
Preface

This report is written as a fulfillment of my masters degree in computer
science. I participate in a program called “forskerskolen”, which means that
the last year of my master overlaps the first year of my PhD. According to
this program, my diploma thesis is supposed to be a research plan for my
PhD and thus quite different from other diploma theses at my institute.

This research plan consists of three parts. The first part is a survey of
methods for the discovery of DNA regulatory elements, with a particular
focus on the computational models used. The second part is an article de-
scribing my contributions in the field so far. The article was written this
spring, and is based on an algorithm I developed last year. The last part
describes several research projects that I will be working on in my PhD.
Plans always tend to change, and I therefore doubt that all of the research
projects described here will be pursued. This may be due to publications
from other researchers that make my research projects excessive, or due to
shifting priorities. Still I expect to explore most of the proposed research
projects.

Both computational and biological aspects are important for the discovery
of DNA regulatory elements. As my focus is on algorithms and computa-
tional modeling, Finn Drabløs has written some paragraphs that are purely
biological. More specifically, Finn has written paragraph 2-8 of section 2.1,
the first two paragraphs of section 2.6.2, the two first paragraphs of section
3.2 and the first five paragraphs of section 3.4.

I want to thank Arne Halaas, Finn Drabløs, Magnus Lie Hetland, Rolv
Seehuus, Øystein Lekang, Kai Trengereid and Tarjei Hveem for help and
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Chapter 1

Introduction

Discovery of regulatory elements in DNA sequences is an important and still
open problem. The goal is to discover short substrings in the region around
a gene that binds to proteins called transcription factors. As binding of
transcription factors to these substrings are important for the regulation of
gene expression, the substrings are referred to as regulatory elements.

What makes computational discovery of regulatory elements possible, is
that the elements are often reused for several genes in the same genome,
and conserved across species. This means that motifs corresponding to real
elements are often overrepresented in the genome.

Both the motif model used to represent regulatory elements, the cal-
culation of motif overrepresentation and the algorithm used to discover the
most overrepresented motifs are important. Motif models ought to accurately
capture the sequence variability between elements with equal functionality.
Moreover, calculations of overrepresentation should reflect the biological sig-
nificance of a motif, and not just be statistical measures without biological
interpretation. Finally, if exhaustive discovery of optimal motifs is prohibitive
for a given motif model, the search space should be explored with efficient
heuristics. To achieve high sensitivity, computational methods should incor-
porate as many relevant sources of information as possible.

Chapter 2 of this report is a survey of computational models for the
discovery of regulatory elements in DNA. Chapter 3 describes a method for
composite motif discovery. Finally, chapter 4 describes my plans for future
research. Several specific research projects are described, along with some
more general directions for future research.
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Chapter 2

Computational models for
motif discovery in DNA
regulatory regions

2.1 Introduction

Understanding the regulatory networks of higher organisms is one of the
main challenges of functional genomics. An important part of this is the
discovery of regulatory elements. As biological verification of such elements
is a tedious process, much effort has been put into the development of com-
putational methods. Good computational methods can potentially provide
high-quality prediction of binding sites and reduce the time needed for ex-
perimental verification.

The system for transcriptional regulation of the eukaryotic genome is
complex. The regulatory processes are found at several hierarchical levels,
in particular at the sequence level, the chromatin level and the nuclear level
[136].

The sequence level includes coding regions, regulatory binding sites and
sequence elements affecting the 3D fold of the chromatin fibre. In particular
the binding sites for transcription factors will be discussed extensively here.

In eukaryotic cells DNA is packed as chromatin, and this affects transcrip-
tional regulation. The basic unit consists of 150 base pairs of DNA wrapped
1.7 times around a protein octamer, consisting of histones. This unit is called
the nucleosome, and it can exist in different structural and functional states.
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Transitions between states are linked to gene activity. These transitions are
influenced by post-translational modifications of histones, and this is often
described as the histone code. Also gene silencing by DNA methylation is
an important chromatin modification.

In addition to the linear (sequence) and pseudo-linear (chromatin) or-
ganisation of DNA, it is also organised in a highly folded state. This brings
together genome regions that are far apart, which may affect the co-regulation
of these regions. However, we lack efficient tools for studying global chro-
matin folding.

In particular the transcriptional regulation at the sequence level has been
extensively studied, and several reviews are available, e.g. by Werner [143],
Wray et al. [145] and Pedersen et al. [97]. The key regulatory region is the
promoter, located upstream of the coding sequence. It is often separated
into the basal (or core) promoter, where the transcriptional machinery is
assembled, and the general promoter, where most of the transcription factors
bind. The promoter basically integrates information about the status of the
cell, and adjusts the transcription level according to this information. The
transcription factors are proteins that bind to specific DNA motifs. These
motifs are short. The effective length may be just 4-6 base pairs (bp) for a
typical binding site, although the region affected by the transcription factor
(the footprint) is longer, typically 10–20 bp. Each gene contains a large
number of binding sites, 10–50 binding sites for 5–15 different transcription
factors is not unusual. These transcription factor binding sites are often
organised in modules consisting of several binding sites, where each module
produces a discrete aspect of the total transcription profile. For many genes
most of the binding sites are found within a few kb upstream of the start
site. However, the variation is large, the size of the cis-regulatory region
can vary by nearly three orders of magnitude from a few hundred bp to
>100 kb. Regions have also been found downstream, in introns and even in
exons of genes. The actual transcriptional regulation is achieved through a
complex, combinatorial set of interactions between transcription factors at
their binding sites [70].

What makes computational discovery of novel elements possible, is that
functional elements are often reused for several genes in the same genome, and
conserved across species. This means that novel regulatory elements may be
discovered by searching for overrepresented motifs across regulatory regions.
Searching for exact copies of short sequences is usually not adequate, because
some sequence variety without change of function is common for regulatory
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elements. Having an accurate model of this sequence variability is of course
of utmost importance.

The basic approach to de novo computational discovery of regulatory
elements is to first extract a set of sequences from the genome. This is typi-
cally fixed size upstream regions for a set of genes having similar functional
annotation or gene expression. An algorithm is then used to discover the
most overrepresented motifs according to some motif model and statistical
measure.

Several extensions of this basic approach may increase the sensitivity of
motif discovery. Regulatory elements are not distributed evenly in a fixed
region upstream of a gene. Different genes will have varying degrees of simi-
larity with the rest of the set. The context of a putative regulatory element
may be important, such as other nearby regulatory elements, the presence
of CpG-islands, or the position in the overall DNA structure. Finally, addi-
tional sources of information, such as regulatory regions of orthologous genes,
are often available.

In principle, there is no difference between the models used for discovery
of novel motifs and those used for discovery of new instances of known
motifs. They are therefore treated equally in our discussion. However, since
occurrences have to be determined for a very large number of putative motifs
when doing de novo discovery, the models tend to be a bit simpler than
those typically used in pure searching metods. Figure 2.2 shows the relation
between searching and de novo discovery.

In section 2.2, we introduce an integrated model for the computational
discovery of regulatory elements. In the following sections we discuss how
recent methods approach various elements of the model, although no single
method takes more than a few of these elements into account. More specifi-
cally, single motif models are covered in section 2.3, composite motif models
in section 2.4, and the effect of motifs on gene regulation in section 2.5. Ad-
ditionally, calculation of motif significance is briefly discussed in section 2.6,
and some algorithmic concerns mentioned in section 2.7
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2.2 An integrated model for computational

discovery of regulatory elements

The regulatory machinery operates at several different levels, and this should
be reflected in a computational model. A schematic view of our model is given
in figure 2.1.

The lowest level consists of transcription factors (TFs) that bind to short
contiguous sequence segments. These sequence segments are modeled by sin-
gle motifs that give a distinct score for each sequence segment in a regulatory
region. This score is based on the match between the sequence segment and
a motif consensus model, and on the prior belief that any regulatory element
is to occur at the given location.

At the next level are modules: clusters of TFs that bind to DNA in prox-
imity to each other, but with a certain distance flexibility between binding
sites. This is modeled by a composite motif model, consisting of a set of
single motifs. Given a set of positions, one for each single motif, the score
of a composite motif is calculated from the score of each single motif at its
position and the inter-motif distances.

The third level concerns how the multitude of binding possibilities for
a set of modules add up to determine regulation of a single gene. This
is modeled by a gene score function that combines composite motif scores
across the regulatory region.

The final level of our computational model concerns evaluation and rank-
ing of discovered motifs. Significance evaluation is based on either genome-
wide overrepresentation of motifs, or correspondence between motif scores
and experimental data.

Table 2.1 gives an overview of how various elements of our model are
approached by selected methods, including both novel and more established
approaches.

2.3 Single motif model

We define a single motif model as a function mg(p) : M = N → R that takes
as input a position in the genome, and returns a value indicating whether an
occurrence of the motif starts at this position. This function is typically the
product or sum of two conceptually different functions: The match model,
m∗(p), gives the degree of match between the substring beginning at position
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Figure 2.1: Schematic view of our integrated model. Each mg corresponds
to a single regulatory element, while each cg corresponds to a module.

  motif   scoring genome

   motifgenerator

motif score(feedback)hypothesizedmotifs

priors

motif DB

knownmotifs

Figure 2.2: Relation between search and de novo discovery. In de novo
discovery, the scores of hypothesized motifs are used to guide the search for
new significant motifs
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Table 2.1: Overview of methods

ALGORITHM MATCH DISTANCE GENE
NAME MODEL FUNCTION SCORE
Weeder[96] mismatch - max
Dyad analysis[139] oligos constraint max
MCAST[9] PWM gap penalty HMM
[29] PWM constraint sum
MDScan[84] PWM - max
Gibbs sampler[78] PWM uniform max
MEME[8] PWM - sum
LOGOS[148] DM distribution HMM
Motif regressor[34] PWM - sum
ModuleSearcher[3] PWM window max
Stubb[124] PWM window HMM
GANN[13] flexible window ANN
ANN-Spec[144] PWM - max
[142] PWM window max
CoBind[56] PWM window sum
Cister[51] PWM distribution HMM
SeSiMCMC [46] PWM - mixture model
[88, 87] mismatch constraint max
BioProspector[83] PWM constraint sum
[117] PWM - logistic func.
[122] reg.exp constraint sum
ConsecID[118] PWM window sum
SCORE[105] IUPAC window sum
Gibbs recursive [132] PWM distribution mixture model
[94] PWM - hyperb. tan.
AlignACE[109] PWM - mixture model
Improbizer[4] PWM - mixture model
CisModule[153] PWM mixture model mixture model
[131] PWM constraint max
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p and an underlying consensus model. The occurrence prior, og(p), gives the
prior belief that position p contains any regulatory element for gene g.

2.3.1 Match model

In the most general sense, the match model m∗ is a function that gives a dis-
tinct score for any given substring. However, the number of free parameters
has to be restricted to allow training of the model from a limited number of
examples (known regulatory elements).

Numerous match models have been proposed, and they are often divided
into two groups: deterministic models with binary scores and probabilistic
models with weighted scores.

Probabilistic match models

The most widely used probabilistic model is without doubt the position
weight matrix (PWM), also called PSSM or PSWM [125], that assumes in-
dependence between positions. The score of an aligned substring is the log-
likelihood of the substring under a product multinomial distribution. PWM
scores can also be described in a physical framework as the sum of binding
energies for all nucleotides aligned with the PWM.

Many different extensions to the basic PWMs has been proposed in the
literature. Most of these extensions concern positional dependencies within
a motif. There is an ongoing discussion on the importance of such positional
dependencies, see for instance [15, 152, 93].

The most direct way of incorporating dependencies within motifs, is to
extend the PWM to include pairs of correlated positions [152]. Another
straightforward approach is to use a mixture model in which the motif oc-
curs as one of a limited number of stochastic prototypes [12]. Each stochastic
prototype may be a traditional PWM, or any other model discussed in this
section. A third extension is to model probabilistic motifs as n‘th order
Markov chains [82]. It is, however, hard to find a good compromise be-
tween a high n that gives too many free parameters and a low n that misses
out the dependencies of interest. If the relative importance of dependencies
varies within a motif, a variable-length markov model(VLMM) [32], may be
preferrable. Furthermore, if some long-range dependencies seems to be sig-
nificantly stronger than dependencies between neighbouring positions, the
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order of the positions in the markov chain may also be permuted before a
VLMM is applied [151].

Another way to model dependencies is to use bayesian networks. Barash
et al. discuss different Bayesian network models and conclude that the use of
a Bayesian tree model, or possibly a mixture of trees, is a good compromise
between the number of free parameters, the ability to model dependencies,
and computational tractability [12]. Similarly, Ben-Gal et al. [14] argue for
variable order Bayesian nets.

Instead of focusing on dependencies between specific nucleotides at dif-
ferent positions, Xing et al. model the distribution of conserved positions
within a motif [149]. In this model there is an underlying markov chain of
position prototypes. Each prototype defines a certain Dirichlet distribution
on the parameters of the multinomial nucleotide distribution at that position.
The underlying Markov chain favors transitions between position prototypes
with similar degrees of conservation. This makes it possible to favor models
where highly conserved positions are partially contiguous rather than evenly
spread out in the motif.

Deterministic match models

A deterministic match model evaluates to a binary value indicating hit or no-
hit. The three main kinds of deterministic match models are oligos, regular
expressions and mismatch expressions.

The simplest deterministic model is the oligo model. This is a function
that is 1 for a single specific substring, and 0 for all other substrings. The
oligo model was commonly used in early motif discovery methods , but has
also been used in recent word-counting methods [137, 64, 122] and dictionary
models [28].

A regular expression model m∗ returns 1 if an underlying regular expres-
sion matches the given substring. As reviewed by Brazma et al. [23], the
models used in motif discovery are typically composed of exact symbols, am-
bigous symbols, fixed gaps and/or flexible gaps. Regular expression models
are used in e.g. [139, 122, 119, 128].

Many methods use mismatch expressions as motif match models, e.g.
[134, 87, 98, 96, 43, 10]. These models evaluate to 1 if the number of mis-
matches(Hamming distance) between a substring and the underlying consen-
sus substring is below a given threshold. A variant is described in [81], where
the threshold is on the sum of mismatches between all motif occurrences and
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the underlying motif substring. A similar variant, with a threshold on mis-
matches between occurrences in sequences arranged in a phylogenetic tree,
is described in [18].

Both oligos, regular expressions and mismatch expressions can be repre-
sented as PWMs. However, a major benefit of these models is that they
allow exhaustive discovery of optimal motifs. This is discussed further in 2.7.

2.3.2 Occurrence prior

The genetic context of a regulatory element is important for its activity.
Distance to transcription start site, sequence conservation in orthologous
genes, DNA structure and presence of CpG-islands may all be relevant.

In our model, these context features are represented by an occurrence
prior, og(p) , representing the prior belief that any regulatory element is
located at a given position p.

The simplest kind of occurrence prior is a motif abundance ratio [66].
This ratio influences only the number of substrings that count as occurrences.
Another simple prior is strand bias, which corresponds to an occurrence prior
that is higher on one strand than on the other [124]. Similarly, Liu et al. [83]
and Donaldson et al. [38] optionally constrain the search to only one of the
strands, which corresponds to a binary strand bias.

Spatial distribution of binding sites

In higher organisms, regulatory elements may be located far upstream of the
gene, downstream of the gene, in introns, and even in exons. Nevertheless,
most elements are located immediately upstream of the transcription start
site (TSS).

In general, this can be represented by a function that gives the prior belief
that a regulatory element is located at a given position relative to the TSS.An
occurrence prior based on the empirical distribution of element locations in
E.coli has been used in [89] and [132]. Nevertheless, the by far most common
approach is to only search for motifs in a fixed region upstream of TSS, which
corresponds to a binary function og.
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Conservation in orthologous sequences

The term phylogenetic footprinting is commonly used to describe phyloge-
netic comparisons that reveal conserved elements in regulatory regions of
homologous (in particular orthologous) genes [127].

The reasoning behind phylogenetic footprinting is that since regulatory
elements are functionally important and are under evolutionary selection,
they should have evolved much more slowly than other non-coding sequences.
Moreover, genome-wide sequence comparison and studies on individual genes
have confirmed that regulatory elements are indeed conserved between re-
lated species [150].

More specifically, Krivan and Wasserman [77] reported that highly con-
served regions were around 320 times more likely to contain regulatory el-
ements than non-conserved regions, based on findings from a set of liver-
specific genes.

Several methods exploit information about conservation in orthologous
genes by searching for motifs only in highly conserved sequence parts (typi-
cally human-mouse orthologs) [118, 124, 10, 36]. This approach corresponds
to using a binary occurrence prior that is 1 if the conservation score is above
a threshold, and 0 otherwise.

Wasserman and Fickett [142] use non-binary conservation scores, but they
do not incorporate these into the search as priors. Instead, they only use
conservation to filter the discovered motifs.

DNA structure

The three-dimensional structure of DNA, densely packed as chromatin, in-
hibits transcriptional initiation in vivo [97]. The bendability of a region,
as well as its position in DNA loops, may give indications on whether it
contains regulatory elements.

Only a few motif discovery methods take DNA structure into consider-
ation. Beiko and Charlebois [13] average structure scores of all k-mers in a
window around a given position, independently of any particular motif. Con-
versely, Pudimat et al. [102] incorporate helical parameter features [100, 41]
in a bayesian net that is specific for each motif.
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Nucleotide distribution

Both high GC content and presence of CpG-islands may indicate that a region
contains regulatory elements. Pudimat et al. [102] is one of few methods
that take this into consideration when calculating motif scores.

2.4 Composite motif model

Clusters of binding sites for cooperating TFs, often called modules, are be-
lieved to be essential building blocks of the regulatory machinery. Werner
[143] states that “Within a promoter module, both sequential order and dis-
tance can be crucial for function, indicating that these modules may be the
critical determintants of a promoter rather than individual binding sites”.
The multitude of models developed for the discovery of modules is another
indication of the conceived importance of modules.

It is therefore natural to define a computational motif model that rep-
resents a combination of single motifs. We define a composite motif as a
function cg(~p) : C = 2N → R. A composite motif consists of a set of single
motifs ~mg, with each single motif giving a separate score at its position. In
addition, functions may be defined on the distances between single motifs.
Given a set of positions, the score of a composite motif will typically be the
sum or product of each single motif and distance score.

The cooperativity in modules may be homotypic, involving binding of
the same TF to multiple binding sites, or it may be heterotypic, involving
binding of different TFs [140]. This means that a composite motif may be
composed of several instances of the same single motif, or it may be composed
of distinct single motifs.

2.4.1 Distance functions

Many different models have been propsed to capture the importance of inter-
motif distances within a module. Several methods put constraints on the
distances between consecutive motifs, requiring either fixed distances [83,
122] , distances below thresholds [72, 62, 131], or distances within intervals
(e.g. [139, 122, 29, 83, 43])

Another common way of capturing the importance of proximity, is to
constrain all single motifs to be within a window of a certain length (e.g.
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[142, 56, 105, 3, 124]). This corresponds to a threshold on the maximum
distance between any two single motifs.

A more general approach is to define non-binary score functions on the
distances between single motifs. This can simply be functions that increase
linearly with distance as in [9].

The conservation of inter-motif distances across modules can also serve
as basis for distance score. Wagner [140] calculates a distance score from
the p-value of observing the given degree of distance conservation in a back-
ground model of poisson-distributed inter-motif distances. Similarly, Frech
and Werner [48] calculate scores by comparing the distances with a histogram
of distances between the same regulatory elements in other modules. Finally,
a geometric distribution on inter-motif distances follows implicitly from many
HMM models [51, 148].

We have implicitly assumed in this discussion that distance is the number
of base pairs between two positions in the genome. It is in principle possible
to measure distance in other ways. An example is to require all motifs in a
module to be on the same strand [119], which corresponds to a simple binary
distance function. More importantly, as our understanding of DNA folding
increase, new and more complex distance measures may appear.

2.4.2 Combining single motifs

There are many ways of combining all single motif and distance scores in a
single measure.

For methods using deterministic match models, and constraints on dis-
tances, all component scores are binary. Furthermore, many probabilistic
methods use thresholds on single motif scores to obtain only binary values.
The composite motif score is then typically the intersection of component
scores (e.g. [140, 114, 118, 24].) A slight variation of this is to require that M
out of N single motif scores are one [99]. Similarly, the count of binary single
motif values can be used directly as composite motif score [16, 115, 122].

For methods that use non-binary single motif scores, a common approach
is to calculate the sum of single motif and distance scores [9, 48]. Some
methods require that all distance functions are 1, and if they are, composite
motif score is the sum of single motif scores [3, 2, 56, 76]. Similarly, the
method Modulescanner sums only single motif scores above a threshold, and
MotifLocator sums the N highest single motif scores [3]. Another slight
variation is to multiply the sum of single motif scores with a motif density
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factor, calculated from the length of the window that contains all of the single
motifs [72]. Finally, a few methods take the composite motif score to be the
highest single motif score [96], or the lowest single motif score [67].

Many other specialized models have also been used to combine single mo-
tif and distance scores: Hidden Markov Model(HMM) [148], history-concious
HMM(hcHMM) [124], Self-organizing Map (SOM) [85], and Artificial Netu-
ral Network (ANN) [13]. In all of these models, the score of several homotypic
and/or heterotypic single motifs are combined in a relatively complex way.

It should be noted that composite motif scores need not be relevant al-
though a method discovers composite motifs. Many methods discover com-
posite motifs iteratively in a greedy way (e.g. MEME [8] and AlignACE
[109]). As only the highest scoring single motif is added in each iteration,
there is no need to evaluate and rank entirely different composite motifs.

2.5 Gene score

Motif scores are defined for specific positions, and indicate likely locations
of regulatory elements. Additionally, we are often interested in how much
influence a motif has on the regulation of a gene. This is calculated from
composite motif scores, cg(~p), across the whole regulatory region of gene g,
and is referred to as gene score (Gg(c) : C → R).

Gene score is often defined simply as the maximum motif score in the
regulatory region of a gene [144, 84, 18, 115, 3]. This corresponds to an im-
plicit assumption of exactly one relevant occurrence of a motif in a regulatory
region.

There is, however, reason to believe that the presence of multiple binding
sites for TFs plays an important biological role that should not be neglected.
Many methods therefore calculate gene score as the sum of motif scores
across the regulatory region. As motif scores are typically log-scores, most
methods add the exponentials of motif scores (e.g. [29, 56, 141, 49]). A
slight variation is to only sum motif scores above a certain threshold [9].

In addition to the before mentioned formulas, many variations have been
used to calculate gene score: Caselle et al. [31], Cora et al. [35] and Cora et al.
[36] calculate gene score as the p-value of the observed set of motif scores.
Curran et al. [37] calculate gene scores based on logistic regression. Similarly
Segal et al. [117] use a logistic function, and P. et al. [94] a hyperbolic tangent,
on the sum of motif scores. Finally, Beiko and Charlebois [13] use an artificial
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neural network to combines motif scores.
A special case arises with the dictionary models of Bussemaker et al. [28]

and Gupta and Liu [57], which always span whole regulatory regions. In these
methods, the score of all valid segmentations of the region into contiguous
words from the dictionary is added together to form the gene score.

2.6 Motif significance

In de novo motif discovery, numerous motifs are typically hypothesized, while
only a few correspond to real biological entities. Therefore, evaluation and
ranking of motifs is essential.

Motif significance, s(c) : C → R, is based on either the genome-wide
overrepresentation of the motif, or on the correspondence between gene scores
and experimental data.

2.6.1 Genome-wide overrepresentation

Computational motif discovery is possible primarily because regulatory el-
ements are overrepresented. Many methods use this overrepresentation di-
rectly when evaluating the significance of a discovered motif. The exact
way of calculating motif significance varies from method to method, but can
roughly be divided into five different approaches.

The most direct approach is to determine overrepresentation by compar-
ing observed motif scores with expected scores in a background model. More
specifically, the p-value [105, 128] and z-score [134, 122] of the observed
sum of gene scores has been used. The background is typically a higher
order Markov model, with parameters estimated from the sequences used
for motif discovery. Alternatively, shuffled control sequences can be used as
background [78].

A simpler approach is to only compare the raw sum of gene scores when
ranking motifs []. This is equivalent with the first approach under the as-
sumption of equal expected scores for all motifs in the background model.

A third approach is to use a significance measure related to the IC of dis-
covered PWMs [8]. For methods that use mixture models of log-ratio PWMs
and background, the PWM with highest IC corresponds to a maximum like-
lihood solution of the mixture model.
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A common approach in deterministic motif discovery is to calculate two
separate values when evaluating motifs: one concerning the support, or cov-
erage, of a motif, and a second concerning the unexpectedness of a motif
[68, 108, 87].

The fifth approach is completely different, and focuses only on overrepre-
sentation of motif combinations. Motif significance is based on the observed
versus expected scores of composite motifs, given the observed score distri-
bution of single motifs. The significance can, for instance, be the p-value of
the observed composite motif scores in a background model where all single
motif occurrences are randomly reshuffled [118].

2.6.2 Correspondence with experimental data

In recent years the development of microarray technology has revolutionised
studies of regulatory processes, in particular because it can be used to identify
genes that are co-regulated under specific conditions. Microarrays are used
to measure relative expression levels of genes in a set of experiments. This
may be e.g. time series experiments like cell cycle studies or before/after
experiments like stress response studies and studies of malignant vs. normal
tissue. It is a reasonable hypothesis that genes showing synchronised changes
in expression levels share important aspects of transcriptional regulation, e.g.
transcription factor binding sites. Sets of genes showing co-regulation may
therefore be used for data mining for shared regulatory motifs [111], although
it has been shown that this type of data mining is difficult and error prone
[135].

Recently, genome-wide binding analysis like ChIP/chip experiments have
appeared as an approach for more reliable identification of actual binding
sites [107, 26]. In a ChIP/chip experiment a known transcription regulator
is tagged with an antibody epitope, and the tagged regulator is expressed in a
suitable system where it binds to DNA, either directly or via other proteins.
The complex is then chemically crosslinked, the DNA is fragmented, and
the protein/DNA complex is isolated by immunoprecipitation. The genomic
position of the DNA fragment is then identified by a microarray experiment.
This gives the location of binding sites for this specific regulator, although the
relevance of the information may be limited by the specific set of experimental
conditions used and the resolution of the experiment itself (DNA fragment
size and genome resolution on the microarray chip).

Besides ChIP/chip and microarray experiments, gene groups are often
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formed from conserved orthologous genes [91, 18, 104, 141], or genes with
similarities in functional annotation [64, 36]. Finally, genes that make up
functional pathways, genes that are homologous to regulons from a well-
studied species, and groups of genes derived from conserved operons have
also been used [90].

The availability of experimental data makes it possible to form initial
hypotheses about co-regulation. Many methods cluster the genes based on
experimental similarities, assigning each gene to a single group of putatively
co-regulated genes. All genes are then treated equally during motif discovery,
regardless of the degree of similarity between a gene and the rest of the group
(e.g. [90, 130, 37, 131, 94]).

As genes can be co-regulated with several groups, we use fuzzy sets to
represent prior grouping of genes. In our model, every gene g has a weighted
membership µF (g) in each fuzzy set F. Segal et al. [115] and Liu et al. [84]
are among the few authors that have used weighted values for experimental
data during motif discovery.

The correspondence between gene scores and experimental data may be
used as a measure of motif significance. This can be calculated in several
ways. One approach is to evaluate the fit of a logistic regression from gene
scores Gg to membership values µF (g) [142, 37]. A simplification of this
approach is to compare binary gene scores with binary membership values
, and calculate the mismatch ratio [94] or roc50 score [9]. Alternatively,
grouping of genes can be avoided altogether, and motif significance measured
as the fit of a linear regression directly from gene scores to observed log-
expression in micro-array experiments [29, 34, 117].

Park et al. [95] consider the problem in the opposite direction. They
first discover motifs in the regulatory regions of all genes and form groups
of genes that share common motifs. Motif significance is then measured as
the similarity in gene expression within the group formed from the common
motif.

Finally, Holmes and Bruno [60] calculate the joint likelihood of both
shared motifs and expression similarity for hypothesized gene groups.

Although several methods may be configured to use different kinds of
experimental data [64, 90, 36], only a few methods tries to combine different
kinds of data in a single similarity measure. Takusagawa and Gifford [128] use
the GRAM algorithm [11] to cluster genes based on both ChIP-data and gene
expression data. Further work, incorporating more kinds of experimental
data and using fuzzy set membership, could give more robust priors on co-
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regulation and increase the sensitivity of motif discovery.

2.7 Some algorithmic concerns

An important trade-off in motif discovery is between representational ex-
pressibility and computational efficiency. For the case of binary priors and
restricted deterministic motif models, several algorithms exist that can ex-
haustively discover the optimal motifs [68, 108, 44].

Probabilistic motif discovery algorithms do not guarantee returning the
global optimum when applied to realistic problems. These algorithms are
typically based on either iterative refinement or stochastic optimization. Ex-
pectation maximization (EM) [79, 8, 121, 101, 4] is the most widely used
iterative refinement method, but variational EM [148]: have also been
used. The stochastic optimization technique most widely used for motif dis-
covery is Gibbs sampling [78, 92, 83, 132], sometimes combined with general
Metropolis-Hastings [57, 66, 153]. Recently, simulated annealing has also
gained some popularity [115, 151, 55]

Seed-driven algorithms have been used with success in deterministic mo-
tif discovery. They start by evaluating seeds from a very restricted class of
simple motifs, and then expand promising seeds to full motifs either heuris-
tically [58] or exhaustively [108]. A promising approach to motif discovery is
to first use efficient deterministic motif discovery, and then use the highest
scoring deterministic motifs as seeds for probabilistic motif discovery with
expressive models. In addition, motifs may first be discovered in the se-
quence parts with highest priors, and then used as seeds for motif discovery
in the full set of sequences. The method of Liu et al. [84] is a good example
of such a strategy. Several overrepresented mismatch expressions are first
discovered in upstream regions of the genes with highest group membership
(µF (g)). The highest scoring mismatch expressions are then used as seeds
for probabilistic motif discovery in the whole set of sequences.

2.8 Concluding remarks

The field of motif discovery brings together researchers from several disci-
plines, in particular from biology, statistics and informatics. Additionally,
research in the field is fairly recent and moving at a fast pace. This has
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resulted in a broad range of computational methods that are described with
different vocabulary and different focus, making it difficult to spot similari-
ties and differences between methods. Most articles on novel computational
methods focus on the authors own biological results. Hence, the authors
often put less emphasis on giving clear descriptions of precisely what an al-
gorithm requires as input, how it evaluates motifs, and what it returns as
output. This also contributes to making it harder to compare methods from
their description.

When trying to compare the accuracy and computational efficiency of
methods by measurement, one faces additional problems: The choice of data
set, choice of performance measures and tuning of program parameters all
have strong influence on the relative performance of methods [135].

Establishing a standardized framework for testing and comparing meth-
ods would be an important contribution in the field. Such a framework
should include a collection of diverse data sets and a few different measures
of performance. Furthermore, a consensus on what constitutes essential as-
pects of motif discovery methods could ease comparison of methods based
on their description, making it easier to choose between or integrate different
methods. The integrated model proposed in this article may be one step
towards a common vocabulary and understanding of the problem.
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Chapter 3

The generalized composite
motif discovery (GCMD)
algorithm

3.1 Abstract

This paper discusses a general algorithm for the discovery of motif combina-
tions. From a large number of input motifs, discovered by any single motif
discovery tool, our algorithm discovers sets of motifs that occur together in
sequences from a positive data set. Generality is achieved by working on
occurrence sets of the motifs. The output of the algorithm is a Pareto front
of composite motifs with respect to both support and significance. We have
used our method to discover composite motifs for the AlkB family of ho-
mologues. Some of the returned motifs confirm previously known conserved
patterns, while other sets of strongly conserved patterns may characterize
subfamilies of AlkB.

3.2 Introduction

Motif discovery in DNA and protein sequences is an important field in bioin-
formatics. Unique motifs found in a set of related sequences are often associ-
ated with the biological activity of the sequences. Motifs representing active
site residues in enzymes (proteins) or transcription factor binding sites in
genomes (DNA) are typical examples. Such motifs can also be used for

20



classification of novel sequences or sequences outside the original training
set. Both probabilistic and deterministic approaches are used. Arguably,
deterministic approaches give the most easily interpretable results, as they
represent motifs e.g. by subsets of regular expressions that either match a
given sequence or not.

There are many different algorithms for motif discovery, including manual
approaches. The earliest algorithms had very limited expressibility and could
only discover substrings of amino acid symbols. PROSITE [25], a database of
manually annotated motifs, in many ways set the standard for expressibility
of deterministic motifs for proteins. In addition to exact symbols, PROSITE
patterns also consist of fixed gaps, flexible gaps and ambigous symbols. Most
automated motif discovery tools are only able to discover motifs consisting
of a subset of these components.

The discovery of motif combinations is an area of active research, for
which both probabilistic and combinatorial approaches are used. Gibbs sam-
pler [92] and PRINTS [6] are two well-known probabilistic approaches. Most
combinatorial approaches discover spaced dyads [139, 43] or ordered sets of
motifs with strong distance constraints [87]. Brazma et al. [24] are among
the few methods that discover unordered sets of motifs.

A set of single motifs is a general starting point for composite motif
discovery. Many advanced methods exist for the discovery of single motifs,
and none are superior in all respects [135]. We have therefore chosen to
develop an algorithm for the discovery of motif combinations that can use
single motifs generated by any deterministic motif discovery tool.

GCMD (Generalized Composite Motif Discovery) exhaustively identifies
the most significant combinations of a set of precomputed motifs. It can
be set to discover both ordered and unordered motifs, with or without dis-
tance constraints. In addition to being flexible with regards to both single
and composite motif model, and exhaustive in search for combinations, two
properties clearly distinguish our algorithm from previous approaches: we
model the problem as a two-goal optimization with the optimal Pareto front
as output, and we automatically discover potential subfamilies.

GCMD is here discussed mainly in terms of protein sequence motifs. How-
ever, the tool itself is general and can also be applied to motifs from DNA
sequences.
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3.3 The Generalized Composite Motif Dis-

covery tool

In broad terms, GCMD takes as input a set of single motifs and exhaustively
discovers the optimal motif combinations with respect to both support and
significance. This is more thoroughly explained in the following sections.

3.3.1 Vocabulary

The set of sequences that have at least one occurrence of a given motif, is
called the occurrence set of the motif. The cardinality of the occurrence set
is referred to as support.

We use the term single motifs to denote the motifs that are input to the
GCMD algorithm, and composite motifs to denote the discovered motifs that
are sets of single motifs. The term component is used to denote one of the
single motifs that makes up a composite motif.

We also use the terms Pareto domination and Pareto front in multiple
criteria optimization. A motif is Pareto dominated if there exists another
motif having equal or higher values of both support and significance, where
one of the values is strictly higher. Since support is a discrete value, this
means that a motif is Pareto dominated if there exist another motif with
equal or higher support, and strictly higher significance. The Pareto front is
the set of all non-dominated motifs. In our case this is the most significant
motif for each value of support.

3.3.2 Motif representations

The first step in using GCMD is to discover deterministic single motifs with
a separate motif discovery tool. For tools that discover probabilistic motifs,
a threshold may be used to make them deterministic. A bitstring is then
constructed for each motif, where the i’th bit is 1 if the motif has an occur-
rence in the i’th sequence, and 0 otherwise [24]. A composite motif occurs in
a sequence if, and only if, every single motif in the set occurs in the sequence.
This leads to a basic representation of a composite motif as a set of indexes
to its component motifs, as well as an occurrence set calculated by taking
the intersection of the occurrence sets of all component motifs.
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3.3.3 Significance evaluation

Significance of motifs is measured as negative log-likelihoods, using the same
calculations as the motif discovery method Splash [58]. More specifically, the
significance of a single motif is the negative log-likelihood of observing the
motif in a random background sequence with the same amino acid distri-
bution as the input sequences. As single motifs usually are short compared
to sequence length, the log-likelihood of a composite motif is in general well
approximated as the sum of log-likelihoods of its components.

3.3.4 Significance vs support

Both significance as well as support is important when evaluating motifs,
and it is not easy to make the right trade-off between these properties when
doing automated motif discovery. Most algorithms require a threshold on
support, and this threshold is often user specified. Using a very strict value
may lead to loss of significant motifs that are characteristic of subfamilies
of sequences. On the other hand, a too permissive threshold may lead to
searches dominated by motifs with high statistical significance in subsets of
sequences, and one may lose less significant motifs representing weak com-
monalities characteristic of larger sequence families.

By formulating the motif discovery problem as a two goal optimization,
we can explore a very large search space of interesting motifs, and return
information about this in a condensed form as a Pareto front. The user gets
a diverse set of motifs, and can readily see the tradeoff between significance
and support as the number of sequences taken into consideration increases.
This removes the need to set explisit thresholds on support or significance.

3.3.5 Pruning of search space

GCMD traverses the search space exhaustively and returns the set of Pareto
optimal composite motifs. The size of the search space is

(
n
c

)
, where n is

the number of single motifs used as input to GCMD, and c is the desired
number of components in the composite motifs. Many algorithms exist for
the mining of frequent item sets. Brazma et al. [24] uses the algorithm of
Toivonen [133] to discover unordered sets of motifs. As this algorithm do
pruning only based on support, it can not handle the large number of input
motifs and low values of support that we are interested in.
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We have developed a branch-and-bound algorithm, tailored to our two
goal optimization problem, that is very efficient on real biological data. Since
our goal is to find an optimal Pareto front with respect to support and signifi-
cance, we need to determine upper bounds on both of these values. An upper
bound on support is simply the minimum support of the current components
of the composite motif. To introduce an upper bound on significance, we
ensure that when a composite motif is expanded, the new component has a
lower significance value than all other components of the motif. Note that
this does not reduce the set of composite motifs we are able to discover, it
only excludes all but one of the n! permutations that corresponds to the same
combination of n single motifs. For a given motif ci, this leads to a straight-
forward upper significance bound on any expansions of ci with n components
:
s(cn) ≤ s(ci) + (n− i) ∗ s(ci(i)), where ci is a motif with i components, ci(i)
is the i’th component of motif ci, and s(c) is the significance of motif c.

With these upper bounds in place we can make a recursive function that
takes as parameter a composite motif c that is to be expanded. For each sin-
gle motif s with significance lower than all current component significances
of the motif, we check whether the resulting upper bounds on support and
significance are dominated by the current Pareto front. If not, a new com-
posite motif is formed from c, with the single motif s as an added component.
The resulting motif is stored in the Pareto front if it has reached the desired
number of components, otherwise it is again expanded recursively.

In order to reduce the number of explored composite motifs even further,
we explore the expansions of a given composite motif in order of decreasing
significance of single motifs. Note that the support of the composite motif
before any new expansion is an upper bound on support. As the upper
bounds are monotonically decreasing, we can stop exploring new expansions
of a composite motif as soon as the upper bounds on support and significance
are dominated by the Pareto front.

3.3.6 Automated subfamily discovery

The Pareto front of composite motifs for a family may contain significant
motifs with relatively low values of support. It is natural to ask whether
such a motif characterize a subfamily of the data set. One may therefore
try to discover new motifs in the sequences that are not in the occurrence
set of the first composite motif. Since the goal is to find motifs that are
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common to as many sequences as possible, we have restricted automated
subfamily discovery to only two subfamilies and also demand that one of
the motifs belong to the Pareto front of the whole family. Significance
values of motifs are log-likelihoods, and a two-subfamily-motif occur in a
given sequence if either of the one-subfamily-motifs occur in the sequence.
Therefore, the significance of a 2-subfamily-motif c is well approximated as:
s(c) = log2(2

s(ca) +2s(cb) +2s(ca)+s(cb)), where ca and cb are the one-subfamily-
motifs.

3.4 Results and discussion

The family of AlkB homologues (ABHs) was used as a test case for compos-
ite motif discovery. The ABHs are members of the 2-oxoglutarate and Fe2+-
dependent (2OG-Fe(II)) oxygenase superfamily [5]. They have been shown
to be involved in repair of methylation damage of DNA and RNA through a
direct reversal mechanism, where the methyl group is oxidised and sponta-
neously released as formaldehyde [45]. Recent screening of databases using
sensitive search methods has shown that ABH-like sequences are widespread
in bacteria and eukaryotes, see Drabløs et al. [40] for a review.

The degree of sequence conservation in the ABH family seems to be very
low, basically just a H.D motif, an isolated H and a R.....R motif (using
single-letter amino acid symbols) is completely conserved in most ABH align-
ments. All except the final R are involved in coordination of the Fe2+ ion, the
final R is probably involved in substrate binding as it seems to be relatively
unique to the ABH family of this superfamily [5]. However, there may be
subfamilies within the ABH family with more extensive conservation, and
there may be additional conserved patterns in sequence regions that are dif-
ficult to align correctly by traditional methods. The ABH family is therefore
an interesting test case with practical implications.

A set of 82 AHB-like sequences, previously investigated in [40], was used
for the analysis. Teiresias [108] was used to generate 50.000 single motifs
from the input sequences, and GCMD was used to identify the Pareto front
for composite motifs with 2 and 4 components, using chemical equivalence
sets for residue types (Fig. 3.1). The significance of the composite motifs
is higher for most support values compared to single motifs. However, here
GCMD is used mainly to identify interesting composite motifs and correlate
this with biological significance.
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Figure 3.1: Pareto front of single and composite motifs for ABH. Significance
is the negative log2-likelihood of a motif
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Figure 3.2: ROC of the discovered motifs for ABH. Recall is TP/(TP +FN)
and precision is TP/(TP + FP ))
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The dominating single motif, which is used in most of the composite mo-
tifs, is [ILMV]..H.[DE]. This corresponds to the first Fe2+ binding motif in
the ABH sequences. In particular for composite motifs with high support this
is mainly combined with variants of the motif [KR]..[ILMV]..[KR], which
corresponds to the Fe2+ and possibly substrate binding R groups. This shows
that the most interesting motifs identified by GCMD also have biological rel-
evance, and that GCMD is able to identify such motifs from a large and
complex set of input data.

However, it is evident that there are subfamilies of ABH-like sequences
in the data set, and depending on the selected threshold for support several
such subfamilies may be identified. One example is the composite motif
(L..G.[ILMV][ILMV].M....[QN]) & ([FY]....[DE].[ILMV]..H.D), which
seems to be characteristic of the hABH2/hABH3 subfamily (human ABH
type 2 and 3). This subfamily has been extensively studied experimentally
[1]. As the detailed 3D structure of the ABH family still has not been ex-
perimentally determined, a detailed investigation of the biological relevance
of these motifs probably has to be postponed until such data are available.
However, this test shows that the GCMD method is able to identify biologi-
cally interesting subfamilies in a complex data set.

Although GCMD has not been developed as a classification tool, the clas-
sification performance may still serve to validate that the discovered motifs
are indeed characteristic for a given family. Fig. 3.2 shows the receiver op-
erating characteristic with respect to recall and precision when using the set
of motifs in the Pareto front for classification. The introduction of subfamily
motifs leads to a significant improvement in recall, and a larger fraction of
the motifs have a high precision, compared to general composite motifs.

The performance of GCMD was also tested on 5 selected families from the
PROSITE database. These PROSITE families are assumed to be difficult
test cases, as the existing PROSITE patterns give low values for precision
and recall. We used TEIRESIAS for single motif discovery. The Pareto
front of composite motifs showed an average log-likelihood improvement of
20.4 compared to single motifs. The composite motifs in the Pareto front
were used to classify the full set of SWISS-PROT [21] entries. For two of
the five families (PS00485, PS00690) we were able to improve both precision
and recall as compared to PROSITE, for two families we got comparable
performance (PS00732, PS01048), and for the last family the PROSITE motif
performed better (PS00187).
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3.5 Conclusion

In our work we have built directly on previous work and focused on finding
interesting combinations of single deterministic motifs discovered by separate
motif discovery tools. Tests show that our tool is able to identify unique and
biologically relevant composite motifs in very large data sets of single motifs.

Future directions of research include expanding the expressibility of deter-
ministic motifs even further, as well as using the tool on other motif discovery
problems, like for instance the discovery of transcription factor binding sites.
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Chapter 4

Ph.D. research plan

This section describes my plans for future research. All the research projects
described here concern motif discovery in DNA regulatory regions. As these
projects require a close interplay between computer science and biology, I
plan to cooperate closely with Finn Drabløs.

The main part of my research plan is the seven current research projects
in section 4.1. I will start working on several of these in the coming autumn.
Section 4.2 describes five directions for future research that are more general
and open.

Together with Finn Drabløs, Arne Halaas and Magnus Lie Hetland, I
have offered seven project tasks for students in the last year of their master
studies. These tasks are based on my research projects in section 4.1, but
are described more generally to make them understandable to students that
are new to the field. The student tasks are described in section 4.3.

4.1 Current research projects

This section describes research projects that I will work on in the short
term. Some of the research projects explore specific hypotheses, while other
projects are more general and represent new computational approaches to
the discovery of composite motifs.
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4.1.1 Using GCMD for analysis of distance conserva-
tion in DNA composite motifs

Many authors argue that regulatory elements occur in combinations with
strong restrictions on the distances between individual elements. This is
typically modeled either as lower and upper constraints on the distance be-
tween consecutive single motifs, or by constraining all single motifs to occur
within a window of a certain length.

In this project, I will investigate whether the most overrepresented com-
posite motifs do indeed show strong restrictions on distance between indi-
vidual elements. Moreover, I will systematically explore which of these two
distance models that shows strongest conservation between occurrences in
different regulatory regions.The GCMD algorithm, described in chapter 3,
has functionality for analyzing inter-motif distances, and for grouping dis-
covered motifs by distance criteria.

In this project the significance calculation of GCMD will be improved
by using a higher-order Markov model as background. Furthermore, the
conservation of distances will be directly incorporated in the significance
calculation. Necessary adjustments will be made to ensure that GCMD can
handle PWMs as single motifs, and suited methods for the generation of
input motifs to GCMD will be found. Finally, results will be generated for
several different sets of regulatory regions, from different genomes.

4.1.2 Comparing the ability of different sequence mod-
els to capture the variability between regulatory
elements for a common factor

Both regular expressions, mismatch expressions (hamming distance), and po-
sition weight matrices have been extensively used as motif models in de novo
motif discovery. As far as I know, no study has systematically compared
the ability of these models to capture the sequence variability between re-
lated sites in proteins or between regulatory elements binding to the same
transcription factor in DNA.

In de novo motif discovery, neither the underlying motif nor the locations
of its occurrences are known. To compare motif models we look at the simpler
situation with known occurrence locations. The performance of a motif model
is then its ability to accurately separate a set of positive and a set of negative
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substrings. By using the same set for both training and testing, we see
whether it is at all possible to separate the data set with a given model. By
using separate training and test sets, we get a measure of the generalization
capability of a model. A systematic study of model performance as described
here can show the limits of different motif models. De novo motif discovery
is however a harder problem, and motifs discovered for complex models like
PWMs, are in general not optimal. The conclusion of our study will therefore
not be a direct answer on which model is best suited for de novo discovery.

In this project, methods have to be developed for each model to find the
motif that is best able to separate a positive and negative set of substrings.
Several methods have been developed that discover PWMs that best sepa-
rates positive elements from a background [61]. A search in the literature
may reveal efficient methods also for the discovery of regular expressions,
and mismatch expressions, that best separates positive and negative sub-
strings. If not, I will implement and use algorithms that I have sketched for
the discovery of optimal motifs from each of these models.

4.1.3 Developing a customized method to discover fre-
quent approximate item sets

Many different models have been used to represent combinations of single
motifs. The by far most common approach is to model composite motifs
as sets of single motifs. According to this model, a composite motif occurs
in a region if, and only if, all of the component single motifs occur in a
region. Recently, a method was published that can search for approximate
combination matches [99]. This means that only M out of the N single motifs
in a set has to occur in order for the composite motif to occur. The method
can, however, not discover de novo motifs of this kind.

I have sketched an algorithm for de novo discovery of such M-of-N com-
posite motifs. This algorithm is a variation of the algorithm used in GCMD.
Much of the GCMD code can therefore be reused when implementing this
new algorithm. The significance of motifs can be calculated with the same
formulas as used in [99], and a Pareto front of composite motifs returned
(as in GCMD). The algorithm could be applied on both protein families and
DNA regulatory regions.

32



4.1.4 Extending the expressibility of composite motifs

A promising approach to single motif discovery is to first discover optimal
motifs with a relatively simple model, and then use these as seeds for motif
discovery with more expressive models [84].

I will explore a similar approach for the discovery of motif combinations.
The highest scoring composite motifs from a simple combinatorial model will
be used as seeds for discovery with a more expressive combinatorial model.
Several different methods can be used to discover seed motifs, for instance the
GCMD algorithm. The expressive combinatorial model will have weighted
instead of binary scores for both single motifs and inter-motif distances. The
motif model should be flexible with respect to distance conservation function.
Expressive motifs will be discovered by some kind of heuristic search, locally
around each seed.

4.1.5 Discovering over-represented combinations of sig-
nals

As pointed out by Sharan et al. [118], there are two basic ways of measuring
overrepresentation of composite motifs in a data set D against a background
B:

1. Which clusters occur more frequently in D than would be expected
from their frequencies in B?

2. Which clusters occur more frequently in D than would be expected
from the frequencies in D of their component (single) motifs?

A natural question is whether these two measures are highly correlated.
As significant single motifs may correspond to regulatory elements, and com-
posite motifs may correspond to combinatorially acting elements, it may be
that the most significant composite motifs correspond to conserved combi-
nations of elements that are also individually overrepresented. This would
mean that the same composite motifs would get very high values of both
measure (1) and (2). If the composite motifs with highest values for measure
(2) do not have very high values for measure (1), this may be due to one of
the following reasons:
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• The composite motifs with highest values for measure (2) represent
real modules, but the individual elements are not overrepresented by
themselves.

• The composite motifs with highest values for measure (2) do not repre-
sent biological entities. The combination overrepresentation of the real
modules are dominated by noise.

I will use GCMD to explore whether the motifs with highest score for
measure (2) do indeed have high scores also for measure (1). I will use
measure (1) for grouping of discovered motifs, and use measure (2) as the
main significance measure. A 3-D plot will then show the Pareto front of
most significant motifs for each grouping. Depending on the outcome of this
study, further research questions may be posed.

4.1.6 Implementing a hardware-accelerated version of
an established algorithm in bioinformatics

MEME [8] is a well-known and much used algorithm for discovering frequent
patterns in biological sequences. The algorithm uses expectation maximiza-
tion (EM) to discover overrepresented motifs in the form of PWMs (position
weight matrices).

I will implement a version of expectation maximization that uses special-
ized hardware, the Pattern Matching Chip (PMC), to match motifs proba-
bilistically against sequences. This corresponds to the expectation part of
EM.

By using the PMC for pattern matching, I expect to speed up the algo-
rithm considerably. Based on some initial calculations, I expect to process
about 500 PWMs in 1000 gene regions of 5000 bp (base pairs) average length
per second. This corresponds to sequentially calculating PWM scores for
about 3GB of sequence data per second. The calculations are for one PCI
card with 16 PMCs, and scales linearly with the number of PMCs.

The first goal of this project is to make a simple implementation of EM
using the PMC, and then compare the computational performance of a PMC
with that of a standard microprocessor. If the results are promising, a more
advanced EM-based motif discovery algorithm may be implemented. This al-
gorithm may take advantage of the computational efficiency to either explore
a larger part of the search space, or use a more expressive motif model.
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4.1.7 Using an evolutionary algorithm to discover com-
posite motifs

A widespread hypothesis is that modules, i.e. combinations of regulatory ele-
ments, and not individual elements, are the primary determinants of gene ex-
pression. Furthermore it is believed that regulatory elements are extensively
re-used across modules for diverse regulatory behaviour. The computational
counterpart of this hypothesis is that single motifs are overrepresented in
regulatory regions across the whole genome, while composite motifs scores
are consistent with observed regulatory behaviour. Furthermore, the compo-
nents (single motifs) of a significant composite motif are likely to be part of
other composite motifs as well.

An algorithmic idea based on this, is to first discover a large number of
single motifs that are overrepresented in regulatory regions across the whole
genome. Composite motifs are then formed from combinations of these single
motifs in an extensive search space of size NM , where N is the number of
distinct single motifs, and M is the number of components in a composite
motif. Composite motifs with gene scores that are consistent with gene
expression are considered significant. As some high scoring composite motifs
are discovered, the components of these motifs should be favored by the
search heuristic when forming new composite motifs.

Based on these considerations, evolutionary algorithms (EA) seems par-
ticularly suited for the discovery of composite motifs. A standard motif
discovery method can be used to discover numerous single motifs that are
overrepresented across all regulatory regions. The EA algorithm will then
form an initial population of random combinations of these single motifs.
The fitness of composite will be evaluated based on consistency between mo-
tif gene scores and gene expression (for instance as the sum of residuals of
a linear regression from gene scores to gene log-expression). High scoring
composite motifs will form the basis of future generations through selection,
mutation and crossover. Cross-over between fit individuals will ensure that
single motifs that are part of high scoring composite motifs, will more often
be used as parts of new composite motifs. Mutation ensures that combina-
tions involving unexplored single motifs are also occasionally evaluated.

An evolutionary algorithm as sketched above will be implemented, and
the performance of this algorithm compared to that of GCMD with the same
measure of motif significance. This will determine whether the evolutionary
search strategy performs better in this situation than the branch-and-bound
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algorithm GCMD.

4.2 Directions for future research

This section describes some future directions for research. These are direc-
tions I find promising, even though I do not have plans for concrete research
projects. Being explicit about these directions may over time help in col-
lecting relevant literature, establishing contacts and find inspiration about
concrete research projects.

4.2.1 Iterative motif discovery at different levels of
model complexity

The MDSCAN algorithm [84] first discovers the highest scoring motifs in a
set of core sequences, using mismatch expressions to model motifs. These
motifs are then used as seeds for the discovery of PWMs in the whole set of
sequences. Somewhat similarly, Eskin et al. [42] use mismatch expressions as
bounding boxes in the search space of PWMs, and thereby reduce the size
of the search space of PWMs.

Especially the approach of Liu et al. [84] seems very promising. It shows
an algorithm that takes advantage of additional information (in this case
that some of the sequence are at the core of the set of sequences) not only
to increase the sensitivity of the method, but also to increase the computa-
tional efficiency. Combining this idea with the iterative discovery of motifs
at different complexity levels, could give rise to interesting research projects.

4.2.2 Developing a framework for the integration of
motif discovery methods

More than a hundred different methods for motif discovery in regulatory re-
gions have been published in recent years. As is apparent from chapter 2, the
different methods extend on the basic approach in many different directions.
Developing a framework that makes it possible to combine the strengths of
several different methods therefore seems very promising.

The ideal approach is probably a framework that integrates several com-
putational modules, concerning different parts of the problem. A possible di-
vision into computational modules is apparent from the integrated model in
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chapter 2, including modules for priors based on gene expression, functional
annotation, distance from TSS and phylogenetic footprinting, in addition to
separate modules for single motif discovery, composite motif discovery, and
calculation of gene score and motif significance.

Another kind of framework is a consensus model that uses many differ-
ent methods independently to discover motifs, returning a consensus answer
based on the answers from the different methods and possibly based on some
context information. Neural networks has for instance been used in other re-
search fields to reach a consensus decision from the decisions of many single
predictors.

4.2.3 Exploring regression models from motif gene
scores to gene expression

Some recent methods discover motifs that can serve as factors (dependents)
of a linear regression from motif gene scores to gene expression [29, 34]. Sim-
ilarly, logistic regression has been used from gene scores to binary expression
values [142, 37, 117]. Bussemaker et al. [29] argues that only a single micro-
array experiment can be used in the regression approach, because the signal
seems to disappear when expression is averaged over several experiments.

Many kinds of further exploration seems interesting. The current meth-
ods that discover motifs as factors of a linear regression, does this in an
iterative, greedy fashion. It could be possible to develop algorithms that
avoids the drawbacks of the greedy strategy. Moreover, regression models
that are not only linear combinations of single motifs could be explored. Fi-
nally, the feasibility of more sophisticated approaches to the combination of
expression values from different experiments could be explored. As long as
the systematic differences between experiments is compensated for, the aver-
aging of experiments should in principle reduce noise and thereby strengthen
the signal of gene expression patterns.

4.2.4 Exploring background models for motif discov-
ery in DNA

As overrepresentation is the key to computational discovery of regulatory
elements, significance calculation is at the core of motif discovery. Many
different measures are used for significance, but common to them all is that
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they in some way compare the occurrence frequency in the positive set of
sequences with a background model. The background is typically based
on either the positive sequences, a set of (negative) sequences from other
genomes, or sequences from other parts of the same genome. The background
model can simply be the raw set of background sequences, but more often it
is a higher order Markov model of the sequences, or a set of random shuffles of
the sequences. The choice of data to use as background is of high importance,
as it determines what is considered as overrepresented.

Many articles have focused on how to generate models from background
data, and how to measure overrepresentation based on a background model.
However, only a few methods explicitly consider what to use as negative data
for motif discovery in regulatory regions. Takusagawa and Gifford [128] does
this for the relatively simple organism S. cerevisiae (yeast).

Choosing, transforming and combining negative data are problems that
seem both challenging and important. Improvements in these directions
could improve the sensitivity of both new and existing algorithms for motif
discovery in regulatory regions.

4.3 Student projects

This section describes project tasks I have offered to students writing a
project in the ninth semester of their integrated master (“sivilingeniør”).
These tasks are, as mentioned earlier, based on my research projects in sec-
tion 4.1, but are described more generally to make them understandable to
students new to the field.

The tasks are offered in cooperation with Finn Drabløs, Arne Halaas and
Magnus Lie Hetland.

4.3.1 New methods for the discovery of DNA regula-
tory elements

One of the distinguishing features of human DNA is the complexity of the
regulatory mechanism. This ensures that a proper amount of proteins are
produced from a gene in different cells and at different times. An important
part of this mechanism is played by transcription factors (TF) that bind to
the DNA near a gene and enhance production of the gene. There is much
interest in predicting binding sites (the positions where TFs can bind), and
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many methods have been proposed. None of them perform well on complex
organisms like humans.

The purpose of this project is to use novel criteria for what constitutes
interesting binding sites. Different algorithms and machine learning methods
may be applicable.

This task does not require any specific biological knowledge, but students
should have a general interest in biology.

4.3.2 Developing a framework for the discovery of DNA
regulatory elements

Regulatory elements are central to the behavior of a human or animal cell.
More than a hundred different methods exist for the discovery of such el-
ements in DNA. The discovery of regulatory elements consists of several
aspects and subproblems. No single method is superior in all respects.

The task of this project is to develop a formal framework that makes it
possible to integrate different methods that discover binding sites. Several
computational modules, that correspond to the different subproblems, should
be formalized. Furthermore, protocols for the flow of data and interaction
between modules should be defined.

This task does not require any specific biological knowledge, but students
should have a general interest in biology.

4.3.3 Using the PMC (hardware chip) for pattern dis-
covery in DNA

The purpose of this task is to implement a version of a well-known algorithm
(MEME), using a specialized hardware (PMC) to do the pattern matching.

MEME is a well-known and much used algorithm for discovering frequent
patterns in biological sequences. This algorithm uses the established statisti-
cal optimization technique “Expectation Maximization” to discover position
weight matrices (PWMs). A PWM is a probabilistic pattern that gives a
weighted match against a sequence. By using the PMC to do the pattern
matching, we expect to improve the running time of the algorithm consider-
ably. A special interest in biology is not necessary for this task.
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4.3.4 Developing algorithms for the discovery of pat-
tern combinations

When several frequent patterns have been discovered in a text sequence, a
next step is to discover overrepresented combinations of these patterns. Such
pattern combinations are important in e.g. DNA sequences, but this project
task can be done without any special interest or knowledge about biology.

4.3.5 Learning pattern models from examples

Several different pattern models are commonly used to classify a positive set
of sequences from a negative set of sequences. One approach is to use reg-
ular expressions that match sequences in the positive set and do not match
sequences in the negative set. A second approach is to use prototypic sub-
strings that match all sequences that have at least M out of N symbols in
common with the prototype. A third approach is to use weight matrices that
assign a match score to each sequence, and use a threshold afterwards to
determine matches.

The purpose of this task is to explore which pattern model is best suited
to separate a set of real life positive sequences from negative sequences. To do
this, methods have to be developed that learn the pattern that best separates
positive and negative data for each kind of pattern model. The results when
using these three methods on real data will then be compared to determine
which pattern model works best. A special interest in biology is not necessary
for this task.

4.3.6 Exploring the properties of “junk DNA”

One of the main approaches to data mining in DNA is to look for some
kind of pattern that occurs unexpectedly often. The main idea is that such
patterns may be frequent because they play an important biological function.
Patterns that occur unexpectedly often may therefore serve as candidates for
further study.

One important question is then “unexpectedly often compared to what?”.
The purpose of this task is to explore what can be used as negative data set.
One possibility is to use parts of the genome that are believed to have no
specific function, often referred to as “junk DNA”. Another possibility is to
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infer statistical models of the DNA sequence, typically as Markov models or
by randomly shuffling the sequences.

This task does not require any specific biological knowledge, but students
should have a general interest in biology.

4.3.7 Using an evolutionary algorithm for data mining
in DNA

The discovery of pattern combinations in DNA is an important problem.
The purpose of this task is to use an evolutionary algorithm, for instance a

genetic algorithm, to discover pattern combinations. Several different fitness
functions could be tried, to see which fitness measure that gives results which
are interpreted as most interesting by a biologist. Also, smart ways to do
mutation and crossover will be explored.

This task does not require any specific biological knowledge, but students
should have a general interest in biology.
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Appendix A

An overview of motif discovery
methods

This appendix shows the characteristics of 119 motif discovery methods with
respect to the integrated model described in chapter 2. More specifically,
table A.1 gives an overview of match models, occurrence priors and score
functions on inter-motif distances. Table A.2, gives an overview of models of
single motif combination, gene score functions and significance measures. As
these aspects are not always described in articles presenting new methods,
some fields are left blank.

Table A.1: Match model, occurrence prior and distance
score for different methods

ALGORITHM MATCH OCC. DISTANCE
NR NAME MODEL PRIOR FUNCTION
1 Pratt2[68] reg.exp – –
2 MultiProfiler[71] mismatch – –
3 Weeder[96] mismatch – –
4 YMF[122, 123] reg.exp – –
5 TEIRESIAS[108] reg.exp – –
6 Splash[58] reg.exp –
7 Mitra[43] mismatch – –
8 Mitra-dyad[43] mismatch – constraint
9 Mot.Disc.Toolkit[10] mismatch –
10 MERMAID[62] PWM – constraint
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Table A.1: Match model, occurrence prior and distance
score for different methods

ALGORITHM MATCH OCC. DISTANCE
NR NAME MODEL PRIOR FUNCTION
11 DMotifs[120] reg.exp – constraint
12 Dyad analysis[139] oligos – constraint
13 TFBScluster[38] PWM strand bias window
14 MCAST[9] PWM – gap penalty
15 GCMD[113] flexible – constraint
16 [81] mismatch – flexible
17 [57] PWM – –
18 [151] DM – –
19 [29] PWM – constraint
20 MDScan[84] PWM chip –
21 HMDM[146, 149] DM – –
22 [12] DM – –
23 Gibbs sampler[78] PWM – uniform
24 MEME[8] PWM – –
25 [28] oligos – –
26 LOGOS[148] DM – distribution
27 [27] known sites – constraint
28 [74] oligos –
29 MM[7] PWM – –
30 Motif regressor[34] PWM – –
31 SOMBERO[85] PWM – –
32 MISAE[126] mismatch – –
33 CENSUS[44] mismatch – –
34 MScan[67] PWM –
35 [119] reg.exp – constraint
36 [99] – constraint
37 [52] – distribution
38 [24] flexible – uniform
39 [121] – –
40 Oligo-analysis[137] oligos – –
41 Pattern-assembly[138] – –
42 ModuleSearcher[3] PWM conservation window
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Table A.1: Match model, occurrence prior and distance
score for different methods

ALGORITHM MATCH OCC. DISTANCE
NR NAME MODEL PRIOR FUNCTION
43 [2] PWM – window
44 COMET[53] – –
45 Stubb[124] PWM conservation window
46 Modulescanner[3] PWM conservation window
47 MotifLocator[3] PWM conservation window
48 MotifSampler[129] PWM – –
49 Footprinter[19] – –
50 GANN[13] flexible DNA struct. window
51 FrameWorker[30] PWM – constraint
52 [36] oligos conservation –
53 [35] oligos – –
54 [31] oligos – –
55 [37] – –
56 MITRA-PSSM[42] PWM – –
57 Partition-PSSM[42] PWM – –
58 ModelGenerator[48] PWM – distribution
59 ModelInspector[48] PWM – distribution
60 GLAM[50] – –
61 DMS[63] PWM –
62 ANN-Spec[144] PWM – –
63 [142] PWM conservation window
64 CoBind[56] PWM – window
65 [102] DM – –
66 OrthoMEME[101] PWM –
67 WINNOWER[98] mismatch – –
68 [73] PWM – –
69 MAPPER[86] HMM –
70 [64] oligos – –
71 Footprinter[18, 17] mismatch – –
72 [90] PWM – –
73 Cister[51] PWM – distribution
74 PromoterInsp.[114] oligos – constraint
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Table A.1: Match model, occurrence prior and distance
score for different methods

ALGORITHM MATCH OCC. DISTANCE
NR NAME MODEL PRIOR FUNCTION
75 [20] PWM – uniform
76 SeSiMCMC [46] PWM – –
77 FastM[76] PWM – constraint
78 [88, 87] mismatch – constraint
79 [140] flexible – distribution
80 BioProspector[83] PWM strand bias constraint
81 [117] PWM – –
82 [122] reg.exp – constraint
83 [134] mismatch – –
84 ConsecID[118] PWM conservation window
85 SCORE[105] IUPAC – window
86 ClusterScan[72] PWM – constraint
87 Gibbs recursive [132] PWM location distribution
88 [95] known sites – –
89 [94] PWM – –
90 [14] DM – –
91 Cis-analyst [16] PWM – window
92 [60] PWM – –
93 BioOptimizer[65] PWM – constraint
94 [152] DM – –
95 [115] PWM –
96 [91] PWM – –
97 [33] oligos – –
98 Clover[49] PWM – –
99 ProMapper[103] DM – –
100 COOP[22] reg.exp – –
101 CAGER[110] – –
102 AlignACE[109] PWM – –
103 Consensus[59] PWM – –
104 Improbizer[4] PWM – –
105 QuickScore[106] IUPAC – –
106 Motifprototyper[147] DM – –
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Table A.1: Match model, occurrence prior and distance
score for different methods

ALGORITHM MATCH OCC. DISTANCE
NR NAME MODEL PRIOR FUNCTION
107 CisModule[153] PWM – mixture model
108 [104] PWM – –
109 NONPAR [75] Mixture – –
110 [47] alignment – –
111 NestedMICA[39] PWM – mixture model
112 [128] reg.exp – –
113 Motif sampler[130] PWM – –
114 [69] PWM – uniform
115 [131] PWM conservation constraint
116 ConSite[112, 80] PWM conservation –
117 PhyloCon[141] PWM – –
118 [54] PWM – –
119 [116] PWM – uniform

Table A.2: Composite motif model, gene score and sig-
nificance evalution for different methods

ALGORITHM MOTIF GENE SIGNIFI-
NR NAME COMB. SCORE CANCE
1 Pratt2[68] –
2 MultiProfiler[71] –
3 Weeder[96] – max sum
4 YMF[122, 123] –
5 TEIRESIAS[108] –
6 Splash[58] – max sum
7 Mitra[43] –
8 Mitra-dyad[43] dyad
9 Mot.Disc.Toolkit[10] intersection
10 MERMAID[62] dyad
11 DMotifs[120] dyad
12 Dyad analysis[139] dyad max
13 TFBScluster[38] intersection sum –
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Table A.2: Composite motif model, gene score and sig-
nificance evalution for different methods

ALGORITHM MOTIF GENE SIGNIFI-
NR NAME COMB. SCORE CANCE
14 MCAST[9] sum HMM classification
15 GCMD[113] intersection max sum
16 [81]
17 [57] dictionary sum
18 [151] –
19 [29] dyad sum regression
20 MDScan[84] – max MAP
21 HMDM[146, 149] –
22 [12] –
23 Gibbs sampler[78] intersection max p-value
24 MEME[8] – sum IC of PWM
25 [28] dictionary special
26 LOGOS[148] HMM HMM
27 [27] dyad
28 [74] sum max
29 MM[7] –
30 Motif regressor[34] – sum regression
31 SOMBERO[85] SOM
32 MISAE[126] –
33 CENSUS[44] –
34 MScan[67] min comp.score max
35 [119] intersection constraint
36 [99] mismatch max
37 [52]
38 [24] intersection max sum
39 [121] –
40 Oligo-analysis[137] – sum sum
41 Pattern-assembly[138] –
42 ModuleSearcher[3] sum max sum
43 [2] sum max
44 COMET[53] –
45 Stubb[124] HMM HMM –
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Table A.2: Composite motif model, gene score and sig-
nificance evalution for different methods

ALGORITHM MOTIF GENE SIGNIFI-
NR NAME COMB. SCORE CANCE
46 Modulescanner[3] sum max sum
47 MotifLocator[3] sum max
48 MotifSampler[129] –
49 Footprinter[19] –
50 GANN[13] ANN ANN
51 FrameWorker[30] intersection max min
52 [36] – p-value –
53 [35] single motif p-value –
54 [31] single motif p-value –
55 [37] single motif regression
56 MITRA-PSSM[42] – max Discrete IC
57 Partition-PSSM[42] – max Discrete IC
58 ModelGenerator[48] sum min
59 ModelInspector[48] sum max min
60 GLAM[50] –
61 DMS[63] sum
62 ANN-Spec[144] – max IC of PWM
63 [142] Logistic regr. max regression
64 CoBind[56] sum sum sum
65 [102] – – –
66 OrthoMEME[101] sum
67 WINNOWER[98] – max
68 [73] – max sum
69 MAPPER[86]
70 [64] – max
71 Footprinter[18, 17] – max sum
72 [90] –
73 Cister[51] HMM HMM
74 PromoterInsp.[114] intersection
75 [20] mixture model mixture model
76 SeSiMCMC [46] – mixture model
77 FastM[76] sum max
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Table A.2: Composite motif model, gene score and sig-
nificance evalution for different methods

ALGORITHM MOTIF GENE SIGNIFI-
NR NAME COMB. SCORE CANCE
78 [88, 87] intersection max sum
79 [140] intersection
80 BioProspector[83] sum sum z-score
81 [117] – logistic func. regression
82 [122] dyad sum z-value
83 [134] – max z-value
84 ConsecID[118] intersection sum p-value
85 SCORE[105] intersection sum p-value
86 ClusterScan[72] sum sum
87 Gibbs recursive [132] mixture model mixture model
88 [95] special special special
89 [94] – hyperb. tan. classification
90 [14] – – classification
91 Cis-analyst [16] sum –
92 [60] – max special
93 BioOptimizer[65] dyad sum sum
94 [152] –
95 [115] sum max
96 [91] –
97 [33] – – special
98 Clover[49] – sum special
99 ProMapper[103] –
100 COOP[22] – –
101 CAGER[110] –
102 AlignACE[109] – mixture model p-value
103 Consensus[59] – IC of PWM
104 Improbizer[4] – mixture model mixture model
105 QuickScore[106] –
106 Motifprototyper[147] –
107 CisModule[153] mixture model mixture model
108 [104] – mixture model
109 NONPAR [75] – –
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Table A.2: Composite motif model, gene score and sig-
nificance evalution for different methods

ALGORITHM MOTIF GENE SIGNIFI-
NR NAME COMB. SCORE CANCE
110 [47] – max
111 NestedMICA[39] mixture model mixture model
112 [128] – max p-value
113 Motif sampler[130] – distribution IC of PWM
114 [69] intersection max expr. similarity
115 [131] Markov model max
116 ConSite[112, 80] – – –
117 PhyloCon[141] – sum sum
118 [54] – – special
119 [116] dyad max p-valus
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Appendix B

Some less prioritized research
projects

In this appendix I have collected a few ideas for research projects that I
currently do not intend to pursue. Still I want to have them documented in
my research plan in case future insights make them more interesting either
as research projects directly or as inspiration for other projects.

B.1 Comparing binding site variability in dif-

ferent genomes

The sequence variability of regulatory elements binding to the same tran-
scription factor can be modeled by regular expressions, expressions allowing
mismatches, standard PWMs, or by weight matrices that can also represent
dependencies between motif positions. One important and much discussed
question is whether the increased expressibility of expressive models is really
needed. There are at least three different aspects of the variability that can
legitimize complex models: the degree of dependency between positions, the
difference in importance between positions in a motif, and the deviance of
position distributions from those distributions possible to represent by the
deterministic models.

An analysis of this for several genomes at different levels of organism com-
plexity, could reveal insights about the complexity of regulatory mechanisms
in different organisms. Morover, the relative performance of different motif
models for organisms of different complexity could be determined.
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B.2 Exploiting known DNA regulatory ele-

ments to discover new putative elements

Binding sites for transcription factors are believed to be organized in mod-
ules with restrictions on inter-motif distances. This combinatorial nature of
binding sites can be used to filter discovered putative single motifs. If a new
single motif, discovered based only on overrepresentation, occurs consistently
in combination with occurrences of a known binding site, this strengthens the
confidence in the new motif. In this way, known binding sites and knowledge
about the combinatorial nature of regulatory elements, is used to evaluate
biological significance of novel single motifs. This process can be repeated it-
eratively. The motifs discovered in one iteration can be considered as known
motifs in the next iteration, and can thereby serve to strengthen the confi-
dence in new motifs.

B.3 Motif discovery in mutation experiments

As described in chapter 2, computational motif discovery is typically based
on overrepresentation of regulatory elements through reuse and conservation.

A different situation arises in mutation experiments with bacterias. Here,
the behaviour of several genetically modified variants of a bacteria is ob-
served. Such behaviour can for instance be the level of production of certain
substances. The challenge is to extract sequence features that determine be-
haviour, and to predict the behaviour of hypothesized sequences in silico. In
many cases the observed behaviour can be assigned a binary value, thus mak-
ing it a classification problem (with a positive and negative set of (bacteria)
sequences).

One approach to this problem is to discover a combination of sequence
motifs that can explain the differences in behaviour of the bacterias. Al-
gorithms could then be devised that discover sequence motifs based on the
differences between sequences in the positive and negative data set. Efficient
algorithms especially suited for the problem, possibly based on smart pre-
processing of the data, will be necessary to find the combination of motifs
that best separates the positive and negative data. Moreover, incorporating
information about conservation between the original bacteria and its related
species, could increase the sensitivity of the method.
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