Abstract

The goal of the project is to implement an Open Source toolbox for multivari-
ate image analysis to enable dynamic and flexible mapping between pixel and
statistical domain plots. The simplest approach to mapping is brushing where
corresponding data object in different plots are highlighted. However more gen-
eral mappings are necessary, for instance where the underlying latent model
(from e.g. a partial least squares regression or principal component analysis)
is modified interactively to see how this affect various statistical plots. A sim-
ple example is dynamically changing the number of latent variables used in the
model.

Various filtering methods (f.x. noise filtering, region weighting, non-linear
transforms) should also be implemented for changing the original hyperspectral
images interactivly and analyzed as to how they affect the final results.

Preface

This paper was written as my final Master Thesis to complete my sivil-
ingenigr, or Master of Technology, grade at the Norwegian University of Tech-
nology and Science (NTNU).

I would like to thank my advisor Professor Richard Blake. I would especially
like to thank my co-advisor professor Bjgrn Alsberg who guided me through this
work. Sadly, due to comminucation issues and the author of this paper spending
a lot of time sick, neither Richard Blake nor Bjgrn Alsberg got much input into
the actual writing of this paper.

I would also like to thank the company NEO in Oslo for sharing rawdata
with us and thus making it actually possible to test what was made.

As all foreigners, my language is a weird mix between British and American
spelling. I have strived to write this paper using British spelling, and I apologise
for any mispellings. Furthermore, I have strived to only provide citations where
they are relevant and where the text in question actually refers to the citation.

Lastly, at the time of writing this preface I am living Moscow, Russia. It
truely is a beautifull country.

Vennlig hilsen
Reidar Strand Hagen

Contents

1 Introduction
1.1 Verbose Introductiono Lo
1.2 MultiVariate Image Analysis
1.3 Problem Description
1.3.1 Needed Features
1.4 Problem Motivation
1.4.1 Computer Requirements
1.4.2 Existing Software
1.5 Results.
1.6 Conclusion: Summary
2 Methodology
2.1 Scicraft
2.2 Dependencies
2.3 Programming Langauge
2.4 Testing Regime
2.5 Tests o o
2.5.1 Computer Specification
2.5.2 Operating Systems
2.6 Test Images: Copyright
2.7 Image Formats
3 Background
3.1 Multivariate Image Analysis
3.1.1 Principal Component Analysis
312 Wavelets.
3.1.3 Wavelet: Compression and Decompression
3.2 Physics
3.2.1 Light and Vision
3.3 Computer Science
3.3.1 Colour Representations

4 Implementation

4.1 Overviewo
4.2 Programming Techniques
4.2.1 Lagzy initalization,
4.2.2 Data duplicationo
4.2.3 Dynamic Programming
424 Fault Tolerance,
4.3 General Imaging o Lo
4.3.1 Principal Compenent Analysis
4.3.2 Normalisation
4.3.3 ImageRead
434 FileRead. oo
4.4 2D-Imaging Lo
4.4.1 Density-Plot transform
4.4.2 Dynamic Mapping
443 Autoscaling Lo Lo
444 Fold /Unfold
4.5 3D-Imaging oo
451 Wavelets.o o
4.5.2 Wavelet transform
4.5.3 Shrinking Wavelets
Results: 2D
51 Example 1.
51.1 Setup e
5.1.2 Original Image and Merged Image
5.1.3 Plots from CreateVariables
51.4 Speed
5.2 Example: PCA on 2D-Image
5.3 Example: Density Plot
5.3.1 Module Diagram
5.4 Examples: Normalisation
5.4.1 Example without Normalisation
54.2 Results o oo
5.4.3 Example with Normalisation
544 Results L o
Results; 3D
6.1 ExampleData.
6.2 Composite Images o
6.2.1 Example.
6.2.2 Comparison
6.2.3 Speed
6.3 Wavelets
6.4 Wavelet Examples oL
6.4.1 Transform and Inverse Transform

6.4.2 Wavelet Compression 44

7 Conclusion 47
7.1 Summary e e 47
7.2 Evaluation. e 47
7.3 Discussion / Further Work 48

List of Figures

3.1
3.2

5.1
5.2

5.3
5.4
5.5
5.6
5.7

5.8
5.9
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

..................................... 6
Colour Spectrum L 17
Normalized Cone Response 18
Module Diagram Example 1 in Scicraft 27
Hue, Lightness and Saturation used directly as the colour com-
ponents 28
Outputs from CreateVariables 28
Module Diagram Example 2 30
Resulting Images Example 2., 31
Module Diagram Example 3, 32
Resulting Images Example 3. Pink lines and numbers are in-
serted. The different areas were selected and their origin plotted
in Figure Lo o 33
The different areas selected in image 2 on Figure 5.7 34
Module Diagram: No normalisation example 35
Example without normalisation: Result 1 36
Module Diagram: No normalisation example 37
Example with normalisation: the rightmost picture is what the
selected area in the middle image correspond to 38
Example set up in Scicrafto 40
Resulting Images o 41
Blown up images of Fig 6.2 42
Example set up in Scicraft Lo 43
Example set up in Scicraft 45
Result of compression to 75% praxis 45
Result of compression to 50% praxis 46
Result of compression to 25% praxis 46

Chapter 1

Introduction

This chapter contains a verbose introduction, an overview of the task and the
motivation, aswell as a rundown of the final results.

1.1 Verbose Introduction

By definition, an image is a reproduction of a scene or an object. A reproduction
does only preserve some qualities of its original, f.x. the statue of Jean D’Arc
in

Paris may preserve form, however it does f
not preserve texture or colour, and most likely A
not smell. More relevant to this paper, a digi-
tal reproduction, ie a computer image, will pre-
serve lighting, and to some degree colour and
form. Colour is only partially preserved due
to needing to have the exact same wavelenght
spread of the original colour to behave exactly
similar under different lighting conditions. Us-
ing regular three datapoint-images this is very
unlikely to happen.

With light containing many different wave-
lengths with varying intensities, there are very,
very many different combinations of light spreads.
Our eyes, on the other hand, only contain 3
different types of colour-receptors, cones, each
giving of one single response. By consequence,
by using our eyes as the standard one only needs
three datapoints to properly distinguish colours.
Since we can only measure about 80 amounts of Figure 1.1: Joan D’Arc
grey-levels on a computer screen, these three don’t even need all that much res-
olution to be indistingishuable from eachother either. Essentially, by using our

eyes as the standard for how much colour information to include, we’re setting
the bar quite low when doing data-analysis.

While special equipment is needed for gathering full spectral information,
equipment is fast dropping in price. Keeping light-spread information increases
the amount of information rather drastically though, and the mathemathical
tools for analysis and transformation become much more expensive to use.
Methods which scale f.x. O(N3) fast become infeasible. Treatment of large
images is however what Multivariate Image Analysis is all about.

1.2 MultiVariate Image Analysis

There are several good introductions for Multivariate Image Analysis. The aptly
named paper "Multivariate Image Analysis (MIA)’[13] and the book "Multivari-
ate Image Analysis’[3] are good starting points.

Multivariate Imaging stem from a variate of researching fields, all having
the common factor of handling large amounts of data with a planar position.
The criterium for what is considered multivariate dataset is thus having atleast
3 dimensions of some size with two being spatial. Multivariate Imaging is thus
concerned with how to understand, visualize and analyse large data volumes,
aswell as the number crunching algorithms needed for reducing the datasets.

As listed in [13], multivariate images can come from a variety of sources,
images from f.x. satelites, or other sources not having anything to do with light
at all (secondary ion mass spectroscopy, SIMS). Almost any physical unit can
be used to make images and multivariate images: temperature, gravitational
field, impedance, magnetic field, electrical field, mass, wavelength, ultrasound
wavelength, polarization, electron energy etc. As such, it has been a field of
research for quite some time, however some appliances used, such as wavelets,
are rather new.

1.3 Problem Description

Excerpt from the Abstract:

The end goal of the project is to implement an Open Source tool-
box for multivariate image analysis to enable dynamic and flexible
mapping between pixel and statistical domain plots.

Various filtering methods (f.x. noise filtering, region weighting, non-
linear transforms) should also be implemented for changing the orig-
inal hyperspectral images interactivly and analyzed as to how they
affect the final results.

It was decided early on to integrate the toolkit with Scicraft. Scicraft is a
middle-tier program for visualization and glueing methods together, developed

at Chemometrics and Bioinformatics Group (CBG) in the Department of Chem-
istry at Norwegian University of Science and Technology (NTNU). As such, the
tasks at can be summarised as:

1. Creating a toolkit with the most common methods required for multivari-
ate image analysis.

2. Set up basic datastructures, including support for mappings between datasets
and images

3. Integrate this toolkit with Scicraft, and where necessary improve Scicraft
to handle what’s offered from the toolkit.

1.3.1 Needed Features

File Input / Output ; Ability to read various scientific and regular image
formats is needed. Some of this is present in Scicraft already.

Various Transforms ; Mathemathical transforms such as PCA, PLSR etc are
already available through Scicraft. More Imaging specific methods such
as filters need to be implemented.

Visualisation ; methods involving the preparation of data for visualisation,
aswell as the actual visualisation

Mapping ; methods for setting the relationship between plots, aswell as visu-
alising them

1.4 Problem Motivation

The gist of the motivation is quite simple. There exists, as far as the author
of this paper is aware, currently no open implentations of Multivariate Imaging
toolkits. There exists freely available toolkits and there are commercial appli-
ances, however neither of these offer the flexibility of actually being able to read
and change yourself what is done with your data.

Addionally, multivariate image analysis on regular workstations are only just
becomes feasible, due to larger amounts of memory becoming the norm.

1.4.1 Computer Requirements

As dataset grows large, the CPU-time needed for transformations will usually
increase drastically. However, this can be offset by either using simpler tran-
forms or ones that scale better. Either way, it simply means you have to wait
longer.

What is harder to adjust for however, is memory requirements. When mak-
ing transforms, one need at the barest minimum atleast enough memory to
hold two copies of the dataset, preferably a lot more. While swap-memory ba-
sically gives a computer unlimited memory, it is impossible to efficiently switch

memory when the amount of memory being activly used actually exceeds the
amount of physical memory. As such, excessive memory usage will cause severe
slowdowns due to harddrive-I0. A 512x512 image with 512 image bands using
shorts (2byte) will by itself use 256 MB of memory just for storing one copy.

While mainframes and dataclusters usually do have copious amounts of mem-
ory normal Workstations have not. However, with memory sizes +1GB becom-
ing more and more common on scientific Workstations Multivariate Imaging
becomes more and more feasable.

1.4.2 Existing Software

While several packages and related software exists, the two most important are

TNT ; commercial software primarly for Geo-spatial analysis. Offers a variety
of methods for handling multivariate image data. [7]

CenSSIS Solutionware: Hyperspectral Image Analysis Toolbox ; Offered
freely, but only precompiled sources offered. [6]

1.5 Results

This section contains a short overview of what has accomplished.

Regular Images : Basic operations needed, such as reading/saving images, fold-
ing/unfolding data, and plot-transforms such as autoscale and density-
transform have been implemented. Dynamic mapping between trans-
formed and original images is working.

Multivariate Images : Methods for creating composite 2D-images have been
created. Methods for transforming 3D-datasets with wavelets have been
implemented, aswell as subsequently reducing/restoring them.

General Imaging : Various filters have been implemented, including preset
methods for fixing lightness / contrast, blurring and edge-analysis.

Various : A simple, stand-alone tool for viewing, cropping and resizing datasets
have been created.

1.6 Conclusion: Summary

The features in the toolkit in the toolkit are working as intended. The ground
work for visualisation mappings and relationships between datasets have been
finished. Examples of use have been provided, and results visualised. Notably,
using wavelets for decompression of large dataset prior to other analysis work.
Multivariate Image Analysis is viable on regular Workstations.

Chapter 2

Methodology

This chapter outlines the preliminary choices made, aswell as general methology
concerning the implementation of the toolkit.

2.1 Scicraft

Scicraft was early chosen as a basic platform for development. Scicraft is a
middle-tier program meant for unifying different mathemathical tools into one
managable GUI.

[Exerpt from Scicraft.org]

SciCraft is an open source data analysis software which solves these
problems through an intuitive and user friendly framework where
existing methods written in any programming language can easily
be combined. It provides integration of a large number of methods
from multiple sources such that the user does not need to be con-
cerned with problems related to data imports/exports, file formats
and automation. The user can concentrate on the scientific aspects
of data analysis without technical distractions.

SciCraft is also an advantage to method developers as their code
can rapidly be made available and user friendly without the need for
excessive construction of advanced graphical user interfaces. This
will significantly increase the turnover rate of new data analytical
methods in the scientific community.

From a practical perspective, what it is actually offers is access to several
libraries of pre-defined matemathical methods, aswell as a GUI for putting to-
gether combinations of methods and decent plotting capabilities.

10

2.2 Dependencies

Scicraft itself depends on quite a few libraries. These are all available for Linux,
Microsoft Windows and *BSD. However installation in Microsoft Windows ends
up being quite alot more work than Microsoft Windows users are used to, so
bundling everything into an executable has been preferred.

Python ; In order for any python program to be ran, a python interpreter
needs to be available

QT ; QTJ[8] is a cross-platform GUI toolkit created by Trolltech. It is primarly
intended for C.

PyQT ; PyQT is bindings which makes it possible to use QT through Python.

PyQWT ; PyQWT is a collection of various visualisations methods. Binaries
for this is hard to come by for the various platforms, so it might be needed
to manually compile.

Addionally, the toolkit uses the Python Imaging Library (PIL). This library
is commonly installed along with Python, and is easily available. The PIL
features used in the toolkit are however also supplied by QT, and reprogramming
the parts using PIL to use QT in order to remove PIL as a dependency is thus
an alternative.

2.3 Programming Langauge

Since Scicraft is cross-platform, this was also a prerequisite for any toolboxes
written for it. While Scicraft itself is true cross-platform with Python, any
language with cross-platform compiles was deemed acceptable.

After the initial discussion, there were two main choices for programming
language:

Python
C++

While recent Virtual Machines for Java are becoming very fast, python was
deemed more appropriate due to the fact that Scicraft is python, pythons better
readability, and most importantly, former developer experience with Python and
its excellent mathemathical library Numeric.

Along the same notes, C and Fortran were not considered due to having few
to none advantages over C++. C# and the .NET languages were not considered
due to being Microsoft Windows only.

Ultimately, Python was choosen. The reason for this was largely Numeric[5].
It is an low-level array implementation, exposing C internals to Python. With
the ease of embedding C-code into Python if really necessary, it was deemed that
C++ offered very few substantial advantages over the Python/Numeric combi-
nation, and incurred a few disadvantages, most notably the need to compile the
code seperatly for each platform.

11

2.4 Testing Regime

While considered, no formal test regime has been used for this project.

There are a couple of reasons for this; firstly the focus being on prototyping
and exploration of possibilities the need for stability and reliability was not that
great.

Secondmost, it was very hard to finalize the design. This meant the toolkit
was a moving target and as such, the price of keeping a formalized testing regime
would have been quite high compared to the benefits. Formalisation is in general
a good thing when one knows what one wants, unfortunatly, this did not hold
here.

2.5 Tests

All timed tests were run on the same Dell Inspiron 8200 Laptop.

2.5.1 Computer Specification

2.0 GHz Intel P4 Processor

768 MB 133MHZ RAM

ATI RADEON MOBILITY 9000 Graphic Cards
Unknown Motherboard

2.5.2 Operating Systems
Linux

Mandrake 10.2 Testing was used, running KDE 3.2. All options kept at standard
from install, except enabling DMA®. No services such as webserver or ftpserver
were running in the background. All timed tests were run under normal load,
specifically with Open Office Writer, Gimp-2.0, an mp3-player and several ter-
minals open.

For the graphic card, the open source ’ATT’ driver was used and not the
binary drivers provided by ATI.

Microsoft Windows

Microsoft Windows NT 5.1 (specifically Windows XP Home Edition), fully
patched and Service Pack 1 installed. Service Pack 2 was not installed due
to problems with the special Dell motherboard drivers.

IDirect Memory Access enabling Input/Output devices direct access to the system memory
thus substancially increasing their speed. Enabled by default in Microsoft Windows operating
systems, however disabled by default on most Linux distributions due to increased risk of
illegal filesystem states after unclean poweroffs

12

Comparison

No timed tests were done using Microsoft Windows. However, no speed differ-
ences were noticed under normal usage.

It is however of interest to note Microsoft Windows superior performance
under high memory load. While Mandrake would slow to a crawl with massive
harddisk-activity, eventually forcing the user to end the Scicraft-process man-
ually, Microsoft Windows would gracefully slow down and eventually actually
finish. This was not unexpected, as the Microsoft Windows pagefile algorithm is
heavily optimized for single-computer usage, while Linux and Unix/BSD both
use much simpler and cleaner architectures.

2.6 Test Images: Copyright

The images in Figures 5.5 and 5.10 are copyrighted Kristine Strand Harbek,
used here with permission and can be located at http://harbek.deviantart.com.
The image in Figures 5.2 is copyrighted the owners of http://www.freeimages.co.uk/,
restrictions apply on usage.

The different illustrative images in this paper are copy-left and thus freely avail-
able, and were taken from http://wikipedia.org

The test 3D dataset was provided by the company NEO located in Oslo, Norway.

2.7 Image Formats
As PNG offers the best lossless compression widely supported, all images created
have been saved in the PNG format. For images aquired in the lossy JPG format,

the original has been kept as JPG and all alterations has been saved as PNG.
Image formats that change the image are not acceptable for scientific usage.

13

Chapter 3

Background

This chapter explains many of the features implemented in the toolkit.

3.1 Multivariate Image Analysis

Multivariate Image Analysis primarely deal with the interpretation and under-
standing of the results when reducing large datasets into smaller ones through
methods such as Principal Component Analysis.

In this paper, Principal Component Analysis(PCA) has also been used on
regular 2D-images. As there initially only are three colour values pr position
in a regular image, one needs more variables for reduction to be possible. For-
tunately, there are plenty to choose from, most obvious adding X and Y as
variables, since PCA does not use implicit positional information.

3.1.1 Principal Component Analysis

Principal Component Analysis is a technique that can be used to reduce a
dataset to its principal components. More specifically, it is a linear transfor-
mation which works by choosing a new-coordinate system in such a way as to
minimize the sum of squared distance between the new axis and the datapoints
for each axis added.

From a practical perspective, it works by first finding the axis through the
dataset with the least squared distance between itself and the datapoints. Sub-
sequently, the original dataset is shifted to remove the positioning explained by
this new axis. After this, another axis can be found by searching anew.

1. Given [z,v, z] in DatasetD
2. Set ResidueR = DatasetD

3. Do until Residue is 0 or wanted number of components is discovered:

14

(a) Find the LineL going through Origo with the least squared distance
between itself and the datapoints in ResidueR

(b) The point slope for LineL is the loadings for the new axis.

(c) For all points in DatasetD, find closest PointP to LineL. The score
for this point on this axis is the distance to Origo from this Point P.

(d) Subtract Loading*Score(x) for this axis from all points on ResidueR

The ’Score’, ie the new values, will for each point and each axis be the value
found in each iteration on step 3.3.

The ’Loadings’, ie the relationship between the new co-ordinate system and
the old, will be the list of vectors found in step 3.2.

The 'Residue’, ie the unexplained part of data, will be the rest left in Residue
R. The number of variables needed for R to be 0 is known as the rank of the
matrix, and will i no cases exceed the number of variables in the original matrix.

There are however many ways of implementing Principal Component Anal-
ysis. Scicraft uses the NIPALS algorithm.

3.1.2 Wavelets

The wavelet transform is not one specific transform per se. Rather, it refers to
the principle of representing a signal by finite length or fast decaying waveforms.
These waveforms are scaled and translated in order to match the input signal.
As such, both temporal and frequency information is retained. From a practical
perspective, their usage is quite similar to the Fourier Transform. However,
unlike wavelets, the Fourier transform has no locality and subsequently the
same resolution is used globally for all parts of the dataset.

For the details on wavelets, these, among others, are good readings: *Wavelets
for kids: A tutorial introduction’[11] ’An introduction to Wavelets’, [4] "Wavelets
and their applications in computer graphics’[2] "Wavelets: an Elementary Intro-
duction and Examples’[9].

3.1.3 Wavelet: Compression and Decompression

The paper "Utilizing three-dimensional wavelet transforms for accelerated evalu-
ation of hyperspectral image cubes’[12] describes using wavelets for compression
in order to speed up computation. It was used as the frame of reference for this
implementation.

The values in the results from a wavelet transform are directly proportional
to how much they contribute to the original image. Utilizing this, it is possible
to remove the least significant data from a dataset. While the compression
itself is nowhere near real compression algorithms, the resulting dataset is still
usable for data-analysis. Reducing a 512x512x512 dataset to f.x. 200x200x200
(a reduction to 40%, which means the original image is mostly retained[12])
means the runtime of a (O(N?)) method is reduced to 1/280.

15

Wavelet Compression

Wavelets compression consists of two steps:
1. Convert data using the wavelet-transform

2. Find the least significant slices in the cube of data and simply remove
them

In this case, least signicant slices means the slices whose removal alter the origal
image the least. As suggested by Vogt et[12] a good arimethic for finding these is
simply summing the slices, and selecting the smallest ones’ sums. Alternativly,
if for example the goal for datacompression was to retain as much detail as
possible in one part of the image while blurring, but keeping the rest, a different
aritmethic heavily weighting the relevant areas could be used.

The number of slices removed in this toolkit has been determined by a fix-
percentage for each axis given to the compression-function. A number of dif-
ferent algorithms, such as discarding all slices with sums lower than Mean - 2
* Standard Deviance could be used (which would ensure only sums very small
compared to the rest would be removed).

Wavelet Decompression
Wavelet decompression consists of the exact opposite steps:
1. Add slices of zeros where the slices of data were formerly removed
2. Convert wavelet back using inverse wavelet-transform
In order for step 1 to be actually possible, the positions of the slices removed in
compression has to be known.
Compressed Wavelet Storage

In order to save a compressed wavelet, two sets of information needs to be
stored;

Decompression information ; Number of slices removed on each axis, and
their position

Data ; The dimensions of the cube aswell as the actual cube.

The data needed is basically 3 vectors of slices removed aswell as the cubes,
and ideally, it should have been possible to simply save these through Scicraft.
Sadly, the only binary format supported by Scicraft at the time of writing is
the Matlab-fileformat, and its implementation does not support 3 dimensional
data. A non-binary format is not an alternative due to the size of the datasets.

16

40 550 580 GO 4D GED

Figure 3.1: Colour Spectrum

3.2 Physics
3.2.1 Light and Vision

Light is electromagnetic radition. It has wavelength, amplitude and frequency.
However, due to the speed of light being constant, wavelength and frequency
can be interchanged.

What is usually referred to as light in an everyday settings however, is light
with frequencies from 400nm to 700nm (Fig 3.1). Moreover, it is not light with
one specific wavelength, however it is rather a combination of many different
wavelengths.

Light itself has three physical properties:

intensity ; the amplitude of the lightwave, perceived by humans as brightness

wavelength ; (or frequency) the length of one oscillation, perceived by humans
as colour

polarisation ; angle of vibration, not visible for humans under normal circum-
1
stances

The human retina has three types of colour-receptors, cones. The forth
type of photoreceptor, the rod, is mainly concerned with illuminance at low
illuminance levels. Because there are exactly three types of colour-receptors
each giving off one single signal, three numerical components are needed to
adequatly describe colour. Each colour-receptor reacts with different strength
to different wavelengths (fig 3.2). Naturally, there are many different light-
spreads that will produce the exact same cone-response. For our perception of
a colour to be exactly similar from time to time, the surroundings will also need
to be similar as colour and lightness are relative measures. [ref BOKA JEG
KJOPTE]

3.3 Computer Science

3.3.1 Colour Representations

The toolkit has implemented two colour representations. Firstmost, standard
24-bit RGB is be used. Three values, range 0-255, depict the amount of re-

1Unless f.x. wearing polaroid sunglasses

17

420 498 53 504

100 —

Mormalised absorbance
Lk
(=]
|

M) S(K) GO0
Fiewles Filva { yan {emeen Feedifow Reod

Wavelength (nm)

Figure 3.2: Normalized Cone Response

spectivly Red, Green and Blue. Numerical differences in the RGB system does
however translate extremely badly to our perceived colour differences[1], and
as such, the relationships found when f.x. using Principal Component Analysis
does not correspond well to our expectations of similarity.

Secondly, a convertion to HLS has been supplied. HLS colour-space consists
of three values, Hue being an angle in the colour circle, Lightness being the
amount of light in the image and Saturation being the strength of the colour.
While numerical differences in HLS and the related HLB correspond better to
our interpretation of colour and lightness there are several problems. Firstly,
lightness is computed by (R+G+B)/3, which means it computes Yellow to be
about 6 times more ’'intense’ than Blue when the actual luminance is equal.
Secondly, Hue is next to always computed by dividing the colour circle into 60’
This introduces visible discontinuities in the colour space. Lastly, the disconti-
nuity between 360" and 0’ makes it impossible for use with regular arithmethics
[10].

18

Ly 1 T I I 1 LI | I'I UL L IIII ||||||

T

Chapter 4

Implementation

This chapter documents the implementation of the methods contained in the
toolkit.

4.1 Overview

Initially, the toolkit has been divided into three! parts:

e General : Containing methods for reading images, and the methods which
are meant to work on any dataset.

e 2D : Contains methods which work on matrix or cubes with dimensions
[XzY] or [XzY 3.

e 3D : Contains methods which works exclusivly on 3D datasets, such as
creating composite 2D-images or the 3D wavelet transform.

The 2D part of the toolkit deals almost exclusivly with colour images, and is
generally aimed towards data-massaging prior to Visualisation. The 3D parts
of the toolkit deals with Multivariate Images.

4.2 Programming Techniques
Some changes were made to Scicraft to improve performance on large datasets.

While any middle-tier program meant for ’glueing together’ applications means
incurring extra costs, some optimisation was needed.

LOn some screenshots, one may notice a fourth category wavelets. This was used internally
for methods concerning wavelets, as there was alot of trouble finalizing the design on this part
of the toolkit

19

4.2.1 Lazy initalization

With standard install, a node/method in Scicraft initalizes and computes all its
output-data regardless of wether or not it is requested. In the cases where a
node can output several different sets of data which may be computed seperatly,
it would be common sense to only compute the ones actually needed. Initially,
Scicraft did not support this. However, since methods in Python are first-class
citizens?, it was possible to overwrite the getData()-method which fetches the
data from the container object with the method that actually computes the
data. Obviously, in order to avoid calculating the same results several times,
the method inserted has to save its own result and return this directly after
the first computation. This ensured that the data would not be computed
prematurely, and that change could be introduced seamlessly without breaking
other functionality. A few changes to eliminate premature and unnecessary
getData()-calls was also needed.

4.2.2 Data duplication

Some methods and transforms duplicate data. With large datasets, the over-
head in memory usage, and ultimatly swap-memory usage can get excessivly
large. The original python-plugin used a pipe to transfer data over to a seperate
python-process. Furthermore, The data was truncated using the Pickle module
before transfer. This meant that, at worst, there were 5 seperate addional copies
of the data existing on the system. With datasets +100 Mb, this naturally had
quite an adverse affect on overall system speed.

To solve this, a simple python-plugin utilizing the same python-process was
written. While this is against the Scicraft-philosophy of keeping the GUI-process
as seperate as possible from the processing, the overhead was simply too high.
Several changes was also made to the ImagePlot-class responsible for generating
plots of images.

4.2.3 Dynamic Programming

Dynamic Programming is the basic principle of dividing an operation in to many
similar smaller operations to save computing. This, combined with simple result-
storing for potentially recurring queries have been used where appropriate. For
converting between RGB and HLS, the speed gain was substantial.

4.2.4 Fault Tolerance

Besides aiming for a clean documentation, no special techniques for fault tol-
erance has been used. When a crash occurs, the methods will not result in a

2je Methods/Functions are treated the same as variable names; it is possible to reference
and assign them

20

usuable result anyways, and as such, there is no need for state-restoration or al-
ternate actions on failure. The results already calculated will thus be available,
and an as sane as possible error-message will be provided by Scicraft.

4.3 General Imaging

4.3.1 Principal Compenent Analysis

The general PCA routine already found in Scicraft has been used.

Usage

It reduces a X2Y matrix into a X2Z matrix, where Z is given as a parameter
to the function. See 3.1.1

Implementation

See 3.1.1.

4.3.2 Normalisation

Normal Z-normalisation has been implemented. In this case, the matrixes will
be divided by their standard deviation and subsequently mean-centered.
Usage

Any number of matrix may be supplied to the function. The function will how-
ever merge these before calcaluting standard deviance and mean. The internal
differences between datasets supplied to this function is thus retained. This is
advantegous in cases where the data is obviously in the same format to begin
with, such as the three values in RGB. In order to seperatly normalize variables
this function have to be invoked indepently.

Implementation

Standard Deviation is calculated using the std method contained in MLab mod-
ule bundled with Numerical.

1. Data = Data / Standard Deviation(Data) * New Standard Deviation

2. Data = Data - Mean(Data) + New_ Mean

4.3.3 ImageRead

This function reads an imagefile and converts it into a datamatrix. The node
uses the Python Imaging Library which support all regular image formats.

21

Usage
A filename/path is supplied to the node and this file is read.

Implementation

Data is read using the Python Imaging Library, and subsequently converted to
Numeric. However, PIL uses custom list-objects, and in order for the convertion
to Numeric to work, the list has to be transformed to regular Python Objects.
While this solution is somewhat slow, and not very satisfactory aestithically, it
was found to be better than using QT to read the images and copy the pixels out
seperatly. PyQT? does not support copying the QImage data in one operation,
and thus contained just as much unneseccary copying. While writing own image
reading methods working directly on Numeric arrays was a possibility, this was
decided against due to the cost being incurred was only one-time and scaled
fairly well.

4.3.4 FileRead

This function reads a .HDR file containing image information. It is included
because the data we had available were in that format. This node was initially
meant to read alot of different formats, but this was not implented due to it
never being actually needed.

Useage

A file name to a .HDR file must be supplied. An .IMG file containing the actual
data must be in the same catalog with the same name.

4.4 2D-Imaging

The toolkit has two methods for visualizing score plots from PCA tranforms.
The Density-Plot transform can be used on dataset reduced to two variables.
It works by simply viewing the two variables as co-ordinates in a new plot
and retaining the original colour. On the other hand, the regular colour-plot
works exactly the opposite, it retains positional information, and uses the new
variables as colours directly.

The latter way is the common way of visualising score plots. The variables as
positional information approach does have the advantes of very easily visualising
the relationships between the pixels and discerning the defining features of an
image (as far as PCA goes that is). Combined with a mapping between the
original image, allowing one easily to find the original positions of a group of
pixels this seems to be a very usefull tool.

3The Python bindings for QT

22

4.4.1 Density-Plot transform

The Density-Plot works by simply viewing the supplied variables as co-ordinates,
and places them with their original colour into the new image.

Usage

The data is normalized, and projected into a new image. Image colour is given
by the original colour of the pixel, while intensity is given by the number of
pixels placed there. A parameter is used to determine the background colour
of pixels which aren’t mapped to. Tables depicting which pixels were placed
where were created to utilize the Dynamic Mappings implemented. Some magic
numbers* have been used. For positions with several pixels placed in them, the
average colour is used. Positions with many pixels placed into them will be
brightened up, while positions with few pixel placed will be darkened.

Implementation

1. Let ListL1 and ListL2
2. For each pair of co-ordinates in original image (X,Y) do:

(a) Find values (X’,Y”) in new image on position (X,Y)
(b) Find co-ordinates on new Image (X', Y”) and find placement (X", Y")
using linear interpolation with new Image size and max/min values
of (X', Y").
Add entries for original pixel (X,Y) and new pixel (X”,Y") in tables
creating lookuptables for the relationship between the pixels
lookuptable from oriforiginal x, original y] = (x,y)
lookuptable_ from _new[x,y| += (original _x, original y)
3. For each pixel in new image do:

(a) Set colour to the colour original pixel had. Where several pixels was

placed, use the average.

(b) Scale colour by multiplying with 0.6 + 0.8 * number of pixels here /
max number of pixels at any pixel.

4.4.2 Dynamic Mapping

The imageviewing capabilities of Scicraft has been improved to enable dynamic
mappings between plots. Provided the ’lookupdata’ property is set, if an area
is selected in the image, a window will pop up showing the corresponding data
in the linked-to image.

4Magic numbers are numbers chosen ’just because they work’ and are thrown directly into
the code without explanation or justification

23

Usage

Use a method which sets the lookupdata property, plot the data in a ’2D-Plot:
Image’. To see the source of a portion of the data, simply select it with the
mouse.

Implentation
1. For each pixel in ’list of pixels selected in image’:

(a) Use ’lookupdata’ to find out which pixels was placed here

(b) Plot the pixels found, with position and colour taken from the target
image

4.4.3 Autoscaling

A simple method which ensures that all values are between 0 and 255. Lowest
value is set to 0, and the spectrum is linearly stretched so maximum is 255.

This is the most common way of visualising score plots. ie simply trans-
forming data down to three variables, scaling these and using these directly as
colour values.

Implementation
1. Input = Input - min(array)
2. Onput = Input * 255 / (Max(array)-Min(array))

4.4.4 Fold / Unfold

Principal Component Analysis can not be done on cubes. However, by collaps-
ing/folding the cube into a matrix PCA can be used, and the result can be
expanded/unfolded back into a cube. Since PCA doesn’t concern itself with
the order of pixels, any information from pixel placement was lost anyways and
collapsing the matrix will thus not make any difference.

The Fold / Unfold functions provided in the toolkit folds and unfolds a cube.

Usage

The Fold function takes a cube, and outputs the converted matrix and the
former dimensions of the cube. The Unfold function takes a matrix and a set
of dimensions and converts them into a cube.

Implementation

data.shape = new_shape

24

4.5 3D-Imaging
4.5.1 Wavelets

See 3.1.3 and ’Utilizing three-dimensional wavelet transforms for accelerated
evaluation of hyperspectral image cubes’[12]. The steps explained in these can
be summaried to:

1. Preprocessing: Add zeros to the dataset until it is of the format Xz Xz X
where X is the power of two.

2. Wavelet: Use the wavelet transform

3. Removal: Remove the least significant slices of data in all three directions
(ie, the slices whose removal will affect the inverse-transform the least)

4. Processing: One now has a reduced orthogonal dataset which one may
transform in any way one wishes

5. Adding: Insert the slices removed earlier, only now with zeros.
6. Inverse Wavelet: Use the inverse wavelet transform

7. Postprocessing: Crop the dataset down until its original size

4.5.2 Wavelet transform

Using the wavelet transform for cubes supplied originally belong to the freely
avaiable wavelab package, Copyright (c) 1993. David L. Donoho. It was mod-
ified for use on 3D Matrix by Vicki Yang and Brani Vidakovic, ISyE, GaTech
2002.

All results were done using Van Den Haar basic transform. However other
transforms available were also tried. For comparisons on different basic trans-
forms for compression please refer to 'Utilizing three-dimensional wavelet trans-
forms for accelerated evaluation of hyperspectral image cubes’[12]

Usage

Called with a cubic dataset, meaning XzXxX, most likely 12821282128 or
25622562256.

4.5.3 Shrinking Wavelets

Using the algorithm discussed in 3.1.3 and [12] for selecting and removing slices.
The inverse of this functions expands the dataset back by adding 0’s where data
was removed.

25

Chapter 5

Results: 2D

This chapter contains examples of usage of the methods implemented in the
2D’ package. Please refer to the Implentation chapter for details on the work-
ings of methods described and the Background chapter for theory on regular
Multivariate Image analysis and Principal Compenent Analysis.

5.1 Example 1

This simple example is meant to show how the methods are used, and how
they can be combined. Figure 5.1 shows what is called a ModuleDiagram in
Scicraft. Each box, called a node, showed there represents a method. Most the
methods used in this toolkit have been implemented in Python, however some
are only avaiable through Octave!. The methods can be arranged in any, and by
double-clicking on the nodes you get an option box where you can set optional
parameters. The 'ImageRead’ node for example, allows one to specify filename
to be read.

5.1.1 Setup

The workflow of the Module Diagram shown in figure 5.1 is as following;

1. ImageRead reads the imagefile specified by a preset parameter, resulting
in a 400x600x3 matrix representation of the image.

2. CreateVariables transforms supplies several transformed images, however
these are not actually computed until requested. These are of the format
400x600.

3. MergeVariables request variables from CreateVariables, in this case, it was
set to request Hue, Lightness and Saturation. These are re-combined into
a 400x600x3 cube.

LOpen Source clone of Matlab

26

Saifraift - [Dansicy Plor L zrnel] erENe

le Actions Window Toocls Help = [&][x]

D& &> 8]~ L]

L. E
emmniznebs

[T I D]
Status |che =

Finished AutoScale 1]a
Finished CreateVarial~™

3
$
|

--Nodes

b~ contrib
core

Edits
FileHandlers
Plots

Tests

I R B B S

|Ready ‘ 0%

Figure 5.1: Module Diagram Example 1 in Scicraft

4. AutoScale linearly scales the data it receives from MergeVariables, en-
suring that all variables in the 400x600x3 are between 0-255. This is a
prerequise for using the ImagePlot.

5. Plot 2D 1, when opened, shows the original Image, aswell as the merged
cube containing Hue, Lightness, Saturation instead of R, G, B.

6. Plot 2D 2, when opened, shows the 9 different transforms created from
CreateVariables. The six transforms not yet computed are computed at
this time.

5.1.2 Original Image and Merged Image

Figure 5.2 contains the resulting images after running the example. The first
picture is simply the original image. In the second picture, Hue, Lightness
and Saturation was used directly as the RGB Colour components. While the
resulting image from this transform is not especially interesting, it shows how
transforms work and how any XzYx3 matrix can be used as an image.

5.1.3 Plots from CreateVariables

Figure 5.3 contains the resulting images from the CreateVariables method.
While this method was created for building variables for later reduction through
Principal Component Analysis(PCA), the components are useable in other set-
tings.

The different images in Figure 5.3 are respectivly:

27

i o visay

File Edit View

T T T
200 300

T T
400 500

T T
200 300

nents

i Ploe iz =2

Figure 5.2: Hue, Lightness and Saturation used directly as the colour compo-

Eile Edit View

=GO

R T T
200 300 400 500 600

e] T B T A T o T
100 200 300 400 500 600 100 200 300 400 500 600

T
100

T
200

T - T T
300 400

1 e e T SR D e Toa e T S T
500 600 100 200 300 400 500 600 100 200 300 400 500 600

T
1lo0

R L]
200 300 400 500

™1 T
600

0 U U v T T T T T A T B |
100 200 300 400 500 600 100 200 300 400 500 600

Figure 5.3: Outputs from CreateVariables

28

X-Position Y-Position Distance to Sentrum
Lightness Hue Saturation
Red Green Band

The top three elements are naturally only dependant image size. Their use is for
re-introducing position information into PCA (see 3.1.1). The middle variables
stem from a conversion to HLS Colour space(see 3.3.1). Lightness is amount
of background lighting in the colour, hue is an angle in the colour circle, while
saturation is the purity, or strength, of the colour. The last three are merely
the regular RGB values seperated into slices.

5.1.4 Speed

These results were made using Mandrake 10.2 Testing on a Dell Inspiron 8200.
Please refer to 2.5.2 for complete System specification.

Name ‘ Speed(S)
ImageRead 4.8506500721
CreateVariables 0.0136461257935
Plot2DNode 0.000693798065186
MergeVariables 6.68285107613

5.2 Example: PCA on 2D-Image

Two main methods for visualiszing PCA-Score values have been implemented.
The most common way is to reduce a dataset down to three variables which
are used directly as colour components. This means keeping pixel positions the
same as in the original image. Alternativly, one may do the exact opposite,
retain original pixel colours, and use the new variables as co-ordinates. This
example is an example of the former.

Module Diagram

This example is fairly similar to the previous one. However, after merging the
variables into a cube, the cube is folded into a matrix, reduced using Principal
Component Analysis and subsequently unfolded back into a cube. The two red
nodes are merely nodes which show their inputs in a popup box on-screen.

1. 'ImageRead’ reads the image specificed: 420x300x3

2. 'CreateVariables’ supplies variables to 'MergeVariables’, which requests
and merges X, Y, Distance to Sentrum, Hue, Lightness and Saturation.
(420x300x3 to 6 * 420x300 to 420x300x6)

3. ’Fold’ transforms the cube 420x300x6 into a matrix 1260 x 6 .
4. 'PCA’ reduces the 1260x6 matrix to a 1260x3 matrix.
5. 'Unfold’ unfolds the 1260x3 matrix back into a 420x300x3 cube

29

§ scicraft - I=xamplez 2.zmd)

£ File Actions Window Tools Help - [MEES
0w E[> 8 [RTL] _
E i
i ZD-iAuloS:a\e =
H D createvariables
% ~@Densityl
EFold
¥l MergeVvariables
L L o
Bunfold =
T T
Ready 0% 4
Figure 5.4: Module Diagram Example 2
6. ’Autoscale’ linearly scales the values in the cube to 0-255.
7. ’Plot2D 1’ can be opened to show the originalimage and the new cube.
Scores
Variabel Used as ‘ Dist. Y X Satur. Light Hue
1 Red 0.040 0.973 -0.007 -0.005 -0.013 0.227
2 Green | -0.626 0.181 0.322 0.043 0.235 -0.643
3 Blue 0.250 -0.046 0.944 -0.039 -0.107 0.175

As explained in 3.1.1 the scores are the new variables weightings of the old

variables.

Looking at Red, the first value computed, one can conclude there is a rela-
tionship between Y-Position and Hue. As the darker variants of red in the upper
parts of the picture carries the same hue as the lighter parts further down, this

certainly seems correct.

Looking at Green, the second most determining feature of the image was the
relationship between distance to centrum, hue (ie; lack of red) and lightness.
Lastly, the third variable created shows a relationship between the right (and

to some degree bottom) part of the picture with hue and darkness.

30

£ Plob iz

File Edit View

=1E=

100 —

200 —

300 —

400 —|

T T T T T T[T T T T T T T T T T T T
50 100 150 200 250 300 50 100 150 200 250 300

Figure 5.5: Resulting Images Example 2

31

= A B B o =) &

£ File Actions Window Tools Help M=

|0 &>][]
B BB

Finished
O]
|Ready | 0% @

Figure 5.6: Module Diagram Example 3

Speed
Name Speed(S)
AutoScale 0.107710838318
Plot2DNode 0.000708103179932
ImageRead 2.48364019394
CreateVariables 0.0123908519745
MergeVariables 4.14734101295
Fold 0.0204799175262
ScreenDumpNode 0.002925157547
pca 67.8035509586
Unfold 0.0199151039124
ScreenDumpNode 0.015310049057

5.3 Example: Density Plot

The first example in this chapter used the new values supplied as colours while
using the original image for pixelpositions. The Density Plot simply does the
opposite; it accepts a list of paired numbers which it uses for co-ordinates while
using the pixels original colour when plotting.

Since not all pixels in the new image may have pixels set, background colour
may be chosen as a parameter. For the new positions where several pixels are
set the average colour will be used (taken linearly using the seperate RGB-
components). In order to visualize pixels placements, positions where several
pixels have been placed will be brightened up, and positions with few darkened.
Please refer to [implementation] for specific details.

5.3.1 Module Diagram

1. ’ImageRead’ reads image.

32

Eile Edit Wiew

BsS @

100 +

200 +

300 +

400 +

D e] =y o T L TR
50 100 150 200 250 300 20 40 60 80 100 120

Figure 5.7: Resulting Images Example 3. Pink lines and numbers are inserted.
The different areas were selected and their origin plotted in Figure
5.8

2. ’'CreateVariables’ supplies Lightness and Saturation to 'MergeVariables’
which are merged into a cube.

3. 'Fold’ folds the cube into a long list of numberpairs

4. 'Density 1’ creates a Density Plot of the Image, and sets the appropriate
"Lookupdata’ properties in order to preserve the relationship between the
images.

5. Plot 2D shows the Image. By selecting parts of the image, a pop-up will
appear showing which part of the other image the selected part corre-
sponds to.

Resulting Images

The resulting images can be found at figure 5.7. By using the Dynamic Mapping
implemented, the images corresponding to the six areas in the second picture
on 5.7 can be found on 5.8

33

8 acicraitpy <Y

4 acicraft.py

£ 4 adiaraftpy <=

T ™

S aScieraitoy =S

Figure 5.8: The different areas selected in image 2 on Figure 5.7

gejaraft,uy <&z

34

it iy <=

i Seicrafi - [Ecampl2 2 zme] eNGE
§ File Actions Window Tools Help =131
—~
|0 = &[> m[k]L]
2. Nodes
+-contrib
+-core =
+-Edits
= +-FileHandlers
+-Plots —
Fold 1 +-Tests -
il <]
% Status |Node | =
Finished Createvariables 1
Finished Densityl 1 =
Ready 0% 4
U SeiCrait - Evant =2 O % | N Seilrafi - Svant g,

NodeEvent INFO

NodeEvent INFO

Output from screendump:

---run 1 ---

Port: Datal

Data name: P

walue: [[-0.08764338 -0.07652689 -0.06486308 0.991
0.03852827]

[-0.22815312 -0.25555478 -0.25074173 -0.09140555 0.90078383]]

Output from screendump:

---run 1 ---

Port: Datal

Data name: key

033864 walue: ['blueband', ‘greenband', redband', 'yband', 'xband']

Figure 5.9: Module

Diagram: No normalisation example

Speed
Name Speed(S)
ImageRead 7.43504214287
CreateVariables 0.0262589454651
MergeVariables 2.23696804047
Fold 0.00427508354187
ScreenDumpNode | 0.00141596794128
pca 107.233451843
ScreenDumpNode | 0.0392458438873
Density1l 25.0737512112
Plot2DNode 0.000715017318726

5.4 Examples: Normalisation

5.4.1 Example without Normalisation

Fig 5.9 shows the Module Diagram used and the popups from the two red nodes
showing the data they received. What happens is:

1. ImageRead reads image and CreateVariables extract the R,G and B colour
values aswell as the X and Y positional information for each pixel.

35

£ plot iz

File Edit View

1=

40

100

120

T T T T T T T T T T T T T T T T T T
100 200 200 400 500 20 40 60 80 100 120

Figure 5.10: Example without normalisation: Result 1

2. MergeVariable builds a matrix where each item consists of R,G,B,X and
Y for each pixel. Fold folds this into a list of R,G,B,X and Y values.

3. Principal Component Analysis reduces the dataset down to two new vari-
ables. Their scores are shown in the left box on fig 5.9 and the name of
the variables are on the right box.

4. Density Plot uses the new values as co-ordinates and builds a new image

using these new co-ordinates and their original colour.

5.4.2 Results

Figure 5.10 shows the two resulting images. The scores for the variables are (as
shown in fig 5.9:

Variabel Used as ‘ Blue. Green Red Y X
1 X -0.087 -0.077 -0.065 0.990 0.038
2 Y -0.228 -0.256 -0.251 -0.091 0.901

36

§ seicraii - [Ecanmgl=d 2.z2md]

EE
£ Eile Actions Window Tools Help S,
)
|10 = &[> m][k]1]
=-Modes
+- contrib
+-core
+-Edits
+-FileHandlers
+-Plots
#-Tests
g +-Userinputs
A ZeiCraft - Evant w i CNE

NodeEvent INFO

NodeEvent INFO

Output from screendump:
---run 1 ---

Port: Datal

Data name: key

Value: ['Data', 'Y', 'Data’, 'B','G']

Output from screendump:

-=-run 1 -

Port: Datal

Data name: P

Value: [[-0.57958341 0.13724731 0.17202174 -0.52126757
-0.58645963]

[0.1076522 0.98592734 -0.09818492 0.01737424 0.08010078]]

Figure 5.11: Module Diagram: No normalisation example

As one can see from both the resulting image and the score plot the dataset
is really dominated by the X and Y components. Part of the reason for this is
the maximum and minimum values were simply larger than the colour values.
Naturally, this is like comparing apples to pears, as there is no way to tell
how two absolute values with different connotations should be compared. The
common answer to this problem is of course normalisation, ensuring that all
variables are treated somewhat equally.

5.4.3 Example with Normalisation

Fig 5.11 shows the modified ModuleDiagram. In this case, the R,G and B values
are normalised together, meaning standard deviance and mean is computed for
them together. The reason for this is that the relative values really do contain
information between the colour bands. Very low R and generally high G and B
values simply mean there is little red in the picture and the values should reflect
this. The X and Y values are also normalised together.

By normalised, it is here meant z-normalisation, ie setting standard deviance
and the mean is set to a specific amount.

5.4.4 Results

Figure 5.12 shows the two resulting images. The scores for the variables are (as
shown in fig 5.11:

37

3 Plat Sz AT SMEsizrion

Eile Edit View

I8s(@

Figure 5.12: Example with normalisation: the rightmost picture is what the
selected area in the middle image correspond to

Variabel Used as ‘ X Y Red Blue Green
1 X -0.579 0.137 0.172 -0.521 -0.586
2 Y 0.107 0.986 -0.098 0.017 0.070

As one can see from the score plot, the first variable is just as much dependant
on Blue and Green as X now. A possible interpretation is as one goes left,
there is a distinct lack of green and blue. However, looking at the source image
this does not seem to make much sense since the image is in Black and White.
To some extent this example highlights the problems with normalisation: when
there is very little differences the small, somewhat random, differences that are
will be magnified.

In essence, the non-normalised image made more sense in this case. This
was not the case with other images.

38

Chapter 6

Results; 3D

This chapter contains examples using storing, loading datasets converted by
Wavelets. It also contains examples of using PCA on said wavelets and sum-
maries of time and storage-savings.

6.1 Example Data

The image used as example in this chapter was provided by NEO. It is a
76023622160 satelite image, with 160 pictures taken from wavelengths 410NM
to 997NM. As this is a satelite image, there is sadly no original image ot use
a frame of reference. The data was provided in a XXX large file, with each
value being a short. Furthermore, a text-file containing meta-information and
datastructure details was provided.

6.2 Composite Images

When dealing with actual lightdata, it is a natural for the goal of any visu-
alisation to be as realistic as possible. Since we use our own vision as the
frame of refence for similarity, this goal can be paraphrased into making sure
the light produced by the output device (be it a printer, computer-screen or a
TV) results in the same cone-responce as the original light. While a perfect re-
sult is impossible, as colour-reproduction on computer screens actually do vary
quite alot depending on both colour-settings, manufacturer and type of device,
they are atleast fairly similar. As the different cone-responses have been quite
accuratly measured a good, although not perfect, approach is to calculate the
cone-responses generated from the light-spread in question, and choose the RGB
values which (provided RGB was translated into pure colours) would generate
the exact same cone-response.

The approach of using seperate slices for the colour components is simple and
fast, and can produce good results most of the time. Packages like TN'T[7] auto-
matically selects the most noise-free bands. However, this does mean throwing

39

§ ssicraft - [=earrplzan zmed] 2151

§ tilz Actions Wincow lools Help =3

| @ &>][~]

=-Nodes
+- contrib

1 care
+ Edits
+ FileHandlers l

+-Plots

o Tact ﬂ
M 1]
Status |Nude | =

Finisked Composice_slices 1
Finisted Composie_total 1

| Razdy | 0%

=

Figure 6.1: Example set up in Scicraft

away alot of colour-information that our eyes are capable of interpreting, and
as such you will always loose details and shadings. The amount lost will differ
depending on the materials and the type of picture though.

6.2.1 Example

This example reads the IMG file set by ‘DataRead 1’, and the two different meth-
ods for creating composite images are used. The image from composite total
transform is also brightened up by multiplying the matrix by 1.2.

1. DataRead reads the image file.

2. Composite_total and Composite_slices simultaniously transform the orig-
inal dataset into images!

3. Multiply takes the output from Composite totals and multiply it by 1.2.

6.2.2 Comparison
Quality

Upon close inspections, there seem to be some differences in the level of detail
on the images. The little shack right of the lowermost house is perceivably more
fine-grained on the transform using the whole picture. The roads and some
features on the grass also seem to be different.

IXxYx3

40

3 Hlacyi=s

FLEES 3 Plor iz S

File Edit View

Zile Edit Wiew

EIEEE

IEIE=

10C

20C 1

30C +

40C

50

|

00

150

200

250 300 350

50 100 150 200

Figure 6.2: Resulting Images

41

Figure 6.3: Blown up images of Fig 6.2

42

d =&

File Actions Window Tools Help M=

]
0 & @[> 8% 1] _
=-Nedes

- contrib
i - Classification
. #-Design

! -image

420
30
(Rl Composite_slices

] L-@composite_total [7]
[i TT«Ix]
Status |Nude |
Finished Composite_slices 1
Finished DataRead 1
Finished Plot2D 1

3

4

‘ Ready ‘ 0%

Figure 6.4: Example set up in Scicraft

Colouring

The colouring on the image from the transform seems to be somewhat off. The
colouring will however only be as good the transfer-function is, and the one used
here was not tuned and quite crude to begin with. The image created from the
slices does seem to be overly green.

6.3 Wavelets

Please refer to Background 3.1.3 for explanations.

6.4 Wavelet Examples

This section contains several different examples using wavelets.

6.4.1 Transform and Inverse Transform

This examples shows the forward and the inverse wavelet transform used on a
dataset.
The ModuleDiagram can be seen in fig 6.4

1. XXX Reads data
2. 3D Wavelet transforms data

3. 3D Wavelet Inv transforms data back

43

Result

[include graphic]
As one can see, although the wavelet transform is lossy, there is no perceiv-
able difference between the image.

Speed

Name ‘ Speed(S)
Wavelet3D 210.61946702
shrink wavelet 2.47157406807
shrink wavelet _inv | 0.191494941711
wavelet3D _inv 212.955876112

As one can see, the Wavelet transform run in octave on a 128x128x128 matrix
takes time. Comparably, as long as one chooses sound algorithmal approaches
2 the tim e spent on the rest will be inconsequental.

6.4.2 Wavelet Compression

Please refer to 3.1.3.

This example compresses and decompresses the dataset to different sizes and
compares the results with original image.

Fig 6.5 shows the ModuleDiagram used.

1. DataRead 1 reads data.
2. Wavelet3D 1 carries out the wavelet transform

3. Shrink Wavelet 1 reduces the size of the cube by a percentage set in a
parameter

4. Shrink Wavelet_inv 1 increases returns the cube to the original size by
inserting 0’s.

5. Wavelet3D _inv carries out the inverse wavelet transform.

Results
Figure = Name ‘ Dimensions Size
Original | 12821282128 4MB
6.6 5% 96296296 1.69MB
6.7 50% 64264264 0.5MB
6.8 25% 32232232 0.06MB

2As an example the shrink _wavelet method used in the next example took 185 seconds
with regular double For statements and pixel for pixel operations, which was slashed to under
a second with regular Numeric arithmethic

44

G&E

i <arripla3r) 4 2] e
§ Eile Actions Window Tools Help [MEIES
|
=-Nodes
=-contrib
E m +- Classification

4-Design

=-Image

{odezD

)

i - General

§ dewavelets

i Regression
+- Signal-Processing
core

-Edits
FileHandlers
Plots

-Tests

Userlnputs

Status Node

Finished DataRead 1

Not started Plot2D 1

Finished shrink_wavelet 1
Finished shrink_wavelet_inv 1
Finished Wavelet3D 1
Running Wavelet3D_inv 1

Runnin 62%
&

[T

Figure 6.5: Example set up in Scicraft

Yol %
File Edit Wiew
Ho@
S e S SRR S E e R T P e [e o
20 40 60 80 100 120 20 40 60 80 100 120

Figure 6.6: Result of compression to 75% pr axis

45

£ Ploi iy enG)

File Edit View

H o @A

L e e e o o e e 'I‘\‘\‘\‘\'|'I‘\‘\'|'I'|‘
20 40 60 80 100 120 80 100 120

Figure 6.7: Result of compression to 50% pr axis

-]o
File Edit View
E1E=]
T T e ..“‘“‘w.|..“w.|...|‘
20 40 60 80 100 120 80 100 120

Figure 6.8: Result of compression to 25% pr axis

46

Chapter 7

Conclusion

7.1 Summary

The features in the toolkit in the toolkit are working as intended. The ground
work for visualisation mappings and relationships between datasets have been
finished. Examples of use have been provided, and results visualised. Notably,
using wavelets for decompression of large dataset prior to other analysis work.
Multivariate Image Analysis is viable on regular Workstations.

7.2 Evaluation

The majority of features simply work. Contrary to what was believed at the
start, all methods were implemented cleanly, and there are no special precondi-
tions or "hacks’ needed for the methods to work.

Using Wavelets for Compression/Decompression prior to other dataanal-
ysis work.

Using PCA and Folding/Unfolding of the datasets needed work.

Visualising data in a variety of forms work.

Some Image enhancement methods have been implemented.

Speed is, somewhat surprisingly (and actually contrary to what the first
draft of this document said) not an issue; all 'For sentences’ iterating pixel

LAt the time, some pure Python code was present which has now been replaced with
Numeric code

47

by pixel in Python have been replaced by fairly efficient Numeric operations.
While it most certainly is possible to speed up the Python code, the bottleneck
is the Principal Component Analysis and Wavelet methods written in Octave.
Rewriting these in a faster language, aswell as using a faster algorithm for
Principal Component Analysis will help alot more than any code optimization
could ever do on the rest of the code.

Dynamic Mappings are working as intended, and with very few changes to
the Scicraft base. Lazy initialisation for some methods have introduced notable
speed increasements. In this regard, Python really showed its flexibility. The
solutions created were simple, clean and efficient. While further interactivity
and live-transformations would be preferable, it is not currently possible with
Scicraft.

Some features work, like the Filters are inadequatly implemented. They are
not as flexible and fault-tolerant as they should be. As such, the toolkit is not
by any means a mature product. Addionally, some methods like the Density
Plot use Magic Numbers (numbers which cannot be changed easily and were
chosen without any other justification than ’they work’). These should either
by justified or moved out as parameters for the functions.

While the toolkit is stable for anyone familiar with its workings, it is doubt-
full it will hold long against a novice user. Good error messages are mainly
lacking.

Lastly, good datastructures for Meta-information were not created (or rather,
they were not able to be integrated cleanly with Scicraft). The lack of f.x. wave-
length information on the images passed around is notable.

While it was a goal for the toolkit to work stand-alone aswell as with Scicraft,
this was not accomplished.

7.3 Discussion / Further Work

Initially, the 2D part of the toolkit was only meant for visualising and data-
massaging pre-visualisation. However, as smaller datasets were wanted for test-
ing, regular images was expanded with various extra data. The author of this
paper has not seen this done anywhere else 2. Under testing, interesting results
were found on some images, however the results seemed a bit random. While it
may not appear usefull at first sight, there may be possibilities of creating more
usefull and specialised transforms by further experimentation.

While still offering the possibility of visualising score plots one and one by
using a colour scale for the values, two new possibilities have been offered. How-
ever using three different score plots directly as the three colour componenets
seemed a bit confusing for the eye. On the other hand, the Density Plot trans-
form really does seem usefull, and is also something the author has never seen
in Multivariate Image Analysis before.

2For that matter, the author has neither ever seen anyone jump of a building

48

Bibliography

[1]

2]
3]

[4]

[5]
[6]
7]
18]
[9]

[10]
[11]

[12]

[13]

LeRoy E. DeMarsh and Edward J. Giorgianni. Color science for imaging
systems. Physics Today, September 1989, 44-52.

Alain Fournier. Wavelets and their applications in computer graphics. 1994.

Paul Geladi and Hans Grahn. Multivariate Image Analysis. John Wiley &
Sons, 1997.

A. Graps. An introduction to wavelets. IEEE Computational Science €9
Engineering, Summer, 1995.

http://sourceforge.net /projects /numpy.
http://www.censsis.neu.edu/software /hyperspectral /hyperspectral.html.
http://www.microimages.com/getstart /hypanly.htm.
http://www.trolltech.no.

Ueda Masami and Suresh Lodha. WAVELETS: AN ELEMENTARY IN-
TRODUCTION AND EXAMPLES. Technical Report UCSC-CRL-94-47,
University of California, Santa Cruz, Jack Baskin School of Engineering,
January 1995.

Charles A. Poynton. Frequently asked questions about color. 1997-03-02a.

Brani Vidakovi¢ and Peter Miiller. Wavelets for kids: A tutorial introduc-
tion. 1994.

Frank Vogt, Soame Banerji, and Karl Booksh. Utilizing three-dimensional
wavelet transforms for accelerated evaluation of hyperspectral image cubes.
JOURNAL OF CHEMOMETRICS, J. Chemometrics 2004; 18: 350-362.

Barry M. Wise and Paul Geladi. Multivariate image analysis. Wiley, Wilch-
ester, 1996.

49

