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Chapter 1

Introduction

MicroRNAs are a recently discovered large gene-family of short non-encoding
RNAs. They have a regulatory role in the protein synthesis, targeting mRNAs
for either cleavage or translation repression. While many miRNAs have been
identified, the actual function of most remain unknown. As regulators for other
RNAs, their function is closely connected to the mRNAs they regulate, and with
no high-throughput experimental method discovered, computational methods are
used to predict the regulation.

MicroRNAs regulate by binding reverse complementary to their targets, with
complementarity in certain miRNA-regions being more important than in other
regions. We used hardware-accelerated boosted genetic programming to create
weighted sequence motifs that find a pattern in the miRNA-mRNA binding. This
classifier was compared to other target site predictors and found to be state of
the art.

We here present the program TargetBoost that allows for screening large mRNA
datasets for miRNA target sites. Several miRNAs can be used in the screening,
which allows for cooperative effects checking. TargetBoost uses the Interagon
Pattern Matching Chip (PMC), a specialized circuit for pattern matching in
large datasets. We found that TargetBoost is excellent in finding target sites
that individually cause regulation, but not as good in finding cooperative effects
between weak binding sites. We found this when using both synthetic and real
datasets.

The first chapters give the reader the background needed for reading this pa-
per, with Chapter 2 presenting the necessary biological background, and Chap-
ter 3 presenting the background on the machine learning, genetic programming,
boosting, and the PMC. Chapter 4 presents previous work published on pre-
dicting miRNA targets. Chapter 5 presents the algorithms and methods used
in TargetBoost, first presenting the details around the training of the classifier,
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2 CHAPTER 1. INTRODUCTION

thereafter presenting the TargetBoost system. We compared the efficacy of Tar-
getBoost against two other published methods for miRNA target prediction. We
also tested TargetBoost’s ability to predict cooperative effects, and compared it
to cooperative effects predicted by seed regions. These results are presented in
Chapter 6. Discussions are found in Chapter 7, and further work are found in
Chapter 8



Chapter 2

Biological background

To understand some of the details presented in this paper, the reader need to have
some knowledge of molecular biology. This chapter gives a short introduction to
the subject.

2.1 DNA and RNA

All information about a living cell is encoded in its DNA. The building blocks
of DNA, the nucleotides, consist of four bases: adenine (A), cytosine (C), gua-
nine (G), and thymine (T). The DNA molecule can therefore be described as
a sequence S with the alphabet A = {A, C, G, T}. Because the sequence has a
direction, one of the ends is labeled 5’ and the other 3’. The basic structure of the
DNA-molecule is a double-helix: a strand of nucleotides is paired with another
strand running in the opposite direction (see Figure 2.1). The two strands are
complementary, which means the nucleotides from the two strands form Watson-
Crick pairs with each other. A binds to T and C binds to G in the Watson-Crick
pairs, and they bind to each other using hydrogen bonds.

Because of the complementarity of the double helix, the complete DNA molecule
can be generated from a single strand. This means a DNA molecule can du-
plicated itself (replication). The DNA encodes all the information required by
an organism to function [2], and this information is transfered from parents to
offsprings within a species. DNA is used to create proteins, the building block
of living cells. A simplified overview on how DNA is used to create proteins
can be seen in Figure 2.2. As depicted, in addition to duplicate itself, the DNA
can encode RNA, a molecule similar to DNA, but where thymine (T) has been
replaced by urasil (U). Similarly to thymine, urasil binds with adenine. Addition-
ally can urasil form weak bindings with guanine. This is called a GU-wobble, and
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4 CHAPTER 2. BIOLOGICAL BACKGROUND

Figure 2.1: The DNA molecule. Two strands running in opposite directions form
a double helix [1].

RNADNA PROTEIN

Figure 2.2: Simple figure of the transition from DNA to protein [2].

is often allowed in calculations [5]. RNA is also single stranded, while DNA is
double-stranded. RNA is created by using one of the DNA strands as a template
for a single strand RNA in a process called transcription. Certain RNAs, called
messenger RNAs (mRNAs), can then again be translated into proteins. This
process is called translation. There are also other RNAs that do not directly
encode proteins, but contribute to the protein creation either by enhancing or re-
pressing the translation process (tRNAs, rRNAs, etc). Only a part of the mRNA
sequence called the coding region, or coding sequence (cds), encodes the protein.
Before and after the coding sequence there are regions that do not directly encode
the protein. These are called 5’ nontranslated leader, or 5’ untranslated region
(5’UTR), and 3’ nontranslated trailer, or 3’ untranslated region (3’UTR) [6].
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2.2 MicroRNAs

MicroRNAs or miRNAs are a relatively new family of RNAs. The first miRNA,
lin-4, was discovered in 1993, but seven years went before similar sequences with
similar properties were found and identified as a family. MicroRNAs are short,
non-coding RNAs, usually 21-23 nucleotides long. They are non-coding, because
they do not directly contribute in the production of proteins. Instead, miRNAs
have a regulatory role in the protein production, by inhibiting the protein pro-
duction from mRNAs [7].

The miRNA family is a large gene family: it is estimated that nearly 1% of the
genes in the human genome, amongst others, are miRNA genes [7]. They are
also conserved across species, i.e. miRNAs found in the human genome can often
be found in the mouse genome. MicroRNAs can even be found in plants. This
suggests that the regulatory role of the miRNAs is a basic mechanism in the
production of proteins in higher species [7].

A large number of MicroRNAs have been identified using experimental or com-
putational approaches. The identified miRNAs are registered in the miRNA
registry [8]. The actual function of most of these miRNAs is, however, unknown.
Since miRNAs are regulators for mRNAs, their function are closely connected to
the mRNAs they regulate.

2.3 MicroRNA regulation

MicroRNAs regulate protein production by either targeting mRNAs for cleavage
or for translational repression [7]. This depends on the degree of complementarity
between the miRNA and target.

MicroRNAs target mRNAs by binding reverse complimentary to the mRNA, with
target sites found in both the 3’UTR and coding region of mRNAs. Whether or
not the regulation occurs by cleavage or translational repression, is not decided by
the miRNA or the mRNA, but by the degree of complementarity between them.
If the miRNA-mRNA pair has sufficient complementarity, the regulation will be
in the form of cleavage. If the complementarity is of lesser degree, the regulation
will be in the form of translational repression [7]. The difference between cleavage
and translational repression is that the former destroys the mRNA by cleaving
the sequence, while the latter only represses translation of the mRNA. Both
mechanisms, however, block production of proteins.
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2.4 Identifying miRNA targets

To find the actual function of a miRNA, the mRNAs that the miRNA regulates
must be found. No easy, high-throughput, experimental methods for finding
miRNA targets have been found yet. Computational approaches are therefore
used to identify candidate target sites, which later can be confirmed using exper-
imental approaches. Whereas miRNA-mRNA pairs in plants often have a high
degree of complementarity across the whole target region, miRNA target interac-
tions are much more complex in animals. The miRNA-mRNA pairing in animals
contain only short complementary sequence stretches, interrupted by gaps and
mismatches, and is therefore far from perfect [9]. This complicates the target
identification considerably.

Some properties of miRNA target sites in animals have been observed. The 5’
end of the miRNA are often perfectly complimentary to 3’UTR sections in the
target site [7, 10, 11]. In particular nucleotides 2-8 counted from the 5’ end are
often perfectly complementary to the target site, and is therefore often called the
nucleus or seed of the miRNA-mRNA target pair. The seed region is also the most
conserved region among homologous miRNAs [7]. With this in mind, two target
site categories have been identified: “5’ dominant” sites and “3’ compensatory”
sites [9]. While the first category pairs well in the seed region, the second category
pairs weakly with the seed region. It has been found that the first category
requires little or no pairing in the 3’ end to regulate the target. The second
category is dependent of pairing in the 3’ end, but even extensive pairing on the
3’ end is not enough to regulate targets if there is not some 5’ complementarity
present. GU-wobbles in the seed region is always detrimental [9, 12].

Even if a single miRNA target site within a gene has not enough complementarity
to regulate it, the miRNA might still regulate the gene if the gene has more target
site candidates. Several miRNAs might also regulate target sites by cooperating
together [13]. Even if a single miRNA does not have enough complementarity to
singlehandedly regulate a targetsite, it can contribute to the regulation if other
miRNAs also bind to the target gene.

Figure 2.3 shows an example of an experimentally verified target site.



2.4. IDENTIFYING MIRNA TARGETS 7

A

A U

A A

A

U

G C U

G A

C

A

U

G U

U

G

A

C

U

G A

C G

U

A

G C

C

C

G

C U

A

A

U

C

C

3’

lin−4

lin−14

5’3’

5’

Figure 2.3: A verified target site of miRNA lin-4 within mRNA lin-14 [3].
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Chapter 3

Technical background

Automatic generation of computer programs have been a goal for many years. As
computers become more and more complex, it becomes more and more difficult to
fully utilize their potential, without making any mistakes. To help the program-
mers, new programming paradigms have been introduced, including structured
programming, object oriented programming among others. Even so, the quality
of the programs developed are closely connected to the programming skills of
their developers.

Machine learning tries to solve the complexity problem by letting the computers
create the programs. The original goal was to let the computers do the program-
mers job: writing programs using the same code as human programmers. This
is an unrealistic goal, so the focus of machine learning was changed to letting
computer programs learn and getting better through their own experience. As a
program runs, it uses past experience to create better predictions in its current
context[14]. Having this goal, there exist several methods for achieving machine
learning: support vector machines, neural networks, Bayesian networks, hidden
markov models, and genetic programming. Machine learning is especially useful
in classification problems, because the computer might pick up small differences
in datasets that are invisible to humans.

3.1 Learning theory

In binary classification, the goal is to create a hypothesis h that correctly places
every sample with a given property within one class. Samples without this prop-
erty are placed in a different class. Every sample belongs to the input space X,
and the output from the hypothesis belongs to the output space Y . The hypoth-
esis can therefore be described as a function f : X → Y . This function is to

9



10 CHAPTER 3. TECHNICAL BACKGROUND

be created from a set of randomly selected samples from the input-space. The
function must then be able to generalize onto unseen samples in the input-space,
such that future samples also can be classified correctly.

In supervised learning, the training set comes with a corresponding output. The
set is randomly chosen from the unknown probability distribution P (x,y). The
classifiers generalization error is given by Equation 3.1,

L(f) =

∫
λ(f(x),y)dP(x,y) (3.1)

where λ is a suitable loss-function [4]. The goal of the classifier training, is
to minimize this generalization error. However, since P (x,y) is unknown, this
generalization error cannot be calculated directly, but must be estimated based
on the available data. One possible way of training the classifier, is to minimize
the empirical risk (see Equation 3.2).

L̂(f) =
1

N

N∑
n=1

λ(f(xn),yn) (3.2)

As N → ∞, L̂(f) → L(f). By minimizing the empirical risk in the training
process however, chances are that the final classifier will be specialized on the
training set, and will therefore generalize poorly to future samples (overfitting).
To prevent overfitting, other techniques must also be used.

3.1.1 Training strategies

Several different training strategies have been developed to reduce the risk of
overfitting.

Training and test set approach

In this approach the set of samples are divided into a training set and a test set
(see Figure 3.1(a)). The classifier is trained using the training set, and the test
set is used to estimate its generalization error [15]. The main drawback with this
method lies in that in order to estimate the generalization error in a statistically
significant manner, many samples must placed in the test set. Often as many
as 1/3 of the samples are used as test samples. This means fewer samples can
be used in the training, and a less accurate classifier will be made. As smaller
training sets increases the risk of overfitting, the best classifiers will often also be
overfitted to the training set.
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Figure 3.1: Training strategies used in machine learning.

Training, validation, and test set approach

This strategy tries to remove the overfitting problem of the training and test set
approach. In this strategy, the samples are divided into a training set, a test set,
and a validation set (see Figure 3.1(b)). In this approach, instead of choosing
the expression scoring highest in the training set, the expression scoring highest
in the validation set is chosen as the final classifier. As long as higher scores
in the validation set are achieved, the training procedure continues. When the
scores in the validation set drops, the training procedure is stopped, because this
indicates that the classifier starts overfitting to the training set. This is called
early stopping. The drawback with this strategy is that even fewer samples are
used in the actual training, which means it can rarely be used on small training
sets.

Cross-validation

In this strategy, the samples are randomly partitioned into a predetermined num-
ber of folds (see Figure 3.1(c)). A separate training procedure is performed for
every fold, using one fold as test set and the rest as training sets. If early stopping
is used, one of the folds is used as a validation set. The final classifier consists
of the set of classifiers resulting from the individual training runs, which gives a
much more reliable classifier. The main drawback is the increased training time.
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3.1.2 Scoring functions

To compare classifiers, their performance must be quantifiable. For binary clas-
sifiers, the evaluation samples can be divided into two sets, a positive and a
negative set. Based on these two sets, the output from a classification of the
evaluation set consists of four numbers: the number of samples correctly placed
into the the positive set (TP), the number of samples incorrectly placed into the
positive set (FP), the number of samples correctly placed into the negative set
(TN), and the number of samples incorrectly placed into the negative set (FN).
Based on these four values, several scoring methods have been developed.

Correlation

The correlation score returns a value between -1 and 1: a score of -1 indicates
that the classifier totally disagrees with the evaluation set, and a score of 1
means every sample was classified correctly. A score of 0 indicates a random
classification. Using TP, FP, TN, and FN, the correlation can be calculated
using Equation 3.3 [16].

C =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(3.3)

Sensitivity and specificity

The goal is to find a classifier that finds as many samples in the positive set as
possible (a sensitive classifier), without cluttering this with many samples from
the negative set (a specific classifier). This can be expressed using sensitivity
(3.4) and specificity (3.5) [16].

Se =
TP

TP + FN
(3.4)

Sp =
TN

FP + TN
(3.5)

The relationship between sensitivity and specificity is usually displayed using re-
ceiver operating characteristics (ROC) curves. Different tests on the ROC-curves
can be used to measure the quality of the classification. Area-tests calculate the
area beneath the ROC-curve: an area of 1, indicates a perfect classification, while
an area of 0.5 indicates a random classification. ROC50-tests calculate the area
beneath the ROC-curve plotted until 50 false positive samples are found [17].
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3.2 Genetic programming

Genetic programming (GP) [18] achieves machine learning by using the concepts
of natural selection and the survival of the fittest. The principle of natural selec-
tion is that in a group of individuals in a given environment, only the strongest
individuals in that environment will survive and procreate. This means that only
the genes of the strongest individuals will be passed on to the next generations,
and the general population will therefore be better suited for this environment as
new generations are created.

The basic principle behind genetic programming is to have a population of indi-
viduals, where each individual is a separate program that tries to solve a given
task. This population is subjected to evolution by using natural selection and
genetic operators: each individual’s ability to solve the given task is measured
using a fitness function, and based on their fitness, individuals are chosen for next
generations. Those chosen are subjected to genetic operators before being placed
in the next generation. The genetic programming proceeds in a predetermined
number of generations, or until an individual with a solution close enough to the
wanted solution is found.

The genetic programming process can be seen as a search in the problem space.
Each individual can be seen as a proposed solution for a given problem. The
search is performed in parallel because of the population of individuals, and
further searches are semideterministic: already existing solution proposals are
used by the genetic programming process to create new solutions.

The general genetic programming algorithm is described by Algorithm 1.

1. Input: Size of population N , number of generations T
2. Initialize: Set p

(1)
n = randomly generated individual for all all n = 1, ..., N

3. Do for t = 1, ..., T ,
(a) Do for n = 1, ..., N , calculate f(p

(t)
n ).

(b) Do
• Select an genetic operator.
• Based on the selection scheme, randomly select individuals from

P (t) for the genetic operator.
• Evaluate operator and add result to P (t+1)

until |P (t+1)| = N

4. Output: p
(t)
n , p

(t)
n = max

i
(f(p

(t)
i ))

Algorithm 1: The genetic programming algorithm.
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Figure 3.2: A sample program in a tree representation.

3.2.1 Individuals

The final solution is generated from a population of individuals that evolves from
generation to generation until an individual with a high enough fitness score is
found. Each individual is a program or an expression that is used to solve the
problem at hand. The program or expression usually consists of two types of
building blocks: a set of atoms and a set of functions. Atoms are constants and
functions that does not have any parameters, and they can be evaluated into a
single constant. Functions take one or more parameters and return a single value.
Using these atoms and functions, each individual can be represented by a parse
tree: atoms are leaf-nodes and functions are internal nodes (see Figure 3.2).

An important part of the genetic programming setup is to decide which atoms
and functions that are to be used. If too few, or wrong atoms and functions
are used in the process, it might not be possible to find an individual with an
acceptable solution. On the other hand, if too many constants and functions are
used, the search-space might become too large, and an acceptable solution might
not be found because of this. You must also make sure that the semantics of
the generated expressions are correct, that is, every possible randomly generated
individual must be executable.

The genetic programming process randomly generates the first generation from
the pool of atoms and functions. Later generations are evolved from the initial
population using genetic operators.
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Figure 3.3: The mutation operator used on a tree representation of a program.

3.2.2 Genetic operators

Individuals chosen for the next generation are not merely copied into the next gen-
eration. To have evolution, the individuals must be subjected to small changes,
and these changes are achieved by using genetic operators. There are 3 basic
genetic operators: mutation, cross-over, and transfer.

Mutation

Mutation happens when the genetic material is changed in a single individual.
There are two types of mutations: point mutation and area mutation. In point
mutation, a single genetic code is changed (i.e. an adenine is changed to a guanine
in the genetic code), and in area mutation, an area of the genetic code is randomly
changed (i.e. a DNA-subsequence is randomly shuffled). In genetic programming,
point mutation is achieved by randomly changing a leaf node in the program three,
or by changing an internal node with another with the same number of children.
Area mutation is achieved by randomly selecting an internal node, deleting its
subtree, and creating a new subtree using the original tree-creation process (see
Figure 3.3).

Cross-over

Cross-over is the sexual method for evolution: two parents are selected to pro-
create, create an offspring. The genetic code of the offspring consists of some
of the genetic code from the father and some of the genetic code of the mother.
In genetic programming this is accomplished by selecting two individuals for the
operator. In each individual, a node is randomly selected as the cross-over point.
The subtrees below these cross-over points are interchanged, and the new indi-
viduals created are placed in the new generation (see Figure 3.4).
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Transfer

The transfer operator is the simplest form of genetic operator. The operator takes
an individual and copies it to the next generation as it is. It does not represent
an actual evolutionary operator, but it is often used in genetic programming
to help preserving “strong” individuals for later generations. This can keep the
search more focused, as it prevents the search from randomly jumping through
the search space.

3.2.3 Fitness and selection

In every generation, the fitness of each individual is evaluated using a fitness
function. The fitness function is highly problem specific, and designing a good
fitness function that discriminates well between good solutions and bad solutions
is essential for making the genetic programming process work. In a normalized
fitness function, the function returns a value between 0 and 1, with 1 being a
perfect solution.

After the fitness of every individual have been evaluated, individuals for the next
generation are selected using a given selection scheme. Several different selection
schemes have been developed, where the different schemes have different selection
pressure. High selection pressure means that individuals with high fitness have
much higher probability of being selected than individuals with low probability.

Fitness-proportional selection

In fitness-proportional selection, the probability of a individual being selected is
directly tied to its fitness value. The probability is given by Equation 3.6[14].

pi = fi/

N∑
j=0

fj (3.6)

Rank selection

In rank selection, the probability of a individual being selected is given by its
fitness rank within a generation. The individuals are sorted based on their fitness
value, so individuals with high fitness are ranked before individuals with low
fitness. The selection probability is a function of the rank.
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Tournament selection

In tournament selection, the selection competition is not between the whole gen-
eration, but between individuals in a randomly picked subset of the generation.
Different strategies for selection based on the subset are used, with the most com-
mon being selecting the individual with highest fitness. The size of the subset
is called the tournament size. The selection pressure can be varied by changing
the tournament size. The larger the tournament size, the higher the selection
pressure[14].

3.2.4 Introns

Almost every program developed using genetic programming contains code that
have no effect on its ability to solve the given problem. These code sequences are
called introns[14], and Equation 3.7 gives an example.

constant = constant ∗ 1 (3.7)

The existence of introns often cause the final programs to bloat and become
much larger than necessary. In later generations, much of the code is in fact
introns. Therefore will the genetic programming process almost always stagnate:
beneficial changes in the code becomes more and more unlikely, and no evolu-
tion occurs between the generations. The large individuals also consume more
computer resources, causing the evolution to progress slower and slower[14].

3.3 Boosting

The principle of boosting is to combine several classifiers into an ensemble that
works better than each single classifier in the ensemble. Let h1, h2, ..., hN be a set
of hypotheses. The final ensemble classifier is then defined by Equation 3.8,

f(x) =
N∑

n=1

αnhn(x) (3.8)

where αn are coefficients with which the hypotheses are combined. Both αn and
hn are outputs from the boosting process. Each of the hypotheses must only be
slightly better than a random classifier for the boosting process to work[4].

The basic principle behind the AdaBoost-algorithm is to assign a weight to each
sample in the training set. After a training run, the weights of samples that are
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misclassified, are increased. By manipulating the weights, the training process
will concentrate its efforts more on samples that are hard to classify later in the
boosting process. The AdaBoost-algorithm is described in Algorithm 2 [4].

1. Input: S = {(x1, y1), ..., (xN , yN)}, Number of iterations T

2. Initialize: d
(1)
n = 1/N for all n = 1, ..., N

3. Do for t = 1, ..., T ,
(a) Train classifier with respect to the weighted sample set {S,d(t)} and

obtain hypothesis ht : x → {−1, +1}, i.e. ht = L (S,d(t))
(b) Calculate the weighted training error εt of ht:

εt =
∑N

n=1 d
(t)
n I(yn 6= ht(xn)),

(c) Set:

αt = 1
2
log 1−εt

εt

(d) Update weights:

d
(t+1)
n = d

(t)
n e−αtynht(xn)/Zt,

where Zt is a normalization constant, such that
∑N

n=1 d
(t+1)
n = 1.

4. Break if εt = 0 or εt ≥ 1/2 and set T = t− 1.
5. Output: fT (x) =

∑T
t=1

αt∑T
r=1 αr

ht(x)

Algorithm 2: The AdaBoost algorithm [4]. At step t in the boosting process,

a non-negative weighting d(t) = (d
(t)
1 , ..., d

(t)
N ) is assigned to each sample. A hy-

pothesis is created based on these weights, and based on the errors produced by
the hypothesis, the weights are updated. I(E) is a function that returns 1 if the
event E occurs, 0 otherwise.

3.4 Pattern Matching Chip

The Interagon Pattern Matching Chip (PMC) is an application specific integrated
circuit used for pattern matching at constant speed in large datasets [19]. The
queries used in the pattern matching range from simple word matching to complex
regular expressions, and several queries can be screened in parallel because of its
multiple instruction, single data (MISD) architecture. 16 PMCs have been placed
on a single search card, and a single computer can have several cards installed. A
computer with four such cards have a theoretical performance of 7×1012 character
comparisons per second. Each PMC have 128 MB of local memory, which means
large data sets have to be distributed on more PMCs.

The queries used on the PMC are expressed using a high level query language
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IQL query Interpretation
ACU*GGG Find an A and a C followed by 0 or more

consecutive Us followed by 3 Gs.
{ACGGGCUA:p>4} Find the sequence “ACGGGCUA” with 3

or less mismatches.
{UACCC:d=5}{.:r=5}A(A|U)CC Find the sequence “UACCC” followed by

the sequence “AACC” or “AUCC” with 5
to 10 wildcards between (a wildcard
matches any character).

Table 3.1: IQL-query examples.

called the Interagon Query Language (IQL) [20]. IQL is a superset of regular
expressions (see Table 3.1 for IQL-examples).

The PMC is configured using the PMC Specification Language (PSL). PSL is a
low-level query/chip specification language that allows for detailed control over
the PMC-configuration. When searching, an IQL-query is first translated into a
PSL-query, which is then used to configure the PMC and perform the search.
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Previous work

A number of computational approaches for identifying miRNA target sites have
been suggested. Most methods predict candidate sites by using sequence com-
plementarity and/or free energy calculations on secondary structures. Since the
complementarity between miRNA and mRNA is low, relying on matches in a
single genome can be ineffective. If, however, the target site is conserved between
species, the confidence in the prediction is increased since it signifies a potential
functional constraint [21]. Some algorithms therefore use target site conservation
as an additional filter [22, 23]. A drawback with this method is that the 3’ UTR
regions in some genomes have not been verified experimentally, introducing some
uncertainty in the calculations performed. Also, even if a target site is not con-
served across species, it might still be a valid target site in the species examined.
Another filter frequently used is to require multiple target sites within the same
gene for a single miRNA. Several binding sites can improve target regulation,
but in the end, even a gene with a single miRNA target site can be regulated, so
single sites should not be disregarded [21].

Rajewsky and Socci [10] propose an algorithm whose initial step is to search
for a consecutive sequence of complementary base pairing between miRNA and
mRNA, called binding nucleus. The score of the binding nucleus is the weighted
sum of base pairs. Using a cutoff on this score, the free energy between the target
candidate and miRNA is calculated and used as a second filter. The free energy
is calculated using MFOLD [24].

TargetScan [22] also uses a seed step before calculating free energy score. Tar-
getScan demands perfect Watson-Crick pairing in nucleotides 2-8 in the miRNA,
and secondary structure is predicted by using RNAfold [25]. As a last step,
TargetScan uses conservation between different species.

Robins et al. [26] propose another algorithm that uses the seed region as an initial
filter. Instead of using the free energy across the complete miRNA-mRNA pairing

21
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as a second step, the algorithm uses a scoring metric that treats Watson-Crick
pairing positively, GU-wobbles neutrally, and mismatches and gaps negatively. It
also incorporates 3’ UTR structure of the target site, and scoring from multiple
sites within targets to predict regulation.

The RNAhybrid-algorithm [11] uses free energy calculations to predict miRNA
target site candidates. It finds the energetically most favorable hybridization
between a long mRNA sequence and a short miRNA sequence. RNAhybrid can
demand perfect Watson-Crick complementarity in sections of the miRNA-mRNA
pairing, usually nucleotides 2-7.

The algorithms mentioned above only try to predict single miRNA target sites.
The output is usually the binding site position within the dataset, and some
scoring that measure the likelihood of the binding site being an actual target
site. None of them, with the exception of TargetScan, try to incorporate into
the scoring scheme the effect of multiple binding sites within the target gene, or
of multiple miRNAs cooperating in the target regulation. TargetScan allows for
multiple binding sites between miRNA and mRNA. However, the PicTar sequence
scoring algorithm [23] is the first algorithm that incorporates both multiple bind-
ing sites and miRNA cooperation in the scoring. PicTar models the 3’ UTR as a
Hidden Markov Model (HMM) [16, 27]. The HMM states consist of the binding
sites for a set of miRNAs and the “background”. PicTar uses expectation maxi-
mation (EM) to calculate the parameters in the HMM, and the final score is the
log ratio between the 3’ UTR sequence being generated by this model and being
generated by a background process (a Markov Model of order 0). The actual
improvement of the PicTar algorithm lies in the modeling: the miRNA binding
sites uses in the HMM is found by using a variant of the binding nucleus of Ra-
jewsky and Socci [10] as an initial seeding step and free energy score calculated
by RNAhybrid [11] as a second seeding step. The method has previously been
used to model transcriptional regulation [28].
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Methods

TargetBoost searches for miRNA target sites in mRNA by using weighted se-
quence motifs. These motifs were created using a variant of the GPboost-algorithm [29,
30], a machine learning algorithm that combines genetic programming and boost-
ing, using GP as the base learner, and AdaBoost as the boosting algorithm. The
motifs are expressed using the Interagon Query Language, enabling the learning
process to be performed using the Interagon Pattern Matching Chip.

5.1 Training the classifier

The miRNA target site is highly sequence specific, but as mentioned in Chap-
ter 2.4, there seems to be a pattern in how the miRNA bind to the target mRNA.
The goal of the machine learning process is to find this pattern.

5.1.1 Architecture

The main input into the GPboost algorithm is the architecture used to create the
individuals in the GP-population. The architecture defines the atoms and func-
tions that are to be used in the program-generation, and therefore also defines
how complex the individual programs can become. Since GPboost uses Strongly
Typed Genetic Programming (STGP) [31], a method that ensures that the gener-
ated expressions are of legal type, the architecture also defines the legal grammar
the expressions must follow.

We created several architectures with different amount of domain knowledge in-
corporated into the architecture. The production rules and the semantic meaning

23
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of the main architecture, “Displaced-Ordered”, can be seen in Table 5.1. The pro-
duction column presents the grammar in Backus-Naur form, with non-terminals
represented by uppercase-letters, and terminals by boldface letters. The second
column describes the semantic meaning of the productions. This architecture tries
to encode the knowledge that a miRNA binds almost perfectly to its target site
at its 5’ end, and imperfectly on its 3’end. According to this architecture, each
individual consists of two parts: an unspecified pattern (R in Table 5.1) followed
by a consecutive sequence of near perfect matches (O in Table 5.1). These two
parts are separated by a variable amount of nucleotides. The separation-length is
decided by the separation D: the lower bound is given by the number of wildcards
in the W -production, the upper bound by the number of wildcards plus the dis-
placement d in the D-production. The architectures create template expressions.
The terminals, Pn, represent positions in the miRNA sequence counted from the
3’ end. Therefore, before screening a miRNA, the terminals must be exchanged
with the appropriate nucleotides.

An expression matches a string if R.hit is true. match(a) returns 1 if the char-
acter in the position indicated by a equals the character it is compared against.
linger(F .hit, N) is a function such that if F .hit is true, 1 is returned for N
clock-ticks.

A second architecture,“Simple-Ordered”, was created by removing the D from the
S-production. This architecture is therefore much simpler: The individuals will
be much smaller with less parameters to tune. A third architecture, “Displaced-
Pnofm” was created by exchanging the O in the S-production with an R. This
architecture is more relaxed than “Displaced-Ordered”, because the second part
can be a more arbitrary expression in stead of a consecutive sequence of near
perfect matches.

5.1.2 Fitness function

The fitness of an expression is calculated by using the PMC to screen the expres-
sion against a positive and a negative dataset. The positive dataset consists of 36
experimentally confirmed target sites for the miRNAs let-7, lin-4, miR-13a, and
bantam [32, 10, 33]. The target sites are padded such that they are 30 nucleotides
long. The negative set consists of 3000 random strings all 30 nucleotides long.
The nucleotide frequencies used in the sequence generation are the same as used
in [10] (pA = 0.34, pC = 0.19, pG = 0.18, pU = 0.29). Each string of 30 nucleotide
is called a document.

Since our expressions are template expressions (see Chapter 5.1.1), we must trans-
late them into sequence specific expressions using the miRNA we want to screen,
before performing the search. Since the expression should generalize to all miR-
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Production Semantic Rule
(1) S → (D)(O) S.hit := D.hit AND O.hit
(2) D →{F : d = N} D.hit := linger(F .hit, N)
(3) F → (R)(W ) F .hit := R.hit AND W .hit
(4) R →{C : p ≥ N} R.hit := C.count ≥ N .cutoff
(5) R → C R.hit := C.hit
(6) C → (C1)(C2) C.count := C1.count + C2.count

C.hit := C1.hit AND C2.hit
(7) C →A C.count := A.count

C.hit := A.hit
(8) A →A1 | A2 A.count := A1.count + A2.count

A.hit := A1.hit OR A2.hit
(9) A → L A.count := L.count

A.hit := L.hit
(10) L → a, for some a ∈ {P1, ..., P24} L.count := match(a)

L.hit := match(a)
(11) N → n, for some n ∈ {1, 2, . . .} N .cutoff := n
(12) W →{. : r = N} W .hit := 1
(13) O →{LC : p ≥ N} O.hit := LC.count ≥ N .cutoff
(14) LC → (LC1)(LC2) LC.count := LC1.count + LC2.count
(15) LC → L LC.count := L.count

Table 5.1: Grammar used in the genetic programming.
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NAs, several miRNAs are used in the training process. Several searches are
therefore performed before the expression’s fitness is calculated. Each miRNA in
the training set has a different set of positive target sites. This must be allowed
for in the fitness calculation. We used Equation 5.1 for fitness calculation. A
perfect classification will here give a score of 0, while a wrong classification give
a low score. poshit(i) returns 1 if document i in the positive dataset was hit by
a miRNA which has document i as a part of its positive dataset. di is the weight
of document i.

f(ind) = −(
N∑

i=1

−di · poshit(i)− 1) +
M∑

j=1

dj · hit(j)) (5.1)

5.1.3 Training parameters

We perform 10 separate boosting runs when training the classifier. Since GP is a
stochastic process, there will be variations in the output from separate training
runs. By combining several such classifiers, a better classifier is created [34](see
also Chapter 6.3). The final classifier is the average of the 10 independent boost-
ing runs: each boosting run had 25 boosting iterations, and each GP-run had
500 individuals per generation, and ran 75 generations before terminating. This
means the final classifier consisted of 250 individual IQL-queries.

5.2 MicroRNA target-site screener

TargetBoost uses the classifier trained by the GPboost algorithm for finding
miRNA target sites. Using TargetBoost, several miRNAs can be screened against
several datasets, and different filters can be applied to refine the results.

5.2.1 Program interface

There are two user interfaces to TargetBoost: a command line interface, and a
web-based interface. The command line interface can be seen in Figure 5.1, and
the web interface can be seen in Figure 5.2.

Results are given in html-format from both interfaces. The main result page can
be seen in Figure 5.3. Here, targets with the highest combined regulation score
are presented first. Links to sites describing the target genes are generated if
possible. A detailed alignment for each target site predicted can also be seen (see
Figure 5.4).
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Figure 5.1: TargetBoost command line user interface.
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Figure 5.2: TargetBoost web user interface.

Figure 5.3: TargetBoost main result page.
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Figure 5.4: Detailed target site alignment.

5.2.2 The TargetBoost algorithm

The TargetBoost algorithm can be seen in Algorithm 3. The input to the al-
gorithm consists of the IQL-queries and their calculated alpha values from the
GPboost algorithm. Additionally, TargetBoost take as input the miRNAs and
the datasets to be screened. A cutoff value for the target site fitness score can also
be defined. Target sites with fitness score below this cutoff are not post-processed
and presented to the user.

TargetBoost calculates the “likelihood” of a position in a dataset being a miRNA
target-site. This likelihood is hereafter called the position or window fitness.
When searching a dataset with a query fi with a accompanying alpha αi, a hit
in window j should increase the window fitness with αi, while a miss should
decrease the fitness with αi. After performing a screening, the system reports
which dataset window that was hit by the query. Therefore, instead of initializing
the result table to 0, and for each query traversing the complete result table and
increase or decrease its score according to whether the window was hit or missed,
the result table is initialized to its minimum possible value, MinScore. For each
query, only the query hit list is traversed, and if a window was hit the fitness
score of the window in question is increased by 2× αi.

Before a query fi can be used in a search, it must be made miRNA-specific.
This is done by exchanging the position terminals in the original query with the
nucleotide in the specified position in the miRNA to be screened (see Figure 5.5).
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1. Input: Motifs F = {f1, ..., fM} with weights {α1, ..., αM}, Datasets D =
{d1, ..., dN}, miRNAs S = {s1, ..., sT}, scoreCutoff

2. Initialize: MinScore = −
∑M

i=1 αi, Create windowed dataset dw
i for all

i = 1, ..., N , Binding site list bsl
3. Do for n = 1, ..., N

• Do for t = 1, ..., T
(a) Initialize result table: ri = MinScore for all i = 1, ..., |dw

n |
(b) Do for m = 1, ...,M

i. Make query miRNA specific:
f trans

m = TranslateQuery(fm, st)
ii. Screen query: Result = Screen(f trans

m , dw
i )

iii. Do for p = 1, ..., |Result|
rResultp = rResultp + 2× αm

(c) Generate binding sites: Do if ri ≥ scoreCutoff : Add dw
i to

binding site list
4. Print output

Algorithm 3: The TargetBoost algorithm

Example Expression
{((P14|P14)|((P18|P18)|P5)){.:r = 10}:d = 7}{P17P18P19P20P21P22P23P24:p ≥ 6}

let-7 in reverse-complemented form
a c u a u a c a a c c u a c u a c c u c a

Translated Expression using let-7
{ ((c|c)|((u|u)|c)) {.:r = 10}:d = 7}{ c u a c c u c a :p ≥ 6}

Figure 5.5: Translation to a miRNA-specific query. Pi indicates miRNA nu-
cleotide i counted from its 3’ end.
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After all searches for a miRNA have been performed, the score table is traversed.
Windows with score above a threshold, scoreCutoff , are treated as predicted
target sites. They are added to a list of binding sites, and reported back after all
miRNAs and all datasets have been screened.

5.2.3 System overview

The system consists of three main parts: the dataset, the front end, and the
screener. The dataset holds the information needed about the dataset, the front
end displays the results to the end user, and the screener is responsible for per-
forming the searches. The searching is performed using the PMC (see Chap-
ter 3.4), using the API “distAPI”, an API that allows for distributed searches on
several PMCs. An UML-diagram of the program can be found in Appendix A.

PMC-distAPI

TargetBoost uses the PMC-distAPI as an interface against the PMC. As men-
tioned above, the PMC-distAPI allows for queries on a dataset to be distributed
onto several PMCs. The main reason for doing this, is because a single PMC only
has 128 MB of internal memory. Datasets greater than 128 MB must therefore
be split up, so that each part fits on a single PMC. Using the distAPI, datasets
greater than 128 MB are split up, sent to PMCs and searched in parallel. Since
results from queries are handled using callbacks, the search results do not need
to be collected before being processed. A second reason for using several PMCs
becomes apparent when the number of queries increases. The PMC can at max-
imum search with 64 different queries in parallel. This number drops with the
complexity of the queries. By using several PMCs, more queries can be executed
in parallel. A third advantage of using the PMC-distAPI is time-saving in search
setup. The PMC-distAPI allows for preloading of frequently used datasets, which
saves time as the datasets do not have to be loaded into the PMC SDRAM before
the searches

Dataset

The dataset’s main responsibility is to load the datasets to be screened into the
program. This can be done in several ways: the dataset can be loaded from
datasets found preloaded in the PMC-distAPI, it can be downloaded from the
NCBI nucleotide database, using the EFetch tool, or it can be loaded from a flat-
file (More information about EFetch can be found at http://eutils.ncbi.nlm.
nih.gov/entrez/query/static/efetchseq_help.html). Although a dataset

http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
http://eutils.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
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physically is a byte-array, it logically consists of several documents. The doc-
uments are separated by document separators.

The classifier was trained using samples 30 nucleotides long. Also, since the final
result is calculated from the combined result from many separate IQL-queries, the
results from the individual queries must be translated into document positions
within the datasets in a consistent way. The logical documents are therefore
transformed using a moving window with size 30 and an overlap of 25. This
6-fold enlarged dataset increases the search time, but speeds up and simplifies
the post processing for each query.

The dataset module transforms the datasets using the moving window. The
module saves the transformation data, so information from searches performed
on the enlarged dataset can be translated into information about the original
dataset. The enlarged dataset is sent to the PMC-distAPI, and can be preloaded
there if this is wanted.

The module consists of the classes TBDocument and TBDataset in the UML
diagram (see Figure A.1 in Appendix A).

Screener

The screener implements the for-loops used in the TargetBoost algorithm (Algo-
rithm 3). The module’s main responsibility is to perform the searches; that is,
to make each query miRNA-specific and to send the queries and dataset to the
PMC-distAPI. The screener-module also implements the result processor, which
implements the callbacks used when processing the results from the PMC.

The queries, which originally are IQL-queries, have been pre-translated into PSL-
queries before being loaded into the screener-module. This saves time, because a
query does not have to be transformed from an IQL-query to a PSL-query every
time it is used in a search.

This module consists of the classes TargetBoost, Configuration, WeightedTem-
platedEnsembleSearcher, Mirna, and ResultProcessor in the UML diagram (see
Figure A.1 in Appendix A).

Front end

The front end displays the results from the searches to the end user. In the output,
genes with the highest likelihood of being regulated by the miRNAs used in the
screening, are presented first, with each miRNA aligned with their predicted
target sites in the mRNA. The front end-module is responsible for performing
this alignment, using a variant of global alignment. The complete miRNA must



5.2. MICRORNA TARGET-SITE SCREENER 33

be present in the alignment, but this is not necessary for the target mRNA.
The Needleman-Wunsch algorithm for global alignment is used as a basis for the
alignment calculations. This algorithm is described in Algorithm 4.

1. Input: A = a1, ..., an, B = b1, ..., bm

2. Initialize: Fi,0 = 0, i = 1, ..., n, F0,j = 0, j = 1, ...,m
3. Do for i = 2, ..., n

• Do for j = 2, ...,m
– Fi,j = max((Fi−1,j−1 + Sai, bj), (Fi−1,j + d), (Fi,j−1 + d))

4. Starting in Fn,m, traceback choices made and create alignment.
5. Output: Aligned sequences.

Algorithm 4: Needleman-Wunsch algorithm [5].

The scoring-matrix S used is a standard match matrix that also allows for GU-
wobbles in the alignment. Two different gap-penalties d are used: A start penalty
and a continue penalty, with the start penalty being the highest.

This module consists of the classes TBBindingSite, BindingSite, DummyQuery-
Factory, MirnaQueryFactory, BindingSiteList, Document, DocumentIndex, File-
DocumentIndex, and FlatFileDocumentIndex in the UML diagram (see Fig-
ure A.1 in Appendix A).

5.2.4 Scoring algorithm

The output from TargetBoost should report the likelihood of an mRNA being
regulated by the miRNAs used in the search. The likelihood, or scoring, should
therefore be uniform regardless of the dataset searched or the number and types
of miRNAs used. During a search, each separate target site candidate gets an
individual score, reflecting its likelihood of being a real target site. The scores of
the individual target sites are then combined in a final scoring algorithm, whose
output reflects the likelihood of an mRNA target being regulated by the miRNAs
used in the search.

Scoring of target site candidates

Every target site candidate get a numerical score that is the weighted sum of
the classifier queries that matches the site in question. This sum is dependent
on the miRNA used in the screening, and is especially dependent on the miRNA
size. The architecture used when creating the classifier allows for miRNAs with
up to 24 nucleotides to be used. During training, miRNAs shorter than 24 were
appended with wildcards on the 3’ end so the complete length became 24. This,
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Figure 5.6: Correlation between miRNA length and target site score in the orig-
inal procedure for making queries miRNA-specific.

however meant that target site candidates for shorter miRNAs got a higher score
than longer miRNAs, since wildcards matches every nucleotide (see Figure 5.6).

The size of the human miRNAs range from 17 to 25 nucleotides long, with most
being 21 to 22. Few have less than 21 nucleotides. In order to get a more uniform
score from every miRNA, only the 21 first nucleotides counted from the 5’ end
are used in the screening. Three wildcards are appended on the 3’ end to make
the final length 24. This allows for a more uniform scoring of miRNAs of size 21
and longer, which means most miRNAs. Shorter miRNAs will still get a higher
score, but this affects only 21 of 321 reported human miRNAs. If fewer than 21
nucleotides are used, it could also mean that some interaction between mRNA
and the miRNA 3’end are overlooked.

Even though some of the variance in the scoring of each individual target site
has been removed by only using the first 21 nucleotides, some variation is still
present. A normalization of the scoring is therefore necessary. Additionally, a
scoring between 0 and 1 makes the individual scores easier to use in later stages.
The normalization function used is given in Equation 5.2.

Score =
Score− LB

UB − LB
(5.2)

LB and UB is the lower bound and upper bound used in the normalization.
Only target site candidates above the score cutoff are normalized, and the cutoff
is therefore used as the lower bound. The upper bound is normally the maximum
score reported for the miRNA. The problem with this approach appears when
several miRNAs are used in a search. One miRNA might regulate the target
mRNA, and therefore, rightfully get a high score both before and after the nor-
malization. A second miRNA might not regulated the mRNA and therefore get
a low score. If the maximum score for this miRNA is used as an upper bound in
the normalization process, the miRNA’s score will be artificially enlarged com-
pared to the scores of the first miRNA. In other words, the miRNAs’ scores will
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Figure 5.7: Maximum TargetBoost score for every human miRNA in the human
genome.

be indistinguishable. A minimum upper bound is therefore used in the normal-
ization. This was found by screening every human miRNA against the 3’UTR
region of every gene in the human genome. The maximum score reported for ev-
ery miRNA were found, and the average was used as the minimum upper bound
(see Figure 5.7).

Combined scoring algorithm

For each document in the dataset searched, TargetBoost outputs the likelihood
of the document being regulated by the miRNAs used in the search. The scoring
algorithm should calculate this likelihood independent of the number of miRNAs
used in the search, the number of target site candidates found in the document,
and the document in question. These factors are very variable, because Tar-
getBoost allows both for screening a single gene using a single miRNA, and for
screening the complete human genome using every miRNA expressed in humans.

The simplest scoring scheme is to use the likelihood of the best target site candi-
date as the likelihood of regulating the mRNA (see Equation 5.3. B is the set of
binding sites within the document i.). This method is overly simplistic since it
completely disregards the existence of multiple target sites in the mRNA, or the
cooperation of several miRNAs in the mRNA regulation.

F (di) = max(S(B)) (5.3)
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A slightly more advanced scoring scheme is to use the sum of every target score
reported as the final score (see Equation 5.4). Using this measure, the occurrence
of multiple target sites will be taken into account. There several problems with
this scoring scheme. The range of the final score is unbounded, and highly depen-
dent on the number of binding sites |B|. This means that the final score will be
very different when comparing the the output from searches using few miRNAs,
and searches using many miRNAs.

F (di) =

|B|∑
j=1

S(bj) (5.4)

Since the method does not preprocess the binding sites in the list, binding sites
from different miRNAs may overlap. Overlapping binding sites can not cooperate
in regulating a target, especially if the seed region is overlapping [12]. Summing
the scores of overlapping binding sites therefore makes no biological sense. Al-
gorithm 5 removes binding sites overlapping other binding sites with a higher
score, finding an optimal set of binding sites for regulating the mRNA. The sum
of these non-overlapping sites are then used as the final score.

1. Input: A set of binding sites B, allowed overlap l.
2. Initialize: Score list S
3. Sort binding site by their binding site address in the document.
4. Do for each address in binding site list, find binding site with highest score.

Add this to the list Bm.
5. Do for each binding site bi in Bm,

(a) Do for each sj in S starting at the end,
• Do if Addr(sj) + l ≤ Addr(bi), set Score(bi) = Score(bi) +

Score(sj), Point(bi) = sj, break loop
(b) If none are found, set Point(bi) = ∅
(c) Do if Score(bi) ≥ Score(last item in S), append bi to S

6. Starting with sN at the end of S, follow Point(sn) until ∅ is reached, ap-
pending the sn’s traversed to the result list R

7. Return result list R.

Algorithm 5: Optimal binding site set finder

The output from the previous scoring scheme is still dependent on the number
of miRNAs used in the search, since it is directly connected to the number of
target site candidates predicted by the classifier. A simple solution is to use a
cutoff-value on the output, saying scores above indicates target regulation (final
score 1), and scores below does not (final score 0).
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Comparing the score-algorithms

The efficacy of the different scoring algorithms are measured by computing the
signal to noise ratio between searches using real miRNAs (the signal) and searches
using shuffled miRNAs (the noise). The real miRNAs selected are the set of
human miRNAs with a distinct seed region (nucleotides 2 to 8 counted from the
5’end). From the set of human miRNAs, we found 144 distinct seed regions.
When several miRNAs had the same seed region, the miRNA representing that
seed region were randomly selected and added to the miRNA set. The miRNAs
selected are shuffled using dinucleotide shuffling [35], thereby preserving their
dinucleotide distribution. The average of 10 different shuffled miRNAs is used as
noise. The signal to noise ratio is calculated using Equation 5.5.

S/N =
|Score(miRNAreal, di) ≥ X|

|Score(miRNAshuffeled, dj) ≥ X|
, dindex ∈ D (5.5)

The equation calculates the ratio between the number of documents in the dataset
with a score greater than a cutoff value X using the real miRNAs and using the
shuffled miRNAs, respectively.
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Chapter 6

Results

We compared the predictive power of TargetBoost with the efficiency of two
other published algorithms for detecting miRNA-target site candidates, namely
Nucleus [10] and RNAhybrid [11]. In the comparison, the different algorithms
ability to discover experimentally verified target sites were measured. Here, the
TargetBoost classifier was found to be as efficient and better as Nucleus and
RNAhybrid [36]. The comparison, however, was based on single target sites,
and the ability of a miRNA to regulate an mRNA based on single target sites.
Additionally, several target sites from several miRNAs can cooperate to regulate
miRNAs. A comparison of different scoring schemes for combining targets into a
final score were therefore performed.

First we give a short summary of the results published in [36]. This includes
the main results from the algorithm-comparisons. Additionally, some results not
published in the article regarding the TargetBoost classifier are also mentioned.
Last, the results from the comparison between the different scoring algorithms
are presented. For the full article about TargetBoost, see Appendix B.

6.1 The TargetBoost classifier is a state of the

art miRNA target site predictor

We compared the TargetBoost classifier against the algorithms Nucleus and
RNAhybrid. The comparison was performed using cross-validation and receiver
operating characteristics (ROC) analysis on the dataset used when training the
TargetBoost classifier (see Chapter 5.1.2 for details on the dataset).

Figure 6.1 shows the overall ROC-curves for the algorithms. It can be seen that
TargetBoost has the best performance at specificity levels above 0.9. Figure 6.2

39
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Figure 6.1: Overall ROC-curves for algorithms.

shows the algorithm-performance on each separate miRNA in the dataset. For
each miRNA, TargetBoost either performed best, or was not significantly worse
than the other algorithms. This was confirmed both when running true-positive
frequency tests (a test that compares the sensitivity of two classifiers at a given
specificity level), and when computing ROC50-scores for the algorithms.

The 5’ end of miRNAs tend to bind perfectly to its target. Most algorithms (in-
cluding Nucleus and RNAhybrid in an indirect way), uses this property when pre-
dicting target sites. TargetBoost rediscovered this property during the classifier
training: the consecutive sequence in most patterns generated in the first boost-
ing iteration, consisted of position 17 to 24, that is, nucleotides 1 to 8 counted
from the 5’ end (see Chapter 5.1.1 for more information about the consecutive
sequence).

6.2 Efficacy comparison of different architectures

We created three different architectures or grammars, and used them in the train-
ing of the TargetBoost-classifier. These were called“Displaced-Ordered”,“Simple-
Ordered”, and “Displaced-Pnofm” (see Chapter 5.1.1 for detailed descriptions of
the different architectures). The basic structure of the architectures are the same,
but there are differences in the strictness of the grammars. A strict grammar
can only create a subset of the expressions created by other grammars. This
gives the genetic programming process more freedom when creating solution pro-
posal, but also increases the search space. The order of strictness with the least
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Figure 6.2: Performance comparisons on individual miRNAs.
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strict grammar first, are as follow: “Displaced-Pnofm”, “Displaced-Ordered”, and
“Simple-Ordered”. Figure 6.3 shows the ROC-curves for the different classifiers
created using the architectures.

Too little strictness in the grammar increases the difficulty of finding the so-
lution in the TargetBoost algorithm. “Displaced-Pnofm” has the lowest ROC-
score for each miRNA, most often performing as bad as a random classifier
(Figure 6.3(d), 6.3(b), and 6.3(c)). “Displaced-Ordered” and “Simple-Ordered”
on the other hand, have comparable efficiencies: for miR-13a (Figure 6.3(c)) is
“Displaced-Ordered” best, and for lin-4 (Figure 6.3(b)) “Simple-Ordered” is best.
When comparing the performance on let-7 and bantam, their performance are
almost equal, with “Displaced-Ordered”best in the high-specificity region of ban-
tam, and “Simple-Ordered” best in the same region for let-7.

The comparable efficacies of “Displaced-Ordered” and “Simple-Ordered” indicate
that TargetBoost discovers the binding pattern between miRNA and mRNA on
the miRNA 3’end using the smaller expressions. This can be contributed to
the boosting part of the TargetBoost classifier training: the complex pattern is
generated by a weighted combination of many simple patterns.

6.3 The average of a set of TargetBoost classi-

fiers creates a better final classifier

The Genetic Programming process is a stochastic process: individuals to be used
in the evolutionary process and the genetic operator, are selected randomly from
the the population. The exact same solution is therefore rarely found in two
separate GP-runs. It can be shown that a set of diverse classifiers can be combined
into a better classifier [34]. TargetBoost uses the average of 10 different classifiers
as the final classifier.

The final classifier achieved higher specificity-levels for high sensitivity levels,
especially in the high specificity region. This is wanted because it reduces the
false positive count. Figure 6.4 shows the ROC-curves for each single classifier
compared to the averaged classifier for the miRNA let-7. Since the classifiers
were created using a stochastic process, there will be some differences in how
they score target candidates, especially false target candidates. This randomness
is removed by averaging across all the individual classifiers. Therefore, while the
false-positive count increases for each of the single classifiers, it is held low in the
averaged classifier.
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Figure 6.3: Performance comparison for different grammars.
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6.4 The TargetBoost scoring is best for finding

single mRNA-regulating target sites

Even if a miRNA can not regulate an mRNA by itself, it might still contribute to
mRNA regulation through cooperative effects with other miRNAs. When using
several miRNAs in a search, the final score should therefore reflect the likelihood
of the target being regulated be the miRNAs used in the search. Based on
the individual target sites predicted by the TargetBoost classifier, we developed
several scoring functions for multiple target site regulation and compared their
efficacies: “MaxScore”, “SumScore”, “SumScoreDivLength”, and “Sigmoid”. The
scoring functions are described in Chapter 5.2.4. In the comparison, we used the
scoring functions on both target sites predicted by TargetBoost, and on target
sites predicted when using miRNA seed regions. In the latter method, target
sites are predicted when the reverse complement of nucleotides 2-7 is found in
the target mRNA. Such predicted target sites get a score of 0.8.

In the comparison, we screened the 3’UTR region of 2000 randomly selected
human genes against the human miRNAs. To prevent seed region bias, each
miRNA used in the screening had a distinct seed region, removing 66 of 211
miRNAs from the set. We also screened the dataset using 10 shuffeled versions
of the miRNAs. These were created using dinucleotide shuffeling [35], preserving
the dinucleotide distribution of the original miRNAs. As a scoring metric, we
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Figure 6.5: Correlation curves for scoring functions. (a) TargetBoost predicted
target sites. (b) Seed predicted target sites.

counted the number of genes with a final score above a given scoring threshold c:

TP = |Score(miRNAreal, di) ≥ c| (6.1)

FP = |Score(miRNAshuf , di) ≥ c| (6.2)

FN = |d| − TP (6.3)

TN = |d| − FP (6.4)

Figure 6.5 shows the correlation curves for the different scoring functions, and
Figure 6.6 shows the ROC-curves for the same scoring functions.

Comparing the performance of “MaxScore” on target sites predicted by Target-
Boost and seed, we see that TargetBoost has a larger correlation than seed.
The training set used when creating the TargetBoost classifier consisted of ex-
perimentally verified target sites that individually regulate the target mRNA.
TargetBoost is therefore especially trained for finding these sites, which means
highscoring target site candidates have a high likelihood of individually regulating
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Figure 6.6: ROC curves for scoring functions. (a) TargetBoost predicted target
sites. (b) Seed predicted target sites.

the target mRNA [36]. The probability of these sites occuring randomly is low,
and this can be seen by the “MaxScore” correlation for TargetBoost. The prob-
ability of a sequence of 6 nucleotides occuring randomly in a sequence is much
higher. Individually occuring seed sites is therefore a bad estimate for regulation
compared to individually occuring TargetBoost sites. This can also be seen in the
ROC-curve for “MaxScore” (Figure 6.6(b)): a specificity larger than 0.07 could
not be found.

Summing the score of the predicted target sites is useless without regarding the
target dataset length. Statistically one can expect a long mRNA to have more
target sites than a short mRNA. This was confirmed when plotting the sum of
the target site scores as a function of mRNA length (see Figure 6.7). When
using “SumScoreDivLength”, we therefore see an increased efficacy compared to
when using “SumScore”. This is because we now identify mRNAs with a density
of target sites above avarage. For seed-predicted target sites, we see a much
higher max-correlation for “SumScoreDivLength” compared to “MaxScore”. We
do not find this increasement for TargetBoost predicted target sites. While the
correlation increases from 0.12 to 0.31 for seed target sites, it lies steadily on 0.22
for TargetBoost target sites.

The only difference between“Sigmoid”and“SumScoreDivLength”is the transform
function between inputspace and outputspace. It therefore does not represent
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Figure 6.7: Score vs document size when summing target site scores using both
(a) TargetBoost predicted target sites, and (b) seed predicted target sites.

a unique scoring method, but can be seen as a post-process for “SumScoreDi-
vLength”. The effect is to smooth the differences found in the “SumScoreDi-
vLength”.

TargetBoost is useful for finding target sites that regulated mRNA targets indi-
vidually (see Figure 6.5, and [36]). But, compared to seed predicted target sites,
we see no increasement in the efficacy when combining target sites predicted by
TargetBoost. This indicates that the scoring metric from the TargetBoost site is
not suitable to predict combinatorial effects in mRNA regulation.

6.5 The TargetBoost classifier specializes in find-

ing 3’ compensatory target sites

Lim et al. [37] transfected the miRNAs miR-1 and miR-124 into human cells, and
examined which genes that were regulated. They found 96 genes downregulated
by miR-1 and 174 genes downregulated by miR-124. When checking the down-
regulated genes, they found miR-1 seed regions in 88% of the genes regulated by
miR-1, and miR-124 seed regions in 76% of the genes regulated by miR-124. To
compare the type of target sites reported by TargetBoost and the types reported
by seed-regions, we screened the 3’UTR region of the human genome for miR-1
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(a) (b)

Figure 6.8: Venn-diagrams comparing the results when screening (a) miR-1 and
(b) miR-124, using TargetBoost and seed-region checking. A is the set of genes
predicted to be regulated using seed-region checking, B is the set of genes pre-
dicted using TargetBoost, and C is the genes found to be regulated by the miR-
NAs.

and miR-124 target sites using both TargetBoost and seed-region checking. Fig-
ure 6.8 shows the Venn diagrams comparing the target sites reported by the two
methods.

We can see that the set of regulated mRNAs is small compared to the set of mR-
NAs predicted to be regulated. Failure to capture all regulated mRNAs in the
experiment is one possible explanation. Lim et al. used strigent P -values when
deciding which genes that were regulated, so they might miss some regulated
targets [37]. A larger part of the predicted targets might therefore be regulated.
A second explanation is regulation using cooperative effects: miR-1 and miR-124
is not able to regulate the targets by matches with their seed region. Only by
cooperating with miRNAs naturally expressed in the cells are the genes regulated
by miR-1 and miR-124. This would explain why TargetBoost only predicts regu-
lation in 56% of the regulated genes for miR-1 and in 66% of the regulated genes
for miR-124. TargetBoost specializes in finding target sites that individually can
regulate a mRNA (see Figure 6.5(a) and [36]), and will therefore not predict reg-
ulation when weak target sites regulate mRNAs through cooperative effects with
other miRNAs.

Perfect seed match, while it helps, it is not a requirement for mRNA target
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regulation. The experimentally confirmed miRNA-mRNA pairs lin-4/lin-14 (see
Figure 2.3) is one example of target regulation without a perfect seed. Target-
Boost does not require a perfect match, and can therefore also find these target
sites. This means TargetBoost is not a subset of seed-region checking, which can
be seen in the venn-diagrams.

TargetBoost does not predict regulation in every gene with a seed-region. The
TargetBoost classifier was trained on target sites with matches in the 3’ end of
the miRNA, that is, 3’ compensatory sites (see Chapter 2.4). TargetBoost will
therefore not predict regulation in target sites with perfect seed match and little
or no match in the 3’ end. This explains why TargetBoost only predicts regulation
in a subset of the mRNAs with perfect seed matches.
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Chapter 7

Discussion

7.1 Scoring function

We compared the performance of TargetBoost with simple seed-region checking
on both synthetic and real data, and found that TargetBoost is most suitable
for finding target sites that have a high likelihood of regulating a target mRNA.
Combining the individual scores gave no improvement compared to when com-
bining several seed regions (see Figure 6.5). The TargetBoost classifier is trained
for finding sites with matches in the 3’ end of the miRNA, and a higher de-
gree of complementarity between the miRNA and mRNA means a higher chance
of regulation [9]. Simple combination of these site-scores did not increase the
information content.

Seed-region checking is more suitable when searching for cooperative effects in
mRNA regulation. While a single seed-site within an mRNA gave little indication
of regulation, the occurrence of several sites increased the probability of regulation
(see Figure 6.5(b) and Figure 6.6(b)). This indicates that, while the occurrence
of a single seed-target site is not enough to predict regulation, cooperative effects
between several seed target sites is a good method for predicting regulation.

7.2 Dataset handling

As mentioned in Chapter 5.2.3, the datasets that are to be searched are first
transformed using a moving window size of 30 with an overlap of 25. This in-
creases the data that must be searched, which again increases the search time.
The PMC is configured to report back the window number of each window that
had a match during the search. This is not the only possible configuration of

51
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the PMC: it can also be configured to report back the address where the the
PMC found a match. In principle, if this configuration is used, the dataset to be
searched does not need to be transformed first.

The main advantage of not transforming the dataset is the smaller size of the
dataset to be searched. Smaller data size means shorter search times. It was
found that the search time of the enlarged dataset was four times higher than
the original dataset (the dataset size was is increased by a factor of 6). In this
comparison, the postprocessing of the results is not taken into account.

The disadvantage of using the original dataset in the search, is the increased
complexity of the result postprocessing. The classifier is the weighted sum of 250
separate queries. The matches reported from the PMC from each query must
therefore be mapped back to the dataset in a consistent way. This is easily done
in a windowed dataset when the PMC reports back the window numbers where
matches occur: a window number maps to a window number in the dataset. This
is more complex when the PMC reports the address.

One possible way doing this mapping is to use the concept of a windowed dataset
logically. This might initially seem like a good idea, because an address can
(with some work) be mapped to a dataset window. This will require finding
the correct document in the dataset, and then finding the correct window within
this document. The document can be found by using a binary search in an
array with start addresses for each document in the dataset. Having the correct
document, an address can be directly translated into windows. However, there is
one problem with this approach: depending on the physical length of a query, it
might be mapped to one to six different windows. This is because a window is 30
nucleotides long, and there is an overlap of 25 nucleotides between neighboring
windows. This means a query of length less than five can be mapped to six
different windows, while a query of length 28 can only be mapped to a single
window.

Another possible method is to “create” the logical window in an address position
when a match is reported in an address. As more and more matches are reported,
the list of already created windows are checked to see if the the match belongs to
one or more of the windows. If not, a new window is created. If a new window is
created which overlaps with an already created window, matches reported in the
previous window must be checked to see if the also belong to the new window.
This requires a data structure that is easy to traverse and modify. Query size is
also here an important factor.

The main reason for not implementing any of the address-based methods, is their
dependence on the query-size. For simple queries, this can easily be calculated,
but for complex queries the size calculation becomes more difficult. Queries
created with the production rules described in Table 5.1, have a variable size
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because of the linger function (see Chapter 5.1.1 for more information). This
means the number of windows these queries can be mapped to is unknown and
sequence specific. For instance, the query

{(a|u)uc{. : r = 2} : d = 20}{uug : p ≥ 2}

have a minimum size of 8 and a maximum size of 28, and can therefore be
mapped to any number of windows between. The actual size is dependent on the
distance between the (a|u)uc{. : r =}-expression match and the {uug : p ≥ 2}-
expression match, and is therefore different from target site to target site. No
method for automatically finding the actual size exists. A possible solution is to
train a classifier that uses a fixed displacement or to use the “Simple-Ordered”
architecture, but this is not a relevant solution here. The grammar in Table 5.1
was published in [36], and TargetBoost must therefore implement this grammar.
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Chapter 8

Further work

The main task in further work will be combining the TargetBoost-predicted tar-
get sites with target sites predicted using other, simpler methods, such as seed
region checking. Since combining seed-region target sites gives a better estimate
for predicting cooperative effects (see Figure 6.5(b) and [23]), and TargetBoost-
predicted target sites are excellent for finding regulating target sites (see Fig-
ure 6.5(a) and [36]), a scoring algorithm that combines both types of target sites
should give better regulatory predictions. This scoring algorithm could also in-
corporate distance between target sites as a parameter.

Other tasks would be check for p-value variance in the microarray data of Lim
et al. [37]. Genes regulated by a single miRNA are probably less regulated than
genes regulated by cooperative effects [38]. They will therefore probably get a
lower p-value in Lim et al. An interesting study would be to vary the p-value in
the microarray data and performing the study done in Chapter 6.5.
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Appendix A

TargetBoost system

The UML-diagram of the TargetBoost is depicted by Figure A.1.
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Weighted sequence motifs as an improved seeding step
in microRNA target prediction algorithms
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ABSTRACT

We present a new microRNA target prediction algorithm called TargetBoost, and show that the algorithm is stable and identifies
more true targets than do existing algorithms. TargetBoost uses machine learning on a set of validated microRNA targets in
lower organisms to create weighted sequence motifs that capture the binding characteristics between microRNAs and their
targets. Existing algorithms require candidates to have (1) near-perfect complementarity between microRNAs’ 50 end and their
targets; (2) relatively high thermodynamic duplex stability; (3) multiple target sites in the target’s 30 UTR; and (4) evolutionary
conservation of the target between species. Most algorithms use one of the two first requirements in a seeding step, and use the
three others as filters to improve the method’s specificity. The initial seeding step determines an algorithm’s sensitivity and also
influences its specificity. As all algorithms may add filters to increase the specificity, we propose that methods should be
compared before such filtering. We show that TargetBoost’s weighted sequence motif approach is favorable to using both the
duplex stability and the sequence complementarity steps. (TargetBoost is available as a Web tool from http://www.interagon.
com/demo/.)

Keywords: miRNA target prediction; genetic programming; boosting; machine learning

INTRODUCTION

MicroRNAs (miRNAs) belong to an abundant class of
short noncoding RNAs (Lagos-Quintana et al. 2001; Lau
et al. 2001; Lee and Ambros 2001) shown to mediate
suppression of protein translation (Moss et al. 1997;
Olsen and Ambros 1999; Reinhart et al. 2000) and cleavage
of mRNA (Zeng et al. 2002; Yekta et al. 2004). Homologs
exist across many species (Pasquinelli et al. 2000), which
shows that miRNAs’ function as gene regulators has been
conserved through evolution. A total of 1340 miRNA genes
from 11 species are listed in the 5.0 release of the miRNA
registry (Griffiths-Jones 2004). Computational approaches
have estimated that about 1% of all predicted genes in the
human (Lim et al. 2003a), fruitfly (Lai et al. 2003), and
worm (Lim et al. 2003b) genomes are miRNA genes.

It seems that miRNAs function as siRNAs and silence
genes by mRNA cleavage when targets with near-perfect
complementarity exist (Zeng et al. 2002; Yekta et al. 2004),

whereas inhibition of translation occurs when miRNAs are
only partially complementary to their targets (Lee et al.
1993; Wightman et al. 1993). MicroRNAs known to induce
translational suppression predominantly target 30 UTRs
(Bartel 2004) with neighboring binding sites (Olsen and
Ambros 1999; Reinhart et al. 2000), but it has been demon-
strated that a siRNA targeting a single coding site with
partial complementarity can induce translational suppres-
sion as well (Saxena et al. 2003). Regardless, the inhibition
of protein synthesis is more effective when targeting multi-
ple sites (Doench et al. 2003).

Several miRNA target prediction algorithms have appeared
recently, and results for fruitfly (Enright et al. 2003; Stark et al.
2003; Rajewsky and Socci 2004) and mammals (Lewis et al.
2003; John et al. 2004; Kiriakidou et al. 2004) suggest that about
10% of protein-coding genes are regulated by miRNAs (John
et al. 2004). Computational approaches for identifying miRNA
targets generally use sequence complementarity, thermo-
dynamic stability calculations, and evolutionary conservation
among species to determine whether a miRNA:mRNA duplex
is a likely target interaction (Bartel 2004; Lai 2004).

The RNAhybrid algorithm by Rehmsmeier et al. (2004)
computes minimum-free energy hybridization sites for
miRNAs, while forcing perfect complementarity in nucleotides

d72907 Saetrom et al. Bioinformatics RA
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(nt) 2–7. Potential sites are normalized by the product of a
miRNA and its potential target to avoid high-scoring, but
unlikely hybridizations to long target sequences. Extreme
value statistics similar to that used in sequence-
similarity searching is used to determine the likelihood of a
candidate site being due to random hits in a large database. The
DIANA-microT algorithm also minimizes the duplex-binding
energy in its initial step (Kiriakidou et al. 2004). Most of the
existing miRNA target prediction algorithms use similar ther-
modynamic calculations in post-processing steps following a
requirement of near-perfect complementarity with the targets
in the miRNAs’ 50 ends.

Rajewsky and Socci (2004) define a binding nucleus
of consecutive base pairs, and calculate a weighted sum
typically consisting of six to eight addends favoring
more hydrogen bonds. The algorithm is referred to as
Nucleus throughout this article, and its position-specific
weights differ only slightly from the weights of a similar
algorithm called miRanda (Enright et al. 2003). In a sub-
sequent post-processing step, Nucleus uses folding-free
energy as determined by mfold (Zuker 2003) to make the
final predictions. Simpler algorithms that use a seed of
perfect complementarity in the miRNA’s 50 region include
TargetScan (Lewis et al. 2003) and an algorithm from
EMBL (Stark et al. 2003), but these run the risk of loosing
targets that do not exactly meet their seed criteria.

We have developed a machine-learning algorithm called
TargetBoost that creates classifiers for predicting miRNA target
sites, and this is a novel approach to miRNA target site predic-
tion. The algorithm, which is an adaptation of the boosted
genetic programming algorithm of Sætrom (2004), creates
weighted sequence motifs that characterize the probable bind-
ing characteristics between miRNAs and target sites. That is,
given a miRNA and a potential target site, this classifier returns
a score that represents the likelihood of the site being targeted
by the miRNA. We used our classifiers to predict target sites in a
set of genes important for fly body patterning in Drosophila
melanogaster.

TargetBoost compares favorably to the algorithms of
Rajewsky and Socci (2004) and Rehmsmeier et al. (2004)
that were described previously. First, it rediscovers that
miRNAs’ 50 ends bind well to targets. Second, it proves to be
a classifier with a high and stable performance across several
targets. Third, and most importantly, it discovers more true
targets than the aforementioned algorithms. As other known
algorithms use variants of the Nucleus and RNAhybrid
approaches, the performance of these two algorithms should
be representative of the other algorithms’ performance as well.

We have not included additional filters, such as requir-
ing conservation of the target sites or the presence of
multiple target sites in the 30 UTRs, in our algorithm
comparisons. The reason is that these filters can be used
independently of the initial method used to predict the
target sites. Thus, improving the quality of the initial candi-
dates will also improve the final predictions.

In summary, our main contributions are a new algorithm for
predicting miRNA target sites, and an objective comparison of
its performance to that of existing algorithms.

RESULTS

A machine learning algorithm that predicts
miRNA target sites

GPboost is a machine-learning algorithm that, from a training
set of positive and negative sequences, creates a sequence-based
classifier that recognizes the positive sequences (Sætrom 2004).
The classifier is the sum of several differentially weighted
sequence patterns, where each pattern answers either yes (1)
or no (�1) as to whether the pattern matches a given sequence
or not. We have previously used variants of GPboost to predict
the efficacy of short interfering RNAs (Sætrom 2004; Sætrom
and Snøve Jr. 2004) and noncoding RNA genes in Escherichia
coli (P. Sætrom, R. Sneve, K.I. Kristiansen, O. Snøve Jr.,
T. Grünfeld, T. Rognes, and E. Seeberg, in prep.).

To create the classifier, GPboost combines genetic pro-
gramming (GP) (Koza 1992) and boosting (Meir and
Rätsch 2003). More specifically, GP evolves the individual
sequence patterns from a population of candidate patterns,
and the boosting algorithm guides GP’s search by adjusting
the importance of each sequence in the training set. Then,
the boosting algorithm assigns weights to the sequence
patterns based on the patterns’ performance in the corre-
sponding training set. The final classifier is the average of
several such boosted GP classifiers. Sætrom (2004) gives a
more thorough description of the algorithm.

To train the miRNA target site predictors, we use a
variant of the GPboost program, called TargetBoost, with
two main differences. First, in Sætrom (2004) the patterns
were simple queries, but the patterns we use here are
template queries. That is, the sequence patterns are general
expressions that describe the common properties of
miRNA target sites. When using the patterns to search for
target sites, we translate the general expressions into queries
that are specific for each miRNA. Second, we use a different
language to define what patterns are legal solutions. In the
Materials and Methods, we give a formal definition of this
pattern language along with additional details on how Tar-
getBoost translates the patterns into miRNA-specific queries.

TargetBoost finds a good, stable miRNA
target site predictor

To train and test the TargetBoost classifiers, we used a set of
36 experimentally verified target sites as positive data and a
larger set of random sequences as negative data (see Materials
and Methods for details). We compared TargetBoost’s per-
formance with the performance of Nucleus (Rajewsky and
Socci 2004) and RNAhybrid (Rehmsmeier et al. 2004)—two
recently published methods for identifying miRNA targets.
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To test the algorithms, we used 10-fold and leave-one-
miRNA-out cross-validation, and used receiver operating
characteristics (ROC) analysis to compare the algorithms’
performance; see Materials and Methods for further descrip-
tions.

Figure 1 shows the 10-fold cross-validation ROC-curves
for TargetBoost, RNAhybrid, and Nucleus. When compar-
ing the curves for the different algorithms, we see that
TargetBoost and RNAhybrid are better than Nucleus on
high-specificity levels, with TargetBoost slightly better than
RNAhybrid on specificity levels above 0.9.

Figure 2 shows the leave-one-miRNA-out cross-
validation results as it displays the ROC-curves for Target-
Boost, RNAhybrid, and Nucleus for each miRNA in the
training set individually. We see that RNAhybrid and
TargetBoost have approximately the same ROC-curves for
every miRNA, with TargetBoost being slightly better for
every miRNA except miR-13a and the high-specificity
regions of lin-4. Nucleus has the highest performance for
lin-4.

To compare the overall performance of the three algo-
rithms, we computed the ROC-score for each algorithm on
each miRNA. Then, on each individual miRNA, we tested
whether the best algorithm was significantly better than the
other algorithms. As Table 1 shows, TargetBoost not only
had the best overall ROC-score, it was also the most stable
of the three target site predictors, as for each individual
miRNA, TargetBoost was either the best algorithm (let-7
and bantam) or as good as the best algorithm (Nucleus for
lin-4 and RNAhybrid for miR-13a). Both RNAhybrid and
Nucleus, however, were significantly worse than the best
algorithm on at least one miRNA.

Although the overall performance of the classifiers is
important, when using a classifier to predict miRNA target
sites in genes, the most important characteristics of the
classifier is that the top predictions made by the classifier

have a high probability of being true target sites. That is,
the best classifier has higher sensitivity than the other
classifiers when approaching maximal specificity.

The true-positive frequency (TPF) test determines
whether there is a significant difference in the sensitivity
of two classifiers at a given significance level (see Materials
and Methods). For each miRNA, we tested whether the best
classifier was significantly more sensitive than the other
classifiers (99% confidence level) on specificities 0.995,
0.99, 0.98, 0.97, 0.96, and 0.95. On all specificities, Target-
Boost was either the best or as good as the highest-scoring
algorithm on all genes. RNAhybrid performed well on all
specificities for all miRNAs except lin-4, where the algo-
rithm was significantly less sensitive than Nucleus on all
specificities. Nucleus, however, suffered from lower sensi-
tivity in the high-specificity area; TargetBoost was signifi-
cantly more sensitive than Nucleus for let-7 (specificity
0.995—P-value 0.006) and miR-13a (specificities 0.995
and 0.99—P-values 0.005 and 0.006). Thus, as for the over-
all ROC-score, TargetBoost was the most stable of the three
algorithms.

A possible explanation for RNAhybrid and Nucleus
being less stable than TargetBoost is that the different
miRNAs have slightly different binding characteristics.
For example, lin-4 and its target sites have a lower binding
energy compared with the three other miRNAs, but may
have other characteristics that the sequence-based methods,
TargetBoost and Nucleus, have used to identify the target
sites. This can explain RNAhybrid’s poorer performance on
this miRNA. The motif-based classifiers of TargetBoost,
however, seem to be robust and capture both the thermo-
dynamic and sequence characteristics of the miRNA target
sites in our database.

TargetBoost finds more true target sites
than do RNAhybrid and Nucleus

When we search for target sites, there will be far more
negative than positive target sites. We are therefore inter-
ested in a classifier that finds as many positive target sites as
possible, before the number of negative target sites in the
result set becomes too large. The ROC50-score, which is the
area under the ROC curve until 50 false positives are found,
reflects this interest, as the score takes into account that a
user is seldom concerned with true positives that occur
after the first page (about 50) of false positives (Gribskov
and Robinson 1996). We ran a ROC50 test on the different
algorithms to compare their performance on low frequen-
cies of false positives; Table 2 lists the scores.

We found that TargetBoost performs better than RNA-
hybrid and Nucleus. Both RNAhybrid and Nucleus can be
given extra constrains, such as forcing miRNA 50 helices in
RNAhybrid and increasing the free-energy cutoff in
Nucleus, to improve their predictive power. Both perform
much better when they are given extra constraints, andFIGURE 1. Overall ROC-curves for each algorithm.
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especially RNAhybrid get a much higher sensitivity for high
levels of specificity (see Fig. 3A). The drawback is that the
algorithms will miss several miRNA target sites when they
are using these constraints. Figure 3 gives the complete
ROC-curves for the different versions of RNAhybrid and
Nucleus. TargetBoost does not have this problem, as each
target site will get a score by TargetBoost and no target site
will automatically be discarded. What is more, as Table 2

shows, TargetBoost finds more true target sites, even when
the constraints are introduced in RNAhybrid and Nucleus.

TargetBoost rediscovers that 50 ends bind with
near-perfect complementarity

Earlier methods that identify miRNA target sites have used
the property that the miRNA tends to bind perfectly to the
target site on the 50 end of the miRNA. Enright et al.
(2003), Kiriakidou et al. (2004), Lewis et al. (2003), and
Stark et al. (2003) use this property directly by demanding
perfect binding at the 50 end as a seed. Nucleus (Rajewsky
and Socci 2004) uses the property indirectly by demanding
a long GC-rich sequence of matches. This sequence will
most often appear at the 50 end of the miRNA. RNAhybrid
(Rehmsmeier et al. 2004) can also incorporate this property
by demanding that parts of the miRNA have to form a
perfect helix. By demanding a perfect helix on nt 2–7 on

FIGURE 2. ROC-curves. A–D compare the performance of RNAhybrid, Nucleus, and TargetBoost at predicting the true target sites of let-7, lin-4,
miR-13a, and bantam.

TABLE 1. TargetBoost is the most stable algorithm

Algorithm let-7 lin-4 miR-13a bantam All

TargetBoost 0.997 0.944 0.972 0.998 0.979
RNAhybrid 0.989 0.931 0.979 0.991 0.967
Nucleus 0.988 0.962 0.928 0.998 0.973

ROC-scores that are not significantly different from the highest
score on a particular miRNA are in boldface (90% confidence
level; see Materials and Methods for details on each algorithm).
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the 50 end of the miRNA, better results were observed (see
Rehmsmeier et al. 2004; Fig. 3A; Table 2).

TargetBoost confirmed the tendency of perfect matching
in the 50 end. The production rules used to create the
classifiers demand a segment of near-perfect pairing
between miRNA and target site, but the position and length
of this pairing is not encoded in the production. This is
decided entirely by the training process. Almost every indi-
vidual trained at the first boosting iteration resembled the
expression in Figure 4. That is, in most expressions, the
consecutive sequence part of the expressions (the rightmost
{...} subexpression in Fig. 4) used positions 17–24 in the
miRNA counted from the 30 end. These positions corre-
spond to the first eight bases on the 50 end. As explained in
the Materials and Methods, the P� 6 means that six of the
eight bases have to match at the 50 core, and this indicates
that almost every target site in the training set demands a
near-perfect match in the 50 end of the miRNA. This
corresponds to experimental evidence in the literature
(Doench and Sharp 2004; Kiriakidou et al. 2004).

Target candidates in Drosophila melanogaster

We searched a set of genes important for fly body pattern-
ing in D. melanogaster for candidate target sites. This set is
the same as was used in Rajewsky and Socci (2004) and
Rehmsmeier et al. (2004). In the search, we used a set of 78
D. melanogaster miRNAs downloaded from the miRNA
Registry version 5.0 (Griffiths-Jones 2004). We compared
the target sites found in our search with the target sites
predicted by Rehmsmeier et al. (2004) and Rajewsky and
Socci (2004).

Figure 5 displays target sites predicted by either Target-
Boost, RNAhybrid, or both. When comparing our results
to the top five hits predicted by Rehmsmeier et al. (2004),
we found that TargetBoost did not predict the potential
miR-92a site in tailless and the potential miR-210 site in
hairy reported by RNAhybrid. This is because of the num-
ber of G:U wobbles in the target sites reported by RNAhy-
brid; for example, the miR-92a target in tailless has three
G:U wobbles, two of them residing in the 50 core (see
Fig. 5). The miR-210 site in hairy has five G:U wobbles,
with three wobbles in the first eight bases of the 50 core. As
TargetBoost treats G:U wobbles as normal mismatches, we
would not find potential target sites with a high number of
G:U wobbles; especially if the sites resided in the 50 core.
This may, however, be a strength of our method, as recent
experimental results suggest that G:U wobbles may be
detrimental to translational repression (Doench and
Sharp 2004).

Although we did not find the same miR-210 site in hairy
as did RNAhybrid, TargetBoost did predict that miR-7 has
a potential target site in hairy. The target site is the same as
the ones predicted by RNAhybrid and Nucleus, and it has
only one G:U wobble. Stark et al. (2003) has shown that
hairy is a target for miR-7.

TABLE 2. ROC50 scores for the algorithms on the complete data set

Algorithm ROC50-score

TargetBoost 0.0025

RNAhybrid1 0.0012
RNAhybrid2 0.0017

Nucleus1 0.0006
Nucleus2 0.0011
Nucleus3 0.0014

See Materials and Methods for descriptions of the different
algorithms.

FIGURE 3. ROC-curves comparing different parameter settings on RNAhybrid (A) and Nucleus (B). We can see increased sensitivity for high-
specificity values for RNAhybrid in A.
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Other differences in the predicted target sites come from
the constraint used in RNAhybrid. To get better predic-
tions with RNAhybrid, you can demand a perfect helix for
nt 2–7 in the 50 end of the miRNA. TargetBoost does not
need this constraint, and therefore a larger set of potential
target sites will be considered with TargetBoost. For exam-
ple, the miR-9c target in crocodile predicted by TargetBoost,
shown in Figure 5, have a mismatch in position 5 at the 50

end. Because of this, the target is automatically disqualified
when running RNAhybrid with the perfect helix constraint.

Finally, Figure 5 shows the highest-scoring target site
predicted by TargetBoost. let-7 has few mismatches with
this buttonhead target site, and the target site also has the
characteristics of single miRNA target sites as outlined by
Kiriakidou et al. (2004).

DISCUSSION

We have presented a program, TargetBoost, that finds
miRNA target sites. We compared the performance of
TargetBoost against two recently published algorithms for
finding miRNA target sites, and found that the perfor-
mance of TargetBoost is good and stable compared with
the other algorithms. A possible reason for this is that
TargetBoost has found a pattern in the miRNA–mRNA
binding that predicts target sites better than just looking
at the free-energy score and binding in the 50 core. It is
known that by incorporating knowledge of binding in the
50 core to the free-energy calculation, better classification is
achieved (Rehmsmeier et al. 2004). Perhaps by discovering
other patterns in the miRNA–mRNA binding and incor-
porating those, TargetBoost has made a better classifier.

Another potential explanation for TargetBoost’s per-
formance compared with the other algorithms is that Tar-
getBoost does not allow G:U wobbles between miRNAs and
target sites. Mutation studies of target sites (Doench and

Sharp 2004) and miRNAs (Kloosterman et al. 2004) indi-
cate that G:U wobbles in the 50 region of the miRNA
reduces target site activity more than what is expected by
their thermodynamic stability. Thus, algorithms that rely
on thermodynamic calculations to predict target sites will
return more false-positive predictions.

Computational methods that predict miRNA target sites
generally use sequence complementarity, thermodynamic
stability calculations, evolutionary conservation among
species, number of target sites in a mRNA, or a combina-
tion of the four. We chose to compare TargetBoost against
Nucleus and RNAhybrid because these two algorithms
cover both the group of algorithms that uses sequence
complementarity and the group of algorithms that uses
thermodynamic stability calculations. We have disregarded
other methods to further refine the set of candidate sites, as
evolutionary conservation and the number of target sites
are used as a post-processing step on the more basic meth-
ods for finding candidate sites. They can therefore also
easily be used as a post-processing step for TargetBoost.

Be aware that all miRNA target prediction algorithms are
based on the assumption that all targets share characteris-
tics with the set of experimentally verified targets in lower
organisms. There is a possibility that (1) new families of
targets with fundamentally different characteristics from
the training set exist, and (2) targets in mammalian species
differ from those of lower organisms. For example,
Smalheiser and Torvik (2004) compared the complemen-
tarity interactions between miRNAs and mRNA with that
between miRNAs and scrambled controls in humans. They
found that the discriminative characteristics of putative
targets are longer stretches of perfect complementarity,
higher overall complementarity allowing for gaps, mis-
matches, and wobbles, and multiple proximal sites that
are complementary to one or several miRNAs. Note that
these results suggest that mammalian miRNA targets
may possess other characteristics than do targets from

FIGURE 4. MicroRNA target query examples. (A) General pattern
generated after the first boosting iteration in TargetBoost. This pat-
tern has been translated using the let-7 miRNA in a complemented
form. (B) The translated query matched against the lin-14 target site.

FIGURE 5. Aligned D. melanogaster target sites.

6 RNA, Vol. 11, No. 7

Sætrom et al.



D. melanogaster and Caenorhabditis elegans. Specifically, the
stretches of perfect complementarity may be longer, targets
in the protein-coding region may be present, and the bias
toward perfect complementarity in the miRNA’s 50 region
may be weaker. If this is true, current miRNA target pre-
diction algorithms may have limited value when used to
predict targets in mammals.

In summary, we have presented a new algorithm for
predicting miRNA target sites. The algorithm uses machine
learning to train a sequence-based target site predictor, and
this is a novel approach to miRNA target site prediction.
Our algorithm compares favorably to other algorithms,
both in terms of overall performance and when making
highly specific predictions. We believe that our algorithm
will be an important tool, not only for finding the target
sites of known miRNAs, but also for predicting potential
miRNA off-target effects in RNAi experiments (Saxena
et al. 2003; Scacheri et al. 2004).

MATERIALS AND METHODS

Algorithm and implementation

TargetBoost ensures that all patterns evolved in the genetic pro-
gramming process are valid expressions in a pattern language
(Sætrom 2004). Figure 6 shows the grammar and semantics of
the pattern language used to create the miRNA target predictors.
The grammar is in Backus-Naur form (Knuth 1964) and shows
the legal production rules in the language, with nonterminals
represented by uppercase letters and terminals represented by
boldface letters. Syntactical elements in the language, such as
parentheses and operators, are in normal typeface, alternatives
are represented as separate productions, adjacent symbols are
concatenated, and Pi represents position i in the miRNA-
sequence, counted from the 30 end.

Figure 6B shows the language’s semantics. A pattern matches a
sequence if S.hit is true. match(a) returns 1 if the character in the
position indicated by a is identical to the character it is compared
with. linger(F.hit, N) is a function that if F.hit is true, F.hit will be
returned for N clock-ticks (see Halaas et al. (2004) for details on
the linger-function). The production for W creates a sequence of
N wild cards. This production will return a hit for any sequence of
N characters it is compared with.

Each individual generated by these production rules consists of
two parts as follows: an unknown pattern R, and a consecutive
sequence O of near perfect matches. The two parts are separated
by a variable amount of nucleotides, decided by the displacement
D. The number of wild cards in the W-production gives the lower
bound of the number of nucleotides, and the number of wild
cards, plus the displacement d in the D-production gives the
upper bound of the number of nucleotides.

Figure 7 shows two example patterns from our pattern lan-
guage. In the first query, the unknown pattern and the consecutive
sequence are separated by 8–15 nt, and in the second query, by
4–14 nt. As in Sætrom (2004), we use the pattern n-of-m operator
(P�N in productions 4 and 13 in Fig. 6) to introduce fuzzy
matching. That is, the numeral N in productions 4 and 13 indi-
cates the minimum number of terminals in the C and LC produc-
tions that must match. For example, in Q1, only two of six
nucleotides must match, but in Q2, all five nucleotides must
match. This is also the case for the unknown pattern; the complete
expression must match in Q2, as it does not use the pattern n-of-m
operator, but only three of four nucleotides must match in Q1.

The terminals in the expressions represent positions in the
miRNA-sequence; the expressions are therefore translated before
searching. During translation, the terminals that represent posi-
tions are replaced with the corresponding complemented nucleo-
tide in the miRNA sequence. The positions in the miRNA are
numbered from P1to P24, with P24 corresponding to the 5’ end of
the miRNA. Our current implementation translates the miRNAs
from 5’ to 3’, but only uses the 21 first nucleotides—P1 to P3

defaults to wild cards that match any nucleotide. TargetBoost
evaluates a candidate pattern by using the translated queries to
search the training set of positive and negative sequences. It then
scores the pattern based on the number of true and false positive/
negative hits and the relative weights the boosting algorithm has
assigned to the sequences.

Reference algorithms for comparison

We compared the performance of TargetBoost with the perfor-
mance of Nucleus (Rajewsky and Socci 2004) and RNAhybrid
(Rehmsmeier et al. 2004) (these algorithms are described in the
Introduction). Nucleus has two cut-off parameters that can be
tuned—the weighted sum cut-off and the free energy cut-off—
and when comparing the performance of this algorithm with the
performance of our algorithm, we made certain modifications.

FIGURE 6. The grammar (A) and semantics (B) of the pattern
language used by TargetBoost. The grammar and semantics are
explained in the main text.

FIGURE 7. Two example patterns from our pattern language. Pi

denotes nucleotide i in the miRNA counted from the 30 end.
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Nucleus1 does not use mfold, and therefore, has only one cut-off
parameter to tune. Nucleus2 has a free-energy cut-off of �17.4,
while the weighted sum cut-off is tunable. This was the cut-off
recommended in Rajewsky and Socci (2004). Nucleus3 has a
weighted sum cut-off of 25, while the free-energy cut-off is
tunable. Again, this cut-off was recommended in Rajewsky and
Socci (2004).

We ran RNAhybrid in two modes; RNAhybrid1 ran without
forcing miRNA 50 helices, and RNAhybrid2 forced miRNA 50

helices from position two to seven, as suggested by Rehmsmeier
et al. (2004). Throughout this work, RNAhybrid and Nucleus are
short for Nucleus1 and RNAhybrid1.

Positive data set

The positive data set consisted of 36 experimentally confirmed
target sites for the miRNAs let-7, lin-4, miR-13a, and bantam in
C. elegans and D. melanogaster (Boutla et al. 2003; Brennecke et al.
2003; Rajewsky and Socci 2004). Each target site was padded with
their respective sequences, such that the length of the sequences
was 30 nt. Target sites longer than 30 nt were discarded from the
data set.

Negative data set

The negative data set consisted of 3000 random strings, all 30 nt
long. The frequencies used in the generation of the random strings
were the same as the frequencies used in Rajewsky and Socci
(2004), (PA = 0.34, PC = 0.19, PG = 0.18, PU = 0.29), and corre-
spond to the nucleotide composition of D. melanogaster 30 UTRs.

Cross-validation

Cross-validation is a common method to evaluate the perfor-
mance of a classifier on data not used to train the classifier.
Here, we used 10-fold cross-validation (Breiman et al. 1984) and
an approach we call ‘‘leave-one-miRNA-out’’ cross-validation. A
10-fold cross-validation usually gives a good estimate of a classi-
fier’s predictive accuracy (Kohavi 1995). In this case, however, the
number of verified target sites for each miRNA varied greatly, so
that the miRNA having the most target sites (let-7) had a high
chance of being present in both the training and test sets in many
of the 10-folds. As this may cause a bias in the classifier perfor-
mance estimated by the 10-fold cross-validation method, we tried
a second cross-validation approach that did not have this bias. In
the ‘‘leave-one-miRNA-out’’ cross-validation approach, we used
all of the target sites from all of the miRNAs, but one, as training
set; we then used the remaining miRNA’s target sites as test set.
This gave four training and test sets.

Comparing algorithms

We compared the algorithms by analyzing their receiver operating
characteristics (ROC) curves. A ROC-curve describes the relation-
ship between the specificity Sp =TN/(FP+TN) and the sensitivity
Se = TP/(TP+FN) of a classifier. Here, TP, FP, TN, and TN are
the number of true positives, false positives, true negatives, and
false negatives.

We did three analyses on the ROC-curves, i.e., area tests, TPF
tests, and ROC50 tests. In the area tests, we calculate the area
under the ROC-curve—the ROC-score. An area of 1 indicates a
perfect classification, and an area of 0.5 indicates a random
classification. In the TPF tests, we calculate the true-positive
frequency (TPF = Se) for a classifier for a given false-positive
frequency (FPF = 1�Sp), or the amount of correctly classified
positive samples given a specified amount of false-positive sam-
ples. In the ROC50 tests, we calculate the ROC50 score, which is
the area under the ROC-curve plotted until 50 true negative
samples are found (Gribskov and Robinson 1996).

We used ROCKIT (Metz et al. 1998) for statistical comparisons
of ROC area and TPF values.

Availability

TargetBoost is available as a Web tool from http://www.interagon.
com/demo/. Currently, the Web tool searches the 30 UTRs of
C. elegans; other data sets are available for both commercial and
strategic academic collaborations.
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