
June 2006
Tor Stålhane, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Scenario testing in a real environment
Key card Administration System at the University Hospital in North
Norway

Yngve Halmø
Geir-Arne Jenssen

Problem Description
The purpose of the project is to conduct research in software engineering, assessing the
usefulness of the scenario testing method through a software test with its real users. The results
will be used for further implementation in the tested software system.

Assignment given: 16. January 2006
Supervisor: Tor Stålhane, IDI

Scenario testing in a real environment
Key card Administration System

at the University Hospital in North Norway

TDT4900 Computer Science, Master’s thesis

Yngve Halmø
halmo@stud.ntnu.no

Geir-Arne Jenssen
geirarj@stud.ntnu.no

June 12, 2006
Supervisor: Tor Stålhane

NORWEGIAN UNIVERSITY OF TECHNOLOGY AND SCIENCE,
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

II

Abstract

Software is gradually replacing paper based administration systems. The migration to
electronic systems is supposed to make life easier for the users. If this is to be the case
then these software systems must be created in such a way that the end users are able to
use them effectively. To achieve usable systems, software testing must be utilized. There
are many ways to test a program, with or without involving real users. Scenario testing
is a somewhat poorly documented discipline in software testing, with ambiguous defini-
tions. It does however seem to be well suited in combination with users to test external
parts of a software system in a late state of development.

This project is based on the work done in the software engineering depth study [12].
There we conducted empirical work and internal testing of the software system KAS,
and laid the foundation for this Master’s thesis. In this report we have continued the
work with this software and concentrated on its external characteristics and user testing.
We have analyzed scenario testing further through a software test of this system involv-
ing its future users.

The users have been given tasks to complete through stories that explain what to do
but not how to do it. We have observed the test subjects closely throughout the tests,
and collected important data. The results have been evaluated in order to assess their
usefulness, which further points to the quality of scenario testing as a testing method.
The results have also spawned functional requirements which have been implemented
into the KAS. Through this project we have gained experience that can be useful to others
conducting scenario tests or doing research in software testing in the future.

III

IV

Preface

This report is our Master’s thesis which is the final part of our Master’s degree at the Nor-
wegian University of Science and Technology in Trondheim (NTNU). This work lasted
from January to June 2006 and was based on the work done in the depth study [12] in the
previous term. The work has primarily been done at NTNU, in addition to a trip to the
University hospital in Tromsø (UNN) to conduct user testing on a previously developed
software system.

We would like to thank our supervisor Tor Stålhane for his guidance throughout the
project. We also would like to thank our contacts at UNN, Thomas Lyngmo and Jonny
Svendsen, for giving our work priority, and the IT department at UNN for their assis-
tance. We finally want to thank the employees at UNN who participated in our scenario
test for their valuable feedback.

Yngve Halmø Geir-Arne Jenssen

V

VI

Contents

I Background XV

1 Introduction 1
1.1 Motivation . 1
1.2 Project context . 2
1.3 Problem definition . 2
1.4 Report outline . 3

2 About the KAS 5
2.1 Initial project background . 5
2.2 History . 6
2.3 Outline of the KAS . 7
2.4 Platform/framework/technology . 10
2.5 The graphical user interface . 10
2.6 The future users . 11

2.6.1 Employees . 11
2.6.2 Time-limited card orderer . 11
2.6.3 Department head . 11
2.6.4 ID card orderer . 11
2.6.5 Security personnel . 12
2.6.6 Administrators . 13

II Prestudy 15

3 Testing 17
3.1 What is a good test? . 17
3.2 Testing methods . 18

3.2.1 Module testing . 19
3.2.2 Function testing . 19
3.2.3 Domain testing . 19
3.2.4 Specification-based testing . 20
3.2.5 Risk-based testing . 20
3.2.6 Stress testing . 21
3.2.7 Regression testing . 21
3.2.8 User testing . 22
3.2.9 Scenario testing . 22
3.2.10 Exploratory testing . 22
3.2.11 State-model based testing . 23

VII

VIII CONTENTS

4 Scenario Testing 25
4.1 What is scenario testing? . 25
4.2 Why use scenario tests? . 27
4.3 Methods of scenario tests . 27

4.3.1 Field tests . 27
4.3.2 Laboratory tests . 28
4.3.3 Summary . 29

4.4 Expanding the scenario expression . 29

III Focus 31

5 Research 33
5.1 Focus . 33
5.2 Methods of data collection . 34

5.2.1 Manual collection . 34
5.2.2 Automatic collection . 37

6 Planning 39
6.1 The project . 39
6.2 The scenario test . 40

6.2.1 Laboratory arrangement . 40
6.2.2 Schedule . 41
6.2.3 Scenarios . 42
6.2.4 User observation . 43

6.3 The field test . 44
6.3.1 Schedule . 44
6.3.2 Data collection . 44

6.4 Project plan . 44

IV Test sessions 47

7 The scenario test 49
7.1 Preparation work . 49

7.1.1 Initial implementation . 49
7.1.2 Laboratory preparation . 50

7.2 Results from the test . 50
7.2.1 GUI - intuitiveness . 50
7.2.2 Test setup . 52
7.2.3 Functional requirements . 53
7.2.4 Other results . 53

8 The field test 55
8.1 Preparation work . 55
8.2 Results from testing . 56

CONTENTS IX

V Final results 57

9 Discussion 59
9.1 Validity . 59
9.2 Time consumption . 60
9.3 The scenario test . 61

9.3.1 Our scenarios . 61
9.3.2 Test setup . 61
9.3.3 Our roles as observers . 62

9.4 Scenario testing in general . 63
9.4.1 Experiences . 63
9.4.2 Problems . 65

10 Conclusion and further work 67
10.1 Conclusion . 67
10.2 Further work . 68

VI Appendix 69

A Glossary 71

B Scenarios 73

C Test results 77
C.1 Observations from the scenario test . 77
C.2 Feedback from the questionnaire in the scenario test 79

D Functional requirements from the scenario test 83

E Recommendations for scenario tests 87

F User manuals 91

X CONTENTS

List of Figures

2.1 An early version of the login screen . 7
2.2 An early version of the time limited card order screen 8
2.3 The login screen . 8
2.4 The order time limited card screen . 9
2.5 The start page for security personnel . 13

6.1 The project process . 46

7.1 The computer skills of the participants in the previous in-depth study . . 51

XI

XII LIST OF FIGURES

List of Tables

4.1 Important differences between field and lab tests 29

6.1 Time schedule for the scenario testing . 41

C.1 Qualitative results collected through observation part 1 77
C.2 Qualitative results collected through observation part 2 78
C.3 Qualitative results collected through observation part 3 78
C.4 Feedback from questionnaire, question 1-3 80
C.5 Feedback from questionnaire, question 4-6 81
C.6 Feedback from questionnaire, question 7-10 82

XIII

XIV LIST OF TABLES

Part I

Background

XV

Chapter 1

Introduction

Just remember: you’re not a "dummy," no matter what those computer books claim.
The real dummies are the people who, though technically expert, couldn’t design hard-
ware and software that’s usable by normal consumers if their lives depended upon it.
Walter Mossberg

This chapter contains an introduction to this Master’s thesis. It starts with our motivation,
followed by an elaboration of the problem at hand. The last section of this chapter gives
an outline of the contents of the report.

1.1 Motivation

The foundation for this thesis was laid in the in-depth study project in the previous term
[12]. Both the in-depth study project and this Master’s thesis are based on a software sys-
tem developed by us as a student project in the year 2004. This software system, which
is described in more detail later in this report (chapter 2), is a key card administration
system for the University Hospital in North Norway (UNN)1.

The in-depth study project during the previous term [12] was an empirical study of the
software system (which from now on will be referred to as KAS2) where we conducted
interviews and questionnaires for the purpose of analyzing different definitions and im-
portance of quality attributes. Understanding the users’ definitions of these attributes
would make it easier to deliver a system that lives up to their expectations. Internal test-
ing3 based on the results of these empirical studies was performed to confirm that the
system lived up to the requested level of quality. We did this to ensure that the KAS was
as usable as possible before the external testing, and eliminate errors that would have
had to be fixed anyway.

The general feedback received from the previous study [12] was utterly motivating as
people welcomed the new electronic system with comments like "Do it as fast as possi-
ble!", "Very nice" and "Good luck to you guys!". Positive user feedback has increased our
incentive to make the system as good as possible. It has also been a motivation factor that

1Universitetssykehuset i Nord-Norge, http://www.unn.no/
2Key card Administration System
3The ISO-9126 standard [1] defines the capabilities of a software system as internal attributes that can

be measured through internal metrics. This is how we define internal testing. Furthermore, the standard
states that software quality characteristics can be measured externally by the extent to which the capability
is provided by the system containing the software. This is how we define external testing.

1

2 CHAPTER 1. INTRODUCTION

UNN believes in us and wants to use our system if we can complete it.

We have been excited about receiving response from an external test phase, to see if the
users actually are satisfied with the system we have developed. We have also been anx-
ious to see if the system provides the required quality, functionality and intuitiveness in
order to be useful in the day-to-day work of the users. If it does satisfy all UNN’s needs
and is taken into use, it should save UNN a lot of time, money and paperwork, and give
us the satisfaction of having created something others find useful. We have therefore
continued the development of this system, while doing some research on user testing
that could provide more insight into the users’ goals and opinions, until the system is
operational.

1.2 Project context

This Master’s thesis was carried out at the Department of Computer and Information
Science at the Norwegian University of Science and Technology in Trondheim. The work
in this Master’s thesis lasted from January to June 2006. Our teaching supervisor was
professor Tor Stålhane.

This project was also carried out in cooperation with UNN, which is to be the owner
of the system when it is completed. Our contact with UNN has primarily been through
our contacts Thomas Lyngmo and Jonny Svendsen, who will later be the administrators
of the KAS. We have previously worked with them on other projects, including the initial
student project in Tromsø. We have also worked with the joint IT-department of UNN
and UiT4, which will later host the system on their servers.

1.3 Problem definition

When a software system has been implemented according to the functional requirements
specification, work still remains before it is ready to be used in its intended environment.
The end-users should evaluate it to make sure it is usable, and it should be tested in its
real technical environment. Most software systems are, however, shipped without any
user testing at all because of the short-term costs involved and time-to-marked concerns.

To make a software system usable one should, according to our experience and sources
like [1] and [16], perform both internal and external testing. Internal testing should un-
cover technical errors while external testing, preferably involving users, should uncover
practical problems and high-level errors. If the system works from a technical point of
view, and it does what the users need it to do, it should intuitively be usable. We want to
analyze the user testing process further on existing software, namely the KAS.

The main goal of this project is to achieve the highest possible quality of our software and
getting it operational. To achieve this, the perspectives of all the stakeholders5 should be
considered and extensive user testing should be done.

Picking up the thread from the previous project’s internal testing efforts [12], we want to

4University of Tromsø
5A stakeholder is any person with an interest in the software system, be it a user, investor, corporate head

or developer

1.4. REPORT OUTLINE 3

concentrate on the external aspects of the system through user testing. User tests require
more planning and more resources than testing that does not involve users (i.e. tests
which are done by the developers or dedicated testers), because of the practical issues
that must be considered. Examples include people needing to take a break from normal
work to participate in the tests, the tests must be well planned to make good use of the
allotted time, people may not show up as agreed, and so forth. Scenario testing is a test-
ing method that seems to lack good documentation, but the method is a viable option for
external testing with users involved. We want to study user testing closely, and see how
well scenario testing suits our software system given its current stage in the development
cycle and the system’s characteristics6. We want to find out if this testing method, given
its high initial costs and resource requirements, still is cost efficient to the results it can
provide. Through a qualitative approach we hope to spawn many experiences that can
be useful to others conducting scenario testing or doing research in software testing in
the future.

1.4 Report outline

This section outlines the rest of the report. The report is structured so that the chapters
should be read in chronological order, since some chapters provides background for the
subsequent chapters.

Chapter 2, About the KAS, is a brief introduction of the system we have developed. Here
the history of the system is described, along with an overview of what the system can
do. A description of the future users of the system is also provided here in order to get a
better understanding of the system’s requirements.

Chapter 3, Testing, provides an overview of software testing and different testing meth-
ods that is of relevance to this project.

Chapter 4, Scenario testing, describes scenario testing as a testing method in more de-
tail. This includes a detailed description of what scenario testing is, how to conduct a
scenario test, and an extension of the concept scenario testing.

Chapter 5, Research, gives a better understanding of the focus of this project and pro-
vides an overview over data collection methods.

Chapter 6, Planning, goes into details concerning the planning of the project and pro-
vides the ground work for the testing phases.

Chapter 7, The scenario test, describes the scenario test session and provides qualitative
results obtained from it along with some discussion of these results.

Chapter 8, The field test, describes the planned field test phase.

Chapter 9, Discussion, contains a discussion and evaluation of all the results obtained
during this project. A discussion of scenario testing as testing method can also be found
here.

6The system and its characteristics are further described in chapter 2

4 CHAPTER 1. INTRODUCTION

Chapter 10, Conclusion, highlights our conclusion based on the discussion and details
any further work that needs to be done with both the system and scenario testing.

Appendix, The appendix contains the scenarios created for the scenario test, the results
from the scenario test, a to-do-list containing functional requirements discovered during
the scenario test and a glossary with some of the most used concepts throughout this
report.

Chapter 2

About the KAS

That’s the thing about people who think they hate computers. What they really hate
is lousy programmers.
Larry Niven

This chapter describes the software system we have developed, which has been tested
during this project. The chapter begins with the background for creating this system in
chapter 2.1, followed by a summary of the system’s history in chapter 2.2. Chapter 2.3
contains a brief description of the system, and the technology used to create it is described
in chapter 2.4. In chapter 2.5, details about the GUI of the KAS can be found. Finally, the
future users of the system are introduced in chapter 2.6.

2.1 Initial project background

UNN has many employees, departments and doors with access control. An elaborate
access control system is in place to control people’s access to the different parts and de-
partments of the hospital. Each door has an electronic lock that detects radio signals from
approaching key cards, these signals are then used to authenticate the person trying to
open the door. A central computer controls which employees have access to which door.
It is important that no one gets access to a door or department they are not supposed
to. This is especially important regarding medicine storage rooms. Some employees are
hired on a long time contract and some are hired temporarily to work part time. All of
these people must have their own key card to get access to their respective departments.
Some of these cards are lost, others need updating, some must be activated immediately
after being ordered while others are ordered a long time beforehand. This must be han-
dled by the security personnel.

Every year the security personnel at the hospital handles approximately 800 orders for ID
cards and 2000 orders for temporary key cards. These two types of cards are described
in more detail later in this section. Today these orders are administrated and handled
manually through paper forms. Every order must be filled in by hand by selected people
at every department who have been given authorization to do so. The form must then be
delivered to the security department, where they log the order by hand and note the day1

it should be entered into the security computer2 in a calendar. This system for registering

1The day the employee starts working, or changes department, or any other circumstance when his/her
security privileges need to be updated

2The computer controlling the elaborate access control system described above, which is a separate sys-
tem from the one we are developing

5

6 CHAPTER 2. ABOUT THE KAS

and administrating key cards is cumbersome, and it is easy to make mistakes. A de-
partment name may be written wrong, it may be interpreted wrongly because someone
has bad handwriting, or the order form may never arrive at the security department at all.

The order forms go through several phases with up to four persons involved at differ-
ent times before a card or card update is issued. The "control function" that checks if the
cards are returned on time when they expire is relatively complicated and takes a long
time to go through. All of this leads to much paperwork which leads to relatively much
paper laying around to keep track of the history.

An employee has to deliver orders in person to the security personnel but there exists
no mechanism for the department heads to control that an order has actually been deliv-
ered, i.e. it could be forgotten, or the orders could simply disappear among other papers.
This could lead to no card being made, and if this happens, people who were supposed
to start their work will not get access to the rooms and departments they were supposed
to. Thus, such disappearance should be prevented, and the department heads need a
better tool to trace their orders.

There exists two kinds of key cards and therefore two kinds of orders forms, one for
employees working full time (ID cards) and one for people working part time (tempo-
rary cards). The temporary cards are only issued to people for a short period of time.
Employees working full time get their own ID card with their picture on it. When a job is
done or a persons quits his/her job, all key cards have to be delivered back to the secu-
rity personnel. The security personnel must at all times know how many cards that are
in use, who has these cards, when these cards should be turned in, and last but not least,
be sure that only authorized personnel can order key cards to other people.

To alleviate the work load and make the administration more efficient, the technical de-
partment at UNN, contacted the Tromsø University College in order to get some students
to make a computer system for them that could replace the existing paper-based system
and better handle their administrative challenges.

2.2 History

As students at Tromsø University College we chose this assignment for our spring 2004
bachelor thesis. Our contacts at UNN recognized, as we did, that this system was too
large and extensive for a student project, and they had therefore cunningly divided the
system into parts that could be build upon at a later stage, and our initial assignment
was to implement the system of ordering time-limited cards and administering these.
It quickly became clear that this system would require a rather complex database as a
core, and most of the initial work was concentrated around the database. But as the
first, apparently simple part of the system was being implemented, the initial quality re-
quirements specification grew drastically as our contacts discovered features they had
not thought of, but had to be implemented if the system were to be usable. Several prob-
lems arose with the initial design that could not have been foreseen given the information
available at the time, and large parts of the system had to be redesigned. A deadline had
to be set for new features, and when the implementation of the system was finished ac-
cording to the first specification, it contained a beta version of the core functionality it
supports today. It could, however, not be put into use at that time as it had to be tested

2.3. OUTLINE OF THE KAS 7

for bugs and errors and to ensure that it had all the functions the users needed to use it
effectively. This was outside of the scope of the initial project. At this point, the login and
ordering functions of the system looked like the figures 2.1 and 2.2:

Figure 2.1: An early version of the login screen

The system was then improved upon during a summer internship at UNN. Much more
functionality was added and most known bugs were fixed. The system was seen by
future users for the first time when a few selected security personnel got to voice their
opinions. There was, however, still not enough time to test the system thoroughly or
write good documentation.

During fall 2005 we did extensive internal testing of the system [12] as a first stage of
this master thesis at NTNU, and reviewed its architecture (see [5]) to see if it had to be
changed to meet the identified business goals and quality requirements of our contacts.
A few enhancements and changes were made and errors fixed.

Spring 2006 we have tested the external parts of the system, and done the work required
to move from the implementation phase to the final, installed and working phase. This
is described throughout this report. In its near final state, the same functions shown in
figures 2.1 and 2.2 now looks like the figures 2.3 and 2.4.

2.3 Outline of the KAS

Technical details will not be presented in this report, as security in this system is paramount
and such information is therefore restricted. Such details are in any case not important
regarding the focus of this project. We will, however, give an overview of what the sys-
tem is and what it can do in the following sections. For more screenshots and details
about the system see the user manual for security personnel in the appendix F.

The system is basically an administration system for handling orders for key cards. It

8 CHAPTER 2. ABOUT THE KAS

Figure 2.2: An early version of the time limited card order screen

Figure 2.3: The login screen

2.3. OUTLINE OF THE KAS 9

Figure 2.4: The order time limited card screen

10 CHAPTER 2. ABOUT THE KAS

will run on the hospitals intranet and can be reached from all in-house computers. It has
a common login page for all users (see fig. 2.3). If the user is authenticated he/she will
be given the appropriate access to the system. There are five types of users, which will
be explained in more detail in chapter 2.6. In short, all the system’s users can order key
cards, and the security personnel can and must additionally decide whether these orders
are to be approved.

2.4 Platform/framework/technology

The KAS is implemented as a web interface for running on a webserver on the hospital’s
intranet. The interface is reachable with an Internet browser from any PC directly con-
nected to the hospitals network. In such a large and complex environment with hundreds
of computers, maintaining updated software on the clients would be nearly impossible,
and would without a doubt be the source of many errors. The server-side scripting ap-
proach3 makes it unnecessary to install any software on the clients to use the system,
as all the code is kept on the server. The relatively small amount of estimated users on
this system compared to the Internet with its millions of users, which the technology
platform is able to handle, combined with the high-speed internal intranet will give the
rather powerful web server no challenge at all, and the system’s response time has been
tested to be as fast as an installed application. The intranet is not directly connected to
the internet, greatly reducing the possibilities of hacking from the outside.

The framework used to develop this system is ASP.NET 4. ASP.NET uses the .NET Frame-
work Class Library with all its services, and is in our opinion useful and easy to work
with as long as you are writing applications solely for MS Windows servers. ASP.NET
code is parsed and compiled on the web server. When a client sends a request for a
web page with ASP code, the server processes the page and sends the output back to the
client as an HTML5 page. ASP.NET-files consists of both HTML and ASP-code in some
programming language. In our case Visual Basic.NET was used because this was the
hospital’s standard programming language.

The KAS is connected to a database that stores all dynamic information and data. This
database is a MS SQL database6. Detailed knowledge of the database design is con-
sidered a security risk, and is therefore not described here. The database is large and
complex and any modification of this database would be difficult and would require ex-
tensive knowledge of the entire system.

2.5 The graphical user interface

The graphical user interface (GUI) of the KAS has been developed from scratch and dif-
fers from the normal MS Windows standard in many ways. First, it does not use drop-
down menus. All choices are displayed directly where they intuitively belong, and no
choices are displayed where they are not needed. What the user sees is highly context-
sensitive. Second, it does not use windows and pop-ups where this can be avoided, all

3See for example www.php.net or www.asp.net
4ASP.NET is a scripting technology for web developed by Microsoft. ASP is short for Active Server Pages,

see http://www.asp.net. Similar non-proprietary technologies include notably php and perl
5HyperText Markup Language, the standard for making web pages. Utilizes special "tags" to describe the

formatting of a web page. For more info see http://www.w3.org
6Microsoft’s implementation of the SQL database standard

2.6. THE FUTURE USERS 11

information is displayed in the active window to avoid confusion. Task-switching was
initially agreed upon with the stakeholders as not user-friendly for people with low com-
puter skill. Third, the system tries to scale all information to fit the active page, to prevent
that the user must use scrollbars to locate information. This reduces the number of ele-
ments on screen that the user must relate to. Finally, by utilizing CSS7 the GUI can also
be easily changed to the users preferences.

2.6 The future users

An overview of the future users of the system is presented here. There are five differ-
ent user levels, all with different privileges in the system. A short description of their
responsibilities and perspective on the system is provided.

2.6.1 Employees

These users can not use the system themselves and are therefore not considered users of
the system. They are included here because they are still a part of it as they need to be
registered in the system in order to have a key card. All employees that do not fall under
any other category is a normal employee.

2.6.2 Time-limited card orderer

This is the bulk of the systems users, and they have only a few privileges in the system.
Users with this level of access are able to order temporary key cards to other employees in
their own department, and see status of these orders. An order can be queued, accepted
or rejected by the security personnel. Time-limited card orderers are able to send remarks
along with the order to the security personnel, and they are able to see answers to these
messages. They also have the ability to change their own password. These users will not
necessarily receive any training because someone may need to perform this function on a
very short notice without any former experience with the system. This part of the system
must therefore be extremely intuitive and easy to use, and leave no margin for error. This
is also the least complicated part of the system.

2.6.3 Department head

One or a few users in each department has this privilege, which basically gives them the
same access as the time-limited card orderers. In addition, they can grant other users the
time-limited card orderer access level for their own department, for practical reasons.

2.6.4 ID card orderer

If a person is hired on a permanent basis, he or she will be eligible for a permanent ID
card. These cards can be ordered for any department. It is mainly the personnel depart-
ment that has this user level. An ID card has a picture of the owner and a description
of his/hers position. The procedure for ordering these cards is similar to ordering time-
limited cards, and a separate list of previously ordered ID cards is available to these users.
They can also order changes to a permanent employees name or access rights. These
users will use the system regularly which make them important resources for feedback

7Cascading Style Sheets, technology that separates the layout of a HTML page from its content. See
http://www.w3.org/style/css for more information

12 CHAPTER 2. ABOUT THE KAS

to the developers during the test phases. They can provide advanced feedback as expe-
rienced users.

2.6.5 Security personnel

This user level is significantly different from the previous ones. These users will receive
all submitted orders and either accept/reject them at the appropriate time, activate key
cards8 if an order is approved and deactivate key cards that have expired. They will also
verify and implement changes to personalia as ordered by the personnel department.
These users have, as a benefit of a relational database9, several new options compared
to the old paper based system. They have for example the ability to inspect all logs and
sort them by any criteria, see which cards should be returned soon, which should have
been returned already and who is in possession of ID cards. In addition, this user group
has access to all functions of the lower user levels, like submitting an order, changing
passwords etc. There are only a handful of these users, but they are also the most critical
group for maintaining normal day-to-day operations in the hospital. Their daily routines
must be supported by the system. This is a difficult task as not all of them are skilled in
computer use as discovered in the previous project [12], but their daily responsibilities are
still complex. This part of the system is also the most technically complex and prone to
errors, mostly because it must handle a large amount of possible issues and problems and
combinations of them. Most of the work has gone into designing this part and its success
is probably the most important factor when UNN decides whether they will finally accept
the system or not. The start page for security personnel is shown in figure 2.5.

8This is done on the security computer described earlier
9A popular type of database, usually implemented through the SQL standard.

2.6. THE FUTURE USERS 13

Figure 2.5: The start page for security personnel

2.6.6 Administrators

Administrators have all access rights and can use all functions in the system. They also
have some additional tools, including the ability to update several tables in the database
easily through the system’s GUI, i.e. delete a department, insert a new department,
delete and insert access levels that is used on key cards, and decide which employees
that should have access to the higher user levels. Only a few people will have admin-
istrator rights. Although they are an important part of the system, they are technically
skilled and should be able to use the system without trouble. They have also had their
opinions voiced to a large extent as they have essentially defined the functional require-
ments specification for the system in the previous projects.

14 CHAPTER 2. ABOUT THE KAS

Part II

Prestudy

15

Chapter 3

Testing

Considering the current sad state of our computer programs, software development is
clearly still a black art, and cannot yet be called an engineering discipline.
Bill Clinton

In this chapter we will explore various testing methods that are commonly used in mod-
ern software engineering. For each method we will explain why we have/have not used
the method. We will also look at what makes a test good.

Testing is an essential part of any software development. Every piece of software in a
system must be tested to see of it does what it is supposed to do. A function must accept
the correct in-data and return the right value, an algorithm must be effective enough and
a database query must collect the right data. Furthermore, even if a program does what
it is intended to do, errors may still exist.

Modern software testing have in many respects come a long way since people started
writing software. New, advanced testing tools have been created that make testing eas-
ier. Pre-tested subroutines exist that can be used right out of the box. Development envi-
ronments and compilers identify a part of the errors, but still the percentage of resources
required to properly test a software system is about 50% of its total development cost, as it
has been since the early 80’s [16]. Increasingly powerful computers, many new operating
systems and programming languages, and a plethora of possible hardware combinations
have complicated the matter. Computer programs are also continuously growing in size,
making the task daunting [12].

The prestudy section of the previous project [12] contains more information on software
testing.

3.1 What is a good test?

Tests are "good" in different ways, for example good at identifying some types of errors
and bad at finding other types. No test is good in every way [7]. Tests are used for
many purposes, including everything from finding ways to work around known bugs to
reducing the risk of safety-related lawsuits against a company [7]. The quality of a test
is therefore highly relative to its purpose. However, if we narrow their intention down
to exposing defects in the code and getting these bugs fixed we can say more about what
makes a test good. According to [7], there are within this objective still many different
ways a test could be considered good;

17

18 CHAPTER 3. TESTING

• It is credible, in the sense that it tests scenarios that the stakeholders agree to be
realistic. Certain errors will occur more frequently than others because of the way
a system normally is used, and exposing these errors first could be wise.

• It is persuasive, in the sense that its result will make a stakeholder with influence1,
for example a developer, supervisor or customer protest if the problem is not fixed.
Setting up tests to reflect actual usage statistics could intuitively be very persuasive
to a customer that has ordered a software system.

• It is powerful, in the sense that it has a high probability of revealing many bugs.
However as mentioned before, no test will be better at finding any type of error.

• It is easy to evaluate, i.e. it is easy to determine if the system passed or failed the
test.

The above definitions will be used in the following sections. It is also important that the
test costs less than its potential benefit, otherwise it may not be worth doing and will in
practice probably not be approved by the stakeholders with influence.

3.2 Testing methods

To prove to the customer that the software has reached the desired level of quality, all
applicable aspects of the program needs to be tested. However, testing all possible per-
mutations of a program would take too long, and would not be economically feasible
[16]. Using only one type of test will probably not be sufficient to achieve the requested
level of quality, mainly because some tests are good at exposing certain types of error,
but bad at others. There are many types of tests to choose from, all with their distinctive
strengths and weaknesses. When the system seems to work from the developers point
of view, one should investigate if this is true from the users point of view. If a program
has flawless code, but is unable to perform the tasks the users expect from it, or hinder
the users in their work, it is still a bad program. It is also worth noting that "Testing is
the process of executing a program with the intent of finding errors." as opposed to "The
purpose of testing is to show that a program performs its intended functions correctly."
[16]. The perspective of the developers may not be sufficient to expose enough errors
because they are biased by the fact that the software is their own creation. A successful
test should uncover new errors, not "prove" that there are no errors, as the former adds
more value to the program and thus makes the test a good investment [16].

A thoroughly tested program has thus undergone testing from different perspectives
with different testing methods. A quick overview of the most important state of the
art testing methods is given below. In our project, we have already completed the inter-
nal black box2/white box3 testing phase (see [12]), and we are moving on to the external
testing phase, i.e. testing the parts of the system that are visible to the users.

1"A stakeholder is a person who is affected by the product. A stakeholder with influence is someone
whose preference or opinion might result in change to the product." [7]

2Testing the software as if it is a box you do not know the contents of, but you know which input it accepts
and what it supposed to output as a result according to the functional specification of the program [16], [20].

3You know the contents of the box, and can use this to your advantage when creating tests to test the
code more directly. If the program has a structural specification, white box testing is used to check that the
program conforms to it [16], [22].

3.2. TESTING METHODS 19

3.2.1 Module testing

"Module testing (or unit testing) is a process of testing the individual subprograms, sub-
routines, or procedures in a program" [16]. It is largely a white-box activity, supple-
mented by Black-box techniques [16].

First analyze the module’s logic using white-box techniques, then supplement the tests
with black-box methods [16]. Simple functions are tested by giving them normal midrange
input and see if they return the expected output. The program only fails such a test if it
has an erroneous algorithm, erroneous code or logical errors [7]4.

These tests are the first you would try when you test a program, they are used con-
tinuously during development and are cheap and quick to complete. They are highly
credible, easy to evaluate but not very powerful [7]. Intuitively, you should mostly find
errors you anticipate because you already assume that the part of the program you are
testing is supposed to be there. These type of tests will therefore not uncover many higher
order errors.

This type of test is normally performed during development, and we completed the nec-
essary module testing at an earlier stage in the development process.

3.2.2 Function testing

The purpose of a function test is to attempt to find discrepancies between the program
and the external specification. The external specification precisely describes the system
from the point of view of the end-user [16].

Function testing is largely a black-box activity, relying on the previous module testing
to test the structure of the program. The specification is analyzed to produce a set of test
cases5 which are then used to test the program [16].

Function testing has been previously conducted, and must be done again if more func-
tionality is added to the system.

3.2.3 Domain testing

Domain testing is testing all extremes of "legal" values the variables can have, specifically
borderline, maximum, minimum, and beyond max/min values. Boundary/extreme value
errors are common [7], and in our own experience programs can react to such values in
somewhat unpredictable ways.

These tests are not necessarily very credible, as they utilize many values that normally
no-one would enter, and are therefore unlikely to be a problem.

This type of test is normally performed during development, and we completed the nec-
essary domain testing at an earlier stage in the development process.

4[7] says this about function testing, however his definition of function testing fits under [16]’s definition
of module testing and is therefore included here.

5Making tasks the developers or testers solve themselves, a quicker and cheaper testing method than
scenario tests, which require more planning and often involve real users. But test cases could be more
expensive on a longer term

20 CHAPTER 3. TESTING

3.2.4 Specification-based testing

Specification-based testing tests the system directly against the requirements specifica-
tion, point by point [7]. The software development community is not in agreement about
the importance of such tests, because software quality can be defined in several different
ways. The importance of the requirements specification is not clearly defined in these
definitions. Some examples are provided in the following:

• Quality is the totality of characteristics of an entity that bear on its ability to satisfy
stated and implied needs. [1]

• Software quality is divided into software quality factors6 which can not be mea-
sured normally because of their vague description but can be quantified as non-
functional requirements through the use of metrics, or measures [21], [5].

• Quality is defined differently across nationalities, in Japan it means excellence, in
France luxurious and unnecessary and in America that something actually works.
In the product-based sense we normally define quality today as a products abilities
compared to the users’ needs, demands and expectations. Quality is a characteristic
of a product that may well be measured in a way that more/less is better. In a
business sense it is ultimately the end-user who determines a product’s level of
quality [3].

Quality is thus something that may or may not be measurable, and may or may not be
defined as functional requirements. If the software’s quality is defined by the specifica-
tion7 and its level of compliance with these standards can be measured, this type of test is
very important and a good indicator of the system’s overall quality. If, however, quality
is defined as something that is not part of the specification and is not directly measur-
able, this test can at most be useful to ensure that the contract with the customer has been
fulfilled. It will in any case not be able to tell if the software is able to perform a function
it intuitively should unless it is a part of the specification. It may be more constructive to
test the requirements document for faults, ambiguities and contradictions, and create a
specification that is better suited to the customers needs.

In previous projects the specification has spawned a large to-do-list that has been up-
dated as functions have been added and bugs fixed. The specification has also been
somewhat incomplete and we have focused our attention on adding quality to the sys-
tem by revising it. Such a test has therefore been deemed unnecessary.

3.2.5 Risk-based testing

A potential failure in a program can be called a risk. Imagine a scenario where the sys-
tem might fail, which is at least somewhat credible, and test if the system actually fails [7].

If the scenario is not likely to occur the test may be dismissed by the stakeholders as
being of little value, but if you tie it to a realistic scenario, especially market-wise in a
bigger company, the test can be highly credible and highly motivating. It should then be
given priority by the stakeholder.

6"A software quality factor is a non-functional requirement for a software program which is not called
up by the customer’s contract, but nevertheless is a desirable requirement which enhances the quality of the
software program" [21]. Examples are usability, performance, portability etc.

7Functional requirements specification, the document this test will check the software against

3.2. TESTING METHODS 21

Since you are trying to imagine ways the system will fail, you will learn a lot, whether it
actually fails or not. You may for example think of new risks worth testing.

Risk-based tests were performed to some extent in previous projects.

3.2.6 Stress testing

Stress tests can be defined in somewhat different ways:

• The most common definition is to hit the system with a peak burst of activity and
see if it will fail [7].

• "Testing conducted to evaluate a system or component at or beyond the limits of its
specified requirements with the goal of causing the system to fail" [2].

• "Feed the system a peak volume of data, or activity, encountered over a short span
of time." [16] Under this definition, testing the systems or activities where time is
not a factor is defined as Volume testing.

• Test the system to find out how it fails. The fact that it will or may eventually fail
may be less interesting than finding out what happens when it does. For example,
if any parts are exposed to intrusion, if the whole system or only parts of it becomes
unavailable, does data loss occur etc [7].

You can check if the system can handle the load it is supposed to, or if it can handle an
even bigger load. Errors that may occur when the system is running many tasks that in
themselves are not too demanding, can be exposed this way [7].

Such a scenario can be dismissed as unlikely to occur because no one would use the
system this way (unless it is an Internet application). When security is a concern, es-
pecially if it is an Internet application, stress testing is important due to the danger of
DoS8 hacker attacks or due to the fact that Internet applications can become very popular
overnight, and suddenly have an extreme increase in server load. Although this is a well
known fact, it can still be very unpredictable and therefore worth exploring.

Stress testing has not been done and has not been planned for this project as the software
is not an Internet application (although it uses web technology and could have been used
on the Internet) and it is designed to handle a lot more stress than it needs to. It runs on
a standard platform that could normally handle thousands of users a day, but will only
need to handle a few.

3.2.7 Regression testing

Regression tests are re-usable, for the purpose of testing the same aspect with small
changes in the code each time. A good regression test should be likely to fail if the code
covered by the test is changed in such a way that it causes errors in the program [7].

There has not been many practical ways to use such a test in this project and it has there-
fore been omitted.

8Denial of service, a lot of computers on the Internet flood the server with requests, handshakes or data,
until the server crashes. May cause protected data to be exposed

22 CHAPTER 3. TESTING

3.2.8 User testing

"User testing is done by users. Not by testers pretending to be users. Not by secretaries
or executives pretending to be testers pretending to be users. By users. People who will
make use of the finished product." [7]

Simple and straightforward tests with a standardized system for reporting if the sys-
tem passed or failed can be done by end users without too much trouble, although such
a test would obviously not be very powerful, and probably not expose errors the devel-
opers didn’t foresee while designing the tests. However, to find out what the users are
having difficulties with, or where they fail to complete the tasks the software is supposed
to help them do, you must put more resources into it. Beta testing is a way to do this, but
may be expensive to administrate in practice and may not yield too much information
[7]. Another option is doing simulated tests where the developers can watch the users, or
full fledged tests "out in the field" where the users can write reports and suggestions, the
system can log how it is being used, and the developers can observe the users to record
information.

In this project we have used a simulated user test as defined above and made prepa-
rations for a full fledged field test.

3.2.9 Scenario testing

A test that is created as a scenario has a story that is believable and details a complex task.
The tasks describes what you have to do to complete it, but not how to do it. The system
is tested to see if it can cope with this hypothetical situation. According to [9], scenarios
come from, and are instantiations of use cases. Variations of scenario tests include soap
operas, which presumably got their name because of their similarities with television
soap operas. They are based on hypothetical, fictional and overly dramatic stories. Killer
soaps are more extreme versions of soap operas, where rare, but still plausible sequences
of data are fed to the system [7]. An example could be a string containing illegal charac-
ters, which could happen if a user hit a wrong key while typing.

These tests have a high error detection power and gives insight into advanced use of
the product according to [7]. We wanted to focus our attention on this type of test in this
project and it is therefore described in more detail in chapter 4.

3.2.10 Exploratory testing

Exploratory testing is "any testing to the extent that the tester actively controls the design
of the tests as those tests are performed and uses information gained while testing to de-
sign new and better tests" [4].

According to [4], all tests fall between a purely scripted one and one that is not scripted
at all, i.e. the tester develops the test continuously. The idea of exploratory testing is for
the testers to "learn about the software they’re testing, the market for the product, the
various ways in which the product could fail, the weaknesses of the product (including
where problems have been found in the application historically and which developers
tend to make which kinds of errors), and the best ways to test the software." [18]. While
they test the software they apply their knowledge to create better tests.

3.2. TESTING METHODS 23

According to [7], exploratory testing can utilize any testing paradigm (domain, specification-
based, stress, risk-based etc). Following this, we have in our project largely used ex-
ploratory testing when designing tests, and little scripted testing. In our experience
highly scripted tests are time-consuming and somewhat ineffective, while a more dy-
namic approach discovers more errors with less effort.

3.2.11 State-model based testing

The visible behaviour of the system is modeled as a state machine9, and the system is
then tested for discrepancies from the predicted behaviour [7].

Automated techniques are normally used to check the software which makes the test
easy to evaluate. The test is also credible and motivating according to [7]. Simplifications
are, however, often needed because of the sheer number of states, and trade-offs must
be made regarding the level of simplicity and detail [7]. State-models can be useful as a
guide in creating exploratory tests instead of being used as an actual test [7].

We have previously done the latter to some extent, as some of the tests we have done
have been based on state variables and have been highly exploratory.

9A state machine is a programming technique that enables a program to have two or more states. The
program remembers its state and keeps it until it is explicitly changed

24 CHAPTER 3. TESTING

Chapter 4

Scenario Testing

Beware of bugs in the above code; I have only proved it correct, not tried it
Donald E. Knuth

According to [10], of all types of tests it is the scenario test that is best suited for providing
detailed empirical information on those attributes that make up the usability quality char-
acteristic which is defined by the ISO-9126 standard [1]. In our system, KAS, usability is
an important quality attribute along with security and scenario testing could therefore
prove to be useful. For more information on usability and other quality attributes in our
system, look at our work in the previous in-depth study project [12].

4.1 What is scenario testing?

According to [15], there has hardly been any attempts to document and define the exact
nature of scenario tests. Our teaching supervisor, professor Tor Stålhane, confirms this
statement saying that this testing method lacks good documentation. A precise definition
is therefore required. Our definition of scenario testing is as following:

Scenario testing is a software testing method where the tests are defined through tasks described
by fictional stories. The stories describe what the tester should do, but not how to accomplish it.
The stories should be credible, and encourage the tester to be creative and explore the system’s
functionality

A scenario test is based on a scenario. A scenario is a hypothetical story, used to help
a person think through a complex problem or system [14]. Scenarios aim at describing
realistic situations with tasks that reflect real use. This means that a scenario is not only
something that could happen, but also something that probably will happen during daily
work. It is important to make the tasks as credible as possible.

[10] implicitly states that users are an integral part of a scenario test. We do not include
users in our definition, as we believe dedicated testers and developers could benefit from
scenario testing as well, as an alternative to test cases. We claim that the essence of sce-
nario testing is that it is based on credible stories which encourage exploration and learn-
ing in a software system. However, we acknowledge that scenario tests may have their
greatest strength when users are involved and the methods described subsequently im-
plicitly require users to be included.

Scenario testing in software engineering is about the what rather than the how. The testers

25

26 CHAPTER 4. SCENARIO TESTING

are provided with tasks they are supposed to solve using the system. This way they will
know what they are supposed to do, but not how they should accomplish it. They have
to explore the system to find out how to solve the tasks. The tests will show how intuitive
and usable the system is, and if users are involved they can provide unique perspectives
and feedback to the developers. By experience, people learn by doing, not by following
checklists or manuals. Learning by doing should make scenario testing more motivating
for the tester.

There should be clear indicators that can be used to decide whether a scenario test has
passed or failed. If it is not easy to evaluate, the test will loose some of its credibility. The
credibility of a test is important to its usefulness. For example, if a scenario test exposes
a task that can not be done with the system, this result must be credible enough to per-
suade a stakeholder with influence to protest, thus forcing the error to be fixed.

Scenario testing involving users is a relatively expensive method in a short term perspec-
tive as it depends on a lot of external factors. Future users willing and able to participate
must be found, and a suitable time and location must be set. Much planning is also re-
quired to make the test realistic enough. However, the long term effects of this effort will
be beneficial, because of the unique results a scenario test involving users can provide.
Results include feedback on normal use of the system, identification of errors and omis-
sions in its functional requirements specification as well as money saved on training the
users later.

With users involved, scenario testing can be compared to black-box testing. The users
have no knowledge of the system or its structure, they just provide inputs and observe
the outputs of the system.

Scenario testing normally goes through five phases as listed below and described in [10]:

1. Planning. Costs, location, who is participating and what to test (system or module)
are defined.

2. Preparation. Requirements are studied and the test procedures are defined. This
is also the phase where instruments (interviews, questionnaire, observation, check-
lists etc.) are chosen, a test plan is defined and tasks for the scenario test are created.

3. Testing. It is important to keep track of time and make sure the test plan is followed
in order to stick to the schedule and prevent tests from interfering with one another.
It is also important to distribute tasks to users and observe and collect data. Some
intervention from the observers could be necessary (like reacting when the testers
experience problems). It is also important to document all deviation from the test
plan.

4. Analyzing. All the collected information has to be analyzed, the less important in-
formation should be neglected and the important data should be taken care of. For
the important information, statistics could be calculated to represent data in an easy
way.

5. Documentation. All decisions made during the session should be documented, along
with any deviations from the test plan.

To summarize, scenario testing has five key characteristics as mentioned by Kaner [14]
and shown in this section. It is (1) a story that is (2) motivating, (3) credible, (4) complex

4.2. WHY USE SCENARIO TESTS? 27

and (5) easy to evaluate.

4.2 Why use scenario tests?

A tester creates a scenario based on functionality a system should possesses and how the
program works or doesn’t work, and shows the result to a stakeholder. The stakeholder
is thus encouraged to assess the importance of the scenario. By doing this the tester may
influence further development and force errors to be fixed. Therefore one could say that
scenario tests provide an early warning system for requirement problems that would oth-
erwise haunt the project later.

Kaner lists a number of reasons for using scenario tests in his article [14]. The first thing
he mentions is that bug reporting becomes more motivating. The stakeholders will be
more motivated to report a bug in the software system to the developers, if they see that
the bugs they report are being fixed.

He also discusses that learning the product is beneficial, and as we already have men-
tioned, people learn by doing tasks that require them to investigate for themselves, not
by being lectured or reading large manuals. He says it is less motivating to go through a
test following a checklist that someone made for you. While learning a product, the users
are also able to compare the system to their needs to see if the system could be used on a
daily basis.

Different stakeholders have different needs, and therefore different requirements to the
system. As a scenario test session develops, different requirements-related issues could
come to the surface. For example a user, who has never before seen the system, discov-
ers while testing the software that it lacks some functionality that he or she often uses.
The developers and the other stakeholders do not know about this lack of functionality.
This could involve reopening old requirements discussions with new data and inputs or
maybe not-yet-identified requirements. As a result of this, the evaluators acquire a lot
of interesting information on both the users’ behaviour and the users’ opinions of the
system.

4.3 Methods of scenario tests

There exists two methods to perform scenario tests; field tests and laboratory tests, as
reported in [15] and [8]. Both of these methods will be described in the following section.

4.3.1 Field tests

Field testing is testing conducted in the normal environment of the system and the users.
The users behaviour is observed by one or more evaluators taking notes, registering time
etc. This method should be an easy method for the users to deal with, since they are in
their usual environment and do not have to get used to a new one. Elements in a new
environment could influence the testing, either positively or negatively, and therefore it
has its advantages to keep the users in a surrounding they are used to. The tasks given to
the users during the field test should be standardised, which guarantees that every user
will encounter the same kind of problems and will have to perform similar operations to
succeed.

28 CHAPTER 4. SCENARIO TESTING

However, it could be difficult to plan a field test, because of the many variables that
are impossible to control beforehand, for example people’s movements or the lack of
control over the environment around them. It could also be a challenge to separate the
important from the not-so-important user behaviour during the testing if observation is
the only data collection method used. Furthermore, it is a general rule that the data anal-
ysis phase becomes more difficult if not performed directly after the testing phase. Time
could blur the situational context in which results were achieved and thus increase the
probability of inadequate data, especially in the absence of recording devices. However
in a field test the context may be extremely complex and therefore hard to describe to a
sufficient degree.

There are four methods often used by the evaluators in field tests, as can be seen in [15]
and [19]. These methods are also elaborated further in chapter 5.2:

• Observation, where the users behaviour and reactions are studied. This can be
supplemented with checklists.

• Interviewing the users before and after the testing. This could be supplemented
with questionnaires.

• Think-alouds, where participants are thinking aloud as they perform their actions.
They describe their thinking, feeling and doing as they go about their task while
observers objectively take notes without interrupting. This could be supplemented
with audio or video recording.

• Log file recording, recording all keystrokes during the user interaction in a separate
file.

4.3.2 Laboratory tests

Laboratory testing is testing where the users/participants are moved away from their
normal environment, and put into a laboratory environment where they are supposed
to solve tasks independent of one another. Here the users are normally observed in a
more indirect way, and depending on the laboratory’s technical instruments, this could
be done either via one-way mirror, video or audio recording or logging programs. Users
have to be highly motivated in a laboratory setting in order to deliver useful results. They
have to get used to the new environment and the demands the test puts on them. Some
travel is usually required for the users, and therefore less users normally participate in a
laboratory test than in a field test.

The planning phase in a laboratory environment is not as complex as in a field envi-
ronment, since the test does not have to fit into a daily working routine. It does not
require all the resources and knowledge beforehand from the creators of the test like the
field test, and the tasks could be based on somewhat fictitious data. However, like field
tests, the tasks in laboratory testing should be standardised to allow comparison of user
behaviour. Karat [15] states that, since the variability in the definition of tasks are much
greater, laboratory tests are particularly useful if the system under testing is not fully
operable. Many software companies conduct laboratory tests at different stages of the
software life-cycle instead of using more effort to plan and design the field tests.

4.4. EXPANDING THE SCENARIO EXPRESSION 29

Field test Laboratory test
Environment Normal working place

(least but still slightly
obtrusive, same physi-
cal/social environment
factors)

Controlled, new work-
ing environment, inte-
gration of developers
into tests possible

Test task Representative inte-
grated task (fits into
every-day routine)

Individual tasks (possi-
ble to test specific mod-
ules only)

Test system required Operable system or
beta version

Prototypes or operable
systems

Users More users/budget Less users/budget
Instruments Direct observation

(think-aloud, check-
lists, interviews, log-
ging programs)

Indirect observation
(one-way mirrors,
video recording, audio
recording, think-aloud,
logging programs)

Test planning Complex Straightforward
Test preparation Time-intensive Less time-intensive
Testing Very difficult Not so difficult
Data analysis Brief Exhaustive

Table 4.1: Important differences between field and lab tests

"The end user’s social and physical environment is not replicated in the laboratory envi-
ronment, and these factors influence the way an end user works with an application" [15].
Whether the task is representative for the daily-work or simply has testing character, also
influences the user’s behaviour during the test. This is something that one should keep
in mind when analysing and interpreting the results of the tests. The analysis process is
a bit different for laboratory than for field tests. Everything must not necessary be evalu-
ated at once. In laboratory settings one can have video, audio and logs one can return to
in order to get additional data, but it can be an exhaustive process to go through all the
material to check whether all relevant information is collected. In addition, one can have
checklists or questionnaires after the tests to ensure that as much relevant information as
possible has been collected.

4.3.3 Summary

The table 4.1 summarize the most important differences between field and laboratory
tests. A more detailed version of this table can be found in [10].

4.4 Expanding the scenario expression

One way to increase a scenario’s power is to exaggerate slightly while building it on real
experience. When someone in a story does something that sets a variable’s value, that
value could be made a bit more extreme to get a more "on-the-edge" result. Sequences
of events could be made more complicated and for example more people or documents
could be added to the scenario.

30 CHAPTER 4. SCENARIO TESTING

Hans Buwalda [6] calls the types of scenario tests where you exaggerate for soap operas.
The reason for this is the similarities to real soap operas on television. Television soap
operas describe life in a way viewers relate to, but the situations shown are typically ex-
aggerated. More things will probably happen to the characters in a television soap opera
than most of us will experience in a lifetime. Television soap operas does this to make
a better result, i.e. to capture more viewers in the story. In software testing Buwalda’s
recipe is to make the tests more fun and aggressive by substituting each variable with
a more extreme value, and if a scenario can include repeating elements, repeat it lots of
times. Buwalda also makes the environment less hospitable to the software during the
test with for example increasing/decreasing memory, resolution etc. Hans distinguishes
between normal soap operas and killer soap operas. Normal soap operas combine many
issues based on user requirements typically derived from meetings with the user com-
munity and probably don’t exaggerate beyond normal use. Killer soap operas combine
and exaggerate the most extreme values to produce extreme cases. Killer soaps aim at
finding hidden problems, typically those that would be discovered after a while by stress
testing or some other kind of extreme use of the system. The "specialists" are typically
asked for input to these tests. These are the ones with most knowledge of the scenario at
hand, that be developers, leaders or other stakeholders. Killer soaps are often run when
every other tests has passed in order to really test the system and the formula is to exag-
gerate each aspect of the test so that one would get a more extreme result. A killer soap
could be seen as a domain test that is based on a scenario.

Part III

Focus

31

Chapter 5

Research

Every program starts off with bugs. Many programs end up with bugs as well. There
are two corollaries to this: first, you must test all your programs straight away. And
second, there’s no point in losing your temper every time they don’t work
Z80 Users Manual

This chapter describes the research focus and the data collection methods used in this
project.

5.1 Focus

The KAS had been implemented according to the specified requirements, but was still
not ready to be put into active use. In order to reach this goal the users would have to
test the system to see if it was usable and if it lived up to their expectations. And most
importantly, they had to try it to see if it could be used to do their day-to-day work.

If the users didn’t approve of the system, the migration from todays paper-based system
to this software system would be problematic at best. Testing was needed to facilitate
this migration as painlessly as possible, and for this project it seemed prudent to utilize
scenario testing combined with user testing.

• Scenario testing because at this point in the development process we needed a high-
level software test that could reveal errors and emissions that a specification-based
test (see 3.2.4) could not. We needed a test that could expose requirements-related
issues that may not have been identified earlier.

• User were involved because the system had not previously been tested on normal
users and only they could ultimately assess whether the system was practically
usable or not.

By combining the two types of tests we could get user feedback and high-level software
testing at the same time. The scenario test is, in addition to the points above and accord-
ing to [14], suitable for learning to use the system. This would greatly increase the users’
ability to provide meaningful feedback on the software. We also wanted to see how sce-
nario testing could be effectively used in a software system at a late stage of development.
We were interested in finding out if scenario testing could provide the feedback needed
to complete the development of the system, and how the users would experience this
type of test.

33

34 CHAPTER 5. RESEARCH

In the in-depth study project last year we focused on quality attributes in software ar-
chitecture1 and what they meant to end-users. We decided to divide the software testing
process into internal and external testing according to the ISO-9126 standard [1]. The in-
ternal testing phase tested the system for quality from the developers and the administra-
tors’ point of view, while the external phase was part of the current project and involved
users in the testing process.

5.2 Methods of data collection

According to [11], the methods of data collection during software testing can be divided
into two categories; namely manual and automatic data collection. In this section we will
elaborate commonly used methods before we describe which methods that specifically
suits our project.

5.2.1 Manual collection

Manual data collection is defined as gathering data by hand. There are several ways to
do this, and common alternatives will be described in the following subsections.

Questionnaires

Questionnaires are often used in software testing, both in the development phase and the
evaluation phase. Questionnaires can be used to collect both quantitative and qualitative
data. Usually a sample which is representative for the population to be studied are given
the questionnaire, and the results are first analyzed and then generalized to the popu-
lation from which the sample was taken [23]. The questionnaire could be either a form
to be filled in or an on-line system, both of which have their strengths and weaknesses.
Based on experience, a form to be distributed is quick and cheap to make. An online
form can be dynamic, it can be updated during the course of the collection phase and
the results are instantly available. A more detailed discussion of these issues exists in the
report from the previous in-depth study [12].

One general problem with questionnaires, is that the choice of questions will limit the
data one will receive. They way the questions are asked could implicitly suggest the
"correct" answer [11].

In this project, we wanted to use a questionnaire as a supplement to observation after
the scenario test phase. The reason for this was to capture information that would not
be captured by observation only. The questionnaire could not be too extensive as the
test subjects were supposed to fill it out at the end of each test phase, and they were not
supposed to spend more than five minutes completing it.

Checklists

According to [19], the aim of using checklists in general software testing is "to obtain a
concise and coherent description of the system in terms of objects, attributes, functions,
relations between objects as well as between objects and functions, dialogue state, selec-
tions and estimated usability".

1More information on software architecture and quality attributes can be found in [5] and [1]

5.2. METHODS OF DATA COLLECTION 35

Checklists are often rated, either with simple yes/no (or true/false) values or with a
more comprehensive score, ex. a scale from 1-5. Checklists should aim at capturing
the essence of the data you need in a way that is practical to register. The contents of
checklists should depend both on the user and the system specification. For this reason
checklists are often project or system specific. It is easy to fill out inspection checklists,
but effective use of this technique in scenario testing is difficult according to [19]. This is
mostly due to the fact that the observer has to do two things at the same time, i.e. both
observing and filling out checklists. If you concentrate on observing the users actions it
is difficult to follow the structure of the checklist as the user may not follow this struc-
ture at all. If you, on the other hand, concentrate on registering a single piece of data for
the checklist, you will probably miss other useful information the user could have pro-
vided. Checklists could intuitively be useful in scenario tests for collecting quantitative
data while observing users if such data are considered important enough to take priority.

Checklists was not planned to be used for this project. This was mostly because of the
"strict" layout of a checklist as described above. We wanted to base the data collection
on a more open approach as all the test subjects probably wouldn’t work in a predictable
way.

Interviews

Interviews are an important part of most scenario tests. In an interview one or more
subjects are asked questions by one or more interviewer(s). During the planning phase
of an interview, the time and place for the interview is important to decide. Concerning
the point in time at which interviews are typically performed, one may distinguish be-
tween pre- and post-testing interviews [8]. Pre-testing interviews are performed in order
to elicit the subjects’ personal backgrounds, opinions and expectations concerning the
system that is going to be tested. Post-testing interviews are an important part of each
scenario test. They are performed after the observational data, i.e. video tapes, check-
lists, notes etc., are analyzed. Each aspect that needs further clarification is taken up in
the post-testing interview.

A combination of pre- and post-testing interview is possible and could provide useful
information, since it allows the assessment of the change of mind of subjects during the
testing exercise. The major advantage of interviewing lies in the fact that, unlike e.g.
questionnaires and observations you capture exactly the data you need through conver-
sation. Interviews can be recorded on tape or video. One major disadvantage of inter-
views is that the lack of anonymity in personal interviews may drive interviewees to
suppress important or add exaggerated information. In general, the success of an inter-
view is largely dependent on the interviewers skill.

Performed in combination with other instruments, as observations and questionnaires,
interviews are an important part of any data collection during tests involving users.

Interviews were not to be used in this project due to the time it takes to perform a good
interview, and the limited time available during each testing phase. We did however plan
to have a conversation with each user after the testing to elicit more valuable data from
them. This conversation could be seen as a post-testing interview, but with an open struc-
ture as we did not plan to prepare any questions, and the time spent on this conversation

36 CHAPTER 5. RESEARCH

would have to be minimal. We would have to base each conversation/interview on the
data collected during the testing, and some test subjects could receive more questions
than others based on this data.

Observations

"Observations are the most important instrument in any kind of software test involving
users. Observations can deliver results on all user-related quality characteristics" [11].

There are two types of observations, direct and indirect. Direct observations are done
by one ore more evaluators sitting close to the subject, watching and taking notes. It
could be difficult to observe users without intruding or interrupting, and this could alter
the results of the tests. This is something that one must have in mind as observer. Indi-
rect observation is conducted differently. Video recording, audio recording or one-way
mirrors are usually used. Video is not as intruding as direct observation, but provides
the same overview of user behaviour. The major advantage of indirect observations, is
that the data could be reviewed as many times as necessary to get the relevant infor-
mation in the data analysis phase. However, reviewing the material many times is a
time-consuming job.

Observations could be supplemented with interviews and/or checklists to be able to ver-
ify the information noted and to get even more information from the users.

In this project we planned on using direct observation as the main data collection method.
We wanted to observe each user’s behaviour and progress, while they tested the system
based on scenario tasks. We would have to take notes while observing in order to re-
member the important observations. The collected data would be subjective as it would
be solely up to us which information would be important and worth noting. To secure the
collection of all the important information we wanted to supplement observation with a
questionnaire at the end of each test. This way we, as developers with full knowledge of
the system, could observe and elicit information we knew to be important at the observed
time, and the users would be given the opportunity to provide additional thoughts and
feedback afterwards.

Think-alouds

"The motivation behind using think-aloud protocols is to collect information on the users’
own reasons for their behaviour. The collected information needs to be evaluated care-
fully, since thinking aloud presupposes that users are able to describe their actions, which
is only true for users trained to verbalize their thoughts" according to Vainio-Larsson [19].

She describes several problems with the think-aloud approach, and suggest that they
are used as a complement to other data collection methods to ease interpretation, rather
than being used alone.

We did not plan to use think-alouds in this project. The reason for this was that we
didn’t see this as a valuable method in our case, as this method is based on the users
being able to grasp their own behaviour and verbalize all their thoughts, and we had no
way of knowing whether our test subjects would be trained in doing so.

5.2. METHODS OF DATA COLLECTION 37

5.2.2 Automatic collection

Automatic data collection methods are concerned with programs or instruments that are
used to perform tests on other software systems with the purpose of gathering data. Most
automatic test instruments are developed for testing specific types of software. They can
not be used to test other types of software. Automatic collection instruments elicit both
qualitative and quantitative data and are useful supplements to manual test instruments
in user-oriented software testing. They collect large amounts of data and do not intrude
on the user’s thoughts or activities [8].

Logging and playback programs are general data collection programs that are external
to the software under testing, i.e. no changes are necessary from one application to an-
other. It can be used with actual product code or prototypes of the user interface of a
product under development. "The application of toolkits for logging programs which
are available on the PC market generally requires intimate knowledge of the systems un-
der testing; since the interfaces between the application and the logging program need to
be specified" [8].

Since automatic collection largely depends on test programs, and these test programs
usually are made for a specific task, doing automatic collection in this project would not
have been possible as our software is unique and does not have any standardized inter-
face for such a tool. We did not have the time or resources to make such instruments to
test the KAS, and we did not find any existing programs that could test our software this
way.

38 CHAPTER 5. RESEARCH

Chapter 6

Planning

The major difference between a thing that might go wrong and a thing that cannot
possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it
usually turns out to be impossible to get at and repair
Douglas Adams

This chapter outlines how this project and the main parts of it were planned. The first
section gives an overview of the project as a whole. The following sections will go into
more detail on the planning of the two test phases. The last section of this chapter shows
the overall project plan.

6.1 The project

In order to complete the KAS it had to be tested, both to be accepted by the users and
to see if the system could run in its intended environment. At the start of this Master’s
thesis we created an overall project plan, see chapter 6.4. The project was planned so that
the KAS would go through two major test phases. In the first phase, the system was to
be tested by the users to see if they understood the system and if it could prove useful
for them. This could be done via a laboratory test during the course of one day. In the
second phase, the system was to be tested in the hospital’s environment in order to see
if it would run as intended and if it could replace todays paper based system. The sec-
ond phase would have to last for a few weeks, in order to see how the system would
behave over a longer period of time. After these two test phases, the system would be of
sufficient quality to be put into active use at UNN, or it would at least be clear what the
system lacked to achieve this.

Based on the theory in chapter 4, the first test phase was to be a scenario test where the
users would be given standardized tasks to solve. There are four reasons why we chose
to perform this kind of test. First, we wanted to increase the quality of the system. With
this test we could remove potential bugs and obvious function errors that would have
occurred at a later stage, that probably could have disrupted the second test phase in its
real environment. Second, we wanted to explore scenario testing as a testing method and
conduct scenario testing in order to see how well it suited our project. Third, we wanted
to see if the users appreciated our system. Finally, some form of simulated test before
a real test was important because door access control is a crucial part of the hospital’s
day-to-day operation and minimizing the risk of its failure is important. If a real test had
revealed critical errors it could have created severe problems.

39

40 CHAPTER 6. PLANNING

The scenario test was planned as a combination of field and laboratory tests as seen in
chapter 4.3. It would be a field test because it would be located in the hospital’s environ-
ment and the users would be observed by us, taking notes at the same time. It would
also be a laboratory test because the system would not run at the hospital’s server in its
usual environment. It would take too much time to organize the system on the hospital
server, and we wouldn’t have the possibility to correct and edit the database during the
test session. It was apparent that such a test would require a lot from us as evaluators, as
it would be solely up to us which information should be considered important.

We did not plan to use scenario testing for the second test phase. We wanted the users to
perform the testing during their normal day-to-day work, to check if the system covered
all requirements, in order to replace the existing paper-based system. The system would
be tested with "real" tasks as a larger number of users performed their daily work. This
testing would be a full fledged field test since the system would be operating in its real
environment on the hospital’s server. The test would not require anything from us as
evaluators during the data collection phase, as direct observation of the users would be
impossible because of the long test period and large area to cover. The data would have
to be collected through a feedback function implemented in the system, where all entries
are stored in a database.

6.2 The scenario test

A detailed plan for the scenario test is presented in this section.

For the scenario test, the plan was to observe users and take notes of their behaviour
while they, two at a time, solved different scenario tasks in the system. After each pair of
users finished their scenarios, we planned to give them a small questionnaire/feedback
schema in order to capture data we didn’t capture during the testing. They would then
be able to explore the system while they filled out the questionnaire. Every user would
be given a set of predefined tasks to solve with the system. The various types of users
have different responsibilities and tasks in real life, and different access levels in the sys-
tem. Therefore the system would have to contain some predefined data for each scenario.

Of the five phases of scenario testing, as seen in chapter 4.1, we combined the first two
phases, planning and preparation, so that we had to go through four phases during the
scenario test. The location, test procedure and test plan were defined simultaneously.
This phase is described further in the following sections. The testing phase is described
further in chapter 7. The analysis and documentation phases were partly combined as
we began to document the test at the same time we began the analysis of the results. The
analysis phase is covered through the discussion in chapters 7 and 9.

6.2.1 Laboratory arrangement

For the test we needed a laboratory, in the sense that it would be a place under our con-
trol outside the context of the test subjects’ normal working environment. After some
e-mail correspondence with our contacts at UNN1, we decided that a conference room at
the hospital was a suitable location as it would minimize the time the test subjects would
need to leave their normal work, and other resources needed would be nearby.

1Our contacts are mentioned in chapter 1.2

6.2. THE SCENARIO TEST 41

Time Type of user
09:00-09:30 Time-limited card or-

derer
09.35-10:05 Time-limited card or-

derer
10:10-10:40 Time-limited card or-

derer
10:45-11:15 Time-limited card or-

derer
11:20-11:50 Personnel department
12:00-12:30 Lunch
12:30-13:00 Personnel department
13:05-13:50 Administrators
13:55-14:50 Security personnel
15:00-15:45 Security personnel

Table 6.1: Time schedule for the scenario testing

We would need at least two computers for the test subjects, as we were two developers
and could then simultaneously observe one person each. We would also need access to
the University’s main server or an additional local pc set up as a server. Although using
the University’s server would enable us to test the system in its real working environ-
ment, potential problems would interfere with the user tests and degrade their quality.
We would have little time to fix such issues once the system was online. We therefore
decided that we needed a third pc in the lab to approve/deny orders (part of the scenar-
ios the users were to be subjected to), so the system would appear to be as realistic as
possible to the users.

6.2.2 Schedule

Based on the arrangement in the laboratory, we planned the test to last for two days, one
for the installation and preparation of the laboratory and one for the test. The prepara-
tion of the laboratory would have to be complete before the test day, and to be sure we
had enough time to cope with any problems that could arise we reserved a day for this
purpose. By experience unforeseen problems "always" arise in a new environment.

In the schedule we estimated each test to take about 30 minutes for the card orderer users
in the system, and 45 minutes for the administrators (our two contacts) and security per-
sonnel. We planned for a short break for about five minutes between each pair of users
for cleaning up the system (the data the previous users have entered into the server) so
that it would be ready for the next group. When the next pair of users had another user
level than the previous ones, we would have to enter new test data into the server. Based
on our estimates, we made a schedule in cooperation with our contacts. This schedule
can be seen in table 6.1. At each specified session there were two users to observe, one for
each of us. This made a total of eight time-limited card orderers, four from the personnel
department (those who order ID cards), four security personnel and two administrators.
This gives a total of 18 users to participate in the scenario tests.

42 CHAPTER 6. PLANNING

6.2.3 Scenarios

In order to carry out the scenario test, tasks for the users had to be created. We decided
to create these tasks ourselves, since we knew the system in and out, without involving
our contacts at UNN. We had, however, no experience with the users’ work issues and
the situations that could arise during a normal work day, so all tasks was created based
on intuition and the example data for each task were largely imaginary. The tasks were
based on our knowledge of the system, and were made so that the users would encounter
situations that could occur in the system on a daily basis.

While creating the scenarios, the first thing we did was to make a list of the tasks each
user should do. This list was divided into three user groups and is shown below.

Time-limited card

• Order a time-limited card to a person that exists in the database

• Order a time-limited card to a person that does not exist in the database

• Order a time-limited card to a person that has lost his card

• Edit a submitted order that is waiting to be confirmed

• Correct a rejected order according to the feedback message

ID card

• Order an ID card to a person that exists in the database

• Order an ID card to a person that does not exist in the database

• Edit a submitted order for an ID card that is waiting to be confirmed

• Correct a rejected order according to the feedback message

• Order a change in a person’s personalia

Security Personnel

• Accept and confirm an incoming order for a time-limited card to person one

• Order an ID card to person one

• Accept and confirm this order for an ID card to person one

• Accept and confirm an incoming order for a new ID card to a person that has lost
his old card

• Deny and reject an incoming order, with a message of why it was rejected

• Terminate a card where the job has ended but the card is not registered as returned

• Register a card that is handed in as received

• Accept a change in a person’s personalia

6.2. THE SCENARIO TEST 43

From the above list, scenario tasks were made with some help from Kaner’s Twelve Ways
to Create Good Scenarios [14]. Each scenario task was constructed in two versions for each
user group, but with different data, to allow two test subjects to do the test simulta-
neously. If both test subjects entered the same data into the system, multiple identical
entries could create confusion because the test subjects would have no way of knowing
which entry was meant for them.

Chapter 4.1 listed the characteristics that a good scenario should have. The following
list shows how our scenarios conform to these requirements:

1. It should be a story. Our scenarios try to tell small parts of stories throughout the
tasks. The stories are quite simple but more elaborate ones may not have been
suitable in this context.

2. It should be motivating. Our scenarios were realistic and not too complex, we tried
to recreate plausible situations from normal work.

3. It should be credible. We have tried to make the stories as credible as possible given
the information available, however they are still fictitious.

4. It should be complex. Our scenarios are quite simple, but with some complex el-
ements. If they were too complex they may have been less motivating to the test
subjects.

5. It should be easy to evaluate. Our scenarios had clear tasks and it can be easily
evaluated whether the task has been completed or not.

The completed scenarios are shown in appendix B.

6.2.4 User observation

The most important aspect of this test would be observing the users behaviour and col-
lecting key data while they worked on the scenario tasks described earlier in this chapter.
Thus the data collection method most relevant to this project was observation, see chap-
ter 5.2.1. According to [17], an important aspect of observation is deciding which role you
are going to play. An observer must decide which degree of participation he/she should
have. The roles one can have varies between total observer, participating observer and
total participant. In most roles the evaluators can choose to perform either openly or hid-
den. If the role is a hidden one, the users don’t know that they are being observed. An
observation could also either be done directly or indirectly as described in chapter 5.2.1.
As [17] says, the observation role could change over time.

[13] mentions the outsider/insider myth. Some believe that good research can only be
done by observing form afar and maintaining objectivity, while others believe that it is
necessary to understand a group from the inside to fully understand it. Both points are
worth considering, and [17] points out that the best solution often is a compromise where
you try to understand the test subjects situation, while trying to maintain a certain dis-
tance. We planned to take an open and partially participating role ourselves, where we
could give the test subjects hints but leave it to them to explore the software system, to
be able to observe which parts that were problematic.

We came to the conclusion that we didn’t want to count and classify any errors and bugs

44 CHAPTER 6. PLANNING

exposed during the observation, only note down the errors in order to correct them at
a later stage. We could have recorded the time each user used on each task in order to
capture the usability of the system, but we felt that such a measurement would not be
good enough for such a complex quality factor. What we wanted to look for during the
observation was how the users perceived the system, if they understood its functionality
and how their daily work was to be done. We also wanted to register every function that
seemed like a source of irritation for the users, and the users suggestions for improve-
ment of the system. We felt the best way to do this was to observe the test subjects closely
without looking for pre-determined metrics so that we could continuously assess which
information was important. A questionnaire was created for the test subjects to answer
afterwards, containing questions that may not come up naturally during the test session.
On request from our supervisor, professor Tor Stålhane, we also made a registration form
in order to register each user with name and either a phone number or e-mail address.
This way they could be contacted at a later stage to clarify any confusion or ask additional
questions.

6.3 The field test

A detailed plan of the field test is presented in this section.

6.3.1 Schedule

We estimated this test to last for approximately three to four weeks, and start when the
implementation of the changes derived from the scenario test was completed. For this
test the system would be installed in its working environment, the university’s intranet/SQL-
server. The system’s functionality would have to be tested after installation to check for
any errors due to changes in the operating environment. This would have to be done
before the test started, to ensure that the test would not be hampered.

6.3.2 Data collection

We would not have the time or opportunity to observe the users on site, i.e. while they
worked normally. We would thus have to collect data in some other way. We had the
possibility to collect data through a feedback function accessible from the system itself, or
from questionnaires at several points of time during the test. Making a feedback function
in the system was clearly the best option, because this way the users could register errors
or other feedback at once while using the system. During the test we could also check the
feedback from the users to continuously improve the system and fix errors. They would,
however, have to use this function actively, or else we would be left with no results from
the test at all. Thus, we would have to clearly specify to the users that their opinions and
meanings about the system would be highly valuable, and that the feedback received
could lead to changes being made.

6.4 Project plan

The project plan is shown in figure 6.1. This plan was made in the beginning of this
project and was meant to be a guideline to help us keep track of the time spent on each
activity. Each activity/phase is connected to a date. The date was when we ought to be
finished with that activity, and ready to start the next. Each activity depended upon the

6.4. PROJECT PLAN 45

completion of the activity before. The figure doesn’t show the actual time used on each
activity, only the planned usage. The different activities in the project plan are described
below.

• Implement changes. Some changes had to be implemented in the system. These
changes were corrections and improvements discovered during the in-depth study
[12] last term. It was important not to spend a large amount of time on this activity
in order to begin the testing as soon as possible.

• Plan simulated user test. This was the phase where the scenario test would be planned.
During this activity theory and literature also would have to be studied.

• Performing user test. The scenario test was planned to be conducted in Tromsø at
UNN during a day or so.

• Analyze results and implement changes. The results of the scenario test would have to
be analyzed and the identified issues resolved before the extensive full test at UNN.

• Plan a full test. The full test would have to last for a month or so, in order to observe
the performance of the system over a longer period of time. The planning would
have to be done carefully in order to properly collect all data from the users.

• Execute the full test. The execution of the full test would require significant resources
from UNN and much coordination would be required.

• Analyze results and complete the code. Results from the full test would have to be
analyzed, and erroneous and superfluous functions should be improved in order
to complete the system so that it could be delivered to UNN.

• Write documentation. In this phase technical documentation of the system was planned
to be made so that UNN could modify the system at a later stage without our help.

• Write the report. Writing of the report was planned as an ongoing activity during
the whole project.

46 CHAPTER 6. PLANNING

Figure 6.1: The project process

Part IV

Test sessions

47

Chapter 7

The scenario test

One: demonstrations always crash. And two: the probability of them crashing goes
up exponentially with the number of people watching
Steve Jobs

The scenario test will be described in this chapter. Chapter 7.1 details the work done
before the test and the results from the test are presented in chapter 7.2.

7.1 Preparation work

After the planning of the project (see chapter 6.2) we had to clarify some issues before the
scenario test session was conducted. Implementing changes from previous project, find-
ing a suitable date, organizing test subjects and preparing the laboratory were important
activities.

7.1.1 Initial implementation

Based on the results obtained from our previous project [12] we were already aware of
some errors, in addition to other elements that were designated as future work in the
existing requirements specification. We had to choose the most critical and at the same
time not too time-consuming elements to fix before the scenario test, because the testing
had to be completed as early as possible. To ensure that the test yielded the best possible
results, the test subjects should not have to worry about known errors. The following
changes were implemented prior to the scenario test:

• The date fields had an awkward syntax and was replaced by a graphical calendar
(probably the most important issue to fix)

• The ’Stilling’ field was included in some pages were it was missing (not critical, but
easy to fix)

• Some security holes were plugged (not necessarily critical in this phase, but still
important)

• One of the user classes could not register new users in the system. The error was
fixed

• Added possibility to remove user privileges in the register new users page. The
layout of this page was also improved.

49

50 CHAPTER 7. THE SCENARIO TEST

• Added a page for security personnel for accepting changes to users names and
departments (necessary function in daily work)

7.1.2 Laboratory preparation

The installation and preparation of the laboratory went well for the most part, the IT-
department at the hospital had arranged three computers for us in a conference room
with access to their intranet. We encountered some technical difficulties mostly because
of a bug in MS SQL1 server that it took some time to work around.

We had a short meeting with our contacts to explain our plans for the following test day.
They suggested that to increase the level of realism of the test and decrease the num-
ber of factors that could thwart it, we should update our scenarios with the real names
and departments of the applicable test subjects. They also suggested that we should use
their existing paper-based ordering system where applicable in our scenarios to further
increase realism.

We allotted one hour for these changes during the preparation, however none of them
were done because of a critical technical problem we encountered towards the end of
the preparation which had to take priority. The system has been developed exclusively
for IE2 because no other web browsers are used at UNN, but a bug of unknown ori-
gin prevented the system from working properly in the laboratory environment, and the
Firefox3 browser had to be used.

7.2 Results from the test

The test yielded few quantitative results but produced useful qualitative feedback. As
such results are subjective and are difficult to quantify, some discussion will instead be
provided in the following sections. The observations can be seen in appendix C.1, replies
to the questionnaire in C.2 and the collected functional requirements, or additions to the
initial functional requirements specification, are located in appendix D.

7.2.1 GUI - intuitiveness

As determined by the ATAM4 analysis in [12], a high level of security and usability are
the most important qualities this software must possess, and although modifiability5 is
important, the former two takes priority. Security had already been tested in [12], there-
fore the scenario test session was for the most part a test of the GUI and its intuitiveness
to the end users. The test subjects did have the opportunity of stating their opinion on
and inquiring about any part of the system, including its level of security, but almost no
one did. Performance has not been a priority throughout the development of the soft-
ware system (see [12]), primarily because of a relatively low amount of users compared
to the operating environment’s capabilities. The hardware environment for the KAS is

1Microsoft’s implementation of the SQL database standard
2Microsoft Internet Explorer 6.0, Microsoft’s current web browser at the time of writing
3Mozilla Firefox, a popular web browser. See http://www.mozilla.com/firefox/
4Architecture Trade-off Analysis Method, a way to reveal how well a software architecture satisfies par-

ticular quality goals, and provide insight into how quality goals interact, and trade off. See [5] for more
information.

5The ability of the software to handle changes and additions to the code without spawning bugs and
negative ripple effects throughout the system

7.2. RESULTS FROM THE TEST 51

Figure 7.1: The computer skills of the participants in the previous in-depth study

already scaled for handling much more time-critical and performance-hungry systems.

Most of the feedback from the test (see appendix C.1 and C.2) did indeed concern us-
ability issues, and the system’s GUI. The test subjects had not received any training prior
to the test, they all saw the system for the first time. But apart from minor errors, no one
seemed to have any significant difficulties completing their tasks. We inquired each test
subject about his/her computer skill, and this skill level seemed to be the most important
factor concerning feedback on the system and the time spent on solving the given scenar-
ios. This tendency was also previously identified in the previous study [12]. Figure 7.1
shows how the participants of that study assessed their own computer skill level by com-
pleting a questionnaire. These data are based on a larger population (46) relative to the
current study (18), and its quantitative approach makes it better suited to generalization
of the results to the entire population. Both studies are based on the same population, all
the employees at UNN that will use this system, which is about 500 people.

In the previous study [12] the test subjects’ computer skill was assessed by themselves
through a questionnaire. In this study the test subjects were asked during the test to
assess their skill level, which was also later observed by us. In the first study the partici-
pants from security rated their skill level highest and the participants from the personnel
department lowest. In the current study the test subjects from the personnel department
was observed to have much better skill than previously assessed, and they had least trou-
ble learning the system during the scenario test. Both studies show that the security per-
sonnel had relatively high computer skill. The administrators did not participate in the
first study but they have, to our knowledge, the highest skill of all user groups. The secu-
rity personnel had significantly more advanced tasks to complete than the other groups,
which should explain why some of them needed much time to complete their tasks. For
all types6 of test subjects it was apparent and not surprising that those that required the
most time and help were indeed those that pointed out their lack of computer skill. As
it was apparent that good computer skill lead to short time used on the tasks and quick
learning of the system, it was apparent that this again lead to increased happiness about
the system. Thus, we observed a correlation between computer skill and happiness with
the software.

6Temporary, personnel dpt., security, admin

52 CHAPTER 7. THE SCENARIO TEST

Some users reported that completing tasks in the system took more time than with the
existing system (see appendix C.1). This appeared, through the test subjects observed
behaviour, to be a general problem. This should, however, be greatly alleviated by a min-
imum of training, and good user manuals. Indeed, the test subjects worked faster as they
became familiar with the system. The quality of the key card orders will in any case be
much higher than before, which was a primary concern and a driving force behind the
creation of this software system. This was also pointed out by some of the test subjects. A
primary goal of the test was to expose where the GUI failed so that it could be improved
to satisfy the requested level of quality, which should also reduce time usage in the future.

We had anticipated that the test subjects would be sceptical of yet another computer
system in their daily work, but the feedback was almost entirely positive (see appendix
C.1 and C.2). One of the test subjects, who according to himself had very low computer
skills, thanked us because the task of learning a new system did not seem as daunting as
he had feared. This again shows that our GUI is simplistic and intuitive, and that the win-
dows standard not necessarily is the best (see section 2.5 for a description of differences)
for creating easy-to-use graphical user interfaces.

7.2.2 Test setup

The number of test subjects was small and any conclusions based on quantitative data
collection would have had a low level of confidence. We therefore felt that direct obser-
vation followed by an informal conversation not as rigorous as an interview, would be
more productive than devoting our attention as evaluators to record time spent, or other
typically checklist-based data. We chose to adapt the test to each test subject instead of
rigorously measuring quantitative data for each subject. This was a success as the test
subjects felt more at home and loosened up during the test, speaking more freely and
giving feedback as they saw fit. We received many thoughts and perspectives we had
not previously thought of, and we believe the test setup was an important reason for
this. This valuable feedback would probably have been lost if the test subjects only were
to answer our pre-defined questions. We are certain that encouraging test subjects’ cre-
ativity during a test will yield better feedback, and valuable alternative perspectives and
opinions.

Our role throughout the test was supposed to be an participatory observing one. To
better observe which parts of the system that appeared cumbersome to the test subjects
or to measure quantitative data we should have maintained a more observatory role. It
was, however, difficult to avoid helping and guiding the test subjects through the given
scenarios. Some were not comfortable with computers and some were confused by Fire-
fox’s auto-complete function7 when filling out forms. We have, as [17], experienced that
actual field work requires the researcher to fight for his/her definition of the role, and
that this role can change over time.

We did not have time to alter the scenarios to reflect the names and departments of the
test subjects as previously mentioned. Even so, it did not seem like the they had any
problems relating to fictitious scenarios. Our scenarios seemed to be straight-forward
and nothing indicated that fictional data were a source of confusion.

7A window pops up when you highlight an input field on a web form, presumably to show auto-complete
alternatives

7.2. RESULTS FROM THE TEST 53

The questionnaire (see appendix C.2) was too large and extensive. Some of the ques-
tions were hard, if not impossible to answer meaningfully for a user with only 15-20
minutes of experience with the system. None of the test subjects answered all the ques-
tions. The questionnaire seemed to create a sense of "a lot of work" as opposed to the
intended "quick to complete". It was, however, evident that some of the questions were
useful in highlighting issues that did not emerge naturally during each test session. The
questions and replies from this form can be found in appendix C.2.

The schedule was a perfect fit and every test subject showed up on time thanks to our con-
tacts at UNN. The test subjects were happy with the arrangements, and some department
heads were anxious to put the system into use and even volunteered their departments
for further testing phases. We did not collect contact information for the test subjects as
planned, because it did not seem necessary and we managed to clarify any issues that
emerged, during the tests.

7.2.3 Functional requirements

The test yielded a lot of additions to and refinements of the functional requirements
specification. These were the most important results from the tests with regard to the
software system itself. These requirements were refined and weighted based on simi-
lar principles as [5] weights scenarios in an ATAM analysis. Each requirement received
a high/medium/low rating on its importance, and its estimated time needed to imple-
ment. A requirement with a rating (H,L) denotes that the requirement has high impor-
tance and should take little time to implement. The requirements were then prioritized
according to these values and the result was a prioritized to-do-list that had to be imple-
mented before the final test phase. This list can be found in appendix D. The scenario
test was thus successful as a high-level software test, as we feel that the overall quality of
the software system was greatly improved by the test.

7.2.4 Other results

It became apparent that the existing paper-based system was not being used as intended
by all employees, which was reflected by some of the new perspectives we received from
the test subjects. They pointed out several workarounds they normally used to overcome
weaknesses in the existing system. If such information had been available during the de-
sign of the software system, changes would probably have been made to the functional
requirements specification. This was a useful result from qualitative research.

Both we and our contacts were somewhat surprised when some of the users pointed
out that they did not want it to be too easy to complete some of the tasks in the system,
as it could compromise security. We had not anticipated that the end users had such
concerns, but it should be mentioned that the users in question were department leaders,
with the accompanying responsibilities.

54 CHAPTER 7. THE SCENARIO TEST

Chapter 8

The field test

If people never did silly things, nothing intelligent would ever get done
Ludwig Wittgenstein

This chapter describes the preparation done prior to the field test. It also describes why
this field test must be conducted at a later stage.

8.1 Preparation work

We implemented the new functional requirements from the previous test phase, see ap-
pendix D. This phase was supposed to take two weeks, but it actually lasted for about
six weeks. We should probably have set a limit for how much time we were going to use
implementing these requirements, but we wanted the system to be as good as possible.
Almost all requirements were implemented due to either high importance or low imple-
mentation time.

When the implementation was done there was some issues that had to be addressed
before the system could be installed at the hospital. Since the security personnel are the
most important part of the chain, they had to be taught how to use the system. Their
tasks are also quite complex. There was two ways to teach them, we could either teach
every security personnel during a one day course or we could make a user manual or a
combination of both. We planned to write a draft of a user manual, and send it to UNN
so that they could return it with comments. We could then do the necessary changes to
make it acceptable for use. But because of issues described in the following we made
complete user manuals for all user types in the system, not only for the security person-
nel. These user manuals were illustrated and the system’s functionality was thoroughly
explained in order to be able to teach the users the important aspects of the system. The
user manual for the security personnel is shown in appendix F.

The system was now ready to be installed at UNN. Ideally the system should have been
tested by us, since we had the best knowledge of the system, to confirm that the system
was working after the installation at UNN. As previously noted, we experienced unfore-
seen technical difficulties when installing the system locally on the intranet during the
scenario test phase. However, the IT-department at UNN wouldn’t give us remote access
to their intranet, but they tested it themselves shortly after the installation. This test was,
however, probably not thorough enough as we received no transcripts or results from
this test. And as far as we know they did not find any errors.

55

56 CHAPTER 8. THE FIELD TEST

8.2 Results from testing

It turned out that the field test could not fit inside the time frame of this project after all.
While the technicalities were well planned, UNN did not have the time or resources to
start the test before the beginning of June 2006 because of employee vacations.

As previously mentioned, the security personnel had to know how to use the system
before the test could be initiated. UNN did not find user manuals to be sufficient for such
training, and demanded a course for these users. They pointed out that user manuals are
well suited as glossaries, but it can be hard to learn a new system from one, especially
for users with low computer skill. While we could have held such a course it could not
have started before June, and we had little time to plan one, so we had to cancel it. Since
we wouldn’t get any results to this report from this test (the report’s deadline was June
12, 2006), we had to postpone this testing phase to a later date. This phase will have to
be completed before this system will be put into active use. In retrospect we should have
set a date for this test at a much earlier stage, and stopped the implementation before all
requirements had been completed. Although for further work on the software we have
laid a solid foundation, and a field test can be initiated at any time.

Part V

Final results

57

Chapter 9

Discussion

9.1 Validity

A discussion of validity of the methods used, the decisions made and the results col-
lected, is important to ensure that the results are reasonable and trustworthy. We must
ensure that the data has been collected in a way that allows us to draw conclusions that
have a reasonable level of confidence. There exists many threats that can affect a project,
be it a case study, survey or experiment, both positively and negatively. Wohlin [23] dis-
cusses validity threats especially for experiments, but some of these are also threats to
other empirical strategies. The following validity discussion is based on his work, al-
though his classifications, separating different kinds of validity threats, are experiment-
specific and did not fit our use. The intended scope of the collected data was for use
within UNN, and the maximum population they concerned were all the employees at
UNN who would use the KAS. This amounts to about 500 people.

The qualitative characteristics of the data collected during the scenario test made them
unfit for statistical analysis and subsequent generalization to the whole population. The
data was analyzed using experience and knowledge. We have used the data to spawn
new functional requirements to the system, but we have not asserted that all the future
users will agree with the assumptions made. The field test was supposed to provide a
broader user base with the opportunity of stating their opinions about the software sys-
tem and thus add confidence to the generalization of the requirements. This is one of the
reasons why this test should be conducted before the system is operational.

Wohlin points out the importance of making sure you have identified the factors influ-
encing a variable leading to an observed tendency. For example, if the variable was how
well the test subjects liked the software system, its layout and intuitiveness may not be
the only factors with influence. Other possibilities are computer skill level, experience
from other software systems, expectancies about the software, their current state of mind
etc. In the previous study [12] some of the test subjects from the scenario test partici-
pated in a survey of expectancies about the system by completing a questionnaire. This
may have created some bias about the system before the scenario test. We observed that
the test subjects were overly positive about the system. Another factor that may have
influenced this tendency is the selection of test subjects done by one of our contacts at
UNN. We have little knowledge about the criteria for the selection process, it is for ex-
ample plausible that he selected test subjects he knew would be interested in trying new
things and were open to new influences. Thus the feedback could be disproportionately
positive. On the other hand, the selection could have been purely random. Being present

59

60 CHAPTER 9. DISCUSSION

during the tests ourselves, as experts of the system, to answer the users questions was
probably also an important reason why we received such surprisingly positive feedback.

Wohlin mentions mono method bias, which he defines as using a single type of measure
or observation. If the method is biased, the results will be misleading. We have indeed
used a highly subjective form of observation throughout the tests, which easily could
have produced misleading results if we were not aware of this risk. We have supple-
mented the observations with questionnaires and interviews to ensure a broader base of
collected data and at least some objective data collection. As we used several methods
of data collection and tried to make the test subjects speak their mind, we do not believe
that mono method bias is a valid threat to the results.

Another validity threat is evaluation apprehension, which describes people’s tendency to
try to look better while being evaluated. A person being evaluated while solving a task is
likely to do his/her best, which may again produce overly positive results and feedback.
It was hard to assess the degree to which this tendency occured, but we believe a few test
subjects tried, to some degree, to appear more skilled than they really were.

We tried to make the scenario tests as comfortable as possible for the test subjects. They
received help and support from us when needed, and were given coffee and cookies.
These factors may have given the test subjects a better than normal impression of the
software system resulting in more positive feedback.

The results are also influenced by the level of realism provided by our laboratory set-
ting. The purpose was to make it as realistic as possible, and this was highly dependent
on our understanding of the daily routines at the hospital. While the test subjects were
comfortable with the tasks given to them, we had little knowledge about their normal
work situation. It could have been useful to base the scenarios on direct observation of
routines in practice or surveys allowing the users to explain their normal work routines.

Technical difficulties required the use of alternate software1 during the scenario test which
degraded the visual quality of the KAS considerably. This adversely affected the quality
of the test and the test results. Readability and/or intuitiveness was crucial to most parts
of the test, and was one of the main characteristics being tested.

To summarize, we do trust the data we have collected, but believe that the positivity
about the KAS is somewhat exaggerated because of the issues mentioned above. We do
not believe that all the data can be safely generalized to the entire population without
data from field testing. However, the test subjects were in agreement about most of the
results which give the data confidence.

9.2 Time consumption

We did for the most part stick to the initial project plan during the project, with some
exceptions which we will describe in the following section.

The scenario test was conducted a week later than originally planned in order to fit the
schedules of our contacts at UNN. While this did not impact the project plan, the follow-

1The Mozilla Firefox web browser had to be used instead of Microsoft Internet Explorer

9.3. THE SCENARIO TEST 61

ing implementation phase took a lot longer than we planned, and was concluded several
weeks overdue. This, combined with UNN’s rigorous schedule made the field test im-
possible in the scope of this project. The documentation phase was also cancelled as it
can not be written until the system reaches its working version.

The requirements identified by the scenario test spawned a to-do list, which was weighted
by importance and time consumption as described in chapter 7.2.3. The list was sorted by
priority, and requirements that were deemed highly time-consuming were given low pri-
ority, and vice versa. Some unimportant requirements were done earlier than some more
important ones because of low time consumption. While it can be discussed whether
many unimportant features are better than a few of medium importance, we did imple-
ment all the requirements on the list. This lead to the excessive amount of time used on
this phase, and some functionality should probably have been sacrificed to enable the
field test to be initiated. We did, however, not know that UNN would be unable to fit the
test in the schedule at that point. The field test phase will have to be completed before
the system is put into active use, but now it has a good foundation for such future work.

9.3 The scenario test

9.3.1 Our scenarios

The scenarios used for the test were based on stories written by us using the information
available about the employees’ normal work. The names were hypothetical and depart-
ments were randomly chosen because we did not know anything about the test subjects
apart from their user level in the system prior to the test. Our contacts felt that this could
adversely affect the test results as the test subjects could be confused by anything that
differs from their normal work environment. As previously mentioned, we did not have
time to alter the scenarios to reflect real names and departments. We emphasized the
hypothetical nature of the scenarios at the start of each test session, and the test subjects
did not have any objections to this scheme.

9.3.2 Test setup

We concluded that conducting the test in a mainly quantitative way as suggested in ISO
9126 would be too time-consuming, and not dynamic enough. An important goal was to
get as much data as possible given the time available with each test subject. We could
have used checklists, recorded time used on specific tasks and counted errors made.
However, we felt that while this would spawn some quantitative data, it would reduce
the amount of qualitative data received. [19] also warn against using checklists in stress-
ful situations, and time was a concern during our tests. We therefore decided not to
utilize such methods.

Complementing the observations with a subsequent informal conversation/interview
and a questionnaire did significantly help us to clarify issues and increase the amount
of data recorded. No questions or preparations for these conversations were planned.
They occurred naturally as the tests were concluded. The test subjects seemed to feel
more relaxed and comfortable during these conversations, and thus revealed more data
and interesting opinions. [19]’s research in evaluating user interfaces also points to the
importance of using more than one method of data collection during user observation.
Our experience is that direct user observation, while valuable, requires a lot of work from

62 CHAPTER 9. DISCUSSION

the observer, and its success is highly dependent on the observer’s skill. User observa-
tion should also be complemented by other methods of data collection that are not too
interfering, like post test interviews and/or questionnaires, for best results and to avoid
mono method bias mentioned in the validity discussion.

An extra day for preparation would have been preferable, but was not practically possi-
ble. This could have removed the technical problems we encountered during the prepa-
ration of the laboratory, which later caused the test subjects some confusion.

9.3.3 Our roles as observers

We decided to observe the test subjects closely and write down as many observations as
possible instead of using checklists, thus making the test more dynamic. We could then
adjust the time used on the different parts of each test as needed. It is hard to define to
which degree an evaluator participates during a test, as the boundaries between obser-
vation, partial participation and full participation are rather blurred. If we follow [17]’s
chart over degree of participation, we had planned to stay somewhere between partici-
pating observer and complete observer during the test. However, we did not manage to
keep this role and ended up somewhere between participating observer and full partici-
pation.

The main problem was that we had to restrain ourselves not to help the test subjects
too much. The test subjects kept giving positive feedback on the system which increased
our enthusiasm and relation with the future users. We came to sympathize with their sit-
uation, having to form opinions about something they had never seen before. A normal
human response to appreciation and flattery is wanting to return the favour in form of
help with the tasks we had given them. This became even harder when we gave peo-
ple with low computer skill tasks they had no possibility to complete without help, and
we realized that to get any useful data we would have to guide some of the test sub-
jects through the processes. In these cases it was difficult to stay in the background. The
test subjects with better computer skill could be observed according to the plan. These
changes would have compromised a rigorous quantitative testing scheme, but in our
more flexible scheme we could use the time freed up by helping the test subjects, to con-
centrate on aspects they had an opinion about. It became evident that the allotted time
was not enough for every test subject to find out how they should do their tasks without
our help. If we paid close attention, we could register where they encountered difficulties
and help them to move on. The alternative was to wait until they solved the problems
on their own. While testing the first test subjects we did not know how much time the
test scenarios would take to complete, which also may have made us hurry the tests. Al-
though it might have been interesting to know if they could find out what to do on their
own, it seemed more productive to help them proceed further through the test.

Many of the difficulties encountered by the test subjects would have been eliminated
with a minimum of training. The tests would then probably have gone more smoothly
and more time could have been used for discussion etc. But with training the users would
have learned to traverse areas that are not very intuitive, and how to work around known
problems. This may have lead to problems never being exposed, because as long as the
test subject knows how to use a system, easily or not, he/she might not think of it as a
problem that should be fixed, thus degrading the quality of the results.

9.4. SCENARIO TESTING IN GENERAL 63

All in all, we feel the test was a success and it yielded a lot of useful feedback. This
highly qualitative, semi-laboratory, semi-field type of test with ourselves in a partially
participating role was perfectly suited to gather the information we needed to root out
the worst problems with the software.

9.4 Scenario testing in general

This section discusses scenario testing in general based on our experiences throughout
this project.

9.4.1 Experiences

In general

The test subjects did not find any code errors during the test, which indicates either that
scenario testing is not useful for bug hunting or that the system contained few errors.
We knew, however, that the system had poor exception handling, and our scenarios only
tested normal use of the system, which is not suitable for domain testing, stress testing or
other means of raising exceptions. Killer soaps (see chapter 4.4) should be more suitable
for exposing such errors, as they require the test subjects to enter more extreme values
into the system. We could have used more extreme values in our scenarios to stress the
software further, but we did not want the stories to loose their credibility.

Pairing each test subjects with one of us was a successful approach, and it was manage-
able to observe the test subject while taking notes of the important observations. More
than one test subject per evaluator would have been too much, and data would have been
lost. In addition, notes have a tendency to loose some of their quality as time passes, be-
cause they do not contain the context from which they are taken. An alternative is video
recording. It requires more resources and infrastructure in the laboratory, and more time
to analyze the tapes afterwards, but each evaluator can concentrate on other issues and
possibly more test subjects. For these reasons, video recording is preferable if it is readily
available, especially if several test subjects are to be observed simultaneously.

Scenario tests are more engaging for testers than methods like checklists or test cases
because they include the tester in the problem solving process during the test and en-
courage them to participate and be creative. If it is based on a believable story it also
gives the tester a role that has significance for the outcome of the test, like in a role-
playing environment, further engaging the tester.

The complexity of a good scenario test makes it valuable. It requires the tester to think
through a problem and find solutions that may require testing several aspects of a sys-
tem along the way. This provides high-level test results that no other widely used method
can do, which is useful for exposing high-level errors, and problems with the system’s
functionality.

GUI testing

Scenario testing was an excellent method for testing the GUI of the KAS. As the users
tried to solve the tasks they were given through the scenarios, they were able to see
and learn the dynamics of the user interface and determine how well the GUI let them

64 CHAPTER 9. DISCUSSION

interact with the software’s functionality. They could then provide us with constructive
feedback on the software. The scenarios provided them with a realistic environment for
assessing whether they could do what they would need to do in the system, should it be
taken into active use. This also highlighted the system’s functionality proving that the
test is valuable for assessing whether the overall level of quality of a software system, as
expected by the specification, is sufficient for the users, or if more work must be done.

Learning

This scenario test can in many ways be compared to an introductory course in use of a
software system, as the test subjects definitely learned a lot from trying to traverse our
scenarios during the test. It is a well known fact that people learn by doing. Testing
software through scenarios involves a combination of creativity, thinking through your
tasks trying to figure out what to do and trial-and-error. This is an excellent method of
learning a system, much better than learning through a manual.

The scenario test may expose functionality that should be added or improved, but this
may not be possible at such a late stage in a system’s development. If this is the case the
test results can instead be used to identify which parts of the system the users need to be
trained to use.

If both a software test and a course for future users will be conducted during the devel-
opment of a software system, it might be worth considering scenario testing to combine
the two, which can save both time and money while yielding interesting test results from
new perspectives. It is also a reason to consider user testing if this has not been planned
during the development of a software system. Scenario tests should in our opinion be
explored further for combinatory educational and testing purposes.

Normal/advanced product use

There are many different ways to use a software system. Some users become advanced
users and push the system’s capabilities to its limits. It is sometimes interesting to ex-
plore both normal and advanced use of a product, and scenario tests should be suitable
for both. Scenarios, being based on stories abstracted from technical details and focusing
on what should be done rather than how it should be done, should be equally suitable for
identifying the needs of both beginners and advanced users.

Our scenarios tested whether the users were able to complete the tasks they were sup-
posed to during normal work. This is from a software engineering perspective a high-
level test which intuitively can be used to test the functional requirements specification
for errors and omissions. The purpose of a functional requirements specification is after
all, at least ideally, to give the users a system that is usable.

Specification-based testing

Scenario tests can also be used to test if the software contains functionality defined in the
functional requirements specification if the scenarios are based on these requirements.
It may be hard to evaluate such a test, since many entries in the specification are too
low-level to be tested directly through a complex story. This would make the test re-
sults ambiguous, as there could be several ways to complete a scenario, and several valid
answers or variations of answers. Some requirements are better suited for being tested

9.4. SCENARIO TESTING IN GENERAL 65

in this way, for example GUI-related requirements like "the software must be usable by
untrained personnel" or "the system must contain no words or statements that require
computer education to understand". Tester could assess such requirements through sce-
narios test, while more low-level tests could be used for testing low-level requirements.

9.4.2 Problems

Performing scenario tests is not without drawbacks. When planning and conducting sce-
nario tests there are several issues to consider. Those we identified during this project are
addressed below.

When involving users in the testing session, problems can occur because of the differ-
ences between users, due to education, experience, age, motivation and work-load. This
could affect the test results if one wants to generalize them. If the objective is just to test
the system for errors and bugs, the background of the users wouldn’t matter. However,
if the objective is to see how well users understands a new software system, the results
will be highly dependent on their computer skill.

Also, if simple functional errors exist in the system during the test, it could make the
test a lot less efficient. The system’s functions should therefore be tested alone before
involving users.

Another thing to have in mind, is that a scenario test is not designed to cover every
aspect of the program. Covering all program statements is a complex job, and would
be time-consuming both for the testers and the evaluators. Scenario tests only cover the
parts of the program that are testers cover by solving the tasks from the scenarios.

[10] mentions that scenario tests should not be conducted at an early stage of develop-
ment. In [19] the author reports his experiences from conducting user tests on a proto-
type. His experience is that the prototype makes the test results problematic. Although
this was not a scenario test, the results should be applicable to scenario tests as well be-
cause of their similarities. Through our experience we agree with these authors: The
closer to the full version the system under testing is, the better results you will receive
from the testing phase. If much work remains on the system, the results will be less in-
formative as the system would probably contain many errors and unfinished functions.

Any software test should be designed to make it easy to tell whether the program passed
or failed the test. Every test result should ideally be easy to evaluate. In Art of Software
Testing [16], Glen Myers points out that the more complex the test is, the more likely it is
that the tester will accept a plausible-looking result as correct. However, we want to point
out that scenario test are, as previously mentioned, best suited for qualitative higher level
testing. It should not be used for testing simple parts of a system where one can easily
assess whether the system passed the test or not with a simpler testing method. How-
ever when scenarios are used, there may intuitively be several ways to complete them
given their complexity. As long as the tester can easily assess whether the desired result
is achieved, this should not be a problem since it is not important how, but only if, the
scenario can be completed in a correct manner.

66 CHAPTER 9. DISCUSSION

Chapter 10

Conclusion and further work

10.1 Conclusion

Software testing is still an essential part of any software development. As software grows
in size, complexity and cost to develop, the methods of testing it must develop as well.
The current trend in the industry is utilizing cheap testing methods that do not involve
end users. Scenario testing is a testing method that so far lacks good documentation,
but has promising characteristics that merit further study. During this project we have
studied its usefulness as a high level testing method involving users at a late stage in a
software system’s development.

By utilizing a qualitative approach, scenario testing can collect unique feedback on how
usable a software system is to its users. Users are encouraged to think freely and be cre-
ative throughout the test, providing the developers with interesting new perspectives.
Our scenario test provided us with important user feedback which spawned many new
functional requirements to our software system KAS. These requirements increased the
quality of the KAS, by adding new functions, improving old ones and improving the lay-
out of the system. The users’ feedback also improved our understanding of how users
interacted with the system which enabled us to better satisfy their needs.

As the users explore the software they are testing, trying to accomplish the scenarios’
goals, they start learning how the system works. Through trial-and-error and creativ-
ity the user quickly learns the important functionality of the software. As a combined
method of testing software and teaching its future users how it works, scenario testing
has great potential.

A testing method will not be widely used if it is not cost-efficient. Scenario testing used
in the manner discussed carries high initial costs and must therefore provide equally re-
warding benefits down the road. It was evident during our test that by engaging the
tester through a fictional story and making him or her contribute to the test’s results, sce-
nario testing added extra value to our software which other methods have not. By the
end of the test the users had also received the value of an introductory course in using the
system. Such a course can then be omitted or at least scaled down when the system is put
into use. Through high-level testing and close observation of the testers, scenario testing
also enables the developers to make the system much better suited to the users’ needs in
the future, making it a valuable long term investment. On the short term, it also provides
insight into where effort is needed to teach the users to use the system effectively.

67

68 CHAPTER 10. CONCLUSION AND FURTHER WORK

Through this project we have gained experience that can be useful to others conduct-
ing scenario tests or doing research in software testing in the future. Based on this we
made a list of our recommendations to others conducting scenario testing. This list can
be seen in the appendix E.

Based on all qualitative results, feedback and experiences collected throughout this project,
we believe scenario testing is a valuable testing method despite its high initial costs. We
also feel that our approach with a semi-laboratory, semi-field type of test with ourselves
in a partially participating role was a reason for our success in gathering such a large
amount of interesting data.

10.2 Further work

During this project we have found several areas that could be interesting for further re-
search in scenario testing. These areas will be described below. As for the KAS, it has to
go through an extensive test at some departments of the hospital, before it is taken into
use. We will probably do what we can after the conclusion of this project to get a full field
test started in order to get the system into use.

One of the most interesting areas that require further research is the use of scenario test-
ing for a combination of educational and testing purposes. It should be interesting to
examine scenario testing as an alternative to a combination of, for example, test cases
and an introductory course in using a software system.

Another important area of research is to assess how good the cost-benefit ratio of scenario
testing is, compared to other testing methods. Such research will probably be necessary
before the industry will adopt this method as a viable alternative to others. An experi-
ment could be conducted where the same software is tested simultaneously through both
scenario testing and test cases to see the difference in results received and try to assess
their value. As scenario testing may reap special benefits on the longer term, some re-
search should also be conducted there.

We have defined scenario testing as not necessarily involving users, but we acknowl-
edge that it probably has its highest strength when users are involved. A future research
goal could be to analyze scenario testing without involving users (for example on dedi-
cated testers or developers, which is much cheaper) and compare this to scenario testing
involving users. Or compare scenario testing without users to test cases to see the differ-
ences.

[7] claim that scenario tests have high error detection power. This is plausible, but during
our scenario test we hardly exposed any errors. Error detection may not be one of sce-
nario tests greatest strengths and it may be worth researching this area further. The more
extreme versions of scenario testing (see chapter 4.4) should also be further analyzed and
their usefulness assessed.

More research on scenario testing in general is necessary to create better documentation.
Further research should challenge our experiences to assess whether they are generally
useful or only random observations.

Part VI

Appendix

69

Appendix A

Glossary

Black box testing A testing method where you test the software as if it is a "black box"
you do not know the contents of, but you do know which input it accepts and what
it is supposed to output according to the functional requirements of the software
system. Can be seen as a complementary to white box testing.

Employee Here: Every person that is employed by UNN, either on a permanent or tem-
porary basis. Every employee need access to departments and the respective doors
and is therefore in possession of a key card.

External testing The ISO-9126 standard states that software quality characteristics can
be measured externally by the extent to which the capability is provided by the
system containing the software.

Internal testing The ISO-9126 standard defines the the capabilities of a software system
as internal attributes that can be measured through internal metrics.

Key card Is needed to open most doors in the hospital. The key cards have different
access levels which give access to different rooms and departments at the hospital.
Could be either a time-limited (temporary) or permanent(ID) card.

Orderer An orderer is any person who orders a key card to someone through our soft-
ware system, KAS, or by means of the existing paper-based system.

Orders Is submitted by an orderer. The order is either for a time-limited key card or an
ID card. The security personnel must acknowledge the order before a key card is
issued.

Quality Quality is the totality of characteristics of an entity that bear on its ability to
satisfy stated and implied needs (ISO9126).

Quality attribute A mapping of a system’s functionality into a software structure that is
meaningful in measuring quality. It is a categorization of software design desicions
that affect a certain type of quality.

Quality factor See quality attribute.

Scenario A scenario is a hypothetical story, used to help a person think through a com-
plex problem or system. Scenarios aim at describing realistic situations with tasks
that reflect real use.

71

72 APPENDIX A. GLOSSARY

Scenario testing Scenario testing is a software testing method where the tests are de-
fined through tasks described by fictional stories. The stories describe what the
tester should do, but not how to accomplish it. The stories should be credible, and
encourage the tester to be creative and explore the system’s functionality.

Security personnel Accepts or rejects orders for key cards. When accepting an order
they issue a key card to the person in question and enters its respective access level
into the access control system. These are the most important users of the KAS.

Stakeholder A stakeholder is any person with an interest in the software system, be it a
user, investor, corporate head or developer.

Temporary card See time-limited card.

Test case A set of conditions or variables under which a tester will determine if a require-
ment upon an application is partially or fully satisfied. It may take many test cases
to determine that a requirement is fully satisfied. In order to fully test that all the
requirements of an application are met, there must be at least one test case for each
requirement unless a requirement has sub requirements. In that situation, each sub
requirement must have at least one test case (Wikipedia).

Time-limited card Time limited card in this project is key cards where the employee
holding it is hired on a temporary contract. These cards are also referred to as
temporary cards in this report.

Usability Usability is the most important quality attribute in this project. It concerns
how easy it is for the user to accomplish a desired task and the kind of support the
system provides.

Users An individual person that uses the software product to perform a specific func-
tion. In this project it means anybody that will use the KAS to complete a task,
either an orderer, the security personnel or the administrators.

White box testing A testing method which can be seen as a complement to black box
testing. Here you have knowledge of the code and structure of the program you
are testing, which you use to execute certain functionality and check if the program
performs correctly.

Appendix B

Scenarios

In this appendix the scenario tasks we made for the users are presented. There were two
scenario tasks for each user group, but only one of each user group are presented here,
as the only difference between the two are different example data like names, dates etc.
The tasks are presented in norwegian, as they were originally presented to the users, and
ordered by user group.

Time-limited card orderer

Oppgave 1:
Du har i oppdrag å bestille ekstravaktkort til Kåre Hansen, født 20.09.1970. Han skal
begynne den 18. februar klokken 09:30 og avslutter jobben den 24. februar klokka 23:00.
Kåre skal være vikar på Akuttmottak med undergruppe sykepleier. Ellers skal han ha
standard tøy og må ha adgang til medisinrom ved avdelingen. Utfør bestillingen til Kåre
før du leser videre.

Oppgave 2:
Du har fått et nytt oppdrag, denne gangen til Mette Paulsen. Mette er født 04.02.74 og
er leid inn fra Manpower. Hun skal ha vakt fra 03.03.06 kl 16:00 til 09.03.06 16:00. Hun
jobber på Administrasjon avdelingen, undergruppe "administrasjon og andre avdelinger
med kontorer der". Hun må ha frakk men trenger ikke tilgang til medisinrom ved avdelin-
gen. I tillegg vil du spørre vekterne når kortet er klart til henting. Send av gårde bestill-
ingen før du går videre.

Oppgave 3:
Med en gang du har sendt av gårde den siste bestillingen får du beskjed om at det var
en liten feil i opplysningene du hadde fått om Mette. Hun skal jobbe til 10.03.06 16:00
isteden for 09.03.06. Så dette må du rette opp før du går videre.

Oppgave 4:
Det viser seg i midlertidig at den første bestillingen du sendte har blitt avvist av vekter.
Du må rette opp bestillingen i henhold til tilbakemeldingen som vekteren har gitt.

ID card orderer

Oppgave 1:
Marita Johansen er en ny fast ansatt og må ha et Id-kort. Hun begynner i jobben 1.

73

74 APPENDIX B. SCENARIOS

mars og er ansatt på ubestemt tid, slik at hun ikke skal levere kortet tilbake før nærmere
beskjed er gitt. Marita er født 1.juni 1980 og skal jobbe ved KIR POL avdelingen. Hun
trenger standard tøy og er ansatt som kirurg. Utfør denne bestillingen før du går videre.

Oppgave 2:
Det er enda en ansatt som trenger et nytt id-kort. Gunnar Jakobsen er ansatt på NEVRO
LAB avdelingen som labansvarlig. Gunnar er 43 år gammel og er født 02.01.63. Han er
ansatt ved UNN og ikke av noen innleide vikarbyråer. Saken er at han har hatt et id-kort
men har mistet dette og derfor trenger han et nytt. Han mistenker at han har blitt frastjålet
kortet. Han trenger det nye kortet fra og med 17. februar og skal beholde det til og med
20. juni. Han må ha standard tøy. Bestill kortet til Gunnar før du går videre til oppgave 3.

Oppgave 3:
Det viser seg at opplysningene i Marita Johansens bestilling var noe feil. Det riktige er at
hun starter i jobben først en uke senere, nemlig 8. mars. Rett opp dette før du går videre
til neste oppgave.

Oppgave 4:
Hvis statusen på bestillingen til Gunnar Jakobsen du gjorde i oppgave 2 sjekkes, vil du
oppdage at bestillingen har blitt avvist. Din oppgave her er å rette opp dette i henhold til
gitt tilbakemelding slik at bestillingen blir godkjent.

Oppgave 5:
I disse navneendrings-tider så har Marita Johansen funnet ut at hun skal legge til et mel-
lomnavn. Hennes fulle og hele navn vil etter denne endringen være Marita Cathrine Jo-
hansen. Som følge av hennes navneendring må også navnet hennes i bestillingssystemet
forandres. Din oppgave er å melde inn denne personalendringen.

Security personnel

Oppgave 1:
Dagens gjøremål står for tur, og det som først må gjøres er å sjekke om det er noen bestill-
inger som skal programmeres i dag. Det viser seg at det ligger inne en bestilling på ek-
stravaktkort til Bård Andersen som må programmeres. Kortnummeret som skal leveres
ut er 2356. Gjør dette før du går videre.

Oppgave 2:
Du har fått inn en bestilling på ark som du først må føre inn i systemet før du kan pro-
grammere denne. Det er et id-kort som skal bestilles, Bård Andersen skal nå ansettes
fast og trenger et idkort. Han skal ansettes på HUD POL. Det er markert på arket at
han trenger frakk og er ansatt som lege. Bård trenger kortet fra og med 18 februar. Han
er ansatt på ubestemt tid, og derfor skal det ikke settes noe dato som kortet må leveres
tilbake. Før inn denne bestillingen i systemet før du går videre til oppgave 3.

Oppgave 3:
Når så bestillingen fra oppgave 2 er lagt inn i systemet, kan du programmere og god-
kjenne bestillingen. Det er veldig viktig å få med seg informasjonen som står i "ekstra
informasjon"-feltet. Dette feltet spesifiserer alt som må gjøres angående bestillingen. Ko-
rtnummeret som skal legges inn er 4783 og adgangsnivået skal være det vanlige nivået

75

på avdelingen. Dette må gjøres før du går videre til oppgave 4.

Oppgave 4:
Det ligger flere bestillinger i listen ’programmere bestillinger’. Denne gangen er nok et
id-kort som skal utleveres, men nå er det Sigrid Persen som har mistet sitt id-kort og der-
for trenger hun nytt. Utfør denne bestillingen, og pass på at du får med deg alt av viktig
informasjon. Kortnummeret på det nye kortet er 9582 og adgangsnivået skal være det
samme som på det kortet som er mistet. Når du har utført denne bestillingen vil du få
beskjed om hva som skal gjøres med det kortet som er mistet. Gjør dette før du begynner
på oppgave 5.

Oppgave 5:
Den siste bestillingen som skal programmeres i dag er en bestilling på ekstravaktkort
til Marit Gulbrandsen. Denne bestillingen har start og slutt-dato før dagens dato. Du
må avvise denne bestillingen med melding til bestilleren om hvorfor den ikke kan god-
kjennes.

Oppgave 6:
Oversikten over vakter som burde avsluttes innen 24 timer viser at det er en vakt tilhørende
Birgit Jakobsen som må avsluttes. Dette betyr at personens vakt går eller har gått ut, og
derfor må adgangsnivået på kortet deaktiveres slik at det ikke kan brukes mer. Din opp-
gave er å sørge for at vakten avsluttes.

Oppgave 7:
Birgit Jakobsen har nå levert sitt kort i skranken og du må derfor registrere dette kortet
(3765) som innlevert.

Oppgave 8:
Det er bestilt endring på personalia til Marit Gulbrandsen. Hun har skiftet etternavn,
og i forbindelse med dette har personalavdelingen bestilt endring på personalia. Gå til
personalendringssiden og godkjenn denne endringen.

76 APPENDIX B. SCENARIOS

Appendix C

Test results

C.1 Observations from the scenario test

Important non-functional data collected during the observation phase is presented in the
tables below. These tables show the negative and positive observations of the different
user groups. Only the most important observations are included, and the majority re-
peated themselves throughout the test.

TIME-LIMITED CARD ORDERERS AND DEPARTMENT HEADS
Negative Positive

• Knowing when to add a new user is
not self-explanatory

• Entering dates is hard, although the
error message is intuitive

• Timestamps should not contain
colons

• Not all departments have archives
and date of birth is therefore a prac-
tical problem when registering a
new user

• "Undergruppe" (The requested ac-
cess level for a key card) is an un-
known or ambiguous term to many
card orderers

• It takes more time than before to fill
out orders

• Some had low computer skill,
mediocre in general

• A replacement for the old system is
highly appreciated

• Searching for, selecting and adding
users is easy

• The feedback function from the se-
curity personnel is very good

• Example in-data beneath makes the
data entry fields intuitive

• 3 departments have volunteered for
further testing because the system
seems much better than the old one

• The system is easy to learn

Table C.1: Qualitative results collected through observation part 1

77

78 APPENDIX C. TEST RESULTS

ID CARD ORDERERS
Negative Positive

• The scenarios contain quite an
amount of data which takes time to
process

• Auto-complete (in Firefox) is con-
fusing

• Filling out a new, complete order if
someone looses his/her card does
not seem logical

• In general, the functions concern-
ing changes in a persons persona-
lia and/or duty details are complex
and require training

• Placing orders is easy

• Everything looks pretty, intuitive
and well-arranged

• The system does what it intuitively
should

• The system removes problems
which we have had to work around
with the existing system

• Good computer skill in general

Table C.2: Qualitative results collected through observation part 2

SECURITY PERSONNEL
Negative Positive

• The calendar is small and one might
hit the wrong date

• One of the test subjects had very
low computer skill, but the rest of
them had good computer skill in
general

• The introduction of the new system
is positive and will ease the work
load

• The system’s layout is easy to un-
derstand

• The system eliminates errors that
now occur due to the large num-
ber of persons involved in an or-
der’s life cycle which creates many
sources of errors

• Much easier to use than anticipated

Table C.3: Qualitative results collected through observation part 3

C.2. FEEDBACK FROM THE QUESTIONNAIRE IN THE SCENARIO TEST 79

C.2 Feedback from the questionnaire in the scenario test

All users in the scenario test session were given the opportunity to provide feedback by
filling out a questionnaire. In this appendix we present all the questions that were on this
form, and the participating users answers. The questions and answers are translated into
English. The answers are divided into the different user groups in the system; Temporary
(time-limited cards), ID cards (personnel department), security and administrators.

Of all 18 participating users from the scenario test session, we received 13 schemas with
feedbacks. 6 of those were from time-limited, 4 from personnel department, 1 from secu-
rity, and 2 from the administrators.

The questions from this questionnaire are presented here:
Question 1: What do you think was good/positive in the system?
Question 2: Did something surprise you in the system? In that case, what?
Question 3: Were there any functions/fields from todays paper system you missed? If
so, which?
Question 4: Were there any functions/fields you felt were superfluous? If that is the case,
which?
Question 5: Were there something that you didn’t experience as user-friendly? In that
case, what?
Question 6: How can the system become more user-friendly?
Question 7: Did you find any errors in the system?
Question 8: What do you think was bad/negative in the system?
Question 9: Do you think this system can replace todays paper system? If not, what must
be done?
Question 10: Other comments?

The answers to these questions can be seen in tables C.4-C.6. These tables show each
user’s answer to each of these questions. The user type column denotes which type of
user has answered the question, and the number behind is to distinguish between users
in the same user group.

80 APPENDIX C. TEST RESULTS

User type Question 1 Question 2 Question 3
Temporary 1 Simple and well-

presented to make
orders via com-
puter

Temporary 2 Easy and well-
presented

Temporary 3 Simple layout
without much
unnecessary text

Temporary 4 Simple and easy-
to-grasp

No No

Temporary 5 Good, a few opera-
tions too much

Could have been more
pre-filled fields, exam-
ple: choice of department
when the name is recog-
nized

Temporary 6 User-friendly, sim-
ple and easy to
navigate

No No

ID card 1 I think the system
is easy to use

To edit an order, after the
orders are submitted

ID card 2 Ok, looks like the
paper-system we
use today

It is nice to be able to see
what has been ordered,
and what has a status of
"waiting"

ID card 3 Easy to operate No
ID card 4 I think it is well-

presented and easy
to use

To be able to edit orders,
plus to be able to check
that we have ordered a
card when the person
shows up for work

Fix the birth number
to be on one line

Security Easy-to-grasp No Maybe another
sound/spelling on
some words

Admin 1 Ok menu system,
sorting

Admin 2 Simple operations,
well-presented

Not really No, nothing

Table C.4: Feedback from questionnaire, question 1-3

C.2. FEEDBACK FROM THE QUESTIONNAIRE IN THE SCENARIO TEST 81

User type Question 4 Question 5 Question 6
Temporary 1 Editing an order, everything

must be filled out all over
again

Temporary 2 The calendar
Temporary 3 Timestamp,(remove ":" in the

time), date should appear
in a new field after choos-
ing it. Filling out "tøy-
gruppe"+"adgang med.rom",
the picture "jumps" between
each choice. This is irritat-
ing and unpleasant, and one
have to search to find out
where one are

Temporary 4 No If changing an order, had to
fill out everything all over
again

Temporary 5 Date, more
tolerance, i.e.
desire pre-filled
timestamps

OK Should be able to
send more orders
for the same per-
son without search-
ing after the person
again

Temporary 6 No When editing an order, ev-
erything must be filled out
again

More pre-filled
fields, and a de-
fault timestamp

ID card 1 I think the system
is easy to use

To edit an order, after the or-
ders are submitted

ID card 2
ID card 3
ID card 4
Security No No
Admin 1 To return from a picture to

the previous, in a natural
consistency without going all
the way back to start

Admin 2 No Some inexplicable texts
due to links and on the
command-button, more un-
derstandable texts on boxes
and buttons is required

As explained ear-
lier, colorful/bold
text on the user
data

Table C.5: Feedback from questionnaire, question 4-6

82 APPENDIX C. TEST RESULTS

User type Question 7 Question 8 Question 9 Question 10
Temporary 1
Temporary 2 Yes
Temporary 3 See question 5 Yes
Temporary 4 Dropdown list

on time
Yes

Temporary 5 Gladly even
more sim-
pler/faster if
possible? Must
be available
easily over the
intranet

Temporary 6 No This looks very
good!

Oh yes, do it as
soon as possi-
ble

Make sure a
shortcut to
this system is
placed on the
start page of
the intranet, in
the menu on
the left side

ID card 1 I think so
ID card 2 Ok, I think

you guys have
been good!

ID card 3 Everything OK Yes, without a
doubt

Nice!

ID card 4 Yes, date of
birth stops
with day,
month, year

Very easy-to-
grasp

Yes

Security Yes! Too little time
to evaluate this
properly

Admin 1 Heading text,
"Id-kort", in
"ekstravakt"
orders

Nothing spe-
cial was bad

Yes

Admin 2 Yes Some other
colors on some
fields with
data

Yes Nice work!

Table C.6: Feedback from questionnaire, question 7-10

Appendix D

Functional requirements from the
scenario test

All the functional requirements discovered through the scenario test are presented here.
Each requirement received a high/medium/low rating on its importance, and its esti-
mated time needed to implement. From this weighting the requirements are ranged from
highest to lowest importance. "<>" means that the change has been implemented, "xx"
means that it has been decided not to be implemented.

Example:
(Importance, Time to implement)Functional requirement

Most important:

<>- (H, L)Noe må gjøres med undergruppefeltet for å gjøre det mer intuitivt, for ek-
sempel endre navnet til gruppe?
<>- (H, L)Tekstfeil i overskriften på bestillingsbekreftelse når man skal bekrefte ekstravakt
og personen ikke har noe kort fra før, står id-kort i steden for ekstravakt
<>- (H, L)Bestillingssiden (både idkort og ekstra) burde sjekke at datoen ikke er "utgått"
på bestillingen.
<>- (H, L)Vekter burde ikke ha tilgang til å slette/endre noen loggoppføringer
<>- (H, L) Burde stå på ekstravaktbestillingssiden at ekstravaktkort bare gjelder i maks 3
måneder
<>- (H, L) Vekter burde få beskjed når han godkjenner bestillinga om at han må gå å
skifte på adgangskontrollen
<>- (H, L) Fikse informasjon til brukerne på startsiden
<>- (H, M)Bekreftelsesboks på programmering av bestillinger, må få beskjed om å pro-
grammere på det andre systemet før bestillingen bekreftes, passe på å få med navn,
avdeling, stilling, fra og til dato og annen viktig info som nøkkelkortnummer
<>- (H, M) Redigering av bestilling, brukere liker ikke at man må fylle ut alt på nytt, dette
burde ordnes.
<>- (H, M) Gjøre noe med klokkeslett på bestilling. Vi innfører klokkeslett uten skilletegn
først, fordi da kan de som ønsker presise klokkeslett bruke det, mens de andre kan skrive
hele timer eller bruke standardforslaget
<>- (H, M) Admin vil ha oversikt over hvem som er bestillere. De vil se hvem som kan
bestille på en gitt avdeling, og hvem som har de forskjellige tilgangsnivåene.
<>- (H, M)Vi må ha med info om hvem som har hatt kort tidligere i alle perioder.
<>- (H, M)Vekterne burde få opp dagens gjøremål som startside der man kan "hoppe" til

83

84 APPENDIX D. FUNCTIONAL REQUIREMENTS FROM THE SCENARIO TEST

de respektive sidene, bare at de er koblet til dagens gjøremål, mens de andre menyval-
gene kommer på venstresiden.
<>- (H, H) Autopostback på kalenderen er ikke så bra, personen blir litt satt ut av at den
hopper opp til begynnelsen igjen, og bruker litt tid på å skjønne hva som skjedde
<>- (H, H) Stort sett var det etterlyst OK/Slett bekreftelse på alt man foretar seg

Medium: (noen lave med her fordi de tar kort tid)

<>- (M, L) Kalendern må fikses slik at den ser bedre ut
<>- (M, L) Dagens dato burde vært markert i kalenderen, er vel uansett ikke dumt med
en default dato
<>- (M, L) Når en måned velges i jobbfradato burde jobbtildato skifte automatisk til
samme måned
<>- (M, L) Forskjell mellom viktig info på detaljer om bestilling, selve feltet som beskriver
hva det er som navn, avdeling osv er mindre viktig, mens selve navnet, avdelinga og
resten av inndataen er viktig og burde dermed utheves/annen farge for å se ting bedre.
Hvem som har bestilt en bestilling er mindre viktig og kan feks skrives med mindre
skriftstørrelse
<>- (M, L) Tilbakemeldingsteksten burde utheves/farges, dette er jo en viktig tekst. Samme
med merknadsteksten som bestiller skriver til vekter.
<>- (M, L) Hadde vært bra hvis "ingen-treff" knappen ble litt forandret, feks med en over-
skrift på hvor mange treff og eventuelt en "legg til" knapp
<>- (M, L) Admin firma: en tilbakeknapp fra "ny avdeling" til admin firma, ikke bare helt
tilbake til startsiden
<>- (M, L) Avslutt-vakt knappen burde ikke hete avslutt men avslutt vakt og kanskje en
avbryt knapp i tillegg
<>- (M, L) Bestillingsbekreftelse, forandre på hvilken type informasjon som er viktig
<>- (L, L) forslag om å skrive DDMMÅÅÅÅ i fødselsdagfeltene fra før av for å gjøre det
helt idiotsikkert
<>- (M, L) Forslag om å kunne sende flere bestillinger til en person uten å søke opp
samme personen på nytt igjen.
<>- (M, L) Standard undergruppe burde velges automatisk, ialle fall der det kun finnes
1, impliserer at avdeling også må velges automatisk
<>- (M, L) Endring av tilbakemeldingsmelding på lever inn kort. Vekterne må få samme
beskjed som under bekreftelse av bestilling, at ting må gjøres på det andre systemet.
<>- (M, L) Forslag om passordregler, lengde, små/store bokstaver, inneholde tall
xx- (M, L) Bestillingsbekreftelse: burde være mulig å endre sluttdato før bestillingen god-
kjennes
<>- (L, L) Mange som synes det var mer logisk å skrive etternavn før fornavn på søkesida,
burde dette endres?
<>- (L, L) Et praktisk problem er at folk må bytte vakter på kort varsel, og da er det ikke
tid til å bestille, trenger mulighet til å bestille flere adganger samtidig (i tilfelle de trengs).
Det kan de forsåvidt føre opp i merknadsfeltet. Skriv heller på bestillingssia eller en plass
at man må skrive sånt i merknadsfeltet
<>- (L, L)Makes no sense å endre gamle loggoppføringer, slik at admin trenger egentlig
heller ikke denne muligheten, men slette må de kunne
<>- (L, L) Lage en slags popup eller noe lignende som viser tilbakemeldingen når man
ser på bestillingslisten uten å måtte gå inn i rediger bestilling.
xx- (L, L)Adgangsnivå burde kanskje sorteres alfabetisk i dropdownlista
xx- (L, L) Skifting av brukernavn? Kanskje bare admin som burde kunne gjøre dette (er

85

ikke så viktig egentlig)
xx- Passord case sensitiv

Lowest:

<>- (L, M) Tøygruppe eksisterer ikke mer, men de forholder seg til det, vekterne er opp-
merksomme på dette, de andre vet ikke.skal fjernes
<>- (M, M) En del lurer på om man må til startsiden for å bestille nye kort, menyen burde
kanskje vises på venstresiden (i allefall de viktigste/mest brukte alternativene)
<>- (M, M) Personalendringer må gjelde avdeling og stilling, de skal kun godkjennes,
trenger ikke 2-veis kommunikasjon, Må ha merknadsfelt, Se personalendringsskjema.
<>- (M, M) registrere bestiller, var litt tungvindt at de bare kunne gjøre en operasjon om
gangen før personen må søkes opp på nytt
<>- (M, M) Burde få sett en liste over bestilte personalendringer, i alle fall en bekreftelses-
side før bestillingen blir godtatt, det var for lett å gjøre feil
xx- (M, H) Felt takler ikke "rare" tegn som % & " osv
xx- (M, H) Brukerne brukte tab og enter mer enn vi hadde trodd (ta hensyn til highlight
rekkefølge, både på knappan og feltan)

86 APPENDIX D. FUNCTIONAL REQUIREMENTS FROM THE SCENARIO TEST

Appendix E

Recommendations for scenario tests

Planning

Costs

Start by considering the budget of the test, and the desired results. Used by developers
or dedicated testers as an alternative to test cases, the cost of the scenario test will be
marginally higher than test cases because writing the scenarios is more time-consuming.
The results should differ from test case results in being more usability and functionality
oriented. If the test will involve future users, the initial cost in both time and money will
be relatively high but the long term benefits potentially great because of exposed errors
and omissions that only users can effectively find, and the valuable training the users will
receive by exploring the system. The parts of the functional requirements specification
covered by the scenario test will get an overhaul before the software is shipped, allowing
for last minute changes or additions that may cost more money to fix after the product
is finished. If changes are not possible at such a late stage in development, the test can
be used to highlight which parts of the system the users need to be taught how to use
effectively.

Location

For a user test we recommend using a "laboratory", a place where the test environment
can be controlled. Choose a location that minimizes the amount of travel for the users. If
available, use a laboratory with video recording capabilities. While it could be tempting
to test the software in its real environment simultaneously, we do not recommended it
because unforeseen technical difficulties could adversely affect the results from the sce-
nario test. Instead, recreate the development environment to minimize potential prob-
lems while making it seem as realistic as possible to the users. You will then have the
advantages of a field test’s realism, while being able to control the environment as in a
laboratory test.

Participants

In general, select test subjects randomly. In our experience users with low computer skill
can produce unique feedback on usability related issues, while users with high computer
skill like the software better and yield the most positive feedback. The latter can also
evaluate advanced product use, and their test results will resemble those produced by
dedicated testers. A mix of user types is therefore preferable. When choosing the amount

87

88 APPENDIX E. RECOMMENDATIONS FOR SCENARIO TESTS

of users involved, it is better to have few users giving a thorough evaluation, than many
users that do not have enough time to produce feedback they have thought through.

What to test

If users are involved, choose to test the parts of the system they will use often, and/or
functionality essential to the software’s usefulness. Users are good at assessing whether
the software is useful to them or not (usability and performance), but bad at assessing
whether it is secure or modifiable (portability). Known disturbing bugs should be re-
moved from the system before a scenario test to avoid confusion.

Preparation

Creating scenarios

Use requirements from the functional specification to create the scenarios. Avoid basing
them on uncomplicated requirements that can be tested by a cheaper testing method.
Requirements like "the user must be able to intuitively register a complete order" are
good for scenario testing, while "the sorting algorithm must be faster than O (log N)"
or "there must be links page" are not. Requirements concerning the system’s GUI, us-
ability or functionality are suitable. Try to create goals that makes the tester test simpler
requirements along the way. The stories should be complex, but not to such an extent
that they loose credibility or become difficult to understand. They should not be written
by the same person that will use them because they will loose credibility and become
less interesting. The quality of the results will be lower because one of the scenario test’s
strengths, is the creativity involved in figuring out how to reach it’s goals. This should
not be thought through beforehand.

To increase the test’s error detection power, more extreme in-data for the software can
be entered where applicable. Not unrealistically extreme as the story will loose its cred-
ibility and realism. A killer soap can be used as a second scenario test, primarily by the
developers to reduce costs, as an advanced domain test.

Data collection

When testing with users we recommend using observation, either directly by one evalu-
ator per test subject or through video recording. Video requires much time after the test
to watch through to register the important data, but captures more data. If more than
one user per evaluator will conduct testing simultaneously, video recording is a neces-
sity. Taking notes is cheaper, but the results must be evaluated immediately after the test
or important contextual information will be lost. This method is also highly dependent
on the observers skill in identifying important data as they are revealed and being ob-
jective. The observer should also have extensive knowledge of the system being tested.
Observation should be supplemented by a post test interview and/or a questionnaire to
create more credible data. A questionnaire must not be too large or require much insight
into the software. It should only capture data you want to record from every test subject
and make it possible for the test subjects to convey any final thoughts before the test is
concluded. We do not recommend using checklists during the test unless quantitative
data that can not be collected afterwards are essential.

89

Developers or dedicated testers can register their experiences themselves while conduct-
ing the scenario test. Checklists can then be useful for capturing important data, as the
tester can follow its structure while testing.

Schedule

When involving users, a detailed schedule should be created. First, a reasonable amount
of time for completing the scenarios must be assessed. The users must also have time to
fill out any questionnaires, possibly explore the software on his/her own and complete
any post test interview. Time to ready the lab for the next batch of users should also be
embedded in the schedule.

Testing

Try to avoid participating too much while observing users, let them be creative and find
out on their own how to complete the scenarios. It can, however, be necessary to interfere
if the users are stuck. While it can be interesting to see whether the users can traverse any
obstacles on their own, it is not productive to let them be stuck for a lengthy period of
time.

Important data to look for while observing include errors, new functional requirements,
parts of the system that is troublesome to the users and what the users like and don’t like.
Troublesome functionality is important not only for improving the GUI, but can be used
to determine where to focus user training at a later time. It may be prudent to record
contact information if any issues emerge later that need to be clarified.

It is important to be open with users and explain that it is not they who are being tested,
but the system. They should not feel any pressure to perform and appear talented. Oth-
erwise the results will not be realistic and important feedback will be omitted.

Data analysis

If data has been collected through observation and notes, they must be analyzed as
quickly as possible after the test has been completed, not more than a day or two later.
Identify the important data and register them in a way that can easily be used later and
that does not become ambiguous as time passes.

Documentation

Document any choices made during the test and if they were a success or not. Any
deviations from the test plan should also be registered with an explanation.

90 APPENDIX E. RECOMMENDATIONS FOR SCENARIO TESTS

Appendix F

User manuals

We have written four user manuals to cover the different types of users to the KAS. The
most extensive one is intended for the security personnel and is presented here in its
original form. It is intended for a norwegian audience and has not been translated. The
user manual has its own page numbering and layout.

91

92 APPENDIX F. USER MANUALS

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Brukermanual

Vekter

Side 1

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Innholdsfortegnelse
 Innholdsfortegnelse .. 2
 1 Innledning ... 3
 2 Hovedmenyen ... 4
 3 Startsiden ... 5
 4 Godkjenne bestillinger .. 6
 5 Vakter som må avsluttes .. 10
 6 Personalendringer .. 12
 8 Logger ... 15
 9 Bestillinger .. 17

 Legg til ny ansatt .. 18
 Bestille ekstravaktkort .. 19
 Bestille Idkort ... 21
 Bestilte vakter .. 22
 Redigere bestilling ... 23

 10 Endre brukernavn/passord ... 25

Side 2

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

1 Innledning

Denne brukermanualen er en hjelp til bruk av administrasjonssystemet for nøkkelkort ved
UNN. Systemet er konstruert med tanke på brukervennlighet og at ting skal være
selvforklarende, og denne manualen er derfor ment som et supplement og vil gi en kort
innføring i hvordan systemet skal brukes.

Systemet er delt opp i flere deler, og tilgangen og funksjonene man har i systemet avhenger av
hvilken type bruker man er (ekstravakt bestiller, personalavdeling, vekter osv). Denne
versjonen av manualen er beregnet på vektere.

Side 3

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

2 Hovedmenyen

Hovedmenyen for vektere vises i figur 2.1. Den innholder alle funksjonene og mulighetene
vekterne har i systemet. Denne vises på venstre side uansett hvor i systemet man er. De
viktigste menyvalgene er forklart videre.

Figur 2.1 Hovedmeny

Side 4

Innkomne bestillinger som må
godkjennes vises her.
Godkjenning av bestillinger
forklares i kapittel 4

Når sluttdato for en vakt
nærmer seg vil vakten vises
her. Vakten må avsluttes slik at
nøkkelkortet blir sperret. Dette
er forklart i kapittel 5

Tilbakemelding er en midlertidig
funksjon til bruk for rapportering
av positive/negative deler med
systemet. Det oppfordres til å bruke
denne funksjonen aktivt, da
utviklerne er interesserte i å høre
alle brukernes meninger. Feil
rapporteres også her

En liste over alle kort som burde
vært innlevert finnes her. Dette
menyvalget er ikke nærmere
forklart i denne brukermanualen da
dette kun er en liste med detaljer
over kort som ikke er levert

Hvis et kort innleveres til vekter
skal det registreres her. Dette er
nærmere forklart i kapittel 7

Innkomne bestillinger på
personalendringer vises her, disse
må godkjennes før de blir gjort
gjeldende. Kapittel 6 forklarer
dette nærmere

Denne boksen inneholder lenker til
innholdet i loggene. En liste over
personer med aktive idkort finnes
også her. Kapittel 8 forklarer logger
nærmere

Denne menyen ser bestillerne når
de logger inn. Her kan man bestille
kort og redigere bestillinger før de
blir godkjent. Som vekter brukes
ikke disse menyvalgene ofte, men
muligheten er der i tilfelle. Denne
menyen er omtalt i kapittel 9

Endre brukernavn og
passord er omtalt i
kapittel 10

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

3 Startsiden

Startsiden for vektere vises i figur 3.1. Dette er siden som vises direkte etter innlogging i
systemet. Her vises en oversikt over dagens gjøremål. Dette gjelder hovedsakelig innkomne
bestillinger som må godkjennes(se kap.4) og vakter der adgang skal sperres(se kap.5).
Bestillinger på personalendringer vises også her(se kap.6). Disse gjøremålene finnes også ved
hjelp av hovedmenyen på venstre side, men startsiden er ment som en oversiktlig
oppsummering slik at man raskt ser hva som må gjøres hver dag.

Figur 3.1 Startsiden for vektere

Side 5

Trykk den respektive ”Gå videre”
knappen for å gå direkte til listene over
gjøremål

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

4 Godkjenne bestillinger

I figur 4.1 vises et eksempel på en liste over innkomne bestillinger, både ekstravakter og
Idkort. Bare bestillinger som starter maksimum 48 timer fra nåværende tidspunkt vises her.
Det er mulig å legge inn bestillinger lang tid i forveien, men de vil først vises i denne listen
når datoen nærmer seg. Begge listene sorteres ved å trykke på overskriftene over
ekstravaktbestillingene.

Figur 4.1 Liste over bestillinger

Side 6

Trykk på den respektive knappen
til hver bestilling for å gå videre
til godkjenningssiden.

Begge listene sorteres ved å trykke
på disse gule overskriftene

Trykk her for å velge stigende eller
synkende sortering

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Når bestilling er valgt vises godkjenningssiden som vist i figur 4.2. Denne vil se litt
forskjellig ut avhengig av hvilken type kort som er bestilt, om personen har registrerte
kort/vakter fra før og om personen har krysset av for mistet kort på bestillingen. De
forskjellige mulighetene systemet tar hensyn til er som følger:

Ekstravaktbestillinger:

• Personen har ingen kort fra før og har bestilt en ekstravakt. Ekstravaktkort gis ut

• Personen har et idkort fra før men har bestilt en ny ekstravakt. Den nye ekstravakten
aktiveres på idkortet.

• Personen har et idkort som brukes på en ekstravakt, men har bestilt en ny ekstravakt.
Den gamle ekstravakten nullstilles og den nye ekstravakten aktiveres på idkortet.

• Personen har et ekstravaktkort fra før, men har bestilt ny ekstravakt. Den gamle
ekstravakten nullstilles og den nye aktiveres på ekstravaktkortet.

• Personen har flere kort fra før, nytt kort kan ikke gis ut før et av de andre meldes
savnet eller leveres inn.

Idkortbestillinger:

• Personen har ingen kort fra før og har bestilt et idkort. Idkort gis ut.

• Personen har ekstravaktkort, men trenger et permanent idkort. Idkort gis ut, og
ekstravakten nullstilles når ekstravaktkortet leveres inn.

• Personen har bestilt et idkort og merket av for ”mistet kort”, men ingen idkort er
registrert i systemet på denne personen. Nytt idkort gis ut.

• Personen har mistet idkort, gammelt idkort sperres og nytt idkort gis ut.

• Personen har mistet idkort som brukes på ekstravakt. Den gamle ekstravakten
nullstilles og idkortet sperres, nytt idkort gis ut.

• Personen har allerede et idkort, men prøver å bestille nytt uten å merke av for mistet
kort. Bestillingen må omgjøres til å gjelde ’mistet kort’.

• Personen har flere kort fra før, nytt kort kan ikke gis ut før et av de andre meldes
savnet eller leveres inn.

Side 7

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Figur 4.2 Godkjenningssiden

Side 8

Her står all informasjon om
bestillingen, alt fra hvem som
skal ha kortet og hvor personen
jobber til hvem som har sendt
bestillingen.

OBS! Informasjonen her er viktig.
Her vil det komme fram hvilken
situasjon det er snakk om, jf
punktlisten ovenfor.

En merknad som skrives
inn her vil (kun) vises for
andre vektere når vakten
går ut på dato og skal
avsluttes

Hvis et nytt kort skal gis ut vil denne
boksen vises, her fyller man inn
nummeret på kortet som gis ut

Adgangsnivået som er angitt i
bestillingen vil være valgt her,
men kan endres etter ønske

Her velger man om bestillingen
skal godkjennes eller avvises Hvis en tilbakemelding skrives her, kan

den sees av personen som la inn
bestillingen (og andre med samme
tilgang). Dette kan være særlig nyttig
for å oppgi en grunn til at en bestilling
er avvist. Hvis det står en
tilbakemelding her allerede er det fordi
en annen vekter har avvist en tidligere
versjon av samme bestillingen. Husk i
så fall å fjerne denne.

Hvis bestilleren har lagt en
merknad ved bestillingen kommer
den opp her, kan være viktig.

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Når ”Godkjenn” knappen trykkes vil siden på figur 4.3 vises for å påminne om informasjonen
som skal legges inn i adgangskontrollen. Merk at bestillingen allerede er godkjent i dette
systemet, ’Informasjon registrert’ knappen er der for å sikre at bestillingen blir gjennomført på
begge plasser hvis man blir avbrutt i arbeidet.

Figur 4.3 Registrering på adgangskontroll

Når informasjonen er registrert er kortet klart til utlevering, og den som bestilte kortet vil
kunne se at bestillingen har fått status ”godkjent”.

Side 9

Forskjellig informasjon vil
komme opp her avhengig
av hva som må gjøres i
adgangskontrollen

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

5 Vakter som må avsluttes

Å avslutte en vakt består i å registrere adgangsnivået på personens nøkkelkort som sperret
selv om kortet ikke er registrert som innlevert. Slik får ikke personen adgang til dører etter at
jobben er ferdig selv om personen er i besittelse av nøkkelkortet. Etter at en vakt er avsluttet
og når nøkkelkortet blir levert inn fysisk, må det registreres som innlevert i systemet, som
beskrevet i kapittel 6. Et eksempel på listen over vakter som må avsluttes (innen 24 timer)
vises i figur 5.1. Trykk ”Detaljer” på den respektive vakten for å gå videre. Vaktene kan
sorteres ved å trykke på de gule overskriftene og ved å velge sorteringsrekkefølge. Eventuelle
vakter som skulle vært sperret allerede vil også vises i denne listen.

Figur 5.1 Vakter som må avsluttes

Etter man har trykket på detaljer kommer man til siden som vist på figur 5.2. Denne siden vil
se litt forskjellig ut avhengig av situasjonen, i dette eksemplet har en ekstravakt på et idkort
gått ut og skal avsluttes. De forskjellige situasjonene systemet tar hensyn til er som følger:

• Ekstravaktkort er utgått, burde vært innlevert men er ikke det. Ekstravaktkortet
sperres.

• Idkort er utgått, burde vært innlevert men er ikke det. Idkortet sperres.

• Ekstravakt på idkort er utgått og eventuell tilgang skal sperres. Idkortet settes tilbake
til det adgangsnivået det hadde før ekstravakten startet.

• Idkort som brukes på ekstravakt er utgått, idkortet sperres. Ekstravakten blir registrert
som avsluttet.

Side 10

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Figur 5.2 Detaljer om vakt som skal avsluttes

Hvis man trykker ”Avbryt” kommer man tilbake til listen i figur 5.1, mens ”Avslutt vakt”
registrerer endringene i systemet. Man kommer så til en ny side som vist i figur 5.3, for å
minne på at endringer skal gjøres i adgangskontrollen.

Figur 5.3 Bekreftelse på avsluttet vakt

Side 11

Her vises detaljer om
ekstravakten som er utgått

Her vises detaljer om idkortet
som ekstravakten brukes på

Her er en beskrivelse av
den aktuelle situasjonen

Her vises det som skal gjøres
på adgangskontrollen. Hvis
et kort skal sperres vil dette
stå her

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

6 Personalendringer

Hvis en fast ansatt (en person som har et idkort) skal bytte navn, avdeling, adgangsnivå, firma
eller stilling, vil personalavdelingen sende en bestilling på personalendring. Det er disse som
vil ligge i listen over bestilte personalendringer, se fig. 6.1.

Figur 6.1 Bestilte personalendringer

Når man har valgt en bestilling kommer man til en ny side som viser alle detaljene, både for
det eksisterende ansettelsesforhold og de bestilte endringer, se fig. 6.2

Figur 6.2 Detaljer om personalendring

Side 12

Trykk på overskriftene
for å sortere listen

Trykk på den respektive
knappen for å gå videre

Informasjonen som på
nåværende tidspunkt er
registrert om personen vises

De bestilte endringene
vises her.

Når man trykker ”Godkjenn” kommer man til en ny
side, så husk å oppdatere adgangskontrollen først

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

7 Lever inn kort

Når ”Lever inn kort” på menyen trykkes vil man komme til bilde vist i figur 7.1. Denne
funksjonen er for å levere inn kort som blir innlevert etter at en vakt er avsluttet. Ved
innlevering av kort der vakten ikke er avsluttet (for eksempel hvis kortet leveres inn før
utløpsdatoen er nådd, eller et idkort med ubestemt sluttdato leveres inn) vil systemet også
avslutte vakten direkte når kortet blir innlevert. For å levere inn kort må kortnummeret skrives
inn og søkes etter. Man vil da få opp detaljer om kortet som vist i figur 7.2. Disse detaljene vil
variere etter situasjonen, og vil være en av følgende:

• Ekstravaktkort blir levert inn, settes til sperret adgangsnivå

• Idkort blir levert inn, settes til sperret adgangsnivå

• Idkort som brukes på en ekstravakt blir levert inn, kortet settes til sperret adgangsnivå
og ekstravakten avsluttes

• Angitt kortnummer finnes ikke i systemet. Ingenting blir gjort i dette systemet, men
det burde sjekkes på adgangskontrollen at det aktuelle kortet er registrert/sperret der

Når knappen ”Lever kort” trykkes blir man bedt om å oppdatere kortets adgangsnivå på
adgangskontrollen, som vist i figur 7.3, og kortet vil bli registrert som innlevert i systemet.

Figur 7.1 Innlevering av kort

Side 13

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Figur 7.2 Detaljer om kort

Figur 7.3 Bekreftelse på innlevering

Kortet er nå registrert som innlevert og kan legges vekk.

Side 14

Her står detaljer om hvem
kortet har tilhørt, hvor det har
blitt brukt, samt hvilket
adgangsnivå det er på kortet

Pass på at riktig
adgangsnivå blir
registrert i
adgangskontrollen

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

8 Logger

Under menyen ”Logger” er det mulig å se all informasjon som er lagret om kort som har blitt
godkjent. I menyen er det et menyvalg for å se informasjon om alle loggoppføringer på
ekstravakter, og det er et menyvalg for å se alle loggoppføringer på idkort. Det er også et
menyvalg under ”Logger” som viser en liste over alle personer som er i besittelse av et idkort
på nåværende tidspunkt. Et eksempel på oversikt over loggoppføringer i ekstravaktloggen er
vist i figur 8.1. Denne listen vil typisk bli ganske stor i lengden ettersom flere og flere
bestillinger kommer til. Administrator har mulighet til å slette oppføringer som er gammel og
bare tar opp plass. Sortering av denne listen kan gjøres på samme måte som tidligere ved å
trykke på de gule overskriftene, og kombinere dette med stigende eller synkende
sorteringsrekkefølge. Både oppføringer der kort er levert eller ikke levert vil vises i denne
loggen. Figur 8.2 viser ytterligere detaljer om valgt loggoppføring.

Figur 8.4 Oversikt over ekstravaktlogg

Side 15

Når et kort blir registrert som
levert vil kortnummeret i
loggoppføringen bli satt til 0

Trykk på den respektive
”Detaljer” knappen for å se
flere detaljer om oppføringen

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Figur 8.5 Detaljer om loggoppføring

Side 16

Viser hvem som har
sendt bestillingen

Her vises det hvilken
vekter som har godkjent
bestillingen, og hvem som
har avsluttet den.
Eventuelle interne
merknader til vekter/admin
vil også vises her

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

9 Bestillinger

For å bestille kort til en person må først personen søkes opp i databasen, dette gjelder både
ekstravaktkort og idkort, for så å velge den personen som kortet skal bestilles til. Søkesiden
vises i figur 9.1

Figur 9.6 Søk etter ansatt

Søking kan gjøres på både etternavn og fornavn, eller bare en av delene. Søkes det for
eksempel på Hansen som etternavn, vil alle som er registrert med etternavn Hansen komme
opp. Eventuelt kan det søkes etter de første bokstavene i et navn, og alle med et navn som
begynner på disse bokstavene vil komme opp.

Side 17

Denne knappen er for å raskt
fjerne all tekst i tekstboksene
over.

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Figur 9.2 viser et søkeeksempel på bokstaven ”S” som etternavn, og resultatet er at alle som
er lagret i databasen med etternavn som begynner på S vises til høyre for søkeboksene.

Figur 9.7 Eksempel på søk

Legg til ny ansatt
Her vil både etternavn og fornavn være forhåndsutfylt på bakgrunn fra de opplysningene som
ble oppgitt i søkeboksene på forrige side, se figur 9.3. Det er mulig å endre disse hvis disse
ikke stemmer, eventuelt legge til. I tillegg må fødselsdato fylles inn, og firma velges. Firma
kan være UNN hvis personen er ansatt ved UNN eller det kan for eksempel være et vikarbyrå.

Figur 9. 8 Ny ansatt

Side 18

Personen det skal
bestilles kort til må
velges med respektiv
knapp.

Er det ingen treff i databasen på
navnet det søkes etter, må
personen først legges inn i
databasen før man kan velge
han/hun.

Erstatt bokstavene med
riktige tall, nøyaktig slik
som vist under

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Når personen er registrert, vil man bli sendt tilbake til søkesiden. Hvis det nå søkes etter
denne personen, vil man få treff i databasen og man kan deretter velge personen for å komme
videre til selve bestillingen.

Bestille ekstravaktkort
Når man har valgt person, kommer man til bestillingssiden som vist i figur 9.4:

Figur 9.9 Bestillingssiden

Side 19

Avdeling må velges. Kun de
avdelingene man har tilgang til
å bestille til vil vises her.

Gruppe har med adgangsnivå på
avdelingene å gjøre. Gruppe er
avhengig av avdeling, bare gyldige
valg vil vises her. Den øverste
gruppen i listen for hver avdeling vil
velges automatisk, påse at dette er
riktig, ellers kan personen få feil
tilgang på kortet

Dagens dato vil være markert og
valgt i kalenderen til venstre. Dette er
start dato for vakten. Endre dette til
når vakten starter hvis dette ikke er i
dag. Sluttdato for vakten velges i
kalenderen til høyre. Hvis dette ikke
velges vil en feilmelding vises.

Når all informasjon om
vakten er utfylt, sendes
bestillingen her.

Om personen skal ha
adgang til medisin
rom ved avdelingen
eller ikke.

Kontroller at riktig
person er valgt.

Hvis start/slutt
klokkeslett er
forskjellig fra de
viste kan man
erstatte dem

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Her må viktig informasjon om vakten fylles ut. Det er viktig å legge merke til at en ekstravakt
kan maksimalt gjelde i 3 måneder. De feltene som er valgfritt er klokkeslett og merknad.
Klokkeslett kan forandres eller det valgte klokkeslett kan brukes. I merknadsfeltet kan
eventuelle meldinger eller spørsmål til vekter skrives. Hvis personen skal ha adgang til flere
avdelinger samtidig skrives dette også her. Hvis feil person er valgt, kan man gå tilbake til
søkesiden ved hjelp av linken nederst på siden.

Side 20

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Bestille Idkort
Idkort bestilles på samme måte som ekstravaktkort, med noen små forskjeller. Eksempel på
dette kan sees i figur 9.5. For det første velger man ikke medisin rom tilgang. For det andre
skriver man inn en stillingstittel som blir stående på idkortet. For det tredje velger man ikke
start/slutt klokkeslett, bare dato, og for det fjerde trenger man ikke velge en sluttdato.

Figur 9.5 Bestille idkort

Side 21

Ønsket stillingstekst
skrives inn her

Hvis man lar være å trykke på en
sluttdato vil bestillingen gjelde
ansettelse på ubestemt tid

Hvis man mister sitt idkort må man
bestille et nytt og merke av for
”Mistet kort”. En ny boks vil da
vises der man kan oppgi en
begrunnelse for tap av kort

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Bestilte vakter
Dette menyvalget viser en oversikt over alle bestillingene sendt den siste måneden fra din(e)
avdeling(er). Et eksempel på dette vises i figur 9.6. Det er kun bestillinger sendt den siste
måneden som vil vises her.

Figur 9.10 Bestilte vakter

Det er tre forskjellige bestillingsstatuser, og hver av disse vil forklares nærmere nedenfor.

- I kø hos vekter: Indikerer at bestillingen er sendt, men ikke behandlet av vekter. Det
er mulig å redigere bestillingen helt til vekteren har tatt i mot og behandlet
bestillingen.

- Utført av vekter med/uten tilbakemelding: Hvis statusen indikerer utført er
bestillingen godkjent og kortet vil ligge klart i resepsjonen. Det går ikke an å redigere
en utført bestilling, men man vil få opp ytterligere detaljer om bestillingen hvis
”Rediger” trykkes. Hvis bestillingen er utført med tilbakemelding vil man få opp
tilbakemeldingen blant disse detaljene. Det kan også trykkes direkte på ”Utført av
vekter med tilbakemelding” for å få opp tilbakemeldingen.

- Avvist av vekter med/uten tilbakemelding: Hvis statusen indikerer avvist er
bestillingen ikke godkjent, og nøkkelkort vil ikke bli lagd før eventuelle endringer på
bestillingen blir gjort. Ved hjelp av ”Rediger” knappen vil man få opp de tidligere
sendte opplysninger og en eventuell tilbakemelding fra vekter om hvorfor bestillingen
ikke kan godkjennes. Her vil man så kunne endre bestillingen i henhold til

Side 22

Trykk her for å skifte
mellom stigende og
synkende sortering.

Bestillinger som er i kø hos
vekter eller som er avvist,
kan redigeres her. Redigering
foregår på samme måte som
bestilling.

Listen kan sorteres etter de
forskjellige gule overskriftene
ved å trykke på dem, og eventuelt
kombinere dette med å endre
sorteringsrekkefølgen.

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

tilbakemeldingen. Det kan også trykkes direkte på ”Avvist av vekter med
tilbakemelding” for å få opp tilbakemeldingen.

Redigere bestilling

Figur 9.7 viser siden for redigering av bestilling. Den nederste delen av figuren fra ”Valg” vil
kun vises hvis bestillingen kan redigeres. Er dette ikke mulig, vil kun den øverste delen med
detaljer om bestillingen vises. Redigering fungerer på nøyaktig samme måte som ved
bestilling og inneholder nøyaktig de samme valgmuligheter. Vil man ikke gjøre noen
endringer kan man gå tilbake til oversikten ved hjelp av linken nederst.

Side 23

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Figur 9.11 Redigering av bestilling

Side 24

Detaljer om bestillingen vises
her, inkludert bestillingens status
(Godkjent, i kø, avvist).

Her vises en eventuell
tilbakemelding fra vekter

Lagrer endringer, og fører tilbake
til oversikten over bestilte vakter.
Bestillingens status vil endres til
I kø hos vekter.

Sletter bestillingen,
og fjerner den fra
systemet.

Alle valgmuligheter under
dette punkt vil kun vises hvis
bestillingen har status I kø
hos vekter eller Avvist.
Godkjente bestillinger kan
ikke endres

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

10 Endre brukernavn/passord

Det er mulig å endre brukernavn og passord. Siden for endring vises i figur 10.1. Det er ingen
regler for brukernavn, men passord må bestå av mellom 6 og 20 tegn, og må inneholde minst
1 tall. Gammelt passord må skrives inn, i tillegg til at nytt passord skrives inn to ganger for å
være sikker på at det er riktig skrevet. Det nåværende brukernavnet vil være fylt inn allerede,
men det er mulig å bytte det ut mot hva som helst. Velges det et brukernavn som noen andre
har vil det komme melding om dette.

Figur 1.12 Endring av brukernavn og passord

Side 25

Brukermanual for elektronisk administrasjonssystem av nøkkelkort ved UNN

Side 26

Bibliography

[1] ISO/IEC JTC 1. Iso/iec 9126 information technology - software quality characteris-
tics and metrics, 2001.

[2] IEEE Std 610.12-1990. Ieee standard glossary of software engineering terminology,
1990.

[3] Asbjørn Aune. Kvalitetsdrevet ledelse - Kvalitetsstyrte bedrifter. Gyldendal Akademisk,
third edition, 2002.

[4] James Bach. Exploratory testing explained, 2003. http://www.satisfice.com/
articles/et-article.pdf.

[5] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, second edition, 2004.

[6] Hans Buwalda. Soap opera testing. Better Software, February 2004.

[7] Ph.D. Cem Kaner J.D. What is a good test case?, 2003. http://www.
testingeducation.org/articles/what_is_a_good_test_case_star_
2003_paper.pdf.

[8] J. Crellin, T. Horn, and J. Preece. Evaluating evaluation: A case study of the use of
novel and conventional techniques in a small company. Human Computer Interaction -
Interact ’90. Elsevier, IFIP, 1990. page 329-335.

[9] J. Rumbaugh G. Booch and I. Jacobson. The Unified Software Development Process.
Addison Wesley, 1999.

[10] The EAGLES Evaluation Working Group. Evaluation of natural language processing
systems, final report, 1995. http://www.issco.unige.ch/ewg95/node84.
html.

[11] The EAGLES Evaluation Working Group. Evaluation of natural language processing
systems, final report, 1995. http://www.issco.unige.ch/ewg95/node88.
html.

[12] Y. Halmoe and G.A. Jenssen. An empirical study of the KAS - Analyzing quality re-
quirements and their definitions. Norwegian University of Science and Technology
(NTNU), 2005.

[13] M. Hammersley and P. Atkinson. Feltmetodikk. Grunnlaget for feltarbeid og feltforskn-
ing. Gyldendal, 1996.

[14] Cem Kaner. An introduction to scenario testing, 2003. http://www.kaner.com/
pdfs/ScenarioIntroVer4.pdf.

BIBLIOGRAPHY

[15] C. Karat. Cost-benefit analysis of interative usability testing. Human Computer Interac-
tion - Interact ’90. Elsevier, IFIP, 1990. page 351-356.

[16] Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler. The Art of
Software Testing. John Wiley & Sons,Inc., second edition, 2004.

[17] Kristen Ringdal. Enhet og mangfold, Samfunnsvitenskapelig forskning og kvantitativ
metode. Fagbokforlaget, 2001.

[18] Andy Tinkham and Cem Kaner. Exploring exploratory testing, 2003. http:
//www.testingeducation.org/articles/exploring_exploratory_
testing_star_east_2003_paper.pdf.

[19] A. Vainio-Larsson. Evaluating the usability of user interfaces: Research in practice. Hu-
man Computer Interaction - Interact ’90. Elsevier, IFIP, 1990. page 323-328.

[20] Wikipedia. Black box testing, 2006. http://en.wikipedia.org/wiki/Black_
box_testing.

[21] Wikipedia. Software quality, 2006. http://en.wikipedia.org/wiki/
Software_quality.

[22] Wikipedia. White box testing, 2006. http://en.wikipedia.org/wiki/White_
box_testing.

[23] Clas Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering, An introduction. Kluwer
Academic Publishers, 2000.

