therefore filter questions are used to allow respondents to answer only the parts which are
relevant for the respondent. It is important that respondents reply only to questions which
are appropriate for the validity of the results. Further, the filter questions should not be too
many and too complex to confuse the respondents.

Types of Questions and Scales

The questionnaire will contain both qualitative and quantitative questions. According to
(Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000) qualitative studies perform
measurements of questions on the nominal and ordinal scales, while quantitative studies per-
form measurements of questions on interval and ratio scales. These scales will be explained in
this section.

The qualitative question types are open-ended questions where the respondent can answer
freely. These types of questions are used when it was difficult to create predefined answers,
and when unique answers from each respondent were of interest.

Quantitative questions are used to classify the answer of the respondent into a predefined
and standardized format. These are the types questions mainly used in the questionnaire:

The first is questions where the answer is chosen from alternatives on a nominal scale,
which means that the answer only represents a form of mapping into categories, such as a
classification, label or choice of alternatives. For example, the answers ’Yes’, ’No’, and ’Don’t
know’ are three answers on a nominal scale. Since the various alternative answers have to be
predefined before the questionnaire is answered by respondents, it can sometimes be difficult
to create all the alternatives that apply for a particular respondent. Therefore, most questions
have the possibility to answer an ’Other (please specify):’ alternative which the respondent can
use when the predefined alternatives are not sufficient. The ability to specify ’Don’t know’,
is also available in most questions, when the respondent is not able to answer the question
(Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000).

Questions of ordinal scale ranks the answers according to some ordering scale (Wohlin,
Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000). In the questionnaire, interval scale is
used to classify the respondents opinion on questions, on a scale where the distance between
the different ratings have a meaning, for example a scale from ’Small’ to ’Large’. For many
questions of interval scale, a Likert scale is used. Many questions are formulated as ’To what
extent do you agree with the following statements?’. Then the following scale for answers is
used: ’Don’t agree at all’, ’Hardly agree’, ’Agree somewhat’, ’Mostly agree’, Strongly agree’
and ’Don’t know’. When a question is formulated as a question about size or amount, then the
ordinal scale ’Not at all’, ’Small’, ’Some’, ’Large’, ’Very large’ and ’Dont’ know’ is used. These
scales were chosen because they are used in other studies, and when comparing the results
from other studies, it is important that the scales are compatible.

A Survey of Industrial Involvement in Open Source

12.5. Summary of Research Design 73

Finally, some questions of ratio scale were used to answer questions about numerical mea-
sures such as age.

12.4.4 Questionnaire Limitations
One major limitation of questionnaires is that questions can only be asked about topics which
we subjectively think is important. As a consequence, it can be difficult to define the correct
questions, and results can be interpreted to answer the expectations that the researcher initially
had, rather than what the actual results are (Jacobsen 2005).

12.5 Summary of Research Design
Table 12.1 summarizes the research design of the study in this thesis, which has been described
in this chapter.

Research Goal Explore the following four roles: open source owner, open source
participant, inner source participant, and user of open source
components. Explore the relationships these roles have to the
open source community, their development processes, their com-
munication processes, and their motivations behind assuming
these roles.

Research Methods Structured Interview and Questionnaire.
Qualitative and quantitative study.
Cross-sectional time perspective.
Inductive and deductive reasoning.

Interview Design Structured interview.
Respondents 3 companies: Keymind, eZ Systems, Linpro.
Sampling method Convenience sampling.

Questionnaire Design Questionnaire based on research question and interview results.
Respondents 16 international companies participating in the COSI project.
Sampling method Convenience sampling.

Table 12.1: Summary of research design

Øyvind Hauge and Andreas Røsdal

74 12. Research Design

A Survey of Industrial Involvement in Open Source

Chapter 13

Research Context and Study
Objects

In this chapter we will describe the context of our research, the COSI project, the Norwegian
COSI project, and the partners in the Norwegian COSI project.

13.1 The COSI Project
The COSI project (Co-development using inner & Open source in Software Intensive products)
is an European ITEA project. It was started late 2005/early 2006 and it will be running
until the end of 2008. The project consists of both industrial and academic partners from
Sweden, Finland, Spain, Netherlands, and Norway. The industrial partners range from big
multi-national companies like Nokia, Philips, Telefonica, and Telvent; to smaller companies
like Meritie and Keymind with six employees each. These partners develop everything from
hardware and embedded software to more traditional software. A list of the partners can be
found in Table 13.1.

COSI is based on the following observations related to shifts in software development, and
the fact that for most software only a small part is differentiating. The project proposal
suggests that only 5 to 10% of most software is differentiating (van der Linden 2005).

• Shift from in-house development towards subcontracting and integration

• Shift towards coalitions (e.g. open platforms)

• Shift towards collaboration with open source development communities

The consequence of these shifts is illustrated in figure 13.1. The project predicts that more
and more software is produced in, or with open or inner source development. More about these
shifts and the commercial use of open source can be found in Chapter 6.

The project intends, first of all, to increase the awareness of the industrial usage of dis-
tributed collaborative software and open source. Secondly, to understand the development
model used in open source communities, and to learn how industry can benefit from this man-
ner of developing software. Thirdly, to deploy key aspects of open source software engineering
inside a limited scope, in what we call inner source development. It is particularly interesting
to understand how to achieve trust and understanding in such collaboration. Fourthly, to
understand how to take advantage of the software shift from differentiating to commodity soft-
ware. This means keeping a company from losing intellectual property to other participants in
a community or collaboration, and avoiding wasting valuable engineering resources developing

75

76 13. Research Context and Study Objects

Company Role Country
Philips Industry Netherlands
Finalist Industry Finland
Nokia Industry Finland
Meritie Industry Finland
Gamelion Industry Finland
VTT Technical Research Centre of Finland Research Finland
Helsinki School of Economics Research Finland
ICT-Norway(partner) Industry Norway
eZ Systems(subcontractor) Industry Norway
Linpro(subcontractor) Industry Norway
Keymind(subcontractor) Industry Norway
NTNU(subcontractor) Research Norway
Telvent Industry Spain
Telefonica R&D Industry Spanin
European Software Institute (ESI) Research Spain
Universidad Politecnica de Madrid Research Spain
Combitech Systems Industry Sweden
Högskolan i Skövde Research Sweden

Table 13.1: The COSI partners

Figure 13.1: Prediction of the percentage of parts in embedded software(van der Linden 2005)

infrastructure or working alone with something that could be developed as open source or in
collaboration with others. In other words finding, and staying in the middle area of Figure
13.2. The lower left corner should be avoided because this software could be acquired cheaper
elsewhere, and the upper right corner should be avoided because it would mean giving away

A Survey of Industrial Involvement in Open Source

13.2. Norwegian COSI 77

the competetive edge to competitors. This figure has also been explained in section 6.2 in the
prestudy.

Figure 13.2: Efficient and effective development(van der Linden 2005)

For more information about the COSI project, please see http://itea-cosi.org and the
full project proposal (van der Linden 2005).

13.2 Norwegian COSI

The Norwegian sub-project is sponsored by the Norwegian Research Council and led by ICT-
Norway. ICT-Norway has more than 320 members, with a combined annually turnover of
approximately 12 billion Euro (IKT-Norway 2006). In addition to ICT-Norway, there are also
three industrial partners, which will be described below, and one academic partner, NTNU.

The focus of the Norwegian project is process improvement of development processes related
to open and inner source software development. The Norwegian project is further responsible
for deliverables to the European project related to development processes. Each industrial
partner is responsible for reporting their processes related to open source, and NTNU is re-
sponsible for gathering these experiences and presenting them to the European project.

In the next subsections, the industrial partners in the Norwegian project will be briefly pre-
sented. The information is gathered from their respective websites, public documents available
about the companies, from the research proposals (van der Linden 2005; Dahle and Conradi
2005), from the interviews, and from conversations with employees in the different companies.

13.2.1 Keymind

Keymind Computing AS, formed in 1998, is a small consulting company focused on developing,
maintaining and supporting IT solutions. They have six employees, located in three different
offices.

Øyvind Hauge and Andreas Røsdal

78 13. Research Context and Study Objects

Their main project is digital screening, or mammography, within the Norwegian health care.
Keymind develops, maintains, and supports the integration of digital equipment with existing
IT-solutions in the mammography program. The mammography solutions, is a distributed
solution located on several sites. The solution uses replicated databases to store the patient
information and the test results. The patient information is among other things used to call
in the patients automatically to regular controls.

Keymind is a user of open source components and open source tools. These tools and
components are used in the development of their solutions. Keymind believes using open source
can give them even further economical benefits then they have today. The cost of maintenance
is proportional with the amount of code, and Keymind believe they can cut maintenance costs
by using code maintained by a community. Keymind are participating in the COSI project
to be able to analyze and further develop their use of OSS. For further information about
Keymind Computing, see their website at http://www.keymind.no/.

13.2.2 Linpro
Linpro has since their beginning in 1995 focused on services around the Linux platform and
use of open source software. Linpro is growing and with more than 50 employees, they are
probably the largest open source based consulting company in Norway.

Linpro have competence within several areas like the Linux desktop, security, project man-
agement, network, databases, several programming languages, and operation of IT systems.
They provide development and integration services, support, some products developed by
themselves, training, and courses. They also provide operation of IT systems for several big
Norwegian customers like Elkjøp, A-pressen, Netcom and Telenor. In addition to these ser-
vices, they have their own webshop which is used to sell Linux related products and some
server hardware.

Linpro provides services on an open source platform, they develop software using open
source tools and components, and the whole company has it’s roots to the open source com-
munity. All this makes Linpro a very interesting partner for the COSI project. Linpro wishes to
improve their cost/risk-evaluation, delegate more of their software development to open source
communities, and improve their relationship in the open source community. More information
about Linpro is available at http://www.linpro.no/.

13.2.3 eZ systems
eZ systems1, established 1999, has since their start-up had success with their Enterprise Open
Source Content Management System, eZ publish. eZ has their main office in Skien, Norway,
but they are also located in Oslo (Norway), Ukraine, France, Canada and Germany. They
have at the moment more than 70 employees from close to 20 countries, but are still growing.
Through participation in the COSI project, eZ wishes to gain insight into how they can grow
to become a larger global actor than they are today.

Their most important product is eZ publish. It is an open and freely available content
management solution developed in php. eZ systems provides services, product responsibility,
and other related software to this solution. eZ Publisher is licensed under the GPL license and
their own proprietary licenses. This allows the user to select which kind of licensing scheme
he or she wants. Around their product they have a community consisting of customers from
all over the world, and more than 20 000 registered users. More information both about the
community and about eZ can be found at their website http://ez.no/.

1eZ systems is pronounced "easy systems". It is spelled with lowercase e and s, and uppercase Z

A Survey of Industrial Involvement in Open Source

Chapter 14

Collecting Evidence

We will in this chapter describe how we collected data and information from our interviews
and from the respondents to our questionnaire. We start by describing how we conducted the
interviews before we describe how we improved our questionnaire, and the tool we used to
gather responses to the questionnaire.

14.1 Interviews

Through the COSI project we were able to visit each of the three Norwegian companies in the
period March 13th, and 15th. During these visits we conducted interviews with one, two, or
three employees (in groups), see Table 14.1. The interviews were conducted in Norwegian, as
semi-structured interviews using an interview guide and an early draft of the questionnaire to
structure the conversation (Appendix C). To allow the interview objects to be prepared for
the interview, we sent them the draft of the questionnaire. The draft helped us structuring
the conversations, at the same time we got valuable feedback on the questionnaires structure
and content. We focused the interviews using only the part(s) of the questionnaire relevant to
each company, and the role they have related to open source.

Company Interview objects Company role
Keymind 2 developers User of OSS components
Linpro 1 developer OSS owner, OSS participant, and

user of OSS components
eZ systems Primarily 1 CEO and 1 developer, but an-

other developer joined us for parts of the
interview

OSS owner

Table 14.1: Interview objects

Our supervisor, Carl-Fredrik Sørensen, followed the interviews together with the researchers,
as an observer. Both the researchers and our supervisor were already introduced to the in-
terview objects before the interviews, and the objects were familiar with the purpose and the
context of the interviews. This and the fact that the interviews were conducted in the of-
fices of the companies allowed the employees to feel safe. The only unfamiliar objects in the
surroundings were our audio recording equipment.

One of the researchers took notes during the interviews, using pen and paper, while the

79

80 14. Collecting Evidence

other researcher led the interview. To avoid loosing details and to reduce the problem of having
a biased researcher taking notes, all interviews were recorded using a digital recorder.

The interview objects were most of the time allowed to talk freely about what they found
relevant to the questions in the questionnaire, but what they said could be followed up with
further questions. These were primarily asked by the researcher leading the interview, but at
times also by the researcher taking notes and our supervisor.

The interviews lasted in total between three and four hours, only interrupted by short
breaks. Even though the interviews were quite long, all the interview objects seemed to answer
openly and patiently to the questions asked during the whole interview. This could indicate
that they felt comfortable with the situation.

14.2 Questionnaire

This section will describe how we improved our questionnaire using feedback from project par-
ticipants and from colleagues at NTNU. We will present how the questionnaire was distributed,
and how we collected data.

14.2.1 Improving the Questionnaire

While working with the questionnaire we sought advice from fellow students, PhD students, and
our supervisors Professor Reidar Conradi and Dr. Carl-Fredrik Sørensen. We did this to remove
any confusion and to improve our questions. The reviewers read through the questionnaire
and provided valuable feedback both to our questions, with additional questions, layout and
wording. The part of the questionnaire about inner source participation came as a direct result
of one of these revisions.

Drafts of the questionnaire were also sent out to the partners in the international COSI
project. We got feedback from some of them and we were able to resolve some misunderstand-
ings. One example of what we corrected after feedback from the project was the use of the
terms "open source" and "inner source". These were reported to be used in a confusing way,
and these confusions were resolved. Another example was confusion made by mixing the terms
"open source project" and the term "open source product". And a last, and pretty important
example, is the scope of the response. Originally, we wanted the respondents to answer on
the behalf of their company. This should be unproblematic for SMEs, but it would lead to
difficulties for big, global companies like Nokia and Philips. We therefore changed the scope
of the response to concern the respondent’s business unit.

The questionnaire was also sent to the Norwegian companies before the interviews. We
used, as mentioned, these drafts to both structure the interviews and to get feedback on
the questionnaire. The feedback from the interviews was used to improve the questionnaire
further. Many new and interesting questions were found through the interviews, some questions
were also found to be uninteresting and they were therefore removed. The writing of several
questions, were also improved to avoid misunderstandings.

One example could for instance be one of the questions related to use of open source
components. The original statement "Requirements to the product were changed a lot" was
changed to "Requirements to the product your company developed were changed a lot", because
some of the respondents thought it was the requirements to the component which were changed,
not the requirements to the final product which embody the component that were changed.

A Survey of Industrial Involvement in Open Source

14.2. Questionnaire 81

14.2.2 Implementation and Distribution of the Questionnaire

The final implementation of the questionnaire was done in a tool provided by ICT-Norway,
called confirmit1, http://www.confirmit.no/. ICT-Norway normally use conformit for their
questionnaires, and they wanted us to use it too since the questionnaire is part of the COSI
project. They kindly provided us with a license to the tool, and we were able to benefit from
having a ready-to-use tool, and an infrastructure for data collection. conformit is an online tool
for implementation and distribution of questionnaires. It also contains simple programming
constructs, like if and loops, and some reporting and exporting features. It is possible to
both do simple reporting in the web-interface, and to export data to e.g. comma-separated
files, Microsoft Excel, or SPSS. The implementation of our questionnaire was done through a
web-interface as shown in Figure 14.1.

Figure 14.1: Conformit web-interface when designing a questionnaire

Having such a tool allowed us to focus on the development of questionnaire, and leave every-
thing else to the tool. The development of the questionnaire was started before conformit was
available, and it was done using a word processor. The implementation in conformit was done
quite fast, and the tool provided us with predefined templates which gave our questionnaire
the same look as other ICT-Norway questionnaires, as shown in Figure 14.2.

1confirmit is actually written with a lowercase c

Øyvind Hauge and Andreas Røsdal

82 14. Collecting Evidence

Figure 14.2: Conformit web-interface as seen be respondents

14.3 Problems while Collecting Data

All the industrial partners in the COSI project committed to respond to the questionnaire,
and the questionnaire was sent out to these partners. Our supervisor, Carl-Fredrik Sørensen,
who is NTNU’s contact person in the COSI project, was responsible for the distribution of the
questionnaire. He helped us by contacting the COSI partners and asked them to complete the
survey. Getting responses was unfortunately more difficult than expected, and contacting the
partners had unfortunately to be done several times, both through email and by phone.

Time is always a problem and some of our interview objects did not have time to prepare
as much as wanted for the interviews. It did not turn out to be a problem but we could have
received more feedback on the questionnaire, if they could have used a bit more time to prepare
for the interviews.

14.4 Feedback from the Respondents

Since the respondents are participating in the COSI project they should be interested in the
results and motivated to respond to the questionnaire. We had, as mentioned, some problems
getting responses, but we hope the results will be interesting for the respondents. One of the
respondents commented that "I am very interested in the outcome".

We knew that the scope of the questionnaire, were quite large, but since we divided the

A Survey of Industrial Involvement in Open Source

14.4. Feedback from the Respondents 83

questionnaire in four parts we hope that this would not be a problem. Because the research
questions are explorative we included some open questions in the questionnaire. Some of the
feedback we got on the questionnaire was related to these open questions, and the time used
to complete the survey. One respondent commented "Asking to describe a process in a survey
seems too much to ask", another said "To describe the development process takes a lot of time.
Please try to make that part easier to fill inn (checkboxes or similar mechanism)."

Other respondents were uncertain about which part to respond to. Some of the bigger
companies reported that it was hard to get people to respond because they were not working
with open source, but rather global development. Others were uncertainty about which section
to respond to, especially related to inner source. One respondent requested clearer distinction
between personal participation in open source and participation initiated through his employer,
saying "I have participated [in] OSS projects in two ways: - as a hobby - at work[.] I would
have appreciated more clear distinctions between the two".2 Other respondents were a bit
uncertain about when you are considered as a participant. Is it enough to read send an email
asking for help every now and then, or do you have to develop code and new functionality to
the product to be considered as a participant?

The respondents reported to use between 10 and 180 minutes to complete the survey, with
and average of about 45 minutes. This is perhaps a bit too much, and the scope of the
questionnaire could perhaps be reduced and more focused, to get more responses, and to make
it easier for the respondents to respond.

On the other hand, one responded suggested to include even more into the questionnaire,
saying "The questionnaire was very good for OS/Inner source projects dissemination [and] for
analyzing them thoroughly. There could also be a selection for OS platforms as they are quite
usable today. eg. JBoss, Ez etc."

2Some spelling mistakes were corrected, and some words were inserted to make this and other comments
more readable

Øyvind Hauge and Andreas Røsdal

84 14. Collecting Evidence

A Survey of Industrial Involvement in Open Source

Chapter 15

Analyzing the Evidence

In this chapter we will give a short presentation of how we analyzed the data recorded through
the interviews and our questionnaire. The results are presented in Chapter 16.

15.1 Interview

After the interviews were completed they were transcribed in Norwegian, using a word-processor.
This was a time consuming process, but it was fruitful work. By transcribing the interviews
we had to listen through the interviews. This made us reflect over the conversations, and the
things which were said during the interviews. This reflection made us able to find important
topics from the interviews. These topics were discussed, and we used the transcriptions, and
the recordings of the interviews to find more information about these topics. The selection of
interesting topics is of course a totally subjective process depending on the individuals doing
it.

We used the transcriptions to find quotes and topics from the interviews, but we also used
the recordings once more to get the wording of the statements exact, and to fill in some gaps in
our transcriptions. To back-up our findings, we translated some statements and included them
in the thesis as quotes. Translating a quote directly from Norwegian to English is difficult, but
we tried to preserve the original wording.

15.2 Questionnaire

The results from the questionnaire were gathered using the web-tool described in the previous
chapter. We exported these results to a spreadsheet, and included them into the original
questionnaire, see Appendix B. This document contains the answers from respondents to the
parts of the questionnaire related to the research questions, while parts 1 and 6 are removed
to ensure the confidentiality of the respondents. Answers to qualitative questions have been
included without modification, while answers to quantitative questions have been reported as
the number of answers to each alternative answer.

The respondents were taken from the COSI project. The number of respondents is quite
low as a consequence of the small population. We had in total 24 responses from 11 different
companies on the questionnaire. These responses were distributed on the four parts as shown
in Table 15.1. One of the 24 respondents did not answer any of the four sections.

We used the word document with the answers to see if we could find any trends, or any
qualitative answers that could give us insight into the respondent’s relations to open source.

85

86 15. Analyzing the Evidence

Part Number of respondents
1 Initiating and Managing OSS 3
2 Participating in Inner Source Development 6
3 Interacting with or Participating in OSS Communities 5
4 Developing Software with OSS Tools and Components 9

Table 15.1: Distribution of respondents

The number of respondents was, as mentioned above, quite low, and the results are not statis-
tically valid. Validity is further discussed in Section 17.3. The answers from the questionnaire
were related to the issues discussed in the interviews and presented thematically in the next
part of the document.

A Survey of Industrial Involvement in Open Source

Part IV

Results and Conclusions

87

Chapter 16

Results

In this chapter we present our results from the interviews and the questionnaire. The process
of discovering these results is described in the previous part of the thesis. The results will
answer the research questions described in Chapter 11.

16.1 Overview of Results
The results of the interviews and the questionnaire are presented in the subsequent sections,
organized according to the research question answered. First, Research Question 1 will be
answered in Section 16.2 where the motivations for use of OSS components and the process of
evaluating such components will be described. Next, Research Question 2 will be answered in
Section 16.3 where we will describe why and how companies make their products open source.
Then, Research Question 3 will be answered in Section 16.4 where the usage and motivations
for inner source development will be presented. In Section 16.5, Research Question 4 will
be answered by describing the influence usage of OSS has on the development processes in
companies. Finally, the answers to Research Question 5 will be presented in Section 16.6
where company participation in OSS projects will be described.

As described in the research design in Chapter 12, this study is based on an explorative
research goal. As a consequence of this, several hypotheses will be created based on the results
to the research questions. A hypothesis is defined in Webster’s Comprehensive Dictionary of
the English Language as:

"A hypothesis is a statement of what is deemed possibly true, assumed and reasoned
upon as if certainly true, with a view of reaching truth not yet surely known; espe-
cially in the sciences, a hypothesis is a comprehensive tentative explanation of certain
phenomena, which is meant to include all other facts of the same class, and which is
assumed as true till there has been opportunity to bring all related facts into compar-
ison; if the hypothesis explains all the facts, it is regarded as verified; till then it is
regarded as a working hypothesis, that is, one that may answer for present practical
purposes." (Read 2003, 623)

Our understanding of this definition is that a hypothesis is a tentative explanation of certain
phenomena that can be tested and either falsified or supported. We will in the next sections
present several observations formulated as hypotheses. These hypotheses could be evaluated
by other qualitative or quantitative findings. Some of them are already supported in literature,
while others are new understandings.

89

90 16. Results

The first hypothesis is based on an overall evaluation of the results from the interviews and
questionnaire:

H 1 Companies participate in Open Source with the roles open source owner,
open source participant, inner source participant, and user of open source
components

This hypothesis is based on the 24 responses from 11 different companies to the question-
naire and the interviews in three companies. It is clear that companies have different roles
related to open source, because companies answered one or more of the parts of the question-
naire related to their role in OSS. Our findings support the initial descriptions of the four roles
described in Chapter 11.

16.2 RQ1: Using and Evaluating OSS Components
We will in this section present our results related to the first research question.

RQ 1 Why do companies use OSS components, and how do they find and evaluate
these components?

16.2.1 Using Commodity OSS
When we asked our interviewees about the most important open source components they
used in their solutions, the respondents mentioned software like Hibernate, MySQL, Apache,
Linux, and other infrastructure software. The respondents to our questionnaire also gave the
impression that the OSS components they used were primarily commodity software. Eight of
nine respondents answered that between 80 and 100% of the open source software they used
were either infrastructure or common to everyone in the market (Question 48). Only one of
the respondents said that more than 20% of the OSS they used gave their software advantage
over their competitors. One of the developers we interviewed stated that:

"We believe that, at least 60 percent of our code is open source..., it may be more, but I
do certainly not believe we have less...and 100 percent of it is commodity" [Interviewee A].

Based on these observations we formed the following hypothesis.

H 2 Open source components are primarily regarded as commodity software.

This hypothesis supports the view of OSS presented in the COSI project. OSS components
are primarily used as commodity software, providing only basic functionality to the solutions
it is integrated into.

16.2.2 Motivations behind Using OSS Components
The reasons to use open source components could be many. We will here present some of our
findings related to the motivations for using OSS components.

No Cost

The first and perhaps most obvious reason to choose open source is the price. Open source
components can most often be acquired for free. Both the interviews and Question 42d in the
questionnaire indicated that price is one of the main motivations for selecting open source.

For a software developer, getting a component that solves the problem is normally the most
important issue. The actual cost of acquiring proprietary software licenses is usually not that

A Survey of Industrial Involvement in Open Source

16.2. RQ1: Using and Evaluating OSS Components 91

high compared to the cost of the man-hours necessary to adapt the component. It is therefore
better to have a component that requires little work. The fact that the open source components
are free is perhaps not the most important motivation for using them.

Availability of the Component

The fact that most open source components can be acquired for free is closely related to
another, and even more important motivation; availability of the component.

"The most important is actually easy access. It is easy to find it [the OSS components], it
is easy to test it, insert it into a test environment, and see that it works then we can include
it." [Interviewee A]

Fully functional open source software is normally available on the web site of the creators
or at sites like SourceForge. The component can therefore be easily downloaded and tested
free of charge, without any further problems. Proprietary software is mostly available only
for a short test period or with reduced functionally. Eight of the nine respondents to the
questionnaire also agreed that availability of the components is an important motivation for
using OSS components (Question 42h).

Availability of the Source Code

Availability of the source code and the possibility to change it are other important motivations
for using OSS components. Being able to read and change the code makes it easier to extend the
component, and it allows you to find, fix, or avoid any defects in the component. Interviewee
C said it was very important to be able to correct defects in the code because guaranteeing
the quality of the component was part of their business model. Reading the code can also be
performed to evaluate the quality of the code and thereby the component itself.

Question 42e indicates the same. Having the source code enables you to modify it. It is
perhaps not always easy to change the code because of the complexity of the OSS compo-
nent. Our interviewees preferred not to change the source code because it required them to
understand the component, and it increases the number of dependencies to the component.
However, they said it was assuring to know that they could change it if they had to.

Availability of Information, Openness and Honesty

The availability of information, openness, and honesty are motivations which were mentioned
by our interviewees. Open source communities are usually open and honest about the status
of their software. The history of the software and the number of open and closed bug-reports,
are normally available on the product’s web site.

"We think that there is more information around open source components in general than
around commercial components and a lot more openness.... If there is something that does not
work, then the community is not afraid to tell, which is very good." [Interviewee A]

This openness allows software developers to evaluate the real status of the component.
Interviewee A said that openness was an important reason to choose open source components.

"What you see is what you get. You know what you get." [Interviewee C]
The distribution of the answers to our questionnaire, question 42i, was more evenly dis-

tributed, but we still believe that openness and honesty are advantages of open source software.
Interviewee D said, as an open source provider, that openness was very important to them.
They meant that openness and treating the community fair were important to keep the com-
munity members from turning their back on them.

Based on the findings related to the availability of components, source code, and information
we have formed the following hypothesis.

Øyvind Hauge and Andreas Røsdal

92 16. Results

H 3 High availability of the components, of the source code, and of the information
related to the components is one of the most important motivations for using
OSS components.

Software developers use OSS components because the components, the source code, and
the information about the component are highly available. Providers of proprietary compo-
nents have to react to this. If they want to succeed they have to increase the availability of
their components, information about them, and perhaps also the source code. Making their
components open source is perhaps one possible way of succeeding. How to make a product
open source will be discussed in Section 16.3.

Standard Compliance

Open source and open standards go hand in hand. Open standards are important because
they allow software developers to similar interfaces when they create software. Using similar
interfaces gives interchangeability, which again enables genuine competition.

"More important than a market consisting of open source, is a market which consists of
open standards where you have genuine competition between products." [Interviewee C]

Seven of the nine respondents to the questionnaire said that standard compliance was
important to their company (Question 46a). Six of the nine respondents said that they mostly
agreed that standard compliance was a reason to use OSS components (Question 42k). One
respondent also mentioned open interfaces as one of the criteria when they evaluated OSS
components. This indicates that standard compliance is quite important, but perhaps not
crucial. Interviewee A explained this by saying that finding a component that solves the
problem is more important than standard compliance.

Unimportant Motivations

Some motivations were also found to be of low or of no importance to the respondents. Ques-
tions 42f and 42g indicate that company policies and the customer seldom influence the decision
to use open source or not. However, Interviewee C, who work in an open source company which
base their business model on open source, said that company policies were one of the main
reasons for choosing open source components. The other respondents to the questionnaire
are not typical open source companies. It is therefore reasonable to assume that the type of
company will influence whether company policies will affect the decision to use open source
components.

16.2.3 Selection Process
The interviewees who use OSS components described informal search and evaluation processes
similar to the familiarity, and trial-based selection process described by (Li, Bjornson, Conradi,
and Kampenes 2004). See Section 7.3 for a description of these selection processes. The
answers to Question 44 and 45 of the questionnaire also give more or less the same picture
of OSS component selection. We will now describe an example of an hypothetical selection
process based on these findings. We will also discuss how to find, and how to evaluate OSS
components a bit closer.

A process for selection of OSS components can be presented as shown in Figure 16.1. The
components are initially found through informal Internet searches or through assessment of
previously known components. The developer may know of the component or may ask colleagues
or a community for recommendations. The components found through these two sources form a
long-list. These components and their communities are evaluated against the most important
functional and non-functional requirements. Many of the components are rejected, and the

A Survey of Industrial Involvement in Open Source

16.2. RQ1: Using and Evaluating OSS Components 93

developer is able to form a short-list of possible components. The components on this short-
list are further evaluated by downloading and testing them. The short list is reduced to
one candidate, which is implemented in the final product. In some cases the process may
end up without any candidate component. Then, the developer must either search for other
components or implement the functionality.

Figure 16.1: Selection process of OSS components

A problem with this process is that they do not know what they miss. Interviewee A said
that they felt rather confident about their selection process and the outcome. They would
normally describe the problem fairly well before searching for a component, and because the
problems are well defined, they would normally find the right solution to the problem.

The selection process descriptions seemed to be quite informal at all the companies we
interviewed.

"It is an undocumented and informal process..." [Interviewee A]
Even though the process is informal, interviewee A, B, and C had noticed that they used

more or less the same procedure every time they searched for OSS components. They had
thought about formalizing, and describing the process, but they had not yet done it. The
processes seemed to be more formal in some of the companies which responded to our ques-
tionnaire, but their answers were quite brief so this has to be investigated further.

Based on the interviews and the results from the questionnaire, we believe that many
software companies, which use OSS components, are following a process similar to the one
described above. We also believe that quite often, no process is used because the choice is
already made based on previous experience and knowledge. When asked about why they
choose to use Perl one developer answered:

"The ones who started [the company] were Perl enthusiasts and they continued solving
their task, in Perl" [Interviewee C]

We believe that this kind of decision making is quite common, you use or continue to use
something because you know it. It is perhaps not the perfect solution, but since you know it
is easy to continue using it.

Øyvind Hauge and Andreas Røsdal

94 16. Results

16.2.4 Finding OSS Components

Finding OSS components are primarily done in two ways. Firstly, you can have knowledge
about some OSS component yourself or you can ask someone who have knowledge about
components. Asking someone else can for instance be done by talking to people at your
company, asking expert networks, ask in mailing lists, or ask in web-forums, or by calling
former colleagues.

To learn about more components, it would help to visit community sites like SourceForge,
and Slashdot, subscribe to mailing lists, and to read discussions on web-forums who are con-
cerned with OSS and OSS development.

The second way of finding OSS components is through Internet searches. These searches
can be done through search engines like Google or Yahoo, or through some of the many sites
mentioned by the respondents, see Table 16.1.

Site Url
SourceForge.net http://sourceforge.net/
Freshmeat.net http://freshmeat.net/
Tigris.org http://www.tigris.org/
Java-Source.net http://java-source.net/
Javalobby http://www.javalobby.org/
TheServerSide.com http://www.theserverside.com/
IBM’s resource for developers http://www-128.ibm.com/developerworks/
Slashdot http://slashdot.org/
Kuro5hin http://www.kuro5hin.org/
koders http://koders.com/

Table 16.1: OSS Sources on the Internet

The sources in Table 16.1, and search engines can either be used to find components or
comparisons of several components. Interviewee B said he preferred to look for lists of evaluated
components, because this was time-saving.

16.2.5 Evaluating OSS Components

A problem with Google and other search tools is the amount of information they give you.
To be able to evaluate this information, and the components you find, you need some sort
of evaluation procedure. Our findings related to evaluation of OSS components are presented
next.

The evaluation, as presented above, is a two step process. It is unlikely that the process is
totally linear in real life, but we saw a division between early or brief evaluation, and late and
more careful evaluation or testing.

In the brief evaluation, a component could either be rejected pretty fast, or kept for closer
evaluation. The evaluation criteria used for this early evaluation depend on many factors and
we have not been able to see a clear division between the ones used early, and the ones used
later. Evaluation criteria like checking the main functionality or just a first impression of the
component may make the developer reject a component. The selection processes are quite
informal; because of this most evaluation criteria depend, on the individual, the project, the
requirements to the project, or possibly several other factors. The outcome of the process

A Survey of Industrial Involvement in Open Source

16.2. RQ1: Using and Evaluating OSS Components 95

is because of these dependencies, not deterministic. We will present some of the evaluation
criteria we discovered later.

The late evaluation is a closer evaluation, often testing. The component could be down-
loaded and tested in a small prototype. The developer may review the documentation, and
perhaps also the code.

Interviewee C said that reading the code was a basic part of the quality assurance work
they did for every open source product they used. This part of the selection process was a bit
more formal. They used checklists to check the maturity of the functionality, the project, the
documentation, the fulfilment of the customer’s requirements, and so on.

The developer may also pay attention to the mailing list and web forum for some days, or
maybe a week or two to check the activity of the community.

The companies we interviewed did not feel that this evaluation process was particularly
time-consuming. They were also satisfied with the outcome of the process, most of the time.
However, some problems were mentioned. They could at times be unsuccessful finding any
useful components. When this happened, they had to implement the functionality themselves.
Other times they had underestimated the work necessary to implement the selected component,
but we got the impression that this happened very seldom.

16.2.6 Information Sources
We have already mentioned some sources which can be used to evaluate OSS components.
Information about many open source projects can be found at the web sites listed in Table
16.1. Our interviewees and our respondents also mentioned recommendations from peers or
colleagues, community mailing lists and web forums, books and magazines concerning open
source, project web sitez, the source code, the project documentation, and project statistics
online, as other important information sources. The documentation seemed to be particularly
important. This includes code documentation, user documentation, and project documents
like roadmaps, change logs, and so on.

16.2.7 Evaluation Criteria
"Both the code, the project documentation, the wiki, and the mailing lists have to create trust"
[Interviewee C]

Creating trust is important and we will now present some of the criteria developers evaluate
OSS components against.

Functionality

The first and most obvious criteria, is functionality. A component without any of the required
functionality will be discarded immediately. Working with a badly written component can be
very time-consuming, thus functionality is not more important than everything else. Intervie-
wee C said, it is better to have a high quality component which lack some features, than a
fully featured component with low quality.

License Types

Another quite obvious criteria, is the type of license(s). All our interviewees were very con-
cerned with licensing. The license has to be compatible with their software and the customer’s
needs. It was normally not a problem since most OSS components are licensed with the BSD,
MIT, LGPL, or the GPL license. Several of the respondents to the questionnaire also mentioned
licenses when they listed evaluation criteria.

"We are always very concerned with tidy licensing." [Interviewee A]

Øyvind Hauge and Andreas Røsdal

96 16. Results

Maturity and Condition of the Component

Maturity and the condition of the product are other criteria which were mentioned by several
respondents (Question 45, 49g, and 49h). By maturity and condition, we think of the stability
of the component. Is it available in a stable release, or is it just an alpha release? Our
interviewees seemed to be a bit conservative when it came to new functionality. They preferred
to use stable releases with a track record and a reputation instead of using components with
leading, or bleeding edge functionality. Immature and unstable products would be rejected
more easily, because of the fear of bugs or defects.

Other respondents did not find stable releases and a good reputation as important. We do
unfortunately not know why, but we are still quite convinced that the maturity or stability, and
the reputation of both the product and the community are used as criteria when evaluating an
OSS component.

Development Process

The development processes used in the community are related to the maturity of the commu-
nity. Interviewee C said that he looked at the development methods in the community when
he evaluated an OSS component. If the community had unit-testing, frameworks for testing,
and procedures for bug reporting, this would be sign of quality.

Future Versions, Backwards Compatibility and Maintenance

Interviewee A said that because they built and delivered solutions to a customer, they thought
only about the component(s) available today. They did not consider future versions and future
functionality. However, one respondent to the questionnaire said that prospect for future
development was one of their criteria when they used OSS components.

Interviewees A, B, and C said that updating to a new version of the component could be
challenging. Especially when updating to a totally new version of the component. Updating
to a new version may require a lot of work. You have to learn the new version and you have to
do the work of integrating the new version with your code. Why would you do this as long as
the old version works fine? If the old version works, there may not be any reasons to replace
it. Keeping an old version could lead to maintenance problems. If the community stops to
support the old versions of the software, you will have to do all the support yourself.

Especially if a component is not backwards compatible, it could be difficult to upgrade to
the new version. Interviewee A and B said that they had not implemented the new version
of Hibernate, because it was not backwards compatible. Upgrading to the new version would
just be too much work. In contrast, interviewee C meant that some open source communities
are very concerned with this, and that the focus on backwards compatibility has increased a
lot the last years.

Documentation and Information

It is not only the maturity of the component that is important. Also the maturity of docu-
mentation (Question 49b). If the documentation has low quality or low availability, this could
be an indication of an immature product. Information about OSS components is, normally
available but lack of information will make it harder to use the product, and it is therefore
a reason for rejecting a component. Interesting information could be any kind of information
about the product itself or about the community.

A Survey of Industrial Involvement in Open Source

16.2. RQ1: Using and Evaluating OSS Components 97

Reputation

Information about the reputation the track record of an OSS component, and its community
seemed to be quite important. If no reputation or track record were available, this was seen as
a bad sign because it was unlikely that anyone used the component.

"Lack of reputation is a bad sign" [Interviewee B]
Checking the reputation and references to the product and its community seems to be an

important part of the evaluation process.
"We always check references related to others who have used it [the component], and the

reputation of the component." [Interviewee A]
One of the respondents to the questionnaire also said that the reputation of the provider

was important. If the component was provided by someone like Apache or if it was supported
by an industrial partner like IBM, this was seen as a proof of quality.

Activity in the Community

Closely related to the reputation of the community and the reputation of the product, is the
existence of a community and the activity in the community. A product with a good reputation
is more likely to have an active community than a product with a bad reputation. An active
community will most likely make it easier to get help if you have a problem, new features
are more likely to be implemented, and bugs are more likely to be reported and fixed faster.
Question 40e indicates that this is important to the respondents.

One possible disadvantage of having a big or strong community could be that it is harder
to influence the community and thus the requirements to the product. Interviewee D said that
because they use PHP, they are able to influence the development of PHP. If they chose Java
this would have been impossible because Java is controlled in a lot stricter way than PHP.

The activity can be measured by looking at the number of downloads, number of users and
developers, number of messages on the mailing list or on web forums, the number of updates
of both the software and the documentation, the number of open and closed bug reports, and
so on. In addition, many of the web sites like SourceForge provide statistics for the available
products.

Support

The chance of getting support is closely related to the activity in the community. Getting
support can be done by reading project documentation, subscribing to mailing lists, or by
posting inquiries on a mailing list or a web forum. In a community with no or low activity,
you are not likely to get any answers.

The lack of support is one of the challenges with OSS components. Some of our respondents
answered that lack of support is a reason to discard an open source component (Question 49a).
Others, for instance Interviewee C, said that providing support to and guaranteeing the quality
of open source components are parts of their business idea. This could perhaps explain the
answers to Question 49c where some answered that it is important that someone guarantees
the quality of the OSS component, while others mean it is not important at all.

Implementation

The quality of the implementation is of course important, Question 49f. A high quality com-
ponent is easier to use and modify. Interviewee C said he would check the quality of the
implementation by inspecting the code. This inspection would be performed by starting at the
main class of the program and look at the most important modules, and some random mod-
ules. He would check if it was programmed i a confidence-inspiring way, if classes, method,

Øyvind Hauge and Andreas Røsdal

98 16. Results

and variable names are reasonable, if the code was documented, if the code is understandable,
if the structure is clear, if it is easy to extend the program, and so on. Exactly how the imple-
mentation creates trust is difficult to say, but as a programmer you use your gut feeling. You
will trust code written in a way, you as a developer understand.

"You get a sense of these things right away, when you look at the code." [Interviewee C]
Interviewee D said, that one of the reasons why their open source solution gained popularity,

was because it had clean and tidy code which developers could understand and use.
Another important issue related to implementation, are dependencies, Question 49i. If the

component has many dependencies to other software it will more often be rejected.
"The worst components are those you are going to use only a small part of, and they create

a lot of dependencies to other components. That is something you try to avoid." [Interviewee
A]

Having dependencies is at the same time a cost benefit question too. Interviewee C said
that removing all the dependencies is demanding, and as a consequence, the software would
be very expensive. Most customers would not pay for perfect software. The developer did not
see big disadvantages either, because it was likely that the customer would contact them later
to upgrade their, not-perfect software.

Other Non-functional Qualities

As with every other component that is being evaluated some non-functional qualities of the
component may be important. We believe this is depending more on the solution the developer
is making, than the fact that it is an open source component that is being evaluated. Some of
the qualities which were mentioned were performance, scalability, and open interfaces.

16.2.8 Summary and Challenges Related to Using OSS Component
Based on our findings, and supported by the findings of (Li, Bjornson, Conradi, and Kampenes
2004), described in Section 7.3, we propose another hypothesis.

H 4 Selection and evaluation of OSS components, is primarily done as a process
based on previous knowledge, informal searches, and subjective evaluations
of the components.

This hypothesis is explained in the previous sections. It indicates that software developers
do not use any formal process when they search for and evaluate OSS components. Developers
do however use similar procedures every time, but they may vary from developer to developer.

We have answered the first research question by presenting motivational factors for using
OSS components, and we have presented a hypothetical selection process. Some of the lessons
learned are summarized in a preliminary guideline we have made, see Appendix D.1. This
guideline is meant as an input to the work in the COSI project. We hope this guideline can
function as a basis for future work. We have also recognized some challenges related to use of
OSS components. These challenges will be discussed in the remaining part of this section, and
they could be a basis for future research.

The selection processes we described here are informal and it is not deterministic. Having
a formal and deterministic process is not a goal in itself. Most of the time good enough is
good enough, and finding a component that solves the problem is sufficient. However, some
of our interviewees said they used more or less the same procedure every time they evaluated
OSS components. Describing these procedures, and increasing the awareness of them, can be
something that might help the companies using OSS components.

Most companies do not have extra resources to evaluate tools and components if they do
not need them. The amount of OSS tools and components is enormous, how can a company

A Survey of Industrial Involvement in Open Source

16.3. RQ2: Companies Initiating and Managing OSS 99

deal with this problem? Interviewee A said that it was very difficult for them to assess new
open source tools, simply because they were so small. Is it possible to provide some sort of
method or infrastructure that could help companies to assess such tools and components?

Another challenge we discovered during our interviews is related to maintenance. It is a
twofold challenge. First of all, when should a company upgrade to a new version of an open
source component. Upgrading could, as we have commented earlier, require a lot of resources.
Avoiding upgrading could leave you with a lot of maintenance work.

The second challenge related to maintenance is, when should you exchange code written by
yourself with OSS? This is recognized by COSI as one of the software shifts. Closely related to
this is the question of, when should you start to make your software open source, or when should
you start to participate in OSS development, instead of developing this software, yourself?

16.3 RQ2: Companies Initiating and Managing OSS
Our second research question is related to companies which initiate and control their own open
source products.

RQ 2 Why do companies choose to make their products Open Source, and how
can this be done successfully?

Our findings related to this research question will be presented in this section. We will
start by showing some of the motivations behind the decision to make a product open source.
Then we will discuss some of the advantages and disadvantages of offering an open source
product. We report some important issues related to going open source with a product, before
we present some challenges related to offering an open source product.

Many companies will probably face challenges related to the software shifts described in
the COSI project. If you know that some technology do not give you any competitive benefits,
it could as well be acquired or developed as open source. Developing these components alone
will only give you extra development costs and maintenance expenses.

"We are at the moment doing something related to the Web client, Ajax, which most likely
will be commodity in relatively short time." [Interviewee A]

If you know that some technology will be available as open source soon, the question is
why do not you make it open source yourself, or together with others? All the companies we
interviewed, face or have faced this challenge too. How and when to make a product open
source?

16.3.1 Motivation for Making an Open Source Product
There may be other motivations for making a product open source than saving development and
maintenance cost. One respondent to Question 15 in the questionnaire said that they wanted
to make an open source product because making the software open would help spreading their
software all over the world. Many users would result in many potential customers, and some
of those potential customers would be likely to pay for the services provided by the company.

The part of the questionnaire which treated open source management, did not have more
than three respondents and it is hard to say anything certain, because of this. Increased at-
tention, saved effort by shared development, increased product quality, reduced time-to-market
because bugs are found faster by a community, were motivations that all three respondents
agreed to in Question 10. Idealism, and community contribution were other motivations men-
tioned during the interviews.

"We thought it was the right way to do it [releasing the product as open source]...then we
had to find out how to make money on it later" [Interviewee D]

Øyvind Hauge and Andreas Røsdal

100 16. Results

The motivations of making a product open source are thus closely related to the advantages
of owning an open source product.

16.3.2 Possible Advantages and Disadvantages Owning an Open Source
Product

There are both possible advantages and disadvantages related to owning an open source prod-
uct. By just owning an open source product, you may benefit from increased attention and
publicity, and you may get some credit for giving something back to the open source com-
munity. The real benefits will first come when you manage to attract a community around
your product. Some possible advantages and disadvantages related to having an open source
product will be presented next.

Availability and Openness

In Section 16.2, we reported that availability was one of the most important reasons to use
OSS components. An open source provider needs to be available to attract customers and new
community members. Being available means both making people know about your product,
and keeping them interested in it. In other words, you need to make your product famous and
you need to be open to your community members and treat them in a way that makes them
stay.

Openness is important in open source communities. It is easier and more motivating to
contribute if you are informed. Openness also works as a trust-making guarantee of quality.
Being open may also give you a lot of valuable feedback, for instance through open mailing
lists or open discussion forums on your web site. This feedback, or perhaps critics, enable you
to improve, but the openness makes you vulnerable too.

"We cannot hide." [Interviewee D]
When you are open to everyone, you cannot hide anything. If for instance, an open source

provider releases information about all the bugs in the system, he is forced fix them. If he does
not fix them, then everyone can see the amount of bugs in the system. The openness might
hurt you instead if you unable to fix the bugs. If customers see all the open bug reports they
may loose faith in your product.

H 5 Opening up the development of an industrial open source product may create
trust and generate feedback, but it requires excellence from the open source
provider.

Market Related Issues

Most open source software can be downloaded for free. If you only live of selling your software,
you should perhaps not give it away. When people can download your software for free,
you have to focus on the customers, who actually wants to pay for your licenses or your
services. Interviewee D described some of the properties of what he saw as the differences
between a business model for a traditional software vendor and a company which develops
open source. These difference between are exemplified in Figure 16.2. According to him, open
source companies focus more on maintenance and total quality guarantee, and on services
related to their products, than traditional industry.

Many open source providers may sell licenses to their software as well, but to be able to sell
licenses they need to have intellectual property rights to 100 percent of the code. Accomplishing
this may be very hard if you do not think about it from the start.

People who buy licenses to an open source product, are customers who want to base their
own product on the open source software and sell it to others. According to Interviewee D,

A Survey of Industrial Involvement in Open Source

16.3. RQ2: Companies Initiating and Managing OSS 101

Figure 16.2: Share of income in a traditional and an OSS business model

it may be companies which do not want to distribute their software based on the open source
software, or it may be big companies which do not have clear guidelines for how to deal legally
with open source license. These customers buy proprietary licenses to the same software you
can download for free with an open source license.

Publishing the product as open source means that it is available to anyone. This availability
may give you the benefit of bottom-up sales. If someone, for instance a technician, download
your product for free and start using it, his company might want to pay for your services later.

The availability may also make it harder for you to focus your marketing strategies because
anyone may turn up as your customer.

"One of the challenges with OSS is that you get a horizontal marketing strategy." [Inter-
viewee D]

If you have accomplished to attract a community to your product, you may benefit from
the advantages of having a community. The community members are likely to talk about the
product with colleagues and friends, and if they are satisfied with it, they will possibly save a
lot of marketing expenses.

"We have a marketing department now, but for a long time we did not have it." [Interviewee
E]

"It [the product] sold itself." [Interviewee D]
As the interest in the product and community grows, it is likely that someone starts to

create add-ons, extensions, or complementary software to your product. These add-ons may
create more and more momentum around your product, and thus increase the market. By
increasing the market, new users and customers will be attracted to your product. You are
perhaps not able to keep the same market share as in a smaller market, but as illustrated in
Figure 16.3, it is better to have a small share of a big market that having a big share of a small
market.

"What makes the biggest pie, not how can we get the biggest piece of the pie." [Interviewee

Øyvind Hauge and Andreas Røsdal

102 16. Results

D]

Figure 16.3: A big market with a small share and a small market with a big share

Development

Development of an open source product will only benefit from being open source as soon as
there is an active community around the product. Many users means that your software is used
and tested by many people, and it is more likely that bugs or defects are found. If more bugs
are found and reported, you will be able to increase the quality of your software by correcting
these defects. All the respondents to the questionnaire agreed that the product quality is
increased because the community find more bugs, (Question 12l). Being able to benefit from
the resources outside the company to find more bugs faster is good news for you. It means
that you can cut costs related to testing, that your software matures faster, and it may also
help you to reduce the time-to-market.

"We can probably fix more bugs than our competitors who are not open." [Interviewee D]
There is no need to wait until the product is released to involve the community. The

community can give feedback in earlier stages as the requirements phase, planning phase,
specification phase and so on.

"We have open specifications...and we get feedback already in the specification stage."
[Interviewee D]

This is beneficial for both parts. You as a software developer, are able to reduce the risk by
developing the software the market wants and the community is able to influence the product
in the direction they want.

Contribution may come in different forms. It may come as feedback to specifications, new
requirements, as a bug-report, or it may come as code. Some community members may provide
solutions together with their bug-reports and thus solve the problem. They may also provide
new functionality they want included in the product.

A Survey of Industrial Involvement in Open Source

16.3. RQ2: Companies Initiating and Managing OSS 103

Getting contributions and suggestions is positive, but many contributions and contributions
with low quality generate a lot of extra work. Someone will have to review the contributions,
answer the contributors, and perhaps include code contributions or requirements into the
product.

"We have seen that we have to rewrite many of the contributions we get and spend as much
time as if we had done it ourselves." [Interviewee D]

To reduce the amount of overhead work, you need to find a balance between allowing
community members to participate, and controlling the development yourself. Increasing the
quality of the product and reducing the number of bugs before the software is released to the
community, is one way to reduce the traffic from the community.

Clear routines for contributions and informing the community members of these routines
is another way to increase the quality of the contributions. It is necessary to inform, perhaps
also train, and educate the community members. This means keeping all your information up
to date and being open to the community.

"We have clear code-standards, it [the code contributions] should not only work, but it
should be done like this. ... It is our job to inform the community." [Interviewee D]

Another way of reducing the work related to contributions from the community, is allowing
trusted members of the community to check in their own code. Benefiting from the contri-
butions from many developers is good, but allowing many people to change the same code at
the same time, may lead to coordination problems and it may break the build. It is therefore
important to find a balance between having strict control over the product and its code, and
allowing everyone to contribute. Interviewee D said that they tried to keep strict control over
the core of the product and encourage innovation around it.

To benefit from many of the advantages related to having your product as open source, you
need to reach a critical mass of community members, and you need to get a certain momentum
in the community. The open source model will not scale if the community is small and inactive.
If the market is small, it is perhaps not right to make your product open source.

H 6 The number of possible users in the market and the size of the community
around your product severely influence the further development of the prod-
uct and your benefits of having it as an open source product.

The hypothesis indicates that to be successful with an open source product it is very
important to have a community around it. This is because most of the benefits of having the
product as an open source product are achieved only when such a community exists.

Support

Another possible advantage of a community is the fact that they could support each other.
Users help other users, as shown by (Lakhani and von Hippel 2002), and if you provide the nec-
essary infrastructure, your community might also support itself, to some extent. A community
may also lead to extra work load for your developers so it is important to keep a balance.

"If everyone in the community would contact them[the developers in the company], then
they would never be able to do anything." [Interviewee E]

16.3.3 Making an Open Source Product
Making an open source product is easy, succeeding is a lot harder. Just licensing a product with
an open source license will not give you any other benefits than perhaps increased attention
and goodwill from users and potential customers. To be able to really benefit from an open
source product, it is it is necessary to attract and keep a living community around the product.
So what does it take to achieve this?

Øyvind Hauge and Andreas Røsdal

104 16. Results

Interviewee C told about one project they did as an open source project a few years ago.
This product was originally sponsored by an external sponsor. The sponsor did not have
any technical competence themselves and they were depending on the company to do all the
development. The product was only used by the sponsor and not internally in the company.
When the cash flow stops, the motivation for maintaining the product also disappeared. Since
the sponsor did posses any technical competence to continue the project, it ceased.

We observed some issues we believe influenced the success of this open source project.
First of all, the company did not make any money continuing the development of the product.
Secondly, the company did not have any internal use of the product. Thirdly, the developers
were not users of the final product. Fourthly, there was no technically competent community
around the project that could have developed the product further. This project was in our
eyes, doomed to fail.

Keeping an open source product alive and in development, seems to be a task that requires
some effort.

A company need to be motivated to set aside personnel to the development of an open
source product. They may be motivated to do it if they can make money offering it as an
open source product or if they use the product themselves. If the company does not have these
resources, it is necessary to have a community with technical competence to maintain the
development of the product. Based on these observations, we formed the following hypothesis.

H 7 Critical success factors for succeeding with an industrial open source products
are: Your company can make money offering it as an open source product.
The product is needed in the company. The developers are users of the prod-
uct. An active community with technically competent people exists around
the product.

The hypothesis indicates that there are many factors that influence the success of an in-
dustrial open source product. It is therefore not strange that we observed some insecurity
related to the effort necessary to make a product open source. Interviewee B said he thought
it would be easier to maintain a product without sharing it with others. He said that you do
not need to think about what you can or cannot share with others when you keep it closed.
He continued saying that you do not need to think about other stakeholders than yourself and
your customer. Another developer commented:

"It is quite demanding to maintain it. You need to use a lot of time to maintain the
webpages, documentation, mailing lists, and creating a community". [Interviewee C]

We have seen that it requires some resources to be successful with an open source product.
If you do not have anything to loose by just licensing a product with an open source license
and make it available to the world, you may do that and hope that someone will start working
on it. To be successful and to be able to attract a community, it is important to do more than
just making the product available. Interviewee C said that they presented their product on
both national and international conferences for the targeted user group. Interviewee D told
that they posted their product on several web sites like freshmeat.net, wrote articles about
it, published papers, were active in other open source communities, in web forums, and in
other open source related settings, to create publicity around their product. Based on these
observations, we have formed the following hypothesis.

H 8 You must as an owner of an open source product work to attract a critical
mass of community members. When you have succeeded, you need to work
hard to keep them.

The hypothesis indicates that community members do not just turn up. As an owner of an
open source product you need to work hard to attract and to maintain your community.

A Survey of Industrial Involvement in Open Source

16.3. RQ2: Companies Initiating and Managing OSS 105

16.3.4 Communication in OSS Projects Managed by Companies

Figure 16.4: Communication methods used in OSS projects managed by companies.

OSS projects consist of people with the roles core-developer, developer, active users, and
passive users, according to the prestudy in Section 5.2.1. Which communication methods do
these roles use when they participate in OSS projects managed by companies? Figure 16.4
shows the results of communication methods used between developers inside the company,
and between developers in a company and community members. The results are based on
3 respondents to Question 22, and 23 in the questionnaire. Participants using a particular
communication method to the extents "Large" or "Very large", were summed. The results
are shown in the Figure. Respondents using communication methods to a lesser extent were
ignored because it was necessary to focus on the communication methods most important to
the respondents.

The results in Figure 16.4 indicate that developers on the inside of the company commu-
nicate primarily using instant messaging, private email, and mailing lists, while the commu-
nication between developers in the company, and community members primarily are through
web-forums and mailing lists. These results suggest that developers inside the company com-
municate using other methods than when they communicate with the members of the OSS
community. This suggests that there is a communication-gap between the company and par-
ticipants in the OSS community surrounding OSS projects managed by companies. This can
be perhaps be explained with the fact that it is necessary to shield the developers from some
of the communication in the community.

Øyvind Hauge and Andreas Røsdal

106 16. Results

16.3.5 Discussion of OSS Management and Related Challenges

This section has been used to respond to the first research question. This has been done by
presenting issues related to motivation for creating an open source product, possible advantages
and disadvantages related to this creation, and how to do this. This section is concluded by
a discussion of what we see as the two biggest challenges related to offering an open source
product, how to attract a community, and how to benefit from having one.

To be able to attract a large community and to be able to benefit from their contributions,
it is important to have a good, well-documented product that is easy to use. If the product has
few bugs, it is easy to use, and the documentation is good, then the amount of unnecessary
feedback and contributions will be reduced. Many OSS products are used as components in
other software, because of this it is important to have good user documentation, clean and
well-documented application programming interfaces (API), and well documented code.

"This is a very big job to be honest." [Interviewee D]
To include more code from the community and their partners, it is necessary to increase the

quality of the contributions. This could be done by standardizing the routines for contribution
and informing the community and the partners.

Informing and involving the community and your partners is also very important, but you
need to find a balance between full democracy and dictatorship. Time is never something you
have too much of when you develop software, it is thus important that a community is not
turned into something bad, by spending too much time on democratic processes.

"Democracy takes time compared to dictatorship" [Interviewee D]
Interviewee D said that they thought making a hierarchic structure for decisions and re-

porting and a flat structure for information was the right thing for them. It is important to
inform the community and your partners. He continued, saying that it is important to stay
true to the open idea because you build your name as a brand. If you turn your back on the
community, they will turn their back on you.

To summarize the knowledge learned related to management of open source projects, we
have made some guidelines. These guidelines can be found as Appendix D.2 and are meant as
an input to the COSI project. We hope they could be used as a basis for further development
and be used as a resource for the industry.

16.4 RQ3: Inner Source Development

This section will present our results related to the third research question.

RQ 3 Why and how do companies use development methodologies from Open
Source, in ISS development?

Inner source development (ISS) has been described in section 5.3 in the prestudy, and was
the topic of one part of the questionnaire. The definition of inner source development is the
following: Inner source development uses aspects of open source software engineering inside a
business unit, company, or consortium. The software developed is only open and available to a
closed consortium of partners.

It was clear from the prestudy that very few published results could been found about the
subject, which is why the research question approached this topic in an explorative manner.
The results presented in this section are primarily from the questionnaire, but also to some
extent from the interviews. The respondents to this part of the questionnaire consists of 6
inner source projects, from 4 companies participating in the COSI project.

Based on the results from the questionnaire, it was clear that companies had different ideas
about the definition of inner source. One respondent answered the part of the questionnaire

A Survey of Industrial Involvement in Open Source

16.4. RQ3: Inner Source Development 107

about inner source, when the company was using a distributed from of development called
global software development. All responses to the questionnaire indicating that the company
was using development methodologies from open source on the inside of the company was
therefore accepted.

16.4.1 Characteristics of Inner Source Development
The following result, are considered important aspects of inner source development. These
results are based on the answers to Question 28 and 30, of the questionnaire.

• Inner Source uses OSS software engineering practices within a limited scope such as a
business unit, company, or consortium of partners.

• Development is often distributed at several physical locations and possible acros several
time zones.

• Source code is often shared between the partners in the inner source project.

• Email and mailing lists are often used by participants in inner source projects.

• Code ownership is often practiced.

Note that there was some variety in the characteristics of inner source projects, so the list
just presented contains aspects which were considered important to many of the respondents.
It is by no means complete, nor can it be considered a final conclusion.

16.4.2 Structure of ISS Projects

Role Business
Unit in
Company

Company Collaborating
Companies

Core Developers 21-50 11-20 11-20
Developers 101-500 51-100 51-100
Active Users 1001-5000 1001-5000 1001-5000
Passive Users 5001-10000 5001-10000 5001-10000

Table 16.2: Number of participants in an ISS project.

Table 16.2 shows the number of participants in an inner source project at company A1.
This specific inner source project, was selected as an example of the organization of an inner
source project.

The organization of the six inner source projects in the questionnaire were reported to be
organized in different ways. They had different distributions of people: at a particular business
unit, in the company, and in other collaborating companies. It is therefore not possible to draw
any conclusions about all inner source projects based on these answers.

In section 5.2.1, OSS projects were described to have a layered structure with few core-
developers, more developers, and even more active and passive users. The respondents from
inner source projects are to a large extent also organized in a similar layered structure. If
the participants who have the same role in different companies or business units are added

1The companies which responded to the questionnaire were given a letter-code to conceal their true identity.

Øyvind Hauge and Andreas Røsdal

108 16. Results

together, we see that the overall project has a hierarchical structure. The organization of table
16.2 is consistent with the organization of typical OSS projects. It has a small number of
core-developers and a large number of passive users. This observation can also be made on
most of the other respondents to this part of the questionnaire.

16.4.3 Inner Source Development Process

Figure 16.5: Example of Inner source development process

The development processes used in inner source projects were reported in Question 29 of
the questionnaire. One of the companies participating in the interview also used some aspects
of inner source development. The qualitative answers to the questionnaire suggest that each
of the inner source projects have a specially adapted development process. To illustrate the
differences in these projects, some examples will be shown.

Company E reported that they use the Rational Unified Process (RUP) and managed
the project according to a project plan. This development process is typically used in many
traditional software development companies.

Company I reported that the project had a development process which was similar to the
process used in many OSS projects. In that company, there was a core developer reviewing
contributions and new requirements. These contributions were sent as patches to a mailing
list. The source code was licensed with the GPL license.

Company A has a development process as shown in Figure 16.5. The development process is
based on cooperation between developers at the company and developers at a partner company.
The process is iterative, where steps 2 to 7 are repeated several times during the development.

A Survey of Industrial Involvement in Open Source

16.4. RQ3: Inner Source Development 109

Interviewee C stated that their development process was "emulating open source method-
ology on the inside" of the company. The company did not specifically call the development
process ’inner source’, but based on the description of the development process, it can be
deduced that the development process shares many of the characteristics of open source devel-
opment.

The following is how one of the interviewees describes the development process:
"We have been emulating open source methodology on the inside, an informal leader, and

participants who participate as good as possible. The structure is very flat and the participants
have the same rank and responsibility in the project solution. A work group of 2 to 5 persons is
created without an appointed project leader and they create a solution-specification. We have
traditionally tried to create requirements-specifications, solution-specifications etc. using the
waterfall method, but during the implementation phase we have a very flat project structure
where the participants have been almost equal, and together said that ’we are going to make
this’, without a clear leadership and delegated tasks. People have taken odd jobs as they
become available from the todo-list." [Interviewee C]

Based on this description from the interviewee, it is deduced that the company is actually
using many aspects of inner source development implicitly.

16.4.4 Communication in Inner Source Development Projects

Figure 16.6: Communication methods used in ISS projects

In section 16.4.2, Inner source projects were described as being distributed at different loca-
tions, such as at different business units or collaborating companies. How does the participants
in such projects communicate? Figure 16.6 shows the results of Question 28. This question

Øyvind Hauge and Andreas Røsdal

110 16. Results

is related to the communication methods used by participants in inner source projects. The
results are based on 6 answers to this question. Participants using a particular communication
method to "Large" or "Very large" extent were summarized and the results shown in the figure.
Respondents using a communication method to a lesser extent or answering "Don’t know" have
not been included. The figure is only an indication of a possible trend of the communication
methods which were most important to the respondents. The figure shows that e-mail and
mailing lists are used by most participants, while phone and meetings are used to a lesser
extent.

16.4.5 Motivations for Using Inner Source Development

Question 26 in the questionnaire dealt with experiences gained from companies using inner
source development. The question was supposed to discover the motivations behind why com-
panies participate in inner source development. The answers to this question seems to indicate
that companies gain advantages by using inner source development such as allowing distribu-
tion of development and cooperation with partner companies. However, too few respondents
answered this section to draw any conclusions.

16.4.6 Discussion of Inner Source

Based on the feedback from respondents about their understanding of the term ’Inner Source’,
it was clear that this is still not a very established term in the industry. A respondent from
company A stated that their development model is classical and heavy-weighted, but it is
distributed at different sites. Other respondents also answered that they were using formal
development methods such as RUP. It can be hypothesized that there is some overlap between
distributed development and inner source development.

Based on the results provided in this section, the following hypothesis about inner source
has been formulated:

H 9 Companies use open source software engineering practices to perform dis-
tributed software development.

The software engineering practices mentioned in the hypothesis are based on the results
presented in this chapter. Important practices which are used include the following:

• Sharing source code with partners

• Code ownership

• Using OSS development tools such as CVS and Subversion

• Communicating using email and mailing lists in a distributed setting

• Having a community of users and developers

• Using Agile development methods such as RUP and XP, in combination with inner source
development.

The results related to the communication methods used in inner source projects indicate
that participants in ISS projects communicate in ways which are similar to OSS projects.
In section 4.4 of the prestudy, email and mailing lists were two important communication
methods used in OSS projects. The results from the questionnaire suggest that ISS projects
also communicate using similar methods.

A Survey of Industrial Involvement in Open Source

16.5. RQ4: Development Processes when Using OSS 111

Furthermore, the definition of inner source used so far has been described as the use of cer-
tain open source software engineering practices in companies. The results of the questionnaire
give an ambiguous list of software engineering practices, commonly used by the respondents,
who state that they are using inner source development. There is quite a lot of variation, and
each company using inner source has adapted it to the company’s situation. So which software
engineering practices must be used for a company to be formally using inner source? This is
an open question, which can be answered by further studies.

To summarize the knowledge learned about inner source projects, we have made proposals
to some guidelines. These guidelines can be found as Appendix D.3 and are meant as an input
to the COSI project.

16.5 RQ4: Development Processes when Using OSS

This section will present our results related to the fourth research question.

RQ 4 How does the use of OSS influence the development processes of companies?

To answer this research question, results from the interviews and the questionnaire have
been collected and analyzed. The results from the interviews are loosely based on the open-
ended Question 26, 45, and 48 from the interview guide. These results will be presented in
Section 16.5.1. The results from the questionnaire are based on Question 31, 33, 40, 43, 46,
50, and 51 from the questionnaire, and will be presented in Section 16.5.2.

16.5.1 Interview: OSS Related Development Processes

The results of the fourth research question will be presented, based on the structured interview
with three companies participating in the COSI project. The results will be presented as three
separate examples of the development processes, used in the three companies. Each of the
companies has a different OSS related role and we will present the development processes as
the interviewees themselves describe their processes.

Case 1: Development Processes of Company Using OSS

Interviewee A and B answer on behalf of a company using OSS components. Interviewee
A states that the company has their own description of the development methodology. This
methodology is based on Feature Driven Development. The development process is an iterative
and incremental software development process and it has aspects of Agile software development.
Feature driven development focuses on development with small teams, light methodologies,
and heavy customer involvement (Radinger and Goeschka 2003). Interviewee A states that the
company has modified FDD to handle architecture since FDD does not take this into account.
Further, FDD had been modified to handle model driven development. The domain is modelled
using the Unified Modelling Language. Database bindings, and user interfaces are generated
with the UML models as a starting point.

When asked whether the documentation of the development process was a "living" doc-
ument, the interviewee stated that the document was updated once in a while, when it was
necessary. Parts of the development method are used frequently while other parts are not,
dependent on the project.

Further, when asked about whether the development process was agile, the interviewee
stated that the development process was agile, that prototypes were made, and that iterations
with the customer were carried out frequently.

Øyvind Hauge and Andreas Røsdal

112 16. Results

Finally, the interviewee was asked to which extent OSS components were modified or if
something was developed to encapsulate the component. The respondent replied that it was
preferable to build a generator around the components, rather than modifying the components.

Case 2: Company Using Development Practices from OSS

Interviewee C stated that they were using several development practices from OSS. They were
emulating an open source methodology inside of the company. They had a flat organizational
structure where participants were of the same rank and had the same responsibilities in the
project. Requirements specifications and solution specifications were specified using the wa-
terfall method, while implementation was performed with a flat structure.

The interviewee describes his experience with a project where many aspects of Extreme
Programming (XP) were used. The following is how the interviewee described experiences
with using XP:

"We tried to do XP I had an ambition to do it as a light-weight process with two week iter-
ations. The reasons for this are many: I have a strong belief in the model, I like principles such
as pair-programming, short iteration-cycles, and keeping the customer involved." [Interviewee
C]

There was a strong need for an iterative process in this project because the customer did
not fully understand the possibilities and limitations of the software. The iterations lasted from
a couple of weeks to a couple of months. Interviewee C also described some difficulties related
to interaction with the customers because the customer had low understanding of software
development. Modelling tools like Use case diagrams were used to solve the difficulties and to
involve the customer.

Test-driven development was not initially performed in the project, but during the project
there was a demand for test-driven development. For the last six months test-driven develop-
ment was implemented.

The interviewee also expressed a wish to standardize the processes in the company. Cur-
rently, developers often use the methods and tools they prefer, and solved problems the way
they wanted. They were also using mailing lists, instant messaging, and other informal ways
of communication. Standardizing on processes would be preferable according to the intervie-
wee. He expressed a need to further improve this development method because it currently
had aspects which the interviewee did not like. According to the interviewee, more formal
development methods should be put in place to allow the developers to work more efficiently.

Case 3: Development Processes of Company Managing OSS

Interviewees D, E, and F responded for a company which manage and control an OSS project.
They were therefore interviewed about the development process they used when developing
the open source product.

The development process used in the company was described as having aspects from both
Extreme programming and Rational Unified Process (RUP), both of which are iterative pro-
cesses. They had reduced the formal parts of the processes compared to RUP. Initially, Inter-
viewee F stated that they tried to be very formal and document the solution. At later stages,
they use a more evolutionary process where several iterations are performed.

Interviewee E stated that the following phases are used in the development process: Anal-
ysis, Design, Implementation, Test, and Review.

Interviewee D stated that since the company manages an open source project, the com-
munity comes with feedback to new requirements. Specifications for new features are released
for review, on mailing lists where the community can come with feedback. Many decisions are
taken in a democratic way rather than as a dictatorship.

A Survey of Industrial Involvement in Open Source

16.5. RQ4: Development Processes when Using OSS 113

Finally, interviewee D stated that the company was interested in changing the development
process to be more structured, and less like "open source". The motivation for this was to
improve the quality of the product. Keeping the quality of the product was a challenge,
especially when integrating code from several sources, such as code from the community, or
from different partners.

16.5.2 Questionnaire: Development Processes in Companies Related
to OSS

The questionnaire also covered Research Question 4 and the results from this will be presented
next. Five respondents with the role "interacting or participating in OSS communities" and
nine respondents with the role "developing software with OSS tools and components" have
described several aspects of their development. These results of how use of OSS influences the
development processes, will be presented next.

Development Processes when Participating in OSS

The respondents were in Question 33d asked whether their company had changed its develop-
ment processes because of participation in OSS projects. Unfortunately, too few respondents
(five respondents) answered this question to give a conclusive answer. Some of the respondents
answered that they had changed their development processes, while others did not. One ex-
treme was the response to Question 40 by company A, which stated that they adapted their
development process to that of the OSS project they were participating in. Another respondent
from company G stated that an iterative and incremental process was used, but did not state
that the development process had been adapted in any way towards the OSS project.

The results therefore do not give a definitive answer to whether companies adapt their
development processes when using OSS, although some of the respondents stated that they
did.

Development Processes when Using OSS

The respondents from companies assuming the role of users of OSS components reported their
development process in Question 43. There was no clear trend in the answers. Out of the nine
respondents, two were using a traditional waterfall based method, two were using Rational
Unified Process in some ways, one was using Feature Driven Development, while the rest used
ad-hoc versions adapted to their particular needs.

The following interesting results were found when the respondents were asked about their
development process in Question 46:

• Frequent releases (more than every other week) were not used at all or to a small extent
by respondents.

• The majority of respondents were using code repository tools like Subversion or CVS.

• There was no conclusive result about whether the respondents read parts of the source
code of the components that they used. Some did, while others did not.

• Few of the respondents modified the OSS components that they used in their projects.

• Code ownership was practiced by some of the respondents, while not by others.

In Question 50, the respondents were asked about their experiences related to using OSS
components in the development of their product. The following are statements which the
majority of respondents disagreed with:

Øyvind Hauge and Andreas Røsdal

114 16. Results

• It was difficult to identify whether defects were inside or outside the OSS components.

• OSS components could not be sufficiently adapted to changing requirements.

• OSS components negatively affected system reliability.

• OSS components negatively affected system security.

• OSS components negatively affected system performance.

This means that the respondents did not think that using OSS components reduced system
reliability, security, or performance. This result also means that the respondents find it easy
to determine the location of a defect inside or outside of an OSS component, and that it was
easy for the respondents to modify OSS components to changes in requirements. This result
shows that the respondents have great confidence in using OSS components based on their
experiences. Whether the answers are biased for ideological reasons by the respondents has
not been investigated, but it is possible.

Software Development Challenges

Question 51 asked the respondents about what they thought were their main software devel-
opment challenges related to using OSS. This is a summary of the challenges the respondents
have with using OSS:

• Finding high quality OSS components.

• Influence the roadmap of components.

• Maintenance of OSS, for example when the OSS component does not have backward
compatibility.

• Unacceptable license requirements for some OSS. One company reported they were not
able to use GPL licensed software.

• Definition of processes such as selection of components, integration, maintenance, and
evolution management.

• Synchronization of changes.

16.5.3 Discussion of Development Processes

The survey results related to Research Question 4 has just been described in this section.
The interviews provided tree descriptive results about the development processes used in

those companies. How do these results contribute towards answering this research question?
The following trends have been observed in the companies interviewed:

• The companies interviewed use light-weight, agile development processes, based on
one or more of the following methods: Feature Driven Development, Rational Unified
Process, or Extreme Programming.

• The companies want more standardized and formal development processes.

A Survey of Industrial Involvement in Open Source

16.6. RQ5: Open Source Participation by Companies 115

Note that the use of OSS has not been shown to be the reason why the companies use agile
development methods. It is only an observation that there is a correlation between the use of
OSS and agile development methods in the three interviewed companies.

The results from the questionnaire were less conclusive than the results from the interviews.
There was a lot of variation in the answers, and too few respondents to use any statistical
methods. For example, the development processes used by the different companies had no
clear trend unlike the answers from the interviews where all the development methods were
Agile.

Some challenges related to using OSS were described in this section. Software developers
face these challenges every day, when using OSS. It is important to solve several of these
challenges to simply the process of using OSS.

One of these challenges is how the use of OSS affects the development processes. One
company reported that they had changed their development processes to that of the OSS
community when interacting with the community. When using OSS components, it is necessary
to include a selection process to be able to select the right components. When receiving
contributions from a community, you have to adapt your development processes to benefit
from these contributions.

Further, the selection and evaluation of OSS components is an important process which has
an impact on the development processes in companies using OSS. Aspects related to selection
and evaluation of OSS components, have been described in the first research question.

Based on these observations, the following hypothesis is presented:

H 10 Companies have to adapt their development processes when using OSS.

Some respondents said that they did not have to change their development processes to
be able to benefit from use of OSS. We believe that some adaptation is necessary, but further
studies need to be performed to see if this is true. Future research may also elaborate on how
the development processes are optimally adapted to OSS.

16.6 RQ5: Open Source Participation by Companies
The fifth research question is concerned with industrial participation in open source projects,
controlled by communities outside the company. We wanted to know why and how companies
are involved in these projects and communities. We will present the results to the fifth research
question in this section.

RQ 5 How and why do companies participate in the development of OSS projects
controlled by a community outside the company?

There was some uncertainty about what it takes to be participating in an open source
project. Do you have to actively develop code often to be participating, or is it enough to
just browse the news or mailing lists from time to time. We were interested in the interaction
companies have with the open source communities, and we said that participation is defined
by undertaking any of the roles defined in Section 5.2.1. However, we got only five responses
the part of the questionnaire which contained open source participation. We will report some
of the answers from the questionnaire together with some observations from the interviews
related to participation in open source projects.

16.6.1 Activity and Contributions
The respondents to the questionnaire did not seem to contribute to any large extent (Question
31). To the question of why they did not participate that much in open source projects, one
developer said:

Øyvind Hauge and Andreas Røsdal

116 16. Results

"We see it more as a product."[Interviewee B]
Some respondents to the questionnaire reported that they did some testing, bug-reporting,

and bug fixing, but it does not seem to be important activities. Bug-fixing and bug-reporting
were also mentioned during our interviews. Interviewee D said that one of their developers
spent about half a year fixing a bug in PHP. Interviewee C said that they got a patch included
in the Linux core. The developers seem to perform defect related activities, but maybe not to
a large extent.

"I do bug fixes which I need myself and then contribute them to the community. Occa-
sionally, I just take bugs from the tracker and fix them just to contribute." [Respondent to the
questionnaire]

The respondents also reported that they did not contribute in any particularly degree with
the following: new requirements to the project, architecture or design, documentation, add-on
components, integration towards other products (glueware), free user support, distribution of
software, infrastructure (e.g. servers or storage space), and money.

Several of our interviewees and some of the respondents to the questionnaire said that they
subscribed to mailing lists, asked for user support via email or forums, and read news through
related channels. Some of the respondents to the questionnaire reported the same, but the
answers were distributed. The response to Question 36 and the interviews indicate that the
companies we asked are primarily users, not developers in these open source communities.

Based on the observations above we formulize the following hypothesis:

H 11 Most industrial software developers do not participate in the development of
open source software. They are primarily involved as active or passive users,
with occasional bug-fixes.

This hypothesis indicates that most industrial software developers do not participate in the
development of open source software. They are rather users of the software, but they may
contribute with some bug-fixes or other smaller contributions. The hypothesis supports the
definition of the layered organization of open source projects described in Section 5.2.1.

Interviewee C said that many developers participated in open source communities through
their spare time, and because of different reasons this was perhaps not possible for everyone
anymore. It was therefore important to acknowledge participation in these communities, make
it more visible internally in the company, and make it part of the developers’ jobs.

16.6.2 How Satisfied Is the Industry with OSS?

According to the responses to Question 32, the companies seem to be satisfied with the OSS
products, and perhaps surprisingly, the product support they get. They also say that they
are satisfied with the relationship between the companies and the communities, and with the
ability they have to influence the OSS product. However, Interviewee B said that he found
it hard to influence the development of OSS projects. He would have liked to influence them
more, but he meant that you had to be part of the development team to influence it.

16.6.3 Motivation

The answers to Question 38 and 39 about company and personal motivations were quite scat-
tered. Benefiting from testing performed by the community seems to be one company motiva-
tion, while required use of OSS by the company does not seem to be important.

For the individual, idealism seemed to be one motivating factor, while obligation to the
community, and reputation among peers seemed to be unimportant. Learning, were also
mentioned as one motivational factor by some respondents.

A Survey of Industrial Involvement in Open Source

16.6. RQ5: Open Source Participation by Companies 117

16.6.4 Communication between Companies and the OSS Projects

Figure 16.7: Communication methods used when companies participate in OSS projects

How do the developers from a company and members of an OSS community communicate
with another when the developers participate in OSS projects controlled by communities out-
side the company? Figure 16.7 shows the results from Questions 34 and 35. Participants using
a particular communication method, answering "Large" or "Very large" were summarized in
the figure. The results from the five respondents are shown in Figure 16.7.

The results indicate that on the inside of the company, private e-mail, mailing lists, and
formal and informal face to face meetings were used the most. Participants in the company
and community members outside the company, communicate primarily using private e-mail
and mailing lists.

16.6.5 Licenses

Licensing was not part of our questionnaire, but we wondered how important this was to the
companies. We asked our interviewees about licensing, because we wanted to know if they
cared, and if they were aware of the possible challenges related to licensing. We were relieved
by the fact that this seemed to be extremely important to all the companies we interviewed.
Licensing was not seen as a big problem, because most OSS use well-known licenses like GPL,
LGPL, BSD, or the MIT license.

Interviewee D as an open source provide, spoke quite a lot about offering the right license
to the right customer. To give the user the freedom to choose, they licensed their software
with up to four different licenses. Based on these observations we have formed the following

Øyvind Hauge and Andreas Røsdal

118 16. Results

hypothesis.

H 12 Industrial actors are aware of and they respect open source licenses.

The consequence of this hypothesis is that the open source community does not need to
worry too much about industrial actors exploiting them and stealing their software. Nev-
ertheless, we believe it is important to maintain control over the software developed in the
community, and to use clear and well defined licenses.

A Survey of Industrial Involvement in Open Source

Chapter 17

Discussion

This chapter will present a discussion of the results from the survey. First, the main contribu-
tions in this thesis will be presented. Then, the goal achievement of each research question will
be evaluated. Moreover, the validity of the results will be discussed. Finally, improvements to
the survey will be suggested.

17.1 Main Contributions

The contributions of this thesis can be divided into four parts, the literature study, new knowl-
edge, a basis for further research, and a reusable research design. Our contributions will be
summarized, before we discuss the significance of the answers to the research questions.

17.1.1 Literature Study

The first contribution of this thesis is the literature study. The literature study is a presentation
of relevant research, which has been published about the topics described in the research goal.
As presented in Chapter 10, a large number of articles and books have been used to describe the
state-of-the-art research. The process of creating this literature study has been documented
and described. The results constitute the second part of this thesis, the Prestudy. The results of
this study will be used as input to deliverables in the COSI project. Further, the results of the
literature study base a foundation for the research design. This means that knowledge gained
from the literature study has been used to rule out research questions which have already been
answered. This has enabled us to create relevant and realistic research questions.

17.1.2 New Knowledge

The second and most important contribution from this thesis is the new knowledge, which
has been discovered through the survey. This knowledge can be divided into: answers to the
research questions, our hypotheses, and to the guidelines.

Answers to Research Questions

The answers to the research questions are provided in Chapter 16 in form of, both qualitative
and quantitative descriptions. The goal achievement of each research question is discussed in
Section 17.2 and will therefore not be discussed here.

119

120 17. Discussion

Hypotheses

We have proposed twelve hypotheses based on the results we found through our interviews
and questionnaire. These hypotheses are believed to constitute a valid understanding of the
reality based on observations made through the survey. Hypotheses are proposed explanations
of observations, they can not be considered as definitive proof. Further work is needed to test
the hypotheses, and possibly falsify some of them. The hypotheses are provided here, but they
are discussed together with the results in Chapter 16. The hypotheses can be used to create
new research questions, and they are therefore an important part of the platform for future
research. Our hypotheses can be found in Table 17.1.

H1 Companies participate in Open Source with the roles open source owner,
open source participant, inner source participant, and user of open source
components.

H2 Open source components are primarily regarded as commodity software.
H3 High availability of the components, of the source code, and of the informa-

tion related to the components is one of the most important motivations for
using OSS components.

H4 Selection and evaluation of OSS components, is primarily done as a process
based on previous knowledge, informal searches, and subjective evaluations
of the components.

H5 Opening up the development of an industrial open source product may cre-
ate trust and generate feedback, but it requires excellence from the open
source provider.

H6 The number of possible users in the market and the size of the commu-
nity around your product severely influence the further development of the
product and your benefits of having it as an open source product.

H7 Critical success factors for succeeding with an industrial open source prod-
ucts are: Your company can make money offering it as an open source
product. The product is needed in the company. The developers are users
of the product. An active community with technically competent people
exists around the product.

H8 You must as an owner of an open source product work to attract a critical
mass of community members. When you have succeeded, you need to work
hard to keep them.

H9 Companies use open source software engineering practices to perform dis-
tributed software development.

H10 Companies have to adapt their development processes when using OSS.
H11 Most industrial software developers do not participate in the development

of open source software. They are primarily involved as active or passive
users, with occasional bug-fixes.

H12 Industrial actors are aware of and they respect open source licenses.

Table 17.1: Our proposed hypotheses

A Survey of Industrial Involvement in Open Source

17.1. Main Contributions 121

Guidelines

Preliminary guidelines have been created based on the results of the survey. These guidelines
are created based on Research Question 1, 2, and 3. The answers to theee research questions
provided immediate results, which could be useful for companies participating in the COSI
project. Results to Research Questions 4 and 5 are not of a type where guidelines can be
created directly. Guidelines for the selection and evaluation of open source components can be
found in Appendix D.1. Guidelines for management of open source products can be found in
Appendix D.2. Finally, guidelines for companies participating in inner source projects can be
found in Appendix D.3. Feedback from the industry directly on the guidelines would be useful
to improve them further.

17.1.3 Platform for Future Work

Our work answers many questions, but new ones can be based on this work. We have gained
new understanding of several topics and our work will function as a platform for further work
in the COSI project. Our work may also work as a platform for others to build upon as well.
Some ideas for future work are presented in Section 18.2.

17.1.4 Reusable Research Design

The research design we have developed can be extended and reused. We have provided descrip-
tions of our design and our work, and we have made the interview guide and the questionnaire
available. The questionnaire is also implemented using a web tool. This tool is available and it
would be small job to improve, extend, and perform this survey repeatly. Our research design
is described in Chapter 12, our interview guide and questionnaire, are available in Appendix
B, and C.

17.1.5 Significance of Results

What is the significance of the results found in the survey, and how are these results compared
to those found in literature?

Research Question 1

From the answers to the first research question, we have described a selection-process for
selection of OSS components. This selection process, has many similarities to the selection
processes for COTS components described in Section 7.3, in the prestudy. Our results to
Research Question 1 therefore suggest that the selection process described in the literature
study is quite commonly used.

Research Question 2

The results to the second research question described experiences from companies which man-
age their own OSS product. As described in the prestudy in Chapter 8, few publications have
been made about companies which initiate their own OSS product. Therefore, the results to
this research question describe interesting and new knowledge about companies managing their
own OSS product.

Øyvind Hauge and Andreas Røsdal

122 17. Discussion

Research Question 3

Answers to the third research question described inner source development. As mentioned in
the prestudy in Section 5.3, inner source development has been discussed in very few pub-
lications. Therefore, answers to this research question present results which describe new
experiences from inner source development projects. This knowledge, is something companies
interested in participating in inner source projects, can learn from.

Research Question 4

Based on the answers to the fourth research question, we proposed a hypothesis that companies
using OSS have to change their development processes to some extent when using OSS. The
most significant result to this research question is a hypothesis which can be the foundation
for future research.

Research Question 5

The fifth research question has been answered by describing how companies participate in OSS
development. The results of this work include hypotheses which can be the foundation for
future research. The results to this research question were not definitive, and we therefore
have not compared these results to other studies.

17.2 Goal Achievement
The original goal of this work is described in the introduction of this thesis. The two main
objectives were, to do a literature study, and to create a survey design. The results of these
should aid the work in the COSI project.

The first part of this goal has been fully completed. The results of the literature study can
be found in the second part of this thesis, the Prestudy. The literature study will function as
input to one of the deliverables in the COSI project.

The second part of the main goal was decomposed into a research goal, and five research
questions. Both the research goal and the research questions are described in Chapter 11.

We described four roles which a company can undertake in the COSI setting, open source
owner, open source participant, inner source participant, and user of open source components.
The focus of the research goal was to explore the relationships these four roles have to open
source and open source practices.

17.2.1 Evaluation of Answers to the Research Questions
The research goal was as mentioned decomposed into five research questions, RQ1-RQ5. We
will now evaluate the goal achievement of each of these five research questions.

Research Question 1

The first research question, RQ1 Why do companies use OSS components, and how
do they find and evaluate these components? is related to the role user of open source
components. We have for this role answered all parts of the research question by providing an
overview of important motivations for use of OSS components, a description of a search and
evaluation process, description of several evaluation criteria, and some guidelines for OSS com-
ponent selection and evaluation. The results are described in Section 16.2 and the guidelines
are available in Appendix D.1. The guidelines are provided as an input to the COSI project
and future work should be focused on improving these preliminary guidelines.

A Survey of Industrial Involvement in Open Source

17.2. Goal Achievement 123

Research Question 2

We feel confident with the goal achievement of the second research goal, as well. RQ2: Why
do companies choose to make their products Open Source, and how can this be
done successfully? is related to the role as an open source owner. To answer this research
question, we have described motivations behind making a product open source, showed advan-
tages and disadvantages of having a product as open source, provided tips, and requirements
to those who are going to make their product open source, and summarized our findings in
form of preliminary guidelines. The results are available in Section 16.3 and the preliminary
guidelines for companies managing OSS projects are available as Appendix D.2.

Research Question 3

The third research question, RQ3: Why and how do companies use development
methodologies from Open Source, in ISS development?, is answered by providing
an overall description of inner source development. This description includes a description of
the open source development practices, which can be used inside a company. Further, we de-
scribe the development practices, and the development processes used in inner source projects.
Finally, we present a a description of how inner source projects are organized.

As stated in the research goal, the survey covered inner source in an explorative way,
because little was known about the topic in advance. The results of this research question have
therefore contributed towards a better understanding of inner source development. It is clear
that companies use open source practices in their development, but further research in needed
to explore this phenomenon.

Inner source development is a relatively new concept, and some of the respondents re-
ported that they were uncertain about the definition of "inner source". Nevertheless, the goal
achievement of this research question is good. Inner source development has been explored, and
described as good as possible, based on the responses to the questionnaire. These descriptions
are presented in Section 16.4 and the preliminary guidelines for inner source development are
available as Appendix D.3.

Research Question 4

The answers to the fourth research question, RQ4: How does the use of OSS influence
the development processes of companies? are presented in Section 16.5. These answers
are related to the role inner source participant.

This research question was answered based on the interviews of three companies, participat-
ing in the COSI project and the responses to the questionnaire. The answers to this research
question were provided as three examples of the development processes used in the companies
which were interviewed. For each of these companies, the development processes were de-
scribed, and influences from the use of OSS were sought. Further, the development processes,
and the development practices reported by companies responding to the questionnaire, were
described.

Based on the results from the interviews and questionnaire, a discussion was presented
related to whether the use of OSS has influenced the development processes of those companies.

It was hypothesized that companies, had to change their development processes to some
extent when using OSS. However, further studies are necessary to determine this. The number
of respondents to the questionnaire was relatively low, and the companies themselves were not
unified about this research question. To sum up, we have succeeded at answering this research
question, by provided new insight into development processes used in companies with a role
related to OSS.

Øyvind Hauge and Andreas Røsdal

124 17. Discussion

Research Question 5

The fifth research question, RQ5: How and why do companies participate in the
development of OSS projects controlled by a community outside the company?,
is answered by describing how companies participate in OSS development. In addition to
these descriptions, we have described some motivational factors and some issues related to
communication. The results can be found in Section 16.6.

There was unfortunately some uncertainty among the respondents about what participa-
tion is, or what it takes to be a participant. Additionally, it could be hard to differentiate
between personal, and company initiated participation. We are interested in all the interaction
companies have with open source communities. We have provided some results, and we think it
would be interesting to work with this issue further. This research question has been answered
to some extent, but as described above, the responses from companies are that they are unclear
about their participation in OSS projects.

17.2.2 Summary
All the research questions have been answered based on the results from the survey. Detailed
qualitative and quantitative answers have been provided to all the five research questions.
Based on these results, preliminary guidelines have been created to provide input to the COSI
project. Further, hypotheses have been created as a foundation for future research.

However, the number of responses to the questionnaire was low, the use of convenience
sampling, and the fact that some of the respondents did not agree on the definitions of some
of the terms in the questionnaire, threaten the validity of our results. These and other threats
to validity are discussed in the next section.

Our results are, because of these threats to validity primarily presented as hypotheses,
rather than conclusions. The results of each research question consist of descriptions of the
observations made through the interviews and questionnaire, and our analysis of these answers.

To summarize the discussion of our goal achievement, we would say that we are very
satisfied with the results we achieved, but we see that there are room for improvement. We
have completed the tasks from the original project description, and we have answered all of
our research questions. Some the possible improvements of our work and a discussion of the
validity of our work will be described further in the next sections.

A Survey of Industrial Involvement in Open Source

17.3. Validity 125

17.3 Validity

Validity is related to how much we can trust the results we have found. It is always important
to take a critical look at your work, and assess the quality of both this work, and its results.
(Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000) state that adequate validity
refers to the fact that the results must be valid for the population of interest. The authors
divide validity into four types: internal, external, construct, and conclusion.

The "truth" can be described in different ways, as described in Section 12.2. It is because of
this, better to talk about intersubjectivity rather than truth. Intersubjectivity is a description
of something which many people agree upon (Jacobsen 2005, 214). We cannot say that our
descriptions of our results are true, but we believe they are understandings that can be shared
by others. We will now discuss possible threats to our descriptions, and our understandings of
the results.

17.3.1 Internal Validity

Internal validity is related to whether the results are valid for the population the sample is
taken from (Jacobsen 2005, 214).

Review and Reporting

(Jacobsen 2005) describes two measures to ensure the internal validity of a qualitative study.
These are, validation through review by others, and validation through critical self-review.
These two measures can also be used to ensure the validity of quantitative studies.

The self-review should review both your sources, and the information from these sources.
We have of course reviewed our information, and discussed our results several times. In addition
to our self-review, we have shared both the data and the results with our supervisors, primarily
Carl-Fredrik Sørensen. Some issues have also been presented to fellow students and researchers.
Both supervisors and colleagues provided us valuable feedback, and functioned as sparring
partners.

We are going to report our findings to the respondents of the questionnaire and to our
interview objects, through the COSI project. This will unfortunately not happen until after
our project deadline. We are therefore at the moment not able to get any feedback on our
results from our respondents.

Selection

(Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000) mention selection as one threat
to internal validity. We have been forced to use convenience sampling both for the selection of
the interview objects and for the questionnaire.

Using convenience sampling, like we were forced to do in our research, may reduce the
internal validity of the results. Our supervisor sent the survey to the companies participating
in the COSI project and the partners selected the respondents themselves. This leaves us
without control over response, and dropout rates of the questionnaire, and we do not know
whether the respondents are representative for the companies they represent. We are therefore
unable to do any analysis of the ones who chose, not to answer the questionnaire.

Another drawback of convenience sampling is that people who really want to answer, or as
in the COSI setting, who are obligated to answer, may answer differently than other respon-
dents (Kitchenham and Pfleeger 2002b). It would have been preferable to use some kind of
randomization to select our sample, but this was not possible.

Øyvind Hauge and Andreas Røsdal

126 17. Discussion

Control of Human Factors

There are several human factors which influence the responses to a questionnaire, and it is
hard to control these factors. (Robson 2003) mentions human memory, knowledge, experi-
ence, motivation, personality, and that people may want to be seen in a good light as possible
problems with questionnaires. We have tried to develop a questionnaire that allows the re-
spondents to answer honestly by improving it through several reviews, and from feedback from
the interviewees and from the COSI project.

Further, the questionnaire contained a meta-question where respondents could clarify as-
sumptions that they made when answering the questionnaire. This gave us feedback on the
questionnaire and allowed us to only use results which came from respondents who understood
the questions that they were answering.

Finally, the interviews were recorded on tape. This allowed us to listen and transcribe all
the interviews. This contributed towards increasing the internal validity because then we could
be surer that the reported results are accurate.

Maturation

Further, (Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000) describe maturation
as a threat to internal validity. Maturation is the unwanted effect that respondents can an-
swer differently over time. One cause of maturation is that respondents think that answering
questionnaires is uninteresting and possibly answer differently because of this. Very long ques-
tionnaires with a poor interface may contribute towards maturation. This was an issue we were
aware of during the design of the questionnaire. The questionnaire created in this study was
quite long with 69 questions in total. However, respondents only had to answer the parts of the
questionnaire which was relevant to their OSS related role. The time to fill in the questionnaire
was therefore decreased and the risk of maturation was reduced.

Mortality

Mortality is another risk to internal validity as described by (Wohlin, Runeson, Höst, Ohlsson,
Regnell, and Wesslén 2000). Mortality means that respondents drop out of the study. A
cause for this could be the same as described for maturation, which is that some respondents
could have had problems answering the questionnaire or finding it uninteresting to answer. We
observed only one respondent to the survey who did not answer any of its parts. Other than
this instance, there was no observed mortality.

17.3.2 External Validity

External validity is related to whether the results are valid for other populations. The main
threat to external validity is the sampling of respondents to the survey. The respondents were
few, 24 respondents from 11 companies. Further, the respondents are possibly not representa-
tive for larger population.

Generalization

The results have adequate external validity if they are valid for the population we wish to
generalize (Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000). However, (Lee and
Baskerville 2003) say that as a consequence of Hume’s truism, a theory have to be tested in
the setting before it can be said to be generalizable.

A Survey of Industrial Involvement in Open Source

17.3. Validity 127

The purpose of qualitative studies is normally not to generalize, but to explain and under-
stand a phenomenon (Jacobsen 2005, 222). Our goal was to create an understanding of the
phenomenon, use of open source in industry, and create a theory based on this understanding.

(Lee and Baskerville 2003) present a framework of four types of generalizing and generaliz-
ability. Generalization from empirical work to theory is one of the four types of generalization.
(Yin 2003) refers to this type of generalization as analytical generalization. Lee and Baskerville
refer to several examples and different theories, and conclude that generalization from empirical
work to theory is possible. We have based on our observations, presented several hypotheses.
These hypotheses need to be tested in other settings to be generalizable to that setting ac-
cording to (Lee and Baskerville 2003). Testing these hypotheses could be an input to future
work.

Population

The population of our research is the COSI project. This project consists of industrial partners
who want to use open source, and who are interested in improving their use of open source, and
open source practices. Our population is therefore not typical for all software companies. The
fact that we work with, one special group of industrial partners, reduces the external validity
of our research.

Sampling

The sampling method, convenience sampling, could also be a threat to the external validity of
the results. It is unlikely that the few respondents we had are typical for the whole population.
This is also related to the statistical generalization. The statistical power of our survey is very
low, with only 24 respondents, and as few as three respondents to one part of the survey.

Yet another thing that may affect the external validity is the fact that our interview object
also answered to the questionnaire. This means that their answers may have been given extra
weight because we have used their answers from the interviews, and we have used their answers
from the questionnaire.

17.3.3 Construct Validity
(Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000) states that construct validity
is related to generalizing the results to more a general underlying theory. To meet the test
of construct validity, you have to select what you want to study and demonstrate that the
selected measures reflect what you wanted to study (Yin 2003, 35). In other words, did our
interviews and our questionnaire measure or collect the data we wanted?

(Jacobsen 2005) mentions measuring the right thing as one problem, especially with ques-
tionnaires. Questions and statements in both our questionnaire and our interviews may have
been misunderstood, or misinterpreted because they were improperly phrased. If the interview
objects, or the respondents misunderstood something, they may have answered something else
than what we wanted to know.

We had some ambiguity related to some terms used in the questionnaire, but besides that,
we did not get any indications that neither the questionnaire nor the interviews were mis-
interpreted. Some of these misunderstandings and our corrections are described in Chapter
14.

(Robson 2003) mentions testing and review as the best ways of ensuring construct valid-
ity. Our supervisors, fellow students and researchers, and partners in the COSI project have
reviewed our questionnaire, and provided us with feedback. We have also tested the question-
naire by using it as an interview guide. If it was possible, it would have been preferable to be
able to pre-test the questionnaire with a small sample of respondents.

Øyvind Hauge and Andreas Røsdal

128 17. Discussion

17.3.4 Conclusion Validity

Conclusion validity is related to finding relationships. There are two possible threats to con-
clusion validity. The first threat is that relationships are found where no relationships exist.
The other threat is that existing relationships are ignored. Further, it is important that the re-
lationships are causal and that the relationships are in the correct direction of causal influence
(Wohlin, Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000).

When using qualitative research methods, validity can be increased by triangulation. Tri-
angulation is to control the results and data by combining different research methods. We have
used both interviews and a questionnaire. Other methods, like observations, could also have
been used if the time span of this work had been larger.

One possible threat to the conclusion validity is the low statistical power. The statistical
power of this work is as mentioned before, very low. This is an obvious problem. Other threats
to the conclusion validity could be fishing, poor question wording, and bad questions (Wohlin,
Runeson, Höst, Ohlsson, Regnell, and Wesslén 2000).

The researchers lack of experience conducting interviews, and creating questionnaires is
potentially another problem. This lack of experience may lead to bad questions, and perhaps
leading questions. We have received good support and feedback from our supervisors, so we
do not think this is a major problem, except when it comes to describing processes. We got
feedback from some of the respondents to the questionnaire that open questions were not
suitable to describe processes. It was difficult, and it was too time consuming. Both the
feedback from the respondents and the feedback from our supervisors are described further in
Chapter 14.

17.3.5 Reliability

Reliability is related to stability and consistency. If the same procedures are followed in later
investigations, they should find the same results and arrive at the same conclusions (Yin 2003,
38). The goal of reliability is to reduce the errors and the biases in a study.

We have tried to document our research in Chapter 12, 13, 14, and 15. This documentation
is provided to increase the reliability of our research. We have also made both the interview
guide and the questionnaire available as Appendix C, and B. This enables other researchers
to replicate our work.

(Yin 2003) emphasizes that reliability is about doing the same research, not about repli-
cating the same results in another setting. It should be possible to do very similar research
to what we have described here, and get very similar results. However, it is important to
be aware that the same respondents we used may change their mind, or learn, and therefore
answer differently the next time the same research design is executed.

17.4 Improvements

In this section, we present some of the thoughts about possible improvements to our work.
The two most obvious threats to the validity of our work are the limited sample size, and

the sampling method used. By redistributing the questionnaire to a bigger sample and by
using a random-sample technique to select the respondents, we would reduce this problem.
Having a defined sample would also allow us to do analysis of the ones who did not answer the
questionnaire.

Some of the respondents reported that the questionnaire was too time consuming and that
it was difficult to describe development processes in a small box. Another improvement would
be to review the questionnaire and perhaps remove or rephrase some questions.

A Survey of Industrial Involvement in Open Source

17.4. Improvements 129

(Kitchenham and Pfleeger 2002a) describe how to increase the motivation of the respon-
dents, by showing how the results of the study can be useful to them. Increased motivation
may lead to higher response rate, and we believe that we should have focused more on show-
ing the usefulness of our results to the respondents. The article by Kitchenham and Pfleeger
is part of an article-series which discusses how to increase the reliability and the validity of
surveys. We were unable to follow these advices because we discovered the series too late.
Nevertheless, learning from the advices given by Kitchenham and Pfleeger would also improve
our questionnaire.

Validation of our work can also be achieved through comparison with the literature and
against other studies, or by presenting it to people with deep knowledge and insight in the field.
This and the other improvements of our work could be done as an extension of our present
work.

Øyvind Hauge and Andreas Røsdal

130 17. Discussion

A Survey of Industrial Involvement in Open Source

Chapter 18

Conclusion and Future Work

18.1 Conclusion
Through this thesis, the results of a survey of industrial involvement in open source have been
presented. Open source is an area which is becoming increasingly interesting for companies,
as part of a business model, but also as a set of development practices.

The overall goal of the COSI project is, as stated in the introduction, to understand how
industry can benefit from open source software and open source development practices. The
COSI project has hypothesized that the use of commodity OSS is one way to achieve more
efficient software development.

The initial goal of this thesis was to create a survey of open source within the context of
the COSI project. We defined four roles in the COSI setting which a company can undertake:
open source owner, open source participant, inner source participant, and user of open source
components. The goal of this work is to understand these roles better. Our work will, together
with other work in the COSI project, form a baseline description of the companies’ software
development processes, communication processes, and relationships to the open source commu-
nities. These baseline descriptions will help the participating companies to better understand,
how they use and benefit from open source software and development practices.

The survey was performed as a combination of structured interviews and a questionnaire
The interviews were performed with the Norwegian partners of the COSI project. Feedback
from these partners, were used to develop and improve the questionnaire. The questionnaire
was answered by the companies participating in the ITEA COSI project.

The research goal has been achieved and our work has four main contributions: Firstly,
a literature study describing the state-of-the-art of open source software development. This
literature survey is used in deliverables in the COSI project. It allowed us to build our work,
on the work of others, and it allowed us to compare our results with the results with other
researchers. Secondly, new knowledge has been discovered in the form of answers to the research
questions, twelve hypotheses, and guidelines for companies involved in open source software
development. Thirdly, the new knowledge found can be used as a platform for future work.
Fourthly, we have developed a research design which is reusable and extendable. We provide
descriptions of this design and it can be reused by us, or other researchers.

Each of the five research questions, have been answered and we have provided extensive,
descriptive answers. The results of these research questions provide interesting and unique
answers to questions which have not been studied in detail in the literature. The answers to
Research Question 1, provide new insight into how developers select and evaluate OSS com-
ponents. Based on answers to the survey, we have described a hypothetical OSS component
selection process. Answers to Research Question 2 describe open source projects managed

131

132 18. Conclusion and Future Work

by companies. There were very few publications about companies managing their own OSS
projects. The unique access to such respondents through the COSI project, allows us to harvest
and share experiences from such projects. Research Question 3 covers inner source develop-
ment. The answers to this research question can provide new insight for companies interested
in using open source development practices and to improve development in a distributed set-
ting. Research Question 4 covers how the use of OSS influences the development processes in
companies. The answers provide relevant experiences for all companies using OSS. Finally, re-
sults from Research Question 5 describe companies participating in OSS projects. The results
to this question can aid companies interested in such participation.

Many interesting results have been found through this survey, but new questions are posed.
Our work should be extended and validated by more research within the same research area.
We strongly believe that our work is a step in the right direction and we encourage other
researchers to continue work in this area. More work in this area will help industry and the
open source communities to benefit as much as possible from industrial involvement in open
source.

18.2 Future Work

This section describes areas to be explored in future studies which are related to open source
and possibly performed within the context of the COSI project.

When we did our literature survey, we found limited empirical research about industrial
involvement in open source. To increase the understanding of this topic and to increase the
benefits the open source communities have from industrial involvement and the benefits indus-
try has from involvement in open source, it is important to do more empirical research. The
work described in this thesis can be extended in several ways.

It is first of all possible to redistribute the survey to a bigger sample, using more appropriate
sample techniques. By building on our research design it should be plausible to get good, valid
results.

A second interesting topic is selection and evaluation of OSS. We have provided descriptions
of interesting characteristics of such processes, but it would be very interesting to explore these
processes further. This could be done by both interviews, and questionnaires.

How to create and maintain an OSS community is another important topic. It is important
to understand how this can be done successfully to really benefit from the open source devel-
opment model. To really succeed, it is important to attract a community to your product.
How to do this and how to benefit from the community are two important questions. It is as
we have shown, necessary to spend some resources to be able to succeed with an open source
project. How much and how to spend these resources most efficiently are two questions that
should be explored.

The three topics above have been found interesting by NTNU, and they have made new
project descriptions around these three topics available for new computer science students. We
hope that some of these students will find interest in our work and continue it.

Related to these topics are our guidelines. They are only preliminary and thus they need
to be improved to be of greater use. We hope that these guidelines can be developed further
and be used in the COSI project, as useful input in their work.

Further, a longitudinal survey could be performed to investigate how company involvement
in open source change over time. The COSI project lasts until 2008, so future surveys could
be performed comparing the baseline descriptions found in this thesis with future changes.

Some respondents expressed some dissatisfaction with the open questions in the question-
naire related to process descriptions. It should therefore be possible to find other and more
suited models to describe software development processes. It is interesting to describe both

A Survey of Industrial Involvement in Open Source

18.2. Future Work 133

processes used in open source related development and in software development which use open
source practices.

We have in this thesis proposed twelve hypotheses. These hypotheses are our interpretations
of the results we found. We believe they form a good starting point for future work. Testing
these hypotheses could be done related to some of the tasks described above.

Øyvind Hauge and Andreas Røsdal

Index

Apache, 17
ARPANET, 15

Berkeley Software Distribution, 16
BSD, see Berkeley Software Distribution

Causal study, 67
Copyleft, 24
Copyright, 23
Cross sectional, 66

Deducative reasoning, 70
Deductive reasoning, 66
Descriptive study, 67

Free Software, 12
Free Software Definition, 12
Free Software Foundation, 12, 16
Free/Libre Open Source Software, 12

Hacker culture, 15

Inductive reasoning, 66
Inner source development, 104
Internet, 15
Interview, 65, 67

Licenses, 13, 23
Likert scale, 70
Linux, 17
Longitudinal, 66

Open Source, 12
Open Source Definition, 12
Open Source Initiative, 12
Open Source Software, 12
Open standards, 25

Qualitative study, 64
Quantitative study, 65
Questionnaire, 65, 68
Questionnaire scales, 70

Research design, 63

TCP/IP, 16

UNIX, 16

134

Glossary

Altruism altruism is the practice of placing others before
oneself, 21

ANT a tool for automatic building of software, 17
API The programming interface of a piece of soft-

ware. The API describes how to access the func-
tions of the software., 103

BASH Bourne Again Shell (a shell environment), 24
BIND Implementation of the Domain Name Server

(DNS) which maps domain names to IP-
addresses, 16

CBD COTS-based development, 42
Compiler a program translating source code in a language

like C, 12
Consortium association companies engaging in a joint ven-

ture, 32
Copyleft a word-play with the more known copyright

Copyleft is a general method for making a pro-
gram or other work free and requiring all modi-
fied and extended versions of the program to be
free as well, 24

COSI Co-development using inner & Open source in
Software Intensive products, 1

COTS Commercial off the shelf, 42
Cross sectional study A study performed once, 66
CVS Concurrent Versions System, 31

Extrinsic motivation When a person is rewarded or encouraged by
something outside the person, 21

FLOSS Free Libre Open Source Software where Libre is
Spanish for free as in freedom, 12

GCC GNU Compiler Collection, 24

135

136 Glossary

Hacker a person who is very skilled at computer pro-
gramming and spends a lot of time program-
ming , 15

HTTP server Earlier known as the Apache web server. It is
the most used web server on the Internet today,
17

Idealism Idealism is the behavior and beliefs of someone
who has strong ideals and tries to base their
behavior on these ideals, 21

IDI Department of Computer and Information Sci-
ence, i

Intersubjectivity Intersubjectivity referes to shared meanings
constructed by people in their interactions with
each other, 121

Intrinsic motivation When a person is involved in some activity with-
out some obvious external incentive present.
This could be the feeling of creativity, 21

IRC Internet Relay Chat is a chatting environment
where the users can log on to a server, 23

ITEA Information Technologi for European Advance-
ment, 1

Longitudinal study A study repeated at several points in time, 66

NTNU Norwegian University of Science and Technol-
ogy, i

Qualitative Concerned with information as text, 64
Quantitative Concerned with information as numbers, 64

Reliability The reliability of a survey is concerned with how
well we can reproduce the survey data., 125

Sendmail Eric Allman’s mail messaging routing program
which is currently running most of the e-mail
traffic today, 16

Tomcat a Java Server Pages and Java Servlet extension
of the HTTP server, 17

Triangulation Triangulation is to control the results and data,
124

A Survey of Industrial Involvement in Open Source

Glossary 137

Validity The validity of a survey concerns how well the
instrument measures what it is supposed to
measure., 125

Øyvind Hauge and Andreas Røsdal

138 Glossary

A Survey of Industrial Involvement in Open Source

References

Abramson, R. (2004). Linux Looms Larger Than Thought. Online: http://www.thestreet.
com/_yahoo/tech/ronnaabramson/10199089.html, accessed 2006-04-24.

Barahona, J. G., P. H. Quiros, and T. Bollinger (1999). A Brief History of Free Software
and Open Source. IEEE Software 16 (1), 32–34.

Behlendorf, B. (1999). Open Sources: Voices from the Open Source Revolution, Chapter
Open Source as a Business Strategy, pp. 149–170. O’Reilly Media, Inc.

Bergquist, M. and J. Ljungberg (2001). The Power of Gifts: Organizing Social Relationships
in Open Source Communities. Information Systems Journal 11, 305–320.

Carney, D. and F. Long (2000). What Do You Mean by COTS? Finally, a Useful Answer.
IEEE Software 17 (2), 83–86.

Conradi, R. and J. Li (2005). Observations on Versioning of Off-the-Shelf Components in
Industrial Projects (short paper). In SCM ’05: Proceedings of the 12th International
Workshop on Software Configuration Management, Lisbon, Portugal, pp. 33–42. ACM
Press, New York, NY, USA. ISBN: 1-59593-310-7.

Cooper, D. R. and P. S. Schindler (2001). Business Research Methods. McGraw-Hill. ISBN:
0-07-231451-6.

Crowston, K., H. Annabi, J. Howison, and C. Masango (2004). Effective Work Practices
for Software Engineering: Free/libre Open Source Software Development. In WISER
’04: Proceedings of the 2004 ACM Workshop on Interdisciplinary Software Engineering
Research, Newport Beach, CA, USA, pp. 18–26. ACM Press, New York, NY, USA. ISBN:
1-58113-988-8.

Crowston, K. and J. Howison (2005). The Social Structure of Free and Open Source Software
Development. First Monday 10 (2). Online: http://www.firstmonday.org/issues/
issue10_2/crowston/index.html, accessed 2006-05-01.

Dahlander, L. and M. G. Magnusson (2005). Relationships between Open Source Software
Companies and Communities: Observations from Nordic Firms. Research Policy 34 (4),
481–493. available at http://ideas.repec.org/a/eee/respol/v34y2005i4p481-493.html.

Dahle, H. P. and R. Conradi (2005). Norsk Cosi. Proposal for the Norwegian COSI.

Deng, J., T. Seifert, and S. Vogel (2003, May). Towards a Product Model of Open Source
Software in a Commercial Environment. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, pp. 31–37. International Conference on Software Engineer-
ing.

Dinkelacker, J., P. K. Garg, R. Miller, and D. Nelson (2002). Progressive Open Source. In
ICSE ’02: Proceedings of the 24th International Conference on Software Engineering,
Orlando, Florida, pp. 177–184. ACM Press, New York, NY, USA. ISBN: 1-58113-472-X.

139

140 REFERENCES

Divitini, M., L. Jaccheri, E. Monteiro, and H. Trœtteberg (2003). Open Source Processes
no Place For Politics. In J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani (Eds.),
Taking Stock of the Bazaar Proceedings of the 3rd Workshop on Open Source Software
Engineering, pp. 39–44.

Feller, J. and B. Fitzgerald (2002). Understanding Open Source Software Development. Ad-
dison Wesley. ISBN :0-201-73496-6.

Fielding, R. T. (1999). Shared leadership in the Apache project. Communications of the
ACM 42 (4), 42–43.

Free Software Foundation (2006). The Free Software Definition. Online: http://www.fsf.
org/licensing/essays/free-sw.html, accessed 2006-02-10.

freshmeat.net (2006). freshmeat.net Statistics. Online: http://freshmeat.net/stats/, ac-
cessed 2006-02-17.

Fuggetta, A. (2003). Open Cource Coftware an Evaluation. The Journal of Systems and
Software 66, 77–90.

Ghosh, R. A. (2002). Free Libre and Open Source Software: Survey and Study. International
Institute of Infonomics, University of Maastricht, The Netherland; Berlecon Research
GmbH, Berlin, Germany, http://www.infonomics.nl/FLOSS/report.

Glass, R. L. (2002). Sorting out Software Complexity. Communications of the ACM 45 (11),
19–21.

GNU Project (2005). What is Copyleft? Online: http://www.gnu.org/copyleft/, accessed
2006-02-16.

Goldman, R. and R. Gabriel (2005). Innovation Happens Elsewhere: Open Source as Busi-
ness Strategy. Morgan Kaufman Publishers. ISBN: 1-55860-889-3.

Gonzalez, A. G. (2005). Legal Challenges to Open Source Licences. SCRIPT-ed A Journal of
Law and Technology, School of Law at the University of Edinburgh 2 (2), 301–308. Online:
http://www.law.ed.ac.uk/ahrb/script-ed/vol2-2/challenges.asp, accessed 2006-
04-26.

Gurbani, V. K., A. Garvert, and J. . Herbsleb (2006). A Case Study of a Corporate Open
Source Development Model. In ICSE ’06: 28th International Conference on Software
Engineering, Shanghai, China, pp. 472–481. ACM Press, New York, NY, USA. ISBN:
1-59593-375-1.

Gutwin, C., R. Penner, and K. Schneider (2004). Group Awareness in Distributed Software
Development. In CSCW ’04: Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work, Chicago, Illinois, USA, pp. 72–81. ACM Press, New York,
NY, USA. ISBN: 1-58113-810-5.

Hamerly, J., T. Paquin, and S. Walton (1999). Open Sources: Voices from the Open Source
Revolution, Chapter Freeing the Source - The Story of Mozilla, pp. 197–206. O’Reilly
Media, Inc.

Hang, J., H. Hohensohn, K. Mayr, and T. Wieland (2004). Benefits and Pitfalls of Open
Source in Commercial Contexts. In S. Koch (Ed.), Free/Open Source Software Develop-
ment, pp. 222–241. Hershey, PA: Idea Group Publishing.

Hars, A. and S. Ou (2002). Working for Free? Motivations for Participationg in Open-Source
Projects. International Journal of Electronic Commerce 6 (3), 25–39.

Hertel, G., S. Niedner, and S. Herrmann (2003). Motivation of Software Developers in Open
Source Projects: in Internet-based Survey of Contributors to the Linux Kernel. Research
Policy 32, 1159–1177.

A Survey of Industrial Involvement in Open Source

REFERENCES 141

Holck, J. and N. Jorgensen (2005). Do not Check in on Red: Control Meets Anarchy in Two
Open Source Projects. In S. Koch (Ed.), Free/Open Source Software Development, pp.
1–26. Hershey, PA: Idea Group Publishing.

IBM (2006). New to Open Source. Online: http://www-128.ibm.com/developerworks/
opensource/newto/, accesssed 2006-05-01.

IKT-Norway (2006). IKT-Norway Web site. Online: http://www.ikt-norge.no/
templates/Page.aspx?id=474, accessed 2006-06-07.

Indymedia (2004). Free Software - Free Society! Interview with Richard Stallman. Online:
http://www.indymedia.org.uk/en/2004/05/292609.html, accessed 2006-02-10.

Jacobsen, D. I. (2005). Hvordan Gjennomføre Undersøkelser? Innføring i Samfunnsviten-
skaplig Metode (2nd. ed.). Hyøskoleforlaget. ISBN: 82-7634-663-4.

Jørgensen, N. (2001). Putting it all in the Trunk: Incremental Software Development in the
FreeBSD Open Source Project. Information Systems Journal 11, 321–336.

Karels, M. J. (2003). Commercializing Open Source Software. Queue 1 (5), 46–55.
Kitchenham, B. and S. L. Pfleeger (2002a). Principles of Survey Research Part 4: Question-

naire Evaluation. SIGSOFT Softw. Eng. Notes 27 (3), 20–23.
Kitchenham, B. and S. L. Pfleeger (2002b). Principles of Survey Research: Part 5: Popula-

tions and Samples. SIGSOFT Softw. Eng. Notes 27 (5), 17–20.
Klincewicz, K. (2005). Innovativeness of Open Source Software Projects. Online: http:

//opensource.mit.edu/papers/klincewicz.pdf, accessed 2006-04-16.
Lacotte, J.-P. (2004). ITEA Report on Open Source Software. Technical report, ITEA -

Information Technology for European Advamcement.
Lakhani, K. R. and E. von Hippel (2002). How Open Source Software Works: "Free" to

User-to-User Assistance. Reserach Policy 32, 923–943.
Lakhani, K. R. and R. G. Wolf (2005). Perspectives on Free and Open Source Software,

Chapter Why Hackers Do What They Do: Understanding Motivations and Effort in
Free/Open Source Software Projects, pp. 3–23. MIT Press.

Laurent, A. M. S. (2004). Understanding Open Source & Free Software Licensing. O’Reilly.
ISBN: 0-596-00581-4.

Lee, A. S. and R. L. Baskerville (2003). Generalizin Generalizability in Information Systems
Research. Information Systems Research 14 (3), 221–243.

Leonard, A. (2000). The Free Software Project. Online: http://www.salon.com/tech/fsp/
contents/index.html, accessed 2006-02-07.

Li, J., F. O. Bjornson, R. Conradi, and V. B. Kampenes (2004). An Empirical Study of
Variations in COTS-based Software Development Processes in Norwegian IT Industry.
In METRICS ’04: Proceedings of the Software Metrics, 10th International Symposium
on (METRICS’04), Washington, DC, USA, pp. 72–83. IEEE Computer Society. ISBN:
0-7695-2129-0.

Li, J., F. O. Bjørnson, R. Conradi, and V. B. Kampenes (2004). An Empirical Study on
COTS Component Selection Process in Norwegian IT Companies. In International Work-
shop on Models and Processes for the Evaluation of COTS Component (MPEC’04), Ed-
inburgh, pp. 27–30. IEE Press.

Li, J., R. Conradi, O. P. N. Slyngstad, M. Torchiano, M. Morisio, and C. Bunse (2005). A
State-of-Practice Survey on Risk Management in Off-the-Shelf Component-Based Devel-
opment. In In Proc. of the 4th Int. Conf. on COTS-based Software System (ICCBSS’05),
Bibao, Spain, pp. 278–288. Springer-Verlag.

Øyvind Hauge and Andreas Røsdal

142 REFERENCES

Madanmohan, T. R. and R. De’ (2004). Open Source Reuse in Commercial Firms. IEEE
Software 21 (6), 62–69.

Massachusetts Institute of Technology (2006). The MIT License. Online: http://www.
opensource.org/licenses/mit-license.php, accessed 2006-02-11.

Meeker, H. (2005). Dual-Licensing Open Source Business Models. Online: http://linux.
sys-con.com/read/49061.htm, accessed 2006-02-15.

Mockus, A., R. T. Fielding, and J. D. Herbsleb (2002). Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11 (3),
309–346.

Monteiro, E., T. Østerlie, K. H. Rolland, and E. Rørvik (2004). Keeping it Going: The Every-
day Practices of Open Source. Draft, available online: http://idi.ntnu.no/~thomasos/
paper/keeping_it_going.pdf, accessed 2006-02-10.

Mozilla OSS project (2002). Mozilla Development Roadmap. Online: http://www.mozilla.
org/roadmap/roadmap-05-Jun-2002.html.

Narduzzo, A. and A. Rossi (2004). The Role of Modularity in Free/Open Source Software
Development. In S. Koch (Ed.), Free/Open Source Software Development, pp. 84–102.
Hershey, PA: Idea Group Publishing.

Netcraft (2006). Netcraft February 2006 Web Server Survey. Online: http://news.
netcraft.com/archives/web_server_survey.html, accessed 2006-02-07.

opensource.org (2006a). History of the OSI. Online: http://www.opensource.org/docs/
history.php, acessed 2006-01-31.

opensource.org (2006b). The Open Source Definition. Online: http://opensource.org/
docs/definition.php, acessed 2006-01-31.

O’Reilly, T. (1999). Lessons from Open-Source Software Development. Communications of
the ACM 42 (4), 32–37.

Østerlie, T. and K. H. Rolland (2003). Unveiling Distributed Organizing in Open Source De-
velopment: Practices of Using, Aligning, and Wedging. In Proceedings of the Workshop on
Open Source Software Movements and Communities, pp. 26–33. Pre-Workshop Draft Ver-
sion Online: http://opensource.ucc.ie/ct2003/OSSMovementsCommunities-2003.
draft.pdf, acessed 2006-02-07.

Perens, B. (1998). The Open Source Definition. Online: http://www.perens.com/
Articles/OSD.html, accessed 2006-01-31.

Perens, B. (2006). Open Standards Principles and Practice. Online: http://perens.com/
OpenStandards/Definition.html, accessed 2006-02-15.

Potsar, V. and E. Chang (2004). Open Source and Closed Source Software Development
Methodologies. In Collaboration, Conflict and Control – Proceedings of the 4th Work-
shop on Open Source Software Engineering, Edinburgh, Scotland, pp. 105–109. IEEE
Computer Society.

Radinger, W. and K. M. Goeschka (2003). Agile Software Development for Component Based
Software Engineering. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, Ana-
heim, CA, USA, pp. 300–301. ACM Press, New York, NY, USA. ISBN: 1-58113-751-6.

Raja, U. and E. Barry (2005). Investigating Quality in Large-scale Open Source Software.
In 5-WOSSE: Proceedings of the fifth Workshop on Open Source Software Engineering,
St. Louis, Missouri, pp. 1–4. ACM Press, New York, NY, USA. ISBN: 1-59593-127-9.

A Survey of Industrial Involvement in Open Source

REFERENCES 143

Raymond, E. (2001). The Cathedral & The Bazar - Musings On Linux And Open Source By
An Accidental Revolutionary (Revised edition ed.). O’Reilly. ISBN: 0-596-00108-8.

Raymond, E. S. (2000). The Cathedral & the Bazaar. Online: http://www.catb.org/~esr/
writings/cathedral-bazaar/, accessed 2006-02-07.

Read, A. W. (Ed.) (2003). The New International Webster’s Comprehensive Dictionary of
The English Language. Trident Press International. ISBN: 1-58279-558-4.

Reifer, D. J., V. R. Basili, B. W. Boehm, and B. Clark (2003). Eight Lessons Learned during
COTS-Based Systems Maintenance. IEEE Software 20 (5), 94–96.

Remenyi, D., B. Williams, A. Money, and E. Swartz (1998). Doing Research In Business
And Management. SAGE Publications. ISBN: 0-7619-5949-1.

Robson, C. (2003). Real World Research. Blackwell Publishing. ISBN: 0-631-21305-8.

Rosen, L. (2002). Geek Law: Why the Public Domain Isn’t a License. Linux J. 2002 (102),
12. Online: http://delivery.acm.org/10.1145/580000/571797/6225.html?key1=
571797&key%2=2517000411&coll=Portal&dl=ACM&CFID=68573562&CFTOKEN=5521419,
accessed 2006-02-15.

Rossi, C. and A. Bonaccorsi (2005). Why Profit-Oriented Companies Enter the OS Field?:
Intrinsic vs. Extrinsic Incentives. In 5-WOSSE: Proceedings of the fifth Workshop on
Open Source Software Engineering, St. Louis, Missouri, pp. 1–5. ACM Press, New York,
NY, USA. ISBN: 1-59593-127-9.

Scacchi, W. (2002). Understanding the Requirements for Developing Open Source Software
Systems. IEEE Proceedings–Software 149 (1), 24–39.

Scacchi, W. (2004). Free and Open Source Development Practices in the Game Community.
IEEE Software 21 (1), 59–66.

Software, S. (2006). About Us. Online: http://sleepycat.com/company/aboutus.html,
accessed 2006-04-28.

SourceForge.net (2006). SourceForge.net: Software Map. Online: http://sourceforge.
net/softwaremap/trove_list.php?form_cat=14, accessed 2006-02-11.

Stallman, R. (1999). The Gnu Operating System and the Free Software Movement, Open
Sources, Chapter Open Source as a Business Strategy, pp. 53–70. O’Reilly Media, Inc.

Sutor, B. (2006). Open Standards vs. Open Source. Online: http://www-128.ibm.com/
developerworks/blogs/dw_blog_comments.jspa?blog=%384&entry=105886, accessed
2006-02-15.

Tiemann, M. (1999). Open Sources: Voices from the Open Source Revolution, Chapter Future
of Cyguns Solutions - An Entrepreneur’s Account, pp. 71–90. O’Reilly Media, Inc.

Torchiano, M. and M. Morisio (2004). Overlooked Aspects of COTS-Based Development.
IEEE Software 21 (2), 88–93.

Tuomi, I. (2003). Internet, Innovation and Open Source: Actors in the Network. First Mon-
day 6 (1), 1–1. Online journal: http://www.firstmonday.org/.

University of California (1999). The BSD License.

van der Linden, F. (2005). COSI Full Project Proposal. Version 1.3, Confidential.

von Hippel, E. and G. von Krogh (2003). Open Source Software and the "Private-Collective"
Innovation Model: Issues for Organization Science. Organization Science 14 (2), 209–223.

von Krogh, G., S. Spaeth, and K. R. Lakhani (2003). Community, Joining, and Specialization
in Open Source Software Innovation: a Case Study. Research Policy 32, 1217–1241.

Øyvind Hauge and Andreas Røsdal

144 REFERENCES

von Krogh, G. and E. von Hippel (2003). Editorial Special Issue on Open Source Software
Development. Research Policy 32 (7), 1149–1157.

Warsta, J. and P. Abrahamsson (2003). Is Open Source Software Development Essentially an
Agile Method? In Proceedings of the 3rd Workshop on Open Source Software Engineering,
25th International Conference on Software Engineering, Portland, Oregon, pp. 143–147.

Webbink, M. H. (2003). Understanding Open Source Software. The New South Wales Soci-
ety for Computers and the Law Journal 51, 1–1. Online: http://www.nswscl.org.au/
journal/51/Mark_H_Webbink.html, accessed 2006-02-10.

Weber, S. (2004). The Success of Open Source. Harvard University Press (Camebridge).
ISBN: 0-674-01292-5.

Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén (2000). Ex-
perimentation in Software Engineering - An Introduction. Boston / Dorrecht / London:
Kluwer Academic Publishers.

Yin, R. K. (2003). Case Study Research Design and Methods (3rd. ed.). Sage Publications.

A Survey of Industrial Involvement in Open Source

Part V

Appendices

145

Appendix A

The Open Source Definition

147

Introduction
Open source doesn't just mean access to the source
code. The distribution terms of open-source software
must comply with the following criteria:

1. Free Redistribution
The license shall not restrict any party from selling or
giving away the software as a component of an
aggregate software distribution containing programs
from several different sources. The license shall not
require a royalty or other fee for such sale.

2. Source Code
The program must include source code, and must allow
distribution in source code as well as compiled form.
Where some form of a product is not distributed with
source code, there must be a well-publicized means of
obtaining the source code for no more than a
reasonable reproduction cost preferably, downloading
via the Internet without charge. The source code must
be the preferred form in which a programmer would
modify the program. Deliberately obfuscated source
code is not allowed. Intermediate forms such as the
output of a preprocessor or translator are not allowed.

3. Derived Works
The license must allow modifications and derived works,
and must allow them to be distributed under the same
terms as the license of the original software.

4. Integrity of The Author's Source Code
The license may restrict source-code from being
distributed in modified form only if the license allows the
distribution of "patch files" with the source code for the
purpose of modifying the program at build time. The
license must explicitly permit distribution of software
built from modified source code. The license may
require derived works to carry a different name or
version number from the original software.

5. No Discrimination Against Persons or
Groups
The license must not discriminate against any person or
group of persons.

6. No Discrimination Against Fields of
Endeavor
The license must not restrict anyone from making use of
the program in a specific field of endeavor. For
example, it may not restrict the program from being
used in a business, or from being used for genetic
research.

7. Distribution of License
The rights attached to the program must apply to all to
whom the program is redistributed without the need for
execution of an additional license by those parties.

8. License Must Not Be Specific to a Product
The rights attached to the program must not depend on
the program's being part of a particular software
distribution. If the program is extracted from that
distribution and used or distributed within the terms of
the program's license, all parties to whom the program
is redistributed should have the same rights as those
that are granted in conjunction with the original software
distribution.

9. License Must Not Restrict Other Software
The license must not place restrictions on other
software that is distributed along with the licensed
software. For example, the license must not insist that
all other programs distributed on the same medium
must be open-source software.

10. License Must Be Technology-Neutral
No provision of the license may be predicated on any
individual technology or style of interface.

The Open Source Definition

The Open Source Definition

148

Appendix B

Questionnaire

149

Survey on Open Source Software Development

Dear colleague,

This survey concerns the current state of practice of Open Source Software (OSS)

development. The main focus areas of this research are motivation for managing and

participating in OSS development, relationships with OSS communities and processes for

development of, and development with, OSS tools and components.

The survey has been developed as part of the European ITEA project, COSI (Co-development

using inner & Open source in Software Intensive products), where ICT Norway and NTNU

(Norwegian University of Science and Technology) are part of the Norwegian subproject.

This questionnaire is organised in six parts where part 1 and 6, and only one of the parts 2

through 5 should be completed per response. Which part you should fill out depends on your

relationship to OSS related development. If you are related to OSS through several products

or projects we would be grateful if you completed more than one copy of this questionnaire.

The second part, Initiating and Managing OSS should be completed by respondents who

work in a company or local business unit which controls or has controlled the development of

a product licensed with an OSS license. The third part, Participating in Inner Source

Development, should be completed by respondents who have participated in software

development projects using OSS software engineering practices within a limited scope, such

as in a closed consortium of trusted partners. The fourth part, Interacting with or

Participating in OSS Communities should be completed by respondents who interact with or

participate in an OSS project controlled by someone outside their company or local business

unit. The fifth part, Developing Software with OSS Tools and Components, should be

completed by respondents who participate or have participated in software development

projects using OSS tools or components.

The first part, Demographic Information, contains questions related to the OSS product

which the respondent is related to, and should be completed by all respondents. The sixth

part, Demographic Information, contains questions related to the respondent and the

respondent’s company, and should be completed by all respondents.

The information reported in this questionnaire will be treated confidentially.

Thank you for participating in this survey.

Contact information:

Dr. Carl-Fredrik Sørensen,

IDI, NTNU, NO-7491 Trondheim

Email: Carl-Fredrik.Sorensen@idi.ntnu.no

Phone: +47 73 59 07 31 Fax: +47 7359 4466

150

Survey Overview
Survey

Objective

The purpose of this questionnaire is to survey the current state of

practice of OSS related Software Engineering, involving ICT

companies in several countries. The units of study are OSS products

owned by companies, software development projects using OSS

practices, OSS projects where companies participate, or software

system which contains OSS components.

Confidentiality All responses to this questionnaire will be handled confidentially,

including information on whether the company has participated.

The results will describe and analyze the current state-of-practice of

OSS related development in the ICT industry. The final report will not

contain detailed information about the company or the respondent.

Neither will it be possible to draw any conclusions about a given

company.

Benefits A final, technical report of the survey will be electronically available

to all respondents by email or through a web-link. Diffusion will also

take place through ICT Norway and the ITEA project, COSI (Co-

development using inner and Open source in Software Intensive

products).

Some general

instructions

Use an “X” when you mark an answer to a question, e.g., in a table.

Filling-in of the questionnaire should not take more than half an hour.

151

Table of Content
Survey on Open Source Software Development.. 1

Survey Overview.. 2

Table of Content... 3

Part 1. Product Information ... 4

Part 2. Initiating and Managing OSS... 7

2.1. Business Motivations ... 7

2.2. Creating an Open Source Product .. 9

2.3. Activity in the Community... 11

2.4. OSS Development process ... 14

Part 3. Participating in Inner Source Development ... 17

3.1. Experiences from Inner Source Development.. 17

3.2. Participants in Inner Source Development... 18

3.3. Inner Source Development processes .. 19

Part 4. Interacting with or Participating in OSS Communities.. 23

4.1. Relationship to the OSS Community ... 23

4.2. Motivation behind Interaction with and Participation in OSS Projects 27

4.3. Processes Used when Interacting with OSS Projects... 28

Part 5. Developing Software with OSS Tools and Components ... 29

5.1. Motivations Related to Using OSS Components ... 29

5.2. Development Processes Using OSS Components.. 30

5.3. Development with OSS Components... 35

Part 6. Demographic Information .. 40

6.1. About the company .. 40

6.2. About the respondent ... 41

6.3. Feedback on the questionnaire ... 42

Definitions of terms used in this survey... 43

152

Part 1. Product Information
In this part information about the product developed by your company or the community will

be elaborated.

1) What is the name of the product?

Name: __________________________________

2) In what business area are most of the product’s customers?

[Mark one or more alternatives]

□ Consulting companies

□ Software companies

□ Manufacturing Industry

□ Telecommunications

□ Public/Health

□ Educational institutions

□ Banking

□ Non-profit organizations

□ Media

□ Private/domestic

□ Other:____________________________________

3) What is the main functionality of the product?

[Mark one or more alternatives]

□ Database

□ Desktop/Office tools

□ Software development tool or component

□ Enterprise solutions

□ Financial/Banking

□ Games

□ Multimedia

□ Networking

□ System administration tool

□ Web/Portals

□ Operating system

□ Middleware

□ Server component

□ Other:____________________________________

153

4) What kind of product is this?

[Mark one alternative]

□ It is commodity software or infrastructure and has basic functionality common to software

in several market segments

□ It has functionality which is basic for a certain business and has similar functionality to

software in the same market segment

□ It has differentiating functionality which is unique for this product in the market segment

5) What is the product primary used as?

[Mark one or more alternatives]

□ Component in other software or infrastructure

□ Standalone user product

□ Infrastructure or middleware

6) Which programming language(s) are used in the implementation of this product?

[Mark one or more alternatives]

□ C

□ C++

□ C#

□ Java

□ Perl

□ PHP

□ Python

□ Visual Basic

□ JavaScript

□ Other: __

7) Please list the five most important OSS-components used in this product, if any.

This could for example be MySQL, Hibernate or Apache HTTP Server.

Number Component

C1

C2

C3

C4

C5

8) Please list the five most important OSS development tools used to develop this

product, if any.

This could for example be Bugzilla, Emacs, GNU Compiler Collection or Subversion.

154

Number Tool/technology

T1

T2

T3

T4

T5

9) Which license(s) are used for the product?

[Mark one or more alternatives]

□ Don’t know

□ The Artistic License

□ (New) Berkeley Software Distribution (BSD)

□ General Public License (GPL)

□ Lesser General Public License (LGPL)

□ The MIT license

□ Own proprietary license(s) (please specify):_______________________________

Other: __

155

Part 2. Initiating and Managing OSS
This part is only relevant for respondents working in companies, or business units, owning

products licensed with OSS licenses. If your company or local business unit controls more

than one product licensed as an OSS product, we would be grateful if you completed this

section several times. Please start with the one you are most familiar with and answer the

following questions.

2.1. Business Motivations

10) To what extent do you agree that the following motivations were important when

turning this product into an OSS product?

We are interested to know the motivations behind turning this product into an OSS product, or

in other words, what did you want to achieve by choosing an OSS licensing scheme for this

product.

[Mark one alternative per row]

 Don’t

agree

at all

Hardly

agree

Agree

some

what

Mostly

agree

Strongly

agree

 Don’t

know

a. Idealism 1 2

b. Increased attention and publicity 3

c. Improved relationship to OSS community

by returning value to the community
1 1 1

d. Saved effort by shared development. Less

development effort is put on the company

because of community contributions

 3

e. Decreased maintenance effort by getting

help from the community
 1 2

f. Increased product quality. Having a big

community reduce the number of bugs

(defects), because more bugs are found

 1 2

g. Increased innovation by having a big

community (increase the number of new

requirements and ideas)

 1 2

h. Reduced time-to-market because a big

community can test and review the product and

thus find and correct bugs (defects) faster

 2 1

i. Reduced time-to-market and cost by making

integration of other OSS products or

components possible

1 2

j. Other (please specify)

156

11) If there were commercial motivations behind turning this product into an OSS

product, what was business idea behind doing it?

[Mark one or more alternatives]

□ 1 / 3 - No commercial motives

□ 2 / 3 - Sell proprietary licenses (Dual licensing)

□ 2 / 3 - Integration and deployment services

□ 2 / 3 - Development and sales of proprietary add-on or related software

□ 2 / 3 - Provide and sell support

□ 2 / 3 - Provide and sell total product responsibility

□ 1 / 3 - Packing and distribution of software

□ 1 / 3 - User training

□ Other: __

12) To what degree do you agree with the following statements related to the

advantages and disadvantages by having this product as an OSS product?

We are interested in the advantages and disadvantages related to having this product as an

OSS product today. If there is other important advantages or disadvantages please specify

these in the last row.

[Mark one alternative per row]

 Don’t

agree

at all

Hardly

agree

Agree

some

what

Mostly

agree

Strongly

agree

 Don’t

know

a. The company has increased attention and

publicity because this product is an OSS

product

 1 2

b. It is hard to focus on one group of customers

since the product is available to everyone
 1 2

c. A big community increases the number of

potential paying customers
 1 1 1

d. The company’s relationship to the OSS

community has improved because this product

is open source

 1 2

e. Costs are reduced because of shared

development. The community provide

functionality and less development effort is put

on the company

 3

f. Maintenance costs has decreased because

the community helps with maintenance
 1 2

g. Innovation has increased because a big

community increase the number of new

requirements and ideas

 1 1 1

h. It is more difficult to plan releases because

of constant input from the community
 2 1

i. Input and requests from the community

leads to extra work
1 2

157

 Don’t

agree

at all

Hardly

agree

Agree

some

what

Mostly

agree

Strongly

agree

 Don’t

know

j. Code provided by the community has too

low quality to be included directly into the

product

 2 1

k. Many contributions from several different

community members increase the effort to keep

a sound architecture, design and

implementation

 1 1 1

l. Increased product quality. Having a big

community reduce the number of bugs

(defects), because more bugs are found

 2 1

m. It is more difficult to protect intellectual

property because the product is open source
 1 2

n. It is more difficult to protect business secrets

because the product is open source
 1 2

o. Security is reduced because the openness (of

the code) makes it easier to find security holes
1 1 1

p. The time-to-market has improved because

the product is tested and reviewed by many and

bugs are found faster

 1 2

q. The time-to-market and the cost have been

reduced because other OSS products can be

integrated into the product

 1 2

r. Having this product as open source enable

us to sell related products or services
 1 2

s. Selling licenses to the product is difficult

because the product is freely available
 2 1

t. Other (please specify)

2.2. Creating an Open Source Product

13) When was the product initiated?

Please specify the date in the format YYYY-MM-DD, for example 2006-07-26.

Date: Company A: 1996-01-01, Company B: 2000-11-1, Company F: 2004-01-01

14) When was the product first released, with an OSS license?

Please specify the date in the format YYYY-MM-DD, for example 2006-07-26.

Date: Company A: 2005-06-22, Company B: 2000-11-1, Company F: 2005-06-01

158

15) How was the development of this product, licensed with an OSS license, initiated?

Please describe a timeline including the main events which took place, the most important

decisions and how much time and effort were spent initiating this project?

Company A:

The product is already being developed for about 10 years.

Each party contrubutes to the project bsed on there own businesscases.

Milestone ID Milestone date Contents / Deliverables

1 27/5/2005 Create proposal for open source licence.

2 15/6/2005 Discuss Lincence with legal department

3 15/6//2005 Investigate CVS mechanism

4 22/6/2005 Create project(s) in Sourceforge

5 22/6/2005 Install CVS within Philips and AGFA

6 1/7/2005 Prepare Code

7 1/7/2005 Finalize design Documentation

9 15/7/2005 Place code under Sourceforge

10 15/7/2005 Set up Sourceforge enviroment(s) (Defect tracking/ forum)

11 1/8/2005 Create Sourceforge homepage(s)

12 1/8/2005 Promote Sourceforge project

Total cost for putting the project into th open source is approximately 4 to 6 week effort (160 to

240 hours)"

Company B:

In 1999 eZ publish was only one of many things we were working on. As a small company (4-5

persons) at that time we were working with that our limited number of customers wanted.

We were actually focusing on some software targeted for traders and financial institutions.

Along the way we also had some local customers we were developing development websites

for.

This web development resulted in product named eZ publish.

All of us in the company at that time was big Linux and OSS enthusiasts so it was actually not

a big issue. ""Of course we should release it as open source"". But in the beginning this was

just something we would to on the side. Our main target was the trader software. And this

software was not going to be OS.

However, eZ publish got so much Company that we actually realized that this was an

opportunity we couldn't let go..

Our thoughts were -

 - By licensing this by OS this will spread around all the world

 - Many users will result on many potential customers

 - Even though the software itself is free, many would need other service which we can get

payed for

 - Duallicensing it was an idea we had from the beginning. People should also have the

oppertunity to buy a commercial licence if the opensource licence is not suitable to them

159

Company F:

No information.

2.3. Activity in the Community

16) How many times has the product been downloaded by the community?

Number: Company A: 6000, Company B: 1600000, Company F: No information

17) How many person-months were spent by the employees in your business unit

during the last year related to this product?

Number: Company A: 40, Company B: 170, Company F: 2

18) How was the company able to attract participants and interest to this product

from outside the company?

[Mark one or more alternatives]

□ 1 / 3 - No community exists

□ 0 / 3 - A community already existed for the product before it was made open source

□ 0 / 3 - Commercials and advertisements for the product

□ 0 / 3 - Scientific publications or publications in popular press about the product

□ 0 / 3 - The company participates in other OSS communities

□ 2 / 3 - The product was made available on websites (your own and/or sites like

sourceforge.net)

□ 0 / 3 - Conferences, etc. for developers and users

□ 1 / 3 - Forums, mailing-lists and other infrastructure was made available to the community

□ Other:___

19) Approximately how many people participate in the following roles in the OSS

community around the product?

Company A Outside the company Inside the company

a. Core-developers <5 <5

b. Developers <5 <5

c. Active users 51-100 21-50

d. Passive users 501-1000 51-100

160

Company B Outside the company Inside the company

e. Core-developers 5-10 5-10

f. Developers 5-10 11 - 20

g. Active users 1001-5000 21-50

h. Passive users > 10000 11 - 20

Company F Outside the company Inside the company

i. Core-developers <5 <5

j. Developers <5 <5

k. Active users <5 5 - 10

l. Passive users <5 5 - 10

20) To what extent do internal users or developers in your business unit perform the

following activities related to this OSS product?

[Mark one alternative per row]

Not at all Small Some Large Very large Don’t

know

a. Test the product 1 2

b. Report bugs (faults) 1 2

c. Fix bugs (defects) 1 1 1

d. Provide new

requirements
 1 2

e. Implement new

functionality
 1 1 1

f. Develop add-on

components
1 1 1

g. Provide locale

adaptations of the product
2 1

h. Create documentation 1 1 1

i. Provide free user support 2 1

j. Develop architecture or

design
 1 2

k. Other (please specify)

161

21) To what extent do users or developers from the community perform the following

activities related to this OSS product?

[Mark one alternative per row]

Not at all Small Some Large Very large Don’t

know

a. Test the product 1 2

b. Report bugs (faults) 1 2

c. Fix bugs (defects) 1 2

d. Provide new

requirements
 2 1

e. Implement new

functionality
 1 2

f. Develop add-on

components
1 1 1

g. Provide locale

adaptations of the product
1 1 1

h. Create documentation 1 2

i. Provide free user support 1 1 1

j. Develop architecture or

design
 2 1

k. Other (please specify)

22) To what extent are the following communication methods used between

developers inside the business unit related to this product?

[Mark one alternative per row]

Not at all Small Some Large Very large Don’t

know

a. Instant messaging 1 2

b. Chat-channels 3

c. Web-forums 1 1 1

d. Private e-mail 2 1

e. Mailing-lists 1 2

f. Video meetings 3

g. Phone 2 1

h. Formal and informal

face to face meetings
 2 1

162

23) To what extent are the following communication methods used between internal

developers in your business unit and, users and developers from the community

related to this product?

[Mark one alternative per row]

Not at all Small Some Large Very large Don’t

know

a. Instant messaging 1 2

b. Chat-channels 3

c. Web-forums 2 1

d. Private e-mail 1 2

e. Mailing-lists 1 2

f. Video meetings 3

g. Phone 1 1 1

h. Formal and informal

face to face meetings

1 1 1

2.4. OSS Development process

24) Which development process is used in the development of products licensed with

OSS licenses in your company or business unit?

Please describe how you treat contributions and new requirements from the community, the

phases, key activities and roles of the development process and any process tools used.

Company A:

"Each contributor implements the functionality that is requested for the internal organisation.

Every 3 months all contributor met do agree on 6 months roadmap.

Each week progress and new activities (such as Pr's) are discussed in a development

meeting.

Contributions for other are reviewed an integrated by the core developers."

Company B:

- Contributions are received by mailinglist or bug system. The contribution must exists of the

following:

 - the code itself

 - Description of what it does

 - Documentation on how it works

- We are looking on the functionality, is this something we want in the product

- code quality is review. Is it implemented in the right way?

- Code can be rejected. An explenation is then given (what is not correct according to the

guidelines)

- Verifying that we have a contract for transfer of copyright from the contributor

- Code is approved"

Company F:

Not information

163

25) To what extent do you agree with the following statements related to the

development process used to develop this product?

[Mark one alternative per row]

Not at

all

Small Some Large Very

large

 Don’t

know

a. Compliance to open standards is

important to your company
 2 1

b. You have modified the code written by

other open source projects
 1 1 1

c. You have shared modified code with

other open source projects
 2 1

d. Code ownership is practiced, one or few

developers function as gatekeepers for each

their part of the code, controlling the code

that is checked into the code-repository

 1 2

e. Code repository tools like Subversion or

CVS are always used in inner source

software development

 3

f. More than one branch of code is kept

active at any time (both stable and unstable)
 1 2

g. The product had early releases, with pre-

releases before the final version
 1 2

h. The product had frequent releases, with a

release more frequent than every other

week

1 1 1

i. Test-driven development is used and

tests are written prior to implementation
 1 1 1

j. The same development environment and

development tools are used by all

participating developers.

 1 1 1

k. Developers can choose their work

assignments themselves
1 1 1

l. The developers of the product are also

users of the product or domain experts
 1 1 1

m. The end users are involved in the

development process every day
 3

n. The status and plans of the product are

open to the community (number of active

bugs, roadmaps etc.)

 2 1

o. The developers take time to respond to

requests and proposals from the community

every day

 3

164

Not at

all

Small Some Large Very

large

 Don’t

know

p. Everyone in the community is free to

participate and contribute to the

development of the product (requirements,

patches, proposals etc.)

 2 1

q. Communication and documentation is

kept informal
 1 1 1

r. Development of the software is done on

several distributed locations
 1 1 1

165

Part 3. Participating in Inner Source Development
This part concerns inner source development, where OSS software engineering practices and

principles, are used in a limited scope. These practices could for instance be sharing source

code among partners, or performing distributed development using collaboration methods.

The scope of an inner source development project could be a business-unit, company, or a

consortium of trusted partners. Please select one project using inner source development

where your company participates. For a clarification of the terms related to inner source see

page 43.

3.1. Experiences from Inner Source Development

26) To what extent do you agree with the following statements about your

experiences from the inner source development?

We are interested to know the experiences you have had with using OSS software engineering

practices in this project.

[Mark one alternative per row]

 Don’t

agree

at all

Hardly

agree

Agree

some

what

Mostly

agree

Strongly

agree

 Don’t

know

a. Eased distribution of development teams

across organisational and geographical

boundaries

 1 1 1 2 1

b. Increased flexibility in starting, stopping,

and changing of collaborations
 1 1 1 2 1

c. Saved effort by shared development

between the partners. Less development effort

is put on the company because of contributions

from partners

 1 2 1 2

d. Decreased maintenance effort by getting

help from the partners
 3 1 2

e. Increased product quality. Having a big

community reduce the number of bugs

(defects), because more bugs are found

 2 1 2 1

f. Reduced time-to-market because partners

can test and review the product and thus find

and correct bugs (defects) faster

 2 2 2

g. Increased innovation by having a big

community (increase the number of new

requirements and ideas)

 2 1 1 2

h. Other (please specify)

'Not at this moment

166

3.2. Participants in Inner Source Development

27) Approximately how many people participate in the following roles in this inner

source project?

Company A Business Unit in

Company

Company Collaborating

companies

a. Core-developers 21-50 5 - 10 < 5

b. Developers 101-500 21-50 < 5

c. Active users 21-50 51-100 < 5

d. Passive users 11 - 20 501-1000 < 5

Company I Business Unit in

Company

Company Collaborating

companies

e. Core-developers < 5 < 5 < 5

f. Developers < 5 < 5 < 5

g. Active users < 5 < 5 < 5

h. Passive users < 5 < 5 5 - 10

Company E Business Unit in

Company

Company Collaborating

companies

i. Core-developers < 5 < 5 < 5

j. Developers < 5 < 5 5 - 10

k. Active users 5 - 10 5 - 10 11 - 20

l. Passive users 5 - 10 < 5 5 - 10

Company C Business Unit in

Company

Company Collaborating

companies

m. Core-developers < 5 < 5 < 5

n. Developers < 5 < 5 < 5

o. Active users < 5 < 5 11 - 20

p. Passive users < 5 < 5 501-1000

Company A Business Unit in

Company

Company Collaborating

companies

q. Core-developers 21-50 11 - 20 11 - 20

r. Developers 101-500 51-100 51-100

s. Active users 1001-5000 1001-5000 1001-5000

t. Passive users 5001-10000 5001-10000 5001-10000

167

Company A Business Unit in

Company

Company Collaborating

companies

u. Core-developers 11 - 20 < 5 < 5

v. Developers 21-50 51-100 < 5

w. Active users < 5 51-100 < 5

x. Passive users < 5 51-100 < 5

28) To what extent are the following communication methods used by participants in

this inner source project?

[Mark one alternative per row]

Not at all Small Some Large Very large Don’t

know

a. Instant messaging 2 1 2 1

b. Chat-channels 4 1 1

c. Web-forums 4 1 1

d. Private e-mail 1 1 1 3

e. Mailing-lists 1 3 2

f. Video meetings 2 2 1 1

g. Phone 1 3 1 1

h. Formal and informal

face to face meetings
 1 3 2

3.3. Inner Source Development processes

29) Which development process was used in this inner source development project?

Please describe how you treat contributions and new requirements from partners, the phases,

key activities and roles of the development process and any process tools used, and which of

the partners, users or customers in the project who have access to the source code.

168

Company A:

We use a process called InnerSource, which is based on the Open Source principles.
The process defines three collaboration styles 'use as is', 'contribute', and 'virtual
team'.

Company I:

There exist a core developer that decides if the contributions and new requirements
are included in the middleware. The source code is available to all partners
accordingly with the GPL license of the component. Patches or new functionality is
send by e-mail to the core developer who decides to include or not in the component
the modifications. Requirements are also requested by e-mail. There exist SCM of the
component in order to control the different releases.

Company E:
Project management according to projectplan. RUP is used for early stage prototyping
and as a proof of concept. Source code is handled via CVS trees.

Company C:
"1.- Contributions and new requirements from partners: We gather and study new requirements

and we include them in the new version requirements of the product.

2.- The phases:

Project Management.

Tool Specification

Software Testing

Software Packaging & Commercialization

Following the life cycle (""Software Development life cycle"") specified in the process

""Product & Service Development"" of the internal quality system.

3.- Key activities and roles of the development process:

Key Activities:

Project planning, project tracking: project leader

detailed tool specifications: project leader

requirements implementation: developers

integration & system testing: developers and project leader

preparation of the customer package: developers and project leader

4.- Process tools used:

Project Management: MS Project

Project Development: MS Visual Studio

5.- users or customers in the project who have access to the source code:

Nobody at this moment"

Company A:

"Typical development process with a partner

1. Partner and Company:Initial face to face discussions to clarify global requirements and

design.

2. Partner: Development partner works out requirements, design and tests in documentation

169

3. Company: Review of this documentation

4. Partner: Implement code on a fixed Clear Case version

5. Partner: Integrate code and test the implemented code

6. Company: Review code

7. Company: Merge the code into the main VOB and perform delivery testing

Steps 2-7 are repeated several times during development. The order code be somewhat different

in occasional situations."

Company A:

"- contributions and requirements from partners are input to CCB

- after the conception phase of a project the set of requirements is fixed

- core developers implement the requirements

- a number of developers work together with customers in separate projects

- the way in which contributions are fed back still needs to be detailed"

30) To what extent do you agree with the following statements related to the

development process used to develop this product?

[Mark one alternative per row]

Not at

all

Small Some Large Very

large

 Don’t

know

a. Compliance to open standards is

important to your company
 1 3 1 1

b. You have read parts of the inner source

software’s code developed by other partners
1 2 3

c. You have modified the code written by

another partner
1 1 1 3

d. You have shared modified code with

partners
1 2 3

e. Code ownership is practiced, one or few

developers function as gatekeepers for each

their part of the code, controlling the code

that is checked into the code-repository

1 1 4

f. Code repository tools like Subversion or

CVS are always used in inner source

software development

1 3 2

g. More than one branch of code is kept

active at any time (both stable and unstable)
 1 2 3

h. The product had early releases, with pre-

releases before the final version
 1 4 1

i. The product had frequent releases, with a

release more frequent than every other

week

1 2 3

j. Test-driven development is used and

tests are written prior to implementation
3 2 1

k. The same development environment and

development tools are used by all

participating developers.

 1 2 3

170

Not at

all

Small Some Large Very

large

 Don’t

know

l. Developers can choose their work

assignments themselves
2 2 1 1

m. The developers of the product are also

users of the product or domain experts
1 3 2

n. The end users are involved in the

development process every day
1 4 1

o. The status and plans of the product are

open to the community (number of active

bugs, roadmaps etc.)

2 1 1 2

p. The developers take time to respond to

requests and proposals from the community

every day

 2 2 2

q. Everyone in the community is free to

participate and contribute to the

development of the product (requirements,

patches, proposals etc.)

 4 2

r. Communication and documentation is

kept informal
1 1 4

s. Development of the software is done on

several distributed locations
 1 4 1

171

Part 4. Interacting with or Participating in OSS
Communities

This part is concerned with the relationship between your company and OSS communities.

Please select one work-related OSS project you know, where you, your company or other

employees in your company are involved. If you are familiar with several OSS projects we

would be grateful if you completed the questionnaire several times. Please start with the

project you are most familiar with. We are interested in involvement from reading mailing

lists and providing new requirements to major implementations of new functionality.

4.1. Relationship to the OSS Community

31) To what extent does your company/business unit perform the following activities,

or contribute the artefacts or resources below to the community?

[Mark one alternative per row]

 Not at

all

Small Some Large Very large Don’t

know

a. New requirements to the project 1 3 1

b. New functionality with code 1 2 1 1

c. Architecture or design 2 2 1

d. Testing 1 1 3

e. Bug-reports (faults) 2 3

f. Bug-fixes (defects) 1 1 2 1

g. Documentation 4 1

h. Provide local adaptations of the

product
1 2 1 1

i. Add-on components 3 1 1

j. Integration towards other products

(glueware)
4 1

k. Free user support 4 1

l. Distribution of software 3 1 1

m. Infrastructure (e.g. servers or

storage space)
5

n. Money 4 1

o. Subscribe to mailing-lists from

the community
 1 2 2

p. Read OSS related news channels

and forums like sourceforge.net,

slashdot.org, freshmeat.net etc.

 1 1 1 2

q. Other (please specify)

Company A:

'Sponsor company that gives

commercial support on OSS, see

http://www.theaceorb.nl/en/acetao.ht

ml

 1

172

32) To what extent are you satisfied with the following elements in the OSS

community in this project?

[Mark one alternative per row]

 Not at all Small Some Large Very large Don’t

know

a. Documentation (availability

and quality)
 1 1 1 2

b. The functionality of the

product
 3 2

c. The non-functional quality

attributes of the product
 1 3 1

d. The code quality 2 1 1 1

e. Product support 1 3 1

f. Response to bug reports 1 2 1 1

g. Response to new

requirements
 2 1 2

h. Response time 1 2 1 1

i. Other (Please specify)

33) To what degree do you agree with the following statements?

[Mark one alternative per row]

 Don’t agree

at all

Hardly

agree

Agree some

what

Mostly

agree

Strongly

agree

 Don’t

know

a. The company/business unit’s

relationship with the OSS community

is successful

 3 1 1

b. Your company/business unit’s

ability to change or influence the OSS

product and its requirements would

have been greater if the company

contributed more to the community

 1 4

c. Participation in OSS communities

is rooted in your company/business

unit’s business model

 2 1 1 1

d. Your company/business unit has

changed its development processes

because of participation in OSS

projects

1 1 1 1 1

173

34) To what extent are the following communication methods used inside the

company/business unit related to this OSS project?

[Mark one alternative per row]

 Not at all Small Some Large Very large Don’t

know

a. Instant messaging 3 1 1

b. Chat-channels 5

c. Web-forums 3 1 1

d. Private e-mail 1 2 1 1

e. Mailing-lists 1 2 2

f. Video meetings 5

g. Phone 1 1 2 1

h. Formal and

informal face to face

meetings

 1 2 2

35) Which of the following communication methods are used in communication with

community members outside the company/business unit related to this OSS

project?

[Mark one alternative per row]

 Not at all Small Some Large Very large Don’t

know

a. Instant messaging 2 1 1 1

b. Chat-channels 1 2 1 1

c. Web-forums 1 1 1 2

d. E-mail 1 1 2 1

e. Mailing-lists 2 2 1

f. Video meetings 4 1

g. Phone 4 1

h. Formal and

informal face to face

meetings

3 1 1

36) How many, from your company or business unit, have the following roles in the

community around this OSS project?

Company B Number:

a. Core-developers < 5

b. Developers < 5

c. Active users < 5

d. Passive users 11 - 20

Company G Number:

e. Core-developers < 5

f. Developers < 5

g. Active users < 5

h. Passive users < 5

174

Company D Number:

i. Core-developers < 5

j. Developers < 5

k. Active users < 5

l. Passive users 5 - 10

Company A Number:

m. Core-developers < 5

n. Developers < 5

o. Active users < 5

p. Passive users < 5

Company C Number:

q. Core-developers < 5

r. Developers < 5

s. Active users 5 - 10

t. Passive users < 5

37) How does the company or business unit organize participation in this OSS

project?

[Mark one or more alternatives]

□ 3 / 5 - As an internal project

□ 0 / 5 - Through the line organization

□ 2 / 5 - At an individual level

□ 1 / 5 - Participation is not organized by the company, but voluntarily by the individuals

175

4.2. Motivation behind Interaction with and Participation in
OSS Projects

38) What is the company’s or business unit’s motivation for participating in the OSS

project?

□ The company/business unit has never participated as a company in any OSS projects.

Participation has been in form of individual contributions.

[Mark one alternative per row]

Not at all Small Some Large Very

large

 Don’t

know

a. Influence the community 1 2 1 1

b. Learn from the community 2 3

c. Reduce time to market 1 2 1 1

d. Increase product quality (fewer

defects)
 1 2 2

e. Benefit from development and

testing performed by community users
 3 2

f. Improve relationship to the OSS

community
 3 2

g. Use of the OSS product is required

in the company
4 1

h. Other (Please specify)

Research

1

39) What is your personal motivation for participating in OSS projects?

[Mark one alternative per row]

□ I have never personally participated in any OSS projects

Not at all Small Some Large Very

large

 Don’t

know

a. I get paid by my employer 2 1 1 1

b. Learning 2 3

c. Curiosity 1 3 1

d. Idealism 1 2 2

e. Desire to identify with the

community
1 2 1 1

f. Feel obligated to contribute to the

community
2 2 1

g. Future work possibilities 2 2 1

h. Personal interests of the product 1 1 3

i. Altruism (Feel satisfaction by doing

something for other people)
1 1 2 1

j. Reputation among peers 2 2 1

k. Other (Please specify)

my thesis

1

176

4.3. Processes Used when Interacting with OSS Projects

40) Which development process is used in your company/business unit when your

company participates in an OSS project?

Please describe the key activities, tools and roles in the development process.

Company B:
The OSS project is fundamental to our product. It is important for us to be involved
and know where this project is heading. For instance if there is a problem/defect that
is crucial for our own product it is very important that we can get this fixed. Without
contribution and commitment to this community that is more difficult.

Company G:

Iterative and incremental. We combine "bits and peaces" from other OSS product to
create our own.

Company D:
"Team leading - Project leader. Word, Excel, MS Project.

Requirements, design - System Architect, Technical project leader and developers. UML.

Implementation and module test - Developers. GCC.

Integration - Technical project leader/integrator and developers. Subversion, Cruise Control."

Company A:

Adapt to process of OSS project

Company C:

Not specified

41) Which development process do you use when you personally participate in OSS

projects?

Please describe the key activities, tools and other involved roles.

Company B:

CVS is used for version controll

Most of our time is used on bug fixing

Company G:

I do bug fixes which I need myself and then contribute them to the community. Occasionally, I

just take bugs from the tracker and fix them, just to contribute.

Company D:

As above depending on my role.

Company A:

Adapt to process of OSS project.

Company C:

Not specified.

177

Part 5. Developing Software with OSS Tools and
Components

If you have participated in more than one development project in your company where you

have used OSS components, please select the project that you are most familiar with and

answer the questions in the next sections. If you do not use any OSS components in your

development, please skip forward to Part 6.

5.1. Motivations Related to Using OSS Components

42) To what degree do you agree that the following elements were the motivation

behind using OSS components in this project?

If other motivations were important, please specify in the last row.

 [Mark one alternative per row]

 Don’t

agree at all

Hardly

agree

Agree

some what

Mostly

agree

Strongly

agree

 Don’t

know

a. Reduced risk of component

provider going out of business
2 3 2 1 1

b. Reduced risk of component

provider changing market

strategies

1 3 3 1 1

c. Reduced risk of selected

component evolving into an

unwanted direction

1 3 3 1 1

d. Component could be acquired

for free
 2 1 3 3

e. Source code was available and

could easily be changed
 2 1 3 3

f. To use OSS components was

decided by the customer
6 3

g. Political reasons (company

policy, licensing conditions)
3 3 1 1 1

h. The components were available

for test and use
1 4 4

i. Honesty and openness from the

provider about the status of the

component

1 2 3 3

j. Reduced risk by ability to

remove defects yourself
1 1 2 3 2

k. Compliance to standards 1 2 6

l. Idealism 3 2 2 1 1

m. Other (please specify)

178

5.2. Development Processes Using OSS Components

43) Which development process was used in this project?

Please describe key activities and roles in the component based development process.

Company H

Traditional waterfall approach, release based process.

Milestone based project management process.

Requirements are received from users: e-mail requests to contact persons, in surveys, meetings.

Tool feedback database in use.

Concept group that covers representatives from user organizations takes care of roadmapping.

Steering group decides of the release content.

Feasibility studies by the development organization.

Design and implementation subcontracted.

Deployment to customers planned for each release.

Training needs covered and training planned for each release.

Testing by users.

Company D

Requirements and main design by System Architect.
Detailed design, implemenation and test by developers.
Cross-team reviews of requirements, design and implementation.

Company A

Agile version of RUP

Company I

Requirements gathering was performed by two organizations. Design and
implementation was done by one organization. Bug reports and patches by several.

Company E

"Modified RUP was used for testing and choosind a suitable OS product and platform.

Key activities and roles:

Meritie: Inner source project lead / high level design / constraints

Subcontractors: Component additional design / implementation, documenting, OS integration

OSC: OS project lead / design / development and continuous improvement. Provides interfaces

for os/inner source"

Company I

Ad-hoc process, not a well defined process it is employed.

Company J

Process based on Feature Driven Development (FDD) modified with additions of how to

manage architecture and MDD.

Phase 1: Planning & high level design and architecture

Phase 2: Development: Number of feature iterations involving analysis and design for feature,

implementation and verification of feature

179

Phase 3: Test & evaluation of release

Company F

previously comented

Company A

Normal waterfall

44) Where do you find OSS components?

Please name the places you search to find OSS components.

Company H
From our customers (that are users from the Nokia business units) that have used the OSS

based tools and wants to have them under the global service provided by us.

Also, components are found from Internet, community web pages.

Company D

Google.

Sourceforge.

Company A

Internet

Company I

N/A

Company E

tigris.org

google.com

java-source.net

jboss.org

Company I

Google, Sourceforge, freshmeat, javalobby, TheServerSide

Company J

SourceForge, IBMs developerworks, and other OS sites.

Google in general

Company F

websites as sourceforge and simillar ones

Company A

Internet

180

45) Which process do you use to select OSS components?

Please describe the key selection criteria, activities and roles in the selection process.

Company H

No specific approach from literature.

Road mapping process. Concept group selects components and proposes them (release

contents) to the steering group. Customer feedback process: proposals.

Feasibility studies: selection and implementation details.

Company D

Key selection criteria; Maturity, robustness, user base, code/documentation quality.

Activitities; Selection if possible through peer/college recommendation otherwise info through

mailing lists, books, magazines.

Roles; Selection usually made by system architect or lead developers.

Company A

- Fit in our product's architecture

- Provides required functionality and performance

- Evaluate alternatives

- Public license used

- Get authorisation from our legal department

Company I

ad-hoc process, mainly taking into account provided functionality

Company E

The selection strategy had following constraints: (in order of magnitude)

1. Quality

2. Robustness

3. Scalability

4. Open interfaces

5. Steady prospects for future development

6. Licencing policy"

Company I

Basically the process consist in:

-- Identify several components/products with similar functionality

-- Check the code stability in some degree

-- Select the most suitable one

Company J

Depends on the size, complexity and role of the component.

This process is NOT described in our development methodology.

Smaller components are selected by developers based on need.

When a developer /development team faces a problem in a featureiteration:

181

* are there existing solutions ""out there""?

 - look for component meeting the functional requirements

 (preferably without too much more)

* shortlist based on

 - license

 - reputation

 - bug track

 - activity in the community

 - weight of the community itself (like Apache) or of the industrial partners in the community

(like IBM)

* download and test the component

* integrate into development

Larger components are evaluated in testbed and is far more complex to evaluate and select.

Company F

previously comented

Company A
There is one person responsible for the PROCESS of introducing OSS components. He gets

requests from engineers, talks with project managers, and ensures that

- effort is spent to check the component

- component is in line with long-term objective

- determines risks and mitigation based on impact of introduction of that OSS component"

46) To what extent do you agree with the following statements related to the

development process used to develop this product?

[Mark one alternative per row]

Not at

all

Small Some Large Very

large

 Don’t

know

a. Compliance to open standards is

important to your company
 2 4 3

b. You have read parts of the OSS

components’ code used in this project
 2 3 3 1

c. You have modified the OSS

components’ code used in this project
2 5 2

d. You have shared modified code with the

OSS community
3 2 3 1

e. Code ownership is practiced, one or few

developers function as gatekeepers for each

their part of the code, controlling the code

that is checked into the code-repository

1 2 4 2

f. Code repository tools like Subversion or

CVS are always used in inner source

software development

 1 3 5

g. More than one branch of code is kept 1 2 3 1 2

182

Not at

all

Small Some Large Very

large

 Don’t

know

active at any time (both stable and unstable)

h. The product had early releases, with pre-

releases before the final version
1 1 3 2 2

i. The product had frequent releases, with a

release more frequent than every other

week

2 7

j. Test-driven development is used and

tests are written prior to implementation
2 3 3 1

k. The same development environment and

development tools are used by all

participating developers.

 1 1 5 2

l. Developers can choose their work

assignments themselves
4 2 2 1

m. The developers of the product are also

users of the product or domain experts
 2 4 2 1

n. The end users are involved in the

development process every day
1 5 3

o. The status and plans of the product are

open to the community (number of active

bugs, roadmaps etc.)

3 2 1 2 1

p. The developers take time to respond to

requests and proposals from the community

every day

1 4 2 1 1

q. Everyone in the community is free to

participate and contribute to the

development of the product (requirements,

patches, proposals etc.)

4 1 1 1 1 1

r. Communication and documentation is

kept informal
 4 2 2 1

s. Development of the software is done on

several distributed locations
3 1 3 1 1

183

5.3. Development with OSS Components

47) How much of the product application functionality in your company’s finished

product is provided by OSS components?

Company H: 81-100 %

Company D: 0-20 %

Company A: 0-20 %

Company I: 81-100 %

Company E: 0-20 %

Company I: 0-20 %

Company J: 41-60 %

Company F: 21-40 %

Company A: 0-20 %

48) In your company’s product, how much of the OSS components belong in the

following categories?

[Please fill in percentages which should sum up to 100%]

Company H

81-100 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

0-20 % Basic for business or similar to functionality as software in the same

market segment

0-20 % Unique for this component in the market segment

Company D

81-100 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

0-20 % Basic for business or similar to functionality as software in the same

market segment

0-20 % Unique for this component in the market segment

Company A

81-100 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

0-20 % Basic for business or similar to functionality as software in the same

market segment

0-20 % Unique for this component in the market segment

184

Company I

61-80 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

21-40 % Basic for business or similar to functionality as software in the same

market segment

0-20 % Unique for this component in the market segment

Company E

41-60 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

21-40 % Basic for business or similar to functionality as software in the same

market segment

0-20 % Unique for this component in the market segment

Company I

61-80 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

41-60 % Basic for business or similar to functionality as software in the same

market segment

0-20 % Unique for this component in the market segment

Company J

81-100 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

0-20 % Basic for business or similar to functionality as software in the same

market segment

0-20 % Unique for this component in the market segment

Company F

21-40 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

21-40 % Basic for business or similar to functionality as software in the same

market segment

21-40 % Unique for this component in the market segment

Company A

41-60 % Commodity software or infrastructure which has very basic

functionality common to most software in many market segments

21-40 % Basic for business or similar to functionality as software in the same

market segment

0-20 % Unique for this component in the market segment

185

49) To what degree do you agree that the following issues make you discard an OSS

component?

 [Mark one alternative per row]

 Don’t

agree at all

Hardly

agree

Agree

some what

Mostly

agree

Strongly

agree

 Don’t

know

a. No or little support from the

community or provider
1 3 2 3

b. Documentation with low

availability and quality
 1 2 4 2

c. No one guarantees product

quality of the OSS component
1 3 4 1

d. The product lifetime and

roadmap of the OSS component is

unknown

1 2 1 4 1

e. No or little activity in the

community
 1 3 3 2

f. Low quality code. It is messy, in

other (natural/written) languages

etc.

1 3 5

g. The component has no stable

releases
 3 1 4 1

h. The component has no track

record or reputation
 3 4 2

i. The component has too many

dependencies (platform, other

components, standards etc.)

 2 2 4 1

j. Other (please specify):

50) To what extent do you agree with the following statements related to the use of

OSS components in the development of your product?

[Mark one alternative per row]

 Don’t

agree at

all

Hardly

agree

Agree

some

what

Mostly

agree

Strongly

agree

 Don’t

know

a. The project was delivered long after

schedule or had severe delays
3 3 1 2

b. Effort to select OSS components was

not satisfactorily estimated
 6 2 1

c. Effort to integrate OSS components was

not satisfactorily estimated
 2 4 3

d. OSS components negatively affected

system reliability
2 7

e. OSS components negatively affected

system security
5 4

f. OSS components negatively affected

system performance
3 5 1

g. Requirements to the product your 1 2 6

186

 Don’t

agree at

all

Hardly

agree

Agree

some

what

Mostly

agree

Strongly

agree

 Don’t

know

company developed were changed a lot

h. OSS components could not be

sufficiently adapted to changing

requirements

3 5 1

i. It was difficult to identify whether

defects were inside or outside the OSS

components

1 8

j. It was difficult to plan system

maintenance, e.g., because different OSS

components had asynchronous release

cycles

1 3 4 1

k. It was difficult to update the system

with the latest OSS component version
1 3 4 1

l. OSS components were not satisfactorily

compatible with the production

environment when the system was

deployed

 5 4

m. Information about the reputation and

technical support ability of community

providing the components were inadequate

or not available

2 4 2 1

n. Community of provider did not provide

enough technical support/ training
1 5 1 1 1

o. If you have a regular selection process,

to what degree did this process reduce the

risks of the project?

 1 2 1 5

p. OSS licenses restrict us from using the

components the way we wanted
 2 2 3 1 1

q. Adaptation of OSS components resulted

in high maintenance cost
1 3 4 1

r. It is difficult to influence the evolution

of OSS components
 1 4 2 2

187

51) What is currently the main software development challenges related to using

OSS components in software projects?

Please describe what you see as your company’s biggest challenges related to software

development using OSS components and tools.

Company H:

No answer.

Company D:

Synchronization of changes.

Company A:

-

Company I:

Definition of several processes: selection fof components, integration, mainteinance
and evolution management

Company E:

Finding high quality OS components for some projects. Integrating inner source to OS.
To have monotonous quality in the product after integration.

Company I:

-- Lack of documentation related to API and component architecture

-- Bad scripts used for configuring and compiling the whole integrated system

Company J:

We use OS in a conservative way, selecting well established components and not
relying on future releases. Our main challenges are still:
* Maintenance (example of forks resulting in lack of backward compatibility)
* Influence on the roadmap of components

Company F:

not information

Company A:

Several OSS components use license agreements (like GPL) that are not acceptable
for our company.

188

Part 6. Demographic Information

6.1. About the company

52) What is the name of your company or business unit?

Company name: _______________________

53) Where is your company/business unit located?

Please fill in the country and town where you are currently working

Company location: _______________________

54) What is the type of company?

[Mark one alternative]

□ Stand-alone: The highest reporting entity with no parent organization above it.

□ Subsidiary: An independent entity with majority interest held by a parent.

55) What is the ownership of your company?

[Mark one alternative]

□ Publicly traded on a stock exchange

□ Privately held company

□ Government, education, or non-profit organization

56) What is the staff size of your mother company in your own country (full- & part-

time persons) ____?

57) What is the staff size of your local business unit (full- & part-time persons)

______?

[This staff size may be the same for small and medium sized companies]

58) What is the main business area of your company?

[Mark one alternative]

□ IT/ Telecom industry (Ericsson, Nokia, NERA, Nordic VLSI etc.)

□ Telecom service provider (Telenor, Telefonica, Orange etc.)

□ Software House / Software Vendor (Opera, Microsoft etc.)

□ Software / IT consulting company (Accenture, CapGemini E&Y, TietoEnator etc.)

□ Retail product with large degree of embedded software (Philips, Sony etc.)

□ Other software-intensive company (please specify): ______________________________

189

6.2. About the respondent

59) What is your gender?

□ Male

□ Female

60) How old are you?

□ <25

□ 26-30

□ 31-25

□ 36-40

□ 41-45

□ 46-50

□ 51-55

□ 56-60

□ 60-65

□ 65<

61) What is your current position in your business unit?

[Mark one or more alternatives]

□ IT manager

□ Project manager

□ Software architect

□ Software developer

□ Web designer

□ Tester/Quality Assurance

□ Other: _________________________

62) How long have you been working in the current business unit?

Years: _________________________

63) How long have you been working with software development?

Years: ________________________

64) How long have you been working with OSS?

Years: _________________________

65) How many projects using OSS component have you been involved in?

Projects: _______________________

66) How many OSS projects have you been involved in?

Projects: _______________________

190

67) What is your highest completed education?

[Mark one alternative]

□ Bachelor (BSc)

□ Master (MSc)

□ Ph.D.

□ Other education: ___________________

68) Is your degree software-related for instance informatics, computer science or

telecommunications?

[Mark one alternative]

 □ No

□ Yes

6.3. Feedback on the questionnaire

69) How much time in minutes was used to complete the survey?

Minutes: _________________________

Thank you for taking the time to answer this questionnaire. If you have any feedback on this

questionnaire then please give it in the field below. If you had to make any assumptions on

any on the questions these can also be provided here.

191

Definitions of terms used in this survey

Roles
Core-developer: A developer responsible for the main functionality of the system, adding

new functionality and making the most important design and architecture decisions.

Developers: A developer which makes code contributions to the software, fixing defects and

creating add-on functionality.

Active user: A user which is involved in several activities, including suggesting new

requirements, reporting fault descriptions etc.

Passive user: A user which is not contributing to the project, instead the user only passively

uses the product.

Differentiating software: Software that is unique and gives a business edge compared

competing products with similar functionality.

Commodity software: Undifferentiated software, like infrastructure, common and available

to everyone in the market.

Component: Software components are program units of independent production,

acquisition, and deployment that can be composed into a functioning system. We focus on

components that are neither shipped with the operating system, provided by the development

environment, nor included in any pre-existing platform. Typical examples of OSS

components are Hibernate, Xerces (XML parser) and OpenEJB.

Open Source Software (OSS): Software where the source code is available with a license

allowing modifications and redistribution of modified versions of the software and code.

Inner Source: Inner source development uses aspects of open source software engineering

inside a business unit, company, or consortium (association companies engaging in a joint

venture). The software developed is only open and available to a closed consortium of

partners.

Open Source community: The environment where OSS is created, used and discussed.

Licensing
Open Source License: Licenses which are compliant to the Open Source definition, for

instance GPL, LGPL and New BSD.

Dual licensing: A licensing model where a piece of software is licensed under two different

licenses with the purpose of providing freedom to the user, by allowing them to choose

between an OSS licenses or a proprietary license.

192

Appendix C

Interview Guide

193

Formål: Formålet med intervjuet er å finne ut mer om små og mellomstore bedrifters forhold
til bruk av og deltagelse i utvikling av åpen kildekode.

Presentere oss: Andreas siv.ing student ved NTNU som gjennomfører diplomoppgaven sin,
Carl-Fredrik post.doc ved NTNU og leder for to arbeidspakker i COSI-prosjektet og Øyvind
PhD-stipendiat ved NTNU.

Gjennomføring: Undersøkelsen gjennomføres som del av norskCOSI (Co-development
using inner & Open source in Software Intensive products) hvor IKT-Norge, eZ
Systems, Linpro, Keymind og NTNU er med som partnere.

Informasjon: Informasjonen som kommer frem i disse intervjuene vil bli bruk i arbeidet med
å utforme en forbedret spørreundersøkelse, arbeidet relatert til arbeidspakke 2 i COSI-
prosjektet samt studentenes oppgaver. OBS! Hvis nødvendig må oppgavene våre kanskje
”hemmeligstemples”. Konfidensialitet!/?

Opptak: Vi ønsker å ta opp samtalen på bånd slik at det er lettere å analysere det som ble sagt
i ettertid. Hvis du føler ubehag med dette må du si i fra.

Før vi begynner, er det noe du lurer på?

Hvis det er ting du ikke vil svare på må du si i fra om det.

Opplysninger om respondenten:
Navn

Kjønn

Alder

Kontaktinformasjon (e-post, telefon, adresse?)

Underveis:
Vi må lytte.
Vi må ta notater (avklare rolle).
Se om vi kan avdekke om det er flere termer vi bør forklare.

Start: Vi vil begynne med å gå gjennom spørreskjemaet slik det foreligger for dere i den
samme rekkefølgen.

194

Part 1. Prosjekter kontrollert av selskapet

1) Kontrollerer firmaet du jobber i ett eller flere åpen kildekodeprosjekter?

1.1. Informasjon om prosjektet

2) Hva heter prosjektet
Name: __________________________________

3) Hvilket forretningsområde (kunder) henvender produktet seg til?

a. Passer kategoriene som er oppgitt

4) Hva er den viktigste funksjonaliteten til produktet?

a. Passer kategoriene som er oppgitt

5) Hvordan vil du klassifisere produktet?

□ Commodity software

□ Felles for alle produkter i det samme markedssegmentet

□ Det har unik fuknsjonalitet, ulik alle andre produkter

6) Hvordan er produktet først og fremst brukt?

□ Komponent i annen programvare

□ Sluttbrukerprodukt

□ Komponent i infrastruktur

7) Hvilke programmerinsspråk er brukt i produktet?

8) Hvilke teknologier og eller kompoenter basserer produktet seg på? Hvilke liseneser
er disse komponentene/teknologiene lisensiert under?

195

1.2. Business related

9) Hvilke lisenser bruker dere for deres produkt?

10) Hva var motivasjonen bak beslutningen om å gjøre produktet open source?

a. Dekker de følgende kategoriene deres motivasjon?
Motivations Don’t

agree
at all

Hardly
agree

Agree
some
what

Mostly
agree

Strongly
agree

 Don’t
know

b. Idealistic

c. Increase attention and publicity

d. Improve relationship to open source
community

e. Saved costs by shared development (less
development effort on the company)

f. Decrease maintenance costs

g. A big community gives increased product
quality (reduce the number of bugs)

h. A big community gives increased
innovation (increase the number of new
requirements and ideas)

i. Improve time-to-market

11) Hvordan ønsker dere å tjene på å gjøre produktet åpent?

□ Salg av lisenser

□ Levere tjenester (angi hvilke?)

□ Annet: __

12) Hva er fordelene med å ha produktet som åpen kildekode?
[Mark one alternative per row]

Advantages Don’t
agree
at all

Hardly
agree

Agree
some
what

Mostly
agree

Strongly
agree

 Don’t
know

a. Increased attention and publicity

b. Improved relationship to open source
community

c. Saved costs by shared development (less
development effort on the company)

d. Decreased maintenance costs

e. Improved time-to-market

f. A big community gives increased product
quality (reduce the number of bugs)

g. A big community gives increased
innovation (increase the number of new
requirements and ideas)

h. Enables the use and integration of other
OSS products

196

13) Hva er ulempene ved å ha produktet som åpen kildekode?
[Mark one or more alternatives]

□ Selling the product is difficult licensing restrictions

□ Difficulty of protecting intellectual property

□ Difficulty of protecting business secrets

□ Security is reduced because openness (of the code) makes it easier to find security holes

□ More difficult to plan releases

□ Other: __

1.3. Start-up

14) Når ble prosjektet påbegynt?

15) Når ble prosjektet åpen kildekode?

16) Hvor mye arbeid ble brukt på prosjektet det siste året (i måneder)?

17) Kan du beskrive prosessen for å starte prosjektet/for å få det startet som et åpent
kildekodeprosjekt?

1.4. Community

18) Eksisterer det et community rundt produktet?

□ Yes, established by the company

□ Yes, established by the community itself

□ No

197

19) Hvordan har firmaet klart å bygge dette communityet?

□ Community already existed for the product before it was made open source

□ Commercials and advertisements

□ The company participates in other open source communities

□ The product was made available on a website

□ Conferences for developers and users

□ Forums and other community supporting infrastructure was made available to the
community

□ The community was created by founders of the company

□ Other:___

20) Hvor mange deltagere innehar disse rollene i communitiet?

Role Outside the company Inside the company
a. Core-developers

b. Developers

c. Active users

d. Passive users

21) Til hvilken grad utfører ansatte i selskapet de følgende aktivitetene? Er det andre
aktiviteter som også utføres av de ansatte?

Activity
Not at all Small Some Large Very large Don’t

know

a. Bug-reporting

b. Bug-fixing

c. New requirements

d. New functionality

e. Add-on components

f. Localization

g. Other(please specify)

22) Til hvilken grad utføres de følgende oppgavene av folk utenfor selskapet? Er det
også andre oppgaver de utfører?

Activity
Not at all Small Some Large Very large Don’t

know

a. Bug-reporting

b. Bug-fixing

c. New requirements

d. New functionality

e. Add-on components

f. Localization

g. Other(please specify)

198

23) Hvor mange ganger har produktet blitt lastet ned?

24) I hvilken utstrekning brukes følgende kommunikasjonsarenaer innad i bedriften i
dette prosjektet?

[Mark one alternative per row]

Arena
Not at all Small Some Large Very large Don’t

know

a. Instant messaging

b. Chat-channels

c. Web-forums

d. E-mail

e. Mailing-lists

f. Video meetings

g. Phone

h. Formal and informal
face to face meetings

25) I hvilken utstrekning brukes følgende kommunikasjonsarenaer utad av bedriften
mot community i dette prosjektet?

[Mark one alternative per row]

Arena
Not at all Small Some Large Very large Don’t

know

a. Instant messaging

b. Chat-channels

c. Web-forums

d. E-mail

e. Mailing-lists

f. Video meetings

g. Phone

h. Formal and informal
face to face meetings

199

26) Hvilke utviklingsprosesser er hovedsakelig brukt i dette prosjektet? Kan du beskrive
de viktigste aktivitetene og rollene?

200

Part 2. Participating in an open source project

27) Deltar ditt firma aktivt i åpne kildekode communities?

28) Hvorfor deltar dere i åpen kildekodeprosjekter?

□ Ability to influence the community

□ Learn from the community

□ Reduced time to market

□ Higher product quality

□ Benefit from development and testing from community users

□ Improved relationship to the OSS community

□ Requires usage of the OSS product

□ Other: __

29) Deltar du personlig i noen åpen kildekodeprosjekter?

30) Hvorfor deltar du i åpen kildekodeprosjekter?

□ You get paid

□ Learning

□ Idealism

□ Desire to identify with the community

□ Feel obligated to tribute to the community

□ Future work possibilities

□ Personal interests

□ Altruism (Feel satisfaction by doing something for other people)

□ Reputation among peers

□ Other: __

2.1. About the project

31) Hva heter prosjektet?
Name: _________________________

201

32) Hvilke brukere retter produktet seg mot?

□ Consulting Companies

□ Software companies

□ Industry

□ Telecommunications

□ Public/Health

□ Educational institutions

□ Banking

□ Other:____________________________________

33) Hvilke funksjonalitet er den viktigste I produktet?

□ Database

□ Desktop/Office tools

□ Development

□ Enterprise solutions

□ Financial/Banking

□ Games

□ Multimedia

□ Networking

□ System administrator

□ Web/Portals

□ Operating System

□ Server Component

□ Other:____________________________________

34) Hvordan vil du klassifisere produktet?

□ Commodity software

□ Felles for alle produkter i det samme markedssegmentet

□ Det har unik fuknsjonalitet, ulik alle andre produkter

35) Hvordan er produktet først og fremst brukt?

□ Komponent i annen programvare

□ Sluttbrukerprodukt

□ Komponent i infrastruktur

36) Hvilke programmeringsspråk er brukt i prosjektet?

2.2. Organization

37) Hvordan er bedriftens deltagelse i prosjektet organisert?

□ Project

□ Individual level

□ Line organization

202

38) Hvor mange fra ditt firma deltar i følgende roller?
Role Number:
a. Core-developers

b. Developers

c. Active users

d. Passive users

39) Til hvilken grad ufører dere de følgende arbeidsoppgavene?
Activity

Not at all Small Some Large Very large Don’t
know

a. Bug-reporting

b. Bug-fixing

c. New requirements

d. New functionality

e. Add-on components

f. Localization/translate

g. Other:

2.3. Relationship with community

40) I hvilken grad er du tilfreds med følgende bidra fra community?
Contribution

Not at all Small Some Large Very large Don’t
know

a. Infrastructure

b. Product with code

c. Requirements

d. Bug-fixes

e. Money

f. Product support

g. Other:

41) Hva tilbyr dere til community?
Contribution

Not at all Small Some Large Very large Don’t
know

a. Infrastructure

b. New functionality with
code

c. Requirements

d. Bug-fixes

e. Money

f. User support

203

g. Distribution

h. Other(please specify)

42) I hvilken grad er du enig i følgende utsag?
Statement Don’t

agree at all
Hardly
agree

Agree
some what

Mostly
agree

Strongly
agree

 Don’t
know

a. The relationship with the open
source community is successful

b. Your company’s ability to change
or influence the open source
product and its requirements
would have been greater if the
company contributed more to the
community

c. Participation in open source
communities is rooted in your
company’s business model

43) I hvilken grad er følgende kommunikasjonskanaler brukt innad i bedriften i forhold
til kommunikasjon i prosjektet?

Arena No Very small Small Some Great Don’t
know

a. Instant
messaging

b. Chat-channels

c. Web-forums

d. E-mail

e. Mailing-lists

f. Video meetings

g. Phone

h. Formal and
informal face to
face meetings

44) I hvilken grad er følgende kommunikasjonskanaler brukt i kommunikasjon med
community i forhold til kommunikasjon i prosjektet?

Arena No Very small Small Some Great Don’t
know

a. Instant
messaging

b. Chat-channels

c. Web-forums

d. E-mail

e. Mailing-lists

204

f. Video meetings

g. Phone

h. Formal and
informal face to
face meetings

45) Hvilke utviklingsprosesser blir brukt for å delta i prosjektet.

Part 3. Use of open source tools and components

3.1. Information about usage of open source

46) Hva er de viktigste åpen kildekode vertkøyene dere bruker samt deres lisenser?

47) Hva er de viktigste åpen kildekode komponentene dere bruker og deres lisenser?

48) Hva er den vanligste metoden for utvikling med OSS komponenter?

205

3.2. Motivations behind and disadvantages of usage of open
source components

49) I hvilken grad er du enig i følgende utsag rundt motivasjon for bruk av oss
komponenter?

Motivations Don’t
agree at
all

Hardly
agree

Agree
some
what

Mostly
agree

Strongly
agree

 Don’t
know

a) Reduce risk of component
provider going out of business

b) Reduce risk of component
provider changing market
strategies

c) Reduce risk of selected
component evolving into an
unwanted direction

d) Component can be acquired
for free

e) Source code is available and
can easily be changed

f) It was decided by the customer

g) Political reasons (company
policy, licensing conditions)

h) Other (please specify):

3.3. Development with open source components

50) I hvilken grad er du enig i følgende utsagn relatert til utvikling med OSS
komponenter:
Role Don’t

agree at
all

Hardly
agree

Agree
some
what

Mostly
agree

Strongl
y agree

 Don’t
know

a. Compliance to open standards is
important to your company

b. Your company has changed its
development processes because of
participation in open source projects

c. Your company changed its
development processes because of
using open source components

d. You have read parts of the open
source components’ code which are
used in this project

e. You have modified the code of the
open source components which are
used in this project

206

51) Hvor mye av produktet er OSS komponenter? KODELINJER??BYTE??

52) Hvor mye av de komponentene som er OSS er:

__________% Commodity software or infrastructure which has very basic
functionality common to most software in many market segments

__________% Basic for business or similar to functionality in, all software in the same
market segment

__________% Unique for this product in the market segment

53) Beskriv prosessene deres for å velge OSS komponenter.

3.4. Development with OSS components

4.1 Hva er din mening om de følgende punktene relatert til utvikling med åpen kildekode
komponenter?

 Don’t
agree
at all

Hardly
agree

Agree
some
what

Mostly
agree

Strongly
agree

 Don’t
know

a) The project was delivered long after
schedule or has had severe delays

b) Effort to select OSS components was
not satisfactorily estimated

c) Effort to integrate OSS components
was not satisfactorily estimated

d) OSS components negatively affected
system reliability

e) OSS components negatively affected
system security

f) OSS components negatively affected
system performance

g) Requirements to the product were
changed a lot

h) OSS components could not be
sufficiently adapted to changing
requirements

207

 Don’t
agree
at all

Hardly
agree

Agree
some
what

Mostly
agree

Strongly
agree

 Don’t
know

j) It was difficult to identify whether
defects were inside or outside the OSS
components

k) It was difficult to plan system
maintenance, e.g. because different OSS
components had asynchronous release
cycles

l) It was difficult to update the system
with the last OSS component version

m) OSS components were not
satisfactorily compatible with the
production environment when the system
was deployed

n) Information on the reputation and
technical support ability of community or
provider were inadequate

o) Community of provider did not
provide enough technical support/
training

p) If you did use a formal selection
process, to what degree did this process
reduce the risks of the project?

q) Licenses put restrictions on how to use
the components

r) Adaptation of OSS components
resulted in high maintenance cost

s) It is difficult to influence the evolution
of OSS components

54) Hva ser du på som ditt selskaps største utfordringer relatert til bruk av OSS?

208

Part 4. About the company

55) What is the type of company?
[Mark one alternative]

□ Stand-alone: The highest reporting entity with no parent organization above it.

□ Subsidiary: An independent entity with majority interest held by a parent.

56) What is the ownership of your company?
[Mark one alternative]

□ Publicly traded on a stock exchange

□ Privately held company

□ Government, education, or non-profit organization

57) What is the staff size of your embedding company (full- & part-time persons) ____?

58) What is the staff size of your local business unit (full- & part-time persons) ______?
[This staff size may be the same for small and medium sized companies]

59) What is the main business area of your company?
[Mark one alternative]

□ IT/ Telecom industry (Ericsson, Nokia, NERA, Nordic VLSI etc.)

□ Telecom service provider (Telenor, NetCom etc.)

□ Software House / Software Vendor (Opera, Microsoft etc.)

□ Software / IT consulting company (Accenture, CapGemini E&Y, TietoEnator etc.)

□ Other software-intensive company (please specify): ______________________________

209

Part 5. About the respondent

60) What is your current position in your business unit?
[Mark one or more alternatives]

□ IT manager

□ Project manager

□ Software architect

□ Software developer

□ Web designer

□ Tester/Quality Assurance

□ Other: _________________________

61) How long have you been working in the current business unit?
Years: _________________________

62) How long have you been working with software development?
Years: ________________________

63) How long have you been working with OSS?
Years: _________________________

64) How many projects using OSS component have you been involved in?
Projects: _______________________

65) How many open source projects have you been involved in?
Projects: _______________________

66) What is your highest completed education?
[Mark one alternative]

□ Bachelor (BSc)

□ Master (MSc)

□ Ph.D.

□ Other education: ___________________

67) Is your degree software-related (informatics/computer science/telecommunications)?
[Mark one alternative]

 □ No
□ Yes

210

Appendix D

Guidelines

D.1 Selecting and Evaluating OSS Components

211

Guidelines for Selection and Evaluation of OSS Components
These preliminary guidelines are meant to help companies which use open source components
in their software development. These guidelines are not final, they are meant as contribution
to the work in the European ITEA project, COSI.

Selection process for OSS components
The following selection process is recommended as a way to efficiently select OSS
components:

Possible sources for OSS components
Perhaps the most used source for OSS components is previous knowledge to a component.
You may know of components yourself, you may ask colleagues, or former colleagues, or you
may ask expert networks1, or mailing lists. Some other information sources are listed in the
table below2.
Site Url
Freshmeat.net http://freshmeat.net/
IBM's resource for developers http://www-128.ibm.com/developerworks/
Javalobby http://www.javalobby.org/
Java-Source.net http://java-source.net/
koders http://koders.com/
Slashdot http://slashdot.org/
SourceForge.net http://sourceforge.net/
TheServerSide.com http://www.theserverside.com/
Tigris.org http://www.tigris.org/
To increase the knowledge about components and the open source community, it is important
that participation in open source activities is accepted, and perhaps also rewarded.

1 A list of expert networks and possible mailing lists online should be gathered.
2 This list is no way near complete, or final. The list should be extended and reviewed.

212

Information sources
To evaluate a component you need information. In addition to the web resources in the table
above, you may find information on community mailing lists and web forums, project web
sites, the source code, the project documentation, online statistics from for instance
SourceForge, books and magazines concerning open source, and from peers, or colleagues.

Evaluation criteria
Possible evaluation criteria for OSS components will be presented next.
Evaluation criteria Explanation/metric
Functionality Does the component provide the functionality you require?
Licenses Is the license compatible with the license you use?
Maturity and state of
the component

Does the component have a stable release?
Does the component many open bugs-reports?

Reputation Does the component have a track record?
Is it used by many others?
Is the provider reliable?

Roadmap What are the future plans of the component?
Will they stop supporting the current version?
Are new features about to be implemented?

Documentation and
information

Is there any information available on the component?
Is the component well documented?

Community
development process

Do the community providing the component have procedures for
testing, building, common code standards, and so on?

Activity How many times is the component downloaded?
How many active users does the community have?
How many messages are posted on the mailing lists or forum?
How often is the component upgraded?

Support Does the community provide some support?
Do the community members help each other with user-support?

Implementation Is the component implemented in a confidence-inspiring way?
Are code-standards used?
Is the code well documented?
Is the structure of the component sound?
Is the component easy to extend?

Motivations for using OSS components
Motivation Explanation
No cost Most open source components are downloadable for free
Availability of the
component

Open source components are easy to evaluate. Fully featured
components are normally available on the components web site.

Availability of the source
code

The source code is available with the component. It allows you
to read, and possibly change the code if necessary.

Availability of
information, openness,
and honesty

Open source communities are normally quite open about the
status of the product. All information about the product is
normally available to everyone.

Standard compliance Many open source products implement (open) standards as
well.

213

214 D. Guidelines

D.2 Initiating and Managing an OSS Product

A Survey of Industrial Involvement in Open Source

Guidelines for Initiating and Managing an Open Source Project
These preliminary guidelines are meant to help companies which think about licensing one of
their products with an open source license. These guidelines are not final, they are meant as
contribution to the work in the European ITEA project, COSI.

Should we release this product as an open source product?
The more of the following statements that are true, the more likely are you at succeeding with
an open source release of your product.
Statement
You can make money having this product as an open source product.
You will not lose sales, or give away important business secrets by releasing this product as
an open source product.
You need the product internally in the company.
Your developers are users of the product.
There is a potentially big market for the product, with many potential customers and
community members.
An active community with technically competent people exits around the product.
No economical benefits are required from the product.
The product is commodity software.
There are no or few similar open source products.
You have sufficient resources to continue the development of this product.

How to get a community?
The more of the following statements that are true, the more likely are you to attract a
community of users, and possible customers.
Statement
You know how to, and have the resources to make the product available, and widely know to
a big group of potential community members.
The product provides value to its users.
You are active in other, related open source communities.
You publish information and articles about your product.
You have an infrastructure which supports the distribution of your product, and the activity in
an open source forum.

How to benefit from having a community?
The more of the following statements that are true, the more likely are you to benefit from
having a community.
Statement
You have clear procedures for community contributions.
You have informed the community about these procedures.
You communicate openly with your community.
You have an infrastructure, bug-reporting systems, forum, communication channels, etc, in
place to take care of the community.
You have resources to handle the contributions and the feedback from the community.
The product has few bugs.
The product and its code is well documented.
The product is easy to use.

215

216 D. Guidelines

D.3 Inner Source Development Projects

A Survey of Industrial Involvement in Open Source

Guidelines for Inner Source Development Projects
These guidelines are meant to help companies choose development practices from OSS
projects, which can be used in Inner Source development projects. Inner source development
uses aspects of open source software engineering inside a business unit, company, or
consortium of cooperating companies. This will enable development to be distributed at
several physical locations, and allow companies to take advantage of development practices
which have proved to be successful in open source projects.

Inner Source Development Practices
The following development practices are typically used in OSS projects, and can be adapted
to be used inside a company, as inner source development.
Development practice Explanation
Share source code with
partners

Source code can be shared with the partners in the inner
source project. This will enable partners to participate more
efficiently in development and improve code developed by
partners.

Development process
influenced from OSS
projects and Agile Software
Development

Many inner source projects use methodologies which have
similarities with Agile software development, which is a
characteristic which is similar to development in OSS
projects. This can be referred to as emulating OSS practices
on the inside of the company. For example, frequent releases,
and close involvement of customers, users and the
community.

Community Inner Source projects have the possibility to involve
community members from other companies. This includes
core-developers, developers, active users, and passive users,
which all can contribute in some way to the inner source
project.

Code ownership Code ownership means that developers are given
responsibility for developing and maintaining specific
modules in the system. The owner of a particular module is
responsible for committing changes to that module, based on
contributions from participants in the inner source project.

Communication methods Many inner source projects use asynchronous communication
methods like email and mailing lists. This will enable a
timeline of discussions, and the possibility to communicate in
a distributed setting. However, some companies are cautious
about using only email and mailing lists.

Development tools Version control systems such as Subversion and CVS are
frequently used to coordinate development, and mediate
changes to the source code.

217

Inner Source Development process
The following development process can be used in inner source projects. The development
process is based on cooperation between developers at the company, and developers at a
partner company. These entities are represented in the figure as ‘Company’ and ‘Partner’. The
process involved 7 steps, which are shown in the figure. The steps are self explanatory.
The process is iterative, where steps 2 to 7 are repeated several times during the development.

Note that development processes used in inner source projects have to be adapted to the
company and environment they are used in. Some companies have used and adapted Agile
development, and Rational Unified Process, to be used in projects where inner source
development is used.

218

