
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

FAKULTET FOR INFORMASJONSTEKNOLOGI, MATEMATIKK OG

ELEKTROTEKNIKK

MASTEROPPGAVE

Kandidatens navn: Andreas Grytting Furuseth

Fag: Datateknikk

Oppgavens tittel (norsk):

Oppgavens tittel (engelsk): Digital Forensics: Methods and tools for re-
trieval and analysis of security credentials and hidden data.

Oppgavens tekst:

The student is to study methods and tools for retrieval and analysis of
security credentials and hidden data from different media (including hard
disks, smart cards, and network traffic). The student will perform prac-
tical experiments using forensic tools and attempt to identify possibilities
for automating evidence analysis with respect to e.g. passwords, crypto-
graphic keys, encrypted data, steganography, etc. The student will also
study the correlation of identified security credentials from different media
in order to improve the possibility of successful identification and decryp-
tion of encrypted data.

Oppgaven gitt: 28. Januar 2005
Besvarelsen leveres innen: 1. August 2005
Besvarelsen levert: 15. Juli 2005
Utført ved: Institutt for datateknikk og informasjonsvitenskap

Q2S - Centre for Quantifiable Quality of
Service in Communication Systems

Veileder: André Årnes

Trondheim, 15. Juli 2005

Torbjørn Skramstad
Faglærer

Abstract

Steganography is about information hiding; to communicate securely or conceal
the existence of certain data. The possibilities provided by steganography are
appealing to criminals and law enforcement need to be up-to-date. This master
thesis provides investigators with insight into methods and tools for steganog-
raphy.

Steganalysis is the process of detecting messages hidden using steganography
and is examined together with methods to detect steganography usage.

This report proposes digital forensic methods for retrieval and analysis of steganog-
raphy during a digital investigation. The result is the following list of methods
to defeat steganography:

• Physical crime scene investigation

• Steganalysis

• Detection of steganography software

• Traces of steganography software

• Locating pairs of carrier/stego-files

• Key word search and activity monitoring

• Suspect’s computer knowledge

• Unlikely files

• Locating steganography keys

• Hidden storage locations

These proposed methods are examined using scenarios. From the examination
of steganography and these cases, it is concluded that the recommended meth-
ods can be automated and increase the chances for an investigator to detect
steganography.

i

Preface

This thesis is a result from work done as the part of a master’s degree from
the Department of Computer and Information Science, NTNU. The title of the
project is “Digital Forensics: Methods and tools for retrieval and analysis of se-
curity credentials and hidden data” and has been proposed by André Årnes from
Q2S - Centre for Quantifiable Quality of Service in Communication Systems.
Årnes also did the supervising of this master thesis.

The focus of the project is on studying steganography in the context of digital
forensics. The thesis covers tools and methods for steganography and how these
can be detected.

The objective is to create digital forensic methods to detect steganography,
which can be used in the process of a digital investigation.

I would like to thank everybody who supported me and inspired me to work
on this project, especially André Årnes and Professor Torbjørn Skramstad for
guidance and motivation.

Trondheim, July 15, 2005

Andreas Grytting Furuseth

iii

Contents

Abstract i

Preface iii

1 Introduction 3
1.1 Motivation . 3
1.2 Introduction to digital forensics 4
1.3 Introduction to steganography 4

1.3.1 The use for steganography 5
1.4 Interpretation of scope . 5
1.5 Document organization . 6

2 Digital Forensics 7
2.1 Forensic Science . 7
2.2 Digital Forensic . 8
2.3 Forensic methodology . 8

2.3.1 An integrated digital investigation process 9
2.3.2 Chain of Custody and Integrity documentation 11

2.4 Digital forensic tools . 12
2.4.1 Acquisition tools . 12
2.4.2 Documenting evidence . 12
2.4.3 Analysis tools . 13
2.4.4 Automatic identification of known software and files . . . 14
2.4.5 Tool summary . 14

3 Steganography 15
3.1 Introduction to steganography 15
3.2 Terminology . 16

3.2.1 Simple steganography . 17
3.2.2 Secret key steganography 17
3.2.3 Public key steganography 17
3.2.4 A formal model of steganography 18

3.3 Steganography and cryptography 19
3.4 Digital watermarking . 19
3.5 Usage of steganography . 20

3.5.1 Steganography encountered in digital forensics 21
3.6 Classification of information hiding 22
3.7 Different methods for embedding 24

v

vi CONTENTS

3.7.1 Data appending . 24
3.7.2 Adding comments . 25
3.7.3 File headers . 25
3.7.4 Spatial domain . 25
3.7.5 Transform domain . 25
3.7.6 Statistics-aware embedding 25
3.7.7 Pseudo-random embedding 26

3.8 Classification of steganography software 26
3.8.1 Steganography software generations 26
3.8.2 Steganography software strength 26
3.8.3 Steganography software availability 27
3.8.4 The classification . 27

4 Analysis of steganography software 29
4.1 Introduction . 29
4.2 Description of EzStego . 30

4.2.1 Usage of EzStego . 31
4.2.2 Detection of EzStego . 31
4.2.3 Message extraction . 33

4.3 Description of Mandelsteg . 33
4.3.1 Usage of Mandelsteg . 33
4.3.2 Detection of Mandelsteg 34
4.3.3 Message extration . 34

4.4 Description of Spam Mimic . 35
4.4.1 Usage of Spam Mimic . 35
4.4.2 Detection of Spam Mimic 36
4.4.3 Message extraction . 36

4.5 Description of Snow . 36
4.5.1 Usage of Snow . 36
4.5.2 Detection of Snow . 38
4.5.3 Message extraction . 38

4.6 Description of Outguess . 38
4.6.1 Usage of Outguess . 38
4.6.2 Detection of Outguess . 41
4.6.3 Message extraction . 41

4.7 Description of appendX . 42
4.7.1 Usage of appendX . 42
4.7.2 Detection of appendX . 44
4.7.3 Message extraction . 44

4.8 Description of Invisible Secrets 44
4.8.1 Usage of Invisible Secrets 44
4.8.2 Detection of Invisible Secrets 45
4.8.3 Message extraction . 45

4.9 Discussion . 47

5 Steganalysis 49
5.1 Introduction . 49
5.2 Introduction to steganalysis . 49

5.2.1 The Prisoner’s Problem 49
5.3 Description of steganalysis . 50

CONTENTS vii

5.4 Attacks on steganography . 51
5.4.1 Steganalysis and digital forensics 51
5.4.2 Steganalysis: Detection of stego-messages 52
5.4.3 Extracting hidden information 54
5.4.4 Disabling hidden information 55

6 Analysis of steganalysis software 57
6.1 Introduction . 57

6.1.1 Disabling hidden information 58
6.2 Description of StegSpy . 58

6.2.1 Usage of StegSpy . 58
6.2.2 Examination of StegSpy 58

6.3 Description of Stegdetect . 60
6.3.1 Usage of Stegdetect . 60
6.3.2 Examination of Stegdetect 60

6.4 Description of Stegbreak . 61
6.4.1 Usage of Stegbreak . 61
6.4.2 Examination of Stegbreak 61

6.5 Description of Stego Suite . 62
6.5.1 Usage of Stego Suite . 62
6.5.2 Examination of Stego Watch 62

6.6 Description of StegAnlyzer . 62
6.6.1 Usage of StegAnalyzer . 62
6.6.2 Examination of StegAnalyzer 62

6.7 Discussion . 63

7 Digital forensics and steganography 65
7.1 Defeating steganography . 65

7.1.1 Physical crime scene investigation 66
7.1.2 Steganalysis . 66
7.1.3 Detection of steganography software 67
7.1.4 Traces of steganography software 67
7.1.5 Locating pairs of carrier/stego-files 67
7.1.6 Key word search and activity monitoring 68
7.1.7 Suspect’s computer knowledge 68
7.1.8 Unlikely files . 68
7.1.9 Locating steganography keys 69
7.1.10 Hidden storage locations 69

7.2 Anti-Forensics . 69
7.2.1 Choice of passwords . 69
7.2.2 Remove the carrier-message 70
7.2.3 Hide the existence of steganography software 70
7.2.4 Remove headers from encrypted messages 70

7.3 Summary . 71

8 Digital forensic cases 73
8.1 Introduction to the cases . 73

8.1.1 Summary of methodology and tactics 73
8.2 Digital forensic case 1 . 74

8.2.1 Introduction to “Scan of the Month” 74

viii CONTENTS

8.2.2 Challenge 26 . 75
8.2.3 Investigating the case . 75
8.2.4 Discussion and summary of SotM 26 82

8.3 Digital forensic case 2 . 85
8.3.1 Case limitations . 85
8.3.2 Investigating the case . 86
8.3.3 Discussion and summary of Case 2 91

9 Discussion 93
9.1 The use and need of steganography 93
9.2 State-of-the-art steganography 93
9.3 State-of-the-art steganalysis . 94
9.4 Methods for detecting steganography 94

9.4.1 Advantage of using the proposed methods 95
9.4.2 Weaknesses with the proposed methods 95

9.5 Real world digital crime scenes 96

10 Conclusion 97
10.1 Future work . 97

Bibliography 99

Appendices 109

A Identified Signatures and Strings 111
A.1 Identified signatures of steganography software 111

List of Figures

1.1 Simple presentation of steganography 5

2.1 The five groups of the investigation process, with their phases. . 10
2.2 Digital crime scene investigation phases. 11

3.1 Example of steganography. 16
3.2 Conseptual view of steganography. 16
3.3 Conseptual view of secret key steganography. 18
3.4 Steganography and cryptography. 19
3.5 Watermarking an image. 20

(a) The orignial “pepper.tif” 20
(b) Watermarked “pepper.tif” 20
(c) The watermark . 20

3.6 Information hiding methods. 22
3.7 Classification of steganography techniques. 23
3.8 Simple example of a grille cipher. 24
3.9 Example of null cipher. 24

4.1 Embedding method of EzStego. 31
4.2 Demonstration of EzStego using Lena image. 32

(a) Cover-image . 32
(b) Stego-image . 32

4.3 LSB of images from Figure 4.2. 33
(a) LSB of cover-image . 33
(b) LSB of tego-image . 33

4.4 Mandelbrot image containing the text from Listing 4.2 34
4.5 Palette from the Mandelbrot fractal image. 34
4.6 Usage of the Snow tool. 37

(a) The carrier message . 37
(b) The stego message . 37

4.7 Before and after running Outguess on pepper. 40
(a) Original image (cover-image) 40
(b) Message embedded (stego-image) 40
(c) Zoom 1000% cover-image 40
(d) Zoom 1000% stego-image 40

4.8 Using Invisible Secrets to hide messages. 46
(a) HTML steganography with appending spaces 46

ix

x LIST OF FIGURES

(b) Hiding “AAAA....” inside JPG comment without compres-
sion and encryption . 46

(c) Hiding “AAAA....” inside JPG comment with compression
and encryption . 46

(d) Viewing image metadata 46

5.1 The Prisoners Problem. 50
5.2 Visual attack filter: assigning new colors to the palette. 53
5.3 Visual attacks on EzStego. 54

(a) Carrier-image . 54
(b) Stego-image with 50% embedding. 54
(c) Carrier-image 2 . 54
(d) Filtered (a) . 54
(e) Filtered (b) . 54
(f) Filtered (c) . 54

6.1 Using StegSpy. 59
(a) Screen shot of StegSpy v2.1 59
(b) Stego-image of Krusty the Clown (KRUSTY3.bmp) 59

6.2 Viewing KRUSTY3.bmp in a Hex viewer. 59
(a) Beginning of the header of BMP image file (KRUSTY3.bmp) 59
(b) End of the (KRUSTY3.bmp) 59

8.1 FAT file system organisation of a volume. 77
8.2 Viewing the unallocated data from a hex-editor. 79
8.3 The first image extracted and runnig StegSpy 79

(a) The first image extracted: img1.jpg 79
(b) Running StegSpy on img1.jpg 79

8.4 Hex view of data. 81
8.5 The second image, img2.bmp. 82
8.6 Using Autopsy for case 1: Honeynet Scan of the Month 26. . . . 84

(a) Adding the floppy image to the case 84
(b) Results of adding the floppy image 84
(c) File analysis yielding a seemingly empty floppy 84
(d) Image details after extracting using strings 84
(e) Data unit viewer, Hex contens sector 1018 84
(f) Data unit viewer, Hex contens sector 33. Indicating jpeg

image data . 84
(g) “File type”-view uses the sorter tool to extract files. It is

possible to limit the extraction to images and create thumb-
nails. 84

8.7 Digital forensic case 2. 85
8.8 Collection and preservation of possible evidence. 87
8.9 Hash alert database results. 90
8.10 Using Autopsy for case 2. 92

(a) Adding the disk image to the case 92
(b) Adding information about the disk image 92
(c) Result for sorting files. 92
(d) Results of key word searched 92

List of Tables

2.1 Digital forensic tools . 14

3.1 Classification of steganography software. 27

4.1 Steganography software treated in this chapter. 30

6.1 Steganalysis software treated in this chapter. 57

7.1 Forensic methods to defeat steganography 71

A.1 Signatures of known steganography tools 117

xi

xii LIST OF TABLES

List of Listings

4.1 Batch file used when running EzStego. 32
4.2 Output from Spam Mimic with input “Steganography”. 35
4.3 Bat-file to run Snow . 36
4.4 Output from running the bat-file from Listing 4.3 37
4.5 Script running Outguess. 39
4.6 Running outguess script from Listing 4.5 39
4.7 Files created with outguess script 40
4.8 Extracting message embedded with Outguess. 41
4.9 Brute-force attempt against Outguess. 42
4.10 Usage of appendX . 43
4.11 Usage of appendX, continued. 43
6.1 Running Stegdetect . 60
8.1 Mounting the floppy image as a “read only” loop device. 76
8.2 File system details of the floppy image. 77
8.3 Output from running strings on unallocated data. 78
8.4 Extracting an image file from scan26. 79
8.5 Running Stegdetect on img1.jpg. 80
8.6 Extract from the HTML source of dfrws.org 80
8.7 Extracting the second image from scan26. 81
8.8 The complete letter to John Smith from Jimmy Jungle. 83
8.9 Transferring data using DD. 87
8.10 Authentication of the transferred data using hash signatures. . . 88
8.11 Mounting image of acquired hard disk for analysis. 89

1

2 LIST OF LISTINGS

Chapter 1

Introduction

This chapter contains a short motivation for this master thesis, an introduc-
tion to the important concepts of digital forensic and steganography, as well a
presentation of the project scope. Finally an overview of this document is given.

1.1 Motivation

A trend in today’s society is an increasing amount of assets existing only in the
virtual world. Where there is something of value, there is also potentially crime.

Forensics is often though of as a crime scene, where police investigators are
methodically collecting possible evidence for further analysis. The process of
gathering evidence, interrogation of witnesses, identifying a suspect and building
a case against this possible perpetrator is old as the introduction of a legal
system with legislative, judicial and executive powers.

With new technology, both legal and illegal processes evolves. Computer crime
and the methods to counter and investigate it are in an arms race. Old legisla-
tions are changed or adapted to answer to these new cases of digital investiga-
tions.

The keeping of secrets is an old doing. There are basically two ways of keeping
something a secret. One is to hide an object, hoping that nobody finds this
hiding place. The second way is to store the secret in a way that is only accessible
to some, e.g. a safe. An example of the later from the digital world, secrecy can
be achieved with the usage of cryptography. Cryptography is relatively mature
and well known.

In some cases, there is a need of keeping the presence of a secret hidden. The
rumor of a hidden treasure will for sure bring numerous treasure hunters. In
the same way as the presence of cryptography can raise unwanted attention or
suspicion.

Returning to the two ways of keeping a secret from above, the first one is
called steganography. Steganography is about keeping something hidden, lit-

3

4 CHAPTER 1. INTRODUCTION

erally meaning “covered writing”. The usage of steganography goes back in
history to the ancient Greece. Examples of its use from World War II are secret
ink and microdots1. In the digital world, steganography is hiding data inside
other data.

Steganography can be a mean for criminals (and others) to hide information
in the digital world. Some indications exists that this is the case, but no clear
statistics exists. Investigators refusing to focus on the possibilities given by
steganography, yields “security through denial” and is not a good alternative.

This master thesis looks into methods and tools for steganography, as well as
how to deal with steganography in digital forensics.

1.2 Introduction to digital forensics

Digital forensics is about taking the forensic experiences and methods of the
physical world to the virtual one. Acquisition of evidence, analyzing it and
presenting findings is also needed when investigating a crime where a computer
is involved, though the specific techniques used are quite different from more
traditional forensics.

The term digital forensics comprises a wide range of computer activity. Not just
evidence from computers (i.e. disk drive and computer memory), but including
all sorts of generic digital media, including cell phones, memory sticks, PDAs ,
network traffic etc.

The methodologies from physical forensics are adapted into digital forensic,
specific forensic software are created and comprehensive knowledge is obtained
by digital forensic specialist to defeat digital criminality.

1.3 Introduction to steganography

Steganography is about covert communication; to hide the existence of a mes-
sage from a third party [25]. The word steganography is derived from the Greek
words steganos translating to covered and graphein meaning writing [web15],
translating steganography to covered writing. Steganography consists of a va-
riety of techniques, and all are not directly linked to the computer. Microdots
and tattooed messages on human heads covered with hair regrowth [web53], to
mention some.

In computer science, steganography is hiding data within nonsecret data, e.g. a
data file of some sort. Steganography is based on the fact that data files can be
slightly altered without losing its original functionality and human senses are
not sensitive enough to discover the small changes in the altered files. These
principles are illustrated in Figure 1.1.

1Microdots are text or images reduced in size so that they are not discovered by unintended
recipients [web50].

1.4. INTERPRETATION OF SCOPE 5

Figure 1.1: Simple presentation of the principle of steganography.

Figure 1.1 shows an example of steganography. A suitable image, called the
carrier, is chosen. The secret message is then embedded into the cover using
the steganographic algorithm, in a way that does not change the original image
in a human perceptible way. The result is a new image, the stego-image, that
is not visible different from the original. From an observer’s view, the existence
of a secret message is (visibly) hidden.

1.3.1 The use for steganography

Cryptography transform structured and intelligible data, like a text file, into
a stream of random-looking data [52]. All digital data are ordered in well de-
fined structures, like protocols, file types, hierarchical models etc. Hence, there
basically exist no random data. Except encrypted data, which will stand out
among other types of data. The purpose of steganography can be said to be
the opposite of cryptography [web17]: “to mix random-looking data with decoy
information”, where mix is the steganography algorithm, data is the message
to be embedded and decoy information is the carrier.

1.4 Interpretation of scope

Steganography is data hiding, hence methods and tools for retrieval and analysis
of steganography are studied in this master thesis. Security credentials are then
comprehended as passwords and keys used with steganography software.

Identification of data is the discovery of hidden data, i.e. the detection of
steganography. The thesis description also includes “decryption of data”. The
related action in steganography is data extraction, i.e. to obtain the embedded
message. Detection of steganography and message extraction is targeted in this
master thesis, with the objective of automating evidence analysis with focus on
steganography.

Digital forensics is well documented, in contrast to the digital forensic aspects
of steganography. This thesis is not a review of digital forensics, but is limited
to target the particular effects steganography has on digital forensics.

6 CHAPTER 1. INTRODUCTION

1.5 Document organization

The organization of this document is as follows. There is an introduction to the
concept of digital forensics in Chapter 2. A methodology is presented, which
later is applied to example scenarios. Some tools aiding the investigation of
digital evidence is also presented.

Subsequent, in Chapter 3, the reader is introduced to steganography. The ter-
minology used when describing steganography algorithms is presented, followed
with a classification of information hiding techniques. A formal method for mod-
eling steganography is treated, together with different methods for steganogra-
phy. After the introduction to steganography, different steganography tools are
studied by the author in Chapter 4.

Steganalysis is then introduced (Chapter 5). It contains a scenario, called “The
Prisoner’s Problem”, describing the context of steganalysis and presents differ-
ent methods for steganalysis. This is followed by a study by the author of tools
for steganalysis (Chapter 6).

Digital forensics and steganography are brought together in Chapter 7. New
and old forensic methods to defeat steganography are proposed by the author,
including steganalysis, identification of steganography software and security cre-
dentials.

Then digital forensic scenarios are presented in Chapter 8. The forensic methods
described earlier are used, treating cases dealing with steganography. Tools
presented in the thesis are used in the scenarios.

Results from the cases and studies of tools are summarized and discussed in
Chapter 9, with focus on the forensic aspects of steganography and steganalysis.

The conclusion is found in Chapter 10, with some outlines for future work on
the subject.

Appendix A provides a database of hash signatures used to identify steganog-
raphy tools treated in this master thesis.

Chapter 2

Digital Forensics

This chapter introduces the area of digital forensics. First, a definition of the
term digital forensics is presented, followed by a section describing digital foren-
sics in the context of general forensics. A methodology for digital forensics is
then presented, which is used with the digital forensic cases in Chapter 8. Fi-
nally digital forensic software is treated.

2.1 Forensic Science

Forensic science, or just forensics, is defined in [web1] to be: “the application of
science to law. Forensic science uses highly developed technologies to uncover
scientific evidence in a variety of fields”. The history of using scientific methods
to identify and prosecute criminals is old. It dates back to the 12th century,
when King Richard I established the “Office of the Coroner” [web1]. This led to
the application of medical science to law. Forensic science covers a wide range
of scientific methods. Well-known techniques include fingerprints and DNA
analysis. These methods are results from scientific work, adapted to the court
of law. In the same way as fingerprints met skepticism on their uniqueness and
usability in court of law, investigation methods from the digital world suffer the
same struggle to become accepted as evidence in the court of law.

Information is stored and processed using computers, some of the information
only existing in the virtual world. This information is often important, and
where there is something of value, there is criminality. The computer can be
the tool aiding the criminal or the sole scene where the illegal act takes place.

In the same way as humans leave marks, like fingerprints and DNA-samples in
the real world, actions leave traces on the computer. Digital forensics is about
investigating crimes with the possibility of existing digital evidence. Examples
of this are log files on a compromised (hacked) web server or the confiscated
hard disk from a suspected child pornography possessor.

Analogous to burglars using gloves to prevent leaving fingerprints on the crime
scene, criminals use various methods and tools to prevent detection. Data and

7

8 CHAPTER 2. DIGITAL FORENSICS

communication can be encrypted or (attempted) deleted; persons can operate
behind anonymous services or, as in this master thesis, communication can be
covert.

The forensic aspect of steganography is twofold, hidden data storage and hidden
communication. Data, say child pornography, can be hidden inside innocent
looking images or from surveillance of communication between criminals and
their unknown associates. With the proper knowledge and tools, the investigator
can try to break the steganography algorithms used, i.e. detect the presence of
hidden data.

2.2 Digital Forensic

A definition of digital forensic science often referred to in the literature is the
following [33]:

the use of scientifically derived and proven methods toward the
preservation, collection, validation, identification, analysis, interpre-
tation, documentation, and presentation of digital evidence derived
from digital sources for the purpose of facilitation or furthering the
reconstruction of events found to be criminal, or helping to anticipate
unauthorized actions shown to be disruptive to planned operations.

There exist other definitions of digital forensics, and other related expressions.
An overview of different classifications of digital forensic related terms are pre-
sented in [14]. In this master thesis, digital forensics is used for its comprising of
the terms computer, internet and network forensics. Digital crime is preferred
for the same reason, comprising computer, cyber-, electronic crime etc. This
follows the convention from [14].

The process of dealing with digital crime has to follow principles and methodol-
ogy allowing evidence to be accepted in court. Section 2.3 presents the method
used in this master thesis. Digital forensics encounters different technologies and
fields from digital science, like disk drives, cell phones etc., various low-level file
systems and network traffic, and a range of different software. All these areas
call for special knowledge, and expert witnesses can be required to testify about
the results.

2.3 Forensic methodology

A digital forensics methodology is wanted. Avoiding ad hoc approaches will add
effectiveness and integrity to the results from forensic analysis. Truthfulness of
the resulting evidence is vital when presented in court.

RFC 3227 [web5] presents “guidelines on the collection and archiving of evi-
dence”. This is only a small part of the total digital forensics process. The
acquired data are typically raw format and difficult to comprehend, called the
Complexity Problem [7]. To cope with this, layers of (data-) abstraction are

2.3. FORENSIC METHODOLOGY 9

used. Similar abstractions can be done regarding tools, strategies and incidents,
leading to a general methodology for digital forensics.

There exist different efforts to define methodologies for digital forensics. A
simple model, presented by [27], called the three As: Acquisition, Authentication
and Analysis. A more complement model of the forensic process is wanted. The
Cyber Tools On-Line Search for Evidence (CTOSE) project aims to develop
such a methodology [9]. The First digital forensic reseach workshop (DRFWS)
[33] created a fundamental process model, recommending further research. [44]
analyses four models and present their own, trying to address shortcomings
of previous models. A formal model for analyzing and constructing forensic
procedures is presented in [28].

Setting a side the slightly different terminology and phases in the methodologies
from the literature (some listed above), consensus on a common set is within
reach. Lacking this universal agreement, a choice has to be made. This master
thesis has found the methodology from [6] to best suit its needs, described next.

2.3.1 An integrated digital investigation process

[6] defines a digital investigation methodology with close connections to the
physical investigation. It reuses existing theory from physical crime investiga-
tions, and is not depending on specific products and procedures.

2.3.1.1 Digital crime scene

An important concept introduced is the digital crime scene. An example from [6]
illustrates the concept. A physical crime scene might consist of traces of blood
or fingerprints. These evidences are processed to show identity information. A
computer is also physical evidence, which can be processed to yield valuable
digital evidence. The computer is treated as a secondary crime scene: “the
computer is a door that leads the investigators to a new room”.

2.3.1.2 Process organisation

The process model is divided into 17 phases, spread over five groups, as shown
in Figure 2.1 and described below. All phases are not explained in detail, hence
the reader is referenced to [6] for more details.

The following descriptions of the different groups of phases are based on [6],
with some additional pointers:

Readiness phases Deals with preparations to ensure functional operations
and infrastructure prior to incidents. For digital forensic, this includes
practicing with different tools, certifications and staying up to speed with
changes in cyberspace criminality, like possible increased usage of steganog-
raphy.

Deployment phases Provides mechanisms to detected and conform incidents,
including authorization like search warrants.

10 CHAPTER 2. DIGITAL FORENSICS

Figure 2.1: The five groups of the investigation process, with their phases.
Adapted from [6].

Physical crime scene investigation phases In this phase physical evidence
are collected and analyzed.

Digital crime scene investigation phases Closely linked with the physical
crime scene phase, these phases treat the physical computer as a crime
scene and searches it for evidence. The results are given back to the
physical crime scene investigation phases. as shown in Figure 2.2. This
group is treated more in Section 2.3.1.3.

Review phase Evaluation of the investigation to identify areas of improve-
ments. This can result in the need for more training or tool improvement
to better deal with the evolving criminal activities.

2.3.1.3 Digital crime scene investigation phases

There are 6 phases of the digital crime scene investigation grouping, as shown
in Figure 2.2. They closely follows the steps from the physical one. Each of
them are described below1.

The different phases of the digital scene are:

Preservation of digital scene Involves securing and preserving the digital
scene, including volatile data if possible. Tools are used to create identical
images of data for further investigation later.

Survey for digital evidence Finding the obvious pieces of evidence. This is
based in the information from the Deployment phase, i.e. the nature of
the case. For instance, if the case is child pornography, images would be
collected and illicit ones used as evidence.

Document evidence and scene Documenting the evidence from the previ-
ous phase, according to the abstraction layer [7] of the evidence. Example
of abstraction layer is when viewing the file raw, shows ones and zeros.
With the ASCII layer of abstraction, the numerical values are mapped to
characters. If the file is a HTML document, the HTML layer of abstrac-
tion treats the evidence as viewed in a web browser [7]. In the case of
information hiding in HTML comments, the HTML layer of abstraction
misses this. Providing cryptographic hash values to prove integrity, where
MD5 and/or SHA-1 is normally used.

1All explanations are adapted from [6], again with additional pointers.

2.3. FORENSIC METHODOLOGY 11

Figure 2.2: Digital crime scene investigation phases, also showing the connec-
tions to the Physical crime scene investigation phases. Adapted from [6].

Search for digital evidence A more thorough analysis of the digital scene.
The results from the survey phase shows which additional analysis to
focus on. E.g if the pornographic images suspected, but not found, during
the survey, searches after steganography software, hash values or hidden
data. More on this in the chapters on steganography (Chapter 3) and
steganalysis (Chapter 5) and in Chapter 7, proposing forensic methods to
defeat steganography.

Digital crime scene reconstruction Putting the pieces together, testing and
rejecting/accepting theories. A good reconstruction might be visualized
and used in the presentation of the digital crime scene theory [54].

Presentation of dig scene theory Presenting the digital evidence found, feed-
ing the results back to the physical crime scene investigation.

2.3.2 Chain of Custody and Integrity documentation

Documentation is essential to the investigation. To quote [27]:

The key to any investigation, particularly a computer crime investi-
gation, is documentation.

For evidence to be reliable in court, integrity has to be preserved. Safe storage
and tamper protection is needed, so is also the documenting of handling, i.e. who
has accessed the evidence while it was in custody. Chain of custody prevents
accusation in court that the evidence has been tempered with.

Evidence need to be identified and labeled as soon as it is collected. All actions
performed by the investigator should be documented, including the reasons for
doing so. In digital forensics, this means logging all actions and integrity checks.

12 CHAPTER 2. DIGITAL FORENSICS

A hash value comparison of the original evidence and the working copy, can yield
the copy to be identical to the original.

2.4 Digital forensic tools

There exists a variety of tools that can be used during a digital investigation,
some are specialized toward forensics. The different phases from the digital
forensic methodology present in Section 2.3, need different hardware and soft-
ware tools providing the investigator means to collect and analyse.

2.4.1 Acquisition tools

Tools that can help in viewing the digital scene and collecting possible digi-
tal evidence are needed. They range from expensive commercial applications
targeting digital forensics, to free, common available programs.

EnCase [web44] from Guidance Software is a Windows-based comprehensive
and complete forensic application2. A trial version of Encase Version 4 was
obtained for this master thesis. The trail version is restricted to the included
evidence file (i.e. disk image), so there is a limited usability when specializing
on steganography. It has means to collect identical disk images, but following
the tradition from the academic society of using open-source and its limited
dataset for testing, EnCase is not used.

dd is a standard tool following *-nix distributions. It can access block devices
directly, allowing the creating of byte-exact copies of entire disk driver or parti-
tions. There exist an extended version of dd called dcfldd [web18], which allows
taking the hash value while copying data and a convenient progress bar3.

Other tools creating bitwise identical copies can be used for the acquisition of
data. In some cases, like RAM on locked live systems and cell phones, special
hardware is required to collect data.

2.4.2 Documenting evidence

In digital forensics, hash functions are used to document evidence. The au-
thenticity of evidence presented to the court is critical, and it is necessary to
trust the hash value to uniquely identify digital evidence [53]. Currently avail-
able forensic software like Encase and The Sleuth Kit (see below) are using MD5
[web41] or SHA1 [web12]. National Software Reference Library (NSRL) [web31]
distributes its signatures as MD5 and SHA1. Tools creating these signatures
are available on both *-nix and Windows. md5deep4 is a cross-platform set of
programs to compute MD5, SHA-1 and other hash values. md5deep allows for
recursive operation, in contrast to the original MD5sum and SHA1sum tools.

2See www.encase.com for more information on EnCase.
3Transferring all data from a disk drive can take several hours, as will be seen in Chapter

8, where the dd tool is used.
4md5deep.sourceforge.net/

www.encase.com
http://md5deep.sourceforge.net/

2.4. DIGITAL FORENSIC TOOLS 13

The signatures of steganography software found in Appendix A are created with
a small Java program5, which creates output as both text files with an identical
syntax as the md5sum, sha1sum and md5deep tools, and tables to be used with
LATEX.

2.4.2.1 Notes on MD5 and Sha1-collision

There is discovered a collision weakness with the MD5 algorithm [53, 56] and
with SHA1 [57]. From a forensic viewpoint, weak collision resistance is impor-
tant. With a message x with hash signature H(x), weak collision resistance
states it is computationally infeasible to find a message y, y 6= x and hash sig-
nature H(y), with the property H(y) = H(x) [52]. I.e. to find a second message
with the same signature as the first message. Strong collision resistance states
it is computationally infeasible to find any x and y with H(y) = H(x) [52]. If
H(y) = H(x) occurs, it is called a collision. The attack on MD5 and SHA1
attacks the strong collision resistance of the algorithms.

The consequences of the detected collisions are different for cryptographers and
digital forensics. It is still computationally infeasible to modify the contents of a
message, such that the new message matches a pre-determined hash value, colli-
sions in the National Software Reference Library (NSRL) data set are not likely
and small changes to the evidence will change the hash value [53]. NSRL have
published a note regarding SHA1-collisions [web30] and found it not necessary
to change their hash algorithms.

Having both MD5 and SHA1 signatures gives additional security. The two
signatures are linearly independent, so when used together they give a (128
[MD5] + 160 [SHA1] =) 288 bit signature. It is unlikely for x and y to have both
HMD5(x) = HMD5(y) and HSHA1(x) = HSHA1(y). Also taking advantages of
compatibility6, MD5 and SHA1 are the algorithms used in this master thesis.

2.4.3 Analysis tools

There exist various digital forensics tools aiding the investigator. Some, like
EnCase [web44], are quite expensive and others, like F.I.R.E (Forensic and
Incident Response Environment) [web43], are freely available.

The Coroner’s Toolkit (TCT) [web13] is primarily assisting the examination of
Unix systems. The Sleuth Kit (TSK) is a collection of command line tools based
on TCT. Autopsy is a graphical interface to the command line tools in TSK.
TSK runs under Linux, but also supports investigations of FAT32 and NTFS
file systems7.

F.I.R.E is a Linux distribution bootable cd containing useful forensic tools, like
Autopsy and The Sleuth Kit [web9]. It also ships with StegDetect for detection

5Available on the cd following this master thesis, md5Sha1.(java|class)
6Datakrimavdelingen at Nye Kripos uses MD5, NSRL [web31] uses MD5 and SHA1 for

their database of software signatures and the forensic tool used in this master thesis, Autopsy,
uses MD5.

7See www.fish.com/tct/ for more information on The Coroner’s Toolkit. Autopsy and The
Sleuth Kit are found at www.sleuthkit.org/.

http://www.fish.com/tct/
http://www.sleuthkit.org/

14 CHAPTER 2. DIGITAL FORENSICS

of steganographic images. More on StegDetect in Section 6.3. F.I.R.E is freely
available, and the containing tools are mostly GNU General Public License
(GPL). More on F.I.R.E later, as it will be used in the forensic case in Chapter
8.

A more comprehensive list of forensic tools and toolkits can be found at
www.forensics.nl/

2.4.4 Automatic identification of known software and files

The digital crime scene today normally exist of gigabytes of data. A frequently
used method to reduce the amount is to automatically remove known files,
e.g. remove static operation system files. It can also be useful to identify in-
teresting files, e.g. steganography software. This is done by comparing hash
signatures of encountered files with databases of known signatures. The Na-
tional Institute of Standards and Technology (NIST) maintains a list of digital
signatures of software applications called the “National Software Reference Li-
brary” (NSRL) [web31]. This list also contains steganography software. There
exists a “Steganography Application Fingerprint Database” (SAFDB) [web3]8,
claiming to contain signatures for 230 data-hiding applications.

2.4.5 Tool summary

Table 2.1 gives an overview of the tool presented in this chapter.

Name Description Reference
Encase Complete forensic software [web44]
dd Acquisition Unix distro
dcfldd Acquisition [web18]
The Coroner’s Toolkit Forensic toolkit [web13]
Autopsy / The Sleuth Kit Forensic toolkit [web9]
F.I.R.E Forensic distro [web43]
md5sum Documenting Unix disto
sha1sum Documenting Unix distro
National Software Signature database [web31]
Reference Library
Steganography Application Signature database [web3]
Fingerprint Database

Table 2.1: Digital forensic tools

8This list is [web3]:“. . . free to qualifying US law enforcement, military, government, and
intelligence agencies”. After inquires to the company, it was not possible to obtain (a subset
of) this database.

http://www.forensics.nl/

Chapter 3

Steganography

This chapter gives an introduction to the concept of steganography. A presenta-
tion based on this chapter was presented at the “Forskningsmessige utfordringer
innen dataetterforskning og elektroniske spor” conference at Nye Kripos [18].
First, a short repetition of the introduction to steganography from Section 1.3 is
given. The terminology used in the literature is then presented, together with a
study connecting steganography with closely related concepts like cryptography
and digital watermarking.

Some thoughts and sources speculating on the usage of steganography is pre-
sented, without proving the existence of steganography in the wild. A clas-
sification of information hiding follows, succeeded by an attempt to formalize
steganography. A section on different methods for message embedding serves as
a transition to the following chapter treating steganography software.

3.1 Introduction to steganography

An analogy to steganography from the legendary book “The Codebreakers” by
David Kahn[22] is criminal behavior, where plotters attempt to do things in
a secret way and not an overt way1. An example of steganography on digital
media is given in Figure 3.1. The motive of the used image is of no importance,
it serves only as a carrier for the hidden message.

Shannon stated in his legendary paper from 1949 that [50]: “concealment sys-
tem2 are primarily a psychological problem”. The material presented in this
master thesis shows this is not the case. There exist known steganographic sys-
tems, which require sophisticated steganalysis methods to be detect. More in
this later, first the terminology of steganography will be addressed.

1David Kahn also presents the history of steganography specially at “Information Hiding,
the First international workshop” [23].

2 Shannon defined concealment system as : “methods in which the existence of the message
is concealed from the enemy” [50], in other words steganography.

15

16 CHAPTER 3. STEGANOGRAPHY

Figure 3.1: Example of steganography. A secret message is embedded into an
innocent looking image. The embedding, i.e. steganography algorithm, tries to
preserve the perceptive properties of the original image.

3.2 Terminology

In computer science, steganography is hiding secret data within nonsecret data,
e.g. a data file of some sort. Steganography is based on the fact that data
files can be slightly altered without losing its original functionality and human
senses are not sensitive enough to discover the changes in the altered files. This
can be stated with a simple equation (Equation 3.1 [35]). A measurement of
the human imperceptibility threshold for a media, say an image, is assumed.
Let t be the portion of the image that can be manipulated without causing
perceptible changes to the image, and p the part yielding perceptible changes if
manipulated. A possible carrier, C, for a hidden message can then be presented
as in Equation 3.1.

C = p + t (3.1)

It is assumed that both user and attacker of the steganography algorithm knows
t. Usage of steganography is not perceived by human senses, since there exists
a t´ where C´ = p + t́ with no perceptible differences between C and C .́

A conceptual overview of steganography is shown in Figure 3.2.

Figure 3.2: Conseptual view of steganography. Adapted from [40]

The hiding data is called the carrier [27] or cover message [web53]. Following the
naming convention from Figure 3.2, carrier-<type> will be used. <type> is a

3.2. TERMINOLOGY 17

general expression capturing the different media types used with steganography,
e.g. image, message, file, signal etc. Today multimedia files, like pictures or
sound, are most common [27], but other types of carrier files can and are being
used. This will be apparent when different steganography tools are examined
in Chapter 4.

The data that is to be kept a secret is called embedded-<type> and the process
of hiding is called embedding, i.e. running the steganography algorithm. The
embedding process results in the stego-<type> and the recovering of the embedded-
<type> is called extracting.

The carrier-<type> is of little or no importance, e.g. the picture or theme of
the image carries no information. But it will be apparent when steganalysis is
addressed in Chapter 5, that specific properties of the carrier-<type> is wanted
to prevent detection.

In the rest of this master thesis, message will be used instead of <type> for
readability.

3.2.1 Simple steganography

Simple or pure steganography [8] is based on keeping the method for embedding
secret. Figure 3.2 shows this.

Simple steganography is however breaking with Kerckhoffs’ principle, it is not
wise to only rely on the secrecy of the steganography algorithm. Early steganog-
raphy methods and software belong to this category. Consider the secrecy of
secret ink and microdots, when the adversary knows these methods. Later,
when different steganography software are treated in Chapter 4, software exam-
ples of simple steganography are treated. Section 3.7 mention general methods
for embedding.

3.2.2 Secret key steganography

Systems better than simple steganography assume that sender and receiver share
a secret key [3]. Secret key steganography algorithms us a key to seed a crypto-
graphic keystream generator, which is used to select locations where to embed
the secret message. I.e. which pixels or sound samples to alter. Figure 3.3 ex-
tends the conceptual view of simple steganography to secret key steganography.

A secret key steganography system is understood such that only the possessors
of the secret key can detect the presence of an embedded message. To all other,
the extracted message(-s) would be just noise. The key used is called stego-key,
to distinguish it from cryptography keys.

3.2.3 Public key steganography

With public key cryptography, only the private key can decode the message.
Public key steganography is then interpreted such that only the possessor of

18 CHAPTER 3. STEGANOGRAPHY

Figure 3.3: Conseptual view of secret key steganography. Adapted from [40]

the private key is able to detect the presence of an embedded message and
extract it.

Public key steganography (PKS) is possible, as stated by several [37, 3, 8, 2].
With PKS, the covert message is first encrypted using the public key of the
recipient. The embedding of the message, i.e. the steganography algorithm,
then alters the parity of bit blocks to encode a pseudorandom bit string, i.e.
the covert message. The adversary can not check a cover/stego-message by
detecting the presence of a pseudorandom bit string, since a suitable parity
check function will yield a pseudorandom looking bit string from all carriers
where a message can be embedded [2]. All recipients must then try to extract
a message from the received, and only the owner of the correct private key will
succeed.

One thought of PKS is that the public key is used for encryption, i.e. creating
the pseudorandom bit string. A steganography key is, as known, used to decide
which bits to possible alter in the carrier-message. Hence, it could be discussed
whether this key is a steganography or cryptography key. The literature is
not precise on this and normally just presents it as a public key steganography
scheme.

From the explanation of PKS above, parity blocks are altered to embed the
message. So when stated as “change the parity to odd when embedding ’1’ and
even when embedding ’0’ ”, it can be though of as deciding where to add ’1’-s
and the public/private key pair can be named a public/private steganography
key pair.

3.2.4 A formal model of steganography

To better be able to evaluate steganography methods, a more formal model
is researched for. In the same way a theory for secrecy systems was defined
by Shannon in “Communication Theory of Secrecy Systems” [50], information
theory and entropy could be used with steganography. Such a modeling is
attempted in [60, 32] and others. Another way of modeling steganograpy is by
complexity-theory [19], as used in cryptography. The concept will then be to

3.3. STEGANOGRAPHY AND CRYPTOGRAPHY 19

define secure steganography system so that a stego-message is computationally
impossible to differentiate from a cover-message. This work is not finished and
is not targeted by this master thesis.

3.3 Steganography and cryptography

Steganography is, as stated above, about hiding information. Steganography is
not to be mistaken for cryptography. They differ where adversaries in the case
of cryptography know the existence, but not the content, of a secret message.
Cryptography obscures the message to prevent disclosure. Examples of cryptog-
raphy might be “E0F7E3AC” and of steganography invisible inks. A possible
application of steganography is when trying to defeat censorship [22], where an
encrypted message most likely would not go through the censor.

However, steganography and cryptography can be used together, illustrated in
Figure 3.4.

Steganography + Cryptography

gives

Secret of Secret

communication information

Figure 3.4: Steganography and cryptography. Adapted from [12].

The combination of steganography and cryptography has two positive effects,
from the steganographer’s point of view. It leads to additional secrecy and the
cryptographic functions can distill entropy [web6], making steganalysis harder
(See Chapter 5 for more on steganalysis.).

From a forensic view, knowing that communication takes place can be essen-
tial. So for an investigator, presence of hidden communication is an important
discovery. Steganography can provide traffic flow confidentiality, i.e. concealing
source and destination, message length, or frequency of communication [web32].
When the presence of steganography is revealed, its purpose is defeated. Even
if the message content is not extracted or deciphered [55].

3.4 Digital watermarking

Digital watermarking is a technique which allows to add copyright notices or
other verification messages to digital audio, video, or image signals and docu-
ments [web48]. Watermarking is closely connected to steganography, but in the
same time somewhat different.

When dealing with steganography, the value or importance of the carrier is
insignificant. In some cases, the stego-message does not depend on a carrier at

20 CHAPTER 3. STEGANOGRAPHY

(a) The orignial “pepper.tif” (b) Watermarked “pep-
per.tif”

(c) The watermark

Figure 3.5: Watermarking an image using AiS Watermark Pictures Protector
[web46].

all and is created synthetically. This is a natural understanding of the concept
of steganography; the only purpose of the stego-message is to communicate
the embedded (hidden) message. The example from Figure 3.1 shows a stego-
message, where the overtly message is of no importance.

With watermarking, the carrier is the important signal and the embedded mes-
sage is just present to give some information about the carrier [20]. The water-
mark can be considered attributes to the cover. Figure 3.5 shows “pepper.tif”
before and after adding a visible watermark.

Hence, steganography and digital watermarking are different by definition. With
the latter, the carrier is the object being communicated, steganography com-
municates the hidden message.

The history of paper watermarking is old, with the oldest instance being from
1292 [35]. Typical applications today are visible logos on images and video and
hidden copyright notices.

Consider watermarking used to give proof of ownership of digital media; it is
obvious that it should be robust to attempt to remove it. Moreover, even if a
hidden watermark is identified, it should be hard to remove. Watermarking can
use more perceptible areas of a carrier, due to the reduced requirement to stay
hidden. In contrast to steganography, where the algorithm is defeated when the
hidden message is discovered.

Digital watermarks are, as stated above, closely related to steganography. The
Information Hiding workshops [1, 4, 36, 31, 39] also addresses watermarking.
Books also often cover both, e.g [48, 20, 35]. Digital watermarking is not specif-
ically treated in this master thesis. However, due to overlap between watermark-
ing and steganography concepts and techniques, it is nevertheless mentioned.

3.5 Usage of steganography

There exist sources speculating in the different usage of covert communications,
i.e. steganography. An article from Newsweek [web29] discussing terrorism and

3.5. USAGE OF STEGANOGRAPHY 21

11th September attacks, quotes Neil F. Johnson: “I’d expect it [steganogra-
phy] to have been used”. There exist more speculation on steganography usage.
[12] gives a nice presentation of steganography linked to terrorism in the media,
mostly speculations and no evidence. Some examples are [web16, web23, web29].
One article from USA Today speculates :”Hidden in the X-rated pictures on sev-
eral pornographic Web sites . . . lie the encrypted blueprints of the next terrorist
attack against the United States” [web23]. 3

But there exist some concrete examples of usage. During a blackmailing at-
tempt, the perpetrator tried to stay anonymous by using steganography4 [29].
NTB is reporting of an incident in 2003 [web33], where CIA supposedly canceled
30 flights due to suspected hidden messages5 of terror attacks in subtitles on
the Al Jazeera TV station. Whether or not this was actually terrorist commu-
nications, it still can be said that CIA is looking for steganography.

As a response to the news articles above, Niels Provos analyzed two million im-
ages from the Internet auction site eBay using Stegdetect6 and Stegbreak7, no
hidden messages were reported found [41]. Provos and Honeyman also searched
one million images from Usenet, with the same empty result. After the pub-
lication of [41], Provos detected an image [web39] from an ABC News report
covering steganography. But still no strong evidence or indicators of terrorists
using steganograhpy.

3.5.1 Steganography encountered in digital forensics

The very nature of steganography is to stay hidden, so it is hard to speculate
on it’s extent. There are some attempts to get information of steganography
encounters from investigators [web4, web24], without achieving publicly avail-
able statistics8. By ignoring steganography due to lack of statistics is “security
through denial”9 and is really not a good alternative.

It is natural to assume that steganography will or could be used, due to its
characteristic of concealment, which should appeal to criminals. Therefore, if
criminals are not already using steganography, the future will most likely see
adoption of steganography as a tool for cyberspace criminals.

3Whether it likely or not that al-Qaeda are hiding messages inside pornography, can of
course be discussed. As [web16] puts it: “[likelihood is] roughly the same as their likelihood
of hiding them in pig carcasses”. It is also interesting to note that Jack Kelly, who wrote
many of the articles linking steganography and terrorism and often referred to by others, was
caught and fired for making up his stories.

4The perpetrator was caught since he used is own PC and a anonymity service that revealed
his true identity. And since the police knew where the stego-message was, they could monitor
and examine all activity [29].

5Dates, flight numbers and geographical coordinates
6Stegdetect is treated in Section 6.3
7Stegbreak is treated in Section 6.4
8The results from [web4] was promised made available by the initiators, but after email

enquires the results are still not provided.
9The term “security through denial” is from [25]

22 CHAPTER 3. STEGANOGRAPHY

3.6 Classification of information hiding

The literature does not agree on a classification of different methods of informa-
tion hiding10. Without going into to much detail on differences among papers
and authors, below is an overview and explanations of the definitions used in this
master thesis. The definitions are based on material from frequently appearing
authors from the International information hiding workshops [1, 4, 36, 31, 39].

According to [37], information hiding is the top domain containing disciplines
of fingerprinting, covert and subliminal channels, cryptography etc. Figure 3.6
shows the different consepts. Next follows an explanation of the different terms
in the figure.

Information hiding

Covert channels
Steganography { Continues in F igure 3.7.
Anonymity
Copyright marking
Cryptography

Figure 3.6: Information hiding methods. Adapted from [40].

Covert channels are based on the (mis-)use of existing shared resources [40]. In
other words “to transfer information with a non-standard method” [45], where
the communication goes unnoticed (obscured). Example of covert channels can
be: to send information over error messages in operating system call interfaces
[40] or eavesdrop on electomagnetic interference from video display units [11].

Copyright marking differs from steganography on two aspects. First, steganog-
raphy needs to be kept secret, while the presence of copyright marking should
certainly be detected. Secondly, robust steganography can be a wanted prop-
erty, but for copyright marking, it is a necessity.

Anonymity is to avoid identification or traffic analysis by hiding locations or
addresses [40].

Steganography is the main concern for this master thesis. When studying the
various definitions above and in other literature, it can be understood that there
is not always a clear separation of the different methods for information hiding.

Steganography is defined earlier in Section 3.1. In Figure 3.7, steganography
from Figure 3.6 is further classified, later used to categorize specific tools and
methods for steganography.

The term subliminar channel is left out from Figure 3.6 and Figure 3.7. Sub-
liminar channel is defined in [47] as “the real message is hidden in the message
the observer is observing”. Subliminar channel and steganography are in [47]
defined in the same way, they only differ in the amount of information ex-
changed. Therefore, steganography and subliminal channels can and often are
used interchangeably. And subliminal channel is therefore left out from the
above mentioned figures.

10For an example, compare [45] with [37].

3.6. CLASSIFICATION OF INFORMATION HIDING 23

Stego

Technical stego

Linguistic stego

Semagrams

{
V isualSemagrams
TextSemagrams

Open Codes

 Jargon Code

Covered Chiphers

{
Null Cipher
Grille Cipher

Figure 3.7: Classification of steganography techniques. Adapted from [25].
Stego used as abbreviation for steganography to reduse space usage.

The differences between covert channels, subliminal channels and steganography
are not easy to identify. According to [web42], subliminal and covert channels
are the same ting. In the rest of this master thesis, the definitions mention
above will be used. The literature does not uniformly agree on the classification
and category definitions for different steganography techniques. Figure 3.7 is
frequently appearing and next follows an explanation of the terms in the figure.

Technical steganography uses scientific methods to hide a message [25]. The
<type> of the carrier is non-text and often a tool, steganographic or photo-
graphic, is used in the embedding and extracting of the secret message. Exam-
ples are microdots and invisible inks. The steganography software from Chapter
4 are most often technical steganography.

Linguistic steganography uses text as carrier message. And is decomposed fur-
ther into semagrams and open codes.

Semagrams is to hide the embedded message using symbols or objects, divided
into two:

Text Semagrams embeds information by graphically altering the text, i.e. visual
text conceals the real message [46]. Examples can be typefaces and spacing.

Visual semagrams use the appearance of physical objects. Examples are the
ordering in a deck of cards or the ordering of items on a website [25].

Open codes embeds messages in a legitimate carrier in a way that is not obvious
to the observer [25], there is a subliminal channel of information. Open codes
is further divided into jargon code and covered ciphers.

Jargon code uses a secret language or phrases expressed in it [web49]. An
example is warchalking 11 [25].

Covered ciphers embeds messages openly in the carrier message, so that anyone
that knows the procedure can extract the embedded message [25]. Covered
ciphers are divided into Grille cipher and Null cipher.

Grille cipher uses a cardboard with holes to extract the hidden message from
the stego-message. See Figure 3.8 for a simple example.

11Warchalking is the drawing of symbols in public places to advertise an open Wi-Fi wireless
network [web54]

24 CHAPTER 3. STEGANOGRAPHY

Figure 3.8: Simple example of a grille cipher.

In the grille cipher example in Figure 3.8 the stego-message is “AHLGOEZLLY-
OIQQLV” The grille shown in gray to the right of the figure yields the embedded
message: “HELLO”.

Null cipher hides the message according to some rule like “read every first
character of each word”. A popular example found repeating in steganographic
literature and actually sent by a German Spy in WWII [22] can be seen in Figure
3.9. Spam Mimic (See Section 4.4) generates text with the characteristics of
spam.

Apparently neutral’s protest is thoroughly discounted and
ignored. Isman hard hit. Blockade issue affects pretext
for embargo on by-products, ejecting suets and vegetable
oils.

Figure 3.9: Example of null cipher. Reading the second letter (in red) of each
word, yields the embedded message.

The null cipher example in Figure 3.9 yield the following embedded message
when reading the first characters from each word: “PERSHINGSAILSFROM-
NYJUNEI”. With some added spaces it becomes the real message: “PERSHING
SAILS FROM NY JUNE I”.

3.7 Different methods for embedding

There exist different steganography algorithms, each using different locations
in digital data to hide the secret message. Methods for embedding are treated
next. These methods are all examples of technical steganography. The different
methods and their explanations are collected from the literature of steganogra-
phy, listed in the Bibliography. However, other methods might exist which are
not documented in the literature. Users of such rely on algorithm secrecy for
security. From the forensic viewpoint, there could be homegrown, unpublished
steganography algorithms used by criminals. Some of the methods mentioned
here, have been successfully broken by steganalysis. These attacks on steganog-
raphy will be treated in Chapter 5.

3.7.1 Data appending

Data appending is a simple form for steganography. This method relies on
secrecy of the algorithm, since it simply embed the message by adding it to the

3.7. DIFFERENT METHODS FOR EMBEDDING 25

end of the carrier-file. This works for instance for some image file formats, like
JPEG and BMP, since the file header contains a field indicating the total amount
of data (BMP) or data after the “End of Image” marker (JPEG). The stego-file
is perceptually not different from the cover-file, since most image viewer ignores
the additional data.

3.7.2 Adding comments

Many file formats allows for optional comments. Various source codes allow
comments to aid the understanding of the code, which are ignored by the inter-
preters. E.g., HTML files have a comment tag, which is ignored by browsers.
These comments can easily be viewed in most browsers, by selecting an option
of viewing the HTML source code. Hence, such comment can serve as hiding
places for information.

3.7.3 File headers

Various data structures have header information, where some fields in the header
are not mandatory or their values are not significant. Such fields can be utilized
to communicate covertly. E.g., TCP/IP packets have unused space in the packet
headers.

3.7.4 Spatial domain

A spatial domain example is embedding data into the least significant bit (LSB)
plane of images. This is based on the assumption that the LSB of the image
can be thought of as random noise. The actual embedding takes several ap-
proaches: sequential changes, random walk using a pseudo-random generator,
parity functions etc.

3.7.5 Transform domain

In the transform domain, the most common embedding method is to utilize the
discrete cosine transform (DCT) used with JPEG compression. The embedding
is done by altering the DCT coefficients, but with different approaches: LSB
changes, different permutations of the coefficients etc. The steganography soft-
ware F5 [58] and Outguess (Section 4.6) uses embedding in transform domain.

3.7.6 Statistics-aware embedding

It has been noted by several ([17, 26, 59, 20] etc.), that embedding methods
alter the statistical properties of the carrier-message. For example with LSB
embedding in images, the frequency of colors change. This fact is used in ste-
ganalysis and is treated in Section 5.4.2.4. Statistics-aware embedding consider
this and use a model of the carrier-message to preserve these characteristics.

26 CHAPTER 3. STEGANOGRAPHY

Both spatial and transform domain embedding methods are known to preserve
statistic properties.

3.7.7 Pseudo-random embedding

Some steganography software falls into the category of secret key steganography.
These use a pseudo-random generator, as explained in Section 3.2.2, to select
locations for the actual embedding. Both examples of spatial and transform
domain methods can use pseudo-random embedding.

3.8 Classification of steganography software

There exist a lot of steganography software. [web3] has identified 230 tools for
information hiding, other sources claim there exist not quite that many, but
still enough to justify an attempt to classify them. Steganography software
can be divided according to their maturity and embedding sophistications, i.e.
classified into generations. The algorithms can also be classified according to
their strength, i.e. they are considered broken, weak, strong or secure. The
availability of the software is also interesting information.

3.8.1 Steganography software generations

The earliest steganography software were quite simple. Appending data after
the end of images is a simple method for steganography. So is also hiding data
in file headers and comments. Examples are adding data in comment fields
of JPEG images and between HTML comment tags. These methods do not
alter the perceptive properties of the carrier, but are easily detected. The next
generation software do the embedding in the least significant bits (LSB). Palette
images like GIF and BMP are carriers used for this spatial domain embedding.
After successful attacks against LSB methods, steganography algorithms started
using frequency domain embedding. Examples from the frequency domain are
embedding data with the Discrete cosines transform (DCT) used with JPEG
compression and the mp3 encoding of WAV-files.

The frequency domain methods are quite robust against perceptive inspection.
However, the embedding introduces statistical changes to the carrier, result-
ing in stego-messages with different statistical properties then cover-messages.
To prevent statistical attacks, the last generation of steganography algorithms
preserves the original statistical properties of the carrier.

There exists steganography software bothdoing spatial and frequency domain
embedding utilizing pseudo-random techniques.

3.8.2 Steganography software strength

Until there exist true secret or public key steganography, there will be a cat and
mouse game between developers of steganography algorithms and steganalysts.

3.8. CLASSIFICATION OF STEGANOGRAPHY SOFTWARE 27

Current steganography software are considered broken, if there exist known
tools that defeat them. Other software are using embedding methods for which
a detection tool can easily be created, say appending data to image files.

The complexity of the embedding algorithms are increasing with generation.
There is not a direct relation between steganographic strength, in the same un-
derstanding as cryptographic strength, and steganography software generation.
However, late generations have adapted from previous weaknesses and is con-
sidered stronger. Secret key and public key steganography are per definition
secure.

3.8.3 Steganography software availability

There exist commercial steganography software ranging from a few dollars to
about $50. Some are freeware and others open source.

3.8.4 The classification

The steganography software in Chapter 4 is classified according to the above
mentioned methods. Table 3.1 summaries the classification.

Generation Embedding methods Example carriers
Gen. 0 Appending, comments, HTML comments,

file headers, ... white spaces
Gen. 1 Spatial domain GIF, BMP and WAV

(LSB embedding)
Gen. 2 Spatial domain w/ BMP

pseudo-random emb.
Gen. 3 Frequency domain JPEG, MP3

(DCT embedding)
Gen. 4 Frequency domain JPEG

Statistics-aware &
pseudo-random emb

Table 3.1: Classification of steganography software.

28 CHAPTER 3. STEGANOGRAPHY

Chapter 4

Analysis of steganography
software

4.1 Introduction

This chapter discusses some of the steganography software available from the
web. It is important to note that the list presented here is not complete. The
book “Investigator’s guide to steganography” [26] gives a long list of steganogra-
phy software and companies working with steganograhpy (incl. watermarking).
Other listings of steganography software is found at [web21, web22]. The longest
list of such software are from Backbone Security [web3], the Steganography Ap-
plication Fingerprint Database (SAFDB). It claims to provide hash values from
230 data-hiding applications1.

Analysis of steganography software is also done by others. [web17] presents as
good overview of twelve steganography software. Eleven of them are additional
to the ones treated in this master thesis. The analysis presented here is my own.
Where information are obtained from elsewhere, this is clearly referenced.

Not all steganography software could possibly be assessed during this master
thesis. The selected tools are listed in Table 4.1. They represent examples of
free and licensed, various embedding methods, and from academic, professional
and layperson. Due to the varied selection, experiences from a wide range of
steganography software is presented.

1This list is “. . . free to qualifying US law enforcement, military, government, and intelli-
gence agencies”. After inquires to the company, it was not possible to obtain (a subset of)
this database.

29

30 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

Name Section Why selected
EzStego 4.2 Pallete, LSB embedding
Mandelsteg 4.3 No carrier
Spam Mimic 4.4 Linguistic steganography
Snow 4.5 White space appending
Outguess 4.6 Academic work
appendX 4.7 File appending
Invisible Secrets 4.8 Licenced

Table 4.1: Steganography software treated in this chapter.

When analyzing each tools, how to use it is first addressed. Then follows a
discussion of what the embedding does to the carrier-message, i.e. how a stego-
message might be detected. Message extraction is for simple steganography
software straight forward, just running the identified algorithm in reverse. With
secret steganography, the stego-key has to be identified. However, not all tools
using a stego-key are secure. Message extraction is addressed for all tools.

4.2 Description of EzStego

Name EzStego 2.0b4
Licensing Open source
Generation 1
Classification LSB embedding
Carrier type GIF image
URL www.stego.com/ezstego/ezstego2b.zip

The EzStego tool uses GIF images as carrier files. To understand how this is
done, some background on the GIF-file format is needed. Graphics Interchange
Format (GIF) is a bitmap image (raster image), widely used on the Internet.
The RBG color model is used2, where each color is represented with a combi-
nation of red, green, and blue color. Using 8 bits for each of the tree base colors
yields a total of 2563 = 16777217 possible colors. The GIF-file format used a
palette, which is the list of the RGB colors used in the GIF image. The palette is
limited to 256 different color values. The image itself is then a grid, where each
cell (pixel) points to the appropriate position of the palette. So when rendering
the picture, the color for each pixel is looked up in the palette.

EzStego adds the message into the least significant bit (LSB) of pixels and works
in the following steps:

1. Create a copy of the palette, rearranging it so colors close to each other
in the RBG color model are close in the palette.

2. Do as long as there are more bits in the message:
Find the index, i, of this pixel’s RGB color in the sorted palette
Replace LSB of i with bit from message, creating i∗

Find the RGB color i∗ points to in the sorted palette

2See en.wikipedia.org/wiki/RGB for more resources on RGB.

http://www.stego.com/ezstego/ezstego2b.zip
http://en.wikipedia.org/wiki/RGB

4.2. DESCRIPTION OF EZSTEGO 31

Find the index of this new RGB color in the original palette
Change the pixel to this index

Figure 4.1 shows graphically the embedding method used with EzStego To sum-
marize, the principle of EzStego is based on the similarity of colors in the palette.
For a pixel, choose color a if message bit is 0, and color b if message bit is 1.

Figure 4.1: Embedding method of EzStego [59]

To recover the hidden message from the carrier, just find the index of the pixel’s
color in the sorted palette. The least significant bit is the embedded bit. When
extracting the message from the carrier file, EzStego does not know the length
of the original message. So the result is padded with garbage.

4.2.1 Usage of EzStego

EzStego can be run from the command line or with the GUI that comes with
the tool. Figure 4.2 shows that there are no perceptible differences between
carrier- and stego-image.

When testing the software on a larger number of images on a Windows machine,
it is quite useful to write a small batch file3. Listing 4.1 shows a batch file which
will embed a file, README, into all GIF-images in the current folder. How to
extract a message is also shown. The extracted file contains the embedded
message padded with “noice” from the image, i.e. the unused space.

4.2.2 Detection of EzStego

A naive method to detect messages embedded with EzStego, is to run all files
through EzStego with the -unsteg option and check the result. Is the embedded

3A good primer on batch files is http://www.computerhope.com/batch.htm.

http://www.computerhope.com/batch.htm

32 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

(a) Cover-image (b) Stego-image

Figure 4.2: Demonstration of EzStego using Lena image.

0 @echo o f f
REM Creat ing Stego−images

2

FOR %%i IN (∗ . g i f) DO (
4 java EzStego −nogui −verbose −image %%i −input README −output

%%˜niStego . g i f
)

6 REM Extract ing a message
java EzStego −nogui −verbose −unsteg −image LenaStego . g i f −output

READMEsteg

Listing 4.1: Batch file used when running EzStego. All GIF-images in the folder
will be used as carrier, when embedding the README file. Stego-images are
named *Stego.gif.

message plain text it is readable, and if it is encrypted, header information can
indicate this. Both these cases will break EzStego.

If the encrypted message has been stripped for header information, the extracted
message will be a pseudo-random bit string These bits will not seam different
from a bit stream extracted from a carrier-image. A method to still detect stego-
messages created with EzStego is called Visual attack [59] and is described in
Section 5.4.2.3, followed with a statistical attack that also breaks EzStego in
Section 5.4.2.4.

There are no apparent changes to the carrier file. Figure 4.3 shows the LSB
from Figure 4.3, and no abnormalities can be seen. The palette stays the same
as the original, and no other strange artifacts are added to the stego-file when
embedding. However, as mentioned above, EzStego can still be successfully
attacked.

4.3. DESCRIPTION OF MANDELSTEG 33

(a) LSB of cover-image (b) LSB of tego-image

Figure 4.3: LSB of images from Figure 4.2.

4.2.3 Message extraction

To recover the hidden message from the stego-image, just find the index of the
pixel’s color in the sorted palette. The least significant bit is the embedded bit.
When extracting the message from the carrier file, EzStego does not know the
length of the original message. So the result is padded with garbage. Just for
clarity, EzStego is not using a steganography key and the message extraction is
straight forward. Hence the attack on ExStego is reduced to prove whether or
not the extracted message is just noise or a real message.

4.3 Description of Mandelsteg

Name Mandelsteg
Licensing Freeware
Generation 0
Classification Image creation (Fractal)
Carrier type GIF image
URL ftp.univie.ac.at/security/crypt/steganography/MandelSteg1.0.tar.gz

The Mandelsteg tool differs from the other steganography tools in that it does
not use an existing carrier. It creates stego-images based on Mandelbrot fractals.

4.3.1 Usage of Mandelsteg

Mandelsteg comes with a readme-file, describing usage and a short discussion
of the security of the tool.The belonging tool GIFExtract is used to extract the
message from the stego-image. It simply extracts the specified bit plane from
the stego-image.

ftp://ftp.univie.ac.at/security/crypt/steganography/MandelSteg1.0.tar.gz

34 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

Figure 4.4: Mandelbrot image containing the text from Listing 4.2

4.3.2 Detection of Mandelsteg

As mentioned above, the readme-file from mandelsteg describes some security
aspects.

All images from the mandelsteg tool have 256 palett entries in the color index
and all have 128 unique colors with two palette entries for each color [21]. Picture
4.5 shows the palette of the mandelsteg image in Figure 4.4.

Figure 4.5: Palette from the Mandelbrot fractal image in Figure 4.4. Observe
the repeating of the first 128 colors.

Mandelsteg is, from the forensic viewpoint, not a good alternative to hide mes-
sages. The use of a mandelbrot fractal image is too unusual. A visual inspection
of images on seized data which detects the presence of mandelbrot fractal im-
ages, would lead to the suspicion of steganography usage.

4.3.3 Message extration

To extract a message from Mandelsteg, a tool called GIFExtract is included.
It simply extracts the bit plane, which number is supplied as a command line
option.

4.4. DESCRIPTION OF SPAM MIMIC 35

For an adversary to extract the message, it is only a matter of running GIFEx-
tract. A brute-force attack is possible, due to the fact that the different com-
mand line options only provides 164 different possibilities. If the embedded
message is not encrypted or known encryption headers are identified, the pres-
ence of steganography is detected, hence the tool is defeated. When the message
is encrypted and stripped of headers, it would appear pseudo-random and can
not be differed from other messages (noise) extracted.

4.4 Description of Spam Mimic

Name Spam Mimic
Licensing Freeware
Generation 0
Classification Text generation (spam)
Carrier type Text (Email)
URL www.spammimic.com/

4.4.1 Usage of Spam Mimic

According to The Register [web26] , there is at last a positive usage of spam.
Spam Mimic is a steganography tool that uses spam as stego-media.

Spam Mimic works similar to Mandelsteg (Section 4.3), on the fact that they
do not need an existing carrier. The output from Spam Mimic is text with
the characteristics of looking like spam. Listing 4.2 shows an example spam
message generated with Spam Mimic.

The idea behind Spam Mimic is that there is sent a lot of spam. For an adversary
it would not raise suspicion that the subject receives spam, i.e. email gets a
(one-way) subliminal channel.

Dear Friend ; We know you are i n t e r e s t e d in r e c e i v i n g cutt ing−edge
2 announcement . I f you are not i n t e r e s t e d in our pub l i c a t i on s and

wish to be removed from our l i s t s , s imply do NOT respond and
4 i gno re t h i s mail ! This mail i s be ing sent in compliance with

Senate b i l l 1627 ; T i t l e 3 , Sec t i on 305 . This i s NOT
6 un s o l i c i t e d bulk mail . Why work for somebody else when you can

become r i c h with in 14 days . Have you ever not i ced s o c i e t y seems
8 to be moving f a s t e r and f a s t e r and most everyone has a ce l l phone !

Well , now i s your chance to c a p i t a l i z e on t h i s ! WE w i l l he lp YOU
10 dec rea se pe rce ived wai t ing time by 130\% plus s e l l more . You can

begin at ab so l u t e l y no co s t to you ! But don ’ t b e l i e v e us . Mr Jones
12 who r e s i d e s in Georgia t r i e d us and says ” I was s k e p t i c a l but i t

worked f o r me” . We are l i c e n s e d to operate in a l l s t a t e s ! For
14 God ’ s sake , order now ! Sign up a f r i e nd and you ’ l l get a d i scount

o f 90%. God Ble s s !

Listing 4.2: Output from Spam Mimic with input “Steganography”.

There is a web interface of Spam Mimic at the homepage of the authors.

4Could also be more than 16 possibilities, but they do not affect the possibility do detect
the embedded message

http://www.spammimic.com/

36 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

4.4.2 Detection of Spam Mimic

An apparent challenge with Spam Mimic is that it by nature is one way. Let
us say William is monitoring traffic coming to and from Alice. Inbound spam
should not raise suspicion, spam originating from Alice probably would.

Spam Mimic is freely available, so the algorithm for decoding and encoding has
to be considered known by William. A forensic investigation, monitoring traffic
to and from a suspect will detect traffic going to the Spam Mimic homepage,
and obviously alert the investigator and hence defeat the steganography.

4.4.3 Message extraction

Spam Mimic is simple steganography, hence running the algorithm in reverse,
using the freely available tool, will yield the embedded message.

4.5 Description of Snow

Name Snow
Licensing Open source
Generation 0
Classification White space appending
Carrier type Text
URL www.darkside.com.au/snow/index.html

Snow (Steganographic nature of Whitespace) is very simple steganography soft-
ware. It appends white spaces to lines in ASCII text files, where the embedded-
message is encoded as space and tabulator characters. These white spaces at
the end of lines do not change the appearance of the file in normal text view-
ers, hence the resulting stego-message is not visibly different from the original
carrier.

4.5.1 Usage of Snow

Listing 4.3 shows the contents of the bat-file used to run Snow. In this case,
encryption and compression is not used for simplicity. In a real-word example
at least encryption should be used for additional protection of message contents.

1 @echo o f f
REM Usage : snow [−C][−Q][−S][−p passwd][− l l i n e−l en] [− f f i l e | −m

message] [i n f i l e [o u t f i l e]]
3 REM Display the approximate amount o f space a v a i l a b l e for hidden message

snow −S − l 100 cover . t
5 REM Embedd msg . t i n to cover . t

snow − l 100 −f msg . t cover . t s t ego . t

Listing 4.3: Bat-file to run Snow

http://www.darkside.com.au/snow/index.html

4.5. DESCRIPTION OF SNOW 37

The −lline − len option gives the max line length in the output. If Snow is
not able to append spaces and tabular within this limit, a warning is given and
new lines are appended to the carrier-message. This will clearly alter the visual
characteristic of the stego-message and should be avoided. The output from
running the bat-file is showed in Listing 4.4.

F i l e has s to rage capac i ty o f between 281 and 386 b i t s
2 Approximately 41 bytes .

Message used approximately 31.42% of a v a i l a b l e space .

Listing 4.4: Output from running the bat-file from Listing 4.3

Figure 4.6 gives an example of the use of Snow. The carrier-text is taken from
the Spam Mimic tool presented in Section 4.4 and repeated here with visible
white spaces. When tabular and spaces are shown, the presence of embedded
data is clearly visible.

(a) The carrier message

(b) The stego message

Figure 4.6: Usage of the Snow tool. White spaces are shown to visualize the
added spaces.

The Snow tool gives a method to conceal the message; the users need to find
a way to distribute the stego-message without suspicion. The Snow web-page
encryption/decryption [web34], while misleadingly named, still gives an easy to
use interface and idea to use web pages as carrier-messages. A quick glance at
the resulting web page or source code will not break the tool. Although the
steganographic strength of Snow has to be considered weak, as the next section
will show.

38 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

4.5.2 Detection of Snow

The Snow tool is not very sophisticated and leaves clear indicators of its pres-
ence, but only if they are searched for. The trailing spaces and tabulators of
lines are not normal and is a give-away. It can be detected with visual inspec-
tion of all text files, but a more feasible solution is to create some tools that
can automate this process. And in this case, a good detection algorithm is
achievable.

In the same way as when the Snow tool tries to detect the start of embedded
data, the detection algorithm can also search for this trailing tabulator. And
with the presence of this and more trailing tabulators and spaces, there is a
strong probability of the presence of an embedded message.

4.5.3 Message extraction

When Snow has been detected, it is straight forward to extract the embedded
message. As stated earlier, this embedded message has to be assumed encrypted.
The Snow tool even ships with a possibility for encryption with a 64-bit block
cipher called ICE (developed by the same author as Snow). There is of course
also the possibility to use other encryption algorithms together with Snow.

4.6 Description of Outguess

Name Outguess 0.2
Licensing Open source
Generation 4
Classification DCT w/ statistics-aware embedding
Carrier type JPEG
URL www.outguess.org

Outguess was created by Niels Provus [web38]. It is meant as a framework
for information hiding, not depending on the data type of the carrier. But a
handler has to be created for each type, and currently Outguess supports PNM
and JPEG image formats. Outguess is resulted from a professional researcher
from the academic society.

4.6.1 Usage of Outguess

To use Outguess efficiently on several images, a small script is created. List-
ing 4.5 shows the script. It creates two stego-images for each cover-image, one
with statistic preservation option and one without. The naming convention is
to add “Steg” to the stego-image with preservation and “StegF” to the other.
The script is based on seek script following Outguess, originally used to locate
the best carrier-image in a directory for a given message.

Listing 4.6 shows an extract from the log when running the outguess script
from Listing 4.5.

http://www.outguess.org/

4.6. DESCRIPTION OF OUTGUESS 39

1 #!/ bin/sh
A very simple s c r i p t using OutGuess to f ind an image tha t y i e l d s

3 # the bes t embedding .
(C) 1999 Nie l s Provos

5 FILES=∗. jpg
#MESSAGE=/tmp/ fortune

7 MESSAGE=msg . txt
TMPNAME=”STEG. jpg ”

9 TMPNAME2=”STEG f . jpg ”
ARGS=”−d $MESSAGE −k te s t123 ”

11 ARGS2=”−d $MESSAGE −k te s t123 −F−”
OUTGUESS=” . . / outguess / outguess ”

13 BEST=0
WORST=0

15 NAME=”no name”

17 i f [! −f ”$MESSAGE”] ; then
echo ”The f i l e $MESSAGE does not e x i s t ”

19 exit
f i

21

for name in $FILES
23 do

echo −n ”$name ”
25 $OUTGUESS $ARGS $name $name$TMPNAME

$OUTGUESS $ARGS2 $name $name$TMPNAME2
27 done

29

Listing 4.5: Script running Outguess, called outguess script. Embedding a
message in all *.jpg files in the current directory.

Sc r i p t s t a r t ed on Sat Jun 11 17 : 33 : 01 2005
2 # l s

a r c t i c h a r e . jpg f14 . jpg log . s c r i p t peppers . jpg
4 bear . jpg l ena . jpg msg . txt s e e k s c r i p t

./ ou t gue s s s c r i p t
6 a r c t i c h a r e . jpg Reading a r c t i c h a r e . jpg

JPEG compress ion qua l i t y set to 75
8 Extract ing usab le b i t s : 24145 b i t s

Cor rec tab l e message s i z e : 11083 b i t s , 45.90%
10 Encoded ’msg . txt ’ : 1344 b i t s , 168 bytes

Finding best embedding . . .
12 0 : 666(48.4%) [49 . 6%] , b i a s 681 (1 . 02) , saved : 0 , t o t a l :

2.76%
3 : 674(49.0%) [50 . 1%] , b i a s 631 (0 . 94) , saved : 0 , t o t a l :

2.79%
14 6 : 657(47.7%) [48 . 9%] , b i a s 634 (0 . 96) , saved : 1 , t o t a l :

2.72%
7 : 637(46.3%) [47 . 4%] , b i a s 594 (0 . 93) , saved : 4 , t o t a l :

2.64%
16 35 : 655(47.6%) [48 . 7%] , b i a s 572 (0 . 87) , saved : 2 , t o t a l :

2.71%
92 : 632(45.9%) [47 . 0%] , b i a s 550 (0 . 87) , saved : 5 , t o t a l :

2.62%
18 92 , 1182 : Embedding data : 1344 in 24145

Bi t s embedded : 1376 , changed : 632(45.9%) [47 . 0%] , b i a s : 550 , to t : 24053 ,
sk ip : 22677

20 Fo i l i n g s t a t i s t i c s : c o r r e c t i o n s : 274 , f a i l e d : 0 , o f f s e t : 54 .351648 +−
165.267897

Total b i t s changed : 1182 (change 632 + b ia s 550)
22 Stor ing bitmap in to data . . .

Writing a r c t i c h a r e . jpgSTEG . jpg

Listing 4.6: Running outguess script from Listing 4.5

40 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

(a) Original image (cover-image) (b) Message embedded (stego-image)

(c) Zoom 1000% cover-image (d) Zoom 1000% stego-image

Figure 4.7: Before and after running Outguess on “pepper”.

The files listed in Listing 4.7 are the carrier-images and stego-images from the
outguess script

174 # l s
a r c t i c h a r e . jpg f14 . jpg log . s c r i p t

176 a r c t i c h a r e . jpgSTEG f . jpg f14 . jpgSTEG f . jpg msg . txt
a r c t i c h a r e . j pg s t eg . jpg f14 . j pg s t eg . jpg peppers . jpg

178 bear . jpg l ena . jpg peppers . jpgSTEG f . jpg
bear . jpgSTEG f . jpg lena . jpgSTEG f . jpg peppers . j pg s t eg . jpg

180 bear . j pg s t eg . jpg l ena . j pg s t eg . jpg s e e k s c r i p t

Listing 4.7: Files created with outguess script.

Figure 4.7 shows one of the images before (4.7(a)) and after (4.7(b)) running
Outguess. The original TIF image was converted to JPEG, with setting on
“best quality”. The original is 223 KB and the stego-image 40 KB. Creating
cover with similar size as the stego-image from Figure 4.7 and running Outguess
on this image, presents no strange artifacts. Cover- and stego-image are percep-
tually identical. When zoomed in 1000% (figures 4.7(c))and 4.7(d)) , differences
between the images can be seen. But it can not be told which is cover-image or
stego-image, by just looking at the images.

4.6. DESCRIPTION OF OUTGUESS 41

4.6.2 Detection of Outguess

As shown in Figure 4.7, Outguess can not be visibly detected. Outguess 0.13b
is detected by Stegdetect5. The detection of outguess 0.13b is done based on a
statistical attack, described in Section 5.4.2.4. OutGuess 0.2. defeats Stegdetect
by preserving the statistics from the carrier-image.

Outguess is a result from the academic community and is one of the more
sophisticated steganography software available. Outguess 0.2 has also been
attacked by the academic community and broken [16]. Section 5.4.2.4 has more
on this steganalysis method which defeats Outguess 0.2.

4.6.3 Message extraction

With knowledge of the correct key, it is no problem to extract a message em-
bedded with Outguess, as shown in Listing 4.8

. . / outguess/outguess −k ” tes t123 ” −r peppers . j p g s t e g . jpg out . t x t
182 Reading peppers . j pg s t eg . jpg

Extract ing usab le b i t s : 41477 b i t s
184 Steg r e t r i e v e : seed : 119 , l en : 168

cat out . t x t
186 Test message f o r embedding .

Test message f o r embedding .
188 Test message f o r embedding .

Test message f o r embedding .
190 Test message f o r embedding .

Test message f o r embedding .
192 # cat msg . t x t

Test message f o r embedding .
194 Test message f o r embedding .

Test message f o r embedding .
196 Test message f o r embedding .

Test message f o r embedding .
198 Test message f o r embedding .

Listing 4.8: Extracting message embedded with Outguess.

However, if the key is unknown, message extraction is more problematic. Listing
shows the two possible outcomes of a wrong password; a floating point exception
or noise.

There exist a tool called Stegbreak which performs a dictionary attack against
Outguess. This tool is treated in Section 6.4. It is clear that the floating point
exception can be used as a wrong password indicator. When the extraction
succeeds, the message need to be checked. With chipertext, this is done with
the detection of file headers in the extracted message. If the header is stripped
of, Stegbreak can not determine if the tried password is successful.

5Treated in Section 6.3

42 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

. . / outguess/outguess −k ” t e s t ” −r peppers . j p g s t e g . jpg out . t x t
2 Reading peppers . j pg s t eg . jpg

Extract ing usab le b i t s : 41477 b i t s
4 Steg r e t r i e v e : seed : 44872 , l en : 3569

Float ing po int except ion
6 # . . / outguess/outguess −k ” t ” −r peppers . j p g s t e g . jpg out . t x t

Reading peppers . j pg s t eg . jpg
8 Extract ing usab le b i t s : 41477 b i t s

Steg r e t r i e v e : seed : 3242 , l en : 2707
10 # xxd out . t x t | head

0000000: 977 f 816 f aa4f f 42c e649 2d95 50a8 d659 . . . o .O. , . I−.P . .Y
12 0000010: 6 cae e8b7 ae78 d2ef 5262 fa8e df85 011d l x . . Rb

0000020: b722 b1ed 4385 2292 f e42 6dc0 45b6 e35 f . ” . .C. ” . .Bm.E . .
14 0000030: bf29 5ea3 d399 61ad c106 c229 20d1 e82 f .) ˆ . . . a) . . /

0000040: 997 f 2a3c 9b28 6094 f143 52 ca 5367 7 f41 . . ∗ < . (‘ . .CR. Sg .A
16 0000050: f843 06aa a6fd 20a4 f1c1 e031 33 ee bcda .C 1 3 . . .

0000060: 4 e6c 221a 6c5b b07f ac6c 25da af4a bd00 Nl” . l [. . . l %.. J . .
18 0000070: e434 b00f 1 e06 3169 09de 5 a f1 4d10 2621 . 4 1 i . . Z .M.&!

0000080: b100 bb3e 0 fa8 28 ee 661b 4 e f 9 c14a 9 ee0 . . . > . . (. f .N . . J . .
20 0000090: 45 e1 1700 47 f2 585a 62a9 a f f c ac26 c720 E . . .G.XZb & .

ex i t
22

Sc r i p t done on Sat Jun 11 17 : 44 : 52 2005

Listing 4.9: Brute-force attempt against Outguess. This listing shows the
two possible outcomes with a wrong password. The contents of the extracted
message is shown using xxd and is just noise.

4.7 Description of appendX

Name appendX 0.4
Licensing Open source
Generation 0
Classification Data appending
Carrier type PNG, JPEG, GIF, ...
URL www.unet.univie.ac.at/ a9900470/appendX/

appendX is a simple steganography tool. The embedding method is simply
appending data to the end of the carrier-file.

4.7.1 Usage of appendX

As stated, appendx is quite simple. It is written in perl, and Listing 4.10 shows
the options and usage of the tool. As long as perl is available on the system,
there are no required installations. The message to be embedded is read from
stdin and is not compressed.

appendX supports PGP-header stripping. When a message is encrypted with
PGP, a header is added to the chipertext. This header clearly identifies the
hidden data as chipertext. When this header is stripped, the appended data
looks like noise. Listing 4.11 shows the continuation of running appendX.

The end of the embedded message and the stego-message are also shown in
Listing 4.11. Observe the additional spaces and string (3ad) representing 0x3ad,
the length of the embedded message.

http://www.unet.univie.ac.at/~a9900470/appendX/

4.7. DESCRIPTION OF APPENDX 43

1 $. /apX
appendX 0 .3

3 syntax apX [command] [opt ion] [i n f i l e] [o u t f i l e]
Commands are : he lp ex t r a c t r e s t o r e append

5 Options :
−s s t r i p s /adds the pgp header (can be combined with ex t r a c t or

append)
7 −Z sup r e s s e s compress ion /uncompression . (use t h i s to communicate

with a ve r s i on <=0.4
wr i t t en by mihi , i don ’ t care what you use i t f o r

9 ABSOLUTLY NO WARRANTIES OF WHAT THIS SKRIPT DOES OR DOESN’T
$. /apX append −Z lena . jpg l eneSteg . jpg < msg . txt

11 Your . . . p l e a s e :
Dear Friend ; We know you are i n t e r e s t e d in r e c e i v i n g

13 cutt ing−edge announcement . I f you are not i n t e r e s t e d
in our pub l i c a t i on s and wish to be removed from our

Listing 4.10: Usage of appendX

! Sign up a f r i e nd and you ’ l l get a d i scount o f 90%
46 . God Ble s s ! $

$ xxd msg . txt | t a i l
48 0000310: 7420 776 f 726b 6564 2066 6 f72 206d 6527 t worked f o r me ’

0000320: 2720 2e20 5765 2061 7265 206 c 6963 656 e ’ . We are l i c e n
50 0000330: 7365 6420 0a74 6 f20 6 f70 6572 6174 6520 sed . to operate

0000340: 696 e 2061 6 c6c 2073 7461 7465 7320 2120 in a l l s t a t e s !
52 0000350: 466 f 7220 476 f 6427 7320 7361 6b65 2c20 For God ’ s sake ,

0000360: 6 f72 6465 7220 6 e6 f 7720 0a21 2053 6967 order now . ! S ig
54 0000370: 6 e20 7570 2061 2066 7269 656 e 6420 616 e n up a f r i e nd an

0000380: 6420 796 f 7527 6 c6c 2067 6574 2061 2064 d you ’ l l get a d
56 0000390: 6973 636 f 756 e 7420 6 f66 2039 3025 200a i s count o f 90% .

00003 a0 : 2 e20 476 f 6420 426 c 6573 7320 21 . God Ble s s !
58 $ xxd lenaSteg . jpg | t a i l

0000320: 2720 2e20 5765 2061 7265 206 c 6963 656 e ’ . We are l i c e n
60 0000330: 7365 6420 0a74 6 f20 6 f70 6572 6174 6520 sed . to operate

0000340: 696 e 2061 6 c6c 2073 7461 7465 7320 2120 in a l l s t a t e s !
62 0000350: 466 f 7220 476 f 6427 7320 7361 6b65 2c20 For God ’ s sake ,

0000360: 6 f72 6465 7220 6 e6 f 7720 0a21 2053 6967 order now . ! S ig
64 0000370: 6 e20 7570 2061 2066 7269 656 e 6420 616 e n up a f r i e nd an

0000380: 6420 796 f 7527 6 c6c 2067 6574 2061 2064 d you ’ l l get a d
66 0000390: 6973 636 f 756 e 7420 6 f66 2039 3025 200a i s count o f 90% .

00003 a0 : 2 e20 476 f 6420 426 c 6573 7320 2120 2020 . God Ble s s !
68 00003b0 : 2020 2020 3361 64 3ad

$

Listing 4.11: Usage of appendX, continued from Listing 4.10. The output of
the message from appendX is skipped.

44 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

4.7.2 Detection of appendX

The hidden data is appended to the end of the carrier. For a JPEG data file6,
this would mean data after the End of Image (EOI) marker, (hex) ffd9. For
a BMP data file, it would mean more data than stated in the BMP header.
appendX is classified as weak, since it is relatively easy do detect the presence
of embedded data.

appendX also creates some sort of file signatures. After the embedded mes-
sage, the length of the embedded message is padded, from the left, until ten
characters and appended. This is not adding more needed knowledge to detect
steganography, but can be a help in identifying the software used.

4.7.3 Message extraction

Once appendX has been identified, it is straightforward to extract the additional
data at the end of the file. And the problem is reduced to decryption and
decompression, if used.

4.8 Description of Invisible Secrets

Name Invisible Secrets 4.0
Licensing Licensed
Generation 0 / 1
Classification LSB (BMP, WAV), Comment insertion (JPEG, PNG),

append space (HTML)
Carrier type BMP, WAV, JPEG, PNG, HTML
URL www.invisiblesecrets.com/

Invisible Secrets is available from NeoByte Solutions [web45]. They provide
a software security package with encryption, safe deletion (overwriting deleted
data) and steganography. The steganography part can hide information inside
JPEG, BMP, PNG, HTML and WAV- data files. The corresponding techniques
are LSB embedding, comment insertion and white space appending. The soft-
ware is easy to use, well documented and integrates into the windows shell and
start menu by default. Invisible Secrets has a single user license fee of 40$.
However, the embedding techniques available are not more sophisticated than
freely available steganography tools. But it is very user friendly.

4.8.1 Usage of Invisible Secrets

Figure 4.8(a) shows the results of embedding with Invisible Secret the result of
Spam Mimic in the web page wwww.ntnu.no. The embedded message is the
result from Spam Mimic (Listing 4.2). The resulting stego-message is similar
to the one from SNOW (See Figure 4.6).

6More info on the JPEG file format can be found at http://www.obrador.com/

essentialjpeg/headerinfo.htm

http://www.invisiblesecrets.com/
http://www.ntnu.no
http://www.obrador.com/essentialjpeg/headerinfo.htm
http://www.obrador.com/essentialjpeg/headerinfo.htm

4.8. DESCRIPTION OF INVISIBLE SECRETS 45

Figures 4.8(b), 4.8(c) and 4.8(d) displays the hidden message in the comment
field of a JPEG image.

4.8.2 Detection of Invisible Secrets

Invisible Secrets is not hard to detect. The methods used to embed a message
are well known. For white space appending, the same applies as for SNOW
(Section 4.5.2). LSB embedding is addressed with EzStego (Section 4.2.2). With
Invisible Secrets, the embedding can be compressed and encrypted. But adding
comments to the JPG image, in plaintext or encrypted, as in Figure 4.8, stands
out from cover messages. The same goes for PNG images.

An interesting feature of Invisible Secrets is the possibility to create bogus stego-
messages. Doing so could increase the difficulty to detect a specific hidden mes-
sage. But more stego-messages would increase the possibility of steganography
usage detection, hence the covert channel is defeated. This is especially cor-
rect when using simple steganography software, which are fragile to algorithm
exposure.

4.8.2.1 Earlier versions of Invisible Secrets

Earlier version of invisible Secrets had additional properties that could be used
for steganalysis. With LSB embedding, Invisible Secrets 2002 padded the un-
used areas with all 0’s or all 1’s [web17]. Clearly, this is not normal for images.

4.8.3 Message extraction

The extraction of a message embedded with Invisible Secret is possible, and
varies of course with the different methods used for embedding.

46 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

(a) HTML steganography with appending spaces

(b) Hiding “AAAA....” inside JPG comment without compression and en-
cryption

(c) Hiding “AAAA....” inside JPG comment with compression and encryp-
tion

(d) Viewing image metadata

Figure 4.8: Using Invisible Secrets to hide messages. Similar effects with HTML
carries as with SNOW in Figure 4.6. The embedded data can with the JPEG
images be seen with a hex viewer, as in figures 4.8(b) and 4.8(c), or using an
image viewer which can show image metadata (Figure 4.8(d)). Observe how the
encrypted data stand out.

4.9. DISCUSSION 47

4.9 Discussion

As this chapter has shown, various steganography tools exist. Different carrier-
types and embedding methods are used. For all tools, it is possible to detect
their usage. Each tool is examined with respect on how to detect it and this
is the foundation for the following chapter on steganalysis; how to separate
cover-message from stego-messages.

48 CHAPTER 4. ANALYSIS OF STEGANOGRAPHY SOFTWARE

Chapter 5

Steganalysis

5.1 Introduction

This chapter presents the concept of steganalysis. First, the term steganalysis
is described and the scenario The Prisoner’s Problem is presented. Attacks on
steganography are then linked with digital forensics, and various steganalysis
methods are presented. Extraction of hidden information is treated, followed
by a brief presentation of disabling hidden information.

5.2 Introduction to steganalysis

The process of detecting hidden messages is called steganalysis. The definition
of steganalysis is limited to the detection of an embedded message, and not
message extraction. The detection of a hidden message can identify the method
used for the embedding. When the tool or method has been identified, it might
be possible to extract the message.

Steganalysis is used to detect stego-messages among cover-messages. Other
forensic methods can be used to defeat steganography. For instance, detection
of steganography software on the suspect’s computer. Chapter 7 suggests tech-
niques aiding investigators in defeating steganography, where steganalysis is one
of these methods.

To describe steganalysis, it is useful to use a scenario called The Prisoner’s
Problem illustrating steganography with different parameters.

5.2.1 The Prisoner’s Problem

Steganography is often seen described using the The Prisoner’s Problem [51].
Using the well established names for the different participant, the problem is
displayed in Figure 5.1. There are two prisoners, Alice and Bob, trying to com-
municate with each other. The warden, named William, allows the prisoners to

49

50 CHAPTER 5. STEGANALYSIS

Figure 5.1: The Prisoners Problem. Figure adapted from [51]

communicate, but will intercept and give punishment if messages are discovered
to contain illegal information (e.g. escape plans). The prisoners are willing to
accept this risk and need to establish a way of communicating secretly in the
message exchange, i.e. establishing a “subliminal channel”.

To relate The Prisoner’s Problem to the terminology from Figure 3.2, the legal
communication that William, the warden, will allow to pass is carrier-messages.
If William can detect the presence of a stego-message, Alice and Bob will be in
trouble.

The scenario can be described with a passive or active warden. William can be
passive, reading and allowing messages in which he can not detect the presence of
a subliminal channel. An active William can alter messages at his will, where in
the strictest scenario he changes all messages, in an attempt to prevent unwanted
data exchange.

Hence attack on steganography can be separated into the two general cases:

Active wardens The adversary can alter the stego-message to wipe out the
hidden message. From the prisoner’s problem, the warden intercepts and
changes all messages.

Passive wardens The adversary can intercept the stego-message and analyse
its contents, i.e. the warden reads all messages.

The case with an active warden requires a robust steganography method, for
Alice and Bob to communicate using a subliminal channel. But it is important
to notice that the warden does not need to detect the presence of an embedded
message to be active.

5.3 Description of steganalysis

Steganalysis could be described as a method to prevent steganography. How-
ever, there are other attacks on steganography. For example, attacking the end
hosts of the steganography algorithm by searching for security credentials is not
steganalysis. Therefore, digital forensics encompasses more methods than solely
steganalysis to attack steganography.

5.4. ATTACKS ON STEGANOGRAPHY 51

The target for digital forensics is detection of steganography. The objective
of steganalysis is “detecting messages hidden using steganography” [web52].
In other words, steganalysis is about separating cover-messages from stego-
messages.

5.4 Attacks on steganography

Attacks and analysis of steganography might take different forms, called the
“three D’s” of defeating steganography [web11]: Detection, Decryption and De-
struction. [web11] explains decryption as used with cryptography and crypt-
analysis. A more correct form would be extraction, i.e. to separate the em-
bedded message from the stego-message. After the hidden (assumed) encrypted
message has been extracted, this chipertext an be attacked using cryptanalysis
techniques, or other forensic techniques, e.g. interrogate to obtain the password.

5.4.1 Steganalysis and digital forensics

Steganalysis is defined above to be the detection of hidden messages. Message
extraction can then follow after successful steganalysis. Hence, steganalysis can
be said to be an action taken during digital forensics. It is however natural
to also include other forensic activities aiding the detection and extraction of
hidden data. The following phases could then take place1:

Identification of digital media to be analyzed. This is based on input to
the digital crime scene from the Physical crime scene investigation phases.

Development of algorithms to detect stego-messages. An important part
of the Readiness phases is the creation of tools to detect stego-messages.
Such tools are discussed in Chapter 5.

Identification of embedding method. How messages can be embedded are
knowledge searched in the Readiness phases, and detected during the Dig-
ital crime scene investigation phases. E.g. spatial or frequency domain
embedding, simple or secret key steganography.

Determining the steganography software. Obtain databases of steganog-
raphy software signatures in the Readiness phases and search for them in
the digital crime scene, or other means to detect steganography software.

The following phases are taking place in the Digital crime scene investi-
gation phases.

Searching for steganography keys and message extraction. If the iden-
tified steganography software uses keys, these are needed to extract the
embedded data.

Cryptanalysis to obtain the secret message The embedded message is prob-
ably chipertext.

1Adapted from [17] to the digital forensic process in Section 2.3.

52 CHAPTER 5. STEGANALYSIS

5.4.2 Steganalysis: Detection of stego-messages

This section presents different methods for steganalysis. Most steganalysis al-
gorithms and tools targets specific steganography software. StegSpy treated in
Section 6.2 is an example. Such tools relay on specific signatures left in the
stego-message. The embedding of a message can give a specific statistical prop-
erty, which is another method used to detect stego-messages. Universal blind
detectors are starting to emerge, mostly as theoretical algorithms and not as
available tools, yet. Stegdetect v0.6 (Section 6.3) supports linear discriminant
analysis.

5.4.2.1 File signatures

Some steganography software add specific signatures to stego-messages. For
example, the string “CDN” is always present when using Hiderman [web40].
Such file signatures can be used to detect stego-messages.

5.4.2.2 File anomalies

Some simple steganography software embed messages by appending data to the
end of the carrier file. Hiderman, appendX (Section 4.7) and Invisible Secrets
(Section 4.8) are examples of such steganography software. When these files are
read by software, e.g. image viewers, the amount of data read depends on the
file length defined in the file header. Hence the appended data is not read and
the changes to the carrier are not perceptive.

When using Invisible Secrets 20022 and LSB embedding in BMP images, the
bits not used for embedding are all set to 0 or to 1. I.e. the unused LSBs have
an irregularity.

Such file anomalies can be detected when examining steganography software
and used for steganalysis.

5.4.2.3 Visual attacks

It as been assumed that LSB of luminance values are be random3. This is
however shown in [59] to be wrong and a summary is presented here.

The idea is to remove all parts of the image covering the message and use the
human eye to decide whether there is a potential message or still image content.
Using EzStego, it is recalled from Section 4.2 that the colors of each pixel, as
defined by the palette, determines the embedded message. The filter for the
visual attack, Figure 5.2, graphically presents the values of each pixel, i.e. the
stego-message.

2Invisible Secrets 2002 is an earlier version of Invisible Secrets examined in Section 4.8.
3Twelve steganography software assuming this are referenced by [59], among them EzStego

from Section 4.2

5.4. ATTACKS ON STEGANOGRAPHY 53

Figure 5.2: Visual attack filter: Assigning new colors to the palette. I.e. replac-
ing even index in the sorted palette with black and odd with white [59].

Figure 5.3 shows the results from applying the visual attack. Figure 5.3(b) is
the filtered LSB of the carrier-image in Figure 5.3(a). The image data is clearly
visible. An embedded message is clearly identified in Figure 5.3(b), as well as
the message length.

Visual attacks only succeeds when the cover-image has clearly structured con-
tents. For instance, image textures typically withstand this type of attack.
Figure 5.3(f) shows a filtered image, but it can not be told of this indicates an
embedded message or just image content.

5.4.2.4 Statistical attacks

Steganography algorithms tries to embed messages in areas of the carrier that
will not introduce perceptible changes, recall Eq. 3.1. However, there is dis-
covered statistical changes to the carrier. I.e. there are statistical differences
between C and C .́ These differences can be use to break steganography algo-
rithms.

For example, by creating a norm for images, i.e. possible carriers, stego-images
will derive from this norm. Some tests are independent of data format and
measure only the entropy of redundant data. Stego-images are expected to
have higher entropy [26].

There exist various methods for statistical steganalysis. Next follows a presen-
tation of various methods in the literature.

The spatial domain LSB embedding described in Section 3.7.4 is done by sev-
eral steganography software, e.g. EzStego. The assumption of the LSB being
random noise in not correct. Hence, the statistical properties of the stego- and
cover-image are different and can be detected, as proven by [59].

[15] attacks steganography systems that use JPEG images as carriers. The
JPEG algorithm leaves distinctive fingerprints in JPEG images, and the ste-
ganalysis method from [15] uses these as a “fragile watermarks”. Are these wa-
termarks destroyed, presence of steganography is assumed. The authors claim

54 CHAPTER 5. STEGANALYSIS

(a) Carrier-image (b) Stego-image with 50%
embedding.

(c) Carrier-image 2

(d) Filtered (a) (e) Filtered (b) (f) Filtered (c)

Figure 5.3: Visual attacks on EzStego. Figure 5.3(e) shows a successful visual
attack, and Figure 5.3(f) shows an inconclusive visual attack. All images from
[59].

to detect embedded changes as small as modifying LSB of one random pixel.
This method works well against spatial domain embedding, but not against
steganography algorithms using discrete cosine transform (DCT) coefficients.

In additional to the visual attack mentioned above, [59] presents the Chi-square
Attack. They introduce the Pair of Values (PoVs) concept. Consider EzStego
and the LSB embedding, this process yield pairs of values only differing in their
LSB. For a cover image, the color histogram is unevenly. After embedding of a
message, with equally distributed bits, in all LSB, the occurrence of each PoVs
becomes equal. When not all LSB of the carrier is used, a change in the statistics
is observed at the end of the message. The PoVs can be all pairs, which are
changed into each other when embedding the message.

The same statistical attack from [59] is done on DCT of JPEG images by [42].
This work has resulted in the Stegdetect tool, treated in Section 6.3.

–

5.4.3 Extracting hidden information

After the present of hidden information is known or suspected, methods trying
to extract the embedded message would be the next step. This might be using
the discovered steganography algorithm or tool. With simple steganography,

5.4. ATTACKS ON STEGANOGRAPHY 55

this is normally relatively easy. In the presence of a stego-key, this key is needed
to succeed with the extraction.

Even though not all users of steganography might encrypt their message, this
could be expected. Stripping headers from encrypted files results in an embed-
ded message indistinguishable from noise.

PGP Stealth4 is a tool which strips of all headers of a PGP encrypted message.
The complexity of brute force search is then much greater, since for each stego-
key, Ks, all encryption keys need to be tried. Only a successful cryptanalysis
of the embedded message will show if the currently tried Ks is the correct one,
or so it is assumed. However, [17] shows a technique that is O(|Ks|), hence
the stego-key search is independently of the cryptographic key size. But [17]
also provides countermeasures to the presented stego-key search, which could
be adopted by the steganography algorithm.

5.4.4 Disabling hidden information

Going back to Equation 3.1, defining a part t of the carrier C which can be
altered without perceptible changes to C. This can also be used by the ste-
ganalyst to prevent embedded messages, i.e. by altering t for all C. From the
Prisoner’s problem, William is here an active warden and changes all messages,
not needing to care whether the communication is a illegal stego-message or
innocent and legal cover-message.

There are several ways to disable hidden information. A drastic step is to
disallow all communication, e.g. intercept the communicated image. When this
is not possible or wanted, changes to the (assumed) stego-message can be made.
E.g. change file format, perform image processing like blur, crop etc. or add
noise to the LSB of GIF images.

The original embedded message will probably be lost by the changes. However,
it should be noted that there exist watermarks, which are quite robust and
can withstand multiple changes. There is a trade-off between robustness and
amount of hidden information. Adding error-correction to the message reduces
the amount of information it carries.

Disabling hidden information is normally not a goal for digital forensics and is
not treated in this master thesis.

4www.cypherspace.org/adam/stealth/

http://www.cypherspace.org/adam/stealth/

56 CHAPTER 5. STEGANALYSIS

Chapter 6

Analysis of steganalysis
software

6.1 Introduction

There exist some tools that are able to detect the presence of steganography,
called steganalysis software. Some are open source, others are quite expensive.
This thesis is limited to testing freely available tools, hence only treat licensed
alternatives based on public available descriptions. The analysis presented here
is the author’s own. Where information are obtained from elsewhere, this is
clearly referenced.

After the detection of hidden information, the embedded message can be tried
extracted. In some situations, this means running the identified steganography
software. Sometimes, a key is needed to extract the message. A brute-force or
dictionary attack can be performed on such systems. An example of software
aiding dictionary attacks against steganography software is also mentioned. Ta-
ble 6.1 gives an overview of the software for steganalysis tested in this chapter.

Name Section Licensing
StegSpy 6.2 Free
Stegdetect 6.3 Open source
Stegbreak 6.4 Open source
Stego Suite 6.5 Licensed
StegAnalyzer 6.6 Licensed

Table 6.1: Steganalysis software treated in this chapter.

Usage of each tool is first described. Then the tools are studied, mostly address-
ing their limitations.

57

58 CHAPTER 6. ANALYSIS OF STEGANALYSIS SOFTWARE

6.1.1 Disabling hidden information

Software for disabling hidden information is not treated. Often the embed-
ding method is not robust to even small changes to the stego-message. For
images, this could be lossy compression, resizing etc. Preventing the disabling
of hidden information is a goal for watermarking schemes, for instance Digital
Rights Management (drm) depend on this. In the case of the active warden
from Section 5.2, the warden William could apply methods to destroy potential
hidden information. From a forensic point of view, this is most likely not very
interesting and software for disabling hidden information is left out.

6.2 Description of StegSpy

Name StegSpy V2.1
Licensing Free
Software detected Hiderman, JPHideandSeek, Masker,

JPegX and Invisible Secrets
URL www.spy-hunter.com/stegspydownload.htm

StegSpy V2.1 is freely available steganalysis software developed by Michael T.
Raggo. It claims to detect Hiderman, JPHideandSeek, Masker, JPegX and
Invisible Secrets [web40]. The author as presented StegSpy at InfoSec 2004,
BlackHat 2004 and DefCon 2004.

6.2.1 Usage of StegSpy

The current version, v2.1, of StegSpy is written in Visual Basic. It has a graph-
ical interface, allowing the user to manually select a file to be examined. A
screen shot is shown in Figure 6.1(a). The picture in Figure 6.1(b) is from a
presentation of steganography and steganalysis by M. T. Raggo at BlackHat
2004.

StegSpy indicates in Figure 6.1(a) that there is information hidden with Hi-
dermann , starting at position 17856. The stego-file is BMP image data. The
BMP header contains a field indication the size of the file [web27]. Figure 6.2
shows top and bottom sections of the image in a hex viewer. Figure 6.2 clearly
indicates that there is appended data.

Also seen in Figure 6.2(b) is the string “CDN”. This string is always present
when using Hiderman [web40]. CDN is then a signature of Hidermann and
is used by StegSpy to detect the steganography software used for the message
embedding.

6.2.2 Examination of StegSpy

According to the author [web40], StegSpy is doing signature-based steganalysis.
More is not known of how StegSpy works, but it could be assumed that it follows
a similar approach as described in sections 5.4.2.2 and Sec:stega:FileSignatures,

http://www.spy-hunter.com/stegspydownload.htm

6.2. DESCRIPTION OF STEGSPY 59

(a) Screen shot of StegSpy v2.1 (b) Stego-image of Krusty the Clown
(KRUSTY3.bmp)

Figure 6.1: Using StegSpy. The tool is used to detect the presence of hidden
data in KRUSTY3.bmp, starting at offset 17856. The steganography software
is identified as Hiderman.

(a) Beginning of the header of BMP image file (KRUSTY3.bmp)

(b) End of the (KRUSTY3.bmp)

Figure 6.2: Viewing KRUSTY3.bmp in a Hex viewer. The header in 6.2(a)
indicates that the size of the file is 17782 (0x4576) bytes. However, there is data
past this offset, as seen in the bottom figure.

60 CHAPTER 6. ANALYSIS OF STEGANALYSIS SOFTWARE

detecting file anomalies and signatures. However, when changing the “CDN”-
signature to “000”, StegSpy fails to detect steganography in KRUSTY3.bmp.
So it seems StegSpy only relies on file signatures and ignores file anomalies for
detection. And after the detection of a known signature, perform some action
to locate the position of the embedded data, e.g. detecting end of image based
on header information.

The graphical user interface does not allow to such a selection of files for
steganography. Hence it is not very convenient for searching for steganogra-
phy among a large number of possible files.

Based on the observations above, the forensic utility value of StegSpy is low.
But the knowledge it contains, i.e. signatures, are quite useful and a possible
action could be to create a more forensic friendly tool using these signatures.

6.3 Description of Stegdetect

Name Stegdetect 0.6
Author Niels Provos
Licensing Open source
Software detected jsteg, jphide, invisible secrets, Outguess 0.13b,

F5 , appendX and camouflage.
URL www.outguess.org/detection.php

Stegdetect is open source steganalysis software developed by Niels Provos. It
can detect presence of a message embedded with Jsteg, jphide (unix and win-
dows), Invisible Secrets, Outguess 01.3b, F5 (header analysis), AppendX and
camouflage [web37].

6.3.1 Usage of Stegdetect

Listing 6.1 shows the output of running Stegdetect on a image, where a message
is embedding using Invisible Secrets. Stegdetect indicates the certainty of the
results with ∗-s, the more the better.

1 # ./ s tegde tec t −0.6/ s t e gd e t e c t img1 . jpg
img1 . jpg : i n v i s i b l e [7 771] (∗∗∗)

Listing 6.1: Running Stegdetect

6.3.2 Examination of Stegdetect

How Stegdetect works is presented in Section 5.4.2.4, with a more through
description of the statistical analysis by Provos found in [42]. Stegdetect is a
result from the academic community. Newer theoretical steganalysis algorithms

http://www.outguess.org/detection.php

6.4. DESCRIPTION OF STEGBREAK 61

have been suggested1, but there exist no publicly known steganalysis software
supporting these2.

Stegdetect 0.6 also supports linear discriminant analysis to detect any JPEG
based steganography system [web37]. Carrier-images and stego-images are used
as a training set. A linear decision function is automatically created based on
the test set and used to classify new images as stego-images or cover-images.
This functionality is not examined.

6.4 Description of Stegbreak

Name Stegbreak
Author Niels Provos
Licensing Open source
Software detected JSteg-Shell, JPHide and OutGuess 0.13b
URL www.outguess.org/detection.php

6.4.1 Usage of Stegbreak

Stegbreak is developed by the same author as Stegdetect, Niels Provos. It is
however not software to detect the presence of steganography, but for message
extraction. It tries dictionary attacks against JSteg-Shell, JPHide and OutGuess
0.13b [web37]. The success of Stegbreak is of course closely related to the quality
of the password and the dictionary. The rules to permute words in the dictionary
are also closed related to the success3.

6.4.2 Examination of Stegbreak

From a forensic point of view, the investigation can present clues of the password,
where permutations can be the password used. These clues, like name, birthday,
a pet’s name etc., can be added to the dictionary used by Stegbreak.

Stegbreak need a method to verify that the extracted bit string is an embedded
message and not just noise. This is done by identifying file headers in the
extracted bit string, as presented in Section 5.4.3.

1E.g. [13] detects Outguess 0.2 using higher-order statistical attacks
2Again, the performance of the licensed steganalysis software have not been examined
3Newer versions of Stegbreak does not contain rules for dictionary permutations and dic-

tionaries. Stegdetect 0.4 for Windows comes with some rules, that can be used.

http://www.outguess.org/detection.php

62 CHAPTER 6. ANALYSIS OF STEGANALYSIS SOFTWARE

6.5 Description of Stego Suite

Name Stego Suite
Author Wetstone Technologies
Licensing Licensed
Software detected Unknown
URL www.wetstonetech.com/

6.5.1 Usage of Stego Suite

Wetstone Technologies offers Stego Suite, consisting if the detection tools Stego
Watch and Stego Analyst and a password cracker, Stego Break. They also
offer training in using these tools, among others at the Black Hat USA 2005
conference.

How these tools perform steganalysis is not clear, also which steganography
tools it detects is not known.

6.5.2 Examination of Stego Watch

Without access to the tools, it is not possible to examine them. Other sources
discussing Stego Watch was not found, however, as stated above, these tools
will be presented at the Black Hat USA 2005 conference.

6.6 Description of StegAnlyzer

Name StegAnlyzer
Author Backbone Security
Licensing Licensed
Software detected Unknown
URL www.sarc-wv.com/products.aspx

6.6.1 Usage of StegAnalyzer

Backbone Security provides two version of StegAnalyzer. StegAnalyzer AS can
search file systems for traces of known steganography software. StegAnalyser
SS includes the functionality to detect known stego-files signatures.

6.6.2 Examination of StegAnalyzer

A copy of this software is not available, but still some thought can be made.
StegAnalyzer is quite expensive; it is sold at around $2000. However, its func-
tionality is available from other tools. Detection of file hash signatures is sup-
ported with free available tools (e.g. Sleuthkit /Autopsy), the same is detection

http://www.wetstonetech.com/
http://www.sarc-wv.com/products.aspx

6.7. DISCUSSION 63

of known stego-files signatures. So the real value of StegAnalyzer is in the data-
base with software- and stego-file signatures. The quality of this database is not
known.

6.7 Discussion

This chapter has treated four tools for steganalysis and one for dictionary-attack
against steganography. Two are licensed; hence, they were not available to the
author. The two free steganalysis tools, StegSpy and Stegdetect, have been
tested with varying results. StegSpy targets file signatures, i.e. it is looking
for known hex-values, while Stegdetect has a more sophisticated approach. A
limitation of StegSpy has been identified and an improved solution including
searching for file anomalies has been suggested.

64 CHAPTER 6. ANALYSIS OF STEGANALYSIS SOFTWARE

Chapter 7

Digital forensics and
steganography

The very nature of steganography is to stay hidden. There are some attempts to
get information of steganography encounters from investigators [web4, web24],
without achieving good publicly available statistics. By ignoring steganography
due to lack of statistics is “security through denial” and really not a good
alternative.

It is natural to assume that steganography will or could be used, due to its
characteristic of concealment, which should appeal to criminals. Therefore, if
criminals are not already using steganography, the future will most likely see
adoption of steganography as a tool for cyberspace criminals.

During a digital investigation, it is possible to encounter steganography, Hence,
investigators should prepare for it as a part of the Readiness phases (from
the forensic methodology from Section 2.3). To find something, you need to
know what to look for. By applying automatic routine procedures searching for
(hints of) steganography, otherwise undiscovered evidence might be collected
from various digital media.

This chapter addresses methods to defeat steganography. It is important to
note that this is not limited to pure steganalysis, other strategies, some already
well-known to the digital investigator, can also be applied.

7.1 Defeating steganography

The process to defeat a steganography algorithm, steganalysis, is similar to
cryptanalysis. It tries to defeat the algorithm by looking for weaknesses, these
attacks are defined in Section 7.1.2. Some approaches are to use statistical
properties to look for abnormalities in files, e.g. strange palettes in gif-images
or other known signatures in stego-messages.

However, the investigator has other tools than just steganalysis at his disposal.

65

66 CHAPTER 7. DIGITAL FORENSICS AND STEGANOGRAPHY

Cryptography algorithms are weak at the end host. Here security credentials are
stored and algorithms (software) executed. The same holds for steganography:
keys are exposed and possible carriers and software are present here. Items from
the physical scene can provide security credentials in the form of written down
passwords etc. Locating these artifacts can help defeat steganography.

Digital forensic investigators are, by definition, experts at finding information
from the digital crime scene. Well-known forensic methods are to search for keys
and passwords, known key words, recover deleted data etc. Discussion of these
methods including steganalysis and their use when attacking steganography
follows. It closely follows the phases introduced in Section 5.4.1. Below is an
overview of the methods.

List of methods to defeat steganography:

• Physical crime scene investigation

• Steganalysis

• Detection of steganography software

• Traces of steganography software

• Locating pairs of carrier/stego-files

• Key word search and activity monitoring

• Suspect’s computer knowledge

• Unlikely files

• Locating steganography keys

• Hidden storage locations

7.1.1 Physical crime scene investigation

The Physical crime scene investigation phases from the model of digital forensic
in Section 2.3 is the foundation for the digital crime scene. Not just providing the
digital media for further examinations, but the collection of notes and markings
can yield security credentials. The famous post-it sticker with the no-longer
secret passwords, can clearly healp defeat steganography.

It is also important to note that interrogation of the suspects can give away
passwords. The focus for this master thesis is on digital forensics, so this and
other techniques from the physical crime scene is not addressed. The following
methods concentrate on the digital crime scene.

7.1.2 Steganalysis

During an investigation, the usage of steganography can be suspected or it
could be routine work to look for it. Already having mentioned the importance
to prepare for steganography, steganalysis can be conducted during the Digital
crime scene investigation phases. After the Survey for digital evidence, hints of

7.1. DEFEATING STEGANOGRAPHY 67

steganography might be found or it could be suspected. Maybe the suspected
evidence was not found at all. Then steganalysis should be conducted in the
Search for digital evidence.

Section 5.4.2 presents different methods for steganalysis, they are

• File signatures

• File anomalies

• Visual attacks

• Statistical attacks

7.1.3 Detection of steganography software

An absolute indication of steganography is the discovery of steganography soft-
ware. It could be located on the suspect’s disk drive, or hidden away on some
memory stick or cd. To automatically search of known steganography software,
can be done by maintaining a database of cryptographic hash values for known
components of such software. Appendix A contains such a hash database for
the steganography software used in this thesis. There exists a “Steganography
Application Fingerprint Database” (SAFDB) [web3], claiming to contain signa-
tures for 230 data-hiding applications. The National Institute of Standards and
Technology (NIST) maintains a list of digital signatures of software applications
called the “National Software Reference Library” (NSRL) [web31]. This list also
contains steganography software.

7.1.4 Traces of steganography software

When steganography software is not found, traces of its use might still be dis-
covered. For example, the list of recently used files in winzip or winrar1 can
present evidence of recently extracting EzStego.zip, which is the steganography
software mentioned in Section 4.2. Similar traces can be found elsewhere.

7.1.5 Locating pairs of carrier/stego-files

As known, steganography software often creates stego-messages based on an
original carrier-message. Files with different hash values, but with the same
perceptional properties are potential carrier/stego file pairs. E.g. two images
looking similar, but with slightly different LSB-planes. Even if the carrier file
was deleted, it can in some cases be undeleted using forensic tools.

Characteristics of images containing child pornography are collected and used
for automatic detections. The algorithms calculating these distinctiveness’s are
probably more robust than just cryptographic hash values, hence small modifi-
cations will not render the images unrecognizable. Therefore, the modifications

1winzip and winrar are software to extract compressed files.

68 CHAPTER 7. DIGITAL FORENSICS AND STEGANOGRAPHY

from steganography software yielding two slightly different versions can be de-
tected automatically using the same algorithms. The same principle can be
applied to other media types used for steganography.

7.1.6 Key word search and activity monitoring

Similar to the database of hash signatures for steganography software, a dictio-
nary of key terms can be compiled and searches can be done to try to locate
these on the seized data. The search for key words is not something only done
with steganography, the contents of the dictionary decides the target.

The rate of false positives will depend on the words used, but good candidates
are software names like Outguess and words like carrier, cover, etc [web2]. To
create a part of the database of key words, strings2 could be used to extract
words from steganography software binaries.

Besides searching for specific key words, internet activity of the suspect can
provide some answers. History logs in the web browser might show visits to
steganography web sites. Therefore, the digital forensic team could keep a list
of such web sites.

7.1.7 Suspect’s computer knowledge

It might be tempting to use the believed computer knowledge of the suspects to
assume whether or not usage of steganography is likely. This is however a dan-
gerous thing to do, since most steganography software, as some demonstrated
in Chapter 4, are fairly easy to use. On a general basis, instead of assuming
knowledge too low for steganography, it is more tempting to state that the sus-
pect’s computer knowledge and resources are at such a level that steganography
has to be suspected.

The suspect’s computer knowledge might then again be used when speculating
whether homemade steganography tools or algorithms are being used. A sus-
pect with high computer skills, might make the investigators extra alert toward
hidden data. Unknown software encountered during the investigation should of
course be looked into to discover their functionality.

7.1.8 Unlikely files

Some steganography software uses or creates uncommon file types. The man-
delsteg tool (See Section 4.3) uses no existing carrier, but creates a mandelbrot
image based on the message to be embedded. The investigator should ask him-
self what use the suspect might have of such images. They clearly stand out
among vacation images. A similar example is inconsistencies between religion,
interests, etc. and file types. Consider the speculation of Al-Quida hiding in-
formation in pornographic images. Such images are against the Muslim religion
and findings of this kind have to be considered unlikely and suspicions.

2See man pages for more on strings or www.rt.com/man/strings.1.html

http://www.rt.com/man/strings.1.html

7.2. ANTI-FORENSICS 69

7.1.9 Locating steganography keys

Some steganography software uses steganography keys (stego-key) to seed a
pseudo-random number generator used when selecting locations for bit manip-
ulations. During the Physical crime scene investigation phases, handwritten
notes or markings would be collected. These could be passwords used by the
suspect, and should be checked.

Method of guessing bad passwords with dictionary attacks and other brute force
methods from cryptanalysis can be applied to steganalysis. Section 6.3 treats
Stegdetect which tries a dictionary attack against some steganography systems.
One problem encountered by the steganalyst (and Stegdetect), is when the
embedded encrypted message has been stripped of headers (see Section 5.4.3).
Then the extracted message is a random looking bit string, hence it is difficult
to asses whether it is valid chipertext to be treated further or just noise.

A method to brute force the stego-key independently of the cryptographic key
(crypto-key) is shown in [17]. However, the same article provides techniques to
prevent this method, making it possible to adapt the steganography algorithm.

Encryption of the message to be embedded is sometimes provided by the steganog-
raphy software. These keys used for encryption are more correctly called a
crypto-key, since the embedding of the message, done by the steganography al-
gorithm, does not depend on this key. How to handle an encrypted message,
cryptanalysis, is not treated in this master thesis.

7.1.10 Hidden storage locations

There exist steganographic file systems and otherwise hidden data partitions
and alternate data streams3. This should be looked for when examining the file
structure of the seized storage media [43].

7.2 Anti-Forensics

Not trying to provide means for illegal behavior, it is useful to be aware of
techniques applied when attempting to withstand digital forensic analysis. This
best practice for anti-forensic is not necessary unique to steganography. This
list is not attempting to be complete, just presenting some ideas.

7.2.1 Choice of passwords

The literature is full of ideas on which passwords are most secure. Weak pass-
words can be attacked in a brute-force matter, and there exist software support-
ing such attacks on steganography. As stated above, steganography is weak at
the end hosts and the location of the password(-s) is contribution to this. Using

3Alternate Data Streams or ’ADS’ are special data streams existing in NTFS data streams.
These ADS can store files that are invisible to the user [web47].

70 CHAPTER 7. DIGITAL FORENSICS AND STEGANOGRAPHY

good passwords, following points from the literature like no yellow post-it stick-
ers and pet’s name, and keeping it secret is necessary to withstand the simplest
investigation.

7.2.2 Remove the carrier-message

The carrier-message should be removed completely from the system, since the
comparison of cover-message with stego-message breaks steganography and also
could give away the embedded message.

7.2.3 Hide the existence of steganography software

A problem arises when the computer is confiscated and found to contain steganog-
raphy software. All traces of the software and usage of it should be removed.
Examples of easily forgotten locations are the Windows registry, in the recently
used file list in tool used for software extraction and the history of the web
browser. Running the tool from a floppy or USB dongle, which is hidden when
not in use, could be a good idea.

7.2.4 Remove headers from encrypted messages

All messages should be encrypted prior to embedding. However, encryption
schemes add a header to the encrypted message. This header could contain
data like encryption algorithm etc. This plaintext can aid steganalysis by simply
stand out amount random looking data or be used to identify a successful brute
force attack on a secret key steganograpy system. For instance, Stegdetect relies
on detecting known headers in the extracted message to signal success.

Long steganography keys should be used and the steganography algorithm
should adapt the countermeasures described in [17] to defeat the stego-key
search also described in [17].

7.3. SUMMARY 71

7.3 Summary

The methods to defeat steganography are repeated in Table 7.1. These tech-
niques are proposed by this master thesis as a result from applying known foren-
sic methods to steganography and from the particular properties of steganogra-
phy.

Name of method
1. Physical crime scene investigation
2. Steganalysis
3. Detection of steganography software
4. Traces of steganography software
5. Locating pairs of carrier/stego-files
6. Key word search and activity monitoring
7. Suspect’s computer knowledge
8. Unlikely files
9. Locating steganography keys

10. Hidden storage locations

Table 7.1: Forensic methods to defeat steganography

72 CHAPTER 7. DIGITAL FORENSICS AND STEGANOGRAPHY

Chapter 8

Digital forensic cases

Based on the forensic methodology defined in Section 2.3, investigation cases
will be examined in this chapter. Forensic software and processes will be used,
addressing their value to detect steganography software and usage of such. Some
of the steganalysis software described in Chapter 6, will also be demonstrated.

8.1 Introduction to the cases

In the scenarios, the digital crime scene investigation phases are the important
phases. It is assumed that the investigator is prepared with both knowledge and
tools from the Readiness phases, as described in Chapter 7. The Deployment
phases is assumed finished, so is the Physical crime scene investigation phases
i.e. the material is handed over to the digital forensic expert, ready for process-
ing. These phases of however mentioned, since they provide useful background
information on each case.

When dealing with each case, the Document evidence and scene phase is not
treated. The process of bringing evidence to court is extensive, and requires a
lot of documentation and knowledge of the legal system. The accounting of each
case here does not try to be this extensive. The purpose is to address issues
regarding steganography and not legal matters.

8.1.1 Summary of methodology and tactics

Some of the information from previous chapters are summarized here.

From the digital forensic model, The Digital crime scene investigation phases
are repeated below:

Preservation of dig. scene Involves securing and preserving the digital scene.

Survey for dig. evidence Finding the obvious pieces of evidence.

73

74 CHAPTER 8. DIGITAL FORENSIC CASES

Document evidence and scene Documenting the evidence from the previ-
ous phase.

Search for dig. evidence A more thorough analysis of the digital scene.

Dig crime scene reconstruction Putting the pieces together, testing and re-
jecting/accepting theories.

Presentation of dig scene theory Presenting the digital evidence found.

Chapter 7 addresses methods for the investigator to defeat steganography. The
list of methods to defeat steganography consists of the following:

• Physical crime scene investigation

• Steganalysis

• Detection of steganography software

• Traces of steganography software

• Locating pairs of carrier/stego-files

• Key word search and activity monitoring

• Suspect’s computer knowledge

• Unlikely files

• Locating steganography keys

• Hidden storage locations

The methods above will be the foundation for investigating the presence of
steganography, i.e. to defeat it. After the detection of steganography, methods
to extract the embedded message will be attempted.

8.2 Digital forensic case 1
Honeynet Scan of the Month 26

This case serves two purposes. First as an introduction to the combination of
the forensic methodology from Section 2.3 and forensic software from Section
2.4. Secondly, due to the supplied background material for the challenge, it
introduces forensics and steganography together. Hence, challenge 26 from the
Honeynet project is a perfect start. It is also worth noticing, that analysis logs
and results from other participants are available [web10, web25, web7]. These
answers to the challenge provides evaluation material and hints.

8.2.1 Introduction to “Scan of the Month”

The Honeynet Project is a non-profit organization dedicated to improving the
security of the Internet by providing cutting-edge research for free. The strive
to raise awareness, provide teaching (e.g. the Scan of the Month) and research
tools and methods. The “Scan of the Month” (SotM) challenges provide sample

8.2. DIGITAL FORENSIC CASE 1 75

cases for the security community to improve their forensic and analysis skills
[web19].

8.2.2 Challenge 26

Challenge 26 (SotM 26) is a continuance of a previous challenge (SotM 24). In
SotM 24, the task was to analyse a floppy disk recovered from a drug dealer (Joe
Jacobs). There is a police report explaining the situation of SotM 26, with the
challenge for the digital forensic investigator is to analyse another floppy, this
time recovered from Joe’s “computer savy” supplier, Jimmy Jungle [web36].

The resulting report shall try to answer the following questions:

1. Who is the probable supplier of drugs to Jimmy Jungle?

2. What is the mailing address of Jimmy Jungle’s probable drug supplier?

3. What is the exact location in which Jimmy Jungle received the drugs?

4. Where is Jimmy Jungle currently hiding?

5. What kind of car is Jimmy Jungle driving?

And there is a bonus Question: “Explain the process that was performed so that
there were no entries in the root directory and File Allocation Table (FAT), yet
the contents of each file remained in the data area?”

8.2.3 Investigating the case

Next follows the account of the digital investigation of SotM 26, following the
phases from the forensic methodology used in this thesis.

8.2.3.1 Deployment phases

The results from the Deployment phases are explained in the description of SotM
26. Based on the results from previous investigations (i.e SotM 24), warrants
have been given to search the apartment of Jimmy Jungle. This is described in
the police report following SotM 26.

8.2.3.2 Physical crime scene investigation phases

Also described in the police report is the results from the search in Jimmy
Jungles apartment. The police found a floppy disk, labeled with the writing:
dfrws.org. The floppy is treated as a digital crime scene for further analysis.

8.2.3.3 Digital crime scene investigation phases

The Digital crime scene investigation phases is the main target of this master
thesis. It is in these phases the knowledge the thesis provides comes in use and
can be evaluated.

76 CHAPTER 8. DIGITAL FORENSIC CASES

8.2.3.3.1 Preservation of dig. scene An image of the floppy is created,
i.e. downloaded from honeynet.org [web36]. Cryptographic hash values are
created to make sure the image is identical to the original.

A new case is created with Autopsy, named “scan26”. A host is added, “floppy”,
and the image “scan26” is added as a FAT12 partition, with drive letter “A:”.
At the same time, the known md5 value of the image is added and verified after
copying to the evidence storage (figures 8.6(a) and 8.6(b)).

8.2.3.3.2 Survey for dig. evidence The case being marked to contain
steganography, a quick search for known steganography software is tempting,
together with a scan with steganalysis software for stego-messages.

To be able to read the contents of the image, it is mounted as a read-only loop
device1, as shown in Listing 8.1. However, when navigating into the directory it
appears to be empty. When looking at the floppy image through “file analysis”-
view in Autopsy, this is confirmed, Figure 8.6(c).

12 # mount −ro , noatime , loop scan26 /mnt/scan26
l s −l a /mnt/scan26/

14 t o t a l 15
drwxr−xr−x 2 root root 7168 Jan 1 1970 .

16 drwxr−xr−x 6 root root 4096 Jun 13 16 :57 . .

Listing 8.1: Mounting the floppy image as a “read only” loop device. Listing
the content with ls, the floppy appears to be empty.

Based on above, the floppy is empty or contains only hidden data. Techniques
that are more sophisticated are needed, these are provided through Sleuthkit.
More on this in the “Search for dig. evidence” phase.

The floppy was labeled with “dfrws.org”. This is a possible url and when tried,
http://dfrws.org/ leads to the web page of Digital Forensic Research Work-
shop (DFRWS). An interesting web page, considering the circumstances. But
no clues regarding this case where discovered when surveying the web page.

8.2.3.3.3 Document evidence and scene All actions and findings need
to be documented, i.e. Chain of Custody. This extensive process of documenting
actions and findings for court is not treated, since the focus for this scenario is
on the technical aspects and not the legal.

8.2.3.3.4 Search for digital evidence A more thorough search for digital
evidence will be done here. The Autopsy toolkit will be used, the different screen
captures are shown in Figure 8.6 and referred to in the following account.

Starting of with a closer inspection of the image, with the “image details”-view.
This presents details of the file system on the floppy and Listing 8.2 shows the
truncated results.

1The loop device is a device driver that allows an image file to be mounted as though it
was a block device.

http://dfrws.org/

8.2. DIGITAL FORENSIC CASE 1 77

1 FILE SYSTEM INFORMATION
F i l e System Type : FAT12

3

OEM Name : RVRbIHC
5 Volume ID : 0x16da0644

Volume Label (Boot Sector) : NO NAME
7 Volume Label (Root Di rec tory) :

F i l e System Type Label : FAT12
9

Sec to r s be f o r e f i l e system : 0
11

F i l e System Layout (in s e c t o r s)
13 Total Range : 0 − 2879

∗ Reserved : 0 − 0
15 ∗∗ Boot Sector : 0

∗ FAT 0 : 1 − 9
17 ∗ FAT 1 : 10 − 18

∗ Data Area : 19 − 2879
19 ∗∗ Root Di rec tory : 19 − 32

∗∗ Cluste r Area : 33 − 2879
21

METADATA INFORMATION
23 Range : 2 − 45554

Root Di rec tory : 2
25

CONTENT INFORMATION
27 Sector S i z e : 512

Clus te r S i z e : 512
29 Total C lus te r Range : 2 − 2848

31 FAT CONTENTS (in s e c t o r s)

Listing 8.2: File system details of the floppy image. It is a FAT file system and
the sectors for each part is identified, as described in Figure 8.1.

Figure 8.1: FAT file system organisation of a volume [web14].

Some knownledge of the FAT file system is needed at this point 2. Figure 8.1
shows the organisation of a volume with FAT.

With the knowledge from Figure 8.1 and Listing 8.2, a closer analysis of the
floppy image can be done. Using the “Data unit”-view to examine the different
sectors from the image. Primary Fat, sector 1-9 yields only f0ffff00 0000000 ...
I.e. media id, fill and the rest 0’s. The secondary FAT is, as expected, identical
and show in Figure 8.6(e). The Root section, sector 19 -32, is also empty, i.e.
only 0’s. So far, an empty floppy.

When looking at sector 33, the Data area, there is finally some data. The Hex
display is shown in Figure 8.6(f) and yields strings like JFIF, SNuG etc. This
data is not allocated. Autopsy can extract data from unallocated sectors of an
image. Running the strings tool on the extracted data, yields all strings found.

Running the keyword search with a regular expression3 matching all strings,

2More information on Fat file system can be found at http://www.ntfs.com/fat-systems.
htm

3A regular expression (abbreviated as regexp, regex or regxp) is a string that describes or
matches a set of strings, according to certain syntax rules [web51].

http://www.ntfs.com/fat-systems.htm
http://www.ntfs.com/fat-systems.htm

78 CHAPTER 8. DIGITAL FORENSIC CASES

[[:alnum:]{4,}], on the unallocated data strings yields 452 hits. This list is
quite long and, so searches limiting the results can be made or other text editors
can be used to view the results. Listing 8.3 shows the result from tail on the
file created when running strings on the unallocated data.

174 # t a i l scan26−0−0−fa t12 . unal loc−d l s . asc
31772 ” ””

176 31777 ” ””
31782 ” ””

178 31787 ” ””
31862 h%ad

180 31945 H:qV
32006 kcpkt

182 32183 kA$4
1210704 pw=help

184 1385824 John Smith ’ s Address : 1212 Main Street , Jones , FL 00001

Listing 8.3: Output from running strings on unallocated data. Using tail on
the file containing the results.

The results from Listing 8.3 are quite interesting. pw could be a password and
we got John Smith’s address.

Returning to the data found in the Data Area-view. The string “JFIF” has
been encountered earlier, when looking at images with a hex-viewer4. Searching
Google for JFIF it confirmed that JFIF indicated a jpeg-file, i.e. an image.
Figure 8.6(f) also indicates jpeg image data. It would be interesting to view
this image.

“File type” view uses the sorter tool to extract files and organize them according
to file type. A useful option in our case is to extract (save) graphic images and
make thumbnails. The tool also validates file extension with file type. And it
will alert of files found to be in the “Alert Hash Database”, e.g. if the files
belongs to known steganography software. The screen shot is found in Figure
8.6(g).

The results are 3 files (unallocated), but they were skipped as “non-files”. So
the sorter tool did not help. But the string “JFIF” indicated the presence of a
file. So the next attempt is to extract this file from the image using dd.

Viewing scan26 in a hex-editor (Figure 8.2) and searching for JFIF yields it
at 0x4206h. Asking Google provides information about JPEG file format5. A
JPEG file begins with (hex): ffd8 ffe0 0010 4a46 4946 and ends with ffd9. This
helps locating the start of the file at 0x4206h and the end at 0xc158h.

Listing 8.4 shows the dd -tool to extract the JPEG file. The values has to be
converted from hexadecimal to decimal. The first 16896 bytes are skipped and
a total of 32602 is read. The image extracted is shown in Figure 8.3(a).

4When testing different software for steganography for Chapter 4, cover-and stego-images
were examined with a hex-viewer to study changes.

5More info on the JPEG file format can be found at
www.obrador.com/essentialjpeg/headerinfo.htm

http://www.obrador.com/essentialjpeg/headerinfo.htm

8.2. DIGITAL FORENSIC CASE 1 79

Figure 8.2: Viewing the unallocated data from a hex-editor.

608 # dd i f=˜dust/scan26 i b s=1 of=img1 . jpg sk ip=16896 count=32602
32602+0 reco rds in

610 63+1 reco rd s out

Listing 8.4: Extracting an image file from scan26. The first 16896 bytes are
skipped and a total of 32602 is read.

(a) The first image extracted: img1.jpg (b) Running StegSpy on img1.jpg

Figure 8.3: The first image extracted: img1.jpg is shown in Figure 8.3(a). The
image provides a map and a location: “Dannie’s Pier 12 Boat Lunch”. Figure
8.3(b) shows a negative result of running StegSpy V 2.1 on img1.jpg.

80 CHAPTER 8. DIGITAL FORENSIC CASES

Detecting Steganography Finally having an image, img1.jpg, steganlysis
software from Chapter 6 can be put to use. StegSpy v2.16 is tried, with the
result of not finding presence of steganography (Figure 8.3(b)). Stegdetect7 is
tried with the results in Listing 8.5.

680 # ./ s tegde tec t −0.6/ s t e gd e t e c t img1 . jpg
img1 . jpg : i n v i s i b l e [7 771] (∗∗∗)

Listing 8.5: Running Stegdetect on img1.jpg.

Stegdetect strongly indicated in Listing 8.5 that the image is a stego-image and
that the embedding is done with Invisible Secrets. An interesting observation is
that StegSpy claims to detect messages hidden with Invisible Secrets.

Message extraction To extract the message, Stegbreak8 could be tried. Of
course, the success of brute-force depends on a weak password. But it is worth
a try. The problem is just that stegbreak does not support attacking Invisible
Secrets. Manually trying to extract the message with all algorithms provided
by Invisible Secrets and the possible password “help”, is not successful.

A hint after examining the submissions to SotM 26, was to check out the source
code for dfrws.org9. Listing 8.6 shows what was found.

38 < !−− 100 guest rooms have been reserved at a s p e c i a l conference rate of
−−>

< !−− I n v i s i b l e Secrets −−>< !−− $149 .00 per night for non−government−−>
< !−− ht tp ://www. i n v i s i b l e s e c r e t s . com −−>

40 < !−− PW=l e f t y −−>Please honor t h i s p r i c i n g arrangement and
< !−− Algorythm= twof i sh −−>In order to ensure room a v a i l a b i l i t y

Listing 8.6: Extract from the HTML source of dfrws.org.

Armed with more possible passwords: lefty and right, and the Twofish algo-
rithm, more attempts with Invisible Secrets are done. The successful result
with the password “lefty” was the file “john.doc”. The word document needs a
password and “help” was the correct one. The complete text from the document
is shown in Listing 8.8. The following quote from “john.doc” is interesting:

[Jimmy Jungle:] “take a look at the map to see where I am currently
hiding out.“

So far, this map is not located.

The second file After the end of the JPEG file, there are 0’s until “42 4d” is
encountered (Figure 8.4). Searching for “42 4d file forensic” with Google , gives

6Described in Section 6.2
7Described in Section 6.3
8Described in Section 6.4
9Hiding of information in HTML comments was mentioned as a simple example at the

authors presentation of steganography at [18]. It was however not considered when surveying
the web page. The passwords are no longer available, and the source listing is from one of the
supplied answers to SotM 26 [web7]

8.2. DIGITAL FORENSIC CASE 1 81

us knowledge of the file type: BMP [web27]. The next four bytes gives the total
size of the file, little Endian. 0x11cc77 is 1166454 in decimal. Once again dd is
used to extract the image, as shown in Listing 8.7.

Figure 8.4: Hex view of data. Showing the end of the JPEG file and start of
the BMP file.

dd i f=scan26 i b s=1 of=img2 .bmp sk ip=49664 count=1166454
2 1166454+0 reco rds in

2278+1 reco rd s out

Listing 8.7: Extracting the second image from scan26. Based in information
from Figure 8.4, the first 49664 (0xc200) bytes are skipped and a total of 1166454
(0x11cc76h) bytes are read.

The BMP image extracted is shown in Figure 8.5. It it similar to img1.jpg, but
this one contain the location X marked as a hideout. This could be the hideout
Jimmy Jungle referred to in “john.doc”.

Detecting Steganography The search for steganography continues, but Stegde-
tect can not target BMP files. Stegspy was tried, but could not detect the pres-
ence of steganography. Steganography software, Invisible Secrets, has already
been identified, so it is worth a try to extract an embedded message.

Message extraction With Invisible secrets already being used and an unused
password, it had to be tried. Using the same algorithm (Twofish) and the
password “right”, yields “Jimmy.wav”. When played, Jimmy says there is a
meeting at the pier tomorrow and that he is driving a 1978 Blue Mustang.

8.2.3.3.5 Dig crime scene reconstruction The crime scene is not recon-
structed.

8.2.3.3.6 Presentation of dig. scene theory Based on the above docu-
mented findings, answers to the questions from SotM 26 are given.

82 CHAPTER 8. DIGITAL FORENSIC CASES

Figure 8.5: The second image, img2.bmp, indicates a hideout at 22 Jones Ave.

Who is the probable supplier of drugs to Jimmy Jungle? Based on the
letter extracted, john.doc, the probable supplier is John Smith. Complete
letter shown in Listing 8.8.

What is the mailing address of Jimmy Jungle’s probable drug supplier?
Listing 8.3 presents the address of John Smith: “1212 Main Street, Jones,
FL 00001”.

What is the exact location in which Jimmy Jungle received the drugs?
Based on the data found, i.e the letter and the map (img1.jpg, Figure
8.3(a)) , the drugs are delivered to “Dannie’s Pier 12 Boat Lunch”.

Where is Jimmy Jungle currently hiding? From the letter, Jimmy Jun-
gles hiding place is indicated on a second map (img2.bmp, Figure 8.5).
The address of the hideout is “22 Jones Ave‘”.

What kind of car is Jimmy Jungle driving? The last file, Jimmy.wav, is
a recording where Jimmy is saying he drives a 1978 Blue Mustang.

To answer to the bonus question, knowledge of how formating of a disk is done.
When performing a “quick format” of a floppy under Windows, only the root
directory and fat entries are deleted, and the real data is not [web10]. I.e. the
pointers telling where files are allocated on the floppy are removed, but the data
can still be manually retrieved, as demonstrated above.

8.2.4 Discussion and summary of SotM 26

All questions stated in the case description are answered, after some hints
[web7, web10, web25, web28]. The forensic methodology defined earlier is put
to use, and it serves it purpose well. The quick survey for evidence did not
present any evidence, but it identified the next necessary steps. Files was iden-
tified and extracted, and with the help of steganalysis software, identified as a
stego-message. The steganography software used to hide a word document was
also identified and together with the found passwords, successfully extracted.

8.2. DIGITAL FORENSIC CASE 1 83

1 Dear John Smith :

3 My b igg e s t d ea l e r (Joe Jacobs) got busted . The day o f our scheduled
meeting , he never showed up . I c a l l e d a couple o f h i s f r i e n d s and
they to ld me he was brought in by the p o l i c e f o r que s t i on ing . I ’m
not sure what to do . Please understand that I cannot accept another
shipment from you without h i s bus ine s s . I was f o r c ed to turn away

the d e l i v e r y boat that a r r i v ed at Danny ’ s because I didn ’ t have the
money to pay the d r i v e r . I w i l l pay you back f o r the dr iver ’ s time
and gas . In the future , we may have to f i nd another d e l i v e r y po int
because Danny i s s t a r t i n g to get nervous .

5 Without Joe , I can ’ t pay any o f my b i l l s . I have 10 other d e a l e r s who
combined do not t o t a l Joe ’ s s a l e s volume .

7 I need some a s s i s t a n c e . I would l i k e to get away un t i l th ings qu i e t down
up here . I need to ta l k to you about r e o r gan i z i ng . Do you s t i l l

have the condo in Aruba? Would you be w i l l i n g to meet me down there
? I f so , when? Also , p l e a s e take a look at the map to see where I
am cu r r en t l y h id ing out .

9 Thanks f o r your understanding and so r ry f o r any inconven ience .

11 S ince r e l y ,

13 Jimmy Jungle

Listing 8.8: The complete letter to John Smith from Jimmy Jungle.

Passwords was also tried hidden, but once the method was discoved, it was
easily broken.

Some of the techniques for defeating steganography was used in this scenario,
but not all. An interesting observation can be done from the source code from
dfrws.org (Listing 8.6), notice the name of the steganography software. The
“Key word search” method (Section 7.1.6) would most likely, or even should,
contain names of known steganography software. Performing such a search on
all discovered media, could in some cases indicate the presence of steganography
or other useful information. Like in this case, where it would have identified
possible passwords, algorithm and steganography software.

When dealing with larger amounts of data, some of the techniques used in
this case need to be improved. Manually searching through a 40 gigabyte disk
image with a hex viewer is time consuming. The next scenario encounters this
challenge.

In this case, StegSpy and Stegdetect was tried with different results. StegSpy
claims to detect Invisible Secrets, but fails. This can be due to an update of In-
visible Secrets. The usability of StegSpy on larger amounts of data, say pictures
by hundreds, is low. The user can only select one image at the time for analy-
sis. Stegdetect performs better, at least against the encounted steganography
software, and has better support for multiple images.

Autopsy was used in this case, but without any great success. More basic tools,
like the hex viewer and dd, were enought to be successful.

84 CHAPTER 8. DIGITAL FORENSIC CASES

(a) Adding the floppy image to the case (b) Results of adding the floppy image

(c) File analysis yielding a seemingly empty
floppy

(d) Image details after extracting using strings

(e) Data unit viewer, Hex contens sector 1018 (f) Data unit viewer, Hex contens sector 33. In-
dicating jpeg image data

(g) “File type”-view uses the sorter tool to ex-
tract files. It is possible to limit the extraction
to images and create thumbnails.

Figure 8.6: Using Autopsy for case 1: Honeynet Scan of the Month 26.

8.3. DIGITAL FORENSIC CASE 2 85

8.3 Digital forensic case 2

Case 2 will differ from the previous in data volume. The scenario involves a
laptop owned by the author. During the work resulting in this master thesis,
steganography software has been tested on this laptop and web pages with
steganography contents have been visited. The traces in the laptop creates a
useful scenario for testing the methods from Chapter 7.

This scenario is thought a part of a bigger case. There is some criminal activity
and, without going into details, this results in the necessary warrants to the
seizure of physical components, and the computer components is handed over
to digital investigation, as illustrated in Figure 8.7.

Figure 8.7: Digital forensic case 2.

Figure 8.7 shows a laptop running Windows XP. It has a connection to the
Internet and there seized material also contains a usb memory stick, cell phone
and a floppy. This is material which has to be expected, so methods on how to
deal with them have had to have been addressed in the Readiness phases.

8.3.1 Case limitations

Some limitations are made from the case description above and in Figure 8.7.
These are addressed here.

The spiderweb in Figure 8.7 represent the Internet. That would mean examina-
tion of network traffic, if this were logged or monitored. As mentioned in Section
3.7, there exist steganography software which hide communication in TCP/IP
header fields. This is not addressed here, other than detecting software or other
hints of such activity on the laptop itself.

External storage media like floppies, memory sticks or similar are normal. They
come in many forms and some have storage capacity measured in gigabytes.
Detecting and processing such media is important. Software can be run directly
from these, leaving few (if any) traces on the laptop. But the methods used to
analyse them are not different from analysing a normal disk drive.

Newer cell phones also comes with unelectable storage space, and MMS can be
used to exchange illegal material. With the proper equipment and knowledge,

86 CHAPTER 8. DIGITAL FORENSIC CASES

the memory on such devices can also be threated [34]. However, this is not done
here.

8.3.2 Investigating the case

Next follows the account of the digital investigation of Case 2, following the
phases from the forensic methodology used in this thesis. The account is not as
extensive as for Case 1, due to the amount of space this would occupy in the
thesis.

8.3.2.1 Deployment phases

This case is a created scenario and tries to capture general aspects of forensic
cases. Hence a comprehensive description of the setting is not given.

8.3.2.2 Physical crime scene investigation phases

Figure 8.7 shows the physical components from the physical crime scene. Lim-
itations are already described in Section 8.3.1.

The output from the Physical crime scene investigation could yield security cre-
dentials. For it to yield a password known to be a steganographic key, would
surely indicate the presence of steganography. Not addressing how a password
could be known to be a stego-key, it is stated that possible passwords should be
documented and tried as passwords for encountered encryption and steganog-
raphy. And not forget that the same password could be used more than one
time.

In this case, there exist no such password clues. Nevertheless, several suspicion
books were identified as treating steganography [20, 26, 35, 48] and several
proceedings from Information hiding workshops [1, 4, 31, 36, 39]. These findings
clearly indicated the suspect’s interest for steganography. They do not however
state which, if any, steganography tools are used.

8.3.2.3 Digital crime scene investigation phases

The following accounts for the digital crime scene investigation phases.

8.3.2.3.1 Preservation of dig. scene In the scenario of Case 2, the plug
has been pulled, i.e removing the battery on the laptop. Whether or not to
pull the plug is an important choice, and depends on the setting. [27] has more
on this subject. Examples of when not to turn of the system could be when
computer memory also is wanted collected or there is a high demand on system
uptime.

It is important to make the copy identical to the original, and proving the fact.
The dd - tool can be used to create images of file systems. It allows reading and

8.3. DIGITAL FORENSIC CASE 2 87

writing to disk devices directly, without mounting the device first. Comparing
the hash values of the original disk and the copy image can prove identical
versions.

The original plan was to boot with the F.I.R.E (Forensic and Incident Response
Environment) distribution [web43] with ships with an extended version of dd
called dcfldd [web18]. dcfldd has additional features that are useful for forensics,
like hashing on the fly and status output.

There are alternatives to using F.I.R.E. Other cd-rom or floppy bootable dis-
tributions, like Knoppix, Trinux and PLAC can be used. But F.I.R.E has the
advantage of shipping with more security tools. Knoppix has better hardware
support then F.I.R.E, and was needed to detect and format the external hard
disk used in the forensic case. F.I.R.E also does not ship with the newest version
of some programs (i.e. Autopsy/Sleuthkit).

The data need to be transfered from the confiscated system to a storage media,
from where the data can be examined further. As stated in this scenario, the
seized equipment is a laptop.

A overview of the situation is given in Figure 8.8, where an external storage
media is connected to the laptop, The disk drive of from the laptop can also
removed from the laptop and connected directly to a forensic workstation for
imaging or use special hardware like the Image MASSter Solo Forensic unit.
Due to limited hardware resources, the drive image is created with the disk still
in the laptop.

Figure 8.8: Collection and preservation of possible evidence.

Listing 8.9 shows the dd command creating an image of the acquired hard disk
on an external disk drive. hda1 is the block device representing the disk of the
laptop and sda1 is the Maxtor external disk drive. hda1 3.img tells that this
image of hda1 is version three.

1 # date
Tue May 24 19 : 50 : 15 EDT 2005

3 # uname −a
Linux Knoppix 2 . 4 . 2 7 #2 SMP Mo Aug 9 00:39:37 CEST 2004 i686 GNU/Linux

5 # dd i f=/dev/hda1 of=/mnt/sda1/img/hda1 3 . img bs=1024k noerror , sync
38146+1 reco rds in

7 38146+1 reco rds out
39999504384 bytes t r a n s f e r r e d in 50073.867797 seconds (798810 bytes / sec)

Listing 8.9: Transferring data using dd. This is also the start of the log file,
hence the data and identification of the system. noerror and sync ensures that
dd continues after read error and pad error blocks with 0’s to match the input11

.
11[web8] has more information on using dd

88 CHAPTER 8. DIGITAL FORENSIC CASES

The Maxtor disk is connected with the IEEE-1394 FireWire specification. Even
though this is a fast connection, transmitting data at up to 400 megabits per
second, it still takes some time to transfer 40GB. Remember that the hole disk,
including slack space, unallocated areas and swap files, is transfered, and not
just the individual files. Deleted and otherwise hidden files are also of interest
to the investigator.

There exist other methods and tools for gathering digital evidence. They all have
their cons and pros, depending on the situation. Some of these are introduced
earlier in Section 2.4.1.

The copied evidence need to be 100% equal to the original. To verify this, a
hash algorithm as described in Section 2.3.1.3, can be used. To be compatible
with autopsy/sleuthkit, MD5 is used. SHA1 is introduced to have a stronger
alternative due to the collision weakness mentioned in Section 2.4.

Listing 8.10 shows the output of running md5sum and sha1sum on the original
block device and the acquired image.

md5sum /mnt/sdc1/img/hda1 3 . img ; md5sum /dev/hda1
2 7 ef0df1423342b5936992a9eb37927eb /mnt/ sdc1 /img/hda1 3 . img

7 ef0df1423342b5936992a9eb37927eb /dev/hda1
4 # sha1sum /mnt/sdc1/img/hda1 3 . img ; sha1sum /dev/hda1

0175 d4aec11b203eb16cb175c5d4e381a8e05e1c /mnt/ sdc1 /img/hda1 3 . img
6 0175 d4aec11b203eb16cb175c5d4e381a8e05e1c /dev/hda1

Listing 8.10: Authentication of the transferred data using hash signatures.

For the analysis of the acquired image, there exist a variety of tools12. Go-
ing back to the original plan of using the F.I.R.E. distribution could be done,
with the disadvantage of not using the latest versions of Autopsy/Sleuth kit.
A master thesis on reconstruction [54] presents VMware [web20] as an alterna-
tive environment. So, creating a Linux virtual machine in VMware to run the
forensic tools is favorable due to the limited number of computers.

Another interesting observation is that USB 2.0 is not supported by the available
Linux distributions and VMware does not support FireWire. Since the amount
of data being analyzed is huge (40GB), a fast connection is preferred. From
the available hardware, the solution was to boot with Knoppix and install the
newest version of autopsy/sleuthkit.

After the intensive (both cpu and disk communication) operations have been
performed and stored, VMware is convenient for the later stages.

8.3.2.3.2 Survey for dig. evidence Before starting the examinitaion the
lab has to be set up. In this case, the forensic workstation is virtual. A virtual
machine with Fedora Core 3 is created in VMware and the newest versions of
Sleuthkit and Autopsy are installed. The case created with Knoppix is made
available and the survey can begin.

It is sometimes difficult to separate the survey phase from the search phase.
Usage of steganography is by it self not illegal13, hence it is a supporting tool.

12Some analysis tools are addressed in Section 2.4.3
13Might not hold for all countries.

8.3. DIGITAL FORENSIC CASE 2 89

The survey detects illegal pictures, while stegnalysis detects the hidden ones.
This would indicate that techniques to detect steganography belongs to the
search phase.

Listing 8.11 shows the commands to mounting the hard disk image. First the
external disk, sda1, containing the image, and then the image it self as a loop
device. The mounting of the image is not required when using autopsy.

mount /dev/sda1 /mnt/sda1
2 # mkdir /mnt/img

mount −t n t f s −o ro , noatime , noexec , loop /mnt/sda1/img/hda1 3 . img /mnt/
img/

Listing 8.11: Mounting image of acquired hard disk for analysis.

Autopsy is a HTML front end to the Sleuth kit toolkit. After starting Autopsy,
a url is given to access the software through a web browser. After defining a
case with this tool, it is ready to perform analysis like string searches and file
identification with known hash values. Screen shots from Autopsy and Case 2
is shown in Figure 8.10.

8.3.2.3.3 Document evidence and scene All actions and findings need
to be documented. The extensive process of documenting actions and findings
for court is not treated.

8.3.2.3.4 Search for digital evidence A more thorough search for digital
evidence is performed here. The proposed techniques from Chapter 7 are tested
for their efficiency on Case 2, i.e. on large data volumes.

Physical crime scene investigation As described earlier, the search of the
physical crime scene did not provide any clues of passwords, but provided hints
of steganography usage. Hence, an increased alertness for steganography.

Steganalysis Steganlysis software from Chapter 6 is here put to use. StegSpy
v2.114 has only a graphical interface, allowing the user to select one image at
the time. It does not support command line arguments, so a batch file cannot
be created and used. Hence, the usability of StegSpy on large data volumes is
limited.

Stegdetect15 is more useful. It can process all images in a directory or a script
can be created, recursively searching through the whole disk. Autopsy can
extract all images from the disk image (Figure 8.10(c)), yielding a total of 22996
images. These images can be tested using Stegdetect. This is however done in
Case 1 and in the earlier treatment of StegDetect, and is not repeated here.

The other steganalysis software from Chapter 6 are unfortunately not available
for testing. Theoretical steganalysis algorithms from the academic community,
e.g. [16], are also not available as tools.

14Described in Section 6.2
15Described in Section 6.3

90 CHAPTER 8. DIGITAL FORENSIC CASES

Detection of steganography software The database containing file signa-
tures of known steganography software from Appendix A is used to help de-
tect such software. Autopsy supports this and the results are shown in Figure
8.10(c)16, yielding 108 hash database alerts. Steganography software, i.e. known
files, has been detected. Figure 8.9 shows a subset of the identified signatures.

Figure 8.9: Hash alert database results. This figure shows a subset of the
identified alert file signatures, which are files indicating EzStego.

Traces of steganography software The search for traces of steganography
requires automated tools. These traces are often strings identified in the search
for key words. Hence, identification of traces is reduced to the key word search
and presented below.

Locating pairs of carrier/stego-files Locating pairs of original carrier-files
and the belonging stego-files can be automated, as described in Section 7.1.5.
No tools are available to perform this, but the principle can be demonstrated
for image files. Autopsy allows for the automatic extraction of image files, also
deleted ones. These can then be visually compared to help identify perceptually
equal images, but with different hash signatures.

Extraction of images with Autopsy yields a total of 22996 images (Figure
8.10(c)), with thumbnails. This set can be reduced by elimination small im-
ages. Viewing these images in a suitable program, will located similar images.
This is however not shown here, as it would only display two similar looking
images.

This method would possible provide some false-positives, but this depends
clearly on the algorithm used. Even if it is not illegal to have such file pairs, it

16Only a subset of the database is used in this scenario

8.3. DIGITAL FORENSIC CASE 2 91

can be used to reduce the dataset and as an indicator for further analysis, e.g.
with a hex viewer or steganalysis software.

Key word search and activity monitoring Autopsy allows for key word
searches. Strings can be extracted and hash signatures created. These signa-
tures can then be compared to the dictionary containing steganograhpy key
words.

Each word need to be manually searched in Autopsy, however it is possible to
use the Sleuthkit tools directly to performe the searches. The results can even
be stored so that they are available from Autopsy afterwords. Figure 8.10(d)
shows the results of running a search when the dictionary contains the words:
”steg*´´ and ”mandelsteg´´ as ascii and ”mandelsteg´´ as unicode.

These findings can be different meanings. Each location of the key words must
be examined and identified. Is it part of the source code of a steganography
software, name of a recently extracted zip archive, Windows registry key etc.
Such findings can detect traces of steganography usage.

Suspect’s computer knowledge Speculating on the suspects computer knowl-
edge can be a dangerous path, since usage of steganography software requires
little training and understanding. In this scenario, it is also hard to be objective
on the assumed computer knowledge of the laptop owner.

Unlikely files Looking for unlikely files among 40 GB of data, is like looking
for the famous needle in the haystack. However, some tricks are available. E.g.
when looking for unlikely images, like mandelbrot fractals, thumbnails can be
created with Autopsy for all images. Reducing the set of thumbnails by image
file types and minimum file size, and the rest can be browsed manually.

Hidden storage locations When investigation the disk image, no hidden
partitions or steganography file systems where found.

8.3.2.3.5 Dig crime scene reconstruction In this scenario, there is no
defined crime which need to be reconstructed.

8.3.2.3.6 Presentation of dig. scene theory This presentation depends
on the nature of the crime. Without losing the general view, the result from
this case clearly states that steganography has been used. Stego-messages has
been identified together with steganography software.

8.3.3 Discussion and summary of Case 2

This case deals with large data volumes and techniques from Case 1 has to be
adapted, e.g. it is not feasible to go through the hole disk with a hex viewer.

92 CHAPTER 8. DIGITAL FORENSIC CASES

(a) Adding the disk image to the case (b) Adding information about the disk image

(c) Result for sorting files. (d) Results of key word searched

Figure 8.10: Using Autopsy for case 2.

But, using the methods from Chapter 7, detection can be automated and the
amount of interesting data can be reduced.

There exist some forensic tools aiding the techniques proposed in this master
thesis to detect steganography. These has been presented in this scenario. It is
apparent that to handle large data volumes, automated tools are needed.

From Case 2, it can be stated that the detection techniques works. However,
more tools are needed and existing need to be continuously improved. The
“locating pairs of carrier-/stegi-files” need to be automated to be useful on
large data volumes.

Autopsy and Sleuthkit shows their usefulness when the data volume gets large.
Automatic searches for hash signatures, creating of image thumbnails, key word
searches in both allocated and unallocated data etc. are necessary tools to cope
with ever larger disk capacities.

Chapter 9

Discussion

In this chapter the use and need of steganography is fist considered. A discussion
of the currently achievements in steganography and steganalysis follows. Finally
thoughts around the proposed methods to defeat steganography are presented.

9.1 The use and need of steganography

Section 3.5 comments on the discussion of whether or not steganography is used
by criminals or terrorists. There is no evidence that terrorists are using it, nor
is good statistics from investigators publicly available. This master thesis tries
not to answer this question, it is however a result from law enforcement and
academic community interest in the topic of steganography.

At a conference at Nye Kripos [34], a question was raised, debating that the
progress and interest of steganography are from the academic and law enforce-
ment community, providing tools aiding criminal activity. This discussion con-
forms to the similar debates concerning cryptography and anonymity.

If cryptography and steganography are made illegal, then only criminals will
be willing to use these methods. They are already performing illegal activities
and one more crime to hide the others, looks like a nice alternative. Business
and personal interest can be argued to employ cryptography and steganography
to good purpose. This discussion is often very personal and not treated. It is
however the case, that law enforcement need to understand and know how to
handle both cryptography and steganography. Hence, the work performed by
this master thesis is relevant and valuable.

9.2 State-of-the-art steganography

Different tools for steganography are discussed in Chapter 4. What is available
today of known steganography software, the author will characterize as usable.
This software is not mathematically proven secure. There is an arm’s race in

93

94 CHAPTER 9. DISCUSSION

the development of steganography and steganalysis algorithms. The academic
community is working towards achieving secret key steganography, which in the
end will lead to steganography software following Kerckhoffs’ principle.

9.3 State-of-the-art steganalysis

Steganography algorithms often create artifacts in the stego-message, like sig-
natures or altered statistics. There are sophisticated steganography algorithms,
like Outguess and F5, developed by the academic community. The same com-
munity again attacks these, presenting a cycle, which will continue to evolve,
possibly until there is secure steganography software.

State-of-the-art steganalysis is limited to attacking known steganography algo-
rithms. Hence, in the case of unknown steganography software, “security by
obscurity” might be successful.

Any algorithm, steganography and cryptography, is exposed at the end hosts.
In the concept of digital forensics, at least one of the end-points can be a digital
crime scene. The alertness for steganography and unknown software can break
previous unknown steganography algorithms. Security by obscurity algorithms
will eventually be broken. Even secure steganography can be defeated with the
retrival of security credentials at the crime scene.

Stegspy was presented at the InfoSec 2004, BlackHat 2004 and DefCon 2004
conferences. Not attacking the quality if these conferences, the steganalysis
technique used by Stegspy is not very sophisticated. There exist other similar
sources [26, 43, web17] performing steganalysis and evaluation steganography
software. They mostly attack the more simple steganography algorithms. The
various statistical attacks and examinations from academical community (e.g.
[48, 20, 35, 13]) are however more advanced. Based on publicly available sources,
the academical community matches the current state of steganography software.
The status of resourceful organizations not publishing their material is of course
unknown and the speculation is left for others.

9.4 Methods for detecting steganography

Chapter 7 proposes some methods to detect steganography. As seen in Case 2
from Chapter 8, there is a need for automatisation tools aiding the investiga-
tor. The amount of data is otherwise not manageable. Due to the nature of
steganography, there could be a need for such tools even on small data volumes.
Recall Case 1 and the HTML comments in the web page, with a practice of
automatically running tools, created based on knowledge from Chapter 7, these
hidden data would be detected.

This master thesis does not provide these tools, only the outline for such. Some
tools already exist, e.g. Stegdetect and other steganalysis software and the hash
signature database in Appendix A is ready to be used.

9.4. METHODS FOR DETECTING STEGANOGRAPHY 95

During Case 2, it was made clear that the difference between identifying traces
of steganography software and locating key words is not existing. The method
to detect traces was performed as a search for certain strings. Originally, this
method was added to include more special identification tools, like detecting
traces in the Windows registry of in the recently used file list in winzip.

As long as there does not exist such specialized tools, this method is reduced
to the search for key words, as described in Section 7.1.6. Therefore, the pro-
posed methods could be reduced by combining Traces of steganography software
and Key word search and activity monitoring, and simply make this different
approaches based the level of data abstraction. E.g. using the strings tool
on all data or a more sophisticated specialized tool. This modification is not
implemented in the report.

9.4.1 Advantage of using the proposed methods

The proposed methods provide the investigator with the means to detect steganog-
raphy. Without these, a likely consequence is failure to notice important evi-
dence. Even the simplest steganography software will then go unnoticed. Both
Case 1 and Case 2 showed that tools supporting these suggested techniques are
desirable. Some exist and have already demonstrated their usefulness.

Some of the techniques are just minor expansions to already exist forensic proce-
dures. For example, adding steganography code words to the dictionary for the
key word search. Hence, adaptation of methods requires modest adjustments
with low costs.

When discussion costs, an interesting approach is trying to address the cost of
not using such methods. If it is publicly known that steganography is not treated
by law enforcement, steganography is the perfect tool to help hide criminal
activity.

Methods like performing steganalysis on all images and possibly some kind of
brute force attack to extract messages are quite time and resource consuming.
However, they are automated and can be left running for as long as desired.

9.4.2 Weaknesses with the proposed methods

The methods can provide hints of steganography usage, but they do not provide
ultimate answers. Skilled investigators are still needed to put the pieces together
and provide the theories.

Most of the the methods can be adapted without great costs. However, some
of the tools for steganalysis and the Steganography Application Fingerprint
Database from [web3] are quite expensive. Running some kind of brute force
attack of some length requires a lot of CPU power, adding hardware costs. How
to obtain fundings for tools to detect something which is not proved used by
criminals, is not answered by this thesis.

With large data volumes, the methods can be quite time consuming. Strict time
limits can then prevent discovery of steganography. But without these methods,

96 CHAPTER 9. DISCUSSION

steganography detection probably would not be possible.

9.5 Real world digital crime scenes

It would be interesting to try the proposed methods in a real digital investiga-
tion. This would most likely identify improvements and additions. It is however
hard to evaluate the quality of these methods, due to the nature of steganogra-
phy. If these methods do not detect steganography in a digital crime scene, is
it then the situation that there is no steganography? Or, do they merely fail to
detect it?

The question above is hard to answer, but the proposed methods are proven
useful in the two scenarios. Further use and improvement will strengthen the
possibility to detect hidden data.

Chapter 10

Conclusion

The focus for this master thesis is steganography and the implications it has
on digital forensics. Steganography has long been available to spies and com-
munications during wartime, and has now been adopted by the information
technology community.

This master thesis provides automated methods and resources aiding digital
forensics detect steganography. The scenarios increased the understanding of
steganography and forms the basis for the examination of the proposed tech-
niques. The practical work shows that these methods can help defeat steganog-
raphy. The methods add little extra costs and can with little effort be adapted
to existing automatic forensic procedures.

The investigator will not know if steganography is used, until it is detected. The
extend of steganography usage can be discussed, but it is better to be safe than
sorry. In contrast to cryptanalysis and other methods attacking cryptography,
which can be performed when cryptography first is discovered, steganography
need to be looked for probably without any prior clues of its existence.

Claude Shannon’s maxim states: “The enemy knows the system”. It should
be a goal for digital forensic investigators, the enemy of criminals, to know the
system, steganography, in order to perform their assignment at the best possible
measures. As long as steganography is not secure and/or weak at the end hosts,
it can be defeated with the right knowledge and methods.

10.1 Future work

The suggested digital forensic methods from Chapter 7 are tried out on two
scenarios in Chapter 8. These cases largely differ in data volume, 3.5” floppy
vs. a 40 GB disk drive. It would have been of interest to have a case introducing
data captured from network monitoring. For instance, capture a TCP session
with TCPDUMP1 or Ethereal2, and test the various methods on this data.

1www.tcpdump.org/
2www.ethereal.com/

97

http://www.tcpdump.org/
http://www.ethereal.com/

98 CHAPTER 10. CONCLUSION

Steganography software working on network protocols would also have been
desirable to examine.

The steganography software examined in Chapter 4 is merely a subset of publicly
available software. Others would be interesting to examine, like F5 3, same
generation as Outguess, and StegFS 4, a steganographic file system for Linux,
are good candidates for investigation. To have made available trail versions of
the licensed steganalysis software from Chapter 6, Stego Suite and StegAnalyzer,
would made it possible to examine and compare them to the freely available
ones.

There exists recent literature presenting a more theoretical approach to steganog-
raphy. Information theory is used in a similar approach as with cryptography.
This is left out from this master thesis due to its lack of maturity, hence it is
not yet aiding digital forensic proposes. However, more work on this subject
could yield a more solid understanding of steganography and could be targeted
with further work on steganography.

A continuance of state-of-the-art steganography would be to develop steganog-
raphy software according to the definition of secure steganography.

3wwwrn.inf.tu-dresden.de/w̃estfeld/f5.html
4www.mcdonald.org.uk/StegFS/

http://wwwrn.inf.tu-dresden.de/~westfeld/f5.html
http://www.mcdonald.org.uk/StegFS/

Bibliography

Web pages

[web1] Microsoft Encarta Online Encyclopedia 2005. Forensic science,
encarta.msn.com Visited 20. Feb 2005.

[web2] Brad H. Astrowsky. Steganography: Hidden images, a new challenge
in the fight against child porn. American Prosecutors Research Institute,
13(2), 2000.
ndaa-apri.org/publications/newsletters/update volume 13 number 2 2000.html
Visited 20. Mar 2005.

[web3] Steganography Analysis and Research Center Backbone Security. Steganog-
raphy application fingerprint database (safdb), 2004.
www.sarc-wv.com/products.aspx Visited 10. Apr 2005.

[web4] Steganography Analysis and Research Center Backbone Security. Steganog-
raphy examination and prevalence survey, 2004.
www.sarc-wv.com/ Visited 10. Apr 2005.

[web5] D Brezinski and T Killalea. Rfc 3227 - guidelines for evidence collection
and archiving, 2002.
www.faqs.org/rfcs/rfc3227.html Visited 25. May 2005.

[web6] Jon Callas. Using and creating cryptographic-quality random numbers.
1996.
www.merrymeet.com/jon/usingrandom.html Visited 30. mar 2005.

[web7] Brian Carrier. Scan of the month 26. submitted solution 2.,
http://www.sleuthkit.org/case/sotm 26/index.html Visited 10. Jun.

[web8] Brian Carrier. The sleuth kit informer, issue 11,
www.sleuthkit.org/informer/sleuthkit-informer-11.html Visited 10. Apr
2005.

[web9] Brian Carrier. The sleuth kit & autopsy: Forensics tools for linux and
other unixes,
www.sleuthkit.org/ Visited 10. Feb 2005.

99

http://encarta.msn.com
http://ndaa-apri.org/publications/newsletters/update_volume_13_number_2_2000.html
http://www.sarc-wv.com/products.aspx
http://www.sarc-wv.com/
http://www.faqs.org/rfcs/rfc3227.html
http://www.merrymeet.com/jon/usingrandom.html
http://www.sleuthkit.org/case/sotm_26/index.html
http://www.sleuthkit.org/informer/sleuthkit-informer-11.html
http://www.sleuthkit.org/

100 CHAPTER 10. CONCLUSION

[web10] Nick DeBaggis and Eloy Paris. Scan of the month 26. submitted
solution 1.,
www.honeynet.org/scans/scan26/sol/nick/ Visited 10. Jun 2005.

[web11] Elonka Dunin. Elonka.com - steganography, 2003.
elonka.com/steganography/ Visited 25. May 2005.

[web12] D Eastlake. Rfc3174 us secure hash algorithm 1 (sha1), 2001.
rfc.net/rfc3174.html Visited 1. Jun 2005.

[web13] Dan Farmer. The coroner’s toolkit (tct),
www.fish.com/tct/ Visited 1. Jun 2005.

[web14] NTFS.com fat file system. FAT32 FAT16 FAT12,
www.ntfs.com/fat-systems.htm Visited 15. Jun 2005.

[web15] Brett Glass. Hide in plain sight. PC Magazine, Oct 2002.
www.pcmag.com/article2/0,1759,543491,00.asp Visited 20. Mar 2005.

[web16] Thomas C. Greene. Al-qaeda said to be using stegged porn. The
Register, 2003.
www.theregister.co.uk/2003/05/12/alqaeda said to be using/ Visited 11.
Apr. 2005.

[web17] GUILLERMITO. Analyzing steganography softwares,
www.guillermito2.net/ Visited 20. Jun 2005.

[web18] Nicholas Harbour. dcfldd,
dcfldd.sourceforge.net/ Visited 10. Feb 2005.

[web19] The honeynet project,
www.honeynet.org/ Visited 10. Jun 2005.

[web20] VMware Inc. VMware - virtual infrastructure software,
www.vmware.com Visited 1. Jun 2005.

[web21] Neil F. Johnson. Steganography and digital watermarking tool table,
2003.
www.jjtc.com/Steganography/toolmatrix.htm Visited 10. Feb 2005.

[web22] Neil F. Johnson. Steganography tools and software, 2005.
www.jjtc.com/Security/stegtools.htm Visited 10. Feb 2005.

[web23] Jack Kelly. Terror groups hide behind web encryption. Newsweek, Feb
2001.
www.usatoday.com/tech/news/2001-02-05-binladen.htm Visited 11. Apr.
2005.

[web24] Gary Kessler. Stego practices and softwareldots forensics mailing list,
provided by securityfocus, 2004.
www.securityfocus.com/archive/104/348223 Visited 10. Apr 2005.

[web25] Brenda Langedijk and Hans Van de Looy. Scan of the month 26.
submitted solution 2.,
www.honeynet.org/scans/scan26/sol/brenda/ Visited 10. Jun.

[web26] John Leyden. Website combines spam with encryption. The Register,
2000.

http://www.honeynet.org/scans/scan26/sol/nick/
http://elonka.com/steganography/
http://rfc.net/rfc3174.html
http://www.fish.com/tct/
http://www.ntfs.com/fat-systems.htm
http://www.pcmag.com/article2/0,1759,543491,00.asp
http://www.theregister.co.uk/2003/05/12/alqaeda_said_to_be_using/
http://www.guillermito2.net/
http://dcfldd.sourceforge.net/
http://www.honeynet.org/
http://www.vmware.com
http://www.jjtc.com/Steganography/toolmatrix.htm
http://www.jjtc.com/Security/stegtools.htm
http://www.usatoday.com/tech/news/2001-02-05-binladen.htm
http://www.securityfocus.com/archive/104/348223
http://www.honeynet.org/scans/scan26/sol/brenda/

10.1. FUTURE WORK 101

www.theregister.co.uk/2000/12/15/website combines spam with encryption/
Visited 21. Apr. 2005.

[web27] Terrence V. Lillard. Stego forensics techniques,
www.tlillardconsulting.com/images/DoD 2003 CyberCrime Conference Stego Forensics.ppt
Visited 15. Jun 2005.

[web28] Claus Lund. Scan of the month 26. submitted solution 3.,
www.honeynet.org/scans/scan26/sol/claus Visited 10. Jun 2005.

[web29] Peter McGrath. Coded communications, did the hijackers hide their
messages in harmless-looking images on the internet? Newsweek, Sept
2001.
msnbc.msn.com/id/3067670/ Visited 11. Apr. 2005.

[web30] National Institute of Standards and Technology (NIST). Nsrl and re-
cent cryptographic news), 2004.
http://www.nsrl.nist.gov/collision.html Visited 10. JUN 2005.

[web31] National Institute of Standards and Technology (NIST). National soft-
ware reference library (nsrl), 2005.
www.nsrl.nist.gov/ Visited 10. Apr 2005.

[web32] Inc Network Sorcery. Ipsec, internet protocol security protocol suite,
www.networksorcery.com/enp/topic/ipsecsuite.htm Visited 10. Apr 2005.

[web33] NTB. 30 fly innstilt p̊a grunn av cia-feil, 2005.
www.vg.no/pub/vgart.hbs?artid=282199 Visited 28. Jun 2005.

[web34] Richard J. Perry. Snow web-page encryption/decryption,
fog.misty.com/perry/ccs/snow/snow/snow.html Visited 15. Apr 2005.

[web35] Bart Preneel. Breaking the grille cipher,
www.esat.kuleuven.ac.be/cosic/thesis/2005/mai/breaking the grille cipher.html
Visited 20. Apr 2005.

[web36] The Honeynet Project. Scan of the month 26,
www.honeynet.org/scans/scan26/ Visited 10. Jun 2005.

[web37] Niels Provos. Steganography detection with stegdetect,
www.outguess.org/detection.php Visited 15. Jun 2005.

[web38] Niels Provos. Outguess - universal steganography,
www.outguess.org/ Visited 1. Jun 2005.

[web39] Niels Provos. First steganographic image in the wild. 2001.
niels.xtdnet.nl/stego/abc.html Visited 19. Mai 2005.

[web40] Michael T Raggo. Spyhunter: Stegspy,
www.spy-hunter.com/stegspydownload.htm Visited 15. Jun 2005.

[web41] R Rivest. Rfc1321 the md5 message-digest algorithm, 1992.
rfc.net/rfc1321.html Visited 1. Jun 2005.

[web42] RSA. Rsa security - 7.15 what are covert channels?,
www.rsasecurity.com/rsalabs/node.asp?id=2351.

http://www.theregister.co.uk/2000/12/15/website_combines_spam_with_encryption/
http://www.tlillardconsulting.com/images/DoD_2003_CyberCrime_Conference_Stego_Forensics.ppt
http://www.honeynet.org/scans/scan26/sol/claus
http://msnbc.msn.com/id/3067670/
http://www.nsrl.nist.gov/collision.html
http://www.nsrl.nist.gov/
http://www.networksorcery.com/enp/topic/ipsecsuite.htm
http://www.vg.no/pub/vgart.hbs?artid=282199
http://fog.misty.com/perry/ccs/snow/snow/snow.html
http://www.esat.kuleuven.ac.be/cosic/thesis/2005/mai/breaking_the_grille_cipher.html
http://www.honeynet.org/scans/scan26/
http://www.outguess.org/detection.php
http://www.outguess.org/
http://niels.xtdnet.nl/stego/abc.html
http://www.spy-hunter.com/stegspydownload.htm
http://rfc.net/rfc1321.html
http://www.rsasecurity.com/rsalabs/node.asp?id=2351

102 CHAPTER 10. CONCLUSION

[web43] William Salusky. F.I.R.E. Forensic and Incident Response Environ-
ment Bootable CD,
fire.dmzs.com/ Visited 10. Feb 2005.

[web44] Guidance Software. Encase R©forensic,
www.encase.com/ Visited 10. Feb 2005.

[web45] NeoByte Solutions. Invisible secrets,
www.invisiblesecrets.com/ Visited 1. Jun 2005.

[web46] watermarker.com. Ais watermark pictures protector,
www.watermarker.com/ Visited 10. Jun 2005.

[web47] Wikipedia. Alternate data streams,
http://en.wikipedia.org/wiki/Alternate Data Streams Visited 20. June
2005.

[web48] Wikipedia. Digital watermark,
http://en.wikipedia.org/wiki/Digital watermark Visited 10. Jun 2005.

[web49] Wikipedia. Jargon code,
en.wikipedia.org/wiki/Jargon code Visited 20. Mar 2005.

[web50] Wikipedia. Microdot,
en.wikipedia.org/wiki/Microdot Visited 20. Mar 2005.

[web51] Wikipedia. Regular expression,
en.wikipedia.org/wiki/Regexp Visited 1. Jun 2005.

[web52] Wikipedia. Steganalysis,
en.wikipedia.org/wiki/Steganalysis Visited 20. Mar 2005.

[web53] Wikipedia. Steganography,
en.wikipedia.org/wiki/Steganography. Visited 20. Mar 2005.

[web54] Wikipedia. Warchalking,
en.wikipedia.org/wiki/Warchalking Visited 20. Mar 2005.

Publications

[1] Ross Anderson, editor. Information hiding: First International Workshop
IH’96, volume 1174 of Lecture Notes in Computer Science. Springer, 1996.

[2] Ross Anderson. Stretching the limits of steganograpghy. Information
hiding: First international workshop [1], 1996.

[3] Ross J. Anderson and F. A. P. Petitcolas. On the limits of steganogra-
phy. IEEE Journal of Selected Areas in Communications, Special Issue
on Copyright & Privacy Protection., May 1998.

[4] David Aucsmith, editor. Information hiding: Second International Work-
shop IH’98, volume 1525 of Lecture Notes in Computer Science. Springer,
1998.

http://fire.dmzs.com/
http://www.encase.com/
http://www.invisiblesecrets.com/
http://www.watermarker.com/
http://en.wikipedia.org/wiki/Alternate_Data_Streams
http://en.wikipedia.org/wiki/Digital_watermark
http://en.wikipedia.org/wiki/Jargon_code
http://en.wikipedia.org/wiki/Microdot
http://en.wikipedia.org/wiki/Regexp
http://en.wikipedia.org/wiki/Steganalysis
http://en.wikipedia.org/wiki/Steganography
http://en.wikipedia.org/wiki/Warchalking

10.1. FUTURE WORK 103

[5] Becker, Grunwald, et al. Wer suchet, der findet. Kes − Die Zeitschrift
für Informations−Sicherheit, 1, 2003.
www.dn-systems.de/pdf/kes/ Visited 20. Feb 2005.

[6] B Carrier and E H Spafford. Getting physical with the digital investi-
gation process. International Journal of Digital Evidence (IJDE), 2(2),
2003.
www.ijde.org/docs/03 fall carrier Spa.pdf Visited 25. May 2005.

[7] Brian Carrier. Defining digital forensic examination and analysis tools us-
ing abstraction layers. International Journal of Digital Evidence (IJDE),
1(4), 2003.
www.ijde.org/archives/02 winter art2.html Visited 25. May 2005.

[8] R Chandramouli, M Kharrazi, and N Memon. Image steganography
and steganalysis: Concepts and practice. Digital Watermarking: First
International Workshop [38], 2003.

[9] Cyber tools on-line search for evidence (ctose),
www.ctose.org/ Visited 25. May 2005.

[10] K Curran and K Bailey. An evaluation of image-based steganography
methods. International Journal of Digital Evidence, 2(2), 2003.
www.ijde.org/docs/03 fall steganography.pdf Visited 1. Jun 2005.

[11] Wim van Eck. Electromagnetic radiation from video display units: An
eavesdropping risk? Elsevier Science Publishers, 1985.
jya.com/emr.pdf Visited 30. Mar 2005.

[12] Sophie Engle. Current state of steganography: Uses, limits, & implica-
tions. 2003.
wwwcsif.cs.ucdavis.edu/ẽngle/stego.pdf Visited 15. Apr 2005.

[13] H Farid. Detecting steganographic messages in digital images. Technical
Report, TR2001-412, Dartmouth College, Computer Science, 2001.
www.cs.dartmouth.edu/̃farid/publications/tr01.html Visited 1. Jun 2005.

[14] Espen Andre Fossen. Principles of internet investigations: Basic recon-
naissance, geopositioning and public information sources. Master thesis,
Department of Telematics, NTNU, 2005.

[15] J. Fridrich, M. Goljan, and R. Du. Steganalysis based on jpeg com-
patibility. Special session on Theoretical and Practical Issues in Digital
Watermarking and Data Hiding, SPIE Multimedia Systems and Applica-
tions IV, August 2001.
www.ws.binghamton.edu/fridrich/Research/jpgstego01.pdf Visited 19. Jun
2005.

[16] J. Fridrich, M. Goljan, and D. Hogea. Attacking the outguess. Proc. of
the ACM Workshop on Multimedia and Security, 2002.
http://www.ws.binghamton.edu/fridrich/Research/acm outguess.pdf Vis-
ited 10. Jun 2005.

[17] Jessica Fridrich, M. Goljan, and Soukal. D. Searching for the stego key.
Proceedings of SPIE: Security, Steganography, and Watermarking of Mul-

http://www.dn-systems.de/pdf/kes/
http://www.ijde.org/docs/03_fall_carrier_Spa.pdf
http://www.ijde.org/archives/02_winter_art2.html
http://www.ctose.org/
http://www.ijde.org/docs/03_fall_steganography.pdf
http://jya.com/emr.pdf
http://wwwcsif.cs.ucdavis.edu/~engle/stego.pdf
http://www.cs.dartmouth.edu/~farid/publications/tr01.html
http://www.ws.binghamton.edu/fridrich/Research/jpgstego01.pdf
http://www.ws.binghamton.edu/fridrich/Research/acm_outguess.pdf

104 CHAPTER 10. CONCLUSION

timedia Contents VI, 5306, 2004.
www.ijde.org/docs/IJDE-LeiglandKrings.pdf Visited 25. May 2005.

[18] Andreas Furuseth. Digital forensics. Conference presentation at Nye
Kripos [34], Mar 2005.

[19] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure
steganography. Crypto 2002/CMU Tech report, 2002.
www-2.cs.cmu.edu/ biglou/PSS.pdf Visited 1. Jun 2005.

[20] Niel F Johnson, Zoran Duric, and Sushil Jajodia. Information hid-
ing: Steganography and watermarking - Attacks and countermeasures.
Springer, first edition, 2001.

[21] Niel F. Johnson and Sushil Jajodia. Steganalysis of images created using
current steganography software. Second Information Hiding Workshop
[4], Apr 15-17 1998.
www.jjtc.com/ihws98/jjgmu.html Visited 30. Mar 2005.

[22] David Kahn. The codebreakers; The story of secret writing. The Macmil-
lan company, first edition, 1967.

[23] David Kahn. The history of steganography. Information hiding: First
international workshop [1], 1996.

[24] Richard Kemmerer and Giovanni Vigna. Intrusion detection, a brief
history and overview. IEEE Security & Privacy, Supplement to Computer
magazine., 2002.

[25] Gary C. Kessler. An overview of steganography for the computer forensics
examiner. Forensic Science Communications, 6(3), Jul 2004.
www.fbi.gov/hq/lab/fsc/backissu/july2004/research/2004 03 research01.htm
Visited 15. Mar 2005.

[26] Gregory Kipper. Investigator’s guide to steganography. Auerbach publi-
cations, first edition, 2003.

[27] W G Kruse II and J G Heiser. Computer Forensics, Incident Response
Essentials. Addison-Wesley, first edition, 2001.

[28] R Leigland and A W Krings. A formalization of digital forensics. Inter-
national Journal of Digital Evidence (IJDE), 3(2), 2004.
www.ijde.org/docs/IJDE-LeiglandKrings.pdf Visited 25. May 2005.

[29] Jan Libbenga. Dutch internet blackmailer gets 10 years. The Register,
2004.
www.theregister.co.uk/2004/03/24/dutch internet blackmailer gets/ Vis-
ited 11. Apr 2005.

[30] B McBride, G Peterson, and S Gustafson. A new blind method for de-
tecting novel steganography. Digital Investigation, 2(1):45–49, Feb 2005.

[31] Ira S. Moskowitz, editor. Information hiding: 4th International Workshop
IH’01, volume 2137 of Lecture Notes in Computer Science. Springer, 2001.

[32] Pierre Moulin and Joseph A. O’Sullivan. Information-theoretic analysis
of information hiding. IEEE TRANSACTIONS ON INFORMATION

http://www.ijde.org/docs/IJDE-LeiglandKrings.pdf
http://www-2.cs.cmu.edu/~biglou/PSS.pdf
http://www.jjtc.com/ihws98/jjgmu.html
http://www.fbi.gov/hq/lab/fsc/backissu/july2004/research/2004_03_research01.htm
http://www.ijde.org/docs/IJDE-LeiglandKrings.pdf
http://www.theregister.co.uk/2004/03/24/dutch_internet_blackmailer_gets/

10.1. FUTURE WORK 105

THEORY, 49(3), Mar 2003.

[33] Gary Palmer. A road map for digital foresic research. DFRWS Technical
Report, 2001.
http://www.dfrws.org/dfrws-rm-final.pdf Visited 28. Apr 2005.

[34] PDS. Forskningsmessige utfordringer innen dataetterforskning og elektro-
niske spor, Mar 2005.

[35] F. A. P. Petitcolas and S Katzenbeisser, editors. Information hiding
techniques for steganography and digital watermarking. Artech house,
inc., first edition, 2000.

[36] Fabien A. P. Petitcolas, editor. Information hiding: 5th International
Workshop IH’02, volume 2578 of Lecture Notes in Computer Science.
Springer, 2002.

[37] Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn. Informa-
tion hiding a survey. Proceedings of the IEEE, special issue on protection
of multimedia content, Jul 1999.

[38] F.A.P. Petitcolas and H.J. Kim, editors. Digital Watermarking: First In-
ternational Workshop, volume 2613 of Lecture Notes in Computer Science.
Springer, 2003.

[39] Andreas Pfitzmann, editor. Information hiding: Third International
Workshop IH’99, volume 1768 of Lecture Notes in Computer Science.
Springer, 1999.

[40] B Pfitzmann. Information hiding terminology. Information hiding: First
international workshop [1], 1996.

[41] Niels Provos and Peter Honeyman. Detecting steganographic content
on the internet. Network and Distributed System Security Symposium
(NDSS’02), 2001.
www.isoc.org/isoc/conferences/ndss/02/proceedings/papers/provos.ps Vis-
ited 19. Mai 2005.

[42] Niels Provos and Peter Honeyman. Hide and seek: An introduction to
stegangography. IEEE Security & Privacy Magazine, May/Jun 2003.

[43] Michael T Raggo. Identifying and cracking steganography programs.
Black Hat 2004 conference, 2004.
www.blackhat.com/html/bh-media-archives/bh-archives-2004.html Visited
30.Mar 2005.

[44] M Reith, C Carr, and G Gunsch. An examination of digital forensic
models. International Journal of Digital Evidence (IJDE), 1(3), 2002.
www.ijde.org/archives/02 fall art2.html Visited 25. May 2005.

[45] Russ Rogers. The keys to the kingdom. Black hat Japan, 2004.
blackhat.com/presentations/bh-asia-04/bh-jp-04-pdfs/bh-jp-04-rogers.pdf
Visited 30 Mar 2005.

[46] Thomas J Rude. Steganography, disappearing cryptography. GMU
2000 - Computer Crime Symposium, George Mason University, Fairfax,

http://www.dfrws.org/dfrws-rm-final.pdf
http://www.isoc.org/isoc/conferences/ndss/02/proceedings/papers/provos.ps
http://www.blackhat.com/html/bh-media-archives/bh-archives-2004.html
http://www.ijde.org/archives/02_fall_art2.html
http://blackhat.com/presentations/bh-asia-04/bh-jp-04-pdfs/bh-jp-04-rogers.pdf

106 CHAPTER 10. CONCLUSION

Virginia, August 14-18 2000.
www.crazytrain.com/rudedude.pps Visited 4. Apr 2005.

[47] B Schneier. Secrets & lieas: Digital security in a networked world. Weiley
Computer 2000, 2004.

[48] H Sencar, M Ramkumar, and A Akansu. Data hiding fundamentals and
applications. Elsevier, first edition, 2004.

[49] C . E. Shannon. A mathematical theory of communication. Bell System
Technical Journal Vol. 27, 1948.
www.cs.ucla.edu/̃jkong/research/security/shannon1948.pdf Visited 10. Apr
2005.

[50] C . E. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal Vol. 28, 1949.
www.cs.ucla.edu/̃jkong/research/security/shannon1949.pdf Visited 10. Apr
2005.

[51] Gustavus J Simmons. The prisoner’s problem and the subliminal channel.
Advances in Cryptology: Proceedings of CRYPTO 83, 1983.
dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C83/51.PDF Visited
30. Mar 2005.

[52] William Stallings. Network Security essentials. Pearson Hall, second
edition, 2003.

[53] Eric Thompson. Md5 collisions and the impact on computer forensics.
Digital Investigation, 2(1):36–40, Feb 2005.

[54] Hildegunn Vada. Reconstruction of attacks on ict systems. Master thesis
at Department of telematics, NTNU, 2004.

[55] Huaiqing Wang and Shuozhong Wang. Cyber warfare: steganography vs.
steganalysis. Commun. ACM, 47(10):76–82, 2004.
portal.acm.org/citation.cfm?doid=1022597 Visited 6. Apr 2005.

[56] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions
for hash functions md4, md5, haval-128 and ripemd. Cryptology ePrint
Archive, Report 199, 2004.
eprint.iacr.org/2004/199.pdf Visited 19. Apr 2005.

[57] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in
the full sha-1. CRYPTO 2005, 2005.
www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-new-2-yao.pdf Visited 1.
Jun 2005.

[58] A Westfeld. F5-a steganographic algorithm: High capacity despite better
steganalysis. Information hiding: 4th International Workshop IH’01 [31],
2001.

[59] Andreas Westfeld and Andreas Pfitzmann. Attacks on steganographic
systems. Information Hiding. Third International Workshop, [39], 1999.
os.inf.tu-dresden.de/w̃estfeld/publikationen/ihw99.pdf Visited 10. Apr.
2005.

http://www.crazytrain.com/rudedude.pps
http://www.cs.ucla.edu/~jkong/research/security/shannon1948.pdf
http://www.cs.ucla.edu/~jkong/research/security/shannon1949.pdf
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C83/51.PDF
http://portal.acm.org/citation.cfm?doid=1022597
http://www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-new-2-yao.pdf
http://os.inf.tu-dresden.de/~westfeld/publikationen/ihw99.pdf

10.1. FUTURE WORK 107

[60] J Zöllner, A Pfitzmann, A Westfeld, et al. Modeling the security of
steganographic systems. Second International Information hiding Work-
shop [4], Apr 1998.
os.inf.tu-dresden.de/w̃estfeld/publikationen/zoellner.et.al.ihw98.pdf Visited
25. Apr. 2005.

http://os.inf.tu-dresden.de/~westfeld/publikationen/zoellner.et.al.ihw98.pdf

108 CHAPTER 10. CONCLUSION

Appendices

109

Appendix A

Identified Signatures and
Strings

This appendix contains hash signatures from steganography software. These
signatures can be used to easily identify steganography software, as mentioned
in Section 7.1.3 and demonstrated in Section 8.3.

Both MD5 and SHA1 signatures of the files are provided. MD5 signatures are
compatible with Autopsy/Sleuthkit. The signatures of steganography software
are created with a small Java program1, which creates output as both text files
with an identical syntax as the md5sum, sha1sum and md5deep tools and tables
to be used with LATEX.

A.1 Identified signatures of steganography soft-
ware

This section contains hash signatures from the steganography tools examined
in this master thesis. Both MD5 and SHA1 signatures are provided.

Element MD5 SHA1
EzStego
DynamicFilterInputStream.class 901fcfbbef66fcb72904983d0531423d 19193171ec8a62ad055a372ecad04306c831b2e8

DynamicFilterInputStream.java 938fe9c1b31d6f33df2ecb229cc0bbf7 f563c54a6e9b7609c12345a86b5eab03b185c407

DynamicPropertyInterface.class 11c5829f22436639b996640af1dcbe1e 22007972846006a7b9eb5dd41682b7b457deb9f6

DynamicPropertyInterface.java b3f9e79b35f4c1077be27a794053ea16 c76f97e37f027f9d61076ac0f6862bee6db12c44

EndsWithFilter.class d90ddb393fe6b9557b773b447cc420b0 f963f0166acc99474163c8636429bd88c1198bf9

EzStego.class 7e029a7196e5599ac71756e6df0b3e6c 4790776d70049917a91ee263dd8e3057a21e2ea9

EzStego.java 6b0f63bb1845bf9e1f5f445837dd3918 8054a97424a002039537e2619ee91d052cec1abe

EzStego.zip 383bb9c4ca5a535da4f53006368cf09e b8a97ce3d0bdd512f20e99a5e0189fa5fbdc166d

EzStego._ d4ec432755ac0f4fe7570b7a5dba8bf2 318bdb51747e35dda9187f5082816c251194a48b

EzStegoEncoder.class ebea3ba597f0f37116d1f93e86df4966 d74c891788d70948f9aa58a558ee8792a73b02bb

EzStegoEncoder.java 60b08b0c22986bc3795a81eb04414419 c7dcfd4feb298e15b1066f8ade2aa076564d7f59

GifEncoder.class 9c6276f351d9c74880164af68ccebe53 e1257e70eb759c3a7a969050cdb27a28b5e509d9

GifEncoder.java 1424fb65f2355c5b914e1fdc97e1476e 1253698d9ee672f67dcfdc239350634d558aa177

Continued on next page

1Available on the cd following this master thesis, md5Sha1.(java|class)

111

112 APPENDIX A. IDENTIFIED SIGNATURES AND STRINGS

Table A.1 – continued from previous page
Element MD5 SHA1
GifEncoderHashitem.class ff26bb5f6f0f91699ef897aaf764da98 0e93d5dee6b5c7988142920fe61672791ad9c092

ImageEncoder.class 479f3aa312e8ac6f22ede65ee85c402d a469f8bacf03a314c2d54065bca8a253b01df809

ImageEncoder.java 4d88773c5c81df3cbf8e2dc8f6f905cd 48a2fa55a1dfe53df371df60b7af650f73c7d0a4

ImageScrollbar.class 0431735c4fe128a71e8a069fbe61f82c 98e5ca9fbf811b1f62987cc011d481b25ad2abdc

README 4f30e391a41fa31e6512418458adab8d 89ccf7ddd955bc497c8f23f011494ec59f81e5b2

RGBPaletteSorter.class 3f93ff69a6e63ea462a7fea164499c79 d473fca67d71de521cd5485dce21d7435f90ca27

RGBPaletteSorter.java 0cd15a3b45cf922f9dbc54d8d0a65caf 09cd1ba30010c4358cde76a24df39d71fc2d5bc4

StegoCanvas.class 2159a7c4df2cdc2f5cb02b01e4b8bbc4 9e618d5093d0a7da37a6cd1dbcb67a3b2353527b

StegoFrame.class 716297bb967d098b04e8b13418214e24 ffa71419524690fcdff30d5d6e74f64b0a169094

StegoPanel.class 2d46e4c8794fe563f319bf75ba95aafc 2fd097c2638a27ec79b22941fa4a6154cbaedc7d

ToUpperFilterInputStream.class f69757f30648d0ba2ea1d47a5fe14450 6b1f5ac74b0f4d95efa744e6f2483689591fea68

ToUpperFilterInputStream.java 52c7186b2ae89bfc6c0dfc1a120fda62 b9abc04898415c5efc3a13ac8aec560b2fa506ea

appendX 0.4
apX 6e3c86b822c13581c8e2a93987342acc 7adca736d1c0cb11baee97e0b5d911262896cbef

apX.asc ff8a510f4ff3aa08796aca7efc3614fd 98291d19fc64233295f3bc13149b7d8afe56fbc2

apX.bat 7d94d5db22424ea028a29e65ab5ebaf6 5505365672dcb9400e84ae011fdfc44f4720adf1

CHANGELOG 9ec4ed5fd39616e6cb86caccccb866b6 cc4fb0d010ba9689dd4b955362e49b8c987ecdb1

README 2cc8108494ca9f4a556adb1fec0be816 bb177690fe3cf2eaff5478739aba5e479b631ee8

hiderman
Aide.exe 029b00c6e4715cde965a537dc397c04c c6b972189f2c2e4af851e0f74bde7a12ca35a83c

aide.pdf e94a612305ddff0fdaab76e162616edb 6f67b12446b7b90efbbf73cfd8077ca7bacf17bb

Corffre2.ico 68c9270c5775acc21f83aefc81a439a2 1e1b18c30a0dd3d6d7c5059a85c5a37156ae877f

data.bin d41d8cd98f00b204e9800998ecf8427e da39a3ee5e6b4b0d3255bfef95601890afd80709

Hiderman.exe 863b3370f9a454b2ba49a7dcad52364a c7530f24b4e9c2eb8cd6e0fae3eeb1bd8a7d9362

Hiderman_us.exe dac0059a2b9a0443b76da730f657c668 caedd035b82acbebe1928dbaef279c5fa355b301

Licence_Agrement_Us.txt 3b3bc010d69536965aabe432bfc1681d e0edc43defa87e1c75b3624ef5820f48a8bad447

Reset_Hider.exe a2c680728484ba436d8bf31473527350 b4f6b89e2ee4ae3aca35b5fed71639f642ac5fe5

Temp_Restored.bin c1dcbfb57e1c7a9eceb98e708d9eb810 ae67c3ab93fae8b780b63a9d3d0f96d3062bb7e5

tipsus.txt 4b55645bb6c69f06844cde7f8f022d33 4ccc17f459073484413eb2093d587dad3701effc

uninstall.exe 8fde804d40de5e735c717470a494ec9a 735046d85f4f11db7273528819df42bd65c8bef4

uninstall.ini 37d4022f7aeeaab1d3f00e3b552ee3dd 277e62fec8a16e7a9923312b7a3dc37b53f7868c

Invisible Secrets 4
blowfish.dll ed7d721d0e29b215d02af84db9c67dfa 6fa174507fde66ba57cfffdaf226b688786f9c63

buynow.rtf c5db5a720f7191cb1785732a6d23832e 6e5838df3bdca88b038c050db30bc8b370a68225

cast128.dll 2c864dc6ce1593bfc0fb8c87439a534f 0c2bcd2a02b0e0cf0fcdcb32ae9c37cdb25362e7

diamond2.dll d851f6d039a09c6e21786663c16bf808 ce688ae4008972ce5e8d93408b8552952c9941de

directmessage.dat 66b86ab0232f8377c518f27ef9ae4be8 08e5ba8ab2c17ed0eb5cdd45c51f7391ea6190ff

directmessage.xml 3c3f68e7317a1936ccc3c7b6b853267a 6085a12f8c2d17e5dd045175e023ffa1c9dd83a1

english.lng 90be7f563643fcd33b7d313b2704b6e7 c939b4998edd163d7b91c7bf0c9e92b1b20b21de

feedback.htm 5ed448517a9beef57fe624f8bba9f048 4919ed0c4ddabf701f6faabe9f89004e3f69d8e6

gost.dll 12ab3fb71d00b7569944524a8559fb07 b1f45b860c2a64dfe226861e1b9cea7baf9f9c0a

INSTALL.LOG 9c005b8d4c3f15f8401f72744fae421c 6ff0abb6b69781ec79ee16f2066dc95d223f7155

invsecr.chm c9c84970dcdb04ec3d3ea55933a4cdad 65ce9508628d7490c6675c92b8995b55143edc4b

invsecr.exe 32ecc9e19d03779ca2f24ab61295ba9b 4ced01c56897b04bfea739a011b90d34eb93d059

invsecr.url a2c421a07f4248e9e49904c2f59f4c84 c58b28aa4ef9e59c8e942ea639af310fb9c0fa80

invtray.exe 9e535d292a3be910428fd03ee45972b4 15d3bff3054a059c7b08c6bb3a6df07422ad106c

iscm.dll 8267ec9c9295c6b864c516fb18c4c03a ed46b2caacae0ddea4e7b920358259b2d7adca92

keycapt.dll 39927a3dd5a6454e139f1fcb4902fe39 e5a1e8e707464ca264d19128b6669a933a90b130

license.txt 2ac672f3d27f740ee72d6941542b5fbf d6325174c102c2daa3e0b2f2b175bb6dcca38bc7

neobytesolutions.url e87c39edb3f1065325f1b8f1c493d5a8 867cefc1b77cf6c1259a8b2af3f4da82d2031f00

purchase.url 040eb27a3f6ce8e12935c3d5a828dff7 9f20f3b2c59d4fe7c65341513f0533c5e7d7459b

rc4.dll 8088090c02e884a9fca9eb7941ee5c9a d31d32707186aa022b1771ebfc84b63daa0eb5f9

ReadMe.txt d692abba2742cb36539de9cc057a0242 75dd51e6a69d98996f14b2740dbe89941de0e48b

Rijndael.dll 16ba2a04575c792235ea3c81c044ece8 935478008d4eed8929825dd81014af45a6c507c9

sample.bmp e7f64fc08c7b179f19bae25edac2d211 27c1dc448425a1b83aa80775ef296e00e496f5c8

sample.jpg c4a8af3a38f7480893980a69f97b926a 5c717c829c30b503574d93aa0adef10b42e26c80

sample.png 2859626ff8e7c0eae3bbf6a91c736f89 007f33f438876925dd77e5ad6fdf399697f429d8

sample.wav 751f15b52381c6a7017bc8cca74b4e00 570f4eef5da7fcbeee291dfe315a83dbe57e45ef

sapphire2.dll b88b5dec49947d36952107f7b8b0f725 494a5f688908d680d222b564ff295ef748d2f2ea

stopinv.exe 3f86748e36c77e1c6b6371d064fa1786 d1d3f7c2dda065b27503e502197a0a673ae34c11

twofish.dll 5a23616c88b53757ff3c51bb39b0b9cd 1b1504f7c5a72a4513e027da3a8bf153e6899978

uninstall.url 58bdf30053ee9df66f1c59b336799e00 b2d89a463d0a89373bcb9bc158f48cf5cf8e4159

UNWISE.EXE 973567b98cdfc147df4e60471d9df072 3c4735750c99c63e6861170a8c459a608594211e

ZipDLL.dll 164099bf5795c087aea45f8e3b192fdc b9fb76fa61cbe05c0068df64f0c1e1d47867564c

_sfd.exe 5b0de04d6b7dc167364ccced6652d7e9 7e363db7477a80f4eb9d7f0e40d7c2547900c8ca

Continued on next page

A.1. IDENTIFIED SIGNATURES OF STEGANOGRAPHY SOFTWARE113

Table A.1 – continued from previous page
Element MD5 SHA1
jsteg
ansi2knr.c ba89cbf665907d7be83f131cafe5bf80 2f0c8a43bc14aa03fc03dcfa15487fbc10987734

architecture c22979140ced9db7877d3ccb00ac386b 37556f52cf878f178543ac90183e67daa67fad07

CHANGELOG f3a66676b74d772e8c712860f24465e7 39065bfa999c593c88ab0dacf4d33ca3c27c1794

cjpeg.1 9ce8dfb6c4bd5faed91b15414e48011d 8bf6e475919e496a84b9ba0c88d60d5be2e9bfd4

ckconfig.c 89f990c3488998b4b8c80c95fc2ef08c 1f06448a0f115cbeb0704bc21a138537c5a4ab29

codingrules ada6e9f812f7233c1fd6432ddd907698 9d1663ad2b939be671353ea5666937447e99a8f6

djpeg.1 635ce2127a3dc839fbffca73138fe55a ced98e8377801611a0f1753f25e9be39c3ebae29

example.c c389e10d0279fceec8c70f0fd8a21ded dbfb07452b35ec310bfbf1137696fb919c818c3b

jbsmooth.c aa663c4dff4efa5640234f9ddef164bf 968d51dcf796b393e8b574be8f12f01f8a40587d

jcarith.c b2de130bdbc4292d1e4ef4681b5aa1d6 89ba89fc6d9a72d821e368b19cb095609b74fb5e

jccolor.c 0221d7ee67d0b878daca693fbc3aa7d9 164e01ce52b596a74e5cc6423e8a30c7c9f712e0

jcdeflts.c 7092edcdcfdd070bb70479b278890053 317dd7f00fc123dd58487e6f269a767f1ece3e4d

jcexpand.c 50ca2f7eafc0a96231de67d51a34644f e36aef64bacad8d047d4995e078fdce0ec4ad221

jchuff.c c519be39b037574d6bb1e8147add3654 76427d8f0148d9343deab8ef63d67d2b92de131f

jcmain.c 39ae806f2abf0a92cc62c9d18cf0955a 356c087bc265b3700b0576c58a9939fa14619459

jcmaster.c 5adaade36034d9fcfa95ff3deee39830 ab7f3fbace301907f85425fa8a9e3e1013951838

jcmcu.c dc8ca8b8151c5c2a2acdcdd4b498c563 8815603fa951f53f1de30a189abda4852c4268e0

jconfig.h e3505c52d134a1a8aed4b6acb80d444a 1d32732f5eca65937d93e3219205b2f863b71320

jcpipe.c 4f563f9a1cffe86c5c70b8f5c7716ae6 51751cc30f2bfc4fda221d7a941c0bd8aa02adb3

jcsample.c 5fe0aba4b7b05ad9ab4229d588ec548d 937837bbc016d552bcf9a320920b3bfa197ef84a

jdarith.c 086a1e313a186628b388ca3d4210584f 9bd7af8a8eb96063466f6aad140374b0f973166b

jdcolor.c 5dc9b75d7e0e9d0c904038d9a895902b b8bf89d7e85d5c4d146401061f56b68d5f8052f3

jddeflts.c 1535ddb3c5f6aaf993e54d8bd55f67ae 2684618aa6acb1144d2ba86eff52c644762946af

jdhuff.c 85080e234dd7e47812e6c7fbd9e74cf8 d12d5aea9779f96f4e7e1fcf37df30bec6b0f6b3

jdmain.c ae3236f14f60f7c8bce6cafc3ecab1ff 140eef8926fdab43de6ab557469ee93a33d46c61

jdmaster.c b77247cac8665178437a6085682df0c3 ba16acda66cb47c37bdc770d0b4bfa8fb158ca44

jdmcu.c 3f58225833b9a34606a26822e5c3a2a0 8aff3bb8c997214b06a703f914b74ae926a0c9d6

jdpipe.c 615a5da00f2bd90fe1e24de676b3c766 027bc05fd415543574ddab17ce71027335eb2269

jdsample.c e34aa15535c09f7c5cf3c294a0c944a4 202a72ad1d7a94da9ee8c4ff68b650d34733ee1e

jerror.c 1ddd9477548fcd991e5194ef63c2fc7e eb651394e1d809ccb8096154404a1d188b3983ce

jfwddct.c 0bd025e5a4b4700a49987438ecc7ed33 b5fa7f4c162a63fad2d77b789aad32ae0dafe7cf

jinclude.h 5bc5a36d416c1d48dcb74da1bb7da55f c90b24ef55740609138906ad16eb911c219c5dab

jmemansi.c 62e149fce3b1c80328135d3db425d68e 886135c64e89debc685fc67f1717260bbf5728f6

jmemdos.c 46a7aca9e01ae381a5f17293deb7589d 031adcb007de4ba3634e612b56f5542c7774f063

jmemdos.h 65874374377bd16a19bf79a07d10a668 55fa67b632f82ddb9af7eb4455b4242246690d92

jmemdosa.asm 73a2757a18c9243f4b3451631b7e254e 4ff7b9486b8ac0b5bb42327b8f2400d1ab9c8d21

jmemmgr.c 134721377b2c13e61a7791dce8c4bbed 413228b81f36b489f969d241e07c7fe487c5738a

jmemname.c 00f3ada3ce048777ca60666cd5192f7e bf3728ff4ba79350fdbd9a4d62d68ab52a2b3aea

jmemnobs.c c88a293ffe3b0269255ddc070f9429d7 a7d458b2fd1e1e87eced49d13588d9b258ffcfd9

jmemsys.h 0071d83f173c813f4ad8949005916095 15e90f06bf25f1cf8ab634b9be011bae55255216

jpeg-jsteg-v4.diff 64663c1d3d2c8e0668d234342a08ccc3 c6a1e599f4af1b3f40668e6f7d3243402cecb001

jpeg-jsteg-v4.diff.gz 13f2aac0436c194c0f9b1993be8824a6 ba703068f8f8d7956a90476a111ffdcffbc06dd0

jpeg-v4.tar.gz f3d31d69fb47679d40c0c8c14fdf159d 06b8e1bcb6a291351f0d92d10a2b0f9110a1f60e

jpeg.announcement 04446a0236852915aa900a053253dfa9 e1014eb3433ac70c2a09018870e3149ea5914373

jpeg.announcement.gz 8360b7901968a2b9640498dab91da981 81a5f50fda8f0e32c640cb79e6432ce645290ed8

jpegdata.h 18e43aa159e8479a1ab71f364cfdd00c 5da8b0b55ca08f8b15f3729e184a49e486b46c5c

jquant1.c ad575c6f3d5372db6fb129c5514639a7 e6b0c34a556b95bbfb5d013db6c26b8276557f14

jquant2.c 2d2c5d3d45f12c62dceaac2ebe9c5b53 557c884775b07b82fcdabdda2554a4ffafd27ec7

jrdgif.c 2ff2c6ac5235538b8a39898b11e2eb04 f91c93749add94ec71fa7aff6d5ca56f8aab74ce

jrdjfif.c ba1e39f173fdcd6106cb71b7eced3e93 6f933b76667d505cef52d3b844764edf7acd5403

jrdppm.c fcc35cdece246249d090195e5203ad44 f36d5d2556eb9931a5c33ff9ecad53e587fc625c

jrdrle.c 8888f3448543f914c913950e743e82b4 58a82e305693fd53b09307ee1f4829b5b2e84880

jrdtarga.c 362b0b73fb4310d127449f0271b7a976 6088deec80d8032092d04ba8be680647c27cdb3d

jrevdct.c aaf4cbd6b39155ee19e56cf7938ed32a 6fc9c78d6800624daf1db91a313d6d7e7b5ed943

JStegS1.CAB 465773adee38a29c15552c867285b379 156a619c2b4ef6bfee0d5e4036c3399b1ebc9a6f

JStegS2.CAB a96d9775bb8259645a211a364d5683b3 bd4b4cfee41672dc0164cdccebb18a943aafd4d6

jstegshella.zip f5abfbc71ebe3e186649635d1e7eab31 32106b76ac5c977970fe5586ef4198b2460a6ac5

jutils.c 81dd4a590cf6c8c62668fa9cf689cb38 c7476e86d771a6edbc12e5f5bf0e26ce412d8cf0

jversion.h 78ee9b5805fa925b3738c9dc22963c1e bb4ecc7c67a224ea4ab4d7eacb4ee6ab30620bac

jwrgif.c a6d0566b9ee03381d08683eb91b20102 29207293e77a974689160a6cebd2a0df9699a607

jwrjfif.c 1f616f631f2657afbc80b420b94b8603 f9ff3ca5f42c01498aae3f28089452f1a8f37c2d

jwrppm.c 09955c6b206b45d27e547e627f28938c 11e3ee2b38cb4e9a3a12ad08fcad0cb81bb16208

jwrrle.c fd335a1e2308a5f817617721b4c0eb8e b89952f24fed3128da8f601d2d90a36f1fbbc4e4

jwrtarga.c a2c5873afe462c2edcfbd834b56a59a4 56cfc3bd5180bc9559afcbebd6d51c14d9b9803d

makcjpeg.st 07a3151da68003501518589ad8ad10e1 072dbac16936a4bdc0f7ae3d5070b771150fb006

makdjpeg.st f17aee1cbe8686a75241f8a05106dd17 902e57b18964f3ed4156ed43d4977db278a06857

Continued on next page

114 APPENDIX A. IDENTIFIED SIGNATURES AND STRINGS

Table A.1 – continued from previous page
Element MD5 SHA1
makefile.ansi 4597e410e139012e45fe07e19e1574fd 36c37703e172ec89d6a7792ba8ef85b855e0b983

makefile.bcc 947b41bb733eae63dab1d59734055075 baf0ab17450ef6d3ffb89f8c82a07572a5939857

makefile.manx 8d09765a61ed7b9af35c054d44bc72e1 8fda87a018f7acccc0c1ad983c27dc6a0c859844

makefile.mc5 4baca2d453a42fff2edd75de49d20662 ccd5a762e9e7b20a807f87768a8761049b2bbf0c

makefile.mc6 f9d0072061e78e5a464b2996cd237b2c ea34bbc8cf05898708684b210c1e1b9b20ce9528

makefile.mms f9f6499620c0a7b4a4317c786ec93cb3 a37bcc9571215f688b9ac65a559ad9ef401ad2ba

makefile.sas 06f939d6aea766e11a4845b56b9ee81f 72a81050ce199f8a45bbe35c8c5460ce9b791541

makefile.unix 90b6a5c0436cc867ff1a559d1d717c26 45cde9e340b648b20c945dc595b88baa4c404bea

makefile.vms 7ae6744dc8991f37a42ccff23c503c6d 9f1a790090c3843db7ae93721555b79fbbb5dd5f

makljpeg.st b53b5523b66bd63b9e104214b265514c 6e13fe12d0c7891aa3cb58443639b19dbe5fbe1a

makvms.opt 8024dad70d8b9edd012ac1189c1a1221 bb5de8a6c1049a949dc6d05f5ddcb94adb99f993

README 9e670b34d75436b814e8fb381505cc7a 4f64a917cf56a4a3fccb6c52255e5c60cbdc2404

SETUP 7c91f9a7b7d0a168cc5f05da2318eb43 2d3b79bd7241ad22293385dfc799fed5371adc63

setup.exe b851276c65be17e04d363c7c606aa3b1 f6c857a99fd081a90dab6f2cb3cb8e1cef02e2b5

SETUP.LST 5e64d352666a7fa86bf5e4d8a2d33f7d 09bd5b2176301ba2cc5dbca1ea32369c077cfc86

testimg.gif 133dfd5b1d60753079f0d510b2861dfc 7d455e56e33324d0442b1b664e2a04069cdb0086

testimg.jpg 0a7366639f58a8a6b08483e41d92077e 4040f8aef4aad45b4df3b67d821bbc0279d10a53

testimg.ppm 80ca9932ec3ef7f25e8a6f08abd43008 218e007c9215da5da4e2dc9a0eb9aee65ffaadd2

testorig.jpg e0ce598fa47e69c6224058cf3bf5b60f a1dd3cf8b3d2e27e1c4780738bbe007415f9d7ff

USAGE a79237c3a15f594b78fe9baadd94874c 3a47f6d1500572838fc1904b4f9ea46e8011f8b6

mandelsteg
comp.bat a18f817f7a822f6db9f1e2664d96f7a3 a6945a7b499e751d406a2a4481a3a75c3f611627

ext.h 3e109d6e9f4cc25a36f3dc159fdda28e 8cc82fab1bf74f226c4d70206a5a9e5cc2ff4b7d

gif.h bbf869aa4e73ac94f57bc7c3a793a3cb 4ab4965dcf040b41c275a8a603f86e311c7cfb72

gifextr.c 0504f65eca5a193439a29abd3409f190 046ed275e3c91036b241c76aa2a09af398cf23fa

gif_comp.c 413ac84cc312a54e65e016b689f535e6 5787e5859b49b4e7aacfa75affcfc18be943de4f

makefile 403ecb43f3ef1ad56612f2137bd3aac3 7e619180e7408aa0ccb2d7e205a90f443f1e679d

mandsteg-10.tar.gz 6bb5e47f4c28e08d3d4702425242449a fa19bb14d9dca4505f017053d537c6f2488a874f

mandsteg.c 3dbd42dfbd8f8185060ff57c0565da06 ae41ac2040cf46a866537640782a8e9b5a4bae5a

README c088917cf179cebb99e06393ace5c157 e452ea9144a86385256f044bc84e8b922bf29e3a

outguess
arc.c 4b288fb13c13c60bbfcd02c43d66e357 68626d783341765dcea1b4dfec894d037a172779

arc.h 5fda66ac7b458493201fa55d3df3c9bc 21536db2ddb2d86478449cfc40cd4388397852c2

ChangeLog 522da1211bc57f5cd1c9ddb1cde023ba 3d035aedf40cf8353b7d73c8edb85ea4ad958711

config.h.bot 1304918b9bec624eea2909dd4cfb1e0b 75e1ce492968fe412466e9c28d0003735117c900

config.h.in 52b10277f3fb4ae3ebad1959eb848140 755b7a7b7694fd77e4b4e3ff6bf78f02f021b932

configure fc6939faccd58f721016b91b501845b5 533173c0e4e76df3bbac21f3ce989a721793f25d

configure.in 5b946a00c4ea6f42e7c3dbe149f0a956 79950915b2fa48dbd103a9b2fe4b9c4db353408f

fourier.c d2e9e8c08786d8e0e78f08b3d2e30ce5 0e8e0498c648b05c60c22b93a705ceb5fdfe843f

fourier.h 8a49091488b1aa7fb1dbc8527940a4b5 9fe2a0e54ef3aac11d6a1c1a018bce3223825e6b

golay.c 2a7f07304d53ec3b06fe1cbd192fb7ad a779c2ae50f749691abcaeb3d4ed51016548bbe4

golay.h 5ef38206ea2c005257bf809727097c5a b71888500d4b0a35739ad4253334104440f8f4a7

histogram.c 4eb26143e6de993b38a0a9209a47394b 5b1ff3ac33bd181ead2496c3d35bd70f25602576

install-sh 9b9a3382dc6798b6cc9db374e5ca6c9e ada1c3622f7fda4987bccd8b7c64f8fdfe919818

iterator.c f9a72c8e27e501173bee391252b0591e f9b366826b28226f1fb9997bd1391a5bca34a46c

iterator.h 286813dec9fe0a7c2b47004522c186ee aae1c874e8012c3e2e7a08969d03ab779127d1df

jpeg-6b-steg.diff 9415744ee11168628ba3b7cf310cb6db 938dfbb96a15be37090515512a77fc8823790902

jpg.c 9b5ac68cbc3ca61d0dce2a7b4ff4988a ce0835d22f8d64ae600550f04c79805339938965

jpg.h 97dd9c725585925c69d2918d2b932dd4 5571fba232db8998d8cdd62e63abd36f60dcfe1e

Makefile.in 2b7d640450984a13bc7ae3df6172a05c 85e80895c8c3f5440224c0302342b48b494d4d4d

outguess-0.2.tar.gz 321f23dc0badaba4350fa66b59829064 d8d7ff3d8f492c3fbb075ecd2c6e87ce7cf13b80

outguess.1 dcb82d262a14bc021d62892c25d6c068 e07b8da94664b9c74ce3017d117ed444af76f4a8

outguess.c a2fc74251e4a679630023499aa6678df 9672149e9a0987808aa560895edef19324ae7023

outguess.h bb84b6213acd7dc6fda08e2f79315e44 b748922e29e79d0d24734898c47147e12663be54

pnm.c a8a091e4c7411dae79f7a428b81f3e84 0abe6f2579a21f8c7ef2b0356b7127bb89a0623a

pnm.h 2975ad88222258732c71cb54a0c61a35 9d8e7afa2d659f8b3e44b8a2d72ec98f68451738

README 3d733bc818bcbbf3ff89777fc03966e3 9a3ff8c927a3f35b17e1fd1787cf31f2f4c0c2a8

seek_script a64675ab5c1005ed9279cbdf9719dd5a a192337781b3803b0206d9b3c4d1cff4a208a180

STIRMARK-README 60bf80961c406870524a9175a355916c 94c726bf2fe4936f8022eef0c43f0c460be8a0dd

TODO d41d8cd98f00b204e9800998ecf8427e da39a3ee5e6b4b0d3255bfef95601890afd80709

ansi2knr.1 5e1899cee05f8b6f22a67923e8137999 dd505f18897d8f14613aa79936def0b0f3cbb839

ansi2knr.c 7b35c47837cc799eeb3653ee85f25ce1 4c7ed24f77d6dbe05b734cd73489c4af8c066adc

cderror.h be7d9da751b8a0e2663af1bd6a91fe31 0f86ace2f8d088d04d47a1f0dbcfa5f19214464b

cdjpeg.c 4ffdd4eeafaad7234a527ba382381380 56549d8cc15f4a99f3b213d9b5e7330d95e722ae

cdjpeg.h 41b7e56406e2148542d9303216736585 d9941a32cbfb60d8d1d95b4b62158f46677d66c8

change.log 4f4c5be244fb2c70b7940914938c0dda 046ad3ce3402110901130fcd1ba0f5466d83bae4

Continued on next page

A.1. IDENTIFIED SIGNATURES OF STEGANOGRAPHY SOFTWARE115

Table A.1 – continued from previous page
Element MD5 SHA1
cjpeg.1 5690e9c297900db4cd50bc5ad8905fdd 1e2d759cd9353dffaa23c9154529f9d72c28dd4b

cjpeg.c 4dbdb32c41596544f500abc8636bdfd2 5e847dd0aa3d3694f98d25a058cd7dfadb6f5bcb

ckconfig.c b440bc8a7f36d75cdbfc7d67a0544f72 1dc0387d584bf9c39dd28782d130482357933623

config.guess 755c3f68567ac6dc168086d8fc10bcbf 357867cfa4252275b17752363da1992c7be1ed88

config.sub 771e3460a0731ce5ff987925e40104af 15e65bec3b3dba99bfdd0e54c1d48a1026d2d495

configure be58fa2f0073922c98d6760ee364ceb1 c5cb75c5eb0c976ac81f481d89baf18bf06f34c2

djpeg.1 52a74eef729c28448e56b731f45a3dcf 84f98ce0fe3c29cae85d885831d9cb78ffa23d28

djpeg.c 2eaf705a7f37e9c88eed36d666680735 226870b8db01ddd620d50b6a2909bb6dd80773bc

example.c 168af978e831a5fb7bc9ba5ebb20dc51 cf9603ede98c40f12ab187a3b78d19038c8ad50d

install-sh 9a98c7b799ad906d61a88d52b5790b1c f70782d58c610b0f5ac3343a45282c429df45b0a

jcapimin.c c2b39cff18077c2601c7f013bc461764 976ec8c49a81616a85466b04184f7ea8f4a8cbd2

jcapistd.c 98951837a74c22f4fe7bb1ff6c320116 2da43bbec11a814cde795fdb75a9cba6b6c31b7b

jccoefct.c 5c4997ec8ba5559dd1b4c87faab144d7 08d046aefc1227eeb5b575c55a4ea6ec3b578b09

jccolor.c f92444f9ec363c2f9bc847b46a0f020b 6050333754a73ac6def0ff8860d80e4f93c01d95

jcdctmgr.c bbf7883cacf29210d4adff73bf30ec6c 2b765927df06fc2f693a488083b83c82ce818515

jchuff.c a76b65afe34ce454eadc30493df04932 bdf601f8e79245c899d821ca0a63b7540c9220fa

jchuff.h 3a359f3bf9cbe701951eb1ae7cd55075 721250f329f4ddaf806a77341d87b08a5cdb61ee

jcinit.c 539fb9ca6829be79f545c74bfb9526d7 42cdfe7f4732552edd909528481aaa8526479a09

jcmainct.c 642ae670269fac0832313b24be8f710e e109512824f1401496caf0f78574d0ca5a0454ad

jcmarker.c af0a5eabc655397fe50c5e55c210db2a 0c16a8d868961f41f74d84c8da1c36e43d45a71c

jcmaster.c 0ff8082a5856a0bd97e8efe0c03b974d ead966537b7c089cab1448dd83ebfc22fdecbd81

jcomapi.c ae25b8c654347d91ba5c393adde56355 838e8358441153954722631532f1b39960bdf678

jconfig.bcc ea27a698dbee176921f0a1e20cb0f7f6 766c615826ab30208df6121d17ff3adf52c37dba

jconfig.cfg e6d25f793d2327403294c8c4b1a2be08 e96bfe9f16a330bb974d5ac2645cc6d56803b574

jconfig.dj 047cb327527d5523b4fee6ac12624b4b f31c7a2c7517707453fe08c98934b5e7450161fe

jconfig.doc d41d8cd98f00b204e9800998ecf8427e da39a3ee5e6b4b0d3255bfef95601890afd80709

jconfig.mac 031b66003e61c0033ccd87c75434075e 7127759efcd3a6c8f9efd95dd4dea8968ee4c92e

jconfig.manx 4e1d7be4223d5b39cb040748fbc00b97 c06eb256405a3fee4d362f1615ee9db86e82e0c2

jconfig.mc6 31535c252c6f98fcb8501234f3128a10 8573024b08dd592fe4124b9daf3be832f670dd2c

jconfig.sas e454db42fae301b21dc7ca7a75b17028 db050809e08c3f2022a0b1e16560ec8b09a3f7f8

jconfig.st 814cf32becbedc530766ea363e6747f8 963a32ecbb513179645884fbccafa96a68e5ee53

jconfig.vc b666c488a717a339d636dc63bd300b73 93a39e212ccad6ddcf782af678d69ae57f6c34ae

jconfig.vms 918fb9d9d7450686f4df077cda420ef5 8335b0291345c46eeadbaa2e90b6fd88c86793bd

jconfig.wat 13ca4d6e947fb78fcc898247d3cce493 3da15b477c5f23dcf2a1df3dc921517f0a6ac015

jcparam.c c1c24937d948fa4df69bcd29a0ecc33d 73460f27b28b6932a24ca76bff3b7df8d30484de

jcphuff.c 187e27b1f37fa51023d764c73b03c7a4 228c64e8696740ce20d49f66f7aefe310b1b0eda

jcprepct.c a7e4032663d3d01ac2b7d5aae115c58c 7f52b0f67f9eebfa3b57347bb09fef16da452d5f

jcsample.c ec3c4dcb82eec478cc53a84bd7d4f9e7 cc8d11224bd0f32b3b184b5fb26f03882a476452

jctrans.c b7e298b8b8e10ca38d726130d5f119ff 595c4816ad931ca5a38a8d5ac2089ae967125dd3

jdapimin.c 763f5acd55337b21e55877316b5ba0c3 63eacafa0de15aa22f7ebd2ad074a25fadbb09e3

jdapistd.c b8c2a9211a40b4e34a6bede0d768e729 cc762411f718e7d7607fb9ea1b844498c2967540

jdatadst.c 22e6fd5addf27184cbc19f4c435d22ec f298be6137c08dd145c3556be8e84805094b64a9

jdatasrc.c ea35cc0b876a765c3f09a24decdd21b8 33c637eec290444aa73ae90395070c864de033b7

jdcoefct.c 8f2e23341d49de9906aff854f97e2370 92bfd19fad0866a4aca814fbc96edca21cfb1c89

jdcolor.c 393943ca6017e3115bbe6f4aa2b56373 3fc78ed8563445ec8e83ac85e116969c0afdf856

jdct.h 18978d93cfb1aabf5618c3caa5dbcf5a 3c3716c51b41da36c50a13826e7d8d7a1f430b9c

jddctmgr.c 1caa1e0a42975992180b315855419dd6 4050307344f7bda78f89a1006c9ab4a3deadab62

jdhuff.c 6492c45efdb95b0edde47bd2c05de989 0ef3f97220b8c1e64abdc9019268d61153f7ba69

jdhuff.h 54c014bd2f681b2c0f221ef9f55a02e7 4518da41d2f0a845b34ced1632fc8636165a3d20

jdinput.c 3e4fc9a613c6a1586f2b0ed6b872a668 e851fdf7dd1616837aaeb925efae6905a3b164dc

jdmainct.c b6a438d178c694400971a7463e5632de c2f36ee10d793e1d7600931f34f9d8dbe5f735c6

jdmarker.c 0687ea922a828d5eda9060248fbb4513 90ee00358c3183bd0d71c38e3092a600e9b654c7

jdmaster.c e66d4070f646b204ab4ae799b23c63cc 028ac3afa8a127329e382d1a17064053ff1aed10

jdmerge.c 955b27a18c0d3da682da3d4c43dc8ffc 031f37b551c132a5edc2594a07bdfc889f8a69c4

jdphuff.c 708491bf4ea3e387dd60a0443e6f8a4b 355e10fae0b238db49c6b180b287207f3b8aba94

jdpostct.c 73bad6582af500b1b146ac08e0d23844 47457796a19b3eb086d53b43374e1f43650f26ed

jdsample.c 4363ec24ab3d5df946f550eac583708a 77cb4e66286b6459e2a0c0744ea5aba52cef4d2d

jdtrans.c 1bd79c3a33c177ff07f41839a6d8e671 2b7d18d6ed2ec2a84b1fafac3226e7132728917b

jerror.c af10a8c210ca453462f0e50441d9bd87 fca5c27f8f9f8dc911c22339192ddd76b3d85d2a

jerror.h fd9e21c2cbb50822bc5cc94c50861467 a45a88f30583670c57b22225ee74aadd72ed942d

jfdctflt.c 6c0522409d7e8d81a2b2f0892c34d8ad 0a341b2fe95f937a0263e9b60f0f608005aab15f

jfdctfst.c f806a6c964daef45c71ca78af55bc7db 8df22470a0a855fa1ce35d79d86e2f06aaeb934f

jfdctint.c 9cd92764a3a5e9640abbd29fc0a09c40 efc47fd6d78308e84c71d78edcea5a80b305f710

jidctflt.c 2db3e30a55bf8609a7ded7ea3c2ff99d 4686640dd8c013dd697609c2637dc5e3753983fb

jidctfst.c 52ffd9e905e785b8cf55a5966fb5d484 7f45205f64b70d9e05bf4f76b65a2dcee06440bd

jidctint.c 108ce4f1bbbca7d3af1a00166e2260ea 2e23a2ba721a9e7a11174d7939334edf99450e36

jidctred.c a6ecd4e7da02cbd6972b713d8b925615 76e4143d8df8ff6bdf51ea833d0d2015f805def8

Continued on next page

116 APPENDIX A. IDENTIFIED SIGNATURES AND STRINGS

Table A.1 – continued from previous page
Element MD5 SHA1
jinclude.h dbde79bc104a2caa9316cc2a9df7fd25 31ab682733b096b3a98c0a35f9b54a7936e480d5

jmemansi.c 5bb449eba31015a4dd7536c8b3d7b68d b51ed0c5816ad800a5f8b6590ec7f59604f2de7c

jmemdos.c f36b756e2ae25dff6c3b5a3ea0347b59 1df4d173f791221c0cbe023c8ea588a65cb21174

jmemdosa.asm 73a2757a18c9243f4b3451631b7e254e 4ff7b9486b8ac0b5bb42327b8f2400d1ab9c8d21

jmemmac.c 7977c0b00763a1b7373bdffcd03f229a 1f8aac84d843e74df128c6c0995f58072a7b2726

jmemmgr.c 04b36ee19b3049c72046e662aab68208 6f07be8c031773c510451ae06e997a6546e6c811

jmemname.c 719f6097de742d244c6680941795fa3e 92bffd9f31944ac63c39d6ef3f08aca1a544b4b8

jmemnobs.c 0fa7947ebfd9f703df89b0aabd7f58a2 be0a1e39cd9c9a715070e2e677e57178c81bfb48

jmemsys.h 23e479350ba09f9be9c09d5812165194 662d26fb621941839b91d39e5bdb05a453612212

jmorecfg.h 662009a2ec0646da33ce6f98bca91ebb 1a7c3577e7a5cb2eadae63988fdd14ac65ae7f3b

jpegint.h cedf741244f17031bc40505160893af2 3427c4e1453ad34a9340022b051b22453407e97e

jpeglib.h 99e9c87c55c6f147d062be906fb0366c 6fc0a3cc8697cef0556e1c7465bf96ba1233fdde

jpegtran.1 f4a3b3f7def11be90cdf5c0017c556e3 333a44376cec9739e502a5939dc1be6d5fa4a73b

jpegtran.c 9fe8cb2b4235362ffadb19f6feff2a37 9fe0ca1ed9b8a1c0b474627781ede03a28dd60ed

jquant1.c 00c6590973efe2514d5d67526ac14fe1 fe6e415e102dffb92857bcdd0aa6d232a88be9c9

jquant2.c 2cb32492e6ec440c1c5a9dc6d7209173 abd65ed7c4efc6f121997e42d396c218c1fcb9a0

jutils.c 74fca8c86e91d12a9f688df153688633 052847eb62d4e89e3c6c8d7fadf0d8012f692bb4

jversion.h b84525e18300494f16d52e6854aaaae2 55277083aff061fb5f9fe9a4336facf3a8b9aa68

ltconfig ae90254d1eb8cacb496eabee7c26be48 aa6a94dfcdef98938ddd96f0d530c253b5925da3

ltmain.sh 00ee2a35bff2d110c964941a8b7911dc 354c900ca1078d31cf979dad860f2a8c22347a1e

makcjpeg.st 004fafcd450c9bfc742d30c7d427125b f7fb98e1cac03dae91e8f7b582708b26179a31c1

makdjpeg.st 499a4cbc5628d5ee781dbc97eab74546 4205648ae6de953479b8a4fb96e1a9d4247f1156

makeapps.ds 9909b938be8895554a5555a533e5974b d9c12d4492843601ebd29e751b852247388341ce

makefile.ansi 9d3f3d3465d373361e04ef3f13b78b59 3f985f009a5796be53ec11a9e305ff22607c09d0

makefile.bcc 9ce94b3862e13f40affa3a836bbb5bd6 423a31181a5b0283229d375281b7bd57e1318233

makefile.cfg 52b6b731571b2515a9b760530ef744d5 46c2546c5cfe7b1c79d74fbd6fa2f410e10fe281

makefile.dj 2f34b2df24219d0f99b1b4b97f1b3108 29e5c0a8aafa51fe526ea42084d377a21d015df0

makefile.manx 3d37997768bae69a46462f1f9954c51c 53fb8dfafa2424391b42f4a03ce7118c93f8d8cd

makefile.mc6 79e7b20768f1099690758377bdffa51f 7a4060c834e7579e0675e80fa917250eecd63b03

makefile.mms c307a67f5bdf24e3551216e50a3c32d9 b23f22501e9408fd2c65aa91f4ee64d7621bcd70

makefile.sas 9ae0ea476a7500a270204b6afc52783c bb533baaec00ffb39ddcdeeab53adfc3cbe34ad2

makefile.unix 4c3460aabefaaeff1b6fb59195022e08 f2273984dd4f0872407b69cfed6c2bc24e0c7a51

makefile.vc d4cf40f892f4dc87f5eab111d12b8709 60d31300ba6d9ae09a6e7fbc87d570fa8043621c

makefile.vms 7ac4ecebcd2e91fa5dee514e90b84ed8 5653f6308b6f0828731a9fcde5e176316ccb4495

makefile.wat d1eaf25fe6c5d49ee2648c5f7ce3ea8a 23163895fe1ea37db45be725d0adf44d452aca69

makelib.ds 60e89ab465a0e4b1780d579efac8e950 ac661399da0ebe606d8a5b7f9be465cd449b0b17

makeproj.mac 01c955d4b70dc9a686a046a42307dae2 2e624888015cd2696f589d74875a4fac2d879f22

makljpeg.st 3ef0ad9f9964ed3fa4ab6e62885ac36d f52ece430c19b65f8a72f45569e624939d2ea18d

maktjpeg.st f4ebbb314ffd63fcf7829166ae1f802d 6fb3b7a5639d785cd2f7f03b94f55017400964ec

makvms.opt 3ee02f68cb9a8ea9ab5bd6bc725de55e a3e9bffd9a7c8b015a1236b7dd44204b2563a86a

rdbmp.c c645c2f17288fccb2d81ddc00a5e56e8 a9adc20889778766a75e21ee78b8a402f3d39908

rdcolmap.c d33306e5e40d81d4a18b97453a23de26 090c5f2dd503595969c98629beeaeb0a50d0f56d

rdgif.c 6be05e2a767c2d18328d766d0b4d450f ebd0cc75eec11e39bdd1c815f0aeefa890198b79

rdjpgcom.1 714dee8cc30bab77ba21ad5d11c8bb8e 81938bbbb9cd8832ab8132d284d27a9e26eae151

rdjpgcom.c 341a84f5b038a63c1a917292ecd36983 0c0db69b639023b6d9151f6147c837b320bfdcbc

rdppm.c 76e70bebf457b0eb593bcb3ad30768ea 8a567288c15ed9d8eb50d99023e22d063dcb4f22

rdrle.c 4bcc8d13f2208b26d67f49a0f9ac0f60 816ee7c7840ea335224f1b8e47d240d93605e084

rdswitch.c ab14f8994845aedcdf1a60d3ee63185f 2523378f4543a6215fd33abf15d48ecc40a28392

rdtarga.c b522b32beda6a075f8d1bccfb66aa094 486a47d75f2057f6bd21fb00b6d87f213513c572

README b2c4ba2a8ce80468db498a6b331f900d ecdf7321b8fac879475f2a123c495468dd346ba8

transupp.c 9c88a00708fd1f01590de75ae9d6815d 0f89005cc19658ef3c41a6e36a77787c5e2330c3

transupp.h af905ab0a4286224bfe1edff540924f0 69e1f02356fee118f5b1c2c51a4db14027714bac

wrbmp.c 7a9b95b40309d5212bb8f10090bb4b4e 0538c2427c6a5ff9f769efa67a2b4fd1de263d2b

wrgif.c c3358daa681a28d173c011180fa3323a f11260c01580b9b5327e779b92b74da27d1171c9

wrjpgcom.1 8ef6ec3d5c84fd25fd4a34ca8eff233d 230efe9f04d9f082eb5cffe302f58047399c835e

wrjpgcom.c 4f69aaa5a4a643bc852fb2247bd0c797 902da01b722840fff801c9addbc2ff322ecb722c

wrppm.c a877118fd96c41d4e05e572fb84361b4 6bcd69d7998547a9d54c3851351068db1ced0c7d

wrrle.c 2d737ee0dffd7750bd06c6cdad5e5386 8c7e109fcfb1a57b8dd217845fa6c87db42d9c5d

wrtarga.c aca4ae26407d3a990bcd9950cf9085b2 a524cb8b32cc0639d0c5a7ef5efa277cd375e24e

snow
BitFilter.class 0660b1b23d795dfdc7f4c9db5e35e679 19a34ecd8e5738aff690a5e617d8f73d46c8817d

BitFilter.java bd290be3f3049405f3633c05ac5c9d31 abd9fb7c46ea89f295db6038b166bbb051d3fa14

compress.c be2ac54cbf8d01e28e12db8257147ee4 674b6ea45d4f555344df4b1dbdf58033cf362751

encode.c 1ba02ad662801c489dc41abef4b01096 fa142c9ef63a28b9d379e95dc08e75260bc585e6

encrypt.c bf141f75995526065eb871b4ab38525e d066443149447d7baff7f1cae81ceb772b15e16d

huffcode.h eb707e027f0f7580f6944b86757c4b8d 74293a0a219813da7133b5a2ec89dc922d95da62

ice.c 8dfaf89f625ffbf2469fead2bb6c6343 a0cefa7c7dcb01cba32dd86e963c5b588b799ab4

Continued on next page

A.1. IDENTIFIED SIGNATURES OF STEGANOGRAPHY SOFTWARE117

Table A.1 – continued from previous page
Element MD5 SHA1
ice.h 1cd5158b18a89bd7f26943edf6ba5712 9baea5741ae987bd58adf2e924567666e77a577f

IceKey.class 713ea44ba4852be0f44dd86797277ed8 bbb5eacb906b0f9ebe21569fdf0b48ce395713f4

IceKey.java 00b87c93be3876ae8c1a8ff35fb5d123 e43cbedfcec730f4821b713b03d8fd07afd92d79

jsnow.jar 3c37e653d3b15f566008ca34989f5ebc 15a4937bbe61431953b7300e31cb184c15ea1974

jsnow.zip 531126c5266da5ebfa1acece135e9f22 c59421327f8b44ab1377c06b1b43fd222bb734a5

jsnowapp.html 1a0f0b2cbd1430b73196cadb0857abdd 71bdae3aba3cf01ee8075d9923cf7038dc5cad82

jsnowapp.zip 1b2b3cf0856169d0cd2011554a1e4b0b 52b835762c185dedba5e406965253d36864fc8e9

main.c 043ddc03211445aec064bddd086f0ee6 c4d2e212204cb9689948e33d43bc050cff498b06

Makefile 0fd3d98b3014e3a9b78933718dfc9585 64390177cb160744227bfc98d75e49ab7c9e333e

README 296f1ee78e504c8d724bd7befdf3a5c6 12f6525067f7866bdd47ccc7f64c30b035e38dea

snow.1 fa5c252a7c83258fcb94e0eadf309222 d97b643b3bf7ddfd7ec530fa7fd04f61d1db77a2

SNOW.DOC 6bad2928736aef5dd77a5ef8d0008668 02fe7d3d8c13626079574726836547991178be5c

SNOW.EXE db3c070a2078b747f63737e8d2e5c8dc 414e1b75ca52a1474669bf0e63ee26ea0e265982

snow.h fc0a11a78a27bf405c0c8c38f8e5e142 210f269e42af0ae043661bca0e6c9ae292d8e287

Snow.java afcd92e9ee89a51b2ccdb7a2f7aca2a4 325dc16ddf6d54de6d499f31e7fd5240071f398f

snow.tar.gz 002780331bef06c50d650d45c359f32e b947177df3f979fc573ba691a7aa1fa5bbb5d1b7

snow.zip 2d9d934b801b619d53fc727106a416b3 4fb651881d95b979b6b7fa5a096e674029050119

SnowCompress.class 1010a6a3a2ddffd1e1d8f942dd881e46 4b0dcba5ebf862c432fa5f62e1e1bdd30ddd3d9a

SnowCompress.java e53ca34b39dc374f99a2dee051eaa2ed 24ebebbab10d69d52bdda4793ee2b0fbcc98c3c9

SnowEncode.class 136d50a658327d15c156337d38a32b72 d2a0b23f98299743adb22505b70d3d33883007d7

SnowEncode.java 1e4b1a67f47b160abb63bd29d5bccb88 37977cc3ac7cf495bef492c822ca908d7ea08693

SnowEncrypt.class 8f4357e3eb30a2f050d4f4cefdc0db34 9a54a5ab32fe927f10e672752c3b31f823473fa4

SnowEncrypt.java 1f2d4096b5cbff18800b20deab3266c1 e642efd4b63c8beebe58fa24a9708b6954b04dd2

SnowFront$VPanel.class 008ab273a344b1779e7c3914fa98ebfe 2f04fb41f381cdc28d4d282cde4b187a4902fe0e

SnowFront.class d467bcb91efc78ac77258c2180785e2a 364ffb24e2edaef4fc2aafece62d1e86ea8f9c8d

SnowFront.java 939dda6bb4dd0c04a51953efd1218d1e efa7602ac542347f5426129161012e45eb79a75a

SnowOutput.class 6d9a4259f3fcc7750bebf6a91b92c125 092269f7eb55e36806f9be7d4de09d81c106dbac

SnowOutput.java 26762ed9886f2f3a8d369097b12ed0fa c59ae388c325c23748f942f00c9313111f6667e7

snwdos16.zip 8c5a1802a7d285aa548ae3e2faaed44a 54513f741948727bdc52a9d954632966718a28de

snwdos32.zip 927d51a0f5b2c967d58cbaf2d5f6a0f1 6410ece0a45bc7795754bbcdc8dfc7b7d34cbda2

Table A.1: Signatures of known steganography tools. The dif-
ferent signatures are also found on the cd following this mas-
ter thesis as files formated as the output from the md5sum and
sha1sum tools. They follow the following naming convention
“toolName.(md5|sha1)”.

g

	Abstract
	Preface
	1 Introduction
	1.1 Motivation
	1.2 Introduction to digital forensics
	1.3 Introduction to steganography
	1.3.1 The use for steganography

	1.4 Interpretation of scope
	1.5 Document organization

	2 Digital Forensics
	2.1 Forensic Science
	2.2 Digital Forensic
	2.3 Forensic methodology
	2.3.1 An integrated digital investigation process
	2.3.2 Chain of Custody and Integrity documentation

	2.4 Digital forensic tools
	2.4.1 Acquisition tools
	2.4.2 Documenting evidence
	2.4.3 Analysis tools
	2.4.4 Automatic identification of known software and files
	2.4.5 Tool summary

	3 Steganography
	3.1 Introduction to steganography
	3.2 Terminology
	3.2.1 Simple steganography
	3.2.2 Secret key steganography
	3.2.3 Public key steganography
	3.2.4 A formal model of steganography

	3.3 Steganography and cryptography
	3.4 Digital watermarking
	3.5 Usage of steganography
	3.5.1 Steganography encountered in digital forensics

	3.6 Classification of information hiding
	3.7 Different methods for embedding
	3.7.1 Data appending
	3.7.2 Adding comments
	3.7.3 File headers
	3.7.4 Spatial domain
	3.7.5 Transform domain
	3.7.6 Statistics-aware embedding
	3.7.7 Pseudo-random embedding

	3.8 Classification of steganography software
	3.8.1 Steganography software generations
	3.8.2 Steganography software strength
	3.8.3 Steganography software availability
	3.8.4 The classification

	4 Analysis of steganography software
	4.1 Introduction
	4.2 Description of EzStego
	4.2.1 Usage of EzStego
	4.2.2 Detection of EzStego
	4.2.3 Message extraction

	4.3 Description of Mandelsteg
	4.3.1 Usage of Mandelsteg
	4.3.2 Detection of Mandelsteg
	4.3.3 Message extration

	4.4 Description of Spam Mimic
	4.4.1 Usage of Spam Mimic
	4.4.2 Detection of Spam Mimic
	4.4.3 Message extraction

	4.5 Description of Snow
	4.5.1 Usage of Snow
	4.5.2 Detection of Snow
	4.5.3 Message extraction

	4.6 Description of Outguess
	4.6.1 Usage of Outguess
	4.6.2 Detection of Outguess
	4.6.3 Message extraction

	4.7 Description of appendX
	4.7.1 Usage of appendX
	4.7.2 Detection of appendX
	4.7.3 Message extraction

	4.8 Description of Invisible Secrets
	4.8.1 Usage of Invisible Secrets
	4.8.2 Detection of Invisible Secrets
	4.8.3 Message extraction

	4.9 Discussion

	5 Steganalysis
	5.1 Introduction
	5.2 Introduction to steganalysis
	5.2.1 The Prisoner's Problem

	5.3 Description of steganalysis
	5.4 Attacks on steganography
	5.4.1 Steganalysis and digital forensics
	5.4.2 Steganalysis: Detection of stego-messages
	5.4.3 Extracting hidden information
	5.4.4 Disabling hidden information

	6 Analysis of steganalysis software
	6.1 Introduction
	6.1.1 Disabling hidden information

	6.2 Description of StegSpy
	6.2.1 Usage of StegSpy
	6.2.2 Examination of StegSpy

	6.3 Description of Stegdetect
	6.3.1 Usage of Stegdetect
	6.3.2 Examination of Stegdetect

	6.4 Description of Stegbreak
	6.4.1 Usage of Stegbreak
	6.4.2 Examination of Stegbreak

	6.5 Description of Stego Suite
	6.5.1 Usage of Stego Suite
	6.5.2 Examination of Stego Watch

	6.6 Description of StegAnlyzer
	6.6.1 Usage of StegAnalyzer
	6.6.2 Examination of StegAnalyzer

	6.7 Discussion

	7 Digital forensics and steganography
	7.1 Defeating steganography
	7.1.1 Physical crime scene investigation
	7.1.2 Steganalysis
	7.1.3 Detection of steganography software
	7.1.4 Traces of steganography software
	7.1.5 Locating pairs of carrier/stego-files
	7.1.6 Key word search and activity monitoring
	7.1.7 Suspect's computer knowledge
	7.1.8 Unlikely files
	7.1.9 Locating steganography keys
	7.1.10 Hidden storage locations

	7.2 Anti-Forensics
	7.2.1 Choice of passwords
	7.2.2 Remove the carrier-message
	7.2.3 Hide the existence of steganography software
	7.2.4 Remove headers from encrypted messages

	7.3 Summary

	8 Digital forensic cases
	8.1 Introduction to the cases
	8.1.1 Summary of methodology and tactics

	8.2 Digital forensic case 1
	8.2.1 Introduction to ``Scan of the Month''
	8.2.2 Challenge 26
	8.2.3 Investigating the case
	8.2.4 Discussion and summary of SotM 26

	8.3 Digital forensic case 2
	8.3.1 Case limitations
	8.3.2 Investigating the case
	8.3.3 Discussion and summary of Case 2

	9 Discussion
	9.1 The use and need of steganography
	9.2 State-of-the-art steganography
	9.3 State-of-the-art steganalysis
	9.4 Methods for detecting steganography
	9.4.1 Advantage of using the proposed methods
	9.4.2 Weaknesses with the proposed methods

	9.5 Real world digital crime scenes

	10 Conclusion
	10.1 Future work

	Bibliography
	Appendices
	A Identified Signatures and Strings
	A.1 Identified signatures of steganography software

