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ABSTRACT 

TrollCreek is a CBR- tool developed at our group recognised for it’s ability to reason in 

weak theory domain, explanatory facilities, and sustained learning. Artificial Neural 

Networks provide a method for analyzing complex data without any a-priori knowledge 

of their possible interactions. 

This work combines classical methods and ANN with CBR by extending the reasoning 

capabilities of our group’s TrollCreek to handle real- time processing of massive, inter- 

correlated datasets. These is done by pre- selecting only relevant attributes from the 

Measurement While Drilling data using a regression tool and analyze these using ANN. 

The result is reducing 33 real- valued variables to one, problem relevant signal, readily 

processed by TrollCreek. 
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CHAPTER 1  

1 INTRODUCTION  

The vision of this work is to utilize computational intelligence in preventing and mitigating 

unwanted events in the oil-drilling domain, not limited to avoid mistakes happening or merely 

operationalizing existing knowledge. The reasoning system should exhibit a minimum of 

explanatory functionality, not merely stating that a situation is interpreted as dangerous, but also 

being able to explain why. Finally, the reasoning capabilities should be extended to sustainable 

learning from mistakes to avoid repeating experienced unwanted events.  

 

Obtaining these paramount goals involves achieving several high- level objectives which include 

methods that will enable:: 

1. continuous background monitoring and giving qualified warnings accordingly 

2. explaining why the system  interprets the ongoing operation as dangerous 

3. making justified recommendations primarily how to avoid the confirmed unwanted event 

in progress and secondarily how to mitigate an expected unwanted event 

4. continuous utilization, maintenance and update of a lessons learnt knowledge base 

 

Chapters 1-2 show that existing research and work on virtual intelligent prediction and learning in 

this domain fails to adequately address the objectives listed above, and it seem necessary to 

combine classical transparent methods and machine learning techniques to achieve the project 

vision outlined.  

After an introduction to the selected problem domain, the project high- level objectives are 

formalized into the goals of this work. 

 

Problem domain studied 

There are numerous possible unwanted events being candidates for a prediction and mitigation 

feasibility analysis. The focus of this work ended up on prediction and mitigation of stuck pipe, 

despite it being a somewhat declining problem with respect to frequency. Daily drilling rig rental 

has increased proportionally to the oil price and presently, off- shore rig day rates might exceed 

160000 US$/day [Office Of Statistical and Economic Analysis (2005)], and a severe stuck pipe 

incident might take several days to resolve. Equally important is the availability, frequency and 
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quality of the relevant data subject for analysis and the absence of a commonly accepted 

computationally intelligent system minimizing these problems. Furthermore, classification of a 

possible training set is feasible since there exist an industry accepted database on how to map 

stuck- pipe decisions [Bailey L., Jones T., Belaskie J.,  Ortban J., Sheppard M.,  Houwen O., 

Jardine S. and McCann D. (1991)]. This does not mean, however, that this work is limited to the 

problem of stuck pipe, other unwanted drilling events are possibly susceptible for such analysis. 

using the existing dataset. Moreover, data collection enhances both quantitatively and 

qualitatively as a consequence of increasingly complex drilling operations and regulatory 

demands, continuously expanding the plausible scope of this work. 

1.1 Research goals and hypotheses 

The following sections is the guiding documentation for further analysis: 

1.1.1 Goal 1: Real- time, computationally efficient prediction 

Predicting unwanted events on complex offshore development well drilling operations by finding 

a reliable problem indicator or an interpretable unwanted event signal within readily available 

digital data. 

 

Hypothesis 1: It is possible to develop a method predicting unwanted events real time 

from MWD data 

• Sub- Hypothesis 1.1: There is sufficient explanatory strength within the available rig site 

data to get a consistent, reliable problem signal for real- time prediction of unwanted 

events. 

• Sub- hypothests 1.2: Given the right predictive system, the explanatory strength within 

these data might provide an adequate problem signal at relative low computational cost. 

 

1.1.2 Goal 2: Provide justified explanations, recommendations and learning 

capabilities 

This is the final process of providing explanations and justifications for alarm states, justified 

recommendations for preventive measures and built- in capabilities of retaining lessons learnt.  

As Chapters 2-3 will show, Goal 2 has long been a subject of research within our AI- group, but 

in this context goal 2 also depends on the validity of  Sub-H1.1 and Sub-H1.2. 
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Depending on the success of goal 1 alone, this research might differ qualitatively from existing 

predictive systems. Goal 2, however, separates this work methodically from any existing real- time 

monitoring system by elevating the target of problem handling from merely indicating an alarm 

state to providing explanations for the alarm, suggesting pre-emptive measures and learning from 

the alarm incident. 

 

1.2 High- level, preliminary design of the proposed solution 

In the following sub- chapter, an analysis of the goals leads to a formulation of functional 

requirements, explaining the functionality required by the system in obtaining the goals of this 

work and an introduction to the proposed solution. 

1.2.1 Functional requirements  

The system proposed should document ability to 

1. continuous background monitor an ongoing operation at low computational cost, 

providing appropriate warning signals in a timeframe allowing avoidance of the reported 

unwanted event.  

2. explaining why the system  interprets the ongoing operation as dangerous 

3. making justified recommendations how to primarily avoid the confirmed unwanted event 

in progress and secondarily how to mitigate an expected unwanted event 

4. continuous and proactive utilization, maintenance and update of a lessons learnt 

knowledge base 

 

The cumulative requirements include both data intensive predictive power and extensive 

knowledge representation and reasoning as explanations and justifications require both causal and 

structural knowledge. 

This exclude both purely instance- based, statistical and ANN (Artificial Neural Nets) 

approaches. A version of CBR (Case Based Reasoning) learners, TrollCreek addresses the 

knowledge intensity embedded in the complex and inadequately modeled problem domain 

studied. Meanwhile, the problem to be addressed exhibits both data intensive and knowledge 

intensive characteristics. A version of Case Based Reasoning, TrollCreek, might address goals 1 & 

2. However, Chapter 3 shows that representational, reasoning and computational problems when 

processing numeric, real- time data makes TrollCreek an implausible solution in meeting goal 1. 

A consequence of the above is that realizing both goals necessitate modulating the system as no 

known, single machine learning technique adequately accommodates all functional requirements  
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1.2.2 Preliminary design 

Figure 2-1 shows a high level design of the proposed extension to the existing decision support 

and learning system. All process flowcharts in this thesis, data or data storages are represented as 

circles, processing elements as boxes. The processing element in grey (green) indicates that parts 

of the functionality required are present in an existing system. 
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UIactivation
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available
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Figure 1.1: Abstract view of the proposed system architecture accomplishing the thesis goals 

 

Data intensive processing 

The process element “data intensive processing” performs the real time, data intensive 

prediction, presupposing this is performed by a trained module, requiring only the less processing 

expensive querying step.  The main source of data is any operational real time data, typically 

updated every 5 seconds, but might make use of supporting data from more static data sources if 

needed. 

Knowledge intensive processing 

When an alarm signal is generated, the control is passed to the “knowledge intensive processing” 

module which accepts or dismisses this trigger event, based on the embedded domain knowledge 

and experience. Depending on the outcome of this module’s alarm signal evaluation, user 

interaction or an explained unwanted alarm is communicated to the user which acts as the 

evaluator of the system’s overall performance.  Regardless of signal type, alarm or solution 
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correctness, prospective new experience is justifiably stored or dismissed as important learning 

steps in the process chain. 

 

The details of the individual processing elements, data descriptions, control and message 

exchange is the essence of this work and will be the subject of the succeeding chapters. 

However, the core of this thesis work will focus on the ability to make predictions from real- 

time numerical data and the way such a module integrates in the total architecture. 

 

1.3 Structure of this work 

A broad area of methods is discussed in this thesis, thus leaving less latitude for in- depth 

elucidation of each. However, the target is primarily to provide sufficient theoretical background 

to appreciate the purpose, reasoning and outcome of each chapter, secondarily to provide 

pointers to more elaborated material.  

 

The rest of this chapter summaries both “thesis philosophy” and “thesis anatomy”. The first is 

how to achieve the goals and requirements stated, the latter how this document is organized. 

1.3.1 How to achieve the goals 

Goal 2 essentially describes our group’s Case Based Reasoning (CBR) system TrollCreek. This 

contribution condenses into analyzing and patching TrollCreek’s shortcomings in reaching the 

thesis goals, and to develop amendments as needed.  

A significant obstacle in reaching Goal 2 using the existing system is handling real- time 

operational data. A major amendment produced by this work is data intensive prediction as 

described in Goal 1, thus relieving TrollCreek of operating on these data.  

In searching for a method at the data intensive stage, the nature of this thesis is explorative. The 

boundaries given by the functional requirements narrows the scope of possible methods down to 

eager learners1, but this still leaves fuzzy logic and the entire ANN (Artificial Neural Network) 

family of plausible methods. The data description further narrows down the scope of feasible 

methods of analysis, but for the unknown data intensive module, the “thesis philosophy” 

becomes an empiric one. 

 

                                                 
1 Among their distinctive characteristics, eager learner executes the computationally expensive steps prior to 

deployment. Classification, or prediction in this context, thus becomes inexpensive[Mitchell, T. M. 1997] pp. 230-244 
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Introducing FuzzyLogic would improve the existing reasoning on MWD parameters within the 

existing version of TrollCreek. However, the nature of the data as shown in this chapter and 

discussed in Chapter 3: Discretization -and using rules on these real- valued parameters makes 

reliable real- time prediction infeasible, which leaves only the ANN family of methods for testing. 

Empiric search supported by statistical regression 

Testing Artificial Neural Networks in general, and especially Standard Backpropagation -ANN 

(SBP-ANN), is a highly empiric exercise having several tuning variables, no modeling and few 

tuning heuristics. Moreover, there is a considerable data load, with expect to frequency, 

parameter quantity -and range. This leaves a considerable search space for an optimal solution. 

Regression was used to aid reducing the complexity of the neural nets by selecting only variables 

relevant to the problem studied.    

As interpretable patterns started to form, additional tools were added successively as for instance 

noise- reduced normalization and function smoothening.  

The work procedure might be summarized to successively explore each candidate method, test the 

remaining plausible ones and iteratively develop the SBP-ANN. 

1.3.2 Thesis structure 

Software system development is not top- down and is a major element in this work.  The nested 

dependencies between analysis of a broad area of methods, iterative development and testing 

constitute a challenging documentary exercise. This is necessarily reflected in the structure of the 

presented thesis. 

 

This chapter has outlined the desired goal state and a high- level design of the system proposed 

to achieve this state.  

 

Chapter 2 provides a thorough data analysis, enabling formalization of functional requirements of 

the data intensive module and a detailed system design. 

 

Given the modularity of the proposed system, the three succeeding chapters are somewhat 

independent studies of the individual modules, each having separate results, discussion and 

conclusion parts. This is advantageous and expedient as each module is assigned separate tasks, 

procure separate data and produce separate outputs. Meanwhile, these modules are 

interconnected by their supereminent objectives and message exchanges. These dependencies are 

attended to successively and in the common discussion and conclusion chapter. 
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In Chapter 3 the first of these modules are analyzed and is the system already present: 

TrollCreek. The conclusions of this analysis either confirm or lead to modification of the 

functional requirements given the data intensive module, developed through the next two 

chapters: 

 

A statistical tool is presented and utilized in Chapter 4, significantly reducing the data extent by 

including only relevant parameters, thus increasing feasibility of the real- time prediction. 

Chapter 5 constitutes the majority of this work and is composed of an analysis of Artificial 

Neural Nets (ANN); identifying a suitable neural net, leading to the development of an extended 

Backpropagation ANN. An empiric analysis of the significant drilling parameters identified in 

Chapter 4 concludes this chapter and also concludes the modular analyses. 

 

In the final chapter, the conclusions of the modular analysis in Chapters 3-5, are cumulated, 

discussed and measured towards the thesis goals. Moreover, the important sub- chapter “Future 

Work” outlines development steps necessary to either integrate into, or create an interface from 

the data intensive module and TrollCreek. 

 

Practical aspects 

Abbreviations and petroleum specific terminology is either explicitly explained at the first 

occurrence of this term in a chapter, or a pointer to an explanation is provided. In addition, all 

abbreviations used, independently of domain, are included in the list of abbreviations with a 

pointer to an explanation. 
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CHAPTER 2  

2 METHODS AND DESIGN  

The former chapter described the high- level goals, functional requirements and constraints. 

This chapter describes the status of current research with regards to this work. A detailed data 

description –and analysis lead to functional requirements and design criterion for the data 

intensive, predicting module. This narrows the scope of plausible prediction tools down to 

Artificial Neural Networks (ANN) and brings forth a more fine- grained, overall design.  

Consequently, this chapter becomes the final, purely theoretical design iteration prior to in- depth 

analysis, testing and development of the AI- methods constituting the proposed system. 

 

2.1 Related research 

Much effort has been put into utilizing Artificial Intelligence as a tool to prevent unwanted 

events in the petroleum industry by attempting to model this complex domain by statistical and 

analytical methods, by enhancing the focus and knowledge of rig personnel (pedagogical, 

motivational approaches) For some very limited, simple and repetitive well operations, basic 

machine learning approaches has been promisingly utilized. 

The next sub- chapters mention some published tools related to this work.  

2.1.1 ANN utilization 

Neural networks have been utilized to predict formation characteristics such as porosity and 

permeability [Mohaghegh, S., Arefi, R., Bilgesu, I., Ameri, S. 1995], field development 

[Doraisamy, H., Ertekin, T., Grader, A., 1998] and completion analysis [Shelley, R., Stephenson, 

S., Haley, W., Craig, E., 1998] from data where transparent methods performed poorly.  

Recent examples are the use of ANN’s in data mining of huge databases to optimizing entire 

oilfield production [Salehi, I (2004)] or predicting ultimate drilling and completion practices for a 

well construction project [ L., V. (2004)] 

2.1.2 CBR methods 

Schlumberger Cambridge Research built a Web-based system to diagnose the causes of stuck 

pipe during drilling and then to suggest remedies [Arango, G., Colley, N., Connely, C., Durbec 

C., 1997]. This works by initiating a case- base, interviewing the user and implementing lessons 
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learnt. However this is a knowledge poor data- mining tool not monitoring the operation 

autonomously thus depending on the user detecting the problem and guiding the system through 

the knowledge database. 

2.1.3 Commercially developed tools  

There are commercial actors that specialize in the field of AI applied to oil and gas production, 

one of which is Intelligent Solutions Inc [Intelligent Solutions, 2005]. This company claim to be 

the most experienced actor in aapplication of artificial intelligence to all aspects of petroleum and 

natural gas engineering. 

Schlumberger is the largest service provider to the oil and gas industry and possesses a vast 

inventory of drilling related software, one of which is designated to predicting stuck pipe; Osprey 

Risk [Osprey Risk, 2004], another example is their Petrel Classification and Estimation tool 

[Petrel Classification, 2005] utilizing ANN’s to predict reservoir characteristics  

Their software includes services as reservoir modeling, simulation and intelligent best practices 

analysis. However, these analyses is limited to pre- operational prediction with regards to design 

and post- operational analysis and learning.  

2.1.4 Summary 

There is extensive commercial and academicals research and deployed commercial software 

utilizing machine learning techniques aiming at predicting and preventing non- productive time 

during complex off- shore well construction. There are systems methodologically similar, both on 

CBR and ANN. Presently however, there seem to be no released or published material from 

research groups adequately covering neither goal 1 nor 2 individually and consequently no 

documented system covering the overall system functionality.  

 

2.2 Data description  

In many aspects the real- time data, their nature and intensiveness dictate the functional 

requirements for the tools in which they are to be processed.  

There are three main categories of data available during a typical offshore drilling operation: 

Category 1 data “Real Time Data”: In this work these data has been exclusively MWD 

(Measurements While Drilling) data, but this category constitutes any readily available, 

automatically and frequently recorded, non- symbolic data that consequently need no 

interpretation.  
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Category 2 data “Routinely Recorded Data” are digitally recorded at least daily as an 

integral part of the drilling operation. Their source is mainly the Daily Drilling Report2 which 

is a requirement of the NPD3 including section size, drilling fluid data (type, specific weight, 

viscosity etc., daily mud losses, and equipment. 

Category 3 data “Background Data”: These data are manually recorded, being symbolic, 

numeric or textual descriptions requiring interpretation. These data need not necessarily be 

available digitally or at the operations control site. Data acquisition is in the boundary line of 

knowledge acquisition (see for instance [Luger, G. F (2002) pp. 250-256, Gruber, T.R 

(1996)]). This must not, however, be confused with knowledge acquisition in the sense of 

domain modeling and achieving sustained, robust and adaptive knowledge as described in e.g. 

[Aamodt, A (1995)]. Background data is field specific information giving a large scale picture 

of operations parameters such as reservoir data,  known HTHP (High Temperature High 

Pressure) zones, water/oil/gas ratio, formation specific data (e.g. lithology  through possible 

core samples) log data (samples/previous exploration wells) and wireline data.  

 

A fourth category including e.g. general domain knowledge and a case base could be introduced 

here, but once elevated to the knowledge intensive level beyond the mere predictive part of the 

system, one of the learner’s tasks is to retrieve relevant cases (Chapter 3) and compare an evolving 

case- base for matching. Depending on context these cases might play the role of being mere 

data, information or even knowledge [Aamodt, A, Nygård, M, 1995], consequently there is no 

data category at this level.  

2.2.1 Category 1 data - “Real Time Data” 

If not continuously covered, all referred and significant abbreviations used on drilling parameters 

in this chapter are described in Appendix 9.1: “Statistically significant MWD variables”. 

 

Category 1 data are mainly collected for generating alarm events invoking the knowledge- 

intensive part of the system, but those alarm signals might also be carriers of selected and 

prepared data vital for the further reasoning process.   

                                                 
2 Detailed drilling story”, a textual summarization of main activities, current operations, events and deviations with 

an update frequency at best every 30’th minute. 
3 Norwegian Petroleum Directorate 
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The data used for alarm signal generation in this work are exclusively MWD (measurement while 

drilling) data collected real time and sampled every 5 seconds. Below is an example of some raw 

data recorded: 

 
Table 2.1: Extract from MWD data. 9 of  33 recorded parameters are shown and 8 recordings constitute 40 

seconds of operational time. 

Depth UnixTime BitMDepth BlockPos AvgROP AvgHookld CalcHookl AvgWOB AvgTorq ...

4703 766766755 4281.651 2.656 30.354 316363.625 407314.08 -680290.79 25971.79 ...

4703 766766760 4309.813 2.647 4.796 530843.688 407314.08 -123529.6 1922.005 ...

4703 766766760 4309.821 2.68 0.828 1125535.88 407314.08 -128293.9 1918.35 ...

4703 766766760 4309.738 2.78 0.828 1131686.88 407314.08 -128293.9 1918.35 ...

4703 766766760 4309.705 2.797 0.828 1093755.88 407314.08 -128293.9 1918.35 ...

4703 766766760 4309.821 2.797 0.828 1075302.88 407314.08 -128293.9 1918.35 ...

4703 766766760 4309.821 2.797 0.828 1041472.5 407314.08 -128293.9 1918.35 ...

4703 766766760 4282 2.805 0.828 935880.688 407314.08 -128293.9 1918.35 ...

... ... ... ... ... ... ... ... ... ...

 

The purpose of Table 2.1 is to give an overview of the data, not providing an insight of relevant 

parameters at this stage. Each row in this table represents a data instance (sample) having 33 

parameters, of which 9 are shown in the table. These real- valued parameters have varying 

reliability and relevancy to the selected unwanted event; stuck pipe, and a summarization of the 

collected data material characteristics are: 

 

Massive input data 

Real- time data mean data need processing at the speed of which they enter the system. Having a 

somewhat representative data distribution of a normal vs. abnormal drilling situation is a trade- 

off between, on one hand; expected precision gain following increased data intensiveness vs. 

training cost.  

Poor target estimates  
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The dependant variable studied here; stuck pipe (See Appendix 9.3: “Mechanisms causing the 

unwanted event Stuck Pipe”) is dicotome, that is, the value is either  

model of stuck pipe

true stuck pipe 
progress

1

0

Degree of 
stuck pipe

Time

model of stuck pipe

true stuck pipe 
progress

1

0

Degree of 
stuck pipe

Time  
Figure 2.1:  model vs. true stuck pipe progress 

stuck or not stuck, 0 or 1. This is a rough model of the actual stuck pipe event, which typically is 

a result of cumulative effects from varying problems. A real valued continuous function is, in lack 

of a transparent, analytical model, simplified to a step- function in the data representation.  

 

Extreme data: 

There are few “true”, independent training examples: MWD data for development wells including a 

single, clearly identifiable stuck pipe incident are not readily available as these surveys almost 

exclusively are outsourced to service companies and these data are subject to company 

restrictions. In this work, 7 wells has been the basis for training and validation. Each of these 

training examples (in the strict interpretation of the term) is, however, represented by up to 

17000 instances. The challenge becomes handling few independent, but severely data intensive, 

training examples. 

 

Skewed distributed target value  

The dependant variable (target value) of each instance; the values subject to prediction, represent 

a severely skewed distribution.  Each independent training example has 2500-6000 negative 

instances per 100 positive instances and all negative instances are sequentially listed prior to the 

100 positive samples. 

 

Dispersed value ranges and inter- correlated parameters 

 All parameters values are given in SI units (see Appendix 9.1: “Statistically significant MWD 

variables”) having observed value spans differing greatly and regardless of their relative predictive 

significance.  
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Figure 2.2: Example of value dispersion in MWD data 

 

Examples from figure 2-3 are ranges of MWD parameters VAvgROP = [0,1.7〉  and VAvgWOB 

= [ 150000,150000− 〉 . AvgROP is intuitively at least as significantly correlated to stuck pipe as 

AvgWOB. Their measuring units and their amplitudes do not necessarily reflect their relative 

correlation strengths towards stuck pipe. Figure 2-3 also show examples of two severely inter-

correlated variables, AvgWOB and AvgHookld: The former essentially expresses the inverse of 

the latter. 

Noisy data 

Several of the measurements are based on less than reliable instruments and are error prone. 

Figure 2 shows VHookload = [ 600,200000]−  which is one of example of observed severe noise. 

The relative weight of the drill string in drilling fluid cannot be less than zero unless there is an 

explicitly noted, severe gas influx into the wellbore. Another example is ROP values up to 1500 

while a typical ROPmax < 5.  

 

In the following sub- chapter, these data descriptions are summarized and set into the goal- 

achieving context. 

2.2.2 Data descriptions summarized into functional requirements 

The data intensive, knowledge poor part need to handle: 

1. massive amounts of data, especially when trained as real- time data need reliable 

prediction on the fly 

2. a poorly classified training database 

3. few truly independent training cases – 7 wells and each training case having massive 

amounts of training examples 

4. the training examples’ classifications are severely skewed distributed 

5. training examples’ features are somewhat inter- correlated 
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6. noisy data having dispersed value spans 

 

In the next section a system is suggested accommodating both goals and functional requirements. 

2.3 System design 

This is the final design stage prior to testing and development, narrowing the scope of possible 

prediction methods as a result of the cumulative functional requirements. 

2.3.1 Data intensive, real- time prediction   

Earlier discussion has excluded purely instance- based4 and lazy learners for this stage. 

Remaining, considered eager learners are FuzzyLogic [Luger, G. F. 2002] pp. 323-328 and ANNs. 

 

Preliminary analysis [Valaas, I, 2004] showed that a pure ”Black Box Training” strategy, utilizing 

all available MWD parameters gave no interpretable results, regardless of ANN method, 

topologies and their pertinent tuning parameters (Section 5.4.2 “Training Algorithms”). A 

method of pre- selecting only relevant features proved necessary. 

Two strategies are employed:  

1. In an earlier work [Valaas, I., 1997] analytical real- time processing of the MWD data was 

tested in a promising attempt to create a function modeling a targeted stuck pipe 

mechanism called “hole cleaning problems” (see Appendix 9.3: “Error! Reference 

source not found.” section 9.3.2).  

In developing the “Prediction”- module, a second attempt is made to create this model 

using the Radial Basis Function Networks’ inherent function interpolation ability (Section 

5.4) and utilizing the analytical and domain knowledge embedded in the original data 

preparation (see Appendix 9.2: “Dataset derived from applicable analytical models 

applied to relevant, available MWD data” ).  

2. Selected training data including all MWD parameters (features) are presented to the 

Multivariate Logistic Regression (MLR) module which analyses and ranges these features 

according to problem relevance. Parameters found relevant according to a performance 

criterion (5% level of significance) constitute the input variables at the next level of 

prediction i.e. the Standard Back- Propagation ANN analysis(Chapter 4: “Attribute 

Selection By Statistical Analysis”).  

                                                 
4 Instance based learners are “lazy learners”, performing all computationally expensive stages until a sample arrives 

and need classification (prediction in this context) [Mitchell, T. M. 1997] pp. 230-244 
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Details of the internal processing of these data are covered in Chapter 5: “Artificial Neural 

Networks”.  

2.3.2 Overall design – second iteration 

Figure 2.3 shows the proposed system architecture attempting to accommodate both the goals 

and the functional requirements described above. 

Boxes represents processing modules of the system each having well- defined responsibilities that 

cumulatively addresses Goal 1 and.2. Circles represent databases both static and dynamic and 

finally; dotted ovals show message exchange between the modules.  

The static domain knowledge acquired and the dynamic case base embedded in the KI CBR 

(Knowledge Intensive Case Based Reasoning) module is not shown in the figure. This knowledge 

is, as discussed previously, elevated beyond the definition of data and is considered an integral 

part of the Deep Reasoning module. Below is a brief summary of each processing module: 

• The processing sub- module “Analytical Methods” is a data pre- processing method 

supporting the next processing element. As discussed in the previous sub-chapter, two 

possible analytical methods are studied to qualitatively improve and reduce the training 

data: Domain knowledge supported transparent methods5 and regression analysis.  

• The “ANN” sub- module is trained on the resulting dataset and performs real- time 

prediction.  

• The TrollCreek module has already been sketchy described and will be elaborated in 

Chapter 3: “Case Based Reasoning and TrollCreek” 

 

                                                 
5 Transparent method: Exact mappings between input vectors and their classifications. “functions” and “equations”. 
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Figure 2.3: System design – second iteration 

 

The next section gives an overview the functionalities, messages exchange and control flow of 

the proposed system. 

2.3.3 System functionality and interaction 

Prediction  

Control input to this module is either start of operations or a dismissed, earlier warning signal 

from TrollCreek. If it is the latter, an alarm threshold needs to be incrementally increased.  

Output of this module is an alarm signal generated whenever a problem indicator exceed the 

alarm threshold This signal, comprised of the real valued amplitude exceeding the threshold, and 

possibly along with selected and relevant operational data, is passed to the next module in the 

problem solving chain. 

 

After the prediction stage, control is passed to TrollCreek.  

Details of the internal processing of steps Re is covered in Chapter 3: “Case Based Reasoning 

and TrollCreek”. Below is an informal summary : 

Explain  

At this stage the alarm signal is interpreted and translated and a search for relevant, similar cases 

is triggered using the reasoner’s semantic network. If one or several comparable unwanted event-  
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cases are retrieved by direct matching, this might be explanation sufficient. If a case is somewhat 

similar, this partial match need be explained.. The output of this process is one or several justified 

problem hypotheses presented to the user through the user interface, which helps the system 

through the next phase: 

 

Either the system dismisses the warning internally ot the user interacts with the system in either 

acknowledging or rejecting the proposed hypothesis after having completed possible missing or 

inadequate information in the knowledge base. 

Recommend 

Further steps in the KI reasoning process depends on the outcome of the former phase. If the 

user ultimately dismisses the proposed unwanted event hypothesis, this step is skipped and focus 

is directed at the “Learn” phase. In the event of an acknowledged warning, however, the system 

retrieves for instance detailed drilling reports, including problem solving steps (Category 2 data, 

DDR) in the retrieved, confirmed relevant cases, as recommendations primarily how to avoid and 

secondarily how to resolve the unwanted event. 

Learn 

Regardless of the “Acknowledge” outcome, the learning step is mandatory and vital for 

maintaining the case- base and tuning of the alarm signal module. If the user dismisses the 

proposed warning, and this is confirmed by no such unwanted event occurring, relevancy values 

following the paths that lead to the retrieval of the perceived relevant cases need be weakened, or 

this case is stored as a negative example (positive being an unwanted event case). Furthermore, 

the alarm threshold by which the “predict” signal passed need to be incrementally adjusted 

whenever such erroneous alarms occur. 

If the justified warning is acknowledged, a similar but opposite case base update process is 

executed and the “predict” phase alarm threshold remains unchanged. 

 

A more fine grained explanation of both modules is given in Chapters 3-6 
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CHAPTER 3  

3 CASE BASED REASONING AND TROLLCREEK 

TrollCreek is the system already present, represents the most extensive reasoning part and 

becomes the anchor point in this work, from which the others develop. It is therefore naturally 

discussed first amongst the processing elements of the theoretical design. 

This chapter and the development stage in Chapter 5 “Artificial Neural Networks” is mutually 

dependant as the outcome of this analysis potentially changes the design criteria for the ANN- 

module. Furthermore, as discussed in the previous chapter, these modules have mutual 

functional dependencies.  

 

The purpose of this chapter is neither to give an in- depth review of Case Based Reasoning, 

hereby called CBR, nor an elaborate description of the implemented CBR system, TrollCreek. 

The intention is to provide an overview of the reasoning paradigm and its implementation 

adequately to apprehend the weakness of the current system, thus placing this thesis’ contribution 

in context. 

 

3.1 Introduction 

The motivation for using Case Based Reasoning is its inherent potential for problem solving in 

weak theory domains (see for instance [Aamodt, A., 1994]). The oil drilling domain is a wide- 

spread engineering discipline each unfeasibly modelled analytically and impossible to model 

jointly. This makes the oil drilling domain a typical candidate domain to which CBR might be 

applied. 

 

At the highest level, CBR is a machine learning technique utilizing past experience in the process 

of solving new problems. There are several reasoning systems utilizing analogical reasoning and 

acquired knowledge through past experience. The next section is an attempt to clarify in which 

context our system resides. 

3.2 CBR theory 

The following section gives some pointers to the development of the CBR field 
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3.2.1 The CBR paradigm – background 

The history and development of the CBR paradigm is found for instance in [Watson, I., 1997], 

chapter 2.2, a systematic overview of earlier systems leading up to the current system can be 

found in [Aamodt 1991] chapter 4 or [Aamodt, A., Plaza, E. 1994] (Part 2: “History of the CBR 

field”). The latter also describes and distinguishes this CBR system from other, similar analogical 

reasoning systems (Part 3: “Main types of CBR methods”).  

 

To summarize: CBR is an instance based, lazy learner: Among their distinctive characteristics, 

lazy learners postpone the computationally expensive steps upon deployment. Classification, or 

prediction in this context, thus becomes the computational endeavoring part [Mitchell, T. M. 

1997] pp. 240-244 Furthermore, the paradigmatic CBR method contains a somewhat complexly 

internally organized case base comprised by information enriched cases. General background 

knowledge, varying both in extent and role in the reasoning process, support the specific 

collective knowledge represented by these cases. This background knowledge might support any 

or all phases of the CBR process and is typically utilized in the retrieval and possible modification 

of past solutions to fit new problems.  

 

The next section narrows down the scope of the CBR system we use and elaborates on the 

essential CBR processes and essential sub- processes involved: 

3.2.2 Incremental learning through the CBR cycle 

CBR as described by [Aamodt, A., Plaza, E. 1994] is a cyclic process constituted by four main 

processes depictured in Figure 3.1 
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Figure 3.1: The 4 processes constituting the CBR cycle [A. Aamodt, E. Plaza,  1994] 

The figure shows all key processes involved in solving a problem (Retrieve, Reuse and partly 

Revise) and the learning step (partly Revise and Retain). Furthermore, the cumulative system 

knowledge is represented as the static General Knowledge and the dynamic Case- base. Below 

are the main reasoning processes and their utilization of system knowledge further elaborated. 

3.2.3 CBR reasoning steps 

Presupposing that the system has been used sufficiently to have an adequate case base and 

general knowledge implemented, the following scenario explain the main reasoning steps 

involved: 

Retrieve 

A problem occurs, is structured and presented to the system as a new case. This initiates the first 

step of the reasoning process, the retrieval of similar cases from the case base. Unless there are 

directly matched cases with sufficient explanatory strength6, general knowledge is guiding the 

search for similar cases and ranking the retrieved cases by relevance measures  

                                                 
6 for similarity assessments, see for instance [Sun, Z., Finnie G. and Weber K., 2003] 
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Reuse 

The retrieved case(s) now represent plausible solutions to the input case and within the reuse 

process, adaptation of the retrieved solutions is done, if needed, to adequately fit the new case. 

The success of adaptation rely both on the existence of adequately similar cases and sufficiently 

dense general knowledge. 

Output of the Reuse phase is a solved case, to be tested in the next sub- process. 

Revise 

The solved case is tested either externally; by applying the solution to the real world environment 

to which it provide support or internally in a simulation. External testing might be interaction 

with a user or transmitting corrective or control signals to an external control module or physical 

device 

Output of the Revise phase is a justified case, either confirmed or modified through this testing 

and forwarded to the Retain process. 

Retain 

This is the learning step in which possible acquired knowledge from the Revise phase is 

embedded in the case base, either as a new case or as a refinement of the existing case base. 

 

For further elaboration on each of these reasoning steps, the article of [Aamodt, A., Plaza, E. 

1994], chapters 3-8 is an excellent reference. 

3.2.4 Knowledge- intensiveness in CBR 

The degree of knowledge richness in a case varies from different CBR methods, as does the 

density of the embedded general knowledge. [Aamodt, A. 2004] suggest the following scaling of 

these dimensions: 

 
Figure 3.2: The knowledge intensiveness dimensions of CBR methods 
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From the left extreme, the CBR system resembles an advanced database storing feature records. 

On the extreme right, an extensive general knowledge model supplemented by few, complexly 

structured and elaborated cases, comprises the system knowledge.  . 

The details of ki-CBR (knowledge intensive CBR) is well described in [Aamodt, A. 2004]. 

 

An implemented and well tested CBR system, Creek, belongs somewhat to the right on this scale, 

as illustrated in Figure 3.2 and will be examined in the next sub- chapters. 

3.3 TrollCreek –ki-CBR implementation 

The ki-CBR was initially formalized and implemented in LISP, giving the Creek system. 

Background, design, framework and architecture of Creek are fully described in [Aamodt 1991].   

 

A brief summarization: TrollCreek is an implementation of the CBR cycle. The knowledge 

intensiveness manifest itself as described in the previous sub- chapter: Firstly, it presuppose 

dense general knowledge, called domain knowledge, which is an interconnected semantic 

network of frames. Secondly, the cases are represented as knowledge enriched frames themselves. 

TrollCreek’s reasoning abilities depend on the domain knowledge in all phases of the CBR cycle 

as each similarity assessments is an explanatory process and leave a trail of explanations to the 

inferred matches.  

 

Java-Creek was the intermediate transfer from the original LISP- version to a more graphic and 

user friendly Java- implementation, which led to the current TrollCreek- version, but the original 

methodology remains.  

 

Below is a simple example of how these explanatory trails are utilized when direct matching in 

the Retrieve- phase leave inadequate or ambiguous results:  
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Figure 3.3: Explanations for classifying drilling problems utilizing domain knowledge 

The figure illustrates a qualitative Creek mock- up model for the task of classifying drilling 

problems. Case 24 has a finding-to-finding explanation7 between the new case and Case 24: Case 

24 has a finding of “Stiff BHA” which is a subclass of “Stuck Pipe Mechanism” which has a 

subclass “Formation Ledges” which is a finding of the new case. Case 24 has a stuck pipe 

mechanism as does the new case and this enhances the matching strength8 of Case 24. 

 

3.4 TrollCreek and application in the oil drilling domain 

Much work has been put into the current TrollCreek version for prediction and problem – 

solving in general, and especially within the oil drilling domain. Cross- discipline research at our 

university between the AI- group and the Department of Petroleum Engineering lead to an 

extensive domain model implemented by Pål Skalle and assisted by J. Abdullah.  

As the general knowledge structure, this model is formalized as a single- tree top- down ontology 

of concepts and additional relations. This domain knowledge base has been under continuous 

development and enriched by causal and associational relationships as well as new concepts 

(approximately 2000 at the time this thesis was written). 

A practical description of the oil domain model concepts and relations is described in [Skalle, P., 

Aamodt, A. Sveen, J. 1998]. 

 

Part of the current general, high- level ontology is shown in the figure below: 

                                                 
7 Creek method to construct explanations for showing similarities between syntactically different values  
8 A combination of activation and matching strength [Aamodt, A., 1991] Chapter 6.2 
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Figure 3.4: Part of the top- level ontology. Each concept is linked by a bi- directional structural relation of 

the type "has-subclass" to its lower level concept 

 

Part of the ontology specifically designed for the oil drilling domain is shown in the figure below: 

 
Figure 3.5:  Stuck pipe ontology. As for all structural relations, each concept is linked by a bi- directional 

structural relation of the type "has-subclass" to its lower level concept 

 

A causal model of this ontology interlinking concepts via types of “causes”- relations is shown in 

Figure 3.6. Differentiating the causal strength is achieved by assigning numeric values in the range 

0-1 to each relation. 
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Figure 3.6: Part of the stuck- pipe causal relations, each concept linked by a bi- directional causal relation 

of differentiated strength to other concepts 

 

3.5 Example of a matching process 

The following example is a matching process using the current case base and domain model. 

Figure 3.7 shows a part of the TrollCreek case base.  In this case, the embedded case LC 04, 

highlighted in a (red) circle, plays the role of the arisen problem already formalized as a case 

having status of “unsolved case”:  

 

:  
 

 
Figure 3.7: Part of the TrollCreek case base 

 

 

Utilizing the TrollCreek interface, selecting our new case and running “match case” initiate the 

“Retrieve”- process described in 3.2.3. A ranked set of matched cases are retrieved, and the best 
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matched case is shown in Figure 3.8. Three sections showing reasoning steps utilizing domain 

knowledge is highlighted in grey (red) rectangles and will be discussed separately: 

 

 
Figure 3.8: TrollCreek output of matching cases LC 04 to the case base 

There are 7 directly and one partially matched features, indicated as rectangle “A”, i.e. two 

syntactically different feature values explained similar through causal and structural paths in the 

domain model (rectangle “B”) occasioning a contextual explanation for the partial match ( “C”). 

An analogous, but more elaborately discussed example can be found in [Skalle, P., Aamodt, A. 

2004]. 

 

A 

C B
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3.6 TrollCreek analysis and discussion 

As discussed in subchapters 3.3 through 3.5, the TrollCreek systems collective knowledge is 

comprised by  

 

1. the ontology from which new and existing entities are structured  
2. the interlinking of entities by the structural and causal relations 
3. the individual entities 
4.  the case base 

 

In the following sub- chapter, weaknesses identified in the oil drilling ontology with respect to 

points 2 and 3, ultimately affects all aspects of the domain model listed. Furthermore, the 

feasibility of the existing version of TrollCreek implementation with respect to real- time 

prediction is questioned. These are aspects discussed from both a qualitative and a pragmatic, 

computational point of view. 

 

3.6.1 Discretization of operational parameters 

First, a general definition of discretization is useful: 

Definition 1: 

“A discretization of a real-valued vector v = (v1,…,vN) is an integer-valued vector d = (d1,…,dN) 

with the following properties: 

(1) Each element of d is in the set {0, 1,…, D – 1} for some (usually small) positive integer D, 

called the degree of the discretization (…)” [Hartemink, A. 2001] 

 

Any discretization of a real- valued number involves loss of information, depending on several 

factors, as for instance the degree of discretization, distribution and standard deviation.  

 

All feature values with which the TrollCreek system reasons need to be linguistic values. 

Consequently, discretization of all continuously valued variables is necessary. This affects all 

utilized “Category 1- data” as described in Chapter 2 or more specifically; all MWD variables. 

 

Table 3.1 is an excerption of a TrollCreek documentation resource [TrollCreek I] Appendix A.3, 

with only minor cosmetic changes. Entities and entity values having yellow background indicate 

MWD variables and their discretization:  
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Table 3.1: Extract from a TrollCreek manual originally titled “Qualitative to quantitative transformation 

table”, which means discretization of MWD parameters by mapping their qualitative linguistic variables 

(sub- entities) to quantitative values (di in the discretization definition). 

Entity qualitative-value qual. to quant. transformation comment 

    

Operational parameters:
 normal-wob wob-30 average last 30 m 

wob high-wob wob-1 / wob-30 > 1.2 wob-1 = average last 1 m
 low-wob wob-1 / wob-30 < 0.8  
 low-rpm rpm-1 / rpm-30 <0.8 rpm-1 = average last 1 m

bit-rotating-speed normal-rpm rpm-30 average last 30 m 
 high-rpm rpm-1 / rpm-30 > 1.2  
 drilling-break rop-1 / rop-30 > 1.5  
 low-rop rop-1 / rop-30 < 0.8  

rop normal-rop rop-30 average last 30 m 
 high-rop rop-1 / rop-30 > 1.2  
 Increasing-rop rop-5 / rop-30 > 1.1  
 decreasing-rop rop-5 / rop-30 < 0.9  
    
 high-torque torque-1 / torque-30 > 1.2  

torque increasing-torque torque-5 / torque-30 > 1.1  
 decreasing-torque torque-5 / torque-30 < 0.9  
    

 medium-drag drag-30 average last 30 m 
hook-weight high-drag drag-1 / drag-30 > 1.2  

 increasing-drag drag-5 / drag-30 > 1.1  
 decreasing-drag drag-5 / drag-30 < 0.9  
 erratic-drag > 5 (drag-max / drag-30 > 1.1)/20 s 
 tight-spot drag-1 / drag-30 > 1.5  
 took-weight weight-1 / weight-30 > 0.7  
    

bit-run-time high-bit-run-time t - t-start-bit-run > 100 hours  
 very-long-stands-still-time > 2 h  
 constant-pump-rate q-5 / q-30 = (0.9 - 1.1)  
 low-pump-rate q-1 / q-30 < 0.8  
 increasing-pump-rate q-5 / q-30 > 1.1  
 decreasing-pump-rate q-5 / q-30 < 0.9  
pump-parameter high-pump-rate q-1 / q-30 > 1.2  
 high-pump-pressure  q-1 / q-30 > 1.2  
 high-hoisting-speed > 2 m/s  
drill pipe speed high-running-in-speed > 2 m/s  
 low-running-in-speed < 2 m/s  
 noticeable-back-reaming-time < 1 h  
back-reaming-time* long-back-reaming-time > 1 h  
… … …  

 

________________________ 
*Given implicitly by other MWD parameters 
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TrollCreek’s oil drilling domain model also involves about 30 relationships [Skalle, P., Aamodt, 

A.. 2004] some originate from, or point to, discretized MWD variables. These are relationships 

listed in [TrollCreek I] Appendix A.4,  of which the following relations are examples: 

 
Table 3.2: Non- structural relationships in the TrollCreek  oil ontology 

Entity 1 position relation Entity 2 position condition (if) 

Position indicate where in the upper onthology the two attributes are positioned. Condition means an "if" statement is 

atatched to the relationship. Comments are necessary if a relationship is not so well known. It may have been learned 

through a research work or through experience. 

 

...      

dog-leg non.obs.p enabled-by high-wob oper.p pendelum-bha or wedge-bha 

drilling-break* oper.p occurs in leaking-fm geol.fm  

drilling-break* oper.p implies 

high-pore-

pressure wellb.p  

drilling-break* oper.p indicates sandstone geol.fm  

drill-pipe-speed oper.p causes pressure-surge non.obs.p  

...      

________________________  
* Given implicitly by other MWD data 

 

To summarize: Several TrollCreek oil drilling domain entities and relations are based on 

discretized real- valued numbers, solely depending on domain expert knowledge.  

 

Each of the discretized MWD parameters produces a number of sub- entities equal to the degree 

of discretization, of which the top entry in  

Table 3.1 is an example: wob is discretized into 3 sub- entities; “normal-wob”, “high-wob” and 

“low-wob”. 

Keeping the number of operational related entities at a reasonable level necessitate a small D 

shown in Definition 1 and consequently, rough estimates of the MVD parameter values are 

produced. Moreover, MWD- parameters interactions are numerous, complex and significant 

[Valaas, I. 1997]. This means that the qualitative- to- quantitative transformations often rely on 

other parameters and should not be static ranges.  

 

As discussed introductorily any discretization involves information loss. However, the above 

show that the discretization of MWD- parameters lead to significant loss of predictive information. 
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3.6.2 Predictive limitations 

Two more aspects that are important limit the real- time predictive capabilities of the current 

implemented version of TrollCreek: The qualitative reasoning capabilities and usability as a real- 

time Category-1 data processing system. 

Variable interactions 

The ontology does allow for an expert to model parameter interactions, for instance the top row 

of Table 3.2: dog-leg (see Appendix 9.3: "Mechanisms causing the unwanted event Stuck Pipe”) 

enabled-by high-wob. 

However, MWD- variable interactions are significant. As discussed above, embedding the MWD 

parameters into the domain model This produces a high number of MWD entities as each 

MWD- parameter is represented by several syntactic sub- entities. This means modelling 

adequately based on any ontology using MWD parameters become an extremely complex and 

time- consuming task, solely relying on the domain experts.  

In short: Maintaining real- time variable interactions is presently highly time- consuming and 

qualitatively questionable. 

Real- time prediction 

Category-1 data as described in Chapter 2 arrive every 5 seconds, thus “operational snapshots” 

are produced every 5th second. This means a purely Case- based system as TrollCreek would 

have to process a new case at this frequency through all stages of the CBR- cycle. TrollCreek is a 

lazy learner as described introductory, which would lead to a significant computational strain. 

 

3.7 Conclusions 

TrollCreek is well suited for capturing and utilizing expert knowledge, and has already an 

extensive oil drilling domain model readily available. The reasoning process utilizing this 

knowledge provide sufficient explanations for a fully qualified alarm state, as described in Goal 

2.. Furthermore, the system, when fully implemented, provides a framework for sustained 

learning and continuous improvement. 

 

Representational and practical limitations to the model based part of the system knowledge 

together with high computational expense make TrollCreek less suitable for real- time 

surveillance of drilling operations.  
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As discussed in the theory chapter, this CBR method was designed for knowledge intensive 

reasoning. Reaching the goals of this work as described in Chapter 1 require both knowledge and 

data intensive reasoning. The knowledge intensive part of this task is proven achievable using 

TrollCreek. For the data- intensive, predictive part of the task, however, the system is inadequate. 

 

The next chapter introduces ANN as a natural extension to remedy the shortcoming described in 

this chapter. Prior to analysing the MWD data, a statistical pre- selection of relevant data is 

performed in the next chapter.  
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CHAPTER 4  

4 ATTRIBUTE SELECTION BY STATISTICAL ANALYSIS 

The statistical method described in this chapter is one of two possible analytical methods 

described in the “Analytical Methods” module of Figure 2.3. 

This chapter describes a data pre- processing stage of selecting parameters significantly related to 

the unwanted event, and could have been a subchapter or an extensive addition to the training 

part of the ANN. However, employment of this method only occurs at the training stage of the 

prediction module, prior to training the ANN. The latter and the very extent of this method seen 

from a bookkeeping point of view justify a separate chapter,  

 

Reducing the net complexity proved necessary, as pure black box testing including all drilling 

parameters gave no meaningful or interpretable results. Another strategy was initially employed: 

Attribute (MWD parameter) selection based on domain experts. The pre- selected attributes 

provided by domain experts proved to give poor predictions [Valaas, I, 2004]. An alternative 

method to identifying relevant predictors was necessary. 

MLR (Multivariate Logistic Regression) is a multivariate technique for estimating the probability 

that an event occurs, for example an unwanted drilling related event. 

Considering the functional requirements of 2.2.2, not many statistical methods seem well suited 

for this analysis. 

Regression and multiple regression, for instance, require a continuous dependant variable and a 

linear mapping between instance and classification, or using statistical terminology: Independent 

and dependant variables. MLR presuppose neither, qualifying this method as a plausible statistic 

tool for analysing the dicotome, skewed distributed drilling data. 

4.1 MLR theory 

[Hosmer & Lemeshow, 1989; Allison, 1999; Kleinbaum,1994; Norusis,1993; Fox, 2000.] 

 

For the case of a single independent variable, the logistic regression model can be written as: 

 
Equation 4.1: Logistic regression model 

0 1

0 1 0 1

B B x

B B x -(B B x)
e 1P (event to occur) =   

1 e 1 e

+

+ +=
+ +
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x is the independent variable and B0, B1 are coefficients estimated from the training instances. 

For more than one independent variable, the model rewritten handles multiple independent 

variables: 

 
Equation 4.2: Logistic regression model, multiple independent variables 

Z

x -Z)

e 1P (event to occur) =   
1 e 1 e

=
+ +

 

Here Z is the linear combination of B0 + B1x1+ B2x2+…+ Bnxn 

Below are listed some important results from the MLR (multiple logistical regression) model: 

 
Equation 4.3: Equal probabilities 

-Z 0

1 1 1Z = 0,   0,5
1 e 1 e 1 1

= = =
+ + +

 

A zero valued Z- value means equal probability for occurrence/no occurrence (same as flipping a 

coin) 

 
Equation 4.4: increasing event probability 

-Z
-Z

1Z > 0,   0,5 (e 1)
1 e

> <
+

 

This implies that the probability of an event occurring (e.g. a drilling related unwanted event) 

increase with an increasing Z- value, and similarly: 

 
Equation 4.5: Decreasing event probability 

-Z
-Z

1Z < 0,   0,5 (e 1)
1 e

< >
+

 

The probability of an event occurring (e.g. a drilling related unwanted event) decrease with an 

decreasing Z- value 

 

In linear regression, one method of estimating the parameters of the model is using OLS  

(“ordinary least squares”), OLS is the selection of regression coefficients that result in the 

smallest sums of squared distances between the observed and the predicted values of the 

dependent variable.  
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In logistic regression, however, the parameters of the model are estimated using the maximum-

likelihood method, that is, the coefficients ( 0 1 2 pB B B  ... + B+ + + ) making the observed results 

most “likely” are selected. Since the logistic regression model is nonlinear, an iterative algorithm 

is necessary for parameter estimation.  

The outputs from the analyses report the size of the Bs, standard error and significance level for 

each of the Bs, and the Wald statistic (see section 4.1.2), and these estimates give the bases to 

assess the relative strength of the different factors or variables. 

 

A summarization could be; logistic regression is a tool to mapping if and which variables might predict 

unwanted event and estimating their relative strength.  

 

 

4.1.1 Estimation of the coefficients: Maximum likelihood and log likelihood 

(LL).  

[Friel, C.M., 2001] 

The maximum likelihood function has been developed for probit and logit regression models. 

Specifically, the loss function for these models computes as the sum of the natural logs of the 

logit or probit likelihood L1 so that:  

Equation 4.6: Maximum likelihood function 

ln(L1) = ∑i
n

= 1 [yi*ln(pi ) + (1-yi )*ln(1-pi )] , 

where ln(L1) is the natural logarithm of the (logit or probit) likelihood (log-likelihood) for the 

current model, yi is the observed value for example i, and finally; pi is the expected (predicted or 

fitted) probability (between 0 and 1). 

The log-likelihood of the null model (L0), that is, the model containing the intercept only (and no 

regression coefficients) is computed as:  

Equation 4.7: log- likelihood null model 

0 1
0 0 1ln( ) ln lnn nL n n

n n
= ∗ + ∗  
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where ln(L0) is the natural logarithm of the (logit or probit) likelihood of the null model (intercept 

only), n0 is the number of observations with a value of 0 (for instance not unwanted event), n1 is 

the number of observations with a value of 1 (for example unwanted event) and n is the total 

number of observations (training examples). The null model is a possible initial performance 

measure in evaluating the effect of parameters explanation strength to the dependant variable. 

Given a set of n training examples with target functions y1, y2,. . ., yn  , yi∈{0,1} with success 

probability P, then the log likelihood can be written : 
 

Equation 4.8: Log likelihood model 

1 1 2 2ln( ) ln( ) (1 ) ln(1 ) ln( ) (1 ) ln(1 ) ... ln( ) (1 ) ln(1 )n nL y P y P y P y P y P y P= + − − + + − − + + + − − . 

The maximum likelihood estimator is the value of P which maximizes this; which can be shown 

is the sample proportion of 1's,  (y1 + y2 + . . . + yn)/n . 

In the logistic regression model,  Px = 1/[1+exp(-B0 - B
Tx)], where  B0  is the constant and B is 

the vector of logistic regression parameters  to be estimated. This is done by maximizing the 

likelihood by numerical methods (different iterative methods).  

High LL signifies good model fit, i.e. good fit between “predicted” and observed data. 

-2LogLikelihood is used to compare the fit between two different models, for example a null 

model (a model with only the intercept or a model without any parameters). Low values of  

-2LL signify good fit.  

 

Testing a reduced model against a full model is based on -2LL, where LL is the natural log of the 

maximized likelihood. It is based on the fact that(-2LL)full - (-2LL)reduced is for large n distributed 

approximately as chi-square with the number of degrees of freedom equal to   kfull - kreduced,  where 

these k's are the numbers of explanatory variables in the two models. The chi- square distribution 

table shows whether the full model represents a significant improvement, compared to the 

reduced model, or not. 

 

4.1.2 Testing the coefficients of a hypotheses 

One of several statistics to test if a coefficient is significantly different from zero (normally when 

the probability of zero is smaller than 5%) is the Wald statistics. When a variable has degrees of 

freedom equal to one (i.e. only one variable is tested), the Wald statistics is the squared ratio of 
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the b-coefficient to its standard error; 2(B / SE) . However, the Wald statistics overestimate the 

standard errors when the absolute value of B becomes large. Therefore, a better way is to build 

models with and without the variable in question and comparing the models using -2LL (see 

above).     

 

4.1.3 Interpreting the coefficients. 

The odds of an event occurring is the ratio of the probability that it will occur to the probability 

that it will not:  
Equation 4.9: Odds of an event 

z

z
z

z

z

e
P(event) 1 eOdds e ,

e1- P(event) 1
1 e

+= = =
−

+

 

where Z = b0+ b1x1+ b2x2 +…+bkxk  Accordingly: 

 Zl n(odds) ln e Z= =  

In other words; Ln of the odds transforms the nonlinear function odds to a linear function:  
Equation 4.10: Linear transformation of th odds function 

0 1 1 2 2 k k Z b b x b x ... b x= + + + +  

 

4.1.4 MLR theory summarized  

 

1. Wald statistic is the square of the ratio of the B - coefficient to its standard error. 

P-value is calculated for each Wald statistic. High values of B give too high standard 

errors; therefore, the results should be interpreted with some caution. If Wald statistic is 

high it is preferable to use -2 Log Likelihood estimation of variable relevance. 

 

2. -2 Log Likelihood is chi square distributed. The difference between two models in  

-2LL and the increase or decrease in degrees of freedom shows whether one model is 

significantly better than the other is.     

 

3. The b-coefficient of a variable is the growth in the log odds when that variable increases 

with one.  
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4. Exp(B) is a factor of increase in the odds when a variable increases with one (the “new” 

odds  divided by the ”old” odds)  .     

 

4.1.5 Assumptions 

Compared to “classical” multiple regression” logistic regression does neither assume continuous 

dependent variable nor linear relationship between the dependent variable and the independents. 

The dependent variable need not be normally distributed and the dependent variable need not to 

be homoscedastic (same variance for each level of the independents).  Furthermore, logistic 

regression does neither assume normally distributed error terms nor require that the independent 

variables are at ratio or interval level, i.e. ordinal or categorical variables may be used as 

independents. 

However, logistic regression does assume that the model is correctly specified, i.e.:  

1. the true conditional probabilities are a logistic function of the independent variables  

2. no important variables are omitted  

3. no extraneous variables are included  

4. the independent variables are measured without error.  

Moreover, logistic regression assumes  

1. the instances or points of measurement are independent and  

2. the independent variables are not linear combinations of each other.  

Perfect multi- collinearity makes estimation impossible, while strong multi- collinearity makes estimates imprecise. 

4.2 MLR Analysis of the MWD data 

The following analysis is based on Measurement While Drilling variables, hereby called MWD, in 

an attempt to identify MWD parameters most suited to predict a selected unwanted event. The 

selected unwanted event is stuck pipe. Variables considered irrelevant from a substantial and 

theoretical point of view are already removed from the data set.  The goal of the following 

logistic regression analyses is to reduce the data set further to include only the most relevant 

variables, i.e. variables that both from a theoretical an statistical point of view ought to be 

included in subsequent ANN analysis.   
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As a preliminary analysis, a sample was collected during a period of 10 hours before stuck pipe 

occurred and 10 minutes during the incident. This gave an extremely low “stuck pipe” frequency 

of the dependant variable (less than 1,5%). MLR does tolerate skewed distributed data, however 

the results were difficult to interpret and gave little meaning. Relations between the independent 

and dependant variables seem too weakened to be useful over such a long sample interval. 

 

Meanwhile, the purpose of this analysis was not to predict stuck pipe, merely to identify variables 

affecting the stuck pipe mechanism, therefore data used in the following analyses were collected 

20 minutes before and 10 minutes during stuck pipe.  Of the 2086 data points 680 were recorded 

as stuck pipe, and 1406 as stuck pipe, i.e. still a skewed dependent variable. 

 

4.2.1 Descriptive analysis 

All drilling related, significant abbreviations in these analyses have capitalized names and are 

explained in Appendix 9.1. Other domain specific terms are unimportant in this context. 

 

The tables below, Table 4.1: Means, SD, skewness and kurtosis, show means, standard deviations, 

skewness, and kurtosis. 
 

Table 4.1: Means, SD, skewness and kurtosis 

  stuck Depth BitMDepth blockpos AvgROP AvgHookld calchkl 

N Valid 2086 2086 2086 2086 2086 2086 2086 

  Missing 0 0 0 0 0 0 0 

Mean ,32598 4321,5748 4075,1286 20,6636 3,2066 1014208,4868 895716,3805 

Std. Deviation ,46885 1717,8573 1616,3981 9,1432 9,1083 468200,2180 218178,8753 

Skewness ,743 -.054 ,134 -.562 2,490 1,620 -1,020 

Kurtosis -1,449 -1,301 -1,295 -1,010 4,206 4,014 ,154 

 

Table cont. 

 avgWOB AvgTorq MaxTorq AvgRPM AvgPumpP avgdrvol drlvoch 

N Valid 2086 2086 2086 2086 2086 2086 2086 

  Missing 0 0 0 0 0 0 0 

Mean 2086 8938,5173 16381,2012 1,3966 11321146,5812 59,3070 -5,21747172 

Std. Deviation 420940,4452 9359,0853 11223,47201 1,38903 9414438,38470 23,4455 15,5385 

Skewness -1,118 ,542 -,311 ,499 ,124 -,016 -,739 

Kurtosis 2,979 -,571 -,994 -1,056 -1,558 -1,451 -,192 

 

Table cont. 

 MudDensOut MudDensIn ReturDeapth avgas DeltaFlow 
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N Valid 2086 2086 2086 2086 2086 

  Missing 0 0 0 0 0 

Mean 1579,0939 1579,0939 4137,9443 ,0027 -,0009 

Std. Deviation 76,6442 76,6442 1612,0263 ,00483 ,01371 

Skewness -1,698 -1,698 ,006 1,884 -,561 

Kurtosis 1,448 1,448 -1,287 2,507 1,058 

As discussed in the chapter “Data Description” and as the table emphasises, the variables were 

measured by very different scales of measurement. While the mean of “avgas” was 0,00483, and 

“DeltaFlow” 0,0009, the mean of “AvgPumpP” was 11321146,5812..  That will not influence the 

relative effect of the different independent variables on the dependent (“stuck pipe”) provided a 

sufficient numbers of decimals but the figures regarding regression coefficients or other estimates 

from the logistic regression analyses will become very small.  

 

The variables “AvgROP”, “AvgHookld”, and “avgas” are strongly skewed to the right and have 

high positive kurtosis, while the variables “MudDensOut”, “avgwob” are skewed to the left. 

However, logistic regression analyses are not sensitive to strong deviations from normal 

distribution.  

 

Two variables “MudDensIn” and “MudDensOut” have identical figures in mean, standard 

deviation, skewness, and kurtosis, indicating that the two variables are identical. If their zero-

order correlation is one, one of them is excluded from the analyses.     

 

The table below (Table 4.2) shows zero-order (“ordinary”) correlation among input-variables in 

the following logistic regression analyses.  High correlations among several of the variables may 

cause problems related to multi- collinearity in the subsequent regression analyses. Multi- 

collinearity is the inter- correlation of independent variables in the regression model (equation). 

While simple or zero-order correlations tell something about multi- collinearity, the preferred 

method in linear multiple regression analysis is to regress each independent variable on all the 

other independent variables in the equation.  However, logistic regression does not assume linear 

relations among the variables, consequently methods to reveal multi- collinearity used in linear 

multiple regression are useless.  Thus, inspection of the correlation matrix to reveal variables 

which are linearly or near linearly related to another, is one of few other possibilities to se if two 

or several independent variables are linearly related (i.e. one variable can be expressed as a linear 

combination of one or several other variables).  The variable “Depth”, “BitMDepth”, and 

“ReturDeapth” are obvious at risk with inter- correlations ranging from 0,980 to 0, 997. Likewise, 

the variables “avgas”, “AvgROP”, and “calchkl” are highly associated (r > 0,7).  The variables 
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“MudDensOut” and “MudDensIn” are linearly combinations of each other (r=1.00), and only 

one of them will be included in the model.  

 

Multi- collinearity (complete multi- collinearity exists when two or several independent variables 

is perfectly inter-correlated) has adverse effect on regression analysis (also logistic regression) and 

may render the results un- interpretable. In the calculation of the regression coefficients for each 

variable, the other variables are partialed out, or controlled. Thus, high multi- collinearity leads to 

a reduction in the magnitudes of regression coefficients. At worst, it may turn out that most or 

even all of the coefficients are statistically not significant despite the fact that the variables’ joint 

effect is. High multi- collinearity also has an adverse effect on the stability of regression 

coefficients because of it’s increasing effect on standard errors.     

 

1. There are several methods to handle data with high multi- collinearity. The simplest but not 

the best way is to exclude the variable or variables with highest inter- correlations and then 

reanalyse the data. However, if the model is correctly specified in advance, exclusion of 

variables from the model means misspecification.  

2. A better method is to group strongly inter correlated variables in blocks, and analyse the 

block effects rather than the effects of the individual independent variables. In the case of 

“block analyses”, the individual independent variables are seen as indicators to a latent 

variable or factor, i.e. the focus of the analysis is primarily on the joint contribution of the 

inter- correlated independent variables in the block with respect to the odds that an event will 

occur. 

Based on the figures in the correlation matrix (Table 4.2below), the strategy of “block” analyses 

will be followed.   .        
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4.2.2   MLR analyses 

Table 4.3: Initial MLR analysis 

Block  

number 

Variables in Variables out -2LL -2LL 

change

df Df 

change 

P P 

change

0 (L0) Constant  2633,77  1    

1 (L1) Depth, BitMDeptht, 

AvgROP 

 2430,48 -

203,29

4 3 .000 <.001

2 (L2) AvgHookld, avgWOB  2221,94 -

208,54

6 2 .000 <.001

3 (L3) calchkl, MaxTorq  2149,94 -9,00 8 2 ,000 <,025

4 (L4) MudDensOut*  2148,60 -1,34 9 1 .000 NS 

5 (L5) AvgRPM, AvgPumpP, 

AvgTorq, avgdrvol, 

drivoch, ReturDeapth, 

avgas, DeltaFlow 

  

1014,41

 

 

-

134,19

 

16

 

8 

 

.000 

 

<.001

* “MudDensIn is excluded from the block owing to the fact that this variable is correlated with MudDensOut with a 

correlation of 1.  
 

Column one includes the block numbers while column two lists the variables in each 

block. Column three lists variables deleted from the equation while column four and five 

include -2 Log Likelihood and -2 log Likelihood change respectively. -2LL change shows 

the reductions in -2LL for each variable or block successively entered in the model. 

Column six and seven show the degrees of freedom and changes in degrees of freedom, 

respectively, while column eight and nine show the probability of no effect of the 

independent variables or blocks of independent variables on the dependent variable 

(stuck pipe). P > .05 is regarded as insignificant. 

 

The -2 Log Likelihood is chi square distributed, and e.g. a reduction in -2LL greater than 

3.84 with a reduction of one degree of freedom (introducing an additional variable) 

means that the model is significantly improved at the 5% level.      
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Block number 0 represent the regression equation with only the constant included, 

introductorily called L0
9. This model represent the baseline when deciding if and to which 

degree model L1 (Block 1; Depth, BitMDeptht, AvgROP) represents a significant 

improvement. Inserting block 1 in the model reduced -2LL from 2633,77 to 2430,48, i.e. 

-2LL was reduced by 203,29 and with a 3 degrees of freedom increase, inserting block 1 

the model gave a highly significant improvement of the model.  

In model L2 block two (AvgHookld, avgWOB) was entered. In this case model L1 served 

as a baseline to decide if entering block two in the model results in a significant 

improvement. As shown in the table above, the -2LL was reduced from 2430,48 to 

2221,94, a reduction  of -208,54. With an increase of two degrees of freedom, the model 

represented a highly significant improvement compared with model L1. 

Block three gave a small, yet significant contribution to the model fit. Therefore it could 

be that one of the two variables “calchkl” and “ MaxTorq” was insignificant. 

Block four consisted of only the variable “MudDensOut” and gave no significant 

contribution to the model fit.  However, multi- collinearity results in complexity in the 

relation patterns and unsteady estimates. Therefore, it was decided to keep the variable in 

the model.  

 

Block five was composed by variables weakly to moderately intercorrelated.  Decisions 

regarding “candidate- variables” left out from the model bases on the Wald statistics in 

Table 4.4 below.      

 
Table 4.4: MLR equation variables, first analysis 

 B S.E. Wald df Sig. Exp(B) 
Depth ,089 ,016 30,086 1 ,000 1,093 
BitMDepth -,171 ,017 100,523 1 ,000 ,842 
AvgROP -3,960 ,489 65,551 1 ,000 ,019 
AvgHookld ,000 ,000 30,530 1 ,000 1,000 
avgWOB ,000 ,000 9,996 1 ,002 1,000 
calchkl ,000 ,000 1,752 1 ,186 1,000 
MaxTorq ,000 ,000 19,948 1 ,000 1,000 

                                                 

9 ln(L0) = n0*(ln(n0/n)) + n1*(ln(n1/n)) = 1406ln(1406/2086)+680ln(680/2086)=-1316,8858.        
-2LL= -2(-1316,8858) = 2633,77, confer -2LL in block 0 above.  
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MudDensOut ,085 ,015 30,949 1 ,000 1,089 
avgas -26,068 55,056 ,224 1 ,636 ,000 
AvgRPM -4,556 ,311 214,642 1 ,000 ,011 
AvgPumpP ,000 ,000 1,741 1 ,187 1,000 
AvgTorq ,000 ,000 59,532 1 ,000 1,000 
avgdrvol ,030 ,042 ,512 1 ,474 1,031 
drlvoch ,093 ,092 1,007 1 ,316 1,097 
ReturDeapth ,073 ,015 24,593 1 ,000 1,076 
DeltaFlow -288,832 24,771 135,957 1 ,000 ,000 
Constant -135,962 35,492 14,675 1 ,000 ,000 
a  Variable(s) entered on step 1: Depth, BitMDepth, AvgROP, AvgHookld, avgWOB, calchkl, MaxTorq, 

MudDensOut, avgas, AvgRPM, AvgPumpP, AvgTorq, avgdrvol, drlvoch, ReturDeapth, DeltaFlow. 

 

 

The following variables were decided removed; “avgas”, “avgdrvol”, “drlvoch”, and 

“calchkl” and are found in the third column “Variables out” in Table 4.5.  Exclusion of 

these four parameters resulted in an increase in -2 log likelihood from 1014,41 to 

1017,27, an increase in -2LL of 2,86 and a gain of 4 degrees of freedom and gave a clearly 

better model fit (P≈0). 

 
Table 4.5: Second MLR analysis 

Block  

number 

Variables in Variables out  -2LL -2LL 

change 

df Df 

change 

P P 

change

0 Constant  2633,77  1    

1 Depth, BitMDeptht, 

AvgROP 

 2430,48 -203,29 4 3 .000 <.001

2 AvgHookld, avgWOB  2221,94 -208,54 6 2 .000 <.001

3 calchkl, MaxTorq  2149,94 -9,00 8 2 ,000 <,001

4 MudDensOut*  2148,60 -1,34 9 1 .000 NS 

5 AvgRPM, AvgPumpP, 

AvgTorq, avgdrvol, 

drivoch, ReturDeapth, 

avgas, Delta Flow 

  

1014,41

 

 

-134,19

 

16 

 

8 

 

.000 

 

<.001

6  avgas drlvoch 

avgdrvol calchkl
 

1017,27

 

+2,86 

 

12 

 

-4 

 

.000 

 

NS 

* “MudDensIn is excluded from the block owing to the fact that this variable is correlated with MudDensOut with a 

correlation of 1.  
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An overview of the variables remaining in the model is given in Table 4.6. All included 

variables are significant at the 5% level. On the other hand, many of the variables are still 

highly inter- correlated, and it is therefore difficult or not to say impossible to rank these 

parameters by relevance or importance. However, the purpose of this MLR analysis was 

primarily to identify variables significantly related to stuck pipe.     
 

Table 4.6: MLR equation variables, second analyses 

 B S.E Wald Df Sg. Exp(B) 
Depth ,091 ,007 174,943 1 ,000 1,096 
BitMDepth -,160 ,011 198,172 1 ,000 ,852 
AvgROP -4,123 ,292 199,301 1 ,000 ,016 
AvgHookld ,000 ,000 32,989 1 ,000 1,000 
avgWOB ,000 ,000 12,626 1 ,000 1,000 
MaxTorq ,000 ,000 210,128 1 ,000 1,000 
MudDensOut ,068 ,005 222,922 1 ,000 1,070 
AvgRPM -4,396 ,273 259,963 1 ,000 ,012 
AvgPumpP ,000 ,000 13,464 1 ,000 1,000 
AvgTorq ,000 ,000 57,954 1 ,000 1,000 
ReturDeapth ,061 ,005 146,415 1 ,000 1,063 
DeltaFlow -296,277 21,653 187,220 1 ,000 ,000 
Constant -92,518 6,030 235,390 1 ,000 ,000 
a  Variable(s) entered on step 1: Depth, BitMDepth, AvgRPM, AvgHookld, avgWOB, MaxTorq, MudDensOut, 

AvgROP, AvgPumpP, AvgTorq, ReturDeapth, DeltaFlow 

 

 

Table 4.7 below is a summary of the final analysis. The table shows approximately how 

many percent of the variance in stuck pipe is explained by the independent variables in 

the model. However, these figures are not analogous to R squared in multiple regression 

(see Note below the table). The figures most comparable with the “traditional” R squared 

values are Nagelkerke R Square. By this estimate approximately 75% of the variance in 

stuck pipe is explained by the remaining independent variables.      
 

Table 4.7: Model summary, second analysis 

Step -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 

1 1017,266(a) ,539 ,752 

Note: The Cox & Snell R-square is a generalized coefficient of determination, used to estimate the proportion of 

variance in the dependent variable which is explained by the predictor (independent) variables. The Cox & Snell R-

square is based on the log likelihood for the model compared to the log likelihood for a baseline model. 

The Nagelkerke R-square is an adjusted version of the Cox & Snell R-square. The Cox & Snell R-square has a 

maximum value of less than 1, even for a "perfect" model. The Nagelkerke R-square adjusts the scale of the statistic to 

cover the full range from 0 to 1. (SPSS, version 13) 
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Table 4.8 below shows how well the model is fitted to the data. The null hypothesis says 

that it is no significant difference between the data and the model. If “Sig” > .05 this 

hypothesis is not rejected. Unfortunately, the “sig” is < .001, meaning there is a 

significant difference between model and data.  The chi square is, however, highly 

dependent on the sample size. With 2086 measuring points, the model may have a god fit 

despite high chi square. 
Table 4.8: Hosmer and Lemeshow test, second analysis 

Step Chi-square df Sig. 

1 172,246 8 ,000 

 

 

How well do the model distinguish between stuck and not stuck pipe?  Table 4.9 shows 

the number of observed stuck pipe instances related to the numbers of “predicted” stuck 

pipe instances, hence demonstrating how well the model distinguishes between the two 

categories.  547 of all 680 stuck pipe examples or 80,4 % are correctly classified, while 

1341 of all 1406 not stuck pipe examples are correctly classified. Thus, the model seems 

to be a good stuck pipe classification tool, i.e. the selected variables seem to be strongly 

related to this unwanted event.  
 

Table 4.9: Classification table(a), second analysis 

Predicted 

Stuck 

 

Observed 

,0000 1,0000 

Percentage 

Correct 

Stuck                       ,0000 

                              1,0000 

Overall Percentage 

1341 

133 

65 

547 

95,4 

80,4 

90,5 
a  The cut value is ,500 

 

 

4.2.3 Variables selected for further analysis 

This MLR analysis has lead to conclude that the variables in Table 4.9 are all significant at 

the 5% level and are selected for further analysis: “Depth”, “BitMDepth”, “AvgRPM”, 

“AvgHookld”, “avgWOB”, “MaxTorq”, “MudDensOut(removed)”, “AvgROP”, 

“AvgPumpP”,  “AvgTorq”, “ReturDeapth”, “DeltaFlow”. 
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As Table 4.5 show, MudDensOut (mud density out) correlates perfectly with 

MudDensIn (mud density in) which means they are similar at all recordings. This means 

the gauge recording this value does not discriminate between these values. In addition, 

domain experts10 marked this parameter as non- reliable at the time of recording most of 

these wells. This variable survive the MLR analysis and was decided dropped from the 

selection.  

 

4.3 Discussion and conclusions 

Multiple logistic regression is well suited to handle data with dicotome (binary) 

dependent variables, and is therefore also a useful tool to reveal significant relations 

between relevant independent variables and unwanted events. As the present analyses 

showed, using a broadly accepted statistical performance measure, 29 variables taper off 

to 13 significantly related to the selected unwanted event. However, the assumption that 

the training examples or points of measurement are independent is not fulfilled. 

Moreover,  autocorrelation, i.e. correlation between the residuals, is a problem (as always 

in longitudinally data).  

Nevertheless, the results from the logistic regression analyses serve as an adequate 

guidance for selecting variables in an alternative approach to predict stuck pipe. which 

was the ultimate objective of the presented analyses.  

 

The next chapter make use of these results as developing and testing the extended 

Backpropagation Neural Net heavily depends on reducing the input vector without 

significant information loss.  

 

                                                 
10 Domain experts during data acquisition were a team consisting of a drilling supervisor and five drilling 

engineers. 
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CHAPTER 5  

5 ARTIFICIAL NEURAL NETWORKS 

In this chapter, two ANN (Artificial Neural Networks) methods are investigated to find 

an optimal method, or set of methods, to process data arriving at the “Prediction 

module” of Figure 2.3. 

At this stage, design criterion, i.e. the possibilities, requirements and constraints of the 

TrollCreek system were set as concluded in Chapter 3: The design criteria given in 

Chapter 2, second iteration (Section 2.3.2) for the “ANN”- sub- module remain. 

 

Based on previous work, one method has proven potential, the Standard 

Backpropagation Neural Net, and one method showing sufficient tendency to explore 

[Valaas, I, 2004] 

 

ANNs are a collection of methods for classification, pattern recognition, prediction and 

function approximation (in addition to several other utilizations and specializations 

within these areas).  The purpose of this chapter is justifying why this AI- tool was 

selected as an alarm signal processing method by showing how ANN’s excel over other 

signal processing methods, given the requirements presented in Chapter 2.3..  and 

showing the basics of an ANN. 

5.1 ANN Applications and benefits compared to conventional 

methods 

Besides having the advantage of being an eager learner: once trained the computationally 

expensive part is done, several other advantages are listed: 

Partridge, D., Abidi, S. S. R., and Goh, A. (1996) listed several benefits of ANN’s over 

conventional computation and manual analysis: 

1. Implementation using data instead of possibly ill defined rules. 

2. Noise and novel situations are handled automatically via data generalization. 

3. Predictability of future indicator values based on past data and trend recognition. 

4. Automated real-time analysis and diagnosis. 

5. Enables rapid identification and classification of input data. 

6. Eliminates error associated with human fatigue and habituation. 
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Passold, F., Ojeda, R. G., and Mur, J. (1996) summarized the benefits of neural networks 

as follows: 

1. Ability to process a massive of input data 

2. Simulation of diffuse domain reasoning 

3. Higher performances when compared to statistical approaches 

4. Self-organizing ability-learning capability 

5. Easy knowledge base updating 

 

Using Partridge et. al’s list of benefits both 1 & 2 applies to the MWD data; no set of 

rules or transparent methods might cover all recorded variables and their possible 

interactions. Furthermore, this tool need to handle error prone data and a poorly 

classified training database as described in the functional requirements, sub- chapter 

2.3.1. pt 2 & 6. Point 3, 4 and 5 could be functional requirements for the very goal for 

this part of the analysis namely Goal 1: “Real- time, computationally efficient prediction” 

and meet the functional requirement from the data description 2.3.2 pt 1. 

Complementing Pertrige et. al.’s summarization with Passold et al.’s summarization, 

ANN’s are capable of processing massive datasets, which accommodate the requirement, 

chapter 2.3.2 pt. 1 and partly 4. Pure statistical approaches have been tested and failed as 

a predictive means on these data (I. Valås, 1998) but point 3 together with the above 

mentioned merits might indicate ANN’s surpassing classical methods in a predictive 

perspective 

 

5.2 ANN fundamentals.  

This is a brief introduction to the functionality of a MLP (Multilayer Perceptron) ANN 

having a single hidden layer and serves as an example readily generalized to more 

complex net topologies and as an overview rather than a complete theoretical basis. The 

detailed foundations and basic learning algorithms of an ANN are thoroughly covered in 

e.g.  [Mitchell 1997 pp.81-111], [Luger 2002 pp. 419-434], [Rumelhart, Hinton, Williams 

1986. pp. 533-536].  

Furthermore, for the purpose of this thesis, only the supervised methods SBP (Standard 

Back- propagation) and RBF (Radial Basis Function) are discussed. 
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Figure 6-1 shows a typical single hidden layer Feed – Forward net in a training phase 

having n input nodes, m nodes in the hidden layer and k output nodes. Furthermore, this 

net is fed with an input vector X (or a “training instance”) of n features and attribute 

values [X1, Xi, …, Xn] at the input layer producing an output vector Z of k attributes, [Z1, 

..,Zk]. Finally Z is compared to the desired output, the target vector t = [t1,.., tk]. 

 

Weight connections between input layer unit i and hidden layer unit j are denoted by 

jiv ,  i=1, 2, ..., n, j=1, 2 ..., h, while weight connections between hidden layer unit j and 

output k are designed as kjw ,  k=1, 2, ..., m  
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Figure 5.1: Feed Forward ANN, single Hidden Layer 

ti denotes the true target values, zi the calculated output and Ei represents the error 

term k k kE t z= −  

Depending on the performance criterion; a means of quantifying deviations from the 

target vector t, the produced output vector Z and their deviations E, the output 

produced is either acceptable or a correction strategy updating the weights is employed. 
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5.2.1 Measuring performance 

The performance of the net is evaluated using its precision in target estimation; a 

performance measure.  

Root Mean Square Error 

One of the most basic performance measures is the Root Mean Square Error (RMSE).  
Equation 5.1: Root Mean Square Error over a sample of size n 

2

=
∑ k
k

E
RMSE

n
 

and a performance criterion c; RMSE ≤  c. 

Separate validation set 

The best way of measuring performance is testing on unseen data using a separate test 

set: 

Holdout: Split the training data in two, train on one half and test on the other. 

 

If data are scarce however, there are possible training schemes measuring performance 

using the same data on which the ANN is trained.  

Cross validation  

A portion of the training data is reserved for testing on which the trained model can be 

tested. There are essentially three cross validation variations: 

1. N-fold cross validation: Split the training data in n folds. Of these n folds, n-1 are 

used for training and the remaining fold for testing. This is repeated until all n 

sets are tested upon and the results are averaged. 

2. Leave-one-out is N-fold cross validation using n=N-1. 

3. Stratified n- fold cross validation: Stratifying the data means assuring an equal 

portion of each classification is distributed on each fold in the cross validation. 

Performance estimate variance is particularly sensitive in random fluctuations of 

instance classifications. This method forces a uniform classification distribution 

on training and validation data.   
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Regardless of data and network configuration, the training method reusing training data 

of the above discussed methods yielding best results appears to be stratified 10- fold 

cross validation [Kohavi, R. 1995]. 

 

5.3 Backpropagation ANN 

The most popular ANN method for pattern recognition and classification is the BP 

(Backpropagation) or SBP (Standard Backpropagation) algorithms as introduced by 

[Werbos, P, 1982]. 

5.3.1 Forward phase 

In the forward phase of a SBP ANN the input of any PE (Processing Elements) is the 

cumulated weighted input from all PE’s in the previous layer, e.g. PE k of the output 

layer in fig. 6-1 receives input I where 
Equation 5.2: Cumulated weighted input to process element k 

k kj jI w y ,  k=1, 2, ...,m= ∑  

Outputs computed by unit k of the output layer is given by 
Equation 5.3: Output of any PE not belonging to the input layer 

k kz f (I ),  k = 1, 2, ..., m=  

f in Equation 12 is the selected layer specific activation function.  

Referring to Figure 6-1, the output unit k the following response to an input pattern x is 
Equation 5.4: Output of a PE not belonging to the input or first hidden layer 

k k kj j kj j kj ji i
j j j i

z f (I ) f w y f w f (H ) f w f ( v x )⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =∑ ∑ ∑ ∑⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

5.3.2 Backward phase 

Depending on the performance of this net as discussed in the general theory, error 

propagation backwards is initiated. 

Weight update is performed according to gradient descent learning: 
Equation 5.5: Gradient descent weight update for the output layer 

kj k j
kj

k k k k
'

Ei) w y
w

ii) (t z ) f (I )

∂
Δ = η = ηδ

∂

δ = −  
 

η in the equation 15i denotes the learning rate, or the preferably infinitesimally small 

increment by which the weights change per backpropagation iteration. 
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Weight update for the output vector k resulting from a performance measure below a 

chosen criterion:  

kj k j k k k j
'w y (t z ) f (I )yΔ = ηδ = η −  

Consequently, weight update for the last hidden layer: 

ji j i i j k kj
k

'v x x  f (H ) wΔ = ηδ = η δ∑  

Figure 6 shows how the backpropagation algorithm successively updates weights 

backwards according to the error term Ek at output node k:  

X
vji

y =xi i

ji k E

Σδi

wkj

yj

E = t -zk k k

z tk k

 
Figure 5.2: Error propagating backwards 

5.3.3 Tentative experiments 

As the explorative analysis produced promising results, all experiments, results and 

discussion is presented in detail in chapter 4.5. 

5.4 Radial Basis functions ANN 

Radial basis function (RBF) networks (hereby referred to as RBFN), first utilized by 

Broomhead and Lowe [Broomhead, D.S., Lowe, D. 1988] constitutes a special class of 

ANNs suited for function interpolation and capable of multidimential space 

interpolation. RBFNs is the core of other machine learning techniques such as Support 

Vector Machines [Cortes, C., Vapnik, V, 1995] and in specialized regularization networks 

[Poggio, T., Girosi, F 1990].  

As for any ANN algorithms, they are iterative and irreproducible11, but RBFNs has two 

advantages compared to the SBP networks with respect to: 

 

1. Modeling and empirical effort: Network topology is significantly simpler by being 

(nearly) exclusively represented by a single hidden layer but more importantly by 

the locality property of these nets allowing the hidden layer to be incrementally 

                                                 
11 There are examples of knowledge extraction from RBFNs, see e.g. [McGarry, K., J., Wermter, S.,  

MacIntyre, J, 1999] 
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expanded or pruned. As each PE represent a local region of the dataset by it’s 

centroid, RBFNs allows the network layout to be incrementally constructed 

[Millian, J.R., 1994] 

2. Computational efficiency: two separable components which can be treated 

individually and occasion training optimization.  

 

Furthermore, the RBFs have a significant mathematical foundation imbedded, which was 

believed to be advantageous in analyzing an analytically pre- processed dataset originally 

intended as input to a transparent, predictive stuck pipe function 

.   

The following subchapter gives a high level description of the functionality and basic 

training algorithms of RBFNs, sufficiently elaborated to understand the underlying 

functionality of the commercial software used in the explorative RBNF 

experiments:[NeuFrame]. 

5.4.1 RBF fundamentals  

In the next section the principles behind function interpolation is described, omitting the 

mathematical foundation in mapping the interpolation matrix to an appurtenant weight 

matrix producing a possible exact interpolation 

Interpolation of functions 

A set of suitable radially symmetric function, e.g. the Gaussian radial function, shown in 

Equation dummy and figure dummy  

 
Equation 5.6: Gaussian RBF 

2
2

1G (x; ) exp( || x ||
2σ μ = − −μ
σ

 

are superposed  
Equation 5.7: Gaussian function generation 

2
i2

1 ( )3
2

i
i 1

F(X) w e
χ−μ

σ

=
= ⋅∑  

: 

 
Figure 5.3: 2- dimensional Gaussian RBF
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to generate the interpolated function F(x) shown below : 

 

 
Figure 5.4: Function generation by radial basis function superposition 

 

The 3 RBFs representing F(x) in Figure 4 6 have a uniform σ -value (width) distribution 

and centres are  ,   and  (corresponding to the x- values). Once having found correct 

RBFs, established centres and widths, the remaining unknown in the function modelled 

is the set of weights corresponding to wi in Equation 5.8 

Terminology 

In this chapter the RBF parameter names width (σ ) and centre (μ ) are used instead of 

the frequently used terms mean and variance.  The former version was chosen since 

these terms are more descriptive and separates them from their statistical interpretations. 

Furthermore, using the term variance might indicate a RBF width uniform distribution, 

which often is the case, but not always. 

RBFN - approximation by minimizing error 

The task of the RBFN is modelling a physical process using a limited set of N samples 

represented by M RBFs in a network structure. The first simplification is explained in the 

general ANN theory. The second simplification is equally necessary when modelling 

physical processes, which necessitates an M << N and contributes to the overall true 

error. 
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Figure 5.5: A typical RBF network structure 

 

The figure above describes a RBFN structure by which nearly all RBFNs is described and 

is superficially described in the general ANN theory, however with some important 

differences: 

The linear component to which the output layer belongs can be trained separately 

searching for optimal weights using for instance the SBP algorithm giving the weight 

matrix {w}. The hidden layer consist of M RBFs, iθ  with their radially symmetrical 

functions iφ , their centres, iμ  and their widths, iσ .  

Hence a single layer RBFN is completely described by the set ω  = [ ]1 2 M,  , .. , θ θ θ  and 

the weight matrix {w}. 

5.4.2 Training Algorithms 

 In the example of deriving Figure 4-5 all instances of the training data were used as 

centers of the RBFs and all widths of the basis function were equal This technique only 

serve as a conceptual foundation considering the excessively large networks being 

produced and high susceptibility to overfitting. There is a need for strategies in 

optimizing the hidden layer topology and searching for optimal radial basis function 

centers. Below are some of the possible training and optimization strategies discussed: 

 

Finding the Number of Hidden Units 

There are mainly 3 strategies in modelling the hidden layer: 

1. Constructive – starting with an arbitrary small number of PEs, new units are 

added if the selected deviation measure does not decrease.  

∑

∑

Ly

1x

Nx
MLw

1Lw

1φ
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2. Pruning – starting with a large set of PEs, hidden units which do not contribute 

significantly to the measured performance are disregarded 

3. Mixed increasing-decreasing topology  

 

There is always a danger of overfitting, i.e. having added too many PEs in the hidden 

layer thus reducing ability to generalize, and underfitting, either by stopping the 

constructive training too soon or having pruned too many PEs. Several algorithms have 

been developed to optimizing the trade- off between over- and underfitting and will be 

elaborated if justified by the explorative analysis. 

Selecting centers randomly from data 

Presupposing there is little clustering tendency in the input data, a straightforward 

technique is to chooses an arbitrary number M of PEs in the hidden layer and randomly 

choose  M instances to serve as centres for the RBFs.  

A possible training algorithm is to use Increasing Topology until acceptable performance 

is reached: 

M = initial_noof_PEs; 
While (performance < criterion){ 
 centers = randomSelectCenters(M); 

net = constructRBFM(centers); 
performance = net.measurePerformance(); 
M = M + 1; 

} 
 

Centre clustering algorithms 

If the data exhibit clustering tendencies, one solution is grouping those instances and 

assigning ether real or constructed prototypical cluster representatives. Identifying these 

centroids is done unsupervised using a clustering algorithm of which K-Means is an 

example. 

A usual training algorithm in this scheme is to use Increasing Topology until acceptable 

performance is reached: 

M = 2; 
While (performance < criterion){ 
 centers = ClusteringAlgorithmFindCenters(M); 

net = constructRBFM(centers); 
performance = net.measurePerformance(); 
M = M + 1; 

} 
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Gradient descent centre search 

Any training by gradient descent can be expressed by the learning rule 
Equation 5.9: Gradient descent RBF learning rule 

i
i

E = ∂
Δκ η

∂κ
 

where iκ is any component of ωor {w}, η is the learning rate and E is the error estimate, 

for instance RMSE. A possible algorithm for iκ - optimization is SBP. 

5.4.3 Experiments 

In all experiments, widths are estimated from data, i.e. no global width, and cross 

validation is used as stop criterion. Furthermore, the training data is comprised by wells 

1-4 while wells 5-7 are reserved for validation. 

Computational limitations and consequences 

As expected, using 10- hour data were not computationally feasible unless settling for a 

fixed, extremely slim hidden layer topology. The number of instances per well were 

reduced from 7000 to 2500 meaning a significantly less representative selection than the 

original.  

Both the quantitative and qualitative level of empirical testing suffered from the poor 

processing performance; quantitatively as each training session consumed a 

disproportional amount of time or lead to an unstable net as topology grew. This meant 

severely reducing the scope of possible trials. Qualitatively the testing suffered primarily 

as a result of the needed data reduction and secondarily as a result of the limited topology 

possibly explored. 

K-means clustering algorithm 

It was decided to run a training algorithm having embedded self- constructing topology 

initially to find how far the RBFN would develop until cross- validated performance 

decayed. Starting with 2 clusters, the k-means algorithm stopped after 3 iterations having 

increased the hidden layer to 5 PEs until CV (cross validation) performance decayed.
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Figure 5.6: K-means centre selection - Well 5 
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Figure 5.7:  moving average - 10 minutes 
delay 

 

Figures 4-6 and 4-7 show the result of training using the K-means algorithm, instant 

readings and moving average respectively. The instant reading curve has a characteristic 

fluctuating tendency, resulting from a near binary signal. This make the signal difficult to 

interpret as there is no possibility for e.g. an incrementally moving threshold responding 

to erroneous alarms. Moreover, the overall trend point toward an increasingly safer 

situation, which clearly is erroneous. 

The moving average curve has a noise dampening effect as it averages the 120 last 

readings thus smoothen the amplitudes of the curve. The cost however, is that the 10 

minute averaging period also becomes a 10 minute signal delay and furthermore might 

suppress genuine warnings. Unfortunately in this case, the trend curve only served as a 

clear illustration of how severely the model failed in modelling the physical process for 

validation well 5.  

 

Figure 4-8 show an even more severe fluctuating tendency than the previous validation 

well, both with respect to frequency and amplitudes. There are, however, a more 

consistent trend towards stuck pipe 1 hour prior to the event occurs meaning the 

interpretation of the drilling situation is an improvement compared to the former 

experiment. Nevertheless, a signal interpretation from real- time surveillance of this well 

would trigger too many erroneous alarms to be useable. 
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The last validation well shown in Figure 4-9 show improvements over the two former 

validation wells in two important aspects: 

 
1. Less fluctuation tendencies, both with respect to frequency and to amplitudes. 

2. Fewer erroneous alarms 

Although there are promising facets to this test, there are several uncertainties to the 

model: 

• The predicted unwanted event likelihood still has a binary characteristic, i.e. there 

still is no trend- line or a build- up curve rendering a possible adjustable alarm 

threshold. 

• The alarm state is constant during approximately one hour prior to and including 

the unwanted event 

• There are still 4 equally severe peaks during this short interval 

Gradient descent search 

Forward search by gradient descent resulted in a non- responsive net and could not be 

tested using this large training dataset. 
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Figure 5.9: RBFN K-means Well 7
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Figure 5.8: RBFN K-means Well 6
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Random selection 

The k- means algorithm’s CV performance measure decayed when introducing the sixth 

PE. This serves as an indication from where to start exploring possible topologies by 

random selection.  

 

Figure 4-10 show the most promising result during the RBFN experiments. It is an 

extraordinarily clean signal and no anomaly exceed the first maximum amplitude 1:04 

(hh:mm) prior to stuck pipe. 

This was achieved choosing 40 PEs, which represented the computational borderline 

despite using the computationally least expensive random selection algorithm.  
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Figure 5.10: Well 7 - random centre selection, 40 PEs 

The effects of incrementally expanding the hidden layer are shown in Figure 4-11 and 

further illustrate how performance for validation well 7 improves by increasing the 

hidden layer topology: 
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Figure 5.11: Well 7 - effects of varying topology 

This might indicate that the performance plateau of expanding the hidden layer is not 

reached and further expansion would lead to a better, overall performance. However, 
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Figure 4-12 shows how the main trends remain regardless of topology. Well 5 gave poor 

predictions using the k-means 5 cluster centres as it does using what appeared to be a 

fine tuned RBFN.  
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Figure 5.12: Well 5 - random centre selection, 40 PEs 

 

This was further confirmed by validation Well 6 shown in Figure 4-13: 
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Figure 5.13: Well 6 - random centre selection, 40 PEs 

The RBFN modeling the underlying function resulted in an interpretation of the drilling 

situation close to perfectly fitted to the training data and could be interpreted as proof of 

severe overfitting, if interpreted alone. 

5.4.4 Discussion and conclusions 

Of the 3 validation wells tested, only validation well 7 gives a somewhat adequate signal, 

thus leaving the feasibility of RBFN applied to analytically derived data as not 

recommendable. The reasons seem to be both within the RBFN learner exposed to these 

data and the data itself: 
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Learner problems caused by the data 

Although the RBFN possesses several computational advantages over SBP ANNs, it is 

sensitive to the amount of training examples, especially if their characteristics need a large 

set of representatives (centers) to be adequately modeled. The advantage of being near 

insensitive to the amount of input variables was poorly utilized as the prior analytical 

treatment of the MWD data already severely reduced the instance features. The 

dependant variable or the instance classification is categorical or binary which is 

unfortunate in using RBFN. Moreover, the nature of unwanted events while drilling, 

their respective frequencies and consequently; the large set of skewed distributed training 

instances needed, seem to be an insurmountable obstacle. Massive training data 

exhibiting scattered characteristics seem difficult to model using centre representative 

quantities within a reasonable computational expense and without overfitting the training 

data.  

Indications of poor data 

Algorithms auto- generating the hidden layer topology ceases at an early stage due to an 

increasing CV error, although tests with increasing hidden layer topology improved 

performance. This might indicate infeasibility of modeling unwanted events based on 

these data, regardless of learner type.  

As a consequence of the above points, both RBFNs and the analytical derived dataset 

were left at the explorative stage. 

 

To summarize: 

One result of the analysis performed in this chapter is that the only remaining analytical 

method processing the “Analytical Method” sub- module is the statistical approach 

presented in Chapter 4. The second important result is that the remaining method to test 

of the outlined AI- methods in the Prediction- module of Figure 2.3 is s Standard 

Backpropagation Neural Network., which also is the method of proven potential. The 

development will be presented and developed in the next chapter. 
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CHAPTER 6  

6 DEVELOPMENT OF THE PREDICTION MODULE  

This chapter is a continuation of the previous chapter, focusing exclusively on the 

Standard Backpropagation Neural Networks and using the statistical results from 

Chapter 4 to pre- select MWD- attributes for analysis.  

 

6.1 Related research 

There is a remarkable amount of published academic and commercial work on general 

SBP-ANN (Standard Backpropagation ANN).  Initially the need was a simple SBP 

algorithm, of which there are numerous, undocumented downloadable examples at the 

Internet. An attempt was made at reusing code earlier developed for TrollCreek, 

meanwhile, this code could not be found.  Thus, the simple SBP algorithm was 

implemented, inspired by numerous, undocumented implementations, supported by the 

theory referenced in Chapter 5. 

 The iterative nature of this development occasioned numerous addendums, documented 

successively. 

6.2 General implemental remarks  

Signal processing was implemented using a basic SBP ANN as a starting point, adding 

several extensions and data tool support classes as necessary to meet the functional 

requirements.  

All classes have been implemented using Java SDK (Standard Development Kit) 1.4 

prioritizing fast code above correct object oriented programming. Classes having low 

cohesion and high coupling suffer from a trade- off between execution efficiency in 

keeping message exchange at a low level and slim method signatures on one hand, and 

correct implementation within the object oriented paradigm on the other. Furthermore, 

object instantiating is kept to a minimum, and primitive data types are used almost 

exclusively to further enhance execution efficiency. The last implemental issconcern has 

been keeping a flat class- hierarchy, to ease code reuse and possible TrollCreek 

integration.  

The code is available for download and review at: 
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 http://www.idi.ntnu.no/~ingeasmu/thesis2005_valaas/index.html 

Appendix 9.4 shows the prototype GUI and gives a graphic overview over the 

functionality within the implemented ANN. 

Much work has been put into making easily readable code and thorough code 

documentation for possible reuse. Detailed class and method documentation has been 

implemented according to the JavaDoc html- standard and is found in Appendix 9.5.  

 

The next section gives a brief overview of the main and selected supporting classes. 

Unless stated explicitly, all presented techniques are implemented and integrated into the 

code. Fully implemented including all additions the developed net is referred to as 

“extended SBP- ANN” (e-SBP ANN).  

6.3 SBP ANN framework 

The classes ArtificialNeuralNet.java, Node.java, Link.java, Layer.java, Instance.java, and 

InstanceSet.java constitute the framework for which SBP ANN algorithms is needed. 

Any standard functionality is embedded, such as ability to represent an arbitrary net 

topology, both with respect to the number of features and classifications, number of 

layers and their PE’s (processing elements).   In addition, the application offers a variety 

of I/O operations, such as loading instances, net topologies and weights from file, the 

two latter also with a save- to- file option. These are included in the methods maintained 

by the class FileOps.java. 

 

A consequence of the peculiarities of the MWD data, reflected by the functional 

requirements of section 2.3.2, several further additions and extensions were necessary. 

6.4 Additions to the SBP- algorithm 

The following describes extensions to the internal data processing of the SBP ANN: 

6.4.1 Randomized instance selection 

Considering the net continuously being trained on negative12 examples prior to 

presenting a small fraction of continuously positively classified examples and 

furthermore; considering the functional requirements’ of Section 2.2, point 4, an option 

of randomizing the order by which training instances enter the input layer was 

                                                 
12 Negative in this context means stuck pipe = false 
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implemented. Various methods for randomizing lists without replacement are 

implemented in the class MathLib.java. 

6.4.2 Weight update schemes 

There are two distinct training schemes by which the weights in SBP training are 

updated; batch training (in which the weights are updated after processing the entire 

training set), and incremental training (in which the weights are updated after processing 

each training example) [Bertsekas, D. P. and Tsitsiklis, J. N. 1996]. Batch training is 

usually considered faster as the number of weight updates is independent of the number 

of training examples. However, there are recent studies showing contradictory results in 

gradient descent training, especially on large datasets [Randall, D., Martinez, T., R. 2003].  

The increased number of iterations needed using batch training does not necessarily 

balance the efficiency gain of less weight updates. 

Considering the functional requirements of Chapter 2.2, both strategies were 

implemented, the latter having an important extension: 

1. Sequential training – weights are updated after each training instance 

2. Selective batch training – a selected fraction m of the n training examples is 

presented to the net prior to a weight update giving m
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 updates per iteration.  

Strategy 2 becomes a compromise being a “ m
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

’th batch training technique”. (well 

documented in ArtificialNeuralNet.java or it’s pertinent JavaDoc) 

6.4.3 Layer specific activation functions, momenta and learning rates 

Besides the choice of net architecture, there are two static parameters and a polynomial 

function by which training is directly influenced: Momentum, learning rate and choice of 

activation function. The Layer class of the ANN maintains their pertinent PE’s 

momentum and learning rate values hence allowing fine tuning of these training 

parameters, if necessary and valuable. In addition, each layer’s PE activation functions 

can be of type linear, sigmoid or hyperbolic tangent and are among the methods 

implemented in the class MathLib.java. 

Figure 7 shows possible tuning of each layer representing their pertaining PE’s.  
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Figure 6.1: Tuning options of the enhanced SBP ANN 

Signals following inks on blue background are processed using a linear activation 

function, a learning rate η= l1 and α= m1, different from layers 2 and n having unique 

η  and α  values and sigmoidal and hyperbolic tangential activation function respectively.  

6.5 Data pre and post- processing 

The following sub- section discusses the external data processing. 

 

The implemented ANN is capable of receiving any input data regardless of data range 

and has no formal requirement for normalized data or any functional limitation with 

respect to data range. However, referring to the functional requirements of section 2.2.2, 

particularly point 6 an option of normalizing the training instances’ features (here; the 

MWD variable values) seem necessary. Methods for pre- and post- processing of features 

are implemented in the class DataTools.java. 

6.5.1 Normalization  

Normalization of data in this context means giving all feature values the same relative 

value, and must not be confused with database normalization. The purpose is assigning 

all features values I within the range [ ]min maxI I ,I∈ .  

There are 3 common types of normalization: 

1. Linear transformation: An input range [ ]min maxD D ,D∈  results in the simple 

mapping between each feature value D to a normalized value I 
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Equation 6.1: Linear normalization 

min max min min

max min

I (I I ) (D D )I
D D

+ − ∗ −
=

−
 

2. Utilizing a statistical measure of central tendency and variance to help remove 

extreme, non representative values and spread out the distribution of the data.. 

This is a relatively simple method of normalization, in which the mean and 

standard deviation for the input data associated with each input are determined. 

Dmin is then set to the mean μ  minus a selected number of standard deviations c 

minD c= μ − and conversely , maxD c= μ +  

3. Minimizing standard deviation of the heights of the columns in the initial 

frequency distribution histogram. 

 

Method 1 results in a new data range solely depending on the dataset’s minima and 

maxima, which presuppose errorless data. Method 2 and 3 smoothen the effect of 

erroneous extremal values, however considering the multitude by which errors occur in 

the MWD data (Chapter 2.2.1, sub- section “noisy data”), mean values and standard 

deviations are still susceptible to extreme noise. Another approach is to identify and 

replace erroneous data by acceptable extremal values, introduced in the next section: 

Outliers – a technique for noise identification and removal 

An option is to identify a the most deviant feature values for a chosen feature and 

change these values so that they are deviant, but not as deviant as they were 

[Tabachnick & Fidell, 1989]. One simple technique for identifying the outlying values 

is removing the n% most extreme min/max values, using the remaining extremal 

values as Vmin, Vmax and replacing the removed n% with the new extremal values 

[Howell, D. C., 1995]: 
Equation 6.2: Outliers replacements 

( )

( )

maxhigh

minlow

1i) n% V
2
1ii) n% V
2

=

=
 

Data normalization, if chosen, then becomes first removing outliers, then using the linear 

transformation as described above (6.5.1, point 1). 
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6.5.2 Output signal smoothening 

A prototype of these technique was tested using Microsoft Excel, and pending further 

evaluation of the smoothening necessity and contribution, is left at the prototype stage. 

(See for instance [Moving Averages 1], [Moving Averages 2]) 

Smoothening of the output value in terms of SMA, simple moving average means buffering 

up and averaging a portion of the outputs prior to presenting the signal. This means a lag 

(here; slow response to changes) of the specified average period and consequently a 

signal delay correspondingly. The lag might be reduced using the EMA, exponential moving 

average weighting instances inverse exponentially to its distance in the buffer. A simple 

spreadsheet prototype was tested showing the effect of both in the figure below:  

Signal smoothening - buffersize = 60
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Figure 6.2: Signal smoothening by moving average 

The red curve shows the exponential moving average, reacting more rapidly to recent 

changes than the simple moving average in blue. 

Random peaks representing noise rather than real anomalies are averaged away by his 

method and might reduce noisy fluctuations, but delay the signal proportionally to the 

smoothening factor and might hide real and valuable amplitudes giving actual warnings.  

 

 

6.6 Modeling and training the ANN  

There are several non- trivial issues to be addressed in determining a suitable trained SBP 

ANN for classification of new instances. Two such major issues are avoiding overfitting 

and the topology design of the network itself. 
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6.6.1 Measuring performance 

The optimal performance measurement discussed in 5.2.1 is an attractive idea, but 10- 

fold stratified cross-validation imply an a- priori distribution of 700 positive samples per 

49000 negative samples in 10 folds and seem unfeasible. Unwanted events in this domain 

are not normally distributed and are results of several inter-correlated events. 

Consequently,  variables should not be subject to any prior, even distribution.  

A “randomized cross validation” training data set was prepared in the InstanceSet class, 

dividing the data set in n folds and picking members to these folds randomly without 

replacement using the MathLib class. 

6.6.2 Ensuring ability to generalize by avoiding overfitting 

Typically, an ANN begins training with a poor fit to the data due to its random weight 

initialization. As training progresses, the neural networks fit as the data improves. At 

some point, however, the neural network begins to overfit the data, meaning that its 

performance on the training data continues to improve, but only because it is beginning 

to memorize the peculiarities of the training examples, not because it is learning more 

about the underlying process.  

 

Early stopping involves training with some fraction of the data, and testing periodically 

with a separate set of data. Performance on the training data called the "apparent error" 

will usually only trend downward. Performance as tested on the test data (an estimate of 

the “true error”) will typically go down like the apparent error, but eventually diverge 

and, at some point, starts to become worse. The best place to stop training is indicated by 

the minimum estimated true error, that is, the best performance on the test data. 

[Freeman, J. A., Skapura, D. M., 1991]. 

There are several strategies in avoiding overfitting- one such strategy is using cross 

validation used to determine when the network has been trained as well as possible 

without overtraining thus achieving  maximum generalization (Mitchell, T., 1997 pp. 108 

- 112). 

6.6.3 Deriving a suitable net topology and tuning parameters 

While the choice of number of input and output nodes is defined by the problem, the 

number of hidden layers and of how many nodes each hidden layer should consist 

remains an empirical task. In general there is no way to determine a priori a good 
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network topology. It depends critically on the number of training examples and the data 

complexity [Castiglione, F., 2001]. There are, however, a large number of methods being 

developed, most of which follow the evolution's paradigm (Genetic Algorithms or 

Evolutionary Strategies) which is beyond the scope of this work. 

One simple strategy suggested by Castiglione is a possible “brute force” approach where 

all possible nets are explored between a manageable fixed set of combinations of nhl 

(number of hidden layers), ni (number of nodes in hidden layer i), e.g.  0< nhl ≤2, 

2<ni≤15. The number of possible topologies grows exponentially with these nx 

boundaries, therefore only a limited set of topologies within each number of hidden 

layers has been explored and measured for performance. More precisely; promising nets 

are selected on the basis of the RMSE (root mean square error, implemented in the 

MathLib class), and these candidate nets are further explored on validation data 

comparing calculated vs. true values.  

A positive bias was given to quickly learned topologies (i.e. with a quickly descending 

RMSE gradient) over nets reaching an adequately low RMSE from extremely large 

number of iterations.  

 

To summarize; the final set of nodes of which the ANN is composed is a result of a 

guided brute force empirical approach. 

Empirical testing in network topology optimization 

It was not within the time frame of this thesis to thoroughly explore the many possible 

ANN configurations. Despite the computational limitations to possible topology 

configurations, the “topology search space” is considerable. The following search 

strategy was employed: 

1. Start using a simple initial topology 

2. Guide the topology search towards promising topology arrangements for 

instance evenly distributed PE’s (Figure 4-15), most processing elements in the 

first layer(s) (Figure 4-16) or  a preponderance of PE’s in the hidden layers close 

to the output layer (Figure 4-17) 
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Figure 6.3: Symmetric topological 

arrangement 

 
Figure 6.4: Left asymmetrical topology 

 
Figure 6.5: Right asymmetrical topology  

 

 

3. Successively increase topological complexity primarily by adding PE’s to existing 

layers until performance reaches a plateau or decays, secondarily by adding 

hidden layers.  

Initial AN Net development strategy 

Based on the referred theory it is persumed that topology is the predominant limitation 

both with respect to computational expense and performance. The training strategy then 

becomes: 

1. Initialize the tuning parameters α and η uniformly over all layers making η 

(learning rate) small (0.01). This because the extra computing cost is relatively 

small compared to the reduced danger of missing the true global minimum error 

[Luger, G., F., 2002 pp. 429]. α (momentum) was chosen to be in the “sound” 

range 0,5≤η≤ 0,9.  

2. Design a net topology resulting in interpretable results  

3. Fine tune the net varying the α and η parameters, uniformly over the ANN or 

stratified, giving layer specific learning rates and momenta  
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6.7 Testing the ANN 

6.7.1 Test setup. 

In all tests, 7 wells with stuck pipe incidents were utilized, each well having 10 hours of 

data, 9 hours 35 minutes prior to the recorded stuck pipe event and 25 minutes 

during/after. Translated into number of instances this becomes: 6900 instances prior to, 

and 100 instances during/after the recorded event. 

The test setup had a fixed composition of training wells/test wells. with no a- priori 

knowledge of the qualitative contents of data, or bias towards any well being more 

suitable for training or validation, the composition was Well 1-4 as training pool and 

Well 5-7 as validation pool. As such, selection of training and validation wells were a 

result of “randoml selecteion”. Lacking further, external validation wells, the fixed 

validation pool of 3 validation wells becomes the external test wells.  

 

Experiments follow the training strategy of 6.6.3. Some trends became clear only having 

a few test-runs using the e-SBP ANN, leading to a revision of the initial training 

strategy:. 

6.7.2 Revised training strategy 

The following sections describe findings during initial testing and have impact on the rest 

of the e-SBP ANN analysis. 

Selecting training algorithms 

Regardless of topology or composition of training examples, only the randomized 

instance selection (described in section 6.4.1) and the modified batch- processing (as 

described in section 6.4.2) produced any meaningful, interpretable results. This training 

algorithm is hereby referred to as randomized N-fold batch-training. Standard methods 

lead to a net consistently predicting near or equal to zero. As well as being 

computationally favorable, N-fold batch- processing proved qualitatively necessary. 

Estimating performance  

In this context, performance measurements and validation did not fit in the usual 

concepts of errors and overfitting. The targeted feed forward ANN is one that actually 

deviates from training data, these being roughly classified (section 2.2.1) and should 

predicts trends towards an event rather than predicting the event exactly. Furthermore, 
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estimating performance was expected to be difficult given the severely skewed 

distribution, but regardless of validation scheme, any net predicting all output near or 

equal to zero commits a small cumulative error. This seems sensible considering the 

classification distribution: Considering the test setup of 6.7.1: Each training example 

consists of 7000 instances of which 100 are positive, negative otherwise. If a net is 

trained to predict all classifications to be zero, the error frequency become ferror= 

100/7000 = 0,015 , giving a flattering RMSE: 

 
2 2100 (1 0) 6900 (0 0)

RMSE  = 0,0014
7000

∗ − + ∗ −
≤ .  

 

Figure 4-19 shows an example based on [Valaas, I., 2004]. The appearant errors, RMSE 

decay as the number of training cycles increases. 
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Figure 6.6: Actual performance vs. measured performance 

 

This measured performance enhances as the cumulative sample distances deviates less 

from zero.  while the actual performance, i.e. the prediction capabilities decay. The initial 

2 cycles of backpropagating errors, shown as the most fluctuating (grey) curve, coincide 

with the poor performance measure. As the training process proceeds through the next 

18 cycles, performance measure and actual predictive power enhances as shown in the 

second upper (brown) curve. As measured performance improves, actual performance 

decays as shown in the curve second closest to the x-axis (purple, 50 cycles) and the 

curve closest to the x-axis (green curve, 200 cycles).  
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Performance in this context seems to be particularly difficult to measure automatically as 

it is not merely a quantifiable quality. Consequently, relying on any quantitative 

“deviation from target” performance measure as a stop criterion for training is 

particularly dangerous on these data, as continuing training often lead to enhanced 

performance measures as the ANN is guided towards always predicting negatively or 

“not stuck pipe”. 

The remaining reliable iteration count strategy seems to be early stopping, merely guided 

by a simple performance measure.   

Consequently, in the remaining of the analysis, RMSE is used as a guideline for early 

stopping and validation by manual inspection of test wells. 

 

To summarize: Performance is guided by RMSE measures and validated on a separate 

data set by manual inspection. 

 

In the next section, strategies for empiric and feasible optimization of the net is 

discussed,:  
 

6.7.3 Empirical search for optimal ANN configuration 

The following, initial tests were performed testing the net on the Test setup described in 

6.7.1 and following the net development strategy and performance measurement derived 

in chapters 6.6 and 6.7,, 

 

Topology development 

introduction of the final hidden layer might serve as a typical example of a structural 

development increment: At this stage the ANN had the general arrangement as 

suggested in Figure 6.5: Right asymmetrical topology, more specifically 11 x 2 x 16 x 1 

 

. This was attempted enhanced by adding PE’s to the existing layers up to the point of 

achieving marginal enhancements, if not counterproductive behavior. Introduction of a 

third hidden layer, however, gave noticeable performance enhancements although 

comprised by merely two PEs.  

The topology producing the cumulatively best results is a 3 hidden layer, right 

asymmetric topology shown in Figure 6.7.  
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Figure 6.7: Topology for the pre- processed MWD data. 

 

Consequently: All training referenced in these results is based on the 11 x 2 x 2 x 16 x 1 topology. 

Stop criterion for training 

There were ultimately 4 training methods tested based on RMSE: 

1. A common and simple strategy is using a fixed stop value, i.e. continue iterating 

through the training data until a preset RMSE value has been reached: 
Algorithm 6-1: Stop- at- reached- RMSE 

{ }i

i

d(RMSE )while c train  
d(Cycle )

⎛ ⎞
⎜ ⎟
⎝ ⎠

p , where c is a real valued, positive stop criterion. 

2. Early stopping criterion based on the RMSE gradient that simply stops training 

as soon as the RMSE gradient ceases descending: 
Algorithm 6-2: Descending RMSE gradient stop criterion 

{ }i

i

d(RMSE )while 0 train  
d(Cycle )

⎛ ⎞
⎜ ⎟
⎝ ⎠

p   

3. A primitive “n times non- descending gradient” stop criterion was tested 

maintaining a stack of the n last RMSE readings in an attempt to avoid stopping 

at early local minima: 
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Algorithm 6-3: Continually descending gradient stop criterion 

{ }
i

i i

i ni i

d(RMSE ) d(RMSE )while ! 0  && 0 train
d(Cycle ) d(Cycle )−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑f p  

4. Using no error stop criterion, setting a fixed number of iterations based on 

manual validation and empirical testing if such a favorable number of iterations 

exist. 

Besides the simple criterion discussed above, only the non- performance based fixed 

number of iterations remains, frequently used for testing purposes. 

 

A typical training session results in a continuously improving apparent error trend: 

 

Error development vs. training
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Figure 6.8: Measured error vs. training iterations 

 

 Although the error slope show a decreasing improvement tendency, training sessions  

follow variations of Figure 6.8 pattern almost exclusively.  At reading 120, the last 

iteration shown in the figure, there still is an infinitesimally small improvement in RMSE 

compared to the last iteration. Consequently neither of the algorithms 2 or 3 gave 

functional stopping criterions as both presuppose reaching non- descending gradients.

 

Numerous variations of training sessions were run based on both strategies 1 and 4, 

fixed RMSE and number of training cycles respectively.  

The best performing ANNs seemed to be those batch- trained through approximately 15 - 30 cycles, 

regardless of resulting RMSE. 

Data pre- processing 

As Chapter 2.2”Data description” and the preliminary analyses indicated, only training  

and validation data having removed the outlying feature values prior to normalization 
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gave interpretable results. The degree of noise both at training example (well) level and 

feature level vary, but within the scope of this work it was unfeasible to develop an 

automated method customizing the degree of noise reduction. Lacking such an algorithm 

it was decided to use a global empirically derived value.  

All training data and validation data had 10% of the outlying feature values replaced by 

the remaining extreme value as described in Chapter 6.5 and implemented in 

MathLib.java prior to normalization. Unless allowing fine-tuning of the outlying 

thresholds across wells, this was the optimal acceptable global noise removal prior to 

normalization. 
 

ANN tuning – activation functions, α and η values 

Experiments were conducted following the training scheme of section 6.6.3 in an attempt 

to establish the impact of ANN tuning parameters,  narrowing down the set of 

advantageous α and η- values and assuming the predominant performance factor to be 

topology.  

Sensitivity to over/under- training was evident at an early stage of testing which 

effectively limited the number of iterations feasible. Allowing few iterations and initial 

randomization of weights made it difficult producing comparable graphs, thus studying 

the effects of α- and η – variations isolatedly. Learning rates below 0.1, however, lead to 

poor performance and often an increasing RMSE gradient. Lacking empiric foundation 

to guide the choice of  and α ηvalues, and to keep the empiric search space at an 

acceptable level, the initial momenta and learning rates were kept at 0.1 and 0.8 respectively, 

uniformly across layers.  

Choice of activation function, however, has a large effect on the net predictions.  
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Figure 6.9: Impact of activation functions 
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As shown in Figure 6.9: Impact of activation functions, the “widespread” (green)  

hyperbolic tangential activation function maximize node activation thus significantly 

amplifies the signal amplitudes as opposed to the more commonly used sigmoidal 

function, shown as the “flat” (blue) curve. As node activation significantly influences 

weight tuning during training (Equation 5.5), as well as the calculated output (Equation 

5.4), this is not merely amplification of substantially the same signal and is of principal 

importance.  

 

As the hyperbolic tangent produced the overall best interpretable results, this was used uniformly across 

all layers. 

ANN training summarized 

Experiments resulted in the following ANN setup and training scheme:  

The best performing topology found in the topology search space were a three hidden 

layer ANN having a 11 x 2 x 2 x 16 x 1 configuration This was trained by 15-25 iterations 

through the training set using batch- training of sizes s = n/15 giving 15 folds and 

consequently 15 cumulative weight updates per iteration (see for instance 

ArtificialNeuralNet.nfoldBatchTraining, MathLib.getBatchSet). Net tuning utilized were 

hyperbolic tangent activation function, a learning rate and momentum of 0.1 and 0.8 

respectively, uniformly across all layers.  

This training scheme gives a feasible, adequately functional stop criterion, gave the best 

overall performance and produced the most consistent, stable predictions. 

 

6.8 Results 

Below are the results from training an ANN implementing the algorithms and tuning 

characteristics described in the subchapters above, shown successively from validation 

well 5 through 7. Outputs from validation runs have been normalized using the methods 

described in section 6.5 for more convenient interpretation, especially as all local minima 

and maxima have values of 0 and 1 respectively. Furthermore, all references to hours in 

the text are the time span from start of measurements until the referenced time. 

Finally, unless explicitly stated the validation session presented, each comprised by the 3 

validation wells, are outputs using the same set of weights and thresholds. 
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6.8.1 Some independant development results 

Below are some independent results obtained during the search for a possible optimal 

number of iterations.  Independent in this context means performance for an isolated 

well was evaluated disregarding outputs from the other validation wells. In these cases 

less fortunate performing outputs were achieved on the other validation wells and 

consequently these sets of weights and thresholds were dismissed.  
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Figure 6.10: Early testing (raw data): Under- 

trained net: Early validation session using 

well 6, 10 iterations 
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Figure 6.11: Possibly over- trained net: 

Validation using well 5, 40 iterations 
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Figure 6.12 Validation using well 5, 30 

iterations. Excellent performance on well 

but poor validation set performance 
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Figure 6.13: Validation using well 6, 25 

iterations. Excellent performance on well 

but poor validation set performance 

 

 

6.8.2 Experiments using 15 iterations 

The following results show a validation session using a possibly undertrained ANN and 

are included to illustrate 2 points: 
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1. Demonstrating the impact of continuing training the net beyond the point of  

adequate performance, of which one example is included in the next subchapter 

2. Showing all 3 validation wells using raw data in the same plot demonstrating how 

the signals are global, independent of training example (wells) and might serve as 

a un- interpreted standalone problem signal. 

 

After tuning the weights of the net as illustrated in Figure 4-19 the ANN interpreted 

likelihood of the unwanted event “stuck pipe”  for  validation well 5 is shown below: 
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Figure 6.14: predicted likelihood of event – Well 5 

The high entrance value and general fluctuating characteristics of the curve, especially 

from 02:50 to 06:10 hours, lead to a curve somewhat difficult to interpret. Local 

anomalies that might trigger warnings might appear as early as 02:40 hours. After a 

pronounced decrease in oscillation at approximately 07:40, there is an increasing trend 

towards the first of four maximum amplitudes occurring at 08:25. The second is the 

extremal value of this well prior to stuck pipe, reached at 08:51 (indicated as a grey line), 

44 minutes prior to the recorded stuck pipe event. The trend of the curve then 

significantly drops until the third and second largest amplitude occurs 25 minutes prior to 

the event 

. 



Chapter 5: Artificial Neural Networks        

 MSc Thesis – Inge Valaas                                                                           Page 82 

The next validation well shown in Figure 6.15: predicted likelihood of event – Well 6 

produces a “cleaner” output curve having little fluctuation tendencies as did the previous 

validation run. 
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Figure 6.15: predicted likelihood of event – Well 6 

Stabilizing at approximately 10%, the first prominent peak giving a signal at 100% occurs 

as early as 08:00, 1:35 hours prior to the registered unwanted event. The curve then 

briefly drops to 0.75, 50% above the stabilized “normal” then peaks and stabilizes at 

08:18, 1:17 prior to the unwanted event. 3 minutes prior to the stuck pipe, the likelihood 

curve drops to 0%. 

 

Output of the final validation well number 7 shown in Figure 6.16 shows the same severe 

fluctuating characteristics of validation well 5, but having intermittent zero- or close to 

zero- valued anomalies.  
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Figure 6.16: predicted likelihood of event – Well 7 
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Between each of these extremal anomalies the signal oscillates around an increasing 

“intermittent average”. The maximum value occurs at approximately 06:00, nearly 4 

hours prior to the registered unwanted event, then the signal steadily descends close to 

zero 10 prior to the recorded event. 

 

As described introductorily, an important aspect of this chapter was demonstrating 

example independence of the ANN output. This is done showing the output signals 

from the validation run discussed above in the same graph:  
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Figure 6.17: Unprocessed output from validation wells 5-7 

 

All validation wells share an approximately common minimum value. Both validation 

wells 5 and 6 have value spans within comparable range and somewhat similar behaviour 

prior to stuck pipe. Validation well 7, however, differ both with respect to maximum 

amplitudes and behaviour prior to stuck pipe: Of the 6 intermittent periods of validation 

well 7 described above, each period is represented by a local maxima continually 

stretching the global value span. 

6.8.3 Experiments using 25 iterations 

The results presented in this section serve as a representative example of outputs 

produced by training the ANN using 20 iterations and the effect  of altered performance 

resulting from increased training beyond the “adequate”. 

 

Predictions made on the first validation well, shown in Figure 6.18: ANN output - 

validation well 5, have a clearly increasing trend from 3 hrs peaking and stabilizing at 

08:35, 1:18 hours prior to the unwanted event. The problems of interpreting the output 
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of validation well 5 using the less trained net has decreased significantly, however, some 

of the problems remain: 

The initial early warning described, remain, as does the fluctuating period. Meanwhile, 

the fluctuating period has an evident increasing build-up towards the recorded unwanted 

event. 
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Figure 6.18: ANN output - validation well 5  

 

A dampened signal using EMA (exponentially moving average), is shown in Figure 6.19: 

ANN output well 5 – signal smoothened by moving average:  
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Figure 6.19: ANN output well 5 – signal smoothened by moving average 

In this example, 60 readings are averaged prior to transmitting giving a 5 minute delay. 

As shown in the figure this significantly reduces the non- contributing fluctuations in the 

real- time example above.  
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Output of validation well 6 is shown below and start almost at output maximum, then 

rapidly descends close to zero.  

Well 6
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Figure 6.20: ANN output - validation well 6 

After a brief period of noisy fluctuation, the predicted likelihood oscillates close to zero 

between 01:10 to 04:25 interrupted by an anomaly at 03:20. Until 05:15 the intermittent 

local maxima were limited to 0.6 of the maximum output value for this validation well, 

but past 05:15 this “temporary maximum” is surpassed and there is a consistently 

increasing trend to a new maxima of 0.82 of maximum output at 05:55. After a rapid 

drop to zero a similar period occur starting at 06:35 reaching and stabilizing at its output 

maxima at approximately 08:00 hours. 

 

Output from the final validation well is shown in Figure 6.21. Compared to the previous 

output from this validation well, there are oscillations around trends rather than severe 

fluctuations.  
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Figure 6.21: ANN output Well7  

Nevertheless, as for the previous validation session of this well, there are distinct 

intermittent peaks, each having localized maxima. There is an increasingly consistent 

trend towards this validation sessions maximum, reached already at 05:35. From that 

point the signal essentially oscillate around this session maximum. 

 

 

6.9 Discussion of results  

In this subchapter, experiences from the testing are evaluated, first with respect to the 

ANN training algorithms, configuration and tuning, then with respect to the produced 

results.  

6.9.1 Training and validation discussion 

The testing includes training and evaluation. Training involves adjusting the tuning 

parameters available, while evaluation of results, as demonstrated in the previous chapter, 

implicitly depend on stopping criterion of the training.  

These are the toplics discussed in the next sub- chapter:  

Training algorithm 

Only randomized N-folded batch- training produced acceptable outputs. Failure of the 

common sequential instance processing was expected due to the uniform and severely 

skewed instance classification distribution. The qualitative necessity of batch training was 

unexpected, however.  The initial, main rationale for implementing the modified batch- 
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processing extension was reducing the number of weight updates, thus reducing 

processing time. However, considering the massive amount of training data and the 

categorical, skewed distributed instance classification, the “rougher” cumulative weight 

updates offered by batch training might be favorable also from a qualitative point of 

view. 

Performance measurement and stopping criterion for training 

As a consequence of not being able to utilize traditional performance measures as 

discussed in section 6.7.2, and due to the slowly descending RMSE gradient and the need 

for early stopping, no functioning stopping algorithm could be implemented. 

Consequently, the only remaining of the possible stopping criterion discussed in section 

6.7.3  was the fixed RMSE limit and fixed number of iterations. 

A RMSE criterion might be reached after unrepresentatively few or many iterations due 

to the random initialization of weights and and the narrow set of productive iteration. 

This might lead to an over –or undertrained net of which the flat (purple) over- fitted 

curve and the fluctuating (grey) under- trained curve of Figure 6.6 are example. Actual 

performance as described in Sub- section 6.7.2 seems to be particularly sensitive to over- 

training. As described in Chapter 2 the training data consist of relatively few true training 

examples, although cumulatively many training instances, which might explain the ANNs 

susceptibility for early adaptation of the training data peculiarities rather than true 

generalization. 

Controversially but as a consequence of the above, a fixed number of iterations was the best performing 

stopping criterion. 

ANN parameters and tuning 

The sovereign most influential ANN parameter on performance proved to be net 

topology. Less sensitivity to the tuning parameters was expected, however there were 

unexpected peculiarities that need elaboration:  

Using momenta within range 0.5, 0.8  made this parameter seem uninfluential, but 

outside this range performance dropped, and increasing RMSE gradients were typically 

observed. The range of acceptable learning rates was narrow; 0.1, 0.2 , in addition to 

having the potential counterproductive behavior outside this range. 

As discussed in Section 2.2 “Data Description” there are several plausible explanations 

for these findings: 
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1. Few independent training examples (wells) allow only a narrow range of 

constructive training iterations and each number of training iterations is small.  

2. The dicotome (binary) classified dependant variable result in a set of training data 

without a potential for fine tuning 

The first point need some further elaboration and implies training has to be performed 

rapidly, which might explain the lower bound of constructive learning rates. The upper 

bound might be explained equivalently; too high learning rate leads to too large learning 

steps which is unfortunate given the few iterations constituting the training. The few 

allowable iterations might also explain the seemingly uninfluential momentum as there, 

for instance, is little room or danger for oscillations.  

Data pre- and post processing 

Although a global noise reduction value reduces complexity, allows for effortless 

automation and might provide a significantly improved dataset, as in all noise removal 

there is always a risk of loosing valuable anomalies. Actual, noiseless extremal- values 

might be the most valuable in predicting deviations from a normal situation, therefore 

setting the outlier threshold becomes a trade- off between the risk of loosing valuable 

anomalies and properly normalizing the dataset.  

As there was no objective, quantitative or qualitative performance measure of noise 

reduction utilized in this work, valuable anomalies might have been lost and/or noise 

might have disturbed the normalization of the MWD data 

 

One validation example was susceptible to periods of severe fluctuations and output 

could benefit from signal smoothening. The need for such signal dampening might be 

more of an indication of modeling problems or scarce data rather than a proper 

alternative for improving signal interpretability and further treatment. 

6.9.2 Evaluation of results 

Below is a validation of the descriptive results analysis above. 

Validation well 5 

The predicted likelihood of event of validation well 5 shown in Figure 6.16 had 4 distinct 

maximum amplitudes, all of which were within 1:30 hours, and the second largest 25 

minutes prior, to the recorded unwanted event. This would make it a good problem 

predictor. However, within the same timeframe there are periods of a scattered 
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characteristic within which there are amplitudes that might cause problems establishing 

an adequate threshold and transmitting consistent and reliable warning signals. Moreover, 

the trend towards the stuck pipe event is somewhat weakened by the initial 3 hours of 

relatively high output, thus the signal is insufficient to cumulatively give a clean output 

signal thought a possible moving average. This is feasible using the more trained net on 

this validation well as shown in Figure 6.19, with the delay and lag cost involved as 

discussed in the “output signal smoothening” section of subchapter 6.5. Moreover, the 

relatively long warning period prior to stuck pipe might cause predictive problems from a 

practical perspective.  

Validation well 6: 

The output of validation well 6 produced by the less trained net shown in Figure 6.15 has 

few evident weaknesses but possibly one; the maxima occurring at 1:30 hours followed 

by a prominent drop. Although the drop in system alert state after a warning of this 

magnitude might be erroneously interpreted as normal, the likelihood of an unwanted 

event remains significantly high until the recorded event. The brief anomaly giving this 

maximum should not lead to for instance a threshold adjustment leaving the unwanted 

event uncaught by the system.  

The output produced by the more trained net (Figure 6.20) are surprisingly more 

scattered and produces a curve showing two periods both apparently building up to an 

unwanted event. The latter period however, build up to a consistent plateau representing 

this validation sessions maximum. Independently of the two ANNs used this validation 

session would be of near benchmarking predictive quality overseeing a potential 

problem: As for validation well 5, the possibly long period of warning prior to the actual 

event might indicate a weakness if a post analysis prove these early warnings wrong.  

Validation well 7:  

The less trained net produced outputs having an overall noisy characteristic and 

intermittently severe fluctuations. Moreover, there is a consistently decreasing trend 

towards the unwanted event having its minima 1:06 hours prior to the recorded event. 

This output signal is feasibly useable as a warning signal, as a possible threshold would 

have to be elevated at an early stage. Referring to Figure 6.16, the threshold elevation 

would occur already at the start of data readings. Nevertheless, having 6 intermittent 

periods, each having extreme local maxima is difficult to interpret for the signal receiver. 
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Furthermore, relative to the other validation wells, outputs produced instantly and 

consistently surpass the global maxima for this validation pool.  

The more trained net produced an interpretably enhanced curve by reducing the severe 

fluctuations to oscillations around a more pronounced inclination towards the unwanted 

event. Although improved, the same intermittent periods of local minima and maxima as 

from the less trained net remain. Furthermore, this additional training leads to an output 

producing a constant warning signal approximately 4 hours prior to the recorded event.  

Independently of training extent, this well either represents an outlying example or could 

be a symptom of a model weakness. Only a DDR clearly indicating stuck pipe related 

problems during the entire recorded interval could justify the output curve of validation 

well 7. 

6.9.3 Common evaluation 

It is difficult to discriminate qualitatively between the 15- and 25- iteration test runs. The 

general trend is as expected a smoother output for the more trained net and 

strengthening of trends less expressed in the less trained net. However, there are 

exceptions: Validation well 6 shows a cleaner, and benchmarking trend in the 15- 

iterative run. This might be caused by a trend not fully developed, indicated by the 

increasingly scattered period starting at 05:00 hours but still underdeveloped and fully 

expressed in the 25- iteration run.  

The general trend remain: As the data tolerate 25 iterations, cleaner and more 

representative patterns emerge when training upon the iterative tolerance of 25. 

 

All useable predictions occur at least 1:10 hours prior to the recorded unwanted event. 

This might be a data issue caused by the rough estimate of the stuck pipe occurrence, or  

a causal, drilling related issue; the fact that there were stuck pipe problem indications 

reflected in the MWD data as early as indicated or a combination of both. On the other 

hand, this might be an indication of a modeling problem and consequently a model 

failure indication.. 

6.9.4 Prerequisites of a functional warning signal 

Regardless of the success in training the ANN, both successfully tested wells would 

benefit from having a moving, not a static, global warning threshold. Figure 6.17 could 

suggest a global warning signal of 0.75 would set off appropriate alarms for validation 

wells 5 and 6. Nonetheless, if such a global threshold is set too high, the warning signal 
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amplitude might never reach this threshold, thus never catching an unvanted event. On 

the other hand, if this threshold is set too low, repeatedly erroneous signals might 

overload the Deep reasoning- module or continuously set off invalid alarms. Moreover, 

variations in validation results strengthens the need for a moving threshold, which 

presuppose a negative response on faulty warnings. 

 

Following this sub- chapter are some general concerns regarding the reliability of the 

results presented,: 

6.10 Validity and reliability of the results 

The strict separation of a training data set (Well 1-4) and a test data set (Wells 5-7) assure 

some reliability of the validation process. However, although indirectly, the test data set is 

used in performance measurements in the development of the presented e-SBP ANN. 

Together with the few true training examples, this might somewhat weaken the reliability 

of the results presented. The supereminent goal of all AI systems is producing a 

generalizable system, which depend on valid test results. Correspondingly, validity 

depend on reliable “instruments of measurement”. The only fully reliable test is gathering 

fresh data and test on this system. 

 

6.11 Conclusions  

Training 

Training and validation require much “needlework” as automated performance 

evaluation is unfeasible. The high sensitivity to overtraining leaves little opportunity for, 

or gain by, using standard tuning parameters. 

General results 

3 wells were randomly selected and placed in a separate validation pool. Of these 3 wells , 

2 were promisingly predicted while the third was less than successfully predicted.  

 

Despite the challenges of Chapter 2 (“Methods and Design”), Chapter 4 (“Attribute 

Selection By Statistical Analysis”) combined with this chapter have shown feasibility of 

processing the MWD through a trained ANN in real- time warning signal generation 
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Furthermore, once trained, outputs of the net are globally comparable and might serve as 

one of possibly several independent parameters in a warning signal to the next stage.  As 

such, the warning signal generated by this ANN is a fully qualified and independent, real- 

time, problem specific operational warning signal.. 

 

However, to achieve a reliable and appropriate warning signal, the “Prediction Module” 

might depend on feedback from the warning signal receiver to enable the necessary 

moving threshold. 

 

To summarize: Given the reliability of the validation scheme used and pending further 

validation, the presented enhanced ANN seem suitable as a technique for the task of 

achieving Goal 1. 
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CHAPTER 7   

7 DISCUSSION AND FURTHER WORK 

In this chapter, the cumulative results of Chapters 3 - 6 are collected, and measured upon 

the goals set for this work. The outcome of this analysis decides the extent of work 

possibly remaining. However, the goal of this thesis was never to implement the system 

described in the Thesis goals. This means that some work remains and will be outlined in 

the last sub- chapter. 

7.1 Results 

The results are presented as a practical training, validation and real- time prediction 

scenario.  Unless explicitly stated, all functionality has either been analyzed and 

documented (Chapters 3-4) or implemented and demonstrated (Chapter 6). References 

to the relevant chapters or sections are given sequentially. 

 

One of the major advantages of the ANN as a prediction unit is that once trained, the 

majority of the work is done (Section 5.1) which will be emphasized in Figure 7.2. 

Figure 7.1  show the resulting system during training: 
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Figure 7.1: Complete system architecture, training phase - (final iteration) 

 

 At this stage, the system architecture is finalized, but the following testing and prediction 

scenarios presupposes three non- addressed issues in this work; Implemental 

Prerequisites.  

 

1. The presence of a somewhat complete Case Base as described in Chapter 3 

2. An interface between the Prediction module and TrollCreek 

3. The presence of a threshold value, either dynamic or global and static, as 

described in Section 2.3.3 

4. The response signal resulting in either an incremental threshold increase or 

decrease, as described in (dummy) 

7.1.1 System training – fully implemented 

This is a presentation of a possible training session, prior to deployment. The “Category 

1 data” input to the MLR sub- module in Figure 7.1 is the training data pool, as 

demonstrated in Chapter 6: 

 

Data enters the MLR (Multiple Logistical Regression) module where 33 parameters are 

reduced to 11 problem relevant features, which was completed in Chapter 4. These 
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features constitute the input layer of the e-SBP ANN. The training session result in a 

trained net as described in Chapter 6. 

A possible testing scenario would be replacing the training data pool by an external 

validation data pool, and then initialise a simulation: 

 

Prediction is followed by an alarm, the alarm signal then invokes the CBR- cycle which 

either dismisses or recognises the alarm. The retrieval and implicitly matching of possibly 

similar cases and learning step following an alarm, confirmed or rejected, in TrollCreek is 

described in Chapter 3. Finally, given a dynamic threshold, a consequence of a dismissed 

alarm in the Prediction module would be an incremental increase of the threshold. 

7.1.2 Real- time prediction  

Figure 7.2 shows the remaining, active parts of the system once trained indicated by a 

simple summarization symbol in the ANN sub- module.. The computational expensive 

ANN training steps are performed and simple feed- forward summarizations remain 

(Section Dummy) Furthermore, the “Category 1 data” input is presently the actual MWD 

data recorded real- time.  
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Figure 7.2: System architecture, prediction phase - final iteration 

 

Process flow and a possible threshold adjustment in the Prediction module is performed 

as described in the testing step of Section 7.1.1 

 

7.2 Discussion of results 

In this section the presented results are measured against the goals of this thesis. 

Goal 1: Real- time, computational efficient prediction 

The implemented e-SBP ANN does perform computational efficient predictions under 

“Goal 1 conditions”: 

1. A global threshold for warning is sufficient 

2. The trained net produced in Chapter 6 is reliable using the performance 

measurement (Section 6.11) and still holds when trained and validated using 

other, external data   

 

Goal 1 condition 1: The trained net producing the outputs of Figure 6.17 supports this 

hypothesis. However, although trends remain from one training session to another, there 

are significant qualitative variations in the ANNs produced, thus a global threshold for 

warning is recommendable. 
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Goal 1 condition 2: If valid, so is Sub- hypothesis 1.1 of  Section 1.1.1, and given the 

simple feed- forward net in the prediction module,  Sub- hypothesis 1.2 of  Section 1.1.1 

has been proven valid. 

 

Goal 2: Provide justified explanations, recommendations and learning capabilities 

Interpreted alone, Chapter 3 concludes that Goal 2 is reached. However, considering the 

Implemental Prerequisites of Section 2.1, it is still necessary to initiate the CBR cycle 

facilitating explanations, recommendations and learning. The initiation above is a reliable 

warning signal depending on the validity of the Goal 1 conditions above. 

7.3 Conclusions 

The discussion above shows that both goals of this project is reached provided the 

following extensions of the presented work: 

1. An interface between, or integration of, the Prediction module and TrollCreek 

allowing message exchange 

2. Implementation of a threshold value, possibly global and static but preferable 

dynamic  

Furthermore, the ability to generalise beyond the presented dataset depends on reliable 

trained Artificial Neural Nets using the current performance measurement. 

7.4 Further work  

The primary target of this thesis was reaching the goals. Although mainly achieved, some 

implemental issues pointed out in the conclusions part, remain unsolved: 

7.4.1 Implemental issues 

The following points are needed to fully achievethe goals of this work from an 

implementation perspective: 

• As a minimum; add a simple static threshold value structure to the existing for 

automatic unwanted event detection and reporting, but preferably a dynamic 

threshold value.  

• Facilitate message exchange between the Prediction module and TrollCreek or 

integrate the two. 

 



Chapter 7: Discussion and further work     

 MSc Thesis – Inge Valaas                                                                           Page 98 

Further issues remain as there still are minor bugs in the code made available: 

• completely debug the e-ANN to allow multiple, separate training sessions 

without re-loading the classes   

• complete the User interface to make the code more user- friendly and intuitive 

7.4.2 Validation issues 

As pointed out in the conclusions, the results of this work rely on the reliability of the 

results presented in Chapter 6: 

Qualitative validation of the results in this thesis 

Qualitative remarks regarding reliability in this thesis could be clarified having and a 

domain expert analysing the DDR (Daily Drilling Report) supporting the validation 

analysis, e.g. possibly explaining why a well (7) is particularly difficult to analyze and 

predict,  and clarify whether the consistently early warnings from ANN outputs are 

model inaccuracies or valuable, genuine diagnosis of an unwanted event in progress. 

Quantitative validation expanding the data- pool 

The definitive validation of this work is realized when expanding the existing data- pool 
of 7 wells significantly by adding more true examples, that is, more wells.  More extensive 
datapool would possibly allow: 
  
• opportunity for more fine tuning of net tuning parameters (differentiating learning 

rates, momenta, and activation funfunctions flatness) 
• Asa consequence of the above: more fine tuning of net parameters across layers 
• might allow for automatic performance measure as n-fold cross validation 

 

To summarize: Expandingt the data- pool would possibly qualitative improve the results, 

in addition to the important validation and facilitate adequate generalization 

accomplished by automation and less work intensive empiric “needlework”. 
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9 APPENDICES 

9.1 Statistically significant MWD variables 

In this chapter the variables selected from the available MWD data for the purpose of 

ANN signal processing is presented. These variables constitute the final set of variables 

proven to be significant at the 5% level from a Multiple Logistic Regression analysis.  

Each parameter is presented with a brief explanation, their perceived impact on the 

actual problem (here; stuck pipe), measurement techniques and reliability and their 

measurement unit (exclusively SI units). 

9.1.1 Depth [m] 

This parameter express the actual length of the wellbore, or the total length of the drill 

string including the bottom hole assembly from the sea bed and down. This parameter is 

regarded as correctly measured and have several functions. It is known that a well is more 

prone to problems as the length of the well increases; it is more exposed to cavings 

congestion, the time span from when a situation arise downhole until the response 

reaches the surface increases, the horizontal section of the well increases and so on.  

9.1.2 BitMDepth: Bit measured depth [m] 

The description for this parameter is equal to the one given for depth, except that this 

parameter express the total length of the drill string from the sea bed and down 

independent of the situation. In combination with the depth-parameter one can see if the 

drill string is “off bottom” or not. In addition this parameter must be considered if one 

wishes to use “returns depth” in an assessment of e.g. hole cleaning situation.  

9.1.3 AvgROP: Average rate of penetration [m/s] 

This parameter is included because it expresses direct information about drilling 

progression and large deviances from predicted progress can reveal problems. Very high 

rate of penetration over time in combination with low annular speed can cause an 

unbalance in cuttings generation and removal. This situation referred to as poor hole 

cleaning is a common reason for stuck pipe. 

The parameter is readily measured: Movement in the block pr time unit gives rate of 

penetration, and should be considered as a correctly registered value. However, noise can 
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occur which can affect this parameter. E.g. in well 2 at sample 8755 the ROP is 22500 

m/s which clearly is erroneous. 

9.1.4 AvgHookld:  Average hookload [N] 

Hookload is the measured block load from the drill string and downhole assembly in 

combination with possible overload caused by forces from the formation onto the 

drillstring. At the time even lift speed is obtained and excess force due to acceleration 

drop to zero, the hookload should not deviate substantially from the relative weight of 

the drill string in a vertical hole, or calculated values in non vertical sections. In situations 

where this is not the case, it can be an indication of an abnormal load on the drillstring or 

downhole assembly. This can be interpreted as a warning about a starting or already 

occurred problem, for instance stuck pipe. 

9.1.5 AvgWOB: Average weight on bit [g] 

This value is averaged over the 5 second sample time. In a normal situation, weight on 

bit increases reversely proportionally to hookload, that is; the less tension in the crown 

block, the more of the drillstring weight is added to the drillbit. Deviations from the 

hookload – WOB reversed proportionality might be a problem indicator. WOB is 

considered an important parameter and is measured reliably. 

9.1.6 AvgTorq: Average torque [Nm] 

Few of the other parameters, if any, are considered more important when interpreting 

the drilling situation with a single variable. It is a highly prioritized measuring method, 

and consequently measured with reliable values. 

9.1.7 MaxTorq: Maximum Torque [Nm] 

This parameter differs only from average torque in being the maximum reading during 

the 5 second sample period.  

9.1.8 AvgRPM: Average rounds pr. minute [2π /s] 

This value simply reflects the speed at which the drillstring revolves and represents an 

easily measurable, hence a reliable value.  
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9.1.9 AvgPumpP: Average pump pressure [Pa] 

Like most of the pressure measurements this parameter is also measured with an 

expected margin of error. This value might give a picture of the circulation resistance and 

therefore act as a problem indicator. 

9.1.10 DeltaFlow: Drill volume change [no unit] 

In contrast to the other volumetric parameters, this parameter is accepted as reliable 

because it is measured with a float ball in the mud container. The only source of error for 

this parameter is the measured depth because the area of the container is final and 

known. 

9.1.11 ReturDepth: Returns depth [m] 

This parameter expresses at which depth cavings arriving at the shaker was picked up. 

This value is derived from the number of pump strokes necessary in order to bring 

cavings up to surface from a static mud situation and until the first particle reaches the 

surface. With a given well volume, length of stroke, number of pump cylinders and a 

given cylinder diameter one can estimate the distance cavings are transported. Obviously 

the calculated value is vulnerable to a number of possible errors; however the value is 

regarded as useful in a comparative analysis. 

As the deviance between the pickup depth and the depth of the drillbit increases, the 

hazard for accumulation of debris and consequently hole cleaning problem increases. 
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9.2 Dataset derived from applicable analytical models applied to 

relevant, available MWD data 

This dataset is a result of expert knowledge about fluid mechanics, fluids and solids 

characteristics, drilling mechanics, rigsite conditions and established mathematical models 

combining these. This does not contradict the system prerequisite: Only real-time data 

(MWD) are used. Other parameters involved are established and acknowledged average 

values or constants that might be embedded in such an expert system. 

9.2.1 Equations involved and variables produced: 
Use Stoke to find the particle’s vertical speed (the speed at which a particle descends in a 

given fluid): 

 
Equation 9.1:  Stoke's equation 

2 ( )
18

particle partikkel mud

eff

d x xg
Vs

x
ρ ρ

μ
−

 

Where recommended average for dparticle; 4 mm, and particleρ ; 2600 kg/m3 

 

The mudρ can be found in the drilling data. 

Effective viscosity used in Stoke’s: 

(1 )

(1 )

( )
1488 12

12
12

32, 2
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csg PIPEn
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n
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ID OD
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V
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−

−

−
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where 

IDcsg is the inner diameter of the casing, and 

ODpipe is the diameter of the drill pipe. 

 

Furthermore: 

6003,32 log
300

measureed

measured

rpmn
rpm

⎛ ⎞
= × ⎜ ⎟

⎝ ⎠
 and 

( )
300

511
measured
n

rpmk =  

 

The viscosimeter readings are fetched from the daily drilling report. 

 
Equation 9.2: Annular speed 
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( )
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Equation 9.3: Transport ratio 

s
t

ann

VR
V

= −  

Horizontality 

The larger part of the well that is over 30o the more exposed the well is to sagging, or in 

other words depositing particles on the wellbore’s lower side.  

 

Suggest the following simple equation for degree of horizontality: 
Equation 9.4: Horisontality 

30oa
s

MD MD
H

MD
>

−
=  

where MD is Measured Depth. MD over 30o can be found in drilling data. 

Active mud volume and cuttings production 

In the following an attempt is made to find a function which yields information about 

how good the circulation rate is related to cuttings production. 

As an indicator of the quality of the circulation the volume of the returned mud is used, 

because this volume yields information about how much of the active mud volume 

supports hole cleaning. 

 
Equation 9.5: Cuttings generation 

( )2

4 BITKG ROP Dπ
= × ×  

 

In order to obtain values between 0 and 1, the following is done to get the interaction 

effect with the variable above: 

Cuttings generation and active mud ratio,  
Equation 9.6: Cuttings - active mud ratio 

Ks = 1
100 `

KG
MudIn

−
×
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where ROP and MudIn can be found in the drilling data. 

String Rotation 

A vital reason for cuttings accumulation and consequently unfavourable hole cleaning is 

situations where the string is static or when just the drill crown is moving (as is the 

situation while directional drilling). The hole cleaning is presumed close to zero in 

situations where there is a long horizontal –or high deviation section and the rotation of 

the drill string seizes. In order to be able to describe this fact the experience of drilling 

personnel have supplied the following heuristic rules, summarized as pseudo- code: 
if (rpm>=120) 

    rotf = 1;  
    if (rpm < 120 && rpm >=90) 
       rotf = 0.8; 
         if (rpm < 90 && rpm >=60) 
           rotf 0.5; 
           if (rpm < 60 && rpm >=20) 
   rotf = 0.25; 
               if (rpm < 20) 
      rotf = 0.1; 

Return depth for drill cuttings 

If the cleaning situation is good it will be less deviation between the depth from where 

the cuttings are picked up and the measured depth. A formula which gives a rough 

indication of the hole cleaning is: 

 
Equation 9.7: Hole cleaning 

=
RETURdepthHR
BitMDepth

 

9.2.2 Resulting dataset 

The analytical pre- processing of the MWD- variables produced a data file as shown in 

Table 7 1,  “Rotf” denotes the evaluated heuristic rule- set, “HS” Horizontality from 

Equation 7 8, “Vann” annular speed from Equation 7 9, “Vs” vertical speed from 

Equation 7 10, “Rt” transport ratio from Equation 7 11, “KG” cuttings generation from 

Equation 7 12 and finally “HR” hole cleaning from Equation 7 13. 
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Table 9.1: Analytically pre- processed MWD data 

WellID Rotf HS Vann[ft/s] Vs Rt KG HR Stuck
1 1 0.747569 0.766728 0.064652 0.747034 0 1 0
1 1 0.747569 0.766728 0.064652 0.747034 0 1 0
1 1 0.747569 0.766728 0.064652 0.747034 0 1 0
1 1 0.747569 0.766728 0.064652 0.747034 0 1 0
1 1 0.747569 0.766728 0.064652 0.747034 0 1 0
1 1 0.747569 0.770701 0.064706 0.748128 0 1 0

... ... ... ... ... ... ... ... ...  
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9.3 Mechanisms causing the unwanted event Stuck Pipe 

Drilling an offshore well is a highly complex operation having multiple, often inter- 

correlated sources of problems. Below is a summarization of the most common 

mechanisms of which stuck pipe is the result.   

9.3.1 Geometrically dependant stuck mechanisms 

One category of these problem sources has their root cause in a single or a combination 

of geometrically challenging lithology and/or disadvantageously shaped wellbores 

 

A                     K

Attrition

(1) (3)(2)

Keyhole
*

 
Figure 9.1: Key seating stuck pipe mechanism 

Key Seating might occur after having passed a major dogleg13 (1) where drillpipe and 

coupling have worn into the formation over some period of time (2). There are no single 

parameter that might give an indication of this problem prior to pulling out of hole and 

the BHA (bottom hole assembly) reaches the key seat (3) 

                                                 
13 dogleg meaning a curvature or deviation from a vertical line built up over a short vertical distance. 

Informally, the degree of dogleg severity is proportional to the deviation build up and reversed 

proportional to the build up vertical distance 
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*

*

 

Figure 9.2: Key seating stuck pipe 

mechanism 

Undergauged Hole occurs when the 

drillbit outer part wear down and 

consequently there becomes a deviation 

from actual and nominal hole diameter. 

The problem only occurs if the entire 

section cannot be drilled using one 

drillbit. When running in hole with a 

drillbit gauged to nominal diameter, this 

will be larger than the replaced drillbit.  
Figure 9-2: Undergauged hole when changing worn drillbit 

No single or comprehensible set of parameters give any indication to a potential problem 

until it occurs. 

 

Ledges occur at alternating hard and soft layers in the formation Drilling in soft 

formation less resistant to 

mechanical wear might lead to 

traps when leaving hard formations 

less susceptible to mechanical 

strain. This stuck pipe mechanism 

might strike bi- directional; both 

when running in and pulling out of 

hole.  
Figure 9.4: Ledges caused by alternating formation 
hardness drillbit 

Of the available MWD data there 

are possibilities for experienced rig 

personnel to monitor torque curves to reveal varying resistance, thus finding varying 

hardness in the formation implicitly giving a warning of a possible   unwanted event. 

 

.Stiff BHA combined with severe doglegs might lead to stuck pipe due to a 

rigid BHA not being able to follow the trajectory lead by such a dogleg. 

 

 

Figure 9.3: Undergauged hole when changing worn 
drillbit 

Hard

Soft or
unstable

9-3: Ledges caused by alternating formation hardness
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Figure 9.5: Stiff BHA trapped in severe doglegs 

 

 

Deforming salts and formation influx    

*
*

 
Figure 9.6: Salts and formation influx 

 

9.3.2 Solids and hole cleaning problems 

Thick mudcake      

Non-permeable
zone

Permeable zone

Non-permeable
zone

 
Figure 9.7:  Permeable formation and thick mudcake 

 

Fractured formations    test 
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Figure 9.8: Fractured formations and debris accumulation 

 

Junk  test 

 

Differential sticking  test 

K

Thick mudcake

K: Contact zone

K
'

K
''

 
Figure 9.9: Differential sticking and immobile drillstring 

 

Cracks and
weaknesses

Mechanically
instable formation
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Stabilized
drillstring

Non stabilized
drillstring

 
Figure 9.10: Consequences of non- stabilized drillstrings 
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9.4 GUI 

As it still is at the prototype level, there is no functional link between this GUI and the e-

ANN package, but only small implementation- steps remain. The main purpose of 

attaching this GUI is providing a graphic illustration over the main functionality of the e-

ANN. 

 

The prototype has been prepared for training only, and the main frame, in which all 

needed information is entered, is shown below: 

 
Figure 9.11: Main menu of the e-ANN GUI. 

First the number of hidden layers is entered as this sets the dimension of the input matrix 

and instantiate the number of layers in the ANN BatchTraining class. As the input nodes 

have no processing purposes, this number is entered in the main frame.  

 

Secondly, training choices are made. Choosing batch training triggers an input box asking 

for percentage of instances per batch (Figure 9.12): 
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Figure 9.12: GUI - batch training  

 

Figure 9.13 show the tuning possibilities implemented in the e-ANN: 

 
Figure 9.13: GUI – ANN layer specific layer tuning 

In this example, the user designs a net having 7 input nodes, 1 hidden layer of 13 nodes 

and two output nodes giving the 7 x 13 x 2 topology: shown in Figure 9.14
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Input layer hidden layer output layerInput layer hidden layer output layer
 

Figure 9.14: Resulting ANN topology 

 

Moreover, the choices made in the 

“Layer parameters” box lead to the 

following differentiated tuning 

parameters: 

 

Hidden layer 1:  

• Momentum = 0.7 

• Learning rate = 0.15 

• hyperbolic tangent activation 

function 

• activation function “flatness”: 

1.5 

Output layer: 

• Momentum = 0.5 

• Learning rate = 0.1 

• sigmoid activation function 

• activation function “flatness”: 

0.8 

 

 

 

The last training parameter is whether to use sequential or random selection of instances, in 

Figure 9.15 randomized selection was chosen: 

a  
Figure 9.15: GUI - customizing the training algorithm 

This figure also show selection of data pre- processing: Here both outlier removal and 

normalization has been chosen. 
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9.5 ANN and data processing code documentation 

Following the Java programming JavaDoc code documentation standard this chapter describes all 

classes, methods and parameters implemented in the “Predict” phase of the PEARL cycle.  
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9.6 ANN Implementation 

Attached is a code selection of classes referred. in the thesis. The code is implemented using the Java JDK 1.4 

platform, but no library post 1.1 is used methods therefore the code is considered backwards compatible to 

Java JDK 1.1. 

The following classes are attached: 

 

1. ArtificialNet.java 

2. Node.java 

3. MathLib.java 

4. FileOps.java 

5. DataTools.java 
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