
Abstract

Today, user interfaces normally consist of a screen, and a pointing device
and a keyboard for input. However, as more advanced technology and meth-
ods appears, there should be good chances to utilize these for more natural
and effective human-computer interfaces. The main motivation is to get a
more natural and easy to use interface, and the computer should understand
the user without too much effort from the user. Intelligent interfaces could
be a solution to achieve this goal.

The main focus in this thesis, is multimodal input which combines dif-
ferent input modalities to achieve the user’s goal. A framework has been
designed where the user has the possibility to change between input modal-
ities. The system should integrate the information given in different input
modalities to one joint meaning. In this architecture, input could either be
location or command input, and different modalities could be used for each
input type. The example described later on in this thesis combines either
speech or written text as command input, with either map input or physical
position for location input.

An agent-based blackboard architecture are used for collecting input.
Agents collect information directly from the user. Each agent represent their
own input modality, and is responsible to analyse input. As this is done, the
agent send the information to a common blackboard which hold the latest
information from each agent. An own agent which is responsible for fusing
this information to one common meaning, collects the information from the
blackboard and integrate it to one joint meaning. This joint interpretation
decides what should be done to which object.

Since the modalities are independent of each other, other modalities could
easily be added with just small changes to other parts of the system as
long as it is an command or location input which agrees to the currently
representation structure.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and requirements 2
1.3 Structure . 2

2 Relevant study 4
2.1 Agents . 4

2.1.1 Intelligent agents . 4
2.1.2 Collaborating software 5
2.1.3 Multi-Agent architectures 8

2.2 Intelligent user interfaces . 10
2.3 Multimodal interfaces . 11

2.3.1 Input modalities . 12
2.3.2 Speech recognition . 14
2.3.3 Speech recognizer . 18
2.3.4 Cognitive aspects of multimodal interfaces 20
2.3.5 Multimodal interface characteristics 22
2.3.6 Multimodal integration 23

3 Previous work 26
3.1 Early systems . 26

3.1.1 Put-That-There . 26
3.1.2 CUBRICON . 27

3.2 Recent multimodal interfaces 30
3.2.1 Portable Voice Assistant 30
3.2.2 Field Medic Information System 30

3.3 QuickSet . 31
3.3.1 System architecture . 32
3.3.2 Multimodal integration 33

3.4 MATCH . 34
3.4.1 System architecture . 34

i

4 The overall architecture 36
4.1 The multimodal input process 37
4.2 Blackboard . 39
4.3 The Agents . 40

4.3.1 The agent architecture 41
4.4 Multimodal integration . 48
4.5 Knowledge representation . 49

5 Implementation 51
5.1 Blackboard . 51
5.2 Agents . 52

5.2.1 Agent communication 52
5.2.2 InputAgent . 55
5.2.3 CommandAgent . 56
5.2.4 LocationAgent . 61
5.2.5 FusionAgent . 64

5.3 Fusion algorithm . 66

6 Demonstration 69
6.1 The example . 69

6.1.1 Map location . 69
6.1.2 Physical position . 71
6.1.3 TextAgent . 71
6.1.4 Speech command . 71
6.1.5 The scenarios . 73

7 Conclusion 79
7.1 Discussion . 79
7.2 Future work . 81

A Running the example 84

B Java-Code 86

ii

List of Figures

2.1 Architecture of Intelligent User Interfaces[17] 11

3.1 System overview of CUBRICON[18] 28
3.2 Example of the User Interface in XTRA[26] 29
3.3 voiceLog[2] . 31
3.4 Architecture overview of QUICKSET[6] 32

4.1 The overall architecture . 37
4.2 The processes for integrating several input modalities to one

meaning . 38
4.3 Representation structure of input knowledge 40
4.4 The basic agent architecture of the InputAgent 41
4.5 The architecture of the CommandAgent and LocationAgent . 42
4.6 Command Agent Process Diagram 43
4.7 LocationAgent Process Diagram 45
4.8 FusionAgent Process Diagram 46
4.9 Example of the knowledge which shows possible commands on

each object . 47
4.10 Knowledge about location and commands 50

5.1 Two type of entry objects, one for command information and
one for location information 52

5.2 The figure shows inheritance in the agents 53
5.3 Space Communication . 54
5.4 The input agent with its behaviours 55
5.5 The agents that is used to collect command information from

the user . 57
5.6 An example of a grammar in JSGF 59
5.7 The LocationAgent . 61
5.8 Location input . 62
5.9 Example of location points . 62
5.10 FusionAgent . 65

iii

5.11 Fusion algorithm . 68

6.1 The map used in the example 70
6.2 Example of how the location information is stored externally . 71
6.3 Speech grammar . 72
6.4 Scenario 1 . 74
6.5 Scenario 2 . 75
6.6 Scenario 3 . 76
6.7 Scenario 4 . 76
6.8 The graphical test interface 78

iv

Definition of Terms

Agent An agent is anything that can be viewed as per-
ceiving its environment through sensors and acting
upon that environment through effectors.[25]

Blackboard a central global workspace with a collection of
agents which act upon it

DARPA Defense Advanced Research Projects Agency

Frame A data structure for representing situations in Ar-
tificial Intelligence

FIPA Foundation for Intelligent Physical Agents, stan-
dard for agent-based systems

GUI Graphical User Interface

HMM Hidden Markov Model: Modern speech recognition
systems are generelly based on this model

IBM ViaVoice Speech recognition software offered by IBM

ISO International Organization for Standardization

JavaSpace A part of the JINI architecture with the possibili-
ties of exchange Java objects

JADE Java Agent DEvelopment Framework for develop-
ing MAS. Compatible with the FIPA standard

JINI Jini Is Not Initials: a network architecture for the
construction of distributed systems

JSAPI JavaSpeech API: API provided by Sun to easily
develop speech-based application

MAS Multiagent software

Multimodal in-
tegration

Integration of inputs from various senses to form
a multimodal representation

RMI Remote Method Invocation

v

Chapter 1

Introduction

This work is about multimodal interfaces, and the main focus is on multi-
modal input. Multimodal interfaces combines two or more input modes from
the user. There has been a growing interest in this field because of the ad-
vantages it provides. In this thesis I will present some thoughts and theories
about this topic and I will present a prototype of an agent-based multimodal
system.

1.1 Motivation

An important aspect in interaction design, is usability. ISO 9241 defines
usability as: ”The extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use.” Focus on the user and good usability is very im-
portant as the benefit of researching this area are many. Good interaction
design reduce the users frustration rate, and the tasks can be more focused
on. An important factor of motivation behind the work of this thesis, is to
improve usability by using multimodal input over unimodal or traditional in-
terfaces. Multimodal interfaces could include important advantages as flexi-
bility, availability, adaptability, efficiency, lower error rate, and more intuitive
and natural interaction.

The most common types of input when discussing multimodal interfaces
include the traditional devices as keyboard, mouse, pen and touch screen, and
more advanced input as speech recognition, 2D and 3D gesture recognition,
lip movement and gaze tracking. During the 1980’s and early 90’s, the most
common method of making multimodal systems was by adding speech to the
more traditional direct-manipulation interfaces. During the last decade a new
class of multimodal systems has occurred with major improvements in new

1

input technologies and algorithms, hardware speed, distributed computing,
and spoken language technology. In this thesis I will show some examples of
systems designed during this period, and how the different input modes are
combined.

1.2 Objectives and requirements

The main goal with this work is to develop an architecture of an agent-based
system for multimodal input, and to prototype a part of it. The system is
based on a blackboard model where each modality works on their own, and
sends analysed information to the blackboard as soon as accepted input is
detected and finalized. A fusion agent is used to integrate the multimodal
information to one specific meaning.

The following requirements are defined:

R1: The different input modalities should work independently of each other.

R2: Sharing of input information.

R3: A common representation structure of the input from the different
modalities.

R4: Multimodal integration of at least two different input modalities.

R5: Mobility

1.3 Structure

The structure of this thesis is divided into 7 chapters which are as follows:

• Chapter 2 introduces general theory of important research issues in this
framework, primary software agents and intelligent interfaces.

• Chapter 3 describes previous research and systems that influenced this
work.

• Chapter 4 describes this architecture.

• Chapter 5 describes the current implementation and which modalities
that are chosen for the prototype.

2

• Chapter 6 shows a test run of the current implementation situated in
the implemented example.

• Chapter 7 gives a conclusion of this work, and suggestions for future
work.

3

Chapter 2

Relevant study

2.1 Agents

The term ”agent” is outside the computer world often used when describing
people helping us with something, like for example a travel agent. Agents like
this has a job where they should act autonomously to fulfill our goals, and
then reduce our workload. Software agents have the similar goal, to help the
user to be more productive. When using this terminology in user-interfaces,
the system can act for example as a butler or a secretary.

2.1.1 Intelligent agents

There are several definition of the term agent, but no universally accepted
definition. Russel&Norvig has a general definition which says ”an agent is
anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through effectors.”[25] Wooldridge defines
an agent as ”a computer system that is situated in some environment, and
is capable of autonomous action in this environment in order to meet its
design objectives.” [36] An agent do not have to be intelligent or to cooperate
with others, but for an agent to be intelligent it should have skills as being
reactive, proactive and social. A reactive agent are able to react to changes
in its environment. A proactive agent has a goal-directed behaviour and are
able to take the initiative when appropriate. Social agents are able to interact
with other agents to accomplish their tasks and to achieve the complete goal.

Nwana points out some reasons to the problem on agreeing on a consensus
definition for the term ”agent”[19]. ”Agents researchers do not own this
term” and ”agent is an umbrella term for a heterogeneous body of research
and development”. They also identify 7 types of agents which are defined by
what they do and what technology underpins them. Using these agent types

4

defines an agent as collaborative, interface, mobile, information/internet,
reactive, hybrid and smart.

Lieberman [15] see it from an user-interface perspective and has a defin-
ition of an intelligent interface agent. He breaks up this definition in three
parts. The short version of the term computer intelligence is that the com-
puter exhibit behaviour that is like what we call intelligence in people. By
this he do not mean that the interface should have human-level intelligence,
but have some characteristic of human intelligence. This could be either rea-
soning, domain-knowledge or procedures which do useful tasks. He defines
the term interface agent as an agent which communicates directly with the
user. An interface agent observes the users actions and behaviour and can
take actions on behalf of the user. When he describes the term agent, he
points out the different definitions of an agent, but he like to focus on the
function of the agent. An agent should have an assistive role to the user, and
its job is to help the user in succeeding it’s goals.

Context plays an important role for interface agents. Lieberman defines
context as everything the user do not explicitly tell the system, and a context-
aware application takes its decision based on information other than what
it gets explicitly from the user. People are sensitive to context as we often
take action which suits the context. Context-aware agents may sense their
additional input from the environment using sensory input.

Agents and multiagent systems seems useful when building systems where
data, control, expertise and/or resources are distributed. Agents will give a
natural metaphor for these kinds of systems, where you have several partici-
pants which knows what it can do and act in cooperation with others.

2.1.2 Collaborating software

Collaborating software systems has by AI researchers been a way to solve
large and difficult problems for a long time. This is an effective divide-
and-conquer approach for complex software applications, where a number of
smaller software modules are applied to form a complete system. Blackboard
systems were the first attempt made at integrating cooperating software mod-
ules with the goal of achieving the flexible, brainstorming style of problem
solving used by a group of humans working together on a problem. The
multiagent approach is another approach to get the same effect[7].

According to Corkill[7], there are some key challenges to think about
when creating effective collaboration software. These include:

• Representation - how to get software modules to understand each other.

5

• Awareness - make modules aware when something which involves them
happens.

• Investigation - help modules to quickly find relevant information.

• Interaction - create modules that are able to use work done by others
while working on a shared task.

• Integration - combine result produced by other modules.

• Coordination - get the modules to focus on right thing in right moment.

Multiagent cooperation

Coordination of the agents in a system is important to get the agents to
reach the overall goal. Because of the distributed expertise, there is a need
to coordinate everyone to prevent chaos and to make the system more effi-
cient. Usually the different agents work toward a common goal, and therefore
there is no conflict between them. The individual agents objectives does not
matter, only the overall system. This is what Wooldridge [36] mean about
”benevolence assumption”. In contrast some agents are self-interested. These
type of agents have goals that will be in conflict with other agents. How-
ever, they still need to cooperate and it is important to find the best way to
cooperate.

Coherence and coordination are two issues that need to be considered to
decide how successful a multiagent system are. Coherence is the ability of
a system to behave as a unit. Coherence is ”measured in terms of solution
quality, efficiency of resource usage, conceptual clarity of operation, or how
well system performance degrades in the presence of uncertainty or failure”
[36]. Coordination is ”a process in which agents engage in order to ensure
their community acts in a coherent manner”[20]. In a perfectly coordinated
system agent do not need to bother about others sub-goal while achieving a
common goal.

There are several ways different agents can work together to solve prob-
lems. Contracting is one solution to coordinate agents to work together. By
using the contract net protocol standardized by FIPA[29], the agents can
cooperate by sharing tasks. A manager announces the problem to the other
agents. As the agents listen to announcements and evaluate them with re-
spect to their own resources, they place a bid if they find a suitable task.
Several agents can bid for the same task, then the manager has to decide
from the information of the bid which agent should win the bidding round
and then will be awarding the contract.

6

Another way to let agents cooperate to solve a problem, is result sharing.
This will typically be that each agent solve small problems which later on
will be become larger solution. Result sharing is when agents may share
information relevant to their sub-problems. Durfee, referred to by [36], has
suggested 4 ways to improve group performance:

• Confidence: When independently derived solutions can be cross-
checked, the confidence in the overall solution is increased.

• Completeness: Agents that share their local views to achieve a
better overall global view.

• Precision: The precision of the overall solution is increased when
agents share results.

• timeliness: As several agents work on the solution, the result could
be derived more quickly.

Blackboard systems

Blackboard systems is another method to coordinate a problem solving process.
Blackboard systems were first developed in the early 1970’s. A blackboard
system consist of three main components: Knowledge sources, blackboard,
and a control component. The knowledge sources are the individual modules
that contain the expertise, the blackboard are a shared working memory and
a communication medium, and the control component makes runtime deci-
sions about the course of the problem solving. When using this method, the
solution evolves step by step from the information available on the black-
board.

In this prototype, a space implementation is used, and this will be dis-
cussed in detail in later chapters. By using a space implementation of a
blackboard, the participants do not have to know anything about each oth-
ers, they do not need to share the same process or machine, and they are
temporally independent of each other.

The space model first appeared in the early eighties when Gelernter and
his co-workers made the Linda programming system and their tuple-space
model [8]. I will give an example of an implementation based on the tuple-
space model called JavaSpaces[32].

JavaSpaces is based on Java RMI and JINI, and is a framework to ex-
change distributed objects. JavaSpaces is used to implement a blackboard
model where the JavaSpace is the blackboard itself, and the different agents
are the knowledge sources.

7

Jini is a distributed computing environment, and can be used in any
network where there is some change. Several clients and services communi-
cates by using the Jini-protocol. A Jini system consists of services, clients
and lookup services. A lookup service act as locators between services and
clients.

A JavaSpace is a shared, network-accessible repository for objects. The
agents uses this space for object storage and to exchange these objects. The
objects that are stored on the space is referred to as entries. An entry is
a Java object with the advantages that follows. There are four primary
operations in JavaSpaces:

• Write an entry to the JavaSpace.

• Read an entry from a JavaSpace.

• Take an entry from a JavaSpace.

• Notify an object when specific entries are written to the JavaSpace.

When reading or taking entries from the space, simple value-matching
lookup is used to find the relevant entries. These entries are just passive
data, and it is not possible to modify them. In the case of modifying, the
agent has to remove the old one, update it and write it to the space once
more. Notify uses a listener that can be specified to listen for specific entries.
When one such entry is written to the space, the listener notifies, and a
specific action takes place.

An advantage with using JavaSpaces, is that the knowledge sources are
loosely coupled. The interaction is through the space, and not directly be-
tween each of them. The senders and receivers are then not required to know
each others identity, or not even have to be active at the same time.

2.1.3 Multi-Agent architectures

When several agents working together to solve a problem, they need to com-
municate. Agents do this by sending messages via a central hub, where
messages are structured according to some high-level representation and are
transported using TCP/IP. Some architectures are made, and they provide
a transport layer or infrastructure on which multiagent applications can be
built. I will now present some common multiagent architectures, and since
Jade is the one which is used in this project, this will be presented more
detailed than the others.

8

Galaxy Communicator

The Galaxy Communicator[30] was developed by MIT and was funded by
the Defense Advanced Research Projects Agency(DARPA). Galaxy is an
open source distributed, message-based infrastructure optimized for dialogue
system design, and was designed to support the creation of speech-enabled
interfaces that could scale across modalities.

Open Agent Architecture(OAA)

Open Agent Architecture(OAA)[16] is SRI International’s distributed soft-
ware architecture. OAA could be used for a several types of applications, but
are generally for distributed problem solving. Each entity in OAA is called
agent, and these agents work together with the user to reach a goal. The
communication is controlled by a central facilitator, and is done using the
specialized language ICL(Inter-agent Communication language).

Adaptive Agent Architecture(AAA)

AAA[28] is a bit different from the previous two in that they have a central
hub or facilitator, this could have a team of facilitators or brokers. This
could be an advantage in greater robustness in facilitator failure. AAA is
also backwards compatible with OAA, which means that any OAA system
could run using AAA facilitator.

Jade(Java Agent DEvelopment Framework)

Jade [31] is a software framework designed for developing Multi Agent Soft-
ware. It is built on Java, and is designed to simplify agent development. The
Jade-Board was founded in march 2003 and is a non-profit organization and
has the intention to promote and work to make it a de-facto standard. The
source code is Open Source and distributed under LGPL(Lesser GNU Public
License).

A definition of JADE is: ”Jade is an enabling Technology, a middle
ware for the development and run-time execution of peer-to-peer applica-
tions which are based on the agents paradigm and which can seamless work
and interoperate both in wired and wireless environment”[1]. From this
we can conclude that Jade has a conceptual model consisting of two major
parts, a distributed system with peer-to-peer networking, and software com-
ponent architecture with agent paradigm. The first part is about how the
components are linked together, and is seen as a peer-to-peer model. The

9

different peers is called agents in Jade. The second part is what each com-
ponent is expecting from the others. As it is based on the agent paradigm,
it has the agent properties described in the previous subsection. JADE is
in fully compliance with the FIPA-specification [29], and make it therefore
easy to implement agents using the FIPA standard, which also means that
Jade agents can interoperate with agents built on other agent frameworks
as long as they are built on the same standard. FIPA was formed in 1996
to produce software standards for heterogeneous and interacting agents and
agent based systems. It is a pure interface specification which specifying
both the communication language and the semantics of the messages used in
the communication. The messages are written in an agent communication
language(ACL), the content is in a content language. Since it is a interface
specification, the implementation details are left up to the implementor.

Jade has several advantages and is a middleware that simplifies developing
applications. When developing distributed applications with autonomous
entities, Jade is a framework that hides the complexity so the developer can
focus on the logic of the application. Each agent in Jade control their own
thread of execution, and can be programmed to initiate execution on the
basis of goal and state changes, called pro-activity.

2.2 Intelligent user interfaces

User interfaces today mostly offers input from mouse and keyboard. This are
often known as direct manipulation interfaces, and makes use of graphical
user interfaces and menus, and the users are presented some objects and a set
of discrete actions to perform on them. Electronical pen devices has recently
become popular, and is also a tool for direct manipulation interfaces.

As mentioned earlier, designing human-computer interfaces with focus
on usability should make them more efficient to use, easier to learn, and
more satisfying to use. Next generation interfaces will in addition be ”intelli-
gent”, and will provide benefits to the users as adaptivity, context sensitivity,
and task assistance. Intelligent user interfaces are [17] ”human-machine in-
terfaces that aim to improve the efficiency, effectiveness, and naturalness of
human-machine interaction by representing, reasoning, and acting on models
of the user, domain, task, discourse, and media”. As traditional interfaces,
these should be learnable, usable, and transparent, and in addition provide
advantages so the user could enhance interaction.

As traditional interfaces support sequential and unambiguous input from
input devices as mentioned(keyboard and pointing devices), these constraint
are not that important in intelligent user interfaces. A broader range of input

10

devices are usual, for example recognition based input as speech, eye tracking
and gestures. These type of interfaces support asynchronous, ambiguous and
inexact input by using a more sophisticated input analysis.

Figure 2.1: Architecture of Intelligent User Interfaces[17]

Intelligent interfaces research consist of a few main areas such as input
analysis, generation of coordinated output, and modeling. Figure 2.1 illus-
trates an architecture of intelligent user interfaces. In this thesis, the main
focus is in input, and I will discuss some methods for analysing and fusing
multimodal input in the following section about multimodal interfaces. In the
generation phase, the planning and realization of the output will be done by
using analysed input and different models. These models could for example
be of user, discourse, task, and situation and interaction management.

2.3 Multimodal interfaces

I will start this section by defining the term multimodal. This word is built
from two words, multi and mode. Mode is here a physical sense that is
used in communication. Humans have five senses in sight, sound, touch,
taste, and smell, were the last two are not so important in communication.

11

For human-computer interfaces, the focus therefore are on sound, vision and
touch. In addition an extra more abstract sense knowledge could also be
used as a mode. This knowledge sense is external knowledge which could be
useful, and for computers this could for example be context information as
location [4]. The word ”multi” means that the machine receives input from
multiple modes. The word multimodal should refer to modalities regardless
of nature, but many researcher use the word when referring to modalities
commonly used in communication between peoples, and multimodal usually
refers to user input.

As the importance of computers being more intelligent increases, we like
to communicate with the computer rather than operating it. When humans
communicates, we usually get the information from several modes which
could be a combination of spatial and semantic knowledge. A multimodal
system coordinate a combination of two or more user input modes. Speech
is the most important form of communication between humans, but other
modes as hand gestures and facial gestures is important to interpret the
meaning in human-human communications. Identical spoken words could
have different meanings when combined with different gestures. These sort
of interfaces are seen as more natural, and allows the user to concentrate on
the tasks instead of how to control the interface.

The interest in multimodal interface design has been growing recently,
and is inspired by the goal of more flexible, efficient, and powerfully expres-
sive means of human-computer interaction. It is expected that multimodal
user interfaces will be easier to use and learn than traditional interfaces. A
system with human like sensors and sensors on the surrounding physical envi-
ronment, will have the capability to adapt to the user, task and environment
in an intelligent manner.

Input to GUIs is atomic and certain while input as speech is uncertain.
That means that any system is probabilistic, which again means that easy
events now requires interpretation and can be misinterpreted. Another issue
is that traditional interfaces is a sequence of events as keyboard and mouse
clicks. Multimodal interfaces require simultaneously continuing input stream
processing. Important challenges to build successful multimodal systems is
to manage the problem with uncertainty of recognition and process parallel
input from several modalities.

2.3.1 Input modalities

As defined, multimodal interfaces are user interfaces where two or more input
modalities are combined. Several types of input modalities can be chosen,
and I will discuss some possibilities here. Since speech recognition based

12

systems is seen as a very important input source in multimodal systems, I
will give a more detailed presentation of it in the next subsection.

Traditionally direct manipulation interfaces has been common for more
than a decade. These usually combines a keyboard with a pointing device,
normally a mouse, but pen/stylus input is more and more used lately. Direct
manipulation interfaces has several positive qualities [5]. Communication is
generally fast and concise and the input techniques are relatively easy to
learn and remember. Another important strength with these interfaces, is
that the user usually knows what can be done since the visual presentation
of what is possible to do is easy to access. However, direct manipulation
system also have some limitations, especially when the user try to access or
describe entities that are not visualized. Natural language could be a way of
reducing this problem.

Natural language interfaces have an advantage in describing entities not
displayed on the screen, in specifying temporal relations between entities or
actions, and in identifying members of sets. Common input modalities for
natural language interfaces includes speech, typing and handwriting.

Natural language interfaces and direct manipulation interfaces has oppo-
site strengths and weaknesses, and therefore seems to be very complementary
modalities. That is why several multimodal systems combines these. I will
present some of these systems in chapter 3.

The modalities needed to fully implement the example described in this
thesis, is a speech recognizer, keyboard, pointing device, and a location aware
modality. The latter modality would probably not hold the definition of a
multimodal system, as it is not a direct user input, but more like a context-
aware input.

Research on more advanced input modalities have been done, but these
are not that much commonly used, at least not yet. Examples of these sort
of input modalities include gestures, eye tracking. Both eye tracking and
gestures could be used for deictic purposes, and could be seen as pointing
devices. Gestures by for example using a 3D glove, could also be interpreted
to action commands, were different movements have a specific meaning.

Vision based modalities are also widely researched. Lip movements are
an example of a input modality which can be used together with speech.
Visuals could be very useful to accomplish several tasks, and could be used
to watch the users to identify by face recognition, expression analysis, eye
tracking, body tracking, head and face tracking, hand tracking.

Recently systems have also started to combine them with more physiolog-
ical input modalities like fingerprints. This is often referred to as multibio-
metric multimodal interfaces. These have the advantage of identify users by
using physiological or behavioural features associated with that person. Cur-

13

rently identification methods include fingerprints, hand geometry, iris, retina,
face, facial thermograms, signature, gait, palm print, and voice print[12].

2.3.2 Speech recognition

Since speech is the most important way to communicate by humans, there
is extensive research in speech recognition systems in computer science. The
motivations behind speech recognition systems could be to build hands-free
system where users can give commands to the computer while using their
hands to other things. It also opens new possibilities when designing systems
for small units.

As the demand for smaller and portable computers increase, there will be
smaller keyboards and screens on them, and this will decrease our ability to
manipulate them. Speech will be a useful input medium for these systems,
since speech do not need physical space, and this is one important motivation
for speech interfaces

Speech theory

Research on speech recognition dates back to Bell in the 1870’s as he wanted
to create a machine that could visualize speech, the phonautograph. Even if
he failed in this project, this lead to the inventing of the telephone[14]. The
development went slow the next hundred years, but in the 1970’s serious
speech recognition research started. This research was mainly driven by the
US government under its Defense Advanced Research Projects Agency(DARPA).
Over a 5 years period starting in 1971, they provided $3 million to research
every year in its Speech Understanding project. Speech recognition has be-
come increasingly better from these years until now, and a number of prod-
ucts have become available. The goal is of course to get 100% accuracy, but
this has not been reached yet, however it can be reached in very constrained
cases, but usually the accuracy lies somewhere below.

Speech is a complex process in the human brain, and humans are the only
species that have a natural language. Animals like parrots are only capable
to mimic sound. When humans produce speech, there are some logical steps
to do, and the language has a linguistic structure which consists of a few
levels known as[10]:

• Phonetics: the sounds of speech.

• Phonology: the sound system of any particular language.

• Morphology: Word formation.

14

• Syntax: The combination of words into phrases and sentences.

• Semantics: the meaning of words, phrases and sentences

• Discourse: activities using language which extend beyond individual
sentences, such as stories.

The first step is to form the idea we want to communicate, and then use
the grammatical rules in the language to form the idea to phrases. Each
phrase consist of words that will give meaning to the idea. Each word con-
sists of morphemes, which again are created from phonemes. Phonemes are
the smallest units in speech, while morphemes are the smallest units which
carry meaning. Waves are produced from this speech, and these waves are
received by the hearing mechanism of the receiver. This mechanism is so
advanced that it can not be copied by todays technology. Humans have a
very large number of brain neurons working in parallel which makes the hu-
man perceptual and cognitive systems very complex. It is thought that if
the machine should be possible to get human performance in processing nor-
mal conversation, it need to have extensive linguistic knowledge and a high
ability to simulate human intelligence. One solution is to simplify the task
by constraining what can be said so speech can be used in many situations.

In speech technology there are two areas that correspond to speaking and
hearing, speech synthesis and speech recognition. Speech synthesis is the
process where speech is produced from digitized text. Speech recognition is
the process where computers listen to spoken language and determine what
has been said by processing audio input and converting it to text. In this
thesis my focus is on input, which means I only work on recognition and not
on synthesis.

The Hidden Markov Model is a popular technique to use for speech recog-
nition. This approach was invented by Lenny Baum of Princeton University
in the early 1970’s and was shared with several ARPA (Advanced Research
Projects Agency) contractors including IBM. It is s a complex mathemati-
cal pattern-matching strategy which became adopted by all leading speech
recognition companies. It uses the probabilities of the user speaking a certain
phoneme given the frequency spectrum at a certain segment in speech and
the previous phoneme[24].

When to use speech

Since speech is so important in human-human communication, we tend to
have extreme high expectations when using speech in human-computer in-
teraction. This makes it a lot easier to get frustrated and disappointed if

15

things do not work as expected. Because of this, speech should not be used
at any time, and there should be a good reasons for using it. Some good
reasons for using speech interfaces have been identified, and includes:

• No keyboard available. This could for example be when using small
units.

• Users hands are occupied.

• Commands are embedded in deep structures.

• The users are unable to type, or they could be uncomfortable with it.

• Physical disability.

There exists times when it is not reasonable to use speech recognition
systems. This includes when the task requires the user to speak with other
people, the environment is very noisy, and it will be more easy to use a
keyboard and/or mouse.

Important challenges

When designing speech recognition interfaces, there are some important chal-
lenges which is needed to be faced before the application could be robust.
This lies in the features of speech.

• Speech is transient: Once you hear it, it is gone. This could be a
problem with respect to the humans limited ability to remember. When
working with graphical interfaces, the graphic typically stays on the
screen until the user perform some action.

• Speech is invisible: In graphically user interfaces, the elements and
the functionality of an application is visible to the user. This is a
problem with speech recognition interfaces in which it is more difficult
to indicate to the user what they should say to perform actions.

• Speech is asymmetric: Humans can produce speech easily, but can not
listen that easily. Therefore humans speaks faster than they write, but
listen more slowly than they read.

• Speech recognizers do mistakes: Recognizers are not perfect listeners.
To build as robust system as possible, it is important that the designers
know which errors that can occur, and what causes them. It is difficult
to guide the users to fix some type of recognition errors, and it is
important that the users are cooperative.

16

• Flexible vs accurate: Which combination is the best in flexible versus
accurate systems? As more flexible a system is, the more combinations
of words are possible to perform a command. Meanwhile you often will
trade away some accuracy in the system by allowing several ways to say
the same thing since the grammars will be more complex with several
similar words.

Accuracy

The problem with speech recognition today, is that it has two major limita-
tions: it does not fully transcribe free-form speech, and it makes mistakes.
The first is in their constrain to grammars, and this will be discussed in a
later section.

Recognition accuracy is often used as a measurement of speech recognizers
reliability, and this is usually not good enough for us to trust it in many types
of systems. Some major factors that influence the accuracy [33]:

• Accuracy usually higher in quiet environment.

• Quality of microphone and audio hardware.

• Users that speaks clearly get higher accuracy.

• Accents get lower accuracy.

• Higher accuracy with simpler grammars.

• Higher accuracy with less confusable grammars.

These factors should be considered when designing and using speech
recognition systems, but probably there are still recognition errors. These
falls into three categories:

• Rejection: The recognizer does not understand what the user say.

• Misrecognition: The recognizer return a word which is different to what
the user said

• Misfire: The recognizer return a word when the user did not speak.

Recognition errors is a problem in all recognition-based interfaces, but
there are ways of ”repairing” errors. Repeating input is probably the pre-
ferred correction method in human-human dialogue, but in recognition-based
interfaces repeating of input in the same modality does not eliminate the
cause of recognition error. However, there are an alternative approach which

17

seems promising by using repetition. This could be by switching modal-
ity for repetition, and correlating the correction input with repair context.
If the primary input is speech, the user could switch to handwriting if an
recognition error occur. Another approach to reduce recognition errors, is by
using context information, and to eliminate alternatives from the recognition
vocabulary that are known to be incorrect.

2.3.3 Speech recognizer

A typical speech recognizer has some major steps [33]:

• grammar design: The grammar defines the words which may be spoken
by the users. It must be activated for the recognizer to know what to
listen for.

• Signal Processing: Analyze the spectrum characteristics of incoming
audio.

• Phoneme recognition: Compare the spectrum patterns to the phonemes
in the specified language.

• Word recognition: Compare the likely phonemes against the words
specified in the activated grammars

• Result generation: The information about recognized word is given to
the application. It indicates the best guesses, but may also indicate
alternative guesses.

These steps are mostly controlled automatic by the speech recognizer,
and are beyond the application developers control. The applications control
of the recognizer is through the grammar, and this is the way a developer
can design how the system shall work.

When deciding the quality of a speech recognizer, there are some proper-
ties which should be investigated: The size of the vocabulary, whether train-
ing is needed, whether continuous or discrete speech, word error rate, whether
speech processing is done real time or offline, and whether the recognizer per-
formance is independent of the speakers gender and age. The ideal speech
recognizer would then be a speaker independent, continuous recognizer with
large vocabulary and low error rate. With todays speech recognizers, trade-
offs has to be made. If high accuracy is wanted, smaller vocabulary would
be better. However, if both high accuracy and large vocabulary is needed,
training is unavoidable.

18

JavaSpeech API

Sun Microsystems has designed Java Speech API(JSAPI) in cooperation with
leading speech technology companies like Apple Computer, Dragon Systems,
IBM Corporation, Novell, Philips Electronics, BV and Texas Instruments.
The goal with this API was to make an easy way to design application based
on speech technology. Sun only provide the API, while the implementations
was created in cooperation with the speech technology companies.

Java Speech API provide a standard, easy to use cross platform interface
to state-of-the-art speech technology, and support both speech recognition
and synthesis. This API makes it easier to implement speech based inter-
faces in Java, and the developers will have access to state-of-the-art speech
technology from leading companies. Since most existing speech technology
applications is written in C and C++, speech vendors have implemented
Java Speech API on top of their existing speech software by using Java Na-
tive Interface. Speech synthesizers and Speech recognizers can then easily be
written in Java software, and therefore take advantage from the portability
Java provide.

JSAPI use grammars to decide what to listen for in the input. Two
basic grammar types are supported: rule grammars and dictation grammars.
Rule grammars are most common today, and are defined by a set of rules.
These rules use the specification of Java Speech Grammar Format(JSGF)
[34]. In rule based systems the developer of the application design the rules
to decide what the recognizer should listen for. These rules constrain the
recognition process, which means that the work with designing the rules are
very important to build good systems. The key is to design the rules that
allow the users freedom of expression while still limiting what might be said
to ensure quick and accurate recognition process. This type of system will
make the recognition process more accurate and faster.

Dictation grammar makes the user free to speech almost what he wants,
and this form of grammar is close to the ideal free-form speech, but it has
several major disadvantages today. The most important is that it makes
more errors. As from the application developer point of view, it’s easier to
implement a dictation grammar as much of the complexity is in the speech
recognizer and not in the application, but as it is a more complex type of
grammar it requires more computing resources.

JSAPI has a ResultListener which is the main listener. It is based on the
same model as graphical user interfaces. The ResultListener defines what to
should happen, after listening to events. The events are generated from the
grammars defined in the application.

IBM ViaVoice is used for speech recognition in this implementation. The

19

implementation of JSAPI made by Sun and IBM is called Speech for Java
and is designed to work with ViaVoice.

ViaVoice is mainly used to create text from the users speech. It has a
vocabulary offering over 300.000 words, which means there are possibilities
of creation of almost any text [35]. ViaVoice creates a model of the user to
increase accuracy. After some training the performance should be over 90
percent which could be quite satisfactory in several systems. As mentioned
before, performance depends on other factors as hardware and the user, and
that could be the reason why this performance sometimes is never reached.

2.3.4 Cognitive aspects of multimodal interfaces

The development of human-computer interfaces has historically been driven
by the technology, and technologist have assumed that users can easily adapt
to what is built. For the user to communicate with the system, he have to
get instructions, training, and practice to fully take advantage of the capa-
bilities. Interfaces based on natural behaviour as human speech, gaze, touch,
and movements are recognition-based and are not under full conscious con-
trol. In these kind of systems it is not possible for even the most cooperative
user to adapt the behaviour to the systems limitations. Both speech and
complex gaze are vulnerable for recognition errors, and no matter how coop-
erative the user is, recognition errors could occur. This is a reason why it is
important that multimodal interface design should considerate cognitive sci-
ence research. Some of the most important cognitive science themes that are
relevant to design multimodal interfaces will be presented in this subsection
[23]:

User preferences: Users have a strong preference to interact multimodally
before unimodally. Several observations across a variety of application-domains
seems to document this, and as much as 95-100% preferred multimodally in-
teraction when they were free to use either speech or pen input in a map-based
spatial domain. Since each mode could have its strengths and weaknesses in
different situations, and by giving the user a choice of which modality to use,
will be an important advantage by multimodal interfaces.

When users interact multimodally: Users prefer multimodal interac-
tion over unimodal, but that does not mean that they always will commu-
nicate multimodally. Several studies of users has been done, and it seems
like users are most likely to express commands multimodally when describing
spatial information about location, number, size, orientation, or shape of an

20

object. When performing general actions without spatial components, users
will seldom express themselves multimodally. This is why it is important to
consider when users are and are not communicating multimodally.

Integrations and synchronization patterns: Early multimodal sys-
tems used spoken deictic terms as ”that” together with a pointing reference.
Studies has shown that people normally will not speak these deictic terms to-
gether with the pointing. Multimodal system designers should therefore not
count on overlapped signals to achieve successful processing. Research should
focus on fine-grained integration patterns between different input modes, and
this could be found in the cognitive science literature. I will discuss some
integration techniques later in this section.

Individual differences: A multimodal interface allows the user to have
control on how to interact with the computer, and has the potential to accom-
modate a broader range of peoples based on age, skill level, native language,
cognitive style, sensory impairments, and temporary or permanent handicap
or illness.

Complementary versus redundancy: It is claimed that the content
from different modalities contains high redundancies during multimodal in-
teraction, but the dominant view is that it is complementary. Studies in
speech/pen based interfaces shows they provide complementary semantic in-
formation, where the subject, verb and object of a sentence is spoken, and
locative information comes from pen. One goal is to integrate complemen-
tary modalities such that each mode can be used to overcome weaknesses in
the other mode. This has promoted the philosophy of using modes and com-
ponents technology where they fits best, and then combine them to permit
mutual disambiguation of the partial information associated with that mode.

Performance and Linguistic Efficiency: Several studies shows that
multimodal interfaces gives enhanced performance and linguistic efficiency.
In pen/voice based interaction, linguistic indirection that typically is spoken
language is replaced with more direct commands. Brief and direct mul-
timodal language also contains fewer referring expressions, and is instead
deictic multimodal expressions.

21

2.3.5 Multimodal interface characteristics

As mentioned earlier in this chapter, speech has several characteristics that
is different compared to traditional modalities. The most notable is that it is
temporary; as once uttered, it is no longer available. Speech can also be used
from a distance, which makes it ideal for hands-busy and eyes-busy situations.
When using speech, users often tends to overestimate the capabilities, and
they often treat the system as another person. This makes it a more human
and a more natural interacting method.

By combining speech interfaces with direct-manipulation in a multimodal
interface, several advantages could be identified. Research shows that speech
and direct manipulation have complementary strengths and weaknesses that
could be combined in a multimodal interface. One’s strengths is usually
the others weakness. As speech suits for hands/eyes free operation, direct
manipulation use direct engagement. Other strengths with direct manipula-
tion interfaces include, simple, intuitive actions, consistent look and feel, and
no reference ambiguity, while speech recognition interfaces makes it possible
for complex actions, reference is not dependent of location, and there are
multiple ways to refer to entities[9].

Multimodal interfaces has some advantages over traditional keyboard and
mouse interfaces or unimodal recognition-based interfaces. Some identified
advantages include flexibility, availability, adaptability, efficiency, and lower
error rate[21].

Multimodal interfaces allows flexible use of input modes. This includes
that the users can choose how to interact with the system, and select input
mode which suits type of input. Different modalities are well suited in some
situations, and less ideal in others. For mobile use where the conditions are
continually changing, it is important that the interface is flexible.

The availability characteristic of multimodal interfaces means that they
have the potential to accommodate a broader range of users than traditional
interfaces. This includes users with different ages, skill levels, native lan-
guage status, cognitive styles, sensory impairments, and other illnesses or
handicaps. For example users with visual impairments and stress injuries
would probably prefer speech, while users with hearing impairments would
prefer visual modes.

Multimodal interfaces provide the adaptability that is needed in continu-
ous changing conditions of mobile use. Modes as speech, pen and touch are
particularly suitable for mobile tasks where users can shift among these as
environmental conditions change. The users could temporally be unable to
use a particular input mode, for example using a navigation system when
driving, the user might not be able to remove the gaze from the road, and a

22

purely map-based interface would not be able to guide him. However, use of
verbal directions would be a solution to this problem.

For certain tasks multimodal interfaces offers greater efficiency. This
includes task which normally would require a series of sequential input events
in a unimodal interface. As multimodal interfaces has the ability to process
input in parallel, it would gain some efficiency in this area.

One important advantageous feature of multimodal interfaces, is its method
of error handling, both in terms of error avoidance and recovery. This avoid-
ance and recovery could both be user based and system based. A user would
for example often choose the input mode which is less error prone, and tends
to error avoidance. A speech-pen based system have several advantages in
error handling compared to a speech-only system. The user could change
to pen-input when communicate a word that is error-prone, as a foreign
surname. Users language also tends to be simplified when interacting multi-
modal, and would therefore reduce the complexity. After a recognition error,
the user likes to change mode, which facilitate error recovery. System based
error recovery are also improved in multimodal systems, and is rooted in
its ability to process parallel input from complementary input modes. The
best joint interpretation is not always the same as the best from the different
single modes. A multimodal system can therefor be more robust than a uni-
modal system as the complementary input modes can overcome the weakness
of the others.

Several strategies have emerged for error suppression, and basically more
information means greater likelihood of resolving missing or conflicting infor-
mation, and could lead to successful disambiguation of input[22]. By increas-
ing the number of input modes interpreted within the multimodal system,
would lead to more effective supplementation and disambiguation of partial
and conflicting information in individual input modes. These modes should
also represent semantically rich information sources. Increasing the hetero-
geneity of the combined information sources by using completely different
input modalities would lead to greater increase in robustness than fusing dif-
ferent data sources within an modality. As more complementary they are, as
more their strengths can overcome the others weaknesses.

2.3.6 Multimodal integration

As multimodal interfaces combines data from multiple modalities, it is a need
for merging the data at some point to one single data representation. This
process is called multimodal fusion or integration.

Many early multimodal interfaces were based on a multimodal integra-
tion which occurred during the process of parsing spoken language. As the

23

user spoke a deictic term, the system searched for a gestural act that suits
that term. This point-and-speak multimodal integration are not usable for
many tasks, and multimodal systems should be able to process other pen-
based input than just pointing. That is why it is important with a general
processing architecture which handle both different speech-and-gestures in-
tegrations, and interpretations of unimodal inputs and combined multimodal
input.

There are two main types of multimodal architectures to handle joint
interpretation of input. Early fusion integrates signals at feature level, and
late fusion integrate information at semantic level. Feature-level fusing is a
method for fusing of feature information of parallel input modes, where the
recognition process in one mode influence the recognition process in others.
This could be used to process closely synchronized input such as speech and
lip movements where the ”phonemes” created by speech and the ”visemes”
observed from lip movements are highly correlated. This architecture is based
on machine learning and uses statistical methods such as hidden markov
models or temporal neural networks for viseme-phoneme correlations, and
therefore needs to be trained with real data. These systems are generally
considered appropriate for modes that have similar time scales, but would
however have more problem when the modes have substantially different
information content.

Systems that use the late semantic fusion method have been applied to
process input modes which are temporally less coupled. These input modes
often provides different but complementary information. This method usu-
ally includes individual recognizers and a sequential integration process. In-
dividual recognizers as speech are already publicly available, and could be
trained using speech data. This means that unimodal data can be train using
unimodal data and could be easier attached to the whole system, and the
whole system could easy be scaled up both in number of input modes and
each mode could be extended. The use of complementary input modes is one
major design goal of multimodal systems. A well-designed system should be
able to integrate these modes so the strengths of each mode could overcome
the weaknesses of others.

Semantic fusion requires a meaning representation network that is com-
mon for each mode. In recent years, two data structures has become ac-
cepts as de-facto to represent meaning, frames and feature structures. Both
these structures represent objects and relations as consisting of nested sets
of attribute/value pairs. Feature-structures are logic-based and the primary
operation is unification.

Typed-feature-structure unification determines the consistency of two
representational structures and combines them to a single result if they are

24

consistent. In typed-feature-structure, the feature structure consist of a type
which indicates the type of entity it represent. This is associated with a
collection of feature-value or attribute-value pairs, where the value could ei-
ther be nil, a variable, an atom, or another feature structure. When two
feature-structures are unified with respect to a type hierarchy, their values
of identical attributes also are matched. If they are atoms, they have to be
identical, if its a value, it became bounded to the value of the correspond-
ing feature in the other feature structure. Feature structure unification is
seen as well-suited for multimodal integration since unification can combine
complementary input from different modes while it rules out contradictory
input.

25

Chapter 3

Previous work

During the last decade it has emerged some new multimodal systems which
allows users to communicate more naturally with computers, including modal-
ities as voice, hand and/or pen gestures, gaze and body movement. A lot
of experimentation has been done to discover how different modalities best
cooperates. In this chapter I will present some systems which tries to accom-
plish this and which has been influential in this work.

3.1 Early systems

Early systems as ”Put-That-There” [3], CUBRICON[18] and XTRA[26] was
based on adding speech to traditional graphical user interfaces to give the
user greater expressive capability. The more recent systems moves toward
using speech in parallel with more expressive input methods and technologies.
I will present some recent systems in the sections following this.

3.1.1 Put-That-There

Put-That-There was one of the first systems which integrated speech and
gestures, and was designed at Massachusetts Institute of Technology.

This system use speech recognition in parallel with gesture recognition,
and are tested in the MIT ”Media Room”, a physical room where the user’s
terminal is a room instead of a desk-top screen. The room also includes a
wall-sized screen, and works together with the user’s real-space in the ”Media
Room” as one continuous interactive space.

When the user sits in it’s chair infront of the wall-sized screen, a space-
sensing cube attached to the wrist is used. These deictic gestures are used
to identify objects by specifying their locations. Meanwhile the system’s mi-

26

crophone is listening for speech commands from the systems repertoire of
commands the user can perform. This includes basic commands as create
items, move items, delete items and naming items. By speaking the com-
mands, and point on the screen, the system get a common meaning from
speech and gesture. The user has to speak both the command and a object,
either the name of the object or ”that” while pointing.

3.1.2 CUBRICON

CUBRICON is an interface for combining spoken and typed natural language
with deictic gestures, and is designed as a military situation assessment tool.
Input are provided via a mouse pointing device, and is selected from the
screen. The spoken input specify an action that refers back to the selected
objects. CUBRICON also has a knowledge base with models of the user and
the ongoing interaction. These models are dynamic and will influence the
generated results.

As input comes from speech, keyboard or mouse, an input coordinator
process the input streams and combines them to a single stream which is
passed on to the multimedia parser and interpreter. By using this informa-
tion together with the system’s knowledge sources, a result is generated and
passed on to the executor. The knowledge sources used both for understand-
ing input and composing output includes an lexicon, a grammar defining the
multi-modal language, a discourse model, a user model, and a knowledge
base of task domain and interface information.

XTRA(eXpert TRAnslation)

XTRA is designed at the German Research Center for Artificial Intelligence,
University des Saarlandes, and is an intelligent multimodal interface to expert
systems which combine natural language, graphics, and pointing for input
and output. XTRA acts as an intelligent agent, a translator that is an
intermediary between the user and the expert system, and which provide
natural language access to the expert system.

Figure 3.2 illustrates the use of this interface, Wahlster shows how to fill
in a tax form. By using a mouse or similar pointing device, the user can
specify locations and areas on the tax form. The user can choose between
pointing modes as exact pointing with pencil, standard pointing with index
finger, vague pointing by entire hand, and encircling regions with @-sign. In
addition to these are three types of movement gestures as point, underline and
encircle. The interface shown on the screen consist of three parts, one which

27

Figure 3.1: System overview of CUBRICON[18]

28

Figure 3.2: Example of the User Interface in XTRA[26]

29

shows the tax form where the user can refer to points by tactile gestures, one
for natural language input, and one for the systems response.

3.2 Recent multimodal interfaces

Recent systems combines speech in parallel with more expressive input meth-
ods. These systems has an advantage in their ability to utilize two recognition
based input modalities. I will give a briefly overview of the Portable Voice
Assistant and the Field Medic Information System in this section, and then I
will give a more detailed overview of Quickset and MATCH in the following
sections.

3.2.1 Portable Voice Assistant

The Portable Voice Assistant [2] is developed at BBN Technologies, and is
a pen/voice based multimodal interface for web applications. It runs on a
mobile pen-based computer with microphone and wireless connection, and
the user could browse the World Wide Web using voice and a stylus.

The Portable Voice Assistant can interpret either individual or simulta-
neous pen/voice input, and integrate them using a late semantic frame-based
integration. To demonstrate the portable voice assistant interface, a proto-
type is implemented, VoiceLog. This prototype is developed in Java, and
both speech recognizer and the pen recognizer works as separate threads,
and use time-stamps to which is used by the integration thread.

VoiceLog allows the user to order parts from a catalog by using speech
and pen input. The user could select images from the catalog, which contains
”hot” regions. These regions corresponds to parts individual parts that can
be selected via speech or pen input. The interface also have an order form
which get its input from either speech or written pen input.

3.2.2 Field Medic Information System

The Field Medic Information System [11] is developed by NCR Corporation,
and is a speech/pen based multimodal interface for medical use. This system
allows medical personal to document patient care and status in the field as it
occurs. This information is then sent electronically to the hospital to prepare
the arrival of the patient.

The system consist of two major hardware components, the Field Medic
Associate(FMA) and the Field Medic Coordinator(FMC). FMA is a small
wearable computer which uses a headset with microphone and earphones, and

30

Figure 3.3: voiceLog[2]

FMC is a handhold tablet computer. Unlike the other presented speech/pen
based interfaces, this is not designed to use input modalities simultaneously.
The goal with this system is to have a mobile, hands-free speech based system
with the ability to use pen-based input using the tablet interface.

3.3 QuickSet

QuickSet is developed at the Oregon Graduate Institute of Science and Tech-
nology, and is a prototype of a multimodal interface which uses pen and voice
as input on a handhold PC. It uses a multi-agent architecture to communicate
through wireless LAN. QuickSet work as a military training system where it
is used to control a simulator and a 3-D virtual terrain visualization system.
The first prototype of this system was finished in 1994, and is one of the
earliest speech/pen based interfaces.

QuickSet is a handhold system and includes technologies like speech
recognition, gesture recognition, natural language processing, multimodal
integration, distributed agent technologies and reasoning. The most impor-
tant parts of the system will be described in the following sections. QuickSet

31

has been deployed for the US Navy, US Marine Corps. and the US Army.

3.3.1 System architecture

QuickSet [6] is based on the distributed agent technology Open Agent Archi-
tecture which means it has the ability to run different places and supports
user mobility. The QuickSet architecture has a central facilitator with a
blackboard, and then several agents which have their different jobs to do.
This section will describe some agents briefly.

Figure 3.4: Architecture overview of QUICKSET[6]

Figure 3.4 shows an overview of the QuickSet architecture with a central
facilitator in the middle, and all capable agents around.

Quickset interface: This shows the map of the region with entities placed
in their actual terrain. While using pen and speech the user has the possibility
to create points, lines and areas, create entities and give them behaviour, and
watch the simulation from the handhold.

Speech recognition: This agent is built on IBM’s VoiceType Application
Factory and VoiceType 3.0 and Microsoft Whisper speech recognizer.

Gesture recognition agent: QuickSet uses a pen-based gesture recog-
nizer. This consist of both a neural network and a hidden Markov model.

32

The system can recognize several pen-gestures, including military map sym-
bols, editing gestures, route indications and area indications.

Natural language agent: Typed feature structures are produced as a
representation of the utterances meaning.

Text-to-Speech: This agent uses Microsoft’s text-to-speech system.

Multimodal integration agent: This agent is responsible to get the in-
dividual interpretations of each input agent(speech and gesture), and then
identify the best potential unified interpretation. This agent give as output
the preferred interpretation and could be either unimodal or multimodal.

Simulation agent: This serve as the communication channel between the
OAA agents and the ModSAF simulation system.

Web display agent: This agent can be used to create entities, points,
lines and areas, and the entities can be viewed over a WWW connection.

CommandVu agent: CommandVu is a virtual reality system, and can be
used to create entities and to fly the user through the 3-D terrain.

Application bridge agent: This generalizes the underlying applications
API to typed feature structures, and therefore provide an interface to the
various applications. This allows a domain-independent architecture.

CORBA bridge agent: Converts OAA messages to CORBA IDL for the
Exercise Initialization(ExInit) project. ExInit allows user to create large-
scale(divisions and brigades) exercises.

3.3.2 Multimodal integration

QuickSet uses a distributed agent architecture, and use the advantages from
this architecture in designing the multimodal integration. The different input
agents as speech and gesture works in parallel. To get a clearly defined and
well understood common meaning from the different input modes, they uses
typed feature structures. To accomplish multimodal integration, unification
is used.

33

In QuickSet input needs to be both temporally and semantically com-
patible before they will be fused to one integrated meaning. Temporal com-
patibility means speech follow gestures within a short time interval. That
means that if speech does not follow within that interval, the gesture will be
interpreted unimodally. This architecture requires time stamps for both the
beginning and the end of each input stream.

To accomplish the goal of semantic compatibility, QuickSet uses unifi-
cation of typed feature structures. Unification requires consistency of two
representational structures to get one single result. A feature-structure is a
collection of feature-value pairs. The value could be either an atom, a vari-
able or another feature structure. Typed feature structure is an extension
where feature structures or pairs of atoms are being unified to be compatible
in type.

They identify some significant advantages by using typed feature struc-
ture unification. The first one is that it allows specification of partial mean-
ings. That means that both speech and gesture input could specify an fea-
ture structure where certain features are not specified, and by using both
input modes there are possibilities to interpret the input to one single mean-
ing. This will also lead to multimodal compensation, where the input modes
compensate for the other input modes recognition errors.

3.4 MATCH

MATCH(Multimodal Access To City Help) [13] is developed at AT&T Labs
- Research, and provides a mobile multimodal speech-pen interface to restau-
rant and subway information in New York City. This system should work
on mobile devices with limited screen and no keyboard or mouse as PDAs,
tablet computers and mobile phones.

Users can find restaurants based on cooking, price, and location, and
can get information such as reviews, phone numbers, and addresses. The
system could also guide the users to the restaurant by using the subway
guidance which can help users come from one location to another. MATCH
runs on a handhold PC with a browser-based graphical user interface and
integrates AT&T’s WATSON speech recognition technology, Natural Voices
text-to-speech, handwriting recognition, and gesture recognition.

3.4.1 System architecture

The purpose by the architecture is that it is designed for highly mobile ap-
plications, it enables flexible multimodal input, and provides multimodal

34

output.
The architecture consists of a series of agents. I will present some of the

key components in this section.

MCUBE: This is a Java-based facilitator which enables the agents to pass
messages to each other. MCUBE messages are encoded in XML, and provide
a general mechanism for parsing messages.

Multimodal User Interface: The Multimodal UI is browser-based and
what the users are interacting through with the system. It’s communication
with MCUBE are based on TCP/IP. The user interface provide a map which
enables both pen-based interaction and traditional GUI interaction. The
speak input are possible to turn on and off, depending on which mode is
natural and for noisy environment.

Speech Recognition: The system uses AT&T’s Watson speech engine.

Gesture and handwriting recognition: The recognitions could be per-
formed both on individual strokes and combinations of strokes. The hand-
writing recognizer supports a vocabulary of 285 words, and the gesture recog-
nizer recognizes a set of 10 basic gestures.

Multimodal Integrator: This receives gesture and speech input, and
builds a joint interpretation from the inputs. A finite-state approach is used
to multimodal integration. A three tape device are used, where the first rep-
resent the speech stream, the second the gesture symbols, and the third their
combined meaning. This three tape finite-state device takes speech and ges-
tures as input by using the first to tapes, and then writes out a multimodal
meaning by using the third tape. This technique enable users to interact
freely using speech alone, pen alone, or dynamic synchronized combinations
of speech and pen.

35

Chapter 4

The overall architecture

This approach to multimodal input involves modalities for command input
and location input. These modalities could both be user input and context
input. The overall architecture will be described in this chapter where the
agents and the blackboard will be presented.

The overall architecture is based on input agents and a common black-
board for sharing input information. As figure 4.1 shows, four main parts
exist in the current architecture. This could easily be extended in the future
if desired. I will give a brief overview in this section, and will present each
part in more detail later on.

Agents are responsible for collecting information directly from the user,
and interpret this input so it could be used to decide what to do. In the
current architecture, the user could mainly give location information and
command information. One or more LocationAgents are responsible for col-
lecting the location information. The second type of information which is
possible to get from the user, is command information. This shows what the
user wants to do, while the location information shows what objects the user
wants to perform that action on. Each input modality is an own agent that
get the necessary information from the user, which means that the agents
which are used for collecting location information extends the LocationAgent.

These agents which communicate directly with the user, is responsible
for analyzing this information and send it to a common blackboard. This
blackboard is used for storing input information which later is used in the
multimodal integration part.

The last part of the architecture is the FusionAgent. This is responsible
for listening for changes in the blackboard, and collect this information. A
listener which listen for command information is used, and as soon as one of
the CommandAgents writes some command information on the blackboard,
this agent reads the command and all location information available on the

36

Figure 4.1: The overall architecture

blackboard. This input information has to be analysed and given one com-
mon meaning for an action to take place. That is typically to combine one
piece of command information with one piece of location information and
decide what action to be done with what object.

4.1 The multimodal input process

The overall goal is to collect all available information from the user and
combine this information to decide one common action. Four main steps
takes care of this as shown in figure 4.2.

The first step is input collection from the user. This input is then analysed
and sent to a common workspace. The integration process is responsible for
collecting the information from the different input modes, and merge them

37

Figure 4.2: The processes for integrating several input modalities to one
meaning

to one common meaning. From this common meaning, an action can be
performed. These processes are: Input collection, input analysis, multimodal
integration, perform solution.

Input Collection

The input collection is the process of collecting information from the user.
The LocationAgent and the CommandAgent are responsible for this, and
are in direct contact with the user. Input are collected dependent of input
modalities that are used in the system. For the current architecture, this
is restricted to modalities for collecting command information and location
information.

Input Analysis

As the information is collected, this information has to be analysed to be used
further on. Location information usually contains getting coordinates, and
in the analysis process this is interpreted to refer to specific objects. Each
coordinate could refer to several objects, and all this information has to
be stored. This information is interpreted by using some knowledge model
of the environment that are used. When speech is collected, it uses the

38

speech grammar, and listen for special sentences. From these sentences, the
meaning of what has been said have to be extracted. As this analysis is
done, the information is sent to the blackboard. The LocationAgent and the
CommandAgent are responsible for this process.

Multimodal Integration

This process is the main part of merging several information elements into
one common meaning. By collecting all available information from the black-
board, it uses late semantic fusion to decide what action should take place.
As mentioned in chapter 2, late semantic fusion have an advantage when the
different input modalities should be independent of each other. The output
of this process is what should be done with which object. The FusionAgent
is responsible for performing this process. This process is discussed in detail
later on.

Perform Solution

After it has been decided what should be done, this process is responsible for
performing exactly this action. Since input is the focus of this thesis, little
work have been done on this part.

4.2 Blackboard

The communication between the agents that collects input and the Fusion-
Agent, is through a blackboard architecture. An advantage with this archi-
tecture is that the different knowledge sources (agents) do not need to know
about each other and work independently of each other. However, they need
a common structure to represent the knowledge. A frame structure are used
for representing the knowledge, and two structures exist depending on which
input type are collected; location or command.

Figure 4.3 show the representational structure for location and command
information. Each input agent that collects information from the user, will
collect and analyse this informtation and store it on the blackboard. The
agent then will use one of these representation structures when the infor-
mation is stored on the blackboard depending on which modality it refers
to. CommandAgents will use the command structure, and store information
about the specific command, which type of input modality, additional infor-
mation, and the time of command completion. Input time and additional
information are not mandatory information, but the other three needs to

39

Figure 4.3: Representation structure of input knowledge

be given. The LocationAgent collects information about potentially loca-
tion objects. This is stored in a structure with information as type of input
modality, a list of location names and types, and the time of completion.

As input information are collected and analysed into the form of this
frame structure by either the CommandAgent or the LocationAgent, this
information can be sent to the blackboard. The current structure of the
blackboard allows each input modality only one instance of information on
the blackboard at each time, which means only the most recent information
from each input modality agent exist on the blackboard. As soon as a new
command input is placed on the blackboard, the FusionAgent is notified, and
will at that time collect all existing information on the blackboard, and try
to find a joint multimodal interpretation.

4.3 The Agents

As mentioned before, there are agents that are responsible for collecting input
from the user and there are an agent responsible for fusing all the collected
input to one meaning. I will present 4 different agent classes that makes
the overall system, and I will present the architecture on these agents. The
agents are: InputAgent, CommandAgent, LocationAgent, and FusionAgent.

40

4.3.1 The agent architecture

InputAgent

The basic agent is the InputAgent and all others agents extends this. This
basic architecture consists of four different modules: a module for commu-
nication with the blackboard, knowledge models, a reasoning engine, and a
module which control the behaviours.

Figure 4.4: The basic agent architecture of the InputAgent

The module which control the behaviour, the behavioural control module
decides which actions should take place at each time, and this decision is
based on information about the environment and the external input the agent
gets at each time.

The space communication module takes care of communicating with the
blackboard. The InputAgent contains all necessary protocols which is needed
for space communication, and alle other agents extends this. This commu-
nication is used for sharing input information.

The knowledge models get information about the environment which is
useful in the process of analysing input modalities and in the process of
multimodal integration. External models about the environment is stored,

41

and is used to decide which commands and location objects that can be
integrated to be used together.

The fourth module is the reasoning engine. This is the one which is
responsible of reasoning over the knowledge the agent has at each time. As
the behaviour control decides what should happen, this module knows how
to do it.

Command Agents

The CommandAgent extends the InputAgent, and the architecture is about
the same. It has in addition an extra module, the User Interaction Module.
This senses the information from the user, and this depends on which input
modality used for this agent.

Figure 4.5: The architecture of the CommandAgent and LocationAgent

The task of the CommandAgent is to listen for command input from the
user, analyse this input and send it to the common space. The command
agent’s process diagram is shown in figure 4.6.

The first step for the CommandAgent is to listen for input. This is
dependent on which input modality is used, and in the next chapter when
the implementation is described, an approach where speech and text are

42

Figure 4.6: Command Agent Process Diagram

43

used will be described in detail. When an user input is detected, this input
has to be checked for being an accepted input. When the input is accepted
as an allowed sentence, the meaning can be extracted. When comes to the
CommandAgent, this is to make the CommandDescription from the detected
input. As the CommandDescription is finalized it is sent to the common
blackboard.

Location Agents

The LocationAgent extends the InputAgent, and the architecture is the same
as the command agent shown in figure 4.5. The main task of the Location-
Agent is to get the location coordinates from the user, and then find what
objects the user potentially refer to.

The task of the LocationAgent is to collect the coordinates the user sould
refer to depending on the chosen input modality, analyse this information to
find which potential objects these coordinates refer to,and then send relevant
information to the space. The LocationAgent’s process diagram is shown in
figure 4.7.

As an input is detected and the coordinates are collected, the agents
converts these coordinates to a list of potential objects. This list contains
every object that has coordinates from the knowledge base that matches the
incoming coordinates. If a match is found, the name and type of the object
is stored with a time stamp in a LocationDescription entry object. As this
process is finished, this information is sent to the common blackboard for
further use by sending the LocationDescription.

Fusion Agent

The role of the fusion agent is to make a single meaning from the input
information from the command agents and the location agents. Figure 4.8
shows the process diagram of this agent. This agent listen to the blackboard,
and when a new command description object is placed on the space by a
CommandAgent, the fusion agent will be notified and it will start to collect all
location information from the space together with the command information.

As the agent has collected all available information from the blackboard,
the integration process will start. First of all it has to decide which modalities
to use in the integration process. The command information is of course the
one that was notified about, but the location information has to be sorted in
a priority list. The time stamp will be used for this. A hysteresis value has
to be decided, and by using the time stamp of the command information, the
decision can be made if map information or position information should be

44

Figure 4.7: LocationAgent Process Diagram

45

Figure 4.8: FusionAgent Process Diagram

46

used. If the user points on the map while given a command, it is likely that
those two operations is given closely in time, and this time difference is the
hysteresis value set. This is what was mentioned as temporal compatibility
in an earlier chapter. If command and location information are not closely
with respect of time, the physical position of the user is considered. This
physical position does not always change for a time, and should not be that
time dependent. From this information, a priority list will be made, and the
one on the top will be considered first. If it is not possible to get a successful
result from this, the next modality on the list will be considered.

As the modalities that should be integrated are decided, the integration
process could start. The integrator has currently information about pos-
sible objects from the LocationAgent, and the most recent command from
the CommandAgent. How this process works, is discussed in detail in next
chapter when the integration algorithm is presented, but I’ll give a brief
description here anyway.

If object information is in addition given from the command information,
the integration process is a bit easier. This object could then can be matched
against the objects from the location information. If object is not given from
the command, external knowledge about the environment has to be used.
Figure 4.9 shows how this information is stored externally:

Figure 4.9: Example of the knowledge which shows possible commands on
each object

The FusionAgent get this knowledge at startup, and the fusion agent
then has knowledge about all possible types of objects in the environment,
and which commands that can be performed on them. As the FusionAgent
shall integrate information containing a command and possible locations,
this knowledge has to be used to get the coupling between command and
object. By using this knowledge and the information from the relevant input
modalities, probably one common meaning is found. If not, an error occurs,
and either new information has to be found, or the next on the priority list
is used.

When a joint integration is found, the agent has information about what
to do. It is then ready to perform this action. This is out of the scope
of this thesis, and it should probably send this information further on to
an another agent which contain information about activator. For now, a

47

simulated action will be performed in the last process.

4.4 Multimodal integration

The process of multimodal integration should merge the information that
comes from the different input modalities, and get one common meaning.
This common meaning should contain what specific object the user refer to,
and what should be done with this object.

As discussed earlier, there are in general two main methods to solve this,
early feature-level fusion and late semantic fusion. In this architecture, the
late semantic fusion is chosen. This approach is favourable when the input
modalities are different and complementary as command information and
location information are. By using semantic fusion, the different modalities
work independently and the different recognizers could be trained individu-
ally. When using the semantic fusion method, it is much easier to extend
the architecture to involve other modalities, or to change one modality. If a
better speech recognizer shows up, and is preferable to use in this system,
this can easily be changed without consider doing anything with the other
modalities.

Semantic fusion requires a common meaning representation for the dif-
ferent modalities, and in this architecture a frame-based structure has been
chosen. A frame represent objects with a set of attribute/value pairs. These
is implemented in the form of the entries that is placed on the space, one
for command information and one for location information. The Command-
Description and the LocationDescription is discussed in detail earlier, and
consists all relevant information which each agent gets from the user when it
is placed on the common space.

The goal with the multimodal integration process is to find one common
meaning which specify one specific object and what should be done with this
object. That means that we need both information from the CommandDe-
scription and the LocationDescription. These descriptions is the frame-based
structures which has to be merged together based on their attribute values.

As a CommandDescription is placed on the space, the FusionAgent is
notified, and it reads this CommandDescription and all LocationDecription
present on the space. By using the time attribute, the LocationDescriptions
are sorted in a priority list. If a LocationDescription which refers to a map in-
put is placed on the space within a certain time interval, this will get highest
priority, if not the physical location will get highest priority. The relevant in-
formation when merging two input modalities together, will be the command
and eventually the object type if given from the CommandDescription, and

48

the list of object names and types from the LocationDescription. This list of
objects is sorted by the LocationAgent, and when the LocationDescription is
sent to the space, this list will be sorted with the most likely object on top.

To find a match, we start by traversing the list of object names and types
from the LocationDescription. If a object type is given from the command
information, it will try to find a match from the object type attribute from
the location attribute. If a match is found, this will refer to a specific object
name, and the FusionAgent has reached its goal and found a specific object
and what it should do.

The object type is often not referred to from the command information.
In these cases, the matching process is more complex. A grammar is made
which shows all possible object types, and which commands can be per-
formed on them. The algorithm start again by traversing the list of object
name and types from the location information. For each object the gram-
mar will be used to find potential commands which can be performed on
it. If one of these commands matches the present input command from the
CommandDescription, a match is found and the goal is once more reached.

4.5 Knowledge representation

External knowledge about the environment has to be used both when analysing
user input and in the process of multimodal integration. Relevant informa-
tion is about available objects in the environment, where these objects are
located, and which actions can be performed on them.

In the process of collecting location information from the user, some pre-
defined location based knowledge has to be used. This knowledge has to
contain information about available objects in the environment, and where
they are located. Figure 4.10 shows to the left how this information is repre-
sented. Each object represented on the map or in the physical environment is
given some attribute/value pairs. An unique object name is used to identify
each object, and this could for example be the name of a room as ”kitchen”.
A set of object types is used to identify which type object it is, and this could
be ”room”. The coordinates is limited to a square where the four points are
identified, x minimum, x maximum, y minimum, and y maximum. This
knowledge is used to determine which objects it could be referred to as an
(x,y) coordinate is found. By matching this coordinate to this information,
potential referring objects is found.

To the right on figure 4.10, a knowledge model that determine what action
can be performed on each type of object is shown. The attribute commands is
a list of commands, and one object type can contain several commands. This

49

Figure 4.10: Knowledge about location and commands

knowledge is important in the multimodal integration process when matching
command information and location information, and this knowledge is the
link between commands and location.

This knowledge is stored external and permanent, and the agents get this
knowledge at start up. Some dynamic knowledge are also present, this is the
knowledge that should be integrated, and which comes from the user. This is
the knowledge about which action the user wants to do, and to which objects.
This knowledge is represented as frames, and placed on the blackboard. As
shown earlier on in figure 4.3, the command information show information
about which commands the user wants to do, and sometimes to which object
type that action should be performed on. The location information holds
information about which objects that are potential matches with respect to
the coordinates the user should refer to.

50

Chapter 5

Implementation

A prototype of the architecture presented in the previous chapter has been
implemented, and in this chapter the current implementation will be de-
scribed. The FusionAgent, the CommandAgent, and the LocationAgent are
all implemented to work with a blackboard. In the current implementa-
tion, two agent are implemented to represent different modalities for both
the CommandAgent and the LocationAgent. These are respectively the
SpeechAgent and the TextAgent for the CommandAgent, and the Position-
Agent and the MapAgent for the LocationAgent. These agents and how they
communicate will be discussed in detail in this chapter.

The chapter starts with describing the implementation of the blackboard,
and the communication between the agents collecting information from the
user and the FusionAgent. Then each agent are described in detail, and at
last the fusion algorithm.

5.1 Blackboard

The architecture used to implement the blackboard struckture is space-based,
and is called JavaSpace. As described in chapter 2, this is a Java based
implementation with entry objects placed on the space.

As mentioned in the previous chapter, a common representational struc-
ture is used to represent the location and command input. A frame struc-
ture was used. This could refer to the entry objects that are placed on the
JavaSpace by each agent, and which again are collected by the FusionAgent.
The entry objects that refer to the frame structures described in chapter 4
are showed in figure 5.1.

The communication between the agents and the JavaSpace will be de-
scribed in detail later in this chapter, but as described in chapter 2, four

51

Figure 5.1: Two type of entry objects, one for command information and one
for location information

commands are possible: write, take, read and notify. By using these com-
mands on the LocationDescription and the CommandDescription, and easy
method of communication is provided.

5.2 Agents

Figure 5.2 shows the agent hierarchy with respect of inheritance. This shows
each implemented agent, and each agent will be discussed in detail in this
section.

5.2.1 Agent communication

A space-based model is used for the FusionAgent to collect the information
from the CommandAgent and the LocationAgent. Figure 5.3 shows how this
space communication works.

The figure shows the most important components, and which commands
are used. The agents SpeechAgent and TextAgent extends the CommandA-
gent, and the MapAgent and the PositionAgent extends the LocationAgent.
To communicate with the space, entry object is made. As described in the
previous chapter, the CommandDescription and LocationDescription repre-
sent respectively command information and location information from the
user. How the different agents works and how the information is collected
and used will be presented in the following section. In this section the com-
munication between the agents through the JavaSpace will be presented.

Command agents collect information about which command should take
place. This command is stored in an entry called CommandDescription

52

Figure 5.2: The figure shows inheritance in the agents

shown in figure 5.1. When all information is collected, and the Command-
Description entry is made. To make sure the FusionAgent will get the last
entry object placed on the space, only one entry can be present on the space
from each input modality at each time. The agent will then look for other
entries placed on the space by the same agent by searching for inputType.
If an entry is found, this will be deleted from the space by using the take
command, and the new one is written to the space.

The location agents collects location information from the user. In the
current implementation, this is either the users present physical location
through the PositionAgent, or location information which refers to pointed
coordinates on a map through the MapAgent. This information is stored
in a LocationDescription entry as shown in figure 5.1. When all location
information is collected, and this LocationDescription is made, the entry
is written to the space. Again old entries are first deleted using the take
operation from the space before a new one is written as shown in figure 5.3.

In the current situation, up to four entry objects could be placed on the
JavaSpace, hence two LocationDescriptions and two CommandDescriptions.
Each of the CommandDescriptions contains exactly one command each, while
each of the LocationDescriptions could contain several location objects.

The FusionAgent is the one responsible for collecting the information
from the blackboard and integrate it into one joint interpretation and de-
cide which command should take place. A listener is implemented for the
FusionAgent to listen to the JavaSpace for changes. As figure 5.3 shows,

53

Figure 5.3: Space Communication

54

this uses the notify operation to listen for CommandDescriptions. As one
of the CommandAgents writes a CommandDescription on the JavaSpace,
the FusionAgent is notified and reads this CommandDescription and all of
the existing LocationDescriptions on the space. The FusionAgent then has
both command information and location information that is collected and it
should hopefully be capable of finding a joint interpretation. This process is
described in detail in the next section.

5.2.2 InputAgent

This is the top agent in the hierarchy showed in figure 5.2. The other agents
inherits this agent’s methods and behaviours. Figure 5.4 shows the imple-
mentation of the InputAgent and its Behaviours.

Figure 5.4: The input agent with its behaviours

The main task of this agent is to utilize the connection to the JavaSpace.

55

Therefore it has information about the JavaSpace, and it has behaviours for
finding and connecting to a JavaSpace at startup and methods to update the
JavaSpace.

The InputAgent includes two behaviours. Both behaviours extends the
Jade OneShotBehaviour and are managed through each agents behavioural
module. The behaviour registerWithJavaSpace is responsible for connecting
to the specified URL where the JavaSpace exist, find the Lookup service
and finding the named JavaSpace and a TransactionManager. Transactions
are used when entries are passed on between the agents and the JavaSpace,
and the TransactionManager are used to control these transactions. The
InputAgent holds this information after it is found.

The second behaviour implemented in the InputAgent, is the WriteTrans-
action behaviour. This is responsible to update the JavaSpace with the new
information that is provided by the detected input. As seen from figure 5.4,
this behaviour is connected to the entries CommandDescription and Loca-
tionDescription. The WriteTransaction writes the new description on the
JavaSpace and deletes eventual old description provided by the same agent.
The process of taking an old entry from the space, and writing a new one, is
formed as a transaction.

5.2.3 CommandAgent

Two agents are implemented for command input. These are the TextA-
gent and the SpeechAgent. As shown in figure 5.2 these agents inherit the
CommandAgent, which again inherit InputAgent. Figure 5.5 shows the im-
plementation of the input agents that is responsible for collecting command
input.

The CommandAgent contains methods for making the entry Command-
Description based on the information from the user, and then writing the
CommandDescription to the JavaSpace by using the WriteTransaction be-
haviour from the InputAgent.

SpeechAgent

The SpeechAgent listen to speech input from the user, analyse this and send
relevant information to the blackboard. Figure 4.6 showed the process di-
agram for the CommandAgent, and the figure showed that four processes
were idetified to accomplish the goal of the CommandAgent.

The SpeechAgent listen for speech input from the user. IBM ViaVoice is
used for speech recognition. This is a speech engine that converts speech to
text. The Java Speech API is used to get access to the IBM ViaVoice speech

56

Figure 5.5: The agents that is used to collect command information from the
user

57

recognizer. To define the words that a user can say, a grammar has to be
defined. The basic functionality of this speech recognizer is grammar man-
agement, and result production when something that matches the grammar
is spoken.

The speech engine is a state system where each state defines a particular
mode of operation. A speech engine must be in one of four possible allocation
modes: DEALLOCATED, ALLOCATED, ALLOCATING RESOURCES,
DEALLOCATING RESOURCES. For a recognizer to listen for incoming
speech, it has to be in the ALLOCATED state. When the recognizer is allo-
cated, several choices of states has to be done. It could either be PAUSED or
RESUMED. For the recognizer to receive input, it has to be resumed. If it is
paused, it is the same as turning of the microphone. The second state system
of an allocated recognizer, is FOCUS ON or FOCUS OFF. This indicates if a
specific recognizer instance has the speech focus. This is especially important
when more than one application share the same underlying recognition. The
third state system of an allocated recognizer, indicates the current recognition
activity. Three states are possible: LISTENING, PROCESSING, and SUS-
PENDED. When listening, it listen for incoming audio, but has not detected
speech yet. When processing, it process incoming speech that may match an
active grammar. As suspended, it is temporally suspended while grammars
are updated. In this state, the audio input is buffered and processed once
the recognizer returns to listening and processing states.

As the recognizer is in LISTENING mode, and incoming speech is de-
tected, it changes to PROCESSING mode. When incoming speech is processed,
it check for a match with active grammars. If a match is found, a result is
created. This result is what provide the application with input. It is from this
result the meaning should get extracted. As long as in the PROCESSING
state, a result can be updated. When a recognition is completed, it changes
to SUSPENDED state. Then a result finalization event is performed to indi-
cate that the result has got all the information it should. After the suspended
mode, the recognizer goes back to LISTENING mode.

The grammar design is a very important part of the SpeechAgent. This
grammar is in Java Speech Grammar Format, JSGF. This specify what can
be said, and this has to consider objects in the context, and which commands
can be done on these. A rule grammar is used here, and is therefore provided
by the application. The grammar is needs to have information about the
environment, and the grammar could be on the form:

The grammar defines the set of tokens the user can say, and how these
tokens could be spoken. In the rule grammar used, the rules are defined by
tokens that is relevant for this example. When using this rule grammar, the
recognition process is constrained, and error rate should be notable reduced.

58

Figure 5.6: An example of a grammar in JSGF

As the recognizer detect incoming speech that matches an active grammar,
the application is provided with a recognition result by the recognizer. A
result listener is used to receive events when a result matches the grammar.
A result could either be accepted or rejected. As a result is accepted, an
event is issued in the resultListener, and what should take place could be
specified in the application. If the recognizer is not confident that it has
recognized a result correct, the result will be rejected. But even if a result is
accepted, it is not sure that the recognition is correct. Misrecognition could
still happen, and that is were multimodal interfaces could help in reducing
the error rate.

As a result is accepted, the meaning has to be extracted. In this case this
will be a command, and in some cases a object and some extra information
about what should be performed. When this information is found, the entry
which is placed on the blackboard is made, in this case the CommandDe-
scription.

The class SpeechUI shown in figure 5.5 is used to start the speech recog-
nizer and listen for new input. The speechUI uses a rule grammar and a rule
listener. The rule grammar specifies what can be said, and is discusses in
an earlier chapter. The rule listener listen for speech input that matches the
rule grammar, and when the user has spoken an allowed sentence, the rule
listener notify this.

As the user speaks a sentence that matches the grammar, the meaning of
it has to be extracted for it to be possible to make a CommandDescription
of it. To do this, tags are used in the grammar. As a possible command
is spoken during the sentence, a tag is placed after this command. When
a sentence is accepted, the tags that are in this sentence are stored in an
array. If the sentence ”please close door” from figure 5.6 was spoken, the ar-
ray has the two tags ”close” and ”door” as elements. This makes it possible
to extract the relevant information from a sentence. This information are
then stored in the CommandDescription as the values of the attributes com-
mand and object. The same method is used for eventually extra information.
The result listener uses these tags when the SpeechAgent’s setSpeechCom-
mand() is called. The methods for setting the CommandDescription and the
WriteTransaction behaviour are inherited from the CommandAgent and the
InputAgent.

59

When using the speech recognizer, a few steps has to be done in the
implementation. At first a recognizer has to be created. Language and
user can be chosen here. Since different users can have their own profiles in
ViaVoice, it could be an advantage with respect to recognition accuracy to
teach ViaVoice how you speech. If these are not specified, default values will
be used. After a recognizer is created, it has to be put in the ALLOCATING
state. The next step is to load and enable grammars, and in this application
one external file is loaded to use a rule grammar. After the grammar is
loaded and enabled, a listener has to be attached, and a rule listener is here
connected to the recognizer. For the recognizer to start listen, it has to be set
in the FOCUS ON state and RESUME. When this is done, it should start
listening for speech input.

TextAgent

The TextAgent is responsible for collecting textual input from the user. A
class called UI is used for managing the Graphical User Interface. The GUI
contains three textfields and a button. The current implementation do not
support natural written language, which means the command information
has to come through the three textfields. The CommandDescription shows
what relevant information should be collected. The information that could
be collected through the GUI is the command, the object and some extra
information that could be relevant, for example if a room should be reserved,
this extra information could be at which time. The time is collected when
the button is clicked and the CommandDescription is ready to be written to
the JavaSpace.

At startup, the agent’s behaviours are started. For the TextAgent, only
the registerWithJavaSpace that is inherited from the InputAgent is started
up. A Graphical User Interface which listen for user inputs is also started.

As said, a Graphical User Interface is used to collect command infor-
mation. The user writes the information in the textfields, and at least the
command field got to contain something. The other two fields are optional.
A ButtonListener is used to decide when the command information is final-
ized, and as soon as the user clicks the button, the text that is written in the
textfields are collected and TextAgent’s setTextCommand() is called. This
uses the methods inherited from the CommandAgent which sets the Com-
mandDescription based on the textual input, the agent type, and the time.
When the CommandDescription is finalized, the WriteTransaction behaviour
is executed.

60

5.2.4 LocationAgent

Figure 5.7 shows the LocationAgent, and figure 5.7 the agents that inherit
it, and the other classes that is used in the process of collecting location
information from the user.

Figure 5.7: The LocationAgent

The LocationAgent has one behaviour implemented, the GetImportant-
Points behaviour. This is responsible for getting the knowledge about the
environment from an external source, and in this implementation the knowl-
edge is stored in a text file. This information will be loaded to the Location-
Agent at startup, and contain information about which objects that exists
in the environment, and for which coordinates it is accessible.

The LocationAgent also contain a method for setting which objects a
specific input coordinate refers to. As coordinates are found either from input
from a map or a physical position, the knowledge about the environment is
used to decide which objects these coordinates could refer to.

Two agents are implemented for input collection of location information
from the user, and these are the MapAgent and the PositionAgent. Both
agents implements the methods and behaviours from the InputAgent and
the LocationAgent as shown in figure 5.2.

To decide which objects each coordinate refers to, some knowledge about
the world has to be used. This refers to points on the map or in the physical
environment, and tells which coordinates refers to which objects. This infor-
mation is stored in an external file, and is imported to the LocationAgent
when started up. An example of this could look as figure 5.9.

61

Figure 5.8: Location input

Figure 5.9: Example of location points

62

This is on the form objectName :objectType(xminimum xmaximum, ymin-
imum y maximum). If the coordinates for a user would be (12,25), then this
has to be checked with this information, and in this example both door1 and
room1 would be potential objects. All potential objects has to be considered
and sent further to the common space. At this form, each object is in a
rectangle of coordinates.

MapAgent

The MapAgent uses a Graphical User Interface formed as a map for user
input. This is the MapInterface. An ImageListener is used to detect which
objects the user points to. In the current implementation, these coordinates
registers one specific object, and therefore reacts on a mouse click. As the
user clicks the mouse on the map, the horisontal and vertical position is
stored, and the setLocationPoints() method to the MapAgent is called. The
potential objects that the user refers to are then stored as a LocationDescrip-
tion.

The attributes that are stored in the entry LocationDescription is input-
Type, nameAndType, and time. The inputType is the input modality, and
is in this case maplocation. The nameAndType attribute is a list which
contains an object name and an object type.

To decide which objects the coordinates could refer to, setLocationPoints()
are used. By using the LocationAgent’s locationList which contains the in-
formation about the environment, and the setLocationObjects() method, a
match will be searched for. Each object in the locationList contains their
location, and by searching and try to match the location coordinates against
the locationList, it should find the potential objects that coordinate could
refer to.

The MapAgent uses the behaviour GetImportantPoints inherited from
the LocationAgent to get the knowledge about the environment and how the
coordinates are related to the map. The attribute locationList is used to
store this information in the agent. The MapAgent has a behaviour called
ListenForMapInput which is responsible for listening to input from the user.
This behaviour will start the MapInterface and listen for map input from the
user. As a map input is detected, the x and y coordinates are stored and
setLocationObjects inherited from the LocationAgent is called. This uses the
locationList to decide which objects potentially refers to the coordinates, and
the LocationDescription is made using this information. As the MapAgent
has finalized the LocationDescription, it can be written to the JavaSpace by
using the WriteTransaction

63

PositionAgent

The PositionAgent is not fully implemented as intended. This agent should
collect the user’s physical position by using the Cordis RadioEye. This is a
network positioning system that finds the computers physical location. In
this implementation there have been some problem with the connection to
the RadioEye, and the implementation is not finished with respect to this.
This agent is now simulated to contain a static physical location. This is
to show how the fusion process works when more than one LocationAgent
exists in the system.

The PositionAgent has a behaviour called SetPositionPointsBeh which
should listen for inputs from the RadioEye, and get the eventual new position
and then made a new LocationObject if there is any change in potential
referring objects.

The GetImportantPoints inherited from the LocationAgent is also used
here to get external knowledge about the environment and make the loca-
tionList. This should be the same environment, but the coordinates in the
physical environment is probably not the same as in the map, so these should
be interpreted to refer to the same object.

The registerWithJavaSpace and the WriteTransaction behaviours inher-
ited from the InputAgent, has the same functionality as described in the
previous three agents.

5.2.5 FusionAgent

The current implementation of the fusion agent is implemented to integrate
location input and command input which is found through the previously
described input agents. As figure 5.2 shows, the FusionAgent inherit the In-
putAgent. As mentioned earlier, a late semantic fusion method is used, and
frames are used as representational structure to decide semantic compatibil-
ity.

Figure 5.10 shows the FusionAgent with its methods and behaviours. Two
behaviours are implemented, SetPotentialLocationObjects and SpaceListener.
The behaviour control module first starts the registerWithJavaSpace inher-
ited from the InputAgent. After the connection and services related to the
JavaSpace is started, the SetPotentialLocationObjects starts. This behav-
iour gets external knowledge about which commands can be performed on
which objects. The agent gets this knowledge stored in a list called object-
Commands. The last behaviour started at startup is SpaceListener. This is
responsible to listen for input from the blackboard JavaSpace.

For the notify() method to listen for new input to the JavaSpace, a lis-

64

Figure 5.10: FusionAgent

65

tener class has to be used. This describes what the agent should listen for.
In this implementation, the FusionAgent listens for a new CommandDescrip-
tion. The listener will then collect this new command input together with
all LocationDescriptions that exists on the JavaSpace.

As new command input is detected, and the location input is collected,
the FusionAgent starts the fusion process. The location information are at
first sorted as there probably will be two input modalities, map and position.
To sort them, the time value will be used, and a hysteresis value on the map
input decides which should be preferred. In the present implementation, this
hysteresis value is 2 seconds, that means if there is between 0 and 2 seconds
difference in time of the completion of the command input and the map input,
the map input will be preferred, if not the position input will be preferred.
This sorted list are used in the command-location fusion. If a match is not
found in the preferred location input, a match will be searched for in the next
modality in the list. There is no specific reason why 2 seconds are chosen
for this other than it seems to work as desired. To find the best value, an
extensive test should be done on this, but this was not a high priority in this
work.

5.3 Fusion algorithm

The fusion algorithm is responsible for multimodal integration of a location
base information and command based information. This algorithm is a part
of the FusionAgent, and is called through the execution of the commandLo-
cationFusion() method.

The algorithm get as input the command and object type which comes
from the commandDescription from the blackboard in addition to the list
of potential location objects. It also uses the information about all possible
objects in the environment, and which commands can be performed on these
objects.

At first it does a check if the object type is given as input from the
command description. If this object type is given, a loop will be started.
This will go trough each element of the list of potential objects from the
location input until an eventual match is found. Each of these elements
consists of an object name and an object type. Each elements object type
will be matched against the object type given from command description. If
this matches, the algorithm is done and an action is performed. If a match
is not found, an recognition error occurs.

If the command description is not given from the first check, a more
complex method has to be used to find a match. This uses a set of 3 nested

66

loops. The first loop goes through each element from the list of potential
objects from the location input until a match is eventually found. As before,
these elements has a object name and a object type. The next loop will
go through each elements form the list of all possible object types in the
environment. If one of these object types matches current object type from
the location input, then check the commands. If the input command matches
one of the possible commands, the a match is found. If the match is found,
the loops ends, and a action can be performed.

67

Figure 5.11: Fusion algorithm

68

Chapter 6

Demonstration

An example is implemented to demonstrate the current implementation of
the architecture. The four input modalities speech, text, map and physical
position is implemented in a fictitious environment.

6.1 The example

The example is located in a floor with a few offices, meeting rooms and stu-
dent workplaces. In addition to these rooms, windows, curtains and doors
are given as objects which are possible to perform actions on. In this sec-
tion each implemented input modality will be presented together with the
scenarios the system are briefly tested in to show how the implementation
works.

6.1.1 Map location

Figure 6.1 shows the map used in the implementation. The map shows
the objects that are used in this example. Four different object types are
identified; room, door, curtain and window. Each instance of an object type
has an unique object name, for example office1 and office2.

As the user points somewhere on the map, the coordinates are detected.
The MapAgent needs some information about where each object are located
to transform these coordinates to objects. For this example, a list of each
object has been made with information about which object type it is and it’s
coordinates. Figure 6.2 shows how the information in this external file are
stored with information about the object name, object type, x minimum, x
maximum, y minimum and y maximum. These information are loaded to
the MapAgent at startup and are used in the input analysis.

69

Figure 6.1: The map used in the example

70

Figure 6.2: Example of how the location information is stored externally

The four point drawn into the map, just refers to the 4 scenarios, and
will be discussed later.

6.1.2 Physical position

As discussed earlier, this should use the Cordis Radioeye to find the users
physical position. This should use the same map, but the physical environ-
ment would not use the same coordinates for the same objects since the map
is scaled down. The difference has to be found and the coordinates could
be transformed in a way that the map location and the physical position fit
each other. Since the implementation of the PositionAgent is not finished,
the PositionAgent holds a static position.

6.1.3 TextAgent

In the current implementation, the text agent do not support natural lan-
guage, and is used only for keyboard input to fill in the necessary parts in
the CommandDescription. It is implemented as a GUI with 3 textboxes; one
for command, one for object, and one for additional information.

6.1.4 Speech command

Speech is the primary command input, and as discussed earlier, the IBM
ViaVoice provide the recognizer. For the application to understand what is
said, the grammar design is important. An example of the speech grammar
is shown in figure 6.3. This show a sentence that could be spoken, and some
commands and location objects that can be used in that sentence.

This grammar just tells which words that are allowed, and not allowed
combination with respect of combination of location objects and commands.
This will be checked in the part of the fusion. For example the sentence
”reserve door” is allowed, but do not make any sence. Anyhow, a command

71

Figure 6.3: Speech grammar

72

could not be done since the fusion agent has the information about which
commands can be performed on which objects.

6.1.5 The scenarios

Four scenarios have been made to show how the system works. This is tested
by using all modalities, and I will present the analysis of it in this subsection.

The only modality that could be trained, is speech. For me as the user,
I have trained it as much as is recomended in the IBM ViaVoice user guide,
and it should therefore work satisfactory. Since not beeing a native english,
this could decrease the quality of the recognition. For a neutral user which
has not trained the speech recogniser, the recognition rate would probably
be lower.

Issues that is important when showing how the system works are how
accurate the speech recognizer are, the different location modalities, and the
priority of the location input with the 2 seconds rule for the map input.

As said, four scenarios are made to test the system. The four point
marked on the map, should be the coordinates it should be referred to in
the four scenarios. Points 1, 2 and 4 will be referred to by clicking the on
the map, while point 3 should refer to the present physical location. The
commands which should be performed is:

• Scenario 1: I want some information about the room called office1.

• Scenario 2: First I want to close the window, and the close the curtains.

• Scenario 3: I want to close the door where I am.

• Scenario 4: I want to reserve the meeting room at 3 o’clock.

Scenario 1: For this scanario, map and speech modalities are combined.
The example is performed by clicking on the map at point 1 while speaking
the following sentence: ”Could you give me some information about this
room”.

From the SpeechAgent, the sentence ”Could you give me some informa-
tion about this room” is a match from the grammar. From the grammar,
the input to the application will come from the tags as ”information” and
”room”. In the making of the CommandDescription, the command will be
set to ”information”, and the objectType will be set to ”room”.

The MapAgent is responsible for the other input modality, and collects
the location input and makes the LocationDescription. When the mouse is
clicked somewhere on the map in point 1, the coordinates are found. In this

73

example point (103,71) is clicked. By using the knowledge about the map
environment, and traversing the list of where the different map objects are
located, it is found that office1 is a potential match.

Figure 6.4 shows the CommandDescription and the LocationDescription
that is written to the space. As the figure shows, the time difference between
the map input and the command input is less than two seconds, which means
the map input is a priority for location input.

Figure 6.4: Scenario 1

When finding the joint interpretation for this input, the inputs must
be merged. The command is ”information”, and ”room” is given from the
CommandDescription. Since object type is given, the elements in the name-
AndType list are checked for a matching object type. As seen, ”room” is the
objectType of ”office1”, and the match is found. The joint interpretation for
these inputs are ”information office1”.

Scenario 2: In this scanario I want to test both speech and text modalities
together with the map. At first I speak ”close” while chosing point two, then
I write ”close curtain” and click on 2.

Figure 6.5 shows the CommandDescription and the LocationDescription
that is written to the JavaSpace after the speech and map input are collected
and analysed.

The time difference are about 0,6 seconds, and once more the map input
are chosen as location input. This time only the command are given from the
speech input. To find a potential location match, the knowledge about which
commands are allowed on the different objects are used. In this case, 3 types
of objects are potential from the map input; room, window and curtain. By
using this knowledge, the command ”close” could be used both for window

74

Figure 6.5: Scenario 2

and curtain, and since window are preferred, this will be used. The joint
interpretation will be ”close window3”.

The second part of this scenario are to open the curtain. The only differ-
ence in the LocationDescription will be the time attribute. This will change
since the map is clicked again closely in time to the new CommandDescrip-
tion. The CommandDescription will change it’s inputType to ”text”, while
the object attribute will be given the value ”curtain”. In this case the joint
interpretaion will be ”close curtain”.

The second part of this scanario is given to show that the object have to
be given form the command input if the curtain are going to be chosen since
it has lower priority than window. If this is not given, the highest priority
will be chosen since both could use the close command.

Scenario 3: For this scenario, I just speak ”close” once more without click-
ing the map. This time it should close the door close to point 3.

Just as in scenario 2, the command ”close” are spoken. However, in
this scenario it will not be followed by a map location within two seconds.
The difference compared with scenario 2, is that since the difference in time
between map and speech input are more than 2 seconds, the position input
will have highest priority. Figure 6.6 shows the CommandDescription and
the LocationDescription.

The PositionAgent gets the positions where the user is located. In this
case, the user is at point 3, and this could refer to both student lab1 and
door7. When the user speaks the command ”close” and the command is not
followed by any map location input within 2 seconds time difference, the last
known position of the user will be used.

75

Figure 6.6: Scenario 3

The process of finding a joint interpretation works just like in scenario 2.
Since the object is not given from the ocmmand input, the knowledge about
the environment has to be used. In this example the command ”close” could
refer to ”door”, but not to ”room”. This means the joint interpretation
would be ”close door7”.

Scenario 4: This scenario once more combine speech with map location.
I click on point 4 while speaking the sentence ”could I reserve this room at
three”.

This scanario is made to illustrate the use of the extra information. In
this case the user wants to reserve the meating room at 3 o’clock. Figure
6.7 shows the CommandDescription and the LocationDescription after input
analysis. Once more the map location is chosen since the time difference is
about 0,7 seconds.

Figure 6.7: Scenario 4

76

In this case, the object is again given from the command input, and
this matches the object type given from the location input. This makes the
matching process easy, and the joint interpretation is ”reserve meetin room
3”.

Visual example

Figure 6.8 shows the graphical interface. The three agents TextAgent, Ma-
pAgent, and the FusionAgent has a GUI, while the SpeechAgent and the
PositionAgent do not. The figure shows an example where the user want to
reserve the meeting room at three o’clock. In this case, the TextAgent and
MapAgent are used as input sources. The user gives the command ”open”,
and the additional information ”3” in the text GUI, and clicks on the map
GUI where at the black circle. The FusionAgent’s output GUI shows that a
solution is found, and that the meeting room should be reserved at 3.

77

Figure 6.8: The graphical test interface

78

Chapter 7

Conclusion

7.1 Discussion

In this work an architecture is proposed of the input part of a multimodal
interface which combine command and location information. The goal has
been to design a general framework where it should be easy to add new input
modalities, and to implement a prototype which illustrate the use with a few
input modalities. Towards reaching this goal, work have been done in the
following areas:

• specifying the requirements for this approach.

• a literature survey of relevant theory like intelligent interfaces and
agents.

• a study of previously designed system.

• designing the overall architecture.

• implementation of a prototype with input modalities as speech and text
for command information and map and position for location informa-
tion.

The current architecture is general, and could easily be extended with
other modules without doing to many changes to the rest of the system. If
a new command modality is added, this should probably lead to no changes
other than adding the new agent. However, adding a new location modality
would probably lead to small changes in the FusionAgent. The current ar-
chitecture is not dependent of specific input modalities as long as there are
modalities for both command and location. If modalities other than these
are going to be added, a few changes has to be done with the FusionAgent.

79

One goal behind this work was to find an alternative human-cumputer
interface to the traditional ones to improve usability by using multimodal
input. To draw a conclusion on this, it should be extensively tested, and
this is out of the scope of this thesis. However, a few comments can be
said on this part. A problem with the current architecture where speech
and text input are used as input for command, is that the commands are
invisible for the users. A menu system could be used in addition for command
input, but the users should probably know what they want to do, and that
means it is important that the speech grammar is designed in a flexible way
where the user has freedom to say the same things in different way. It can
be very frustrating if the cumputer never understand what you try to say.
This type of input has as discussed earlier the advantage over menu-based
input that the command could be easier available. Advantages by using
multimodal input was discussed in chapter 2.3.5, and could include flexibility,
availability, adaptability, efficiency and lower error rate. The flexibility with
respect of choosing input modalities should be a an advantage with this
architecture. The user should be free to choose the modality it want as long
as it combines a command and a location input. Advantages with respect
of availability should also be seen in this architecture. For example could
users with handicaps use speech to open doors. The architecture provide
adaptability in a way that it is possible to change modalities for different
situations, for example speech should not be used in noisy environment, and
other modalities as text should then be used. Since the input collection is
done by independent agents which works on their own, the efficiency should
be increased since they could work in parallel. As said earlier, speech is a
modality where the error rate is a problem. By using multimodal input, the
error rate should be reduced as other modalities helps in the interpretation,
and they should get the strengths from several parts. However, there is still
a lot of work to do, and the error rate is still higher than in traditional
interfaces.

The proposed architecture fulfills the requirements specified about inde-
pendent input modalities. Each modality works independently of each other,
but it is necessary to have a common method of representing the analysed
information. A frame structure is used to fulfill this requirement where a set
of attributes are given some values. Different structures are used to represent
command and location. As soon as the different input agent have collected
and analysed new input information, it should easily be accessible for the
agent that is responsible for the fusion of the different input modalities. A
blackboard model is used in this approach, where each input agent writes
it results to the blackboard, and the fusion agent collect this information
when needed. By using this information, the fusion agent should hopefully

80

find the joint interpretation and decide which action should take place and
to which object.The last requirement was about mobility, and both Jade
and JavaSpace are implementations that support distibuted computing and
mobility.

The external knowledge about the environment the system work in is a
very important aspect for the system to work as desired. The knowledge
needs to be specified externally and be loaded into the system when the
specific environment are used. In this prototype, the required knowledge are
stored in external files, and contain information about which objects exist in
the environment, where they are located, and which commands are allowed
to be performed on them.

This is where this work stops. How the action should be performed is
not considered. I have not had any focus on the output, but there should
probably be some activators which could be triggered when the action is
decided.

7.2 Future work

The most important elements are implemented, but there are still a lot of
work that could be done, and should be done if the system should be useful.
I will discuss some of these in this section.

As just mentioned, this work stops after the input is collected and the
multimodal integration is done. In the future, this could be extended to focus
on the action part and the output.

Multimodal integration: The method used for multimodal integration
works well for the current implementation. However, a few things should
be considered. The hysteresis value mentioned earlier for choosing either
map input or physical location should be tested to find the best value. For
now, this is set to two seconds. The map location and the command input
should be temporal compatible which means they should be closely in time.
As mentioned, the value of two seconds are chosen and it seems like an
potentially good value, but an extensive test should be done to find the best
value.

Input modalities: It is possible to add new modalities for location and
command input, and this should be easy in the current architecture with-
out too many changes in the current system. Several other modalities were
mentioned in chapter 2, and a new agent could be added to the system for
each new modality. An another possibility could be to extend the current

81

architecture to get input other than location and command. In this case
a new frame structure has to be made which suits this type of input, and
changes needs to be done in the FusionAgent to consider this new modality.
New input types could for example be modalities that identfy the user, and
the system imediately knows who the user is and information about the user
could be used.

It could be useful to extend the location information to contain more
than just specific objects in a specific point. The input information could
be extended to find information from regions or greater areas by marking a
whole area. In this case it is necessery to detect input for more than just one
point, and register all points where the pointing device is moved. This could
make it possible to find information about an whole area.

Another aspect with the location input is that the position agent do not
work as desired as it just refers to a static position right now. An another
effort to make the Cordis RadioEye work should be done. Trouble with the
connection to the RadioEye is the reason for not working now, and with
more available time, this should get priority. In this case, it is also necessery
to make a knowledge model where the coordinates to the map and to the
physical position co-ordinates.

As a location agent detect an input with coordinates, it should be analysed
by using the knowledge about the environment to find potential objects it
is referred to. As it is now, this list of potential object are sorted as in the
knowledge base. A solution here could be by giving them some weights by
deciding how close they are to the object, or by using some other models, for
example the state of the object or by studying some specific patterns.

More work could be done to the SpeechAgent as well. Currently there
exist a problem with the position of the tags. As mentioned earlier, as a
spoken sentence match an allowed combination of words from the grammar,
tags with the keywords are extracted and sorted in an array. Since it is listed
in an array on position , this could be a potential source of error. As spoken
input is accepted, the SpeechAgent get the list of tags sorted with command
in the first position, location object in the second, and the additional in-
formation in the third position. A problem occurs if the location object is
not spoken, but the additional information is, then would the SpeechAgent
believe that the additional information was a location object since the tag is
in position two. Several solution could be possible to solve this problem, and
one solution could be to mark the tags with type. An example could be to
just use use a ”cmd ” in the beginning of a command tag like cmd open. In
this case, the array of tags has to be searched and the different tags is placed
in their right positions.

Another aspect with speech, could be that the speech recognizer did not

82

recognize the word correctly. The recognizer could have several interpre-
tations of the spoken word, and this is stored in a n-best list. If the user
speaks the word ”test”, this could easily be interpreted as ”best”. If the
recognizer rate ”best” highest, a misrecognition occur. By using the n-best
list, there could be possibilities to make a list of possible commands, like for
the location information with the objects.

Knowledge representation: For this system to be more general, there
should be a better way to represent knowledge about the environment. An
ontology could be developed to make a better understanding of the domain
knowledge. Using a database would probably be a better method for storing
the information used in the process of analysing input and in the fusion
process. Knowledge about the environment is important when analysing
input, and there should be a better method of knowledge representation
when using larger and more general environments than the one that have
been used in this example.

As mentioned, there could be a possibility to extend the architecture to
contain information about users, and a user model should be made in this
case. As mentioned in earlier chapters, the different input modalities could
be individual trained, and for this to be useful, it is necessary to know about
the user. In the present implementation, the speech recognizer are possible
to train, but since the current approach do not hold user information, this
user model used by the speech recognizer are stored in IBM ViaVoice, and
the speech agent use the default user set by ViaVoice.

Language independency: Since the current implementation of the black-
board model is implemented as a JavaSpace, there is a need for a Java im-
plementation of each agent. This is currently no problem, since Jade is used
to implement the agent, and Jade is implemented through Java. In most
cases this should be no problem, and if an input modality which is using an
another language than Java, the agent could still normally be implemented
by using Java and Jade. However, if there should be a reason to implement
an agent in another freamwork than jade, and in an another language than
Java, there should be no problem since jade supports the FIPA standard. A
new agent could be implemented that should be responsible for communicat-
ing with the JavaSpace on the input side. As long as these agents use the
same standard when communicating, they should be language independent.
If non-jade implemented agents send their messages to the jade implemented
agent in a common communication language, this agent could send it further
on to the JavaSpace.

83

Appendix A

Running the example

To run the example, work on setting up the computer has to be done before
it can run. This appendix will discuss what need to be done. First of all,
the content on the CD should be copied to the computer since writing to the
disk is necessary for the JINI services.

Three .bat files need to be started in this order: setCP.bat, startJavaSpace.bat,
and startfusion.bat. The setCP.bat set the necessary classpath, the start-
JavaSpace.bat starts the JINI and JavaSpace services and will be discussed
later in this appendix, and startfusion.bat starts the current implementation
of the agents.

The current implementation of the architecture discussed in this thesis
are in the fusioninput.jar file on the CD.

Java

First of all, Java needs to be installed on the machine. During this work,
version JDK 1.5.0 were used.

IBM ViaVoice and Speech for Java

For the SpeechAgent to work, it is necessary to have IBM ViaVoice installed
on the computer with the IBM JavaSpeech implementation of the JavaSpeech
API. The IBM ViaVoice application is not on the CD, but the IBM Java
Speech package is in the directory CD/ibmjs, and this needs to be installed
after the IBM ViaVoice application is installed. However, it should be pos-
sible to run other agents than the SpeechAgent without ViaVoice installed.

JADE

The Jade package is on the CD, and is set in the classpath in the setCP file.

84

JINI/JavaSpace

The whole JINI package version 1.2.1 is on the CD. To set up and run the
JavaSpace service could lead to some work. However, the files on the CD
should do the set up, but sometimes it could be necessary to do individual
changes. 5 services need to be started: A HTTP server, RMI activation
daemon, a lookup service, a transaction manager and the JavaSpace service.
The five .bat files for doing this is in directory CD/JavaSpaces, and the
startJavaSpace.bat in CD directory starts all these. The codebase that are
set for the http server leads to the directory CD/JSLib. If any problems
should occur, the website ”The Nuts and Bolts of Compiling and Running
JavaSpaces Programs” [27] should be helpful.

85

Appendix B

Java-Code

Constants: Contains the constants, and changes to environment should
be done here.
/∗∗Constants . j a va
∗ @author Ove−Andre
∗
∗
∗/

public c lass Constants {
// JavaSpaces
public stat ic f ina l St r ing POLICY =

”C:\\ j i n i 1 2 1 0 0 1 \\example\\ lookup\\ po l i c y . a l l ” ;

public stat ic f ina l St r ing CODEBASE = ”http :// l o c a l h o s t :8080/ ” ;
public stat ic f ina l St r ing HOSTNAME = ” j i n i : // l o c a l h o s t /” ;

public stat ic f ina l St r ing SPACENAME = ”JavaSpaces ” ;

// F i l e s
public stat ic f ina l St r ing MAP FILENAME = ” po int s . txt ” ;
public stat ic f ina l St r ing OBJECT AND COMMANDS = ”object command . txt ” ;

f ina l stat ic St r ing MAPFILE = ”kart .JPG” ;

//Agent t y p e s

public stat ic f ina l St r ing LOCATION = ”Locat ion ” ;
public stat ic f ina l St r ing SPEECH = ”Speech” ;
public stat ic f ina l St r ing MAPLOCATION = ”MapLocation” ;
public stat ic f ina l St r ing TEXT = ”Text” ;

}

86

InputAgent: This is the top agent in the hierarchy where the connection
to the JavaSpace is handled.
/∗ InputAgent . j a va
∗ Created on 23 . f e b .2005
∗ @author Ove−Andre
∗/

import jade . core . Agent ;

//JS
import java . rmi . RMISecurityManager ;
import net . j i n i . core . d i s cove ry . LookupLocator ;
import net . j i n i . core . l e a s e . Lease ;
import net . j i n i . core . lookup . Serv iceID ;
import net . j i n i . core . lookup . Serv ice I tem ;
import net . j i n i . core . lookup . ServiceMatches ;
import net . j i n i . core . lookup . S e r v i c eReg i s t r a r ;
import net . j i n i . core . lookup . ServiceTemplate ;
import net . j i n i . core . t r an sa c t i on . Transact ion ;
import net . j i n i . core . t r an sa c t i on . Transact ionFactory ;
import net . j i n i . core . t r an sa c t i on . s e r v e r . TransactionManager ;
import net . j i n i . l e a s e . LeaseRenewalManager ;
import net . j i n i . space . JavaSpace ;
import net . j i n i . core . entry . Entry ;
import net . j i n i . lookup . entry . ∗ ;

// Jade
import jade . core . behaviours . OneShotBehaviour ;
import jade . core . behaviours . Behaviour ;

import java . u t i l . ArrayList ;

public c lass InputAgent extends Agent{

// JS

private stat ic Class [] name = null ;
private stat ic ServiceTemplate s t = null ;
private stat ic Serv ice I tem s i = null ;
private stat ic Serv ice I tem [] s e r v i c e s = null ;
private stat ic LookupLocator lookupLocator= null ;
private stat ic Se rv i c eReg i s t r a r r e g i s t r a r = null ;
private stat ic Serv iceID id = null ;
public JavaSpace space = null ;
public TransactionManager transMan = null ;

S t r ing po l i c y = Constants .POLICY;

St r ing codebase = Constants .CODEBASE;
St r ing hostname = Constants .HOSTNAME;

St r ing spaceName = Constants .SPACENAME;

/∗∗
∗ Finds t h e l o o k u p l o c a t o r on the s p e c i f i e d ho s t
∗ @param hostname
∗ @throws Excep t i on
∗/

public void setLookupLoc (St r ing hostname) throws Exception{
lookupLocator = new LookupLocator (hostname) ;
S t r ing host = lookupLocator . getHost () ;
int port = lookupLocator . getPort () ;
System . out . p r i n t l n (”Lookup Se rv i c e : j i n i : // ” + host + ” : ” + port) ;

r e g i s t r a r = lookupLocator . g e tReg i s t r a r () ;
id = r e g i s t r a r . ge tServ i ce ID () ;
System . out . p r i n t l n (”Lookup Se rv i c e ID : ” + id . t oS t r ing ()) ;

}

/∗∗
∗ Find a named j a va spa c e
∗ @param spaceName
∗ @return j a va s pa c e
∗/

public void f indJavaSpace (St r ing spaceName){

Entry [] a t t r = new Entry [1] ;
a t t r [0] = new Name(spaceName) ;

Class [] type = new Class [] { JavaSpace . class } ;
ServiceTemplate template = new ServiceTemplate (null , type , a t t r) ;

87

ServiceMatches matches = null ;

try{
matches = r e g i s t r a r . lookup (template , I n t eg e r .MAX VALUE) ;
i f (matches . tota lMatches == 0){

space = null ;
} else {

space = (JavaSpace) matches . i tems [0] . s e r v i c e ;
Serv iceID id ;
System . out . p r i n t l n (”Found JS : ”+ matches . i tems [0] . s e rv i c e ID) ;

}
}catch (Exception e){

e . pr intStackTrace () ;
space = null ;

}

}

/∗∗
∗ Find a t r a n s a c t i o n manager
∗ @return t ransac t i onmanager
∗/

public void f indTransactionManager (){
Class [] type = new Class [] { TransactionManager . class } ;
ServiceTemplate template = new ServiceTemplate (null , type , null) ;

ServiceMatches matches = null ;

try{
matches = r e g i s t r a r . lookup (template , I n t eg e r .MAX VALUE) ;
i f (matches . tota lMatches == 0){

transMan = null ;
} else {

transMan = (TransactionManager) matches . i tems [0] . s e r v i c e ;
Serv iceID id ;
System . out . p r i n t l n (”Found TS : ”+ matches . i tems [0] . s e rv i c e ID) ;

}
}catch (Exception e){

e . pr intStackTrace () ;
transMan = null ;

}

}

/∗∗
∗
∗ Behavior which manage con t a c t w i th JavaSpace
∗/

class reg i sterWithJavaSpace extends Behaviour{
private St r ing hostname ;
private St r ing spaceName ;
private St r ing po l i c y ;
private St r ing codebase ;
private boolean done = fa l se ;

public reg i sterWithJavaSpace (Agent ag , S t r ing hostname , St r ing spaceName ,
St r ing po l i cy , S t r ing codebase){

super (ag) ;
this . hostname = hostname ;
this . spaceName = spaceName ;
this . p o l i c y=po l i c y ;
this . codebase=codebase ;

}

/∗∗
∗ s e t sys tem p r o p e r t i e s as where to f i n d th e p o l i c y f i l e
∗ and where to f i n d th e down loadab l e codebase
∗/

public void se tSys temProper t i e s (S t r ing po l i cy , S t r ing codebase){
System . setProperty (” java . s e c u r i t y . po l i c y ” , po l i c y) ;
System . setProperty (” java . rmi . s e r v e r . codebase ” , codebase) ;

}

/∗∗
∗ s e t t h e s ecur i t ymanager i f not a l r e a d y s e t
∗
∗/

public void setSystemSecurityManager (){
i f (System . getSecurityManager () == null){

88

System . setSecur ityManager (new RMISecurityManager ()) ;
}

}

public void ac t i on (){
try{

se tSys temProper t i e s (po l i cy , codebase) ;
setSystemSecurityManager () ;
((InputAgent)myAgent) . setLookupLoc (hostname) ;
((InputAgent)myAgent) . f indJavaSpace (spaceName) ;
((InputAgent)myAgent) . f indTransactionManager () ;
i f (((InputAgent)myAgent) . space == null){

System . out . p r i n t l n (”Find JS SPACE NULL”) ;
} else System . out . p r i n t l n (”Find JS SPACE”) ;

}catch (Exception e){
e . pr intStackTrace () ;

}
done = true ;

}

public boolean done () {
return done ;

}
}

/∗∗
∗
∗ @author Ove−Andre
∗
∗ Bahaviour which i s r e s p o n s i b l e to update JavaSpace
∗/

class WriteTransact ion extends OneShotBehaviour{
private JavaSpace space ;
private TransactionManager transMan = null ;
private St r ing agentType ;

/∗∗
∗
∗ @uml . p r op e r t y name=”commandDesc”
∗ @uml . a s so c i a t i onEnd m u l t i p l i c i t y =”(0 1)”
∗/

private CommandDescription commandDesc ;

/∗∗
∗
∗ @uml . p r op e r t y name=”locDesc ”
∗ @uml . a s so c i a t i onEnd m u l t i p l i c i t y =”(0 1)”
∗/

private Locat ionDesc r ip t i on locDesc ;

public WriteTransact ion (Agent ag , S t r ing agentType , CommandDescription inputCommand){
super (ag) ;
this . agentType = agentType ;
this . commandDesc = inputCommand ;
this . locDesc = null ;

}

public WriteTransact ion (Agent ag , S t r ing agentType , Locat ionDesc r ip t i on inputLoc){
super (ag) ;
this . agentType = agentType ;
this . commandDesc = null ;
this . locDesc = inputLoc ;

}

public void writeToSpace (){
try{

Transact ion . Created t rans = Transact ionFactory . c r e a t e (transMan , Lease .FOREVER) ;
Transact ion txn = trans . t r an sa c t i on ;

LeaseRenewalManager leaseMgr = new LeaseRenewalManager () ;
leaseMgr . renewUnti l (t rans . l ea s e , Lease .FOREVER, null) ;

S t r ing out=myAgent . getLocalName()+” OUTPUT ” ;

System . out . p r i n t l n (”AGENT ”+agentType) ;

//Write Command
i f (commandDesc != null && locDesc == null){

CommandDescription r e s u l t ;
CommandDescription temp = new CommandDescription (agentType) ;
while ((r e s u l t = (CommandDescription) space . t a k e I fEx i s t s (temp , txn , 1000))

!= null){
System . out . p r i n t l n (”OLD DESCRIPTION ” + r e s u l t . inputType +” ”+

89

r e s u l t . getCommand () +” ” +r e s u l t . getObject () + ” ” +
r e s u l t . i n f o+ ” ”+ r e s u l t . getTime ()) ;

}
System . out . p r i n t l n (”WRITE: ”+commandDesc . getInputType ()+” ”+

commandDesc . getCommand()+ ” ”+ commandDesc . getObject ()+
” ”+ commandDesc . getTime () +” ” + commandDesc . i n f o) ;

space . wr i t e (commandDesc , txn , Lease .FOREVER) ;
}

//Write Loca t i on In f o
i f (commandDesc == null && locDesc != null){

Locat ionDesc r ip t i on r e s u l t ;
Locat ionDesc r ip t i on temp = new Locat ionDesc r ip t i on (agentType) ;
while ((r e s u l t = (Locat ionDesc r ip t i on) space . t a k e I fEx i s t s (temp , txn , 100))

!= null){

ArrayList r l i s t = r e s u l t . getNameAndType () ;
int s izeR = r l i s t . s i z e () ;
out = ”” ;
for (int i = 0 ; i < s izeR ; i++) {

Locat ion In fo r l o c = (Locat ion In fo) r l i s t . get (i) ;
out = out + i +” ”+r l o c . getName()+ ” ”+ r l o c . getType ()+ ” ” ;

}
System . out . p r i n t l n (”OLD DESCRIPTION” + r e s u l t . getInputType ()+

r e s u l t . getTime()+ out) ;
}

space . wr i t e (locDesc , txn , Lease .FOREVER) ;
ArrayList l i s t = locDesc . getNameAndType () ;
int l i s t S i z e = l i s t . s i z e () ;
S t r ing l o c I n f o S t r i n g = ” Locat ion In fo s i z e : ”+ l i s t S i z e + ” ” ;
for (int i = 0 ; i < l i s t S i z e ; i++) {

Locat ion In fo l o c I = (Locat ion In fo) l i s t . get (i) ;
l o c I n f o S t r i n g = l o c I n f o S t r i n g + i + ” Name : ”+ l o c I . getName()+

” Type : ”+l o c I . getType () + ” ” ;

}

System . out . p r i n t l n (”WRITE: InputType : ” + locDesc . getInputType ()+ ” ” +
l o c I n f o S t r i n g+ locDesc . getTime ()) ;

}

txn . commit () ;
leaseMgr . remove (t rans . l e a s e) ;

// r e t u rn t r u e ;
}catch (Exception e){

e . pr intStackTrace () ;
// r e t u rn f a l s e ;

}
}

public void ac t i on (){
this . space = ((InputAgent)myAgent) . space ;
i f (space == null){System . out . p r i n t l n (”NO SPACE”) ;
}
this . transMan = ((InputAgent)myAgent) . transMan ;
writeToSpace () ;

}
}
}

90

CommandAgent: Makes the CommandDescription
/∗CommandAgent . j a va
∗
∗ Created on 20 . mai .2005
∗
∗/

import java . u t i l . ArrayList ;

public c lass CommandAgent extends InputAgent{

// Se t s t h e e n t r y o b j e c t CommandDescription and w r i t e s to JavaSpace
public void setCommand(St r ing command , St r ing object , S t r ing in fo , S t r ing agentType){

CommandDescription id = setCommandDesc (command , object , in fo , agentType) ;
this . addBehaviour (new WriteTransact ion (this , agentType , id)) ;

}

//Makes a CommandDescription from the commandinput
public CommandDescription setCommandDesc (St r ing command , St r ing object , S t r ing in fo , S t r ing agentType){

ArrayList s l = new ArrayList () ;
long timeLong = System . cur rentTimeMi l l i s () ;
Long time = new Long (timeLong) ;
CommandDescription sd = new CommandDescription (agentType , command , object , in fo , time) ;

return sd ;
}

}

91

CommandDescription: Holds information about the input command.
/∗ CommandDescription . j a va
∗ Created on 20 . apr .2005
∗/

import net . j i n i . core . entry . Entry ;

public c lass CommandDescription implements Entry{
public St r ing inputType=null ;
public St r ing command= null ;
public St r ing ob j e c t= null ;
public St r ing i n f o = null ;
public Long time = null ;

public CommandDescription (){
}

public CommandDescription (St r ing objectType){
this . inputType = objectType ;

}

public CommandDescription (St r ing objectType , S t r ing command ,
St r ing object , S t r ing in fo , Long time){

this . inputType = objectType ;
this . command = command ;
this . ob j e c t = ob j e c t ;
this . i n f o = in f o ;
this . time = time ;

}

public St r ing getInputType () {
return this . inputType ;

}

public St r ing getCommand () {
return this . command ;

}

public St r ing getObject () {
return this . ob j e c t ;

}

public void setInputType (St r ing type) {
this . inputType = type ;

}

public void setCommand(St r ing command) {
this . command = command ;

}

public void se tObject (St r ing ob j e c t) {
this . ob j e c t = ob j e c t ;

}

public void setTime (Long time) {
this . time = time ;

}

public Long getTime () {
return this . time ;

}
}

92

SpeechAgent: Responsible for handling speech input
/∗ SpeechAgent
∗ Created on 26−Aug−2004
∗
∗ @author oveandre
∗
∗/

public c lass SpeechAgent extends CommandAgent {

private SpeechUI myUI ;
private stat ic f ina l St r ing AGENT TYPE = Constants .SPEECH;

protected void setup ()
{

System . out . p r i n t l n (” Star t SpeechAgent”) ;
myUI = new SpeechUI (this) ;
this . addBehaviour (new reg i sterWithJavaSpace (this , hostname , spaceName , po l i cy , codebase)) ;

}

public void setSpeechCommand (St r ing command , St r ing object , S t r ing i n f o){
setCommand(command , object , in fo , AGENT TYPE) ;

}
}

93

SpeechUI: Listen for speech input
/∗ SpeechUI . j a va
∗ Created on 23−Aug−2004
∗
∗ @author oveandre
∗
∗/

import javax . speech . ∗ ;
import javax . speech . r e c ogn i t i on . ∗ ;
import java . i o . Fi leReader ;
import java . u t i l . Locale ;

public c lass SpeechUI {
stat ic Recognizer r ec ;
stat ic RuleGrammar ruleGrammar ;

private SpeechAgent myAgent ;

// Re su l t L i s t e n e r , u se s t h e grammar and l i s t e n f o r Accepted r e s u l t s
Resu l tL i s t ene r r u l eL i s t e n e r = new ResultAdapter (){

//RESULT ACCEPTED
public void r e su l tAccepted (ResultEvent e) {

Fina lRuleResu l t r = (Fina lRuleResu l t) (e . getSource ()) ;
S t r ing tags [] = r . getTags () ;

int i = tags . l ength ;
i f (i == 1){

checkTags (tags [0]) ;
} i f (i==2){

checkTags (tags [0] , tags [1]) ;
} i f (i==3){

checkTags (tags [0] , tags [1] , tags [2]) ;
}

}
} ;

public void checkTags (St r ing command){
System . out . p r i n t l n (”kommando : ”+ command) ;
myAgent . setSpeechCommand (command , ”” , ””) ;

}

public void checkTags (St r ing command , St r ing ob j e c t){
System . out . p r i n t l n (”kommando : ”+ command + ”Object : ”+ ob j e c t) ;
myAgent . setSpeechCommand (command , object , ””) ;

}

public void checkTags (St r ing command , St r ing object , S t r ing i n f o){
System . out . p r i n t l n (”kommando : ”+ command + ”Object : ”+ ob j e c t + ”Extra i n f o : ”+ in f o) ;
myAgent . setSpeechCommand (command , object , i n f o) ;

}

// I n i t i a t e Speech r e c o g n i z e r
public SpeechUI (SpeechAgent a){

myAgent= a ;
try{

// Create a r e c o g n i z e r
r ec = Centra l . c r ea teRecogn i ze r (new EngineModeDesc (Locale .ENGLISH)) ;

// s t a r t up r e c o g n i z e r (S t a t e a l l o c a t e)
r ec . a l l o c a t e () ;

// l oad and enab l e grammar
St r ing GrammarName = ”Speech . gram” ;
Fi leReader reader = new Fi leReader (GrammarName) ;
ruleGrammar = rec . loadJSGF (reader) ;
ruleGrammar . setEnabled (true) ;

// a t t a c h a r e s u l t l i s t e n e r
r ec . addResu l tL i s tener (r u l eL i s t e n e r) ;

//commit t h e grammar
r ec . commitChanges () ;

// Reques t f o cu s (f o cu s on) and s t a r t l i s t e n i n g (s t a t e resume)
r ec . requestFocus () ;
r e c . resume () ;

} catch (Exception e){
e . pr intStackTrace () ;

}

94

}
}

95

TextAgent: Responsible for text input.
/∗ TextAgent . j a va
∗ Created on 20 . mai .2005
∗
∗ @author Ove−Andre
∗
∗/

public c lass TextAgent extends CommandAgent {

private UI myUI ;

private stat ic f ina l St r ing AGENT TYPE = Constants .TEXT;

protected void setup ()
{

System . out . p r i n t l n (” Star t TextAgent”) ;

// Re g i s t e r w i th t h e b l a c k b oa r d
this . addBehaviour (new reg i sterWithJavaSpace (this , hostname , spaceName , po l i cy , codebase)) ;

// i n i t i a t e GUI and l i s t e n f o r i npu t
myUI = new UI(this) ;
myUI . show () ;

}

// Accepted t e x t I n p u t found
public void setTextCommand (St r ing command , St r ing object , S t r ing i n f o){

setCommand(command , object , in fo , AGENT TYPE) ;
}

}

96

UI: Listen for text input
/∗ UI . j a va
∗ Created on 10−Sep−2004
∗
∗ @author Ove−Andre
∗
∗/

import javax . swing . ∗ ;
import java . awt . ∗ ;
import java . awt . event . ∗ ;

public c lass UI extends JFrame{

//GUI
JPanel jPanel1 = new JPanel () ;
JButton jButton1 = new JButton () ;
JTextField t e x t f i e l d = new JTextField (2 0) ;

TextAgent myAgent ;

//CONSTRUCTOR
public UI(TextAgent ag) {

myAgent = ag ;
j b I n i t () ;

}

//INIT GUI
private void j b I n i t (){

s e tT i t l e (”TextInput”) ;
s e tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
Container guiBeholder = getContentPane () ;
LayoutManager layout = new GridLayout (4 , 2 , 5 , 5) ;
guiBeholder . setLayout (layout) ;
JButton knapp = new JButton (” F i n a l i s e t ext input ”) ;
JLabel cmd = new JLabel (”Command”) ;
JLabel obj = new JLabel (”Object ”) ;
JLabel addit = new JLabel (” Addit iona l in fo rmat ion ”) ;
JTextField commandInput = new JTextField (1 5) ;
JTextField objInput = new JTextField (1 5) ;
JTextField addIn = new JTextField (1 5) ;

guiBeholder . add (cmd) ;
guiBeholder . add (commandInput) ;
guiBeholder . add (obj) ;
guiBeholder . add (objInput) ;
guiBeholder . add (addit) ;
guiBeholder . add (addIn) ;
guiBeholder . add (knapp , BorderLayout .SOUTH) ;
ButtonListener knappe lytteren = new ButtonListener (commandInput , objInput , addIn) ;
knapp . addAct ionListener (knappe lytteren) ;
pack () ;

}

// Sends in f o rma t i on about t h e command as t h e bu t t on i s p r e s s e d to t h e TextAgent
class ButtonListener implements Act ionL i s t ene r {

JTextField commandInput ;
JTextField objInput ;
JTextField addInfo ;

public ButtonListener (JTextField commandInput , JTextField objInput , JTextField addInfo){
this . commandInput = commandInput ;
this . objInput = objInput ;
this . addInfo = addInfo ;

}

public void act ionPerformed (ActionEvent hende l se){
St r ing commandIn = commandInput . getText () ;
S t r ing obj In = objInput . getText () ;
S t r ing i n f o = addInfo . getText () ;
System . out . p r i n t l n (”Du trykket p knappen ” + commandIn) ;

myAgent . setTextCommand (commandIn , objIn , i n f o) ;
}

}

}

97

LocationAgent: Manages the location input and makes the LocationDe-
scription
/∗ Locat ionAgent . j a va
∗ Created on 24 . jan .2005
∗/

import jade . core . behaviours . ∗ ;

import java . i o . ∗ ;
import java . u t i l . ∗ ;
import java . net .URL;
import java . net . HttpURLConnection ;
import net . j i n i . core . entry . Entry ;
import net . j i n i . core . l e a s e . Lease ;
import net . j i n i . core . t r an sa c t i on . Transact ion ;
import net . j i n i . core . t r an sa c t i on . Transact ionFactory ;
import net . j i n i . l e a s e . LeaseRenewalManager ;
import org . xml . sax . ∗ ;
import org . xml . sax . h e l p e r s . XMLReaderFactory ;

public c lass LocationAgent extends InputAgent{

public ArrayList l o c a t i o nL i s t ;

public Locat ionDesc r ip t i on se tLocat ionObjec t s (int xLoc , int yLoc , S t r ing agentType){
ArrayList l = l o c a t i o nL i s t ;

S t r ing name = ”” ;
St r ing type = ”” ;
int xmin = 0 ;
int xmax = 0 ;
int ymin= 0 ;
int ymax= 0 ;
ArrayList obj = new ArrayList () ;

for (int i = 0 ; i < l . s i z e () ; i++){
ArrayList e l = new ArrayList () ;
e l = (ArrayList) l . get (i) ;
name = (St r ing) e l . get (0) ;
type = (St r ing) e l . get (1) ;
xmin = Int ege r . pa r s e In t ((S t r ing) e l . get (2)) ;
xmax = Int ege r . pa r s e In t ((S t r ing) e l . get (3)) ;
ymin = In t ege r . pa r s e In t ((S t r ing) e l . get (4)) ;
ymax = Int ege r . pa r s e In t ((S t r ing) e l . get (5)) ;

i f (xLoc >= xmin && xLoc <= xmax && yLoc >= ymin && yLoc <= ymax){
System . out . p r i n t l n (name + ” er a k t u e l l ”) ;
Locat ion In fo l o c I n f o = new Locat ion In fo (name , type) ;
obj . add (l o c I n f o) ;

}
}
long timeLong = System . cur rentTimeMi l l i s () ;
Long time = new Long (timeLong) ;
Locat ionDesc r ip t i on locObj = new Locat ionDesc r ip t i on (agentType , obj , time) ;
return locObj ;

}

//Reads l o c a t i o n i n f o rma t i o n about t h e environment from a t e x t f i l e
public c lass GetImportantPoints extends OneShotBehaviour {

private Fi leReader r eadF i l e ;
BufferedReader readImportantPoints ;
S t r ing commandPoints ;
private St r ing f i l ename ;
private St r ing agentType ;

/∗∗
∗ Read one l i n e a t t h e t ime from the t e x t f i l e and s t o r e s t h e names and the p o i n t s in an
∗ ArrayL i s t
∗
∗/

public GetImportantPoints (St r ing f i lename , St r ing agentType){
this . f i l ename = f i l ename ;
this . agentType = agentType ;

}

public ArrayList findCommandPoints (){
ArrayList po in t s = new ArrayList () ;

98

try{
r e adF i l e = new Fi leReader (f i l ename) ;
readImportantPoints = new BufferedReader (r eadF i l e) ;
commandPoints = readImportantPoints . readLine () ;

while (commandPoints != null) {
i f (commandPoints . l ength ()>0){

po int s . add (getPo int s (commandPoints)) ;
}
commandPoints = readImportantPoints . readLine () ;

}
readImportantPoints . c l o s e () ;

}catch (IOException e){
e . pr intStackTrace () ;

}
return po int s ;

}

/∗∗
∗ S e t t i n g t h e name and the p o i n t s o f t h e ArrayL i s t o f Po in t s
∗ @param s
∗ @return
∗/

public ArrayList getPo int s (St r ing s){
int s ta r tLocPo int s ;
int startType ;
int locChord ;
S t r ing name ;
St r ing type ;

ArrayList l i s t = new ArrayList () ;

s ta r tLocPo int s=s . indexOf (” (”) ;
startType = s . indexOf (” : ”) ;

name = s . subs t r i ng (0 , startType −1);
type = s . subs t r i ng (startType+1, s tar tLocPoints −1);
l i s t . add (name) ;
l i s t . add (type) ;
boolean subs t r = fa l se ;
S t r ing out = ”” ;
for (int j = s ta r tLocPo int s ; j < s . l ength () ; j++) {

char chr = s . charAt (j) ;
i f (chr != ’ (’&&chr != ’) ’&&chr != ’ , ’&&chr != ’ ’){

i f (! subs t r){
out = ”” ;
out = out + chr ;
subs t r = true ;

} else out = out + chr ;

} else i f (subs t r){

l i s t . add (out) ;
subs t r = fa l se ;

}
}
return l i s t ;

}

/∗∗
∗ Pr in t i n g t h e ArrayL i s t o f Po in t s
∗ @param l
∗/

public void p r i n tL i s t (ArrayList l){
for (int i = 0 ; i < l . s i z e () ; i++) {

ArrayList e l = new ArrayList () ;
e l = (ArrayList) l . get (i) ;
S t r ing out = ”” ;
for (int j = 0 ; j < e l . s i z e () ; j++) {

out = out +” ”+ e l . get (j) ;
}
System . out . p r i n t l n (”Points : ”+ out) ;

}
}
public void ac t i on (){

l o c a t i o nL i s t = findCommandPoints () ;
}

}
}

99

MapAgent: Responsible for map input
/∗ MapAgent . j a va
∗ Created on 01 . apr .2005
∗
∗/

import jade . core . behaviours . OneShotBehaviour ;
import jade . core . behaviours . Sequent ia lBehaviour ;

import java . u t i l . ArrayList ;

public c lass MapAgent extends LocationAgent{

MapInterface myUI ;

private St r ing f i l ename = Constants .MAP FILENAME;
ArrayList l o c a t i onPo in t s = new ArrayList () ;
int xLoc ;
int yLoc ;
S t r ing AGENT TYPE = Constants .MAPLOCATION;

protected void setup (){
System . out . p r i n t l n (”MapAgent”) ;

Sequent ia lBehaviour jsBeh = new Sequent ia lBehaviour (this) ;
jsBeh . addSubBehaviour (new reg i sterWithJavaSpace (this , hostname , spaceName , po l i cy , codebase)) ;
jsBeh . addSubBehaviour (new GetImportantPoints (f i l ename , AGENT TYPE)) ;
jsBeh . addSubBehaviour (new ListenForMapInput ()) ;

this . addBehaviour (jsBeh) ;
}

public void mapInput (){
myUI = new MapInterface (this) ;

}

public void s e tLocat i onPo int s (int x , int y , St r ing agentType){
Locat ionDesc r ip t i on loca t i onDesc = setLocat ionObjec t s (x , y , agentType) ;
this . addBehaviour (new WriteTransact ion (this , agentType , l o ca t i onDesc)) ;

}

class ListenForMapInput extends OneShotBehaviour{
public void ac t i on (){

((MapAgent)myAgent) . mapInput () ;
}

}
}

100

MapInterface: Listens for map input
/∗ MapInter face
∗ Created on 01 . apr .2005
∗
∗/

import java . awt . ∗ ;
import java . awt . event . MouseEvent ;
import java . awt . event . MouseListener ;

import javax . swing . JPanel ;
import javax . swing . ∗ ;

public c lass MapInterface extends JFrame{
St r ing mapFile = Constants .MAPFILE;
ImageListener map ;
JLabel i n f o ;
MapAgent myAgent ;

public MapInterface (MapAgent ag){
myAgent = ag ;
initGUI () ;

}

protected stat ic ImageIcon createImageIcon (St r ing path){
return new ImageIcon (path) ;

}

public void initGUI () {
setDefaultLookAndFeelDecorated (true) ;

// Create and s e t up th e window .
s e tT i t l e (”Map”) ;
s e tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
JPanel jpane l = new JPanel (new GridLayout (1 , 1)) ;

map = new ImageListener (createImageIcon (mapFile) . getImage () , myAgent) ;
map . setName (”Map”) ;
j pane l . add (map) ;
i n f o = new JLabel (”Map o f 3 rd f l o o r ”) ;
s e tP r e f e r r e dS i z e (new Dimension (1000 , 5 5 0)) ;
add (jpane l , BorderLayout .CENTER) ;
add (in fo , BorderLayout .PAGE END) ;

pack () ;
s e tV i s i b l e (true) ;

}

// L i s t e n s f o r i n pu t s from the map
class ImageListener extends JComponent implements MouseListener{

Image image ;
int xpos ;
int ypos ;

MapAgent myAgent ;

public ImageListener (Image image , MapAgent myAgent) {
this . image = image ;
this . myAgent = myAgent ;
addMouseListener (this) ;

}

public void mouseDragged (MouseEvent e){
xpos = e . getX () ;
ypos = e . getY () ;
System . out . p r i n t l n (”DRAG”+xpos + ” ”+ ypos) ;

}

public void mouseMoved(MouseEvent e){
xpos = e . getX () ;
ypos = e . getY () ;
System . out . p r i n t l n (”MOVE”+xpos + ” ”+ ypos) ;

}

public void mouseClicked (MouseEvent e) {
// Since t h e user c l i c k e d on us , l e t ’ s g e t f o cu s !
requestFocusInWindow () ;
xpos = e . getX () ;
ypos = e . getY () ;

System . out . p r i n t l n (xpos + ” ”+ ypos) ;
myAgent . s e tLocat i onPo int s (xpos , ypos , myAgent .AGENT TYPE) ;

}

101

public void mouseEntered (MouseEvent e) { }
public void mouseExited (MouseEvent e) { }
public void mousePressed (MouseEvent e) {

xpos = e . getX () ;
ypos = e . getY () ;

}
public void mouseReleased (MouseEvent e) { }

protected void paintComponent (Graphics g raph i c s) {
Graphics g = graph i c s . c r e a t e () ;

i f (image != null) {
g . drawImage (image , 0 , 0 , this) ;

}

g . s e tCo lo r (Color .BLACK) ;

g . drawRect (0 , 0 , image == null ? 125 : image . getWidth (this) ,
image == null ? 125 : image . getHeight (this)) ;

g . d i spose () ;
}

}

}

102

PositionAgent: Responsible for position input
/∗ Pos i t i onAgen t . j a va
∗ Created on 24 . jan .2005
∗ @author oveandre
∗
∗/

import jade . core . behaviours . ∗ ;
import java . u t i l . ∗ ;
import java . net .URL;
import java . net . HttpURLConnection ;

import net . j i n i . core . entry . Entry ;
import net . j i n i . core . l e a s e . Lease ;
import net . j i n i . core . t r an sa c t i on . Transact ion ;
import net . j i n i . core . t r an sa c t i on . Transact ionFactory ;
import net . j i n i . l e a s e . LeaseRenewalManager ;

import org . xml . sax . ∗ ;
import org . xml . sax . h e l p e r s . XMLReaderFactory ;

public c lass Posit ionAgent extends LocationAgent{

//CONSTANTS

private stat ic f ina l St r ing AGENT TYPE = Constants .LOCATION;

//VARIABLES

private St r ing f i l ename = Constants .MAP FILENAME;
ArrayList l o c a t i onPo in t s = new ArrayList () ;
int x = 56 ;
int y = 177 ;

protected void setup (){
System . out . p r i n t l n (”Posit ionAgent ”) ;

Sequent ia lBehaviour jsBeh = new Sequent ia lBehaviour (this) ;
jsBeh . addSubBehaviour (new reg i sterWithJavaSpace (this , hostname , spaceName , po l i cy , codebase)) ;
jsBeh . addSubBehaviour (new GetImportantPoints (f i l ename , AGENT TYPE)) ;
jsBeh . addSubBehaviour (new SetPos i t ionPointsBeh ()) ;
this . addBehaviour (jsBeh) ;

}

public void s e tPo s i t i onPo in t s (){
Locat ionDesc r ip t i on loca t i onDesc = setLocat ionObjec t s (x , y ,AGENT TYPE) ;
this . addBehaviour (new WriteTransact ion (this , AGENT TYPE, loca t i onDesc)) ;

}

class SetPos i t ionPointsBeh extends OneShotBehaviour{
public void ac t i on (){

s e tPo s i t i onPo in t s () ;
}

}
}

103

LocationDescription: Holds the location input
/∗ Loca t i onDe s c r i p t i on . j a va
∗ Created on 20 . apr .2005
∗
∗
∗/

import net . j i n i . core . entry . Entry ;
import java . u t i l . ArrayList ;

public c lass Locat ionDesc r ip t i on implements Entry {
public Long time= null ;
public St r ing inputType= null ;
public ArrayList nameAndType = null ;
public Locat ionDesc r ip t i on (){
}

public Locat ionDesc r ip t i on (St r ing objectType){
this . inputType = objectType ;

}

public Locat ionDesc r ip t i on (St r ing objectType , ArrayList l i s t){
this . inputType = objectType ;
this . nameAndType = l i s t ;

}

public Locat ionDesc r ip t i on (St r ing objectType , ArrayList l i s t , Long time){
this . inputType = objectType ;
this . nameAndType = l i s t ;
this . time = time ;

}

public St r ing getInputType () {
return this . inputType ;

}

public ArrayList getNameAndType () {
return this . nameAndType ;

}

public Long getTime () {
return this . time ;

}

public void setInputType (St r ing type) {
this . inputType = type ;

}

public void setNameAndType (ArrayList nameType) {
this . nameAndType = nameType ;

}

public void setTime (Long time) {
this . time = time ;

}
}

104

LocationInfo: LocationDescription has a list of object names and type,
this list contains the LocationInfo.
/∗∗Loca t i on In f o . j a va
∗
∗/

import java . i o . S e r i a l i z a b l e ;

public c lass Locat ion In fo implements S e r i a l i z a b l e {
St r ing objectName ;
St r ing objectType ;

public Locat ion In fo (St r ing name , St r ing type){
this . objectName = name ;
this . objectType = type ;

}

public St r ing getName (){
return objectName ;

}

public St r ing getType (){
return objectType ;

}

}

105

FusionAgent: Responsible of fusing the different input modalities to one
meaning
/∗FusionAgent . j a va
∗ Created on 17−Feb−2005
∗@author oveandre
∗/

import java . i o . BufferedReader ;
import java . i o . Fi leReader ;
import java . u t i l . ArrayList ;
import net . j i n i . space . JavaSpace ;
import net . j i n i . core . l e a s e . Lease ;
import jade . core . behaviours . ∗ ;

public c lass FusionAgent extends InputAgent{
St r ing f i l ename = Constants .OBJECT AND COMMANDS;
ArrayList objectCommands ;
S t r ing listenCommandType ;

private OutputGUI myGUI;

// Setup f u s i o n agen t
protected void setup (){

System . out . p r i n t l n (”FusionAgent”) ;
System . out . p r i n t l n (codebase + ” ”+ hostname) ;

Sequent ia lBehaviour jsBeh = new Sequent ia lBehaviour (this) ;
jsBeh . addSubBehaviour (new reg i sterWithJavaSpace (this , hostname , spaceName , po l i cy , codebase)) ;
jsBeh . addSubBehaviour (new SetPotent ia lLocat i onObjec t s (f i l ename)) ;

jsBeh . addSubBehaviour (new SpaceL i s tener ()) ;

this . addBehaviour (jsBeh) ;

myGUI = new OutputGUI(this) ;
myGUI. show () ;

}

/∗∗
∗
∗ @param inputCommand : Command from CommandAgent
∗ @param l i s t : L i s t o f p o s s i b l e l o c a t i o n s
∗ @param s t a t e : Which e lement o f t h e l i s t t o f o cu s on
∗/

public void f u s i on (CommandDescription inputCommand , ArrayList l i s t , int s t a t e){
Locat ionDesc r ip t i on l o c a t i o n = new Locat ionDesc r ip t i on () ;
int l i s t S i z e = l i s t . s i z e () ;

i f (l i s t S i z e > 0 && s ta t e < l i s t S i z e){
l o c a t i o n = (Locat ionDesc r ip t i on) l i s t . get (s t a t e) ;

}
commandLocationFusion (inputCommand , l o ca t i on , l i s t , s t a t e) ;

}

//Check i f o b j e c t i s g i v en from the commandAgent
public boolean checkCommandObject (St r ing commandObj){

boolean com =true ;
i f (commandObj . equa l s (””)){

com = fa l se ;
}
return com ;

}

//Check i f o b j e c t g i v en from command inpu t e q u a l s o b j e c t t ype from g i v en l o c a t i o n o b j e c t .
public boolean commandEqualsLocation (St r ing command , St r ing l o c a t i on){

boolean equa l s = fa l se ;
i f (command . equa l s (l o c a t i on)){

equa l s = true ;
}
return equa l s ;

}

// perform ou tpu t
public void performAction (St r ing command , St r ing object , S t r ing addInfo){

System . out . p r i n t l n (”Perform act i on : ”+ ”Command: ”+ command+ ” Object : ”+ ob j e c t) ;
myGUI. s e tSo l u t i on (”YES”) ;
myGUI. setCMD(command) ;
myGUI. se tObject (ob j e c t) ;

106

myGUI. setAddInfo (addInfo) ;
}

//Checks i f g i v en command i s a lowed f o r t h i s l o c a t i o n o b j e c t .
public boolean possibleCommands (St r ing command , St r ing locType){

int ob jS i z e = objectCommands . s i z e () ;
boolean found = fa l se ;
int i =0;
while (! found && i < ob jS i z e){

Locat ionObjects potentialObjectCom = (Locat ionObjects) objectCommands . get (i) ;
S t r ing pot en t i a lOb j e c t = potentialObjectCom . ob j e c t ;
i f (po t en t i a lOb j e c t . equa l s (locType)){

ArrayList commands = potentialObjectCom . commands ;
int commandsSize = commands . s i z e () ;
int j = 0 ;
boolean foundCommand = fa l se ;
while (! foundCommand && j < commandsSize){

St r ing potentialCommand = (St r ing)commands . get (j) ;
i f (potentialCommand . equa l s (command)){

foundCommand = true ;
found = true ;

}
j++;

}
}
i++;

}
return found ;

}

/∗∗Fusion o f command and l o c a t i o n mod a l i t i e s
∗
∗ @param inputCommand : i npu t from CommandAgent
∗ @param l o c a t i o n : Inpu t from Locat ionAgent
∗ @param p r i L i s t : s o r t e d l i s t o f p o s s i b l e l o c a t i o n i n p u tm o d a l i t i e s
∗ @param s t a t e : Which l o c a t i o n i n p u tma d a l i t y to check .
∗/

public void commandLocationFusion (CommandDescription inputCommand , Locat ionDesc r ip t i on loca t i on ,
ArrayList p r iL i s t , int s t a t e){

// Command INPUT
St r ing commandObject = ”” ;
St r ing command = ”” ;
St r ing commandInfo = ”” ;

i f (inputCommand!=null){
i f (inputCommand . getCommand() != null){
commandObject = inputCommand . getObject () ;
command = inputCommand . getCommand () ;
commandInfo = inputCommand . i n f o ;
}

}

// Loca t ion INPUT
ArrayList l o ca t i on Input = new ArrayList () ;
i f (l o c a t i o n !=null){

l o ca t i on Input = l o c a t i o n . getNameAndType () ;
}

int l o c S i z e = loca t i on Input . s i z e () ;
boolean done = fa l se ;
int i = 0 ;

// I f o b j e c t t y p e i s speeched
i f (checkCommandObject (commandObject)){

while (! done && i < l o c S i z e){
Locat ion In fo l o c = (Locat ion In fo) l o ca t i on Input . get (i) ;
S t r ing locName = lo c . getName () ;
S t r ing locType = lo c . getType () ;
i f (commandEqualsLocation (commandObject , locType)){

i f (possibleCommands (command , locType)){
done = true ;
performAction (command , locName , commandInfo) ;

}
}
i++;

}
}

// I f o b j e c t t y p e i s not speeched
else{

while (! done && i < l o c S i z e){

107

Locat ion In fo l o c = (Locat ion In fo) l o ca t i on Input . get (i) ;
S t r ing locName = lo c . getName () ;
S t r ing locType = lo c . getType () ;
i f (possibleCommands (command , locType)){

done = true ;
performAction (command , locName , commandInfo) ;

}
i++;

}
}

i f (! done){
s t a t e++;
i f (s tate <p r i L i s t . s i z e ()){

f u s i on (inputCommand , p r iL i s t , s t a t e) ;
} else {

myGUI. s e tSo l u t i on (”NO, Recognit ion e r r o r ”) ;
myGUI. setCMD(””) ;
myGUI. se tObject (””) ;
myGUI. setAddInfo (””) ;

}
}

}

public St r ing getListenInputType (){
return listenCommandType ;

}

// L i s t e n s to JavaSpace f o r a new CommandDescription
public void l i s t e n e r (){

try{
L i s t ene r l i s t e n e r = new L i s t ene r (space , this) ;
System . out . p r i n t l n (”Fusion L i s t ene r ”) ;

CommandDescription temp = new CommandDescription () ;
System . out . p r i n t l n (”LISTENED COMMAND” + temp . getInputType ()) ;
listenCommandType = temp . getInputType () ;
space . n o t i f y (temp , null , l i s t e n e r , Lease .FOREVER, null) ;

}catch (Exception e){
e . pr intStackTrace () ;

}
}

class SpaceL i s tener extends OneShotBehaviour{
JavaSpace space ;

FusionAgent myAgent ;

public void ac t i on (){
l i s t e n e r () ;

}
}

class SetPotent ia lLocat i onObjec t s extends OneShotBehaviour{
private Fi leReader r eadF i l e ;
BufferedReader readImportantPoints ;
private St r ing f i l ename ;

/∗∗
∗ Read one l i n e a t t h e t ime from the t e x t f i l e
∗
∗/

public SetPotent ia lLocat i onObjec t s (S t r ing f i l ename){
this . f i l ename = f i l ename ;

}

public ArrayList objectsAndCommands (){
St r ing objectCommand ;
ArrayList commands = new ArrayList () ;
try{

r eadF i l e = new Fi leReader (f i l ename) ;
readImportantPoints = new BufferedReader (r eadF i l e) ;
objectCommand = readImportantPoints . readLine () ;
while (objectCommand!=null){

i f (objectCommand . l ength ()>0){
commands . add (setCommands (objectCommand)) ;

}
objectCommand = readImportantPoints . readLine () ;

}

108

}catch (Exception e){
e . pr intStackTrace () ;

}
return commands ;

}

public Locat ionObjects setCommands (St r ing f i l e I n p u t){
int startCommands = f i l e I n p u t . indexOf (” : ”) ;
ArrayList commands = new ArrayList () ;
S t r ing ob j e c t = f i l e I n p u t . sub s t r i ng (0 , startCommands) ;
boolean str ingEnd = fa l se ;
boolean subs t r = fa l se ;
S t r ing out = ”” ;
int j = startCommands+1;
while (! str ingEnd){

char chr = f i l e I n p u t . charAt (j) ;
i f (chr==’ . ’){

str ingEnd = true ;
commands . add (out . sub s t r i ng (1 , out . l ength ())) ;

} else i f (chr==’ , ’){
commands . add (out . sub s t r i ng (1 , out . l ength ())) ;
out = ”” ;

} else{
out = out + chr ;

}
j++;

}
Locat ionObjects l o c = new Locat ionObjects (object , commands) ;
return l o c ;

}

public void p r i n t l i s t (ArrayList l i s t){
int l i s t S i z e = l i s t . s i z e () ;
for (int i = 0 ; i < l i s t S i z e ; i++) {

St r ing out = ”” ;
Locat ionObjects obj = (Locat ionObjects) l i s t . get (i) ;
out = ”Object : ”+ obj . ob j e c t + ” Commands : ” ;
ArrayList commands = obj . commands ;
int commandSize = commands . s i z e () ;
for (int j = 0 ; j < commandSize ; j++) {

out = out + commands . get (j) ;
}
System . out . p r i n t l n (out) ;

}
}
public void ac t i on (){

objectCommands = objectsAndCommands () ;
}

}

class Locat ionObjects{
public St r ing ob j e c t ;
public ArrayList commands ;

public Locat ionObjects (S t r ing object , ArrayList commands){
this . ob j e c t = ob j e c t ;
this . commands = commands ;

}
}

}

109

Listener: Listen for changes on the JavaSpace
/∗∗ L i s t e n e r . j a va
∗
∗/

import java . rmi . RemoteException ;
import java . rmi . s e r v e r . UnicastRemoteObject ;
import net . j i n i . core . event . RemoteEvent ;
import net . j i n i . core . event . RemoteEventListener ;
import net . j i n i . space . JavaSpace ;
import java . u t i l . ArrayList ;

public c lass L i s t ene r extends UnicastRemoteObject implements RemoteEventListener {
private JavaSpace space ;

private FusionAgent myAgent ;

public L i s t ene r (JavaSpace space , FusionAgent ag) throws RemoteException {
this . space = space ;
myAgent = ag ;

}
// n o t i f i e s when new CommandDescription i s p l a c ed on JavaSpace , c o l l e c t s
// in f o rma t i on from JavaSpace and sends to f u s i o n
public void no t i f y (RemoteEvent ev) {

CommandDescription command = new CommandDescription () ;
Locat ionDesc r ip t i on l o c a t i o n = new Locat ionDesc r ip t i on (Constants .LOCATION) ;
Locat ionDesc r ip t i on maplocation = new Locat ionDesc r ip t i on (Constants .MAPLOCATION) ;

try {
CommandDescription commandResult =
(CommandDescription) space . read (command , null , 10000) ;
Locat ionDesc r ip t i on l o c a t i onRe su l t =
(Locat ionDesc r ip t i on) space . r e ad I fEx i s t s (l o ca t i on , null , 2 00) ;
Locat ionDesc r ip t i on maplocat ionResult =
(Locat ionDesc r ip t i on) space . r e ad I fEx i s t s (maplocation , null , 2 00) ;

long speechTime = 0 ;
long posTime = 0 ;

long mapTime = 0 ;

i f (commandResult !=null){
System . out . p r i n t l n (”COMMANDNOTIFY ” + commandResult . getInputType ()) ;
speechTime = commandResult . getTime () . longValue () ;

}
i f (l o c a t i onRe su l t !=null){

System . out . p r i n t l n (”LOCATIONNOTIFY ” + lo ca t i onRe su l t . getInputType ()) ;
posTime = lo ca t i onRe su l t . getTime () . longValue () ;

}
i f (maplocat ionResult !=null){

System . out . p r i n t l n (”MAPLOCATIONNOTIFY ” + maplocat ionResult . getInputType ()) ;
mapTime = maplocat ionResult . getTime () . longValue () ;

}
boolean map = fa l se ;
i f (speechTime !=0 &&mapTime != 0){

long d i f f e r e n c e = java . lang .Math . abs (speechTime − mapTime) ;
i f (d i f f e r e n c e <=2000){

map = true ;
}

}
ArrayList p r i o r i t y L i s t = new ArrayList () ;
i f (map){

System . out . p r i n t l n (”MAPPRI”) ;
p r i o r i t y L i s t . add (maplocat ionResult) ;
p r i o r i t y L i s t . add (l o c a t i onRe su l t) ;

} else{
System . out . p r i n t l n (”PosPRI”) ;
p r i o r i t y L i s t . add (l o c a t i onRe su l t) ;
p r i o r i t y L i s t . add (maplocat ionResult) ;

}
int s t a t e = 0 ;
myAgent . f u s i on (commandResult , p r i o r i t yL i s t , s t a t e) ;

} catch (Exception e) {
e . pr intStackTrace () ;

}

System . out . p r i n t l n (”NOTIFY FINISHED”) ;
}

}

110

OutputGUI: Show output and action that should happen in a GUI
/∗
∗ Created on 30 . jun .2005
∗
∗ TODO To change t h e t emp l a t e f o r t h i s g ene ra t ed f i l e go to
∗ Window − Pre f e r enc e s − Java − Code S t y l e − Code Templates
∗/

import javax . swing . ∗ ;

import java . awt . ∗ ;
import java . awt . event . ∗ ;

public c lass OutputGUI extends JFrame {

JLabel s o l u t i o n = new JLabel (” So lut i on found? : ”) ;
JLabel cmd = new JLabel (”Command to perform : ”) ;
JLabel obj = new JLabel (”Chosen Object ”) ;
JLabel addInfo = new JLabel (” Addit iona l In f o : ”) ;

FusionAgent myAgent ;

public OutputGUI(FusionAgent ag) {
myAgent = ag ;
j b I n i t () ;

}

private void j b I n i t (){
s e tT i t l e (”Output”) ;
s e tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
Container guiBeholder = getContentPane () ;
LayoutManager layout = new GridLayout (4 , 2 , 5 , 5) ;
guiBeholder . setLayout (layout) ;
guiBeholder . add (s o l u t i on) ;
guiBeholder . add (cmd) ;
guiBeholder . add (obj) ;
guiBeholder . add (addInfo) ;

pack () ;
}

public void s e t So l u t i on (St r ing s){
s o l u t i on . setText (” So lut i on found? : ”+ s) ;

}

public void setCMD(St r ing s){
cmd . setText (”Command to perform : ” + s) ;

}

public void se tObject (St r ing s){
obj . setText (”Chosen Object : ”+s) ;

}

public void setAddInfo (St r ing s){
addInfo . setText (” Addit iona l i n f o : ”+ s) ;

}

}

111

SpeechGrammar: the speech grammar shows which combination of words
are allowed to speech
grammar Speech ;

<po l i t e > = (could you | could I | p l ea s e) [p l e a s e] ;

<commands> = (in format ion { in fo rmat ion }
| show {show}
| coo rd ina t e s { coo rd ina t e s }
| pre s en ta t i on { pre s en ta t i on }
| normal {normal}
| r e s e r v e { r e s e r v e }
| a v a i l a b i l i t y { a v a i l a b i l i t y }
| open {open}
| c l o s e { c l o s e }
) ;

<ob jec t s > = ([meeting] room {room}
| o f f i c e { o f f i c e }
| c o r r i d o r { c o r r i d o r }
| f l o o r { f l o o r }
| door {door}
| cur ta in { cur ta in }
| window {window}
| student workplaces {workplaces}
) ;

<verb> = get | g ive | show | s e t | check ;

<art> = the | this | some ;

<pr> = of | about ;

<end> = in d e t a i l | <c lock >;

<pron> = in ;

<c lock> = [at] (one {1}
| two {2}
| three {3}
| f our {4}
| f i v e {5}
| s i x {6}
| seven {7}
| e i gh t {8}
| nine {9}
| ten {10}
| e l even {11}
| twelve {12}
) ;

public <sentence> = [<po l i t e >] [<verb >] [me][< art >] <commands> [me][<pr >] [<art >] [< ob jec t s >][<end >] ;

public <sentence2> = [<po l i t e >] [<verb >] [<art >] [< ob jec t s >] [<pron >] <commands> [mode] ;

112

ObjectCommand: Possible commands on the objects
door : open , c l o s e .
room : re se rve , pre sentat ion , in format ion , show , coord inates , normal , a v a i l a b i l i t y .
cu r ta in : open , c l o s e .
window : open , c l o s e .

113

Points: Where the objects are located
o f f i c e 1 : room (0 125 , 0 125)
o f f i c e 2 : room (125 210 , 0 125)
o f f i c e 3 : room (210 300 , 0 125)
o f f i c e 4 : room (435 520 , 0 125)
o f f i c e 5 : room (520 610 , 0 125)
o f f i c e 6 : room (610 690 , 0 125)
o f f i c e 7 : room (250 345 , 170 270)
o f f i c e 8 : room (345 460 , 170 270)
o f f i c e 9 : room (610 690 , 170 270)
meeting room : room (460 610 , 170 270)
s tudent l ab1 : room (0 125 , 170 270)
s tudent l ab2 : room (125 250 , 170 270)
c o r r i d o r : room (0 610 , 125 170)

door1 : door (25 75 , 80 125)
door2 : door (150 200 , 80 125)
door3 : door (225 275 , 80 125)
door4 : door (450 500 , 80 125)
door5 : door (530 580 , 80 125)
door6 : door (625 675 , 80 125)
door7 : door (35 85 , 145 185)
door8 : door (160 210 , 145 185)
door9 : door (270 320 , 145 185)
door10 : door (370 420 , 145 185)
door11 : door (510 560 , 145 185)
door12 : door (625 675 , 145 185)

window1 : window (40 80 , 10 20)
window2 : window (150 180 , 10 20)
window3 : window (230 255 , 10 20)
window4 : window (320 340 , 10 20)
window5 : window (380 405 , 10 20)
window6 : window (460 490 , 10 20)
window7 : window (550 570 , 10 20)
window8 : window (630 655 , 10 20)
window9 : window (50 80 , 260 270)
window10 : window (160 200 , 260 270)
window11 : window (270 295 , 260 270)
window12 : window (380 415 , 260 270)
window13 : window (475 495 , 260 270)
window14 : window (540 565 , 260 270)
window15 : window (635 660 , 260 270)

cur ta in1 : cu r ta in (40 80 , 10 20)
cur ta in2 : cu r ta in (150 180 , 10 20)
cur ta in3 : cu r ta in (230 255 , 10 20)
cur ta in4 : cu r ta in (320 340 , 10 20)
cur ta in5 : cu r ta in (380 405 , 10 20)
cur ta in6 : cu r ta in (460 490 , 10 20)
cur ta in7 : cu r ta in (550 570 , 10 20)
cur ta in8 : cu r ta in (630 655 , 10 20)
cur ta in9 : cu r ta in (50 80 , 260 270)
cur ta in10 : cu r ta in (160 200 , 260 270)
cur ta in11 : cu r ta in (270 295 , 260 270)
cur ta in12 : cu r ta in (380 415 , 260 270)
cur ta in13 : cu r ta in (475 495 , 260 270)
cur ta in14 : cu r ta in (540 565 , 260 270)
cur ta in15 : cu r ta in (635 660 , 260 270)

canteen : canteen (300 435 , 0 110)

114

Bibliography

[1] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. Jade, a white paper.
exp, 3(3), 2003. http://exp.telecomitalialab.com/.

[2] J. Bers, S. Miller, and J. Makhoul. Designing conversational interfaces
with multimodal interaction. DARPA Workshop on Broadcast News
Understanding Systems, 1998.

[3] R. A. Bolt. Put-that-there: Voice and gesture at the graphics inter-
face. Proceedings of the 7th annual conference on Computer graphics
and interactive techniques, 1980.

[4] L. Boves and E. den Os. Multimodal multilingual information services
for small mobile terminals (must), 2001.

[5] A. Cheyer and L. Julia. Multimodal maps: An agent-based approach.
In Multimodal Human-Computer Communication. Springer-Verlag, Lon-
don, UK, 1998.

[6] P. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith,
Chen. L., and J. Clow. Quickset: Multimodal interaction for distributed
application. Proceedings of the fifth ACM international conference on
Multimedia, 1997.

[7] D. D. Corkill. Collaborating software: Blackboard and multi-agent sys-
tems & the future. In Proceedings of the International Lisp Conference,
New York, October 2003.

[8] D. Gelernter. Generative communication in linda. ACM Transactions
on programming languages and systems, 7(1), January 1985.

[9] M. A. Grasso, D. S Ebert, and T. W. Finin. The integrality of speech
in multimodal interfaces. ACM transactions on Computer-Human In-
teraction, 5(4):303–325, 1998.

115

[10] D. Groome. An introduction to cognitive psychology. Processes and dis-
orders. Psychology press, 1999.

[11] T. G. Holzman. Computer-human interface solutions for emergency
medical care. Interactions, 1999.

[12] A. K. Jain and A. Ross. Multibiometric systems. Communications of
the ACM, 47(1), 2004.

[13] M. Johnston, S. Bangalore, G. Vasireddy, A. Stent, P. Ehlen, M. Walker,
S. Whittaker, and P. Maloor. Match: An architecture for multimodal
dialogue systems. Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics, 2002.

[14] R. Kurzweil. When will hal understand what we are saying? com-
puter speech recognition and understanding. In D. G. Stork, editor,
Hal’s Legacy: 2001’s Computer as Dream and Reality. MIT Press, 1998.
http://mitpress.mit.edu/e-books/Hal/.

[15] H. Lieberman and T. Selker. Agents for the user interface. In Jeffrey
Bradshaw, editor, Handbook of Agent Technology. MIT Press, 2002.

[16] D. L. Martin, A. J. Cheyer, and D. B. Moran. The open
agent architecture: A framework for building distributed soft-
ware systems. Applied Artificial Intelligence, 13(1-2):91–128, 1999.
http://www.ai.sri.com/ cheyer/papers/oaa.pdf.

[17] M. T Maybury. Intelligent user interfaces: An introduction. In M. T.
Maybury and W. Wahlster, editors, Readings in Intelligent User Inter-
faces, pages 1–13. Morgan Kaufmann Publisher, 1998.

[18] J. G. Neal, Z. Thielman, Z. Dobes, S. M. Haller, and S. C Shapiro. Nat-
ural language with integrated deictic and graphic gestures. In Proceed-
ings of the 1989 DARPA Workshop on Speech and Natural Language,
1989.

[19] H. S. Nwana. Software agents: An overview. Knowledge Engineering
Review, 11(3), October/November 1996.

[20] H. S. Nwana, L. Lee, and N. R. Jennings. Co-ordination in software
agent systems. BT Technology Journal, 14(4), October 1996.

[21] S. Oviatt. Multimodal interfaces. In Handbook of Human-Computer
Interfaces. Lawrence Erlbaum, New Jersey, 2002.

116

[22] S. Oviatt. Advances in robust multimodal interface design. Computer
Graphics and Applications, IEEE, 23(5), 2003.

[23] S. Oviatt. User-centered modeling and evalutation of multimodal inter-
faces. Proceedings of the IEEE, 91(9), September 2003.

[24] L. Rabiner and B. Juang. An introduction to hidden markov models.
ASSP Magazine, IEEE, 3(1), 1986.

[25] S. J. Russel and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[26] W. Wahlster. User and discourse models for multimodal communication.
In J. Sullivan and S. Tyler, editors, Intelligent User Interfaces, pages
45–67. ACM Press, New York, 1991.

[27] The nuts and bolts of compiling and run-
ning javaspaces programs. Web Page.
http://java.sun.com/developer/technicalArticles/jini/javaspaces/.

[28] Adaptive agent architecture. Web Page. http://chef.cse.ogi.edu/AAA/.

[29] Fipa. Web Page. http://www.fipa.org.

[30] Galaxy communicator. Web Page.
http://communicator.sourceforge.net/.

[31] Jade. Web Page. http://jade.tilab.com.

[32] Javaspaces service specification. Web Page.
http://www.jini.org/nonav/standards/davis/doc/specs/html/jsTOC.html.

[33] Java speech api programmer’s guide. Web Page, 1998.
http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-
guide/index.html.

[34] Grammar format specification. Web Page,
1998. http://java.sun.com/products/java-
media/speech/forDevelopers/JSGF/index.html.

[35] Ibm viavoice. Web Page, 1998. http://www-
306.ibm.com/software/voice/viavoice/.

[36] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley &
Sons, Inc., 2002.

117

