
Abstract

The research papers about suffix arrays have grown many, and asymptotically better algorithms are being devel-
oped. There are, however, two areas that seem to have been a little forgotten – searching in external memory and
document retrieval from a suffix array. We present and compare four different methods for document retrieval from
an external suffix array. Our results show that only one yields adequate results in the presence of many documents,
namely embedding document information into the suffix array. We also touch on the subject of searching external
suffix arrays, presenting and discussing four techniques.
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Chapter 1

Introduction

Suffix arrays are data structures that index some text to facilitate fast searching and retrieval of all occurences. The
past years have seen a raging development in suffix array construction.

Traditionally suffix arrays have only been suitable for internal memory – it took too long to construct a suffix array
in external memory. In 2003, however, this began to change with the introduction of three different suffix array
construction algorithms that ran in linear time, [KS03], [KA03] and [KSPP03]. In 2005, feasible external memory
suffix array construction was introduced by Dementiev et al. in [DKMS05], using the techniques from [KS03]. In
last four years, at least fifteen articles regarding suffix arrays have been published. As much as twice that number
of articles regarding closely related data structures have been published.

Yet, noone seems to have looked into the problem of multiple documents and suffix arrays, with the honest ex-
ception of Muthukrishnan [Mut02]. His solution requires much preprocessing and extra storage – it is not fit for
external memory.

With this thesis I hope to cover some ground on the problem of retrieving documents from a suffix array in external
memory. I will present various techniques for retrieving documents and compare them to each other.

Also, I will try the external suffix array construction presented in [DKMS05] and briefly look into various external
memory suffix array search algorithms, such as that of Baeza-Yates et al. in [BYBZ96].
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Chapter 2

Background

In this chapter we will introduce and define some basic concepts, problems and models. A loose sketch of a
solution to a problem will be presented when appropriate.

After reading this chapter you will have a overview of the fields we touch in this thesis, as well as understanding
of our notation. String processing articles suffers somewhat from a wide variety of notations, with respect to the
letters used to denote various concepts and the actual syntax. We have tried to use a uniform naming scheme
of variables, most notably capital letters for sets and lower case letters for sizes. Some places we have used|S|
notation to denote the size of setS, if a lower case variable is not readily available. Our goal has been to achieve
mathematical clarity in the notation, while trying to keep it reasonably close to actual implemenation.

2.1 Strings

A string is a sequence of symbols, denotedT = T [0]T [1]...T [n− 1], T [0]T [1]...T [n− 1] being the concatenation
of individual symbols in the string. The length of a stringT is its number of charactersn = |T |. When discussing
string algorithms,T denotes the source text with lengthn andP = P [0]P [1]...P [n − 1] denotes a search pattern
of lengthm = |P |.

A substringis a contiguous part of another string, denotedTi..j = T [i]T [i+ 1]...T [j − 1]T [j].
A prefixof T is a substring starting att0. Theith prefix ofT is thusT [0...i− 1] = T [0]T [1]...T [i− 1].
A suffixof T is a substring ending attn−1. It is a particularly vital notion in this thesis. Theith suffix of T is
denotedTi−1 = T [i− 1]T [i]...T [n− 1].

Another important notation with respect to suffix arrays, which will be introduced shortly, is that of longest com-
mon prefix (lcp). The lcp between two stringsA andB is the longest prefix ofA that is also a prefix ofB. If the
length of the lcp betweenA andB is j, we haveA[0] = B[0],A[1] = B[1], ...,A[j − 1] = B[j − 1],A[j] 6= B[j].

2.2 String searching

String searching is about finding one or more occurences of a patternP in a textT . With respect to suffix arrays,
it is most of the time about finding all the occurences ofP in T . There are two important limitations that need to
be made about the scope of pattern matching.

First, there are many forms of patterns. The most basic one is a simple pattern, where the matching is just about
the plain text in the symbols. We will refer only to this kind of string searching – matching a simple pattern. Other
kinds of patterns include don’t care symbols and full fledged regular expressions; these will not be discussed, as

8
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these are own fields of study. IfTi..i+w−1 = P , we say that there is amatchor an occurence ofP in positioni.
There can be at mostn− w + 1 matches, because of the length of the pattern.

Second, there are two fundamentally different groups of string searching algorithms, indexing and non-indexing
algorithms. The non-indexing algorithms have only one phase, the search phase1. It searches the text for the
pattern. Many clever algorithms have been designed for this, but all depend heavily on the size of the text.

The indexing group of algorithms preprocesses the text. When searching for a pattern, information from the pre-
processing phase is used to make the search itself quicker. These algorithms should be used when there tend to be
many queries on the same text and/or when search time is of the essence. Well known indexing techniques include
inverted files, suffix trees and suffix arrays. The inverted files [HBYFL92] are word-based indexes, meaning that
you can only search for entire words in them. Suffix trees and suffix arrays are full-text indexes, meaning that you
can search for any substring of the text in them.

2.3 Document retrieval

Document retrieval is a special kind of string searching problem. It is about finding all the documents which match
a pattern. This can include advanced requirements such as that the pattern has to occur at leastX times and at most
Y times in certain contexts within a document, or the simple requirement that the pattern must occur at least once
within a document for it to match.

We will only focus on the simple problem of finding all documents in which the pattern occures at least once. This
is known as the document listing problem (see chapter3.

We will use a collection of documents,D = {D0, D1, ..., Dd−1}. A suffix array is not fit to be constructed from
a collection of documents, it deals with a single text, as we shall see in the next section. Thus, we concatenate the
documents to produce a single text. Between2 the documents, we insert special markers,$, so that it is not possible
to get a match across document borders.T = D0$D1$...Dd−1.

2.4 Suffix arrays

A suffix array is a data structure that is the result of preprocessing a textT of lengthn. There are a wide variety of
methods available to build this data structure, the original by Manber and Myers [MM91], the optimal [KS03], the
fast [SS05] or the external [DKMS05]. The selection of algorithms to search for a simple pattern in the text using
the suffix array is more limited. Search algorithms are explained in chapter3. Here we will briefly describe the
suffix array data structure.

Although it might appear confusing at first, the suffix array is a really simple data structure. It represents a lexico-
graphically sorted list of all the suffixes of the textT . Consider the text “banana”. Since the lengthn = 6, it has 6
suffixes, banana, anana, nana, ana, na and a. Sorting this list we get a, ana, anana, banana, na and nana. Now we
look at the positions of these suffixes in the text. a is at position 5, ana at position 3, anana at 1, banana at 0, na at
4 and nana at 2.

The suffix array for “banana” is the arraySA = [5, 3, 1, 0, 4, 2]. Each number in the suffix array represents a suffix
in the text.SA[0] = 5 representsT5 = a. SA[2] = 1 representsT1 = anana. Consider that some of the suffixes
are prefixes of other suffixes.T5 is a prefix of bothT3 andT1. T3 is a prefix ofT1. The suffixes that are prefixes of
other suffixes are sorted first. This is no coincidence, it is the way a suffix array must be sorted.

Note that when we say the way a suffix array must be sorted, we are referring to the way the suffixes to which the
entries in the suffix array points, must be sorted. This statement is somewhat tiresome to read, so when there is no

1Actually, there is some kind of crossover that tend to be counted among the non-indexing algorithms. Algorithms that preprocess the
pattern. Preprocessing of the pattern, however, is an insignificant task compared to preprocessing the text

2For simplicity, this marker is actually placedafter every document in our implementation.
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or little room for misunderstanding, we will use the technically inaccurate, but highly understandable statements
instead.

Building the suffix array is possible in optimalO(n) time, achieved by [KS03], [KSPP03] and [KA03] indepen-
dently of each other in 2003.

Searchingthe suffix array is not possible in optimal time. Indeed, because of the structure itself, the best possible
search time isO(w log n). Using auxiliary data structures it is possible to achiveO(w + log n) search time, and
even expectedO(w) search time [MM91]. Which brings us to the original design purpose for suffix arrays:low
space requirements.

When Manber and Myers introduced suffix arrays in 1991 [MM91], they built it inO(n logn) time using only9n
bytes, the text included, assuming an integer was 4 bytes. After construction, the text and suffix array use a mere
5n bytes, a major achievement over suffix trees, that use up to20n bytes [Kur99].

2.5 Suffix trees

Suffix trees were invented by Weiner in 1973 [Wei73]. This has long given them a theoretical advantage over suffix
arrays – much literature discussing construction of and searching in suffix trees has been published. Recently,
however, suffix arrays has gained significant ground, with at least fifteen articles on pure suffix arrays the last four
years, and maybe twice as many on closely related structures.

Nevertheless, the suffix tree remains unbeaten on its asymptotically optimal search time, never mind the fact that
a suffix array performs comparably fast in practice [FG04]. The suffix tree can be built inO(n) time and a pattern
can be found inO(w) time [Wei73].

There are two widely used method for suffix tree construction, that of McCreight 1976 [McC76] and that of
Ukonnen 1995 [Ukk95]. They both end up with the same suffix tree, and how it is built is outside the scope of this
article. I will just quickly assert the nature of a suffix tree, to disclose its close connection to the suffix array.

The data structure, as the name highly suggests, is laid out as a tree. The tree hasn leaves (bottom-most nodes;
nodes with no children), each corresponding to exactly one suffix in the text. All the inner nodes (those that are
not leaves) of the tree each has at least two children. This ensures that there are at mostn− 1 inner nodes.

A search consists of the following. You start in the root node. Each inner node has at least two edges out (there is
exactly one edge per child). Each edge is labelled with a symbol. If your pattern exists in the text, there is an edge
from the root node labelled with the first symbol in your pattern. Following this edge, you come to a new node.
Repeat for the “next” symbol in your pattern. What the next symbol is, depends on the edge you have followed.
In addition to being labelled with a symbol, each edge also has a length. This length is at least one. You discard
as many symbols from your pattern as the length of the edge you follow. This way, you will reach the end of your
pattern inw steps or less. As long as the edge labelled with the correct symbol can be found in constant time
(O(1)), this procedure takesO(w) time.

After following edges until your pattern is exhausted, you will have a node that points you to the position in the
text where your pattern might be found. Since the edges may have lengths longer than one, but only one symbol,
you must also match your pattern against the the text to make sure you have a match. This takes at mostO(w)
time.

There are two key points to notice. We have left out tons of implementation decisions, meaning that the suffix
tree is more difficult to implement than the suffix array. Another is that of occurence listing. If we want to know
all occurences, we must traverse the tree rooted at the node we ended in. To explain this we will reveal the close
connection to the suffix array, as promised. Each leaf node corresponds to a suffix in the text. If you traverse the
leaf nodes from the leftmost to the rightmost, you encounter the suffixes in sorted order, granted that the edges are
sorted. This sorted order is the same order in which a suffix array sorts the suffixes. Thus, a suffix array is nothing
more than a left to right listing of the leaf nodes in a suffix tree.
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Searching a suffix array will get more coverage in the next chapter, but we will give a brief introduction here. To
find all occurences of a pattern, you search for the leftmost and righmost occurence. All entries within that bound
in the suffix array, represents suffixes whose prefix match the pattern. When searching a suffix tree, you will end
in an internal node (unless there is only one occurence of the pattern). All leaves below this node correspond to
suffixes whose prefix match the pattern. The leftmost leafnode below the matched internal node correspond to the
leftmost match in the suffix array and likewise for the rightmost leafnode below the matches internal node. The
second key point is then that occurence listing is not as trivial as with a suffix array – you will actually have to
traverse the entire subtree to find all the leaf nodes corresponding to occurences.

2.6 Memory model

We will assume the external memory model, described in [San02]. This depicts that there are M words of internal
memory that can be accessed quickly, and an external memory that can only be accessed by using I/Os to move B
contiguous words to internal memory.

There are two factors that might influence the model under some circumstances. The internal cache and the external
cache. Internal cache is memory that is even faster than the M words of internal memory. One such cache is called
the level 2 cache. Another is level 1 cache, but only the level 2 cache is big enough to affect our experiments. It
is about 1 MB large or less. The external cache is located on the harddisk. When requesting the same data twice,
this may hold them so that they can be retrieved without physically accessing the disk. This cache is generally 8
MB, and our harddisk is no exception.
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Chapter 3

Search algorithms

The suffix arraySA is explained in section2.4. It consists ofn number of pointers, sorted such that they correspond
to then sorted suffixes of a textT of lengthn.

Definition 3.1. The occurence listing problem is to return all theocc positions in a textT where a patternP occurs.
Formally,OccT (P ) = {i|P = Ti..i+|P |−1}.

The occurence listing problem can be answered fast, using either a suffix array or a suffix tree. The suffix array
method is explained in section3.1. Techniques for searching a suffix array that is stored on disk are investigated
in section3.2. The suffix tree was briefly explained in section2.5. Here is a quick overview of asymptotic running
times in internal memory.

Brute force O(w · n)
Suffix array O(w log n+ occ)
Suffix array w/ lcp O(w + log n+ occ)
Suffix tree O(w + occ)

Definition 3.2. The document listing problem is to return all thedococc documents in a collectionD of d docu-
ments where a patternP occurs at least once. Formally,DococcD(P ) = j|P = Dj

i..i+|P |−1, 0 ≤ i ≤ |Dj | − |P |.

The document listing problem can be solved by concatenating all the documents, separated by special markers,$,
into a textT such thatT = D0$D0D1$..Dd−1$. Then we can solve the occurence listing problem for this text and
translate text positions to documents indexes. That is the main focus of this thesis. Various solutions are discussed
in section3.3. Here is a quick overview of asymptotic running times in internal memory, assuming the occurence
listing problem is solved inO(w log n+ occ) time.

Direct O(w logn+ occ)
Lookup O(w logn+ occ)
Embedded O(w logn+ occ)
Search O(w logn+ occ log occ)
Optimal O(w logn+ dococc)

3.1 Internal suffix array search

The occurence listing problem (definition3.1) was solved asymptotically optimal by Weiner in 1973 (see [Wei73]).
In 1991, almost 20 years later, Manber and Myers was the first to solve it using the suboptimal suffix array
technique [MM91]. The reason it was still of interest was the significantly lower space usage. At about the same
time, Gonnet et. al [GBYS92] came up with the same solution, but their article does not focus as much on the
search algorithm itself, and they did not descripe the LCP structure.

12
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Manber and Myers explains three search routines in [MM91]. Two that solve the problem inO(w log n + occ)
time and one that uses extra information, the LCP array, to solve it inO(w+ log n+occ) time. Manber and Myers
used the faster of the solution without LCP in their comparison with suffix trees. We will also use the solution
without LCP information in our experiments. All three methods will be described in the following sections, but
first we will look at how the suffix array is used to solve the occurence listing problem.

The suffix arraySA represents the sorted suffixes of a textT . The lexicographically smallest suffix ofT is TSA[0]

and the lexicographically largest suffix ofT is TSA[n−1]. Generally, we have the ordering

TSA[i] ≤ TSA[i+i], 0 ≤ i < n− 1.

We exploit this by searching for suffixes whose prefix isP , TSA[i]..SA[i]+w−1 = P . As we will see, finding the
smallest and largest such suffix, bounds the solution. What we will do is to perform a binary search to find the
smallest and largest suffix matchingP . The binary search does not return the suffixes, but pointers to the suffix
array. Given these pointers, we can read all the pointers to all the suffixes directly, as will be shown soon.

Definition 3.3. A ≤j B means that the prefix of thej first symbols ofA is lexicographically smaller than or
equal toB. A <j B, A ≥j B, A >j B andA =j B are defined similarly.A =j B is simply shorthand for
A0..j−1 = B0..j−1.

Since the suffixes are lexicographically ordered bySA, they are also lexicographically ordered by their firstj
symbols. Thus, ifTSA[i] =j P, i ≥ 1 we know thatTSA[i−1] ≤w P . Also, if i < n− 1, TSA[i+1] ≥w P .

To find all suffixes whose prefix is P, we need only to find the lexicographically smallest and largest such suffix.
The smallest is the one that occurs first inSA, TSA[i],mini(TSA[i] =w P ). The largest is the one that occurs last
in SA, TSA[j],maxi(TSA[j] =w P ).

If the patternP exists in the text, it occurs(j − i + 1) times. When we have foundi andj, we know that all
TSA[k] =w P for all k ∈ [i, j]. The reason for this is thatTSA[i] ≤w TSA[k] ≤w TSA[j]. SinceTSA[i] =w P =w

TSA[j], TSA[k] = wP .

3.1.1 Without LCP

Manber and Myers [MM91] give the algorithm for finding the index into the suffix array for the smallest matching
suffix. Rewritten into our notation, it goes as follows:

1 if P ≤w TSA[0] then
2 return false
3 else if P >w TSA[n−1] then
4 return false
5 else
6 L := 0
7 R := n− 1
8 while R− L > 1 do
9 M := (L+R)/2
10 if P ≤w TSA[M ] then
11 R := M
12 else
13 L := M
14 if P 6=w TSA[R] then
15 return false
16 else
17 return R

This is a simple algorithm that runs inO(w log n) time. Thelog n factor comes from the while loop in line 8.R
starts with a value of ofn − 1. Each iteration of the loop halves the value ofR − L, since eitherR (line 11) or

13



Master thesis CHAPTER 3. SEARCH ALGORITHMS

L (line 13) is set toM , the middle ofL andR. The most expensive operation in each iteration is the comparison
in line 10. At mostw symbol comparisons are done here in each iteration. Thus the running time of this binary
search isO(w log n).

We must do a corresponding search to find the largest matching suffix. After that we can read the matching interval
of the suffix array to retrieve the text occurences. This takesO(occ) time, totallingO(w log n+ occ) time.

It is possible to do better with respect to the comparisons in line 10. IfP =l TSA[L] andP =r TSA[R], we know
thatP =min(l,r) TSA[M ]. That means onlyw −min(l, r) symbol comparisons in line 10. It is still possible for
l or r to remain 0 throughout the entire binary search. In this case, we still need at mostw symbol comparisons
in line 10, so the asymptotic running time remains the same. This is the search algorithm we have used in our
experiments.1

The search algorithm we used is basically like the following pseudo code. We first search for the largest matching
suffix, then the smallest. Information from the first binary search is passed on to the next, so that we do not have to
start from the beginning. This complicates the code a little, but it is still basically the same as the above. To make
it clearer how many character comparisons are being made, we use a function to compute equality,lcp, defined as
follows:

def lcp(A, B):
ret := 0
while ret < |A| and ret < |B| and A[ret] = B[ret] do

ret := ret+ 1
return ret

Clearly, this function does at mostmax(|A|, |B|) comparisons. The binary search can now be desribed as follows.

matched := false
L := 0
R := n− 1
l := lcp(P, TSA[L])
r := lcp(P, TSA[R])
if r = w then

j := R
else if P [r] > T [SA[R] + r] then

return false
else if l < w and P [l] < T [SA[L] + l] then

return false
else

while R− L > 1 do
M := (L+R)/2
if l ≤ r then

m := l + lcp(Pl, TSA[M ]+l)
else

m := r + lcp(Pr, TSA[M ]+r)
if m = w then

if not matched then
matched := true
l_copy := l
L_copy := L
r_copy := m
R_copy := M

L := M
l := m

else if P [m] > TSA[M ]+m then
1Actually, we used something that is a little closer to the LCP approach, in order to make it easy to plug in any LCP information. It does

not make for much of a running time difference, though.
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L := M
l := m

else
R := M
r := m

if l < w then
return false

else
j := L
l := l_copy
L := L_copy
r := r_copy
R := R_copy

if l = w then
i := L

else
while R− L > 1 do

M := (L+R)/2
if l ≤ r then

m := l + lcp(Pl, TSA[M ]+l)
else

m := r + lcp(Pr, TSA[M ]+r)
if m = w then

R := M
r := m

else if P [m] > TSA[M ]+m then
L := M
l := m

else
R := M
r := m

i := R

return (i, j)

Even though this algorithm is not asymptotically better, it “significantly improves search speed” [MM91], accord-
ing to the experiments of Manber and Myers. That matches our experience from [FG04].

Notice that the search fori picks up where the search forj became “ambiguous”. When the first search finds the
first match, we know that neitherTSA[L] nor TSA[R] are matches. We also know thatTSA[M ] is a match. The
search forj can continue withM as its newL-border. The search fori later continues withM as itsR-border.
This is the most efficient way to perform these two binary searches, since we use all the information we have from
the first search in the next search.

Manber and Myers discuss and use an important speedup to this algorithm, namely precomputing answers for
queries up to a certain length, sayk. There areσk possible queries of lengthk. We convert thek first symbols of
the query using a functionInteger(A) such thatInteger(A) ≤ Integer(B) if and only ifA ≤ B.

If x = Integer(P0..k−1), we can create a tablebuck, such thatbuck[x] = i|mini(x = Integer(TSA[i]..SA[i]+k−1)).
With this table we can start searching withL := buck[x] andR := buck[x+ 1]. We have not implemented this.
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3.1.2 With LCP

The LCP structure holds information about the length of the longest common prefixes between certain pairs of
suffixes. Manber and Myers [MM91] devised an ingenious way to exploit this precomputed information when
searching in a suffix array. However, they do not use it themselves in their experiments. Neither does anybody
else aiming for speed and low space usage. Time saving tricks such as thebuck array (see previous section) costs
less in terms of space and provide adequate speed. This was confirmed by us in [FG04]. Nevertheless, it holds
theoretical interest as it provides asymptotically better search time for the suffix array. We will continue to a brief
presentation of how the LCP structure can be used.

Assuming that we use a binary search such as in the previous section, always starting at the same place and al-
ways shrinking the borders in the same, predictable way, we can make an important observation. Any value for
M has unique corresponding values forL andR. That is, there is onlyn − 2 unique triplets(L,M,R) that can
be encountered during the binary search. This means that it is feasible to precomputelcp(TSA[L], TSA[M ]) and
lcp(TSA[M ], TSA[R]) for all possible combinations ofL andM andM andR. Theselcp values can be stored in ar-
rays calledllcp andrlcp, each of sizen−2. llcp[M ] = lcp(TSA[L], TSA[M ]) andrlcp[M ] = lcp(TSA[M ], TSA[R]).

Using the information inllcp andrlcp, we can perform the binary search inO(w + log n) time. The point is
to avoid unnecessary comparisons by knowing whether the search shall proceed to left or right. The LCP arrays
provide us with information about this, and we now proceed to prove how they reduce the number of comparisons.

Assuming thatl ≥ r, there are three cases to consider. This applies correspondingly forr > l.

Case 1: Ifllcp[M ] > l we know thatl would have been greater if there was a match in the left half. Thus we must
continue search in right half without question,l being unchanged.

Case 2: Ifllcp[M ] < l we know that there is no hope of a match in the right half and we must continue search in
the left half, settingr := llcp[M ].

Case 3: Ifllcp[M ] = l we do not yet know where we must continue the search. We must calculatej :=
lcp(Pl, TSA[M ]+l). The search will continue in the left or right half depending onPl+j compared toTSA[M ]+l+j .
Now it is fortunate thatj ≥ l ≥ r. This means that whether we setl := l+ j or r := l+ j, the value will be larger
thanl, that was assumed the largest value before. Thus, we only have to comparePl..l+j andTSA[M ]+l..SA[M ]+l+j

once. This means that the total number of comparisons will be less than or equal to2w, giving the run time of
O(w + log n).

The pseudocode is almost equal to the improved search algorithm in the previous section. Simply replace

if l ≤ r then
m := l + lcp(Pl, TSA[M ]+l)

else
m := r + lcp(Pr, TSA[M ]+r)

with

if l ≥ r then
if llcp[M ] ≥ l then

m := l + lcp(Pl, TSA[M ]+l)
else

m := llcp[M ]
else

if rlcp[M ] ≥ l then
m := r + lcp(Pr, TSA[M ]+r)

else
m := rlcp[M ]
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in both the search for the largest and smallest matching suffix. This pseudo code is taken from Manber and Myers’
article. They merged cases 1 and 3. This gives us a constant extra number of comparisons to find thatlcp returns
0 for case 1 in the inner if. We have presented their version to explain this, but we feel that it would be better to
follow the three cases more to the letter in real code. Note also that there are unnecessary comparisons other places
in the pseudo code, but that these also add nothing but a constant cost per iteration – we feel that having them there
provides clarity for the pseudo code.

One thing that have not been mentioned yet, is how to create the LCP arrays (llcp andrlcp), but that is out of the
scope of this thesis. Suffice to say it can be done inO(n) time as shown by Kasai et al. in [KLA +01].

3.2 External suffix array search

Articles on searching in suffix arrays and texts that are stored on secondary memory are hard to come by. That
is perhaps quite natural, since the more essential construction of suffix arrays that are too large to fit in internal
memory, have only recently come under discussion To the best of our knowledge Dementiev et. al [DKMS05]
were the first ones, in 2005, to provide feasible suffix array construction on disk (ignoring the thesis [Meh04] from
which the article is clearly taking its content).

However, there is one decent exception. As early as 1996, Baeza-Yates et.al [BYBZ96] described, among other
things, a structure to support searching PAT arrays2 that was stored on secondary memory, the Short PAT (SPAT)
array. We will now describe the SPAT array, before we look at some other techniques that may be applicable for
searching suffix arrays that are stored on disk. Unfortunately, we have not had the time to implement any of the
methods mentioned in this section.

3.2.1 SPAT

The SPAT array holds a “summary” of the external suffix array in internal memory. Assume thatM internal
memory is available. A SPAT entry consists of the prefix of some suffix. If the length of this prefix isp, we can fit
m = M

p SPAT array elements in internal memory. The SPAT array elements logically divides the suffix array into
groups of sizeg = n

m . The prefix to be stored in the SPAT array is the prefix of the last suffix in each group.

The SPAT array is searched with a standard binary search, possible finding a left and right border for the match. If
p is too small we will have to get text from disk during the SPAT array search.p must thus be balanced so that we
get as many SPAT array entries as possible, while needing to fetch text from the disk as seldom as possible.

When the SPAT array binary search is done, we fetch the suffix array entries belonging to corresponding groups
from disk. We must fetch suffix array entries from at most two groups. A binary search is performed in each group,
this time the text have to be read from the disk.

3.2.2 Interpolation search

A normal search of the suffix array is explained in section3.1.1. This search performs poorly when used directly
on disk (see section6.3.4).

An interpolation search, however, such as the one described in section3.3.4might be able to help out. A good
interpolation search should be able to outperform the binary search easily, since it would rid itself of many disk
accesses. Howerver, finding a good interpolation search algorithm is not trivial.

One of the first difficulties is figuring out how to do the interpolation. In an array with numbers, it is trivial to find
an interpolation, using the ratio of the difference between the search key and the number at the left border and the

2PAT arrays is the same as suffix arrays.
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difference between the numbers at both borders. In a suffix array, the suffixes that make up the keys can not be
readily translated into numbers between which we can find differences and ratios.

We are unable to come up with a method of interpolating in a suffix array search. Deciding whether this is possible
is future work.

Another issue is that using the like of the LCP search in section3.1.2 would be futile. The LCP method of
Manber and Myers depends on the search being predictable and yielding unique borders for each midpoint. An
interpolation search does not have any of these attributes.

3.2.3 LCP

Using LCP information when searching externally would be more profitable than when searching in internal mem-
ory. The reason for that is that we can save many disk accesses, something that is much more worth than just a few
comparisons.

However, in section3.1.2the LCP structure is described as two arraysllcp andrlcp. Using this approach would
lead to many more disk accesses. Changing the data structure is trivial, since each entry inllcp andrlcp corre-
sponds to one entry in the suffix array, and is always used together with this. We would change the suffix array so
that eachSA entry holds three values. LetSAorig be the original suffix array. Then

SA[i].llcp = llcp[i],
SA[i].textindex = SAorig[i] and
SA[i].rlcp = rlcp[i],
for 1 ≤ i < n− 1. SA[0].llcp, SA[0].rlcp, SA[n− 1].llcp andSA[n− 1].rlcp are undefined.

We believe that this suffix array search method has substantial potential for speedup compared to not using LCP
information.

3.2.4 Interleaved text

When the suffix array is so large that it must go in external memory, it is reasonable to believe that this applies to
the text also. If the text can be held in internal memory, the search time might be as much as halved, because at
least half the disk accesses are to the text.

The previous two sections try to contribute toward reducing the number of times it is necessary to look at the text.
Another approach is to interleave the text with the suffix array, to be able to load both suffix array value and text
on the same disk access. If we could load so much text that we do not need to go to the disk for more, this could
halve the search time as well.

The method is straight forward, but it costs much in terms of space. For each suffix array entry, store the firstk
text symbols of the suffix the entry points to, along with the suffix array entry. LetSAorig be the original suffix
array. EachSA entry would then hold two values

SA[i].textindex = SAorig[i] and
SA[i].suffixprefix = TSAorig [i]..SAorig [i]+k−1.

If we assume that a text index uses 4 bytes, and a text symbol uses 1 byte, we could answer all queries up tow ≤ k
length with no extra disk accesses for text in4 + k bytes.

Longer queries would lead to disk accesses for the text when they match more than the firstk symbols of the
current suffix, so depending on the space available, need for speed and average query length, this might be a
feasible solution. Especially considering that storage space is extremely low.
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3.3 Document retrieval

The document listing problem (definition3.2) was solved optimally by Muthukrishnan in 2002 [Mut02], using
suffix trees. His solution works just as well for suffix arrays, with a running time ofO(w + log n+ dococc). The
solution does not seem well fit for external memory, so we have not implemented it. It is, however, very interesting,
and a short description is given in section3.3.5.

We have not seen any articles that discuss practical solutions to the document listing problem using suffix arrays.
Comparing such solutions is the main objective of this thesis. None of the solutions are pioneering work as such
– they are rather quite intuitive. But this is, to the best of our knowledge, the first attempt to show how they must
interact with a suffix array. The results in section6.3 are the more interesting part, but this section should also
bring some enlightenment to the possibilities of document listing using suffix arrays.

We will desribe four different methods in addition to Muthukrishnan’s optimal method,direct, lookup, embedded
andsearch. Embedded is split intoembeddedandshort embedded, where the latter requires modification to the
suffix array values. Search is split intobinary searchand interpolation search. Lookup and search work by
translating text occurences into documents. Direct and embedded read the documents directly.

All methods deliver listings withduplicatedocuments. By duplicate documents we mean that a document will be
listed as many times as there are occurences within the document. If this is not desirable we need to somehow
filter away duplicates. There are two easy ways to implement techniques for this. One is to sort the documents,
then walk through the sorted list and copy only those that occur once. The other is to have a list of marks of the
same length as the number of documents. While reading the documents with duplicates, mark a document when it
is reported, and do not report any previously marked document.

Common for all methods is that they depend on a table mapping a document into its position in the concatenated
text, thedoctable.

doctable[i] =





0 if i = 0
|D1| if i = 1
n if i = d

|D0D1...Dd−1| else

Some methods use this table to build their search structures, while others use it directly when searching. An
index into thedoctable correspond to a document, so to find the document corresponding to a suffixTj in the
concatenated text with the doctable, you must search for the indexi such thatdoctable[i] ≤ j < doctable[i + 1].
Notice thatdoctable hasn+ 1 values, to simplify searches like the one just mentioned.

3.3.1 Direct

This method relies on a precomputed list of what document corresponds to each entry in the suffix array. If we have
an arraydirect of sizen such thatdirect[i] := document whereSA[i] occurs, document listing is straightforward.

Say that we have an occurence in the textk = SA[i]. Tk belongs to the documentdirect[i].
Given bordersL andR for the results inSA, the corresponding documents, with duplicates, are simplydocs =
direct[i]|i ∈ [L,R].

3.3.2 Lookup

This method relies on a alignment of the documents and a precomputed lookup array,lookup, corresponding to
the alignment.

Definition 3.4. A documentDi is alignedon an alignment size,a, if the document length is a multiple ofa. That
is, |Di| mod a = 0.
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Say that we have an occurence in the textk = SA[i]. Since the documents are aligned ona, Tk belongs to
documentlookup[ka ].
Given bordersL andR for the results inSA, the corresponding documents, with duplicates, are
docs = lookup[SA[i]

a ]|i ∈ [L,R].

3.3.3 Embedded

This method relies on the suffix array being modified. The short approach assumes that any combination of a
document and a position within that document can be saved in the same value. Otherwise, the document and the
positions within the text can be save interleaved in the suffix array.

There are at least two reasons for using the short approach. It consumes less space, and is more natural for a suffix
array build of documents. Instead of the suffix arrays containing pointers into some artificially created text, they
contain pointers to documents and offsets to the suffixes within. The problem is that it is often more practical to
do the actual merging into a single text. If that is the case, this method loses much of its value. Another problem is
that of the number of documents and their length. If a suffix array value originally is 4 bytes long, it is reasonable
to give document pointer 2 bytes and the offset the other 2 bytes. This limits both the number of documents and
their maximum size to about 65,000.

We will now introduce a new notation for suffix array values.SA[i] is a value in the suffix array. Normally, this
is an index into the text. With the embedded information,SA[i] holds two values,SA[i].offset andSA[i].docid.
The latter is obviously a pointer to a document. The former depends on whether we are using the short or normal
approach. With the short approachSA[i].offset is an offset into the corresponding document. With the normal
approachSA[i].offset is an index into the text, just as normally denoted bySA[i].

If we want to use the short approach, and have a single text, we need to be able to translate the document pointer
and offset into a text index. Given a pair of valuesSA[i], the text indext = doctable[SA[i].docid]+SA[i].offset.
This has nothing to do with the document listing problem, but it affects the suffix array search needed to findL
andR.

For both the short and the normal approach, given bordersL andR for the results inSA, the corresponding
documents, with duplicates, aredocs = SA[i].docid|i ∈ [L,R].

3.3.4 Search

These methods only rely on thedoctable. All other methods rely on one of these for the construction of their search
structure. The embedded method is the only exception – provided that the suffix array is built with document
pointers embedded.

Assume that we have some search method,search that takes as its argument an index into the text and returns the
corresponding document. Pseudo code for two different suchsearch methods are given below. Here is how to
solve the document listing problem using the search method.

Say that we have an occurence in the textk = SA[i]. Since the documents are aligned ona, Tk belongs to
documentlookup[ka ].
Given bordersL andR for the results inSA, the corresponding documents, with duplicates, are
docs = lookup[SA[i]

a ]|i ∈ [L,R]].

Say that we have an occurence in the textk = SA[i]. Tk belongs to documentsearch(k).
Given bordersL andR for the results inSA, the corresponding documents, with duplicates, are
docs = search(SA[i])|i ∈ [L,R].
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Binary search

A binary search for the document in thedoctable is almost straightforward. The only thing we must change from
any ordinary binary search is that we are not searching for an exact key, we are searching for the lowest index
giving a key that is smaller than what we are searching for.

Say that the input to the search algorithm isk. We want to findi : mini(doctable[i] ≤ k). Recall that
doctable[d] = n, so that this is the same as findingi : doctable[i] ≤ k < doctable[i + 1]. Having the extra
elementdoctable[d] requires only one extra element indoctable, but greatly simplifies our algorithm.

def search(k):
L := 0
R := d
while R− L > 1 do

M := (L+R)/2
if k ≥ doctable[M ] then

L := M
else

R := M
return L

Interpolation search

The assumption that was made fordoctable[d] in binary search applies here as well.

An interpolation search is very similiar to a binary search. They both use borders, find some point between the
borders, and then move one of the borders to that point depending on its value. The difference is that while a binary
search always selects the point in the middle of the two borders, an interpolation search attempts to guess which
point will be closer to the value we are seeking.

The calculation that must be performed in order to select a new point speaks against interpolation search. However,
if the values are approximately uniformely spread out in the array, an interpolation search can find the correct value
in much fewer steps than a binary search. And the larger the array, the more the chance of the interpolation search
severely beating the suffix array. Since we are dealing with large arrays, the interpolation search ought to be a good
competitor to the binary search.

def search(k):
L := 0
R := 0
while k > doctable[L] and k ≤ doctable[R] do

M := L+ (R− L) · (k − doctable[L])/(doctable[R]− doctable[L])
if k ≥ doctable[M ] then

L = M + 1
else

R = M − 1
if k < doctable[L] then

return L+ 1
else if k > doctable[R] then

return R
else

return L
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3.3.5 Optimal

The time optimal solution of the document retrieval problem useO(m + dococc) time. This can be achieved
using a suffix tree together with aO(1) solution to the range minimum query problem. The suffix tree must be
preprocessed inO(n) time. After finding the left and right border nodes of the range of leaf nodes that make
up the occurences, the algorithm can proceed exactly equally on a suffix array and a suffix tree. Since finding
the corresponding suffix array borders takeO(m + log n) time, the document retrieval problem can be solved in
O(m+ log n+ dococc) time, which is still asymptotically better thanO(m+ log n+ Ω(occ)) algorithms that rely
on traversing all occurences in the suffix array.

The following solution was presented in [Mut02] for suffix trees. Adaption to the suffix array is trivial.

The method is best explained intuitively, using figure3.1.

Figure 3.1:Document retrieval tablesD andC.

The topmost range of numbers represent indexes of a suffix array. We have performed a search in the suffix array
and found the borders for our resultl andr. D is in array with the document pointers corresponding to the suffix
array entries.D is the same as thedirect array of the direct method described in section3.3.1. Now we want to
retrieve the unique values fromDl..r.

Consider another arrayC that chains equal document pointers together (see figure). The values inC in figure are
the index of the entries being pointed to by the arrows emerging from the correspondingD indexes. That sentence
was complicated, but the figure should be pretty intuitive. If there is no previous equal document pointer, theC
entry is set to -1.

Note the bold arrowed lines in the figure. If you list the document pointers they come from, you get all the unique
document pointers. The common trait of the bold arrowed lines is that they all cross thel border. Look at theC
values corresponding to the bold arrows. They are all less thenl. That is the key observation.

If you ask for the minimum value in the rangeCl..r, you are guaranteed to get a value that is lower thanl. Imagine
you get the index of this value,j. In the figurej = 15 andC[j] = −1. Proceed with asking for the minimum
values in the intervalsCl..j−1 andCj+1..r. If the minimum value is less thanl you have found a new document
that shall be reported. Continue searching on both sides until the interval is empty or the minimum value is greater
than or equal tol. When you are done you will have reported all documents without duplicates.

Finding the minimum value can be done in constant time, given some preprocessing, see appendixA. Thus you
can find all unique documents in optimalO(dococc) time.

The preprocessing, however, is not fit for doing in external memory.
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Construction algorithms

4.1 Document retrieval

We assume that thedoctable1 is existing as input. Further, we assume that if the embedded method is used, the
document information is already embedded2 into the suffix array.

With these assumptions, only the direct and lookup methods require preprocessing. The construction of these are
explained in the following sections.

4.1.1 Direct

To facilitate direct reading of the document pointers corresponding to an interval in the suffix array, we create an
arraydirect of sizen, such that every elementdirect[i] represents the document of the suffix starting atSA[i].

doctable andSA will be used to createdirect. To find the index indoctable corresponding to aSA value, we
will use thesearch method as defined in section3.3.4. Given an index into the text, it returns the corresponding
document.

We are now ready to create every element indirect, and the formula is really simple:direct[i] := search(SA[i]), 0 ≤
i < n.

4.1.2 Lookup

To facilitate a table available for looking up the document corresponding to a text index, we can create a table
lookup of sizen. However, we can do better if we know that documents are aligned3 on some alignment sizea.
Thus we create a tablelookup of sizena .

We will only needdoctable to createlookup. Our goal is thatlookup[ ia ] = search(SA[i]), wheresearch is the
same function as in section4.1.1. It is, however, rather unnecessary to usesearch to createlookup.

What we want to do is to traversedoctable. For each valuedoctable[i], i < n, we calculate the document length
docleni := doctable[i + 1] − doctable[i]. Then we simply set alllookup[j] = i, doctable[i]a ≤ j < docleni

a , and
doctable is ready.

1See section3.3for a brief definition, or section6.2.2for how it is made.
2See section5.4.2for the implementation details when artificially creating the suffix array with embedded information
3Aligned ona means that the size is a multiple ofa
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Implementation

The source code can be found on the attached CD.

There were four major tasks in the implementation,

1. Suffix array construction

2. Suffix arary search

3. Document information construction

4. Document retrieval

The implementations of these are described in the last section of this chapter.

Crucial to the performance of our application, is total control of the disk. The operating system’s general mech-
anisms for optimizing disk usage does not apply very well to many special algorithms – such as suffix array
construction and searching. The author of the implementation of the algorithm is more likely to know how to make
optimal use of the disk. However, optimal disk usage is difficult, and we have been nowhere near achieving it.
Optimal usage would require threading of the disk accesses, something which would complicate the program too
much for our time frame. Thus, the program could be enhanced later by adding threaded disk access.

In the design to support the above task with full control of the disk we decided to create simple classes that could
deal with direct disk access. Because direct disk access requires that the internal memory is aligned, it was decided
to create classes that manage internal memory also. To make it general, even the default memory handlers of C++,
new anddelete were overloaded. Later, this proved to be a bad design decision, as overloadingnew anddelete
lead to no end of trouble, see section5.1.3.

How statistics is gathered from inside the main program and how it is later processed is described in section5.2.
All statistics are generated by our own source code, because measures must be done on points where external
programs cannot do them. For instance, the disk usage is counted seperately for the suffix array search and the
document listing, even though they occur interchangable as all queries are processed within the program.

Finally, we ran a test to see how the disk responded to different number of block reads. We found that a value of
256 blocks (128 KB) per read was a good value, as shown in section6.3.1. Unless there was a reason to, no disk
read ever read less than 256 blocks at once during our experiment.
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5.1 Memory management

To accomodate using the disk directly (see section5.1.2), we created classes to deal with the details. This resulted
in a memory class hierarchy.

Memory Abstract base class
MemoryInternal Default internal memory (default new and delete)

MemoryAligned Internal memory aligned on block borders
MemoryDisk Abstract disk class - provides aligned operations

MemoryFile Open file for direct access
MemoryFileCache Open file for cached access, overloading MemoryDisk

MemoryPart Open partition for direct access

The memory hierarchy did not become as transparent as we had hoped. It works, but there were some flawed
design decisions on the way that would have been revised if we had had time. In addition to the memory hierarchy,
we created a helper classMemHolder to facilitate more transparent access to disk memory. AMemHolder is bound
to aMemoryDisk and acts as an array that reads in blocks when requested. How many blocks should be read into
aMemHolder at once is decided by the user. Normally this will be the value mentioned above, 256.

The disk operations depend heavily on the operating system. As covered in section6.1, the implementation for the
experiments was done in C++ compiled with GNU’s g++ 3.4 on Linux 2.6.10 running on an AMD Athlon64. We
will now address some issues when doing low level disk operations in Linux 2.6. After that we will discuss some
of the obstacles when messing with the memory mechanisms of C++.

5.1.1 mlock

Linux uses a very agressive disk caching strategy by default. So aggressive, in fact, that it might start swapping
out some processes’s pages in order to preserve and expand the disk cache.mlock is a system call that locks a
range of your process’s pages in memory, so that they are guaranteed not to be swapped out to disk.mlockall is
another system call that does the same for all your pages (optionally, both current and future ones).

So after a call tomlockall, we are guaranteed control of what remains in memory. From Linux 2.6 onward, a
command line call tosysctl -w vm.swappiness=0 will prevent most swapping from taking place. We only
recently became aware of this option, but we will still prefer the lock calls as that gives us certainty.

If a process wants to use the system callmlockall, it has to have privileges to do so. Privilege assignment changed
in Linux 2.6.9. (And in the 2.4 series, only up to half of the memory could be locked.) So you want to make a call to
test whether you are privileged. The documented way of doing this (a library call tocap_get_proc) only worked
when running programs as the super user, root. We abandoned trying to check whether we had the privilege.

Another more important issue, is that of requesting that too much memory be locked. The library callmalloc is
used to request memory. When requesting memory in Linux, the default is that the Linux kernel is optimistic and
might promise more memory than can actually be delivered (seeman malloc). This is fine when swapping can
be applied. When we tried to lock too much memory, we expected the lock call to return an error value. Instead it
actually locked too much memory. This, of course, took up all available memory, and the OOM (out-of-memory)
killer of the Linux kernel started killing of all processexceptours, that was the one doing the actual harm. When all
but our process had been killed, the kernel panicked (the machine stopped responding) because it had no memory.
To avoid this, run the command line callsysctl -w vm.overcommit_memory=2, which will force the kernel to
check that enough memory is actually before committing to give you memory.
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5.1.2 Disk access

After making sure that our process is not swapped out, we went on to decide how to read from and write to the
disk. The library callfopen opens a (cached) stream. The system callopen opens a file or device. We were doing
low level operations, so streams were out of the question. What remained was whatopen should open.

Linux has two kinds of devices,characterandblockdevices. The former may be used for terminals and the latter
may be used for disks. The difference is that character devices are unbuffered while block devices buffer blocks
before they are read from / while they are written to. Disks are block devices by nature. Most disks are divided into
“physical” sectors (blocks) of size 512. When using such devices, blocks of size 512 would be read into a buffer,
before being copied to our process’s memory.

The traditional way to avoid this, was to use the system toolraw to bind a “raw” character version of the disk to
a block device. When opening this block device, the usual cache would be bypassed under the restriction that any
reads and writes had to be

1. alignedon a block border, both in memory and on disk, and

2. their length had to be a multiple of the block size.

Alignment on a (block) border means that the address must be a multiple of the alignment size (block size). Given
an unaligned address,addru, we can find the nearest aligned address ,addra ≤ addru as follows

addra = addru& (ALIGN_SIZE − 1),

if ALIGN_SIZE > 0 is a multiple of 2,& is the bitwise and operator, andĩs the bitwise negation operator.

The raw drivers have been made deprecated and obsolete1 It is recommended to use the block devices as usual,
and open them with theO_DIRECT flag. The manual page foropen explains that if you use theO_DIRECT flag, the
kernel will “[t]ry to minimize cache effects of the I/O to and from [the] file”. When using theO_DIRECT flag, we
operate under the same two restrictions as when using raw devices, with some minor differences. In the 2.4 kernel
series, the alignment size is that of the logical block size of the file system. Under the 2.6 series, alignment size is
512. The documentation does not say, but this implies that the 2.6 series might do buffering when the actual block
size is not 512. Most disks block sizes, however, are 512, so we choose to go with this alignment size for disk
operations.

One more implementation difficulty should be mentioned, namely that of alignment of the file size. The size of a
random input text is probably not a multiple of 512. To accommodate such input, we preprocessed all input files.
We added at least 512 bytes at the end, where the last 8 bytes held the original filesize. This meant garbling the
files with respect to other applications, so a neccessary assumption is that we had sole rights to the files, something
we had. Reading files whose sizes are not multiples of 512 is clearly possible - the file system does it all the time.
We, however, had neither need nor wish to find out how to do this inO_DIRECT mode, so we chose to use our
simple solution. It should not affect our results in any way.

Another thing that should not affect our results, but goes to show that theO_DIRECT mode’s implementation in
Linux might not be wholly thrustable, is the following quote from Linus Thorvalds, creator of the Linux kernel
(taken fromman open):

The thing that has always disturbed me aboutO_DIRECT is that the whole interface is just stupid, and
was probably designed by a deranged monkey on some serious mind-controlling substances.

5.1.3 new

C++ lets you do the most incredible things. One of those things are overloading the default memory allocation
and deallocation routines,new anddelete. We use an instance ofMemoryInternal to handle calls tonew and

1See Device Drivers -> Character Devices -> RAW driver -> Help in the Linux 2.6.10 kernel compilation configuration.
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delete. This has two important problems. First, theMemoryInternal instance must be instansiated before the
first attempt to use it. Static initalization comes to mind. Static objects are created at the beginning and last
throughout the program. However C++ makes no guarantee about the initialization order of various static objects
in different compilaton objects (different cpp-files). This meant the tedious use of a function to get the default
MemoryInternal instance whenever it was needed.

The second problem is more important – the instance must not be deleted before everything that shall be deallocated
with it has been deallocated. We ran into serious problems with this, and we did not manage to correct all of them.
Because of the problems withnew anddelete, a simple class that was used with static objects to register different
methods and their command line paramaters had to be discarded. The program crashed without us being able to
find the reason. Debugging a program before it has come to the starting point (themain function) is difficult.

5.2 Result gathering

The memory hierarchy desribed in section5.1 is used to keep count of allocated memory, maximum allocated
memory, number of disk accesses, size of disk traffic and similar measures.

Timing is done with thegettimeofday system call, which yields an overhead of 0.1 microseconds per pause of
the timer. This is described in section5.2.1.

Both the memory classes and the timing class (Clock) print their own measures. In addition to that, the suffix array
related methods prints such measures as text size, number of documents, number of queries and average query
length. All this output is written tostdout in a uniform format and gathered using a python script, see section
5.2.2.

5.2.1 Timing

To measure the time usage in our experiments, we used thegettimeofday system call. Using the system tool
time was out of the question, since our program performed many duties that we did not want to include in the
timing. The overhead of calls togettimeoday is small2.

As can be seen by the code incode/sa/clock.h our clock’s timing functions are inlined, so that the maximum
error

• for the start function is from the pointgettimeofday reads the time until it returns and the return value is
checked, and

• for the pause/end function is from the pointgettimeofday is called to the point where it reads the time.

For each pair of calls to our clock’s start and pause/end function we add to our results the time it takes for one
call togettimeofday to complete and for its return value to be checked. This overhead is about 0.1 micresecond
(0.099 microsecond when the calls are inlined, 0.102 microsecond when they’re not). This is mostly ignorable.

5.2.2 Scripts

code/tools/gen_data.py has information about what test data to create and what tests to run on these data. It
does this automatically and logs the gathered output to a file.

2A short article discussing how to measure time on Linux and Windows is to be found at IBM,http://www-106.ibm.com/
developerworks/library/l-rt1/. The results are for 2.2.16 and 2.4.2, but we have no reason to believe that the call has any greater
overhead in 2.6.10
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code/tools/gen_results.py takes as input a test case and the results file. The test case describes what data we
are interested in, for what methods, and can give commands as to how the data shall be plotted.gen_results.py
automatically generates graphs when given a test case and the result file. Some of the data specified in the test case
files is overlapping with information ingen_data.py, so that the two have to be synchronized.

5.3 Disk test

This test aims to see how many blocks we can read without paying extra for it. The implementation incode/sa/test_disk.cpp
solves this as follows:

1. Allocate and lock almost all memory to make sure that Linux does not provide cache.

2. Make sure the disk cache is cleared by reading 8 MB sequentially and 1 KB 500 times with 1 MB between
each read, from a dummy file

3. Read X number of blocks from the source file 100 times, skipping 10 MB (disk cache is 8 MB) between
each read.

4. Increase X.

5. If X is not sufficiently large, go to 2.

When we tried reading the same disk area, it was clear that we got disk cache. When we tried cached reading and
not locking the memory, it was clear that Linux cached for us. Since we experienced none of this conditions during
normal runs, we think that it is safe to say that our implementation stopped any significant impact on the results
from caching.

5.4 Suffix array construction

We used only one suffix array construction algorithm, DC3, as provided in [DKMS05]. From the suffix array
created by DC3, we created the suffix arrays with embedded document information, as described in section5.4.2.

5.4.1 DC3

DC3 is a suffix array construction algorithm for external memory developed by Jens Mehnert. It is available from
http://i10www.ira.uka.de/dementiev/esuffix/docu/index.html. DC3 depends on STXXL, a library
mimicking the C++ Standard Library’s behaviour, but with the data structures on disk. It is available fromhttp:
//i10www.ira.uka.de/dementiev/stxxl.shtml. STXXL was given 120 GB space split in 60 GB on two
disks.

The DC3 source code was modified to use 2 GB of memory.

5.4.2 Embedded

This implementation can be found incode/sa/sa_pure.cpp.

The embedded method assumes that the suffix array has been built with the document information already embed-
ded. Since we use an unmodified version of the DC3 algorithm, this is not the case. However, we pretend that it is
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the case, so the construction of the embedded suffix array is not reported, only performed in order to support the
search in embedded arrays.

Let thesearch be as defined in section3.3.4. Recall that it returns the document corresponding to the text index it
takes as argument. For the new suffix array values, we used the notation introduced in section3.3.3, SA[i].docid
andSA[i].offset. The source suffix array values are denotedSAorig[i].

The construction of the embedded array is as follows.
For eachSAorig[i], 0 ≤ i < n, we setSA[i].docid := search(SAorig[i]).
Then we copy the text indexSA[i].offset := SAorig[i].

The construction of the short embedded array is only slightly different.
For eachSAorig[i], 0 ≤ i < n, we still setSA[i].docid := search(SAorig[i]).
Then we calculate the document offsetSA[i].offset := SAorig[i]− doctable[SA[i].docid].

5.5 Suffix array search

This implementation can be found incode/sa/sa_search_template.h, instantiated fromcode/sa/sa_pure.cpp.

The implementation of the suffix array corresponds approximately to the full search pseudo code in section3.1.1,
based on Manber and MyersO(w log n) algorithm.

There are three exceptions. The first is a minor one. We use macros to make usage of LCP information possible.
To avoid unnecessary complications to the code, we mimic the behaviour of the LCP changes in section3.1.2,
using thelcp function call instead ofllcp andrlcp table lookups. This will lead to some more comparisons, but
this method was comparable to suffix trees when used in [FG04]. Since comparisons might be more expensive on
disk, though, this should have been eliminated an it is a weakness of the code such as it is.

The second exception only affects the code when the suffix array has short embedded document information, like
described in section3.3.3. When such information is present, all requests forSA[i] is rewritten to requests for
doctable[SA[i].docid] + SA[i].offset. This is done with a macro so as not to affect the running time in other
cases.

The third is the most obvious and influent change. We do not assume that the suffix array or the text fit in internal
memory. This means that every request forT [i] or SA[i] must be retrieved from disk or cache. This is achieved
with the help of fourMemHolders. Three to hold text and one to hold suffix array values. This should almost
minimize the need to refetch things from disk as follows.

FirstSA[n− 1] is fetched. ThenSA[0] is fetched. These cannot possible be read at once with a large text, without
significant overhead. Then we readSA[M ], which is in the middle of the two previous. It will not be in the cache
of either. In fact,SA[M ] has no chance of having been read before until the interval is sufficiently small. When
the right border search finds a match, theSA values are stored in temporary variables so that the left border search
do not have to reread them.

When it comes to the text, we might have done a better job caching if two texts accidentily are from approximately
the same place. We think this is an unlikely event, and our textMemHolders work to prevent losing the cache
as follows. We have one holder for each of the suffixes starting atSA[L], SA[M ] andSA[R]. When moving to
search in the right half the cache for theSA[M ] suffix is used for the newSA[L]. When moving to the left half,
theSA[M ] suffix cache is used for the newSA[R]. This scheme works to preserve the text we know we might
need. A more general text caching scheme might be better since the newSA[M ] can point to any suffix, also one
close to another one whose cache was just overwritten. If it is likely that the same substring occurs often within
the same document, there might be room for much improvement on the text cache in the suffix array search.

Lastly, to make the search time depending on the number of occurences, all occurences are read from the suffix
array to memory in one read.
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5.6 Document information construction

Here we will show how we have implemented the methods described in section4.1.

Thedoctable, described in sections3.3 (concept) and6.2.2(implementation) is assumed to be loaded in internal
memory. The construction methods are given 300 MB of internal memory.

5.6.1 Direct

These are the implementation details for the method described in section4.1.1. The source code can be found in
code/sa/doc_direct.cpp.

To find the document corresponding to a suffix array value, we use the binary search described in section3.3.4as
oursearch method.

The suffix arrays are read in blocks as large as the memory limit allows, while still leaving room for the block
to which we will write the corresponding document pointers. For each block we simply calculatedirect[i] :=
search(SA[i]) for thei values inside the block and save the block to disk.

5.6.2 Lookup

These are the implementation details for the method described in section4.1.2. The source code can be found in
code/sa/doc_direct.cpp.

Given the method, this implementation is really simple. We allocate an array as large as the memory limit allows.
Then we start filling it usingdoctable. Once the temporary array is full, we write it to a file with a filename that
depends on the alignment size parameter, so that we can test varying fictional document alignments on the same
data.

5.7 Document retrieval

Here we will desribe how we implemented the methods in section3.3.

Thedoctable, described in sections3.3 (concept) and6.2.2(implementation) is assumed to be loaded in internal
memory. The construction methods are given 300 MB of internal memory.

Further, the hits from the suffix array are already loaded into memory, as described in section5.5. This makes the
implementation of search and embedded so trivial that we will not mention them further here. The implementations
of direct and lookup call for some comments, though. The technique used to remove duplicates, if required, is
discussed in section5.7.3.

5.7.1 Direct

These are the implementation details for the method described in section3.3.1. The source code can be found in
code/sa/doc_direct.cpp.

We do not assume that thedirect table can fit in memory, because it is most likely just as large as the suffix array.
However, we can find all the documents by doing just one long read of the interval corresponding to the interval of
the suffix array.
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The fact that we read all the results in one chunk, makes this method different from the others. All other methods
convert one and one text index into a document pointer. Thus, they can apply the removal of duplicates while they
are processing anyway (see section5.7.3). This tempts us to try an alternate duplicate removal scheme for this
method; using thesort method of the C++ Standard Library to sort the document pointers, and then traverse them
and trivially ignore the duplicate entries while copying to the final array.

5.7.2 Lookup

These are the implementation details for the method described in section3.3.2. The source code can be found in
code/sa/doc_lookup.cpp.

When preparing for the search, it is checked whether we have been granted enough memory to hold thelookup
table entirely in memory. This depends on the alignment size, which regulates the size oflookup. The default
alignment size is 32 and the correspondinglookup is small enough to be held in memory. Computing the answer
when thelookup table is held in memory is trivial.

When trying to vary the alignment size (section6.3.3), however, thelookup table may be too large to fit in memory.
This is solved by having aMemHolder hold as much as possible. The result from the suffix array is in memory.
This is sorted using thesort method in the C++ Standard Library. Sorting these results avoids random access to
thelookup table. All lookups will now be sequential. Thus, we can read one chunk of thelookup table and process
all the text indexes within that chunk before moving to the next chunk.

Reading as much as possible from the disk in every chunk is a waste if the text indexes are very spread out.
Analyzing the suffix array results and deciding on how much oflookup table to read based on how far the text
indexes are from each other, would be a better approach. Unfortunately, we have not had the time to try this.

5.7.3 Removing duplicates

Section5.7.1describes how the direct method can usesort to remove duplicates. Another duplicate removal
method, as mentioned in section3.3, is to maintain a list of which documents have already been found.

The list is assumed to fit in internal memory. It occupies onlyd
8 bytes, because we use avector<bool> to hold

it. Each element in avector<bool> needs only 1 bit (18 byte) to represent true or false. The structure is called
doc_found.

When we detect a document pointeri we check whetherdoc_found[i] is set. If it is not, we set it and add the
document to the result, else, we simply ignore the document – it is a duplicate. After traversing all the potential
results, we need to cleardoc_found for the next search. This is done with a simple traversal of the results,
unsettingdoc_found[i] for each resulti.
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Experiments

6.1 Machine configuration

Briefly described, our hardware consisted of an AMD 64 bit CPU running at 2.2 GHz, 4 GB internal memory,
one 200 GB disk and one, faster 75 GB disk. Details follow below. The operating system of choice was Debian
GNU/Linux AMD Athlon64. The slower disk was the one mainly used both for operating system and testing,
because of its size.

The machine was ordered with this thesis and the thesis of Nils Grimsmo in mind. However, it had to be ordered
earlier than our goals could be clearly established. We had some problems because of this and our lack of previous
experience with the 64 bit architecture and such amounts of memory. The 64 bit architecture was picked in spite
of our lack of experience because we wanted native support for very long addresses. The issues we encountered
will be discussed in brief since they might be of interest – it soon became clear they were not common knowledge.

First the disks. They should have been selected with better care to rule out uncertainty in the experiments. We ended
up not doing any serious measuring of suffix array construction, but the suffix arrays still had to be constructed.
The faster way to do this, is to use parallel disks. Four should be sufficient [DKMS05]. We used both disks to
speed creation. STXXL, a disk data structure library used by the DC3 suffix array construction algorithm, was
given 60 GB of work space on each disk. The disks should have been working at the same speed, if we really
wanted to measure the construction time.

Second, the operating system. Debian’s AMD64 release is not official, and finding the right place to download your
packages can be cumbersome. Much documentation was outdated, and we had to attempt installation four times
before we found a configuration that worked. The C/C++ compiler played a vital part in our difficulties. The config-
uration that worked was “unstable” located athttp://debian-amd64.alioth.debian.org/debian-pure64.
It shipped with g++ 3.4 (not 3.3). Expect this to change as g++ 4.0 has been released. Also, interest for AMD64
is picking up, so the release ought to be official soon. Debian developers are not known for releasing things soon,
though.

6.1.1 Details

Details about our machine configuration – both hardware and software – are listed in table below.
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Part Description Technical info
Motherboard MSI K8N Neo2 PLATINUM (MS-7025)

http://msicomputer.co.uk/Products.aspx?product_id=
703505&cat_id=77

Socket 939

CPU AMD AthlonTM 64 3500+ 2210 MHz
Memory 4 * 1 GB DDR400 PC3200
Disk #1 200 GB Western Digital Caviar (WD2000JD-19H)

http://www.wdc.com/en/products/Products.asp?DriveID=58
7200 RPM, 8 MB cache

Disk #2 75 GB Western Digital Raptor (WD740GD-00FL)
http://www.wdc.com/en/products/Products.asp?DriveID=65

10000 RPM, 8 MB cache

OS Debian AMD64 Linux 2.6.10
Compiler g++ (GCC) 3.4.4 Debian 3.4.3-13

Both disk #1 and disk #2 were used during suffix array construction. For all other tests, only disk #1 was used.

6.2 Input

The disk speed test used some gigabytes worth of files concatenated into one file that was duplicated. One copy to
clear the disk cache, and another to do the test.

The other tests depend on four different kinds of inputs. The text and the suffix array is one; the suffix array is
assumed to exists. The text is further explained in section6.2.1. Section6.2.2describes thedoctable – this
describes document borders. Section6.2.3describes the queries that are used when searching. The last input is
generated in the construction phase for the direct and lookup methods.

6.2.1 Text

Input for the suffix array construction was somewhat limited in range. For most of the tests, only one source file
was used, the concatenation of source code used in [DKMS05], calledsource. For varying text length, applicable
only in section6.3.4, files consisting of pseudorandom words were used, calledrandomXX whereXX gives the
filesize in MB. The pseudorandom words had the same length distribution as the King James Bible, that is why
the average world length is equal for allrandomXX files. To stress test the suffix array construction algorithm a
little, we used the human genome,genome, also from [DKMS05]. This was only used for suffix array construction
testing.

Input Size (MB) # words Avr. word len Alphabet size
genome 2927.9 N/A N/A 5
source 522.1 62116060 7.88 246
random20 20 3842891 5.46 60
random30 30 5763381 5.46 60
random40 40 7683562 5.46 60
random50 50 9607381 5.46 60

We believe that using onlysource is sufficient because our tests depend on the number of results. This text has so
much repetition that we can vary our number of results by varying the number of documents we split the text into,
and the query length.

When searching in suffix arrays, the averagelcp value is an important attribute of the text being searched. This
should have been included in the table above, but we did not have the time and means to provide them. Fortunately,
our experimental focus on suffix array search is limited, so the averagelcp values of the texts are not so important
to us.
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6.2.2 Documents

As section3.3 asserts, adoctable is used by all document retrieval methods. This makes thedoctable files
an important input in our experiments, since our main focus is on the behaviour of different document retrieval
methods.

Section6.2.1lists five input texts.source is a concatenation of several small files by an external entity, so we
have no influence on the concatenation format. TherandomXX files, however, are concatenated by us from several
documents with certain length restrictions.

Between each document we inserted a special marker (’\0’) so that patterns should not match accross document
borders. These text files have what we call real document borders. Each have a correspondingdoctable file that
lists the start position of each document in the text.

source, however, has no predefined document borders. We used the data generator to create what we call artificial
document borders.source has several differentdoctable files, each corresponding to different length restrictions
on the artificial documents. Sincesource does not have special markers between the artificial documents, search
patterns may cross document borders. We do not think this has any visible effect on our results.

Here is a list of the properties of the five differentdoctable files we are using withsource.

Min doc len Max doc len Avr doc len # documents
512 1024 752 727416

2048 3072 2544 215147
16384 17408 16880 32435
32768 33792 33268 16457
64512 65536 65001 8423

524288 525312 524430 1044

The document properties ofrandomXX files are locked to a minimum length of 64,512, a maximum length of
65,536, an average of about length 64,950. The number of documents are 323, 484, 646, 807, forrandom20,
random30, random40 andrandom50, respectively.

Both real and artificial document borders guarantee that all document sizes (including the special marker, if any)
are multiples of 32 (they are 32-aligned). This is important for the lookup method. Now just one final note on the
layout of adoctable

A doctable is a simple file describing the position of the documents in the concatenated text. These are simply
stored as a contiguous list of integers. That means the number of documents is the size of the file divided by the
size of an integer.

6.2.3 Queries

Query files are inputs to the the suffix array search and document listing tests. All our query files consists of 100
queries. A query has two parts, an integer representing its length and a pattern of the given length. 99% of the
patterns are picked from the text. There is a 1% probability that any pattern will be a random collection of symbols,
instead of being taken from the text.

Queries for texts with a word distribution (allrandomXX texts) are aligned to word boundaries. Other queries are
just random substrings of the text, possibly even crossing artificial documents borders.

Here is a list of the properties of the queries forsource:
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Number Min len Max len Avr len SA res num Doc res num
100 Avr Min Max Avr Min Max
100 10 20 15.00 128405 1 6452843 128405 1 6452843
100 8 9 8.54 141100 1 6066031 141100 1 6066031
100 10 11 10.50 383597 1 10383440 383597 1 10383440
100 12 13 12.50 226781 1 8511536 226781 1 8511536
100 14 15 14.50 73431 1 7035802 73431 1 7035802
100 16 17 16.50 114765 1 5902058 114765 1 5902058
100 18 19 18.44 151513 1 5110741 151513 1 5110741
100 20 21 20.53 242766 1 5016080 242766 1 5016080
100 22 23 22.50 22911 1 1886215 22911 1 1886215
100 24 25 24.56 46430 1 4545660 46430 1 4545660

6.3 Results

Here we will present some result measures from runs of different tests.

6.3.1 Disk speed

These disk speed tests are included to show the obvious characteristics of the disk we used and that our memory
classes described in section5.1seems to perform adequately. As such, the results will hopefully seem obvious.
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Figure 6.1:Disk performance

As we can see, the max is a little above 50 MB / s, which is close to optimal for a 7200 RPM SATA disk.
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Figure 6.2:Block burst

At about 256 blocks per read, we see that each read is beginning to use more time. Thus, we will use 256 blocks
as a minimum unit in further tests to read as much as possible into the cache without causing any overhead.

6.3.2 Suffix array construction

The DC3 algorithm was given 2 GB and of internal memory and 120 GB external memory, split equally on two
disks. Here are some key results.

File Input size Time usage Time per MB
genome 2928 MB 1395m 0s 28.6 s
source 522 MB 109m 52s 12.6 s
dummy 0 MB 17s N/A

This is somewhat different from [DKMS05], where bothsource andgenome use little more than 10 seconds
per MB. This might be because they used four disks, which scaled better than our two disks. We have no better
explanation for this currently.

On a key note, the startup time is rather long, although admittedly small compared to the anticipated run times.

6.3.3 Document information construction

Of the four document retrieval methods, three require preprocessing of the data, direct, lookup and embedded. The
embedded method, however, assumes the information is embedded into the suffix array all the time. Thus, we are
not interested in its artificial construction here. That leaves the direct and lookup method.

Varying alignment size

The lookup method depends on the alignment borders of the documents. Figure6.3 shows the build time for
the lookup method for varying document alignments size. The build time for the direct method is included for
comparison. It is not a function of the alignment size.
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Figure 6.3:Document information construction, varying document alignment

As expected, the lookup method uses about twice the time for half the alignment sizes. This is because the output
doubles when the alignment size halves, this is trivial from the algorithm in section4.1.2.

The construction for direct use about 30% more time than a the lookup construction of the same size. This was
also anticipated, since the direct algorithm performs a binary search for value (see section4.1.1) while the lookup
algorithm simply computes values.

Varying number of documents

The direct method depends on the number of documents, because it uses a binary search to find documents. Figure
6.4shows its build time, with the build time for the lookup method included for comparison.
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Figure 6.4:Document information construction, varying number of documents

As expected, the lookup construction time is approximately the same regardless of the number of documents.

The construction time for direct increases about as expected when it uses a binary search that must perform about
twice the number of iterations for one million documents as for thousand documents. However, there is a strange
anomaly on the line, a point where i breaks down and seems to continue in the same fashion. This puzzled us, and
we were not able to find out why at this time.
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6.3.4 Suffix array search

We operate we three different suffix arrays, the pure suffix array, the suffix array embedded with document pointers
and the short suffix array embedded with document pointers. Here we will have a look at how the embedded
document pointers affect the suffix array search time.

Varying text length

Since the suffix array search algorithm has running timeO(w logn) we expect the running time to vary slightly as
a function of the text lengthn.
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Figure 6.5:Suffix array search, varying text length

The bumps down from 20 to 30 and from 40 to 50 in figure6.5 due to coincidences in the searching. As it turns
out, the average number of results is just 1. Unfortunately, we are unable to run new tests at this time, but some
general points are confirmed by this graph.

For one, the search time becomes approximately greater as the text size increases. Second, it takes longer to search
with document information embedded. But looking at the internal ordering of the embedded and short embedded
methods, we are in for a surprise. The short embedded method outperforms the embedded method even though
it has to convert each suffix array entry from document offset to text index (see section5.5). We believe this is
because of cache effects due to the fact that fewer suffix array element fit in cache memory.

6.3.5 Duplicate removal

This is were the asymptotically optimal method for listing document hits could have been thoroughly tested. But
as mentioned in section3.3.5it would degrade so bad on disk that testing it is not worth the effort.

We compare the three methods for duplication removal on the direct method, none,sort and marking. For control,
we also include another method, lookup. This method only supports duplication using marking. Removal with the
mark method is described in section5.7.3.
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Varying number of documents
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Figure 6.6:Duplication removal, time
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Figure 6.7:Duplication removal result

As expected thesort removal method is way slowest. A pleasant surprise is that removing duplicates with the
mark method does not use much extra time at all.

The reason that the lookup method performs so much better than the direct method, is that is only has to read and
lookup values from internal memory. Since the alignment is 32, the lookup table fits in internal memory. Further,
the suffix array results that must be looked up, have been read into to memory by the suffix array search.

The direct method, on the other hand, has to access the direct table stored on disk. It is thus natural that it is slower,
but it has a rather unnatural curve that we can not find any explanation for at this time. The top at the end is most
likely due to the copying of very many documents pointers, the lookup method is also slightly affected by this.

Looking at the graph with result numbers, we see that the number of occurences is way higher than the number
of documents where there is at least one occurence. Even so, the cost of removing all those duplicates is almost
non-existing, judging by figure6.7. This indicates that there is little need for an optimal document listing algorithm
in our circumstances.

6.3.6 Document listing

This is the main section of our results, comparison of document listing methods. First, we start out by examining
various alignment sizes for the documents input to the lookup method. Then we will compare all methods using
a varying number of documents to see which method is more sensitive to that. Finally we will use varying query
length to see which method is more sensitive to large numbers of suffix array results.

Varying alignment size

All else being equal, we vary how much the lookup method can assume the document alignment size is. The
maximum alignment size we can use is 32, because that is the actual alignment size used for the document lengths.
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Figure 6.9:Varying alignment size, memory usage

Both graphs clearly show that thelookup table does not fit into memory when the alignment size is 4 or less. Even
though the algorithm sorts the suffix array results to avoid unnecessary disk accesses, it degrades too much when
it has to fetch thelookup table from disk.

The time values for alignment sizes of 8, 16 and 32 are 1.38, 1.23 and 1.06, respectively. That the time decreases
when the alignment size increases is unexpected. We reckon it might be caused be fewer level 2 cache misses when
thelookup table is smaller.

Varying number of documents

Here we compare all the document retrieval methods, all of them with duplication removal. The duplication
removal does not change the relative ordering since the same technique is applied to all methods. It does, however,
provide more realistic timing, in the expected case that you do not want duplicates.

The input data is actually the same as the one we used to test different duplication removal methods. This is evident
in the still unexplainable bump in the direct method timing.
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Figure 6.10:Method comparison, time
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Figure 6.11:Method comparison results

The embedded methods perform equally well and outclass all other methods. This is no surprise, as all they have
to do is read the document pointers directly from internal memory. A drawback of the short embedded method,
was that is was only able to participate on three of the datapoints, the others had too many or too long documents
for its short data types.

The interpolation search is significantly faster than the binary search. This should have been used during creation
of document retrieval information (section5.6).

The promising interpolation search breaks down at more than 100,000 documents and is beaten by the lookup
approach. Why it took the lookup so long to beat it remains unsolved. We suspect that it might be a suboptimal
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implementation.

The direct and binary search methods clearly perform worst. It seems like these should be avoided.

Varying query length

Here we have a look at how the methods respond when they must cope with many suffix array results. This test
was performed with very small documents, so that there would not be so many duplicates to discard. The short
embedded method could not participate because the number of documents was to great for it.

We did not care to test the binary search method, since it was clearly outperformed by the interpolation search
method. Instead we tested how the direct method would perform if it did not have to remove duplicates.
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Figure 6.12:Method comparison, time

As before, the embedded method works wonderfully because the suffix array has already loaded its result into
memory.

The direct method has to read much data from disk and suffers. The lookup method has to lookup each suffix
array result and suffers. The interpolation search method is overloaded with searches and suffers. All these three
methods seems to have about equal performance when faced with many suffix array results, except that the search
method has to leave the game a little earlier.
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Chapter 7

Summary and conclusions

We have reviewed various methods for solving the document listing problem. To the best of our knowledge, there
are only three articles that give a thorough discussion of relevant algorithms. Manber and Myers [MM91] give two
different search algorithms for suffix arrays,O(w logn) or O(w + log n). Baeza-Yates et al. [BYBZ96] give a
search technique for better practical search for suffix arrays in external memory. Using these can give us the result
for the suffix array, answering the occurence listing problem.

Muthukrishnan [Mut02] gives an optimal solution to the document listing problem. Given the suffix array range
from the methods above, it can be used to list the documents inO(dococc) extra time. However, this method does
not work well on external memory, so other methods have to used.

We described four methods for solving the document listing problem, given a range in the suffix array. Our methods
assume that a table of info about the documents can fit in internal memory, but not that the same applies for the
suffix array.

Our experiments show that if the results from the suffix array will be read to internal memory, embedding the
document pointers into the suffix array is the best choice.

If the suffix array results will not be read, the direct method might be preferred. It holds the same information as
the embedded document pointers, only that they are not embedded. All other methods depend on reading the suffix
array results.

Our results are not very solid. Some graphs had some traits whose sources we were unable to locate. Also, the
interaction between the suffix array search and the document listing is not very thouroughly documented. The
assumption that the suffix array results are read into memory may not be a valid one.

Furthermore we attempted to look at the suffix array searching itself. Due to implementation difficulties and limited
time this attempt failed, and a short description of possibilities of using LCP information and interleaved text is all
that we have contributed here.

Further work should include finding the source of the pecularities in our results, doing a more thourough analysis
of the interaction between suffix array searching and document listing, and finding a new and improved method
for searching suffix arrays that are in external memory.
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Appendix A

Range Minimum Query and Nearest
Common Ancestor

Range Minimum Queries (RMQ), also known as Discrete Range Searching, must be solved in O(1) time for
asymptotical optimality of many algorithms, including the document retrieval problem. It can be solved in O(1)
time after O(n) preprocessing time with O(n) extra storage. There are two reasons why the solution to this problem
is presented here. For one, we want this thesis to be self contained. Second, we have not seen any derivation of
the actual space usage for a solution. We need to know the space usage more precisely than asymptotic notation
can offer to determine when it is possible to use the optimal solution to this problem. Presenting the solution is
necessary to prove the space usage, which we will do at the end of this chapter.

The RMQ problem is closely related to the Nearest Common Ancestor (NCA) problem, also known as the Least
Common Ancestor and Lowest Common Ancestor problem. The solution presented for the RMQ problem was
formulated in an easily readable, understandable and implementable form by Bender and Farach-Colton in 2000
([BFC00]). It depends on solving the NCA problem, which in turn is solved as a special version of the RMQ
problem. Alstrup et al. presented a survey of different solutions to the NCA problem in 2004 ([AGKR04]), but
we still find the presentation of Bender and Farach-Colton the better one, so we will present their solution here. It
might be that other solutions have better space usage, but an analysis is out of the scope of this thesis and Alstrup
et al. gives no empirical results, only asymptotic ones. We now proceed to define the RMQ and NCA problems
and show their solutions (reductions to each other and a independent RMQ solution) along with the real space cost
of each solution.

To ease later notation, we define some concepts:

Definition A.1. For a binary treeT with nodesV andu, v ∈ V then

root(T ) is the root node of the tree,
parent(u) is the parent node ofw (parent(root(T )) is undefined),
left(u) is the root node of the left subtree ofu or θ,
right(u) is the root node of the right subtree ofu or θ,
a leaf is any nodeu in V such thatleft(u) = θ andright(u) = θ,
an ancestor ofu is any node on the path fromu to root(T ) — includingu,
anc(u) = {v|v is an ancestor ofu},
height(u) = |anc(u)| − 1, that is,u’s distance fromroot(T ),
euler(T ) = [root(T ), left(root(T )), ..., parent(leftmost leaf),

leftmost leaf, leftmost leaf, parent(leftmost leaf),
right(parent(leftmost leaf)), ..., right(root(T ))],
that is, the list of nodes visited in a depth first search ofT and

eulerindex(u) = i|mini∈[0,|euler(T )|−1]euler(T )[i], euler(T )[i] = u.

Definition A.2. The Range Minimum Query (RMQ) problem is to find the index in a tableA[0...n − 1] for the
minimum value in a subarrayA[i...j], 0 ≤ i ≤ j < n. Formally,rmqA(i, j) = k|mink∈[i,j]A[k].

45



Master thesis APPENDIX A. RANGE MINIMUM QUERY AND NEAREST COMMON ANCESTOR

Definition A.3. The Nearest Common Ancestor (NCA) problem is to find the node in a treeT that is an an-
cestor of both a nodeu and a nodev and is furthest from the root of all such nodes. Formally,ncaT (u, v) =
w|minw∈anc(u)∩anc(v)height(w).

The proof of lemmaA.2 relies on the Cartesian Tree. It is defined as follows.

Definition A.4. A Cartesian Tree (CT) is a recursively defined binary tree holding information about an array
A[0...n − 1] such that the minimum value in a subarrayA[i...j] can be found. The root of a CT for arrayA is
labeled with the index,x, of the minimum element ofA. The left subtree of the root is the CT of the subarray left
of x and the right subtree of the root is the CT of the subarray right ofx. We say that the root splitsA at x. If a
subarray is empty, so is the coresponding subtree.

Lemma A.1. The Cartesian Tree of an arrayA[0...n− 1] can be created inO(n) time and space.

Proof. A CT, C, can be created as follows. AssumeCi is the CT ofA[0...i]. We want to createCn−1 for array
A[0...n − 1]. C0 consists of one node labeled 0.Ci+1 can be created by addingA[i + 1] to the rightmost path
onCi as follows. Start by traversing the rightmost leaf node ofCi, ascending towards the root. When a node is
found whose value inA[0...i] is smaller thanA[i + 1], move that node’s right subtree to be the left subtree of a
new node labeledi and replace it with the new subtree rooted by thei node. This way, the new node becomes the
new rightmost leaf. If there is no node with a smaller value, the new node becomes the new root, withCi as its
left subtree. When the tree has been fully contructed, each node has been passed on the traversion of the rightmost
path at most once. Thus, the construction time is linear on the size of theC. SinceC has one node for each inA,
its size is clearlyO(n) from which we can conclude that the construction time is alsoO(n).

Lemma A.2. If NCA problems can be solved inO(g(n)) time withO(f(n)) preprocessing time, RMQ problems
can be solved inO(1 + g(n)) time withO(n+ f(n)) preprocessing time.

Proof. We want to answer RMQ problems for a tableA[0...n − 1]. This can be reduced to the NCA problem in
O(1) time. Create the Cartesian Tree,C, for tableA along with a tableTA2C mapping indexes ofA into nodes of
C and solve the NCA problem forC. To see why that is sufficient, consider the following.

If we want to find the minimum value ofA[i...j] we start by finding the nodes labeledi andj in C. This can be
done inO(1) time usingTA2C . Their nearest common ancestor is labeled with the index of the minimum value in
A[i...j].1 Formally,rmqA(i, j) = label(ncaC(TA2C [i], TA2C [j])). Thus, we can solve an RMQ problem inO(1)
time given a solution to the NCA problem ofC, which is linear on size ofA. In other words, the RMQ solution
can be found inO(1 + g(n)) time.

The preprocessing time forTA2C isO(n) (trivially, it can be constructed from one traversion ofC). The prepro-
cessing time forC is alsoO(n), according to lemmaA.1. Clearly, the preprocessing time to solve RMQ problems
is thenO(n+ f(n)). This concludes our proof.

The proof of lemmaA.4 relies on some observations and a lemma. The lemma assumes an array has been splitted
into groups of sizelogn

2 . This value is chosen to reduce the workload of the undelying RMQ solution, so that it
becomes linear on the size of the input to the NCA problem.

Observation A.2.1. The NCA of nodesu andv in a treeT is the shallowest node encountered between the visits
to u andv during a depth first search traversal ofT .
Formally,ncaT (u, v) = w|minw∈euler(T )[eulerindex(u),...,eulerindex(w)]height(w).

Observation A.2.2. If two arrays,X[0...k−1] andY [0...k−1] differ only by some fixed value in each position, they
have the same RMQ solutions. Formally, ifX[i] = Y [i]+ c, 0 ≤ i < k, c ∈ R thenrmqX(i, j) = rmqY (i, j), 0 ≤
i ≤ j < k.

Lemma A.3. Assume we have blocks (subarrays)B[0... log n
2 − 1] whose adjacent values differ by±1. Normalize

the blocks by substracting each blocks first value from all its values. There are
√
n

2 distinct such blocks.

1The proof for this can be found in [BFC00]. It is trivial and irrelevant for this discussion.
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Proof. B[0] = 0 for all normalized blocks. The rest ofB’s values can be specified by a±1 vector of length
logn

2 − 1. There are2
logn

2 −1 =
√
n

2 such vectors.

Lemma A.4. If RMQ problems can be solved inO(g(n)) time withO(f(n)) preprocessing time, NCA problems
can be solved inO(O(1) + g(2n− 1)) time withO(n+ f(2n− 1)) preprocessing time.

Proof. We want to answer NCA problems for a treeT . This can be reduced to RMQ problem inO(1) time. Create
a table forT ’s Euler Tour,E[0...2n − 2] = euler(T ), a table for the corresponding height values,L[0...2n −
2], L[x] = height(E[x]) and a lookup table for the first Euler Tour occurence for node indexes,R[0...n−1], R[x] =
eulerindex(x).

According to observationA.2.1, ncaT (i, j) = E[rmqL(R[i], R[j])].

Split L into blocks of sizeb = logn
2 , let n′ = n

b = 2n
logn and create a table holding the minimum value of

each such block,L′[0...n′ − 1], L′[x] = miny∈[xb...(x+1)b−1]L[y], and a table holding the corresponding nodes,
E′[0...n′ − 1], E′[x] = E[y], y|miny∈[xb...(x+1)b−1]L[y].

If R[i] is on the left border of a block andR[j] is on the right border of a block,rmqL(R[i], R[j]) = rmqL′(
R[i]
b , R[j]

b ).
To answer other RMQ problems, we need to preprocess the answers to all possible blocks. Due to observation
A.2.2, we only need to do this for all possible normalized blocks, namelyq =

√
n

2 blocks, according to lemma

A.3. Each block hasO(b2) possible RMQ problems. To be exact, each block hasp =
∑b−2
i=0

∑b−1
j=i+1 1 = b2−b

2 =
log2 n

8 − logn
4 possible RMQ problems.

Lemma A.5. RMQ problems can be solved inO(1) time withO(n log n) preprocessing time directly with dynamic
programming.

Proof. We want to answer RMQ problems for a tableA[0...n − 1]. To do this in O(1) time we only need to store
the answers for all RMQ problems with a range of length2k, 0 ≤ k < blognc in a table. For each range length2k,
there aren− 2k + 1 RMQ problems. For simplicity of the following discussion we assume that each range length
hasn associated RMQ problems; that is, we shorten the length of the problems hitting the right boundary ofA.
The dynamic programming solution will be simpler, but in an implementation we could leave out the computation
of these boundary values (but that does not save any significant amount of time).

When we can lookup the answer to all RMQ problems of length2k it is easy to find the answer of a RMQ problem
of any length. The minimum value in a range is the minimum of the answers to two overlapping RMQ problems
of length2k, one starting at the left and the other ending at the right border of the range.

Formally, to answerrmqA(i, j), 0 ≤ i ≤ j < n for a tableA[0...n− 1] create a table
M [i][k] = rmq(i, 2k), 0 ≤ i < n, 0 ≤ k < blog nc
using dynamic programming. The values ofM [i][1] are trivial (M [i][1] = i). ForM [i][j], j ≥ 2 we have,

M [i][j] =

{
M [i][j − 1] if A[M [i][j − 1]] ≤ A[M [i+ 2j−1][j − 1]],
M [i+ 2j−1][j − 1] else.

Selectk = blog(j − i+ 1)c. rmqA(i, j) = min(M [i][k],M [j − 2k + 1][k]).

Clearly, computing this minimum value can be done inO(1) time. Findingk is the same as finding the 0-indexed
position of the most significant bit of(j − 1 + 1). This, unfortunately, takesO(logn) time in the general case,
using the naive solution of incrementingk from -1 while bitshifting the length until it is 0. However, since the
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operation can be implemented in constant time given our practical unit cost assumption, findingk is assumed to
take constant time.2 Thus, the RMQ problem is solved inO(1) time after preprocessing.

The tableM is of sizen(blog nc+ 1) and can clearly be filled inO(n logn) time using the dynamic programming
formula described above. Thus, the preprocessing to solve the RMQ problem is done inO(n log n) time and this
proof is concluded.

2The x86 processor family actually has an instruction,bsr (bit shift right), that returns the index of the most significant bit. Note, however,
that this function has been criticized for being slow,http://www.codecomments.com/A86_Assembler/message459724.html. Another
solution is to create a table of size 256 with the index of the most significant bits of the numbers in the range[0, 255]. We can then findk with
at most 4 lookups on a 32-bit machine (where the assumption is thatn < 232) and similarly with at most 8 lookups on a 64-bit machine. If we
should choose to take the view that findingk takesO(logn) time, the given solution for solving the RMQ by reduction to the NCA problem
would takeO(logn) time withO(n logn) preprocessing time.
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