
Abstract

Code reuse in object oriented software development has been common for
some time. A recent study performed by the author revealed that while
software developers in small Norwegian companies regard code reuse as im-
portant and useful, they are prone to perform ad-hoc reuse. This reduces
the positive effects achieved through reuse, and although most of the de-
velopers wish to perform more systematic reuse, they do not know how to
do this. This thesis aims to help amend this problem by developing a set
of guidelines describing the process of making a plan for reuse. To develop
the guidelines, a literature study was performed, followed by three phases of
writing. Between the three phases of writing, two rounds of three feedback
interviews were performed to elicit information on the usability and clarity
of the guidelines. Each feedback interview was performed with a developer
from a small Norwegian company at the developer’s workplace. After each
set of interviews, the guidelines were revised and improved. The final set
of guidelines presented in this report was considered by the developers to
be easily understandable and useful, but further work remains to make the
guidelines complete; a set of examples of how the process could be per-
formed is essential to help the developers make the leap from the theoretical
descriptions of the guidelines to making their own plan for reuse.

i

Preface

This thesis (“TDT4900 Datateknikk, masteroppgave” – Computer science,
Master’s thesis) was completed during the spring semester 2005. The author
is a fifth year student at the Norwegian University of Science and Technol-
ogy (NTNU), Faculty of Information Technology, Mathematics and Electri-
cal Engineering (IME), Department of Computer and Information Science
(IDI), where this course is taught.

My sincere thanks to the developers I interviewed; for taking the time to
participate in the feedback stages, and sharing their insight and real-world
expertise. I would also like to thank Tor St̊alhane, for help and guidance
throughout the work with this Master’s thesis. Finally, I would like to thank
Peter Rønning, who always has the time to give a helping hand.

ii

Contents

Abstract i

Preface ii

List of Figures vi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Goals . 3
1.4 Research Methodology . 3
1.5 Report Outline . 5

2 Literature Study 6
2.1 Literature Presentation . 6

2.1.1 IEEE Standards . 6
2.1.2 Success and Failure Factors of Reuse 7
2.1.3 Reuse Models and Strategies 10
2.1.4 Reuse Technology . 11
2.1.5 General Issues of Reuse 12

2.2 State of the Art . 13

3 Previous Work 14
3.1 The Project . 14
3.2 The Results . 14

3.2.1 Extent of Code Reuse 15
3.2.2 Use of Tools and Procedures 15
3.2.3 Organization of Code Reuse 16
3.2.4 Summary . 16

4 Research Method Theory 18
4.1 Research Processes . 18
4.2 Interviews . 20

iii

5 Making the Guidelines 22
5.1 Planning . 22

5.1.1 Literature Study . 23
5.1.2 Writing Guidelines . 24
5.1.3 Feedback Interviews 24

5.2 Organizing Feedback Interviews 25
5.3 Writing – First Edition . 26
5.4 Interviews – Feedback 1 . 30
5.5 Writing – Second Edition . 31

5.5.1 Organization Characteristics 33
5.5.2 Goals . 36
5.5.3 Policy . 37
5.5.4 Measurement . 40
5.5.5 Compilation . 41
5.5.6 Tools . 42

5.6 Interviews – Feedback 2 . 43
5.7 Writing – Third Edition . 44

6 Guidelines 46
6.1 Introduction . 46

6.1.1 Scope and Limitations 46
6.2 Overview . 47
6.3 Description of Activities . 50

6.3.1 Classify the Reuse Organization 50
6.3.2 Formulate Reuse Goals 51
6.3.3 Formulate Reuse Policy (What, How, Where, Who) . 52
6.3.4 Consider Reuse Measurement 57
6.3.5 Compile Outputs . 58

7 Discussion and Conclusion 59
7.1 Discussion . 59
7.2 Conclusion . 60

8 Further Work 61

A Definitions 62

B Reuse Models 63
B.1 Model 1 — Project Oriented 63
B.2 Model 2 — Reuse Through a Separate Project 64
B.3 Model 3 — Component Producer 64
B.4 Model 4 — Domain Producers 65

C Tools for Reuse 66

iv

D Faceted Classification 68

E E-mail Sent to Companies 69
E.1 Norwegian . 69
E.2 English . 70

F Guidelines (First Version) 71
F.1 Introduction . 71
F.2 Overview . 71

G Guidelines (Second Version) 74
G.1 Introduction . 74
G.2 Overview . 74
G.3 Description of Activities . 76

G.3.1 Classify the Reuse Organization 78
G.3.2 Formulate Reuse Goals 78
G.3.3 Formulate Reuse Policy (What, How, Where, Who) . 79
G.3.4 Consider Reuse Measurement 84
G.3.5 Compile Outputs . 85

G.4 Tools for Reuse . 85

H Interviews 89
H.1 First Round of Interviews . 90

H.1.1 Interview 1 . 90
H.1.2 Interview 2 . 91
H.1.3 Interview 3 . 93
H.1.4 Summary . 94

H.2 Second Round of Interviews 94
H.2.1 Interview 1 . 94
H.2.2 Interview 2 . 96
H.2.3 Interview 3 . 98
H.2.4 Summary . 100

Bibliography 101

v

List of Figures

1.1 Overview of Process - Information Sources 4
1.2 Overview of Process - Time 4

4.1 Main Steps of the Research Process 19

5.1 Overview of the Process of Making a Reuse Plan – Draft 1 . . 27
5.2 Overview of the Process of Making a Reuse Plan – Draft 2 . . 28
5.3 Process Diagram for the First Edition 29
5.4 Activity Diagram for the Second Edition 32
5.5 Output Diagram for the Second Edition 33
5.6 Process Diagram for the Second Edition 34

6.1 Overview of the Activities Included in Making a Reuse Plan . 48
6.2 Overview of the Outputs Generated by the Planning Activities 48
6.3 Overview of the Process of Making a Reuse Plan 49

B.1 Reuse Model 1 — Project Oriented 63
B.2 Reuse Model 2 — Reuse Through Separate Project 64
B.3 Reuse Model 3 — Component Producer 64
B.4 Reuse Model 4 — Domain Producers 65

F.1 Overview of the Process of Making a Reuse Plan 72

G.1 Overview of the Activities Included in Making a Reuse Plan . 75
G.2 Overview of the Outputs Generated by the Planning Activities 76
G.3 Overview of the Process of Making a Reuse Plan 77

vi

Chapter 1

Introduction

This chapter contains an introduction to this Master’s thesis, starting with
a description of my motivation for doing this Master’s thesis, followed by
the problem definition and the goals I wanted to reach. A description of
research methodology is given, before the contents of the rest of this report
are outlined.

1.1 Motivation

Since I first started programming four years ago, I have produced a lot of
code. Different projects and assignments meant writing different code, but
more and more often I found myself thinking “Oh, I’ve done this before!”
This was followed by a intense search through directories and files to find
where exactly I had this piece of code. More often than not I came up
with nothing and had to program the same code over again. Every time,
I thought to myself “If only I had a personal code library”. In addition to
my own code I have also had access to others’ code in group projects and
assignments. It would be nice to have this code in a library as well. But the
time and efforts needed to create my own library of re-usable code seemed
to be greater than I could afford. This seemed to be the case for many of
my fellow students as well.

The subject of code reuse indeed seemed intriguing. Last autumn, I therefore
did a project entitled “Code Reuse in Object Oriented Software Develop-
ment”[1]. See chapter 3 for a more detailed description of the project, and
appendix A for definitions of the term “code reuse” and other terms used
in this report. The project aimed to create an understanding of the nature
of code reuse in a group of software developing companies in Norway. I
conducted a series of interviews with software developers from 24 software

1

CHAPTER 1. INTRODUCTION 2

developing companies of different sizes, locations, and application domains.
Through the project work, I learned that the software developers reusing
code desired certain effects from reuse, such as improved quality and in-
creased efficiency. Many reported that they felt the achieved effects of reuse
were the same as the desired effects. However, most of them seemed not
to be very conscious about the issues of reuse, lacking a formulated set of
goals and a plan for reuse. Many expressed a desire of improving the way
they reused code, but only one (a large, international) company out of the
24 companies had reuse specific procedures and employed a system specif-
ically made for reuse. Mostly, the lack of resources and the fact that the
development departments were relatively small (2 to 25 developers) made it
difficult to improve the situation.

Based on my interest in code reuse and as it is likely that I myself will be
working in a company with a relatively small software development depart-
ment, I felt a desire to contribute. It seemed like a good thing to provide
some tips and hints about how reuse can and should be performed, prefer-
ably keeping costs both in time and money to a minimum. Such a set of
tips and hints would save the developers a lot of time, as they would not
have to search for and summarize the information themselves.

1.2 Problem Definition

I had to be more specific about what I wanted to do, and decided that I
would use last autumn’s project as a starting point. In the preliminary stages
of the project work, I gave some examples of project and thesis ideas. The
idea of contributing with tips and hints about how reuse can and should be
performed was similar to one of those ideas; the project was to learn about
tools and procedures for reuse, while the thesis would be about developing
procedures for reuse. I decided to present the tips and hints in the form of
a procedure, and decided to use the term “guidelines” to describe this.

As the thesis would be based on the project work, I decided to use the
same title: “Code Reuse in Object Oriented Software Development”. The
project description was as follows: “Proper reuse of code increases the speed
of software development projects.” (Rickard Öberg) Code reuse in object
oriented software development has been common for some time. A recent
study performed by the candidate revealed that while software developers in
small Norwegian companies regard code reuse as important and useful, they
are prone to perform ad-hoc reuse. This reduces the positive effects achieved
through reuse, and although most of the developers wish to perform more
systematic reuse, they do not know how to do this. The task is to create a
set of guidelines which deals with important issues of reuse, to help software

CHAPTER 1. INTRODUCTION 3

developers reuse code in a more proper way.

Reuse is, however, a loose term. As in the project, I wanted to look at
the lower end of reuse; the reuse of source code. This in contrast to higher
level reuse such as patterns or process reuse/experience databases. There
are many definitions of and ways to interpret “code reuse”. I wanted the
overview of how the software industry reuses code to be as general as pos-
sible. Thus, I decided not to exclude any interpretations of reuse. A wide
definition which describes the essence of code reuse is: Code is reused when
it 1) already exists, and 2) is chosen over the possibility to write new code.

1.3 Goals

The main goal of this work was to produce a set of guidelines to help software
developers in small software development departments to reuse code in a
more proper way. This main goal consisted of the following sub-goals:

• Get an overview of important issues with regard to code reuse

• Summarize this information and present it in a sensible and easily
understandable way

• Get feedback and information from the target group (developers in
small software development departments) with regards to:

– Superfluous or missing information in the guidelines

– Comprehensibility of the guidelines

– And ultimately: How useful the guidelines are

• Possibly publish the guidelines in some way

1.4 Research Methodology

To obtain information about important issues of reusing code, I decided to
carry out a literature study. The literature study and my own previous
project work would be the basis for generating a set of guidelines. This is
illustrated in figure 1.1.

As I felt that feedback from experienced developers was important to pro-
duce a set of guidelines which would be of any use, I decided to perform
two rounds of feedback meetings with software developers from some of the
companies I interviewed during my project last autumn. This process is
illustrated in figure 1.2. The total time given to complete the thesis was

CHAPTER 1. INTRODUCTION 4

Literature
My own previous work

and experience

Guidelines

Processing

Figure 1.1: Overview of Process - Information Sources

Preliminary
Guidelines

Complete
Guidelines

Final Guidelines
+

Information on
Guidelines’

Usability

Literature
Study

Feedback
Meetings

Feedback
Meetings

Figure 1.2: Overview of Process - Time

CHAPTER 1. INTRODUCTION 5

20 weeks. The literature study would be important preparatory work for
the rest of the process, and I decided to dedicate about 10 weeks to it. The
first few of the remaining 10 weeks I would spend making the preliminary
guidelines, while the rest of the time would be spent on feedback interviews
and further development of the guidelines. For a description of the detailed
plans, see section 5.1.

1.5 Report Outline

The rest of this report is organized as follows:

Literature Study This chapter contains information from the most rel-
evant articles I have read during the literature study, as well as a
summary of the state of the art.

Previous Work This chapter describes my previous work on the subject
of code reuse in object oriented software development.

Research Method Theory In this chapter, I present research method
theory; general theory on research processes, and information about
using the interview as a data collection technique.

Making the Guidelines In this chapter, the process of making the guide-
lines is described: Planning, performing feedback interviews, and writ-
ing the guidelines.

Guidelines The content of this chapter is the final version of the guidelines
themselves.

Discussion and Conclusion In this chapter, I present a discussion of my
work and a conclusion on the usability of the guidelines.

Further Work This chapter contains suggestions for further work.

Chapter 2

Literature Study

In this chapter, I will present the literature I have studied. I will also present
a short summary of the state of the art.

2.1 Literature Presentation

This section contains summaries from the most relevant literature I have
read, one article at a time. The information in the summaries is the infor-
mation I felt was the most important and useful to my work. I have grouped
the articles by subjects, such as “technology” and “models and strategies”.
Some articles treat more than one subject, in these cases I have chosen to
group the article under the subject which is the most thoroughly treated in
the article.

2.1.1 IEEE Standards

The IEEE Standard for Information Technology – Software Life Cycle Pro-
cesses – Reuse Processes (IEEE Std 1517-1999)[2] presents a common frame-
work for extending the software life cycle processes (IEEE/EIA Std 12207.0-
1996) to make it include the systematic practice of software reuse. This in-
cludes all phases of the software life cycle. The standard specifies processes,
activities, and tasks to enable a software product to be constructed from
reusable assets. The processes, activities, and tasks for identifying, con-
structing, maintaining, and managing assets are also specified. An annex to
the standard lists types of tools needed to support reuse.

The IEEE Standard for Information Technology – Software Reuse – Data
Model for Reuse Library Interoperability: Basic Interoperability Data Model

6

CHAPTER 2. LITERATURE STUDY 7

(BIDM) (IEEE Std 1420.1-1995)[3] presents the minimal set of information
about assets that reuse libraries should be able to exchange to support in-
teroperability. This minimal set of information is “the information which
would enable reuse library users to make quick, intelligent decisions about
which assets in other reuse libraries will likely meet their needs”.

The Supplement to IEEE Standard for Information Technology – Software
Reuse – Data Model for Reuse Library Interoperability: Asset Certification
Framework (IEEE Std 1420.1a-1996)[4] defines a structure for describing a
library’s asset certification policy (Asset Certification Framework). That is,
the Asset Certification Framework is a technique and an associated data
model which is used for organizing, selecting, communicating, and guiding
the process of certifying assets.

2.1.2 Success and Failure Factors of Reuse

In Project-Level Reuse Factors: Drivers for Variation within Software Devel-
opment Environments[5], Rothenberger explores the effects of project-level
factors in the success of software reuse. He states that “an organization
which can successfully identify the factors affecting potential software reuse
will be able to better target investments for the improvement of its reuse
methodology and thus positively affect its software development productiv-
ity and quality.” The success factors are sorted into four groups:

• Client influence: Client’s budget and time constraints, perceived value
of reuse by the client, client’s fear of interconnectivity

• Project culture: Degree of promotion/emphasis on reuse by the leader
or developing team during project development

• Project attributes: Interaction with other systems, project sequence,
project domain

• Developer reuse experience: Experience in recognizing reuse patterns,
understanding of the company’s reuse model, knowledge of component
availability/capability

An analysis showed evidence that the client influence, project culture, and
project attributes factors strongly affect the success of systematic reuse
projects, while the developer reuse experience had a limited effect on the
reuse success.

In the article Strategies for Software Reuse: A Principal Component Analy-
sis of Reuse Practices[6], Rothenberger et al. investigate whether the success
of software reuse efforts vary with the reuse strategy. Reuse practices are
grouped into six dimensions, which cluster into five distinct reuse strate-

CHAPTER 2. LITERATURE STUDY 8

gies with different potentials for reuse. The dimensions are Planning and
improvement (PI), Formalized process (FP), Management support (MS),
Project similarity (PS), Common architecture (CA), and Object technolo-
gies (OT). The five strategies have different values in the six dimensions;
from 1 (low) to 3 (high). The following list describes the strategies/clusters
and their reuse success.

• A: Ad-hoc reuse with high reuse potential: (PI:1 FP:1 MS:1 PS:3
CA:3) Moderately successful.

• B: Uncoordinated reuse attempt with low reuse potential: (PI:1 FP:1
MS:2 PS:2 CA:1) Poorest overall reuse success.

• C: Uncoordinated reuse attempt with high reuse potential: (PI:2 FP:1
MS:2 PS:2 CA:3) Slightly more successful than B, due to a common
architecture.

• D: Systematic reuse with low management support: (PI:2 FP:2 MS:1
PS:3 CA:2) Moderately successful.

• E: Systematic reuse with high management support: (PI:3 FP:3 MS:3
PS:3 CA:3) Most successful.

The article Success and Failure Factors in Software Reuse[7] by Morizio et
al. identifies key success and failure factors in software reuse. Five high-
level factors were shown to be important for a successful reuse program: Top
management commitment, introduction of key reuse roles, introduction of
reuse processes, modification of non-reuse processes, using a repository, and
considering human factors. There is a single attribute over which a company
has no control (such as size and application domain) which has an effect on
the reuse success: Type of software production. This attribute could be
either isolated (the company develops projects which have little or nothing
in common) or product family (the company develops a software product
that evolves over time, and/or is more or less adapted for each customer).
Developing a product family appeared to have a positive impact on reuse
success, while the opposite was true for isolated software production. Size
of the company did not appear to be a conditioning factor, but indirectly
impacts on the ease of achieving top management commitment and its prop-
agation to lower hierarchical levels. Software process maturity is considered
to be a useful but not sufficient factor in achieving success. Main causes
of failure were the following: Not introducing reuse-specific processes, not
modifying non-reuse processes, and not considering human factors. The au-
thors present a decision sequence which highlights issues to consider when
starting a reuse program. The authors stress that “the decision sequence
merely tries to explain the cases in the data set and does not claim scientific
validity as a prediction tool for new cases.” There are three main items in
this decision sequence, each is presented in the following list.

CHAPTER 2. LITERATURE STUDY 9

1. Reuse potential Evaluate the reuse potential, which is much higher
when similar software products are produced over time (Type of soft-
ware production = product family). This evaluation is a complex
task, because it includes identifying functions likely to be reused and
the number of times they could be reused.

2. Reuse capability Get commitment of top management to obtain re-
sources and power to change non-reuse-specific processes, add reuse-
specific processes (including defining and assigning key reuse roles),
address human factors, and set up a repository. When two or more
of these issues are not addressed, a failure is likely. A prerequisite is
knowing what the processes are, and a small size of the organizational
unit and a high process maturity clearly helps in this area.

3. Reuse implementation Changing non-reuse-specific processes, adding
reuse-specific processes, addressing human factors, and setting up a
repository are all activities which have to be addressed through fur-
ther low-level choices. To make sustainable decisions, the availability
of resources in the company (which is related to its size) should be
carefully considered.

This article is criticized in the article More Success and Failure Factors in
Software Reuse[8] by Menzies and Di Stefano, and the authors repudiate
the critique in the article Comments on More Success and Failure Factors
in Software Reuse [9].

Getting to the Goal: Setting Your Sights on Software Reuse[10] by Rhubart
argues that it is important to establish specific goals for the level of reuse
one wishes to achieve. The goals must be reasonable and realistic. Domain,
size, distribution, culture, management and general process maturity of the
organization, as well as the size of the application, have an impact on what
exactly is reasonable and realistic. The level of interest and enthusiasm of
all the people involved is important. A component library which is well-
managed and easily accessed is also important to reach the reuse goals.
The application domain also has an impact; the reuse can be either vertical
(within a domain) or horizontal (across domains). Vertical reuse offers a
good reuse potential, but requires either developers with domain-specific
experience or a significant learning curve. Horizontal reuse, on the other
hand, has a lower reuse potential, but it is more likely that the developers
have relevant experience. A reuse repository which provides capability to
calculate the reuse level (the portion of the work on a project which is
accomplished by reusing components) should be used.

In the article Managing Software Productivity and Reuse[11], Boehm in-
troduces a list of the pitfalls most frequently encountered when trying to
achieve reuse:

CHAPTER 2. LITERATURE STUDY 10

• Simply building a repository of components and assuming it will be
used.

• Focusing only on individual components and not on the domain archi-
tecture and interface specification.

• Overgeneralizing.

• Low scalability (not planning to scale the solution up).

• Technical obsolescence.

He also presents evidence that reuse works; a proactive reuse strategy by
the US Department of Defense could achieve 47 % work avoidance above the
normal improvements accomplished with a business-as-usual approach. Fi-
nally, he lists critical reuse success factors: Adopt a product line approach,
perform a business case analysis to determine the right scope and level of
expectation for your product line, focus on achieving black-box reuse, es-
tablish an empowered product line manager and stakeholder buy-in, estab-
lish reuse-oriented processes and organizations, adopt an incremental ap-
proach, employing carefully chosen pilot projects and real-world feedback,
use metrics-based reuse operations management, and establish a proactive
product-line evolution strategy.

2.1.3 Reuse Models and Strategies

In Evaluating Software Reuse Alternatives: A Model and Its Application to
an Industrial Case Study [12], Tomer et al. propose a reuse cost model. The
model helps identify the basic operations involved in reuse and associates
a cost component with each of these. This enables software developers to
systematically evaluate and compare all possible alternative reuse scenar-
ios. Their model is based on a model introduced by two of the co-authors
(Schach and Tomer), where activities are described along three axes; de-
velopment, maintenance, and reuse. Thus, the elementary operations are
transformation operations (development and maintenance operations) and
transition operations (reuse operations).

The article Assessing the cost-effectiveness of software reuse: A model for
planned reuse[13] by Nazareth and Rothenberger “represents the first step
in a series wherein the effects of software reuse on overall development effort
and costs are modeled with a view to understanding when it is most effec-
tive”. The model presented in the article breaks down software reuse costs
and contrasts them with the development costs without reuse. The authors
computed savings trough reuse, and the results were as follows: Small repos-
itories appear to cost more than they are worth, but the savings attained by
a larger repository appear to plateau as the maintenance and search costs

CHAPTER 2. LITERATURE STUDY 11

balances the savings. Repositories with small components do not generate
savings, as the effort to manage them is larger than the savings generated
by reusing them. In larger projects, the savings tend to plateau at higher
values than in small projects.

Software Reuse Strategies and Component Markets[14] by Ravichandran and
Rothenberger presents three software reuse strategies: White-box reuse,
black-box reuse, and black-box reuse with component markets. White-
box reuse allows developers to modify the code to suit their needs. This
maximizes reuse opportunities, but is also a key source of reuse problems.
Black-box reuse avoids these problems by not allowing the developers to
modify the reusable components they retrieve. This, however, dramatically
reduces the reuse rate. Black-box reuse with component markets (i.e. ob-
taining components from a marketplace) can increase the reuse rate, as the
developers can search from a larger set of components and thereby are more
likely to find components fitting their requirements. The authors discuss
other advantages and disadvantages of the three strategies, and argue that
the latter strategy could be the “silver bullet solution” which makes software
reuse a reality and “advances software development to a robust industrial
process”. They also present a simple decision tree which helps developers
decide on which strategy is appropriate for their current situation.

2.1.4 Reuse Technology

In the article Work-in-Process vs. Finished-Goods: Why a Version Control
System is Not a Reuse Repository [15], Fay specifies the differences between a
version control system and a reuse repository; a version control system man-
ages software “work-in-process”, while a reuse repository holds completed
software (“finished-goods inventory”) and should serve as the channel of
distribution. The two types of systems should work together to provide an
efficient solution for the management of an organization’s overall software
asset inventory. A reuse repository has to enable the developers to easily
find assets, determine their relevance and technical compliance (by access
to metadata), and obtain a copy of the asset. The repository should also
have functionality which tracks the use of each asset to be able to notify the
users of the asset when a new version is provided, and functionality which
tracks the savings achieved by reuse.

The article A Well-Managed Repository [16] by Harmon discusses the need
for a reuse repository and describes the required functionality of such a
repository. Significant reuse is not achievable without having a supply of
components which are designed for reuse, and developers need to know where
to find components and information about their development, functionality,
and current use. The article disproves the misconception that developers

CHAPTER 2. LITERATURE STUDY 12

can undertake a project and subsequent projects can reuse its components
without further adaption; a proper system is needed, and components will
have to be rewritten to be more generic. Infrastructure and methodologies
needed for rapid, efficient software development is essential, and a well-
managed repository is according to the author one of the best signs of the
health of an organization’s IT process.

2.1.5 General Issues of Reuse

In Software Reuse[17], Kremer deals with different aspects of reuse; bene-
fits and impediments to reuse, design for and with reuse, and classification
of reusable components. Software reuse is an old idea, but the approach
to reuse has predominantly been ad-hoc. Today, complex and high-quality
systems have to be constructed in very little time, and this demands a
more organized approach to reuse. Benefits of reuse are increased produc-
tivity, improved quality, reduced cost, and increased flexibility (designing
with reuse or for reuse when demand is respectively high or low). Imped-
iments to reuse are that few organizations have anything which resembles
a comprehensive software reusability plan, few developers use the tools and
components which provide direct assistance for software reuse, relatively lit-
tle training is available to help developers understand and employ reuse,
many developers consider reuse to be more trouble than it is worth, and few
companies provide incentives to reuse. Design for reuse require the develop-
ers to perform domain engineering and to develop standards which enables
components to generalize well to the application domain. Design with reuse
could be for example module reuse, toolkit reuse, or application framework
reuse. Classification of reusable component should follow a 3C Model; the
description of each component should contain information on Concept (what
the component does), Content (how the component is realized), and Context
(under which circumstances the component is supposed to work). Examples
of classification schemes are enumerated and faceted classification.

The Software Reuse Initiative of the Program Management Office of the
United States Department of Defense has produced a Software Reuse Exec-
utive Primer [18]. The primer provides a brief introduction to the concept
of software reuse, by treating a multitude of questions related to reuse; such
as “why is reuse important?” and “how do I avoid failure?”. The follow-
ing summary of the primer mainly consists of direct quotes from the primer:
Software reuse provides a basis for dramatic improvements in increased qual-
ity and reliability and in long-term decreased costs for software development
and maintenance. Software reuse principles have been demonstrated in iso-
lated examples in industry and DOD to provide one of the greatest returns
on investment for reducing cost, time and effort throughout the software life-

CHAPTER 2. LITERATURE STUDY 13

cycle. The upfront investments are: Creating a separate group of domain
engineers, performing domain analysis, developing architectures, developing
and maintaining asset management tools, acquiring tools, and redesigning
and implementing the proposal evaluation criteria and process. Metrics, al-
gorithms and processes must be developed and historical and current data
collected to properly assess the return on investment. The most common
failures when transitioning to reuse are inadequate investment, no domain
engineering group, no reward for reuse, no reward for architecture popula-
tion, project-by-project reuse planning, any reuse is good reuse, and tech-
nically inadequate metrics used to determine award fees. Failure can be
avoided by rewarding reuse, not alternatives, providing leadership and re-
sources, and by reorganizing to facilitate reuse. Things to consider before
developing a reuse program are the size of organization and required infras-
tructure, investment to support needed infrastructure and mechanisms to
recoup investment, and tools to facilitate the transition. You get from no
reuse to planned reuse with resources, enforced organizational standards,
and rewards for reuse and not alternatives.

2.2 State of the Art

During the search for information for the literature study, I found a lot of
information on such things as success factors of software reuse and on stud-
ies performed to evaluate the reuse processes already in place in different
organizations. I only found a single article, however, which contained some-
thing resembling a “recipe” for reuse; Morisio et al. [7] describe a decision
sequence which highlights issues which should be considered when starting
a reuse program. (See the description of the article for information on the
decision sequence.) The decision sequence appears to be aimed at larger
software development organizations and departments, and I felt some of
the activities were too theoretical or at too high a level for developers in
small software developments in Norway to embrace the decision sequence. I
wanted to concentrate on making a plan for reuse, which corresponds to one
of the activities of the second decision point, Reuse capability: Add reuse
specific processes, which was only described in a few lines.

This, combined with the results of my previous work (described in the fol-
lowing chapter), led me to conclude that the state of the art was as follows:
Very few, if any, detailed descriptions of the process of making a plan for
reuse exist, but such a process description is desired by small software de-
velopment departments.

Chapter 3

Previous Work

This thesis is founded on a project I did last autumn, entitled “Code Reuse
in Object Oriented Software Development”[1]. This chapter contains infor-
mation on the project and its results.

3.1 The Project

The project was performed as a part of the graduate level course “TDT4735
Software Engineering, Depth Study” during the fall semester 2004. The re-
search goals were to get an overview of how common code reuse is, to find
out what the desired and achieved effects of code reuse are, and to learn
about the used tools and procedures which are specifically developed for
code reuse. To reach these goals, a series of interviews were conducted. The
interviewees were software developers from 24 software developing compa-
nies of different sizes, locations, and application domains in Norway.

3.2 The Results

As previously mentioned, a goal was to find out what the desired and
achieved effects of code reuse are. The results regarding effects of reuse
are not included here, as it is not relevant for this Master’s thesis. Included
in the following sections are results concerning the extent of code reuse, the
use of tools and procedures, and the organization of code reuse.

14

CHAPTER 3. PREVIOUS WORK 15

3.2.1 Extent of Code Reuse

To indicate the extent of code reuse, I used two factors: Whether the devel-
opers used a common base of reusable code which was separated from other
code, and how high up in the company’s hierarchy the decision to reuse was
made. The last factor had three options: Reuse was left up to each devel-
oper, there was a development department policy on reuse, or there was a
company policy on reuse.

14 of the 24 companies/development departments did not have a shared
base of reusable code separated from other code, while 10 did. Nine inter-
viewees reported that reuse was left to each developer. Eight development
departments had a policy on reuse, while seven companies had a policy on
reuse.

The combination which seemed to be the most interesting was a company
policy on reuse, but not a common base of reusable code which was separated
from other code. My impression before the interviews was that “serious”
reuse would include some sort of a separate reuse storage. A company policy
on reuse indicated a serious take on reuse, but the lack of a separate base
of reusable code might seem a bit less “serious”. Only two companies had
this combination of policy and storage of code.

A combination which seemed natural was a lack of policies on reuse and a
lack of a common, separate base of reusable code. This occurred in nine
companies. Another natural combination was a company policy on reuse
accompanied by a separate reuse storage. This was the case for five com-
panies, which seemed to be the most conscious of code reuse. There were
eight development departments with policies on reuse. Three of those had
no common base for reusable code, while there were five where a common
base of reusable code existed.

3.2.2 Use of Tools and Procedures

The tools and procedures in question were ones produced specifically for
reuse. There was a single company which stood out with regards to tools.
The tool used by this company was developed by the company, and imposed
certain procedures on code reuse. The company was international, and was
also the only company with more than a thousand employees in Norway
alone. The company had more than 15000 employees world wide, and the
size of the company explained their need for a formalized system for code
reuse.

No other companies had tools which were created specifically for code reuse.
Some companies, however, used informal procedures for code reuse. There

CHAPTER 3. PREVIOUS WORK 16

were three interviewees who stated that the developers followed procedures
for reuse.

3.2.3 Organization of Code Reuse

The organization of reuse was classified according to the models described in
appendix B. The company which had developed a tool for reuse again stood
out. It was the only company which organized reuse following a slightly ad-
vanced model; the company had a separate reuse project. The organization
did not completely follow this model, described in section B.2; the reusable
code was developed as parts of the projects, not by a separate, temporary
reuse project. The organization at the company was, however, more complex
than the first model, where the projects identify and develop components
and submit them to the reuse storage: There was a separate department
which dealt with code reuse in the sense of approval or disapproval of the
component as fit for reuse and possibly authorizing investments.

There were no companies following the two more advanced models of reuse
organization. 14 companies had no separate storage for reusable code, thus
not following any of the reuse models listed in appendix B. As mentioned
earlier, I felt this indicated a lack of serious commitment to code reuse. Most
of the companies with no separate base for reusable code had no company
or department policy of reuse, which strengthened the impression of less
commitment to code reuse.

Finally, there were nine companies where code reuse followed model 1;
project oriented reuse (see section B.1). These companies separated reusable
code from other code in a reuse storage. The reusable code was identified
and developed by the projects, and it was stored in a separate reuse storage.
This is the least complex way of reusing code in the set of models listed
in appendix B, and it was the way I beforehand had assumed most of the
companies reused code.

3.2.4 Summary

Code was reused by software developers in all the companies, but there were
few companies where tools and/or procedures specifically developed for code
reuse were employed. The majority of the companies performed reuse in a
disorganized manner, without separating reusable code from other code.
The interviewees reported that the achieved effects were the same as the
desired effects. The effect most commonly mentioned, was improved devel-
opment efficiency, i.e. saved time and money. The effect which was second
most often referred to, was improved quality of software. Other effects

CHAPTER 3. PREVIOUS WORK 17

identified were improved stability of software, simplified testing of software,
uniformity of how problems are solved, more accurate time and price esti-
mates, and marketing advantages. It seems that many software developers
are aware of the positive effects of code reuse, but lack consciousness as to
how these effects best can be achieved.

Chapter 4

Research Method Theory

In this chapter I will present general theory on research processes, and in-
formation about using the interview as a data collection technique. The
first section deals with research processes, and is mainly a summary of the
information included in my project report (“Code Reuse in Object Oriented
Software Development” [1]). The second section includes a discussion of
using interviews as a method of data collection.

4.1 Research Processes

Ringdal [19] presents the research process as consisting of the steps shown
in figure 4.1. This is, however, a simplified picture which hides the fact that
more often than not, one has to turn and go back one or more steps. Each
step is described briefly in the following list. For a more detailed description,
see [1], [20], or [19].

1. Rough problem definition The rough problem definition consists of
an idea which stems from the researcher’s own interests and/or from
users or customers.

2. Research questions The rough problem definition has to be trans-
formed into research questions, which may take the form of questions
or hypotheses. The transformation could be based on previous re-
search and theory.

3. Choice of design In this step, a rough sketch of how a specific inves-
tigation should be formulated is made. A design is based on sev-
eral choices, such as whether the investigation should be qualitative
(results: Text data), quantitative (results: Quantifiable data), or a

18

CHAPTER 4. RESEARCH METHOD THEORY 19

1. Rough problem definition

2. Research questions

3. Choice of design

4. Data collection

5. Data analysis

6. Reporting

Figure 4.1: Main Steps of the Research Process

combination. The two most common qualitative designs are field ob-
servations and conversational interviews, while the two most common
quantitative designs are surveys and experiments.

4. Data collection The first choice to be made in this step is whether data
collection is necessary. Sometimes data has already been collected,
removing or reducing the need to collect data. The basic techniques
of data collection are:

• Questionnaire (used in quantitative research)

• Interview (used in both quantitative and qualitative research. See
section 4.2 for a discussion of interviews.)

– Telephone interview

– Visitational interview

• Observation (used in qualitative research)

– Field observation

– Laboratory observation

It is important to make a selection of subjects before data is collected.
If it is desirable to have a selection which is representative of the
population, the selection has to be performed using statistical criteria.

CHAPTER 4. RESEARCH METHOD THEORY 20

If, however, only a few cases are to be selected, it is better to make
the selection based on strategic reasons.

5. Data analysis Before the data can be analyzed, it has to be registered,
preferably electronically. How the data should be registered and the
degree of detail depends on the type of research and the purpose of the
information. The analysis may consist of several methods and tech-
niques, and may vary depending on the design of the study. Ringdal
[19] explains that analysis of qualitative data can be difficult, as there
are no standardized techniques for this. Fledsberg [20] and Kvale ([21])
present several methods for analyzing data:

Coding: Categorize the paragraphs of the interview transcriptions.

Opinion coalescing: Abridge the interviewee’s statements, express-
ing the principal meaning.

Opinion categorizing: Code the interview in categories, reducing
long statements into simple categories (such as “+” or “-”).

Narrative structuring: Organize the text according to time lapse.

Opinion interpretation: Interpret the text in a deeper, more spec-
ulative way.

Ad-hoc methods: One single standard method is not used. Instead,
a free interaction of different techniques is employed.

6. Reporting The results may be reported in a journal, report, Master’s
thesis, dissertation, or book.

4.2 Interviews

An interview is according to Ringdal [19] an exchange of viewpoints between
two persons conversing about a subject which interests them. An interview
is a specific type of conversation which is often characterized by one person
asking questions (the interviewer) and one person answering them (the in-
terviewee). Robson [22] presents advantages and disadvantages of using the
interview as a data collection method. The advantages of using interviews
are that the researcher has the opportunity to:

• Ask the interviewee directly if he/she has any questions, as opposed
to observation, where the researcher is only allowed to observe and
interpret events

• Change the direction of the research

• Follow up on interesting answers

CHAPTER 4. RESEARCH METHOD THEORY 21

• Explore underlying motives in a way which is not possible in self ad-
ministered questionnaires

• Observe body language in addition to hearing the words spoken by the
interviewee

There are two main disadvantages of using interviews as a data collection
method:

• The interviews are time consuming

• A lot of preparatory and complementary work is needed, including
preparation, organization, notes, and transcribing

Three types of interviews are commonly defined (Seaman [23], Robson [22]):

Structured interview The questions are predefined, and should be asked
in a specific order. In a structured interview, the interviewer has very
specific objectives for the type of information he/she wants, so the
questions may be relatively specific.

Semi-structured interview The questions are predefined, but the order
of the questions and the way the questions are asked may be altered
during the course of the interview, and the interviewer may ask more or
fewer questions than planned. The object of an unstructured interview
is to obtain as much information as possible on a broadly defined topic,
and the questions should be as open-ended as possible.

Unstructured interview There are no predefined questions, only a gen-
eral subject of conversation, and the conversation is informal and flows
freely.

There are several methods of collecting information from the interviews. Ex-
amples are according to Kvale [21] sound recording, video recording, writing
notes, and using one’s memory. The choice of method is based on the pur-
pose of the researcher. An open-ended study requires a higher degree of
detail in notes, as any information could turn out to be relevant. The most
common choice is therefore to use sound recording.

When the interviews are completed, speech is transformed to text. The
most detailed method is to copy the interview word-for-word, and in ad-
dition make detailed descriptions of the setting and the interviewee. This
is, however, highly time consuming; Robson [22] states that transcribing
an interview would usually take about 10 times the duration of the inter-
view itself. There are other ways of transcribing interviews, depending on
the purpose of the interview; if the purpose of the interviews is to obtain
a general impression of the interviewee’s views, his/her statements may be
condensed and rephrased. Such a low degree of detail enables the use of for
example a point list.

Chapter 5

Making the Guidelines

This chapter contains a description of how the guidelines were made. The
first section covers the planning, while the second section covers organizing
the feedback interviews. The next section describes how the first edition
of the guidelines were made. This is followed by a section describing the
first round of feedback interviews. The next section contains information
as to how the second edition of the guidelines were made, followed by a
section describing the second round of feedback interviews. The last section
describes the final changes made to the guidelines.

5.1 Planning

The research methodology is briefly described in section 1.4. The process I
had decided to go through is depicted in figure 1.2. First, I would perform
a literature study. Then I would start creating the guidelines, and perform
the first round of feedback meetings. I would then revise the guidelines,
followed by a second round of feedback interviews, before a final revision of
the guidelines. I decided that the literature study should be completed in
about 10 weeks, leaving another 10 weeks to make the guidelines and perform
the feedback interviews. I wanted to perform the feedback interviews in
person at the interviewees’ workplace, as this would be the easiest way to
communicate freely (as opposed to for example a phone interview). Initially,
I had a desire to publish the guidelines in some way, but while planning, I
realized that I would not have the time to work on publishing the guidelines.

According to the research method theory in chapter 4, there are six steps to
go through when performing research. I planned to do this as follows:

1. Rough problem definition This is described in section 1.2, Problem
Definition.

22

CHAPTER 5. MAKING THE GUIDELINES 23

2. Research questions This corresponds to the third item in the list of
goals in section 1.3, Goals: I wanted to get feedback and informa-
tion from the target group (developers in small software development
departments) with regards to:

• Superfluous or missing information in the guidelines

• Comprehensibility of the guidelines

• How useful the guidelines are

3. Choice of design This is roughly described in section 1.4, Research
Methodology: I wanted to perform two rounds of feedback interviews
with software developers from some of the companies I interviewed
during my project last autumn, as illustrated in figure 1.2. This
meant that the research would be qualitative; the data collected would
be descriptive, and the focus would be on the interviewees’ perceptions
and experiences. The interview type would be visitational.

4. Data collection I would perform visitational interviews and collect in-
formation by writing notes and sound recording. More information on
the further planning of the interviews is given in section 5.1.3, Feed-
back Interviews.

5. Data analysis To register and analyze the data from the interviews, I
decided to use opinion coalescing (abridging the interviewee’s state-
ments, expressing the principal meaning) which I would do in part
during the interviews by writing notes, and in part after the inter-
views by noting additional key points while listening to the sound
recordings from the interviews. In addition, I would use a form of
opinion categorizing. I would send the interviewees a list of questions
before the meetings, and using these questions as categories, I would
reduce long statements made by the interviewees into shorter answers
to the questions.

6. Reporting The results would be reported in a Master’s thesis.

5.1.1 Literature Study

During the project work last fall, I had come across many interesting arti-
cles. These articles contained references to other articles, which might also
be useful to include in the literature study. I searched the university library’s
branch databases1, which led me to such databases of electronic periodicals
as Jstor, Association for Computing Machinery (ACM), and Springer. I also

1“fagdatabaser”

CHAPTER 5. MAKING THE GUIDELINES 24

used the library’s system BIBSYS, which provides access to the library’s re-
sources through several databases. The university subscribes to a plethora
of scientific periodicals on-line, and I found the IEEE database search tool
(IEEE Xplore) particularly useful. The IEEE database contains the pub-
lications of the IEEE, such as IEEE Software and IEEE Transactions on
Software Engineering, as well as the IEEE standards. When searching, I
used search terms such as “reuse”, “software reuse”, “code reuse”, “reus*”
and the like. This provided me with a long list of possibly relevant litera-
ture, a lot more than I could possibly manage to read. So I looked at the
abstracts and summaries of the articles and made a prioritized list of the
articles I wished to read. I intentionally included more articles in the list
than I would have time to read, because I felt they might be useful to use
as references in the guidelines even if I had not read the entire article. In
the list I included some articles about software reuse in general, as well as
articles discussing specific issues of reuse, such as success and failure factors,
component storage, and measurement, as well as a few IEEE standards. A
description of the most relevant literature is given in chapter 2.

5.1.2 Writing Guidelines

I wanted to work on the guidelines in three phases; before any feedback
interviews were performed, after a first set of feedback interviews, and after a
second set of feedback interviews. During the first phase of writing, I wanted
to concentrate on the overall process of making a plan for reuse. During the
second phase, I would add in-depth information about the process. The last
phase of writing would consist of making minor changes after the second set
of feedback interviews. The first round of interviews would enable me to
get feedback on the overall process; does the process seem reasonable and
understandable? Later, I would get feedback on the in-depth information
as well as the overall process; does it seem relevant and useful?

5.1.3 Feedback Interviews

From the project work last autumn, I had a list of companies and inter-
viewees. I decided to ask some of these interviewees to contribute, as my
desire to create the guidelines was based on the results from the interviews
with these people. Also, I believed that using the same interviewees would
save some time: I already had information about the software development
at their companies, I had their contact information, and I believed it would
be easier to get the previous interviewees to contribute than to ask a set of
new people who knew nothing about my work. From the list of the previous
interviewees, i selected the ones fitting the following criteria: First, I wanted

CHAPTER 5. MAKING THE GUIDELINES 25

to get information from developers working in small software development
departments, as I believed they were the ones who needed such a set of
guidelines the most and at the same time had the least time and money to
spare for finding this kind of information themselves. I defined “small” as
less than 10 developers. Second, I wanted the companies to be located at a
place I would be able to visit relatively easily. I felt that performing inter-
views with several companies in the same city would also be advantageous
when it came to traveling time and costs.

There were many cities and towns on the interviewee list, but the two cities
with the highest number of interviewed companies were Oslo and Trondheim.
These two cities would also be easy for me to visit. I decided to perform one
of the two feedback stages in Oslo and the other in Trondheim. To get as
much information as possible from the interviews, I wanted to spend about
one hour on each of them. I decided that I would interview developers at six
companies to be able to get enough information without getting more than I
could handle. I would perform three interviews in Oslo and three interviews
in Trondheim. I made a prioritized list of the companies in each city, where I
preferred the companies with the smallest development departments. I made
a plan of what I would say when I contacted the potential interviewees and
decided to send an e-mail to the developers who agreed to be interviewed.
This e-mail would contain not only the guidelines, but also a set of questions
I wanted the interviewees to answer. In this way, they would be able to
prepare for the interview, and they would know what I was expecting from
them.

When I had completed the planning and was in the process of studying
literature, I wanted to know which developers I would be able to interview
and when I could visit the company to perform the interview.

5.2 Organizing Feedback Interviews

I selected three weeks during which I would perform the interviews, and
started contacting the previous interviewees. I started at the top of the
prioritized list for each city, and called the interviewees asking them to
contribute. I told them that I had continued the work from last fall’s project,
and that I needed some real-world feedback to assess the usefulness of a set
of guidelines for code reuse in small development departments. I explained
that I would send them a draft of the guidelines together with a list of
questions which I would like them to answer, so they could prepare for the
interview. I only needed to call six people to get six interviews; everyone
agreed to be interviewed. The Oslo interviews would be performed first, and
the Trondheim interviews would be performed the ensuing week. This left

CHAPTER 5. MAKING THE GUIDELINES 26

me little time to revise the guidelines between the first and second round of
feedback interviews, but it was the best way to organize the interviews.

One of the interviews (the second interview in Trondheim) was performed at
a company where they were using a new system for software development,
which included some tools and procedures for code reuse. I was pleased with
this, as the experiences of the interviewee at this company probably could
be of valuable help – the interviewee might already have been through a
process somewhat similar to the one I was trying to formulate.

While I was preparing for the interviews, I decided that I would try to keep
the interviews as informal and open as possible, to get as much informa-
tion as possible on shortages or redundancies, and on the understandability
and usefulness of the guidelines. I believed that if the interviews were too
strict, I might get less useful information – the interviewee could have many
thoughts and opinions, but they might not be expressed. Also, creating an
open atmosphere would allow the interviewee to admit it if he/she did not
understand something, and thus allow me to become aware of shortages et
cetera which caused confusion or made the guidelines hard to understand.

5.3 Writing – First Edition

While writing the first edition of the guidelines, I concentrated on the basic
structure of the process; which activities were needed, and in which order.
The logical flow of the process was important.

I started by organizing the information from the literature study by cat-
egories such as “reuse repository”, “success factors”, “measurement”, et
cetera. I then started drawing up a diagram of the activities that I felt
were necessary in the process of making a plan for reuse, drawing lines
and arrows between them to envision the flow of information between the
activities. The diagram was crude and hand-drawn, but it gave me an
overview of the process with its activities and information flow. The dia-
gram is included in figure 5.1. The overall activity was to make a reuse plan.
This activity would consist of several smaller activities; classify, decide on
desired results/goals/effects, decide on measurements, and decide on reuse
policy/rules. All of the activities would have outputs which could be used
as input for other activities. The activity of classifying (the organization
which wants to reuse code) would produce a classification. This classifica-
tion would be used in the next activity; deciding on desired results, which
would consist of two smaller activities; make ideal goals and make final goals.
The ideal goals from the first sub-activity would be used together with the
classification as input to making a set of final goals. The set of final goals
would be the output of the activity of deciding on desired results. The fi-

CHAPTER 5. MAKING THE GUIDELINES 27

Figure 5.1: Overview of the Process of Making a Reuse Plan – Draft 1

nal goals would be used both in deciding on measurements and deciding on
a reuse policy. The activity of deciding on measurements produced a set
of rules for measurements, while the activity of deciding on a reuse policy
would result in a reuse policy. This reuse policy might also be used as input
for the activity of deciding on measurements. All the outputs would be put
together to constitute the overall reuse plan, except perhaps the classifica-
tion. The following paragraph explains what I envisioned that the activities
would involve.

The activity classify would involve classifying the organization/software de-
velopment department which is going to make a reuse plan. I wanted to
include this activity because it could give the developers valuable insight as
to how easy it would be for them to reuse; classifying the reuse organization
would help them to gain an understanding of their reuse potential. Since
the knowledge and understanding coming from this activity is useful in all
the other activities, it is the very first activity. Decide on desired results
would be the activity where the goals of reusing would be addressed: What
do we want to get out of this (i.e. reusing code)? This activity would, as
previously mentioned, consist of two sub-activities. In one sub-activity the
developers decide on a set of ideal goals: “In a perfect world, we wish to
accomplish this and that by reusing code”. In the second activity, those
ideal goals are moderated to fit their reuse potential: “OK, the world is not

CHAPTER 5. MAKING THE GUIDELINES 28

perfect, and we don’t have a very high reuse potential, so let’s lower our
expectations a bit.” I put this as the second activity because knowing what
your goals are is important through the rest of the process; if you do not
know why you are reusing and what you want the results of reuse to be, it
is difficult (if not impossible) to make a good plan for reuse. The activity
decide on reuse policy would be the most extensive activity. In this activity,
the developers would decide on rules for reuse, such as whether they wish to
use a reuse repository or simply carry on using their version control system,
and whether the reuse should be white-box or black-box (i.e. whether the
developers reusing the component are allowed to change the component or
not). I included this activity as number three, as I believed that the pol-
icy could and should have an impact on the next activity: In the activity
decide on measurements, the developers would decide whether they wish to
measure their reuse efforts or not, and if so, make a plan for measuring.
Measurement can be a great means of discovering to what extent your goals
have been met, but it can also be quite expensive both in time and money.

A few revisions later, the diagram was more clearly set out and re-drawn
using diagram software, see figure 5.2. There are four major differences

2. Formulate reuse goals

1. Classify the reuse organization

4. Consider reuse measurement

3. Formulate reuse policy

Classification

Reuse goals

Reuse policy

Measurement plan

5. Compile outputs Complete reuse plan

Figure 5.2: Overview of the Process of Making a Reuse Plan – Draft 2

between this version and the hand-drawn one. First, I decided not to include
the activity of making a set of ideal reuse goals before deciding on the
final reuse goals, as this would probably be superfluous. Second, I felt that
the reuse policy should be used as input when making the decisions about
reuse measurements, as the policy could lay constraints on the measurement
process and some measurements could be made to check whether the policy

CHAPTER 5. MAKING THE GUIDELINES 29

was being followed. Third, I decided to include the classification in the
complete reuse plan. It would be useful to have this information available,
as the information is interesting in itself, and as the rest of the process is
at least in part based on this information. The fourth change was that I
included a separate activity for compiling the outputs from the first four
activities.

The second diagram was still not very easy to follow, so I rearranged the
activities and outputs to get a seemingly simpler diagram; the diagram
shown in figure 5.3.

1. Classify the reuse organization

Classification

2. Formulate reuse goals

Reuse goals

3. Formulate reuse policy

Reuse policy

4. Consider reuse measurement

Measurement plan

5. Compile outputs

Complete reuse plan

Figure 5.3: Process Diagram for the First Edition

CHAPTER 5. MAKING THE GUIDELINES 30

Based on the two last versions of the diagram, I started writing an in-
troduction and a description of the process overview. I wanted this first
version/introduction to be short and easily understandable, as I wanted the
interviewees’ feedback on the overall process. Therefore, I simply wrote a
short introduction, followed by an overview of the process; the diagram and
a list of the activities with a short description of each activity. The first
version of the guidelines is included in appendix F. During this work, I also
started writing in-depth descriptions of the activities. As this first phase of
writing predominantly was about arriving at an overall process description,
the discussion of the in-depth activity descriptions is omitted here, and is
instead included in section 5.5.

5.4 Interviews – Feedback 1

The first round of interviews were performed at three companies in Oslo. A
few days before the meetings, I sent the interviewees an e-mail containing
the introductory version of the guidelines (see appendix F) which they would
read before the meetings and a list of questions which I would like them to
think about before the meeting. The e-mail text is included in appendix E.

The meetings took place at the interviewees’ workplaces. To avoid directing
a lot of my attention toward taking notes during the interviews, I wanted to
record the interviews with my MP3 player. But I still made brief notes on
a printed copy of the guidelines version which I had sent to the interviewee,
both to include information or notes which would not be evident from the
recordings and to ensure I had at least a little bit of information in case
the MP3 player would malfunction during the interview. I started each
interview by asking if it was OK that I recorded the interview, and none of
the interviewees had any objections.

As planned, I tried to keep the situation rather informal and relaxed, and
I let the interviewees talk about what they wanted. Most of the questions
I had e-mailed to the interviewees were answered without me having to
ask the questions. When there was a pause in conversation or at the end
of the interview, I asked the remaining questions. Information about the
interviewees, their companies, and the interviews is included in appendix H,
with a summary of my notes written during the interviews, additional key
points from the recordings, as well as the interviewees’ answers to the e-mail
questions. The following list contains a summary of those answers:

1. The interviewees were in general left with an overview of what the
process of making a plan for reuse involved, but the diagram showing
the activities of the process caused some confusion. See the list of
results below.

CHAPTER 5. MAKING THE GUIDELINES 31

2. None of the activities were considered by the interviewees as being
superfluous. An interviewee mentioned research as a possible addition
to the activities.

3. The activity of formulating a reuse policy was considered to be the
most important and most interesting activity in the process of making
a plan for reuse.

4. The interviewees all said that the final set of guidelines could be useful
to them and their development departments, predominantly to use as
a reference and to actuate a thought process regarding code reuse.

The results of the first three feedback meetings which I considered were the
most important for my further work with the guidelines are included in the
following list.

1. The diagram showing an overview of the process was not as simple as
I had believed it to be. I had overlooked a very important issue: How
does the flow appear to go through the diagram? To me it seemed
clear, I felt the numbering should at least indicate the flow of activi-
ties. But it became evident that the interviewees did not interpret the
diagram as I had intended. Two things were pointed out:

• The arrow from output 2. Reuse goals to activity 4. Consider
reuse measurement was mis-interpreted as indicating that you
could go right from activity 2 to activity 4, without performing
activity 3. Formulate reuse policy.

• Outputs, i.e. documents resulting from an activity, are obvious.
There should always be output from an activity, and therefore it
is unnecessary to explicitly include the output in the diagram.

2. Examples are important to aid understanding. A “Toy Store” was sug-
gested; make up a story about one or several development departments
going through the process of making a plan for reuse.

5.5 Writing – Second Edition

During the first phase of writing, I had started developing the in-depth
descriptions of the activities in the guidelines. During this second phase, I
continued that work. I also worked with an issue from the feedback meetings:
Improve the diagram which was causing confusion. As there was little time
to complete the second stage of writing, I decided not to include a “toy store”
or in-depth examples in the second version of the guidelines, although this
was generally considered by the interviewees as useful.

CHAPTER 5. MAKING THE GUIDELINES 32

To avoid confusion about the diagram, I decided to make it simpler. I split
it into several diagrams:

• Activity diagram. This diagram showed an overview of the activities
included in the process of making a reuse plan, as well as the process
flow. The activity diagram is included in figure 5.4.

• Output diagram. Showing only the outputs from each activity (num-
bered according to its parent activity), this diagram illustrated that
the overall reuse plan is a collection of the outputs from all the activ-
ities. The output diagram is included in figure 5.5.

• Complete diagram. This diagram connected activities and outputs,
showing which outputs were needed as input to which activities. The
complete diagram is included in figure 5.6. There are solid lines with-
out arrows between the activities and their resulting outputs. From
each activity there is a solid, bold line with an arrow pointing to the
following activity. From each output there are dotted lines with arrows
pointing to the activities in which the output is needed.

1. Classify the reuse organization

2. Formulate reuse goals

3. Formulate reuse policy

4. Consider reuse measurement

5. Compile outputs

Figure 5.4: Activity Diagram for the Second Edition

In the following sections, I will explain what kind of information I included
in the description of the activities and why. I have dedicated one section to
each activity:

CHAPTER 5. MAKING THE GUIDELINES 33

5. Complete reuse plan

1. Classification

2. Reuse goals

3. Reuse policy

4. Measurement plan

Figure 5.5: Output Diagram for the Second Edition

1. Classify the reuse organization, section 5.5.1.

2. Formulate reuse goals, section 5.5.2.

3. Formulate reuse policy, section 5.5.3.

4. Consider reuse measurement, section 5.5.4.

5. Compile outputs, section 5.5.5.

I decided to make the first part of the activity description similar for all the
activities. First, I stated the goal of the activity, followed by a list of the
inputs to the activity, and a short description of the output.

As I, partly based on the interviews, considered the subject of tools for
reuse to be interesting, I included a separate section discussing tools for
reuse. An explanation of what kind of information I included in this section
of the guidelines and why is given in section 5.5.6.

The in-depth second version of the guidelines is included in appendix G.

5.5.1 Organization Characteristics

The first activity, Classify the reuse organization, would involve classifying
the organization/software development department which is going to make
a reuse plan. This activity would help the developers gain an understanding
of the organization’s reuse potential. It should be simple and not take a lot
of time, so I wanted the description of this activity to be relatively short and
to the point. In the literature study, I found several discussions of success
and failure factors of software reuse. Some of these success factors were

CHAPTER 5. MAKING THE GUIDELINES 34

5. Compile outputs 5. Complete reuse plan

4. Consider reuse measurement 4. Measurement plan

3. Formulate reuse policy 3. Reuse policy

2. Formulate reuse goals 2. Reuse goals

1. Classify the reuse organization 1. Classification

Figure 5.6: Process Diagram for the Second Edition

CHAPTER 5. MAKING THE GUIDELINES 35

things that can be changed from project to project, while a few factors were
more constant. I felt that these constant factors would be good indicators
of an organization’s reuse potential.

Morisio et al. [7] used several so-called state variables to describe a com-
pany: Size of software staff, Size of overall staff, Type of software produc-
tion, Software and product (standalone, part of product, or part of process),
Software process maturity, Type of application domain, Type of software,
Size of baseline, Development approach (object oriented or procedural), and
Staff experience. Their study showed that amongst these state variables,
only Type of software production could be shown to have a direct effect on
the reuse success of the 24 projects they studied. Type of software produc-
tion in the study was either “isolated” (the company has projects which have
little or nothing in common) or “product family” (the company develops a
software product that evolves over time, and/or is more or less adapted for
each customer). None of the cases with isolated software production were
successful, while most of the cases with a product line were successful. Size
also has an impact, although indirectly. Size affects the ease of achieving
top management commitment, as well as the ease of communication of in-
formation and the ease of building a consensus for the reuse program. In
this case, smaller appears to be better. The companies considered in their
study had reasonably mature processes, and the researchers assumed that
software process maturity is a useful but not sufficient factor in achieving
success.

Nazareth and Rothenberger [13] state that

[...] several researchers have noted that reuse is facilitated
by well-defined and narrow domains [...] A domain is typically
characterized as a set of information systems that possess similar
functionality and share the same underlying data. Typically a
domain will address related processes and involve a limited set
of users.

This indicates that definition and narrowness of domains is a useful charac-
teristic when assessing the reuse potential of an organization.

To summarize, here is a list of the aforementioned characteristics which are
useful when assessing the organization’s reuse potential.

Type of software production There are two main categories; Product
family and Isolated. Product family is when the company develops a
software product that evolves over time, and/or is more or less adapted
for each customer. Isolated is when the company has projects which
have little or nothing in common. In this case, Product family is the
better alternative.

CHAPTER 5. MAKING THE GUIDELINES 36

Size of organization/software staff Smaller is better when it comes to
the ease of achieving top management commitment, as well as the ease
of communication of information and the ease of building a consensus
for the reuse program.

Software process maturity As high as possible, since a software develop-
ment department with high process maturity will be better equipped
to generate a plan for reuse and, equally important, implement the
plan.

Domains As well-defined and narrow as possible, because well-defined and
narrow domains facilitate reuse.

5.5.2 Goals

The second activity, Formulate reuse goals, would include addressing the
goals of reuse: What do we want to get out of reusing code? Clarifying
your expectations makes it easier to develop a good reuse plan for achieving
your goals. Nazareth and Rothenberger [13] state that “Reuse programs are
likely to be adopted more readily, and with greater conviction, if a clearer
understanding of the outcomes of the reuse program were available”. As I
felt an exhaustive list of all possible types of goals would be too much, I
decided to provide the developers with a starting point for formulating their
own reuse goals. Through my previous work, interviewing software develop-
ers, I had developed a list of positive effects of reuse which the developers
mentioned during the interviews:

• Increased efficiency, i.e. saved time, and thereby money

• Improved quality of software

• Improved stability of software

• Simplified testing

• Uniformity: Of how problems are solved, of appearance and function-
ality

• More accurate time and price estimates

• Marketing advantages; experience and ease of software development

Increased efficiency is a positive effect of reuse which was mentioned by
Rothenberger et al. [6] and Nazareth and Rothenberger [13], as well as al-
most every other article mentioning positive effects of reuse. Improved qual-
ity of software was also mentioned in the two aforementioned articles ([6],
[13]), and in most of the other articles I read. Anderson [24] mentions stan-
dardization, with the following example: “Reuse of UI widgets in MacOS

CHAPTER 5. MAKING THE GUIDELINES 37

and Win32 leads to common “look-and-feel” between applications”. He also
mentions debugging as an activity which profits from reuse; the code which
is reused has been tested before. Lastly, Anderson states that “Reuse can
lead to a market for component software”, and lists some examples: ActiveX
components, Hypercard stacks, Java packages, and software tools, such as
xerces and xalan from xml.apache.org.

To summarize, this is the list of positive effects of reuse I included in the
guidelines:

Increased efficiency Reductions in development cost and time, increased
programmer productivity

Better software Improved quality, stability, and maintainability of soft-
ware

Standardization Uniformity of how problems are solved, of appearance
and functionality

Simplified testing Less debugging, reused code is often tested code

Profit Selling reusable components to other companies

In addition to using these positive effects as a basis for formulating goals
(which are not easily measurable), it could be useful for the developers to
set measurable goals as well, to be able to compare their actual results with
their predetermined goals. An example of this is mentioned by Rhubart
[10]: The percentage of the work on a specified development project that is
accomplished through the use of existing code.

5.5.3 Policy

The activity of deciding on a reuse policy would be the most extensive and,
in my eyes, the most important activity. This is the activity where the
developers formulate their rules for reuse, such as whether they want to use
a separate reuse repository and whether they want to perform white-box or
black-box reuse (that is, whether the developers who reuse the components
are allowed to make changes to the component or not).

I had reviewed a massive amount of information on issues which I wanted
to include in the description of this activity. I tried to sort the bits of in-
formation into categories. First, I wondered if I should just go through the
issues and discuss them one by one, but it appeared to be too untidy. From
an article I read (Rhubart [10]), I got the idea to sort the information into
answers to questions. For example, the issue of employing a reuse reposi-
tory would fall into the category of “where” – “where should the reusable

CHAPTER 5. MAKING THE GUIDELINES 38

components be stored”. I generated three other categories, “what”, “how”,
and “who”:

• What kind of reuse do you wish to perform?

• How should the reusable components be classified, enabling them to
be found and retrieved later?

• Where should the reusable components be stored?

• Who is responsible for what?

I wanted to discuss these four questions in four subsections of the policy
section. What kind of information I wanted to include in each subsection
and why, is discussed in the following sections.

What

What kind of reuse do you wish to perform? I chose to present two main
decision points in this section. The first one was the aforementioned question
of whether to perform black-box or white-box reuse. The other decision
point was whether the reuse would be vertical or horizontal. I regarded the
first question as the most important one. Should the developer who uses
the reusable component be allowed to make changes to it or not? One could
write a whole book on this subject, but I wanted the discussion to be short,
while still providing the most important information. There was one article
in particular which provided me with useful information here; Ravichandran
and Rothenberger [14]. The article describes three reuse strategies: White-
box reuse, black-box reuse with internal components, and black-box reuse
with component markets. It compares features and discusses advantages
and disadvantages of each strategy and also includes a reuse decision tree
which “depicts the various reuse strategies and the questions developers must
answer in choosing each strategy. The model also depicts the cost equations
that help developers answer these questions”. I considered the article to be
so useful that I, in addition to including in the guidelines a brief summary
of the main points of the article, wanted to advise the developers to read
the whole article themselves. (See the full second version of the guidelines
in appendix G for the summary.)

The second question was whether the reuse would be vertical or horizontal,
i.e. within a specific domain or across several domains. This is not always
a decision the developers can make themselves, as it partially depends on
the type of software production of the company (i.e. isolated or product
family, as discussed in section 5.5.1 Classifying the reuse organization). I
wanted to tell the reader this, as well as provide information on some of the

CHAPTER 5. MAKING THE GUIDELINES 39

advantages and disadvantages of each approach. I used Rhubart [10] as my
main source of information regarding this issue.

How

How should the reusable components be classified, enabling them to be found
and retrieved later? In order to reuse efficiently, it must be possible for
the developers to search for and find reusable components. That is, the
reusable components have to be organized in some way, and classification
of the components is essential. I regarded the information in the IEEE
standard “IEEE Standard for Information Technology – Software Reuse –
Data Model for Reuse Library Interoperability: Basic Interoperability Data
Model (BIDM)” (IEEE Std 1420.1-1995)[3] as a good starting point for de-
veloping a classification scheme, as the standard describes “the minimal set
of information about assets that reuse libraries should be able to exchange
to support interoperability”. The minimal set of information is “the infor-
mation which would enable reuse library users to make quick, intelligent
decisions about which assets in other reuse libraries will likely meet their
needs”. This set of information is not only useful for library information ex-
change; information enabling developers to make quick, intelligent decisions
is just as useful when it comes to the company’s own reuse library.

Kremer [17] states that an ideal description of a software component en-
compasses a so-called 3C Model: Concept, content and context. That is,
the description of a component should contain information about what the
software does (concept), how the component is realized (content), and un-
der which circumstances the component is supposed to function (context).
I included this 3C Model in the discussion, as well as a description of the
faceted classification scheme described in the same article.

Where

Where should the reusable components be stored? A separate reuse repos-
itory was mentioned as important in several of the articles I read, and in
many other articles, it was taken for granted. I wanted to convey to the
reader the importance and usefulness of using a separate reuse repository.
The article written by Fay [15] explains in an easily understandable way
how a reuse repository is different from a version control system, and why
a reuse repository should be used. I used Fay’s article as a basis for the
discussion of where reusable components should be stored.

Even though I personally felt that a reuse repository was the only fitting
option for proper code reuse, I wanted to mention the other available op-

CHAPTER 5. MAKING THE GUIDELINES 40

tions; storing reusable code and non-reusable code together (i.e. no system
for reuse), or storing reusable code separated from non-reusable code (i.e.
a reuse library), but in the same system (for example a version control sys-
tem). A reuse repository system could be expensive and everybody would
not be able to afford it, so the other available options would probably be
used more often than a separate reuse repository. I also wanted to mention
the organization of the components (naming and hierarchy conventions), as
this becomes even more important when there is no specialized reuse sys-
tem. Finally, I wanted to remind the reader that he/she would have to
give some thought to how the reuse repository/library should be populated;
with already existing components, or with only new components (specifically
developed to be reusable).

Who

Who is responsible for what? It is always useful to establish roles and
responsibilities. This helps to ensure that things get done; it is a lot harder
to avoid doing a task which was especially assigned to you than to avoid
doing a task which “somebody should do”. It also ensures that there is a
single person who can make the ultimate choices, which is especially useful
when there are disagreements between the developers. In small software
development departments, however, the benefit and need of many roles are
relatively small. Therefore, I decided to describe the two roles I regarded as
the most important and useful; reuse program manager and library manager.
These and other roles are named by Morisio et al. [7].

5.5.4 Measurement

During the activity of deciding on measurements, the developers would de-
cide whether they wish to measure their reuse efforts or not. If they decide
to measure reuse, they make a plan for the measurements during this ac-
tivity. The reason I did not want to present measurements as mandatory,
is that while measurement can be a good way of discovering to what extent
you have reached your (measurable) goals, it can also be quite expensive.
For example, using a measurement such as lines of code would be near to
impossible without a tool. Such a tool could be expensive, to the degree that
the developers would choose not to buy the tool. In this way, cost (in money
or time) could inhibit the measurements ever being made. Automated tools
are important aids for measuring reuse, and a good reuse repository tool
would enable the developers to make a range of measurements of their code
reuse.

While measurements can be very useful, and the developers reading the

CHAPTER 5. MAKING THE GUIDELINES 41

guidelines probably would want some practical information on metrics and
performing measurements, I felt that these subjects were too complex to be
appropriately covered in the guidelines. Therefore, I wanted to achieve two
things by the description of this activity: I wanted the reader to understand
that measurement is important and useful, and I wanted to give the reader
references to useful information about software/reuse metrics and measure-
ment. To advocate reuse measurement, I chose to include some quotes from
the articles I had read. I felt that the following list of quotes conveyed the
importance of measurement:

Tomer et al. [12] (citing Poulin [25]) “it is widely accepted that the orga-
nizational challenges of software reuse outweigh the technical ones. As
a result, metrics are needed in order to “make business decisions pos-
sible by quantifying and justifying the investment necessary to make
reuse happen”[25]”

Nazareth and Rothenberger [13] “Reuse programs are likely to be adop-
ted more readily, and with greater conviction, if a clearer understand-
ing of the outcomes of the reuse program are available”

Boehm [11] includes in his list of eight critical reuse success factors the
following point: “Use metrics-based reuse operations management”.
He goes on to explain that this is important for “tracking progress with
respect to expectations and making appropriate adjustments where
necessary”.

Information on software metrics abound, and I chose to present the reader
with the following list:

• Poulin: Metrics for Object-Oriented Reuse [26]

• Poulin: Measuring Software Reuse: Principles, Practices, and Eco-
nomic Models [25]

• Frakes and Terry: Software Reuse: Metrics and Models [27]

• Devanbu et al.: Analytical and Empirical Evaluation of Software Reuse
Metrics [28]

• Pfleeger: Measuring Reuse: A Cautionary Tale [29]

5.5.5 Compilation

The last activity, compilation, would simply involve gathering the output
from the preceding activities to make the final, complete plan for reuse. The
first section of the plan would contain a description of the organization, the
second section would contain a description of the goals which the developers

CHAPTER 5. MAKING THE GUIDELINES 42

wish to accomplish by reusing code, the third section would probably be the
most extensive section, containing a description of the rules of reuse, while
the fourth section would contain a plan for measurement if such a plan was
made during the execution of the fourth activity.

The plan could be stored and made available in many ways, e.g. electron-
ically in some predetermined format such as Portable Document Format,
PostScript, Word document, even as a simple text file, or on paper. I be-
lieved most developers would have their own preferences as to how the plan
should be stored and made available, so I decided not to discuss this any
further in the guidelines.

5.5.6 Tools

This section of the guidelines would provide some general information on
tools for reuse. I did not want to “advertise” for any specific tools/products,
and as an exhaustive list of all existing tools for reuse would be impossible
for me to make during the work with the guidelines, I wanted only to give
information on the types of tools that exist. Here, the IEEE Standard for
Information Technology – Software Life Cycle Processes – Reuse Processes
(IEEE Std 1517-1999) [2] provided me with a list of types of reuse support
tools. Some of the tool categories have been (and may continue to be)
manual activities, but I wanted to include them all, to show the reader
the possibilities. As the information provided in the standard was already
condensed, I chose to give an account of the entire list. (See section G.4 in
appendix G for the full list.)

The “Software Reuse Executive Primer”, developed by The Software Reuse
Initiative of the Program Management Office of the United States Depart-
ment of Defense [18] provided a list of technologies which was sorted in
descending order of ability to easily incorporate reuse principles. (See sec-
tion G.4 in appendix G for the full list.) I included this list in the tools
section as well, because I thought it would be useful for developers to see
how “reuse friendly” the technologies they are or will be using are.

To start the tools section a bit more “down to earth”, I decided to cite Kre-
mer [17]: “Design for reuse may be augmented by creating an environment
that supports component reuse”. I also included a list of elements which
may be included in such an environment: A component database which is
capable of storing software components, a repository management system
which allows a client application to retrieve components from the reposi-
tory, and computer aided software engineering (CASE) tools which support
integration of reused components into a new design.

CHAPTER 5. MAKING THE GUIDELINES 43

5.6 Interviews – Feedback 2

The second round of interviews were performed at three companies in Trond-
heim. As with the first round of feedback interviews, I sent the interviewees
an e-mail containing the guidelines (but this time it was the in-depth second
version, see appendix G) which they would read before the meetings and a
list of questions which I would like them to think about before the meeting.
This e-mail was sent a few days before the meeting, to give the interviewees
some time to digest the information without leaving so much time between
the e-mail and the interview that the information would be forgotten in
between. The e-mail text is included in appendix E.

The interviews were performed in the same manner as the first round of
interviews: The meetings took place at the interviewees’ workplaces and I
recorded the interviews with an MP3 player while taking notes on a printed
copy of the guidelines. I started each interview by asking if it was OK that
I recorded the interview, and none of the interviewees had any objections.
Again, I tried to keep the situation informal and relaxed, allowing the inter-
viewees to talk freely about what they wanted. I did not have to ask most
of the questions I had sent the interviewees in advance, as the interviewees
answered these questions while talking freely. The remaining questions were
asked when there was a pause in conversation or at the end of the interview.
The information from the second round of interviews is included in appendix
H: Information about the interviewees, their companies, and the interviews,
a summary of my notes written during the interviews, additional key points
from the recordings, and the interviewees’ answers to the e-mail questions.
The following list contains a summary of those answers:

1. The interviewees stated that the overview diagrams and the activity
descriptions were easily understandable.

2. None of the interviewees felt that there were other activities which
should be included in the guidelines. One interviewee felt that the
first activity, classifying the organization, was superfluous for small
organizations.

3. All the interviewees regarded the activity of formulating a reuse policy
as the most important one.

4. All the interviewees felt that the guidelines could be useful. Two inter-
viewees felt that the guidelines in the present form were too theoretical,
and that examples would be necessary for them to use the guidelines.
The last interviewee felt that the guidelines were fully usable in their
current form, but that examples would enhance them.

The results from the second round of feedback interviews which I considered

CHAPTER 5. MAKING THE GUIDELINES 44

were the most important for further work with the guidelines are included
in the following list.

1. Examples are essential to make the leap from the theoretical descrip-
tions of the guidelines to making your own plan.

2. Make a list of definitions for words and terms used in the guidelines.

3. Specify scope and limitations of the guidelines, such as how many
developers constitute a “small” software development department.

4. The explanation of the classification activity is not clear enough. (Why
does it have to be performed before all the others?)

5. The tools section and the information on component classification is
for people who are “particularly interested”, and should be included
as appendixes.

6. The tools section is not easily readable and understandable; the lists
of types of tools and technologies do not provide useful information in
their current form.

7. It would be useful to have a list of references sorted by category (such
as “planning measurement” and “formulating goals”).

5.7 Writing – Third Edition

The third phase of writing was the last one. During this phase, I worked
with some of the issues which came up during the last round of feedback
interviews, as well as making some corrections and changes to wordings. As
I did not have much time left to revise the guidelines, some of the issues
from the feedback interviews are left as possible further work (see chapter
8).

The following list is a summary of the changes I made to the guidelines:

• Added an appendix for definitions (see appendix A)

• Added a section describing scope and limitations to the introduction
(section 6.1.1)

• Removed the paragraph describing the overview diagram in figure 6.3

• Changed the layout of the introductory section of each activity de-
scription; presenting the information about goal, inputs, and output
in a list

CHAPTER 5. MAKING THE GUIDELINES 45

• Added information about the classification activity (section 6.3.1); a
more detailed description of what the activity involves and why, and
an explanation of why it is the first activity

• Moved the information about faceted classification from the policy
activity description (section 6.3.3) to the appendix section (appendix
D), and changed the layout a bit to make the text easier to read by
adding space

• Added a note on code standard and documentation standard as well
as an example of a set of documentation rules to the “Where” section
in the description of the activity Formulating a reuse policy (section
6.3.3)

• Added a reminder that measurement should have a purpose, as well
as two more literature references to the section on considering reuse
measurement (section 6.3.4)

• Moved the section Tools for Reuse from the guideline chapter to the ap-
pendix section (appendix C), changed the layout to improve readabil-
ity, and removed the list of technologies which were sorted by “reuse
friendliness”

The third edition, which is the current version, is included in the next chap-
ter (chapter 6: Guidelines).

Chapter 6

Guidelines

This chapter contains the final version of the guidelines for making a plan
for code reuse in small software development departments. This is mainly
a guide for making a reuse plan for the first time, but each activity can,
and probably should, be revisited and the documentation updated as expe-
riences with code reuse are gained. These guidelines will go through several
revisions, based on the feedback from developers at Norwegian companies
with small software development departments.

6.1 Introduction

This set of guidelines is meant to help people in small software development
departments who wish to make a plan for code reuse. There seems to be a
relationship between the size of the department and its available resources:
The smaller the department, the less resources are available to develop and
implement a plan for reuse. Consequently, the process of following these
guidelines is meant to be simple and inexpensive, both when it comes to
time, and money.

6.1.1 Scope and Limitations

These guidelines are composed primarily with small software development
departments in mind (less than ten developers). Most of the activities pre-
sented in these guidelines would probably be similar for larger departments,
but the process would most likely be more complicated, and involve issues
not covered in this report.

The guidelines discuss issues of code reuse (see definition in appendix A)

46

CHAPTER 6. GUIDELINES 47

in general, but they do not contain information specific to reuse of third
party code. Reusing third party code can be a great way to save time and
effort, but it also introduces numerous challenges and problems which are
not encountered when reusing one’s own code. Some examples of things to
watch out for are: What kind of license the code is published under, what
kind of support is available, and whether there is a regular cycle for releases
of patches and new versions of the code. Information on using third party
software can for example be found in the following resources:

• Basili and Boehm [30] present ten hypothesis regarding the use of com-
mercial off the shelf (COTS) software. For each hypothesis, sources
are given and implications are explained.

• Wang and Wang [31] discuss the adoption of open source software
(OSS). They present a list of requirements (such as reliability, avail-
ability of support, and licensing) to be considered when reusing open
source software. They also include information on the most common
licenses, and a framework for analyzing OSS.

6.2 Overview

The main activities needed to make a plan for reuse are presented in fig-
ure 6.1. The activities should be performed in sequence, as they are pre-
sented.

Each activity produces an output which is needed as input to other planning
activities. Excluded from this is the output of the last activity, Compilation.
This output is the final output; the reuse plan. A separate overview of the
outputs is given in figure 6.2. The objects in this figure are numbered
according to their corresponding activities (figure 6.1). As the figure shows,
output 1, 2, 3, and 4 constitute parts of output 5. A complete overview of
the process of making a plan for reuse is given in figure 6.3.

The overviews of activities and inputs/outputs does not include any external
inputs or activities. This is done to keep it simple, hopefully making it easier
to understand the main concepts. The activities and their outputs are listed
below.

1. Classify the reuse organization. Gain an understanding of the or-
ganization’s reuse potential. Output: A description of the organiza-
tion.

2. Formulate reuse goals. Describe the desired effects of code reuse.
Output: A set of reuse goals.

CHAPTER 6. GUIDELINES 48

1. Classify the reuse organization

2. Formulate reuse goals

3. Formulate reuse policy

4. Consider reuse measurement

5. Compile outputs

Figure 6.1: Overview of the Activities Included in Making a Reuse Plan

5. Complete reuse plan

1. Classification

2. Reuse goals

3. Reuse policy

4. Measurement plan

Figure 6.2: Overview of the Outputs Generated by the Planning Activities

CHAPTER 6. GUIDELINES 49

5. Compile outputs 5. Complete reuse plan

4. Consider reuse measurement 4. Measurement plan

3. Formulate reuse policy 3. Reuse policy

2. Formulate reuse goals 2. Reuse goals

1. Classify the reuse organization 1. Classification

Figure 6.3: Overview of the Process of Making a Reuse Plan

CHAPTER 6. GUIDELINES 50

3. Formulate reuse policy. Make a set of rules governing your code
reuse. This is the main activity. Output: A reuse policy.

4. Consider reuse measurement. Decide whether reuse metrics should
be used or not, and if yes: Make a plan for reuse measurement. Out-
put: A measurement plan.

5. Compile output. Compile the outputs into the final, complete reuse
plan. Output: The complete reuse plan.

Note that the third activity, Formulate reuse policy, is the main activity and
as such requires more time and effort than the others. Each activity and its
output will be described in the following section.

6.3 Description of Activities

In this section, the activities needed to make a reuse plan are described, one
at a time. Each description starts by stating the goal of the activity. Then
a list of the inputs to the activity is given, followed by a short description of
the output. Then the activity itself is described, and references to further
information on the subjects at hand are given. For clarity, the descriptions
are kept as short as possible, leaving the reader to further investigate the
given references as needed in order to gain a deeper understanding and make
informed decisions.

6.3.1 Classify the Reuse Organization

Goal: Gain an understanding of the organization’s reuse potential.

Input: This activity is the first step in making a plan for code reuse. As
such, it has no input.

Output: A description of the organization/company of which the software
development department is a part.

This activity is relatively simple, and should take little time to complete.
Classification information about the organization is written down and exam-
ined in order to better understand the reuse potential of the existing organi-
zation. As this understanding is helpful throughout all the other activities
in the process of making a plan for reuse, classifying the reuse organization
is the first activity. There are many ways to describe and classify the orga-
nization, but not all characteristics are useful when we are trying to assess
the reuse potential of an organization. A short list of characteristics consid-
ered by existing literature to be useful in assessing the reuse potential of an

CHAPTER 6. GUIDELINES 51

organization is given below. For a closer description and an explanation of
the selection of characteristics, see section 5.5.1.

Type of software production There are two main categories; Product
family and Isolated. Product family is when the company develops a
software product that evolves over time, and/or is more or less adapted
for each customer. Isolated is when the company has projects which
have little or nothing in common. Product family indicates a larger
reuse potential than Isolated.

Size of organization/software staff Smaller is better when it comes to
the ease of achieving top management commitment, as well as the ease
of communication of information and the ease of building a consensus
for the reuse program.

Software process maturity is the extent to which a process is clearly
defined, managed, measured, controlled, and effective, and should be
as high as possible, since a software development department with high
process maturity will be better equipped to generate a plan for reuse
and, equally important, implement the plan.

Domains As well-defined and narrow as possible, because well-defined and
narrow domains facilitate reuse.

When you have classified your organization according to these characteris-
tics, you will have a better understanding of the organization’s reuse po-
tential and you will hopefully be able to formulate realistic and reasonable
reuse goals in the next activity.

6.3.2 Formulate Reuse Goals

Goal: Clarify your expectations by formulating a set of reuse goals, stating
the desired effects of reuse, i.e. what you wish to accomplish by reusing
code.

Input: The classification from activity 1.

Output: A set of reuse goals. These reuse goals are used as input to several
of the ensuing activities.

Before a detailed plan for code reuse is made, it is important to thoroughly
consider what you wish to gain by reusing code. Formulating a set of goals
raises the general awareness of the reuse process, and hopefully contributes
to achieving a “reuse mindset”. Having a set of goals to reach for and getting
feedback as to whether the goals have been reached also makes it easier to
do one’s best and to improve the software reuse process. Nazareth et al. [13]
state that “Reuse programs are likely to be adopted more readily, and with

CHAPTER 6. GUIDELINES 52

greater conviction, if a clearer understanding of the outcomes of the reuse
program were available”.

While determining the goals of code reuse, consider the information from the
classification activity (section 6.3.1). This will give you help in formulating
goals which are both reasonable and realistic.

As a starting point for formulating your own goals, you can for example
consider some of the positive effects of software reuse:

Increased efficiency Reductions in development cost and time, increased
programmer productivity

Better software Improved quality, stability, and maintainability of soft-
ware

Standardization Uniformity of how problems are solved, of appearance
and functionality

Simplified testing Less debugging, reused code is often tested code

Profit Selling reusable components to other companies

None of these effects are easily measurable, but it might be useful to set
measurable goals to be able to compare your actual results with your pre-
determined goals. An example of this is the percentage of the work on a
specified development project that is accomplished through the use of exist-
ing code [10]. See also section 6.3.4 concerning measurements.

6.3.3 Formulate Reuse Policy (What, How, Where, Who)

Goal: Formulate a reuse policy, i.e. a set of rules governing your code reuse.
The set of rules answer the “what, how, where, who” questions of code
reuse.

Input: The reuse goals from activity 2.

Output: A description of the reuse policy.

These are the questions which need to be answered:

• What kind of reuse do you wish to perform?

• How should the reusable components be classified, enabling them to
be found and retrieved later?

• Where should the reusable components be stored?

• Who is responsible for what?

CHAPTER 6. GUIDELINES 53

Each of these questions will be discussed in the following sections.

But first, have a look at the reuse models in appendix B. Hauge ([32])
presents four basic models on how reuse could be organized. The choice of
model and the answers to several of the above mentioned questions influence
each other, so keep the models in mind when you answer the questions, and
keep the answers of the questions in mind when you consider the models.
Also, during the work with formulating a reuse policy, remember the goals
you expressed in the previous activity.

What

What kind of reuse do you wish to perform? In this section, two main
decision points are presented:

• Black-box vs. white-box reuse

• Horizontal vs. vertical reuse

The most important decision is whether to perform black-box or white-box
reuse. In black-box reuse, the component is reused unchanged, while in
white-box reuse, the component is modified to fit the target product [12].
Ravichandran and Rothenberger [14] describe three reuse strategies: White-
box reuse, black-box reuse with internal components, and black-box reuse
with component markets. [14] is a particularly useful article, as it compares
features and discusses advantages and disadvantages of each strategy and
also includes a reuse decision tree which “depicts the various reuse strategies
and the questions developers must answer in choosing each strategy. The
model also depicts the cost equations that help developers answer these
questions”. The following paragraph contains a brief summary of the main
points of the article, but I recommend reading the full article.

An advantage of white-box reuse is the freedom of the developers to modify
the code to better suit their current needs. This fitting of existing com-
ponents to new requirements maximize reuse opportunities, but it is also
“a key source of problems encountered during reuse”[14], partly because
modification requires a high degree of familiarity with the implementation
details. Some inhibitors of white-box reuse mentioned in the article are

• a large up-front investment which is needed to populate a repository
with reusable components,

• problems with classification and retrieval of reusable components,

• a potential lack of management support, and

• the need to change the organizational structure and processes.

CHAPTER 6. GUIDELINES 54

Black-box reuse does not allow modification of the components which are
to be reused. This avoids some of the aforementioned pitfalls, but it also
greatly reduces the reuse opportunities. Hence, the possibility of customiza-
tion through the use of predefined parameters and switches becomes impor-
tant. Obtaining reusable components from third parties is also a possibility.
This might increase the reuse rate as the developers can search through a
(potentially) larger set of components, making it more likely that they will
find components satisfying their needs.

Another decision is whether the reuse will be vertical, i.e. within a specific
domain, or horizontal, i.e. across several domains. This partially depends on
the type of software production of your company, see section 6.3.1. Isolated
software production implicates horizontal reuse, while a product family im-
plicates vertical reuse. An advantage of horizontal reuse is that “the broader
scope of horizontal solutions increases the likelihood that your developers
have relevant experience”[10]. A disadvantage is that each application will
have less reused code, there is a limit of about 20 % [10]. Vertical reuse
has a greater potential – Rhubart [10] states that the upper limits of ver-
tical reuse can reach as high as 90 %. A downside is that vertical reuse
calls for developers with domain-specific knowledge and experience, or the
developers will be faced with a significant learning curve.

How

How should the reusable components be classified, enabling them to be found
and retrieved later? Consider a large repository of reusable components.
Although the components are available, they still have to be organized in
some way, so developers can find them when they need them. Thus, the
classification of reusable components is essential. The components should
be described in unambiguous, classifiable terms.

The Institute of Electrical and Electronics Engineers (IEEE) has developed
a standard entitled IEEE Standard for Information Technology – Software
Reuse – Data Model for Reuse Library Interoperability: Basic Interoperabil-
ity Data Model (BIDM) (IEEE Std 1420.1-1995)[3]. This standard describes
“the minimal set of information about assets that reuse libraries should be
able to exchange to support interoperability”. The minimal set of infor-
mation is “the information which would enable reuse library users to make
quick, intelligent decisions about which assets in other reuse libraries will
likely meet their needs”. This set of information is, however, not only useful
for library information exchange; information enabling developers to make
quick, intelligent decisions is just as useful when it comes to the company’s
own reuse library. Hence, this standard could also be used as a basis for
your own classification scheme, internal to your company.

CHAPTER 6. GUIDELINES 55

Another source of information about classification is Kremer [17]. According
to [17] an ideal description of a software component encompasses a so-called
3C Model: Concept, content and context.

Concept: This is a description of what the software does; the intent of the
component should be conveyed. The description should include the
interface to and the semantics of the component.

Content: This is a description of how the component is realized. This
information is generally only needed by developers who wish to modify
the component.

Context: This is a description of the component’s context; “the placement
of a component within its domain of applicability”[17]. The descrip-
tion should include conceptual, operational, and implementation fea-
tures. This enables developers to find a component which meets their
requirements.

These descriptions need to be translated into a concrete specification scheme,
i.e. there has to be rules as to what kind of information should be provided
for each component. There are many such classification schemes, one of
which is Faceted classification, described in appendix D.

Ideally, “automated tools should be selected to provide the greatest capabil-
ities in location, selection, use, and control of the reusable components”[18].
(See appendix C for a description of tools for reuse.) This leads us to the
next question: “Where should the reusable components be stored?”, which
is the topic of the following section.

Where

Where should the reusable components be stored? It is generally considered
useful and necessary to store reusable components in a separate reuse repos-
itory. Fay [15] explains why a reuse repository is different from a version
control system, and why it is needed. A version control system manages
software “work-in-progress”, keeping track of changes to components during
development, while the role of a repository is somewhat different. A reuse
repository should be a “finished-goods” inventory, and serve as the channel
of distribution. This means that the repository should enable developers to
easily find the component they are looking for, quickly determine the com-
ponent’s relevance to their needs, effectively evaluate technical compliance,
and obtain a copy of the component. Fay states that there should also be
a mechanism for tracking information about the components, such as which
projects are using the components, and the system should automatically in-
form users of a component when a new version of the component is available.

CHAPTER 6. GUIDELINES 56

The system should also be able to track the savings realized through the use
of reusable components from the repository. While I recommend employing
a reuse repository, I will not make any recommendations of specific tools.
(See appendix C for a description of tools for reuse.)

There are two alternatives to using a repository. Neither are as good as us-
ing a reuse repository, but might be the only feasible solution for a software
development department with limitations on cost and time. One is to store
reusable code together with non-reusable code, i.e. no system. This easily
turns into a mess, and does not make it easier to achieve the positive ef-
fects of reuse. The other alternative is slightly better; storing reusable code
in the same kind of system as non-reusable code, but keeping the reusable
code separated from the non-reusable code (reuse library). Either way it
is important to consider the organization of the components. Decide on
a structure; you can for example establish naming and hierarchy conven-
tions specifically for reusable components. You should also decide on a code
standard and a documentation standard, to get a high degree of code and
documentation uniformity. This makes it easier to find a certain piece of
code, to understand the code, possibly change it, and use it. An example
of a set of documentation rules is Sun’s Requirements for Writing Java API
Specifications1.

Another topic which needs consideration, is how to populate the reuse reposi-
tory/library. Do you wish to populate the storage with already existing com-
ponents? This partially depends on whether you wish to perform black-box
or white-box reuse; with white-box reuse, less modification of the existing
components is necessary. With black-box reuse, all the components which
are put into the storage should be completed and not be changed by the
developer wishing to (re)use the component.

Who

Who is responsible for what? When making a plan for reuse, as in other
planning activities, it is important to establish roles and responsibilities.
In small development departments, however, the benefit and need of many
roles, especially full-time roles, are relatively small. The smaller the devel-
opment department, the less need for many reuse roles. Two important roles
are reuse program manager and library manager. A reuse program manager
is needed as a driving force in the reuse process; in making a plan for reuse,
implementing the plan, checking whether the goals are achieved, and im-
proving the reuse process. A library manager is needed to keep the reuse
storage up to date and to ensure the quality of the reusable components.

1http://java.sun.com/j2se/javadoc/writingapispecs/index.html

CHAPTER 6. GUIDELINES 57

Neither of these two roles have to be full-time, the point is that it is useful
to have one person which is responsible for the reuse process in general and
one person which is responsible for maintaining the reuse storage. Both of
these roles can be assigned to a single person.

6.3.4 Consider Reuse Measurement

Goal: Decide whether you wish to use measurements to supervise the (mea-
surable) results of your code reuse, and make a plan for the measure-
ments you wish to perform.

Input: There are two inputs to this activity; the reuse goals from activity
2, and the reuse policy from activity 3.

Output: A measurement plan.

Using reuse metrics are described in most existing literature as being im-
portant. Here is a small collection of opinions:

Tomer et al. [12] (citing Poulin [25]) “it is widely accepted that the orga-
nizational challenges of software reuse outweigh the technical ones. As
a result, metrics are needed in order to “make business decisions pos-
sible by quantifying and justifying the investment necessary to make
reuse happen”[25]”

Nazareth and Rothenberger [13] “Reuse programs are likely to be adop-
ted more readily, and with greater conviction, if a clearer understand-
ing of the outcomes of the reuse program are available”

Boehm [11] includes in his list of eight critical reuse success factors the
following point: “Use metrics-based reuse operations management”.
He goes on to explain that this is important for “tracking progress with
respect to expectations and making appropriate adjustments where
necessary”.

Many measurement tasks can, and should, be performed by tools. (For a
short discussion of tools for software reuse, see appendix C.) It is, however,
important to remember not to go ahead and measure anything and every-
thing; consider what you wish to measure and why – what will you do with
the results? There should be a purpose to each measurement you plan to
perform. When you decide what to measure and why, keep your reuse goals
and your reuse policy in mind; do you reach your goals, and do you follow
your policy?

The subject of measuring reuse efforts is too complex to be covered in these
guidelines, but information on software reuse metrics abound. If you decide

CHAPTER 6. GUIDELINES 58

to measure your reuse efforts, information on how to do this can be found
for example in the following resources:

• Poulin: Metrics for Object-Oriented Reuse [26]

• Poulin: Measuring Software Reuse: Principles, Practices, and Eco-
nomic Models [25]

• Frakes and Terry: Software Reuse: Metrics and Models [27]

• Devanbu et al.: Analytical and Empirical Evaluation of Software Reuse
Metrics [28]

• Pfleeger: Measuring Reuse: A Cautionary Tale [29]

• Van Solingen: The Goal/Question/Metric Approach [33]

• Park et al.: Goal-Driven Software Measurement – A Guidebook [34]

6.3.5 Compile Outputs

Goal: Gather the information from the other activities and compile them
into the final, complete reuse plan.

Input: This is the final step in creating the complete reuse plan, and the
inputs to this activity are the outputs of all the other activities: The
classification from activity 1, the reuse goals from activity 2, the reuse
policy from activity 3, and the measurement plan from activity 4.

Output: The complete reuse plan.

Gather the documents created during the four previous activities, and com-
pile them into one document. This document is the complete reuse plan.
The first section contains a description of your organization. The second sec-
tion contains a description of the goals you wish to accomplish by reusing
code. The third section is probably the longest one, containing the reuse
policy. If you have decided to measure you reuse efforts, there will be a
fourth section containing a measurement plan. Give some thought to the
way you store the finished reuse plan; make sure it is stored in a way which
enables all the developers to access it, and which makes revisions possible.

Chapter 7

Discussion and Conclusion

In this chapter, I present a discussion of my work and a conclusion on the
usability of the guidelines.

7.1 Discussion

The main goal of this work was to produce a set of guidelines to help software
developers in small software development departments to reuse code in a
more proper way. I feel that I have come a long way in reaching this goal.
However, there is still work to be done before the guidelines are complete.
See the following chapter for a description of further work.

The main goal consisted of several sub-goals. In the following list, I will
describe each goal and whether I feel I have reached it.

• Get an overview of important issues with regard to code reuse: I have
reached this goal. My previous work on the project[1], the literature
study, and the feedback interviews have provided me with a wealth of
information.

• Summarize this information and present it in a sensible and easily
understandable way: I have been able to present the information in
a sensible and easily understandable way, although the information
could have been made more accessible by dividing it into a theory
section and a “how to” section, as well as adding a section of examples.

• Get feedback and information from the target group (developers in
small software development departments) with regards to:

– Superfluous or missing information in the guidelines

– Comprehensibility of the guidelines

59

CHAPTER 7. DISCUSSION AND CONCLUSION 60

– And ultimately: How useful the guidelines are

I have reached this goal. The information in the guidelines is consid-
ered to be OK (some interviewees wanted more, some wanted less).
The guidelines are considered to be comprehensible. The guidelines
are considered to be usable, although an example section is strongly
recommended.

• Possibly publish the guidelines in some way: During the planning
phase, I discovered that I would not be able to reach this goal, and so
I have not tried to reach it.

7.2 Conclusion

The guidelines in their present form are considered easily understandable
and useful by the developers I interviewed, but one or several examples of
how the process could be performed is essential to help the developers make
the leap from the theoretical descriptions of the guidelines to making their
own plan. This means that further work on the guidelines is needed before
the guidelines will be able to guide the reader through the process of making
a plan for reuse. (For a list of further work, see the following chapter.)

Chapter 8

Further Work

During the work with this thesis, several ideas for further work have ap-
peared. The following list of ideas emerged from the feedback interviews.
The ideas are either wishes expressed by the interviewees or improvements
I suggested and the interviewees thought would be useful.

• Include an example (“toy store”) as the last section of the guidelines.
This was (in some form) a wish from all the interviewees, since it
would help the reader to start the thought process for making their
own plan. As people read the example, they will probably take a stand
as to whether the descriptions fit themselves, and whether they would
do the same as the company/companies in the example.

• Add more in-depth information regarding black-box and white-box
reuse, as this was considered by the interviewees to be an interesting
subject.

• Add more information regarding reuse measurement, or possibly just
an example of how measurement could be done.

• Include a list of references sorted by categories which correspond to
the activities listed in the guidelines. This would make it easier to find
information on each subject.

I originally wanted to publish the guidelines in some way, to make them
available to the target group. I did not have the time to do this during the
time assigned to working with the thesis, so publishing the guidelines is left
as a possibility for further work.

61

Appendix A

Definitions

This appendix contains definitions of some of the terms used in this report.

Asset: An item of interest, stored in a reuse library (e.g. source code).

Capability Maturity Model: The Capability Maturity Model (CMM)
describes the principles and practices underlying software process ma-
turity. Using CMM, software organizations can improve the maturity
of their software processes, evolving from ad hoc, chaotic processes to
mature, disciplined software processes.

Classification: The manner in which the assets are organized – making it
easier to search for and extract assets from a reuse library.

Code reuse: The use of code (source code, binary code, components, or
modules) in the solution of different problems. A wide definition which
describes the essence of code reuse is: Code is reused when it 1) already
exists, and 2) is chosen over the possibility to write new code.

Component: A constituent part of a system (e.g. a module).

Domain: A problem space. A particular area of activity or interest.

Reuse: The use of an asset in the solution of different problems.

Software process maturity: The extent to which a process is clearly de-
fined, managed, measured, controlled, and effective. (See also Capa-
bility Maturity Model.)

Systematic reuse: The practice of reusing according to a well-defined, re-
peatable process.

62

Appendix B

Reuse Models

Hauge ([32]) presents four basic models on how reuse could be organized,
taken from Davenport & Probst ([35]). In this appendix I will describe each
model briefly.

B.1 Model 1 — Project Oriented

Shown in figure B.1, model 1 is the most straightforward reuse model.
A shared reuse storage is used to exchange reusable components between
projects. Each project is responsible for identifying and developing compo-
nents for this reuse storage.

Reuse
storage

Projects

Figure B.1: Reuse Model 1 — Project Oriented

63

APPENDIX B. REUSE MODELS 64

B.2 Model 2 — Reuse Through a Separate Project

Model 2 (figure B.2) is similar to model 1, as the projects identify possibly
reusable components to add to a shared storage. Model 2 adds a level of
complexity: The development of the reusable components is performed by
a temporary reuse project, which then adds the components to the shared
storage. When a component is added to the reuse storage, other projects
can retrieve it from this shared storage, similarly to the previous model.

Figure B.2: Reuse Model 2 — Reuse Through Separate Project

B.3 Model 3 — Component Producer

In model 3 (figure B.3), all parts of the development of reusable components
are the responsibility of a permanent department; the component producer.
As in the two previous models, the reusable components are added to a
shared storage and thus made available to the projects.

Reuse
storage

Projects

Component
producer

Figure B.3: Reuse Model 3 — Component Producer

APPENDIX B. REUSE MODELS 65

B.4 Model 4 — Domain Producers

The most complex reuse model is model 4 (see figure B.4). This model is
used in larger organisations who develop products within several domains.
Domain specific reusable components are produced by a component devel-
opment department for one or more domains.

Reuse
storage

Projects Domains

Network

Database

Graphics

Figure B.4: Reuse Model 4 — Domain Producers

Appendix C

Tools for Reuse

While the organizational and managerial issues generally are considered the
most important when reusing software components, technical issues also
matter. Tools that provide automated support for reuse make reuse easier
to practice and help improve the quality of components. Reuse-oriented tools
extend or complement software development tools to the extent that they
handle the reuse properties of assets. This section gives a brief summary of
some types of tools for reuse.

Kremer [17] states that “Design for reuse may be augmented by creating
an environment that supports component reuse”. This may include the fol-
lowing elements: A software component database, a repository management
system which gives access to the database, a component retrieval system
which allows a client application to retrieve components from the reposi-
tory, and computer aided software engineering (CASE) tools which support
integration of reused components into a new design.

The IEEE Standard for Information Technology – Software Life Cycle Pro-
cesses – Reuse Processes (IEEE Std 1517-1999) [2] includes a list of reuse
support tools, divided into four categories. In the standard, it is pointed
out that “while some of the categories of reuse tools have been manual
activities, and may continue to be, all categories have the potential to benefit
from automation”. The tools in each of the four categories are listed in the
paragraphs below.

The first category is Analysis and design. Tools for reuse-oriented domain
analysis and design assist domain engineers to recognize similarities among
domain elements and to trial-fit elements into existing models and architec-
tures. These tools assist developers to extend and improve their inventory
of domain models and architectures. Legacy-asset salvage analysis tools an-
alyze legacy assets in order to determine structural and functional patterns

66

APPENDIX C. TOOLS FOR REUSE 67

of similarity. Tools used for applications requirements analysis cross-match
requirements to existing assets in order to minimize the deltas between what
is available and what is needed. Reuse-oriented application design tools in-
terrogate selected domain architectures in order to give developers a list of
options for instantiating the architectures’ components. The result is a for-
mal specification of the design of a software product sufficient to drive both
documentation and construction tools.

The second category is Asset constructors. Smart editors find appropriate
assets, and parse them so a developer can instantiate them to a particular
context. Generators construct assets by combining design specifications
with domain information contained within the tool. Assemblers construct
assets by combining design specifications with assets external to the tool.
Legacy-asset reconditioners package desired patterns, extracted by salvage
analysis tools, into assets.

The third category is Asset testers. Adaptability testers assist domain engi-
neers to determine and improve the ease-of-reuse of given assets. Generality
testers assist domain engineers to determine and modify the domain of ap-
plicability of given assets.

The fourth category is Reuse management. There are two areas of measur-
ing reuse cost and benefits: Reuse asset life cycle and application life cycle.
Tools used in the reuse asset life cycle determine costs to manage the asset
storage and retrieval mechanisms and to amortize assets over time and over
software products. These tools determine the relative costs and benefits of
having various assets. Tools used during the application life cycle determine
project development and maintenance time, as well as effort expended or
avoided due to reuse. Asset configuration and version management tools
keep track of how to access assets, asset ownership, servicing responsibil-
ities, and which version of an asset is used in which software products.
Tools for impact analysis of asset modification keep track of where assets
are reused and dependencies among the assets. Asset inventory analysis
tools determine the orthogonality (duplication and/or overlap) of the inven-
tory, as well as the age and status of the inventory items. Tools for asset
cataloging formally register assets into various asset storage and retrieval
mechanisms, including updating browsing and retrieval tools with appropri-
ate descriptors and search criteria. Asset search and retrieval tools browse
and access assets, possibly allowing developers to set appropriate param-
eters for both construction-time adaptation and runtime execution. Asset
certification tools support secure certification of an asset’s status in terms of
where it is reusable (i.e. its reusability) – project, department, enterprise,
industry, etc.

Appendix D

Faceted Classification

There are many ways to classify reusable components. One example, de-
scribed by Kremer [17], is faceted classification. Facets are basic descriptive
features, for example the function performed by the component, the data
manipulated by the component, the context in which the component is ap-
plied, or any other feature. The facets are identified by analyzing a domain
area. They are then prioritized by importance, and connected to the com-
ponent. Each component has a set of facets describing it. This set is called
the facet descriptor, and should according to Kremer generally not contain
more than seven or eight facets. An example is a simple scheme with the
following facet descriptor:

[function, object type, system type]

Each facet has one or more values which are generally descriptive keywords.
The facet “function” might have the following values:

function=(copy, from) or function=(copy, replace, all)

Thus, the use of multiple facet values “enables a refined sense of the primitive
function copy”[17].

For each component in the reuse repository, keywords are assigned to each
facet of the facet descriptor, e.g. the facet “function” has the keywords/-
values “copy” and “from”. When developers query the repository for pos-
sible components, they specify a list of keyword values, and the repository
is searched for matches. Automated tools can be used to incorporate a the-
saurus, which makes it possible to find matches for technical synonyms of
the given keywords. (See appendix C for an overview of tools for reuse.)

68

Appendix E

E-mail Sent to Companies

This is the e-mail I sent to the three companies located in Oslo and the
three companies located in Trondheim. The questions are the same, but
the guidelines given to the companies in Trondheim were a complete set,
while the companies in Oslo were given only the introductory part of the
guidelines. (See appendix F and G for the guidelines sent to the companies.)
The full sentence and the sentence in parenthesis followed by an asterisk
(*) was only included in the first set of e-mails, which were sent to the
interviewees who received the introductory version of the guidelines. Apart
from this one sentence, the contents of the first and second set of e-mails
were the same.

E.1 Norwegian

Hei,

n̊a begynner det å nærme seg v̊art avtalte møte, og her kommer det jeg
ønsker du skal titte p̊a før møtet (vedlagte fil guidelines only.pdf).

Dette er som du ser kun en innledning til et mer omfattende kapittel.*

Det jeg ønsker feedback fra deg p̊a, er følgende:

• Er prosess-oversikten forst̊aelig? Kommer det tydelig (om enn noe
kort beskrevet)* frem hva hver aktivitet innebærer, slik at du sitter
igjen med en oversikt over hva prosessen g̊ar ut p̊a?

• Er det en/flere aktiviteter som du synes mangler, eller er det en/flere
aktiviteter som er overflødige? (Hva, hvorfor?)

• Hvilke aktiviteter synes du virker mest interessante? Hvilke aktiviteter
tror du er nyttigst (gjerne basert p̊a hvilken nytteverdi de ville ha for

69

APPENDIX E. E-MAIL SENT TO COMPANIES 70

deg/dere)?

• Tror du de endelige retningslinjene kan være nyttige for deg/utvik-
lingsavdelingen deres? (Hvorfor/hvorfor ikke? Hvordan? For eksem-
pel: For å ha en “huskeliste” å se p̊a selv, for å lage en gjenbruksplan
for avdelingen, annet?)

P̊a forh̊and tusen takk for at du setter av litt tid til å tenke p̊a dette før
møtet v̊art!

Ser frem til å møte deg.

Med vennlig hilsen Lisa Wold Eriksen

E.2 English

Hello,

our appointed meeting draws near, and here is the material I wish you look
at before the meeting (attached file guidelines only.pdf).

This is as you can see only an introduction to a more comprehensive chap-
ter.*

I want your feedback on the following:

• Is the process overview comprehensible? Is it clear (although only
briefly described)* what each activity includes, so you are left with an
overview of what the process involves?

• Is there one or several activities missing, or is there one or several
superfluous activities? (What, why?)

• Which activities do you regard as the most interesting? Which activ-
ities do you believe are the most useful (this might be based on their
utility value to you)?

• Do you think the final set of guidelines could be useful to you/your
development department? (Why/why not? How? For example: To
have a “memo” to look at yourself, to produce a reuse plan for the
department, other?)

Thank you in advance for setting aside some time to think this through
before our meeting!

Looking forwards to meeting you.

Kind regards, Lisa Wold Eriksen

Appendix F

Guidelines (First Version)

This chapter contains the latest version of the guidelines for code reuse in
small software development departments. These guidelines will go through
several revisions, based on the feedback from developers at Norwegian com-
panies with very small software development departments.

F.1 Introduction

This set of guidelines is meant to be a help for people in small software
development departments who wish to make a plan for code reuse. There
seems to be a relationship between the size of the department and its avail-
able resources: The smaller the department, the less resources are available
to develop and implement a plan for reuse. Consequently, the process of
following these guidelines is meant to be simple and inexpensive, both when
it comes to time, and money.

F.2 Overview

The main activities needed to make a plan for reuse are presented in fig-
ure F.1. Each activity produces an output which is needed as input to other
planning activities. Excluded from this is the output of the last activity,
Compilation. This output is the final output; the reuse plan. The overview
of activities and inputs/outputs does not include any external inputs or ac-
tivities. This is done to keep it simple, hopefully making it easier to get
a grasp of the main concepts. The activities and their outputs are listed
below.

71

APPENDIX F. GUIDELINES (FIRST VERSION) 72

1. Classify the reuse organization

Classification

2. Formulate reuse goals

Reuse goals

3. Formulate reuse policy

Reuse policy

4. Consider reuse measurement

Measurement plan

5. Compile outputs

Complete reuse plan

Figure F.1: Overview of the Process of Making a Reuse Plan

APPENDIX F. GUIDELINES (FIRST VERSION) 73

1. Classify the reuse organization. Gain an understanding of the or-
ganization’s reuse potential. Output: A description of the organiza-
tion.

2. Formulate reuse goals. Describe the desired effects of code reuse.
Output: A set of reuse goals.

3. Formulate reuse policy. Make a set of “rules” governing your code
reuse. Output: A reuse policy.

4. Consider reuse measurement. Decide whether reuse metrics should
be used or not, and if yes: Make a plan for reuse measurement. Out-
put: A measurement plan.

5. Compile output. Compile the other outputs into the final, complete
reuse plan. Output: The complete reuse plan.

Each of these activities and its outputs will be described in the following
section. Note that activity 2. Formulate reuse goals does not necessarily
have to be fully completed before activity 3. Formulate reuse policy begins,
as activity 3 might influence the results of activity 2.

Appendix G

Guidelines (Second Version)

This chapter contains the latest version of the guidelines for making a plan
for code reuse in small software development departments. This is mainly
a guide for the first-time making of a reuse plan, but each activity can, and
probably should, be revisited and the documentation updated as experi-
ences with code reuse are gained. These guidelines will go through several
revisions, based on the feedback from developers at Norwegian companies
with very small software development departments.

G.1 Introduction

This set of guidelines is meant to be a help for people in small software
development departments who wish to make a plan for code reuse. There
seems to be a relationship between the size of the department and its avail-
able resources: The smaller the department, the less resources are available
to develop and implement a plan for reuse. Consequently, the process of
following these guidelines is meant to be simple and inexpensive, both when
it comes to time, and money.

G.2 Overview

The main activities needed to make a plan for reuse are presented in fig-
ure G.1. The activities should be performed in sequence, as they are pre-
sented.

Each activity produces an output which is needed as input to other planning
activities. Excluded from this is the output of the last activity, Compilation.
This output is the final output; the reuse plan. A separate overview of

74

APPENDIX G. GUIDELINES (SECOND VERSION) 75

1. Classify the reuse organization

2. Formulate reuse goals

3. Formulate reuse policy

4. Consider reuse measurement

5. Compile outputs

Figure G.1: Overview of the Activities Included in Making a Reuse Plan

the outputs is given in figure G.2. The objects in this figure are numbered
according to their corresponding activities (figure G.1). As the figure shows,
output 1, 2, 3, and 4 constitute parts of output 5.

A complete overview of the process of making a plan for reuse is given in
figure G.3. There are solid lines without arrows between the activities and
their resulting outputs. From each activity there is a solid, bold line with an
arrow pointing to the following activity. From each output there are dotted
lines with arrows pointing to the activities in which the output is needed.
Output 2. Reuse goals is for example needed both in activity 3. Formulate
reuse policy and activity 4. Consider reuse measurement.

The overviews of activities and inputs/outputs does not include any external
inputs or activities. This is done to keep it simple, hopefully making it easier
to get a grasp of the main concepts. The activities and their outputs are
listed below.

1. Classify the reuse organization. Gain an understanding of the or-
ganization’s reuse potential. Output: A description of the organiza-
tion.

2. Formulate reuse goals. Describe the desired effects of code reuse.
Output: A set of reuse goals.

APPENDIX G. GUIDELINES (SECOND VERSION) 76

5. Complete reuse plan

1. Classification

2. Reuse goals

3. Reuse policy

4. Measurement plan

Figure G.2: Overview of the Outputs Generated by the Planning Activities

3. Formulate reuse policy. Make a set of “rules” governing your code
reuse. Output: A reuse policy.

4. Consider reuse measurement. Decide whether reuse metrics should
be used or not, and if yes: Make a plan for reuse measurement. Out-
put: A measurement plan.

5. Compile output. Compile the other outputs into the final, complete
reuse plan. Output: The complete reuse plan.

Each of these activities and its outputs will be described in the following
section.

G.3 Description of Activities

In this section, the activities needed to make a reuse plan is described, one
at a time. Each description starts by stating the goal of the activity. Then
a list of the inputs to the activity is given, followed by a short description of
the output. Then the activity itself is described, and references to further
information on the subjects at hand are given. For clarity, the descriptions
are kept as short as possible, leaving the reader to further investigate the
given references as needed in order to gain a deeper understanding and make
informed decisions.

APPENDIX G. GUIDELINES (SECOND VERSION) 77

5. Compile outputs 5. Complete reuse plan

4. Consider reuse measurement 4. Measurement plan

3. Formulate reuse policy 3. Reuse policy

2. Formulate reuse goals 2. Reuse goals

1. Classify the reuse organization 1. Classification

Figure G.3: Overview of the Process of Making a Reuse Plan

APPENDIX G. GUIDELINES (SECOND VERSION) 78

G.3.1 Classify the Reuse Organization

The goal of this activity is to gain an understanding of the organization’s
reuse potential. This activity is the first step in making a plan for code
reuse. As such, it has no input. The output of this activity is a description
of the organization/company of which the software development department
is a part.

There are many ways to describe and classify the organization, but not all
characteristics are useful when we are trying to assess the reuse potential of
an organization. Below, a short list of characteristics considered by existing
literature to be useful in assessing the reuse potential of an organization
is given. For a closer description and an explanation of the selection of
characteristics, see section 5.3

Type of software production There are two main categories; Product
family and Isolated. Product family is when the company develops a
software product that evolves over time, and/or is more or less adapted
for each customer. Isolated is when the company has projects which
have little or nothing in common. In this case, Product family is the
better alternative.

Size of organization/software staff Smaller is better when it comes to
the ease of achieving top management commitment, as well as the ease
of communication of information and the ease of building a consensus
for the reuse program.

Software process maturity As high as possible, since a software develop-
ment department with high process maturity might be better equipped
to generate a plan for reuse and, equally important, implement the
plan.

Domains As well-defined and narrow as possible, because well-defined and
narrow domains facilitate reuse.

When you have classified your organization according to these characteris-
tics, you will have a better understanding of the organization’s reuse po-
tential and you will hopefully be able to formulate realistic and reasonable
reuse goals in the next activity.

G.3.2 Formulate Reuse Goals

The goal of this activity is to formulate a set of reuse goals, stating the
desired effects of reuse, i.e. what you wish to accomplish by reusing code.
This activity takes as input the classification from activity 1, and generates

APPENDIX G. GUIDELINES (SECOND VERSION) 79

a set of reuse goals as output. These reuse goals are used as input to several
of the ensuing activities.

Before a detailed plan for code reuse is made, it is important to thoroughly
consider what you wish to gain by reusing code. Formulating a set of goals
raises the general awareness of the reuse process, and hopefully contributes
to achieving a “reuse mindset”. Having a set of goals to reach for and getting
feedback as to whether the goals have been reached also makes it easier to
do one’s best and to improve the software reuse process. Nazareth et al. [13]
state that “Reuse programs are likely to be adopted more readily, and with
greater conviction, if a clearer understanding of the outcomes of the reuse
program were available”.

As a starting point for formulating your own goals, you can for example
consider some of the positive effects of software reuse:

Increased efficiency Reductions in development cost and time, increased
programmer productivity

Better software Improved quality, stability, and maintainability of soft-
ware

Standardization Uniformity of how problems are solved, of appearance
and functionality

Simplified testing Less debugging, reused code is often tested code

Profit Selling reusable components to other companies

None of these effects are easily measurable, but it should be noted that it
might be useful to set some measurable goals to be able to compare your
actual results with your predetermined goals. An example of this is the per-
centage of the work on a specified development project that is accomplished
through the use of existing code [10]. See also section G.3.4 concerning
measurements.

While determining the goals of code reuse, consider the information from
the classification activity (section G.3.1). This will give you some help in
formulating goals which are both reasonable and realistic.

G.3.3 Formulate Reuse Policy (What, How, Where, Who)

The goal of this activity is to formulate a reuse policy, i.e. a set of “rules”
governing your code reuse. The set of rules answer the “what, how, where,
who” questions of code reuse. The input to this activity is the reuse goals
from activity 2. The output is a description of the reuse policy.

These are the questions which need to be answered:

APPENDIX G. GUIDELINES (SECOND VERSION) 80

• What kind of reuse do you wish to perform?

• How should the reusable components be classified, enabling them to
be found and retrieved later?

• Where should the reusable components be stored?

• Who is responsible for what?

The following sections will discuss each of these questions in turn.

What

What kind of reuse do you wish to perform? In this section, two main
decision points are presented:

• Black-box vs. white-box reuse

• Horizontal vs. vertical reuse

The most important decision is whether to perform black-box or white-
box reuse. In black-box reuse, the component is reused unchanged, and
in white-box reuse, the component is modified to fit the target product
[12]. Ravichandran and Rothenberger [14] describe three reuse strategies:
White-box reuse, black-box reuse with internal components, and black-box
reuse with component markets. [14] is a very useful article, as it compares
features and discusses advantages and disadvantages of each strategy and
also includes a reuse decision tree which “depicts the various reuse strategies
and the questions developers must answer in choosing each strategy. The
model also depicts the cost equations that help developers answer these
questions”. The following paragraph contains a brief summary of the main
points of the article, but I recommend reading the full article.

An advantage of white-box reuse is the freedom of the developers to modify
the code to better suit their current needs. This fitting of existing com-
ponents to new requirements maximize reuse opportunities, but it is also
“a key source of problems encountered during reuse”[14], partly because
modification requires a high degree of familiarity with the implementation
details. Some inhibitors of white-box reuse mentioned in the article are

• a large up-front investment which is needed to populate a repository
with reusable components,

• problems with classification and retrieval of reusable components,

• a potential lack of management support, and

• the need to change the organizational structure and processes.

APPENDIX G. GUIDELINES (SECOND VERSION) 81

Black-box reuse does not allow modification of the components which are
to be reused. This avoids some of the aforementioned pitfalls, but it also
greatly reduces the reuse opportunities. Hence, the possibility of customiza-
tion through the use of predefined parameters and switches becomes impor-
tant. Obtaining reusable components from third parties is also a possibility.
This might increase the reuse rate as the developers can search through a
(potentially) larger set of components, making it more likely that they will
find components satisfying their needs.

Another decision is whether the reuse will be vertical, i.e. within a specific
domain, or horizontal, i.e. across several domains. This partially depends on
the type of software production of your company, see section G.3.1. Isolated
software production implicates horizontal reuse, while a product family im-
plicates vertical reuse. An advantage of horizontal reuse is that “the broader
scope of horizontal solutions increases the likelihood that your developers
have relevant experience”[10]. A disadvantage is that each application will
have less reused code, there is a limit of about 20 % [10]. Vertical reuse
has a greater potential – Rhubart [10] states that the upper limits of ver-
tical reuse can reach as high as 90 %. A downside is that vertical reuse
calls for developers with domain-specific knowledge and experience, or the
developers will be faced with a significant learning curve.

How

How should the reusable components be classified, enabling them to be found
and retrieved later? Consider a large repository of reusable components.
Although the components are available, they still have to be organized in
some way, so developers can find them when they need to. Thus, the clas-
sification of reusable components is essential. The components should be
described in unambiguous, classifiable terms.

The Institute of Electrical and Electronics Engineers (IEEE) has developed
a standard entitled IEEE Standard for Information Technology – Software
Reuse – Data Model for Reuse Library Interoperability: Basic Interoperabil-
ity Data Model (BIDM) (IEEE Std 1420.1-1995)[3]. This standard describes
“the minimal set of information about assets that reuse libraries should be
able to exchange to support interoperability”. The minimal set of infor-
mation is “the information which would enable reuse library users to make
quick, intelligent decisions about which assets in other reuse libraries will
likely meet their needs”. This set of information is, however, not only useful
for library information exchange; information enabling developers to make
quick, intelligent decisions is just as useful when it comes to the company’s
own reuse library. Hence, this standard could also be used as a basis for
your own classification scheme, internal to your company.

APPENDIX G. GUIDELINES (SECOND VERSION) 82

Another source of information about classification is Kremer [17]. According
to [17] an ideal description of a software component encompasses a so-called
3C Model: Concept, content and context.

Concept: This is a description of what the software does; the intent of the
component should be conveyed. The description should include the
interface to and the semantics of the component.

Content: This is a description of how the component is realized. This
information is generally only needed by developers who wish to modify
the component.

Context: This is a description of the component’s context; “the placement
of a component within its domain of applicability”[17]. The descrip-
tion should include conceptual, operational, and implementation fea-
tures. This enables developers to find a component which meets their
requirements.

These descriptions need to be translated into a concrete specification scheme.
One possible such scheme is Faceted classification. Facets are basic descrip-
tive features, for example the function performed by the component, the
data manipulated by the component, the context in which the component is
applied, or any other feature. The facets are identified by analyzing a domain
area. They are then prioritized by importance, and connected to the com-
ponent. Each component has a set of facets describing it. This set is called
the facet descriptor, and should according to Kremer generally not contain
more than seven or eight facets. An example is a simple scheme with the
following facet descriptor: [function, object type, system type]. Each facet
has one or more values which are generally descriptive keywords. The facet
function might have the following values: function=(copy, from) or func-
tion=(copy, replace, all). Thus, the use of multiple facet values “enables a
refined sense of the primitive function copy”[17].

For each component in the reuse repository, keywords are assigned to the
set of facets. When developers query the repository for possible compo-
nents, they specify a list of keyword values, and the repository is searched
for matches. Automated tools can be used to incorporate a thesaurus, which
makes it possible to find matches for technical synonyms of the given key-
words.

Ideally, “automated tools should be selected to provide the greatest capabil-
ities in location, selection, use, and control of the reusable components”[18].
This leads us to the next question: “Where should the reusable components
be stored?”, which is the topic of the following section.

APPENDIX G. GUIDELINES (SECOND VERSION) 83

Where

Where should the reusable components be stored? It is generally considered
useful and necessary to store reusable components in a separate reuse repos-
itory. Fay [15] explains why a reuse repository is different from a version
control system, and why it is needed. A version control system manages
software “work-in-progress”, keeping track of changes to components during
development, while the role of a repository is somewhat different. A reuse
repository should be a “finished-goods” inventory, and serve as the channel
of distribution. This means that the repository should enable developers to
easily find the component they are looking for, quickly determine the com-
ponent’s relevance to their needs, effectively evaluate technical compliance,
and obtain a copy of the component. Fay states that there should also be
a mechanism for tracking information about the components, such as which
projects are using the components, and the system should automatically in-
form users of a component when a new version of the component is available.
The system should also be able to track the savings realized through the use
of reusable components from the repository. While I recommend employing
a reuse repository, I will not make any recommendations of specific tools.

There are two alternatives other than using a repository. Neither are as
good as using a reuse repository, but might be the only feasible solution for a
software development department with limitations on cost and time. One is
to store reusable code together with non-reusable code, i.e. no system. This
easily turns into a mess, and does not make it easier to achieve the positive
effects of reuse. The other alternative is slightly better; storing reusable code
in the same kind of system as non-reusable code, but keeping the reusable
code separated from the non-reusable code (reuse library). Either way it
is important to consider the organization of the components. Decide on a
structure; you can for example establish naming and hierarchy conventions
specifically for reusable components.

Another topic which needs consideration, is how to populate the reuse reposi-
tory/library. Do you wish to populate the storage with already existing com-
ponents? This partially depends on whether you wish to perform black-box
or white-box reuse; with white-box reuse, less modification of the existing
components is necessary. With black-box reuse, all the components which
are put into the storage should be completed and in no need of any change
now or later.

Who

Who is responsible for what? When making a plan for reuse, as in other
planning activities, it is important to establish roles and responsibilities.

APPENDIX G. GUIDELINES (SECOND VERSION) 84

But in small development departments, the benefit and need of many roles,
especially full-time roles, are relatively small. The smaller the development
department, the less need for many reuse roles. Two important roles are
reuse program manager and library manager. A reuse program manager is
needed as a driving force in the reuse process; in making a plan for reuse,
implementing the plan, checking whether the goals are achieved, and im-
proving the reuse process. A library manager is needed to keep the reuse
storage up to date and to ensure the quality of the reusable components.
Neither of these two roles have to be full-time, the point is that it is useful
to have one person which is responsible for the reuse process in general and
one person which is responsible for maintaining the reuse storage.

G.3.4 Consider Reuse Measurement

The goal of this activity is to decide whether you wish to use measurements
to supervise the (measurable) results of your code reuse, and make a plan
for the measurements you wish to perform. There are two inputs to this
activity; the reuse goals from activity 2, and the reuse policy from activity
3. The output of this activity is a measurement plan.

Using reuse metrics are described in most existing literature as being im-
portant. Here is a small collection of opinions:

Tomer et al. [12] (citing Poulin [25]) “it is widely accepted that the orga-
nizational challenges of software reuse outweigh the technical ones. As
a result, metrics are needed in order to “make business decisions pos-
sible by quantifying and justifying the investment necessary to make
reuse happen”[25]”

Nazareth and Rothenberger [13] “Reuse programs are likely to be adop-
ted more readily, and with greater conviction, if a clearer understand-
ing of the outcomes of the reuse program are available”

Boehm [11] includes in his list of eight critical reuse success factors the
following point: “Use metrics-based reuse operations management”.
He goes on to explain that this is important for “tracking progress with
respect to expectations and making appropriate adjustments where
necessary”.

Information on software reuse metrics abound, and if you decide to measure
your reuse efforts, information on how to do this can be found for example
in the following resources:

• Poulin: Metrics for Object-Oriented Reuse [26]

APPENDIX G. GUIDELINES (SECOND VERSION) 85

• Poulin: Measuring Software Reuse: Principles, Practices, and Eco-
nomic Models [25]

• Frakes and Terry: Software Reuse: Metrics and Models [27]

• Devanbu et al.: Analytical and Empirical Evaluation of Software Reuse
Metrics [28]

• Pfleeger: Measuring Reuse: A Cautionary Tale [29]

G.3.5 Compile Outputs

The goal of this activity is to gather the information from the other activities
and compile them into the final, complete reuse plan. This is the final
step in creating the complete reuse plan, and the inputs to this activity
are the outputs of all the other activities: The classification from activity
1, the reuse goals from activity 2, the reuse policy from activity 3, and
the measurement plan from activity 4. The output of this activity is the
complete reuse plan.

Gather the documents created during the four previous activities, and com-
pile them into one document. This document is the complete reuse plan.
The first section contains a description of your organization. The second sec-
tion contains a description of the goals you wish to accomplish by reusing
code. The third section is probably the longest one, containing the reuse
policy. If you have decided to measure you reuse efforts, there will be a
fourth section containing a measurement plan.

G.4 Tools for Reuse

It should be noted that while the organizational and managerial issues gen-
erally are considered the most important when reusing software components,
technical issues also matter. Tools that provide automated support for reuse
make reuse easier to practice and help improve the quality of components.
Reuse-oriented tools extend or complement software development tools to
the extent that they handle the reuse properties of assets. This section gives
a brief summary of some types of tools for reuse.

Kremer [17] states that “Design for reuse may be augmented by creating an
environment that supports component reuse”. This may include the follow-
ing elements: A component database which is capable of storing software
components, a repository management system which gives access to the
database, a component retrieval system which allows a client application
to retrieve components from the repository, and computer aided software

APPENDIX G. GUIDELINES (SECOND VERSION) 86

engineering (CASE) tools which support integration of reused components
into a new design.

The IEEE Standard for Information Technology – Software Life Cycle Pro-
cesses – Reuse Processes (IEEE Std 1517-1999) [2] includes a list of types
of reuse support tools. Some of the types of tools have been, and may
continue to be, manual activities, all of them have the potential to benefit
from automation. There are four categories of tools. The first category is
Analysis and design. There are four types of tools in this category:

Reuse-oriented domain analysis and design Assist domain engineers
to recognize similarities among domain elements and to trial-fit el-
ements into existing models and architectures. Assist developers to
extend and improve their inventory of domain models and architec-
tures.

Legacy-asset salvage analysis Analyze legacy assets in order to deter-
mine structural and functional patterns of similarity.

Applications requirements analysis Cross-match requirements to ex-
isting assets in order to minimize the deltas between what is available
and what is needed.

Reuse-oriented application design Interrogate selected domain archi-
tectures in order to present developers with a list of options for in-
stantiating the architectures’ components. The result is a formal spec-
ification of the design of a software product sufficient to drive both
documentation and construction tools.

The second category is Asset constructors:

Smart editors Find appropriate assets, and parse them so a developer can
instantiate them to a particular context.

Generators Construct assets by combining design specifications with do-
main information contained within the tool.

Assemblers Construct assets by combining design specifications with as-
sets external to the tool.

Legacy-asset reconditioners Package desired patterns, extracted by sal-
vage analysis tools, into assets.

The third category is Asset testers:

Adaptability testers Assist domain engineers to determine and improve
the ease-of-reuse of given assets.

Generality testers Assist domain engineers to determine and modify the
domain of applicability of given assets.

APPENDIX G. GUIDELINES (SECOND VERSION) 87

The fourth category is Reuse management:

Measuring reuse cost/benefits Reuse asset life cycle: Determine costs
to manage the asset storage and retrieval mechanisms and to amortize
assets over time and over software products. Determine the relative
costs and benefits of having various assets.

Measuring reuse cost/benefits Application life cycle: Determine pro-
ject development and maintenance time and effort expended/avoided
due to reuse.

Asset configuration and version management Keep track of how to
access needed assets, ownership, and servicing responsibilities, and
which version of an asset applies to which software products.

Impact analysis of asset modification Keep track of where assets are
reused, and dependencies among assets.

Asset inventory analysis Determine the orthogonality (duplication and-
/or overlap) of the inventory, and the age and status of inventory
items.

Asset cataloging Formal registration of assets into various asset storage
and retrieval mechanisms, including updating browsing and retrieval
tools with appropriate descriptors and search criteria.

Asset search and retrieval Browse and access assets, possibly allowing
developers to enter appropriate parameter settings for both construc-
tiontime adaptation and runtime execution.

Asset certification Support the secure certification of an asset’s status
in terms of its scope of reusability–project, department, enterprise,
industry, etc.

The article Software Reuse Executive Primer [18] provides this list of tech-
nologies, in descending order of ability to easily incorporate reuse principles:

• Application generators

• I-CASE tools

• Architecture development tools

• Problem-oriented languages

• Code skeletons

• Composition tools

• CASE tools

• Modeling tools

APPENDIX G. GUIDELINES (SECOND VERSION) 88

• Object-oriented knowledge base

• Libraries/repositories

• Natural languages

• Application languages

• Dataflow languages

• Object-oriented languages

• Very high-level languages

• Formal methods

• High-level languages

• Assembly languages

Appendix H

Interviews

This appendix contains information on the feedback interviews with the
software developers. The first section describes the first set of interviews
(performed in Oslo), while the second section describes the second set of
interviews (performed in Trondheim). Each interview is described with the
following information: Where the company is located, the position of the
interviewee, number of employees (developers and total), date of the inter-
view, and duration of interview. During each interview, I made notes on a
printed version of the guidelines I had sent to the interviewee. In addition,
I recorded the interview on an MP3 player. To obtain a copy of the notes
and/or recordings, please contact the author. Here I include an English
summary of the relevant notes taken and additional key points from the
recordings, as well as a list of the interviewee’s answers to the questions I
asked in the e-mail sent to the interviewee before the interview (see appendix
E).

I will refer to the e-mail questions only by number. The numbering is as
follows:

• 1: Is the process overview comprehensible? Is it clear1 what each
activity includes, so you are left with an overview of what the process
involves?

• 2: Is there one or several activities missing, or is there one or several
superfluous activities? (What, why?)

• 3: Which activities do you regard as the most interesting? Which
activities do you believe are the most useful (this might be based on
their utility value to you)?

1The following was added in the e-mail to the three first interviewees: (although only
briefly described)

89

APPENDIX H. INTERVIEWS 90

• 4: Do you think the final set of guidelines could be useful to you/your
development department? (Why/why not? How? For example: To
have a “memo” to look at yourself, to produce a reuse plan for the
department, other?)

H.1 First Round of Interviews

The first three interviews were performed in Oslo. The interviewees had
been sent an e-mail (see appendix E) with the introductory version of the
guidelines (see appendix F).

H.1.1 Interview 1

Location Oslo
Job position of interviewee Software developer

Employees (developers/total) 2/9
Date May 19. 2005

Duration of interview 40 minutes (10:00–10:40)

Notes

• The developers use Microsoft SourceSafe, MSDN and Visual Studio.

• The figure (1.1) is not very easily understood.

– It looks like activity 3 is optional! Change the figure – perhaps by
simply moving the arrow (from Reuse goals to 4. Consider reuse
measurement) a bit to the right at both ends.

– Maybe include an arrow with a dotted line from activity 3 to
activity 2 to illustrate that it is possible to go back to activity 2
during activity 3?

• Checklists and cookbook recipes would be nice, with references to more
detailed information.

Additional Key Points

• This version of the guidelines is pretty general, but the guidelines will
be useful with some more in-depth information.

APPENDIX H. INTERVIEWS 91

• Yes, it would be nice to have a list of things to consider, with refer-
ences to more information. It is important to start a thought process,
without having to start at scratch.

• On measurements: I think it is important to have automated tools
which do these things for you, as it isn’t likely anyone would perform
measurements manually. But to the extent that there are tools which
do it for you, it can be sensible to perform measurements.

Answers to Questions

• 1: Yes, in my opinion. You have clearly thought more about this
than I have. The more I read, the more sensible it seemed to be, both
the activities and their sequence. The activities are comprehensible, at
least with the list of descriptions. The diagram caused some confusion.

• 2: I can’t think of anything missing or superfluous. Initially, I felt
that the first activity might not be useful, but then, after reading
about the second and third activity, I thought that it might be useful
to go through activity one after all.

• 3: I feel the second and third activities, and especially the third, are
the most important.

• 4: I think these guidelines could be useful to our development depart-
ment, of course with more in-depth information. I think these guide-
lines would be helpful to small organizations with limited resources.

H.1.2 Interview 2

Location Oslo
Job position of interviewee Software developer

Employees (developers/total) 3/35
Date May 19. 2005

Duration of interview 60 minutes (12:00–13:00)

Notes

• A misunderstanding regarding the time aspect: The process is meant
to be the first time making of a plan for reuse, while the interviewee had
gotten the impression that the developers were supposed to go through
the process each time they needed to reuse something. Probably due to
a slip of the pen in the very first line of the guidelines (“This chapter
contains the latest version of the guidelines for code reuse in small

APPENDIX H. INTERVIEWS 92

software development departments”), although it was stated elsewhere
that “This set of guidelines is meant to be a help for people in small
software development departments who wish to make a plan for code
reuse”. Correct this!

• Each activity might be (probably should be) revisited at a later time
(but this is not covered by these guidelines).

• Change the figure (1.1), the output/document is an implicit part of
each activity; don’t include the output rectangles in the figure.

• The use of tools is interesting, include some information on this.

Additional Key Points

• A problem with reuse is that you don’t know what the other program-
mers have developed. There usually isn’t much time to go through
what the others have made, so you might do the same many times.

• Tools are important. At the present time, I use Google2 a lot to find
code I can use, but it’s not so usual to reuse our own code. There is
no overview of what we have produced, it just gets told from one to
another, and that is pretty vulnerable if someone disappears for some
reason.

• Getting an overview of what we have developed and what we can reuse
would be important to us.

• Documentation is essential, and using proper names for variables and
functions in the code is also useful to understand what the code does.

• If I were to start reusing what we’ve got now, I would primarily try to
extract all the functions, and the ones where there is doubt as to what
it should be used for would have to be documented better. The next
thing would be to make it very searchable, so you can find everything
fast. Again, tools are essential. Then, it’s the issue of having the goal
that the code you write should be reused which is important.

Answers to Questions

• 1: I thought it was a set of guidelines for reusing, not for making a
plan for reuse.

• 2: Research is important, but that might go into every activity and
not be separated as a single activity.

2www.google.com

APPENDIX H. INTERVIEWS 93

• 3: The activity of making a reuse policy is important. Also, which
tools you should use is an important issue.

• 4: Yes. This is exciting!

H.1.3 Interview 3

Location Oslo
Job position of interviewee Lead developer

Employees (developers/total) 4/9
Date May 20. 2005

Duration of interview 30 minutes (13:00–13:30)

Notes

• The figure (1.1) could be separated into two separate figures; one for
the activities and one for the outputs.

• It is important to mention that activity 3 (Formulate reuse policy) is
the most important one.

• Link the theory to practical usage, by using examples, or perhaps a
“toy store” (make up a story about a company which goes through
the process of making a plan for reuse).

• Refer to typical tools for reuse.

Additional Key Points

• It would be nice with an overview over what kind of tools exist, but
the problem is that the specific tools change all the time, and people
use different platforms. There is no point in discussing that, but you
could include references to typical tools, or at least describe what the
different types of tools can do.

• It’s more important to have a plan for reuse and a common mindset
when the department is large than when there are only 2–3 developers.
You should always consider whether you have done this before, or if
you can make the code general to enable reuse.

Answers to Questions

• 1: I thought the diagram was well arranged when I looked at it. The
arrow from 2 to 3 seems to indicate that activity three is voluntary

APPENDIX H. INTERVIEWS 94

and could be skipped. The division of the process into activities is
sensible; I see the value of each activity, and feel that they constitute
a natural course through a process for making a reuse plan.

• 2: I have no expertise, but there doesn’t appear to be anything missing
or superfluous.

• 3: The third activity is the one which should be in focus. For example
activity one seems dull, there are no immediate effects of it. But
activity two and three are exciting, because you will see the effects of
performing them, there will be concrete rules. That’s where the real
work lies.

• 4: I’m not sure, because this version is only an overview. But I defi-
nitely see the value of having the right mindset for reuse.

H.1.4 Summary

Common amongst the interviewees was the opinion that checklists and/or
“cookbook recipes” are useful. Also, there was confusion about the process
diagram. The information from each interview which I felt would have the
greatest impact on my further work was:

• Interview 1: The diagram is confusing and has to be changed.

• Interview 2: Outputs are obvious, there is no need to include the
outputs in the activity diagram.

• Interview 3: Examples, such as a “toy store”, are important to aid
understanding.

H.2 Second Round of Interviews

The second round of three interviews was performed in Trondheim. The
interviewees had been sent an e-mail (see appendix E) with an in-depth
version of the guidelines (see appendix G).

H.2.1 Interview 1

Location Trondheim
Job position of interviewee System architect

Employees (developers/total) 8(From 5 at the turn of the year)/37
Date May 24. 2005

Duration of interview 90 minutes (12:00–13:30)

APPENDIX H. INTERVIEWS 95

Notes

• The guidelines are a bit high-flying, would like them to be more con-
crete/practical.

• Make a list of definitions for words and terms used in the guidelines
(such as “code reuse” and “component”).

• It would be nice with some examples.

• The developers have started using a new tool for design/analysis; En-
terprise Architect (Sparx System).

• On measurement: Not everything which can be measured should be
measured.

• On classifying the reuse organization:

– “Domains” is at too high a level to be considered at this company.

– Other things which can affect reuse potential: Different tools,
languages and platforms in different projects.

• On formulating reuse goals: “Profit: Selling reusable components to
other companies” is quite far-fetched, that means that the reusable
component becomes a product in itself.

• Vertical and horizontal reuse depends on the viewpoint; whether it is
from a programmer’s or a designer’s point of view. Designer: Vertical
reuse. Programmer: Horizontal reuse.

• On policy, Where:

– Code standards, error handling are not mentioned.

– Slip of the pen, last line: Should be “... and not in need of change
by the one who’s going to use the component”.

• On tools:

– Often you just use what tools you already have, and possibly
adding things which are missing (i.e. tools for reuse).

– Shorten the list from the IEEE, as well as the list from Software
Reuse Executive Primer.

Additional Key Points

• These guidelines concentrate on what you should do. It would be
better if someone made something based on the guidelines, which you

APPENDIX H. INTERVIEWS 96

could use as a starting point, and then get more involved in what you
feel you need. Having the guidelines as they are is OK, but it would
be much better with a standard example of how to do it.

Answers to Questions

• 1: Yes, both the overview diagrams and the activity descriptions are
understandable.

• 2: No, I can’t see anything missing. Some parts of a few activities
might be superfluous, but the activities themselves should be included.

• 3: Activity three is the most important one, but deciding on measure-
ment is perhaps the most interesting activity.

• 4: It is nice to have a list of things you need to do, related to goals,
measurements et cetera. But the guidelines are a bit too abstract to
have a practical use. Adding examples would make it much better, as
you can decide whether you would do it the same way as the company
in the example, and then you’re actually on the way to making your
own reuse plan. Then you can do the formal things later, and go
through every activity as they are described.

H.2.2 Interview 2

Location Trondheim
Job position of interviewee Project coordinator

Employees (developers/total) 4/11
Date May 26. 2005

Duration of interview 40 minutes (09:00–09:40)

Note: This company had started using a new system for software develop-
ment, which included functionality for code reuse.

Notes

• Yes, case descriptions/”toy store” would be nice, as well as some real-
life examples where appropriate.

• It would be nice to have a bibliography sorted by category (such as
“formulating goals” and “measurement”) in a separate chapter before
the regular bibliography.

• Developers often mis-estimate the time they need to program some-
thing themselves (from the bottom up), thinking it will take less time

APPENDIX H. INTERVIEWS 97

than it actually does. This makes them discard the possibility of reuse
more easily.

• The developers at this company often use documentation in the code
to search for things they can reuse. Some rules to govern what kind
of information which is given about each component would be useful.
TODO: Check the exact wording here!

• On figure 1.1: Activity 2 (Formulate reuse goals) is about clarifying
expectations.

• On figure 1.3: The description of the figure is a bit long, not needed –
people will understand just by looking at the figure.

• On classifying the reuse organization: There isn’t much explanation
of why this activity should come first.

• On formulating reuse policy:

– What: More information on horizontal vs. vertical reuse would
be interesting.

– Who: The reuse program manager and the library manager is
often the same person.

– Who: An ownership feeling is important. In this company, dif-
ferent people have the responsibility for the different application
layers (business, logic, data). This makes them feel ownership for
development within their own layer.

• On considering reuse measurement: There is little information in the
guidelines, but this is an important issue.

• On tools: This section is too difficult to follow; change the formatting.

Additional Key Points

• On roles: We haven’t assigned anyone to be a process manager, but
there is one developer which is very involved, who sorts code and clears
up. I think you’re dependent on having a person who likes having that
kind of responsibilities.

Answers to Questions

• 1: Yes. But I feel the first activity, classification, it’s not explained
clearly why it should be performed before the others. Also, the tools
section at the end is a bit disconnected from the rest. The diagrams

APPENDIX H. INTERVIEWS 98

are easily understandable, and the description of the overview diagram
(last one) is not needed, you intuitively understand this without an
explanation.

• 2: No, I don’t think anything is missing. It’s a good overview. But I
think the issue of measurements is not discussed enough, as it can be
difficult to set into practice.

• 3: The third activity, definitely. That’s where I feel the work is. But
activity two is very essential, not only for the developers, but to clarify
to the management and customers where the resources should be used.

• 4: We’re working on making procedures for reuse, but these guidelines
are relevant; these are the things we have discussed. So using the
document as a starting point wouldn’t be a bad idea. It fits into what
we are doing.

H.2.3 Interview 3

Location Trondheim
Job position of interviewee Head of development

Employees (developers/total) 3/8
Date May 27. 2005

Duration of interview 60 minutes (12:00–13:00)

Notes

• These guidelines might be a bit “overkill”, at least for this company.

• (Re)using third party code is an interesting subject – do you mean to
include this kind of reuse in the guidelines? Amplify whether third
party reuse is included or not. It would be nice with at least some
short information with references to supplementary information.

• Define the scale – what is “small software development departments”?

• The “not invented here” syndrome is usually just a waste of time and
money, as someone else probably already has solved the same problem,
possibly in a better way than you could yourself.

• It’s important to go through the process described in the guidelines
before it’s needed.

• On classifying the reuse organization: This is too theoretical for a
small company.

APPENDIX H. INTERVIEWS 99

• On formulating reuse goals: A positive effect of reuse: More and better
quality control of own code.

• On formulating reuse policy:

– What: It would be interesting with some more information on
both black-box and white-box reuse, especially some information
on specific techniques for black-box reuse.

– What: An inhibitor of white-box reuse: Maintenance work.

– How: The information on faceted classification is for the espe-
cially interested; put it in an appendix.

– Where: It would be interesting with information on the prac-
tical aspects of repositories, such as how you make changes to
components in the repository (for example bugfixes).

– Who: It is necessary that someone has responsibility of what gets
into the library/repository.

• On considering reuse measurement: This is a bit thin, not very con-
crete. Perhaps an example would help.

• On tools: This section is also for the especially interested. Put it in
an appendix.

Additional Key Points

• The scale should be specified – what is “small development depart-
ments”?

• Including a “toy store” is a great idea. It would be nice to be able to
read how it actually is done and form you own thoughts around it.

• I think a lot of what’s written here is very good and explanatory,
but there are some things which are not explained enough; practical
information on using repositories, and black-box versus white-box.

Answers to Questions

• 1: Yes. I found the guidelines to be easily readable and understand-
able.

• 2: Well, I don’t think there are any missing activities. If I were to
change it, I would rather use fewer of the activities, because we’re such
a small organization, and I don’t really see the point in classifying the
organization and such, it gets too academical for such a small company.

APPENDIX H. INTERVIEWS 100

As a whole, I don’t think anything is missing, although I would like
to see some information on third party code.

• 3: Definitely activity three.

• 4: Today, when we are so few, I feel that parts of these guidelines are
a bit uninteresting, but the point of reuse is very interesting. That
makes activity three relevant to me. On one side, I think the idea
of making a plan is nice, but we’re OK as we are, without having to
define things on paper. But at the same time, if we for example hire a
new programmer which hasn’t got the experience we’ve got, having an
overview of reusable code and having a plan is very useful, because it
shortens the training process. And it’s even more important if someone
quits or disappears suddenly. I envision that if you actually do this
before you need it, it really pays when the size of the departments
increases.

H.2.4 Summary

As in the first round of interviews, all the interviewees regarded examples
and/or recipes as helpful in the process of understanding the guidelines. The
new diagrams were easily understood by all interviewees. The information
from each interview which I felt would have the greatest impact on my
further work was:

• Interview 1: Add a list of word definitions (define for example “com-
ponent” and “code reuse”).

• Interview 2: Add a separate chapter of references which are sorted by
category.

• Interview 3: Add some information on third party code, with refer-
ences to more information. Move the theory on tools and component
classification into separate appendixes.

Bibliography

[1] Lisa Wold Eriksen. Code reuse in object oriented software develop-
ment. Master’s thesis, Norwegian University of Science and Technology
(NTNU), 2004.

[2] Carma McClure. IEEE standard for information technology – software
life cycle processes – reuse processes, June 1999. IEEE Std 1517-1999.

[3] The RIG Technical Committee on Asset Exchange Interfaces. IEEE
standard for information technology – software reuse – data model for
reuse library interoperability: Basic interoperability data model (bidm),
December 1995. IEEE Std 1420.1-1995.

[4] The RIG Technical Committee on Asset Exchange Interfaces. Supple-
ment to IEEE standard for information technology – software reuse –
data model for reuse library interoperability: Asset certification frame-
work, December 1996. IEEE Std 1420.1a-1996.

[5] Marcus A. Rothenberger. Project-level reuse factors: Drivers for vari-
ation within software development environments. Devision Sciences,
34(1):83–106, 2003.

[6] Marcus A. Rothenberger, Kevin J. Dooley, Uday R. Kulkarni, and
Nader Nada. Strategies for software reuse: A principal component
analysis of reuse practices. IEEE Transactions on Software Engineer-
ing, 29(9):825–837, September 2003.

[7] Maurizio Morisio, Michel Ezran, and Colin Tully. Success and failure
factors in software reuse. IEEE Transactions on Software Engineering,
28(4):340–357, April 2002.

[8] Tim Menzies and Justin S. Di Stefano. More success and failure fac-
tors in software reuse. IEEE Transactions on Software Engineering,
29(5):474–477, May 2003.

[9] Maurizio Morisio, Michel Ezran, and Colin Tully. Comments on more
success and failure factors in software reuse. IEEE Transactions on
Software Engineering, 29(5):478, May 2003.

101

BIBLIOGRAPHY 102

[10] Bob Rhubart. Getting to the goal: Setting your sights on software
reuse, March 2002. Published on AWprofessional.com.

[11] Barry Boehm. Managing software productivity and reuse. Computer,
32(9):111–113, September 1999.

[12] Amir Tomer, Leah Goldin, Tsvi Kuflik, Esther Kimchi, and Stephen R.
Schach. Evaluating software reuse alternatives: A model and its ap-
plication to an industrial case study. IEEE Transactions on Software
Engineering, 30(9):601–612, September 2004.

[13] Derek L. Nazareth and Marcus A. Rothenberger. Assessing the cost-
effectiveness of software reuse: A model for planned reuse. The Journal
of Systems and Software, 73:245–255, 2004.

[14] T. Ravichandran and Marcus A. Rothenberger. Software reuse strate-
gies and component markets. Communications of the ACM, 46(8):109–
114, August 2003.

[15] Sharon Fay. Work-in-process vs. finished-goods: Why a version control
system is not a reuse repository, October 2002. Published on Flash-
line.com.

[16] Paul Harmon. A well-managed repository, August 2001. Published on
Flashline.com.

[17] Rob Kremer. Software reuse, 1999. Published on the Software Engineer-
ing Research Network at the University of Calgary, sern.ucalgary.ca.

[18] The Software Reuse Initiative of the Program Management Office of the
United States Department of Defense. Software reuse executive primer,
1996. Published on Flashline.com.

[19] Kristen Ringdal. Enhet og mangfold. Fagbokforlaget Vigmostad og
Bjørke AS, 1. edition, 2001.

[20] Camilla Fledsberg. Prosessorientert kvalitetssystem i praksis. Master’s
thesis, NTNU, June 2003.

[21] Steinar Kvale. Det kvalitative forskningsintervju. Ad Notam Gyldendal,
1997.

[22] Colin Robson. Real World Research. Blackwell Publishing, 2002.

[23] Carolyn B. Seaman. Qualitative methods in empirical studies of
software engineering. IEEE Transactions on Software Engineering,
25(4):557–572, July/August 1999.

[24] Kenneth M. Anderson. Software methods and tools – software re-use.
Lecture presentation in CSCI3308 at the University of Colorado, 2004.

BIBLIOGRAPHY 103

[25] Jeffrey S. Poulin. Measuring Software Reuse: Principles, Practices, and
Economic Models. Addison-Wesley, 1997.

[26] Jeffrey S. Poulin. Metrics for object-oriented reuse. Published on Flash-
line.com.

[27] William Frakes and Carol Terry. Software reuse: Metrics and models.
ACM Computing Surveys, 28(2):415–436, June 1996.

[28] Prem Devanbu, Sakke Karstu, Walcélio Melo, and William Thomas.
Analytical and empirical evaluation of software reuse metrics. In Pro-
ceedings of the 18th international conference on Software engineering,
pages 189–199, 1996.

[29] Shari Lawrence Pfleeger. Measuring reuse: A cautionary tale. IEEE
Software, pages 118–127, July 1996.

[30] Victor R. Basili and Barry Boehm. COTS-based systems top 10 list.
Computer, pages 91–93, May 2001.

[31] Huaiquing Wang and Chen Wang. Open source software adoption: A
status report. IEEE Software, pages 90–95, March/April 2001.

[32] Tor-Erik Hauge. Gjenbruk i it-bedrifter — utvikling og trender. Mas-
ter’s thesis, Høgskolen i Stavanger, June 2003.

[33] R. Van Solingen. The Goal/Question/Metric Approach, pages 578–583.
Encyclopedia of Software Engineering – 2 Volume Set, 2002.

[34] Robert E. Park, Wolfhart B. Goethert, and William A. Florac. Goal-
driven software measurement – a guidebook. HANDBOOK CMU/SEI-
96-HB-002, August 1996.

[35] Tom Davenport and Gilbert J. B. Probst. Knowledge Management
Case Book: Siemens best practises. Wiley, John & Sons, Incorporated,
2002.

Index

3C Model, 55

black-box reuse, 53, 56

classifying components, 54, 68
classifying the organization, 50
components

classifying, 54, 68
organization of, 56
storing, 55, 56

faceted classification, 68
formulating reuse goals, 51
formulating reuse policy, 52

guidelines, 46
activities, 47

description of, 50–58
list of, 47
outputs, 47, 58

introduction, 46
overview, 47

horizontal reuse, 53, 54

IEEE
Std 1420.1-1995, 54
Std 1571-1999, 66

measurement, 57

organization
of components, 56

organization, classifying, 50

repository, 55
reuse, 46

automated support for, 66

black-box, 53, 56
goals

formulating, 51
horizontal, 53, 54
library, 56
measurement, 57
models, 53, 63
plan, 46, 47

responsibilities, 56
roles, 56

policy
formulating, 52

positive effects, 52
repository, 54, 55

population of, 56
storage, 55

population of, 56
tools, 55, 66, 67

categories of, 66, 67
vertical, 53, 54
white-box, 53, 56

tools for reuse, 55, 66, 67

version control system, 55
vertical reuse, 53, 54

white-box reuse, 53, 56

104

