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Abstract

While safety has been a major concern in most engineering disciplines
for a long time, it has been mostly emphasized in systems where lives can
be endangered. Safety in terms of business and loss of money has not been
incorporated to a noticeable extent in the software industry. The reasons
may be many, but most likely it is thanks to a lack of well-known, easy to
use methodologies. There has been many proposals, but most of these have
been intended for research. In many cases, a custom made modeling language
is part of the proposal, but lacking supportive tools, the take-up has been
low. In addition, the only available literature is often the article containing
the proposal.
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This report concludes my Masters Thesis for the degree Master of Science
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Conventions

Though we have tried to make this report as simple and understandable to
read as we could, we find that some small hints may prove useful.

Reading the report from start till end will, hopefully, provide all infor-
mation and knowledge necessary to grasp our ideas. Still, we have tried to
include references to more specific information as much as feasible. This
references looks like this: [7], and the corresponding literature is found in
the bibliography. In some cases, we refer to information found elsewhere in
the report. For the reader to easily find this information, we use a refer-
ence to the chapter and section number. For instance, the reference to the
introductory chapter will look like this: 1.

We mostly use this regular font, sometimes bold or italic to mark out
things we think should be noticed. In fact, the only time our font is really
meaning something is when it is teletyped. A word written in teletype is
marking out a word that can be found in our list of definitions in appendix
B. These definitions are included to make the text more precise, and to make
sure that the readers will understand what we mean with, e.g., safety

The first chapters of this report is meant to be an introduction to terms
and techniques that we think is necessary to know before we present our pro-
posal of how business-safe systems should be developed. In these chapters,
our contribution mostly consists of collecting and organizing the information.
Instead of using citations all through these chapters we are giving the refer-
ences in the beginning of the sections. These chapters are chapters 2-6 and
chapter 8. Using the knowledge of these chapters, we develop our proposal
in chapters 7, 9 and 10.
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Chapter 1

Introduction

As computers find their ways into new environments, so do software. And
like all other tools, computers and software must be customized to their
environment to be utilized in the best way possible. What is often forgotten
is that it is not only performance that decides how useful a tool is, but also
how prone it is to errors. The largest and most powerful caterpillar in the
world is of little use if it spends six months a year being repaired. Still, this
is a small problem compared to an unstable caterpillar failing often. Imagine
a caterpillar where the controls suddenly gets stuck, or start acting on their
own.

But not all failures will lead to dangerous situations. 'Normal’ software
does not control big machines or poisonous fluid processes. Most software
controls servers and personal computers that, contrary to popular myths
in the early 90’s, cannot be turned into a bomb by malicious programs.
Accidents in these systems does not kill people, but in a worst case scenario
they may kill a company. Software safety has so far mostly been imple-
mented with physical safety in mind, while this report will look at how a
business can avoid to loose money when a failure occurs.

1.1 Motivation

Working through a number of software engineering exercises and projects
has shown me that this is a field where ad-hoc and temporary solutions are
the rule more than the exceptions. This is especially true for new fields in
software engineering, where old methods are used without much thought,
if any methods are used at all. Whatever project I was taking on for my
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Masters Thesis, I wanted to break new ground, and the description of this
project promised a lot of ground-breaking work.

1.2 Problem

In this section we will present our problems and the goals of this report.

1.2.1 Problem text

BUCS Implementing safety - A proposal as to how to implement safety con-
cerns

When using hazard analysis methods on requirements, one is aiming to
come up with barriers for avoiding unwanted situations. The next step is
to refine the requirements by including the results of the first hazard analysis,
and also make sure that the test plan will cover the barriers. We then have to
perform a new hazard analysis to see if the refined requirements have opened
up for new hazards. When doing these iterations of hazard analysis, barrier
development, and requirements and test refining, it is important than one
do not loose the barriers nor the analysis results from earlier iterations. Our
goal in this report is to investigate how to keep and test these barriers in
order to make the systems more stable and safe.

1.2.2 Problem description

One of the goals of the BUCS project is to contribute "A method for testing
that the customers’ business-safety concerns are adequately taken care of
in the implementation”. To reach this goal, we need some way to define, trace,
and test these concerns throughout the development process. A graphical
presentation of this process is shown in figure 1.1.

The dotted lines symbolize the documents and information flow through
the process. The continuous lines symbolize intentions. As one can see
from the figure, we start with the costumer’s requirements. These require-
ments are transformed into implementation requirements, and are at the
same time used to perform the first hazard analysis. As the implementation
requirements are updated to include the results of this hazard analysis, it
will be necessary to perform new hazard analyzes to detect if the updating
has lead to new hazard. The hazard analyzes may also discover the need
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Figure 1.1: The development process and tracing

for barriers. Information about the barriers are also used in the implemen-
tation, and should also be included in the test plans. The implementation
requirements are used for the implementation of the system. Testing the im-
plementation may lead to changes in the implementation requirements, or, if
all requirements are fulfilled, to a finished product.

The hazard analysis needs to know the intentions of the customer, in ad-
dition to the requirements, to discover possible hazards. When testing, both
customer requirements and hazard analyzes must be considered in addition
to the implementation requirements. In this way, the intentions and reasons
for the implementation requirement can be taken into account when evaluat-
ing the test results. If the test results suggests that changes should be made
to the implementation, knowing the intentions and reasons for the original
implementation makes it easier to make the best decisions.

This report aims to analyze the problem shown in figure 1.1, and make
a proposal as to how this can be solved. We will not develop new methods,
but use familiar and well established techniques in new settings. This way
we hope that just a minimum of training will be necessary to maximize the
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effects.

1.3 Outline

The report is structured as follows:

1. Introduction. This chapter - presents the problem along with the BUCS
project and the report.
2. BUCS. A short presentation of the BUCS project.

3. Rational Unified Process. We give a short introduction to the RUP
development methodology.

4. Hazard Analysis Techniques and

5. Documentation Strategies. In these two chapters we will make a short
presentation of the methods that are candidates for use in the report.

6. Tools. This chapter gives a brief overview of tools that may be used to
support a better way of developing business-safe systems.

7. Today’s Practice. There is missing practices for developing Business-critical
software. We will look at how things are done today, and also briefly
discuss what is missing.

8. RUP in business-critical Software. This chapter is discussing how
RUP can be altered and expanded to be more suitable for develop-
ing business-critical software.

9. Barrier Conservation. This chapter is specifically discussing how our
candidate methods cope with barriers.

10. Conclusions and further work.

11. Appendix A, Demonstration of concept. This appendix walks through
the development process, showing how we propose to develop business-
safe software.

12. Appendix B, definitions. In this part we will collect the definitions used
throughout this report to make them easy to look up.

4
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In the first seven chapters we look at today’s situation, along with a
number of techniques and tools that we believe may be helpful for develop-
ing business-safe systems. What we have learned during these chapters are
then discussed in chapter eight, looking at the pros and cons of the differ-
ent techniques and their combination. As BUCS has already decided to use
RUP [3], the discussion is mainly about what documentation strategies that
are best combined with RUP. The last chapters are based on our discussion,
aiming to take a closer look at the consequences of our decision. Also covered
in these final chapters is a brief demonstration of how our proposal may be
used in a real development project.

The most important chapters are chapters 5 to 10, assuming that most
readers do not have much knowledge of Safety Case and Intent Specification.
In the opposite case, chapter 5 and 6 may be omitted. Readers that are
not familiar with RUP should include chapter 3, while chapter 4 provides
the necessary knowledge of hazard analysis for using this report. We do not
recommend our readers to look at Appendix A without having read chapters
8 and 9, as the example does not contain all of the information used in the
discussions.



Chapter 2

BUCS

BUsiness-Critical Software (BUCS) [3] is a research project founded by the
Norwegian Research Council (NFR) and conducted by IDI at NTNU. The
project is aiming to develop methods that can be used in development of
business-critical systems. These are systems intended for use in settings
where failures may lead to financial losses rather than physical losses.
BUCS are initially not concerned with the time and costs of development
projects, and the goal is not to help developers complete their projects on
budget. The BUCS project formulates their goal as "Help developers, users,
and customers to develop software that is safer to use”. Safety in this goal
1s Business-Safety.

BUCS wants to tailor existing methods to handle business-safety concerns
in developing, operating, supporting, and maintaining systems. The result-
ing methodology will follow the RUP (3.1) process management model. To
accomplish this, BUCS is focusing on hazard prevention rather than hazard
detection and reduction.

Along with the BUCS own website, information about both the BUCS
project and the work conducted on business-safety can be found on [14; 6;
15].



Chapter 3

Rational Unified Process

The Rational Unified Process® (RUP®)) is a framework for software devel-
opment developed by Rational Software, today a division of IBM. RUP is
based on "best practice’ from leaders in international industries. RUP is solely
concerned about project risks and hazards, aiming to reduce project risks
and extend the control of the process by discovering and attacking project
hazard at an early stage of development. The hazards are then continuously
attacked throughout the product’s lifecycle. The same goes for changes to
the product which should be accommodated as soon as possible after being
deemed necessary. RUP is organized using four phases, each ending with a
milestone and a review of the results from this phase. Each full pass through
the four phases is called a development cycle, and produces a generation of
the software.

Another feature of RUP is its orientation towards constructing code that
is reusable in later iterations. When designing, RUP puts much effort in
use-cases as the main tool. Finally, RUP is designed to be iterative, aiming
to develop a stable (baseline) architecture as early as possible. More details
about RUP can be found in [20; 18; 9].

3.1 Phases and milestone
As mentioned above, the RUP consists of four phases. These are:

e The inception phase

e The elaboration phase
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Figure 3.1: The overall architecture of RUP

e The construction phase

e The transition phase

Each of the phases are concerned with one aspect of the software de-
velopment process; thus aiming to make sure all dimensions of the finished
product has been thoroughly examined. The actual development takes place
in the last three phases, whereas the first phase deals with project risks,
budget, human resources, and other necessities for running the project. The
amount of time and resources assigned will be different for different phases,
as it depends upon the workload of the phase. The general architecture of
RUP is shown in figure 3.1.

Time is represented on the horizontal axis, showing the lifecycle of the
process. The disciplines on the vertical axis are grouping the activities logi-
cally by nature. The graphs illustrate how focus changes between the disci-
plines as the project proceeds.

The figure also shows that allthough the names of the four phases may
suggest different, each phase makes an iteration of analysis, design, imple-
mentation, and testing. This is according to the best-practice principle that
were used when developing RUP as most products are developed in several
small iterations. The focus of each phase is different, e.g. the load of business
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modeling is higher in the Inception phase than in the Construction phase,
while the opposite is true for implementation.

In the following sections we will look at each of the phases and the cor-
responding milestones.

3.1.1 The Inception Phase

This phase is focused towards the business aspects of a software development
project. The developers decide upon what to build and the key functionality
of the product. The goal is to evaluate if the project should be run at all and,
if so, whether it meets the business requirements of the stakeholders. The
main document is a Business Case that includes business context, success
factors and financial forecasts. The phase also produces plan documents and
a basic use case model. It should also address business and requirements
risks of the project.

To pass the milestone of the inception phase, the following has to be
satisfied:

e Stakeholder concurrence on scope definition and cost/schedule esti-
mates.

e Requirements understanding as evidenced by the fidelity of the primary
use cases.

e Credibility of the cost/schedule estimates, priorities, risks, and devel-
opment process.

The stakeholders should also look at the actual expenditures versus planned
expenditures, to find if the project costs are acceptable and if the budgets
needs to be updated.

Failing to meet the criteria of this milestone will often cause the project
to be canceled.

On later iterations, the Inception phase will be shortened. It will still be
used to decide whether a new generation of the product should be developed,
but using the knowledge from previous iterations should make this decision
easier than on the first run.
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3.1.2 The Elaboration Phase

This phase may be compared to the design phase of the waterfall model.
The main effort concentrates on designing a stable architecture and investi-
gates critical items in the design. This includes planning for the rest of the
project and handling of the project hazards. In many cases, an evolutionary
prototype along with exploratory, throw-away prototypes will provide much
needed information.

The most important documents evolving from this phase are:

e A use-case model in which the use-cases and the actors have been iden-
tified and all significant use-case descriptions are developed.

e A description of the software architecture in a software system devel-
opment process.

e Architecture prototype, which can be executed.
e Revisited Business case and risk list.

e A development plan for the overall project.

Both during the phase, and especially upon failing to meet these criteria,
refining and validation of architecture and vision is important if the project
is to continue. The completion of the milestone of this phase is usually the
last chance for cancelation before the project turns into a high cost, high risk
operation.

3.1.3 The Construction Phase

As the name suggests, this is the phase were the system is implemented. In
this phase, the requirements enter their final version and are implemented.
The software may still be developed in a series of iterations to achieve working
versions as soon as possible. This way, testing may begin even though the
system is not fully implemented.

This is also the biggest phase, both in man-hours and costs. This means
that managing and planning in this phase is important for the outcome of
the project.

At the end of the construction phase, a first version of the product can
be released. The phase will in most cases not end until this version is ready,

10
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or the project is canceled if implementation turns out to be infeasible. In
rare instances, the phase may end without a product and a new iteration
is started. This can happen if there is evidence that the system concept is
sound, but the design has flaws.

3.1.4 The Transition Phase

This phase is concerned with the delivery of the system to the consumers.
Although the development may seem finished, there is still a lot of work to do.
Large, custom-made systems may require a lot of installing and fine-tuning.
Often, training of the end-users is also needed. For all kinds of systems, both
tailor made and COTS, patching and debugging together with other kinds
of maintenance is necessary.

For some projects, this is the first phase were extensive user feedback is
available. This means that new issues may be found. If the system is not
going to be released in a new generation as a result of a new iteration, the
issues will have to be solved "on the fly". So even if new generations of a sys-
tem are not planned, work on the system cannot be abandoned even if it has
been delivered to the customer. It is necessary that a plan and an infrastruc-
ture for maintenance of the system is developed, and that resources are made
available to make the necessary changes. This plan should be developed by
the developers, customers and users in cooperation. This cooperation is im-
portant so that the maintenance and support is fitting the customers and
users organization(s), while providing enough resources to keep the system
up to date and running. There may also be need for a support team to
help the users, at least until enough knowledge has been transferred to the
customer for him to run his own support team. The resources needed for
the maintenance team is smaller than what the developer team demands. In
many cases, it is possible to have one team maintaining several products.
The best support and maintenance plans are a results of cooperative work
between the developers, support team, and the customer and users.

As the phase is ending and the product is delivered, an evaluation of
the project and product should be performed. The main concerns of this
evaluation are:

e Product generation. Should a new development cycle be started to
improve the product?

e Customer and user satisfaction. Did the product satisfy the customers?
Does the product fulfill the users needs?

11
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e Project satisfaction. Did the project go according to the plan? Are
the expenditures acceptable? Is there anything to be learned from this
project, good or bad, that can be utilized in later projects?

Whatever conclusions are reached, the phase results should be stored as
experiences to be used for later projects and products.

12



Chapter 4

Hazard Analysis Techniques

This chapter is an introduction to some of the most popular techniques and
methods for hazard analysis. Different methods are fit for different settings,
according to how much information that is available, what kind of system
one is dealing with, what sort of hazard one is looking for, and so on. T Each
technique will have a brief explanation of its function and target, prospective
dangers and limitations, and which results to expect. We also suggest at
what stage the method is usually applied, but when to perform an analysis is
dependent upon several factors, including the manner of which the system is
developed. This section is not meant to be a tutorial of how to perform the
analyzes, as such are found in lots of literature together with the necessary
details.

Even if some of the methods will cover the same areas and some hazards
are likely to be discovered in every analysis, it can be dangerous to skip or
haste through any analyzes or parts of them. Even if the hazard is the same,
different views may bring forth new aspects. There is also an important point
that some of the techniques are only looking at the hazard itself, while others
include causes, consequences or both. In any cases there are two important
factors that must be in place:

e Information about the system’s environment.

e The stakeholders.

Without these pieces of information, the analysis will not be of any use.

To be able to handle hazards, it is also important to have knowledge of
other aspects of the system. How much effort that should be put into elimi-
nating a hazard depends upon how serious the consequences of the resulting

13
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accident will be, but the probability of the hazard taking place must also be
taken into consideration. Using risk tables help deciding which hazards are
the most important to attack, as the risk is calculated from several factors
influencing the graveness of hazards. Also, when introducing barriers, it is
necessary to calculate the probability of the barriers not working. The last
piece of every analysis is perhaps the most crucial to make sure that efforts
are not wasted. Every solution must be connected to a test to make sure
that it will be evaluated in the final system.

4.1 Preliminary Hazard Analysis

The Preliminary Hazard Analysis (PHA) [13] is normally the first analysis
one will perform. It is simple, and does not require much information except
for the concept of the system and its intended users. Usable for almost any
kind of projects, the PHA aims to give the developer a head start on the
hazard by forcing them to think about anything and all that may go wrong.
As the PHA is usually conducted before the design starts (since it is used
to help in making design decisions), most of the hazards discovered are also
conceptual. They may, however, also be used to discover design solutions
that can be dangerous.

How do you do PHA

The PHA is performed by the developers and domain experts in an infor-
mal way. A simple table which contains four fields is used : Hazard, Cause,
Main effect, and Preventive action (table 4.1. Additionally, one may use a
field for characterizing the graveness of the failure. The analysis itself is
a brainstorming session, where possible hazards are stated as they are dis-
covered. Rather than structuring the session too much, and thereby possibly
forgetting an idea when the right time comes, one should plan on spending
some time after the session to organize the results. It is important to re-
member that at this stage, the goal is to document all possible hazards that
the analyst may come up with. In this way we get more information so that
the design may be as good as possible from the start. One should be careful
with dismissing any proposed hazards. If one of the analyzers is able to come
up with a hazard, it means that this is a possible state for the system that
should be avoided. If the hazard is not recorded, chances increase that this
state may be present in the system design because the designer is not aware
of the hazard.

14
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Hazard Cause Main Effect Preventive Ac-
tion

No altitude mea- | Broken antenna | Pilots receive no | Backup antenna

surement altitude readings

Altitude miscal- | Weather condi- | Pilots receive er- | Different  tech-

culation tions roneous altitude | nology  backup
readings system

Table 4.1: Excerpts of a PHA table for a flight controller

Results

As this analysis is performed very early in the project, the hazards will usu-
ally be quite general and based upon the participants experience. Most of
the hazards will be stated as "could it be that"s, but they should be no
easier dismissed than a fully stated hazard. They are all equally important
when design decisions are made. In some cases, a vague hazard may even
be more dangerous if its consequences are dire. The same way, a detailed
failure leading to a minor lag in the execution should not lead to any ma-
jor changes. Unfortunately, software developers tend to put more faith in
anything concrete than loosely defined ideas.

As we are still early in the process, it is important to keep records of
all hazards, even the ones that are omitted or dismissed in the first design.
Later changes may lead the system back on a track that has been left earlier.
A removed or deleted hazard may then suddenly be brought back into play.

4.2 Failure Modes, Effects, and Criticality Analy-
sis

The Failure Modes, Effects, and Criticality Analysis (FMECA) [13; 16] is an
old method for analyzing technical systems. The FMECA is an expansion
of the Failure Modes and Effects Analysis (FMEA), adding a description or
ranking of the failure modes. As the difference is often somewhat blurry,
we will use FMECA to name both methods. When doing a FMECA analysis,
one should know much more about the system than what is needed for the
PHA. The analysis should take place during the design phase of the system.

15
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Thanks to more information, the method is able to dig deeper into the system,
and therefore providing more specific solutions.

In addition to finding and categorizing hazards and failure modes the
FMECA tries to find the cause(s) behind a Failure and the consequences
for the entire system. This expansion of the analysis means that there is also
need for a more formal approach, in this case realized by a more detailed
table.

How do you do FMECA

Before starting the analysis is it important to decide on the conditions for the
system. What parts of the system is included in the analysis, which modes of
operation will be taken into account, and what are the failure modes. What
modes that are failure modes depends on the nature of the system, and it is
not always possible to transfer the failure modes of one system to another.

The fields of the FMECA table must also be decided. Depending on which
stage of development the project is in, and what goal is set for the analysis,
different fields can be needed. In [16] it is suggested to run FMECA twice
during a project. They suggest the first run to take place during the definition
of the detailed requirements, and the second run should take place between
the design and implementation. Table 4.1 shows an excerpt of an FMECA
table for our demonstration system in appendix A.

If the system is too large or complex for a single analysis it must also be
decided how to split up the system. After dividing the system into analyzable
parts one should make a diagram to show the connections and dependencies
between the parts. Finally, the components of each part are listed to make
sure they are analyzed.

There are several ways to divide the system into components, mostly
depending upon what kind of hazards and failures one is looking for. A
common strategy is to look at the design and source code components -
modules, classes, methods and so forth. Deciding upon how to divide the
system into components is closely related to finding the failure modes of the
system, as dividing a system into components that can not have any failure
modes makes the analysis worthless.

After the components are listed, there is no formal procedures as to how
they are analyzed. Like the PHA, the analysis is a brainstorming session, but
this time it is structured by the table. For each component, the participants
will ask "what can go wrong with this component?". The answers are then
included in the FMECA table.
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4.2. FMECA

System: MTD Conducted by: Ole-Johan
Ref. drawing: Date: 27.09 Page:10of1
Unit description Hazard description Failure effect
Refnr. | Function Operational | Failure | Failure Failure On On
state mode cause detection | other | main
units | wnit
01 Order Accepting Fail to Erroneous None | None
registration | orders accept order
order
02 Order Registering | Failto No Catching | None | System
registration | orders register database exception halt
order connection
03 Discount Registering | Registers | Algorithm | Operator | None | None
registration | discount and | wrong fail
recalculating | discount
sum
Ref nr Failure rate Failure effect Failure Comment
rank reduction
01 10% Negligible Order
registration
routines
02 2% Critical Connection Can stem from
control multiple
procedures synchronous
fails
03 1% Critical Testing Discovery
should lead to
code review

Figure 4.1: The FMECA table of appendix A
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Ideas for other components may be noted by the participant, but should
not be brought into the discussion till the actual component is in question.
As mentioned for PHA, this may lead to some proposals being forgotten, but
the size of the analysis forces this strategy to maintain the overview. On
the other hand, the great increase of information will improve the quality of
proposed hazard. The participants knowledge of the system also often means
that they have already discovered possible hazard, and they have had time
to think about the analysis while working on the system.

Results

A FMECA produces a lot of data. Every component has been analyzed,
and every Hazard that the analyst team is able to imagine is documented.
The construction of the FMECA table also helps getting all of the details
recorded.

The massive amount of data is one of the FMECA’s drawbacks. A lot
of small and possibly negligible failure take up space in the table. This can
make it difficult to maintain an overview of the analysis. Another problem
is that FMECA is not taking into consideration chains of problems, though
it evaluates the failure consequences on the entire system. Lastly, FMECA
is not considering human errors. One way to cope with the amount of data
is to organize the entries depending on the consequences of the hazard. The
internal ordering will then build on how easy the hazard may be removed.
This way, the designers may start right on getting rid of the most threatening
hazard, while still having some time to think on hazard that are not so easily
resolved. Irrespective of how the developer team organizes the data, every
record should be kept for future use. hazard that are taken care of must still
be kept for use during the testing of the systems. If resources are too small
to handle all the hazard found at this time, they may be found in a later
iteration or during maintenance.

4.3 Hazard and Operability Analysis

The Hazard and Operability Analysis (HAZOP)[7; 13] is a major analysis,
attempting to guide the analyst team through the system while providing
help to discover its hazards. Even if the HAZOP in some ways will recreate
the work done in FMECA, the results will be a complement to the FMECA
results. A HAZOP is usually conducted after the system design is more or
less complete, as the need for complete and correct documentation is crucial
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for the quality of the analysis. The need for a design is also based upon
the HAZOP aim, namely to identify ’deviation from design intent’ [7]. A
HAZOP should always be done by a team of domain experts, which should
be picked based on both knowledge and cooperating skills. It is crucial that
the study leader is experienced in HAZOP. Studies have shown that HAZOP

analyzes performed with inexperienced leaders tend to fail.

How do you do HAZOP

Strictly following the guidelines are absolute necessary to get the full benefits
of a HAZOP analysis. While FMECA may be conducted by one person, the
HAZOP is a team effort, and both the leader and the composition of the
team is important for the results. The HAZOP is performed in a structured
and formal way, using "Study Nodes" and "Guide-words", thus helping the
analysts to cover every aspect of the system. As for PHA and FMECA, the
analysis should be documented by using a predefined table. For HAZOP,
this will contain the hazard as discovered when using the guide-words, con-
sequences, reasons and suggested solutions. An example is shown in table
4.2. During a study, the guide-words often have to be interpreted to fit the
situation, e.g. "more" is interpreted as "greater". It is important that these
interpretations are documented, or the Hazard may not be resolved correctly.
One of the proposed techniques for keeping track of the interpretations is a
matrix with the generic guide-words on the top row, and the components
to be analyzed in the first column. It is an ongoing discussion whether it
is better to use new, customized guide-words for software systems, or stick
to the originals. Supporters of the former argue that the guide-words were
developed for process industries, and are thus not useful for software. Those
who supports the latter usually claims that the guide-words, though not de-
veloped specifically for software, are general enough when interpreted in a
sound manner. There are also some studies which results suggests that the
variety of software systems is so great that the set of guide-words still will
have to be interpreted, even if they are customized.

Results

The records of the HAZOP study should show all the hazard found. It is also
important to include all questions that have risen, whether it is a request for
more information, or if it is a possible hazard depending on design decisions.
The last part of the record is recommendations for avoiding the hazard. As
resolving problems is not the main aim of a HAZOP, the recommendations

19



4.4. FAULT TREE ANALYSIS

CHAPTER 4. TECHNIQUES

Guide-word Hazard Consequences | Reason Suggested so-
lution
No No connection | No data will | Erroneous ad- | Address
be fetched dress syntax verifi-
cation
Too much Too many bits | Erroneous Signal distor- | Parity bits
in result calculation tion

Table 4.2: Part of the HAZOP table for a database connection client

should be focused on advising how to avoid the hazard, and not presenting
specific changes to the design. The task of adjusting the design to cope with
the hazard is the responsibility of the designers.

4.4 Fault Tree Analysis

Though, strictly speaking, The Fault Tree Analysis (FTA) [13] is not a hazard
analysis, but a technique for reliability analysis we include an introduc-
tion in this chapter. The reasons for performing an FTA in software engi-
neering is much the same as for doing hazard analyzes, and knowing more
about the causes and events connected to a hazard can provide valuable
information when deciding how to the hazard.

FTA is widely used in the space industry and on nuclear plants. It builds
a tree that logically connects unwanted events and their causes. The FTA
can cover most kinds of causes, including human errors and environment
factors. Depending on the reason for conducting a FTA, the results can be
expressed in different forms. As the FTA starts with the unwanted event,
it will be natural to do this after e.g. a HAZOP, to further investigate the
Hazards discovered.

In [1], System Hazard Analysis, Nancy Leveson is proposing using quan-
titative FTAs for refining system design constraints, and also for verifying
code.

How do you do FTA

The most important part of FTA is to define the top-event, which in our case
may be a hazard. An incorrect or shady definition will make the analysis
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hard, and may leave it invaluable. As a rule of thumb, the definition of the
event should answer what, where, and when. One also has to define the
system’s borders, including, but not constrained to, the physical borders,
initial settings, external events, and the level of detail.

When the definitions are in place, is it time to build the fault tree. This
is done from the event and down, by asking for the causes for this event. The
rules for building the tree is quite simple, but makes it easy to keep control
of the tree in addition to helping the tree becoming consistent and complete.
A finished fault tree will give two important answers; the "cut-set", which
are the events that by happening at the same time will lead to the top-event,
and the "path-set", which are the events that by not happening at the same
time will ensure that the top-event does not happen. For small trees finding
these sets is done manually, but for larger trees there are tools available as
the calculations quickly grows to large to handle by hand. The most popular
method is the MOCUS algorithm|11]

Lastly, one can analyze the tree, both qualitative and quantitative. The
qualitative analysis is ordering the events after the types of failure that
can occur, while the quantitative is used to find the probabilities of the top-
hazard.

Results

A FTA will provide a picture of the combinations of events that may lead to
hazard. It is simple to understand and much used. Creating a correct and
complete FTA will make the analyst a virtual system expert, which can be
of great advantage later in the development process. Working with the fault
tree may also lead to the discovery of errors and problems even before the
analysis begins.

The FTA’s drawback is that it is static and does not cope well with
dynamic systems. Dynamic systems will often result in incomplete fault
trees, which are mostly a waste of resources. Periodical events like testing
and maintenance are also handled badly by fault trees.
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Chapter 5

Documentation strategies

As we have pointed out some times already, documentation is crucial when
developing safe software. We wanted to look at some strategies for organizing
this work, as the amount of information grows throughout the development
process.

We have chosen two methods for documenting and organizing the safety
work to be further evaluated. These are Intent Specification from Safeware
[5] and ASCE from Adelard [1]. Our reasons for picking these two methods
included availability of evaluation copies, and that the BUCS project have
earlier looked at these methods, giving us access to people who knew the
methods. After a short prestudy of the methods, we found that their different
approaches to the documentation task would make us able to discuss different
ways of implementing business-safe systems.

While RUP is focusing on the project hazards, the Intent Specification
and ASCE can be used for both project and product hazards. We find this
property to be an advantage as it makes us able to keep all hazards together,
though we are still going to analyze the product and the project separately
and keep the records of the analysis’s in different documents.

5.1 Intent Specification

The Intent Specification is developed by Safeware [5|. They present it as a
tool for writing specifications that covers the entire lifecycle of the software
development process. The structure of the Intent Specification is developed
using theory from several fields, including software engineering and cognitive
psychology. The underlying vision is that ’Specifications should help solve
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problems and support the basic system engineering process’. In opposition
to common specifications that are based upon 'what’ components do, and
’how’ it is done, Intent Specifications build their hierarchies based on 'why’.
Each level in the abstraction is linked to levels above and below, providing
traceability all the way from requirements to implementation. There are
five levels altogether, supporting different views of the system, and having
different levels of detail.

The following sections presents the main ideas of the Intent Specification.
More information, including a large example implementation can be found
at the Safeware homesite [5]. Most of what is used in sections stems from
Nancy G. Levesons paper [10].

5.1.1 Writing Intent Specification

The Intent Specification is designed for up-front planning and inclusion of
system-essential properties. Much emphasis is laid on recording intents
throughout the development process. The author believes that many errors
in a software system happens because intent has been omitted or guessed
upon. The Intent Specification methodology is also focusing on recording
other kinds of implicit information, as research points out that even common
knowledge tend to be ignored or overlooked if not explicitly stated in the
specification.

The Intent Specification differs from regular specifications in using Means-Ends

Hierarchies. While regular hierarchies have a 'what’ level over a "how’ level,
the Means-Ends extend the hierarchy with a 'why’ level above the 'what’.
In this way, tracing the hierarchy top-down allows for browsing in reasons,
while bottom-up looks at the causes. The importance of the top-down ability
is grounded in cognitive psychology, which shows that most expert solutions
starts with reasoning about high-level functional structures and then moving
down the hierarchy:.

An Intent Specification document is organized as showed in figure 5.1. It
is structured as a matrix, covering each aspect of the specification in different
several levels. The horizontal axis decompositions the system along the part-
whole dimension, having in the following fields:

1. Characteristics of the system environment.

2. Human operators and users.
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3. The system "itself". The fourth column is the internal system compo-
nents.

The vertical axis of the figure is the intent dimension. These levels provide
the intents for the level below, preparing the ground for traceability and
reasoning about the system. The five levels are:

—_

. System level; goals, constraints, priorities, and trade-offs.

[\]

. Physical principles and laws.
3. Logical design, interaction between components.
4. Design.

5. Implementation.

Requirements for each level are also important parts, and level 2-5 in-
cludes validation and verification (V&V) requirements. There is no V&V
for level 1, as research has not yet provided any clear answers as to what
validation would be appropriate at this level.

Every level will also have to include assumptions. These are used to ex-
plain decisions made, which makes it clear to the developers why a particular
design are chosen. If an assumption can be showed to be wrong, it should
be updated, and the system may be analyzed to change the design according
to the new information. The assumptions also provide the designers with
fundamental information about the system. Even if an assumption does not
lead to a decision, it will provide information that may be important at a
later stage of the development cycle.

In the following sections, each level of the intent dimension will be more
closely evaluated to give the readers a better understanding of the method
before a discussion of how the BUCS goal can be reached.

Level 1: System Purpose

This section defines the goals of the system, and translates them into re-
quirements. The goals provides the intent behind the requirements, and can
be used for validating design choices and test plans. The goals also includes
operators, human-computer interfaces and the system environments. Along
with the requirements comes the design constraints. These can be divided
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Decomposition
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Figure 5.1: The Intent Specification document structure

into normal and safety-related constraints. The latter should be linked to
the system hazard records and the hazard analysis which results made the
constraint necessary. Requirements and design constraints are also made
with respect to the environment under which the system will operate.

hazard and reliability analyzes, e.g. FTA and HAZOP, may point
to system limitations. These limitations should be included in level 1 along
with pointers to their origin. This could be FTA boxes, PHA tables etc. It is
important to discover these limitations early on to be able to set the system
boundaries.

The final parts of level 1 are evaluation criteria, priorities and system
analysis results. The former two are used to resolve conflicts and guide
lower level design choices. Having clear priorities for requirements and design
constraints leads to faster development as the designers may not have to use
time to investigate trade-offs. The latter is used to document the results of
hazard and other analyzes. If the system design is changed, these analyzes
may have to be redone.

Level 2: System design principles

This level contains the basic design for the system, and the necessary scientific
and engineering principles. These are linked to the upper level, providing
traceability. In this way it is possible to see that all the upper level results
are covered, and that all principles are actually needed.

25



5.1. WRITING CHAPTER 5. DOCUMENTATION STRATEGIES

The level also contains pointers to lower levels like the black box require-
ments specification, where the design principles are embodied. Finally, the
level will reflect trade-offs that were made for the basic design.

Level 3: Blackbox behavior

Much of the information used to fill in this level is found in the system
engineering specifications, making it more of an organizational effort to com-
plete large parts of it. The level specifies the system components and their
interfaces, including human users, operators, and environments.

The level does not attempt to describe how the components do their
task, merely what the tasks are and how they communicate. This includes
assumed behavior of external components and the systems interfaces to its
environment.

For modeling purposes Safeware suggests using SpecTRM-RL for describ-
ing the components. SpecTRM-RL is a modeling languege developed by
Safeware as a successor to RSML and is made to be closely integrated with
Intent Specification documents.

Level 4: Physical and logical function

At this level, the component design is described. This is the first level where
information about the physical and logical implementation is recorded. Not
all of this information may be traceable or linked to the upper levels, as
some implementation decisions are not dependent upon the intents. One
such decision may be the choice of graphics library classes.

There is still research going on for how the information from this level
may be utilized. One proposal is to keep copies of un-optimized code for use
in review, as this tends to be more understandable.

Depending on the system in question, this level may also include hard-
ware design specifications, manuals or other information regarding the envi-
ronment that may influence the design.

Level 5: Physical representation

This level contains a description of the implementation of the system, be it
hardware assembly, software and other components.

26



CHAPTER 5. DOCUMENTATION STRATEGIES 5.2. ASCE

5.2 ASCE

ASCE is is developed by Adelard|1] to support implementation of safety
critical systems. ASCE is used as short for both "The Assurance and Safety
Case Environment’ and "Adelard Safety Case Editor’. The latter is a soft-
ware tool used for developing safety cases'. To distinguish the tool from
the method, we have adopted the abbreviation ASCEd for the software tool.
ASCE is thus the methodology and environment for developing safety cases.
Adelard defines a safety case as A documented body of evidence that pro-
vides a convincing and valid argument that a system is adequately safe for
a given application in a given environment. A safety case provides a frame-
work for recording and using the results of hazard analyzes. Requirements
and decisions regarding the system safety are also collected. While e.g. a
FTA is performed on a system in a phase of development (though it may
be performed several times on different stages), the safety case evolves along
with the system.

This chapter provides a breakdown of the manual on Safety Case and
ASCAD that is provided by Adelard. Readers that want to use ASCE or
learn more are encouraged to read the manual, which may be found at [4].
The manual provides an extensive explanation of the ASCE methodology
that implements ASCAD, along with examples. A safety case is divided into
four phases?, which covers different stages of the development process. As
can be seen in figure 5.2 the four elements corresponds closely to the four
stages of RUP, making ASCE a good add-on for making RUP more safety
related. The elements are:

Preliminary Establishes the system and safety context. Corresponds to
the Inception phase of RUP.

Architectural Provides the first level of detail. This element finishes the
RUP Inception phase and Elaboration phase.

Implementation Provides arguments and evidence. Corresponds to the
Construction phase of RUP, including some parts of the Transition
phase.

L As ’safety case’ is the name of the method as well as the document resulting from
applying the method, we separate these by using upper case leading letters for the method
and all lower case for the document

2Although Adelard calls the parts elements, we use the term phase to make it easier to
see the correspondence between ASCE and RUP.
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Operation and installation Defines safety related operational, installa-
tion and maintenance procedures and requirements. Completes and
extends the RUP Transition phase.

A safety case is developed in the context of plants and machinery, e.g.
nuclear plants, medical devises, and air traffic control. These systems are
usually more complex than the systems that BUCS has in mind, and without
doubt more comprehensive. The only problem we get from this is to identify
what parts of the safety cases we should omit, while we gain a number of
benefits. One of the benefits is that the Safety Case includes what Adelard
calls Programmable Electronic System (PES), which in the BUCS context
will be the computer hardware. When feasible, inclusion of the hardware in
the safety case will lead to more business-safe systems as we can take into
account failures from these parts too.

The first section of this chapter will explain the principles of ASCAD.
The rest of the chapter will focus on Safety Case. This part will be divided
according to the elements, providing a brief introduction to each.

5.2.1 Claims-Arguments-Evidence

The Claims-Arguments-Evidence (ASCAD) is developed by Adelard [1] for
Safety Case. ASCAD is not a hazard analysis method, but a notation tech-
nique. It helps structuring the safety requirements and their implemen-
tation status. It also keeps track of the intentions behind decisions and
requirements, which may be helpful when testing and evaluating a system.

How to do ASCAD

ASCAD is developed in a top-down manner, starting with claims. For each
claim, one or more arguments are defined which supports the claim. In the
end, evidence shows that the arguments are correct, and therefore the claims

hold.

There are several types of claims, depending on the system and intention.
The claims are connected to attributes for the system, and whether an at-
tribute is considered to be relevant for the system depends on the developers
and customers of the system. Some example attributes are:

e Reliability (e.g. MTTF)
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e Response to internal failures

Fail-safety

Functional correctness

e Accuracy

When defining claims, the corresponding system attributes should also be
identified and quantified. Some attributes of a system are not safety-related,
and some safety issues may be resolved outside the software system. The
former may usually be noticed and left out of the safety case, while the latter
should be recorded in the same way as if they were resolved in the system.
This is needed to hold on to the practice of recording all safety decisions and
intents, in case something has to be changed later on.

ASCAD usually operates with three forms of arguments, depending on
consequences of the claim failing and the effort needed to avoid the hazard.
The three forms are:

Fault elimination Get rid of the hazard altogether.

Failure containment Lessen the impact of the failure, or at least make it
happen more seldom.

Failure rate estimation Estimate the failure rate and reduce it to accept-
able level.

The form of argument used will influence the further work on the model.
If failure containment arguments are used, the system must be analyzed with
this in mind. That means taking into accord not only the probabilities of
failure happening, but also the probability of the failure breaking through
the containment.

Though the arguments are mentioned before the evidence in this overview,
they are not necessarily identified in this order. When stating the arguments,
it is helpful to have at least some idea of what evidence may be available,
and where it is expected to come from. Evidence is found in a variety of
sources, with the following being the most common:

e The design.

e The development processes.
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e Experience from simulations.

e Prior field experience.

To save time and effort, evidence from design and prior experience are
the most valuable since this makes the developers able to make changes early
in the process.

Depending on the level of the safety case, and the available information,
evidence takes on one of three forms. Facts will support the claim as valid
as long as the corresponding argument is used. At the system level, claims
and arguments should not change much, while there may be changes to the
chain at lower levels depending on design choises. An argument should be
a fact, but an assumption may be necessary if no facts can be found, but
the argument is believed to hold. Ideally, all assumptions should be backed
by another piece of evidence to the argument, or be replaced by facts as the
process moves forward. The last type of evidence is sub-claims. Sub-claims
are used to build hierarchies of detail levels. When using a sub-claim for
evidence, it is crucial that the chain is linked to the next level. If not, it is
a risk that top-level claims are believed to be valid, though the lower level
corresponding arguments are false.

Results

The result of using ASCAD will be a chain of claims, arguments, and evi-
dence, providing control of safety issues. When used in a Safety Case, you
will have a complete collection of documents with requirements, intentions,
hazard analysis results, design decisions, and so forth. According to Adelard,
an ASCAD document is not finished before the system is made obsolete. It
should be growing and evolving together with the system, reflecting later
changes or new versions.

5.2.2 Preliminary Safety Case element

This element defines the structure and range of the safety case. This includes
the phase of the project lifecycle and the safety requirements and attributes.
Depending on the project, the preliminary element may vary from organizing
existing documentation to requiring new analysis. In all cases, the following
should be done:

1. Define the system and equipment that a safety case is being developed
for and assess existing information about the project.
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2. Select relevant attributes and define safety requirements as claims from
the attributes.

3. Provide traceability to system and other sub-system safety cases.

4. Establish project constraints on design options and availability of evi-
dence.

5. Assess potential long term changes to the safety case context.

In many ways, this corresponds to the targets of the inception phase of
RUP. The preliminary element is mostly consisting of defining and estab-
lishing the boundaries for the further work on the safety case. By starting
to define the requirements and claims it also sets the path which the safety
implementation of the project will follow.

5.2.3 Architectural Safety Case element

This element adds the first level of detail to the safety case. The aim of the
element is to establish safety requirements and evaluate design options based
on the information found in the preliminary element. The element also uses
the results of earlier hazard analyzes to decide on design strategies. When
the element is completed, the following tasks should have been performed,
and the results added to the safety case:

1. Establishment of the safety requirements either by importing the Pre-
liminary safety case and/or repeating it for changes that have occurred.

2. Evaluation of design options or existing features to assess their rele-
vance to the safety case’s claims and attributes.

3. Adoption of a design for the assessment approach to develop a solution
for each safety attribute claim.

4. Elaboration of the evidence to show that the claim is met and definition
of the evidence that is required to be collected.

5. Identification of the requirements that will be passed onto subsystems
to implement the architectural requirements.

6. Undertaking of a hazard assessment to identify any additional Hazard
arising from: random failure, systematic faults or human errors in
operations and maintenance.
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Attribute: Functional Behaviour
Claim Design Features Assumption/Evidence | Subsystem
From the Preliminary Needed evidence Requirements
element (assumption), or For documentation
present evidence used | and tracing of
to substantiate the evidence
claim

Figure 5.3: The attribute table

7. Assessment of any additional hazard introduced by the subsystem to
ensure that they are acceptable in the context of the overall safety case.

To help in the development of the element, and the entire safety case, a
table should be used for each attribute. The development of the Architectural
element may then be seen as the progressive completion of this table. Figure
5.3 shows an example outline for the table. The next sections will provide
possible strategies for completing the fields of this table.

Claim

The information of this field is mostly found in the Preliminary Safety Case
element, but claims may also be added as the Architectural element is de-
veloped. In the latter case, a new iteration of the Architectural element is
necessary to complete all fields for the new entry.

Design Features

The general design approach advocated in Safety Case is design for assess-
ment. This implies that the safety system and Safety Case arguments are
designed in parallel, which should us to help exclude unsuitable designs and
contribute to more realistic trade-offs. In addition to software errors, the
design should take into account hardware failure, design flaws and human
errors.

Since not all systems benefit from the same design strategies, it is hard to
decide upon one design strategy to be followed for all systems using Safety
Case. The ASCE manual therefore suggest three general design strategies:
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KISS (Keep It Simple Stupid) Making a system simple is usually much
harder than making it complicated, but a simple system has many
benefits, including reduced costs, improved understanding of the system
and the safety case, and reduced risks of delay. Focusing on simplicity
early in the process makes the task easier and gives more opportunities
to make design choices emphasizing simplicity.

Partitioning according to criticality Dividing the system based on the
criticality of the components is used to minimize design complexity. It
also makes it easier to allocate resources during development.

Avoidance of novelty Reusing components and/or using established com-
ponents (including COTS) can reduce the need for providing new evi-
dence to support arguments.

Assumptions and evidence

If there is evidence already available, this is used to support a preliminary
argument which shows why the candidate designs satisfy the safety related
requirements. Available evidence is usually found in:

Hazard analysis results.

e Human Error Analysis results. ([13])
e Probabilistic design assessments.

e Qualitative design assessment studies.

e Resource estimates for the implementation and the associated safety
case.

e Prior evidence about specific design techniques.
e Independent certification.
e Experience from existing systems in field operations.
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Subsystem Requirements

This early in the development stage, evidence will almost inevitably be lack-
ing for some of the arguments. This leads to assumptions being made about
the design. These assumptions will have to be verified at later stages. In
addition is it necessary to start planning for the life of the system after the
development is finished. To complete these two tasks, is it necessary to iden-
tify the following requirements:

e Requirements for additional Safety Case evidence to be produced dur-
ing the development project.

e Requirements for the long-term maintenance and operation of the equip-
ment.

e Requirements for the long-term safety case maintenance.

Other parts of the Architectural element

In addition to the information used to fill in the table, the Architectural el-
ement contains a few more parts. The process of choosing a suitable system
architecture and safety case should begin. There can be many possible argu-
ments and architectures that meet the safety requirements, and the choices
will affect subsystem requirements. To help in choosing an architecture,
suitable design options should be identified and preliminary safety cases be
developed for each option.

When a design option is identified and a preliminary safety case is drafted,
both are reviewed to see if they satisfy the design properties. Among the
properties to be evaluated are:

e Do the design implement the safety functions and attributes?

Are the design criteria of the preliminary element satisfied?

Is the design feasible?

Are the associated safety arguments credible?

Is the approach cost-effective?
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Long term risks to safety and other life time properties should also be
considered.

Finally, after choosing a design, the design and Safety Case argument
should be reviewed and a hazard assessment should be performed. Using
methods like HAZOP, the developers should identify hazards arising from
random failure, systematic faults and human errors. It is also important to
assess hazard introduced by subsystems to confirm that they do not contra-
dict the safety requirements of the overall safety case. For final approval of
the design and safety case, all stakeholders should be involved.

5.2.4 Implementation Safety Case element

This element completes the arguments and evidence to support the safety
claims. The main concerns of the previous elements are to identify the ev-
idence needed, even though they may also provide some evidence in the
process. The main effort of gathering the evidence needed is located to the
Implementation element, during both implementation and testing. The task
of developing the Implementation element aims to:

1. Establish the component safety requirements, either by importing them
from a Preliminary safety case and/or by activities specific to this case.

2. Elaborate the evidence to show that the claims are met.

3. Document the results and provide traceability to the appropriate Pre-
liminary and Architectural Safety Case elements.

Evidence takes on many forms, and what sort of evidence is used depends
on the system, the claim and arguments in question, design strategies and
choices, together with other factors. Evidence is mostly found in validation
and verification, testing, and analysis activities. The evidence itself can be a
combination of:

e Design features and supporting analyzes.
e Process features and results of the process.

e Experience from previous projects or simulations.
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As each Implementation element is completed, supportive evidence for
all the components safety claim shall be documented. The subsystem safety
cases are then integrated to an overall system safety case. During this inte-
gration, evidence may have to be found to support multi-component claims,
and claims regarding the cooperation of components. The complete system
safety case should contain evidence that:

e The design features, V&V and safety analysis demonstrate that the
required attributes were implemented.

e All sub-contracted components have been implemented according to
specification and implement their required attributes.

e All deviations are documented, and their impact has been analyzed
and justified.

As the Implementation element nears completion, so does the attribute-
claim-evidence table. It is important to remember that evidence contradict-
ing or undermining a claim should also be recorded. Such evidence may lead
to changes in the design, after which the record is revisited and updated.

As for the previous elements, a Hazard assessment and review must take
place before concluding the element. The safety case is at this point usually
reviewed bottom up, starting with acceptance of the subsystems implementa-
tion and safety cases, and then their consistency to the systems safety case.
The system safety case is then reviewed to make sure that it is complete
and consistent and that all identified hazard have been tracked and resolved.
Finally, the system support infrastructure is identified, including:

e A supporting document set.
e System operations and maintenance requirements.
e Technical resources.

e Safety case maintenance infrastructure.

5.2.5 Operation and Installation Safety Case element

Much of this element is addressed in the earlier elements, as they all look into
operational, maintenance and installation aspects of the system. The main
task of this element is to complete the plans for these aspects by collecting
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and organizing the information found in previous elements, and add any
missing or changed information. It is also necessary to define requirements
and instructions regarding aspects that the developers are not competent to
define. This may include training requirements for operators, user permits
and other issues demanding knowledge of the wider system and environment.

It is also part of the element to confirm the support infrastructure identi-
fied in the Implementation element. As the safety case must remain alive for
the entire lifespan of the system, this element is formally not concluded until
the system is discarded. Changes to the system, environments and require-
ments should be reflected in the safety case and acted upon by performing
the corresponding activities.
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Tools

This section will discuss two software tools that we consider suitable to help
us in our study. These are ASCEd' from Adelard [1], and SpecTRM from
Safeware Engineering Corporation [5]. As this discussion is based mostly on
the presentation of the tools from their makers, we need to take a closer look
at each to decide which, if any, should be used. The section will first present
each of the tools. We will then do a comparison and based on this we will
decide if we will use any of the tools.

6.1 ASCEd

ASCEd has recently been released in version 3.0. It is a plug-in architecture
supporting a variety of notations used in hazard analyzes and safety planning.
The default notations are Goal Structuring Notation (GSN) and Claims-
Arguments-Evidence (ASCAD). Other notations include Why-Because Analy-
sis and Goal Question Metrics (GQM). The extra functionality comes in one
of two forms; notations are usually based on XML and called schemas, while
plug-ins enhances the functionality in other ways. The additional plug-ins
and schemas are available for downloading from [5].

The ASCEd provides a graphical structure combined with narrative hy-
pertext, making it easy to link nodes to additional information. For ASCAD
the tool will link the Evidence to the Arguments, giving a simple and under-
standable picture of the analysis. For printing and sharing, ASCEd includes

!The correct name is ASCE, but as we explained in 5.2 we use the term ASCEd to
avoid confusions.
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several report generation tools that presents the analysis in doc or html for-
mat. ASCEd also includes a tool that can be used to compare two networks
for structural and content differences.

The interface of ASCEd is simple, and provides a good overview of your
networks. To improve workability and control, ASCEd provides the oppor-
tunity to work with your network in several views. This gives you the choice
of only seeing some nodes, and not the entire network. This functionality is
also used for subnetworks. You may also watch your network as a table.

6.2 SpecTRM

SpecTRM (Specification Toolkit and Requirements Methodology) is a tool
from Safeware Engineering Corporation (Safeware) [5] that implements their
software safety method, the Intent Specification. Using SpecTRM is sup-
posed to help discovering safety issues early in the development cycle so
that costs and efforts of resolving these are minimized.

The SpecTRM tool is built using the Eclipse framework, which provides
a familiar interface. Using the Eclipse architecture also opens up for writing
more plug-ins that can enhance the SpecTRM and customize it for other
needs. Nancy G. Leveson’s paper on Intent Specifications [10] suggests a
number of possible enhances to the Intent Specification. Some of these may
lead to the need for additional functionality in SpecTRM. By using Eclipse,
such functionality may be added without having to change the original tool.

Along with the Intent Specification, Safeware has developed some tech-
niques. This includes the SpecTRM-RL, which is a modeling language made
for use with Intent Specification, and that is supported in the SpecTRM tool.

At first glance, SpecTRM provides only a template for Intent Specification
documents consisting of an outline of the specification and functionality like
the ability to create links between the levels. It should be possible to simply
work your way through the outline, just copying the sections when you use
more components, and in the end you have a complete Intent Specification
document. At this point, SpecTRM enables you to visualize your system in
several views that is intended to improve your understanding of the system.
There are also functions for running simulations of the system to evaluate
whether all safety requirements are taken care of. Finally, SpecTRM provides
tools for robustness and determinism analysis of your specification.
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Today’s practice

This chapter will look at how business-critical systems are developed
today, starting with whether it is any established practice or not. In the
latter case we will look at the basic RUP methodology and what it is missing
for the business-critical needs to be fulfilled. We will base our discussion upon
the results from [17], in which a selection of Norwegian companies explains
their standings when developing business-critical software.

As the answers from different companies on most questions are similar, the
survey seems to provide good insight into what the problems are of today’s
methodologies when developing business-critical software.

Most of the companies use RUP or parts thereof when developing
business-critical software. As using RUP in many cases is a requirement
from the customers, developing our method based on RUP seems to be a
good decision. In this way, many of the users will already be familiar with
the terms of the method. Of the developer companies that do make soft-
ware that is not business-critical, most use the same methods for all kinds
of software, the difference, if any, being that they are more careful when
developing business-critical systems. Again, basing our work on RUP will
hopefully provide an environment suitable for all kinds of software, while at
the same time taking care of any special needs for business-criticalsystems.

According to the interviews, communication is a common problem along
with integration. Some of the communication problems stem from changes
in the customers organization and that the developers need to work along
with different groups from the customer. Differences in methodology and
knowledge are also leading to troubled communication in addition to being
a problem in its own right.
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To structure our discussion and making it easy to use in our further work,
we will divide this chapter according to the phases of developing software as
depicted in [19]|. The translation from this model to RUP is straightforward,
as the activities are more or less the same, but have different names.

7.1 Requirements Engineering

For some projects, this may actually be the second phase. Projects develop-
ing new software for the market will have a pre-study phase to gather and
analyze information. The results may be used in deciding whether to go on
or cancel the project, or as a basis when developing the requirements.

For business-critical software, this is an important phase. It takes struc-
tured and good communication between customer and developer to get the
requirements right. According to the answers in [17] this phase is conducted
in various ways. Some of the developers use some method or another, but
not consistently and often just parts thereof.

This phase should also include hazard analyzes - at least a PHA should
be conducted to bring forth as many hazards as possible early in the de-
velopment process. Whether the requirement is coming from the customer
or from a hazard analysis result; the intent and reason for the requirement
should be documented. If this is not done, requirements may be incorrectly
implemented. This is especially a danger when it comes to requirements that
are only indirectly implemented, such as .

To ensure that all the requirements made are being implemented, test
planning should start already in this phase. It is usually easier to write the
test while the backgrounds for the requirements are still fresh in mind, but
the test plan also contains useful information for later phases.

7.2 Design

When the requirements are finished, it is time to start working on building
the system. There is a lot of design methods available, with different pros
and cons. Most of the companies in [17] use elements from UML, often use-
cases. Use-cases is also the preferred method in RUP. From the interviews,
only one of the companies is using any hazard analysis methods. All of the
companies are mostly concerned with the functionality of the product, as is
many of the customers.
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Again, an important part of this phase is to do a hazard analysis. This
is the last phase were changes can be introduced at a low cost, while at the
same time the system is developed enough to get a clear picture of both
functionality and solutions.

7.3 Implementation

Ideally, all hazards should be discovered and resolved by the start of this
phase. While not giving any guarantees for the results, at least this increases
the possibility of the final system being safe and valid. The interviews in
[17] does not put any emphasis on how the developers organize this phase.
On the other hand, most development methods are more concerned with the
final structure of the code, and do not put much emphasis on how it is made.
Different programming languages also demand different approaches.

7.4 Testing

For business-critical software, this is another crucial phase. As mentioned
before, some requirements may be only indirectly implemented, and these
are easily overlooked if the testers are mostly concerned with making sure
that the application runs smoothly. It is not clear from [17] if the developers
have any routines for how to test, but according to the methods they are
using, we assume that there are no special precautions taken for testing
business-critical software compared to other software.
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RUP 1in BUsiness-Critical
Software

In this chapter we will discuss how the presented analysis and documentation
methods may contribute to making RUP more suited for business-critical
software, particulary with regard to the use of barriers. The discussion will
lead to a suggestion of which methods to use, and how to use them.

We will begin the discussion with some general issues, after which we
will organize the chapter according to the RUP phases. If a method span
several phases it will be divided so that the relevant parts are covered within
each phase. In case such a dividing is unfeasible, the method will be fully
discussed when first encountered.

8.1 General

This discussion does not attempt to cover all possible methods that could be
used for customizing a development strategy for business-critical software.
The reasons for this are many, the main reasons being time constraints and
knowledge, along with the numbers of more or less well known methods to
choose from.

When it comes to using RUP, this was not a choice for us to make,
as RUP was already decided to be the method on which to build BUCS.
According to the interviews made early in the BUCS project, most developers
are already using some version of RUP. This is not only a decision made by
the developers, but also in some cases a requirement from the customers.
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The use of RUP also puts some strong suggestions to what hazard analysis
methods we are going to include.

The hazard analysis used for RUP are well known methods, and comple-
ment each other well. Using the same methods for both project and product
hazards lowers the costs and effort needed for schooling analysts. As we later
discovered, our techniques for safety development also advocated methods

that are present in our selection. Based on this, we find that our selection
will satisfy the needs of BUCS.

For recording and control purposes we chose to consider Intent Specifica-
tion/SpecTRM and ASCAD based upon recommendations and availability.
These methods cover the entire process, so we will discuss the relevant parts
in each phase.

8.2 The Inception Phase

As we explained in the RUP overview (3.1), the Inception phase (3.1.1) is
aiming at deciding whether the project is worth running, while the product
is kept at a conceptual level. RUP uses this phase to establish a business
case, evaluating if the proposed product and project meets the stakeholders’
business requirements. The phase should also establish the project’s scope
and boundaries, and begin to develop system use-cases.

Though we only have a conceptual design of the product, it is already
time to start looking at the safety aspects. In [2] the following artifacts are
identified as safety related:

e Requirements, leading to a System Test Plan
e Identification of key functionality

e Proposals for possible solutions

At this stage of development, PHA (4.1) is the advocated hazard analysis
method. The information available is not sufficient to run a complete HAZOP
or FMEA, but a PHA will be able to provide valuable input to the hazard
records. Neither the analyzers nor other stakeholders should make decisions
on how to avoid the discovered hazards at this point. Without any designs
there is no way to know the best strategies, except in general ways. The
results should, however, be used when making and chosing between design

45



8.2. INCEPTION CHAPTER 8. RUP-BUCS

options, as many hazard are depending on specific designs or manners of
operation.

The Intent Specification is not contributing much in this phase. The
uppermost level, System Purposes (5.1.1), is not concerned with the process
attributes, but some of the concept information can be filled in. Except from
this, the work on the Intent Specification document will begin as we move
on to the Elaboration phase.

Using ASCE, we will work on the Preliminary phase of ASCE (5.2.2).
Like the Inception phase of RUP, the Preliminary element is concerned with
concepts. We start defining system limitations and boundaries, along with
constraints on design options. In [2], it is proposed that BUCS should com-
bine the Preliminary element and the Inception phase. They state that one
of the characteristics of the Inception phase is to "Establish safety require-
ments". While this implies the need for hazard analyzes to complete the
element, we do not think that these analyzes should take place in the Incep-
tion phase. Rather, we think that the Preliminary element should span both
the Inception phase and the Elaboration phase to maximize the synergies
for the hazard analyzes. Using the candidate architecture developed in the
Inception phase of RUP we will be able to identify the safety attributes of
the system. We should then develop the system safety requirements at the
start of the Elaboration phase as we are baselining the architecture. In A.2
we show a PHA table, and demonstrates how the first claims are added to
the safety case.

Since RUP aims at developing at least one candidate architecture in the
Inception phase, completing the Preliminary element in this phase requires
near to complete requirements specifications for each candidate. We think
this is a waste of time that is better spent in the Elaboration phase. We also
want to make a point of that HAZOP and FMECA are usually performed in
the Elaboration phase for RUP. By letting the project and product hazard
analyzes run together, we believe that the analyzes will be better able to
learn from each other and discovering interconnected hazard.

If there is available information on the PES on which the system will run,
this is a good time to start looking into what requirements may be needed
for this. The PES may also add constraints to the software system.
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8.3 The Elaboration Phase

According to our presentation in 3.1.2, this is the design phase of RUP.
Though it is still possible to cancel the project, by now we should have control
of most aspects except design problems. As we start developing design ideas,
we will get more information about both the product and the process. This
information can be used to classify the hazards from the PHA during the
Inception phase. Though some hazard may not be present in some designs,
they should not be removed from the records, as later design changes may
reintroduce the Hazards. It is also a possibility that the hazard may return
as a result of maintenance or upgrading of the system.

For both project safety and product safety, this phase is important. As
we begin developing the details of the system, we also identify the information
needed for running more concrete hazard analyzes. Using HAZOP (4.3)
and FMECA (4.2) provides complementary results that cover almost every
failure that can be discovered using the information available, and also gives
much information about the causes. Information from the hazard analyzes,
including the PHA from the Inception phase, should be used to decide what
design options to explore. The hazard analysis results are also used when
we make decisions and trade-offs between the designs. hazards discovered
at this time are normally handled at much lower costs now than during
implementation. Part A.3 of the appendix demonstrates the use of HAZOP
and FMECA as complementary analyzes, and also the use of the analyzes
after the hazards discovered during the first iteration are included in the
design.

After changing the design according to the hazard analysis results, a
new iteration of hazard analysis should be performed to make sure that
no additional hazards has been introduced. If several design options are
explored, hazard analyzes may be performed at different levels of detail to
help choose between the options. A FTA (4.4) is also useful, as this is
more aware of the causes behind hazards and failures. According to the
hazard handling strategy of BUCS, the design options should aim to avoid
the hazards. If barriers are necessary, this is the best place in the development
cycle to include them. As always, documentation is crucial.

Even though the test phase is a long way ahead, a system test plan should
already be in place. When decisions are made to avoid hazards, suitable tests
for the hazard should be developed at the same time. This is important for
hazards that are believed to be avoided, and crucial if a barrier is used. Along
with the test description, we should record the reason for the test. Linking
to the Hazard in question can also prove helpful if the test uncovers any
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problems. An example testplan is developed throughout the demonstration
process of appendix A, starting out with little detail and then filling in the
test as we design the system.

The Elaboration phase fills level 2-4 in the Intent Specification document.
By getting gradually more specific, we are in control of the system and it is
easy to make necessary changes. In RUP, use-cases are used to describe the
system. Intent Specification uses SpecTRM-RL, a language developed by
Safeware. While this language fits neatly into the Intent Specification, and
also is supported in SpecTRM, it is a drawback that it is not commonly
used in the industry. Mixing modeling languages may lead to errors when
information is to be exchanged between models using different languages.

When linking tests, hazard handling and the hazard, the intent idea is
useful. One of the main ideas behind the Intent Specification is to create
a connection from the intent to the solution. Safeware believes that this
connection leads to better understanding of the system and the decisions
made as the system is developed. For BUCS, Intent Specification is thus
helping to ensure that all hazards that can be avoided really are avoided.

ASCE does not put much emphasis into one modeling language or an-
other. A model is not part of the Claims-Arguments-Evidence chain, but is
linked to provide information. This gives the developers more freedom to use
whatever modeling languages fits the system best, and that they are most
familiar with. As RUP is advocating use-cases, it is feasible that use-cases
may be easily fitted into the recording scheme.

The Elaboration phase will finish the Preliminary Safety Case element
and the Architectural Safety Case element. The Preliminary element will
then contain the system properties and attributes that lies behind the sys-
tem claims. The claims are then transformed into requirements that are used
to develop design options in the Architectural element. The Architectural
element aims to identify arguments that supports the system claims, along
with the evidence needed. Using the hazard analyzes results and the require-
ments, ASCE helps both exploring design options and creating test plans.
Developing claims and requirements for subsystems also takes place in the
Architectural element. This because the subsystems are not identified till
exploration of design options has started.
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8.4 The Construction phase

As we explain in the RUP chapter (3.1.3), this is the largest phase in RUP.
By this time all hazards should be discovered and a plan for handling them
has been developed. Discovering new hazards at this time will usually lead
to a costly task of resolving them.

Neither RUP nor we put much emphasis into how the implementation is
conducted. In the Intent Specification document, the implementation makes
up the fifth level, Physical Representation (5.1.1). As we explained in our
chapter on Intent Specification (5.1.1), the level consists merely of the im-
plementation.

The Implementation Safety Case element adds completion of the Claim-
Arguments-Evidence table to the tasks of the phase. Some of the evidence
needed to support the arguments are found in the implementation itself,
but for safety issues, most evidence will stem from the testing. Developers
should be cautioned that most hazard handling strategies are not completed
until the testing has proven that the hazard is handled according to the
requirements. To complete the element, and thereby the Construction phase
in our proposal, all claims about the system must have been provided with
evidence. The only arguments which may still be unresolved are concerning
lifecycle and maintenance of the system, these will be addressed in the next
phase.

Though the element does not directly address how the system is imple-
mented, the organization of the safety cases makes some suggestions. As the
safety cases are recommended to be completed bottom-up, the same strat-
egy should be followed for the implementation to keep the work on both
in parallel, meaning that the subsystems and their components are to be
implemented first.

8.5 The Transition phase

While RUP mainly uses this phase to deliver the product to the customers/users
(3.1.4), this is also the right place for the Operation and Installation Safety
Case element (5.2.5). Planning the installation and maintenance of a system
requires close contact with the customers and the maintenance team. The
Safety Case element also includes planning for user training and other aspects
demanding a broader knowledge of the system than what the developer team
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possesses. In the Intent Specification, this phase is mentioned, but it does
not contain any specifics for how it is to be performed.

Whether a new generation of the system is planned or not, it will usually
be necessary to develop upgrades and patches. Feedback from customers and
users may also lead to changes in the system. When designing and imple-
menting these changes it is crucial to consult the hazard records. In many
cases, new hazard analyzes are also necessary to ensure that the changes does
not introduce new hazards. In [10| these challenges are addressed as areas
that needs new methodologies, proposing Intent Specification as a framework
for including the required information.

The Safety Case element is, as the name suggests, addressing both the
transition and the follow-up of the system after delivery. While much of
the information and parts of the Claims-Arguments-Evidence chain for the
systems life span is provided from the previous Safety Case elements, there
are still the need for organizing and completing this work. The element
provides requirements for the support infrastructure, both for the product
and the safety cases. Without neglecting the importance of this phase, our
demonstration does not provide much details for this phase as this is very
dependent upon the system, the developer - customer - user relationship, and
the manner in which the system is developed. We still mention the phase in
our appendix, A.5.
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Barrier Conservation

Even if it might seem to be forgotten earlier in this report, the primary
concern of our work has been how to make sure that the barriers needed
in a system are implemented. However, we would not be able to propose
any solutions to this without having a process to start from. Without a
process, our recommendation would have sounded something like document
and test all barrier requirements. By outlining a process and suggesting
analysis methods, we are able to extend and deepen this recommendation
into something useful.

When introducing barriers, the reasons for the barriers may vary. The
most common source is hazard analysis results. Still, the decision of using
barriers to prevent a hazard should lie in the hands of the designers. We
do not recommend that the analyzers include recommendations of how to
handle the hazards except on special occasions. As for what hazard analysis
methods to use, we do not find big differences between the methods in the

context of barriers. To discover as many hazards as possible, we recommend
to use complementary methods, like HAZOP and FMECA.

As we have stated several times, one of the most important tasks when
dealing with safety is to record everything. This also goes for barriers. Each
decision of using a barrier should be linked to the hazard it aims to prevent,
the reason for using a barrier, and for using this particular barrier, to avoid
the hazard, the design used for the barrier, and the test plan for the barrier.
This documentation and linking should be easy to read and understand, in
addition to include all necessary information on each part.

In this report we have looked into two proposals for recording our safety
concerns, the Intent Specification and ASCE. Both of these methodologies
are developed with safety in mind, but primarily in the classic meaning of
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the term. However, there is little customization needed for using them for
business-safety. Whether one is using Intent Specification or Safety Case,
it is mostly a matter of omitting some parts which are not needed. This
includes environmental dangers, which are handled in ordinary safety devel-
opment.

The difference between the Intent Specification and ASCE is more than
only a choice between two toolkits, it is a choice between two different meth-
ods. The Intent Specification is more or less built from scratch based on re-
search and techniques that has not been much used in software engineering.
According to [10], Intent Specification is tailored to how humans think and
reason to a greater extent than traditional methods. Using principles of cog-
nitive psychology along with system engineering theory, Intent Specification
is designed to enhance human processing and problem solving, to integrate
formal and informal aspects of software development, and to enhance our
ability to engineer for quality and to build evolvable and changeable systems.
To document and conserve a barrier, the Intent Specification will focus on
recording the intent behind the barrier and link this to the design containing
the barrier.

The Intent Specification does not contain dedicated sections for test re-
sults, which can be a problem. Even the most perfectly programmed barrier
is no good if it does not avoid the relevant hazard. Documenting the results
of testing the barrier and linking this to the other records concerning this
barrier is necessary to be able to validate that all hazards are handled as
planned.

In ASCE, a hazard or, more correctly, a hazard avoidance requirement will
be introduced as a claim. Connected to this claim should be a record of the
hazard. This record may be just a pointer to the appropriate hazard analysis
table, or it may be more detailed if such details exists. If the stakeholders
decide upon the use of a barrier to avoid this hazard, that decision will be an
argument for the claim. The argument should link to a document explaining
why it was decided to use a barrier to avoid this hazard, and how this barrier
is intended to work. Finally, the testing will provide the evidence that the
barrier has been implemented and is working properly.

If, on later iterations or during maintenance, changes are made to the
implementation of the barrier, or the design containing the barrier, the claim-
argument chain has to be updated. Changes to the design will require new
hazard analyzes, and eventually introduction of new barriers. Every time
a decision leads to a change of the claim or argument, it is also necessary
to reconstruct the other parts of the chain to make sure that the claim still
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holds. We believe that the ASCE contains the necessary tools to do this in
a simple, but powerful manner, thereby providing the means for developing
"business-safer" software.
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Chapter 10

Conclusion

10.1 Choice of tools

Like all other hazard decisions, it is important to record information and
decisions concerning the use of barriers to avoid hazards. Based on our pre-
vious work, we find that ASCE provides the best means of making sure that
any needed barriers are properly implemented. While the Intent Specifica-
tion seems to be a more complete tool than ASCE, it relies heavily on using
its own methods. This leads to a demand for more training and learning of
new techniques than what is necessary for ASCE.

We want our proposal to fit into a developers practice with as little ado
as possible. ASCE mostly provides a new way of recording and organizing
information, which in many cases is the most efficient way of ensuring barrier
conservation. ASCE also gives more attention to the maintenance work of a
project.

When choosing between ASCE and Intent Specification it is also nec-
essary to consider the application tools used for the methods. The Intent
Specification is bundled with SpecTRM, which is a template for the Intent
Specification document. It comes with some nice functionality, including
abilities for simulating the Intent Specification . Once again, the problem
is that SpecTRM is made for Intent Specification alone and provides little
support for other methods.

ASCEd, which is used to support ASCE is a supporting tool for organizing
and controlling the development. Instead of containing the entire safety case
it is used to make the Safety Case chains, and hyperlinking to the Safety
Case documents. ASCEd is also supporting other notations, among them
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GQM and Goal Structuring Notation. ASCEd’s ability to generate reports
is also important.

The Intent Specification s use of links to enable tracing the levels in an
efficient manner is making the specifications easier to read, but a complete
Intent Specification document is nonetheless a large document. An example
is mentioned in [10] and consists of more than 600 pages. The Safety Case
is containing the same amount of documentation as the Intent Specification
, but does not organize it within one document. As systems grow large and
more information is needed, the safety cases linking strategy is better than
the organization of an Intent Specification document.

That BUCS is using RUP as their process framework is also making
ASCE more suitable than Intent Specification . The four elements of Safety
Case fits nicely together with the four phases of RUP, making the result more
streamlined. ASCE can make use of several modeling languages for a system.
This is also an advantage since RUP is so associated with use-cases.

Last, but not least, we think that ASCE is better at handling the use of
barriers for our purpose. One of the most important aspects of barrier im-
plementation in our proposal is to make sure that the barriers are preventing
the right hazard. The best way to validate this is through testing, and we
find that ASCE includes the test results better than the Intent Specification

10.2 Using ASCE for barrier conservation

We have previously discussed how ASCE and Intent Specification can be used
to help us ensuring that barriers are implemented as intended, see chapter 9,
in which we concluded that ASCE is the best approach to barrier conservation
in BUCS. Though we find that a complete manual for using ASCE in BUCS
will be far beyond the scope of this report, we will give a summary of our
work and discussions to show how ASCE can be included in RUP.

In our section on integrating ASCE in RUP (chapter 8) we state that
we disagree with the authors of [2] when it comes to where the Safety Case
elements are developed. When working with barriers, it is possible to choose
either of the proposals. A development team should never decide to use a
barrier till their system is designed. A barrier should be the last resort for
avoiding a hazardous state. It is far better to remove the state from the
system, so that it cannot be reached at all. Only in those cases where this is
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impossible or highly unfeasible should barriers be used, and then only with
outmost care.

The first step towards implementing a barrier is taken before the decision
of using a barrier is made. After a hazard analysis, the hazards should
be converted into claims for the system. Or, to be precise, the avoidance
of the hazard should be introduced as a claim. As the claims turn into
requirements for the system, the designers will have to develop solutions for
satisfying the requirements. As mentioned above, many solutions are better
than introducing barriers, but in cases where a barrier is needed, this decision
is linked to the relevant claim(s) as an argument. The argument should
clearly state why proving this claim will satisfy the requirement. Along with
the argument we should also decide what evidence is necessary. When using
barriers, this evidence will usually have to be one or more tests.

The test should, at least, be outlined at the same time as the barrier is
designed, and it is crucial that a passed test leads to the requirement being
satisfied. The best strategy is to have the test designed before the barrier,
at the same time as the decision on using a barrier is made. This will ensure
that the test fits the requirement, and not the barrier design. If the test is
designed to make sure that the design of the barrier is safe, a faulty barrier
may be considered valid.

A completed test will provide evidence that the barrier functions properly.
The documentation should include a description of the test, preferably also
why the test was designed the way it was, the test results and any comments
on the test. This makes it easier to replicate the test, in addition to providing
valuable information for fixing the barrier if the test fails. If the barrier design
is about to change, it can be valuable to know if the test discovered properties
of the barrier that may cause problems to a change.

10.3 Further Work

We hope that this report is providing a framework for the use of barriers
in BUCS, and in addition a platform for the fusion of RUP and ASCE.
In our work we have focused on the principles behind BUCS, RUP, and our
suggested methods, and there is much work remaining before BUCS becomes
a fully useable methodology.

It is our intention that the information upon which we have built our
discussions and drawn our conclusions provides enough details so that it will
be possible to propose enhancements and improvements to our suggestions.
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Anyway, it is necessary to develop the methodology in more details and fine
tune the somewhat raw outline that we have developed.
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Appendix A

Demonstration of concept

This chapter will provide an example of the concepts described in our report,
using the methodology from chapter 8. To do this, we select a few parts of a
system that we follow throughout the development process, showing how we
think the ASCE methods should be merged with RUP. Our example system
is not safety critical in the traditional meaning of safety, except for the
possibility of people suffering from depressions due to huge budget overruns.
On the other hand, the business-safety aspects of the system are clear.
Any fails in the development of the system may lead to huge losses for the
customer.

A.1 Conceptual description

Our system is used for handling orders in a mail-order store. The store has a
number of expensive items, leading to some orders being very profitable. To
encourage customers and gaining an advantage in the market, large orders
and regular customers receive a discount on their order. Depending on the
size of the discount, an additional confirmation may be needed before the
discount is subtracted from the invoice.

A.2 Inception phase

During the Inception phase, the developers meets with the representees of the
store to evaluate whether this system can be developed within the proposed
budget, according to the rules of RUP.
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APPENDIX A. DEMONSTRATION

A.2. INCEPTION

Hazard Cause Main Effect Preventive  Ac-
tion

Erroneous Misreading/ The order or bill | Double checking

punching punching failure | may be wrong routines

Wrong discount | Wrong calcula- | The customer re- | High  discounts

inserted tion ceives a too high | are to be ap-
or too low dis- | proved by
count supervisor

Table A.1: The PHA Table

The developers and store representees are also performing a PHA based
on the concept description to uncover possible hazards that needs to be
taken care of in the system. Table A.1 shows an excerpt of the PHA result
table, with some possible hazards. Even though we only have a conceptual
description it is already possible to list a number of hazards.

One of the hazards that is likely to show up during the PHA for this
system is the possibility of entering a wrong value when entering orders into
the system. This may be too many or too few items, wrong prices or a wrong
discount. Many of these errors are difficult to avoid using software, though
the order may be checked for reasonability. Mostly this has to be dealt with
by creating good manual routines.

Using the results of the PHA, we start to define the first requirements
for the system. At this stage, many requirements will be qualitative and
stating wanted or unwanted attributes of the system. These requirements
are included in the ASCAD as claims, giving us the first blocks of the safety
case. Based on the concept and PHA we state that:

e The system should provide measures to avoid errors when registering
orders.

This requirement gives us the first claim in our Claims-Arguments-Evidence
network. The claim is linked to the requirements specification and the PHA
to provide information about why this claim was included. In figure A.1
we show how the ASCE-tool looks after we have added the first claim in
the model along with a description of the claim and links to the relevant
documents.
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Figure A.1: Adding the first claim to the ASCE network
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According to chapter 8.2, we should start to develop the system test plan
based on our requirements. Our requirement is not yet detailed enough to
make us able to write a complete test, but we can provide some headlines
to be filled in as we are getting more details about the hazard. We have
proposed to split the Preliminary Safety Case phase between the Inception
and Elaboration phase of RUP, and are not detailing the test plan yet as
we do not have a design to base it upon. Table A.2 is a snapshot of how
the system-test for our first claim may look like. Note that we are already
assigning the tests to people, thereby making it easier to follow up the testing
and results.

We do not dwell too much on the RUP part of this phase. The tasks
found in the Inception phase of RUP along with the goals of the milestone
are mostly concerned with the budget aspects of the project. In this example
we assume that the stakeholders are satisfied by the project plans.

A.3 Architectural phase

It is now time to start investigating how the claims from the Preliminary
phase will be met. We also begin to develop a system design, which in
turn will enable us to develop more claims. From the information collected
during the design iterations we can also find some of the arguments needed
to support the claims.

The first task that should be undertaken in the Architectural phase is to
import the claims from the preliminary element. Using ASCEd the first step
is to continue working on the Claims-Arguments-Evidence network. We have
the claim from the Preliminary phase, but this is a vague claim. One of the
tasks is therefore to develop this claim into one or more detailed claims.

In the transition from the Preliminary to the Architectural phase we have
developed the first top-level system designs. These are merely drafts that are
used to get information for the hazard analyzes. Each design idea requires
its own HAZOP and FMECA. Because of the workload this imposes, it is
unfeasible to explore every possible design. To be able to cover as many
alternatives as possible we will run several iterations of the hazard analyzes,
discharging troublesome designs as we go.

For our demonstration, we are not developing the designs, as this will
require much more information about the system than what is needed to
demonstrate our concepts. It is also difficult to provide an example to show
what HAZOP should discard a design, as this is dependent upon project
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APPENDIX A. DEMONSTRATION

System  test | C1
for
Tester "Person A’ Results man- | "Test leader’
ager
Date planned | ddmm Date con- | ddmm
ducted
Resources 77 Time needed | 77
needed
Steps Done Expected re- | Achieved Comment
sult result
1. Add cor- Correct order
rect order registered
2. Add wrong Error mes-
quantity mea- sage, order
surement line is not
registered
3. Exceed Error mes-
maximum sage, order
items allowed line is not
registered
4. Too few Error mes-
items in order sage, order is
not registered
5. Add Error mes-
erroneous sage, discount
discount is not regis-
tered
Approved Yes/No By
Date ddmm

Table A.2:

The system test plan
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specific factors like the designers knowledge, programming environments and
stakeholder’s decisions of how the hazard is classified. Whether the designers
are able to figure out a way to overcome the hazard or not is also an important
factor.

Not all hazards are dependent on the design - some are present due to
the system. To avoid having to investigate these hazards again and again, a
document containing common hazards can be developed and a link to this
document will be added to all designs. This can be hazards connected to
the functionality of the system, hazards stemming from input outside the
developers control, or customers demands.

For our system, a design decision is made that the operator is able to
give discount to a customer based on the size of the order and the customer’s
history. The store has a profile where the rules for awarding the discount
is somewhat vague, leaving much of the decision to the operator. For the
designers to receive the information in a structured way that will help them
decide on the most feasible design for the system, we are developing a use-
case that describes the functionality. The use-case is shown in table A.3.
Numbering the use-case makes it easy to connect it to the relevant claims and
requirements. In addition we are including links to the use-case document
wherever necessary in the ASCE network !.

The discount functionality is to be implemented no matter what design
is chosen for the system, and it may therefore be analyzed for hazards in
a design-independent analysis. Before the analysis is conducted, we are in-
cluding this new information in our Claims-Arguments-Evidence network.
The new claim that is to be included in the information used for the hazard
analyzes is formulated:

e An operator can give a discount on an order based on the store rules.

Our ASCE network now has two claims (figure A.2, both of which are to
be used in the hazard analysis. It is important that no information is held
back from the analyzers, even if we think that it is not providing anything
useful, or that it has been analyzed before. Many hazards are the result of
interrelations of information and components, and even analysis techniques
that do not take this interrelations into account may discover more hazards
when the analyzers are able to see the system as a whole.

In our case, the combination of our two claims is clearly pointing one
hazard. When the operator is deciding upon the discount as he is entering

For more on use-cases and their uses, we suggest readers to consult [8].
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Use-case name C2 Operator discount

Iteration Filled

Summary An operator wants to give a discount to an order
Main path

1. The operator registers the order
2. The operator enters the discount
3. The operator approves the order

4. The system accepts the order

Alternate path

1. The operator registers the order
2. The operator enters the discount
3. The operator approves the order

4. The system does not accept the order

Intent The operator should be able to give a discount on
orders

Table A.3: The discount use-case
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e and Safety Case Environment
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Figure A.2: Our second claim, linked to external documents and the first claim
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Guide-word Hazard Consequences | Reason Suggested so-
lution

No The operator
inserts no dis-
count

Too much The  opera- | Loss Misreading/ | Warnings/
tor inserts -punching, alarms
too high a misbehavior
discount

Too little The operator | The customer | Misreading/ Negligible
inserts too | receives a too | -  punching,
low a discount | high invoice misbehavior

Table A.4: The HAZOP table

the order, it is a possibility that she is giving the wrong discount. Too low
a discount is not so much a problem, as the store policy is not to promise
any amount of the discount on beforehand. Too high a discount is more
troublesome, as this may lead to the store loosing money. The hazard is
discovered during the HAZOP analysis, and is documented in table A.4

This is not to be interpreted as a complete HAZOP table. Each guide-
word may contain several hazards, or no hazard at all. As much information
as possible regarding the hazards, their consequences and causes should be
recorded. We are only including what we find necessary to show our proposed
methods, and not what is needed for a complete manual to system safety
engineering.

The new hazard calls for a new addition to our ASCE network. To show
that the hazard of a customer receiving too high a discount is related to both
the claim regarding erroneous entering of data and that the operator is able
to give discounts, it is natural to have a link from our new node to both the
previous claims. To achieve this, we add a sub-claim, that is connected to
the two other claims. We phrases the claim as:

e There should be mechanisms in the system to avoid too high discounts
being granted to a customer.

As we move along, it is important to remember that we also have to
update our testplan as we discover new claims and hazards. There is no
specific type of testplan or testing strategies connected to our proposal, so
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Figure A.3: The subclaim connected to the previous claims

we are presenting the testplan so far through our demonstration in a generic
table, containing what we find to be the information that should be included
in a testplan. Depending on testing strategies, project and product demands,
and customer demands, more information may be added, or the existing
information may be organized in a different way. In figure A.3 we have
included the third claim as a subclaim of the two previous claims.

A testplan should include the person responsible for carrying out the test
along with the person in charge of collecting the results. This helps us to
make sure that all tests are carried out, and that the results are recorded in
an appropriate manner. The testplan from the Inception phase will often be
connected to several testplans from the Architectural phase as we increase the
level of detail in the system design. In our case, the Inception phase contains
only one system level test, that the system should help the operator to register
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Component C3
test for
Tester "Person B’ Results man- | "Test leader’
ager
Date planned | ddmm Date con- | ddmm
ducted
Resources 7?7 Time needed | 77
needed
Steps Done Expected re- | Actual result | Comment
sult
1. Add cor- Correct order
rect order is registered
2. Add too Warning mes-
high discount sage, discount
is not regis-
tered
Approved Yes/No By
Date ddmm

Table A.5: Testplan for Claim 3

orders correctly. There are many ways this could be tested and implemented,
and so this test is difficult to carry out alone. In the Architectural phase,
we have two more tests that are influencing the system level test. Table A.5
shows how we have been able to provide more details to the test plan.

With the information gained from the HAZOP and the FMECA (which
we are not showing in this iteration), we decide to make some changes to
the design of our system so that we may handle the discovered hazard. The
store wants to keep their discount policy, but we add some restrictions to
the system. The first restriction is that if an operator inserts a discount that
exceeds 15%, a warning message pops up. The operator then has to confirm
that she wants to give the entered discount. We expect this warning to reduce
the possibility of entering a wrong discount. Erroneous discounts below 15%
is considered to be part of the stores service, and the consequences not dire
enough to add any more control functionality. The second addition to our
design is that an operator are not able to give discounts exceeding 25%, but
has to pass the order to a supervisor for approval. A warning message is not
considered to be enough in this case, as we do not want the operator to be
able to approve this discount at all. It is therefore decided that we build a
barrier into the system, blocking all orders that are including a discount of
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Figure A.4: The arguments connected to the appropriate claim

more than 25% and requesting the operator’s supervisor for approval.

This new functionality is providing the first arguments in our example
ASCE network. As can be seen in figure A.4, the two arguments are con-
nected to the appropriate claim (actually a sub-claim in our example). We
also see the links to the HAZOP and design document containing the reasons
for developing the arguments. Finally, we have a link to the testplan that
will provide us with the evidence needed for the arguments to satisfy the
claim.

After we have changed the design, we do a new iteration of hazard ana-
lyzes to check that the changes really did remove the hazard, and that no new
hazards have been introduced. It is still possible to enter erroneous orders,
and to give wrong discounts, but we have blocked the possibility of giving
high discounts by mistake, or without supervisor approval. In this iteration
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System: MTD Conducted by: Ole-Johan
Ref drawing: Date: 27.09 Page:10of 1
Unit description Hazard descrip tion Failure effect
Refnr. | Function Operational | Failure | Failure Failure On On
state mode cause detection | other | main
units | wnit
01 Order Accepting Fail to Erroneous None | None
registration | orders accept order
order
02 Order Registering | Failto No Catching | None | System
registration | orders register database exception halt
order connection
03 Discount Registering | Registers | Algorithm | Operator | None | None
registration | discount and | wrong fail
recalculating | discount
sum
Ref nr Failure rate Failure effect Failure Comment
rank reduction
01 10% Negligible Order
registration
routines
02 2% Critical Connection Can stem from
control multiple
procedures synchronous
fails
a3 1% Critical Testing Discovery
should lead to
code review

Figure A.5: The FMECA table

we are showing the results of the FMECA in A.5, which is somewhat different
than the HAZOP table?. Though we have not removed all hazards from the
previous iteration, we have not introduced any new hazards. In many cases
it is impossible to remove or even control all hazards, but this does not mean
that we have to let the unresolved hazards run free. If we cannot prevent the
hazard from taking place, we can prepare for the hazard state and minimize
the consequences of the failure.

After the hazards are reduced to an acceptable level, a level that is decided
by the stakeholders, we should be down to one or two design options. A choice
of design at this point will be focused on the effort and resources needed to
implement it in accordance with the quality of the final product.

2Because of the size of the table, we have split the table in two parts, repeating the
reference numbers to make it easier to read.
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In our example, we where able to prevent the hazard by introducing a
barrier. As we do not have any other design proposals that could solve our
problem in a better way, nor any need of removing the other hazards, we can
now move on to the next phase of development.

A.4 Construction phase

As we have mentioned before, neither RUP nor ASCAD is much concerned
about how the system is implemented. In our chapter on ASCAD we pre-
sented the implementation strategies that are advocated, but it is still the
developers choice how to use them. What should be the developers biggest
concern is that all requirements behind the design are implemented.

In our setup, the construction phase also includes the testing of the sys-
tem. Again, we are not advocating any specific strategies, but to make the
most out of the information in the safety cases, we recommend that both im-
plementation and testing is conducted in a bottom-up manner. In addition
to making it easier to track the work that has been done, this strategy will
lessen the workload imposed on the developer team if any irregularities are
discovered, especially during the implementation.

There are several strategies for implementing systems, and there are also
different strategies for testing the system. The testplans can be the same,
much of the difference being at what times they are run. RUP is advocating
the strategy of developing software in a series of small iterations. This means
that implementation will consist of coding a small part or a module, testing
and verifying the code, and then correct the module until satisfying the tests.

As mentioned before, we do not have a design of our system and therefore
nothing to implement. Assuming that we were able to implement our barrier
correctly, the test is showing that our claim is satisfied. We add the evidence
to the Claims-Arguments-Evidence network, linking to the final test record
as shown in figure A.6. It may be tempting to just add a bubble stating that
the test did verify the claim, but we should not give in to this temptation.
After the system has been delivered to the customer, it is possible that an
operator performs an operation in a manner that was not predicted. Upon
receiving feedback that the system did not function as required, having the
links to the test record will help us track down the error. If we discover a
way of performing the operation that was not covered by the original test we
update the test and run it anew. This run may uncover a flair in the design
that can call for a change.
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Figure A.6: We have completed one fork of the ASCE network

72



APPENDIX A. DEMONSTRATION A.5. TRANSITION PHASE

Completion of the implementation means that the system is ready for
transfer to the customer, but it does not mean that the work on the system
is finished. We still have one more phase to do. Before moving to the
Transition phase we are including the ASCE network as it is after we have
moved through all of the previous phases. Figure A.7 gives a simple and
understandable overview of how we have satisfied the system requirement
regarding discounts.

A.5 Transition phase

The transition phase is the last phase of our methodology, and may also
be characterized as the longest. During the previous phases, some thought
should have been given to how the system is to be delivered to the customer,
what kind of training that is necessary to the users, and how the system is to
be supported and maintained. The safety case is intended not to be archived
when the system is delivered, but to follow the system throughout its lifetime.
The claims in this safety case is mostly made up of maintenance requirements,
along with support agreements. Even though the maintenance safety case
is somewhat separate from the development safety case that we have just
worked our way through, it should contain links to appropriate nodes and
documents in the development safety case. We may also want to include links
the other way. As explained in chapter 8.5, much of the information used
in the Operation and Installation Safety Case phase is found in the other
phases, but we need to find and organize the information.
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A.5. TRANSITION

C1

2

:ﬂ:wamqﬂmﬂ An operatar can give
should provide a dizcount onan
measures to

ordder bazed on the

avoid errars when
store rules

registering orders

ls a subdlaim of ls & subclaim of

Supparts,

C3
There should be
mechanizms in the
ystem to avoid too
high discounts being
granted to the
customer

Supports

A1
Dizcount warning

~ [BEGIMENT

E1
Testplan C3

|EvInENCE
AZ
Supervizor approval

- ERGIWENT |

The complete demonstration network

.

Figure A.7

74



Appendix B

Definitions

Safety Case A documented body of evidence that provides a demonstra-
ble and valid argument that a system is adequately safe for a given
application and environment over its lifetime.

Failure Nonperformance or inability of system or component to perform its
intended function for a specified time under specified environmental
conditions.

Reliability The probability that an item will perform its required function
in the specified manner over a given time period and under specified or
assumed conditions.

Hazard A system state that, together with certain (other) conditions in the
environment of the system will lead to an Accident (loss event).

Accident An undesired and unplanned (but not necessarily unexpected)
event that results in (at least) a specified level of loss.

Hazard level A combination of severity (worst potential damage in case of
an Accident) and likelihood of the occurrence of the Hazard.

Risk The Hazard Level combined with the likelihood of the Hazard leading
to an Accident plus exposure (or duration) of the Hazard.

Safety Freedom from Accidents and losses. Will the system refrain from
hurting people or destroying equipment and requirement? In this sense,Safety
is somewhat like Security. It is not practical to achieve a goal of
complete and total Security, nor is it necessarily possible to achieve
complete and total Safety. We try to come as close to the ideal as
possible. See also Business-Safe
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APPENDIX B. DEFINITIONS

Business-Safe A system seldom behaves in such a way that in causes the
customer or his users to lose money or important information.

Security Denial of unauthorized access.
Fault An unplanned event that may lead to a Failure.

Business-critical Software that is Business-critical will probably lead
to severe losses that may set a company out of play if a Failure occurs.

Intention The idea behind a requirement. The reason for this requirement
being included in the requirement specification.

Means-Ends Hierarchies A hieratical view where each level represents a
different model of the same system. The information at a level acts as
the goals (the ends) for the model at the next, lower level (the means).
I.e. the current level specifies what, the level below how, and the level
above why. More about Means-Ends Hierarchies can be found in [12].
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