
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG ELEKTROTEKNIKK

MASTEROPPGAVE

Kandidatens navn: Kristian Eide

Fag: Datateknikk

Oppgavens tittel (norsk):

Oppgavens tittel (engelsk): Use of GPU Functionality in Volume Rendering

Oppgavens tekst:

Modern graphics cards include a GPU which is capable of executing small vertex and fragment

shader program directly on the card itself. This unit's primary purpose is to enable real-time

shading, however, the instruction set available has proved sufficiently general for performing

other types of computations as well.

This thesis explores ways of taking advantage of the GPU in the field of volume rendering;

specifically  the  ray casting  technique  and the  optimizations it  enables.  In addition,  it  also

investigates  how transparent  polygonal  geometry embedded in  a  volume can be  rendered

correctly.

Oppgaven gitt: 03. september 2004

Besvarelsen leveres innen: 28. januar 2005

Besvarelsen levert: 28. januar 2005

Utført ved: Institutt for datateknikk og informasjonsvitenskap

Veileder: Torbjørn Hallgren og Morten Eriksen

Trondheim, 28. januar 2005

Torbjørn Hallgren

Faglærer





Preface

This document is the Master thesis of Kristian Eide, prepared in the Fall of

2004, as the final part of his Master of Science degree from the Norwegian

University of Science and Technology. He would like to extend his thanks

to his research mentors, Torbjørn Hallgren of NTNU and Morten Eriksen

of Systems in Motion, as well as Øystein Handegard and Peder Blekken for

their input on volume rendering and OpenGL.





Summary

Volume rendering describes the processes of creating a 2D projection of

a  3D  discretely  sampled  data  set.  This  field  has  a  number  of

applications, most notably within medical imaging, where the output of

CT and MRI scanners is a volume data set, as well as geology where

seismic surveys are visualized as an aid when searching for oil & gas.

Rendering a volume is a computationally intensive task due to the large

amount of data that needs to be processed, and it is only recently, with

the advent of commodity 3D accelerator cards, that interactive rendering

of volumes has become possible.

The latest versions of 3D graphics cards include a Graphics Processing

Unit, or GPU, which is capable of executing small code fragments at

very  high  speed.  These  small  programs,  while  not  as  flexible  as

traditional  programming,  still  represent  a  significant  improvement  in

what  is  possible  to  achieve  with  the  added  computational  ability

provided by the graphics card.

This thesis explores how volume rendering can be enhanced by the use

of a GPU. In particular, it shows an improvement to the GPU-based ray-

casting approach presented in [1] and also a method for integrating the

“depth  peeling”  technique  [6]  with  a  volume  renderer  for  correctly

rendering transparent geometry embedded in the volume.

In addition, an introduction to volume rendering and GPU programming

is given, and a rendering of a volume with the Phong illumination model

is shown.





Table of Contents

Chapter 1
Introduction 1
Chapter 2
Project description 5

2.1 Thesis mandate.......................................................................................................6
2.2 Problem text...........................................................................................................6

2.2.1 Original thesis proposal..................................................................................6
2.2.2 Final thesis text...............................................................................................6

Chapter 3
Volume rendering methods 7

3.1 Volume rendering explained..................................................................................8
3.1.1 Classification..................................................................................................9
3.1.2 Clipping planes...............................................................................................9
3.1.3 Compositing...................................................................................................9
3.1.4 Partial ray compositing.................................................................................12
3.1.5 Other compositing operations.......................................................................12

3.2 Challenges in volume rendering...........................................................................12
3.3 Applications of volume rendering........................................................................13
3.4 Volume rendering methods..................................................................................14

3.4.1 2D texture-based volume rendering.............................................................14
3.4.2 3D texture-based volume rendering.............................................................15
3.4.3 Ray casting...................................................................................................16

Chapter 4
GPU Programming 17

4.1 Evolution of graphics hardware...........................................................................18
4.2 GPU programming explained...............................................................................19

4.2.1 Phong shading..............................................................................................20
4.3 A more complex example: Environment mapping...............................................22

Chapter 5
Near neighbor approach to GPU-based volume rendering 25
Chapter 6
Transparent Polygonal Geometry in Volume Rendering 33
Chapter 7
Results 41

7.1 The near neighbor skipping optimization technique............................................42
7.2 Embedded transparent geometry..........................................................................44
7.3 Illumination in volume rendering.........................................................................45

Chapter 8
Discussion 47
Chapter 9
Conclusions 49
Chapter 10
Future work 51
Chapter 11
Bibliography 53





Chapter 1

Introduction



Introduction

Volume rendering is the process of transforming a set of discrete sample

points in three dimensions to an image in two dimensions which can be

viewed on a  computer  display.  Since  the  size of  a  volume data set

increases with the cube of the length of its sides even relatively small

volumes  contain  a  significant  number  of  samples,  more  commonly

called  voxels for  volume  elements,  and  for  this  reason  are

computationally expensive to render.

While volume data has typically been rendered in software running on a

general-purpose CPU at speeds well below that required for interactive

visualization,  3D  accelerator  cards  support  texturing,  projecting  an

image onto the surface of geometry, which is fast enough to allow it to

be  used  for  interactive  volume  rendering.  This  is  accomplished  by

drawing what is called “proxy geometry”, usually planes, onto which the

graphics accelerator draws texture slices from the volume. By drawing a

large enough number of slices, a very realistic rendering of the volume

can be realized. The first generations of 3D cards only supported 2D

textures, which have some drawbacks when used for volume rendering

as we shall see in chapter 3, while newer cards also support 3D textures

which allow for a more natural way to organize the volume data.

The  latest  generations  of  3D  accelerator  cards  include  a  Graphics

Processing  Unit (GPU), essentially  a  co-processor  specialized  for

performing graphics  tasks.  This specialization gives it  less  flexibility

compared  to  the  CPU, but  also  allows  it  to  execute  instructions  in

parallel at a far higher rate than what CPUs are capable of. It also allows

them to  increase  in  speed much more  rapidly  than  general-purpose

processors,  which  makes  them  an  especially  attractive platform  for

developing computation-intensive programs.

In this thesis I explore how the GPU can be utilized to improve various

aspects of volume rendering. An approach to performing ray casting, the

preferred way of rendering volumes in software, by taking advantage of

the GPU has been proposed previously, and I improve on this approach

by integrating near neighbor skipping, also a technique well-known in

software-based  ray  casting.  I  also  show  how  “depth  peeling”,  a

technique  for  correctly  rendering  scenes  with  transparent  geometry

independently of the order in which geometric primitives arrive, can be

integrated into a volume renderer.

2



Introduction

The rest of this thesis is organized as follows. Chapter 2 presents the

original thesis proposal, as well as the final version. In chapters 3 and 4

an  introduction  to  volume  rendering  and  GPU  programming,

respectively, is given. A paper describing the near neighbor technique

can  be  found  in  chapter  5,  while  chapter  6  contains  a  paper  on

integrating correct rendering of transparent geometry embedded in the

volume.  Results are  presented in chapter  7,  discussion in  chapter 8,

suggestions for future work in chapter 8, conclusions in chapter 9 and

finally in chapter 10 ideas for future work is given.

3



Introduction 4



Chapter 2

Project description



Project description

2.1 Thesis mandate
Thesis title: Use of GPU Functionality in Volume Rendering

Mandate: The purpose of this project is to investigate how the GPU of

modern 3D graphics hardware can be used to enhance volume rendering.

Prototypes  of  proposed  methods  should  be  implemented  in  order  to

evaluate their effectiveness.

2.2 Problem text

2.2.1 Original thesis proposal
Modern graphics cards include a GPU which is capable of executing

small vertex and fragment shader program directly on the card itself.

This unit's primary purpose is to enable real-time shading, however, the

instruction set available has proved  sufficiently general for performing

other  types  of  computations  as  well.  The  thesis  will  make  a  closer

investigation into which possibilities exist for making use of the GPU in

the field of volume rendering, with the goal of increasing performance,

visual quality, or both.

2.2.2 Final thesis text
Modern graphics cards include a GPU which is capable of executing

small vertex and fragment shader program directly on the card itself.

This unit's primary purpose is to enable real-time shading, however, the

instruction set available has proved  sufficiently general for performing

other types of computations as well.

This thesis explores ways of taking advantage of the GPU in the field of

volume  rendering;  specifically  the  ray  casting  technique  and  the

optimizations it enables. In addition, it also investigates how transparent

geometry embedded in the volume can be correctly rendered.

6



Chapter 3

Volume rendering methods



Volume rendering methods

3.1 Volume rendering explained
The process of volume rendering consists of visualizing a 2D projection

of a 3D discretely sampled data set. Each data element is known as a

volume element, or voxel, and is represented as a single value obtained

by sampling the immediate area around the voxel location. The voxel

value is usually not displayed directly, but used as input to a  transfer

function which maps each possible voxel value to a color, as in Figure 1.

Traditional 3D computer graphics uses primitives, such as points, lines

and polygons, to build up a scene. These primitives can be combined in

arbitrary size, shapes, colors and orientations, and,  when textures  are

applied to surfaces, strikingly realistic images can be created. To create

the image, a camera and viewport is defined and placed in the scene, and

the  objects  in  the  scene  are  then  projected  onto  the  viewport.  The

process  of  projecting  the  objects  to  form a  2D image  is  known as

rendering.

Volume rendering is similar in that the volume is projected onto a 2D

viewport. However, unlike traditional rendering where objects are empty

and consist only of a surface, volume data sets require rendering of the

inside of objects  as  well.  Indeed,  the most  useful  feature of volume

rendering is the ability to see inside of objects.

The rendering of a volume is a complex process and is composed of a

number of individual steps. The next subsections of Chapter 3.1 explain

8

Figure 1: Example of a volume rendered with a transfer
function. Although this volume data set, of a CT scan of a
human brain, is only 8-bit grayscale itself, a transfer function,
which maps each of the 256 possible voxel values to a color,
makes the rendering much more useful



Volume rendering methods

the steps involved in roughly the same order as they are applied.

3.1.1 Classification
Classification is a pre-processing step which assigns an opacity to each

voxel. This is a value between 0 and 1 which describes how much of the

incoming light is absorbed by the voxel, or how easy it is to see through

that  voxel.  This  classification  step  allows  the  user  to  emphasize

structures in the volume by assigning voxels belonging to the structure a

high opacity, and thus making it visible. Structure of little interest are

made transparent.

3.1.2 Clipping planes
Another way of looking inside the volume is the use of clipping planes.

A  clipping  plane,  as  the  name  implies,  removes  the  section  of  the

volume located in one of the half-spaces into which the scene is divided

by the plane. By moving and rotating the clipping plane, arbitrary slices

of the volume can be displayed. Other clip shapes than a plane are also

possible, as we shall see in Chapter 6.

3.1.3 Compositing
Since there  are  several  voxels  projected onto the same pixel on the

viewport, some of which might be transparent, these voxels need to be

combined to form the final pixel color. The combining step is called

compositing and is in general a complex, nonlinear operation; it is not

easy to predict the final value of a pixel after combining the color values

obtained from a set of voxel values. Even a slight change in the transfer

function, which takes a single voxel value as input and gives a color

value as output, can result in a completely different final color. There are

several compositing operators available, each of which describes a way

of combining a set  of color values into a single such value,  and the

compositing of the voxels can be done either in front-to-back or back-to-

front order, both of which have advantages and drawbacks.

The most used compositing model in use today is based on the following

ray casting integral:

I a ,b=∫b

a
g se−∫ t  xdx ds

Where  I(a,b) is the intensity of a single pixel;  ds is the ray direction,

9



Volume rendering methods

with  the  ray  running  from  a to  b;  g(s) is  the  source  term which

essentially describes the light model in use; and  t(x) is the extinction

coefficient which defines the rate of which light is occluded per unit of

length due to scattering or extinction of light. This is the transparency of

each voxel. g(s) and t(x) are the transfer functions which maps a voxel

value to its intensity and opacity, respectively.

Since  a  computer  cannot  evaluate  a  continuous  integral,  an

approximation has to be used; the Riemann sum is the simplest and is

also widely used.

∫d

0
h xdx∑

i=0

n

h xi∆ x

The Riemann sum gives a way to approximate the integral given only a

discrete set of samples from the original function. The integral is divided

into n equal intervals of length ∆(x), and the function's value is assumed

to have a constant value h(x) over the interval. The discrete front-to-back

version of the integral can now be written as:

I a ,b=∑
i=0

n

I i∏
j=0

i−1

T j

Ii is the intensity at position  i along the ray; Tj is the transparency, a

number between 0 and 1 which represents how much light pass through

a point. If we instead of transparency use opacity the integral becomes:

I a ,b=∑
i=0

n

I i∏
j=0

i−1

1−α j

This equation tells us that I, the total intensity accumulated so far along

a ray, is the intensity  Ij multiplied with all the transparencies,  (1 -  αj),

preceding it.

Now,  in  order  to  compute  I(a,b), the  ray  casting  equation  must  be

evaluated recursively:

10



Volume rendering methods

∑
i=0

n

I i∏
j=0

i−1

T j= I 0 I 11−α0 I 21−α01−α1 I n1−α01−αn−1

= I 0 ov I 1 ov I 2 ovov I n

The  over operator  was  first  introduced  by  Porter  and  Duff  in  a

SIGGRAPH paper on digital imaging in 1984 [13]; compositing thus

reduces to applying the over operator on all samples along a ray. This

recurrence can also be written:

I out= I i nT i n I j

T out=T i n T i

Iout and Tout are the total accumulated intensity and transparency just after

the ray hit  the current sample point;  Iin and  Tin just before.  Ii and  Ti

represent the current sample point. This can be implemented as follows:

Trans = 1.0;

Inten = I[0];

for (i = 1; i <= n; i++) {

Trans = Trans * T[i-1];

Inten = Inten + Trans * I[i];

}

When doing front-to-back compositing it is necessary to keep track of

the accumulated transparency separately, which incurs some overhead.

This also makes it possible to terminate, or stop processing, the current

ray when the  transparency falls  below a given threshold and further

samples  will  not  contribute  more  toward  the  final  result.  The

corresponding code for back-to-front compositing is:

Inten = I[0];

for (i = 1; i <= n; i++) {

  Inten = Inten + T[i] * I[i];

}

Since  the  accumulated  transparency is  not  available,  it  is  no  longer

possible to perform early ray termination.

11



Volume rendering methods

3.1.4 Partial ray compositing
One  important  property  of  both  front-to-back  and  back-to-front

compositing is that partial rays can be composited. This means that a ray

can  be  divided  into  smaller  rays  which  can  then  be  processed

independently and the individual ray segments later combined to form

the final pixel color.

Since ray tracing is a computationally intensive task, this is a potentially

very useful property if hardware, such as a GPU, is available which can

process multiple ray segments in parallel.  After each ray segment is

processed, the results are composited with the over operator.

3.1.5 Other compositing operations
Although  front-to-back  and  back-to-front  are  the  most  important

compositing  operations  there  are  several  others.  Two  in  particular

deserve mention.

Maximum  intensity  projection is  conceptually  simple;  it  finds  the

maximum intensity value along the ray and this value becomes the final

pixel value. This is useful in MRA (Magnetic Resonance Angiography)

to visualize blood vessels which have very bright intensity values and

thus will show up clearly. Doctors can use this to determine if a blood

vessel is partially blocked and then make a decision on whether surgery

is necessary or not.

X-ray projection generates images similar to conventional X-ray images.

Instead of using the  over operator to  composite sample values along

each ray the intensities are added. For this reason this compositing mode

is also called SUM.

3.2 Challenges in volume rendering
Volume rendering is in many ways more challenging than traditional

polygonal rendering. The most important reason for this is the large size

of typical volume data sets, which can reach hundreds of megabytes, or

even tens  of gigabytes  for geological  surveys.  The  requirements  for

quality of  rendering and the size of data sets only increase as more

powerful hardware becomes available, and clever solutions have to be

employed to give satisfactory results.

Before the advent of commodity hardware 3D accelerator cards volume

rendering was typically done by ray casting implemented in software.

12



Volume rendering methods

As a single rendering could take several minutes, or even hours, this

technique was not suitable for interactive rendering. Specialized volume

rendering hardware existed, but it was both very expensive and not very

flexible, thus preventing wide-spread use.

Even  early  consumer  3D  accelerators  supported  fast  2D  texture

mapping,  which  can  be  used  for  interactive  volume  rendering  by

rendering on axis-aligned proxy geometry. This method is described in

more detail below. More recent 3D accelerators support 3D texturing in

hardware, which permits loading volume data sets as single textures.

This enabled the employment of more advanced techniques, such as non

axis-aligned proxy geometry and GPU accelerated ray casting.

Another  significant  challenge  is  the  correctness  of  the  visualization.

Since volume rendering is often used to inspect details in a data set it is

important that even small details are visible and that no artifacts  are

introduced which are not actually present in the data.

3.3 Applications of volume rendering
Perhaps the most well-known users of volume rendering are the medical

imaging industry and oil companies doing geological surveying in their

search for new oil & gas reservoirs. There are many other usages as

well, however, and its use increases as sampling technology improves

and visualization hardware becomes more affordable and easier to use.

The following presents an overview of  some of the uses  of volume

visualization.

Medical imaging was one of the first applications of volume rendering

and is still perhaps its most important use. CT, and later MRI, scanners

produce 3D imaging data,  and doctors need to be able to rotate and

zoom, as well as color the  data set,  to distinguish different types of

tissue  and  examine  details.  In  addition  to  these  features  volume

rendering also allows for making  parts  of  the  volume transparent  to

better focus on the relevant details.

A more recent development is surgical planning, where the surgeon can

examine and virtually operate on a volume scan of the patient before the

actual operation, to better prepare and also discover potential problems

ahead of time. The surgeon can also have the visualization available

during the operation, and even view data scanned in real time. With the

addition of  haptics the surgeon can operate on a patient from a remote

13



Volume rendering methods

location with a robot mimicking his or her movements.

Modeling of different physical phenomena, such as ocean turbulence,

solar magnetic storms, the ozone layer, hurricanes and typhoons, using

volume rendering, can provide added insight into how these develop.

Computational fluid dynamics is often used to model the flow of air over

car bodies or aircraft fuselages to minimize resistance, and when using

volume rendering to view the data in 3D areas of high vorticity (the

rotational component of flow) can quickly be identified and the user can

also get an overall feel for the flow in the system.

Nondestructive testing can be used when there is a need to examine the

inside  of  an  object  without  disassembling  it.  Since  the  very  act  of

disassembly can disturb the object enough to invalidate the examination,

or there is a wish to preserve the object intact, this is often the only way

of gathering the data of interest. Examples of application range from

looking for stress fractures or other flaws in failed integrated circuit dies

or looking at the inside of engine blocks to examining the contents of

dinosaur eggs.

Oil exploration is an application of volume rendering with the potential

to save the oil companies a large amount of money from getting a higher

“hit rate” on drilling. Today the majority of drilled wells are dry,  i.e.

there is not enough oil to justify production, but it has been estimated

that hit rates as high as 80% [8] could be achieved be using volume

rendering to examine the subsurface structures of potential sites before

drilling.

3.4 Volume rendering methods
For the implementation of a volume renderer, several methods are in

use, mostly depending on the available hardware. If a 3D accelerator

card  is  available,  interactive  rendering  is  possible  using  2D texture

mapping, or, if the hardware is recent enough to support it, 3D texture

mapping, which, while slightly more computationally intensive, requires

less texture memory (thus larger volumes can be rendered) and gives

better  visual  quality.  Finally  the  ray  casting  method  is  introduced,

however, its implementation on the GPU is only described in Chapter 5.

3.4.1 2D texture-based volume rendering
Early 3D accelerator cards only supported 2D textures in hardware, and

a compromise had to be made to make use of this feature for volume

14



Volume rendering methods

rendering. 2D textures are first made from slices of the volume data set,

perpendicular  to each of the  three principal  axes;  the three  resulting

stacks of textures are painted onto “proxy geometry”, which consists of

stacks of planes parallel to the principal axes. Which of the three stacks

is used depends on the camera position; the stack which gives the lowest

angle between the vector from the center of the volume to the camera

and the axis of the stack is used.

A disadvantage to this method is that three times the amount of texture

memory is required to store the three stacks as compared to using a

single 3D texture.

3.4.2 3D texture-based volume rendering
Modern graphics hardware supports  3D textures directly  in hardware

and  arbitrary  points  inside  the  texture  can  be  sampled.  Trilinear

interpolation is also supported in hardware, which makes this  a very

attractive options for volume rendering.

Instead of using axis-aligned planes as proxy geometry, the planes are

oriented perpendicular to the viewing direction. Since the 3D texture

supports arbitrary sampling, the plane can have any orientation and the

hardware will correctly paint the appropriate slice of the volume onto the

plane. When using this approach it is necessary to clip the planes against

the volume bounding box, however. See Figure 2.

15

Figure 2: 3D texture based volume
rendering. Planes oriented perpendicular to
the viewing vector are drawn, clipped by the
volume bounding box, and slices of the
volume are drawn onto these planes; the
image of the volume is built up layer-by-
layer



Volume rendering methods

3.4.3 Ray casting
Ray casting is the most natural approach to volume rendering, and, when

implemented in software, this approach is most often used. A ray is cast

from the camera location to each visible pixel on the surface of the

volume bounding box and values are sampled at regular intervals along

the segment of each ray inside the volume. See Figure 3.

Ray  casting  is  similar  to  ray  tracing,  a  common,  but  very

computationally intensive  technique  used for rendering very realistic

images. The high cost comes from the fact that the closest object with

which each ray intersects must be determined, and each ray can also

spawn two new rays – one reflected and one refracted. Neither of these

properties apply to ray casting, but it is still computationally expensive

as a large number of samples have to be taken along each ray to get

acceptable quality.

16



Chapter 4

GPU Programming



GPU Programming

4.1 Evolution of graphics hardware
Early graphics cards were dumb frame buffers whose only task was to

display  the contents  of the  buffer on the computer screen.  The host

computer had to do all the work of determining the color of each pixel

before  handing  them to  the  graphics  card.  As  the  cost  and  size  of

transistors  has  been  reduced, it  has  been  a  trend  in  the  industry  to

implement in hardware functionality previously handled in software, as

specialized  hardware  always  requires  less  transistors  and  is  usually

faster than general hardware. For computer graphics this has meant a

transition of an increasing number of stages  in the graphics  pipeline

from the host CPU to the graphics card, see Figure 3.

The first 3D accelerator cards had a fixed-function pipeline, meaning

that the card was like a black box in which vertices and textures were

input in one end and pixels came out in the other. Various options could

be set to change a number of constants used in the pipeline, but the steps

performed were essentially fixed.

This changed with the introduction of the Graphics Processing Unit, or

GPU, which allows program to be inserted at two points in the pipeline:

the  vertex  transformation and  the  rasterization. The  programs  are

known as  vertex  shaders and  fragment  shaders, respectively.  These

programs can perform mathematical calculations and logical operations

and are free to transform their  input  in any way, or even discard it,

before writing the result as output. Additional data can be provided by

the application program as  variables.  The use  of  GPUs provides  for

much greater flexibility as compared to the fixed pipeline it replaced,

and demanding algorithms can be implemented in software while still

being hardware accelerated and able to run interactively.

At the  time GPUs were introduced they  had a significant drawback,

however, in that the implementation of their programs had to be written

in an archaic assembly-like language. This made it very time-consuming

to experiment with different algorithms, especially taking into account

vendor-specific  instructions  and  different  performance  characteristics

between graphics cards, and it limited usefulness somewhat. A solution

to  this  problem  came  with  the  introduction  of  Cg,  a  high  level

programming language for GPUs.

Cg, or  C for Graphics,  is similar to the C programming language in

18



GPU Programming

syntax and provides the developer with high-level constructs such as

vector and matrix variables, if-statements, for-loops and function calls.

Library  functions  are  provided  for  common  functionality,  such  as

calculating a dot product or matrix multiplication, which often run faster

than a direct implementation since they can take advantage of special

instructions  in  the  hardware.  The  Cg  program  is  compiled  and

optimized, usually at run-time, for the specific GPU hardware on which

it is to be executed. The need for multiple implementations of the same

program is thus greatly lessened.

4.2 GPU programming explained
As previously mentioned, Cg is a C-like high-level language for the

development of vertex- and fragment shader programs. Two other such

languages  also  exist,  High  Level  Shading  Language,  HLSL,  from

Microsoft, which is identical to Cg, but implemented for the Direct3D

API rather than OpenGL, and OpenGL Shading Language, OGSL, the

shading language defined in the OpenGL 2.0 specification. Cg has been

used exclusively during the research described here.

Although Cg is C-like in syntax it it quite different from writing normal

C  code,  as  the  language  has  been  adapted  specifically  for  graphics

processing. One of the most significant difference is the introduction of

a number of additional data types supported directly in the language.

This includes vector and matrix types of different sizes, and support for

common operators working on these types. Depending on the available

hardware there may also be limitations on the  number  of temporary

registers and instructions, and, as branching is generally not supported,

loops have to be unrolled by the compiler; the number of iterations must

19

Figure 3: The graphics pipeline of a modern 3D card



GPU Programming

thus be known at compile time.

Every Cg program must write an output, and may also take one or more

inputs. In the case of vertex shaders the input is the vertex coordinate,

and additional per-vertex data, such as vertex color, texture coordinates,

and any data provided by the host application, may also be accessed.

The output is a new vertex coordinate, transformed from local space to

clip space, and new color and texture coordinates may also be included.

The input to the fragment shader is  the interpolated output  from the

vertex shader as well as any variables and textures supplied by the host

application.  The  fragment shader  may  then  access  the  textures  and

perform  calculations  necessary  to  determine  the  final  pixel  color.

Memory access can be simulated by dependent texture lookups, where

the texture value from one texture is used as a coordinate to look up a

value in a second texture. The output from the fragment shader, a color

value, is written to the framebuffer, unless the fragment fails one of the

OpenGL tests, such as the depth test.

By far the most floating-point calculation power lies in the fragment

engine,  and  applications  wishing  to  take  advantage  of  this  GPU

capability  often do not make use  of a  vertex shader; a simple pass-

through shader is used. This is the case for this research as well, and

only fragment shaders will be described in the following.

4.2.1 Phong shading
One of the most important aspects of producing realistic renderings is

the lighting model used. One of the most popular such models is the

Phong illumination model, first described by Bui-Toung Phong at the

University of Utah [12], which, although it has no physical basis, gives

very realistic-looking images. When the Phong equation is evaluated on

a per-vertex basis and the intermediate pixel values interpolated from the

vertices,  the  technique  is  known as  Gourad shading;  evaluating the

equation for each fragment is known as  Phong shading; both use the

Phong  illumination  model.  Phong  shading  is  much  more

computationally expensive,  however, often as much as two orders of

magnitude, and has not been feasible for interactive rendering until the

advent of fragment shaders.

The  Phong  illumination  equation  is  relatively  simple  and  its

implementation is  straight-forward.  While  an in-depth  explanation of

20



GPU Programming

Phong shading is not within the scope of this text, a brief description is

given. The equation is a sum of four light components:

I=k ek ak d  N⋅Lk s R ̇V n

where  ke is the emissive component, describing light produced by the

object; ka is the ambient light, which is independent of direction; kd is the

directional  light,  coming from a  point  light  source; N is  the normal

vector; L is the light vector; ks the specular component; R the reflected

ray vector; V the viewing vector and n the specular reflection exponent.

The specular component is essentially the shininess of the object, which

produces the  well-known specular highlight  as  seen from a  position

along the direction of reflected light illuminating a surface. The specular

contribution is highest in this direction, and drops off quickly when the

angle changes, which is why this highlight can be seen more clearly on a

sphere than a flat surface.

The following is an example of Phong shading implemented in Cg:

// Get the position and interpolated normal

float3 P = position.xyz;

float3 N = normal;

// The emissive component

float3 emissive = Ke;

// Calculate the ambient component

float3 ambient = Ka * globalAmbient;

// Calculate the diffuse component

float3 L = normalize(lightPosition – P);

float diffuseLight = max(dot(N, L), 0);

float3 diffuse = Kd * lightColor * diffuseLight;

// Calculate the specular component

// H is used as an approximation to R

float3 V = normalize(eyePosition – P);

float3 H = normalize(L + V);

float specularLight = pow(max(dot(N, H), 0), shininess);

// If the diffuse component is zero the specular

// component is zero as well

21



GPU Programming

if (diffuseLight <= 0) specularLight = 0;

float3 specular = Ks * lightColor * specularLight;

// Sum the components to form the final pixel color

color.xyz = emissive + ambient + diffuse + specular;

A rendering of two spheres using the above fragment shader is shown in

Figure 4.

Although the fragment shader code is relatively short, it implements a

complete  and  realistic-looking  lighting  model.  As  a  matter  of  fact,

fragment shaders are usually short; their power comes from the GPU's

ability  to  execute  them  very  quickly.  Simple,  but  computationally

expensive, algorithms which previously were too slow to be considered

for interactive rendering may well be feasible when implemented on the

GPU.

4.3 A more complex example: Environment mapping
Environment mapping is a technique for making an object's surface look

reflective and chrome-like, as in Figure 5, by simulating the reflections

of the objects surrounding it.

All recent GPUs support a type of texture called a  cube map,

which consists of six square texture images representing the six faces of

a cube. This type of texture is accessed by three values, representing a

vector  emanating from the  center  of  the  cube,  and  the  color  value

Figure 4: Two spheres rendered with Phong shading. There are
two light sources in the scene, one blue and one red, giving the
famous specular highlights.

22



GPU Programming

returned is the intersection of this vector with one of the six textures.

By replacing an object with a camera and taking six snapshots,

one in each direction, a complete picture of the scene, as seen from the

object, is generated and can be encoded in a cube map, also called an

environment map. When the object is then rendered, the reflected view

direction ray of each fragment on the object's surface is used to perform

a lookup in the map; this is similar to ray tracing, where a number of

light rays are shot into the scene and traced as they are reflected from

object to object. In this case there is only a single reflection, however.

What we now see is not only the object's surface, but also how

the object reflects its environment. This is similar to a mirror, but as only

the  direction,  and  not  the  position,  of  reflected  rays  matter,  this

technique works best  for curved surfaces  where distortions mask the

error this introduces, making the scene appear believable although it is

not physically accurate.

When implementing this it is necessary to calculate the reflection

vector from the view and the normal vector. While this is easy to do

manually,  it  is  better  to use Cg's  built-in function for this  as it  will

execute faster in most cases. The code can then be written as:

Figure 5: A rendering of a torus surrounded by six spheres.
Environment mapping is used to make reflections of the spheres
visible on the torus surface, and the scene is also Phong shaded.

23



GPU Programming

    I = positionW – eyePosition;

    R = reflect(I, N);

Here I is the incident vector,  positionW is the position, in world space

coordinates,  of the fragment on the object's  surface,  N is the normal

vector and R the reflected vector.

24



Chapter 5

Near neighbor approach to

GPU-based volume rendering





1 Introduction

Volumetric  rendering typically involves  large data sets
whose  visualization  even  strain  current  state-of-the-art
computer  systems.  General-purpose  CPUs  have  proved
inadequate for interactive  rendering of such large volume
data sets, and significant effort  is directed towards finding
methods  of  utilizing  specialized  graphics  hardware  to
improve rendering performance.

The most common way of exploiting graphics hardware
for  speeding  up  volume  rendering  involves  taking
advantage  of  the  texture  mapping  capabilities  of
commodity  3D  graphics  cards.  The  volume  data  is  re-
sampled  onto  so-called  “proxy  geometry”,  either
represented  as  stacks  of  axis-aligned   planes  with  2D
textures mapped onto them, or planes aligned orthogonal to
the  view  vector  in  the  case  of  using  3D  textures.  The
volume is rendered back-to-front and the rendering of each
plane,  or  slice,  is  blended  into  the  frame  buffer.  An
important reason for performing the volume rendering on
the  graphics  card is  to  take  advantage  of their  dedicated
hardware  for  bilinear  (trilinear for  3D  textures)
interpolation, a costly operation to perform on the CPU.

More  recently,  the  broad  availability  of programmable
graphics  processors  on  commodity  graphics  cards  has
enabled the implementation of a more traditional approach
to volume rendering, ray-casting, using the card's Graphics
Processing Unit (GPU). The volume is rendered front-to-
back, and individual control of the processing of each ray
makes  it  possible  to  do important  optimizations  such  as
early  ray  termination  and  empty-space  skipping.  Many
volume  data  sets  contain  large  amounts  of empty  space,
and a significant number of voxels do not contribute to the
final image; without such optimizations much unnecessary
work  is done.  For  such volumes,  it  is  desirable  to  avoid
processing these voxels, and, as the voxel sampling is done
in  a  fragment  program,  it  is  necessary  to  prevent  its

execution if the result is known to not be of use.
The  early  z-test  is  the  normal  way  of  avoiding  the

execution  of  fragment  programs.  Here  the  incoming
fragment's  depth  value  is  compared  to  the  value  in  the
depth buffer. If the depth test fails, the fragment is rejected
without  running  the  fragment  program.  However,  as
fragment programs can have side effects, it is necessary for
all  other  per-fragment  tests  to  be  disabled  and  for  the
fragment program to not write a depth value if the early z-
test  is  to  take  place.  A fragment  program  writing  depth
would,  however,  be able  to  control  which fragments  are
rejected in the next rendering pass. A significant speed-up
can be realized by rejecting fragments in this manner. The
rate  at which different GPUs can reject  fragments  varies,
but this is of less concern since fragment programs for ray
casting are typically long. 

Very  recent  GPUs  have  another  way  of  rejecting
fragments,  by  way  of  an  OpenGL  extension,  the
GL_EXT_depth_bounds_test, which is not dependent on
the  incoming  fragment's  depth  value.  It  allows  the  user
program to specify a range in the interval [0, 1], and only
fragments whose value in the depth buffer fall inside this
range  are  processed.  This  makes  it  safe  for  the  GPU to
reject  fragments  even  if  the  fragment  program  writes  a
depth value, and this enables a finer control of the rejection
of fragments beyond merely turning the processing in the
next pass on or off. This paper  explores  how this feature
can be used  to reduce the number of fragments processed
by the GPU.

The  remainder  of  this  paper  is  organized  as  follows.
Chapter  2  presents  background  and  related  work;  3D
texture-based volume rendering on proxy geometry; GPU-
based  ray  casting;  and using  the  early  z  test  to  perform
early ray termination and empty-space skipping. Chapter 3
presents  the  near-neighbor  approach  and  how  it  can  be
used to reduce the number of processed fragments. Results
and  discussion  are  presented  in  Chapters  4  and  5,  and,

Near-Neighbor Approach to GPU-based Volume Rendering

Abstract
Volume rendering via 3D textures has proven to  be an efficient  approach to interactively  visualizing  and
exploring  volumetric  data  sets.  By taking  advantage of  the  Graphics Processing  Unit  (GPU)  on modern
graphics  hardware,  well-known  acceleration  techniques,  such  as  early  ray  termination  and  empty-space
skipping, can be integrated into the renderer.

This paper introduces the integration of the near-neighbor acceleration technique in ray casting into a
GPU-based volume renderer, and how this affects the fragment culling efficiency. Here, the distance to the
nearest interesting voxel is encoded and allows for skipping over uninteresting sections of the volume. We
demonstrate a 15-30% reduction in fragments processed in the main pass, and almost an order of magnitude
reduction in the intermediate pass.

The proposed technique has been implemented on the nVidia GeForce 6800 graphics card, which supports
the GL_EXT_depth_bounds_test OpenGL extension required for fine-grained control of fragment culling.

CR Categories: I.3.7 [Computer Graphics]:   Three-Dimensional Graphics and Realism – color, shading and
texture ― ; I.3.8 [Computer Graphics]: Applications ― 
Keywords:  Volume Rendering, Programmable Graphics Hardware, Ray-Casting



2

finally,  conclusions  and  future  challenges  are  given  in
Chapters 6 and 7, respectively.

2 Background and related work

Volume  rendering  on modern  3D hardware  is  usually
performed using 3D textures rendered on proxy geometry,
most commonly a stack of planes oriented perpendicular to
the viewing direction, see Figure 1.

Each plane is clipped against the volume bounding box
and the 3D texture  applied to its surface using hardware-
accelerated  trilinear  interpolation.  The resulting image is
blended  into  the  color  buffer.  Normally  the  volume  is
rendered  back-to-front  as  this  does  not  require  an
additional α-buffer. The blending equation is:

C dst=1−αsrcC dstαsrc C src
 

Cdst,  αdst, Csrc and αsrc are the color and opacity of the color
buffer and of the incoming fragment, respectively.

A disadvantage  of using planar  proxy geometry is that
with a perspective projection the sampling rate varies from
pixel to pixel.  It is in principle also possible to use other
types of geometry than a plane, however. Using spherical
shells is the best approximation to volume ray casting, but
this  is  not  used  in  practice  due  to  the  large  number  of
triangles needed to approximate this shape.

The biggest  disadvantage to back-to-front rendering on
proxy  geometry  is  that  normal  volume  acceleration
techniques, such as early ray termination and empty-space
skipping, cannot be used. In a typical volume rendering a
large number of voxels do not contribute to the final image,
as  pixels  are  saturated  before  the  end  of  the  volume  is
reached, or the voxels  are completely transparent. This is
especially  true  as  volume  visualizations  often  emphasize
boundary  regions  and  make  structures  of  less  interest
transparent,  and  much  time  is  essentially  wasted
processing  invisible  or  occluded  voxels.  This  waste  is
increased further when lighting calculations are taken into
account; in the evaluation of the lighting equation normally
a gradient texture  is sampled for each voxel  and most of
the texture fetches and calculations will have no effect on
the final image.

2.1  Ray casting on the GPU

The state-of-the-art  of graphics  hardware has advanced
enormously in recent years, and while early hardware only
supported a fixed-function pipeline, contemporary graphics
cards  feature  a fully programmable  pipeline  enabling the
implementation of arbitrary functionality. In fact, a stream
model  for  performing ray-tracing on GPU hardware  was
proposed  in  [Pur04],  and  more  recently  in  [BFH*04]  a
more  general  framework  for  virtualizing  the  GPU  to
facilitate general-purpose programming.

Processing of fragments is an inherently parallel process

and GPU performance  is  currently  advancing  at  a  much
higher rate than general-purpose CPUs. Taking advantage
of  this  added  processing  power  is  therefore  a  very
worthwhile  cause  and  has  the  potential  of  significantly
speeding up interactive renderings.  In each rendering pass
the same fragment program is executed for each incoming
fragment  generated  by the rasterizer  in a  SIMD manner;
textures are used for providing input data.

2.2  Ray casting with early z-testing

This  algorithm  was  first  described  in  [KW03].  A
summary  is  included  here  for  completeness  and  for
introducing  the  method  for  calculating  the  ray  direction
vector passing through each voxel.

The algorithm is a multi-pass approach in which a fixed
number of samplings along each ray is performed in each
pass,  and a fixed number  of passes  is done depending on
the  desired  sampling rate.  Ray traversal  is  aborted  when
the ray exits the volume bounding box, the opacity exceeds
a given threshold or a selected iso-value is reached.

Before  ray  traversal  starts  the  ray  direction  vector
passing through each voxel is calculated and stored in a 2D
texture  along  with  the  length of  the  ray.  This  texture  is
used  in  subsequent  rendering  passes  for  calculating  the
sampling points  along the ray. In each rendering pass  the
samplings  done  are  blended  together  and finally blended
with  the  value  from  the  previous  rendering  pass  and
written to a 2D texture.

Between  ray  traversal  passes  an  intermediate  pass  is
performed  to  determine  which  fragments  should  be
rejected  due  to  early  ray  termination.  If  a  ray  is  to  be
terminated, because of the opacity exceeding a threshold or
an iso-value  is  hit,  the  depth  value  is  set  to  zero  which
occludes any geometry and prevents  the execution of the
fragment program for that fragment. Otherwise, it is set to
one  and the  fragment  is  processed  in the  next  rendering
pass. Calculating the 2D RGBA texture  (DIR) storing the
ray  direction  vectors  and  vector  lengths  is  done  in  two
steps.

First  the  front  faces  of  the  volume  bounding  box  are
rendered to a 2D texture (TMP), where the color for each
vertex of the box is set  equal to its coordinates,  such that
the interpolated color for any point on the cube equals the
coordinates for that point.

In the next step the back faces of the same bounding box
are  rendered  and  a  fragment  shader  is  issued  which
calculates,  for  each  fragment  xy,  the  normalized  ray

Figure  2: Ray  direction  and  first  ray  intersection  is
calculated  by  rendering  the  front  and back  faces  of  the
volume bounding box

Figure  1: Volume rendering  using 3D textures  on proxy
geometry. Illustration taken from The Cg Tutorial.



3
direction vector  as  normalize(COLxy – TMPxy)  (see  Figure
2),  where  COL is  the  fragment  color.  The  vectors  are
stored in the RGB components of the target texture  (DIR),
while the alpha component is used for storing the length of
each vector before normalization.

The actual rendering now commences, and is performed
in a number of passes where each pass consists of a main
and intermediate pass.

• Main render pass (ray traversal):  In this  pass  M
samplings  are  performed along each ray,  and the
output  of the rendering is copied to  a 2D texture
RES which can be accessed in consecutive passes.

First  the  front  faces  of  the  bounding  box  are
rendered and a fragment shader for ray traversal is
issued. In addition to the  DIR texture with the ray
directions  and  the  previously  mentioned  RES
texture  with  the  color  and  opacity  value
accumulated so far, the shader program takes three
inputs: volume data from a 3D texture,  the starting
position  startPos, which gives the current distance
along  the  ray  already  traversed  (in  previous
passes),  and  stepSize,  which  gives  the  distance
between  sampling  points  on  the  ray.  The  shader
now performs  M samplings along the ray, starting
at  startPos and then incrementing the  position by
DIR[x][y] * stepSize, where  x and y are the current
window  coordinates,  before  each  additional
sampling. The sampled values are blended together
and  finally  blended  with  the  result  from  the
previous  pass  read  from  RES.  This  value  is  then
written as output from the shader.

After  the  render  pass  is  done  the  frame  buffer
contents  is  copied  to  RES in  cases  where  direct
Render-To-Texture (RTT) is not used.

• Intermediate render pass (ray termination):  This
pass  is  performed  after  each  main  render  pass
(except  for  the  last  where  it  is  not  needed)  and
checks  if  the  opacity  value  at  the  current  ray
position  has  exceeded  a  threshold  T.  If  this
condition is true the z value is set to zero and the
fragment  will  not  be  processed  in  consecutive
passes; otherwise it is set to one:

if (RESx][y]  > T)
z = 0;

else
z = 1;

Note that if the ray has exited the bounding box the
opacity  will  always  be larger  than  T and the  ray
terminated. Writing to the color buffer is disabled
while  this  shader  is  running  and  only  the  depth
value is affected.

2.3  Empty space skipping 

Many typical volumes consist  of large areas  of “empty
space”, that is, voxels deemed uninteresting and therefore
completely transparent by the current transfer function. By
empty-space skipping  we  seek  to  speed  up  rendering  by
avoiding sampling these empty regions.

To  be  able  to  skip  over  empty  space  additional  data

structures  encoding information  about  which regions  are
safe  to  skip  over  are  needed.  There  are  several  viable
choices: an axis aligned octree whose inner nodes encodes
information  about  the  leaf  nodes  in  its  sub-tree  can  be
used;  the  block  skipping  method  described  in  the  next
section uses a data structure corresponding to a single level
of such an octree encoding min/max bounds for each block.
A  different  approach,  the  one  presented  in  this  paper,
encodes  the  distance  to  the  nearest  interesting  voxel,
enabling the ability to skip larger distances without further
checking.

2.4  Block skipping

This  is  the  original  empty-space  skipping  approach
described  in  [KW03].  Disjoint  blocks  of  size  83 (other
values can be used, however, this was the maximum value
supported by the hardware used in the original paper, and
informal  testing  with  higher  values  does  not  give
significantly different results with typical volume data sets)
within the original volume data set are encoded as another
3D texture,  where  each block encodes  the minimum and
maximum voxel  value  within that  block stored  in the  R-
and  G-components  of  the  texture  map.  A  2D  texture
encodes, for each min/max pair, corresponding to the x and
y values, if there is at least one interesting voxel within the
given  range.  This  texture  is  generated  on  the  CPU  and
updated  whenever  there  is  a  change  to  the  transfer
function.

Empty space  is detected  by extending the  intermediate
pass to perform an extra check: if empty spaces is detected
at the current position the z value is set to 0. The shader
now essentially performs the following:

if (RES[x][y]  > T) OR (EmptySpace == TRUE)
z = 0;

else
z = 1;

Note  that  since  this  check  is  performed  immediately
before each main shader pass, sampling will always be re-
enabled in the case empty space is not detected.

3 Near neighbor skipping

This approach tries to skip over larger regions of empty
space by storing in an additional data structure the distance
to  the  nearest  interesting  voxel.  This  is  a  well-known
technique  in  software-based  volume  rendering,  however,
the goal in GPU based volume rendering is to be able to
skip  the  intermediate  rendering pass  in many cases.  This
requires  the  ability  to  encode  more  information  in the  z
buffer than simply “on” or “off”; essentially, we need to be
able  to  specify  that  the  processing  of  a  given  fragment
should be turned off until pass K . 

For this purpose the normal depth test is insufficient; the
reason  is  that  the  fragment  program  cannot  be  skipped
since it modifies the depth value. What is needed is a depth
test  independent  of  the  depth  value  of  the  incoming
fragment,  which  is  exactly  what  the  OpenGL  extension
GL_EXT_depth_bounds_test provides.  It  is  controlled
by the function call:

 DepthBoundsEXT(zmin, zmax); 



4

After enabling this test,  the value from the depth buffer
corresponding to an incoming fragment is compared to the
range [zmin,  zmax], and if it falls outside,  the fragment is
rejected.  The  depth  value  of  the  incoming  fragment  is
ignored  and it  is  for this  reason  safe  to  reject  fragments
even  in  the  case  where  the  fragment  program alters  the
depth value.

While  the  depth bounds  test  does  not  interact  directly
with the normal depth test they still share the depth buffer
and care must be taken to ensure that the depth values used
do not occlude the drawing of the volume bounding box.
For this reason the depth buffer range is split in two: the
lower range is divided into  N sections, one corresponding
to each main shader pass, while the volume bounding box
is drawn with depth values in the higher range. The normal
depth test function is set to GREATER.

The  distance  to  the  nearest  interesting  voxel  for  any
given  voxel  is  encoded  in a  3D texture  map.  Since  this
distance may depend on the ray direction there are several
ways to calculate  and use this data  structure;  Section 3.1
explores this topic in more detail.

The  main  shader  pass  remains  unchanged  from  the
description in Section 2.2, however, the intermediate pass
is now performed  before each main shader pass and reads
the  distance  to  the  nearest  interesting  voxel.  It  then
calculates in which shader pass this voxel will be rendered
and sets the z value to within the range for this pass. The
opacity test is still performed: if the opacity has exceeded
the threshold T the z value is set to one, essentially turning
off rendering of this ray for the remainder of the rendering
passes.

Before  each  rendering  pass  the  depth  bounds  range  is
adjusted  to  go  from  0.0 to  the  end of  the  range  for  the
current render pass. This way, only fragments whose depth
value  lies  within  this  range  will  be  processed,  which  in
effect  means  that  no processing  will  be  performed  for  a
given fragment before the distance along the ray set by the
intermediate fragment program has been traversed.

The  reason  for  still  performing  the  rendering  in  two
passes  even  though  the  GL_EXT_depth_bounds_test
allows  for  skipping  fragment  programs  which  writes  a
depth  value  is  due  to  a  performance  consideration  of
current GPUs. Although the nVidia GeForce 6800 supports
conditional  execution,  its  fragment  engine  is  still  SIMD
(Single-Instruction,  Multiple-Data)  as  opposed  to  the
vertex engine which is MIMD [Har04]. The effect of this is
that if there is a high number of divergent fragments (i.e.
nearby  fragments  which  take  different  branches)  the
fragments  taking  short  branches  may  be  limited  by  the
execution time of nearby fragments  taking long branches.
A short shader program is therefore preferable.

3.1 Methods for calculating the near-neighbor textures

The near-neighbor data structure encodes the distance to
the  nearest  interesting  voxel  from each voxel  within  the
volume. Several  methods can be used for calculating this
data structure.

Omnidirectional: The  simplest  approach  encodes  a
single value, the distance to the nearest interesting voxel in
any  direction,  that  is,  the  radius  of  the  largest  possible
sphere centered on the voxel in question not containing any
other interesting voxels. 

This brute-force  approach,  calculating  the  distance  to
every  other  voxel  from every  voxel,  runs in time  O(N6),
which is  far  too  slow for  any reasonable-sized  volumes.
The approach used for the purpose  of this paper  is a k-d
tree [AMN*98], providing O(N log N) lookup time, which
is reasonably quick even for volumes of size 2563.

This  data  structure  is independent  of the ray direction,
however,  which  has  the  disadvantage  of  considering
neighbors interesting even if they do not lie on the current
ray,  in  fact,  even  voxels  directly  behind  the  current
position  will  be considered  interesting. This  significantly
reduces the distance that can be skipped.

Optimal: The other extreme is a data structure encoding
the distance to the nearest interesting voxel along a specific
direction  vector.  This  ensures  the  maximum  possible
distance can be skipped,  however,  the data structure  will
have to be re-calculated every time the viewing direction
changes. It is not necessary to re-calculate when zooming
in or out of the volume, however.

Directional:  A middle  ground  is  to  divide  the  volume
into 8, with one data structure corresponding to each of the
8 quadrants, see . Before the fragment shader is issued, the
correct  near-neighbor  3D texture  for  the current  viewing
direction is bound and used in the intermediate  rendering
pass.  While  less  optimal  than encoding the distance only
along  the  viewing  direction  it  is  a  marked  improvement
from the omnidirectional near-neighbor.

The 8 data structures  can be calculated as follows:  For
each of the 8 corners of the volume bounding box, traverse
backwards along the vector from the corner to the opposite
corner.  In each step,  add all  interesting voxels  within the
sub-cube  from the  corner  to  the  current  position  on  the
vector to a k-d tree. Then, for each voxel on the inner faces
of the sub-cube (laying within the volume), set the distance
to the nearest interesting voxel by looking this up in the k-
d tree.

3.2 Iso-surface rendering

Rendering  a  single  iso-surface  can  be  done  very
effectively  with  GPU-based  ray  casting,  by  only
performing the actual illumination calculations in one final
pass  after  first  determining  the  intersection  between  the
iso-surface within the volume and each ray.

The rendering setup is the same as before, but the main
pass  is  simplified.  The  current  ray  segment  is  traversed
back-to-front  and for  each sampled  value  we  check if  it

Figure  3: A  directional  data structure  used  depends  on
which of the 8 quadrants the viewing vector is pointing into



5
falls  within a given  range;  if  it  does  the  position  of the
value  within the  volume is written  to the output  with an
alpha value of 1 in order to terminate the ray. After all rays
have terminated we have stored the intersection point for
each ray,  and this is  used as  input  to a final render  pass
where the value and gradient at the given point is sampled
and lighting calculations are performed; the output of this
pass is the final color value.

The reason for only performing the lighting calculations
in  a  separate  shader  program  is  the  limitation  of  the
conditional  execution  of  current  GPUs,  as  previously
mentioned.  As  performance  is  limited  by  the  longest
branch a short shader program is preferable. 

3.3  Using an occlusion query to avoid updating the
target texture

An  occlusion  query,  like  the  OpenGL
GL_ARB_occlusion_query extension,  can  be  used  to
obtain the number of fragments actually processed. If this
number  is zero for a given pass  the copy from the frame
buffer to the target  2D texture  used for accumulating the
result of the rendering can be skipped. For platforms which
do not support a direct Render-To-Texture mechanism this
can result in a significant speed-up.

3.4 Platform requirements for near-neighbor 
skipping

While  the  required  features  for  performing ray  casting
and exploiting the early z-test  for rejecting fragments  are
present  in all  third-generation  GPUs,  like  the  ATI R300
and  nVidia  NV30  architectures,  the
GL_EXT_depth_bounds_test extension is only available
in the  third and forth  generation  GPUs from nVidia. The
following features are essential for the approach proposed
in this paper.

• Per-fragment  texture  fetching:  The  number  of
textures  available  for  use  in a  fragment  program
varies with the architecture,  however,  this limit is
generally high enough for this not to be an issue.
Dependent  texture  lookups  can  cause  pipeline
stalls  and  slow  down  fragment  processing,
however.

• Render to texture:  While it under some systems is
possible  to  render  directly  to  a  2D  texture  map
instead of the frame buffer, depending on available
hardware  and  graphics  driver,  on  other  systems
without  this capability it is necessary to copy the
frame buffer contents  to a texture  after  rendering.
In  both  cases  the  texture  is  available  to  the
fragment  program in the  next  rendering pass  and
enables  the  passing  of  data  between  rendering
passes.  Values  are  range-compressed  to fit in the
[0, 1] range.

• Per-fragment  arithmetic  operations:  The  most
common,  as  well  as  several  more  complex,
arithmetic operations are  available  for both scalar
as well as vector values. This enables manipulation
of the input data provided in texture maps as well
as conditional writing of output values.

• Depth  write:  The fragment  program can write  an
arbitrary value to the depth buffer.

• GL_EXT_depth_bounds_test extension,  as
previously mentioned.

An nVidia  GeForce  6800  graphics  card  was  used  for
implementing the method proposed in this paper.

4  Results

To  evaluate  the  effectiveness  of  the  near-neighbor
approach it is insightful to look at the number of fragments
actually processed in the main and intermediate passes. For
the  purpose  of  obtaining  these  numbers,  the  occlusion
query  extension  was  used,  which  counts  the  number  of
non-culled  fragments.  It  should  be  noted  that  for  the
intermediate  pass,  the  empty  block  skipping  will  always
process all fragments; this is because the fragment program
writes a depth value and thus cannot be skipped. However,
even if this restriction was lifted it would still be necessary
to run the fragment  program in order  to check for empty
space.

Using  the  GL_EXT_depth_bounds_test  extension
allows the fragments in the intermediate pass to be skipped
for passes with no interesting voxels along the fragment's
ray,  and  this  significantly  reduces  the  total  number  of
fragments processed.

Fragment counts for four volume data sets are presented
here:  MRI-Head, an MRI scan of a human head;  Foot,  a
CT scan of a human foot; Engine, a CT scan of an engine
block;  and  Fuel,  a  simulation  of  fuel  injection  into  a
combustion chamber. The first three are of size 2563, while
Fuel  is  of  size  643.  Rendering  was  directed  to  a  5002

viewport. The renderings in Figure 4 are courtesy of the V3

renderer [Roe04]; for the fragment counts presented here, a
simple linear transfer function was used.

In  Table  1 and  Table  2,  the  number  of  fragments
processed  in  the  intermediate  and  main  passes,
respectively,  is  given  for  the  three  different  data
structures  used  to  determine  the  nearest  neighbor;  the
percentage in parenthesis is the the fraction of fragments

Figure  4: Volume data sets used for rendering. From top,
left to right: MRI-Head, Foot, Engine and Fuel.



6

processed compared to empty block skipping.

MRI-
Head 

Foot Engine Fuel

Empty
block

9,891,936 9,891,936 9,891,936 2,381,392

Optimal 534,272 427,510 274,393 244,118

Omni-
directional

1,218,485
(12%)

2,134,119
(22%)

1,552,627
(16%)

1,106,584
(46%)

Directional 1,458,291 1,856,402 1,367,713 916,156

Table 1: Fragments processed in the intermediate pass

MRI-
Head 

Foot Engine Fuel

Empty
block

869,293 538,173 309,097 299,356

Optimal 181,139 159,380 65,927 31,220

Omni-
directional

744,754
(86%)

455,547
(85%)

186,059
(60%)

155,011
(52%)

Directional 725,099 410,729 178,331 131,495

Table 2: Fragments processed in the main pass

5 Discussion

When  using  an  optimal  near-neighbor  data  structure,
more  than  an  order  of  magnitude  improvement  to  the
number  of  fragments  processed  can  be  achieved  in  the
intermediate  pass,  a  five-fold  improvement  in  the  main
pass. It should be noted, however,  that  the near-neighbor
data  structure  is  the  same  size  as  the  volume  and  thus
significantly  higher  resolution  than  the  encoding  of  the
empty blocks.

As  noted  earlier  using  an  optimal  near-neighbor  data
structure  has  the  disadvantage  of  needing  to  re-calculate
the data structure whenever the viewing direction changes.
A  more  fair  comparison  is  the  use  of  either  an
omnidirectional  or  directional  data  structure.  The
improvements  over  the empty  block approach are  not  as
dramatic  for  the  main  pass,  however,  the  gain  in  the
intermediate pass is still almost an order of magnitude for
the larger volumes. The smaller 643 volume does not show
as much improvement, as the first intermediate pass, where
also  the  near-neighbor  approach  must  process  all
fragments  in  order  to  set  the  initial  distance  to  skip,
becomes more dominating. 

The advantage of using a directional near-neighbor data
structure,  compared to an omnidirectional,  is perhaps  not
as significant as could be expected; this is because the case
where this data structure  would be of the most benefit,  a
transparent  surface  with  empty  space  behind  it,  is  not
present to any great degree in these volumes.

While  the  reduction  in  processed  fragments  is
impressive,  we  have  not  been  able  to  demonstrate  a
corresponding  increase  in  frame  rate,  however.  While
reliable  information is  scarce,  some sources  indicate  that
the  GL_EXT_depth_bounds_test cannot, in the current
revision of nVidia graphics hardware and drivers, be used

for  avoiding  the  execution  of  fragment  programs.  This
extension  is  part  of  nVidia's “UltraShadow” technology,
however, and is supported in the popular 3D game “Doom
III”.  Since  the  3D  graphics  industry  is  currently  being
driven  in  large  part  by the  needs  of  the  game  industry,
there  is  a  good  probability  that  this  limitation  will  be
removed  in  the  future.  We  thus  do  not  consider  this  a
limitation of the algorithm. GPU-based ray casting should
in fact scale very well on future hardware able to execute a
higher number of fragment programs in parallel.

Compared  to slice-based volume rendering,  ray casting
also  has  another  benefit,  which  is  a  correct  perspective
view,  as  the  ray  directions  are  individually  calculated
based on the current view perspective.

The choice of  M, the number  of samples  to take along
the  ray in each  shader  pass,  has  a  significant  impact  on
performance.  Since it is  not possible  to abort  a fragment
program before its completion, M should be small so as to
not continue  working for too long after  the ray has  been
terminated. Conversely, M should be as large as possible to
reduce the number of rendering passes necessary, as there
is some overhead associated with each such pass, including
drawing the front faces of the bounding box, the binding of
textures  and  in  the  case  Render-To-Texture  is  not
available, copying the frame buffer to a 2D texture. A large
M will,  however,  limit  the  effectiveness  of  empty-space
skipping, since larger blocks or longer ray segments within
each  pass  will  increase  the  probability  of  at  least  one
interesting voxel  being present.  The optimal  value  for  M
depends on several factors, such as the hardware used and
the size of the volume.

For  shading  of  opaque  iso-surfaces,  all  illumination
calculations  are  done  only  once  for  each  ray,  in  a  final
pass. Although both intermediate and main passes are still
required due to the limited conditional execution of current
GPUs,  as  mentioned  in  Chapter  3,  the  rendering  is
significantly  more  efficient  as  compared  to  slice-based
rendering,  where  lighting  calculations  have  to  be
performed for each sampled voxel.

Finally, it should be clear that for highly transparent and
dense  volumes,  where  early  ray  termination  and  empty-
space skipping cannot be applied, no gain in speed can be
expected. In fact, some overhead is introduced and for such
volumes  the  renderer  should  be  switched  to  traditional
slice-based rendering.

6 Conclusions

In this paper, we show a novel approach for integrating
near-neighbor  skipping in a GPU-based volume renderer,
on  graphics  hardware  supporting  the
GL_EXT_depth_bounds_test extension.  Near  neighbor
skipping,  when  used  in  conjunction  with  ray  casting
implemented using the GPU of modern graphics hardware,
can significantly reduce the number of fragments that needs
to be processed.

The  proposed  approach  has  been  implemented  on  the
nVidia  GeForce 6800  graphics  card  using  OpenGL  1.4.
While the NV35 and NV40  architectures from nVidia are
currently  the  only lines  of  graphics  cards  supporting  the
GL_EXT_depth_bounds_test, it is expected that support
will improve in the next generation of graphics hardware,
especially as this extension also benefit the games industry.



7
While the number of processed fragments is reduced using
the  proposed  approach  there  is  unfortunately  not  a
corresponding  increase  in  performance  as  the
GL_EXT_depth_bounds_test cannot  be  used  for
avoiding fragment program execution on current hardware
and  graphics  drivers.  Improved  performance  can  be
realized once this restriciton is lifted, as it is expected to be
in future hardware.

7 Future work

While  the  optimal  near-neighbor  data  structure  does
provide for a large  reduction in the  number  of processed
fragments,  it  needs  to  be  re-calculated  whenever  the
viewing  direction  changes,  and  this  would  introduce
unacceptable delays for most interactive rendering.

One interesting possibility is calculating the distance to
the  nearest  neighbor  falling  within  a  cone  around  the
viewing direction instead of only along the ray itself. This
would  allow  for  some  change  of  the  viewing  direction
without  the  need  for  re-calculation  of the  data  structure.
When  the  viewing  direction  changes,  a  background  task
could be started to calculate a new data structure  as seen
from  the  location  and  viewing  direction  the  user  is
expected to be at in the near future, if the viewing direction
changes  at  a  constant  rate.  Since  the  CPU is  often  idle
while the GPU is performing rendering tasks,  this would
mean better utilization of available resources.

If the user changes camera position or viewing direction
too  quickly,  there  would  still  be  a  delay  while  the  re-
calculation is being performed, however.  In this case,  the
renderer could switch to an omnidirectional data structure
while waiting for the calculation to finish.

One other possible optimization when using the optimal
near-neighbor data structure is combining the intermediate
and main shader passes into one, except for the first pass,
which  is  still  the  same  as  the  intermediate  pass.  This
should  result  in  even  faster  rendering  since,  as  the
rendering  always  jumps  directly  to  the  next  voxel  to  be
sampled,  when  rendering  resumes  there  will  always  be
samples  to take for that ray segment and the intermediate
pass  does  not  result  in  the  subsequent  main  pass  being
skipped for any fragments.

Finally,  it  should  be  noted  that  at  least  early  ray
termination  is  possible  to  integrate  into  a  slice-based
volume renderer.  The render direction must then be done
front-to-back,  which  does  incur an overhead  to  maintain
the accumulated transparency value. There is, however, no
intermediate pass, and thus the check for saturated opacity
is done for every fragment. The efficiency of this method
depends  on the volume:  a mostly  opaque  volume  should
give a significant speed-up.

For  integrating  empty  block  skipping,  an  intermediate
pass processed only every M render passes could check for
empty  space,  as  well  as  saturated  opacity,  and  disable
rendering in the normal  pass. It is  uncertain  whether  this
will give any speed-up over ray casting, however.

References

[AMN*98] S. ARYA, D. M. MOUNT, N. S. NETANYAHU, R. 
SILVERMAN AND A. Y. WU . 1998. “An optimal  
algorithm  for  approximate  nearest  neighbor  

searching”. In Journal of the ACM, Volume 45 
(1998), p. 891-923.

[BFH*04]  I. BUCK, T. FOLEY, D. HORN, J. SUGERMAN, K.  
FATAHALIAN,  M.  HOUSTON.  “Brook  for  GPUs:  
Stream Computing on Graphics Hardware”. In 
Proceedings of the 2004 SIGGRAPH 
Conference, p. 777-786.

[Fer04] NVIDIA CORPORATION;  EDITED BY R.  FERNANDO .  
“GPU Gems”. 2004. ISBN 0-321-22832-4.

[FK03] R.  FERNANDO AND M.  J.  KILGARD .  “The  Cg  
Tutorial”. 2003. ISBN 0-321-19496-9.

[Har04] ]M. HARRIS. Comment on dynamic branching on
the nVidia GeForce 6 series. 
http://www.gpgpu.org/forums/viewtopic.php
?p=1694#1694

[KW03] J. KRÜGER AND R. WESTERMANN. “Acceleration
Techniques for GPU-based Volume
Rendering”.  In  Proceedings  of  the  14th IEEE  
Visualization Conference, p. 38, 2003.

[LCN98] B.  LICHTENBELT,  R.  CRANE AND S.  NAQVI .  
“Introduction  To  Volume  rendering”.  1998.  
ISBN 0-13-861683-3.

[Pur04] T.  J.  PURCELL.  “Ray  Tracing  on  a  Stream  
Processor”.  Ph.D.  dissertation,  Stanford  
University, March 2004.

[Roe04] S. ROETTGER. V3: The Versatile Volume Viewer.
http://www9.cs.fau.de/Persons/Roettger/
#Volume

[SWND04] D. SHREINER, M. WOO, J. NEIDER AND T. DAVIS . 
“OpenGL  Programming  Guide,  Fourth  
Edition”. 2004. ISBN 0-321-17348-1.





Chapter 6

Transparent Polygonal

Geometry in Volume

Rendering





1 Introduction

Volume  rendering  is  the  process  of  projecting  3D
volumetric  data  onto  a  2D  image  plane.  Many  fields
require  the  visualization  of  such  data,  perhaps  most
notably  in  the  medical  imaging  industry  as  well  as
seismologic  surveys  used  in  the  search  for  pockets  of
hydrocarbons (oil & gas reserves).  Volume rendering has
been  extensively  described  in  the  literature,  and  several
techniques  exist  for  their  visualization  [LCN98].  This
paper  is  concerned  with  how  transparent  polygonal
geometry  can  be  integrated  in  a  volume  renderer,  both
traditional  slice-based  rendering  and  GPU-based  ray
casting [KW03].

Often  volumes  are  visualized  without  any  other
geometry  being  present  in  the  scene,  and  for  many
applications this is acceptable. However, some applications
can benefit from being able to embed polygonal geometric
structures inside the volume, and the traditional slice-based
approach does allow for this as long as these structures are
opaque.

Even  for  traditional  polygon-based  rendering,  the
integration  of  transparency is  not  straight-forward,  since
several  color  values  must  be  blended  together  in  the
correct order. Rendering the scene back-to-front by sorting
the geometry is the simplest approach. However, with this
technique the sorting process can be costly if the number of
geometric primitives is large, and can even be incorrect in
the  case  of intersecting primitives.  Geometry  sorting  can
be combined  with slice-based  volume  rendering  [KK99],
however, significant pre-processing is required in addition
to the sorting itself.

Another  technique,  depth  peeling [Eve01] has  only
recently  been  possible  to  implement  with  hardware
acceleration on consumer-level 3D graphics cards. It which
renders the individual “layers” of a scene to textures which

are  then blended together  to  form the final  image.  Since
rendering a high-quality representation of a volume of size
N3 can require  as  much as  2N slices,  or  layers,  it  is  not
efficient to apply depth peeling directly. A better way is to
first  render  the  scene  without  the  volume,  and  then
blending  in  the  resulting  textures  while  rendering  the
volume  in  a  final  step.  This  is  the  approach  which  is
explored in this paper, as well as how the technique can be
used  to  simulate  arbitrary  clip  geometry  for  volume
rendering.

The  rest  of  this  paper  is  organized  into  the  following
sections: Section 1.1 introduces volume rendering, while in
Section 1.2 and 1.3 we briefly describe slice-based volume
rendering and GPU-based ray casting, respectively. Section
1.4  describes  challenges  faced  when  combining  volume
rendering  with  polygonal  rendering,  and  section  1.5
introduces  the  depth  peeling technique.  In Chapter  2 the
depth  peeling  technique  and  its  integration  with  volume
rendering  approaches  is  presented  in  detail.  Chapter  3
describes how the same technique can be used to simulate
arbitrary  clip  geometry,  Chapter  4  presents  the  results,
Chapter  5 contains discussion, and conclusions and future
work are given in chapters 6 and 7, respectively. 

1.1 What is volume rendering

Unlike  polygonal  geometry,  which  only  requires  the
rendering  of  surfaces,  volume  data  consists  of  samples
distributed along all three dimensions; each such sample is
called a voxel and, in addition to the voxel value itself, has
a 3D position associated with it. Some of these voxels can
be fully or partially transparent,  in which case the voxels
located behind it, as seen from the camera,  must  also  be
considered. The voxels  are  combined with one of several
possible operators; the most common are back-to-front and
front-to-back where the values are blended together in the

GPU-based Transparent Polygonal Geometry in Volume
Rendering

Abstract
Utilizing  the  Graphics  Processing  Unit  (GPU) of  modern graphics  cards has proved an efficient  way to
interactively visualizing volumetric data sets, enabling acceleration techniques such as early ray termination
and empty-space skipping. However, integrating support for transparent polygonal geometry embedded in the
volume presents some additional challenges.

This paper presents a novel approach which combines GPU-based ray casting with the “depth peeling”
technique. This makes it  possible to correctly render transparent polygonal geometry embedded in a volume
data set  in  an order-independent  manner.  The proposed approach takes  advantage of  depth culling, and,
compared to normal volume rendering, does not require additional sampling of the volume data. We also show
how the technique can be used to simulate arbitrary clip geometry. This is especially important for ray casting,
since the clipping planes provided by OpenGL cannot then be used directly.

The proposed technique has been implemented on the nVidia GeForce 6800 graphics card, which supports
the GL_EXT_depth_bounds_test OpenGL extension required for fine-grained control of fragment culling.
CR Categories: I.3.7 [Computer Graphics]:   Three-Dimensional Graphics and Realism – color, shading and
texture ― ; I.3.8 [Computer Graphics]: Applications ― 
Keywords: Volume Rendering,  Programmable  Graphics  Hard-ware,  Ray-Casting,  Transparent  Geometry,
Mixing polygons and volumes



2

specified order.
As  consumer-level  3D  accelerator  cards  have  become

common, several  techniques  have  been devised  for  using
the  additional  computational resources  they  provide
towards  speeding up volume rendering. These techniques
typically  make  use  of  either  2D,  or  more  recently  3D,
textures  and  the  hardware's  ability  to  perform
interpolation. The following sections explain the traditional
slice-based approach as well as ray casting, which has only
become  possible  on  very  recent  3D  cards  including  a
Graphics Processing Unit (GPU).

1.2 Slice based volume rendering

The volume is rendered by mapping a 3D texture of the
volume  data  inside  the  volume  bounding  box,  and  then
drawing slices of planes called “proxy geometry”, which is
clip against the bounding box and oriented perpendicular to
the  viewing  direction.  The  3D  hardware  samples  the
texture using tri-linear interpolation and draws the texture
values on top of the plane and the result is blended into the
frame  buffer.  The  planes  are  most  commonly  drawn  in
back-to-front order, and, if a high enough number of planes
is used, the resulting image is of high quality.

1.3 Ray casting on the GPU

By utilizing  the  GPU found on modern  3D cards,  ray
casting,  the most common approach and which usually is
found in software renderers, can be implemented with high
enough  performance  for  interactive  rendering.  A  2D
texture, of the same size as the viewport,  contains the ray
direction for  each pixel  of the  front  faces  of the  volume
bounding box. A fragment program is then issued which,
for  each such pixel,  takes  samples  along the vector  read
from the 2D texture and blends these samples together. The
ray  is  divided  into  segments,  and  the  rendering  is
performed in multiple passes; in each pass the value of the
partial  ray is blended into the frame buffer. Rendering is
performed  in  front-to-back  order,  which  enabled  such
techniques  as  early  ray  termination  and  empty-space
skipping,  significantly  enhancing  rendering  performance
for volumes highly opaque or consisting of large regions of
uninteresting  voxels.  An  added  benefit  over  slice-based
rendering is a correct perspective view.

1.4 Challenges in combining volume data with polygons

Volumetric  data  and  polygons,  although  both  are
visualized as shapes in 3D space after rendering, use very
different  data  structures  internally.  Volume  data  sets
consist  of a regular  grid of sampling points  in 3D space,
while  polygons  are  described  by  the  3D coordinates  of
their vertices.

Combining  volume  rendering  with  polygon  rendering
presents some challenges as most graphics hardware does
not  directly  support  volume  rendering  and  clever  tricks
have to be employed to perform such rendering.

1.4.1 Rendering with 3D textures

When  rendering  the  volume  on  “proxy  geometry”,
normally  planes  aligned  perpendicular  to  the  viewing
direction, this geometry is rendered in its correct location
in  the  scene,  and  the  normal  depth  buffer  is  used  and
OpenGL will  handle  interaction with any other  geometry

present.  If  some  of  the  geometry  intersects  with  the
volume,  however,  it  is  necessary  for  the  volume  to  be
rendered  after  all  such  intersecting  geometry,  and  the
geometry must also be opaque. If it is desirable to render
transparent  geometry  intersecting  with  the  volume  a
technique  knows  as  “depth  peeling”  can  be  used  as  we
shall see in section 1.5.

1.4.2 Rendering with ray casting

When  performing  volume  rendering  with  GPU-
accelerated  ray  casting,  the  normal  OpenGL  depth  test
cannot be used for detecting intersecting geometry within
the volume, as only the front faces of the bounding box are
actually rendered.  However,  the depth test  can instead be
performed manually inside the fragment program as the ray
is traversed.

The scene is first rendered normally without the volume,
and the  depth buffer  is  then copied to a “depth texture”,
also known as a shadow map. The fragment program takes
an additional input, the depth value at the current location
along the ray, and before each sampling it is compared to
the value in the depth texture; if it is greater than the depth
texture  value  the  ray  is  terminated.  After  all  rays  have
terminated, the volume is blended with the contents of the
frame  buffer  containing  the  scene  rendered  without  the
volume.

As with slice-based rendering, any geometry intersecting
with the volume must be opaque. By using “depth peeling”,
however, this restriction can be lifted.

1.5 Depth peeling

Depth  peeling  is  a  method  for  enabling  order
independent transparency. Basically, it involves  rendering
the scene multiple times, one for each layer, and after each
pass  the contents of the depth buffer is copied to a depth
texture.  This texture  is accessed in the subsequent  render
pass and is used to “peel away” the current surface. What
results  is essentially  a stack  of depth textures  giving,  for
each fragment in the viewport, the intersections with scene
geometry along the vector in the viewing direction, as well
as  the  color  value  of  the  geometry  at  the  intersection
points. The color values can then be composited together in

back-to-front order using the following blending function:

Figure 1: Correctly rendered objects with multiple
transparent layers using depth peeling



3

(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA)

The  resulting  image  will  have  correct  transparency;
Figure 1 shows an image rendered using the depth peeling
technique.

2 Transparent geometry intersecting the volume

As previously  mentioned,  by conventional  means  it  is
only possible  to render  opaque  geometry intersecting the
volume.  The  reason  for  this  is  that  it  is  impractical to
guarantee  that  fragments  for  a given  pixel  will  arrive  in
back-to-front order. This is especially true for slice-based
volume rendering where the volume data is rendered on a
stack  of planes  with minimal  spacing between  them. For
correct  transparency  it  would  be necessary  to  separately
render  only  the  geometry  falling  in  between  two  such
planes,  a  difficult  task  in  the  general  case  [KK99].  By
integrating depth peeling into the volume renderer this can
be avoided.

2.1 Depth peeling and slice-based volume rendering

Since  slice-based  volume  rendering  is  performed  by
rendering the volume data on “proxy  geometry”, normally
a stack of planes, it contains a high number of “layers” and
depth peeling all these layers would be very inefficient. A
better approach is to perform the following steps:

1. Apply  the  depth  peeling  technique  to  the  scene
without rendering the volume

2. Set the depth function to GREATER
3. Starting  with the  second last  (furthest  away from

the camera)  depth texture,  copy  it into the depth
buffer.

4. Render the volume slices normally in back-to-front
order

5. Starting with the last frame buffer texture, blend it
into the frame buffer.

6. Repeat  from step  3  with  the  next  texture  pair  if
there are more left.

After step 1 is complete we have a stack of texture pairs,
the contents of the depth buffer and frame buffer at each
“layer”  in  the  scene,  see  Figure  2.  The  contents  of  the
depth buffer and frame buffer are that of the last layer, and
the  depth  comparison  function  is  set  to  GREATER,
meaning that  any subsequent  volume rendering pass  will
only include  geometry  found behind the  layer  present  in
the depth buffer.  The second last  depth texture  is  copied
into  the  depth  buffer,  meaning  only the  proxy  geometry
between between the last  and second last  layer layer  will
be rendered. Note that it is important for the last layer to be
located behind the volume bounding box as seen from the
camera;  if  this  is  not  the  case  the  color  buffer  must  be
cleared  and  the  last  depth  texture  used  instead of  the
second  last.  After  the  volume  rendering  pass  the  color
values  from  the  next  layer  are  blended  into  the  frame
buffer,  the  depth buffer  moved  to  the next  layer  and the
next  section  of  the  volume  is  rendered.  This  process  is
repeated  until  all  sections  of  the  volume  have  been
rendered,  and  the  resulting  image  will  be  correct  with
regards to transparency; examples are given in Figure 3.

 2.2 Depth peeling and GPU-based ray casting

The  GPU-based  ray  casting algorithm differs  from the
slice-based  volume  rendering  in  that  the  depth  buffer  is
only used  for  controlling which fragments  should  not  be
rendered due to early ray termination or skipping of empty
space. The “proxy geometry” in this case, the front faces of
the volume bounding box, is always rendered in the same
location in the scene, and the depth test in OpenGL cannot
be used for only rendering the parts of the volume behind a
given layer. While it is possible to move the bounding box
in the scene (and enlarging it so it still occupies  the same
fragments  of  the  viewport)  the  OpenGL  depth  test  still
cannot  be  used  as  multiple  samples  along  each  ray  are
taken in each rendering pass. The depth test can instead be
done  inside  the  fragment  program,  however;  the  depth
texture is given as input to the fragment program instead of
being  copied  into  the  depth  buffer,  and,  before  each
sampling, the depth value of the current position along the
ray is compared to the value in the depth texture. The ray is
terminated  when  the  boundary  into  the  next  layer  is
crossed. There are some other considerations, however:

• Ray casting is done in front-to-back order, and the
layers must be processed in this order as well. The
first (closest to the camera) frame buffer texture is
copied into the frame buffer before rendering, and
the  second  closest  depth  texture  is  bound.  The
fragment program then checks if the current depth
value is less than the depth texture, and terminates
rendering when this condition is false.

• The frame buffer texture is blended in by a separate
fragment  program  after  each  rendering  of  the
volume.

• If  a  layer  intersects  a  ray  in the middle  of a ray
segment  the  rendering  must  be  restarted  at  the
correct  location  within  the  ray  segment.  For  this
reason  the  previous  depth  texture  must  also  be

Figure 2: The first four layers of a scene. The teapot is
green outside and red inside, while the torus is yellow
outside and blue inside. Note that the red color in the torus
shape in layer 3 is from the teapot, not the torus.



4

available  and sampling  only  be performed  if  the
current  position  is  greater  than  the  value  in  the
previous depth texture.

Two extra  texture  reads  for each render  pass,  as well  as
two comparisons for each sampling along the ray, have to
be  performed  inside  the  fragment  program  with  this
approach, and the volume still has to be rendered once for
every  layer  in  the  scene.  However,  due  to  the  early  z
rejection, the number  of fragments  processed  in the main
shader  passes  is  not  higher  than  when  rendering  the
volume  only  once.  In  fact,  if  parts  of  the  volume  is
obscured  by geometry,  the  number  of  fragments  will  be
smaller. In the intermediate pass the number of fragments
increases linearly with the number of passes, however.

2.3 Depth peeling and near neighbor ray casting

The near neighbor approach to GPU-based ray casting is
very  well  suited  to  combining  with  depth  peeling  for
rendering  embedded  geometry.  Since  this  method  allows
for  also  skipping fragments  in the  intermediate  pass,  the
efficiency in terms of processed fragments can be expected
to be almost as high as  for normal ray casting where  the
volume is rendered only once.

The basic approach to integrating depth peeling is nearly
identical  to  the  early  z method described in the previous
section. The difference lies in the fragment program for the
intermediate pass; instead of merely disabling rendering of
the next main pass  if the current position is less than the
previous  depth  texture,  rendering  is  completely  disabled
until the pass where rendering is to begin. Since rendering
is also disabled after the depth texture  boundary has been
reached,  the  number  of  processed  fragments  does  not
increase  significantly  even  when the  volume  is  rendered
many times.

Since  the  depth  buffer  is  split  in  two,  with  one  half
representing  linear  distance  within  the  volume  bounding
box, it is necessary to convert the depth values in the depth
texture  to a position within the bounding box which then
determines  in which pass  rendering will  resume.  For this
purpose  a  one-dimensional  texture  can  be  used,  which
maps a depth value to a position within the volume.

3 Simulating arbitrary clip geometry with ray casting

The normal OpenGL clipping planes cannot be used with
the  ray  casting  technique,  as  the  proxy  geometry,  the
volume bounding box, is rendered in the same location for
all passes. Clipping planes, or in fact, arbitrary shapes, can
easily be simulated in the fragment program, however.

The clip geometry is rendered in a separate  pass with
depth  writes  enabled  and  frame  buffer  writes  disabled.
After  rendering,  the  depth  buffer  is  copied  to  a  depth
texture  which  is  then  made  available  in  the  fragment
program. This depth texture is sampled during rendering of
the volume, and if the current position is less than the clip
value  from the  depth  texture  the  volume  sample  at  that
position is not blended in. Rendering only starts  once the
clip geometry has been reached and the effect  archived is
that  of the  volume  being “cut”  at  the  surface  of the  clip
geometry.

 
If this approach to clip geometry is used in conjunction

with embedded geometry no extra test is needed inside the
fragment  program;  the  depth values  of the  clip geometry
can instead be rendered into the depth buffer after the other
geometry in the scene has been rendered. The depth test is
reversed  when  the clip  geometry  is  being  drawn so  that
other geometry is effectively masked.

When using this technique it is important to ensure that
the  clip  geometry  actually  covers  the  volume  bounding
box, otherwise the parts of the volume not covered will not
be correctly clipped.

4 Results

Depth  peeling  in  conjunction  with  GPU-based  ray
casting has  been implemented. The  Foot volume seen to
the right of  Figure 3 has been used to obtain the fragment
counts;  three  depth layers  were  used,  and tables  1 and 2
give  the  counts  for  the  main  and  intermediate  passes,
respectively.  The  rendering  was  directed  to  a  5002

viewport.

Layer 0 Layer 1 Layer 2 Sum

Early z 394,987

with geometry 363,046 22,960 536 386,542

Near neighbor 336,413

Figure 3: Left (Engine): engine block with embedded
geometry (in green) and an arrow pointing inside the
volume. Right (Foot): CT scan of a human foot with a
transparent blue sphere embedded in the volume and a green
arrow behind the sphere. Both are of size 2563

Figure 4: A volume rendering of a
scan of a human head, clipped
against a sphere



5

Layer 0 Layer 1 Layer 2 Sum

with geometry 281,973 27,569 16 309,558

Table 1: Fragment counts for the main pass

Layer 0 Layer 1 Layer 2 Sum

Early z 9,891,936

with geometry 9,891,936 9,891,936 9,891,936 29,675,808

Near neighbor 2,088,150

with geometry 1,830,186 251,942 255,178 2,337,306

Table 2: Fragment counts for the intermediate pass

The reason for the slightly lower  fragment count in the
main pass  is that some rays are terminated earlier due to
the opacity falling below the threshold value.  In fact,  the
number of fragments will always be equal or lower to the
fragment count without embedded geometry.

In  the  intermediate  pass  the  near  neighbor  method
shows its superiority clearly, as fragments can be skipped
for  this  pass  as  well,  unlike  the  early  z  approach.  The
reason  for  the  slightly  higher  fragment  count  with
embedded  geometry  is  that  all  fragments  must  be
processed at least once per layer, to set the initial value to
skip.

5 Discussion

Depth peeling is an efficient way to render  transparent
polygonal geometry, and, as has been demonstrated by this
paper,  it  can  be  successfully  integrated  with  volume
rendering.  With  the  early  z  approach,  the  number  of
processed  fragments  in  the  intermediate  pass  increases
linearly with the number of depth layers in the scene; the
near neighbor approach does not have this drawback. The
early z method can still be useful, however, as, especially
when  taking  into  account  complex  calculations,  such  as
lighting and shadowing,  the main pass  is by far the most
expensive part of the volume rendering pipeline.

While the number of layers in a scene is often not easy
to  determine,  the  effects  of  adding  more  layers  quickly
diminish  as  the  opacity  of  pixels  is  saturated.  For  this
reason,  using  only 3  or  4  layers  is  usually  sufficient  to
obtain good results.

Also,  in most  cases,  it is  not necessary  to render  the
entire  scene  in  the  depth  peeling  step;  only  transparent
geometry  needs  to  be  included.  After  the  depth  peeling
technique  has  been applied  to  all  transparent  objects,  all
opaque geometry in the scene is rendered normally and the
textures  from depth peeling,  along with any volume,  are
blended in afterward.

Among  the  possible  uses  of  this  technique,  medical
imaging  is especially worth mentioning. Objects, such as a
virtual scalpel of a surgeon practicing for an operation on
an MRI scan of a patient, or annotations describing specific
features  of a similar  scan,  are  often rendered inside of a
volume.  If  these  objects  are  opaque  they  might  obscure
important features  of  the  volume  and  it  is  preferable  to
render  them  partly  transparent  to  prevent  this  from
happening.

Another  use  is for virtual  reality,  for example  used by
the games industry, where the geometry can be an avatar or
a head-mounted display.

6 Conclusions

In this paper, we presented a novel method for enabling
the rendering of transparent polygonal geometry embedded
in  a  volume  data  set.  The  method  combines  “depth
peeling”,  a  known  technique  for  order-independent
transparency  in  polygonal  rendering,  with  GPU-based
volume rendering. By the use of early-z culling or the near-
neighbor approach,  the number of fragments processed in
the main pass, where the actual sampling of the 3D texture
is  performed,  is  at  most  equal  to  rendering  without
embedded geometry. In fact, it is often less if the geometry
obscures  part  of  the  volume.  Additionally,  for  the  near
neighbor  approach,  the  number  of  fragments  in  the
intermediate pass does not increase significantly either.

In addition, we show how arbitrary clip geometry can
be  simulated  with  an  approach  very  similar  to  depth
peeling. In fact,  if combined with rendering of embedded
geometry,  the  processing  of  the  clip  geometry  can  be
performed with no extra overhead.

While  the  renderer  has  been  implemented  using  the
nVidia GeForce 6800 graphics card, the early z method is
applicable also to the previous generation of graphics cards
(e.g. the  ATI  9700  or  nVidia  GeForce  FX  series).
However,  the  near  neighbor  approach  requires  the
GL_EXT_depth_bounds_test OpenGL extension,  which
is currently only available on the third and forth generation
graphics accelerators from nVidia.

7 Future work

In  the  current  implementation,  both  the  fragment
program for the main and intermediate  pass compares  the
value  from  the  depth  texture  to  the  current  depth;  the
reason  for  also  performing  this  comparison  in  the  main
pass is to stop sampling at the correct point along the ray in
the  case  the  layer  intersects  the  ray  segment.  Since  this
comparison entails some overhead it would be preferable if
it could be avoided.

One  method  of  achieving  this  is  to  terminate  a  ray
when only a partial ray segment would be traversed in the
next  main  pass,  but  write  a  special  value  in  the  depth
buffer,  slightly  less  than  the  value  otherwise  written  for
terminating a ray. After all passes have been rendered the
depth test is reversed as to only include the fragments with
the  special  value.  The  main  pass  is  then  performed  to
render the final partial segment of each ray, and, since Cg
provides  instructions  for  extracting  the  integer  and
fractional  parts  of a number,  the  starting position can be
calculated from the depth texture. Since an additional pass
is  required  it  is  unclear  if  this  would  provide  any
significant speed-up, however.

References

[Eve01] C.  EVERITT.  2001.  Interactive  “Order-Independent  
Transparency”. White paper, NVidia, 2001.

[Fer04] NVIDIA CORPORATION; EDITED BY R. FERNANDO. 
“GPU Gems”. 2004. ISBN 0-321-22832-4.

[FK03] R. FERNANDO AND M. J. KILGARD. “The Cg 



6

Tutorial”. 2003. ISBN 0-321-19496-9.

[KK99] KEVIN KREEGER AND ARIE KAUFMAN .  “Mixing  
Translucent  Polygons  with  Volumes”.  In  IEEE  
Visualization 99.

[KW03] J. KRÜGER AND R. WESTERMANN. “Acceleration
Techniques for GPU-based Volume
Rendering”.  In  Proceedings  of  the  14th IEEE  
Visualization Conference, p. 38, 2003.

[LCN98] B. LICHTENBELT, R. CRANE AND S. NAQVI. 
“Introduction  To  Volume  rendering”.  1998.  
ISBN 0-13-861683-3.

[SWND04]  D.  SHREINER,  M.  WOO,  J.  NEIDER AND T.  DAVIS.  
“OPENGL PROGRAMMING GUIDE, FOURTH 
EDITION”. 2004. ISBN 0-321-17348-1.



Chapter 7

Results



Results

At the start of this project I was not familiar with the details of either

volume  rendering  or  GPU  programming,  however,  now,  at  its

conclusion, I have gained significant insight into the details of both.

In software-based volume rendering the most natural approach is that of

ray  casting,  which  can  finally  be  implemented  on  ubiquitous 3D

accelerator cards available in recent years.  A first attempt at such an

implementation was already publicized before the start of this project

[1], thus I used this as a starting point and looked for ways of improving

it.

Two major results have emerged from this project: the integration of the

near  neighbor  skipping  optimization  technique  for  GPU-based  ray

casting, as well as a method for using the “depth peeling” technique to

correctly render transparent geometry embedded in the volume.

In addition I created a volume renderer which does the lighting and

gradient calculations on the GPU, however, the relatively limited time

available for a project of this type did not allow for a more thorough

investigation into these topics.

7.1 The near neighbor skipping optimization technique
This is the topic of Chapter 5; I here summarize the results.

Several optimization techniques are commonly used in software-based

volume  rendering,  among  them  early  ray  termination,  empty-space

skipping, and the more advanced near neighbor skipping, all of which I

have  implemented  on  the  GPU.  As  many  typical  volume data  sets

contain large regions of empty space,  or voxels  rendered completely

transparent by the transfer function in use,  significant savings can be

realized by utilizing methods for detecting and effectively skipping over

these regions. The near neighbor approach stores, for each voxel in the

volume, the distance to the nearest visible voxel. Thus, after sampling a

voxel, the distance to the nearest voxel is known and it is safe to skip

ahead this distance along the ray before sampling the next voxel.

While it is straight-forward to implement this technique in software once

all  the  distances  are  computed,  it  is  significantly  more  involved  to

achieve any speed-up when implementing it on a GPU due to its parallel

architecture. The most common way of avoiding  the execution of a

fragment program for a given fragment is by making it fail the depth

42



Results

test. However, fragments programs which alter the depth value cannot

normally be skipped, but by making use of an OpenGL extension, the

GL_EXT_depth_bounds_test,  even  fragment  programs  writing  a

depth value can be safely skipped, as this extension is not concerned

with the depth value  of incoming fragments. By making use of this

extension, it is possible to control exactly which fragments are processed

at a given time, which is exactly what is needed for the implementation

of the near neighbor optimization.

By making use of an optimal near neighbor data structure, in which the

distance to the nearest voxel is given only in one specific direction, the

viewing direction, an order of magnitude reduction in the amount of

processed  fragments  can  be  realized.  Table  1 lists  the  number  of

processed fragments for the optimal near neighbor data structure as well

as an omnidirectional and a directional for each quadrant. The numbers

for the early z method are included for comparison, and the number of

frames per second is given as well.

Main pass Intermediate pass FPS

Early z 89,603 489,268 138

Optimal near

neighbor
6,691 51,992 266

Omnidirectional

near neighbor
69,330 315,061 132

Directional near

neighbor
60,162 296,217 133

Table 1: Total number of fragments processed in the main and intermediate
passes for three types of near neighbor data structures, as well as the early z
method for comparison. The number of frames per second is given in the last
column.

As we can see, especially the optimal near neighbor approach allows us

Figure 6: The scene used to obtain the
fragment counts

43



Results

to avoid the processing of a high number of fragments in the main pass,

which, when gradient and lighting calculations are taking into account, is

much more expensive than in the intermediate pass.

The  reason  for  the  low  frame  rate  achieved  by  the  near  neighbor

approach  is  a  lower  fragment  rejection  rate  when  using  the

GL_EXT_depth_bounds_test, compared to the early z test. It should

be noted that with a more complex fragment program in the main pass

the near  neighbor approach can be expected  to overtake  the early z

method.

7.2 Embedded transparent geometry
This is the topic of Chapter 6; I here summarize the results.

Even  with  only  polygonal  geometry,  transparency  it  problematic  to

render correctly. In principal it is easy: simply render all the geometry in

back-to-front order and blend the color values into the frame buffer.

Geometry is most often rendered object-by-object, however, with little

consideration for depth order, and the geometry thus has to be sorted

before  rendering,  which  adds  significant  overhead.  If  geometric

primitives  overlap,  as  the  two  triangles  in  Figure  7 do,  it  is  even

necessary to split the triangles to achieve correct transparency with the

sorting method. Clearly  this  can be inefficient for larger numbers of

triangles,  and  this  is  especially  true  for  volume  rendering,  as  many

triangles will intersect the proxy geometry used.

A better approach, depth peeling, is described in [6]. Now the scene is

rendered multiple times, each time removing all  visible pixels in the

previous pass, and the result of each pass stored in a texture. The stack

Figure 7: Two intersecting
triangles rendered with correct
transparency using depth
peeling.

44



Results

of textures now depicts each layer of the scene, and when these textures

are  blended together  in  back-to-front  order,  the  geometry  will  have

correct transparency.

To integrate this with volume rendering the depth peeling is first applied

to the scene excluding the volume, which is then rendered at the end.

The volume has to be rendered the same number of times as there are

layers in the scene,  and in each pass only the section of the volume

falling between layers is actually rendered. By taking advantage of the

early z test this can be done efficiently, as  each visible voxel will still

only be processed once in the main pass.

Main pass Intermediate pass

Early z 89,603 489,268

Early z w/embedded

geometry
79,665 1,957,072

Optimal near

neighbor
6,691 51,992

Optimal near

neighbor w/geom
5,125 170,587

Table 2: Number of processed fragments for the main and intermediate
passes for early z and optimal near neighbor with and without embedded
geometry

When rendering with embedded geometry the fragment counts for the

main pass are actually slightly less than without; this is due to some

fragments of the volume being obscured by geometry.

7.3 Illumination in volume rendering
While time did not allow for a closer investigation into this  area of

volume  rendering,  I  did,  as  part  of  familiarizing  myself  with  GPU

programming and volume rendering,  implemented a volume renderer

which applies Phong shading to the rendered voxels.

As voxels do not have normals a vector quantity called the gradient is

used instead. The gradient is interpolated from a voxel's neighbors and

represents change in voxel value. It points in the direction of the greatest

change and its length is determined by how quickly the value changes.

While the  gradient  can be calculated  as part  of  rendering  this  is  an

expensive operation, especially if more than a simple linear interpolation

is required, and since it is a static value it is usually pre-calculated and

45



Results

supplied as a texture in addition to the volume data itself. I implemented

a renderer capable of both modes of operation.

Figure 8 shows a volume rendering with Phong shading applied to each

voxel. A red light is positioned up to the left and has a strong specular

component, as can clearly be seen, while a blue light is located down to

the right.

Figure 8: Volume rendered with Phong shading. A
red light, with a strong specular component, is
shining from the left, while a blue light is
positioned to the right.

46



Chapter 8

Discussion



Discussion

While volume rendering does not have the mass-marked appeal of for

example computer games, it is an indispensable tool for the industries

which make use of it. It does not mean, however, that the requirements

to rendering performance and accuracy are any less than other fields in

3D graphics, in fact, the nature of volume rendering places very high

demands on the rendering system just to handle the large volume of

data. Any means of increasing rendering efficiency is therefore greatly

welcomed.

GPU  programming,  on  the  other  hand,  is  very  much  used  in  the

mainstream and especially in games programming. In fact, the evolution

of GPUs and commodity graphics cards is driven in large part by the

game marked, and the volume it generates is what allows companies to

develop and sell such powerful 3D hardware at low prices.

Taking advantage of this development in 3D hardware, also for volume

rendering, is a natural step to take, and, as this thesis has shown, the use

of a GPU has many benefits.

While everything the GPU can do can also be done in software, in most

cases it is only at a severe disadvantage in speed. The GPU is especially

tailored  to  providing  interactive  renderings,  and  this  can  mean  the

difference between a useful technology and one which cannot be used

effectively.

While the methods proposed here do require a fairly recent graphics

card, this should not be a deterrent to their use, as even modern 3D cards

have  a  very  low  cost.  This  is  especially  true  when  compared  to

specialized volume  rendering  hardware.  With  the  current  pace  of

development in GPU performance, it can also be expected that methods

which make more use of the GPU will  also increase in performance

faster  then  other  methods,  and  will  thus  only  increase  their

attractiveness.

48



Chapter 9

Conclusions



Conclusions

The research performed during this project has resulted in two major

new  techniques  implemented  on  the  GPU:  ray  casting  with  near

neighbor  skipping  and  correct  rendering  of  transparent  geometry

embedded in a volume.

Both techniques have immediate usefulness in volume rendering and can

readily be implemented in existing volume rendering systems. Systems

in Motion,  for whom this project  has  been realized,  ships  a  volume

rendering system called Voleon as part of their product portfolio. Both

proposed techniques are scheduled for integration with this system, and

will then be of benefit to their clients.

50



Chapter 10

Future work



Future work

For  both  techniques  presented in  this  thesis  possible  future  work  is

described  in  their  respective  chapters,  however,  perhaps  the  most

important is the integration of these techniques in a full-featured volume

rendering system, such as Voleon, and certifying that they interact with

other features of the system in a nice way.

Another consideration in a  real  volume rendering system is  that  ray

casting does not provide a speed-up for all volumes; in fact, for dense

and highly transparent volumes the extra overhead may result in lower

performance. A method for automatically detecting if this is the case and

switching to a traditional slice-based renderer would free the user from

having to make this determination on a per-volume basis.

Finally,  there  are  several  other  fields in  volume rendering,  such  as

transfer  function  evaluation,  lighting  and  shadow  calculations  and

handling  volumes larger  than  the  available  texture  memory  on  the

graphics  card,  which  could  be  advanced  by  investigating  which

possibilities exist for taking advantage of the GPU.

52



Chapter 11

Bibliography



[1] J. KRÜGER AND R. WESTERMANN. 2003.  Acceleration Techniques for
GPU-based Volume Rendering.

[2] T. J. PURCELL. 2004. Ray Tracing on a Stream Processor.

[3] I.  BUCK,  T.  FOLEY,  D.  HORN,  J.  SUGERMAN,  K.  FATAHALIAN,  M.
HOUSTON.  2004. Brook for GPUs: Stream Computing on Graphics
Hardware. SIGGRAPH 2004.

[4] S. ARYA, D. M. MOUNT, N. S. NETANYAHU, R. SILVERMAN AND A. Y.
WU. 1998. An optimal algorithm for approximate nearest neighbor
searching. Journal of the ACM, 45 (1998), 891-923.

[5] KEVIN KREEGER AND ARIE KAUFMAN.  1999.  Mixing  Translucent
Polygons with Volumes. In IEEE Visualization 99.

[6] C. EVERITT. 2001. Interactive Order-Independent Transparency.

[7] M. HARRIS.  Dynamic branching  on the nVidia  GeForce  6 series.
http://www.gpgpu.org/forums/viewtopic.php?p=1694#1694

[8] B.  LICHTENBELT,  R.  CRANE AND S.  NAQVI.  1998.  Introduction  To
Volume rendering. ISBN 0-13-861683-3.

[9] R. FERNANDO AND M. J. KILGARD. 2003. The Cg Tutorial.  ISBN 0-
321-19496-9.

[10] NVIDIA CORPORATION;  EDITED BY R.  FERNANDO.  2004.  GPU Gems.
ISBN 0-321-22832-4.

[11] D.  SHREINER,  M.  WOO,  J.  NEIDER AND T.  DAVIS.  2004. OpenGL
Programming Guide, Fourth Edition. ISBN 0-321-17348-1.

[12] BUI-TUONG PHONG.  1975.  Phong.  Illumination  for  Computer
Generated Pictures. Communications of the ACM 18(6) June 1975,
p. 311-317.)

[13] T.  PORTER AND T.  DUFF.  1984.  Compositing  Digital  Images.
Computer Graphics Volume 18, Number 3 July 1984 pp 253-259


