
Preface

The computer world of today becomes increasingly distributed causing appli-
cations to rely on remote servers. Thus, the probability of a partial failure of
the system increases. This might cause unavailability of a service and incon-
sistencies can arise. Depending on the service and system affected, this might
cause anything from a slight inconvenience for a single user to bankrupting a
large company. Therefore, such failures should be masked to keep the system
available and consistent.

Transactions and replication are both techniques to make a system fault
tolerant. The first is designed to protect the data from inconsistencies, while
the latter protects the processing, ensuring availability. A complete integration
of the two yields a consistent and available system which masks failures.

Operations like a random number generator cause the execution to be non-
deterministic. These operations cannot be redone just by executing the same
code again. Thus, special handling is needed when servers with non-deterministic
execution fails.

This document presents a framework for the integration of transactions and
replication, while supporting non-deterministic execution. An implementation
of the framework on top of Jini and Jgroup/ARM is outlined and test results
are presented and discussed.

The thesis is submitted to the Department of Computer and Information
Science (IDI) at the University of Science and Technology (NTNU) as partial
fulfillment of the degree “Sivilingeniør” (MSc). The work has been carried out
at the Database Systems Group.

Acknowledgements

A lot of people have assisted me during my work on the thesis. Thanks goes
to my supervisor Svein-Olaf Hvasshovd for his valuable comments and critical
questions on the transactions-technical parts of my work.

Jørgen Løland has been of invaluable help in proofreading and input for
typesetting and graph design. Thanks for sustaining my questions every ten
minutes for the last month.

Thanks to Donald E. Knuth and Leslie Lamport for writing TEXand LATEX,
respectively. Their typesetting tool makes it a lot easier to make a document
look scientific.

Other people who have supported me and given comments include: Nj̊al
Karevoll, Runar Johannes Solberg, Knut Karevoll, Dagny Kolltveit, Øyvind

ii

Vestavik, Gisle Grimen, Jeanine Lilleng, Jon Olav Hauglid and probably some
others.

Abstract

This thesis presents a framework of a passively replicated transaction manager.
By integrating transactions and replication, two well known fault tolerance tech-
niques, the framework provides high availability for transactional systems and
better support for non-deterministic execution for replicated systems. A proto-
type Java implementation of the framework, based on Jgroup/ARM and Jini,
has been developed and performance tests have been executed. The results indi-
cate that the response time for a simple credit-debit transaction heavily depends
on the degree of replication for both servers and the transaction manager. E.g. a
system with two replicas of the transaction manager and the servers quadruples
the response time compared to the nonreplicated case. Thus, the performance
penalty of replication should be weighed against the increased availability on a
per application basis.

Contents

I Introduction 1

1 Background and Context 3
1.1 Motivation . 3
1.2 Approach . 4

2 Concepts 7
2.1 Transactions . 7
2.2 Replication . 8

2.2.1 Replica Determinism . 10
2.3 Liveness and Safety . 10

3 State of the Art Survey 11
3.1 Object Groups . 11

3.1.1 CORBA Based Object Groups 11
3.1.2 Java RMI Based Object Groups 12

3.2 Integration of Replication and Transactions 12

II Framework 15

4 Environment 17
4.1 Overview of Jini . 17

4.1.1 The Lookup Service . 18
4.1.2 Jini Transaction Service 18
4.1.3 Jini Extensible Remote Invocation 20

4.2 Overview of Jgroup/ARM . 21
4.2.1 The Group Manager . 22
4.2.2 The Daemon . 22
4.2.3 The Autonomous Replication Framework 23
4.2.4 Greg: Jini Group-Enabled Lookup Service 23
4.2.5 External and Internal Group Method Invocations 23

5 Replicated Invocations 25
5.1 Problem Description . 25

5.1.1 The Duplicate Invocation Problem 25
5.1.2 The Orphan Invocation Problem 26

5.2 How to Handle Replicated Invocations 28
5.2.1 Duplicate Invocation Problem 28

iv CONTENTS

5.2.2 Orphan Invocation Problem 28

6 Replicated Transactions 31
6.1 Replicating the Transaction Manager 31
6.2 Replicating the Transaction Participants 32
6.3 Concurrency Control . 35
6.4 Ensuring Transaction Termination 35

III Implementation and Assessment 37

7 Implementation Issues 39
7.1 Overview . 39
7.2 Informal Description . 39

7.2.1 Transaction Creation . 39
7.2.2 Joining the Participants 40
7.2.3 Transaction Completion 40

7.3 Technical Details . 43
7.3.1 Package Structure . 43
7.3.2 Adding support for bypassing failover 43
7.3.3 Implementing pGahalo . 44
7.3.4 Implementing the Replicated Transaction Participants . . 46

8 Tests 49
8.1 The Test Environment . 49
8.2 The Issue of Garbage Collection 50
8.3 Costs of Passive Replication . 52

8.3.1 Passive Replication versus No Replication 52
8.3.2 Passive Replication versus Active Replication 56

8.4 Failover Delay . 60

9 Discussion 63
9.1 Comparing the Test Results . 63

9.1.1 Passive Replication versus No Replication 63
9.1.2 Passive Replication versus Active Replication 68
9.1.3 Failover Delay . 70

10 Conclusion and Further Work 71
10.1 Conclusion . 71
10.2 Further Work . 72

Bibliography 75

List of Figures

2.1 Active replication . 9
2.2 Passive replication . 9

3.1 Overview of CORBA . 12

4.1 Jini architecture segmentation . 17
4.2 Transaction creation and use . 19
4.3 Successful transaction termination 19
4.4 The stack of layers used in JERI 21
4.5 Overview of the core services in Jgroup 22
4.6 The Jgroup architecture . 22

5.1 An example of a duplicate invocation 26
5.2 A non-deterministic passive server causing a replicated invocation 27
5.3 An example of an orphan request 27
5.4 Pre-filtering and symmetric proxies 28
5.5 An example run using nested transaction 30

6.1 A failure of a primary, and the consequent failover 33
6.2 A failure of a primary, without the failover 33
6.3 The creation and join phase of a transaction 34
6.4 An unhandled orphan request . 34

7.1 The creation of a new transaction in pGahalo 40
7.2 The join of a participant in a transaction in pGahalo 40
7.3 A transaction commit in pGahalo 42
7.4 A participant caused transaction abort in pGahalo 42
7.5 A client initiated transaction abort in pGahalo 43
7.6 The Leadercast annotation interface 44
7.7 The TransactionManager interface 45
7.8 The InternalPassiveGroupTransactionManager interface . . . 46
7.9 The TransactionParticipant interface 47
7.10 The InternalPassiveTransactionParticipant interface 47
7.11 The commit of the ReplicatedBankServer 48

8.1 A model of the system used for testing 50
8.2 Response time graphs comparing two kinds of garbage collection 51
8.3 The cost of passively replicating the transaction manager 54
8.4 Regressions of the plots in Figure 8.3 54

vi LIST OF FIGURES

8.5 Distribution of response times for a partially replicated system . 55
8.6 The cost of actively replicating the transaction manager 57
8.7 Distribution of response times for a fully replicated system 58
8.8 The cost of actively replicating the transaction manager 59
8.9 2 failovers in a single testrun . 61
8.10 A histogram illustrating the distribution of failover-delays 61

9.1 The messages in a fully replicated system 66
9.2 The messages for an actively replicated transaction manager . . . 69

List of Tables

8.1 Variables for tuning the time to failover 51
8.2 The effect of replication on garbage collection 52
8.3 Response times in ms for various failure exceptions 62

9.1 A summary of the response times for the testruns in Chapter 8 . 64
9.2 The overhead caused by group management 64
9.3 The increased number of messages when replicating the TM . . . 65
9.4 The cost of updating the backups 67
9.5 A summary of the response times for the testruns in Chapter 8 . 68
9.6 The messages sent in Gahalo . 69

Part I

Introduction

Chapter 1

Background and Context

The topic of this thesis is fault tolerance and high availability for distributed
systems. The focus is on replication of the transaction manager while supporting
non-deterministic execution. The motivation for choosing this topic and the
methods used to approach it and the organization of the thesis is presented in
the following sections.

1.1 Motivation

Fault-tolerance is an important property for real-time and high availability ap-
plications. By moving from a centralized to a distributed system, the probability
for a total system failure decreases, while the probability for a partial failure
increases. A partial failure that is not dealt with correctly could jeopardize both
the consistency and the availability of the system.

Unavailability can cause great damage to anything from a single user to
a company and possibly millions of users of the company’s services. If, for
instance, a telecommunication or power grid system becomes unavailable, the
costs could bankrupt the company. Applications that are less critical for the
society could also be harmed by unavailability. If a website is unavailable,
potential and existing customers will probably use the competitor’s site instead.
This may lead to loss of revenue.

Inconsistency in a system can also lead to major problems. For instance, an
inconsistency in a banking system could lead to an incorrect withdrawal of an
arbitrary amount of money, and a webshop company might send out the wrong
package, maybe to the wrong person, or the customer might not be charged for
it.

Two concepts to deal with unavailability and inconsistency, called transac-
tions [GR93] and replication [HBH96], have been proposed in the literature.

A (correctly written) transaction obeys the ACID-properties (atomicity, con-
sistency, isolation and durability), and therefore guarantees a consistent execu-
tion of the operations contained in it. Atomicity, often called the all-or-nothing
property because it ensures that either all or none of the operations contained in
the transaction is performed, is enforced by a transaction manager (TM) using
an atomic commitment protocol (normally 2PC). Hence, transactions can be
used to avoid jeopardizing the consistency of the system by aborting (rollback)

4 1.2. APPROACH

the changes made by a single transaction.
Replication provides availability by making sure there are more than one

server to provide any given service. As such, replication can be used to ensure
the availability of the system by rolling forward the execution to an available
server.

Fault tolerance is needed both for protecting the data and for protecting
the processing. Transactions are often used as a way to protect data, while
replication is used for the protection of processing. Together, these two provide
availability and consistency for a system. If these two mechanisms are integrated
rather than being kept as separate concepts, two additional properties can be
provided as well[FN02]: First, a higher level of consistency for replicated systems
is achieved due to better support for non-deterministic execution and, second, a
higher level of availability and better failure masking for transaction processing
systems.

In a fault tolerant system, no single point of failure should exist. Any com-
ponent that is a single point of failure will, in case it fails, render the entire
system unavailable. Therefore, not only the application servers, but all sys-
tem components, particularly the transaction manager, need to be replicated to
provide system-wide availability.

This thesis will describe the changes needed to make a transaction manager
fault-tolerant by replication.

1.2 Approach

The topic is approached by designing and implementing a framework of a pas-
sively replicated transaction manager. A full-fledged transaction manager is
a complex system component and implementing replication is not straightfor-
ward. In addition, empirically test have shown that reuse of software can result
in shorter development time, better productivity and less problems [Moh04].
Therefore, the implementational part of this thesis is based on existing toolkits
for replication (Jgroup/ARM) and transactions (Jini)

Jgroup/ARM1[Mon00] is an object group system written entirely in Java
[Sun05]. It was developed to integrate group technology with distributed ob-
jects. An object group is a replicated object. Clients can invoke the object
group as if it was just a single object. The replication is transparent to the in-
voker. Jgroup is already integrated with Jini2 [ASW+01] by a replicated registry
service [MDB01] and an actively3 replicated transaction manager [Mol04].

By using the existing libraries and source code for Jgroup and Jini, the imple-
mentation part is reduced to a manageable problem within the given timeframe.

The approach used in this thesis is first to present the central concepts in
Chapter 2. Then a state-of-the-art survey, which establishes a foundation for
this work, is given in Chapter 3. The environment for the implementational
part of the thesis is presented in Chapter 4, and an introduction to replicated
invocations and the problems they cause is given in Chapter 5. How to combine
transactions and replication in the context of Jgroup is discussed in Chapter
6. Chapter 7 describes the implementation of the passive transaction manager,

1Jgroup/ARM is licensed under GNU Lesser General Public License (LGPL) [GNU]
2Jini is licensed under Apache License, Version 2.0 (ALv2) [ALv]
3The difference between passive and active replication is explained in Section 2.2.

CHAPTER 1. BACKGROUND AND CONTEXT 5

while Chapter 8 presents some test cases with results executed on the imple-
mented system. The results of the tests are discussed in Chapter 9. Finally,
Chapter 10 concludes the thesis and gives direction for further research.

Chapter 2

Concepts

This chapter presents the most important concepts regarding software-based
fault-tolerance. Introductions to transactions, replication, and liveness and
safety are given here.

2.1 Transactions

Transactions were developed in the context of database applications to provide
a structured way to deal with failures. A transaction is a collection of operations
or actions with the ACID properties [GR93, BHG86]:

• Atomicity - After the completion of a transaction all operations of the
transaction must have executed successfully or none of them must appear
to have executed. This is also known as the all-or-nothing property of
transactions or the everyone-or-none property for the distributed systems.

• Consistency - The sum of the operations in a transaction must transform
the applications from one consistent state to another consistent state.

• Isolation - The effects of at transaction must not be visible to other
transactions before it has committed.

• Durability - The effects of a successfully completed transaction must be
permanent once the transaction has committed.

If a failure happens while a transaction is executing, the transaction is
aborted, and all of the state changes caused by the transaction are undone.
This rollback of the transaction is the most common implementation of the
atomicity property, and thus transactions are a safety-focused mechanism: If a
failure occurs the state is rolled back to a previously consistent state.

A transaction manager is responsible for coordinating a protocol to ensure
the atomic commitment of a distributed transaction. The protocol is usually
the two-phase commit protocol (2PC) [GR93, BHG86], but other protocols also
exist, e.g. 3PC [Ske81], FCWFA and FAWFC [DGP04], LLNBCS [JPPMAA01],
and ACP-SB and ACP-UTRB(1-3) [BT93].

Generally, an atomic commitment protocol gathers votes from all partici-
pants of a transaction and then aborts or commits the entire transaction. Since

8 2.2. REPLICATION

2PC is a well documented protocol [GR93, BHG86] and there are three versions
of it [MLO86]; presumed abort, presumed commit and presumed nothing, only a
short outline of the one used in the implementation, presumed abort (2PC-PA),
is given here.

As the name indicates, 2PC-PA uses two phases. The first phase is the
voting phase. First, the coordinator requests and receives the votes from the
participants joined in the transaction. Each participant persistently saves its
vote before replying. If all the votes are positive, the transaction is decided to
commit, otherwise the decision is to abort. A decision to commit is persistently
saved, while a decision to abort can be forgotten. The second phase sends the
outcome of the transaction to the participants, which persistently saves it if it
is commit, then acknowledges it back to the transaction manager.

2.2 Replication

In a distributed environment any process may fail at any given time. A single
point of failure is a component that can jeopardize the availability of the system
if it fails. Examples of such components include routers, communication lines,
CPUs, disks, etc. If, for instance, a process executing an important service fails,
the entire system might be rendered unavailable. By introducing redundancy
by replicating the components, the system can stay operational even in the case
of a process failure. In this way, all single points of failure can be eliminated.
In this section and in the rest of this thesis, only replication of processing is
discussed.

Replication of servers may seem straightforward, but to ensure both consis-
tency and availability of the system, special care must be taken. For instance, a
protocol to manage the replicated server group is needed. Also, the replicated
invocation problem must be handled. A replicated invocation is an invocation
from a replicated server to another, possibly replicated, server. Depending on
the kind of replication (see below) used, both the group management facilities
needed and the replicated invocation problem change.

There are two main types of replication; active [Sch93] and passive [BMST93].
For an actively replicated server group an invocation from the client (group) is
multicast to all of the replicas, and each of them perform the same task and reply
to the client. This is shown in Figure 2.1. Group management and communi-
cation is required to ensure that all of the servers see the same set of messages
and thus stay consistent. For instance, heartbeat messages are used to create a
view of operational servers.

A passively replicated server group has a leader (primary server) that receives
and processes invocations. The primary updates the backups periodically or
at certain events, for instance after each completed invocation as illustrated
in Figure 2.2. The process of updating backups is called checkpointing. The
backups process these updates and in the case of a primary failure, the backups
elect a new primary to take over the processing. This election is carried out by
a group management protocol.

Other types of replication, e.g. semi-active [VBB+91] and semi-passive
[DSS98], also exist. Défago and Schiper [DS02] gives a more thorough pre-
sentation of these replication techniques.

CHAPTER 2. CONCEPTS 9

replica 1

replica 2

replica 3

client

requests replies

server

time

Figure 2.1: Active replication

primary

backup 1

backup 2

client

request reply

server

time

updates acks

Figure 2.2: Passive replication

10 2.3. LIVENESS AND SAFETY

2.2.1 Replica Determinism

Some replication techniques, like active replication, require all replicas to behave
identical. If, for instance, there are two replicas of a server group that give
diverging replies to a client, it has no way to know which result is the correct
one. Also, if the internal state-changes of the server replicas differ, it will lead
to inconsistencies that may later spread to other parts of the system. Therefore,
all correct replicas must agree to the same result. This can be done by making
the execution of the replicas deterministic.

Schneider [Sch90] defines replica determinism as follows: “A replica group
is deterministic if, in the absence of faults, given the same initial state for each
replica and the same set of input messages, each replica in the group produces
the same ordered set of output messages.” Poledna [Pol93] argues that this
definition is too restrictive, as it is does not cover all replication techniques and
it does not capture the timing requirements of real-time systems. For this thesis,
however, the above definition by Schneider suffices.

There exist many sources that can render the execution non-deterministic.
The most obvious one is a mathematical random-function, but more subtle
sources are also at work. A timeout is one example: Say, for instance, that a
server group waits for a reply from another server and the reply is received close
to the expiration of the timeout. Some servers might decide that it came just in
time, while others might decide it came too late. Even with global coordination
of the timeout, their respective decisions can diverge because of tiny differences
in the processing speed or network delay. Other sources of non-determinism
include inconsistent inputs from analog sensors, multithreading, inconsistent or-
der of requests and non-deterministic programming language specific constructs
[Pol93].

2.3 Liveness and Safety

Both liveness and safety are properties needed to make a system available and
consistent. The first property causes a system to eventually do something good
(e.g. the eventual completion of an operation and the delivery of a reply),
while the latter causes a system to do nothing wrong (i.e. not leaving it in an
inconsistent state) [AS85].

Transactions are a rollback mechanism. Faults are tolerated by undoing the
operations that lead to the failure, keeping the data consistent. On the other
hand, replication is a roll-forward mechanism. Faults are tolerated by rolling
forward and continuing the process execution on another replica. Thus, trans-
actions and replication are safety and liveness focused concepts, respectively,
[FN02] and they are both important aspects of a fault-tolerant system.

Chapter 3

State of the Art Survey

Many projects that deals with replication and transactions, and some that deals
with the combination of the two exists. In this chapter, the most influential
object group projects and integration techniques are presented.

3.1 Object Groups

Over the last decades, many projects have introduced redundancy to achieve
fault tolerance for distributed applications. Most object groups research efforts
derive from Java RMI [Sun99] and the CORBA specification [OMG04a], and are
based on the group communication paradigm [Bir93]. First, an introduction to
CORBA and CORBA related object groups are presented, followed by projects
dealing with JAVA RMI object groups.

3.1.1 CORBA Based Object Groups

The Common Object Request Broker Architecture (CORBA) is a specification
of a distributed system [TS01, chapter 9]. It has been made by the Object
Management Group (OMG)1 and was designed to overcome interoperability
problems regarding the use of different operating systems and applications in a
single system. The current release is version 3.

A basic overview of the architecture of CORBA is shown in Figure 3.1. The
core of this model is the Object Request Broker (ORB). It enables the com-
munication between clients and objects, and makes the distributed and hetero-
geneous nature of the system transparent to the application programmers and
users. The Common Object Services are the most widely used services and
include services for naming, concurrency control, events, life cycling, recovery,
persistence, security, etc.

Horizontal facilities are high-level services not related to any specific appli-
cation domain. Examples include user interfaces and information as well as
system and task management. The vertical facilities are high-level services that
are targeted towards specific application domains such as banking and manu-
facturing.

1www.omg.org

12 3.2. INTEGRATION OF REPLICATION AND TRANSACTIONS

Application
objects

Vertical
(domain spesific)
facilities

Horizontal
(general purpose)
facilities

Common
Object
Services

Object Request Broker

Figure 3.1: Overview of CORBA [TS01]

CORBA related projects include Eternal [Nar99], Electra [Maf95], DOORS
[CHY+98, GNSY00],, Newtop [MSEL99], OGS [FGS98], AQuA [RBC+03] and
the adopted OMG standard FT-CORBA [OMG04b]. Meling et al. [MMBH02]
classifies the projects into three categories relative to the placement of the object
group support; the integration approach, the interception approach and the ser-
vice approach. In the first approach the support for object groups is integrated
into the ORB. The ORB is then responsible for multicasting an invocation to
the object group. Electra followed this approach. Eternal is based on the second
approach, which intercepts requests and replies at the client and server by the
OS. The messages are then sent to the correct replicas. The last approach im-
plements group communication as a separate horizontal service, and can thus be
used in any CORBA implementation. OGS, DOORS, Newtop and FT-CORBA
are examples of this approach.

3.1.2 Java RMI Based Object Groups

There are several Java RMI based projects that offer object groups. Filterfresh
[BCH+98] supports logical object groups that allow the continuation of requests
on a backup replica. However, it lacks client to server invocation with multicast
semantics and group internal use of RMI. Another toolkit for reliable group
communication is JavaGroups [Ban98]. It supports multicast, but its imple-
mentation does not provide transparent RMI for the client. Aroma [Nar01] is
the Java RMI version of Eternal, thus it is dependent on low-level OS-specific
interception and group communication mechanisms. Also, there is an extension
to NinjaRMI [LMW] that provides basic one-to-many RMI, but nothing more.

Jgroup/ARM [Mon00, MMBH02] is implemented entirely in Java and does
not rely on any underlying toolkits or special operating systems. All communi-
cation is done through group method invocations using Java RMI, and it is the
only system that is fully partition-aware and provides automatic management
of replicas [MH01]. The implementation presented in Chapter 7 in this thesis is
based on Jgroup.

3.2 Integration of Replication and Transactions

Replication and transactions have historically been two separate techniques for
achieving fault-tolerance. FT-CORBA [OMG04b] is an example of system treat-
ing them separately. A distributed transaction system can profit from using

CHAPTER 3. STATE OF THE ART SURVEY 13

process groups [LS00], in particular, stronger consistency and higher availabil-
ity can be achieved if the techniques are integrated [FN02]. This is discussed in
more detail in Chapter 6.

Schiper and Raynal [SR96] presents an approach where transactions are
implemented with group communication primitives. All operations of a trans-
action are put into one message, which is sent to all process groups participating
in the transaction. Because of the total order and atomic delivery [TS01, pp.
389–391] provided by the group communication system, the transaction will
be atomic and serializable, and the replicated nature of the process group will
ensure durability. However, this approach assumes that process groups will al-
ways be able to complete the operations contained in the message. This is an
unreasonable constraint since a process group might be unable to execute all
operations because of internal constraints. For example, a banking account may
not be overdrawn. In a normal transaction processing system this will cause the
process group to vote abort, but since no abort mechanism exists it may result
in an inconsistent system state.

Little and Shrivastava [LS00] study two systems, one with transactions and
no group communication, and one with group communication and no transac-
tions. Their conclusion is that group communication can be useful for transac-
tions, especially for supporting fast failover and active replication.

Other systems that support transactions in a replicated environment also
exist. GroupTransactions [PMJPA01] allows transactional servers to be pro-
cess groups, and thus provides an integration of the concepts. Circus [Coo85]
extends the replicated environment with support for multi-threaded servers
through a novel commit and synchronization protocol. Zhao et al. [ZMMS02]
replicate the transaction coordinators, which leads to a non-blocking 2PC pro-
tocol, a highly desirable property since it ensures liveness. All of these systems
are actively replicated which requires the servers to be deterministic.

Systems that support non-deterministic execution must be able to control its
effects. ITRA [DG01] is an approach that handles them by replicating the result
of each non-deterministic operation to the backups. Though ITRA claims to
support transactions, the exact integration is not presented. Frølund and Guer-
raoui [FG99] present a complete integration of replication and transactions for
three-tier applications. However, it supports only stateless middle-tier servers,
forcing all state to be stored in the end-tier databases.

Pleisch et al. [PKS03a, PKS03b] describes two schemes to handle non-
determinism; one optimistic and one pessimistic. The first allows a subtransac-
tion to be committed before its parent, while the latter forces the subtransaction
to wait for the commit of the parent. By sending undo information to the back-
ups before invoking a server, orphan subtransactions can be terminated in the
pessimistic case, and compensated in the optimistic case. A CORBA related
approach [FN02] avoids the need for undo information by using a centralized
transaction manager and nested transactions. If a parent transaction cannot be
completed, the transaction manager aborts all subtransactions. These systems
are presented in more detail in Section 5.2.2.

The concept of process pairs [GR93] was developed in the context of databases
and combined with transactions to achieve highly available and highly reliable
processes. A process pair is the equivalent of a passively replicated object group.
A primary executes requests from the clients and sends state updates to the
backups. Heartbeat messages are used to detect a failed primary. When that

14 3.2. INTEGRATION OF REPLICATION AND TRANSACTIONS

happens, a protocol to agree on a new primary is executed. This approach
assumes deterministic execution.

Part II

Framework

Chapter 4

Environment

This chapter presents the layout of the implementation environment. First, an
overview of the Jini architecture and its most central services related to this the-
sis and Jini Extensible Remote Interface (JERI) is provided. The architecture
and the central concepts of the Jgroup/ARM system is then presented

4.1 Overview of Jini

Jini technology [ASW+01] is an infrastructure that allows services and devices
to cooperate in a distributed environment. It provides a way for clients to find
and access services as objects.

Each service publishes a Java object which implements a service. When a
client finds the object of an implemented service API that it wishes to use,
it downloads any code necessary to communicate with the service. Thus, the
interaction can be provided by any distributed network technology such as Java
RMI [Sun99], CORBA [OMG04a] and SOAP [Con03].

The Jini architecture can be split into three categories; infrastructure, pro-
gramming model and services. Figure 4.1 shows this segmentation. The in-
frastructure enables the distributed system to be built, while the services are

Figure 4.1: Jini architecture segmentation [Inc03a]

18 4.1. OVERVIEW OF JINI

the top-level entities that constitute the system. The programming model in-
between is the interfaces that enable reliable services to be built.

To facilitate different needs for fault tolerance and persistency, all services
in Jini can be run in three different failure modes, set for each service in the
Jini configuration files:

• Transient - The state of the service is only kept in main memory. Thus,
if it fails, the state of the system is lost.

• Persistent, non-activatable - The state of the service is saved to per-
sistent storage, but after a crash failure, it needs to be manually restarted.

• Persistent, activatable - The state of the service is saved to persistent
storage, and after a crash failure, it is automatically restarted with the
state before the crash.

The core services, which are relevant for this thesis, will be described in the
subsequent sections.

4.1.1 The Lookup Service

Services in Jini are dynamically registered in a lookup service [Inc03b], called
Reggie. Reggie runs a discovery protocol to find services that has joined the
network. When a service is found, it is joined in the lookup service by a join
protocol. Each service is registered with a proxy and possibly some attributes
describing the properties of the service. Whenever a client asks Reggie for a
certain service, the proxy is returned to the client if found. The client can then
access the service through that proxy.

Each service has a 128-bit identifier that uniquely identifies it in the system.
It can be generated dynamically when the service is registered with Reggie, or
statically by the vendor at deployment.

4.1.2 Jini Transaction Service

The interfaces that constitute the programming model include interfaces for
transactions. Jini comes with an implemented transaction service named Ma-
halo [Inc03b]. It implements the methods necessary to create transactions, to
join participants and to terminate transactions. The transaction outcome is
determined by a two-phase commit protocol.

Unlike traditional transaction processing (TP) systems, Mahalo has no TP
monitor [GR93] that controls the transaction semantics. It is left to each par-
ticipant of the transaction to implement the semantics in the best possible way
for that kind of participant. This means that the association of a request with
a transaction is done by the participants, as well as all authentication, autho-
rization, scheduling and recovery. This allows the all-or-nothing property to be
expanded beyond the classical database system.

When a client needs a new transaction, the TransactionFactory object in
the client invokes the transaction manager to get a unique transaction identifier.
The identifier is used to create a Transaction object, as shown in Figure 4.2.
Other services join the transaction when they are invoked by the client with
the Transaction object as an argument. They become participants of the
transaction.

CHAPTER 4. ENVIRONMENT 19

Figure 4.2: Transaction creation and use [Inc03b]

Figure 4.3: Successful transaction termination

When all participants have completed their requests, it is up to the client
to initiate the termination protocol. The protocol used in Jini 2.0 is the two
phase commit protocol (2PC). Figure 4.3 shows a successful termination of
a transaction using 2PC. The client sends a commit request containing the
transaction identifier to the manager. The manager then starts the voting phase,
asking each participant if they are able to commit the transaction. This is shown
as messages 2 and 3 in the figure. Messages 4 and 5 are the affirmative replies
from both participants. Since all participants have voted yes, the manager stores
the decision to commit persistently, and tells all participants to commit. After
completion, the manager reports the outcome of the transaction to the client.
Özsu and Valduriez [ÖV99] and Gray and Reuter [GR93] presents more details,
including failure handling, regarding the termination of transactions using 2PC.

Jini also supports nested transactions, but this feature has not being used
in the thesis, and will thus not be discussed any further.

Transaction Manager

An implementation of a Jini transaction manager must implement the Jini
TransactionManager interface and has three main responsibilities:

• It creates the transaction identifier along with a lease-time, which the
TransactionFactory uses to create the Transaction semantic object.

• It keeps track of the participants that have joined a transaction.

• It is responsible for terminating the transaction, i.e. to collect the votes
from the participants and decide the outcome as a part of the two-phase
protocol.

20 4.1. OVERVIEW OF JINI

Transaction Participants

A transaction participant is a service (usually an application program) that must
support the ACID properties of transactions. Consequently, it must be able to
rollback any changes the operations of the transaction might have performed.
When an operation with a new semantic Transaction object arrives, it must
join the transaction by calling the join method of the transaction manager. All
transaction participants in Jini must implement the TransactionParticipant
interface, and thus support the three methods the transaction manager may
invoke on them as a part of 2PC: prepare, abort and commit.

Transaction Clients

A client for a Jini transaction initiates the transaction by telling the Transac-
tionFactory to create a new transaction. As noted in Section 2.1, a transaction
is used to group a number of operations together to form a unit, to ensure that
either all or none of the operations are performed. The client invokes these
operations on Jini services. To keep track of the semantics of the transaction
the Transaction semantics object is sent with each invocation that is a part of
the transaction.

The client may at any time invoke the abort method of the transaction
manager to rollback the changes made by the transaction so far. Normally, if
all goes well, the client will initiate 2PC by invoking the commit method when
all operations have been performed. Clients may also join the transaction as a
participant and thus take part of 2PC. A client can be either a user application
or a service that makes use of other services.

4.1.3 Jini Extensible Remote Invocation

Java RMI [Sun99] allows remote method invocation to be syntactically equal to
invoking a local method, while acknowledging the semantic differences. How-
ever, it suffers from two major shortcomings [Som03]:

No security mechanisms. As RMI uses mobile code, and mobile code may
be malicious, it is suited for trusted local area networks (LAN) only. To
extend it to wide area networks (WAN) and over the Internet, security
mechanisms are required.

No easy configuration. There is no way to configure a Java RMI implemen-
tation. A configuration API is needed.

Jini Extensible Remote Invocation (JERI) was made by Sun developers to
cover RMI’s shortcomings. By using JERI the application developer can choose
any Java RMI implementation, e.g. SOAP, IIOP, JERI or JRMP. This allows for
better interoperability with other programming languages. It also eliminates the
need for compile time generation of proxies and has better distributed garbage
collection [New04].

JERI implements a new layerstack that facilitates the flexibility of the pro-
tocol, as shown in Figure 4.4. The invocation layer marshals and unmarshals
the remote invocation’s objects and parameters, while the object identification
layer tracks and manages several aspects, such as distributed garbage collection,

CHAPTER 4. ENVIRONMENT 21

Figure 4.4: The stack of layers used in JERI [Som03]

of exported objects. Finally, the transport layer is responsible for the protocol
used for transporting the invocation (http, tcp, ssl, etc.).

4.2 Overview of Jgroup/ARM

Fault tolerance and high availability for object-oriented systems usually works
by replicating an object into an object group and masking the replication. The
system distributes invocations on the object group according to the replication
scheme (passive, active, etc.). Jgroup [Mon00] is based on the object group
paradigm and is implemented entirely in Java. It executes client invocations
on the object group through an External Group Method Invocation (EGMI)
module, thus making the replication transparent to the client.

Jgroup extends the object group paradigm with the following main compo-
nents:

• A Partition-aware Group Management Service (PGMS)

• A State Merging Service (SMS)

• A Group Method Invocation Service (GMIS)

The PGMS keeps track of the group membership of servers. It provides a
consistent view of the members of the group to each of its members by informing
them of changes in the views. The changes may be due to failures in the system,
installation of new members or removal of existing ones. As indicated by the
name, the PGMS supports partitions and thus multiple concurrent views.

The partitioned server state can be recombined by the SMS. It consists of
two methods, one for retrieving the state, and one for merging the received state
with the existing one. As such, the SMS provides a way for servers to install a
common state after the partitioning or initializing of a server.

Reliable communication is provided by the GMIS. It is the responsibility of
GMIS to execute methods on the servers according to the replication policy of

22 4.2. OVERVIEW OF JGROUP/ARM

Figure 4.5: Overview of the core services in Jgroup [Mon00]

Figure 4.6: The Jgroup architecture [Mon00]

each method. Clients can only see the client-side group proxy of the remote
server, and cannot distinguish a GMI interaction from a local invocation. The
GMIS treats invocations between servers different from invocations between
clients and servers. This is elaborated on in Section 4.2.5

Architecturally, Jgroup/ARM consists of two main components; the group
manager and the daemon (see Figure 4.6). These are presented in the following
sections, along with the autonomous replication management framework, the
group enabled registry and group method invocations.

4.2.1 The Group Manager

The interaction between the Jgroup/ARM core services and the application
objects is controlled by the GroupManager [Mon00]. It is based on a stack of
layers, each providing a service to the application. As can be seen in Figure 4.6,
each server, S, has a GroupManager associated with it that keeps control over
the services needed by the group.

4.2.2 The Daemon

The Daemon provides the membership and the multicast services. As indicated
in Figure 4.6, more than one GroupManager can connect to the same Daemon
to make use of its services. Interactions between the GroupManager and the
Daemon are executed as Java RMI invocations.

CHAPTER 4. ENVIRONMENT 23

4.2.3 The Autonomous Replication Framework

Jgroup includes an Autonomous Replication Framework (ARM), which is re-
sponsible for deploying and operating dependable services within a predefined
environment [MH01, MMBH02]. The environment is the nodes where replicas
of the services can be hosted. It distributes and replicates the servers according
to rules specified by distribution and replication policies. For instance, the level
of redundancy offered by a service can be specified. If the current replica count
drops below this level, ARM automatically initializes a new replica of the server
within the environment.

4.2.4 Greg: Jini Group-Enabled Lookup Service

As mentioned in Section 4.1.1, Jini comes with a lookup service called Reggie.
However, it does not handle replicated services. Montresor, Davoli and Babaoğlu
[MDB01] extended Reggie to support object groups. The group-enabled service
is called Greg.

Greg uses the same protocol as Reggie to discover services and register the
proxy. But instead of having one static proxy per service, Greg uses a dynamic
group proxy that includes all replicas of the service. When a new service replica
is found, the existing group proxy is not overwritten, just modified. Thus, when
a client does a lookup on the service, a group proxy containing information
about all replicas is returned. The group proxy is then used to contact the
service according to the given invocation semantics.

4.2.5 External and Internal Group Method Invocations

All communication in Jgroup/ARM is provided by group method invocations.
This allows for a uniform treatment of communication. Jgroup/ARM distin-
guishes two different types of group method invocations. A client communicates
with the server group through the External Group Method Invocation (EGMI)
facility. This makes the server replication transparent to the client. On the
server side an Internal Group Method Invocation (IGMI) facility exists to aid
the coordination of the replicas’ global actions.

The rest of this section describes IGMI and EGMI in more detail.

Internal Group Method Invocation

An IGMI returns an array of results, one from each server in the group. In
case of a failure to complete it returns one of the exceptions associated with the
method invocation. All IGMI methods for a group are declared in an interface.
The IGMI service is retrieved by a call to the GroupManager and can then be
accessed like traditional remote method invocation.

External Group Method Invocation

The JERI EGMI layer supports EGMI. It is a modified version of Jini ERI,
which is presented in Section 4.1.3. It is extended to support group commu-
nication to be able to perform group invocations. As for IGMI, the methods
that can be performed on the group must be declared in an interface An EGMI
service is retrieved by a call to the registry like explained in Section 4.1.1, but a

24 4.2. OVERVIEW OF JGROUP/ARM

group enabled registry as the one presented in 4.2.4 is needed to support group
invocations.

Currently, there are four different invocation semantics for EGMI. These are:

• Multicast. An invocation on an object group is invoked on all replicas in
the group.

• Leadercast. An invocation on an object group is only invoked on the leader
replica of the group.

• Anycast. An invocation on an object group is invoked on a random replica
of the group.

• Atomic. An invocation on an object group is invoked with total-ordering
[BJ87].

The semantics apply not on a per object basis, but on a per method ba-
sis. This allows for greater flexibility as various methods may need different
semantics. For instance, a read-one-write-all protocol [TS01] could easily be
implemented by using anycast for read operations and multicast for write oper-
ations.

The type of semantics for each method is specified by using annotations1.
To specify that a method should be invoked with leadercast, multicast or atomic
semantics the method declaration is prefixed with @Leadercast, @Multicast or
@Atomic, respectively. If none are given, anycast is used.

For a client application there is no difference between an EGMI and a tra-
ditional Java RMI. This provides complete transparency of server replication.

1http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

Chapter 5

Replicated Invocations

This chapter starts by presenting replicated invocations and the problems they
pose to the consistency of a replicated system. General solutions to these prob-
lems are then discussed

The problem description is heavily based on a state of the art report on
highly available applications by the author [KH04].

5.1 Problem Description

A replicated invocation, also called chained invocation, happens when a repli-
cated server invokes another server. The invoked server can be replicated, but
it does not have to be. The resulting state-changes and result of such an invo-
cation must be identical to an invocation not involving replicated servers. As
explained in the following sections, the problem to solve depends on whether
the invoking replicated server is deterministic or not.

5.1.1 The Duplicate Invocation Problem

Consider an actively replicated server A and a server B that may or may not be
replicated. Whenever A invokes an operation on B, each of A’s replicas sends
a request to B. Since an actively replicated server must be deterministic (see
Section 2.2.1), all of these requests are identical. If the request is idempotent,
meaning that multiple invocations have the same end-effect as a single invoca-
tion, there is no problem. Since requests usually are non-idempotent, however,
a mechanism to detect and handle duplicate requests is needed. This is called
the duplicate invocation problem.

Figure 5.1 shows an example of the duplicate invocation problem for two
actively replicated servers A and B. The client sends a request to each replica
of server A, a0 and a1. a0 and a1 both process the request and issue a new
request to the replicas of server B, b0 and b1. b0 and b1 will both receive two
separate, but identical requests. The duplicate requests that must be handled
are shown as light-grey arrows. As can be seen, there are also duplicate replies
that must be taken care of. Fortunately, these can be dealt with by exactly the
same mechanisms as the duplicate requests.

26 5.1. PROBLEM DESCRIPTION

replica 1

replica 2

client

requests replies

server A

time

replica 1

replica 2

server B

Figure 5.1: An example of a duplicate invocation

Passive, semi-passive and semi-active replication support both deterministic
and non-deterministic execution. If the server is deterministic, the problem is
the same as for actively replicated servers. To see why, consider the following
scenario: A primary replica sends a request to another server and then crashes.
Once one of the backups has become the new primary it must resend the last
request. To the invoked server, this is a duplicate request. Although this exam-
ple illustrates a passively replicated server, a similar argument can be made for
semi-passive replication.

Semi-active replication can treat the communication with another server in
two different ways. First, the creation of the request could be treated as a
non-deterministic operation. This would make the invocations identical, giving
the illusion that the execution is deterministic, thus the duplicate invocation
problem would arise. Second, the actual sending of the request could be treated
as a non-deterministic operation and consequently only the leader would execute
it. This would make the non-deterministic nature of semi-active replication
opaque, as a failure of the leader could lead to a non-identical request being
sent. This case is discussed in the following section.

5.1.2 The Orphan Invocation Problem

A non-deterministic passively replicated server will normally behave as shown in
Figure 5.2. The primary of server C receives a request, processes it and invokes
a second server D. When a reply is received, the primary updates the backups
and returns a reply.

Unfortunately, a serious problem appears if the primary crashes [PKS03b,
PKS03a]. To see why, consider Figure 5.3. If the primary of C sends a request to
D and subsequently fails, one of the backups must become the primary. Because
of the non-deterministic execution, there is no guarantee that the new primary
will send an identical request to C. In fact, it may not invoke D at all, but
rather a different server E, or it may not send the request (at all).

CHAPTER 5. REPLICATED INVOCATIONS 27

replica 1

replica 2

client

request reply

server C

time
replica 1

server D

request

reply

update ack

Figure 5.2: A non-deterministic passive server causing a replicated invocation

replica 1

replica 2

client

request reply

server C

time

server D

request

reply

crash

server E

new
request

request

reply

orphan request

Figure 5.3: Non-deterministic passive replication and a primary failure lead to
an orphan request

28 5.2. HOW TO HANDLE REPLICATED INVOCATIONS

Tier B

Host 3

Host 2

Tier A

Host 0

proxy
(B)

a0

Host 1

proxy
(B)

a1 b1
proxy
(A)

b0
proxy
(A)

Figure 5.4: Pre-filtering and symmetric proxies [MGG95b]

If D processed the request received from the failed, old primary, it is cur-
rently in an inconsistent state. Even worse; a subsequent invocation of D can
lead to a reply that leaks the inconsistency to the rest of the system. This be-
havior is not acceptable. The request leading to the inconsistencies is called an
orphan request, and the problem that needs to be solved is the orphan invocation
problem.

5.2 How to Handle Replicated Invocations

This section will give a short outline of how the difficulties associated with
replicated invocations can be handled.

5.2.1 Duplicate Invocation Problem

The duplicate invocation problem is easily addressed: A timestamp for each
outgoing message is generated. Since the servers are deterministic, all repli-
cas produce identical timestamps and the server can easily filter duplicates by
comparing them. The duplicate invocation by the two replicas of server A,
shown as white arrows in Figure 5.1, will typically be filtered when they arrive
at the (two) replicas of server B. Duplicate replies are also easily removed.
Pre-filtering [MGG95a] at both the invoker and the invokee as shown in Figure
5.4 [MGG95b] can improve the scalability and performance. In the presence of
failures, however, post-filtering at the invoker is also needed.

5.2.2 Orphan Invocation Problem

Handling the orphan invocation problem is less straightforward. The system
must ensure that no orphans are allowed to cause inconsistencies. This can
generally be done in three different ways in a replicated environment: Send
undo information to backups, broadcast a new view, or use nested transactions.
Chapter 6 suggests a fourth solution.

The (first) approach that sends undo information to the backups is explained
in depth by Pleisch, Kupšys and Schiper [PKS03a]. It is based on a system

CHAPTER 5. REPLICATED INVOCATIONS 29

with no central transaction manager, but rather independent subtransactions
that are terminated for each completed invocation. It differentiates between
two types of subtransactions; optimistic and pessimistic. In the optimistic case,
a subtransaction is committed as soon as it is finished, thus releasing all locks.
It (optimistically) hopes that everything will work out. If something fails, the
subtransaction must be compensated to restore the consistency of the system.
In the pessimistic case, a subtransaction is not committed until its parent trans-
action commits. Thus, all locks are held indefinitely if the server executing the
parent transaction fails. The solution for both cases is to send undo informa-
tion to the backups before the invocation is sent. Thus, if the primary fails, the
backup will be able to terminate unterminated pessimistic subtransactions and
compensate terminated optimistic subtransactions.

The (second) approach that broadcasts a new view is a version of the orphan
detection mechanism called reincarnation [TS01, pp. 380-381]. In the original
approach, every client is given an epoch number that is sequentially increasing.
Every time a client reboots, its epoch number is increased and broadcasted.
When a server receives an epoch broadcast, all currently executing invocations
from that client is aborted. Servers that do not receive the new view are notified
when they reply to the client with an outdated client epoch number. For the
replicated case, a new epoch begins when the leader of a group fails, and a new
leader is appointed. This is the same as a view change [TS01, pp. 387-388] where
the old leader is not in the new view. Thus, the new leader can broadcast the new
view identifier, which can be used instead of an epoch number to kill off orphans.
However, extending this to a partitonable environment is not straightforward,
since partitioned concurrent views may exist.

The (last) approach [FN02] uses nested transactions and a central transac-
tion manager. When a client sends an invocation to a server, a transaction is
started. Each remote invocation from that server is treated as a subtransaction.
If the parent transaction fails, the transaction manager rolls back all its orphan
subtransactions. Consider Figure 5.5. Server C receives a request from the
client, starts a transaction and sends an invocation to server D. A subtrans-
action is started, and upon completion it updates the backup. Then replica 1
of server C fails. Since the transaction manager is able to detect this as a part
of its atomic commitment protocol, the rollback of the subtransaction at server
D is initiated. The client then resends the request. This is done automatically,
and is therefore transparent to the user. The figure also shows how the system
is able to handle a failure at the leader replica of server D by failover to the
backup.

replica 1

replica 2

client

request reply

server C time

replica 1

reply

crash

resent
request

new
requestrequest

rollback
replica 2

crash

update

crash

replyserver D

update

Figure 5.5: Two failures at two different and passively replicated servers using
nested transactions

Chapter 6

Replicated Transactions

Transactions and replication are techniques to make a system fault tolerant, as
outlined in Chapter 2. While the former yields consistency and safety, the latter
provides availability and liveness. All of these are highly desirable properties. If
the techniques are combined to work together instead of being provided as two
separate services two additional properties can be achieved [FN02]:

• A “stronger consistency to replicated systems by supporting non-determ-
inistic operation”, and

• a “higher availability and failure transparency to transactional systems”.

The former allows stronger consistency and non-deterministic execution be-
cause orphan requests can be rolled back in transactional systems. The latter
provides higher availability and failure masking because replication allows the
execution to be rolled forward to another replica. If exactly-once execution se-
mantics is added on top of these, an available, consistent and failure-masking
system that supports non-deterministic execution emerges.

The next sections show how the components involved in a transaction can
be replicated. The replication of the transaction manager in a consistent way is
explained in Section 6.1, and how to replicate the transaction participants and
handling replicated invocations within a transaction are presented in Section
6.2

6.1 Replicating the Transaction Manager

Section 2.2 discussed why all single points of failure should be avoided. This is
especially important for the transaction manager (TM) because it is a central
component involved in distributed transactions. If the TM becomes unavail-
able, the entire transactional system is rendered unavailable. This means that
no transactions can be executed, and since the most widely used atomic com-
mitment protocol, two-phase commit (2PC), may block if the TM becomes
unavailable, it is imperative that the TM is replicated.

The most important job of the TM is to make the decision to unilaterally
abort or commit each transaction. Such a highly critical decision does not fa-
vor active replication, since every replica will have to behave deterministically.

32 6.2. REPLICATING THE TRANSACTION PARTICIPANTS

In reality, TMs are not deterministic. In particular, timeouts introduces non-
determinism since it cannot be guaranteed that all replicas timeout at exactly
the same time [Pol93]. Also, active replication does not scale well, since execut-
ing the same processes on every replica wastes a lot of resources.

A TM that supports 2PC must be able to persistently store the decision to
commit or abort the transaction as the final part of the prepare phase [GR93,
BHG86]. In a distributed and non-replicated environment the decision is made
persistent by force-writing a record to the log. In a replicated environment
the transmission time is shorter than the time needed to write to the disk. A
solution where the prepare decision is persisted by sending it to the backups is
therefore both faster and preferred. In addition, it also gives better availability
since the prepared transactions can be committed by the backup in case of a
primary failure. If a local log was used, the transactions that are currently
prepared may be blocked until the TM has recovered.

The decision to commit a transaction is also sent to the backups. This is
done instead of the lazy write to the log in the normal non-replicated 2PC.
Hence, the replicated nature of the TM is used to provide both availability and
persistency of the decision.

6.2 Replicating the Transaction Participants

The transaction participants should also be replicated for the same reason as
any other component of the distributed system; to avoid single points of failure.
When replicated, they must be able to handle the problems occurring because of
replicated invocations. As seen in Chapter 5, the actual problem and solution is
dependent on whether the server is deterministic or not. When participating in a
distributed transaction where passive replication is used, however, the problem
is also dependent of whether the prepare request from the TM is allowed to
failover or not.

A failover applies to passive replication and happens when the primary fails
and an invocation is sent to the new primary instead. Figure 6.1 shows an
example of a failover for a prepare request. First, the client tells the TM to
commit a transaction. The TM then initiates the voting phase, and sends a
prepare request to all primary servers that have joined the transaction. In this
case, this is servers A1 and B1. The first has already failed, or fails while
processing the request. The TM then resends the request to the new primary;
A2. This is the failover. Then servers A2 and B1 replies with their votes,
and the TM can continue the 2PC protocol, making its decision based on the
received votes. The small arrow (3) shown in the figure is the mechanism that
makes the commit decision persistent (durable) before replying to the TM.

Figure 6.2 illustrates what happens when there is no failover of the prepare
request. When the TM does not get a reply from the failed leader, A1, it
eventually times out and aborts the transaction (as indicated by Arrow 5).

With two independent binary variables there are four different designs that
have to be analyzed:

• 1: Deterministic execution and failover for all requests.

• 2: Deterministic execution and no prepare request failover.

CHAPTER 6. REPLICATED TRANSACTIONS 33

Figure 6.1: A failure of a primary, and the consequent failover

Figure 6.2: A failure of a primary, without the failover

• 3: Nondeterministic execution and failover for all requests.

• 4: Nondeterministic execution and no prepare request failover.

Depending on which of the cases above is chosen the problems to be solved
differs: In the first scenario, the server replicas must be able to do duplicate
detection and filtering as usual for deterministic systems.

The second design choice only makes sense if the group is passively replicated.
However, it is not a particularly good one for that case either. Consider Figure
6.3: If replica A1 fails some time after sending message 7, but before the prepare
phase of the transaction, the transaction will eventually timeout, be aborted and
(probably) be restarted. This abortion might be unnecessary and it happens
without any gain. If the prepare request was allowed to failover instead, the
transaction would have been able to complete as long as a checkpoint was taken
between the completion of the request from the client and the failure of A1.
Then, A2 will have knowledge of the transaction and be able to complete the
commit protocol. By checkpointing every time the server replies to a request,
it can be guaranteed that the backup will be able to complete every transaction
that the primary has joined.

As the two last choices both support nondeterministic execution they are
in danger of creating orphan requests as seen in Section 5.1.2. For the third
case, the problem will be the same as explained there, and the solutions are the
same as presented in Section 5.2.2. This is illustrated by Figure 6.4: If replica
A1 fails before updating the backup, A2, and replying to the client, the client
will resend the request doStuff1. The execution of doStuff2 will then be an
orphan request at server B. This is due to the fact that the TM will get a reply
from A2 in the prepare phase, and the failure of A2 will therefore go unnoticed.

34 6.2. REPLICATING THE TRANSACTION PARTICIPANTS

Figure 6.3: The creation and join phase of a transaction

Figure 6.4: An unhandled orphan request

The transaction mechanisms described here cannot handle this situation alone.

The last case will be able to handle orphan requests. To see why, consider
Figure 6.4 again. It shows the orphan request that is generated by the execution
of doStuff2 at server B and the subsequent failure of replica A1. When the
client resends the original request to replica A2 in message 8, the system will
have no knowledge of the orphan request, and it will continue towards trans-
action completion by joining A with A2 as the primary in the transaction, as
though it was an original request in the failure free case. However, when the TM
reaches its voting phase, replica A1, which is the primary of the first join, will
not be able to vote. Thus, the voting phase will timeout, and the transaction,
along with the orphan request, will be correctly aborted, as shown in Figure
6.2.

There is an obvious tradeoff between allowing the prepare request to failover
or not. The first makes it harder to handle replicated invocations, while a
failure of one participant in the latter causes the entire transaction to abort.
Also, for the fourth and last case, the waste of resources might be substantial,
because a transaction that is doomed to be aborted, is allowed to continue.
However, by allowing the TM to break replication transparency and hence be
able to remove the automatic failover for a replicated group, it provides a way
for orphan requests to be handled correctly. There is no need for difficult and
novel techniques such as those presented in Section 5.2.2.

CHAPTER 6. REPLICATED TRANSACTIONS 35

6.3 Concurrency Control

Transactions that execute concurrently can interfere with one another and cause
inconsistencies even though all of them executing serially is correct [BHG86].
Therefore, the result of a parallel execution must be equivalent to the result of
a serial execution. The transaction history must be serializable. There exists
many techniques for achieving this [BHG86]; two phase locking (2PL), times-
tamp ordering, serialization graph testing, certifiers and combinations of them.
Since 2PL is the most common of these, it is presented in more detail below.

As the name indicates 2PL consists of two phases; one in which locks are set
and one where locks are released. By never setting a lock after a lock has been
released, the execution is guaranteed to be serial. There exist three different
variations of 2PL: Basic, Conservative and Strict. The first suffers from possible
deadlocks. If a transaction A holds a lock for object x and transaction B holds a
lock for object y, and both transactions wants to set a lock for the other object,
a deadlock has occurred.

Conservative 2PL avoids deadlocks by setting all locks at the start of the
transaction. Thus, a transaction cannot request new locks after it has started
processing, and deadlocks cannot occur.

The latter, Strict 2PL, is the variant most widely in use. It waits until the
transaction commits to release any of its locks. Thus, a transaction will not
read or write data written by an aborted transaction. This ensures that the
histories are strict, which includes the highly desirable properties; recoverable
and avoid cascading aborts.

In a distributed environment, global serialization is needed. However, by
using Strict 2PL, each local site (or in this case; object group) knows that it can
release the locks held by a transaction after it has received a commit message
from the transaction manager. The rest of the thesis therefore assumes that
serializability is ensured by Strict 2PL.

6.4 Ensuring Transaction Termination

When the TM is passively replicated as presented in this chapter, a transac-
tion might be unable to terminate, and might block other transactions from
completing. Consider the following case: A transaction has been created and
all (or some) of the participants have joined it. Then the primary TM fails
before the prepare phase has completed. This will leave the new primary with
no knowledge of the transaction. When the client asks the TM to commit it,
the TM will reply that the transaction is unknown, and the client will assume
that it has aborted. However, the transaction participants will still hold their
locks on the items accessed by the transaction. Without proper termination of
these transactions the locks could be held forever, blocking other transactions
from completing.

The locks held by a failed transaction can be removed by the client, if it
keeps control of the participants accessed by each transaction. Thus, when
the client gets a reply from the TM that the transaction it tried to commit
is unknown, the client can contact the participants telling them to abort the
transaction. Because of possible replicated invocations each participant must
be able to tell which other participants it has caused to joined the transaction,

36 6.4. ENSURING TRANSACTION TERMINATION

and so on. However, if one of the participants also fails, the participants used
by that participant do not get the abort message.

A better way to remove the locks is to use a timeout. Each participant can
periodically poll the TM to get the status of each active transaction. If the TM
replies that the transaction is unknown, the transaction can be safely aborted.

Part III

Implementation and
Assessment

Chapter 7

Implementation Issues

This chapter looks at the changes and additions to Mahalo needed to imple-
ment a passive replicated transaction manager. First, the package structure of
Mahalo is presented, then the PassiveGroupMahalo (PGM), which is the trans-
action manager object being replicated, and the GroupTxnManagerTransaction
(GTMT), which holds the state of the transaction, are explained in detail.

7.1 Overview

There already exists a replicated version of Mahalo—Gahalo [Mol04]. However,
Gahalo is actively replicated, and as discussed in Section 6.1, a transaction
manager should not be actively replicated, because of possible non-determinism.
Also, active replication does not scale very well. Thus, a passive replicated TM
is needed. The rest of this chapter gives a detailed explanation of the implemen-
tation of pGahalo - the passively replicated transaction manager. It is based on
Moland’s work [Mol04] on Gahalo, but extends it by allowing non-deterministic
execution and controlling the replicated invocation related problems.

Before going into the technical details of the implementation in Section 7.3,
an informal description of the life of a transaction in pGahalo is given in Section
7.2.

7.2 Informal Description

pGahalo is responsible for three different phases of the transaction: Its creation,
the joining of transaction participants and its completion. These phases are
presented in the following subsections.

7.2.1 Transaction Creation

Externally, transaction creation is almost done in the same way as under nor-
mal Mahalo (shown in Figure 4.2). The only external difference is that the
TransactionFactory invokes pGahalo using leadercast semantics (see Section
4.2.5).

When pGahalo receives a request to create a new transaction, as shown in
Figure 7.1, it forwards it to the GroupTxnManagerImpl (GTMI). It is responsible

40 7.2. INFORMAL DESCRIPTION

Figure 7.1: The creation of a new transaction in pGahalo

Figure 7.2: The join of a participant in a transaction in pGahalo

for creating a new transaction identificator and a new GTMT object, which is
the object containing the state of the transaction. The new object is then
stored in a hashmap, where the transaction identificator is used as a key. Then
an object with the identificator and the information about the lease is returned
to the factory and client through PGM.

7.2.2 Joining the Participants

As for transaction creation, the leadercast invocation on the TM is the only
external difference between pGahalo and Mahalo when joining the participants
(see Figure 4.2). The more detailed Figure 7.2 shows how pGahalo joins a par-
ticipant in a transaction. PGM receives a join-request from a participant, which
contains the identificator of the transaction and a proxy for the participant. It is
passed on to the GTMI, which retrieves the correct GTMT from the hashmap
using the identificator. The participant proxy is sent to the found GTMT,
which makes a new ParticipantHandle and adds it to its list of handles. The
execution then returns to the invoking server.

In this prototype implementation of the transaction participants no concur-
rency control, as explained in Section 6.3, is implemented. The banks simply
execute their operations in the order they are received.

7.2.3 Transaction Completion

Both Mahalo and pGahalo uses the two phase commit presumed abort proto-
col (2PC-PA) [MLO86] to atomically terminate transactions. The reasons for
choosing this protocol over the two other variants of 2PC, presumed commit and

CHAPTER 7. IMPLEMENTATION ISSUES 41

presumed nothing, are twofold. First, it is very easily fitted to the replicated
nature of pGahalo. If the primary fails and the backup knows nothing about the
transaction, the participant can safely abort the transaction. Second, because
of how Mahalo is implemented, it is easier and faster to implement 2PC-PA
than the others.

There are limitations for this implementation of 2PC-PA. These are caused
by shortage of time and a main goal to construct a prototype system to demon-
strate, test and give an indication of the performance. The implementation
assumes that there will always be at least one working replica of the transaction
manager. The outcome of each transaction is made persistent by replication,
not by logging. However, if all replicas fail, there is no log from which to do
recovery. Similarly, if all replicas of a transaction participant fail, its state will
be lost. However, all running transactions will still be able to terminate.

No optimization of the commit protocol has been implemented. For instance,
it is not possible for a participant to give a read vote, which would exclude it from
the second phase of 2PC, and 2PC is performed separate from the operations
of the transactions. In particular, there is no piggybacking of prepare and
commit messages on the transaction invocations. In addition, all messages are
synchronous. Therefore, the client will not receive any early commit messages.

Figure 4.3 shows how a successful commit of a transaction works. For pGa-
halo it starts by receiving a commit request, which is forwarded to the GTMI.
It retrieves the correct GTMT from the hashmap based on the identificator that
came with the request. For each participant in the list of ParticipantHandles,
a PrepareJob is scheduled and executed. If all returned yes-votes, GTMT mul-
ticasts a message to all PGMs, hence persistently storing the decision to commit.
The message is sent using an internal group method invocation (IGMI, explained
in Section 4.2.5. The backups of the PGM are shown as grey lines the figure.

After receiving confirmation from the backups saying that they are aware
of the decision to commit, GTMT initiates a CommitJob for each participant.
When they are finished, GTMT sends the information to all PGM, telling them
that the transaction has completed. Thus, the transaction (the GTMT object)
can be removed from the map of transactions, and the client can be notified of
its successful completion.

If the result of one or more PrepareJobs is a no-vote, then the GTMT invokes
the abort() method of GTMI (see Figure 7.4. After the abort has finished as
explained next, a CannotCommitException is thrown back to the client, which
would have to handle it in a suitable way.

A transaction abort can be initiated by one of the participants voting no in
the prepare phase as seen in Figure 7.4, or if, for some reason, the client decides
to abort it. The PGM then receives an abort request that is forwarded to the
GTMI object as shown in Figure 7.5. It retrieves the correct GTMT object
from the transaction hashmap and calls its abort() method. Then, for each
participant that has joined the transaction, an AbortJob is started. After all
jobs have completed the GTMI removes the transaction from the hashmap and
returns. There is no need to notify the backups, since the 2PC-PA protocol is
used.

42 7.2. INFORMAL DESCRIPTION

Figure 7.3: A transaction commit in pGahalo

Figure 7.4: A participant caused transaction abort in pGahalo

CHAPTER 7. IMPLEMENTATION ISSUES 43

Figure 7.5: A client initiated transaction abort in pGahalo

7.3 Technical Details

The next subsections first present the package structure of Jini. Second, the
changes needed to deny failover for the prepare request are explained. Then,
the details on how pGahalo and the passively replicated transaction managers
were implemented are given, and finally, the implementation of a bank that can
participate in transactions is outlined.

7.3.1 Package Structure

All packages in Jini 2.0 are either on the form net.a.b.c or com.a.b.c. All
the net-packages are public, while the com-packages are private.

The main package structure of Mahalo is as follows:

• com.sun.jini.mahalo: The core implementation of Mahalo

• com.sun.jini.mahalo.log: The implementation of the logger used in
Mahalo

• net.jini.core.transaction: Support classes (transaction factory and
exceptions) for Mahalo

• net.jini.core.transaction.server: The external and public inter-
faces implemented by the classes in com.sun.jini.mahalo.

7.3.2 Adding support for bypassing failover

To be able to support nondeterministic execution for the transaction partici-
pants, the failover of the prepare request must be denied as explained in 6.2.
The leadercast semantics in Jgroup/ARM is designed to failover to the new
primary. This failover mechanism needs to be bypassed when needed.

First, the changes visible to the application programmer are explained, then
the changes to the internals of Jgroup/ARM needed to accommodate the se-
mantics of the addition to the Leadercast interface are presented. Two things

44 7.3. TECHNICAL DETAILS

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface Leadercast {

boolean failover() default true;
}

Figure 7.6: The Leadercast annotation interface

are needed to make it a general feature that is available for an application
programmer using Jgroup/ARM:

• A way to mark a method that should not failover.

• The actual implementation that makes the bypass possible.

To provide the application programmer with a way to mark the methods
that should not failover, the Leadercast annotation type was changed. The
boolean return type failover was added, seen at Line 5 in Figure 7.6. A
method that needs to make sure that only the primary receives an invocation,
despite of failures, only needs to prefix the method with @Leadercast(failover
= false). The default value is true, hence if only @Leadercast is specified
normal failover will occur.

In Jgroup/ARM the GroupInvocationHandler (GIH) is responsible for per-
forming the external group method invocations on the client side. A GroupEnd-
Point (GEP) holds the references to all endpoints of a group proxy, and it is also
responsible for updating the list of endpoints by contacting the registry if an
invocation should fail. When a new external group method invocation (EGMI)
is executed, the GIH contacts the GEP, which is responsible for selecting the
endpoint depending on the invocation semantics of the invoked remote method.
For instance, if the method is invoked with leadercast semantics, only the leader
is chosen, or if anycast semantics is used, a randomly chosen endpoint is picked.
The endpoint is returned to the GIH, which tries to execute the invocation. If
it fails (by throwing an IOException), the endpoint is removed from the list of
endpoints, and the GEP selects a new endpoint. This is the failover mechanism.

The failover mechanism can be bypassed by a simple test: When an IOEx-
ception is caught and leadercast semantics is used, check the failover variable
for the semantics. If the variable is false, throw a GroupUnreachableExcept-
ion, else continue as normal. Thus, the failover for leadercast semantics can be
disallowed for the prepare request.

7.3.3 Implementing pGahalo

pGahalo is the implementation of a passively replicated transaction manager. It
is based on the Jini transaction manager, but augmented to be able to conform
to the transaction manager described in Section 6.1.

The changes needed for the main transaction manager class and the class
controlling the state of each transaction is presented and explained in the fol-
lowing subsections.

CHAPTER 7. IMPLEMENTATION ISSUES 45

public interface TransactionManager extends Remote, TransactionConstants {

Created create(long lease) throws LeaseDeniedException, RemoteException;

void join(long id, TransactionParticipant part, long crashCount)
throws UnknownTransactionException, CannotJoinException,

CrashCountException, RemoteException;

int getState(long id) throws UnknownTransactionException, RemoteException;
10

void commit(long id)
throws UnknownTransactionException, CannotCommitException,

RemoteException;

void commit(long id, long waitFor)
throws UnknownTransactionException, CannotCommitException,

TimeoutExpiredException, RemoteException;

void abort(long id)
throws UnknownTransactionException, CannotAbortException, 20

RemoteException;

void abort(long id, long waitFor)
throws UnknownTransactionException, CannotAbortException,

TimeoutExpiredException, RemoteException;
}

Figure 7.7: The TransactionManager interface

The PassiveGroupMahalo class

The main class of pGahalo is PassiveGroupMahalo (PGM). It is the class that
implements both the EGMI and IGMI interfaces. The first allows the pub-
lic methods in PGM to be accessed via remote methods from other servers.
These methods are the same that are declared in the Jini TransactionManager
interface (see Figure 7.7). The latter is done indirectly by specifying and imple-
menting the InternalPassiveGroupTransactionManager (see Figure 7.8), and
it provides the necessary means to internally (to the group) notify the backups
of the prepare and commit of each transaction.

The invocation semantics of each method can (as explained in 4.2.5) easily
be set by prefixing the method declaration with metatags. To ensure that only
the primary gets the invocations from the clients and participants, all imple-
mented methods in PGM from the TransactionManager interface is prefixed
with “@Leadercast”, to achieve leadercast semantics. The prepare method is
prefixed with @Leadercast(failover = false) as explained in the previous
section.

46 7.3. TECHNICAL DETAILS

public interface InternalPassiveGroupTransactionManager
extends InternalGMIListener, java.io.Serializable

{
public void transPrepared(TxnManagerTransaction tmt, long id)

throws RemoteException;

public void transCommitted(long id)
throws UnknownTransactionException, RemoteException;

}

Figure 7.8: The InternalPassiveGroupTransactionManager interface

The GroupTxnManagerTransaction class

The TxnManagerTransacion (TMT) class is responsible for the state of a trans-
action in Mahalo. To be able to support replicated transactions, however, some
changes were needed.

First of all, the TMT class in Jini 2.0 implements the Serializable in-
terface, but unfortunately some of its instance variables are not serializable1.
Thus, the TMT could not be sent over the network.

Second, to be able to backup the transaction at the end of the prepare phase
and the commit phase, two new methods were needed; allParticipantsPrep-
ared() and allParticipantsCommitted, respectively. The first is invoked from
the commit()-method after all participants has prepared, while the latter is
invoked at the successful completion of the same method. Both of the new
methods retrieve a reference to the IGMI service for pGahalo (see Figure 7.8)
through a static method call to the PassiveGroupMahalo class. Then, using
the methods defined as the IGMI service, they notify the backups of the new
state of the transaction.

Because of the two issues above, a new class that inherits TMT is needed;
GroupTxnManagerTransaction (GTMT). It overwrites the commit()-method
and adds the two new ones. Also, the non-serializable variables are marked as
transient, meaning that they do not get serialized (marshaled) when the GTMT
object is sent over the network. Thus, these variables have to be reinitialized
when received by the pGahalo backups. Because the TMT (and the GTMT) is
part of the private com-classes, this is done using reflection [Bar01].

7.3.4 Implementing the Replicated Transaction Partici-
pants

By disallowing failover for the prepare request the orphan invocation problem
for nondeterministic servers (presented in Section 5.2.2) can be avoided. The
details were explained in Section 7.3.2. Thus, we can allow nondeterministic
servers as transaction participants. The only change that is needed for the
application is to add a value to the Leadercast annotation interface.

An implementation of a transaction participant, the ReplicatedBankServer
is presented here. It is passively replicated and supports nondeterministic exe-

1This is reported as a bug at the Sun Bug Database and is now fixed for the next release
http://bugs.sun.com/bugdatabase/view bug.do?bug id=4912745.

CHAPTER 7. IMPLEMENTATION ISSUES 47

public interface TransactionParticipant extends Remote, TransactionConstants {

int prepare(TransactionManager mgr, long id)
throws UnknownTransactionException, RemoteException;

void commit(TransactionManager mgr, long id)
throws UnknownTransactionException, RemoteException;

void abort(TransactionManager mgr, long id)
throws UnknownTransactionException, RemoteException; 10

int prepareAndCommit(TransactionManager mgr, long id)
throws UnknownTransactionException, RemoteException;

}

Figure 7.9: The TransactionParticipant interface

public interface InternalPassiveTransactionParticipant
extends InternalGMIListener, java.io.Serializable

{
public void txnPrepared(long id, Object stateUpdate)

throws RemoteException;

public void txnCompleted(long id, int outcome)
throws UnknownTransactionException, RemoteException;

}
10

Figure 7.10: The InternalPassiveTransactionParticipant interface

cution. The extensions made to the standard Jini transaction participants are
explained, and a

The ReplicatedBankServer class

Any implementation of a transaction participant in Jini must implement the
TransactionParticipant interface shown in Figure 7.9, since the transaction
manager must be able to run the 2PC protocol. To be able to replicate it and
use EGMI the participant must implement the EGMI interface. The methods
available for IGMI are declared in an interface which it must also implement.

Two IGMI methods are needed for a participant to notify the backups
of two events. A primary yes vote as a response to a prepare request from
the transaction manager and a transaction commit or abort decision. The
InternalPassiveTransactionParticipant interface is shown in Figure 7.10.

The EGMI methods are the methods declared in the TransactionPartici-
pant interface, plus any application specific methods. For instance, a bank
would probably have methods for withdrawals, deposits and reading the balance
of an account. A participant would join the transaction when one of its methods
was called with a transaction identificator. The join method of the transaction

48 7.3. TECHNICAL DETAILS

Figure 7.11: The commit of the ReplicatedBankServer, an implementation of
a TransactionParticipant

manager would be called with two parameters, the transaction identificator
and a proxy. The latter is needed by the manager to be able to contact the
participant as a part of 2PC.

The implementations of the EGMI methods are prefixed with @Leadercast.
To facilitate nondeterministic execution the failover variable is set to “false”
for the prepare method, as explained in Section 7.3.2. The rest of the methods
use, and need, the failover mechanism.

Figure 7.11 illustrates the successful completion of a transaction as seen from
a transaction participant. The implementation used in this thesis is called the
ReplicatedBankServer. It provides methods to withdraw and deposit a certain
amount of money from and into an account as a part of a transaction. When it
is invoked with an operation it joins the transaction by sending the transaction
identificator and a group proxy to the TM. Then a new CreditDebit object
containing the operation is created before a reply is sent to the client.

After a while, the other operations of the transaction has been executed
and the TM has started its voting phase, the participant will receive a prepare
message from the TM. Then, if it is ready to commit, the transaction and its
operations is made persistent by using the IGMI txnPrepare(). A yes vote is
returned to the TM if the IGMI completed successfully.

Later, the participant will receive the decision from the TM. The decision is
sent to all backups, and if the decision is to commit, as in the figure, all of the
replicas apply the CreditDebit object to their state. A reply is sent from the
primary to the TM containing an acknowledgment of the transaction outcome.

Chapter 8

Tests

This chapter presents the environment used for testing and the results of tests
executed on the pGahalo transaction manager. The tests include comparisons
of response times between pGahalo, Gahalo, and Mahalo as well as failover
measurements for pGahalo.

8.1 The Test Environment

The system where the tests are executed consists of four conceptual entities: A
client, a transaction manager (TM) and two banks. Figure 8.1 shows the system
model. The grey ovals represent entities, while the white boxes are nodes where
replicas of servers or the client execute. A single physical node may execute
more than one service. The arrows in the figure represent the direction of the
invocations.

The lifecycle of the transaction used for testing is as follows:

• A transaction is initiated by the client, and created by the TM.

• The client invokes the withdraw operation of BankA, which joins the trans-
action.

• The client invokes the deposit operation of BankB , which joins the trans-
action.

• The client initiates 2PC, which is carried out by the TM as explained in
Section 7.2.3.

As modeled in the figure, the TM can have up to four replicas, and the two
banks can have up to two replicas each. These limitations are due to the fact
that there were only five nodes available for executing the tests.

A Dual AMD MP 1600+ running at 1.4GHz powered each node. A 100Mbit
Ethernet connected them and each had 1024 MB of RAM. The tests were exe-
cuted using Java version 1.5.0.

All tests were carried out by executing 500 transactions and measuring the
elapsed time at the client between transaction initiation and transaction com-
pletion. This is referred to as the response time of a transaction. Similarly, the

50 8.2. THE ISSUE OF GARBAGE COLLECTION

Figure 8.1: A model of the system used for testing

response time of an invocation is the time passed between calling the remote
method of the client and the return of the method call.

All results show that there is a startup cost at the beginning of each testrun
that affects the first transactions executed. After about 50 transactions the
response time normalizes. The startup cost is probably due to the allocation
of objects and the dynamic run-time compilation of Java. The latter optimizes
code that is very frequently accessed such that it executes faster. The graphs
presenting the response times clearly show this. The first 50 transactions are
therefore left out of all histograms and any calculations made, and ignored in
the discussion.

Failover measurements are executed with the configuration of variables as
shown in Table 8.1.

8.2 The Issue of Garbage Collection

All testruns presented in this chapter are done using incremental garbage col-
lection (GC). This is specified by using -Xincgc as an argument to the Java
Virtual Machine when starting the application. This causes the GC to run con-
tinuously to remove dereferenced objects and class definitions. Normally, GC is
performed at more or less regular intervals when the memory is full. It preempts
the execution of the normal services and leads to increased response times for
the affected transactions.

Figure 8.2 shows the effect of using incremental GC instead of the default.
It illustrates that a normal GC blocks the transaction processing for about 150
ms. This causes the response time to be four times longer for the nonreplicated
case. As will be presented in the following sections, a transaction executing in
a replicated system will take longer to execute. The relative effect of a single
GC is therefore less. However, the probability for a transaction to be delayed
at more than one point is increased, which might cause an even higher response
time for a transaction.

CHAPTER 8. TESTS 51

Variable Description Value
routing-
Timeout

This variable is the time that a node waits for a heart-
beat message from another node before it times out.
If it is set too low, too many false suspicions of a fail-
ure happens. On the other hand, if it is set to high,
failover will take a long time.

50

maxTTL This variable decides how many times a server can
time out before it is suspected to have crashed. The
consequences are the same as for the previous variable

5

alfa This variable automatically tunes the timeout value.
This is in principle the same as TCP’s exponential
weighted moving average calculation. However, tun-
ing this variable did not yield any significant change
for the failover delay.

7/8

Table 8.1: The configuration of the variables tuned for failover measurements

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

0

50

100

150

200

250
Normal garbage collection

(a) Response times for normal
garbage collection

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

0

50

100

150

200

250
Incremental garbage collection

(b) Response times for incremental
garbage collection

Figure 8.2: Transaction response time graphs comparing two kinds of garbage
collection. Both are performed without replication.

52 8.3. COSTS OF PASSIVE REPLICATION

Garbage
Collected

Objects Size

Nonreplicated system
Primary 2.2M 76MB

2 passive TM replicas
Primary 4.4M 123MB
Backup 3.9M 106MB

3 passive TM replicas
Primary 5.3M 146MB
Backups 4.4M 117MB

4 passive TM replicas
Primary 6.2M 168MB
Backups 4.8M 130MB

Table 8.2: The effect of replication on garbage collection

Depending on the transaction class this uncertainty may be too high. For
instance, a user executing requests over the Internet will probably never notice
it. In a telecom-system, however, such delays can be unacceptable.

Figure 8.2(b) shows that there are some peaks when using incremental GC
as well, but they are fewer and smaller. The origins of these peaks are hard
to identify, and can also be caused by operative system processes running or
network delays.

The number of garbage collected objects while executing transactions can
be found by using the YourKit Java Profiler1. 500 transactions were executed
in four separate testruns for three degrees of replication. The results are shown
in Table 8.2. It clearly shows that there is a large increase in the number of
garbage collected objects and the total size of the objects when the transaction
manager is replicated.

8.3 Costs of Passive Replication

Ideally, the cost of executing a replicated service should be zero. Since replica-
tion has to be managed and controlled, and these threads have to compete with
the execution of transactions for resources, however, a performance penalty is
unavoidable. In addition, multicast is generally slower than unicast [MMBH02],
causing an extra communication delay.

Section 8.3.1 presents the results of measurements done on both partially
and fully passively replicated systems and compares the resulting response times
observed from the client with those of a nonreplicated one. Similarly, Section
8.3.2 gives a comparison between active and passive replication.

8.3.1 Passive Replication versus No Replication

By comparing the measurements for the nonreplicated case, with those of vary-
ing degrees of passive replication, an understanding of how it affects the per-

1www.yourkit.com

CHAPTER 8. TESTS 53

formance can be gained. Therefore, measurements were done not only for the
fully replicated case, but also for partially replicated cases.

First, only replication of the transaction manager is considered and then
replication of the transaction participants is added.

Replicating the Transaction Manager

The passively replicated pGahalo was replicated with degrees varying from two
to four, and client-side response times were collected for each transaction. The
following runs were performed:

• Testrun 1: A nonreplicated transaction manager and nonreplicated banks.

• Testrun 2: Two passively replicated transaction managers and nonrepli-
cated banks.

• Testrun 3: Three passively replicated transaction managers and nonrepli-
cated banks.

• Testrun 4: Four passively replicated transaction managers and nonrepli-
cated banks.

The purpose of these testruns was to see how much overhead is added by
passive replication of the transaction manager, and how much the variance of
the response times increases. Figure 8.3 presents the results of these runs.

The response time of Testrun 1 in Figure 8.3(a) is pretty stable. There
are about eight relatively small peaks spread randomly out. These peaks are
probably caused by the incremental garbage collection being extra active at the
time, or a delay in the network traffic. Also, operative system processes might
have interfered in the execution.

Figure 8.3(b) illustrates the execution time for Testrun 2. It shows more un-
reliable response times than the nonreplicated run. When utilizing the Jgroup
system, there are a lot more objects that need to be garbage collected as ex-
plained in Section 8.2. Also, there is more network traffic, which can incur
delays, and the transactions have to compete with the threads managing the
replication. All of these increase the uncertainty for the response time of a
transaction. The average response time is also longer because of the overhead
added by Jgroup and the multicast of the prepare and commit decisions.

Testrun 3 and 4 shows even higher response time variance. These are caused
by the same reasons as those mentioned for Testrun 1, but their impacts are
larger, because of a higher degree of replication.

Figure 8.5 shows the distribution of the response times for each of the
testruns. The histograms seem to be skewed towards shorter response times
when increasing the degree of replication. There is a much clearer lower limit
for the nonreplicated case, than for the replicated ones. This is caused by an
increased probability of a transaction delay in a more complex system with more
nodes. With a lower probability of delays, more transactions will be completed
closer to the lower limit. Only a small increase in variance is observed as more
replicas are added.

As can be estimated from Figure 8.4, the average response time is a bit over
50 percent greater when using two passive replicas of the TM compared to the

54 8.3. COSTS OF PASSIVE REPLICATION

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
tim

e
(m

s)

0

50

100

150

200

250

300

350
Nonreplicated system

(a) Nonreplicated system

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

300

350
2 passive TM replicas

(b) 2 passive TMs

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

300

350
3 passive TM replicas

(c) 3 passive TMs

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

300

350
4 passive TM replicas

(d) 4 passive TMs

Figure 8.3: The cost of passively replicating the transaction manager

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

300

350
Nonreplicated
2 passive TM
3 passive TM
4 passive TM

Figure 8.4: Regressions of the plots in Figure 8.3

CHAPTER 8. TESTS 55

Response Time (ms)
20 40 60 80 100 120 140 160

N
o.

 o
f T

ra
ns

ac
tio

ns

0

10

20

30

40
1 nonreplicated TM and 2 banks

Distribution of Response Times

(a) Nonreplicated system (2 ms)

Response Time (ms)
30 50 70 90 110 130 150 170

N
o.

 o
f T

ra
ns

ac
tio

ns

0

2

4

6

8

10

12

14
2 passive TMs and 2 banks

Distribution of Response Times

(b) 2 passive TMs (3 ms)

Response Time (ms)
40 60 80 100 120 140 160 180 200

N
o.

 o
f T

ra
ns

ac
tio

ns

0

2

4

6

8

10

12

14

16
3 passive TMs and 2 banks

Distribution of Response Times

(c) 3 passive TMs (3 ms)

Response Time(ms)
40 60 80 100 120 140 160 180 200 220

N
o.

 o
f T

ra
ns

ac
tio

ns

0

2

4

6

8

10

12

14

Distribution of Response Times

4 passive TMs and 2 banks

(d) 4 passive TMs (3 ms)

Figure 8.5: Histograms of the distribution of response times for various degrees
of transaction manager replication. The number in parentheses represents the
horizontal size of the bars.

56 8.3. COSTS OF PASSIVE REPLICATION

nonreplicated case. Three and four replicas cause around a 100 and 150 percent
increase, respectively.

Fully Replicated System

The transaction participants were replicated along with the transaction manager
in these testruns to create a fully replicated system. The purpose was to find the
overhead of replicating the transaction participant and creating a fully replicated
system, and also to see if this adds any variance to the results. The following
testruns were performed to be able to examine this:

• Testrun 5: A nonreplicated transaction manager, with two replicas of each
bank.

• Testrun 6: Two passively replicated transaction managers, with two repli-
cas of each bank.

• Testrun 7: Three passively replicated transaction managers, with two
replicas of each bank.

Figure 8.6 shows the response times for these testruns. Testrun 1 is plotted
as well in Figure 8.6(d) for easier comparison.

Replicating the transaction participants results in more peaks and generally
a shorter response time. The peaks are probably caused by the same reasons
as the added variance for the replication of the transaction manager; added
network traffic and replication management. The added delay is because of
multicast and system complexity.

For Testruns 6 and 7, the overhead and variance increase even more. This
is of course caused by the increased complexity of the system, plus some extra
might be added because of some nodes executing more than one service because
of only the limited number of available nodes for testing. Also, updating the
backups is considerably slower as discussed in Section 9.1.1.

Looking at Figure 8.7 we observe the same phenomena as in Figure 8.5:
Increasing the degree of replication causes more variance and the top of the
graphs moves away from the lower bound.

Figure 8.6(d) shows a regression of the response time for Testruns 1 and
5-7. It indicates that replicating the banks causes a 60 percent increase in the
response time. Adding a replicated transaction manager on top of that causes
a 100 percent increase. Using three replicated transaction managers and two
replicated banks is more than two and a half times as time consuming as only
replicating the banks, and around four times slower than the nonreplicated case.

8.3.2 Passive Replication versus Active Replication

To evaluate pGahalo properly, its overhead needs to be compared to that of
Gahalo. Therefore, the following testruns were performed using Gahalo:

• Testrun 8: Two actively replicated transaction managers and nonrepli-
cated banks

• Testrun 9: Three actively replicated transaction managers and nonrepli-
cated banks

CHAPTER 8. TESTS 57

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

100

200

300

400

500

0

50

100

150

200

250

300

350
1 nonreplicated TM and 2x2 banks

(a) 2 replicas of each bank and 1 passive
TM

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

100

200

300

400

500
2 passive TMs and 2x2 anks

(b) 2 replicas of each bank and 2 passive
TMs

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

100

200

300

400

500
3 passive TMs and 2x2 banks

(c) 2 replicas of each bank and 3 passive
TMs

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

100

200

300

400

500
Testrun 7
Testrun 6
Testrun 5
Testrun 1

Regression of Fully Replicated System

(d) Regression of Testruns 1 and 5–7

Figure 8.6: The cost of actively replicating the transaction manager

58 8.3. COSTS OF PASSIVE REPLICATION

Response Time (ms)
20 40 60 80 100 120 140 160

N
o.

 o
f T

ra
ns

ac
tio

ns

0

10

20

30

40
1 nonreplicated TM and 2 banks

Distribution of Response Times

(a) Nonreplicated system (2 ms)

Response Time
50 70 90 110 130 150 170

N
o.

 o
f T

ra
ns

ac
tio

ns

0

2

4

6

8

10

12

14

16

18

20
Distribution of Response Times

1 nonreplicated TM and 2x2 banks

(b) Replicated banks (3 ms)

Response Time (ms)
140 160 180 200 220 240 260 280

N
o.

 o
f T

ra
ns

ac
tio

ns

0

2

4

6

8

10

12

14

16

18

20
2 passive TMs and 2x2 banks

Distribution of Response Times

(c) Fully replicated with 2 passive TMs
(3 ms)

Response Time (ms)
150 200 250 300 350 400 450 500

N
o.

 o
f T

ra
ns

ac
tio

ns

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
3 passive TMs and 2x2 banks

Distribution of Response Times

(d) Fully replicated with 3 passive TMs
(6 ms)

Figure 8.7: Histograms of the distribution of response times for various degrees
of replication. The number in parentheses represents the horizontal size of the
bars.

CHAPTER 8. TESTS 59

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e(

m
s)

0

50

100

150

200

250

300

350
2 active TM replicas

(a) 2 active TMs

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

300

350
3 active TM replicas

(b) 3 passive TMs

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

300

350
4 active TM replicas

(c) 5 active TMs

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

50

100

150

200

250

300

350
4 active TMs
3 active TMs
2 active TMs
Nonreplicated

Regression of Active Replication

(d) Regression of Testruns 1 and 8–10

Figure 8.8: The cost of actively replicating the transaction manager

• Testrun 10: Four actively replicated transaction managers and nonrepli-
cated banks

These testruns are plotted in Figure 8.8. The plot from Testrun 1 is added
in Figure 8.8(d) for easier comparison with the passive test results shown in
Figures 8.3 and 8.4.

There are some points worth noticing when comparing the figures.

• Active replication seems to normally yield less variance.

• Active replication seems to produce higher max values in the response
times.

• The response times for passive replication are, in average, shorter than for
active replication.

The first point is because of Jgroup’s handling of active replication. The
client receives replies from all servers, but only the first reply is required to

60 8.4. FAILOVER DELAY

continue the execution. Thus, if all but one server is delayed, the client still
receives a fast answer.

The second point is explained by careful examination of the log. Each of
the highest response times for Gahalo, all between transaction numbers 300 and
400, is caused by two separate delays in two separate remote operations. Thus,
this effect is not a general property of Gahalo, but rather of the specific testrun.

The third and last point is probably caused by the fact that multicast is
generally slower than unicast, and Gahalo has more multicasts per transaction
than pGahalo.

8.4 Failover Delay

The downsides of using passive replication for the transaction manager are
twofold. They are both related to primary failures. If the primary fails, two
things happen:

• Transactions that have not prepared are aborted.

• A failover delay until the backup takes over the processing, new transac-
tions cannot be created and prepared transactions cannot be terminated
during this timeframe.

The first depends on the number of clients and transactions per client in the
system at the time of failure. Since only one client is running serial transactions
in the testruns, this will be maximum one transaction. The real failover delay is
not possible to measure since one cannot accurately tell the time that another
node in the system became unavailable. This is because one cannot reliably dis-
cern a slow process from a crashed process in an asynchronous system [FLP85].
Thus, there is no way to measure the exact time to elect and initiate a new
primary.

The downtime as observed from the client, however, can be measured. It is
done by logging the response time of each remote operation. When a primary
fails the increased response time can be read from the log. Since a primary
failure is a rare event, however, the failures were inserted by manually sending
a stop signal to the process.

Figure 8.9 shows a testrun where 3 passive transaction managers and two
nonreplicated banks were started. After nearly 200 transactions the primary
was killed, and after about 370 transactions the new primary was also killed.

A careful study of the figure reveals some interesting aspects. After the initial
50 transactions the response time normalizes until the first failure. However,
just after the first failure there are a few slower transactions while the system
adjusts to the new environment. The response time then stabilizes again. The
second failure causes a few slower transactions, then the response time is relative
stable for the rest of the testrun. The two small peaks after about 150 and 420
transactions can be caused by any of the reasons given in Section 8.3.1.

The peaks for both failures are just below 500 ms. The failover delays,
however, are about 400 ms since the transactions normally takes around 100 ms
to complete in a failure-free case with replicated TMs. This result was verified
by executing 50 failovers. The results are shown in Figure 8.10. They showed
the same characteristics as the example presented here.

CHAPTER 8. TESTS 61

Transaction No.
0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(m
s)

0

100

200

300

400

500

0

100

200

300

400

500
2 failovers of passive TMs

Figure 8.9: 2 failovers in a single testrun

Failover Delay (ms)
350 370 390 410 430 450 470 490

N
o.

 o
f F

ai
lo

ve
rs

0.0

1.0

2.0

3.0

4.0

5.0

6.0
Distribution of Failover Delays

Figure 8.10: A histogram illustrating the distribution of failover-delays. Each
bar has a horizontal size of 5 ms.

62 8.4. FAILOVER DELAY

Response
Time

Connect-
Exception

Socket-
Exception

EOFException

Minimum 3 40 306
Maximum 12 181 404
Average 8 102 362

Table 8.3: Response times in ms for various failure exceptions

A more detailed analysis of the transactions executed around the time of
the failover was also performed. In particular, by logging the exceptions thrown
because of a failure, the failover delay could be classified into three distinct
classes:

• Connect failure. The client is unable to connect to the remote machine.
This failure throws a ConnectException.

• Socket failure. The socket connection to the remote machine has not been
torn down by the communication layer yet, but is torn down while the
client is waiting for a reply. This failure causes a SocketException.

• EOF2 failure. The remote machine fails while processing a request. It is
interpreted as an unexpected EOF, and an EOFException is thrown.

The maximum, minimum and average measured response times for 50 test-
runs of these failures are listed in Table 8.3. Since the transaction participants
are also clients of the transaction manager, multiple failovers can occur for a
single transaction. For instance, if the primary fails while creating a transaction
an EOF failure will occur at the client. After the failover the new primary creates
the transaction. Then, both transaction participants try to join the transaction.
However, they both have outdated information about the transaction manager
primary. Thus, a Socket failure or a Connect failure will occur depending on the
status of the old connection and a transaction might be delayed several times
because of a single failover.

The EOF failure class causes the longest failover delays, and a closer inspec-
tion shows that the connection to the TM stays alive for an unnecessary long
time. The client therefore observes a much larger failover delay than necessary.

An optimalization for getting more accurate results was needed. It exploits
the fact that the failover time for a simpler application will be the same as for
a more complex. This is because the underlying system (Jgroup/ARM) that
manages the failover is the same. A 75 ms timeout of the Socket was added to
the client, by using setSOTimeout(75). Because the previous tests have high
response times for the first transactions (over 150 ms), and the socket would
timeout, a simpler application, called FailoverServer was introduced. It has
only one method, which sleeps for 10 ms and then returns the name of the node.

The failover delay for the FailoverServer application, as observed from the
client was between 200 and 250 ms for all 50 executed testruns.

2End-Of-File

Chapter 9

Discussion

This chapter summarizes and compares the test results gathered in Section 8.

9.1 Comparing the Test Results

Table 9.1 summarizes the results of the testruns made in Chapter 8. The re-
sponse time average and standard deviation are presented1. It should be noted
that these numbers only apply for these testruns and they should not be in-
terpreted as any general response time guarantee, but rather as properties of
the specific testrun. However, they can be used as a reference for comparisons
between the individual testruns.

The following sections presents a summary of the results from the testruns
and compares passive replication, active replication and the nonreplicated case.
Finally, the failover delay is examined.

9.1.1 Passive Replication versus No Replication

Replication increases the overhead of a service. The results of Testruns 1–
4, as presented in Table 9.1, clearly support this assumption. The average
response time degrades when adding more replicas of a transaction manager,
and the variance of the results increase. The numbers seems to indicate that
replicating the TM causes about 50 percent longer response times, while each
added replica on top of that increases the response time of about 30 percent of
the nonreplicated case.

The standard deviation seems to change similarly to the average response
time. It causes a significant leap when first replicated and then scales linearly
when adding the third and fourth replica.

Replication of the transaction participants (Testrun 5) has similar effects
as when only replicating the transaction manager (Testrun 2). There is a 50
percent increase in the response time and about the same for the standard
deviation. For Testruns 6 and 7 the overhead increases a lot more. Replicating
the TM as well (Testrun 6) over doubles the average response time. The cost of
executing a fully replicated system with 2 replicas of each server is four times
higher than executing a nonreplicated one. If 3 replicas of the TM are executed

1Remember that the first 50 transactions of each testrun are disregarded in this discussion.

64 9.1. COMPARING THE TEST RESULTS

Testrun Description Average Standard Delay
(ms) Deviation (ms) (%)

Nonreplicated system
1 1 TM and 2 banks 47 10 0

Passive replication of the TM
2 2 passive TMs and 2 banks 77 17 64
3 3 passive TMs and 2 banks 92 19 96
4 4 passive TMs and 2 banks 106 21 126

Fully replicated system
5 1 TM and 2x2 banks 75 16 60
6 2 passive TMs and 2x2 banks 189 27 302
7 3 passive TMs and 2x2 banks 236 40 402

Active replication of the TM
8 2 active TMs and 2 banks 95 13 102
9 3 active TMs and 2 banks 100 12 113
10 4 active TMs and 2 banks 117 13 149

Table 9.1: A summary of the response times for the testruns in Chapter 8

Testrun Response Time Delay Rate Delay
(ms) (%) (ms)

M2 47 30 10–17
M3 62 60 12–20
M4 72 70 13–23
M5 49 35 10–20
M6 103 60 10–30
M7 119 65 10–36

Table 9.2: The overhead caused by group management

(Testrun 7), the response time is five times higher than in the nonreplicated
case. This is a considerable amount, and a closer study was needed to figure
out the cause of the delay.

First, the overhead caused by the group management threads is inspected.
Then, the time to update the backups for various degrees of replication is stud-
ied. Finally, the results are combined and summarized.

Overhead Caused by Group Management

Testruns 2–7 were modified to see how much overhead the Jgroup/ARM system
adds. The modified testruns (Testruns M2–M7) were designed to avoid multi-
casts to be able to see the overhead added by the group management threads.
This was achieved by commenting out the code that sends the IGMI at the
primary. The results are listed in Table 9.2. A more detailed study of each
invocation reveals that some of the invocations are delayed. How often these
delays occur and how large most of them are also shown in the table.

The results show that an increased degree of replication caused a higher rate
of interruption and somewhat longer delays. This is caused by other threads
in the Jgroup/ARM system interrupting the execution to handle group man-

CHAPTER 9. DISCUSSION 65

Testrun Unicasts TM Multicasts TP Multicasts
1 8 0 0
2 8 2 (x2) 0
3 8 2 (x3) 0
4 8 2 (x4) 0
5 8 0 2 (x2)
6 8 2 (x2) 2 (x2)
7 8 2 (x3) 2 (x2)

Table 9.3: The increased number of messages when replicating the TM

agement issues, and more replicas lead to an increase in the required group
management facilities and the number of messages sent over the network.

Comparing the response time with the delay rate clearly shows that Testrun
M7 has a delay rate that is too low for the response time. This is also apparent
for Testrun M6, although to a smaller degree. The rest of the increase in the
average response time is caused by larger delays for some of the invocations.
Since the system is fully replicated, a single invocation might be delayed by
many group management threads. Also, by spending more time in the system,
it exposes itself to even more delays by the same reason.

These results indicates that just running the Jgroup/ARM system causes
from 0–150 percent increase in the response time compared to the nonrepli-
cated case, depending on the level of replication. Remember, however, that the
results from Testrun 1 also include the time to persistently save the decision
and outcome of each transaction as a part of 2PC. This is not true for Testruns
M2–M7.

Messages per Transaction

The number of messages sent over the network increase with an increasing degree
of replication. This is not only so for the group management issues mentioned
above, but also for each transaction.

The backups are updated by an internal group method invocation (IGMI).
IGMI uses multicast to invoke all members of the group including the replica
where the message originated. To ensure that all members have been updated,
an IGMI waits for all replicas to reply before it continues. The response time
of an IGMI is therefore the same as the response time of the slowest replica.

Figure 9.1 shows all messages needed for a successful termination of a trans-
action in a fully, and passively, replicated system.

Table 9.3 presents the number of messages needed to successfully terminate
a transaction from each of Testruns 1–7. The numbers in parentheses indicate
the number of recipients for each multicast.

A transaction in a nonreplicated environment causes 8 unicasts and 8 replies
for a total of 16 messages. This can be seen by counting the unicast messages
in Figure 9.1. The pairwise parallel prepare and commit invocations are only
counted as two. In comparison, for any fully replicated environment (Testruns
6 and 7) 4 serial multicasts, plus replies, are needed in addition to backup the
transaction’s prepared and committed state. The multicast messages, IGMI,
are sent to both backups (shown as grey lines in Figure 9.1) and the primary.

66 9.1. COMPARING THE TEST RESULTS

Figure 9.1: The messages in a fully replicated system. UC = unicast, MC =
multicast. A nonreplicated system does not have the multicast messages. The
number of unicasts is the same for a nonreplicated system as for a passively
replicated one.

CHAPTER 9. DISCUSSION 67

Testrun Transaction Manager Transaction Participant TotalDecision EOT Prepare Commit
2 20 10 0 0 30
3 22 11 0 0 33
4 24 12 0 0 35
5 0 0 12 13 25
6 49 11 12 13 85
7 94 12 13 13 132

Table 9.4: The cost of updating the backups

The transaction participants can perform their multicasts in parallel so only two
multicasts are counted for all of them. However, the response time of a prepare
or commit invocation from the TM is the response time of the slowest replica
of all participants. As shown earlier in this section, increasing the number of
recipients of a multicast increase the response time.

Time to Update the Backups

The response times in Table 9.2 (Testrun M2–M7) are lower than the response
times in Table 9.1. The lacking pieces are the processes of updating the backups.

As explained in Section 7.2.3, the transaction manager must make the de-
cision to commit and the mark of the end of transaction durable. This is done
by an IGMI. Table 9.4 displays the cost of updating the backups for Testruns
2–7. The measurements are done at the primary over the invocation of each of
the IGMI-methods in Figures 7.8 and 7.10. The methods are marked with MC
(multicast) in Figure 9.1.

Testruns 2–4 shows a small, but steady increase in the time to backup the
transaction. This is probably due to the fact that it waits for the slowest backup
before it proceeds. For the same testruns the decision takes twice as long as
the end-of-transaction (EOF) to backup. This is because more work needs to
be done at each backup when receiving the first.

Testruns 5–7 show that the cost of updating the transaction participant
backups is around 25 ms. It is slightly faster than updating the transaction
manager backups. For Testruns 6 and 7, however, backing up the TM decision
is slow. A closer look at the primary side reveals that the time is spent while the
primary waits for the answer from the communication layer. On the backup-side
the time is spent while reading the objects in the argument.

The same delay was observed for Testrun 2 if the client was set to wait 200
ms between each transaction. It seems that if there is too long time between
two updates, a significant delay is added. This delay is probably caused by
caching of objects by java.io.ObjectOutputStream. If the time between two
invocations is too long, however, the caches are disregarded, causing increased
response times.

The exact source of the delay has not been found, but it is caused by the
unmarshaling of the GroupTxnManagerTransaction object that is sent as an
argument to the transPrepared() method. When an object is received, the
JVM checks if the class definitions of the arguments exist locally. If it does not,
it must be built from the received object, and the referenced objects must also

68 9.1. COMPARING THE TEST RESULTS

Testrun Messages No Backup Time To Total Error
(ms) Backup (ms) (ms) (ms) (%)

1 8 UC 47 0 47 0 0
2 8 UC, 2(x2) MC 47 30 77 0 0
3 8 UC, 2(x3) MC 62 33 95 3 3
4 8 UC, 2(x4) MC 72 35 107 1 1
5 8 UC, 2(x2) MC 49 25 74 1 1
6 8 UC, 4(x2) MC 103 85 188 -1 1
7 8 UC, 2(x3) +

2(x2) MC
119 132 251 15 6

Table 9.5: A summary of the response times for the testruns in Chapter 8

be read from the stream, which takes time.

Summary

Table 9.5 summarizes the discussion of Section 9.1.1. The last two columns
give the difference of the result when adding Testruns M2–M7 with the time
to update the backups and the response time of the original testruns (Testruns
2–7). Testrun 1 has been added for easier comparison. Most of them are within
a few percent off. This is due to minor variances in the response time. Testrun
7, however, has a deviation of 6 percent. This is probably due to a varying
amount of network traffic for the switch to which the cluster is connected.

When adding more replicas, additional network traffic occurs, both the trans-
action execution and the group management demand more processor resources,
and more garbage collection is needed. Thus, a transaction, which is run in a
replicated environment, will be delayed by the threads for group management
more often, causing a slower response time. Also, the effect unmarshaling has on
the response time (as earlier in this section) leads to highly increasing response
times if the transaction execution is delayed. Testruns 6 and 7 would have had a
time to backup of about 45 and 52 ms, respectively, and a total response time of
143 and 171 ms, if the source of this delay had been found and removed. This
would yield a total delay of 204 and 263 percent, which would be give much
better performance results.

Unfortunately, comparable measurements on other systems have not been
found in scientific articles. It is therefore hard to accurately evaluate the results
of pGahalo.

9.1.2 Passive Replication versus Active Replication

The cost of active replication is explored in Testruns 8–10. The results are
displayed in Table 9.1. Compared to Testrun 1, executing two actively replicated
TMs (Testrun 8) doubles the response time and adds some variance. Adding
further replicas increase the response time with about 10–20 percent for each,
but leave the standard deviation unchanged.

A transaction successfully executing the test scenario using pGahalo (Test-
runs 2–4) causes two multicasts: One when backing up the commit decision,
and another when all participants have acknowledged the commit. These are

CHAPTER 9. DISCUSSION 69

Figure 9.2: The messages in a system with an actively replicated transaction
manager. UC = unicast, MC = multicast. Only the first reply for each EGMI
multicast is shown.

Testrun Unicasts IGMI EGMI
8 5 1 (x2) 3 (x2)
9 5 1 (x3) 3 (x3)
10 5 1 (x4) 3 (x4)

Table 9.6: The messages sent in Gahalo

70 9.1. COMPARING THE TEST RESULTS

shown in Figure 9.1. Remember that the participants are nonreplicated in
this discussion. In Gahalo the same transaction (Testruns 8–10) causes four
multicasts (see Figure 9.2): One IGMI to replicate the creation of a transaction2,
one EGMI for the join of each participant, and one EGMI for the commit
invocation from the client. Since multicast is generally slower than unicast,
pGahalo normally has a shorter response time than Gahalo, in spite of a being
able to continue after receiving the first reply.

The results indicate that active replication gives slower, but more stable
response times. The difference is, however, not very large. The main advantage
of passive replication is therefore less resource usage, since the backups do not
need to perform every task, but can be updated when necessary by the primary.

9.1.3 Failover Delay

The observed client-side failover delay for the transaction test was found to be as
much as 360–490 ms (see Section 8.4). However, the failover delay for a simpler
application running on top of the same system was found to be between 200
and 250 ms. These measurements are closer to the real time between a failure
and the continuation of the service by a new primary.

Gray and Reuter [GR93] distinguish five classes of transaction-oriented com-
puting, with various properties and requirements. According to this classi-
fication the failover delay found here will be sufficient for batch processing,
time-sharing (not widely used anymore), client-server and transaction-oriented
processing. The last class, real-time processing, however, will probably require
client-observed failovers of less than 200 ms, depending on the application.

2The creation of a transaction is a nondeterministic operation. Thus, to keep consistent,
only one replica of Gahalo creates the transaction and sends the result to the other group
members.

Chapter 10

Conclusion and Further
Work

This chapter summarizes the contributions of the thesis. In addition, some
directions for further work are pointed out.

10.1 Conclusion

Many applications require high availability and strong consistency. Since system
components fail from time to time, a system must be able to tolerate faults. Well
known fault-tolerance techniques include transactions and replication. They are
widely used and extensively studied as separate concepts and their efficiency has
been well proven. To be able to achieve both liveness and safety, however, the
techniques should be integrated in such a way that non-determinism is handled.

This thesis addresses the issue of integrating replication and transactions
without enforcing replica determinism. This is a highly desirable property since
it allows any kind of application to be built on top of the system.

The implementational basis of the combination, Jini and Jgroup/ARM, is
given in Chapter 4, where the underlying systems are presented. Chapter 5
provides a detailed description of the challenges of nondeterministic execution in
a replicated environment and existing solutions to the problems. The approach
developed in this thesis is presented in Chapter 6. Together these chapters
constitute a framework for integration of transactions and replication. The
implementation of the integration is presented in detail in Chapter 7. The
framework is based on allowing the transaction manager to break replication
transparency.

The tests in Chapter 8 show that transactions can be executed in a passively
replicated environment with a 300 percent increase in the response time. In
addition, passive replication of the transaction manager was observed to be
between 10 and 20 percent faster than active replication, but with a cost of
higher variance. Also, a failure of the primary will cause a failover delay of
about 400 ms on average for the transaction manager. Measurements on a
smaller application, however, indicate that the real failover time is probably
closer to 200 ms.

72 10.2. FURTHER WORK

For a real world application the cost of replication must be weighed against
the advantage of increased availability. If the system cannot tolerate the down-
time caused by a restart of a machine, replication should be used. On the other
hand, if the increased response time cannot be tolerated, but a few minutes of
unavailability once in a while can be, replication should not be used.

The system developed in this thesis is a prototype where several shortcuts
have been made to get a working system for basic testing. To be of any practical
use, it must be able to restart crashed replicas, initiate new ones and update
the new replicas with the current state. The Jgroup/ARM system has support
for automatically performing these actions, but it has not yet been implemented
in this prototype. Also, the system must be able to handle all failure scenarios
during 2PC to be able to terminate all transaction despite of failures.

10.2 Further Work

Several issues have been left for further research. These include:

• Complete error handling for the transaction manager should be devel-
oped. Once this is available, error insertions can be done and extensive
measurements of the resulting response time can be made.

• The presumed abort two phase commit protocol should be optimized.
This includes enabling read votes for the transaction participants and
making the backup of the end-of-transaction asynchronous. Also, an early
reply of the transaction outcome can be given to the client as soon as
the transaction manager has persistently saved the decision. This would
improve the response time for a transaction in a replicated environment
by tens of milliseconds.

• On the client side, the time to close the socket to a failed server is too
long. A mechanism to be able to detect such failures from the client side
should be embedded in the communication layer. This would improve the
failover delay observed by the clients.

• Mechanisms to ensure a complete fulfillment of the exactly-once execution
semantics (e.g. retry of failed transactions) should be implemented. This
ensures that all operations of each transaction are logically executed once.
Also, explicit end-user interaction control should be added to guarantee
that a user will perceive that each request generates exactly one reply.

• Currently, if a participant fails, the entire transaction is aborted. The
possibility of using nested transactions to avoid a complete abortion, and
subsequent retry, should be investigated. This could have major impact
on the transaction response time in the presence of partial system failures.

• This work assumes that all servers are controlled by a single entity (e.g.
company). If nodes are spread over a WAN or the Internet, there will
be multiple entities involved. The entities may have different goals and
requirements, thus, a transaction manager as the one explained may not
be accepted by all of them. Other mechanisms will be required to ensure
the consistency of such a system.

CHAPTER 10. CONCLUSION AND FURTHER WORK 73

• The system in this thesis consists of only one primary transaction manager
that controls the transaction execution. The possibility of using multiple
sets of primary and backups for load balancing should be investigated.
This would also lead to fewer transaction should a primary fail since only
the transactions handled by the failed transaction will be aborted.

• The prototype can be extended to include a distributed concurrency con-
trol like Strict 2PL. This will ensure that transactions are correctly seri-
alized.

Bibliography

[ALv] Apache License, version 2.0 (ALv2). http://www.apache.org/
licenses/LICENSE-2.0.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. j-IPL,
21:181–185, 1985.

[ASW+01] Ken Arnold, Robert Scheifler, Jim Waldo, Bryan O’Sullivan, and
Ann Wollrath. The Jini Specification. Addison-Wesley Longman
Publishing Co., Inc., second edition, 2001.

[Ban98] Bela Ban. JavaGroups - group communication patterns in Java.
Technical report, Department of Computer Science, Cornell Uni-
versity, April 1998.

[Bar01] Jose Barrera. What is Java reflection? Java Developers Journal,
6(9), September 2001.

[BCH+98] A. Baratloo, P. E. Chung, Y. H. Huang, S. Rangarajan, and
S. Yajnik. Filterfresh: Hot replication of Java RMI server ob-
jects. In Proceedings of the 4th Conference on Object Oriented
Technologies and Systems (COOTS), pages 59–63, Santa Fe, New
Mexico, USA, 1998. USENIX.

[BHG86] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman.
Concurrency control and recovery in database systems. Addison-
Wesley Longman Publishing Co., Inc., 1986.

[Bir93] Kenneth P. Birman. The process group approach to reliable dis-
tributed computing. Communications of the ACM, 36(12):37–53,
1993.

[BJ87] K. Birman and T. Joseph. Exploiting virtual synchrony in dis-
tributed systems. In SOSP ’87: Proceedings of the eleventh ACM
Symposium on Operating systems principles, pages 123–138, New
York, NY, USA, 1987. ACM Press.

[BMST93] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. Dis-
tributed systems. In S. Mullender, editor, Distributed Systems,
ACM Press, chapter 8: The primary-backup approach, pages
199–216. Addison-Wesley, second edition, 1993.

76 BIBLIOGRAPHY

[BT93] Özalp Babaoğlu and Sam Toueg. Understanding non-blocking
atomic commitment. Technical Report UBLCS-93-2, Laboratory
for Computer Science, University of Bologna, January 1993.

[CHY+98] P. Chung, Y. Huang, S. Yajnik, D. Liang, and J. Shih. Doors:
Providing fault-tolerance for CORBA applications. In Proc. of the
IFIP International Conference on Distributed System Platforms
and Open Distributed Processing (Middleware ’98), September
1998.

[Con03] World Wide Web Consortium. Simple Object Access Protocol.
World Wide Web Consortium, version 1.2 edition, June 2003.

[Coo85] Eric C. Cooper. Replicated distributed programs. In Proceedings
of the tenth ACM symposium on Operating systems principles,
pages 63–78. ACM Press, 1985.

[DG01] Eliezer Dekel and Gera Goft. ITRA: Inter-tier relationship archi-
tecture for end-to-end QoS, 2001.

[DGP04] Partha Dutta, Rachid Guerraoui, and Bastian Pochon. Fast non-
blocking atomic commit: An inherent trade-off. Inf. Process.
Lett., 91(4):195–200, 2004.

[DS02] X. Défago and A. Schiper. Specification of replication tech-
niques, semi-passive replication and lazy consensus. Technical
Report IC/2002/007, École Polytechnique Fédérale de Lausanne,
Switzerland, February 2002.

[DSS98] X. Défago, A. Schiper, and N. Sergent. Semi-passive replica-
tion. In Proceedings of the 17th IEEE Symposium on Reliable
Distributed Systems (SRDS), pages 43–50, West Lafayette, IN,
USA, October 1998.

[FG99] Svend Frølund and Rachid Guerraoui. Transactional exactly-
once. Technical report, Hewlett-Packard Laboratories, July 1999.

[FGS98] Pascal Felber, Rachid Guerraoui, and Andre Schiper. The imple-
mentation of a CORBA object group service. Theory and Practice
of Object Systems, 4(2):93–105, 1998.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process. J.
ACM, 32(2):374–382, 1985.

[FN02] Pascal Felber and Priya Narasimhan. Reconciling replication
and transactions for the end-to-end reliability of CORBA ap-
plications. In On the Move to Meaningful Internet Systems,
2002 - DOA/CoopIS/ODBASE 2002 Confederated International
Conferences DOA, CoopIS and ODBASE 2002, pages 737–754.
Springer-Verlag, 2002.

BIBLIOGRAPHY 77

[GNSY00] A. Gokhale, B. Natarajan, D. C. Schmidt, and S. Yajnik.
DOORS: Towards high-performance fault-tolerant CORBA. In
Proceedings of the 2nd International Symposium on Distributed
Objects and Applications (DOA ’00), Antwerp, Belgium, 2000.
Object Management Group.

[GNU] The gnu lesser general public license (lgpl).
http://www.gnu.org/licenses/lgpl.html.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[HBH96] Abdelsalam A. Helal, Bharat K. Bhargava, and Abdelsalam A.
Heddaya. Replication Techniques in Distributed Systems. Kluwer
Academic Publishers, 1996.

[Inc03a] Sun Microsystems Inc. Jini Architecture Specification. Sun Mi-
crosystems Inc., version 2.0 edition, June 2003.

[Inc03b] Sun Microsystems Inc. Jini Technology Core Platform Specifica-
tion. Sun Microsystems Inc., version 2.0 edition, June 2003.

[JPPMAA01] Ricardo Jiménez-Peris, Marta Patiño-Mart́ınez, Gustavo Alonso,
and Sergio Arévalo. A low-latency non-blocking commit service.
In DISC ’01: Proceedings of the 15th International Conference
on Distributed Computing, pages 93–107. Springer-Verlag, 2001.

[KH04] Heine Kolltveit and Svein-Olaf Hvasshovd. Techniques for achiev-
ing exactly-once execution semantics and high availability for
multi-tier applications. http://www.idi.ntnu.no/˜kolltvei, 2004.

[LMW] Zhongwei Li, Ziangjiang Ma, and Yiwen Wang. Extension of rmi
with group communication. Technical report, Cornell University.

[LS00] Mark C. Little and Santosh K. Shrivastava. Integrating group
communication with transactions for implementing persistent
replicated objects. j-LECT-NOTES-COMP-SCI, 1752:238–253?,
2000.

[Maf95] Silvano Maffeis. Adding group communication and fault-
tolerance to CORBA. In Proceedings of the USENIX Conference
on Object-Oriented Technologies, pages 135–146, Monterey, CA,
June 1995.

[MDB01] Alberto Montresor, Renzo Davioli, and Özalp Babaoğlu. Jgroup:
Enhancing Jini with group communication. In Proceedings of
the ICDCS Workshop on Applied Reliable Group Communication,
April 2001.

[MGG95a] K. R. Mazouni, B. Garbinato, and R. Guerraoui. Building re-
liable client-server software using actively replicated objects. In
I. Graham, B. Magnusson, B. Meyer, and J.-M. Nerson, editors,
Proceedings of the TOOLS EUROPE’95 Conference, pages 37–
51, Versailles, France, 1995. Prentice-Hall.

78 BIBLIOGRAPHY

[MGG95b] Karim R. Mazouni, Benôıt Garbinato, and Rachid Guerraoui.
Filtering duplicated invocations using symmetric proxies. In Pro-
ceedings of the 4th International Workshop on Object-Orientation
in Operating Systems, page 118. IEEE Computer Society, 1995.

[MH01] Hein Meling and Bjarne E. Helvik. ARM: Autonomous replica-
tion management in jgroup. In Proceedings of the 4th Europen Re-
search Seminar on Advances in Distributed Systems (ERSADS),
Bertinoro, Italy, May 2001.

[MLO86] C. Mohan, B. Lindsay, and R. Obermarck. Transaction manage-
ment in the R* distributed database management system. ACM
Trans. Database Syst., 11(4):378–396, 1986.

[MMBH02] Hein Meling, Alberto Montresor, Özalp Babaoğlu, and Bjarne E.
Helvik. Jgroup/ARM: A distributed object group platform with
autonomous replication managmenet for dependable computing.
Technical Report UBLCS-2002-12, University of Bologna, Octo-
ber 2002.

[Moh04] Parastoo Mohagheghi. The Impact of Software Reuse and In-
cremental Development on the Quality of Large Systems. PhD
thesis, NTNU, Trondheim, Norway, July 2004.

[Mol04] Rohnny Moland. Replicated transactions in Jini. Master’s thesis,
University of Stavanger, July 2004.

[Mon00] Alberto Montresor. System Support for Programming Object-
Oriented Dependable Application in Partitionable Systems. PhD
thesis, University of Bologna, Italy, March 2000. Technical Re-
port UBLCS-2000-10.

[MSEL99] G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little. Design
and implementation of a CORBA fault-tolerant object group ser-
vice. In Proceedings of the 2nd IFIP International Conference on
Distributed Applications and Interoperable Systems, pages 361–
374, Helsinki, Finland, 1999.

[Nar99] P. Narasimhan. Transparent Fault Tolerance for CORBA. PhD
thesis, University of California, Santa Barbara, California, USA,
September 1999.

[Nar01] Nitya Narasimhan. Transparent Fault Tolerance for Java Remote
Method Invocation. PhD thesis, University of California, Santa
Barbara, June 2001.

[New04] Jan Newmarch. Guide to Jini technologies.
http://pandonia.canberra.edu.au/java/jini/tutorial/Jini.xml,
October 2004. Version 3.06.

[OMG04a] Inc. Object Management Group. The Common Object Request
Broker: Core Specification. Object Management Group, Inc.,
version 3.0.3 edition, March 2004. formal/04-03-01.

BIBLIOGRAPHY 79

[OMG04b] Object Managment Group. Fault Tolerant CORBA, March 2004.
OMG Technical Committee Document formal/04-03-21.

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of distributed
database systems (2nd ed.). Prentice-Hall, Inc., 1999.

[PKS03a] S. Pleisch, A. Kupšys, and A. Schiper. Preventing orphan re-
quests in the context of replicated invocation. In Proceedings of
the 22nd International Symposium on Reliable Distributed Sys-
tems, pages 119 – 128, Florence, Italy, October 2003. IEEE.

[PKS03b] S. Pleisch, A. Kupšys, and A. Schiper. Replicated invocations.
Technical report, Swiss Federal Institute of Technology (EPFL),
September 2003.

[PMJPA01] M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo. Group
transactions: An integrated approach to transactions and group
communication. In Workshop on Concurrency in Dependable
Computing, Newcastle Upon Tyne, United Kingdom, 2001.

[Pol93] Stefan Poledna. Replica determinism in distributed real-time
systems: A brief survey. Research Report 6/1993, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 1993.

[RBC+03] Yansong (Jennifer) Ren, David E. Bakken, Tod Courtney, Michel
Cukier, David A. Karr, Paul Rubel, Chetan Sabnis, William H.
Sanders, Richard E. Schantz, and Mouna Seri. AQuA: An adap-
tive architecture that provides dependable distributed objects.
IEEE Trans. Comput., 52(1):31–50, 2003.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorial. ACM Comput. Surv.,
22(4):299–319, 1990.

[Sch93] Fred B. Schneider. Replication management using the state ma-
chine approach, pages 169–197. ACM Press/Addison-Wesley
Publishing Co., 1993.

[Ske81] Dale Skeen. Nonblocking commit protocols. In SIGMOD ’81:
Proceedings of the 1981 ACM SIGMOD international conference
on Management of data, pages 133–142. ACM Press, 1981.

[Som03] Frank Sommers. Call on extensible rmi: An introduction to JERI.
Technical report, JavaWorld - Jiniology, December 2003.

[SR96] André Schiper and Michel Raynal. From group communication to
transactions in distributed systems. Commun. ACM, 39(4):84–
87, 1996.

[Sun99] Sun Microsystems Inc. Java Remote Method Invocation Specifi-
cation. Sun Microsystems Inc., revision 1.7 Java 2 SDK, version
1.3 edition, December 1999.

80 BIBLIOGRAPHY

[Sun05] Sun Microsystems Inc. Java Computing home page, March 2005.
http://www.sun.com/java.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Sys-
tems: Principles and Paradigms. Prentice Hall PTR, 2001.

[VBB+91] P Veŕıssimo, P. Barrett, P. Bond, A. Hilborne, L. Rodrigues,
and D. Seaton. The Extra Performance Architecture (XPA). In
D. Powell, editor, Delta-4 - A Generic Architecture for Depend-
able Distributed Computing, ESPRIT Research Reports, chap-
ter 9, pages 211–266. Springer Verlag, nov 1991.

[ZMMS02] W. Zhao, L. E. Moser, and P.M. Melliar-Smith. Unification
of replication and transaction processing in three-tier architec-
tures. 22nd International Conference on Distributed Computing
Systems (ICDCS’02), pages 290–297, 2002.

