& NTNU

Innovation and Creativity

An empirical study of component-based
software engineering in Statoil

Vu Ha
Kiet Ve Tran

Master of Science in Computer Science
Submission date: June 2006
Supervisor: Reidar Conradi, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Our master thesis is an extension based on our thesis written in the autumn 2005.

Assignment given: 20. January 2006
Supervisor: Reidar Conradi, IDI

An empirical study of component-based sofiware engineering in Statoil

An empirical study of component-based
software engineering in Statoil

Authors: Vu Ha & Kiet Ve Tran

Teacher of subject: Reidar Conradi
Mentor: Anita Gupta
Date: June 16th, 2006

STATOIL

TDT4735 Software Engineering

Department of Computer and Information Science
Faculty of Information Technology, Mathematics and
Electrical Engineering

NTNU
Norwegian University of
Science and Technology

Master thesis 1 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis i Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Abstract

Title:

An empirical study of component-based software engineering in Statoil.

Background:

This project is a continuation from indentation thesis that we wrote in the
last semester. This project explores the field of software components reuse
in Statoil by an empirical study. The exploration includes the study of
architectural framework about SJEF and what that belongs to software
components reuse. The work of the project is focusing on effort, defect
density and quality attributes used to evolve reuse component.

Presenting

Phase 1: We will conduct a pre-study of the current state-of-the-art and
practice and of the context about projects of Statoil.

Phase 2: We will declare our focus and problem definition, and define
hypotheses and research questions.

Phase 3: We will present methodologies and technologies to conduct the
study. We will use these methodologies to perform an empirical research
based on the resources we have gathered from Statoil.

Phase 4: We will present the results, evaluation, discussion and conclusion.

Thesis goals:

The overall goal for this thesis is to evaluate the software components reuse
with the architectural framework. The following list presents the final goals:

Study the state-of-the-art in component-based software engineering.
Study the state-of-the-art in architecture of Statoil, SJEF

Explore the reuse component of Statoil, JEF

Explore Statoil’s projects, which are based on reuse component
Provide an overview of advantage or disadvantage with JEF by using
empirical study and methods

MRS

The final goals of the thesis have emerged through the increasing knowledge
to the state-of-the-art and how mature the concepts of component-based
software engineering and software product lines were at the organization.

Competence:

We will base us upon existing empirical methodologies, hypothesis testing,
statistics, strategies and analysis, such as Goal-Questions-Metric (GQM),
ANOVA, graphical visualization, validity evaluation and descriptive
statistics.

Keywords:

Statoil, SJEF, effort, incident, defect density, CBSE, CBD, reuse,
component, quality, resource, evaluation, methodology, technology.

Master thesis

iii Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis v Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Preface

This project is written in the course TDT4735 Software Engineering, in the final year and
semester of study at the Department of Computer and Information Science at Norwegian
University of Science and Technology, NTNU. The result is an evaluation and analysis of
component reuse in Statoil with regards to effort, defects and quality attributes.

We would like to thank teacher of subject, Professor Reidar Conradi, who has helped us
throughout the study. We would also thank our mentor Anita Gupta and Odd Petter Slyngstad
in NTNU for providing us with important information and resources from Statoil. Our
conversations with them have proved to be invaluable for this thesis.

Trondheim, 16" of June, 2006.

Vu Ha Kiet ve Tran

Master thesis \4 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis vi Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Table of Contents
I INEFOAUCHION ..ttt e et e e et e e et e e st eesaneeeenneeeeneens 1
1.1 PrOJECt CONEEXL ..viiiiiiieiiiie ettt ettt e e et e e e et teeeeenebbeeeeessaeeaas 3
SV (0] 57 1 (01 RO TR PRRRPTI 3
1.3 FOCUS .t et 3
R € 10T 1 e 1<) 11 V1 (01 s U U U PP RRRTRPPI 5
1.5 REPOTT PIOCESS. ...eeeiiieeeiiiiiiee ettt e e e e ettt e e e e e e st aaeeeeeeeas 6
1.6 Reading GUIACc.uviiiiiiiiiieeeee ettt e e et ee e enaaeee s 7
2 Pre-study: Survey of state-of-the-art and practice...........ccccceeieeiiiieieniiineiicicneereeenee. 9
2.1 Component-based sOftware engineeringcc.eeeeeevviieeeriiiieeeniiiieeeeiieeeeeeneeenns 11
2.2 DEfeCt TEPOTLING ..ccueviieeeeiiiieee ettt ettt e e ettt e e ettt e e et eeeesntbeeeeesnnbeeeeennaeeeeennnees 12
2.2.1 Studies on defect-density in the context of reuSe.........cocevvveeeeriiieeeeniieeeeneee, 13
B B 2 i (0] AR PRSP PT PR 15
2.4 QUALY OF SYSTEIM cuuiiiiiieiiiiie ettt e et e e et e e et e e e e e e e ennes 15
24.1 MOAIFTADIIIEY ...ttt e 15
242 SEADIIIEY ..ot 16
2.5 EmPIrical theory.....c.uiiiiiiiiiiieiie e 17
2.5.1 Threats to VALIAILY......ovviiieiiiiee et 17
2.5.2 Measurement defiNItIONScuvvereeriiiiireeiiiiie et e et e e e e 20
2.5.3 Statistical ANALYSISueeieeriiiiieeiiiie et 21
254 ANOV A e ettt ettt et et et e st eaeas 23
2.5.5 Graphical VISUQlIZAtIONeeiiiiiiiiieeiiiiee et e e aaeee e 24
3 StatOll CONTEXL...coiiiiiiiieieieteeee ettt ettt et e et e e et e et e et e et e e eaneens 27
20 S | 2 SO USSP RTUPRR 29
3.2 DCEF (Digital Cargo FileS)ccuutieiiiiiiiieiiiieeeeiiie ettt e 29
3.2.1 System overview 0f DCF........cooiiiiiiiiiiiieee e 30
3.3 S&A (Shipment and AIIOCALION)........cccuuiiieeriiiiieeeiiiiee et e e iaeee e 31
3.3.1 SEA PIOJECt GOALS ...t 32
3.3.2 System OVErvieW O S&Aooiiiiiiie et 33
3.4 The available data T@SOUICES.cceriuiiiieeiiiiieeeeiieeeeeiiee e et e e e eibre e e e ibaeeeeeeneas 33
34.1 LiNeS-0f-COdeuvviiiiiiiiie ettt e 33
3.4.2 Ot ettt ettt ettt ettt ettt e b e et e s ab e et e et e e nebeeneeenne 33
343 DEECES ettt e e et e e e araaee s 33
344 CRANZE TEQUEST ...vvtieeiiiiieeeeiiieeeetiee e e ettt e e e ettt e e e eebteeeeesibbeeeesebaeeeeennnaeeaeanes 36
4 Research focus and problem elaboration............cccceeeeiiiiiiiiiiiieiiniiiieeeecieececcreeeeae 37
4.1 CONSIACTALION ...ttt ettt e e et e e e ettt e e e e tbbeeeeetbbeeaeesbaeeeeensseeeas 39
4.2 Problem definition and research qUESTIONS...........c..eeeeeriiiieeeriiiiiieeeiieee e e 40
4.2.1 Effort definition to hypothesisc..oieeiiiiiiiiiiiiiieeeee e 40
4.2.2 Defect density definition to hypothesisccccoeeieviiiiiiiniiiiieeeieeeee, 40
423 Stability definition to hypothesiscc.eeeeriiiiieiiiiiiieiiiie e 41
4.3 MEROM ..o et e e et e e e ennes 42
4.3.1 The effort MELIIC. . .ceeiiiiiiieiiiiee et e e aaee e 42
4.3.2 The defect density MELTIC........eeeeviviiiieiiiiiee et ettt e e e aeeee e 42
433 The Stability MELTIC.ueiiiiiiiiieeiiiie et e e e aaeeeeenes 42
IR D 71 7 15 4 ST 0118 o S SRRSO PRSP PPPPRR 43
5.1 JEF et et ettt ettt e e eaeas 45
5.1.1 LiINeS-0-COdeuvviiiieiiiie e et 45
5.1.2 {00 1] AU UUTP U PPPPPPPP 45

Master thesis vii Spring 2006

An empirical study of component-based sofiware engineering in Statoil

5.1.3 INCIACTIES ...ttt ettt e e et e e e ettt e e e e ebbeeeeeeraaeeas 45
5.1.4 CRANZE TEQUESES ..vvieeiiiiiieeeiiiieeeeiiee e e ettt e e e ebteeeeeebaeeeeeibaeeesensaeeeesnnnaeeaeanes 47
5.2 DCF et e et e b e et e e e b e e e baeeenraeeennaeas 47
5.2.1 LiINeS-0f-COdeuviiiiieiiiie et 47
5.2.2 {00] PO UUU U PPRPPPPP 48
523 INCIACTIES ...ttt e et e e e e e e e et e e s e ebaeeeeeeraeeeas 48
52.4 CRANZE TEQUESES ..vvieeeiiiiieeeiiiieeeeiiee e e ettt e e e ettt e e e eibteeeeesibaeeeesnbaeeeeennnaeeaeanes 50
5.3 S&A et e et e e ba e e ba e e ba e e e baeeenraeeeneeas 51
5.3.1 LiINeS-0-COdeeviiiiiiiiiie e et 51
5.3.2 {00] PP U PUPUPPPPPPPP 51
533 INCIACTIES ...ttt ettt e e et e e e et e e e e e ebbeeeeeeraaeeas 51
534 CRANZE TEQUESES ..evieeiiiiiieeeiiiieeeeiiee e e ettt e e e ettt e e e eibteeeeenibbeeeseebaeeeeennnaeeaeanes 53

0 RESUIES .ottt ettt e e e et e et eeenee s 54
6.1 Effort valuationccuuiiiiiiiiiie e 56
6.1.1 QUEstion QE-T. ..o 56
6.1.2 QUEStION QE-2.. .o 57
6.1.3 QUEstion QE-3.. ... e 57
6.1.4 Analysis of hypothesis — HE.......oooeeriiiiiiiiiiiieiiccce e 58
6.2 Defect density evaluationeeeeiiiiiieiiiiiieeeiiiee et e e 60
6.2.1 QUEStION QD=1 .o 60
6.2.2 QUESLION QD=2 .. e e e e e e e 61
6.2.3 QUEstion QD=3 .. a e 62
6.2.4 QUESLION QD=4 ... e e a e e 62
6.2.5 Analysis of hypothesis; Hpocuvveiieiiiiiiiiiiiieee e 65
6.3 Stability eValuationccccuiiiiiiiiiii e e baee e 65
6.3.1 QUESLION QST .o 66
6.3.2 Analysis of hypothesis; Hg.....ooueviieiiiiiiiiiiieccc e 66
6.3.3 SUMMING UP ettt ettt e e et e e et e e e eibteeeeenbaeeeeennees 66

7 Evaluation and discussion of 1€SUIScooviiiiiiiiiiiiiiiiiiiiiiicceeeeeeeeee e 68
7.1 Threats to VALIAILY ..o.ooovviiieiiiiiee e et e e 70
7.2 DASCUSSION. c.uutiiiieeiiiiieeeiitee e ettt e e e et e e e eetbeeeeestbteeeeensaeeeesssaeaeesnnsbeeesenssaeeesennnees 71
8 Conclusion and further Workccccooiiiiiiiiiiiiieeeeee et 74
8.1 CONCIUSION ..ttt et e ettt e e e et e e e e baee e e e ebbeeeeennbeeeas 76
8.2 FUIhEr WOTK ..oiiiiiiiiiiiiiee et et e e e e es 76
8.2.1 Will the effort in JEF be improved?.........ccceeveeiiiiiieniiiiiieeeiiee e 76
8.2.2 Will the defect density in JEF be sustained?ccoccveeeeviiiieeeniiiieeeeeeen. 78
8.2.3 Defect density and attributes...........cveeieeriiiiieeiiiiie e 79
8.2.4 Stability in JEFooiiiiiiiiieee et 80
8.2.5 Modifiability in @ PrOJEC....ccevviiieeiiiiiee et 80

O APPEIAICESeeiiiieiiiieieeiirieteeiiteeteestteeeeestaee e e e treeee et rae e e e sataeee e ttaeseesrtaeeeasrraeeannrees a
9.1 RETEIENICES ...vviiieeiiiiie e et e et e e et be e e e e ebaeeeeennaaeaas a
L 2N o] o) () T 18 10) s U PSRRPPP c

Master thesis viii Spring 2006

An empirical study of component-based sofiware engineering in Statoil

List of figures

Figure 1-1: Report OULIING.......cooouiiiiiiiiiiiieiiiee e 7
Figure 2-1: Relation between error density and reuse rate...........cceevveeeriieeniieeniiieenieeennnen. 13
Figure 2-2: The principles of validity (adapted from Trochim)............ccoeeveeiviiiiniiiiniiennnen. 18
Figure 2-3: Internal validity and the threats...........ccoocueiiiiiiiiiiiinicee e, 19
Figure 2-4: External validity and the threats..........ccooceeiriiiiiiiiiiiieeee e, 20
Figure 2-5: The questions we must ask ourselves about validity...........ccoceeeviiiiniiiiniennnnen. 20
Figure 2-6: An example of SCAtter PlOt.........uiiiiiiiiiiiieiiiiee e 24
Figure 2-7: Line Graphi.......cooioiiiiiiiiiieee et ettt e e et e e et e e e e b eeaeenes 25
Figure 2-8: An example of hiStOZIamcccoiiiiiiiiiiiiiiiiiie e 26
Figure 2-9: An example of pie diagram...........ccooueiiiiiiiiiiiiiiie e 26
Figure 3-1: Overview of DCF appliCation.........ccccuuiiieiiiiiiieiiiiiee et e eiaee e 29
Figure 3-2: Overview of communication channels in DCF............cccocccoviiiiniiiiniiinicenen, 31
Figure 3-3: The context Map Of S&Aoiiiiiiiiie e 32
Figure 3-4: State of an enhancement or change request..........c..eeeeeiiiiieeriiiiee e 35
Figure 3-5: State 0 N €TTOT....ccc.uviiiiiiiiiieeiiie e 36
Figure 4-1: Project evolution delivery life CycCle..........oouviiiiniiiiiiiiniiiicceeece, 39
Figure 5-1: Frequency of priorities — JEF........coooiiiiiiiiiiii e 46
Figure 5-2: Frequency of states — JEFcooiiiiiiiiiii e 46
Figure 5-3: Frequency of classifications — JEFccccoiiiiiiiiiiiiiiceeeeeeee, 47
Figure 5-4: Frequency of severities — DCFcoccooiiiiiiiiiiiiiccee e 48
Figure 5-5: Frequency of priorities — DCFccocoiiiiiiiiiiiiiieeeeeeeee e 49
Figure 5-6: Frequency of states — DCFcccuiiiiiiiiiiiiiiiicec e 49
Figure 5-7: Frequency of classifications — DCFccoooiiiiiiiiiiiiiniicicceeeeeeeee 50
Figure 5-8: Frequency of SEVErities - S&A......coiiiiiiiiiiiiie i 52
Figure 5-9: Frequency of priorities - S&Acooiiiiiiiiiiiii e 52
Figure 5-10: Frequency of states - S&Acoouiiiiiiiiiiee e 53
Figure 5-11: Frequency of classifications - S&A.........ccoooiiiiiiiiiiiiniiieeceeeee e 53
Figure 6-1: EFfOrt i DCFoiiiiiiiiiee e 56
Figure 6-2: EFfOrt in JEF ...cooiiiiii e 58
Figure 6-3: Effort (JEF VS DCF)...cuuiiiiiiie ettt 59
Figure 6-4: Effort (DCF and S&A VS JEF) ...ccoiiiiiiiiie e 60
Figure 6-5: Defect density in DCFcooouiiiiiiiiiiiiii e 61
Figure 6-6: Defect density in JEFooiiiiiiiiiiiiii e 62
Figure 6-7: Defect density (JEF VS DCF)......cciiiiiiiiiiiiiiiiiee e 63
Figure 6-8: Defect density (DCF and S&A VS JEF) ...ccoooiiiiiiiiiiiiiiccceeeeeeeeen 64
Figure 6-9: Priority in JEF, DCF and S&Acccuiiiiiiiiiiiieceeceeee e 65
Figure 7-1: Different types of relationships...........coovieiiiiiiiiiiiiniiicce e, 70
Figure 8-1: Meeting point for defect density for JEF and DCFccociiviiiiniiiniicnnen. 77
Figure 8-2: Formula to draw linear graph............cccceeeiiiiiiiiiiiiiiie e 78
Figure 8-3: Meeting point for defect density for JEF and DCFccociiiviiiiniiiiniicnnen, 79
Figure 8-4: Defect density for modifiability...........ccooviiiiiiiiiiiiiiiice e 81

Master thesis ix Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis X Spring 2006

An empirical study of component-based sofiware engineering in Statoil

List of tables

Table 1-1: Goal and fOCUS......coouiiiiiiiiii e 5
Table 1-2: The verisons of projects analyzed in this thesis...........cccovveeiriiiiniiiiniieinieeneees 5
Table 1-3: Main goal and SUD-Z0alSoiiiiiiiiiiiiiie et 6
Table 2-1: The structure of defeCtS.......ccoiuiiiiiiiiiiii e e 12
Table 2-2: Relation between LOC, defect density and reuse rate...........ccceeeeevviveeenniieeeennnnee. 13
Table 2-3: Research hypotheses and results of [9].........ooiviiiiiiiiiiiiii e, 14
Table 2-4: The categorization Of Stability.........cccceeieiiiiiiiiiiiiiiii e 16
Table 2-5: Research hypotheses and results of [9]........oooiviiiiiiiiiiiii e, 17
Table 2-6: The possible results of a hypothesis test..........coccviiiiiiiiiiieiiiiiieeeiiee e, 22
Table 2-7: An example of an ANOVA St ...ccoiviiiiiiiiiiieeeiiiee ettt 24
Table 3-1: Delivery table for DCFcoooiiiiiiiiiiii et 30
Table 3-2: The g0als Of DCFccooiiiiiiiieeeeee et e e 30
Table 3-3: The g0als OF SELA ..ot e e e e 32
Table 3-4: Description 0f roles i S&A........cooiiiiiiiiiie e 33
Table 3-5: The 101es I S&Aeiiiiiiiiie e 33
Table 3-6: Overview of incident attribULESeeieeiiiiiieiiiiiee e 34
Table 3-7: The incident attribute 'SEVETILY'cccuviiieeiiiieeeeiiiiee et e e e e 34
Table 3-8: The incident attribute 'classification’cceeecuiiiiiiiiiiiieiiiiiee e 35
Table 4-1: The area of atteNtiONeiieiiiiiiieeiiiiee e e e e e e raee e e 40
Table 4-2: Hypothesis 0f @ffOrtooiiiiiiiiiiii e 40
Table 4-3: Hypothesis of defect densitycoocuiiiieiiiiiiieiiiiiee e 41
Table 4-4: Hypothesis of Stabilityccccuiiiiiiiiiiiiiiiiiee e 41
Table 5-1: Overview of KLOC of components in JEF............ccoooiiiiiiniiiiiiiiiiee e 45
Table 5-2: Budgeted costs Of JEFooooiiiiiiiiie et 45
Table 5-3: Overview of incidents of components in JEFccccooiiiiiiiiiiiiiiiee e, 45
Table 5-4: Overview 0f S1Z€S — DCFccuviiiiiiiiiii e 47
Table 5-5: Overview of budgeted cost — DCFcoociiiiiiiiiiiiiieeee e 48
Table 5-6: Sample of change request — DCFooooiiiiiiiiiiiiii e 50
Table 5-7: OVerview 0f COSt = S&A ...ooimiiiiii e 51
Table 6-1: Efort in DICE ...ttt et e e e e e baae e e e 56
Table 6-2: IOt I S&A ...ttt e et e e e e e e e e raae e e 57
Table 6-3: EFIOrt in JEF ...couiiiiiiiie et e 57
Table 6-4: Effort (JEF VS DCEF)uuuiiiiiiiieeeeeeeeee ettt 58
Table 6-5: Effort (DCF and S&A VS JEF)........uuiiiiiiiieeeeeee e 59
Table 6-6: Defect density in DCFocooiiiiiiiiiiiiii e e e 61
Table 6-7: Defect density i SEAoooiiiiiiiieeiieee ettt e e et e e e e raeeeeeenes 61
Table 6-8: Defect density in JEFoooiiiiiiiiiiiiieiee et 62
Table 6-9: Defect density (JEF VS DCF)ccoiiiiiiiiiiiiiieciee e 63
Table 6-10: Defect density (DCF and S&A VS JEF)......ccoiiiiiiiiiiiieeeeeeeeeeeee e 63
Table 6-11: Priority in JEF, DCF and S&A...........coooiiiiiiieiiiee ettt 64
Table 6-12: Summary of hypotheses conclusSionooevviiiiiiiiiiiiieiiie e, 66
Table 8-1: The effort in JEF will be improved?..........c.coeieiiiiiiiiiiiiiieeeiieeeeeee e 77
Table 8-2 The defect density in JEf will be sustained?ccooocveeieniiiiiienniiiieeeieee e, 78
Table 8-3: Example for values 0N SEVETTLYcuuviieeiiiiiieiiiiiee ettt e e 79
Table 8-4: Example of points fOr SEVEITLYcccuviiieiiiiiieeeiiiiee et e e 80
Table 8-5: Stability i JEFoooiiiiiiiiiiee et e e e e e 80

Master thesis xi Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis xii Spring 2006

An empirical study of component-based sofiware engineering in Statoil

List of equations

Equation 2-1: An example hypothesis for one-sided test..........ccceeeviiiiniiiiniiiiniicenieeee, 22
Equation 2-2: An alternate example hypothesis for one-sided test........cccceeeviiieniiiiniieennnnen. 22
Equation 2-3: An example hypothesis for two-sided test..........coooeiiniiiiniiiniiiiniieieee, 23
Equation 2-4: An alternate hypothesis for two-sided test.........cccoceiiviiiiniiiniiiiniieieee, 23
Equation 4-1: Metric for €ffOrt........cccuiiiiiiiiiii e 42

Equation 4-2: Metric for defect density

Master thesis xiii Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis Xiv Spring 2006

An empirical study of component-based sofiware engineering in Statoil

1 Introduction

This introduction sets the stage for the thesis, describing the motivation, objectives, followed
by the work context, report structure and reading guild. This chapter will give details about
the motivation behind this thesis and under what kind of environment it has been written.

Master thesis 1 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 2 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

1.1 Project context

This project is a part of INCO (INcremental and COmponent-base development) and it is a
continuation from the in-depth study from our last semester. This work has been carried out in
last years by professors and scholarship holders from NTNU, who cooperates with employees
of Statoil and several other Norwegian companies.

Reuse component-based software has become highly attractive in software industries among
development projects, because reuse component insures to reduce the costs, shorter time to
market and increase the qualities of software. Statoil was developing a new information
systems generation in order to provide support for current and future central business areas.
These systems must be easily adaptable to meet a changing and increasingly demanding
business environment, and should be developed within a common architecture to address
natively built software as well as COTS software. This new architecture is called SJEF.

Our in-depth study last year had a lot of information about state-of-the-art and Statoil context.
In this report we will not rewrite the facts, but we will add the relevant and missing facts. The
purpose of this project is to illustrate the results according to hypothesizes. Hypothesizes are
acknowledged by empirical method. The following parts of this report will be using a lot of
empirical methods and strategies to achieve the purposes and goals of our study.

1.2 Motivation

The use of components in software development is generating a huge interest both as a
research area, and in commercial use. Component Based Software Engineering, CBSE, shows
potential in decreasing development time and product costs, increase product reliability and
stability. The system flexibility might be improved by allowing new components to replace
old ones and systems could get a standardized architecture.

Our motivation is to carry out the empirical studies of Statoil’s developed projects by reusing
component based software with the architectural framework JEF. We will try to verify the
hypotheses using data from Statoil’s projects. From the result what we will get, we will search
about reuse component based software in Statoil’s developed projects have positive effects
and quality impact, or opposite. By doing this work, several researches will be defined and
many evaluations will be done to support the conclusion.

1.3 Focus

In the autumn of 2005 we wrote a thesis about the introduction of component-based software
development in Statoil. This new development was deployed as something called JEF — a
project which uses best practices and guidelines and defines a set of building block and design
principles for construction and integration of enterprise class information systems. There we
discussed the advantages of SJEF had on Statoil’s general business. We focused on the cost of
developing new projects in JEF and how accurate the project estimations were.

Master thesis 3 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

We wish to continue the work what we had done in our last thesis. We had a difficulty to find
enough resources to make a throughout investigation of our hypotheses. We will therefore use
this master thesis to complete our research, as well as look into other issues related to the
introduction of JEF in Statoil.

The first part of our research will focus on the hypotheses in our thesis. There we used the
metric “cost” as a measure for projects in JEF and JEF itself. Although “cost” is an adequate
measure for projects, we do not think this metric can fully cover every aspect of a project. We
have chosen to do the same investigation of project — to see if JEF has been advantageous —
with the metric “effort” instead. Our definition of effort will be:

Eftort = [Total cost] / [Total number of physical Line-of-Code]

We have chosen effort as the metric because effort gives a better basis for comparison
between several projects. The projects will probably not be in the same range of size, and
using the metric cost will not be able to express this differentiation. Cost alone can not
express productivity, efficiency and complexity either, while effort can with some
interpretations. A pitfall we should be observant of is that the cost of project will not be linear
with the size, but rather exponential.

The second part of our research will explore what we had wished to do in our thesis. This part
is partially documented in our thesis under “Further Work”. We had planned to make a
research about defects and quality attributes, but we had to exclude them from our final paper.
The reason behind this is that we were running out of time and we did not want to overextend
our scope and we did not have access to all the data resources we wanted. In addition report of
defects in JEF already exists. We have therefore chosen to focus on defects and quality
attributes in our master thesis.

We will use the following metrics for defect: Number of defects, defect density (defects per
LOC), defect types, defect severity, defect class, what phase the defect is in (completed,
closed, open etc) and defect priority. We wish to see the evolution of stated metrics over time
and versions to see if component-based software engineering can improve the versions. We
will also make comparisons between different projects in JEF.

We wish to emphasize on stability regarding quality attributes. Here, we will investigate the
relationship in change request between the different projects. The metric to define the stability
will be presented later in the document.

The following table will give an overview of assumed data resources we will use to make this
investigation and assumed focuses we will search.

Master thesis 4 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Focus Under focus Details Resources
JEF and other The comparison is based on e;ffort in JEF, DCF -DCF Project
. and S&A to each other. In this way to conduct
projects the most advantageous project among them Handbook
Effort ' -S&A Project
(Cost / The comparison is based on effort in released | Handbook
#SLOC) Versions | versions from each project. In this way to - JEF Component
within a conduct the development from the one to Overview
project another version has been improved or - JEF Release info
opposite.
The comparison is based on defect density in
JEF and other |JEF, DCF and S&A to each other. Priority to .
' he defect and severity of defect can |~ L@l test report
Defect projects correct t y DCF
density also be COTPAre - Final test report
(Defects / ‘ The comparison is based on def@:ct density in S&A
#SLOC) Ve?rs%ons released versions from each project. In this - Final test report
within a way to conduct the development from the one JEF
project to another version has been improved or
opposite.
JEF and other Number of change request from a project can |- DCF change report
Stability . be compared to another project to conduct the |-JEF change report
ProJects | stability of the project. -S&A change report

Table 1-1: Goal and focus

The following table illustrates the available projects and version we have access to.

Statoil’s project | Version of project
Version 1.0
DCF Version 1.1
Version 2.0
S&A Version 1.0
Version 2.9
JEF Version 3.0
Version 3.1

Table 1-2: The versions of projects analyzed in this thesis

1.4 Goal definition

Developing software is not an exact science. There are many ways to reach the goal of
implementing a given set of requirements, and there are different demands for different
systems. Some systems need a high degree of security, such as medical journals or bank
transaction systems. Some need high usability, such as check-in machines at airports or
automatic ticket sales machines at train station, and some need high degree of safety, such as
airspace control systems. The latter type of systems is called safety-critical system, since a
failure in these systems may cause harm to persons or equipment.

Master thesis

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

In the case of Statoil with SJEF, it is little different developing software as mention above.
Developers establish new components (software) with SJEF, and the new component includes
previous components functionality. In another word, it tells that Statoil’s developing software
is reusing components with SJEF. This project is to study the data report of components reuse
with architecture SJEF, and to underline the advantage or disadvantage with SJEF. Our work
in this project is to provide a research result by using empirical studies of software
components reuse with SJEF in Statoil. The main objective with the work presented here will

be as follow:

“Provide an investigation of components reuse with SIEF and whether it
1s an advantage or disadvantage by using empirical study.”

This main objective can be parted into more detailed objectives presented in table below,
together with their rationale and what research questions they address:

Sub-objectives

Rationale

Research question

Provide a statement to see if
reusing software components
with SJEF gives an
advantage or disadvantage to
effort.

As a starting point for our
work we need to clarify what
SJEF is, how do the system
work and what kind of
technologies that support
SJEF.

What do we mean by
effort?

What do we mean by
advantage and
disadvantage?

How can we measure the
effort?

Provide a statement to see if
reusing software components
with SJEF gives an
advantage or disadvantage to
defect density.

We need to know what kind
of defect it exists, severity of
defect and priority to correct
the defect.

What do we mean by
defect density?

What kind of classification
is it specified in defect?
How can we measure the
defect density?

Provide a statement to see if
reusing software components
with SJEF gives an
advantage or disadvantage to
stability.

We need to clarify what is
the change request.

What do we mean by
stability?

How can we measure the
stability?

1.5 Report process

Table 1-3: Main goal and sub-goals

Here present our schedule of work with the report. Our work proceeds in four phases. It is

following:

Phase 1

It conducts a pre-study of the current state-of-the-art and practice and the context about

Statoil’s projects.

Phase 2

It declares our focus and problem definition, and defines hypotheses and research questions.

Master thesis

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Phase 3

It presents methodologies and technologies to conduct the study. We will use these
methodologies to perform an empirical research based on the resources what we have
gathered from Statoil.

Phase 4
It presents results of evaluated and analyzed data, validation and discussion of the work, and
conclusion of the project. Here is our schedule of report outline.

Task / Week 2 3 4.5 6 7 /8 |9 10/ 11 12 13/ 1415 16 17|18
Prestudy
Problem & focus draft
Hypothesis draft
Report introduction
Resource gethering
Data analyse
Results
[liscussion
Conclusion
Proofreading
Deadline

Figure 1-1: Report outline

1.6 Reading Guide

To fully understand to the contents in this thesis, the reader should have a background from
the system engineering discipline. It also an advantage if the reader has some background in
quality analysis and component-based software engineering.

This sub-chapter will provide the reader with an overview of the master thesis. This report is
organized in 5 parts and in each part consists of a number of chapters and subchapters.

Part 1: Introduction — Chapter 1

This part contains the introduction to the thesis and presents the motivation, objective
definition, project description, project context, document layout and the reader’s guide. This
chapter will provide in-depth background information behind the thesis. Readers who which
to get a full overview of this thesis should not skip this part.

Part 2: Pre-study — Chapter 2 and 3
Chapter 2 is an introduction to component technology advances that have been
utilized. If the reader is interested in the state-of-the-art of CBSE and software product
lines, read this chapter. It can be skipped if the reader already is familiar with the
concepts.

Chapter 3 describes the background information and the current situation at Statoil. It
will explain some of the terms and measures that are used in the resources that will be
analyzed later.

Master thesis 7 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Part 3: Hypotheses — Chapter 4
This part illustrates the research focus, hypotheses and methods for our study. Readers
are suggested to read this chapter before going on to next part. This part is one of the
main points in this report and it provides a more understandable view of the whole
report. Our work is based on this part.

Part 4: Results and conclusions — Chapter 5, 6, 7 and 8
Chapter 5 presents the data resources that will be analyzed. The data resources is
presented with brief explanations, and visualized through diagrams. This chapter can
be skipped if the reader does not have any special interest in the actual data.

Chapter 6 presents the results to the stated hypotheses. The result is provided by
studying the data presented in chapter 5. This chapter is recommended as it will relate
all the data resources to the hypotheses in chapter 4.

Chapter 7 presents an evaluation of the results given in chapter 6, and discusses the
threats to validity. This chapter will then make a discussion about our study and
provide suggestions for improvements.

Chapter 8 presents the conclusion of this thesis and provides plans for further work.
This chapter is strongly recommended to read as it will conclude this whole master
thesis.

Part 5: Appendices — Chapter 9
This part contains references as well as abbreviations used in this thesis.

Master thesis 8 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

2 Pre-study: Survey of state-of-the-art and practice

This chapter will present the current state-of-the-art that, and in particular those fields that are
related to our work.

Master thesis 9 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 10 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

2.1 Component-based software engineering

Recently, software component technology, which is based on building software systems from
reusable components, has attracted attention because it is capable of reducing developmental
costs. In a narrow sense, a software component is defined as a unit of composition, and can be
independently exchanged in the form of an object code without source codes. The internal
structure of the component is not available to the public.

The characteristics of the component-based development are the following:
Black-box reuse

Reactive-control and component's granularity

Using RAD (rapid application development) tools

Contractually specified interfaces

Introspection mechanism provided by the component systems
Software component market (CALS)

CBSE is the key aspect of reuse. In order to successfully reuse old software, we must have a
unit, which is a component. We can derive the following definition of a component from [12]:
“A component is a language-neutral, independently implemented package
of sofiware services, delivered in an encapsulated and replaceable
container, accessed via one or more published interfaces. A component is
not platform constrained or application bound.”

CBSE involves designing and implementing these software components and assembling
software systems from pre-built components. There are several types of components: COTS
(Commercial-Off-The-Shelf), GOTS (Government Off-The-Shelf), MOTS (Modifiable Off-
The-Shelf) and OSS (Open Source Software). Together, these components can gather and
create an entire software architecture, product line or system family. CBSE and reuse promise
many advantages to system developers and users such as:
e Shortened development time, and reduced total cost, since systems are not developed
from scratch.
e Reduced maintenance cost, since it is not necessary to recompile multiple systems
because an adjustment was made to a single component
e Facilitation of more standard and reusable architectures, with a potential for learning.
e Separation of skills, since much complexity is packaged into specific frameworks.
e Fast access to new technology, since we can acquire components instead of
developing them in-house.
e Improved reliability by shared components
e The relations between components are loose. This dampens the ripple effect when
changes are needed.

These advantages are achieved in exchange for dependence on component providers, vague
trust to new technology, and trade-offs for both functional requirements, and quality
attributes.

Master thesis 11 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

2.2 Defect reporting

In recent years the emphasis on software quality has increased due to forces from several
sectors of the computer industry. In the software development, successful companies are
interested in continually improving their software development processes. In order to improve
their processes there are many pieces of data that can be examined. One such piece is defect
data. Defect data is an important piece of data for software companies because it shows
without a doubt the places that thy have made mistakes. Some of those mistakes may have
been unavoidable, but many are due to human error. That error may come in the form of
commission, omission, misunderstandings, etc. If a software development company is able to
determine a specific type of error that is common over many projects, then they have located
an ideal place to start improving their process. In order to do this, data visualization can be
very useful. What a company is looking for is a correlation between some aspect of the
defects and the effort taken of fix those defects.

Here is suggestion for how interpret the classification to describe the structure of the defects:

Classification | Detail Description

A certain requirement is covered nowhere in the design.

Design This is stronger than IC where the coverage is present, but
incomplete.

Implementation | A certain part of a design was not implemented.

Meiss Error handling An error case was not handled in the program (or not

handled properly).

Assienment A single variable was not initialized or updated. Only one

g statement needs to be added.

A single method call is missing. Only one statement needs

Call
to be added.
The entire logic in a method is wrong and cannot provide

Algorithm the desired functionality. More than one statement needs
to be added or changed
An expression (in an assignment or method call)

Expression computes the wrong value. Only one expression needs to
be changed.

Wrong -
. A Boolean expression was wrong.

Condition :
Only one expression needs to be changed
Objects or their names were confused. The wrong

Name method, attribute, or variable was used. Only one name
needs to be changed.

Type Two “similar' types were confused.

Table 2-1: The structure of defects

Although defect reporting is the key to improve software engineering, it exists a lack of
empirical studies in this field. Defect data is one of the few direct measurements of software
quality. There can be a great variation of defect reporting since there are no standards for
defect-reporting systems. And often the defect data is not gathered with the intention of
assessing software quality. These are some of the reasons why this field has received less
attention that it deserves.

Master thesis 12 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

2.2.1 Studies on defect-density in the context of reuse

There are not many studies on defect-density in the context of reuse. Melo, Briand and Basili
have studied the impact of reuse in software quality and productivity in object-orientated
systems [13][12]. One study was performed on a population that consisted of graduate level
students at the Department of Computer Science at the University of Maryland. The students
were randomly placed in 8 different groups that each developed an information system based
on the waterfall method. Each of these groups had a various degree of reuse, which was
divided into four categories [13]:
1) Verbatim — Class ‘C’ is put into the library and used as it was created without
modifications. The reuse rate is 100%.

2) Slightly modified — Class ‘C’ is a new class which has been created by specializing,
through inheritance, a library class. The reuse rate is more than 25%.

3) Extensively modified — Class ‘C’ has been created by modifying an existing class. The
reuse rate was less that 25%.

4) New — Class ‘C’ has been developed from scratch. The reuse rate was zero.

This study came to the following results.

Project | No. OfLOC Reuse Rate Error Density
1 23354 71.83 1.03
2 5068 2.23 6.51
3 9735 31.44 431
4 8543 18.08 3.86
5 8173 40.05 3.18
6 6368 48.67 3.93
7 6571 64.01 2.28
8 5068 0.00 8.68

The error density is given as Errors/KLOC.

Table 2-2: Relation between LOC, defect density and reuse rate

10.0

Density of Errors

[[[|
20 40 60 80
Reuse Rate

Figure 2-1: Relation between error density and reuse rate

Master thesis

13

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

This, they claim, is very strong evidence that reuse linearly reduces the defect density. Further
on, they claim in their study:

“[...] that means that, when there is no reuse, error density should be

expected to be around 6.55 and each additional 10 percentage points in

the reuse rate decreases this density by nearly 1

They claim that their results of data analysis and conclusion can be generalized as follows:
“FEach additional 10 percentage points in reuse rate, within the reuse rate
interval covered by our data set, decreases rework by nearly 8.5%.”

Their studies also conclude that increased reuse rate results in linearly increasing productivity
and reducing effort. They state the following:

“When there is no reuse, productivity should be expected to be around 14

SLOC per hour and each additional 10 percentage points in the reuse rate

should increase productivity by 11 SLOC per hour.”

Parastoo Mohagheghi performed another study on the context of reuse. His goal was main
goal was to evaluate parameters that are earlier studied in traditional reliability models, in the
context of reuse, and assess the impact of reuse on software quality attributes [9]. The quality
in focus in this study was stability and defect density. This paper is in particular interest
because our goal is quite similar to his, and his results will give us a better understanding of
our research agenda.

The paper describes the results of an empirical study on the impacts of reuse on defect-density
and stability on a large-scale telecom system developed by Ericsson. The following table
shows the hypotheses and results from the study concerning the defect density.

HypID | Hypothesis Text Result

H1 HO1: Reused components have the same defect-density as non- | Rejected
reused ones.

HO02: Reused components have lower defect-density that non- Accepted
reused ones.
H2 HO02-1: There is no relation between number of defects and Not rejected

component size for all components.

HO02-2: There is no relation between number of defects and Not rejected
component size for reused components.

HO02-3: There is no relation between number of defects and Rejected
component size for non-reused components.
H3 HO3-1: There is no relation between defect-density and Not rejected

component size for all components.

HO03-2: There is no relation between defect-density and Not rejected
component size for reused components.

HO03-3: There is no relation between defect-density and Not rejected
component size for non-reused components.

Table 2-3: Research hypotheses and results of [9]

Master thesis 14 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

The results shows that reused components have lower defect-density that non-reused ones.
Further on, the paper claims:

“Reused components have more defects with highest severity than the total
distribution, but less defects affer delivery, which shows that that these are
given higher priority to fix.”

This shows that there is a clear advantage of reusing software components.

2.3 Effort

In the public is often defined the effort and the time are closed together, because they have
always been seen close like moneys. That is why, business peoples usually say; time is
money. The effort may be able to be seen like the income from a business. The general
business profitability is depended on the relationship between business income and cost. The
income of the business is represented by the sale. But in our study of the effort from Statoil’s
project is relationship between the work and the money had invested to the work.

2.4 Quality of system

Quality is defined as meeting the customer’s expectations and ensuring that the parts work
when assembled in the final product. System’s quality facilitates efficient, effective and
comfortable use by a given set of users for a set of purposes under specified conditions. In our
case, we are interested in two attributes of system’s quality. There are modifiability and
stability.

2.4.1 Modifiability

The world around software systems is constantly changing. Software that used to function
properly turns incompatible because their environments change. For this reason most software
systems need to be modified many times after their first release. Another reason for modifying
software is when software product are updated and improved to keep the competitive
advantage against other products on the market. The result is software products that evolve
from release 1, to release 2, to release 3, and so forth. In developing a software product today,
it is accepted and expected that there will be subsequent release of the product. The software
life cycle of a product is continuous development that only ends when the product is obsolete.

The changes that are implemented from release to release include anticipated change, e.g.
following that market plan, and unanticipated ones, e.g. provoked by sudden and unexpected
changes from different sources. Additionally, the bug fixes for the previous release are usually
incorporated into the code baseline. Based on our understanding about the future of the
software system, we can choose the design alternatives that support futures modifications
better otherwise equivalent alternatives.

Master thesis 15 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

The goal is to increase the productivity in the subsequent release by choosing the most
appropriate design solution from the start. Consequently, stakeholders are generally interested
in a system designed such that future changes will be relatively easy to implement, and thus
increase the maintenance productivity for implementing these change. Typical questions that
stakeholders pose during the early design stage, i.e. software architecture design, include:

- Which of the available architecture design requires the lowest cost to maintain, i.e. yields
the highest productivity to accommodate future changes?

- How much effort will be needed to develop coming releases of the system?

- Where are the trouble spots in the system with respect to accommodating changes?

- Is there any other construction that is significantly easier to modify than the present one?

These questions concern a system’s ability to be modified.

In the software engineering literature a large number of definitions of qualities exist that are
related to modifiability. A very early classification of quality [08] includes the following
definitions:
“Maintainaility is the effort required to locate and fix an error in an
operational program. Flexibility is the eflort required to modify an
operational program.”

A more recent classification of qualities is given in the [02]. This standard includes the
following definition, related to modifying system:
“Maintainability 1s the capability of the sofiware product to be modified.
Modifications may include corrections, improvements or adaptations of
the sofiware to change in environment, and in requirements and finctional
specification.”

2.4.2 Stability

The definition of stability presents the quality of maintaining a constant character in the
presence of forces, which threaten to disturb it, resistance to change. Stability refers the
invariability of a specified property of a substance, device, or apparatus with time, or under
the influence of typically extrinsic factors. Stability can be categorized as:

Positive stability Negative stability Neutral stability
&-.- T E-- L o -1-.- I
Tends to return to original Diverges away from original | Remains at new condition
condition condition (does not move further away
or closer)

Table 2-4: The categorization of stability

Stability is an important factor when software is developed in a waterfall model or developed
over several versions or releases. Parastoo Mohagheghi’s article [9] also discusses the impact

Master thesis 16 Spring 2006

http://www.biology-online.org/dictionary/constant
http://www.biology-online.org/dictionary/character
http://www.biology-online.org/dictionary/forces
http://www.biology-online.org/dictionary/resistance
http://www.biology-online.org/dictionary/change
http://www.atis.org/tg2k/_time.html

An empirical study of component-based sofiware engineering in Statoil

of software reuse on stability. Stability, as the degree of modification, investigated along with
defect density in the context of reuse. The following table shows the results of the
investigation concerning stability.

H4 HO04: Reused and non-reused components are equally | Rejected
modified.
HA4: Reused components are modified more than non- Rejected
reused ones.

Table 2-5: Research hypotheses and results of [9]

Reused components were less modified (more stable) than non-reused ones between
successive releases. Again, this shows the clear advantages of reusing software components.

2.5 Empirical theory

This subchapter describes the state-of-the art of measurement in software engineering. Below
we will present a brief description of some statistical methods used in this thesis. We will give
an introduction to the ANOVA method followed by an overview of different data analysis
methods and graphical visualization follows the statistical result presentation.

2.5.1 Threats to validity

A study is val/id if its measures actually measure what they claim to, and if there are no logical
errors in drawing conclusions from the data. There are many labels for different types of
validity, but they all have to do with threats and biases which would undermine the
meaningfulness of research. We will mention the different types of validity, and we will also
mention some questions we should be asking ourselves about the validity of our study.

Then what does validity means? We have chosen the definition given by William M. K.
Trochim [14]:
”[Validity is] the best available approximation to the truth of a given
proposition, inference, or conclusion.”

And one of the first questions we have to ask ourselves is: "validity of what?". Measures,
samples and designs do not Aave validity -- only propositions or conclusions can be said to be
valid. Technically, we should say that a measure leads to valid conclusions or that a sample
enables valid inferences. It is a proposition, inference or conclusion that can Aave validity.

We subdivide validity into four types. Each type addresses a specific methodological
question. In order to understand the types of validity, you have to know something about how
we investigate a research question. Because all four validity types are really only operative
when studying causal questions, we will use a causal study to set the context.

Master thesis 17 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

/hat you think\
) Cause @ Effect
Theory constiuct - constiuct
Canse-effect
constuct
Treatinent-outcome 4 Threat validity
- I constuct =
Observation Treatinent b Outcome 1: Conclusion validity
@ @ 2: Internal validity
What you see what you do 3: Construct validity
/ 4: External validity
I
What you study

Figure 2-2: The principles of validity (adapted from Trochim)

The figure 2-2 shows that there are two sides that are involved in our study. The first, on the
top, is the land of theory. It is what goes on inside our heads as researchers. It is where we
keep our theories about how the world operates. The second, on the bottom, is the land of
observations. It is the real world into which we translate our ideas -- our programs, treatments,
measures and observations. When we conduct a study, we are continually moving back and
forth between these two sides, between what we think about the world and what is going on in
it.

The four types of validity:

As mentioned earlier, there are four types of validity. They build on one another, with two of
them (conclusion and internal) referring to the land of observation on the bottom of the figure
xxx, one of them (construct) emphasizing the linkages between the bottom and the top, and
the last (external) being primarily concerned about the range of our theory on the top.

We will give a further and detailed explanation of each of these four types.

Conclusion validity:
This validity concerns the relationship between two variables. We have to ask
ourselves: “In this study, is there a relationship between the two variables?”

Threats to conclusions validity are concerned with the issues that affect the ability to
draw a correct conclusion about relations between the treatment and the outcome.
These issues include, for example, choice of statistical test and choice of sample sizes.

Internal Validity:
This validity will further investigate the relations in this study. It concerns whether or
not the relation between two variables is a casual one. We have to ask ourselves:
“Assuming that there is a relationship in this study, is the relationship a causal one?”

Factors that can influence the internal validity are how the subjects are gathered and
sorted into groups, how the subjects are treated and compensated during the study. The
figure below will illustrate the factors.

Master thesis 18 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Program
What you do

alternative
cause

alternative /
cause alternative

alternative
cause

= Observations
/ What you see

cause
Figure 2-3: Internal validity and the threats

Construct Validity:

This validity concerns the relation between theory and observation. We have to ask
ourselves: “Assuming that there is a causal relationship in this study, can we claim
that the program reflected well our construct of the program and that our measure
reflected well our idea of the construct of the measure?”

For example, the number of courses taken at the university in computer science may
be a poor measure for experience in a programming language. A better measure might
be the number of years with practical use.

External Validity:

We have to ask ourselves: “Assuming that there is a causal relationship in this study
between the constructs of the cause and the effect, can we generalize this effect to
other persons, places or times?”

We are likely to make some claims that our research findings have implications for
other groups and individuals in other settings and at other times. When we do, we can
examine the external validity of these claims. There are three major risks which can
determine whether our study has external validity or not: Having wrong participants,
conducting the study in the wrong environment and conducting the study at a timing
that affects the results. These are shown at the figure below.

Master thesis 19

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

2, yznzrallzz

.. |
RN

2, yznzralizz

T
RIS

1. draw
sample

,
;
j
sample i
:

Figure 2-4: External validity and the threats

Notice how the question that each validity type addresses presupposes an affirmative answer
to the previous one. This is what we mean when we say that the validity types build on one
another. The figure below shows the idea of cumulativeness as a staircase, along with the key
question for each validity type.

The Validity Questions are
curmulative. ..

Hanzrallzs

l i9 IHar Parsong,
‘ uhicas, dines?

Can we janaializg o
iz cunsineis?

Is the relationship cz.52.?

Is there a -=.z:i- ¢ 2 between
the cause and effect?

Figure 2-5: The questions we must ask ourselves about validity

Conclusion

2.5.2 Measurement definitions

The theory of measurement provides the rigorous framework for determining when a
proposed measure really does characterize the attribute it is supposed to. The theory also
provides rules for determining the scale types of measures, and hence to determine what
statistical analyses are relevant and meaningful. We make a distinction between a measure (in
the above definition) and a metric. A metric is a proposed measure. Only when it really does

Master thesis 20 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

characterize the attribute in question can it truly be called a measure of that attribute. For
example, the number of Lines of Code (LOC) (defined on the set of entities “programs”) is
not a measure of “complexity” or even “size” of programs (although it has been proposed as
such), but it is clearly a measure of the attribute of length of programs.

2.5.3 Statistical analysis

Statistical calculations are often a technical sideshow; the primary interest is in some
substantive question. Even so, the methodological issues need careful attention, as we have
argued. However, in many cases the substantive issues are very close to the statistical ones.
For instance of litigation involving claims of racial discriminations, the substantive research
question is usually operationalized as a statistical hypothesis. Hypothesis testing is the basis
for statistical analysis in an empirical study. Setting up and testing hypotheses is an essential
part of statistical inference. In order to formulate such a test, usually some theory has been put
forward, either because it is believed to be true or because it is to be used as a basis for
argument, but has not been proved. Hypothesis is used to reject the hypothesis if possible.
There are two hypotheses we have to formulate:

Null Hypothesis - Hy

The null hypothesis, Ho represents a theory that has been put forward, either because it is
believed to be true or because it is to be used as a basis for argument, but has not been proved.
For example, in a clinical trial of a new drug, the null hypothesis might be that the new drug is
no better, on average, than the current drug. We would write Ho: there is no difference
between the two drugs on average.

Alternative Hypothesis - Hx

The alternative hypothesis, H., is a statement of what a statistical hypothesis test is set up to
establish. For example, in a clinical trial of a new drug, the alternative hypothesis might be
that the new drug has a different effect, on average, compared to that of the current drug. We
would write H.: the two drugs have different effects, on average. The alternative hypothesis
might also be that the new drug is better, on average, than the current drug. In this case we
would write H..: the new drug is better than the current drug, on average.

If we conclude to reject the null hypothesis then it suggests that the alternative hypothesis
may be true. Else we suppose that the null hypothesis is true.

Type Error

In a hypothesis test, a type I error occurs when the null hypothesis is rejected when it is in fact
true; that is, Ho is wrongly rejected. For example, in a clinical trial of a new drug, the null
hypothesis might be that the new drug is no better, on average, than the current drug; that is
Ho: there is no difference between the two drugs on average. A type I error would occur if we
concluded that the two drugs produced different effects when in fact there was no difference
between them.

In a hypothesis test, a type II error occurs when the null hypothesis Ho, is not rejected when it
is in fact false. For example, in a clinical trial of a new drug, the null hypothesis might be that
the new drug is no better, on average, than the current drug; that is Ho: there is no difference
between the two drugs on average. A type II error would occur if it was concluded that the
two drugs produced the same effect, that is, there is no difference between the two drugs on
average, when in fact they produced different ones.

Master thesis 21 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

The following table gives a summary of possible results of any hypothesis test:

Decision
Reject Hy Don’t Reject Hy
Truth Hap 'I'}.rpe I etror Eight decision
H; Eight decision Type I error

Table 2-6: The possible results of a hypothesis test

A type I error is often considered to be more serious, and therefore more important to avoid,
than a type II error. The hypothesis test procedure is therefore adjusted so that there is a
guaranteed 'low' probability of rejecting the null hypothesis wrongly; this probability is never
0.

One-sided Test

A one-sided test is a statistical hypothesis test in which the values for which we can reject the
null hypothesis, Ho are located entirely in one tail of the probability distribution. In other
words, the critical region for a one-sided test is the set of values less than the critical value of
the test, or the set of values greater than the critical value of the test. A one-sided test is also
referred to as a one-tailed test of significance. The choice between a one-sided and a two-
sided test is determined by the purpose of the investigation or prior reasons for using a one-
sided test. Here is an example to facilitate an easier understanding.

Suppose we wanted to test a manufacturer claim that there are, on average, 50 matches in a
box. We could set up the following hypothesis:

Hp i p=50agamst Hy - p < S0 erHy -0 > 50

Equation 2-1: An example hypothesis for one-sided test

Either of these two alternative hypotheses would lead to a one-sided test. Presumably, we
would want to test the null hypothesis against the first alternative hypothesis since it would be
useful to know if there is likely to be less than 50 matches, on average, in a box (no one
would complain if they get the correct number of matches in a box or more).

Yet another alternative hypothesis could be tested against the same null, leading this time to a
two-sided test:

Hp p =0 agamst Hy ;g = 50

Equation 2-2: An alternate example hypothesis for one-sided test

That is, nothing specific can be said about the average number of matches in a box; only that,
if we could reject the null hypothesis in our test, we would know that the average number of
matches in a box is likely to be less than or greater than

Two-Sided Test

A two-sided test is a statistical hypothesis test in which the values for which we can reject the
null hypothesis, Ho are located in both tails of the probability distribution. In other words, the
critical region for a two-sided test is the set of values less than a first critical value of the test
and the set of values greater than a second critical value of the test A two-sided test is also

Master thesis 22 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

referred to as a two-tailed test of significance. The choice between a one-sided test and a two-
sided test is determined by the purpose of the investigation or prior reasons for using a one-
sided test.

Suppose we wanted to test a manufacturer claim that there are, on average, 50 matches in a
box. We could set up the following hypotheses:

Hyp p=50aganst Hy - p < S0 cr Hy o > 50

Equation 2-3: An example hypothesis for two-sided test

Either of these two alternative hypotheses would lead to a one-sided test. Presumably, we
would want to test the null against the first alternative hypothesis since it would be useful to
know if there is likely to be less than 50 matches, on average, in a box (no one would
complain if they get the correct number of matches in a box or more).

Yet another alternative hypothesis could be tested against the same null, leading this time to a
two-sided test:

Hp i p = 5S0agamstHy ;o = 20

Equation 2-4: An alternate hypothesis for two-sided test

That is, nothing specific can be said about the average number of matches in a box; only that,
if we could reject the null hypothesis in our test, we would know that the average number of
matches in a box is likely to be less than or greater than 50.

2.5.4 ANOVA

Analysis of Variance (ANOVA) allows us to extend this to more than two populations or
measurements (treatments). The name, ANOVA, is used because the method is based on
looking at the total variability of the data and the variability partition according to different
components. In its simplest form the test compares the variability due to treatment and the
variability due to random error. Below it is described how to use ANOVA in its simplest
form. The test can be used to compare if a number of samples has the same mean value. That
is, the design is one factor with more than two treatments. The test can be summarized as:

ANOVA, one factor, more than two treatments

Input
A samples: X11, X12,- -« Xin1s X21, X22,... X225 - -5 Xal, Xa2,... Xana,

Ho

We can test the follow:
1. Are all the means from more than two populations equal?
2. Are all the means from more than two treatments on one population equal? (This is
equivalent to asking whether the treatments have any overall effect.)

Hxl = Hxl = ... = Uxa ; All expected means are equal

Master thesis 23 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Conclusion

The results given this test can we given in a table like down below.

Source of Degrees of Mean
. Sum of squares Fo
variation freedom square
Between SSTreatment a'l MSTreatment FO = MSTreatment/ MSError
Treatments
Error® SSError N-a MSError
Totalt SSt N-1
Formula:
a2 i ‘2 o 2 2
ST 4 i T T‘ '2 N .“. e —T‘ ‘Tj' .T
Wr =2, LY r ‘S”-_r T
z . 1 Feotment
=1 ;= 4 il T 1’:- H
CTT I 1T A A g _ =
151 Brror lSl S 151 Troatmant ‘lﬂs'ﬁ‘eamenf =S Treatment * ('ﬁ J')
Find e gy
MS,, =SS, [(N—a)

N is the total number of measurements

Criterion

Reject Hy if FO > Fo a1, na. Here Fo 1, p is the upper oc percentage point of the F distribution
with fl and f2 degrees of freedom.

2.5.5 Graph

Table 2-7: An example of an ANOVA test

ical visualization

Graphical visualization describes a data set of quantitative measures. Graphs are very
illustrative and give a good overview of the data set. There are several types of graph it can be

use:

Scatter plot

Scatter plot is one simple but effective graph, where pair wise samples (x;, y;) are plotted in

tow dimension,

as shown below:

Figure 2-6: An example of scatter plot

Master thesis

24

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Scatter plots are similar to line graphs in that they use horizontal and vertical axes to plot data
points Scatter plots show how much one variable is affected by another. The relationship
between two variables is called their correlation. Scatter plots usually consist of a large body
of data. The closer the data points come when plotted to making a straight line, the higher the
correlation between the two variables, or the stronger the relationship.

If the data points make a straight line going from the origin out to high x- and y-values, then
the variables are said to have a positive correlation. If the line goes from a high-value on the
y-axis down to a high-value on the x-axis, the variables have a negative correlation.

Line graph
Line graphs compare two variables. Each variable is plotted along an axis. A line graph has a
vertical axis and a horizontal axis. So, for example, if you wanted to graph the height of a ball
after you have thrown it, you could put time along the horizontal, or x-axis, and height along
the vertical, or y-axis. Some of the strengths of line graphs are that:
1. They are good at showing specific values of data, meaning that given one variable the
other can easily be determined.
2. They show trends in data clearly, meaning that they visibly show how one variable is
affected by the other as it increases or decreases.
3. They enable the viewer to make predictions about the results of data not yet recorded.

Unfortunately, it is possible to alter the way a line graph appears to make data look a certain
way. This is done by either not using consistent scales on the axes, meaning that the value in
between each point along the axis may not be the same, or when comparing two graphs using
different scales for each. It is important that we all be aware of how graphs can be made to
look a certain way, when that might not be the way the data really is.

Here is a line graph, which is illustrated my weight according to the years.

76

7 1

74+

My 73 1
Weight 72
(kg) 71 -
70 -

69 -

68 -

67 T

66 | | |

1991 1992 1993 1994 1995

Year

Figure 2-7: Line graph

Histogram

The histogram can be used to give an overview of the distribution density of the samples from
one variable. A histogram consists of bars with heights that represent the frequency (or the
relative frequency) of a value or an interval of values, as shown below:

Master thesis 25 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Frequency

= 2 W o N

0 3 2 3 4 5 6 7
Figure 2-8: An example of histogram

The histogram is thus a graphical representation of a frequency table. One distribution of
particular interest is the normal distribution, since it is one aspect that should be taken into
account when analyzing the data. Thus, a pot could provide a first indication whether the data

resembles a normal distribution or not.

Pie diagram
The pie diagram can also be used to give an overview of he distribution density of the samples

from one variable. A pie diagram consists of several pieces, and the size of each pieces
presents how large is the part of the totality. The size can be defined in number or in percent.

Figure 2-9: An example of pie diagram

Master thesis 26 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

3 Statoil context

From our previous report it is written general information about Statoil, and a lot of
information about JEF, DCF and O&S Masterplan of Statoil. The information contains the
motivation, goal, architecture, and foundation. Here we will add more information about JEF
and DCF, and present the new project of Statoil; Shipman & Allocation (S&A). More detail
of each project can be found at [01], [11] and [04].

Master thesis 27 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 28 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

3.1 JEF

[04] JEF version 3.0 is released in September 2005. All components will on utilize the same
version numbers for major releases. This should make it easier to figurer out which
component version belong together. For example this release will start by using the 3.0
version number. Patch releases for this release will be name 3.0.x (with x being the patch
number). JEF version 3.1 was released not a long time ago, and the new version contains
more completed data than previous version. JEF version 4.0 will be released later in this year.

JEF contains seven components, which are based on reuse and the components are used in the
application of the different projects. Down below shows an illustration of the DCF
application, which includes the relationship between JEF components, DCF component and
other components.

r_ Ty

DCF application

e Il

(data) (data)

DCF
(not reusable)

JEF 'Cmﬂﬁlts (reusable)

Figure 3-1: Overview of DCF application

3.2 DCF (Digital Cargo Files)

The project DCF was established in year 2004 and it is planned to be finished in September
year 2006. The DCF version 2 will be based on the same pre-study that was done for the first
part of the project, and most project documents will be updated to the existing documents
from the first DCF project. The focus of the project is the same as the DCF1 project:
Specification and implementation of a revised filing process and a new system solution. The
project will take the deliverables from the DCF1 project as a starting point, and complete the
remaining technical and organizational scope not covered by the DCF1 project.

The project will have two deliverables:

Master thesis 29 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Date Description

Within 2005 DCFv1.1 will be delivered, and will extend the DCF1 system for use in PRO.
The deliverable will also cover functionality to support paper deals

DCFv2.0 will be delivered, and will cover the remaining technical and
organizational scope. Experiences from the acceptance test of DCF1 can be
incorporated in the DCF2 project, but will then be treated as changes to the
DCEF2 scope.

July 2006

Table 3-1: Delivery table for DCF

We like to remind the goals of DCF, and the goals refer to the expected achieved effects after
the project is completed.

Goal ID Description
Efficient and common work process for filing of deal and cargo documents
Gl extended to all O&S business units in addition to NGL which is already

covered by DCFv1.0.

Efficient and common work process for filing of deal and cargo documents

G2 extended to all O&S business units in addition to NGL which is already
covered by DCFv1.0.

G3 Complete cargo files.

G4 Reduced filing time by 50% for all new business units covered by the project.

G5 Redpced retrieval time by 50% for all new business units covered by the
project.

G6 User satisfaction to be rated as min. 4.5 for all new business units covered by
the project.
O&S Management ownership of the filing solution for all new business units
covered by the project:

G7 - Supported by management

- Mandatory work process for all O&S organization units
- Determination among management when implementing
- Required used by all relevant users

Table 3-2: The goals of DCF

3.2.1 System overview of DCF

[01] The Wet Supply Chain (WSC) is the part of the Statoil business that is the responsibility
of the Oil Trading and Supply unit (O&S) within the Refining and Marketing division of
Statoil ASA. The units focus is marketing and trading the crude oil, liquid natural gas and
refined products either directly from the field or from refineries and processing plants to
customers worldwide.

A number of supporting systems are in place to support the unit, and the main bulk of them
have been developed in-house in the period 1992 — 2001. In addition there are a number of
externally developed systems that are integrated with these home-grown systems. Central in
the WSC system portfolio is RATS (Reports and Trades System), and SPORT (Statoil
Planning and operational system, for Offshore and Refinery Terminals), which are used for
handling the specialized trades on 21 Day BFO cargos and the similar Dubai trades in the
middle-eastern / Asian markets.

Master thesis 30 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

SPORT is a planning and scheduling system for offshore and refinery terminals, scheduling
the cargoes that are to be delivered from the offshore field or terminal. It is also used to
manage supply operations.

In addition a number of auxiliary systems have been integrated with these two central systems
to support the work processes. SAP is used for invoicing and is also the master for all
counterparty and material (products and qualities) static data. OCD (O&S Common Data) is
used as a broker between SAP and the business applications for transforming and extending
the master data into the forms used by the business applications. Message Manager is used for
communication, in particular sending telexes, which is the format used for sending and
receiving contracts. CRBA (Common Role Based Access) is used to define user access to
functions in the systems through the use of roles.

The Digital Cargo Files (DCF) system is part of the TOPS system portfolio, which is built to
replace the existing systems supporting the O&S WSC organization. The TOPS portfolio
today consists of web-based systems for generating contracts and verifying deals, and a “rich
client” system for easier entry of physical deals and deal maintenance. The DCF system will
be delivered as an integrated part of the TOPS portfolio, specifically the “rich client” part.

asysterms
085 Offshore @ SPORT «System: «Bystens
CRBA Message Manager
aDatan «Datas :
ficcess privileges Documents
aSystanms: ’
SPORT
«Datas ESystanms
Cargo «System of interests eDatas S?;nning
Digital Cargo Files =~ Documents
wSystems «Diatam
i Deal eDatas
Documents

wDatax waystems
_Deal AP

R —

Documents
whysterms
Electronic Mail
wSystems «Systems «System»
| Trading Balance : RATS Brent Ops : RATS | | Dubai Ops : RATS

Figure 3-2: Overview of communication channels in DCF

3.3 S&A (Shipment and Allocation)

[11] Statoil’s allocation, developed in 2003 — 2004, is an allocation and tariff system for
fields, refinery and terminals. The main functionality of this system is to allocate produced
quantities, do stock accounting and calculate tariff. The first version of S&A is released in
Mars 2006.

Master thesis 31 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

The figure below illustrates the to-be context map of S&A:

S5i5 P —— Shipment

o - T el
Allocation
w

Meszage
Miznzger GW

Ot of scope for the 15 February 2006 delvery
[] In of scope for the 15 February 2006 delivery

Figure 3-3: The context map of S&A

Legend:

3.3.1 S&A project goals

The project goals listed below are related to the total project, i.e. improving business
processes, gathering systems requirements and implementing new IT-solutions. These project
goals give the rationale and constraints for the system architecture. The project goals are:

Goal Description

More efficient and controllable business processes through common business

S&A’s Gl principles within lift planning and cargo planning.

More efficient and controllable business processes through common business

S&A’s G2 principles within lift planning and cargo planning.

More efficient and controllable business processes by establishing common

S&A’s G3 ways to interact with processes outside WSC.

Less time and effort spent on input and transfer of data with IT-solutions
S&A’s G4 |supporting input nearest possible the source of the data, and most of data
transfer done electronically.

Greater profit by earlier incorporating products into value, more sales

S&A’s G5 approach into lifting principle.

More beneficial business processes with new processes and IT-solutions
according to the terminal principle regarding lift scheduling and cargo
planning, possible reallocation of recourses to more important areas like
problem solving and control activities.

S&A’s G6

Reduced cost/reduced demurrage on transportation by optimising the logistic
S&A’s G7 |procedure for loading/unloading and incorporating this into the new IT-
solutions.

S&A’s G8 | Less time spent on creating reports.

Table 3-3: The goals of S&A

Master thesis 32 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

3.3.2 System overview of S&A

The roles that are used in the specification that are specializations of the general roles are:

Role Description
SOL operator An operator that works on Statoil Operated Licenses SOL.
Port operator: An operator that works with functions related to port operations.
Lab operator An operator that works on or related to a laboratory.

Table 3-4: Description of roles in S& A

Here is a summarized list of which roles are using the system:

Role\Installation Offshore VP Troll/Heidrun Snghvit
Operator X X X X
External

SOL Operator X X X X
Port Operator X X
Laboratory Operator X X

Table 3-5: Theroles in S&A

3.4 The available data resources

This sub-chapter will give a detailed explanation of the available data resources from Statoil.
We have gathered this information from the documentation from Statoil, and interpreted it
with help from Anita.

3.4.1 Lines-of-Code

We will be using the physical number of LOC (lines-of-code). All the LOC’s were given to us
by Anita.

3.4.2 Cost

The cost of a project will be the cost of developing it. These values have been gathered from
the handbooks of respective projects and directly from project supervisors. The costs will be
using the Norwegian currency, NOK.

3.4.3 Defects

We have been given defects on the projects DCF, S&A and JEF. These reports have been
using the term incident. An incident can be an error or some other groups (this will be
mentioned later). For this thesis, we will be using the term ncident instead of defect, but the
sub-groups will remain the same. We wish to make a note on how we have counted the
incidents. Originally, one incident could have multiple instances of the same ID because of
the progressions of its state. We have chosen to use only unique IDs because we will not use
the attribute “state”, and it will be a lot fewer incidents to work from. For example, DCF

Master thesis 33 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

version 2.0 has 11705 lines of incidents, but only 880 of them have unique IDs. The following
table is an overview of the attributes of incidents:

Attribute Description

ID A unique identifier for the incident. JEF incidents have
JEFXXXX, S&A incidents have SAXXXX and DCF incidents
have DCFXXXX.

Headline A textual description of the incident.

Owner The owner of the incident, or the one responsible.

State The state of the incidents shows where incident is in a workflow
cycle as a specific time (see figures below).

Priority The level of the priority the incident is given. 0 is critical, 1 is
high, 2 is medium, 3 is low and 4 is not prioritized.

Severity The level of severity the incident is given. 1 is critical, 2 is high, 3
is medium and 4 is low.

Classification The classification of incidents indicates whether the incident is an
error, enhancement or duplicate.

Table 3-6: Overview of incident attributes

The following sections will give a detailed description of each of the most important
attributes.

Severity of incidents

The severity of incidents tells us how much impact the incident has on the system, and how
important it is to have it fixed. The following explanation for each degree of severity is taken
from the test plan:

Severity | Detail

The defect causes system crash, loss or corruption of data. The defect stops
the testing and the defect must be corrected or the change request must be
Critical | implemented before the system can work properly. A defect with this grade
could also mean that the system do not fulfill critical business functionality or
will disrupt other systems.

The defect means loss of a part of required functionality or quality.
High Alternatively, the defect stops the current test or has impact on tests
concerning interface units.

The defect could mean loss of part of required functionality or quality, but
there exist ways to work around the problems. The defects have only impact
on this test, and in limited degree on the test progress. Correcting the defect
will add value to the business like in time and/or costs.

Medium

The defect may only be cosmetic and has no impact of importance on the
Low functionality and quality. The defect does not stop the test and does not block
the test progress.

Table 3-7: The incident attribute 'severity'
Priority of incidents
The priority of incidents indicates which incidents are the most important to fix. Critical (or 1)

is the most important, while low (or 4) are the least important.

Classification of incidents

Master thesis 34 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

The JEF development project has defined five types of incidents.

Classification |Detail
Error The same as defect or a fault. The system does not follow the specification.
Error in other system the error will be corrected in relation to that system.
; The incident is a duplicate of another, and will be corrected as part of another
Duplicate o
incident.
; The incident is not approved to be worked on, either because it was not
Rejected
verified or it was not classified as en incident.
The incident is set on hold, as it needs more analyze or will be continued on
Postponed
later.
Applies as a change. Enhancements could be moved to changes, but most of
Enhancement
them are corrected as errors.
. The incident was not reproducible. It will stay in this classification until it is
Not reproducible | .
rejected or a new occurrence appears.

Table 3-8: The incident attribute 'classification’

State of incidents

The state of the incident tells us how far the incident has come in its life cycle. There are two
life cycles; one for an enhancement or change request, and one for an error [07]. The

following figures show the life cycles of an enhancement or change request.

Subrnit Open Analyse Approve
Enhancement ; =
e . - —>
(el) Saemited Open Analysed Approved
Assign
Assigned
Start
weark
In progress
Complete
h 4
Test Assigned D
+ e eployed < Complete
@ passed Pass teSter p y p
Close {ii

Figure 3-4: State of an enhancement or change request

The following figures show the life cycles of an error.

Master thesis 35

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Subrrit
Defect

Analyze Assign Open
Submitted » Analysed 'y Assigned > N progress
Complete
Complete
Complete
deployed
Test
L Mot Deployed
passed
Fail Asgsign
test tester
/ Test L Assigned
Closed " passed s tester
Close test

Figure 3-5: State of an error

3.4.4 Change request

When a developer identifies an error or a need enhancement, they file it as a change request
(CR). These requests are stored in structured files for further inspection before the next
release. CR has a number of attributes:

Attributes Detail
CQID The unique ID of each CR.
The scope of the CR. The scope is version of the project in which the CR is
Scope
based on.
Headline A textual description of the CR.
Priority The priority given to the CR.
The state of the incidents shows where incident is in a workflow cycle as a
State .
specific time (see figures above).
Owner The owner or the one having the responsibility for the CR.

Master thesis

36 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

4 Research focus and problem elaboration

The research questions in our study are the impact of reuse component based on architecture
JEF. To address those research questions, we have to choose some specification to aim. Based
on the literature search, previous studies and a pre-study of the available data, we chose to
focus on effort, defect density and quality attribute of stability in the case study.

Subchapter 4.1 gives an overview of the issues, which has to be considerated. This will
narrow our focus and enable us to specify hypotheses.

Subchapter 4.2 will present two hypotheses based on the considerations in last subchapter.

Subchapter 4.3 will elaborate on which methods, which will be used to investigate the
hypotheses.

Master thesis 37 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 38 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

4.1 Consideration

Software reuse has become a topic of much interest in the software community due to its
potential benefits, which include increased product quality and decreased product cost and
schedule. The most substantial benefits derive from a product line approach, where a common
set of reusable software assets act as a base for subsequent similar products in a given
functional domain. The upfront investments required for software reuse are considerable, and
need to be duly considered prior to attempting a software reuse initiative.

From a business’ point of view, the purpose of reuse is primary shorter time to market and
cheaper than defining from scratch. A good software reuse process facilitates the increase of
productivity, quality, interoperability and reliability, and the decrease of costs and
implementation time. An initial investment is required to start a software reuse process, but
that investment pays for itself in a few reuses. In short, the development of a reuse process
and repository produces a base of knowledge that improves in quality after every reuse,
minimizing the amount of development work required for future projects, and ultimately
reducing the risk of new projects that are based on repository knowledge.

Any organization of a development processes needs to understand its place in the life cycle.
Each release version in a project has to be improved, upgraded and maintained from the
previous version. The needed improvement comes from the desires of the users or customers.
After the improvement, it releases a new version and it will be evaluated again from the users
or customers. The circle circulates again and again, until the product is perfect or the dead line
is expired. This circle is calling Evolution Delivery Life Cycle [06].

Software | Deliver
Concept Final
| Requirement Version
Analysis ‘
Desi1
ﬁ @
System core
Develop
a Version
Incorporate
C 5 Deliver
ustomer ¥
Feedback Version

Figure 4-1: Project evolution delivery life cycle

The consideration of the thesis is based on Statoil’s use JEF, and it raises some very intriguing
issues. We will make a research to see whether or not JEF has made a considerable positive

Master thesis 39 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

impact on the overall business process. If this is the case, we want to investigate if this impact
can be justified with the cost of deploying, maintaining and future developing of JEF. The
impact of JEF can also be measured in qualitative metrics, such as effort, defect density and
quality of stability.

The resources has been used to explore these issues is the existing and available reports of
variant projects, which are using the architecture JEF. The exploration occurs to compare
those reports, such as test document, project document and project handbook. The comparison
is made from different projects and different versions in the same project, and it will consider
measurements such as time, cost, incident and quality. Figures below illustrate the attention in
our exploration.

Variant projects Variant version of same project
t
compare to DCF H Resut DQF DQF
version 1 VErsion 2
IEF compare to
each other
compate to sga H W I
Result

Table 4-1: The area of attention

4.2 Problem definition and research questions

Here we are going to define the hypotheses and sub-questions of each hypothesis. The
answers to the sub-questions are supported or rejected the hypothesis.

4.2.1 Effort definition to hypothesis

The purpose to reuse existing components instead to implement the new one is obviously to
make lower costs and a higher effort.

Hypothesis of effort

Hgx: The effort in DCF and S&A is lower than the effort in JEF.

Question ID | Question
QE-1 What is the effort in DCF?
QE-2 What is the effort in S&A?
QE-3 What is the effort in JEF?

Table 4-2: Hypothesis of effort

4.2.2 Defect density definition to hypothesis

The defect density is an important measure of software quality, which is widely used in
industry. It is often one of the measures used to ascertain release readiness. There are two
factors that control the defect density at release. One of them is the extent and effectiveness of

Master thesis 40 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

the testing and debugging effort [05]. The other is the initial defect density present at the
beginning of testing [03]. Defect usually occurs by implementation of new function and this
make the product more attractive to users, but may not at the expense of an increase in
residual defect density. Defects can be introduced in several activities of the software
development life cycle and are classified based on their origin. The type of defect artifacts of
interest for this thesis is coding defects. Coding defect includes primary codes, functions and
unexpected defect such as exception error. The classification of the defect considers how the
defect is to be repair, and in chapter 2.2 is clearly defined the various classification.

Hypothesis of defect density

Hp: The defect density in DCF and S&A is lower than the defect density in JEF.

Question ID | Question

QD-1 What is the defect density in DCF?
QD-2 What is the defect density in S&A?
QD-3 What is the defect density in JEF?

QD4 If the defect density in DCF and S&A is higher than the defect density in
JEF, does priority (critical, high, medium, low) to correct the incident make
any difference?

Table 4-3: Hypothesis of defect density

4.2.3 Stability definition to hypothesis

The world around software systems is constantly changing, and the software system has to
upgrade, to be suitable to the environment. For this reason most software systems need to be
modified many times after their first release. Another reason for modifying software is when
software products are updated and improved to keep the competitive advantage against other
products on the market. The result is software products that evolve from release 1, to release
2, to release 3, and so on. The software life cycle of a product is continuous development that
only ends when the product is obsolete.

The changes that are implemented from release to release include anticipated changes, such as
following the market plan, and other unanticipated ones. Additionally, the bug fixes for the
previous release are usually incorporated into the code baseline. The goal is to increase the
productivity in the subsequent release by choosing the most appropriate design solution from
the start. Consequently, stakeholders are generally interested in a system designed such that
future changes will be relatively easy to implement, and thus increase the maintenance
productivity for implementing these changes. What to be changed in an application tells what
is the quality of the different quality attributes. Here we are just focusing on the stability. The
stability of an application is quite important, because stability gives the trust and safety to the
users when they use the application.

Hypothesis of stability

Hs: The stability in project that has been developed from scratch (JEF) is lower than the
stability in the projects that base on reusable components (DCF).

Question ID | Question

QS-1 What is the number of change request in DCF?

Table 4-4: Hypothesis of stability

Master thesis 41 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

4.3 Method

Here we are going to define our research strategy variables that are going to solve the
problems and determine if the hypotheses are true or false. There are three major variant types
of empirical investigation, such as survey, case study and experiment. In our situation we do
not have direct contact to developers or employees in Statoil and that is why it is not possible
to carry out the investigations. We received data reports of Statoil’s projects from scholarship
recipients who have contact to Statoil’s technical department. In this way we have devised our
own methods and used existing metrics to carry out the evaluations. The Following sub-
chapter will illustrate our own methods as well as existing metrics.

4.3.1 The effort metric

The formula below presents the effort. It introduces the total number of cost divides by the
total number source line of code in the same project.

> Cost
Y sLOC

Effort =

Equation 4-1: Metric for effort

4.3.2 The defect density metric

The most commonly used means of measuring quality of a piece of software code is the
defect density metric. That metric is defined by:

) Defect

) art de ;*I = ey
Detect density S sTos

Equation 4-2: Metric for defect density

The size of code is normally defined as LOC (Lines-of-code) or KLOC (thousand lines-of-
code).

4.3.3 The stability metric

We are going to use the same method to declare the stability that has been used by scholarship
recipients. By our understanding of the method, we can use the number of change request
from a project to compare to the number of change request from another project. When
project A gets lower change request than project B (A < By) it tells us that project A has
higher stability than project B. The same method can also use to check the stability between
the various versions in the same project (Ajgd < Azda).

Master thesis 42 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

5 Dataresources

This chapter will introduce the data resources we will be using in our empirical studies. Most
of the data has been gathered from Statoil through Anita. Microsoft Excel has been used to
visualize the data.

Subchapter 5.1 will present the data resources from project DCF in detail.
Subchapter 5.2 will present the data resources from project S&A in detail.

Subchapter 5.3 will present the data resources from project JEF in detail.

Master thesis 43 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 44 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

5.1 JEF

We will use only the newest versions of JEF releases. This means we will use the following
versions: JEF 2.9, JEF 3.0 and JEF 3.1. Version 3.2 is under development.

5.1.1 Lines-of-Code

The following table shows the size of each component in each of the releases. The size is
measured in LOC (lines-of-code).

Component Release 2.9 | Release 3.0 | Release 3.1 | Release 3.2
JEFClient 7871 8 400 8 885 8 885
JEFWorkbench 4187 4515 4748 4748
JEFSecurity 1 588 1593 2374 2374
JEFULtil 1312 1359 1 647 1 647
JEFIntegration 958 0958 958 958
JEFDataaccess 181 0181 268 268
JEFSessionMgmt 778 1 593 1 468 1 468
Sum 16 875 18 599 20 348 20 348

Table 5-1: Overview of KLOC of components in JEF

5.1.2 Cost

This table shows the budgeted costs of JEF through the different versions. The costs are in
NOK.

JEF version Budgeted cost
2.9 25 400 000
3.0 27 100 000
3.1 28 400 000

Table 5-2: Budgeted costs of JEF

5.1.3 Incidents

The following table shows the number of defects in each of the component in each of the
releases.

Component Release 2.9 | Release 3.0 | Release 3.1 | Release 3.2 Sum
JEFClient 136 13 2 0 151
JEFWorkbench 21 4 1 2 28
JEFSecurity 9 1 0 1 11
JEFIntegration 7 0 0 0 7
JEFSessionMgmt 2 0 1 1 4
JEFDataAccess 2 0 0 0 2
JEFULtil 2 0 0 0 2
General 18 4 0 0 22
Sum 197 22 4 4 227

Table 5-3: Overview of incidents of components in JEF

Master thesis 45 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

The following sections show the frequency of different attributes of the incidents through all
the versions.

Severity
Severity was not documented for the versions of JEF in question.

Priority

12 3 Priority

O 1 - Critical
| 2 - High

O 3 - Medium
04 - Low

62

H 5 - Not prioritised

71
Figure 5-1: Frequency of priorities — JEF

A large percent of the incidents were given a “Not Prioritized” description. Since they were
not blanked, we assume that they were deemed not important enough to place a priority on
them.

State

State

180

160 -
140

120

100 -
80 -

60

40

20

0 []

Analysed Closed Complete In_progress Postponed
O Series1 19 166 16 2 3

———

Figure 5-2: Frequency of states — JEF

Master thesis 46 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Classification

250

200

150

100

50

0

Rejected

Classification

Not Classified

O Series1 12

194

Figure 5-3: Frequency of classifications — JEF

As we can see, almost none of the incidents were given a classification. This attribute is not
an important aspect of our study, so we did not investigate this matter further.

5.1.4 Change requests

This data was is not available.

5.2 DCF

We will use the following versions of DCF: Version 1.0, Version 1.1 and version 2.0

5.2.1 Lines-of-Code

The following table shows the lines-of-code for each of the versions.

Version LOC
1.0 20 702
1.1 21 459
2.0 25072

Table 5-4: Overview of sizes — DCF

Master thesis

47

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

5.2.2 Cost

The following table shows the budgeted cost of developing DCF. These numbers are taken
from the handbooks, and they are in NOK.

Version Budgeted Cost
1.0 11 400 000
1.1 11 400 000
2.0 15 000 000

Table 5-5: Overview of budgeted cost — DCF

5.2.3 Incidents

The total number of incidents for DCF version 2.0 is 880. The following sections show the
frequency of different attributes through all the versions of DCF.

Severity
Severity
101
195
O 1 - Critical
227 |W2-High
0 3 - Medium
04 - Low
357
Figure 5-4: Frequency of severities — DCF
Priority

Master thesis 48 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

State

297

147

88

Priority

O 0 - Critical
m 1 - High

O 2 - Medium
0O 3 - Liow

Figure 5-5: Frequency of priorities — DCF

900
800
700
600
500
400
300
200
100

St

ate

Analysed

Assigned_T
ester

Closed

Complete

In_progress

Postponed

Submitted

@ Series1

10

3

835

11

1

13

7

Classification

Figure 5-6: Frequency of states —- DCF

Master thesis

49

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Classification
600
500
400
300
200
100 ~
0 —1 —1 —
Errorin Not
Ench Not Post
Duplicate nehance Error other o. Reproduc ostbone Rejected
ment Classified d
systems able
O Series1 48 147 482 53 21 21 14 93

Figure 5-7: Frequency of classifications — DCF

5.2.4 Change requests

There are a total of 96 change requests for the next version of DCF. This is a sample of the
change request document for DCF.

DCF1.1 | DCF2.0

CcQid scope | scope | Headline Priority | State
Change in rules for FilingPlan

DCF00000509 X generation 1. High | Closed
DCF Server to create DELETE

DCF00000982 X operation in FilingPlan 1. High |In_progress
Common search fields in advanced | 2.

DCF00000994 search Medium | Closed

DCF00001461 Not possible to correct user mistake Submitted
Refresh issues on folders when using | 2.

DCF00001462 front end Medium | Closed

Document list: Unable to email
documents with BU's common email |2

DCF00001463 X adress as sender Medium | Closed
DCF - Use of TD in naming of deal- | 2.

DCF00001464 folders Medium | Closed
FRONTPAGE DEALFOLDER: Check | 2.

DCF00001467 if SPOT or TERM deal Medium | Closed
ADVANCED SEARCH: Clear Screen

DCF00001469 X button 1. High | Complete

Table 5-6: Sample of change request — DCF

Master thesis 50 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

5.3 S&A

Currently, version 1.0 is the only version of S&A. This version is not finished yet, so we will
be using the LOC and cost of the current build of S&A instead of using the estimated end-
results.

5.3.1 Lines-of-Code
Version 1.0 of S&A has a total of 64 319 LOC.

5.3.2 Cost

The cost of S&A has been collected from the budget document. The following table shows
the estimated budget and the actual cost.

ID Name Estimate Used Remaining
020 Operational/Business spec 1735000 1798 445 0
030 System context 50 000 36 290 0
040 Sourcing and recommended solution 50 000 135 014 0
050 ICT architecture 300 000 276 590 0
060 Functional specification & planning 1 865 000 1629 280 0
070, 080 | Design, build, test 9000000 7810564 400 000
090 Implementation, test & training 2 640 000 482 066 1100 000
100 Hand-over 160 000 0 160 000
110 Shut-down 100 000 0 100 000
Project management 3 000 000 3 321 580 20 000
Tools and enviroment 500 000 1021 495 0
Other 600 000 502 737 20 000
Sum 20000000 17 014 061 1 800 000

Table 5-7: Overview of cost - S&A
We will be using value in the “Used” column to calculate the effort.

5.3.3 Incidents

There are a total of 239 defects in S&A version 1.0. The following sections show the
frequency of different attributes through all the versions.

Severity

Master thesis 51 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Severity

32

@ 1 - Critical
| 2 - High
0 3 - Medium

O4 - Low

Figure 5-8: Frequency of severities - S&A

Priority
Priority
3
30
40
O 0 - Critical
B 1 - High
0 2 - Medium
O 3 - Liow
B 4 - Not prioritised
70
Figure 5-9: Frequency of priorities - S&A
State

Master thesis 52 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

State

-

D

AnalyAssig ASSiQ!ploseCom P epl‘?I)upli dn_prd’ostpRejecSubn Jest Test,
d

ned yed i X not_ppass¢
sed| ned| i~ lete) 1ot ate |gressoned ted | itted | =4y

"Series15 411 51] 47| 33] 11] 10| 8 1 8 1 20| 3 1

Figure 5-10: Frequency of states - S&A

Classificaton

Classification

250

200

150

100

50
0 ,
Enchancement Error Not Reproducable Not Classified
@ Series1 34 201 1 3

Figure 5-11: Frequency of classifications - S&A

5.3.4 Change requests

This data was is not available.

Master thesis 53 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

6 Results

After collecting data in the operation phase, we want to be able to draw conclusion based on
those data. To be able to draw valid conclusions, we must interpret the data. During each
subchapter we are going to analyze each hypothesis, which are given in chapter 4, based on
the related data resources in chapter 5. We will answer each of the questions during each
hypothesis we will answer separately, and in the end of each subchapter we will conclude the
hypothesis. During the comparing between the projects and following the different number of
releases in the projects, we like to compare three releases from JEF to three releases from
DCEF, and only one release from S&A to the last release from JEF and DCF.

Subchapter 6.1 presents effort evaluation.
Subchapter 6.2 presents defect density evaluation.

Subchapter 6.2 presents stability evaluation.

Master thesis 54 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 55 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

6.1 Effort evaluation

To remind the hypothesis of effort is:
“Hg: The effort in DCF and S&A 1s lower than the effort in JEF.”

6.1.1 Question QE-1
“What is the efiort in DCF?”

The answer to the question is using data information from table 5-4 and 5-5. The table below
presents the effort of DCF according to different versions:

DCF version LOC Budgeted Cost Effort
1.0 20702 11 400 000 550,7

1.1 21459 11 400 000 531,2

2.0 25072 15 000 000 598,3
Average 8 357 5000 000 199,4

Table 6-1: Effort in DCF

Graphs are a great way to visualize this kind of information. For this reason, graphs are often
used in newspapers, magazines and businesses around the world. The following line graph in
two dimensions shows the effort in DCF. The data point in the graph is balanced with version
of the project version on x-axis and effort on y-axis. There is a line with markers displayed at
each data value. This line facilitates to represent the positive, the negative or the neutral
movement from the one to another data value.

DCF, effort

620
600 - /
580

560

Effort

540 -

520 -

500 -

480
1.0 1.1 2.0

Version

Figure 6-1: Effort in DCF

Master thesis 56 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

What we can read from this graph is that from version 1.0 to version 1.1 in DCF, the effort
has decreased. This is maybe because of the releases of the version are not far away from each
other. The line between those versions is moving in the right direction. As we know when the
effort is low, it corresponds to a low cost or a high LOC. From version 1.1 to version 2.0, the
effort is increased. The releases of the version are farther way from each other, and according
to the table’s representing the version 2.0 is added more 3613 LOC. The effort has increased
be approximate 12.6% from 1.1 to 2.0. It is hard to determine what the causes are and whether
it is a trend or a abnormality since we only have three data points

6.1.2 Question QE-2
“What is the efiort in S&A?”

The answer to the question will be using data information from sub-chapter 5.3.1 and table
5.7. The table below presents the effort of S&A. S&A has only been released in one version,
thus there is no point to calculate the average and draw a graph. The comparison about this
project to another projects can not be done at this moment, and is filed under “Further Work”.

S& A version LOC Budgeted Cost Effort

1.0 64 319 17 014 061 264,5
Table 6-2: Effort in S& A

6.1.3 Question QE-3
“What is the efiort in JEF?”

The answer to the question will be using data information from table 5-1 and 5-2. The table
below is presents the effort of JEF according to different versions:

JEF version LOC Budgeted Cost Effort
2.9 16 875 25400 000 1505,2

3.0 18 599 27100 000 1457,1

3.1 20 348 28 400 000 1395,7
Average 6 783 9466667 465,2

Table 6-3: Effort in JEF

Master thesis 57 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

The following line graph

shows the effort in JEF.

JEF, effort

1520,0
1500,0 -

1480,0

T~

1460,0

1440,0

Effort

1420,0 -
1400,0 -

1380,0 A

1360,0

1340,0

2.9 3.0

Version

Figure 6-2: Effort in JEF

The graph shows that the line of effort between the various versions is decreasing and moving
in the right direction. The line is closely like linear.

6.1.4 Analysis of hypothesis — Hg

Like mentioned in previous chapters we would like to constitute separate comparisons, such
as three deliveries from JEF compared to three deliveries form DCF, and only one release
from S&A compares to the last release from JEF and DCF. In the end we will draw a

conclusion.

JEF VS DCF

The following table and graph presents a overview to facilitate a comparison between the

effort in JEF and DCF.

Release [LOC JEF Effort JEF LOC DCF Effort DCF
1 16 875 1505,2 20702 550,7
2 18 599 1457,1 21459 531,2
3 20 348 1395,7 25072 598,3
Average| 6783 465,2 8 357 199,4

Table 6-4: Effort JEF VS DCF)

Master thesis

58

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

1600,0

Effort (JEF VS DCF)

1400,0

1200,0 -

‘\,\4

1000,0

800,0

Effort

600,0

—e—JEF (3.1)
—m DCF (2.0)

400,0

200,0 -

0,0

2

Release

Figure 6-3: Effort JEF VS DCF)

The graph and the values in the table show that the effort in JEF is considerable higher than
DCF. However the trend of the effort in JEF is in the right direction, while DCF moves in the
wrong direction. But the difference of the effort between JEF and DCF is so far away from
each other, it will require much more releases before those efforts will meet, and only if they

continue to keep this development.

DCF and S&A VS JEF
The following table and line graph shows the effort of the last version in each project.

LOC DCF

Effort DCF

LOC S&A

Effort S&A

LOC JEF

Effort JEF

25072

598,3

64 319

264,5

20 348

1395,7

Table 6-5: Effort (DCF and S&A VS JEF)

Master thesis

59

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Effort (DCF and S&A) VS JEF

1600

1400 -

1200

1000 -

800

Effort

600

400

200

DCF (2.0) S&A (1.0) JEF (3.1)

Project

Figure 6-4: Effort (DCF and S&A VS JEF)

The graph is clearly presents that the effort in JEF is much higher than the two other projects.
For example, the effort in JEF is over 5 times higher than the effort in S&A. At this moment
we will determine to accept the hypothesis.

Is there any reason to tell why the effort in DCF and S&A is much lower than JEF? A reason
is clearly shown by the number of LOC in DCF and S&A. They are much higher than the
LOC in JEF. Both DCF and S&A are based on a part of JEF’s reused components. Those
reused components consume almost zero for the cost while contributing to a higher LOC. This
will yield a much lower effort. This is one of the largest advantages of reusing software
components, and it is clearly shown in Statoil’s numbers.

6.2 Defect density evaluation

The hypothesis is as follows:
“Hp: The defect density in DCF and S&A is lower than the defect density in
JEF.”

6.2.1 Question QD-1
“What is the defect density in DCF?”

The answer to the question is using data information from sub-chapter 5.2.3 and table 5-4.
The table below presents the defect density in DCF according to different versions:

Master thesis 60 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

DCEF version LOC Defect number | Defect density
1.0 20 702 880 0,0425
1.1 21459 880 0,0410
2.0 25072 880 0,0351
Average 8 357 293 0,0117

Table 6-6: Defect density in DCF

The following line graph shows the defect density in DCF.

DCF, defect density

0,045

0,035 T \

0,03 -

0,025

0,02 -

Defect density

0,015 A

0,01

0,005

1.0 1.1 2.0

Version

Figure 6-5: Defect density in DCF

The graph shows us that the defect density decreases from version 1.0 to version 1.1, and
from version 1.1 to version 2.0 the defect density is decreased even steeper. The defect
density in those deliveries is moving in right direction.

6.2.2 Question QD-2
“What is the defect density in S&A?”

The answer to the question is using data information from sub-chapter 5.3.1 and sub-chapter
5.3.3. The table below presents the defect density in S&A.

S& A version LOC Defect number | Defect density

1.0 64 319 239 0,0037
Table 6-7: Defect density in S&A

Master thesis 61 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

6.2.3 Question QD-3
“What is the defect density in JEF?”

The answer to the question is using data information from table 5-1 and 5-3. The table below
presents the defect density in JEF according to different versions:

JEF version LOC Defect number | Defect density
2.9 16 875 197 0,0117
3.0 18 599 219 0,0118
3.1 20 348 223 0,0110
Average 6 783 74 0,0037

Table 6-8: Defect density in JEF

The following line graph shows the defect density in JEF.

JEF, defect density

0,012

0,0118
0,0116 -

0,0114 -
0,0112
0,011 \

0,0108

Defect density

0,0106
2.9 3.0 3.1

JEF version

Figure 6-6: Defect density in JEF

The graph shows that from version 2.9 to version 3.0 the defect density increased. Thus the
line between those versions is moved in the wrong direction. From version 3.0 to version 3.1,
the defect density decreased. The line falls steeply between the deliveries.

6.2.4 Question QD4
“If the defect density in DCF- and S&A- application is higher than the
defect density in JEF, does priority (critical, high, medium, low) to correct
the defect make any difterence?”

Master thesis 62 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

JEF VS DCF

The following is presenting table and graph, where they facilitate to compare when those
values are putted beside each other and in the same table and graph.

Release | LOCJEF DDJEF LOCDCF DD DCF
1 16 875 0,0117 20702 0,0425
2 18 599 0,0118 21459 0,0410
3 20 348 0,0110 25072 0,0351

Average 1158 -0,0002 1 457 -0,0025

Table 6-9: Defect density (JEF VS DCF)

Defect density (JEF VS DCF)

0,045

—

\.

0,04
0,035 +

0,03 -

0,025 o— JEF

—m— DCF

0,02 -

Defect density

0,015

0,01 -

0,005 -

1 2 3

Release

Figure 6-7: Defect density (JEF VS DCF)

The graph and the values in the table show that the defect density in JEF is quit lower than
DCF. The movement of defect density in DCF is moving in right direction. Especially from
the second release to the third release in DCF, it has decreased steeply. All the while the
defect density in JEF is also moving in right direction, but it does not decrease as steeply as
DCEF does. The difference of the defect density between JEF and DCF is quite far away from
each other.

DCF and S&A VS JEF
The following table and line graph show the defect density of the last version in each project.

LOCDCF | DDDCF | LOC S&A | DDS&A | LOCJEF | DD JEF
25072 0,0351 64 319 0,0037 20 348 0,0110
Table 6-10: Defect density (DCF and S&A VS JEF)
Master thesis 63 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Defect density (DCF and S&A) VS JEF

0,04

0,035

0,03

0,025 A

0,02 -

Defect density

0,015

0,01 -

0,005

DCF (2.0)

S&A (1.0)

JEF (3.1)

Figure 6-8: Defect density (DCF and S&A VS JEF)

The defect density in DCF is highest, JEF is in the middle and S&A is lowest. But the graph
above is not enough foundation to answer the question, thus we need to look more detail in
the attributes of defects. Reused components have more defects with highest severity than the
total distribution, but less defects after delivery, which shows that these are given higher
priority to fix [9]. We will look about the priority to determine if this does matter for our case.
We will be using the data information in figure 5-1, 5-5 and 5-10 to describe a surveyable set
of priorities in the table below. The numbers in the table are presented in percentages.

Priority / Project JEF DCF S&A
Critical 0,015 0,100 0,126
High 0,282 0,395 0,402
Medium 0,345 0,338 0,293
Low 0,301 0,167 0,167
Not prioritised 0,058 0,000 0,013

Table 6-11: Priority in JEF, DCF and S&A

High priority to correct the defect correspondences the defect may made big impact in the
system, such as component’s communication, system crash, configuration and so on, and it

may claimed longer time to fix.

Master thesis

64

Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Frequency of prioritise

0,450
0,400
0,350
0,300]
0,250
0,200 ~
0,150
0,100 ~
0,050 - ’_‘

0,000 w —

Critical High Medium Low Not prioritised

O JEF
B DCF
0O S&A

Frequency in percent

Priority

Figure 6-9: Priority in JEF, DCF and S&A

The described result shows that JEF gets middle defect density and it gets in average lowest
priority to correct the defect of the three projects. DCF gets highest defect density and it gets
in average middle priority to correct the defect of the three projects. With this we like to
determine the priority to correct the defect doesn’t make any difference.

6.2.5 Analysis of hypothesis; Hp

Since the defect density in JEF gets middle between DCF — and S&A — application, it makes
difficult to conclude the hypothesis. We can not accept this hypothesis because of the high
defect density in DCF. At this moment we will conclude that will not reject this hypothesis
because of S&A.

6.3 Stability evaluation

It is often said:
“To improve is to change, to be perfect is to change offen.”

The option to change is an important factor in all kind of systems. Quick and easy are crucial
requirements for changes. The successful companies are able to rapidly implement changes.
The figure of Evolution Delivery Life Cycle in sub-chapter 4.1 is a good illustration to
describe the processes of demand to change in a project

To remind the hypothesis of effort is:
“Hg: The stability in project that has been developed fiom scratch (JEF) is
lower than the stability in the projects that base on reusable components
(DCF).”

Master thesis 65 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

6.3.1 Question QS-1

“What 1s the number of change request in the last version of DCF?”

A request is submitted to the service owner. This request should clearly define the nature of
the requested change, any deficiencies that the change is expected to correct, problems or
symptoms to be addressed, the conditions for satisfaction of the request. Change request
which fails to meet the minimum criteria for submission may be honored by the service owner
or rejected at their discretion.

6.3.2 Analysis of hypothesis; Hs

At this moment we cannot draw any conclusion about the hypothesis, because there is lack of
data information in JEF and S&A to make comparison.

6.3.3 Summing up

Here is a table of summing up above these hypotheses.

HypID | Hypothesis text Conclusion

Hg The effort in DCF and S&A is lower than the effort in JEF. Accepted

Hp The defect density in DCF and S&A is lower than the defect | Not rejected
density in JEF.

Hs The stability in project that has been developed from scratch | Unable to draw
(JEF) is lower than the stability in the projects that base on conclusion
reusable components (DCF).

Table 6-12: Summary of hypotheses conclusion

Master thesis 66 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 67 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

7 Evaluation and discussion of results

This chapter will present evaluation of the results with regards to validity and a discussion
about the study.

Subchapter 7.1 will discuss the different threats to validity.

Subchapter 7.2 will discuss the study, the restraints and limitation of the study, and how it
could have been done differently.

Master thesis 68 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 69 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

7.1 Threals to validity

As written in chapter 2, there are four different types of validity. We will now discuss each of
them in relation with our study, and try to point out threats that might undermine our
conclusion.

Threats to conclusion validity:
Is there a relationship between the introduction of JEF and the change in effort and defect
density in DCF and S&A in the context of reuse?

One minor threat to this validity is that we were missing some key data for our study. We only
got change request documents for DCF, and it was therefore not possible to make a
comparison to see if reuse has affected the stability. There were also some missing attributes
from the incident reports, such as severity in JEF.

Another threat would be that JEF has a different functionality and composure than DCF and
S&A. JEF has been developed for reuse, while DCF and S&A have been developed by
reusing.

In addition, there could have been different development team working on the different
projects. We can not determine if this is a major or minor threat because we do not have the
necessary data to confirm this.

Threats to internal validity:
If there is a relationship between the introduction of JEF and the change in effort and defect
density in DCF and S&A, is the relationship causal?

1 A=>B A: Introduction of JEF.
B: A change in effort for new projects.
2 C=>A-=>B C: Unknown variable.

3 C=>=A

b
B

Figure 7-1: Different types of relationships

What we want to answer is if the relationship between A is directly related to B (1), and not
simply a side effect of another variable (2 or 3).

There are three factors, which may have been an influence on the change in cost for new
projects.

1) An introduction to a new chief architecture will also introduce a massive focus on
documentation and observation. Employees under this focus will be pressed to work
more efficiently because they want to prove their knowledge and skill.

2) An introduction to a new architecture might also thrill some employees. They might
be excited over new features in the new architecture and work harder than normal to
test the new tools and concepts.

3) The productivity and efficiency may decrease because more defects and
misunderstanding will occur because of the tools and concepts.

Master thesis 70 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

However, we believe that Statoil is a matured and experienced organization and proper
preparations has been made internally to meet these threats. Even if these threats are highly
likely, we think they will make an insignificant influence on our study.

Threats to construct validity:
This validity is mostly used in conducting experiments, and is therefore not relevant for our
study. We have chosen to exclude this validity from our discussion.

Threats to external validity:

This study has been conducted specifically to JEF, DCF, S&A and Statoil. It is therefore not
possible to generalize this study to other organizations or domains. It could, however, be
feasible to generalize this study for future projects in JEF. One threat to validity is that this
study has been conducted in relatively early time period in JEF.

We think that our study will yield a valid conclusion and that the threats to validity have not
undermined the conclusion.

/7.2 Discussion

After conducting our study and made the analysis of the available information, we have
identified one major issue that has restrained our work throughout the thesis. There has simply
not been enough data from JEF and its projects to draw a firm and sound conclusion.

First, the development of JEF and related project as DCF and S&A are still young. Theirs
information data is not complete, thorough and surveyable; such as at this moment S&A is
released only one version and this version is not finished yet. During the work in this thesis,
we discovered that we had to carry out a lot of considerations and make a lot of change to
define the commissions or hypotheses as regard the lack of data information in those projects.
It claims from us primary a lot of work and time.

Second, the data information in those projects is not accordance to each other, and it makes
difficult to define the hypothesis; such as there is missing data information about change
request and severity in JEF, while DCF and S&A contain those information. This is one of the
reasons why we cannot draw the conclusion of the hypothesis about stability.

Third, we have not had a direct communication with Statoil. All our questions have been
answered through either Anita or Odd Petter. We think, that a direct communication method
with Statoil would have significant advantages, such as clarity in what we wanted, more in-
depth information that data alone can not give us and less time spent waiting for answers.
However, we appreciate all the help we were given by Anita and Odd Petter, and it has
become clear that this method of approach has been valuable to us. Not only does these two
have major domain knowledge, but they have also been helping us with other various issues.
In addition, we did not have the opportunity to conduct all of our study. We had planned
interviews, surveys and case studies to support our thesis. But it was revealed that Statoil has
its own system for performing such activities, and that the system is not made available for
people from the outside (this includes Anita and Odd Petter). This reason discouraged us from
conducting the empirical work we had planned.

Master thesis 71 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Fourth, delay of information. Since the reason above, we got late information. In the
beginning we thought that we could get the data information about change request in JEF,
thus we kept the hypothesis about stability. We got a late message that it might not possible to
get data information about change request in JEF, and this is another reason we cannot be
complete the hypothesis.

These mentioned points had a major influence on our study. The most noticeable part, which
is not shown in this thesis, is the continually changes of the hypotheses. We wished that we
could establish well-formed hypotheses of what we really wanted to explore, and then get the
needed data resources to support our journey. We had, however, not this privilege. Because of
the fourth points mentioned above, we had to continually change our hypotheses to
correspond with the data resources we could get from Statoil. This made us revise our
hypotheses several times, and we had to make major changes in them (not counting small
changes on research questions)

Master thesis 72 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 73 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

8 Conclusion and further work

Subchapter 8.1 will conclude this thesis.

Subchapter 8.2 will give aspect of thesis that can be investigated further that we did not have
time or resources to do.

Master thesis 74 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Master thesis 75 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

8.1 Conclusion

The purpose of this thesis has been to conduct a study of component reuse and whether it is
advantageous to Statoil or not. The continued cooperation between us and Statoil is still to
study the component reuse with SJEF. In our previous report we have made a pre-study to
understand the general attitude toward component-based development, in this report we have
made deeper insight into component-based development and made greater hypothesis
researches.

We decided to use empirical strategy in our quantitative study. All of our data resource has
been gathered by our mentor and two PhD students who acted as contact person for Statoil.
As for the hypotheses presented in chapter 4 — Research focus and problem elaboration, all
hypotheses were evaluated through the conducted empirical strategy.

The results show that there are major advantages that could be made from reusing software
components. The most obvious advantage from this study is shown in the analysis in effort.
We think that these results can be used to further hone the art of reuse in Statoil, as well as a
base for further studies.

8.2 Further work

In this chapter, suggestions for further work on this subject of this thesis will be discussed.
The hypotheses could be used to make a prediction model for future systems in the same
environment or for maintaining the current system. Following sub-chapters are specified in
four sub-chapters, so descendants can make assessment about these factors are relevant or not.
It may be interesting to look if further releases of JEF will make any changes to the
conclusions in the followed hypotheses. We are investigating if the effort in JEF will be
improved and the defect density in JEF will be sustained. The defect density can also be
specified in attribute of and the stability in JEF will also make sense.

8.2.1 Will the effort in JEF be improved?

The effort in JEF is much higher than DCF and S&A, and this is groundwork to accept the
first hypothesis. The compared graph between JEF and DCEF tells that the effort in JEF is
moving in right direction and the effort in DCF is moving in wrong direction. It may be
interesting to know if there will be any time those efforts will meet. If the movements of
effort in those projects are keeping moving in this way, there is one day those lines will be
met. Here is an illustrated table and graph, which is presenting the meeting point according to
the number of releases in those projects.

Master thesis 76 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Release | LOCDCF Effort DCF LOCIJEF Effort JEF
3 25072 598,3 20 348 1395,7
4 26 529 614,2 21 506 1359,2
5 27 985 630,0 22 663 1322,7
6 29 442 645,9 23 821 1286,2
7 30 899 661,8 24 979 1249,8
8 32 355 677,6 26 136 1213,3
9 33 812 693,5 27 294 1176,8
10 35 269 709,4 28 452 1140,3
11 36 725 725,2 29 609 1103,8
12 38 182 741,1 30 767 1067,3
13 39 639 757,0 31925 1030,8
14 41 095 772,8 33 082 994,3
15 42 552 788,7 34 240 957,8
16 44 009 804,6 35 398 921,3
17 45 465 820,4 36 555 884,9
18 46 922 836,3 37713 848,4
19 48 379 852,2 38 871 811,9

Table 8-1: The effort in JEF will be improved?

Meeting point, Effort

1600,0

1400,0 |—»

1200,0 +

1000,0 &

—e— JEF
—=—DCF

800,0

Effort

600,0 -

400,0

200,0 -

0,0 T T T 1T T T T T T T T
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Release

Figure 8-1: Meeting point for defect density for JEF and DCF

The calculation in the illustrated table about LOC from each release is based on to add the
average increased LOC in the last release in each project. The average increased LOC is
presented in a previous table from chapter 6. The effort in JEF is added the average decreased

Master thesis 77 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

effort in the last release in JEF, and the effort in DCF is added the average increased effort in
the last release in DCF. This is the basis to illustrate the linear graph above.

LOC . = LOC , + LOC

Project X Project X Project X

DD ., = DD ,+ DD

Project X Project X Project X

Figure 8-2: Formula to draw linear graph

8.2.2 Will the defect density in JEF be sustained?

The compared graph about defect density between JEF and DCEF tell us that the defect density
in JEF is sustained after three releases and defect density in DCF is moving in right direction.
In the same way as above, is there any time the lines of defect density in DCF and JEF will
meet? Here is an illustrated table and graph, which presents the meeting point according to the
number of releases in those projects.

Release | LOC DCF DD DCF LOCJEF DDJEF
3 25072 0,0351 20 348 0,0110
4 26 529 0,0326 21 506 0,0108
5 27 985 0,0302 22 663 0,0105
6 29 442 0,0277 23 821 0,0103
7 30 899 0,0252 24 979 0,0101
8 32 355 0,0228 26 136 0,0098
9 33 812 0,0203 27 294 0,0096
10 35 269 0,0178 28 452 0,0094
11 36 725 0,0154 29 609 0,0091
12 38 182 0,0129 30 767 0,0089
13 39 639 0,0104 31925 0,0087
14 41 095 0,0080 33 082 0,0084

Table 8-2 The defect density in JEf will be sustained?

Master thesis 78 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Meeting point

0,0400

0,0350 -

0,0300 -

0,0250

—e— JEF

0,0200
\ —a—DCF

Defect density

0,0150
——o o ° \-\1
0,0100 e S G
* * ——— o
0,0050 -
0,0000

3 4 5 6 7 8 9 10 11 12 13 14

release

Figure 8-3: Meeting point for defect density for JEF and DCF

The calculation in the illustrated table is presenting in the same way as shown above sub-
chapter.

This can be done for project S&A at a later period as well. But since we only have one
version of S&A, we can not make any assumptions of how S&A’s defect, costs and size be

evolved over time.

8.2.3 Defect density and attributes

We have only used the number of defects as the metric when comparing defect density
between projects. At an early stage of our thesis we wanted to look beyond these numbers and
look into the attributes of the incidents. Priority, severity, length of time spent on an incident
and such are good indicators of the size of an incident. By using these attributes, we could
give each incident a value, and thus make a more in-depth comparison between the projects.
An example would to give the different ratings in severity a value:

Severity rating Value
Critical 4
High 3
Medium 2
Low 1

Table 8-3: Example for values on severity

Master thesis 79 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Then we could sum up the “#rue”’ value of severity (the numbers below are fictional):

DCF JEF
Severity rating | Incidents | Point | Incidents | Value
Critical 1 4 6 24
High 3 9 5 15
Medium 8 16 15 30
Low 20 20 6 6
Sum 32 49 32 75

Table 8-4: Example of points for severity

By looking only at the number of defects, we could say that JEF and DCF have the equal
defect density (assuming they had the same size in LOC). But by giving each incident a value,
we see that JEF has a higher number of larger incidents, thus giving it a larger total value.
This could affect our conclusions.

8.2.4 Stability in JEF

It was not possible to gather the data about change request in JEF from Statoil. Thus we
cannot answer the question, and the analysis is suggested to further work. The metric to define
stability is defined in previous chapter; it uses the number of change request from a project to
compare to the number of change request from another project.

Hypothesis of stability

Hy: The stability in project that has been developed from scratch (JEF) is lower than the
stability in the projects that base on reusable components (DCF).

Question ID | Question

QS-X What is the number of change request in JEF?

Table 8-5: Stability in JEF

Since this document has responded the question about number of change request in the DCF,
then it can be one of the reference points in further work by comparing to the change request
in JEF and draw the conclusion of the hypothesis.

In addition, the stability in a project can also be measured by using its released version to
define how well stability was going during the development from the one to another version.
Like the same method, by comparing to the number of change request between two released
versions; Aicu < Aach.

8.2.5 Modifiability in a project

In the beginning we wished to emphasize on modifiability regarding quality attributes. But
because lack of time we had to put off this focus to further work. We can investigate the
relationship in defects between the limeware and the actual upgrade of new versions of
projects. If a project has a high amount of defect density in it’s limeware, or still has a large
percent of its errors from past version compared to the defect density in the new upgrade, we
can say that the project has a low modifiability.

Master thesis 80 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

Project X
From past Limeware Upgrade
version

Figure 8-4: Defect density for modifiability

It can be specified at DCF, S&A and JEF through several versions and look at the where the
defects are located. If almost all the defects are located in the upgrade part this may tell that
the last version has a high degree of modifiability.

Master thesis 81 Spring 2006

An empirical study of component-based sofiware engineering in Statoil

9 Appendices

This chapter will present the references that are made and will provide an explanation of each
abbreviation used in our thesis.

Subchapter 9.1 will provide all references.

Subchapter 9.2 will explain all the abbreviations.

9.1 References

Number

Reference

[01]

DCF document from Statoil:

“DCF v2.0 — Project Handbook.doc”
“DCF ICT Architecture.doc”

“DCF 2 Requirement Specification.doc”

[02]

ISO/IEC. 2000, “Information technology — software product quality — Part 1:
Quality model”, ISO/IEC FDIS 9126-1: 2000(E)

[03]

J. C. Munson and T. M. Khoshgoftar, “Software metrics in reliability assessment”,
in Handbook of Software Reliability Engineering, Ed. M. R. Lyu, IEEE-CS
Press/McGraw-Hill, 1996.

[04]

JEF Document from Statoil:

“SJEF Concepts and Definations Version 2. Date of issue: 04.04.2005.”
“JEF 3.0 release info.doc”

“JEFroadmap.doc”

[05]

J. Musa, “Software Reliability Engineering”, McGraw-Hill, 1999

[06]

Len Bass, Paul Clements, Rick Kazman: “Software Architecture in Practice”.
Second Edition, Chapter 7.

[07]

Mari Torgersrud Haug and Thea Christine Steen: ” An Empirical Study of Sofiware
Quality and Evolution in the Context of Software Reuse (at Statoil)’. 20 Dec. 2005.
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2005/steen-haug-

fordyp05.pdf

[08]

MccCall J.A, Richards P.K, and Walters G.F, 1977. “Factors in software quality”.
RADC-TR-77-369, US Dept. of commerce

[09]

Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, Henrik Schwarz: “An
Empirical Study of Software Reuse vs. Defect-Density and Stability”.
http://www.idi.ntnu.no/grupper/su/publ/pdf/ericsson-qa-icse04-final.pdf

[10]

PerOlof Bengtsson, “Architecture-Level Modifiability Analysis”, Bleking Institute

Master thesis a Spring 2006

http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2005/steen-haug-fordyp05.pdf
http://www.idi.ntnu.no/grupper/su/publ/pdf/ericsson-qa-icse04-final.pdf

An empirical study of component-based sofiware engineering in Statoil

of Technology, 2002.

[11]

S&A Document from Statoil:
“S+A Requirement Specification.doc”
“SA ICT architecture.doc”

[12]

Victor R. Basili, Lionel C. Briand, and Walcelio L. Melo: “How reuse influences
productivity in object-oriented systems”. Communication of the ACM, 39(10),
October 1996.

http://delivery.acm.org/10.1145/240000/236184/p104-
basili.pdf?key1=236184&key2=7388656411&coll=portal&dl=
ACM&CFID=70552384&CFTOKEN=43329339

[13]

Walcelio L. Melo, Lionel Briand, and Victor R. Basili: “Measuring the impact of
reuse on quality and productivity in object-oriented systems”. Technical Report
CS-TR-3395, 1995.
http://www.cs.umd.edu/~basili/publications/technical/T95.pdf

[14]

William M. K. Trochim: “/ntroduction to validity’. Last revised 16™ January 2005.
http://www.socialresearchmethods.net/kb/introval.htm

Master thesis b Spring 2006

http://delivery.acm.org/10.1145/240000/236184/p104-basili.pdf?key1=236184&key2=7388656411&coll=portal&dl
http://www.cs.umd.edu/~basili/publications/technical/T95.pdf
http://www.socialresearchmethods.net/kb/introval.htm

An empirical study of component-based sofiware engineering in Statoil

9.2 Abbrevialtions

Abbrevation Description

API Application programming interface. The interface that a computer system
or application provides in order to allow requests for service to be made
of it by other computer programs

C&V A planned project in JEF which has not started being developed yet.

CBA Cost-benefit analysis is the process of weighing the total expected costs
vs. the total expected benefits of one or more actions in order to choose
the best or most profitable option.

CBD Component Based Development

CBSE Component Based Software Engineering

CORBA Common Object Request Broker Architecture is a standard for software
componentry, created and controlled by the Object Management Group
(OMQG).

COTS Commercial off-the-Shelf, referring to software components from third
parties.

CR Change request, a request for change to the next version of project.

DCF Digital Cargo Files, a project under development in Statoil.

DD Defect Density, a measure the frequency of defects based on software
size. DD is calculated from total number of defects divides on SLOC
(either logical or physical).

GOTS Government off-the-Shelf, referring to software components from the
government.

GQM Goal-Question-Metric is a method of experiment design. The goals define
the abstract level of the experiment. The questions identify the operational
level (what we want to learn). The metrics define the quantitative level
(what we will measure).

INCO INcremental and COmponent-base development is a project that has the
primary goal to advance the state-of-the-art and -practice for incremental
and component-based software development.

J2EE Java 2 Enterprise Edition platform

JEF Java Enterprise Framework for Statoil is a J2EE technical framework for

Enterprise Applications.

Master thesis

C Spring 2006

An empirical study of component-based sofiware engineering in Statoil

O&S Masterplan | A project template which every new project in JEF should follow.

NTNU Norwegian University of Science and Technology, an university in
Trondheim, Norway.

S&A Shipment and Allocation, a project that is under development in JEF.
Version 1 of this project has not been finished yet, so there is no data
resource available from this project.

SJEF Statoil JEF.

SLOC Source Line-of-Code is a measurement for sizes of software. It can be
either logical SLOC or physical SLOC.

Statoil Statoil ASA is one of the largest operators on the Norwegian continental

shelf.

Master thesis

d Spring 2006

