
Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical

Engineering

Development of a Semantic Web Solution for

Directory Services

Master Thesis 2005

Carlos Buil Aranda

Supervisor: Sari Hakkarainen
Department of Computer and Information Science

Trondheim, June 30, 2005

Abstract

The motivation for this work is based in a common problem in organizations.
The problem is to access and to manage the growing amount of stored data in
companies. Companies can take advantage with the utilization of the emerging
Semantic Web technology in order to solve this problem. Invenio AS is in a
situation where it is necessary to access a directory service in an e�cient way
and the Semantic Web languages can be used to solve it.

In this thesis, a literature study has been done, an investigation about the
main ontology languages proposed by World Wide Web Consortium, RDF(S)
and OWL with its extension for Web services OWL-S and the ontology language
proposed by the International Organization for Standardization, Topic Maps.
This literature study can be used like an introduction to these Web ontology
languages RDF, OWL (and OWL-S) and Topic Maps.

A model of the databases has been extracted and designed in UML. The
extracted model has been used to create a common ontology, merging both the
initial databases. The ontology that represents the database in the three lan-
guages has been analysed. The quality and semantic accuracy of the languages
for the Invenio case has been analysed and we have obtained detailed results
from this analysis.

i

Sammendrag

Motivasjonen for dette arbeidet baserer seg på et felles problem for organisas-
joner: hvordan få tilgang på og håndtere store mengder lagret data, og bruken
av den voksende Semantic Web-teknologien for å løse dette problemet. Invenio
AS har foreslått et tilfelle hvor det er nødvendig å få tilgang til en Directory
Service på en e�ektiv måte, og hvor de semantiske webspråkene blir brukt for
å løse problemet.

I dette dokumentet har det blitt gjort et litteraturstudie ved å undersøke
hovedontologispråkene som har blitt foreslått av World Wide Web Consortium,
RDF(S), OWL og OWL-S, samt ontologispråket Topic Maps, som har blitt fores-
lått av the International Organization for Standardization. Litteraturstudiet kan
brukes som en introduksjon til disse tre web-ontolgispråkene.

Databasemodellen har blitt hentet fra og er designet i UML. Modellen har
blitt brukt til å skape ontologien som representerer databasen på de tre foreslåtte
språkene. Databasen har blitt integrert fra en svensk og en norsk database.
Språkenes kvalitet med hensyn til Invenio-eksempelet har blitt analysert, og vi
har oppnådd detaljerte resultater fra denne analysen.

iii

Sinopsis

La motivación de este trabajo esta basada en un problema común a todas las
empresas. Este problema es el acceso y la gestión y acceso a grandes canti-
dades de datos y la posible utilización de la Web Semántica para resolver dicho
problema. Invenio AS ha propuesto una situación práctica donde es necesario el
acceso a un servicio de directorio de forma e�ciente y la posible utilización de
lenguajes relacionados con la Web Semántica para resolverlo.

Este informe contiene una investigación teórica y un análisis de los lenguajes
estudiados. Estos tres lenguajes son recomendaciones propuestas por el World
Wide Web Consortium (W3C) y la Organización Internacional para la Es-
tandarización (ISO). W3C ha recomendado los lenguajes Resource Description
Framework Schema (RDF(S)), Web Ontology Language (OWL) y OWL-S e ISO
que ha recomendado Topic Maps . Este análisis teórico puede ser utilizado como
introducción a estos lenguajes RDF(S), OWL y Topic Maps.

Se ha extraído el modelo de las bases de datos propuestas en el caso de estu-
dio de Invenio y dichas bases de datos se han modelado en UML. Los modelos
creados se han uni�cado en uno que ha sido utilizado para la creación de la
ontología en los tres lenguajes propuestos. La calidad de los lenguajes utilizados
ha sido analizada y se han obtenido resultados concluyentes de dicho análisis.

v

Acknowledgements

I would like to acknowledge the e�ort and dedication to my project of my coor-
dinator, Sari Hakkarainen. Without her dedication, time and counsels I would
never have arrived to the �nal document of this Master's Thesis. Her help is
priceless. I would like also to thank Anders Kofod-Petersen for his help and
guidelines in this project. He and Invenio AS provided the case study of my
Master's Thesis.

I would also like to thank Jennifer Sampson for her help during the design
of the ontology, Csaba Veres for his help with Protégé and the several query
languages and Darijus Strasunskas for his help when I arrived to the Department
of Computer and Information Science and his books. I would also like to thank
Ellen Solberg and Berit Hellan for their help with all my questions at IDI.

I would like to thank my old Erasmus coordinator Toni Cortes and the new
Erasmus coordinator Nuria Castell for giving me this great opportunity in my
life. I would also like to thank Ramón Sangüesa for his counsels for choosing a
university.

Finally, I would like to thank my parents, Carlos and Concha for their help,
patience and support in every day of my year in Trondheim. Without them this
would have been impossible.

vii

Table Of Contents

Abstract i

Sammendrag iii

Sinopsis v

Acknowledgements vii

List of Figures xiii

List of Tables xv

I Introduction to the Case Study 1

1 Introduction 3

1.1 Background . 3
1.2 Problem . 3
1.3 Objectives . 4
1.4 Scope . 4
1.5 Technological Scope . 5
1.6 Way of Working . 6
1.7 Expected Results . 7
1.8 Outline of the Report . 7

2 The Semantic Web 9

2.1 The Semantic Web . 9
2.2 The Semantic Web Structure . 10
2.3 Semantic Web Applications . 12
2.4 Concluding Remarks . 12

3 Enquiry for the Problem 13

3.1 Our Problem . 13
3.2 The process of enquiry . 13

ix

Table Of Contents

3.3 Need for a Parser . 15
3.4 Similar Approaches . 16
3.5 Concluding Remarks . 16

II Theoretical Approach to the Case Study 19

4 Overview of languages 21

4.1 Overview of Resource Description Framework (RDF) 21
4.2 Overview of Web Ontology Language (OWL) 24
4.3 Overview of Topic Maps . 30
4.4 Overview of OWL-S . 35
4.5 Other Languages . 42
4.6 Concluding Remarks . 42

5 Comparative Evaluation of Ontologies 43

5.1 RDF(S) Evaluation . 43
5.2 OWL Evaluation . 46
5.3 Topic Maps Evaluation . 50
5.4 OWL-S Analysis . 53
5.5 Concluding Remarks . 58

6 Comparison of languages 59

6.1 Comparison of the languages . 59
6.2 Concluding Remarks . 66

III Practical Approach to the Case Study 67

7 Conversion Parsers 69

7.1 The conversion parser . 69
7.2 Structure of the Parsers . 70
7.3 Common concepts . 71
7.4 Di�erences between conversion parsers 72
7.5 Concluding Remarks . 73

8 Design of the Models 75

8.1 Need of a new design . 75
8.2 Extracted Model . 75
8.3 New Ontology Design . 77
8.4 Restrictions and OWL . 81
8.5 Concluding Remarks . 83

9 Analysis of the Transformation 85

x

Table Of Contents

9.1 Information need based evaluation 85
9.2 Meaning based evaluation . 89
9.3 Concluding Remarks . 96

IV Conclusions and Appendixes 97

10 Conclusions and future work 99

10.1 Conclusions . 99
10.2 Future Work . 100

Bibliography 101

A (Semantic) Web Services 105

A.1 Web Services . 105
A.2 Semantic Web Services . 108

B The Semiotic Quality Framework 111

B.1 Adapted appropriateness of languages 112

C The Tool: Protégé 2000 113

C.1 Why Protégé 2000 . 113
C.2 Core of Protégé 2000 . 116
C.3 Protégé 2000 Plug-in . 117
C.4 Concluding Remarks . 121

D Comparison Tables 123

D.1 Description of the Tables . 123
D.2 RDF(S) and UML Comparison Table 124
D.3 OWL and UML Comparison Table 126
D.4 Topic Maps and UML Comparison Table 128

E Interview 131

F The Thesis CD 135

G The Project Planning 139

G.1 The Planning . 139
G.2 Concluding Remarks . 141

xi

List of Figures

2.1 Semantic Web - XML2000 by Tim Berners-Lee 10

3.1 The process of enquiry . 14

4.1 RDF Graph . 22
4.2 OWL Layers . 25
4.3 OWL Class Taxonomy . 26
4.4 Topic Map Model . 31
4.5 Topic Maps Class Hierarchy . 32
4.6 The General Process of Engaging a Web Service 36
4.7 Relation Between OWL-S and WSDL 41

8.1 Swedish Schema . 76
8.2 Norwegian Schema . 77
8.3 Initial Ontology . 81
8.4 Inferred types in our ontology . 82
8.5 OWL Sub-language used . 83

9.1 Query 1 . 87
9.2 Query 2 . 88

A.1 Web Services Architecture Layers 106
A.2 Meta Model of the Web Services Architecture 107
A.3 The General Process of Engaging a Web Service 108

C.1 Create Project . 114
C.2 Classes Tab . 114
C.3 Slots Tab . 115
C.4 Queries Tab . 116
C.5 Plugging activation . 118
C.6 OWL Plugging for Protege . 119
C.7 ezOWL Plug-in for Protégé 2000 120
C.8 TMTab Plug-in for Protégé 2000 121

xiii

List of Figures

C.9 TMTab Plug-in for Protégé 2000 121

G.1 Planning tasks . 140
G.2 Gantt Diagram . 140

xiv

List of Tables

6.1 RDF(S) Analysis . 61
6.2 Web Ontology Languages Analysis 62
6.3 Topic Maps Analysis . 63
6.4 Web Ontology Languages Analysis - Services 64
6.5 Invenio requirements . 65
6.6 Invenio Requirements . 65
6.7 Comparison of the Web ontology languages and the Invenio Re-

quirements . 66

D.1 RDF(S)-UML comparison model 125
D.2 OWL-UML comparison model . 127
D.3 Topic Maps-UML comparison model 129

xv

Part I

Introduction to the Case Study

1

Chapter 1

Introduction

This introduction gives an overview to the problem of accessing and interpreting
machine generated data and possible solutions to it. Further the objectives, way
of working, expected result and the outline of the report are presented.

1.1 Background

Amajor problem today is to access to the information stored in our organization.
Each day we have more and more information generated by machines. The
data �ow ranges from the huge repositories of data used to store Acme's sta�
information to the data that is possible to obtain from databases with the history
of sales and transactions generated by some customers via one Web Site. That
generates millions of information megabytes and it is important to manage it
e�ciently, without waste of time and resources. That implies a need to use the
most adequate technologies.

In [8, 13], a study of the viability to adapt two databases containing the
directory service for Sweden and Norway was done. An analysis of three Web
ontology languages RDF(S), OWL and Topic Maps, and their possible use for
accessing in an intelligent and quick way by an informatics agent was completed.
We arrived to the conclusion that the most useful language to solve the problem
was OWL due to its capacity for creating logical rules that will enable the agent
to create better answers to our queries. But is also necessary to improve the
design and the mapping from the databases to the ontologies. This is necessary
due to the necessity to add more information to the database about the classes
and to better organize the model in order to provide a better reasoning from
the information agents. Then it is necessary to create a more knowledge model
oriented rather than data ontology oriented one. If the data is not modeled with
correctness a process of adjustment is needed.

1.2 Problem

The management of the stored data becomes critical for obtaining business
results. The data we have, forms the basis for the knowledge we can obtain and
we must manage it in an optimal way. Information management will be the key
for the success of any knowledge intensive company, because proper use of the

1.3. Objectives

data gives information about the system (via ERP1, Data Mining, CMS2. etc)
will be the key access point for the other components of our system like DSS3,
EIS4 or CRM5.

The main technical problem that we can see in this situation is to translate
the databases, with a limited amount of useful information for an information
agent to the Web ontology languages format that is OWL, RDF(S) and Topic
Maps. Also an enrichment of the databases with �rst order logic rules and data
is needed.

1.3 Objectives

The objective is to support organisations in selection and feasibility of emerg-
ing semantic Web technologies. One subgoal is to adopt an existing evaluation
framework for analysis of the actual semantic Web technologies for representing
knowledge. Another subgoal is to provide a proof of concept to a particular or-
ganization by implementing and testing trial-ontologies in their speci�c domain,
i.e., knowledge management for directory services.

1.4 Scope

The IT industry is currently changing focus from providing storage, processing
and network services to providing knowledge intensive information and services
to large numbers of customers. The diversity and multitude of resources and
applications on the Web places elaborate requirements on methods and tools
for e�cient generation, manipulation and compositional usage of information
and services. Metadata, ontology/domain model and semantic enrichment can
bridge the heterogeneity and facilitate the e�cient usage of information assets
on the semantic Web [4]. However, a formal, standardized representation of signs
and meaning is required [37] for supporting ontologies, i.e. explicit and shared
conceptualisations [11] of the domain.

In [8, 13], a study of the viability to adapt two databases containing the
directory service for Sweden and Norway was done. An analysis of three Web
ontology languages RDF(S), OWL and Topic Maps, and their possible use for
accessing in an intelligent and quick way by an informatics agent was completed.
We arrived to the conclusion that the most useful language to solve the problem
was OWL due to its capacity for creating logical rules that will enable the agent
to create better answers to our queries. But is also necessary to improve the
design and the mapping from the databases to the ontologies. This is required
due to the necessity to add more information to the database about the classes
and to better organize the model in order to provide a better reasoning from
the information agents. Then it is necessary to create a more knowledge model

1Enterprise Resource Planning
2Content Management System
3Decision Support System
4Enterprise Information System
5Customer Relationship Management

4

Chapter 1. Introduction

oriented rather than data ontology oriented one. If the data is not modeled with
correctness a process of adjustment is needed.

The problem is a complex combination of available information resources
and requirements. We have an exhaustive amount of information, the accessing
is required to be quick, we should be able to locate the data that we need in
every moment and the results of the query should not have wrong answers. The
manipulation of this information and the access to the data will be the core of
this report. That manipulation is about accessing data with di�erent structures
using the Semantic Web Technologies.

It is insu�cient just to translate the data from one representation to another.
As it is referred in [38] this approach grows from the insu�ciency of the structure
resemblance in order to make the semantics of terms in a database schema clear.
The ontology is used to de�ne terms from the database and is linked to the
information by the term de�ned. It is necessary to add extra information that
should be processable by the information agents because if the agents do not
have this information will not answer correctly to the users' queries.

1.5 Technological Scope

Today there are two kinds of ontology languages, the traditional Ontology spec-
i�cation languages like CycL, Ontolingua or OCML and the Ontology languages
based on the emerging Web Standards[35]. In this report the emerging second
kind of languages will be studied. The languages currently dominating proposed
by W3C (OWL, RDFS) and by ISO (Topic Maps) have been selected.

The technological solutions used in this project are Java for creating the
parser between the databases, the available semantic Web technologies for cre-
ating the ontologies, the De�nition of Terms approach for mapping the databases
and the ontologies as described in [38].

The motivations for selecting Java as technology for developing the parser
which will translate and add information from the databases to the ontology
was the ease it provides for managing strings. Java provides several functions
and commands for developing quickly a parser for managing strings. The data-
bases were in two di�erent formats, XML and txt, therefore we need a language
which provides enough properties for managing them. We thought also about
developing the parser in C++ due to its speed processing or CLIPS but �nally,
Java was selected.

The main function of the developed conversion parsers was to translate the
data from one representation into another, not only by copying the data, also by
adding more concrete details that can be inferred from the data in the database.
To do that it is necessary to read the data from the �les and to add some speci�c
information and tags into this information. When this task is done, it will be
possible that an information agent that is capable of processing and reasoning
using RDF(S), OWL and Topic Maps. This data should be read and processed
as strings for being stored in a string format. For this situation Java provides
the most adequate functions and procedures, better than the other languages

5

1.6. Way of Working

that had been considered. An example of the suitability of java for our task is
that the �rst parser that we made, a parser for RDF(S) is a one hundred lines
program.

The tool selected for developing the ontologies in the three languages was
Protégé 3.0. Using the same tool for creating the ontologies provides the ob-
jectivity required to make an analysis based in the ontology languages without
external in�uences. Also, it is out if the scope to investigate alternate editors or
ontology language tools.

1.6 Way of Working

In this report we will describe the ontologies created (a �rst version of these
ontologies has been done) and the parser developed for mapping the databases
and the ontologies. The description of the several test and analysis of the on-
tologies will be described. We have added to the study an analysis of OWL-S.
Below, we describe the steps in our research method in more detail.

• Literature Study. First we look to adequate references for the kind of
investigation that we will do. Due to the topic of Semantic Web being
relatively new there are not enough books about it, hence we look for
articles and speci�cations. We have read key articles like [4] or [27] and
the current speci�cations at W3C or ISO. There are some exceptions how-
ever. Our knowledge of RDF has been obtained from the books Practical
RDF [31] and Creating the Semantic Web with RDF [15]. Those books
mainly contain RDF explanations and examples of RDF but also make
some reference to OWL.

• Re-engineering of the Databases: schema level. The second step is
to improve the initial model extracted from the databases. To do that we
will investigate another model for directory services databases and we will
make an interview with the technical expert of Invenio AS.

• Domain level. The third step is to create and improve the parsers be-
tween the databases and the ontologies. Initially we started creating the
basic ontology in RDF and later in OWL and Topic Maps. To test the
ontologies we developed a parser that is a bridge between the databases
and the ontologies.

• Bringing the databases with the ontologies. In the fourth step we
will test the parser and the model of the databases with the ontologies.
We will make test to guarantee the maximum correctness of the model.

• Databases and ontology test. In the �fth step we will test the ontolo-
gies.

This report has three main parts: one theoretical approach to the problem
where the requirements are analysed and a solution proposed, one practical
approach where the solution to the problem is tested by using several quality
test and another theoretical section where the languages proposed are described.

6

Chapter 1. Introduction

1.7 Expected Results

The main result of this report is a description of the process done for creating and
testing the access to a database. The way of working for arriving to these �nal
results and the way for converting two databases to an ontological representation
is explained.

1.8 Outline of the Report

The report is divided in four parts. These parts contain the main sections of
this report. Inside of these parts it is possible to �nd all the work done in this
research process.

Part I includes the �rst four chapters including this one. In Chapter 2 the
di�erent languages used for creating the ontologies are described. A brief de-
scription of these languages and an introduction to the Semantic Web Services
is provided. In Chapter 3 the process of research used is described. In Chapter
4 the three Web ontology languages analysed and an extension for Web services
for one of them are described.

Part II includes Chapter 5 and Chapter 6. In Chapter 5 the three Web on-
tology languages are analysed by using a theoretical framework for evaluating
the quality of languages. It is also indicated how the elements of the frameworks
a�ect to our particular case. In Chapter 6 the comparison of the ontology de-
signed within the three Web ontology languages is described. This evaluation
has been done applying the languages to our particular study case.

Part III includes from 7 to 9. In Chapter 7 the conversion parsers developed
for our case are presented. This parser are based in the solution proposed in
Chapter 3. In Chapter 8 the design of the model for the new ontologies and
databases is presented. The model of the databases and the new ontology cre-
ated from them is described. In Chapter 9 the tests that we have been done
to the ontologies and the design are presented. It contains an analysis of the
transformation done to the initial database model and the comparison with the
new ontology in the three languages selected.

Part IV contains the chapter dedicated to the conclusions and appendixes. In
Chapter 10 the conclusions of the work done and the future work recommended
after our investigation are presented. The Appendix F

7

Chapter 2

The Semantic Web

Semantic Web is the next generation of the Web. Actually the World Wide Web
is made for people, not for machines and thus, in a society with machines and
computers present everywhere the Web is not e�cient enough. Now, Internet
contains an exhaustive amount of bytes of information about seemingly endless
amount of di�erent topics but this information is only accessible by humans.
Our computers which are made with the last processors technology can not
access it. Semantic Web will improve this problem by complementing our data
by adding more signi�cative data which an information agent will understand,
that is, give a meaning to the information that we are sharing and then an
application will comprehend it. The Semantic Web will bring structure to the
meaningful content of the web pages. Creating an environment where software
agents roaming from page to page can readily carry out sophisticated task for
users [4]. In the next pages we will se the most important components of the
Semantic Web.

2.1 The Semantic Web

"The Semantic Web is an extension of the current Web in which information
is given well-de�ned meaning, better enabling computers and people to work in
cooperation".[4]

Above Semantic Web was described as a technology that can mainly be used
on Internet, but this is not true. Semantic Web Technologies can be used in many
di�erent situations. It is easy to think about how many types of information a
company can manage, e.g. one Business Web Portal, an ERP, one ECM. That
means lots of information, and that information with meaning, through Semantic
Web Technology, machines will be able to manage it, selecting the information
useful for us and discard the others.

The representation of the knowledge that we have, i.e., the stored data that
we can access, is one of the key concepts of the development of Semantic Web
technologies. The information that should be accessible for the information
agents must be structured in an optimal way. It can not be too complex be-
cause our agents will �nd di�culties for processing it and must be structured
enough to make the data understandable. Therefore we have to create some log-

2.2. The Semantic Web Structure

ics to our Web, and further, we have to add some inference rules to help to get
the results wanted. The challenge of the Semantic Web is to provide a language
that formally expresses both the data and the rules for reasoning about this
data.

When structuring the information, we must think that the information
should be available for all and that it should be structured in an optimal way.
Once selecting the structure we must be sure that one machine is capable of
understanding it in the right way, e.g., an information agent can interpret that
the attribute red of a car means that it is the color of the car but also is possible
that the attribute color can have a di�erent meaning.

2.2 The Semantic Web Structure

Figure 2.1: Semantic Web - XML2000 by Tim Berners-Lee

Figure 2.1 shows the Berners-Lee tower about Semantic Web
(http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html). In the
tower the main elements of the Semantic Web are shown and we can distinguish
di�erent layers on it. The bottom layer supports the basic coding of characters
and the resource identi�er. In the next layer, the structure of the data is
represented. These are the most basic levels of the Semantic Web. In the next
layers we can see the key concepts of the Semantic Web, RDF and the Ontology
Vocabulary. These two layers are expected to be the core of the Semantic Web.
The last three layers, logic, proof and trust are not in the topic of this report.

2.2.1 Information Carry Layer

The Uniform Resource Locator, URI, is the key for naming resources. These
resources are accessible by protocols and an address like http://www.idi.ntnu.no

10

Chapter 2. The Semantic Web

that URL is a concrete example of URI. URI's provide a common syntax for
naming a resource regardless of the protocol used to access the resource [31] .

We have to realize that URI is an identi�er, not only an address where we
can �nd a resource and then one URI can be used also like a name.

2.2.2 Transfering Layer

XML is the language used to structure the information and it is based in assign
one identi�er and the value for the identi�er. We have seen before that this is
not enough for solving the problems of the Semantic Web. The information we
use should have a meaning, not only data, and that is the reason because XML
is in the lowest levels of the pyramid. XML is the base, and using this base we
will build RDF, RDFS and Web Ontology languages.

2.2.3 Metadata Layer

In the metadata layer are two main concepts that support the ontology layer.
These concepts are RDF and its extension RDF(S). RDF is a data model and
with this model we will represent the information which is formatted in XML
to provide the basis for the next layer, in order to provide the structure that
will be possible create the rules for reasoning about data.

RDF(S) is the approach of the metadata layer to the ontology lager. RDF(S)
is based in RDF and provides elements for modeling data and adds to this data
the basic information. Within RDF(S) we are able to create the basic structure
to share data and make it available to the most simple information agents.

2.2.4 Ontology Layer

In this layer an Ontology language is provided. This layer provides more ex-
pressiveness than the previous layer by adding this new language. With the new
language developed by W3C, OWL, the ontology layer provides the elements
needed to add enough expressiveness to our data in order to provide the infor-
mation that the information agents need for reasoning about this data. OWL
is the Web Ontology Language and it is builded on top of RDF(S) like the On-
tology layer is on top of the metadata layer. OWL is a language for describing
data, because an ontology formally de�nes a common set of terms that are used
to describe and represent a domain [31] .

2.2.5 The Other Layers

The layers on top of the Ontology Layer are:

• The Logic Layer extends the functionality of the previous layer on writ-
ing logics to our data.

• The Trust Layer improves the security by adding tools to detect alter-
ations in the documents.

11

2.3. Semantic Web Applications

• The Proof Layer evaluates the applications to apply the adequate mech-
anisms when it is necessary to give trust or not.

These three layers are not covered by this report and more works its being
doing at the moment to develop the last layers of the Semantic Web.

2.3 Semantic Web Applications

Recall that the Semantic Web is expected to allow us to �nd the information that
we need quickly and with accuracy, obtaining just the answers to our queries
that we really want. In short we will forget the current situation where we get
hundreds of answers from our queries and that requires a re-search in all these
data once we have it.

But this is only the top of the objectives of the Semantic Web activity.
With this emerging technology a new kind of approximation to the applica-
tions that we use every day will be achieved. We will get more facilities by the
integration of the information that our applications are using now, which will
allow our machines to communicate between them. The Semantic Web will pro-
vide an infrastructure that enables not just web pages, but databases, services,
programs, sensors, personal devices, and even household appliances to both con-
sume and produce data on the Web. Software agents can use this information
to search, �lter and prepare information in new and exciting ways to assist the
Web user. New languages, making signi�cantly more of the information on the
Web machine-readable, strength this vision and will enable the development of
a new generation of technologies and toolkits[14].

2.4 Concluding Remarks

In this chapter, we have seen that the Semantic Web is an emerging technol-
ogy that will able us to accomplish our objectives in the search and retrieval
of information. The Semantic Web, due to its layer division can be accessible
for lots of user, from the users that only want to put their information into the
Web and make available that information to the community and to the informa-
tion agents to the companies that want to improve their knowledge about the
their data. We have also seen some examples of the use of the Semantic Web
Technology.

12

Chapter 3

Enquiry for the Problem

In this Chapter, we will describe the problem proposed and we will explain the
way-of-working to solve it. We will propose several steps to achieve our goal and
we will explain similar approaches to our approach.

3.1 Our Problem

The problem is to adapt two databases with a concrete format to an ontological
representation by using Web ontology languages. These languages and the case
study have been proposed by Invenio AS, the company partner in this project.
We want to improve the access to two databases containing the directory ser-
vice of Norway and Sweden. We will improve the access to these databases by
giving more semantics and expressiveness to the data. With this extension an
information agent will be able to ful�l the requirements of the users.

3.2 The process of enquiry

The process of enquiry has been detailed in the Picture 3.1. This process has
been divided into two main processes of research: one more theoretical approach
to the problem where the ontology languages are evaluated by using the Semiotic
Quality Framework [19] and another one by using a more technical approach. In
this more technical approach a translation process between the databases and
the ontological representation has been developed.

3.2. The process of enquiry

Figure 3.1: The process of enquiry

3.2.1 Theoretical Approach to the problem

This approach for solving our problem contains a strong theoretical base. It
is based on the Semiotic Quality Framework [19] and the descriptions of the
languages explained in Chapter 4. The following steps have been used in order
to accomplish the analysis.

Reverse engineering step. In the �rst step we extract the model from the
databases. These databases are two, one contains the Swedish directory service
for persons and the other one contains the Norwegian directory service for com-
panies. The Swedish database is in XML format and the partner provided the
DTD model. The Norwegian database is in text format and it does not have any
model. We created Swedish the model from the DTD �le and the Norwegian
model were extracted by using reverse engineering on the database. It was a
complex approach and we based the new model in the Swedish database model
because both databases had the same provider and the creator of them probably
was the same.

Re�nement step. In the second step we re�ne the models extracted to an
ontological representation. Once we have the initial design of the databases we
are able to translate the database models to the three Web ontology languages.
The output was three ontologies for each database in RDF(S), OWL and Topic
Maps.

Analysis step. In the third step we analyse the three Web ontology languages

14

Chapter 3. Enquiry for the Problem

by using the Semiotic Quality Framework [19]. We have analysed the quality
for modelling following the seven appropriateness speci�ed in the framework
adapted to the speci�cations of the problem and the languages. The require-
ments of the company in our particular case have also been analysed with the
same quality framework because we will obtain the same measure of the require-
ments of the framework. Therefore will be easier to compare the requirements of
the company and the characteristics that the languages o�er. Once the compar-
ison has been done we proceeded to recommend the Web Ontology Language
(OWL) for the best solution to the proposed problem.

3.2.2 Practical Approach to the Problem

This approach to the enquiry problem has a more practical section because we
compare the languages doing queries to the ontology. This time both database
designs have been merged and we only have one design. The following steps have
been used in order to accomplish the analysis.

First we gathered the requirements of Invenio AS by interviewing the domain
expert from the company. He explained us what the databases are, why are
designed in this particular way and what the attributes are.

Second we transcript the requirements from the company and with this tran-
scription we design the new databases. The requirements for the two databases,
the Norwegian and the Swedish are quite similar and we can merge them. Also,
the requirements of the company include a possible extension of the ontology.
Initially there will no values related between Persons and Companies but the
relationship will exist.

Third, once we have the ontology we consolidate it with the ontologies ex-
tracted from the reverse engineering of the databases. We put the requirements
and the physical data together to create the �nal ontology.

Fourth we write this ontology in the Web ontology languages selected and
we do the comparative analysis of them. From this analysis we will extract the
�nal recommendation.

3.3 Need for a Parser

A converter is needed in several situations. Our situation is similar to others
where a large quantity of data is stored using a relational database technology.
An example of parser between a relational representation and an ontological
representation is D2R [10]. Relational database technology can not produce
enough good answers to our queries. Due to this technology is based on relational
algebra it is needed a certain knowledge about it in order to make queries and
therefore it can not be done by everyone. A convertor can be used to translate
the data in a particular representation to another one. This can be useful, for
example, to translate a relational database from one relational representation
into another one.

But this will require �tting both representations. The two representations

15

3.4. Similar Approaches

will have di�erent ways to represent one fact and this problem will need to be
solved. To solve this situation where two di�erent representations have di�erent
ways to represent the data we will need a converter. In this converter we will
need to specify the translation rules from one representation to the other one
and try to put all the meaning that the original representation has into the
other one. These will we the main aim of our converter: to put all the meaning
from one representation into the other one and add the representing power of
the second one to the converted data.

Our concrete problem is to translate the data from a relational database
technology representation into an ontological representation. This last represen-
tation will be in three di�erent ontology languages: RDF(S), OWL and Topic
Maps. We will develop a converter between these two representations trying not
to loose the properties that the data has in the relational schema and add the
properties for describing data that the languages have.

3.4 Similar Approaches

The necessity of a parser is also due to the content of a database-driven web
sites is not machine understandable. Consequently they are not a part of the
Semantic Web and we have to "translate" our data to the proper format. To do
this translation we have to select among two representations. We have our data
in a Relational database model and we have to change this model to another
representation, in Frame Logics or RDF Schema. We have to select the best way
to preserve the maximum amount of information possible and as it is done in [3]
we will use the frame representation with RDF Schema. In our system, ontologies
are conceptual models with an abstraction level higher than the schemas of
any database. Ontologies give a homogenous description to di�erent schemas of
databases integrated in the system. Also there are several projects like [7] or
[23] that uses this approximation. As we explained before and as it is explained
in [7] using ontologies will give to our system the advantages of provide logical
and physical independence between layers in the system It will increase the
scalability of the system, will reduce the changes that have to be done to the
original databases if it is necessary to modify it and will make more user friendly
the access to the information.

We can also �nd several projects that extract the information from web
sources or unstructured data sources like [18] or [1]. Also these situations require
developing parsers for gathering information and translating it to an ontology
representation with the di�erence that they gather unstructured data instead
of the structured data of one database.

3.5 Concluding Remarks

In this Chapter, we have seen which will be way for solving our problem. We
have made a planning decided two approaches to our problem, one theoretical
and another one more practical. We have seen we need some conversion parsers

16

Chapter 3. Enquiry for the Problem

to translate the original data to the new representation models. Finally, we have
to remark that our problem is not the only one in the IS community. There are
several cases like this one.

17

Part II

Theoretical Approach to the

Case Study

19

Chapter 4

Overview of languages

In this Chapter, we are going to describe the three Web ontology languages se-
lected and an extension for one of them, OWL. The description of the languages
will consist in a short introduction to their functionalities and their instructions.

4.1 Overview of Resource Description Framework
(RDF)

The Resource Description Framework is a framework for representing informa-
tion in the Web. RDF is developed by W3C and provides meaning to data in
a machine understandable format allowing for more sophisticated data inter-
change or searching.

If we look at the W3C web page we can see this de�nition: "The Resource
Description Framework" (RDF) integrates a variety of applications from library
catalogs and world-wide directories to syndication and aggregation of news,
software, and content to personal collections of music, photos, and events using
XML as an interchange syntax. The RDF speci�cations provide a lightweight
ontology system to support the exchange of knowledge on the Web.

RDF will allow us to put information and meaning to our data. RDF is
extremely �exible for accomplishing that objective because it will allow us to
put the information in one context with enough extra information that an in-
formation agent will be capable of process and understand.

If RDF is a way for describing data the RDF Schema is a domain-neutral
way of describing the metadata that can then be used to describe the data for a
domain-speci�c vocabulary [31]. RDF Schema provides the resources necessary
to describe the objects and properties of a domain-speci�c schema.

4.1.1 RDF Core

The core of RDF is a set of triples consisting in RDF Subject, RDF Verb or
Predicate and RDF Object. The �rst principal component of RDF is the subject.
The subject can be seen as a name or an object. The subject is the resource being
described ant it can be identi�ed by an URI. The second principal component
is the verb or a property of the subject. The verb is a characteristic of the
subject and for example, it can be color, size or another property applicable to

4.1. Overview of Resource Description Framework (RDF)

a resource. Properties can also be multiple resources, values of properties can be
other resources. The third and last component of the RDF triples is the object.
This object is the value associated to this resource, for example can be red, big
or another value applicable to a de�ned property. In every RDF triple we can
see always:

• Every RDF triple is made of subject, property and object.

• Every triple represents one fact.

• Every RDF triple can be joined with other RDF triples and will not loose
their initial meaning.

• A Subject is an URI

RDF can be represented in a graph way, like in the Figure 4.1, a directed
labeled graph and is the way that RDF Core Working Group decided as default
method for describing RDF data models.

There are three di�erent kinds of nodes in a directed graph for representing
RDF data models:

• Uriref node. Consist in a Uniform Resource Identi�er, that is, an iden-
ti�er for the node. Can reference to data, not only to Web resources.

• Blank nodes. Nodes that do not have URI.

• Literals. Formed by three components, a character string, an optional
language tag and data type.

Figure 4.1: RDF Graph

4.1.2 RDF and XML

RDF uses XML for the syntactic expression of model instances [20], it builds a
layer on top of it, making interoperable exchange of semantic information pos-
sible. A RDF document must be XML well-formed but not XML-style validity
and, of course, all the requirements that RDF have. One example of an RDF
representation in XML is:

<rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">

<ex:editor>

<rdf:Description>

<ex:homePage>

<rdf:Description rdf:about="http://purl.org/net/dajobe/">

22

Chapter 4. Overview of languages

</rdf:Description>

</ex:homePage>

</rdf:Description>

</ex:editor>

</rdf:Description>

4.1.3 RDF Schema, RDF(S)

RDF Schema de�nes a simple modelling language on top of RDF. In RDF
you can represent the data, with their properties but you can not represent the
description of these properties or describe relationships between these properties
and other resources. To solve this problem W3C speci�ed RDF Schema [6]. It
is introduced as a layer on top of the basic RDF Model.

RDF Schema is a domain-neutral way for describing metadata. This meta-
data can be used to describe the data for a domain speci�c vocabulary. RDF(S)
helps us to create and de�ne new objects and properties, with RDF(S) we will
de�ne classes and properties that may be used to describe classes, properties
and other resources[20].

Resources may be divided into groups called classes. The members of a class
are known as instances of the class. Classes are themselves resources. They
are often identi�ed by RDF URI References and may be described using RDF
properties. The rdf:type property may be used to state that a resource is an
instance of a class.

rdfs:Resource This is the main class. In RDF all things described are Re-
sources, all other things in RDF are subclasses of rdfs:Resource and
also rdfs:Resource is a subclass of rdfs:Class.

rdfs:Class This is the class of resources that are RDF classes. rdfs:Class is
an instance of rdfs:Class.

rdfs:Literal This is the main class for types like strings or integers. The
literals can be plain or typed (an instance of datatype class).

rdfs:Datatype This is the class of datatypes and it is a subclass of
rdfs:Literal.

rdf:XMLLiteral This is the class of XML Literal values, it is an instance of
rdfs:Datatype and a subclass of rdfs:Literal.

rdf:Property This is the class of rdf:Property and it is an instance of
rdfs:Class.

rdfs:range This property (it is an instance of rdfs:Property) is used to say
that the values of the property are instances of one or more classes. Also
that property can be applied to it self.

rdfs:domain This property (it is an instance of rdf:Property) is used to in-
dicate that a resource that have a determinate property is an instance of

23

4.2. Overview of Web Ontology Language (OWL)

one or more classes. For example the rdfs:range can also be applied to
properties using rdfs:domain.

rdf:type This is a property used to indicate that a resource is an instance of
a class.

rdfs:subClassOf This property is used to indicate that all instances of one
class are instances of another class. This property is transitive.

rdfs:subPropertyOf This property is used to indicate that all resources related
by one property are also related by another.

rdfs:label This property is used to provide a readable version of a resource's
name.

rdfs:comment This property is used to write comments or descriptions.

4.1.4 Problems in RDF(S)

When you start to design a basic ontology with RDF(S) you will make sense of
you can create in�nite layers of classes. It is possible to observe that rdfs:Class
is a subclass of rdfs:Resource and rdfs:Resource is at the same time an
instance of rdfs:Class. The problem comes when the next layer, the Logical
Layer, tries to extend the previous layer, the metamodel layer. These problems
are described in [27] and the result is that RDF(S) has no clear semantics:

1. The class rdfs:Class is an instance of itself. That means that you can
�nd the Russell's paradox. The paradox arises when considering the set
of all sets that are not members of themselves. Such a set appears to be a
member of itself if and only if it is not member of itself, hence the paradox.

2. The class rdfs:Resource is a superclass and instance of rdfs:Class at
the same time, which means that the superset (rdfs:Resource) is a mem-
ber of the subset (rdfs:Class).

3. The properties rdfs:subClassOf, rdf:type, rdfs:range and
rdfs:domain are used to de�ne both the other RDF(S) modeling
primitives and the ontology, which makes their semantics unclear and
makes very di�cult to formalize RDF(S).

4.2 Overview of Web Ontology Language (OWL)

When we start to work with RDF(S) we see that it does not have all the con-
structs and restrictions we need. For example, RDF(S) has a low expressive
power (RDF is a data model), it is not possible in RDF(S) to provide de�ned
classes or provide more complex restrictions or properties like universal or ex-
istential quanti�ers. The ontology language is the next layer in the Berners-Lee
tower and OWL is the language chosen by W3C. OWL extends RDF(S), uses
the RDF constructs and adds new constructs, mainly to give more semantic

24

Chapter 4. Overview of languages

information to the data, adds more vocabulary for describing properties and
classes. OWL is a knowledge representation.

But there is an interesting question between RDF(S), OWL and intelligent
agents. One intelligent agent can �nd more conclusions looking into RDF(S)
formatted data than looking into OWL formatted data because with OWL we
will specify the data with more constructs and we will get more accurate results,
but since OWL is based in RDF(S) and put constrains on top of it an intelligent
agent that is looking also in RDF(S) data will get more conclusions with this
data because will �nd less restrictions and will process more data. That is one
of the main questions about the Semantic Web Tower, you will extend one layer
adding constraints to another layer, but in certain cases you will drag some
problems from the previous layer as we saw in the previous section 3.1.4.

4.2.1 OWL, Global Overview

OWL's objective is to provide enough constructs and restrictions creating better
quality data for our intelligent agents. But since ontologies are business models
[31] we need more �exibility in an ontology because there exists di�erent con-
cepts of business and di�erent sizes of business. Hence OWL is divided in three
levels: OWL Lite, OWL DL and OWL Full. The relation between the three
types of OWL is shown below but the have the same basic constructs. A more
detailed speci�cation of the elements explained here can be found at [9]. The
�gure 4.2 represents the previous sentences.

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

Figure 4.2: OWL Layers

25

4.2. Overview of Web Ontology Language (OWL)

4.2.2 Basic Elements

Namespaces The vocabulary we will use in out ontology is the most important
thing. One of the main characteristics of one ontology, or at least one of
the principal recommendations for creating an ontology is the ontology
interoperability. To facilitate this, the vocabulary used is critical because
will allow us to share concepts or at least provide primitives for relating
di�erent representations.

OWL Header The ontology header will provide the start and �nish point of
the ontology, version control, including another ontologies or comments:

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology</rdfs:comment>

</owl:Ontology>

Within OWL the header of the ontology we will manage the version of
the ontology, the imported de�nitions required in this ontology, importing
another ontology (this import should be coordinated with the namespace
previously indicated). The ontology header declaration will �nish with

</owl:Ontology>

and the next section will start.

4.2.3 Classes and Individuals

OWL de�nes classes via properties [31] Individuals are an important member
of ontologies. The intelligent agents will reason about individuals and the in-
formation contained in those individuals. It is important to provide enough
restrictions, descriptions and properties to these individual to get a better an-
swers from our agents. Each individual is a member of the class owl:Thing or is
a member of the empty class owl:Nothing. The OWL class taxonomy is detailed
in Figure 4.3 1.

Figure 4.3: OWL Class Taxonomy
1http://lists.w3.org/Archives/Public/www-webont-wg/2003Jan/0169.html

26

Chapter 4. Overview of languages

Declaration of classes is not complex. It is only needed declaring a class
specifying the name. To specify a subclass it is only needed to indicate the
name and the superclass as detailed in the following examples:

<owl:Class rdf:ID="Winery"/>

<owl:Class rdf:ID="Region"/>

<owl:Class rdf:ID="ConsumableThing"/>

<owl:Class rdf:ID="PotableLiquid">

<rdfs:subClassOf rdf:resource="#ConsumableThing" />

...

</owl:Class>

These classes are incomplete because we do not know anything about them.
In OWL we have to provide restrictions and properties to these classes and its
instances. In OWL classes are only names with some properties for describing
individuals, then individuals are entities that can be grouped in classes. Example
of Individual:

<Region rdf:ID="CentralCoastRegion" />

For describing the members of a class (the individuals) we have to at least
declaring it of a member of a class. rdf:type is an RDF property that ties an
individual to a class of which it is a member.

4.2.4 Properties

Properties are used to give meaning to our classes and individuals. Without
properties classes are useless. A property is a binary relation and we will focus
on the object properties, i.e., the properties among instances of two classes. We
are not interested in relationships between RDF Literals and instances of classes
(datatype properties). Example of Property:

<owl:ObjectProperty rdf:ID="madeFromGrape">

<rdfs:domain rdf:resource="#Wine"/>

<rdfs:range rdf:resource="#WineGrape"/>

</owl:ObjectProperty>

Like classes we can de�ne solely a property or de�ne a sub property from
another property. This is a specialization from the main property.

Property Characteristics

Properties can be related with other properties by using the instructions in-
dicated below. This provides a good mechanism in order to correctly specify
the relationships, by relating them with other properties or by assigning global
constraints to these properties.

27

4.2. Overview of Web Ontology Language (OWL)

TransitiveProperty This property allow us to represent the Transitive prop-
erty for the indicated resources.

SymmetricProperty This property allows us to represent the Symmetric
property between two resources.

FunctionalProperty This property allows us to represent the Functional
property between two resources.

InverseOf This property allows us to represent the Inverse property between
two resources.

InverseFunctionalProperty This property allows us to represent the Inverse
Functional property between two resources.

Property Restrictions

We can specify the range of values that we want to apply to the properties.
Maybe we are more interested in apply the property hasChild to the individuals
that belongs to the class humans but adding the restriction to those humans
that have more than 15 years or restrict the number of elements that a class
should have.

allValuesForm This property speci�es the universal quanti�er. Speci�es that
for all instances of the class that has the property the values of the property
are members of the class.

someValuesForm This property speci�es the existential quanti�er. Speci�es
that for all instances of the class that has the property at least one of the
values of the property are members of the class.

cardinality This property speci�es the number of instances in the relation. It
is possible to specify a minimum number, a maximum or the exact number
of instances.

Example of property restriction:

<owl:Restriction>

<owl:onProperty rdf:resource="#madeFromGrape"/>

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>

4.2.5 OWL DL

The constructs provided by OWL DL are more powerful and more complex. This
extension contains elements of set operations like intersection (intersectionOf),
union (unionOf) and complements (complementOf), enumerated classes (one
of) or disjoints classes (disjointWith).

28

Chapter 4. Overview of languages

4.2.6 OWL Full

OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For example,
in OWL Full a class can be treated simultaneously as a collection of in-
dividuals and as an individual in its own right. Another signi�cant di�er-
ence from OWL DL is that a owl:DatatypeProperty can be marked as an
owl:InverseFunctionalProperty. OWL Full allows an ontology to augment
the meaning of the pre-de�ned (RDF or OWL) vocabulary. It is unlikely that
any reasoning software will be able to support every feature of OWL Full.[33]

4.2.7 Problems in OWL

As indicated above one intelligent agent can reason more things in RDF(S) and
then obtain more answers than an OWL agent. That implies that you are using
the other layers basis to make the new layer, ontology layer extends the RDF
layer. Then is possible also that some problems will be extended. Classes with
the underlying principles of RDF(S) resulting paradoxes in a same syntax and
extended semantics layering of OWL on top of RDF(S) [28].

We have seen that OWL o�ers many features for modelling a domain, pro-
viding classes, relationships, properties or it is also possible to apply restrictions
to the elements previously created. It is possible to specify these restrictions
with �rst order predicates that will provide more elements in order to allow the
information agents automatic reasoning. An example of most of the elements
described in this sections can be found in [33].

4.2.8 Ontology Mapping

We said that one of the principles for designing ontologies should be to share this
ontology. The ontology must be public in order to be able to reuse its properties
and names. If we share our ontology we will obtain better e�ciency from our
intelligent agents when they search for information. We can take advantage from
the existing ontologies de�ning some equivalences or relations between them.
OWL (DL and Full) provides some constructs in order to achieve this objective.

equivalentClass, equivalentProperty These properties indicate that two
classes have equivalent classes or two classes have equivalent properties.
When using these constraints you should be careful to not make contra-
dictions in the ontologies. These two properties are within OWL DL, for
OWL Full there is another more powerful property (sameAs).

sameAs This property allows us to specify that two classes are identical and
causes both arguments of the instruction to be interpreted as individuals.
If you use that instruction in you ontology it will be classi�ed like an OWL
Full ontology.

di�erentFrom, AllDi�erent This restriction provides the e�ect of be di�er-
ent from a speci�ed resource or from all resources. It is the opposite e�ect

29

4.3. Overview of Topic Maps

of sameAs.

In this section we have seen most of the OWL Lite constructs and none from
the OWL DL or OWL Full. As indicated above we have to choose between one
of these three OWL frameworks for building our ontology. Maybe will be enough
for us just use the elements shown in the last pages, if it is not the case, now
OWL DL will be described.

4.3 Overview of Topic Maps

XML Topic Maps (XTM) is an ISO standard for describing knowledge structures
and associating them with information resources. Is the International Organi-
zation for Standardization technology for contributing to the next generation of
Web, the Semantic Web.

An example of Topic Maps is the Table of Contents in the beginning of this
report. It is possible to see some subjects, the names on the left of the TOC that
represent the di�erent sections in this document. In the same table of contents
is possible to see the page number where the beginning of the section is. If we
translate this example into a topic maps representation we will get that topic
will be "Introduction" and the page number will be the occurrence, that is, the
place where the Introduction is.

Another good example is given in [29]. Imagine one Shakespeare work,
lets say "Hamlet", and we know that "Hamlet" is referenced in lots of
places. The topic will be "Hamlet" and the occurrence will be for example
"www.hamlet.com" or another URI that references "Hamlet".

Also in the Topic Maps representation we can represent associations. One
association can be "Hamlet" was written by Shakespeare, and then, representing
this association in Topic Maps we will get the next obvious association Shake-
speare wrote "Hamlet". The Topic Maps Model is detailed in 4.42 and we can
de�ne a Topic Map as:

• Topic is a representation of one real concept

• Occurrences are the links to the Topic, that is, where the Topic is refer-
enced

• Association between Topics (written by)

• Topic Map is the collection of these three concepts

2http://www.topicmaps.org/xtm/index.html

30

Chapter 4. Overview of languages

Figure 4.4: Topic Map Model

4.3.1 Main Concepts in Topic Maps

Topic A topic represents one concept abstracted from the reality. A Topic can
be "Hamlet", "car" or "Introduction". More formally a topic is the rei�-
cation (act of creating a topic from one subject) and rei�cation allows
assigning topic characteristics (topic name, topic occurrence or role) to
that topic. The topic characteristics are only valid within a scope (speci-
�es the validity of the topic characteristics).

Subject subject (identi�ed by a subject indicator) is something about
we can reference properties or relations. In a topic map each subject
is represented by one topic and more than one topic topic may reify
the same subject.

Topic Type A topic type represents the relation between the main class and
its instances, the instances will be the topics and the main class the topic
type.

Occurrences Occurrences are the relevant cases where we can �nd the topic.
It is a link to the topic. In order to be a valid occurrence it should have
one of these two properties:

1. Addressable by reference using URI

2. capable of being placed inline as character data

Occurrence Type An occurrence type represents the main class of an occur-
rence, the occurrence an instance of Occurrence Type.

Association An association represents a relationship between two or more top-
ics and each topic plays a role (nature of the topic in this association) in
the association. The roles are among the characteristics that can be as-
signed to the topic. There is no directionally inherent in an association, if
you associate the topic "Hamlet" with the topic "Shakespeare" you also
get the relation "Shakespeare" with "Hamlet".

Association Type The association type represents the main class of associa-
tion, therefore association is the instance of association type.

31

4.3. Overview of Topic Maps

Topic Map A Topic Map represents a group of topics with associations be-
tween these topics and inside valid scopes. The Topic Map may exist in
two forms:

1. A serialized interchange format (e.g. as a topic map document ex-
pressed in XTM or some other syntax), or

2. An application-internal form

The purpose of a topic map is to convey knowledge about resources
through a superimposed layer, or map, of the resources. A topic map cap-
tures the subjects of which resources speak, and the relationships between
resources, in a way that is implementation-independent. [29]. A Topic Map
Node is an object which contains the internal representation of one topic
(with topic, association and scope).

The Topic Map Class Hierarchy is indicated in the Figure4.5 3:

Figure 4.5: Topic Maps Class Hierarchy

4.3.2 Advanced Concepts

Published Subjects The same subject can be represented in more than one
topic. We can represent "Spain", "Norway" or we can represent these
countries as "España" or "Norge". It is necessary to establish a common
identity to share these topics, because if we want to share our knowledge
our subjects should be identi�ed for agents that are looking for these sub-
ject but with di�erent names. In order to solve that question exist the
published subjects. A published subject indicator is any resource that has
been published in order to provide a positive, unambiguous indication of
the identity of a subject for the purpose of facilitating topic map inter-
change and merge ability.

3http://www.topicmaps.org/xtm/index.html

32

Chapter 4. Overview of languages

Facets Facets are the way of Topic Maps to provide metadata to the informa-
tion resources. A facet provides a mechanism to assign pairs of properties
and values of resources. Facet is simply a property with values.

4.3.3 Merging

When two Topic Maps are merged the following situations can happen:

1. When two topic maps are merged, any topics that the application, by
whatever means, determines to have the same subject are merged, and
any duplicate associations are removed.

2. When two topics are merged, the result is a single topic whose charac-
teristics are the union of the characteristics of the original topics, with
duplicates removed.

When two topics are merged exist the possibility that both Topic Maps have
the same subject. That happens if:

1. they have one or more subject indicators in common,

2. they reify the same addressable subject, or

3. they have the same base name in the same scope.

4.3.4 XTM Speci�cation

In this section we are going to describe the main constructs for creating an
ontology with Topic Maps. These are the principal elements for creating a Topic
Map ontology proposed by [29], and more speci�c elements are detailed in the
o�cial speci�cation.

topicRef The topicRef element speci�es an URI reference to a topic. The tar-
get of a topicRef link must resolve to a topic element child of a topicMap
document that conforms to this XTM speci�cation. The target topic need
not be in the document entity of origin. This element assign a URI refer-
ence to a the topic speci�ed topic.

<topicRef xlink:href="#thisTopic"/>

scope The scope element speci�es the context where the topic characteristics
are valid for one or more topicRef, resourceRef or subjectIndicator.
The scope element consists of one or more topicRef, resourceRef, or
subjectIndicatorRef elements. The union of the subjects corresponding
to these elements speci�es the context in which the assignment of the topic
characteristic is considered to be valid.

33

4.3. Overview of Topic Maps

<scope>

<topicRef xlink:href="#comedy"/>

<topicRef xlink:href="#drama"/>

</scope>

instanceOf the instanceOf element speci�es an instance of a topicRef or
subjectIndicator.

<topic id="Godfather">

<instanceOf>

<subjectIndicatorRef

xlink:href="http://www.mybooks.org/puzo.html"/>

</instanceOf>

</topic>

topicMap The topicMap] element speci�es the parent of all topic, association,
and mergeMap elements in the topic map document. topicMap element
is the root element from which topic map syntactical recognition is per-
formed [29].

<topicMap>

<!-- topics, associations, and merge map directives go here -->

</topicMap>

topic The topic element speci�es the name and occurrence characteristics of
a single topic. It has a single unique identi�er, and the ability to state the
class(es) of which it is an instance and the identity of the subject that it
rei�es. [29].

<topic id="Godfather">

<instanceOf>

<topicRef xlink:href="#book"/>

</instanceOf>

<!-- base names and occurrences go here -->

</topic>

subjectIdentity The subjectIdentity element speci�es the subject that is
rei�ed by a topic.

association the association association element creates an association be-
tween two or more topics.

34

Chapter 4. Overview of languages

<topic id="will-wrote-hamlet-topic">

<subjectIdentity>

<subjectIndicatorRef xlink:href="#will-wrote-hamlet"/>

</subjectIdentity>

<baseName>

<baseNameString>Shakespeare's authorship of

Hamlet</baseNameString>

</baseName>

<!-- occurrences may go here -->

</topic>

occurrence The occurrence element speci�es where is the information re-
source related to the topic indicated.

<topic id="hamlet">

<occurrence>

<instanceOf>

<topicRef xlink:href="#date-of-composition"/>

</instanceOf>

<resourceData>1600-01</resourceData>

</occurrence>

</topic>

mergeMap The mergeMap element speci�es references to an external Topic Map
using an URI.

<mergeMap xlink:href="http://www.mybooks.org/puzo.xtm">

<topicRef xlink:href="#mafia"/>

</mergeMap>

4.4 Overview of OWL-S

OWL-S is an ontology for describing Web Services based in the Semantic Web
Language OWL. AWeb service description can be found in Appendix A. OWL-S
is build with OWL for creating an ontology that enables the developer to create
Semantic Web Services with the requirements and characteristics mentioned in
previous chapters. OWL-S is the last release of the DAML-S ontology built with
the Ontology language DAML+OIL.

With OWL-S users and software agents should be able to discover, invoke,
compose and monitor Web resources o�ering particular services and having par-
ticular properties. [21]

35

4.4. Overview of OWL-S

4.4.1 The Ontology for Web Services

OWL-S is located at the application level, just up WSDL, for solving the lacks
of this language. As it is explained in Chapter A WSDL has two layers, one
abstract layer and another "real" section. At the abstract level WSDL describes
the messages that a Web Service sends and receives. These messages can be
used to characterize the service but the expressiveness of WSDL is not enough
powerful. It is possible to use OWL-S for solving this problem. The essential
knowledge about a service that an information agent should know is the same
as the answers to these questions:

• What does the service requires of the users or other agents, and provide
for them? The answer is given in the ServicePro�le section.

• How does it work? The answer is given in the ServiceModel.

• How is it used? The answer is given in the ServiceGrounding.

In the Figure 4.6 is possible to see the architecture of OWL-S4. In this picture
it is shown the main modules of the ontology for Web Services. These elements
are described in the next sections.

Figure 4.6: The General Process of Engaging a Web Service

The Service class depicted in Figure 4.6 is the main class organizer in the
OWL-S ontology. This class is provided by the Resource class and any of the
services, ServicePro�le, ServiceGrounding and ServiceModel will be a Service.
The service implements the cardinality restrictions of a service can be described
at most by one service model and one grounding must be associated to only one
service.

4.4.2 The Service Pro�le

The service pro�le provides the mechanisms to describe the participants in a Ser-
vice: the service requester and the service provider. The Pro�le allows the user

4http://www.w3.org/Submission/OWL-S/

36

Chapter 4. Overview of languages

to create de�nitions and to add semantic information to the service requester
needs. The service requester can be a user asking for a determinate service
and the service provider can be a seller, the one who provides any service the
customer.

The main objective of the Service Pro�le is to describe the characteristics
of the process and what does the process really need. This can also be done by
using OWL subclassing. The ServicePro�le provides a representation based on
three pro�le de�nitions:

• The provider of the service information consists of contact information
referred to the entity that provides the service.

• Functional description of the service expressed in term of the transfor-
mations done by the service. The functional description of the service
speci�es the inputs and outputs required in the service. Also describes the
preconditions and post conditions of the service.

• Descriptions of the host properties. These descriptions are used to describe
the features of the service. Speci�es the category of a given service (buy
books), the quality rating of the service and a list of parameters that can
contain any type of information.

Once the Service Pro�le is located it starts to be useless. This is because
we do not need anything more from it, now the Process Model will be used.
But there are also some more questions about the service pro�le. The service
pro�le speci�es a certain type of requirements of the service and the Process
Model speci�es what the service really needs. These two speci�cations can be
completely di�erent and it can generate some inconsistencies. This situation can
happen when a service tries to execute something and the parameters needed
are not the speci�ed initially or the result of the service is not the expected
result. This is because OWL-S does not specify any constraint between Pro�le
and Process Model and both play di�erent roles during the transaction between
Web Services. Also, the Pro�le allows the user to de�ne several functionalities
of the same service. This allows other services to select among di�erent services.

4.4.3 Pro�le Properties

The OWL Services Coalition has divided the properties of the Pro�leService in
four groups. These groups classify the properties in properties which link the
ServicePro�le class with the Service class and Process Model class; the properties
which describe the contact information and the Description of the pro�le; the
properties which describe functional representation in function of the Input,
Output, Precondition and E�ects (IOPEs); and the properties which describe
the attributes of the Pro�le.

1. The class ServicePro�le provides a superclass of every type of high-level
description of the service. It mandates the basic information to link any
instance of pro�le with an instance of service.

37

4.4. Overview of OWL-S

presents Describes the relation between an instance of a service and an
instance of a pro�le which describes it.

presentedBy Inverse of presents.

2. The following properties describe the contact information and the De-
scription of the pro�le. A pro�le may have at most one service name and
text description, but as many items of contact information as the provider
wants to o�er.

serviceName Represents the name of the service o�ered.

textDescription : Provides a short description of the service.

contactInformation : Provides information about the human responsible
for the service.

3. The following properties describe the parameters needed by the service,
the IOPEs.

hasParameter Describes some parameters di�erent from Inputs and Out-
puts.

hasInput Describes the input of the process.

hasOutput Describes the output of the process.

hasPrecondition Describes the preconditions of the process.

hasResult Describes the expected result of the process.

4. The following properties describe some additional attributes to guarantee
the quality of the service.

serviceParameterName Parameter name (a literal or an URI).

sParameter Value of the parameter in an OWL ontology.

4.4.4 Modeling Services as Processes

A Service can be viewed as a process. OWL-S provides the class Process that is
a subclass of ServiceModel. A process is not a program to be executed. It is a
speci�cation of the ways a client may interact with a service. An atomic process
is a description of a service that expects one (possibly complex) message and
returns one (possibly complex) message in response. A composite process is one
that maintains some state; each message the client sends advances it through
the process[21].

The processes can have any number of inputs (representing the information
needed for executing the process), any number of preconditions and any number
of e�ects. The e�ects can be divided in two groups: e�ects that generate infor-
mation as output or e�ects that generate a change in the world state. Input and
outputs are subclasses of the general class Parameter and the preconditions are
modeled as logical formulas. A extended description of the elements of a process
is shown in the next lines.

38

Chapter 4. Overview of languages

• Participants: A process requires two participants, TheClient who will
invoke the process and TheServer, who provides the service. If there are
others can be listed by using the property hasParticipant.

• Inputs and Outputs: Inputs and outputs specify the data transforma-
tion produced by the process. The inputs speci�es the data required for
the process and the outputs are the result. Inputs can come from the
user or from another processes. Both have their properties, hasInput and
ConditionalOutputs, subclasses of hasParameter.

• Preconditions and Results: It is the mandatory condition to execute
a process and the results are the changes that may perform the process.

• Conditioning outputs and e�ects: OWL-S does no assume that out-
puts and e�ects are the same for every execution of the process. OWL-S
provides the classes ConditionalOutput and ConditionalE�ect to associate
conditions to the outputs and the e�ects.

AtomicProcess

The atomic processes are directly invocable and have no subprocesses. Are exe-
cuted in a single step from the perspective of the service requester. Each atomic
process requires a grounding service.

SimpleProcess

Simple processes are not invocable and are not associated with a grounding
but they have single-step executions. Simple processes are used as elements of
abstraction. They can provide a view of some atomic processes or a simpli�ed
representation of some composite processes. The simple process is realizedBy
one atomic process or the simple process expandsTo a composite process.

CompositeProcess

Composite processes are decomposable into other (non-composite or compos-
ite) processes. These processes contain several �ow control units similar to the
traditional programming languages. As an example in the next lines are shown
the most common and only indicated the others. A CompositeProcess must
have a composedOf property by which is indicated the control structure of the
composite, using a ControlConstruct.

<owl:ObjectProperty rdf:ID="composedOf">

<rdfs:domain rdf:resource="#CompositeProcess"/>

<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="ControlConstruct">

</owl:Class>

39

4.4. Overview of OWL-S

Each control construct, in turn, is associated with an additional property
called components to indicate the nested control constructs from which it is
composed, and, in some cases, their ordering.

<owl:ObjectProperty rdf:ID="components">

<rdfs:domain rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

The OWL-S control constructs are: Sequence, Split, Split + Join, Choice,
Any-Order, Condition, If-Then-Else, Iterate, Repeat-While, and Repeat-Until.

Data�ow and parameter Bindings

Like in all processes sometimes a process needs to access to a parameter which
have to be collected from the output of another process. This is the typical
data�ow management. In a common programming language this situation is
managed by using di�erent variables as function arguments but in OWL this is
not possible. Using OWL you can only de�ne the inputs and outputs of processes
as properties with range restrictions representing the classes of allowed values,
independent of any context [21].

For solving this question we adopt the convention that the source of a datum
is identi�ed when the user of the datum is declared. If step 1 feeds step 3,
we specify this fact in the description of step 3 rather than the description of
step 1. We call this a consumer-pull convention, as opposed to a producer-push
alternative. We implement this convention by providing a notation for arbitrary
terms as the values of input or output parameters of a process step, plus a
notation for subterms denoting the output or input parameters of prior process
steps.

4.4.5 Grounding Service

The Grounding Service is the service for specifying the details of how to access
the service, a mapping from the abstract to the concrete description of this
service. The ServicePro�le and the ServiceModel are abstract representations,
the concrete representation is found in ServiceGrounding.

OWL-S does not provide any mechanism for de�ning messages between ser-
vices, only the input and output properties of the processes. The GroundingSer-
vice main objective is to convert the processes' inputs and outputs to con-
crete messages, and this is done by using WSDL. The relation between OWL-S
grounding service and WSDL is shown in the Figure 4.7 5. With this comple-
mentary use of OWL-S and WSDL it is combined the expressiveness of the OWL
ontology for services for de�ning processes and the reuse of WSDL.

5http://www.daml.org/services/owl-s/1.1/overview/

40

Chapter 4. Overview of languages

Figure 4.7: Relation Between OWL-S and WSDL

An OWL-S/WSDL grounding is based upon the following three correspon-
dences between OWL-S and WSDL.

1. An OWL-S atomic process corresponds to a WSDL (1.1) operation. Dif-
ferent types of operations are related to OWL-S processes as follows:

• An atomic process with both inputs and outputs corresponds to a
WSDL request-response operation.

• An atomic process with inputs, but no outputs, corresponds to a
WSDL one-way operation.

• An atomic process with outputs, but no inputs, corresponds to a
WSDL noti�cation operation.

• A composite process with both outputs and inputs, and with the
sending of outputs speci�ed as coming before the reception of inputs,
corresponds to WSDL's solicit-response operation.

2. The set of inputs and the set of outputs of an OWL-S atomic process each
correspond to WSDL's concept of message. More precisely, OWL-S inputs
correspond to the parts of an input message of a WSDL operation, and
OWL-S outputs correspond to the parts of an output message of a WSDL
operation.

3. The types (OWL classes) of the inputs and outputs of an OWL-S atomic
process correspond to WSDL's extensible notion of abstract type (and, as
such, may be used in WSDL speci�cations of message parts).

To construct an OWL-S/WSDL grounding one must �rst identify, in WSDL,
the messages and operations by which an atomic process may be accessed, and
then specify correspondences (1) - (3).

41

4.5. Other Languages

4.5 Other Languages

The Ontology Inference Layer OIL is a proposal for a web-based representation
and inference layer for ontologies, which combines the widely used modelling
primitives from frame-based languages with the formal semantics and reason-
ing services provided by description logics. It is compatible with RDF Schema
(RDF(S)), and includes a precise semantics for describing term meanings (and
thus also for describing implied information).

OIL presents a layered approach to a standard ontology language. Each
additional layer adds functionality and complexity to the previous layer. This is
done such that agents (humans or machines) who can only process a lower layer
can still partially understand ontologies that are expressed in any of the higher
layers.[25]

DAML is a language created by DARPA as an ontology and inference lan-
gauge based upon RDF. DAML takes RDF Schema a step further, by giving us
more in depth properties and classes. DAML allows one to be even more expres-
sive than with RDF Schema, and brings us back on track with our Semantic
Web discussion by providing some simple terms for creating inferences.[26]

4.6 Concluding Remarks

In this section we have seen three di�erent ontology languages and an exten-
sion for one of these languages. Every language has it purpose and �ts for some
determinate requirements and are more suitable for solving determinate prob-
lems. RDF(S) �ts better in simples cases, OWL is better to develop business
ontologies. Topic Maps �ts in the middle of both languages. With the OWL-S
extension we have seen a very powerful ontology language that o�ers tools not
only to describe data, also to describe web services and make accessible our
services to the information agents that are populating our networks.

42

Chapter 5

Comparative Evaluation of
Ontologies

In this chapter, the analysis of the three Web ontology languages is described.
We based the analysis in the framework speci�ed in Appendix B, a Semiotic
Quality Framework and the adaptations indicated also in this Appendix B.

5.1 RDF(S) Evaluation

In this section RDF(S) will be evaluated using the Semiotic Quality Framework
described in Appendix B. The original framework for evaluating languages is
[19] and modi�cation for the Domain Appropriateness is [35].

5.1.1 Domain Appropriateness

In this subsection we analyze if the language has enough expressiveness power
for representing the domain of our problem. RDF provides three main elements,
Subject or resource, a property of this resource and the object or value of the
property. With this main element within RDF you can specify classes, resources,
datatypes, range of the properties, subclasses and other similar constructs. In
order to analyze this appropriateness these perspectives will be used:

• Structural Perspective: RDF(S) provides the basic constructs needed
for representing the schema of the Invenio's database. In the schema we
need classes, attributes and relationships. Basic relationships can be added
to the classes using slots with an instance of the related class as datatype.
We can also specify inverse slots, the cardinality and some small restric-
tions on this slot. These are the basic constructs needed for modelling the
database, but in order to obtain more expressiveness in the corresponding
ontology more constructs are needed, like constraints or complex relation-
ships.

• Functional Perspective: RDF(S) is a description language and since for
describing data we do not need any kind of process, activities or trans-
formations therefore RDF(S) do not provides any kind of mechanism for
that. Moreover, this perspective represents the states and the transitions

5.1. RDF(S) Evaluation

between them. In our case, the database has not states or transitions,
hence it is not necessary to apply the analysis to this perspective.

• Behavioral Perspective: RDF(S) does not model the behavior of any
model, RDF(S) is used to give meaning to static data therefore RDF(S)
does not provides constructs for specifying states or transitions between
the states. Moreover, this perspective represents the states and the transi-
tions between them. In our case, the database has not states or transitions,
hence it is not necessary to apply the analysis to this perspective.

• Rule Perspective: Rule perspective is about the rules that we can create
with the language. RDF(S) does not provide these constructs, either any
kind of predicates for inferring rules. These constructs are useful in our
case. We have to access the data from one database in order to get quality
answers from the queries and if we specify certain kind of rules like "the
full name of one person is the composition of the �rst name and last name"
we will get better quality answers from our queries. This kind of rules can
not be represented within RDF(S).

• Object Perspective: RDF(S) o�ers some constructs related with ob-
jects. Objects are classes with attributes and processes and RDF(S) o�ers
mechanisms in order to create classes and attributes for these classes but
does not provide processes facilities. In our case RDF(S) is good enough
in this perspective because in our database we do not have any process
to implement but we have classes and attributes and we can represent it
within RDF(S).

• Communication Perspective: RDF(S) does not o�er any construct for
supporting the communication perspective. For supporting it should o�er
the possibility for representing the illocutionary context (hearer, speaker,
time location and circumstances). In the description of the data we will
know nothing about the hearer (who is using the data), the speaker (the
server) or other elements of the illocutionary context. For representing the
illocutionary force it is needed to represent the reasons and the goals of
the data. With RDF(S) we can not describe which are the goals or the
reasons of our data because it will be di�erent in di�erent contexts. We
can not have one representation for each execution of a query.

• Actor and Role Perspective: RDF(S) does not cover this perspective,
also in our case we do not need it. We can no specify any kind of actor or
role within RDF(S). In the Invenio case this is not a problem, we do not
have to represent any actor or role in the ontology, just model it.

5.1.2 Participant Knowledge Appropriateness

All the statements in the language models of the languages used by the partic-
ipants are part of the explicit knowledge of this participant. Underlying basis
should correspond to the way individuals perceive the reality. RDF(S) with

44

Chapter 5. Comparative Evaluation of Ontologies

Protégé gives enough facilities in order to satisfy the condition for this appro-
priateness. The database has been designed in RDF(S) by reproducing the same
schema of the database. The database model and the RDF(S) model have the
same classes and the same relationships. Concepts like class, relate two classes
or attributes are easily created within RDF(S) and Protégé.

The external representation of the participant knowledge appropriateness
represents how intuitive is the language in order to express the situation that
we are modeling. RDF(S) by itself does not o�er any facility to satisfy this
property but combined with Protégé it is possible to view the diagrams and
the hierarchy of the model. Even this it is necessary a basic knowledge about
RDF(S).

In our case this appropriateness it is not important. The solution for Inve-
nio will be an ontology to access the database. It is not required any RDF(S)
knowledge by the end user because it only will search at the database.

5.1.3 Knowledge Externalizability Appropriateness

This appropriateness indicates how relevant knowledge may be represented in
the modeling language. Also, the knowledge of the developer about the lan-
guage and his skill designing models will be key concepts in this appropriate-
ness. Within RDF(S) it is possible to model classes, attributes and the common
constructs. Within RDF(S) we have a great freedom for modelling everything,
for example OWL is de�ned using the RDF(S) but it does not o�ers the con-
structs needed for modelling a complex domain. For example, RDF(S) does not
o�er the possibility of create �rst order logic axioms, hence we can not create
logical rules for constraining determinate structures.

In the Invenio case it is a problem but a problem with limits since the solution
is limited to express the data from the databases using the schema provided or
extracted. The solution will be based in represent these models, therefore we do
not need maximum expressiveness from our language. We do not need maximum
expressiveness but more expressiveness than RDF(S) is needed. We will need
to create constraints in order to de�ne special kinds of relations like "neighbor"
and RDF(S) does not provide the tools needed for that.

5.1.4 Comprehensibility Appropriateness

This appropriateness describes that all the possible statements of the language
are understood by the participants, in other words, the participants know every-
thing of the language. This use to be di�cult in any language and RDF(S) is
not an exception but it is not di�cult read RDF(S) formatted data.

The underlying basis speci�es that the phenomena of the language should
be easily distinguished from each other. RDF(S) classes are identi�ed within
the code by rdfs:class, resources are identi�ed with rdfs:Resource, instances
with rdfs:type or properties with rdfs:Property, therefore the main elements
in RDF(S) are easily distinguished from each other. The number of the phenom-
ena is reasonable (the key concepts is a triples composed by resource, property

45

5.2. OWL Evaluation

and the value of the property) and RDF(S) is �exible in level of detail but
you have to specify all with the same constructs. We can separate the RDF(S)
concepts by dividing in di�erent ontologies or resources our problem and refer-
ence from our main ontology these concepts. Also RDF(S) provides expressive
economy for expressing just the things we want.

The external representation indicates that the symbol discrimination should
be easy. RDF(S) o�ers an easy way to see the di�erences between the symbols
of the languages providing di�erent constructs for each symbol. The external
language is consistent, every symbol represents one phenomenon, but di�erent
combinations of resources will produce inconsistencies in our model.

In RDF(S) it is possible to emphasize the important phenomena by adding
comments or the adequate properties and navigation it is not di�cult. Protégé
allow us to navigate easily among the structure in RDF(S) created. The structure
of the language is consistent enough. The language provides enough elements in
this appropriateness in order to satisfy the Invenio case requirements because in
this case it is not necessary a high level of comprehensibility of the participants.
The participants does not need to know every element of the language because
we are in a speci�c domain case study and all elements of the language are not
needed.

5.1.5 Technical Actor Appropriateness

For the technical actors is important that the language lends it self to automatic
reasoning. RDF(S) is a language for describing data and the main motivation for
describing this data is that a technical actor, for example an information agent,
be allowed to access the data and process it in an intelligent way. RDF(S) pro-
vides basic information for automatically reasoning, o�ers mainly descriptions
but not logical rules which can be used by information agents for reasoning
properly about the data.

The Invenio case need to achieve the maximum level of Technical Actor
Appropriateness. The main goal of this case is to provide the maximum amount
of information to the information agents in order to facilitate their automatic
reasoning and provide better answers to the queries of the Directory Service.
Therefore RDF(S) does not provide all the elements needed.

5.2 OWL Evaluation

In this section the Ontology Web Language will be evaluated using the Semiotic
Quality Framework. For the analysis we will use the Framework proposed by
[19] and modi�cation of the Domain Appropriateness proposed by [35].

5.2.1 Domain appropriateness

In this subsection we analyze if the language has enough expressiveness power
in order to represent the domain of our problem. OWL provides to the user
classes, datatype properties which represents the attributes of a determinate

46

Chapter 5. Comparative Evaluation of Ontologies

class, object properties which represents the relationships between two classes,
individuals which represent the instances of the classes previously de�ned, de-
scriptions for all the elements described, mapping between ontologies. These are
the facilities that OWL o�ers for design:

• Structural Perspective: OWL provides the necessary constructs for cre-
ating the structure we need. In our relational model extracted from the
databases and presented in Chapter 8 we mainly need classes and rela-
tionships between these classes. OWL provides these constructs with the
constructs for creating classes and object and datatype properties. Also,
we can specify easily with Protégé inverse relationships (which initially we
do not need) or disjoint classes (which we need it for giving more meaning
and make easier the task of the agent that will access to the data).

• Functional Perspective: OWL is a description language and since for
describing data we do not need any kind of process, activities or trans-
formations, OWL does not provide any kind of mechanism to do that.
Moreover, the functional perspective is referred to the process, activities
and transformations. In our case, a static database which does not imple-
ment any kind of process, activities or transformations because is used for
consulting information about people, not for transforming it. We do not
need to analyze this perspective.

• Behavioral Perspective: OWL does not model the behavior of any
model, OWL is used to give meaning to static data. Therefore OWL
does not provide constructs for specifying states or transitions between
the states. Moreover, this perspective represents the states and the transi-
tions between them. In our case, the database has not states or transitions,
hence it is not necessary to apply the analysis to this perspective.

• Rule Perspective: Rule perspective is about the rules that we can cre-
ate with the language. OWL provides constructs for creating �rst order
predicates in order to achieve the goal of put restrictions into the relation-
ships. Examples of these constructs are the existential quanti�er, universal
quanti�er, cardinality, logical and, logical and so forth. These constructs
are useful in our case. We have to access the data from one database in
order to get quality answers from the queries and if we specify certain kind
of rules like "the full name of one person is the composition of the �rst
name and last name" we will get better quality answers from our queries.
This kind of rules can be represented within OWL.

• Object Perspective: OWL o�ers some constructs related with objects.
Objects are classes with attributes and processes and OWL o�ers mecha-
nisms for creating classes and attributes for these classes (datatype prop-
erties) but does not provide processes facilities. In our case OWL is good
enough in this perspective because in our database we do not have any
process to implement but we have classes and attributes and we can rep-
resent it within OWL.

47

5.2. OWL Evaluation

• Communication Perspective: OWL does not o�er any construct for
supporting the communication perspective. For supporting it should o�er
the possibility for representing the illocutionary context (hearer, speaker,
time location and circumstances). In the description of the data we will
know nothing about the hearer (who is using the data), the speaker (the
server) or other elements of the illocutionary context. For representing the
illocutionary force it is needed to represent the reasons and the goals of the
data. With OWL we can not describe which are the goals or the reasons
of our data because it will be di�erent in di�erent contexts. We can not
have one representation for each execution of a query.

• Actor and Role Perspective: OWL does not cover this perspective, also
in our case we do not need it. The most similar to an actor perspective
can be the "client" class or something similar. We can add roles to this
"actor" by adding relationships and restrictions to these relationships, like
adding the "role" neighbour with restrictions in determinate relations. But
naturally OWL does not cover this perspective. In the Invenio case this
is not a problem, we do not have to represent any actor or role in the
ontology, just model it.

5.2.2 Participant Knowledge Appropriateness

All the statements in the language models of the languages used by the partic-
ipants are part of the explicit knowledge of this participant. Underlying basis
should correspond to the way individuals perceive the reality. OWL with Protégé
gives enough facilities in order to satisfy the condition for this appropriateness.
The database has been designed in OWL by reproducing the same schema of
the database. The database model and the OWL model have the same classes
and the same relationships. Concepts like class or attribute are easily created
within OWL and Protégé. Maybe the most di�cult is to understand that the
object properties are the relationships (it takes few minutes). Once you under-
stand these concepts and create correspondent classes and relationships are easy
to �gure how to extend these elements with more constraints. Protégé allows
the user to create easily restrictions with its editor, which enables the user to
navigate for all the classes and relations in order to create the restrictions with
precision.

The external representation of the participant knowledge appropriateness
represents how intuitive is the language for expressing the situation that we are
modeling. OWL for itself does not o�er any facility to satisfy this property but
combined with Protégé it is possible to view the diagrams and the hierarchy of
the model. Even this it is necessary a basic knowledge about OWL.

In our case this appropriateness it is not important. The solution for Invenio
will be an ontology to access the database. It is not required any OWL knowledge
by the end user because it only will search at the database.

48

Chapter 5. Comparative Evaluation of Ontologies

5.2.3 Knowledge Externalizability Appropriateness

This appropriateness indicates how relevant knowledge may be represented in
the modeling language. Also, the knowledge of the developer about the lan-
guage and his skill designing models will be key concepts in this appropriate-
ness. Within OWL it is possible to model classes, attributes and the common
constructs. It is obvious we can not model everything within OWL. OWL is de-
signed for describing data and it has three di�erent layers of complexity, OWL
Lite, OWL DL and OWL Full indicating that are things impossible to model
within OWL Lite. OWL Full o�ers more constructs for modelling but with no
computational guarantees[33]. This sentence implies that OWL can not model
everything because if we do not get any result from our model the model is
wrong.

In the Invenio case it is a problem but a problem with limits since the solution
is limited to express the data from the databases using the schema provided or
extracted. The solution will be based in represent these models, therefore we do
not need maximum expressiveness from our language. The constructs provided
for OWL are very good and can express the model extracted from the database
easily.

5.2.4 Comprehensibility Appropriateness

This appropriateness describes that all the possible statements of the language
are understood by the participants, in other words, the participants know every-
thing of the language. This use to be di�cult in any language and OWL is not
an exception but it is not di�cult read OWL formatted data.

The underlying basis speci�es that the phenomena of the language should
be easily distinguished from each other. OWL classes are identi�ed within the
code by owl:class, properties are identi�ed with owl:ObjectProperty and
restrictions with owl:Restriction, therefore the main elements in OWL are
easily distinguished from each other. The number of the phenomena is reasonable
(the key concepts are four) and OWL is �exible in level of detail since provides
three versions of OWL and the use of the phenomena is uniform. Also OWL
provides expressive economy to express just the things we want using one of the
three sublanguages.

The external representation indicates that the symbol discrimination should
be easy. OWL o�ers an easy way to see the di�erences between the symbols
of the languages providing di�erent constructs for each symbol. The external
language is consistent, every symbol represents one phenomenon, but di�erent
combinations of properties will produce inconsistencies in our model.

In OWL it is possible to emphasize the important phenomena by adding
comments or the adequate properties and navigation it is not di�cult. The
structure of the language is consistent enough. The language provides enough
elements in this appropriateness in order to satisfy the Invenio case requirements
because in this case it is not necessary a high level of comprehensibility of
the participants. The participants does not need to know every element of the

49

5.3. Topic Maps Evaluation

language because we are in a speci�c domain case study and all elements of the
language are not needed.

5.2.5 Technical Actor Appropriateness

For the technical actors it is important that the language lends it self to auto-
matic reasoning. OWL is a language for describing data and the main motiva-
tion to describe this data is that a technical actor, for example an information
agent, be allowed to access the data and process it in an intelligent way. OWL
achieves its main goal that is the technical actor appropriateness by allowing
the information agents to reason about what is described with OWL.

The Invenio case need to achieve the maximum level of Technical Actor
Appropriateness. The main goal of this case is to provide the maximum amount
of information to the information agents in order to facilitate their automatic
reasoning and provide better answers to the queries of the Directory Service.
Therefore OWL provides enough elements to satisfy this requirement.

5.3 Topic Maps Evaluation

In this section Topic Maps will be evaluated using the Semiotic Quality Frame-
work described in Appendix B. The original framework for evaluating languages
is [19] and modi�cation for the Domain Appropriateness is [35].

5.3.1 Domain Appropriateness

In this subsection we analyze if the language has enough expressiveness power for
representing the domain of our problem. Topic Maps contains several elements,
Topic Map, Topic, Association and so forth that will allow us to create complex
models specifying classes, attributes or relationships easily. In this section we are
going to see the quality of these elements within Topic Maps ontology language.
In order to analyze this appropriateness these perspectives are studied:

• Structural Perspective: Topic Maps provides classes (Topic Types),
relations between classes (Associations), attributes in Topic Types, Topics
which can be viewed as relevant cases of topic types, occurrences (links
to topics) or instances of these topics. These elements are enough for
representing the databases models in Topic Maps and also o�ers more
elements for specifying better expressiveness.

• Functional Perspective: Topic Maps is a language designed for describ-
ing data, not to process anything, therefore Topic Maps does not o�er any
element to manage processes, activities or transformation. The main goal
of Topic Maps is to represent information and to make this information
available. Moreover, this perspective represents the states and the transi-
tions between them. In our case, the database has not states or transitions,
hence it is not necessary to apply the analysis to this perspective.

50

Chapter 5. Comparative Evaluation of Ontologies

• Behavioral Perspective: Topic Maps objective is to give meaning to the
data not to model the behaviour of this data. Also the data represented
within Topic Maps does not have any transition or state, is statically data,
therefore Topic Maps does not provide any mechanism for modelling the
behaviour of the data. Moreover, this perspective represents the states and
the transitions between them. In our case, the database has not states or
transitions, hence it is not necessary to apply the analysis to this perspec-
tive.

• Rule Perspective: Rule perspective is about the rules we can create with
the language. Topic Maps does not provide these constructs, either any
kind of predicates for inferring rules.

Instead of o�er explicit mechanism for creating rules or de�ne logical predi-
cates, Topic Maps o�ers a more complex way for de�ning relations. Within
Topic Maps it is possible to de�ne more exactly the elements of one re-
lation, therefore we can obtain better accuracy with the answers of our
queries. These constructs are useful in our case. We have to access the
data from one database in order to get quality answers from the queries
and if we specify certain kind of rules like "the full name of one person is
the composition of the �rst name and last name" we will get better quality
answers from our queries. This kind of rules can not be represented within
Topic Maps but can be substituted for complex relationships.

• Object Perspective: Topic Maps o�ers some constructs related with
objects. Objects are classes with attributes and processes and Topic Maps
o�ers mechanisms for creating classes and attributes for these classes but
does not provide processes facilities.In our case Topic Maps is enough good
in this perspective because in our database we do not have any process
to implement but we have classes and attributes and we can represent it
within Topic Maps.

• Communication Perspective: Topic Maps does not o�er any construct
for supporting the communication perspective. For supporting it should
o�er the possibility for representing the illocutionary context (hearer,
speaker, time location and circumstances). In the description of the data
we will know nothing about the hearer (who is using the data), the speaker
(the server) or other elements of the illocutionary context. For representing
the illocutionary force it is needed to represent the reasons and the goals
of the data. With Topic Maps we can not describe which are the goals or
the reasons of our data because it will be di�erent in di�erent contexts.
We can not have one representation for each execution of a query.

• Actor and Role Perspective: Topic Maps does not cover this perspec-
tive, also in our case we do not need it. We can no specify any kind of
actor or role within Topic Maps. In the Invenio case this is not a problem,
we do not have to represent any actor or role in the ontology, just model
it.

51

5.3. Topic Maps Evaluation

5.3.2 Participant Knowledge Appropriateness

All the statements in the language models of the languages used by the par-
ticipants are part of the explicit knowledge of this participant. Underlying ba-
sis should correspond to the way individuals perceive the reality. Topic Maps
with Protégé does not give enough facilities in order to satisfy the condition
for this appropriateness. It is necessary to download the Topic Maps Tab from
http://www.techquila.com/tmtab/index.html and the latest version is 0.4. This
is an early version that should be improved in the next months, and then the
quality of this appropriateness will be improved. The database has been de-
signed in Topic Maps by reproducing the same schema of the database. The
database model and the Topic Maps model have the same classes and the same
relationships. Concepts like class, relate two classes or attributes are easily cre-
ated within Topic Maps and Protégé if we have a clear view about the main
Topic Maps concepts.

The external representation of the participant knowledge appropriateness
represents how intuitive is the language for expressing the situation that we are
modeling. Topic Maps for it does not o�er any facility in order to satisfy this
property but combined with Protégé it is possible to view the hierarchy of the
model. Even this it is necessary a basic knowledge about Topic Maps.

In our case this appropriateness is not important. The solution for Invenio
will be an ontology to access the database. It is not required any Topic Maps
knowledge by the end user because it only will search at the database.

5.3.3 Knowledge Externalizability Appropriateness

This appropriateness indicates how relevant knowledge may be represented in
the modelling language. Also, the knowledge of the developer about the lan-
guage and its skill designing models will be key concepts in this appropriateness.
Within Topic Maps it is possible to model classes, attributes and the common
structures. Also, Topic Maps o�ers more elements to detail relations and classes.

In the Invenio case we �nd useful the elements o�ered by Topic Maps for
creating relations, Topics, Topic Types, Occurrences and so forth and these
elements will allows us to build a good model from the database also specifying
complex relations.

5.3.4 Comprehensibility Appropriateness

This appropriateness describes that all the possible statements of the language
are understood by the participants, in other words, the participants know every-
thing of the language. This use to be di�cult in any language and Topic Maps
is not an exception but it is not di�cult read Topic Maps formatted data.

The underlying basis speci�es that the phenomena of the language should
be easily distinguished from each other. The Topic Maps elements are eas-
ily identi�ed from each other due to their speci�cation: <topicMap> topics,

associations...</topicMap>, <association> ...</association>, all ele-
ments start with <name> and end with </name> and inside of each element

52

Chapter 5. Comparative Evaluation of Ontologies

can be another elements identi�ed with the same method.
The number of the phenomena is reasonable: the main concepts are Topic

Map, Topic Type, Topic, Association and Occurrences. Also we can merge di�er-
ent Topic Maps from other speci�cations. Also Topic Maps provides expressive
economy for expressing just the things we want.

The external representation indicates that the symbol discrimination should
be easy. Topic Maps o�ers an easy way to see the di�erences between the symbols
of the languages providing di�erent constructs for each symbol. The external
language is consistent, every symbol represents one phenomenon, but di�erent
combinations of resources will produce inconsistencies in our model.

In Topic Maps it is possible to emphasize the important phenomena by
adding comments or the adequate properties and navigation it is not di�cult.
Protégé allow us to navigate easily among the structure in Topic Maps created.

The structure of the language is consistent enough. The language provides
enough elements in this appropriateness in order to satisfy the Invenio case
requirements because in this case it is not necessary a high level of compre-
hensibility of the participants. The participants does not need to know every
element of the language because we are in a speci�c domain case study and all
elements of the language are not needed.

5.3.5 Technical Actor Appropriateness

For the technical actors is important that the language lends it self to automatic
reasoning. Topic Maps is a language for describing data and the main motivation
for describing this data is that a technical actor, for example an information
agent, be allowed to access the data and process it in an intelligent way. Topic
Maps provides an e�cient way of indexing and formatting data which will allow
the technical actors to reason with e�ciency about the data.

The Invenio case need to achieve the maximum level of Technical Actor
Appropriateness. The main goal of this case is to provide the maximum amount
of information to the information agents in order to facilitate their automatic
reasoning and provide better answers to the queries of the Directory Service.
Therefore Topic Maps provides enough elements to satisfy this requirement.

5.4 OWL-S Analysis

In this section the Ontology Web Language for Services OWL-S will be eval-
uated using the Semiotic Quality Framework. For the analysis we will use the
Framework proposed by [19] and modi�cation of the Domain Appropriateness
proposed by [35].

5.4.1 Domain Appropriateness

In this subsection we analyze if the language has enough expressiveness power in
order to represent the domain of our problem. OWL-S is an ontology for services
created with OWL. Therefore OWL-S provides the same features than OWL and

53

5.4. OWL-S Analysis

these features are classes, datatype properties which represents the attributes of
a determinate class, object properties which represents the relationships between
two classes, individuals which represent the instances of the classes previously
de�ned, descriptions for all the elements described, mapping between ontologies.
Also, OWL-S adds the extension for managing services and processes. These are
the facilities that OWL-S o�ers for designing:

• Structural Perspective: OWL-S provides the same necessary constructs
for creating the structure that we need as OWL. In our relational model
extracted from the databases and presented in Chapter 8 we mainly need
classes and relationships between these classes and now, with OWL-S we
can add processes. OWL-S provides these constructs with the constructs
for creating classes and object and datatype properties. Also, we can spec-
ify easily with Protégé inverse relationships (which initially we do not
need) or disjoint classes (which we need it for giving more meaning and
make easier the task of the agent that will access to the data) or de�ne
processes and their parameters.

• Functional Perspective: As we said in the previous evaluation of OWL,
OWL is a description language and to describe data we do not need any
kind of process, activities or transformations. Therefore OWL does not
provide any kind of mechanism for that. Moreover, the functional per-
spective is referred to the process, activities and transformations. But with
OWL-S is provided an extension which allows the user to de�ne services,
publish them and access to these services by other services. In our case, a
static database which does not implement any kind of process, activities or
transformations because is used for consulting information about people,
not for transforming it, we do not need to analyze this perspective. But
if the owner of the database, for example wants to provide a service for
accessing to certain information of the database OWL-S will provide the
necessary constructs for accessing this information.

• Behavioral Perspective: As we said in the previous evaluation OWL
does not model the behavior of any model, OWL is used to give meaning
to static data therefore OWL does not provide constructs for specifying
states or transitions between the states. Moreover, this perspective repre-
sents the states and the transitions between them. But one of the OWL-S
motivating task is to provide automatic Web service execution and mon-
itoring but it is still is project, the main motivating task are web service
discovery, invocation and composition. In our case, the database has not
states or transitions, hence it is not necessary to apply the analysis to this
perspective.

• Rule Perspective: Rule perspective is about the rules that we can create
with the language. OWL provides constructs for creating �rst order pred-
icates in order to achieve the goal of put restrictions into the relationships
therefore OWL-S provides the same constructs as OWL because it is just

54

Chapter 5. Comparative Evaluation of Ontologies

an ontology based on OWL. Examples of these constructs are the existen-
tial quanti�er, universal quanti�er, cardinality, logical and, logical and so
forth. These constructs are useful in our case. We have to access the data
from one database in order to get quality answers from the queries and
if we specify certain kind of rules like "the full name of one person is the
composition of the �rst name and last name" we will get better quality
answers from our queries. This kind of rules can be represented within
OWL and OWL-S.

• Object Perspective: OWL o�ers some constructs related with objects
and OWL-S extends OWL to provide more object constructs. Objects
are classes with attributes and processes and OWL o�ers mechanisms for
creating classes and attributes for these classes (datatype properties) and
OWL-S provides the constructs to create processes and de�ne them. In our
case OWL is enough good in this perspective because in our database we
do not have any process to implement but we have classes and attributes
and we can represent it within OWL. If we want to extend the possibilities
of the database we can use OWL-S to provide di�erent services accessible
from Internet, for example.

• Communication Perspective: OWL-S as an extension of OWL has
the same problems but in this perspective can solve some of them. With
OWL-S does support some of the characteristics of the communication
perspective. It o�ers elements for describing part of the illocutionary con-
text (hearer, speaker, time location and circumstances). With OWL-S we
can represent the hearer (who is using the data), the speaker (the server)
but not the other elements of the illocutionary context. For representing
the illocutionary force it is needed to represent the reasons and the goals
of the data. With OWL-S we can describe which are the goals because
are the outputs of the services (not always) but we can not describe the
reasons of our data because it will be di�erent in di�erent contexts. We
can not have one representation for each execution of a query.

• Actor and Role Perspective: OWL does not cover this perspective, also
in our case we do not need it. OWL-S does not extend this perspective. The
most similar to an actor perspective can be the "client" class or something
similar. We can add roles to this "actor" by adding relationships and
restrictions to these relationships, like adding the "role" neighbor with
restrictions in determinate relations. But naturally OWL does not cover
this perspective. In the Invenio case this is not a problem, we do not have
to represent any actor or role in the ontology, just model it.

5.4.2 Participant Knowledge appropriateness

All the statements in the language models of the languages used by the partic-
ipants are part of the explicit knowledge of this participant. Underlying basis
should correspond to the way individuals perceive the reality. OWL with Protégé
gives enough facilities in order to satisfy the condition for this appropriateness

55

5.4. OWL-S Analysis

and also there is a plug-in for creating Semantic Web Services with OWL-S.
The database has been designed in OWL by reproducing the same schema of
the database but now there is no service added to the databases because it is
not in the scope of the problem. The database model and the OWL model have
the same classes and the same relationships. Concepts like class or attribute are
easily created within OWL and Protégé. The modeling process in OWL-S and
Protégé is the same as with OWL and Protégé. This is due to the OWL-S plug-
in because for using the plugging �rst is mandatory to create an OWL project
and later con�gure Protégé for using the plugging. The model of the database
must be created with the OWL plugging �rst. Then, the pros and cons analyzed
before for OWL are present in this analysis of OWL-S. Maybe the most di�cult
is to understand that the object properties are the relationships (it takes few
minutes). Once you understand these concepts and create correspondent classes
and relationships are easy to �gure how to extend these elements with more
constraints. Protégé allows the user to create easily restrictions with its editor,
which enables the user to navigate for all the classes and relations in order to
create the restrictions with precision.

The external representation of the participant knowledge appropriateness
represents how intuitive is the language for expressing the situation that we are
modeling. The external representation is the same for OWL-S than for OWL
because we use the same tool for modelling and the language is basically the
same with a new plug-in. OWL for itself does not o�er any facility to satisfy this
property but combined with Protégé it is possible to view the diagrams and the
hierarchy of the model. Even this it is necessary a basic knowledge about OWL.
In our case this appropriateness it is not important. The solution for Invenio will
be an ontology to access the database. It is not required any OWL-S knowledge
by the end user because it only will search at the database.

5.4.3 Knowledge Externalizability Appropriateness

This appropriateness indicates how relevant knowledge may be represented in
the modeling language. Also, the knowledge of the developer about the language
and his skills designing models will be key concepts in this appropriateness.
Within OWL it is possible to model classes, attributes and with the OWL-
S ontology it is possible to model processes. OWL is designed for describing
data and it has three di�erent layers of complexity, OWL Lite, OWL DL and
OWL Full. With OWL-S we have the same layers and the extra ontology for
modelling services. Then, we have the same restrictions as in OWL. OWL Full
o�ers more constructs for modelling but with no computational guarantees [33].
This sentence implies that OWL can not model everything because if we do not
get any result from our model the model is wrong. Therefore, OWL-S as an
extension of OWL has the same problems.

In the Invenio case it is a problem but a problem with limits since the solution
is limited to express the data from the databases using the schema provided or
extracted. The solution will be based in represent these models, therefore we do
not need maximum expressiveness from our language. The constructs provided

56

Chapter 5. Comparative Evaluation of Ontologies

for OWL and OWL-S are very good and can express the model extracted from
the database easily and also we can add services.

5.4.4 Comprehensibility Appropriateness

This appropriateness describes that all the possible statements of the language
are understood by the participants, in other words, the participants know every-
thing of the language. We can apply the analysis of OWL to OWL-S because
OWL-S is just a new ontology based on OWL. This use to be di�cult in any
language and OWL-S is not an exception but it is not di�cult read OWL-S
formatted data.

The underlying basis speci�es that the phenomena of the language should
be easily distinguished from each other. OWL-S classes are identi�ed within
the code by owl:class, properties are identi�ed with owl:ObjectProperty

and restrictions with owl:Restriction, therefore the main elements in OWL-
S use the same classes as OWL and they are easily distinguished from
each other. The elements of the processes are also easily distinguished,
for example the input parameters process:Input or the Grounding service
grounding:WsdlAtomicProcessGrounding. The number of the phenomena is
reasonable (the key concepts are four) and OWL is �exible in level of detail
since provides three versions of OWL and the use of the phenomena is uniform.
Also OWL provides expressive economy to express just the things we want using
one of the three sublanguages. As an extension of OWL, OWL-S inherits all its
characteristics.

The external representation indicates that the symbol discrimination should
be easy. OWL-S o�ers the same easy way to see the di�erences between the sym-
bols of the languages than OWL. OWL-S provides di�erent constructs for each
symbol. The external language is consistent, every symbol represents one phe-
nomenon, but di�erent combinations of properties will produce inconsistencies
in our model.

In OWL-S it is possible to emphasize the important phenomena by adding
comments or adequate properties and navigation is not di�cult. The structure
of the language is consistent enough. The language provides enough elements in
this appropriateness in order to satisfy the Invenio case requirements because in
this case it is not necessary a high level of comprehensibility of the participants.
The participants do not need to know every element of the language because
we are in a speci�c domain case study and all elements of the language are not
needed.

5.4.5 Technical Actor Appropriateness

For the technical actors is important that the language lends it self to automatic
reasoning. OWL-S is a language for describing processes and OWL is a language
for describing data. The main motivation for describing this data is that a
technical actor, for example an information agent, be allowed to access the data
and process it in an intelligent way.

57

5.5. Concluding Remarks

OWL-S and OWL achieves their main goal that is the technical actor appro-
priateness by allowing the information agents to reason about what is described
with OWL-S and OWL (processes and data). The Invenio case needs to achieve
the maximum level of Technical Actor Appropriateness. The main goal of this
case is to provide the maximum amount of information to the information agents
in order to facilitate their automatic reasoning and provide better answers to the
queries of the Directory Service. Therefore OWL-S provides enough elements to
satisfy this requirement.

We have seen in the analysis of OWL-S that it is an extension of OWL for
processes. It fully covers the Functional, Behavioral and Object perspectives of
the Domain Appropriateness and OWL did not cover fully these perspectives,
just some cases. Also, OWL-S improves some characteristics of OWL as we can
see in the other Appropriateness. It covers better the Participant Knowledge
Appropriateness due to the knowledge of processes is easy to understand to one
developer and also it is available a plugging of OWL-S for Protégé. The other
appropriateness's are not improved or worsen due to OWL-S is just an extension
of OWL to �x some of the lacks of a description language, but it still remains
some of the problems found before.

5.5 Concluding Remarks

In this section we have evaluated the three ontology languages described in
Chapter 4, RDF(S), OWL, OWL-S and Topic Maps. We have presented the
advantages and disadvantages of each languages and we have arrived to the
conclusion that in their basic conception all of them provides the same con-
structs. The main di�erence between them is the purpose of each language.
RDF(S) due to that does not provide elements for creating restrictions to the
relationships has the lowest expressiveness of the languages analyzed. OWL pro-
vides the best expressiveness by adding �rst order predicates to the restriction
and Topic Maps is a mid term between OWL and RDF(S) due to Topic Maps
has more elements for specifying relations between classes but does not provide
�rst order predicates like OWL and is more di�cult to understand than the
other languages.

We have also seen the requirements needed in order to solve the Invenio Case.
Combining the results of the analysis of the languages and the requirements
needed for representing the databases we have arrived to the conclusion that
the most appropriated language is OWL due to that it gets the highest marks
for satisfying the case in the �nal comparison of weights. OWL-S is a good
extension of OWL but it is not needed in this case. We the company considers
to upgrade the system for o�ering this service, OWL-S will be the best election.

58

Chapter 6

Comparison of languages

In this chapter, we are going to compare the three Web ontology languages and
the OWL-S extension described in the Chapter 4. In the Chapter 5 we have the
analysis of these languages and the problem proposed by Invenio. This chapter
will show the comparison of all elements described.

6.1 Comparison of the languages

In order to make the �nal comparison of the languages a weighted classi�cation
has been used. This classi�cation is based in [12] and the weights assigned to
the elements of the Semiotic Quality Framework are the following:

Let CF be a classi�cation framework such that CF has a �xed set Ç of
categories ç, where Ç = ç1, ç2, ç3, ç4, ç5 and ç Ç, where ç is a quadruple
<id, descriptor, C, cw>, id is the name of the category, descriptor is a natural
language description, C is a set of selection criteria c, and cw de�nes a
function of S that return 0, 1, or 2 as coverage weight, where S is a set of
satis�ed elements c in the selection criteria C of each Ç. One modi�cation has
been done in this criteria. The most important for a language is the Domain
Appropriateness due to the language has to proportionate a solution to a
determinate problem into a domain, hence the value of this appropriateness has
been increased and now the range goes from 0 to 6 depending on the number
of perspectives covered for the language. The categories are as follows.

ç1: Domain Appropriateness can be ç1c1) the language covers the struc-
tural perspective, ç1c2) the language covers the Functional perspective, ç1c3)
the language covers the Behavioral perspective, ç1c4) the language covers the
Rule perspective, ç1c5) the language covers the Object perspective, ç1c6) the
language covers the Communication perspective, ç1c7) the language covers the
Actor and Role perspective. The weight is calculated by the next function where
n=1 ç1çi satis�es the perspective or 0 if it not.

cw1(S1) =
7∑

k=1

n

ç2: Participant Knowledge Appropriateness can be ç2c1) the language covers

6.1. Comparison of the languages

fully this appropriateness, i.e. the language covers the underlying basis and the
external representation, ç2c2) the language covers partially the underlying basis
and the external representation of this appropriateness, ç2c3) the language does
not cover this appropriateness.

cw1(S1) =

0 if ç2c3
1 if ç2c1
2 if ç2c2

ç3: Participant Knowledge Externalizability Appropriateness can be ç3c1) the
language covers fully this appropriateness, i.e. the language covers the underly-
ing basis and the external representation, ç3c2) the language covers partially the
underlying basis and the external representation of this appropriateness, ç3c3)
the language does not cover this appropriateness.

cw1(S1) =

0 if ç3c3
1 if ç3c1
2 if ç3c2

ç4: Participant Knowledge Comprehensibility Appropriateness can be ç4c1)
the language covers fully this appropriateness, i.e. the language covers the under-
lying basis and the external representation, ç4c2) the language covers partially
the underlying basis and the external representation of this appropriateness,
ç4c3) the language does not cover this appropriateness.

cw1(S1) =

0 if ç4c3
1 if ç4c1
2 if ç4c2

ç5: Technical Actor Appropriateness can be ç5c1) the language covers fully
this appropriateness, i.e. the language covers the underlying basis and the ex-
ternal representation, ç5c2) the language covers partially the underlying basis
and the external representation of this appropriateness, ç5c3) the language does
not cover this appropriateness.

cw1(S1) =

0 if ç5c3
1 if ç5c1
2 if ç5c2

In the tables 6.1, 6.2, 6.3 and 6.4 the comparison of the three languages is
presented:

60

Chapter 6. Comparison of languages

Domain
Appropri-
ateness

Participant
Knowledge
Appr.

Knowledge
Externaliz-
ability
appr.

Comprehensi-
bility
appr.

Technical
Actor appr.

RDF(S) RDF(S)
covers
structural
perspective
and object
perspective
is partially
covered.
Does not
cover rule,
behav-
ioural,
functional,
actor and
role per-
spectives

Appr.
dependent
on the
designer
experience.
RDF(S)
with
Protege
are
intuitive
and covers
the
external
representa-
tion.

Domain
Dependent.
Posibility of
model de-
terminated
situations.

RDF(S)
elements
are easily
distin-
guished.
The
number of
the
phenomena
is
reasonable.
The
structure of
RDF(S) is
partially
consistent.

RDF(S)
covers
partially
this
perspective.
Provides
basic
elements
for
automatic
reasoning.

Weight 2 1 1 1 1

Table 6.1: RDF(S) Analysis

In the Table 6.1 we can see the main features provided by RDF(S) by af-
ter analysing the language using the Semiotic Quality Framework. The Table
shows that RDF(S) provides the basic elements in order to satisfy the Domain
Appropriateness requirements, because it covers the Structural Perspective fully
and partially the Object Perspective and gets a weight of 2. The other appropri-
ateness are covered by RDF(S) only providing the basic requirements of these
appropriateness and therefore RDF(S) have the same weight.

61

6.1. Comparison of the languages

Domain
Appropri-
ateness

Participant
Knowledge
Appr.

Knowledge
Externaliz-
ability
appr.

Comprehensi-
bility
appr.

Technical
Actor appr.

Web
Ontology
Language

OWL
covers
structural
and rule
perspec-
tives.
Object
perspective
is partially
covered.
Does not
cover be-
havioural,
functional,
communi-
cation actor
and role
perspec-
tives

Dependent
on the
designer
experience.
The
phenomena
are easily
distin-
guished in
OWL and
Protege

Domain
dependent.
Posibility of
model main
databases
concepts.

OWL
elements
are easily
distin-
guished.
The
number of
the
phenomena
is
reasonable.
Symbol dis-
crimination
is not fully
covered.
The
structure of
owl is
consistent

OWL
covers this
perspective.
It is
designed for
automatic
reasoning.

Weight 3 1 1 1 2

Table 6.2: Web Ontology Languages Analysis

In the Table 6.2 we can see the main features provided by OWL by after
analysing the language using the Semiotic Quality Framework. The Table shows
that OWL provides the basic elements in order to satisfy the Domain Appro-
priateness requirements, because it covers the Structural Perspective and Rule
Perspective fully and partially the Object Perspective and gets a weight of 3. The
Technical Actor Appropriateness is fully covered because OWL is designed to
support this appropriateness and gets a weight of 3. The other appropriateness
are covered by OWL only providing the basic requirements of these appropri-
ateness and because of that OWL gets the same weight in these sections.

62

Chapter 6. Comparison of languages

Domain
Appropri-
ateness

Participant
Knowledge
Appr.

Knowledge
Externaliz-
ability
appr.

Comprehensi-
bility
appr.

Technical
Actor appr.

Topic Maps Topic
Maps
covers
structural
perspective
an
partially
Object
perspec-
tive. Does
not cover
Functional,
Behav-
ioural,
Rule,
Object,
Communi-
cation and
actor and
role per-
spective.

Appr
dependent
on the
developer
experience.
In combi-
nation
with
Protege is
not enough
intuitive.

Domain
dependent.

Topic Maps
diferenti-
ates each
symbol
from
others. The
number of
the
phenomena
is
reasonable,
but less
reasonable
than OWL
or RDF(S).
The
structure is
partially
consistent.
Not enough
expressive
economy.
The
structure is
consistent.

Topic Maps
covers this
appr. It s
designed to
facilitate
automatic
reasoning.

Weight 2 1 1 1 2

Table 6.3: Topic Maps Analysis

In the Table 6.3 we can see the main features provided by Topic Maps by after
analysing the language using the Semiotic Quality Framework. The Table shows
that Topic Maps provides the basic elements in order to satisfy the Domain
Appropriateness requirements, because it covers the Structural Perspective fully
and partially the Object Perspective and gets a weight of 2. Topic Maps also
covers Technical Actor Appropriateness because it provides more elements to
detail data and facilitate the automatic reasoning by the information agents
and gets a weight of 2. The other appropriateness are covered by Topic Maps
only providing the basic requirements of these appropriateness.

63

6.1. Comparison of the languages

Domain
Appropri-
ateness

Participant
Knowledge
Appr.

Knowledge
Externaliz-
ability
appr.

Comprehensi-
bility
appr.

Actor and
Role appr.

Web
Ontology
Language
for
Services

OWL-S
covers fully
structural,
functional,
rule and
object per-
spectives. It
does not
cover com-
munication,
behavioral
and actor
and role
perspec-
tives.

Dependent
on the
designer
experience.
The phe-
nomena
are easily
distin-
guished in
OWL-S
and
Protege

Domain
dependent.
Posibility of
model main
databases
concepts.
OWL-S
adds the
possibility
of add
processes.

OWL-S
elements
are easily
distin-
guished.
The
number of
the
phenomena
is
reasonable.
Symbol dis-
crimination
is not fully
covered.
The
structure of
owl is
consistent

OWL-S
covers this
perspective.
It is
designed for
automatic
reasoning.

Weight 4 1 2 1 2

Table 6.4: Web Ontology Languages Analysis - Services

In the Table 6.4 we can see the main features provided by OWL by after
analysing the language using the Semiotic Quality Framework. The Table shows
that OWL provides the basic elements in order to satisfy the Domain Appro-
priateness requirements, because it covers the Structural Perspective and Rule
Perspective fully and partially the Object Perspective and gets a weight of 3. The
Technical Actor Appropriateness is fully covered because OWL is designed to
support this appropriateness and gets a weight of 3. The other appropriateness
are covered by OWL only providing the basic requirements of these appropri-
ateness and because of that OWL gets the same weight in these sections.

6.1.1 Final comparison

After this comparison of languages it is possible to compare with the previous
requirements of Invenio showed in Table 6.5 by adding the weight needed for
each language appropriateness.

64

Chapter 6. Comparison of languages

Domain
Appr.

Participant
Knowledge
Appr.

Knowledge
Externaliz-
ability
Appr.

Comprehensi-
bility
Appr.

Technical
Actor
Appr.

Invenio
Case

In the case
full
structural
perspective
is needed
and
partially
Rule
perspective.
Functional,
Behavioral,
Communi-
cation and
Actor and
Role are
not needed

High re-
quirement.
A tool with
enough
functionali-
ties is
needed.

Partially
needed.
The reality
are two
databases
which have
to been
modelled.

Medium/high
needed.
Phenomena
should be
clear for a
better un-
derstanding
of the par-
ticipants.

Highly
needed.
The case is
based on
automatic
reasoning.

Importance High High Medium Medium High

Table 6.5: Invenio requirements

Domain
Appropri-
ateness

Participant
Knowledge
Appr.

Knowledge
Externaliz-
ability
appr.

Comprehensi-
bility
appr.

Technical
Actor appr.

Weight 3 2 1 1 2

Table 6.6: Invenio Requirements

The weights assigned to the Table 6.6 are based in the requirements speci-
�ed in table 6.5. In this table the requirements needed are speci�ed in natural
languages. We have translated these requirements to a more proper representa-
tion in order to make a comparison with results obtained from the languages
analysis. The �nal comparison of the languages with the Invenio requirements
is shown in the Table 6.7.

65

6.2. Concluding Remarks

Domain
Appr.

Participant
Knowl-
edge
Appr.

Knowledge
External-
izability
appr.

Comprehen-
sibility
appr.

Actor
and Role
appr.

Total
Weight

RDF(S) 2x3 1x2 1x1 1x1 1x2 12
OWL 3x3 1x2 1x1 1x1 2x2 17
OWL-S 5x3 1x2 2x1 1x1 2x2 19
Topic
Maps

2x3 1x2 1x1 1x1 2x2 14

Table 6.7: Comparison of the Web ontology languages and the Invenio Require-
ments

In Table 6.7 we have added a new column where it is speci�ed the �nal weight
of the languages. We have multiplied the results obtained for each language by
the weight of the appropriateness given in the Table 6.5. With this new column
and the new weights added we can distinguish more easily which is the most
adequate language.

We can see in this �nal table that is the most appropriated language in our
case, is the Web Ontology Language for Services, OWL-S. This is due to the
elements that it provides for creating �rst order predicates and constructs for
model services. This service feature it is no fully needed in a database but it
adds more functionality to the solution of our problem. The other languages do
not o�er this feature because RDF(S) is not designed to o�er these facilities
and Topic Maps is oriented to create better quality relationships between its
elements but does not provide enough elements for constraining these relations.

The di�erence between OWL-S and OWL is really big because the Invenio
case is based in a static representation of the data. It is not really needed to
add services or processes to the solution of the problem but it can be a good
improvement.

6.2 Concluding Remarks

The comparison of the previous languages has been done and the conclusions
are that OWL is the most suitable language to solve our case due to the In-
venio's requirements. If we want to extend the requirements to make available
the service then OWL-S will be the best alternative in our case. The following
sections will contain the practical approach to the problem where the languages
are analysed. OWL-S is not included in this analysis due to a service provider
is not included in the company requirements.

66

Part III

Practical Approach to the Case

Study

67

Chapter 7

Conversion Parsers

In this chapter, we are going to explain the development of three conversion
parser. These three conversion parsers have been created due to the necessity
of translating the format of the databases to another representation that the
information agents will be able to understand. This new format is the format
the ontologies have in the three Web ontology languages selected. Then it is
necessary to develop three parsers, one for RDF(S), one for OWL and the last
one for translating the databases to a Topic Maps representation.

7.1 The conversion parser

As it is explained in Chapter 3 we have two relational databases and we want to
transform them to an ontological representation. We will do this by developing
three conversion parsers. We will transform the data to this new representation
and our tools for managing ontologies will access to the data in the new format.
This data will be semantically enriched and an information agent will be able
to process it.

Before start the development of the parsers we have been looking at similar
projects. We can see in [3] and [34] there are several ways for converting data
stored in relational databases to semantically enriched representations. These
two articles explain how to convert data stored in relational databases to a
representation in RDF.

7.1.1 Conversion Rules

For converting our data stored in relational databases we have been following
several rules. This rules are useful for mapping data in di�erent representation.
Our rules for translating the database to an ontological representation have been
based on the relational schema designed. This schema was extracted from the
databases, directly from the data in one case and from the DTD speci�cation
from the other case. Once we had the initial schemas we translated them to a
relational representation. This makes a clear di�erence between our approach
and the other cases. We had freedom for modelling the initial schema from we
will extract the ontology.

For creating the conversion rules we looked at the conversion rules speci-

7.2. Structure of the Parsers

�ed in [34]. In this approach rules are de�ned more concretely but there is no
description for �elds that are not in 1NF or more complex situations. In this
article is explained the mapping process between a database and a ontology:

• Capture the information from a relational schema.

• Analyse the obtained information to construct ontological entities. Rules
to translate from one representation to another can be created. Recom-
mendations for creating this rules are speci�ed below.

• Create the ontology ("schema translation") by using the rules speci�ed
before. With this translation all ontological entities will be created.

• Evaluate, validate and re�ne the ontology.

• Form a knowledge base ("data migration").

These steps have been followed in our research process but adding some
di�erentiations. Once we obtained the information from the relational schema
(we have created this schema) we proceeded to construct the ontology. The rules
for creating the new ontology are based in the following recommendations:

• Each class in the database is an entity in the ontology.

• Each relationship in the database is a relationship in the ontology.

• M:N relationships in the database require a special treatment.

• We do not have primary and foreign keys in the ontology.

If the relational schema has not enough expressiveness power (with di�er-
ent representations this may happen) a extension of the ontology following the
developer criteria will be made. This will happen if we have to deal with asso-
ciative relationships. We will have to model in an ontology three or more classes
with an M:N relationship and in the ontology may appear loops. We will have
to model our new ontology following the speci�cations of the problem and the
schema of the database.

There is available Database to RDF, D2R MAP [10]. D2R MAP is a declar-
ative language to describe mappings between relational database schemata and
OWL/RDFS ontologies. The mappings can be used by a D2R processor to ex-
port data from a relational database into RDF. The problem with this language
is that we still have problems with not normalized data and our databases are
not normalized.

7.2 Structure of the Parsers

The three parsers have a similar structure because they obtain the data from the
same source. Therefore, the method for reading the data from these databases
is the same for all the three parsers. These parsers read each line of the �les and

70

Chapter 7. Conversion Parsers

then they process the. The database containing the directory service for Sweden
has a XML format and each �eld of the database is clearly de�ned. The di�erent
elements of the database are easily identi�able and they are easy to process. Due
to that, every time a line from the �le is read is possible to know which �eld
of the database are we reading and it is not di�cult to transform it into the
ontology representation. It is also important not to forget the peculiarities of
each language. RFD(S) and OWL are quite similar meanwhile Topic Maps has
some particularities in the way of organizing the data and that makes the parser
developing more di�cult.

In the three languages, RDF(S), OWL and Topic Maps the data is divided
in two di�erent parts. In the �rst part the data types, attributes and the �elds
of the database are de�ned and in the other part of the Web ontology language
�le the data is represented. In the �les formatted with RDF(S) and OWL the
de�nitions of the attributes and the �elds of the database are located at the
beginning of the �le and the data is stored at the end of the �le. The data only
begins when the de�nitions are �nished. In the �le with XTM format this is
di�erent. Are two di�erent parts inside the �le. The de�nitions of the classes
can be in any place of the �le, for example between the data of two instances,
but it is possible to organize the �le manually and put all the de�nitions at the
beginning of the �le. The relationships can be placed in any place too. They
use their identi�er to create the relationship. Within OWL and RDF(S) the
relationships are indicated inside the class.

7.3 Common concepts

We analysed the data stored in the databases and from this analysis we extracted
the particular format of both databases. The way for reading the original data
is the same. Therefore we developed the same way for reading the data for all
conversion parsers and developed a speci�c output format for each one. The
time needed to develop the �rst conversion parser was higher than the time
needed for developing the others.

The parser for converting one database to an ontological format consists in a
loop that reads every line of the database, that is, the XML �les and it process
them. The �elds of the databases are clearly identi�ed by the structure of the
XML �le. One example of this database is the next one:

<Publications>

<Comment>TelAdress initial</Comment>

<NewFile>TeleAdrALLJNN820040131112601.xml</NewFile>

<Publication>

<Id>12457</Id>

<Terminate>no</Terminate>

<Placement>

<RegionCode>8</RegionCode>

<RegionName>Gotland</RegionName>

<DirectoryArea>0498</DirectoryArea>

71

7.4. Di�erences between conversion parsers

<SectionCode>1</SectionCode>

<ClassifiedCode>0</ClassifiedCode>

<Internet>yes</Internet>

</Placement>

<Row>

<Number>1</Number>

The simple attributes of each �eld are at the beginning of the structures and
these �elds can contain more structures inside them. Therefore the database is
not in First Normal Form. One structure "Publication" can contain inside zero
or more "Row" and this "Row" can contain zero or more "Name", "ExtraName"
or "Address" for example.

The output format is the same for the three ontology languages but with
the speci�c formatting for each language. All three languages will represent the
same structure. This structure is explained in the Chapter 8 and it is the new
design of the databases in an ontology. Here we will explain the speci�c format
of the �les.

The program is a loop that reads a "Publication" once at a time. It stores
the useful attributes and it discards the others. Some attributes like the number
of publication are not needed in the new design. Once we have read the entire
publication we write into the output �les the read data. This data will we
written in the format of the new ontology, ful�lling the new structures created.
The relationships will be added at the same time. We only have to read one
time the �le due to the tools used for accessing the databases. We will use the
speci�c way for reading data of the tool used to store it. With Protégé we will
read the OWL and RDF(S) �les and we will use Ontopia Omnigator to read the
Topic Maps format.

7.4 Di�erences between conversion parsers

Due to the particularities of the di�erent plug-in used with Protégé to model the
ontologies in the three languages we had to use di�erent query methods. Neither
OWL plug-in nor TM Tab plugging for Topic Maps do not provide any querying
method. Therefore we had to seek alternative ways to do the querying process.
Within Topic Maps we had another problem: it is not possible to import an
XTM �le to the TM Tab plug-in, it is only possible to export the model and
the instances created with Protégé. This problem causes the impossibility to use
Protégé to query our data and we found Omnigator, a Topic Maps management
environment. We were able to load our data into the Omnigator and query it.

Also, all plugging have their particularities when the data is loaded into
the ontology. Protégé o�ers more freedom to load the data. This freedom is
due to the reading Protégé does of the whole ontology before show it on the
program screen. When the data is translated into the ontological format it is not
completely related. The translator program reads from the database sequentially
and puts the identi�cations to the classes depending on the data. When Protégé
reads these identi�ers it knows if the same identi�er has been read before. If it

72

Chapter 7. Conversion Parsers

was read before Protégé relate this identi�er to the new one. For example, we
have a two side relationship between Person and Title. When we read a Person
we have to relate it to a Title and from one title we should be able to see all the
persons who have this title. If we have one person "Carlos" our translator will
relate it to the title "Student" and automatically Protégé will relate "Student"
to "Carlos". We only have to create one side of the relationship. This situation
does not happen directly when using the Ontopia Omnigator but it is possible
to access to an option for deleting repeated values. It is possible even to export
the ontology to RDF format.

7.5 Concluding Remarks

In this chapter, we have seen the structure our conversion parses have. We shown
in which way we have created our programs and we have seen there are similar
problems in other projects. Our approach for developing the conversion parsers
has been based in a combinations of the solutions proposed by [3] and [34] and
the requirements of our databases. We have seen that our data once converted
will have the same structure for the three languages, but the functionalities will
depend of the ontology design.

73

Chapter 8

Design of the Models

In this chapter, we are going to present the new design of the databases. We
will explain the motivation of our designs the way of working and the result of
the design. The main classes, attributes and relationships will be explained.

8.1 Need of a new design

We arrived to the conclusion in the article [13] that a new model was needed for
our databases. This was needed due to the old design was not improved for a
proper access to the databases. Also, we made an interview to the expert of the
company and we got a clear view of the databases' purpose. The full interview
can be found in the Appendix E. One of the main conclusions of the interview
was that the databases are designed for printing "Yellow Pages". The expert
explained us that the organization of the data is the most suitable for printing
directory services.

Internally the information is organized in "Publication" and each "Publica-
tion" can contain one "Placement" that describes one region and one "Publica-
tion" can contain * "Row" that contains the information about one telephone
number. This information can be several names or addresses. This description
of the data indicates that the database is not in �rst normal form and should
be improved if we want an intelligent and quick access to our data.

The design of the new models of the databases and the ontologies has been
divided in three steps. First, we created a new design for the databases because
the old design is not the most accurate design that we can obtain from these
databases. With the new design we will create the base ontologies. Second,
we improved the ontologies by adding relationships and modifying the initial
ontology design to obtain a better conceptualization of the proposed domain.
Third, we tested the ontologies and we added the necessary modi�cations to our
ontology to obtain the best results. This design has been done by using Protégé,
a tool for designing knowledge representations described in Appendix C.

8.2 Extracted Model

We are going to show how the model has been extracted. We will explain the rea-
sons for this speci�c model and the classes and relationships created. The model

8.2. Extracted Model

is designed in UML from the previous schemas extracted from the databases.
We have based the extraction of the databases' model in the existing data.

We can not create more attributes in the schema than the existing data. We
started designing the new models for the databases and we based these new
models on the interview to the expert of the company. For designing the Swedish
database we had the help of the original database design but for designing the
Norwegian new schema we had no initial design.

The core class of the new Swedish database model is "TelephoneNumber".
This class contains one telephone number because is the core of a Directory Ser-
vice, all is around this number. One person can have several telephone numbers
in one or more addresses. The main question here is to access the information
around a telephone number. We have centered the design of the database on
this class, the telephone numbers are the key concept in a Directory Service.
The class Address is another important class. Around this class we can �nd the
information about the people who lives in this place, the region and the country.
We have decided to divide the data from the original database in other classes
for a better structuring and accessing to this information.

The Norwegian database is a "Yellow Pages" database, a directory service
containing only companies and the data for locating them. It contains telephone
numbers of companies in Norway. In this case we do not have any initial model
just the data and we made an approximation to the model. We have made the
same than with the Swedish database. We have centered all the information
on the "TelephoneNumber" class and we have organized all the information in
the classes "Company" instead of "Person". The structure for organizing the
addresses will follow the same way.

In the pictures 8.1 and 8.2 we can see the initial model of both databases.
These are the models extracted from the data available and the interview de-
scribed at E.

Figure 8.1: Swedish Schema

76

Chapter 8. Design of the Models

Figure 8.2: Norwegian Schema

Looking at both models we can see that they are quite similar. Mainly, the
classes are the same and the relationships are also similar. This is because they
are representing the same fact, a directory service but with di�erent data. At
this point we decided to merge both databases in one common ontology. Merging
both databases in one ontology we will get several advantages. For the company
will be easier to manage one database instead of one. It is more simple to design
just one general ontology than two and it will be easier to upgrade this merged
ontology if we want to add more data to it.

We have created the new design for the databases and we have seen that
this model can be merged into one more general model. This will improve the
performance of the queries to the databases and will make easier the design of
the ontologies.

8.3 New Ontology Design

The new design of the ontology is presented in this section. The ontology will be
created from the merged database schema and it will be adapted to the needs
of the Web ontology languages used.

The main design has been based in three classes: Human, Information, Or-
ganization and Place. All our concepts can be placed in one of these three sets.
Human will only have one subclass: Person. This is because in our domain we
should separate a Person from the other concepts of the ontology. Organization
will have two subclasses. These subclasses are Company and PublicAdministra-
tion. We have this division for di�erentiating both types of organization available
in the data. Information will have several subclasses. These subclasses are Title,
VisitCard, StreetNumber, Coordinate, Subscription and TelephoneNumber. We
have classi�ed these classes as subclasses of Information because all of them only
provide information about one place. By themselves these classes are nothing.
Place will have as subclasses several concepts. The subclasses of Place will be
City, Street, Region and Country. It is easy to see that all these classes represent
a physical space where a person can be in a certain moment.

Human this class describes all the human beings that can be in our domain.

77

8.3. New Ontology Design

This class has no attributes and it is used to organize the ontology.

Information this class describes the information that can identify a place. This
information is used to identify a concrete place and a concrete person.
Without this information will be impossible to locate a person or a place.

Place this class describes the physical space of a place. This class is used to
describe where a person can be in one determinate moment. In combina-
tion with the previous class it can be determined where a person has a
tenement.

Organization this class describes the concept of organization. It has the at-
tributes for identifying the organization and it has two subclasses, Com-
pany and PublicAdministration.

Person this class describes a person. This class will represent all the people
of our directory service. The class person has the attributes Full, First,
Middle, Last and the relationships hasTitle, isSubscribed and hasVisit-
Card. The attributes First, Middle and Last represent the components of
common name and the attribute Full represents all the three attributes
together. The relationship hasTitle represents that a Person has achieved
one or more title in his live. A person can have one or more title assigned
to it. The relationship hasVisitCard represents the information needed to
�nd the place where this person lives. One person can have several places
for living therefore one person can have more than one VisitCard. The re-
lationship isSubscribed represents the subscription every person has. It is
a subscription to the company provider of the telephone number. The rela-
tionship worksFor represents the companies a person is currently working
for.

VisitCard this class describes the information about the place where a person
can live. With this class it is possible to know what the telephone number
of one person is and where this person lives. This class contains only
relationships to other classes. The relationships are: hasTelephoneNumber,
belongsPerson, hasPostalCode, hasStreetNumber, hasStreet and hasCity.
The class is always related to one person and will identify where this
person live, including the telephone number of the people who live in
this place. hasTelephoneNumber indicates what telephone number has the
card. hasPostalCode indicates the postal code of the person's building.
hasStreet indicates the street where the person lives. hasStreetNumber
indicates the number of the street where the person lives. hasPostalCode
indicates the postal code of the building where the person lives. hasCity
indicates the city where the person lives.

PostalCode this class represents a typical postal code. It only contains one at-
tribute and it is used to represent the postal code number. This class con-
tains two relationships: isInCity and isInStreet. The relationship isInCity
represents in what cities this postal code is and the relationship isInStreet
represents in what streets this postal code is.

78

Chapter 8. Design of the Models

StreetNumber this class represents a street number. It contains an attribute,
StreetNumberAttr and contains a number. This class has the relationship
isInStreet to indicate that this street number is in a street. The street
number is the number of a building inside this street.

TelephoneNumber this class represents a telephone number. It only contains
the attribute Number that is used to represent the value of the telephone
number.

Subscription this class represents the subscription what a person has with
the provider of the directory service. All persons have one subscription at
least and this subscription contains all the data necessary for the company.
The attributes are TelAddress which represents the telephone number of
the person, Type which represents the type of TelAddress, Classi�edCode
used for internal identi�cation, TextAfter used to add comments to the
subscription and Internet used to know if this person has an internet sub-
scription. This class has the relationship hasSubscriptors which contains
all the persons with a subscription.

Title this class represents the di�erent titles that a person can have. It can
represent for example student or architect. It has only one attribute, Ti-
tleName for representing the name of this title. It has one relationship
with Person, hasPerson and it represents the persons who own this title.

Coordinate this class represents the coordinates of the building where the
person lives. It contains the attributes xCor and yCor for representing
the coordinates of the building but in the source databases where no data
associated to these attributes. This class is related to Person and in a
future work will contain the necessary data.

Street this class represents the physical place of a street. It contains only one
attribute, StreetName and it is used to store the name of this street. It
contains the relationship hasStreetNumbers for knowing what buildings
are in the street. A street can be located in di�erent cities, for example
the street Dronningensgate is in Oslo and Trondheim.

City this class represents the physical space of a city. It contains only one
attribute, CityName and it is used to store the name of this city. It contains
the relationship isInaRegion that represents that this city is located in a
concrete region.

Region this class represents the physical space of a region. It contains the
attributes RegionName used for specifying the name of the region, Re-
gionCode that represents the code of this region, SectionCode used for
representing the code of a section of this region, Classi�edCode used for
internal control and DirectoryArea used for representing the area inside
the region. It has the relationships hasCities that represents the cities that
are in this region and isInaCountry that represents in which country is this
region. It contains the relationship hasCities for representing what cities
are in this region.

79

8.3. New Ontology Design

Country this class represents the physical space of a country. It only contains
one attribute, CountryName and it is used to store the name of this coun-
try. It contains one relationship, hasRegions that represents the regions
that this country has. In our data there are only two countries: Sweden
and Norway.

Company this class represents the concept of a company. It has the attributes
inherited from Organization Id, Name, ExtraName and Subdivision. It
has the relationships inherited from Organization hasWorkers and hasVis-
itCard.

PublicAdministration this class represents the concept of a public admin-
istration like a town hall or the postal service of a country. It has the
attributes inherited from Organization Id, Name, ExtraName and Subdi-
vision. It has the relationships inherited from Organization hasWorkers
and hasVisitCard.

The relationships will be created in the ontologies and will �x previous mis-
takes and will improve also the access to the data by creating new relationships
and restrictions between classes. The following relationships are the initial ideas
for the ontologies:

These relationships have been based in the database of the New Zealand
Census Data Model and Dictionary. The ontology designed is shown in Figure
8.3.

80

Chapter 8. Design of the Models

Figure 8.3: Initial Ontology

8.4 Restrictions and OWL

The main di�erence between OWL and the other languages are the restrictions
that are possible to add to the ontology. As it is explained in [16] property
domains and ranges should not be viewed as constraints to be checked. They
are used as axioms in reasoning. If we want to restrict the the individuals that
belong to a class we have the restrictions provided by OWL. We can create these
restrictions by using quanti�ers, cardinality or has value restrictions. This is the
main advantage of OWL. We have created the following restrictions:

• A necessary condition to be a Person is to have VisitCard.

• A necessary condition to be an Organization (Company or PublicAdmin-
istration) is to have Visitcard.

• A necessary condition to be a TelephoneNumber is to have a VisitCard.

• A necessary condition to be a StreetNumber is to be in a Street.

• A necessary condition to be a Street is to be in a City. We can infer the
PostalCode attribute.

• A necessary condition to be a Region is to be in a Country.

81

8.4. Restrictions and OWL

• A necessary condition to be a VisitCard is to belong to a Person or to an
Organization.

It is important to compute the the class hierarchy. In a big ontology with
thousands of instances this is almost mandatory to have an ontology in a main-
tainable and logical state. To automate this process it is useful to use a reasoner.
Protégé can interact with RACER, a reasoner, to compute this hierarchy. We
have done this classi�cation but with a few instances. With the hole database, or
even a thousand of instances our computer needed so much time. The results of
applying these restrictions are shown in the Picture 8.4. The OWL Sub-language
is OWL DL as it is shown in the Picture 8.5.

Figure 8.4: Inferred types in our ontology

82

Chapter 8. Design of the Models

Figure 8.5: OWL Sub-language used

8.5 Concluding Remarks

In this chapter, we have seen how we have modelled the new databases and
ontology. We merged the databases because we realized that they contain mainly
the same type of data. Also, merging both databases will allow the extension of
databases. Now we do not have enough data to get the best e�ciency from it.

83

Chapter 9

Analysis of the Transformation

In this chapter, we are going to see the analysis and comparison of the three
Web ontology languages for representing our domain model. We will compare
the transformations done to the original UML design with the �nal ontology
in the three languages. We have created several tables which are in Appendix
D. This tables contain the results of the analysis of our models. We have not
included in this analysis OWL-S due to it is an extension of OWL. In this case
study Web services are not needed and to model the case study in OWL-S will
produce the same output as OWL.

9.1 Information need based evaluation

Once we have done the transformation of the data we have three databases con-
taining the same data but with a di�erent representation. Now we will proceed
to the evaluation of this transformation. This analysis of the transformation
will be one of the main results of the thesis. As we have commented previously
this representation is in three di�erent ontology languages: RDF(S), OWL and
Topic Maps. For evaluating the three languages we will propose the following
method. We will have two sets of data, one with "control data" that we will use
to know if the answers of the languages are correct and another one with "ob-
served data". The database schema resulted from the case study above is here
used as observed data and we will use it ful�l the three databases. The observed
data are compared with a set of control schemas in an empirical experiment.
This data comes from the original databases with a transformation to the three
ontology languages. We will use several selected queries to di�erent sets of this
data to produce an optimal evaluation. These sets will contain di�erent amounts
of data, and they will be increasing the amount of data in every iteration.

The answers obtained from the queries will be compared to the answers
provided by the UML model and the control data. Combining the two answers,
the one from the languages and the observed data and the one from the UML
model and the control data we will calculate the precision and recall measures.

Once we have calculated these precision and recall measures for each iter-
ation of the amount of data we will be able to calculate an average result of
successful answers to our queries from the ontological databases. This average
result will be the recommendation of one language.

9.1. Information need based evaluation

Once we have set the parameter of the evaluation in the lines above we
will proceed to do the evaluation. This evaluation will be based in the previous
indications and it will be applied to the ontology designed in the three Web
ontology languages.

9.1.1 Test queries

We are going to evaluate the data stored in our ontologies. To perform a correct
evaluation we should compare the data in the new representation with the data
in the old representation. To do this several queries will be done and the results
will be shown.

Once we have the data stored in our ontologies we will proceed to evaluate
it. We can not compare the results of our queries because we do not have any
way to consult the original databases. These databases are XML and TXT
�les and we do not have the proper tool to consult them. We can look at the
model created in the previous chapter and try to suppose the answers. This
is not di�cult because in a relational database the language used is based in
relational algebra. Therefore it is possible to make the queries in paper or say
if it is possible to do or not.

The queries to the ontology are done by using the engine provided by Pro-
tégé. This engine is a tab that provides a simple interface to query the data
stored. It is possible to do several types of queries but it has limitations. For
example it is not possible to count the elements returned from a query or return
attributes from a query. We will query the databases in OWL and RDF(S) us-
ing Protégé and for Topic Maps we will use Ontopia Omnigator. We are using
di�erent engines because we can not load in Protégé the XTM format of Topic
Maps. We used Protégé and the TMTab plugging for designing and export the
ontology but it is not possible to import the ontology. The example of one of
these queries is shown in Figure 9.1 and Figure 9.2. The initial queries are the
following:

Q1 In these queries we are going to consult the people who have a �xed sur-
name. These queries can be done in SQL but the complexity of the is
increasing.

Q1.1 Return the people who live in my street, in my city and have the
same surname as me.

Q1.2 Return the people who live in my street, in my city, have the same
surname as me and are librarians.

Q1.3 Return the telephone numbers of the people who live in my street,
in my city are librarians and have the same surname as me.

Q2 In these queries we are going to consult the people who have a speci�c title.
These queries can be done in SQL but the complexity of the is increasing.

Q2.1 Return the people that have the same title as me.

86

Chapter 9. Analysis of the Transformation

Q2.2 Return the people that have the same title as me and live in the
same street as me.

Q2.3 Return telephone numbers of the people that have the same title as
me and live in the same street as I.

Q3 In these queries we are going to consult the people who live in a specify
building in an speci�c street. These queries can be done in SQL but the
complexity of the is increasing.

Q3.1 Return the people that live the same building as me.

Q3.2 Return the people that have the same title as me and live in the
same building as me.

Q3.3 Return telephone numbers of the people that have the same title as
me and live in the same building as me.

We can modify these queries by querying the people who live in the same
building as me (we have to ask for the street number), we can de�ne "neighbor"
and with the given results of a query decide if the answer �ts in the de�nition
of neighbor, etc. We can not get automatically an attribute as answer counting
the cardinality of the answers but we have this number as information of the
query. If we try to do these queries with SQL we will need enough knowledge
and experience using this language. The initial queries are not complicated but
to get answers from Q1.3, Q2.3 and Q3.3 is quite complicated and it will require
several consuming time operations. This is one of the advantages of the sematic
Web languages, are simple to use if you have the right tool and can retrieve the
information quickly.

Figure 9.1: Query 1

87

9.1. Information need based evaluation

Figure 9.2: Query 2

These queries can be done easily with Protégé by using the queries Tab.
We have only tested these queries with the ontologies in OWL and RDF(S)
and we have the same results. These results are the same because we have the
same ontology and the restrictions are controlled in the translation process. An
information agent need to control these restrictions and this is where OWL can
perform a better e�ciency.

9.1.2 Problems with the queries

As we have seen in the line above we can not do a proper comparison of the
languages. First, we do not have a way for accessing the original databases. We
need a proper way for accessing them in order to do a good comparison with the
original models. Theoretically, as we have seen, the Web ontology languages are
quite better than the relational, at least in this concrete use case. Second, we
do not have the same tools for comparing the results of our queries. This may
have a signi�cant weight in our evaluation because the ways for reasoning may
be di�erent and the �nal conclusions from the reasoning tool can be di�erent.
Third, the ontologies in this case are similar. We have modelled the ontologies
in order to substitute the original design improving it and translating it to the
Web ontology languages. The �nal ontologies are similar and the results from the
queries are similar as well. Fourth, the engine used for comparing the languages
is not the proper engine. The languages are designed to facilitate the reasoning
of information agents and the tool has not the proper environment for reasoning.
In the next section we will proceed with other way for comparing the languages.

We tried to access to the databases by using a more complex tool based in
Description Logics. The tool was RACER. We found very complicated to write
the queries is the speci�c language of RACER and we discarded it. We had with
RACER the same problem for comparing the results with the other languages.

We have seen in this section that we need another way for comparing the
ontologies. In the future work will be necessary to improve the access to the data

88

Chapter 9. Analysis of the Transformation

stored in the ontology but now we will continue with other way for analysing
the representations.

9.2 Meaning based evaluation

The comparison of the transformation has been divided in three sections. We will
compare what features can be represented in RDF(S), OWL and Topic Maps
against the features represented in UML. In UML the new database is repre-
sented and in RDF(S), OWL and Topic Maps the ontology is represented. For
each comparison we will analyse if the concepts in the languages are represented
or not in UML, if the concepts are speci�ed or not in UML, if the cardinality is
the same in both representations and if the restrictions are speci�ed or not in
UML.

9.2.1 Description of the transformation

In the previous chapters we have shown the transformation we have applied
to the original data. This data was two databases, one containing the Swedish
directory service and the other one the Norwegian directory service. We had the
database schema from the Swedish database but nothing from the Norwegian
database. The databases were formatted in XML and with an unknown format
respectively. We applied a process of redesign to these databases and in the
following lines we analyse this process of redesign and transformation.

We will compare the �nal ontology obtained and represented in the three
Web ontology languages with the �nal UML model of the database. We will not
use the initial databases' schema due to it is quite simple. In the initial model
(only the Swedish database had any kind of model) we can not query anything.
We do not have the tools for accessing two databases in such format. The model
is not for querying, it is just for printing the directory service. Therefore, the
comparison between the base model and the ontology model obtained from the
UML design of the database would be worthless.

We will use the merged database model to do the analysis of the transfor-
mation. This analysis of the transformation will consist in compare what can
the ontology in the three Web ontology languages represent that the UML de-
sign can not. The concepts to do this analysis will be the classes, attributes
and relationships of the designs. We will see if the ontology in each language
can represent these concepts in UML. We will analyse if for each concept it is
represented or speci�ed in UML and the cardinality of each of them.

The comparison has been done in the tables present in the Appendix D.
These tables contain the comparison done to the languages. The rows represent
if a concept is represented or not, speci�ed or not, what cardinality does the
concept have and if this concept has the same restrictions in both languages or
not. The columns represent the concepts in the ontology in each Web ontology
language. These concepts are classes, attributes and relationships. In each cell
we can �nd 1 if the concept ful�ls the property indicated in the column, 0 if
not, same if it has the same restrictions,more if the analysed language has added

89

9.2. Meaning based evaluation

more restrictions to the representation, - if it is no applicable and the type of
cardinality.

9.2.2 RDF(S) and UML comparison

The comparison between UML and RDF(S) is represented in the Table D.1. The
rows represent the UML classes, attributes and relationships between classes.
The notation is speci�ed in the Appendix D and here we will use the coded
names. In the columns are represented the concepts we are going to analyse: if
the ontology in UML is represented in RDF(S) or not, if the concept in UML is
speci�ed in RDF(S) or not and if the concept in UML has restrictions or not.

Representation

As we can see in the Table D.1 66.6% the classes that are represented in RDF(S)
are not represented in UML. This is due to the expressivity of RDF(S). We have
modelled our ontology to provide the maximum expressiveness we can get. In
UML we have modelled a database, optimized for SQL queries. The di�erence
between these two approaches is who will do the queries. Within UML the
queries will be done by a person who will reason about the relationships we
have in the model. Within RDF(S) the queries will be managed by an agent
and due to this the classes in RDF(S) should be more richly speci�ed. Therefore
we have more classes in the RDF(S) representation to permit a better reasoning.

As we can see in the Table D.1 93.33% attributes in the RDF(S) represen-
tation are in the UML representation. The only attributes that are not in the
UML representation is due to we are using them as help attributes to ful�l some
classes in RDF(S). Almost all the attributes are present because we have the
same data in both representations. Here the most important is to maintain the
data, the attributes have less expressiveness than the classes.

As we can see in the Table D.1 none of the relationships present in the
RDF(S) representation are in the UML representation. This is because we have
di�erent classes and to relate them we need di�erent relationships. Also the
same reason we gave to explain the di�erences between the classes representa-
tion within RDF(S) and UML can be applies here. We have di�erent reasoning
necessities. In UML the queries will be done by a person and in RDF(S) by an
agent, therefore we need di�erent ways for representing data.

Speci�cation

As we can see in the Table D.1 11% of the RDF(S) classes are speci�ed in the
UML representation. The classes which are not represented can be divided in
two groups. The �rst group of classes which have no representation in UML but
in RDF(S) are those classes created to improve the ontological design. These
classes are Human or Information, for example. We do not have these classes
in UML because we do not need them, but we need them in the ontology. The
second group of classes not speci�ed in the UML model but present in the
RDF(S) model are those classes which we need for representing special features

90

Chapter 9. Analysis of the Transformation

for reasoning. An example is the VisitCard class. We do not have it in UML but
in RDF(S) because we use it to relate all the information needed for a person
to locate it. In UML we do not need it because we will do this by queries using
the existing relationships.

As we can see in the Table D.1 6.6% of the RDF(S) attributes are speci�ed in
UML. This is because almost all attributes are represented and we do not need
to specify them. The only attributes that are not represented are the attributes
that are speci�ed.

As we can see in the Table D.1 83.3% of the RDF(S) relationships are spec-
i�ed in UML. This is because we have similar relationships in both models. In
the RDF(S) model we have almost all these relationship represented but they
do not exist in UML. But these relationships are speci�ed in UML. We have
similar relationships like hasTitle to indicate a Person can have zero or more
Titles. This relationship is represented within UML. No the relationships which
are neither speci�ed nor represented are those relationships which relate classes
that are not in the UML model but in the RDF(S) model. The relationship
between Person and VisitCard is an example. We do not have the relationship
in UML because we use di�erent relationships to retrieve the information.

Restrictions

The restrictions are based on the restrictions speci�ed in the DTD document
where it is speci�ed the Swedish database. Initially we will maintain these re-
strictions because we will �nd them in the data we read and we store. Once
we designed the new UML model we translated most of the restrictions to this
model but we added more. We added more restrictions to maintain the coher-
ence of the model. We will chose which data is useful and we will chose also
which kind of restrictions we want in this data.

As we can see in the Table the Table D.1 in all classes we can apply re-
strictions in both UML and RDF(S) we can apply the same restrictions. The
restrictions speci�ed in RDF(S) are in the UML representation. We can model
easily the cardinality restrictions within UML. The restrictions like disjoint are
not present in the UML representation. This representation does not o�er them.
We added these restrictions to groups of classes to facilitate the reasoning of
the information agents. These types of restrictions are a particular way for mod-
elling frames. They are not applies in databases design because the databases
are not designed for reasoning.

The restrictions in the relationships and in the attributes are the same. This
is because relationships and attributes are managed in the same way in RDF(S).
For specifying a relationship we have to create an attribute and specify its type.
The type will be an instance of a class. Therefore we have a relationship.

The restrictions we can apply to the attributes are a few. Mainly type of the
attribute, cardinality, if it is required or initial values. All the attributes have
the same restrictions. We can apply this reasoning to the relationships because
they are a special kind of attribute.

91

9.2. Meaning based evaluation

9.2.3 OWL and UML comparison

The comparison between UML and OWL is represented in the Table D.2. The
rows represent the UML classes, attributes and relationships between classes.
The notation is speci�ed in the Appendix D and here we will use the coded
names. In the columns are represented the concepts we are going to analyse: if
the ontology in UML is represented in OWL or not, if the concept in UML is
speci�ed in OWL or not and if the concept in UML has restrictions or not.

Representation

We use the same classes as OWL because both o�er the same constructs for
creating classes. Both languages RDF(S) and OWL are similar when designing
the basic structure of an ontology. They provide the same basic constructs be-
cause OWL is based on RDF(S) and we will get a similar analysis. As we can
see in the Table D.2 66% that are represented in OWL are not represented in
UML. This is due to the expressivity of OWL. We have modelled our ontology
to provide the maximum expressiveness we can get. In UML we have modelled
a database, optimized for SQL queries. The di�erence between these two ap-
proaches is who will do the queries. Within UML the queries will be done by
a person who will reason about the relationships we have in the model. Within
OWL, like in RDF(S) the queries will be managed by an agent and due to this
the classes in OWL should be more richly speci�ed. Therefore we have more
classes in the OWL representation to permit a better reasoning.

We have the same representation here then in RDF(S). OWL is an extension
of RDF(S) and we have the same data than before. Then, similar attributes will
be �nding here. As we can see in the Table D.2 93.3% of the attributes in the
OWL representation are in the UML representation. The only attributes that
are not in the UML representation is due to we are using them as help attributes
to ful�l some classes in OWL. Almost all the attributes are present because we
have the same data in both representations. Here the most important is to
maintain the data, the attributes have less expressiveness than the classes.

Here happens the same than with the classes and attributes. We have to
specify the same schema and we have the same constructs to do it. As we can see
in the Table D.2 none of the relationships present in the OWL representation
are in the UML representation. This is because we have di�erent classes and
to relate them we need di�erent relationships. Also the same reason we gave
to explain the di�erences between the classes representation within OWL and
UML can be applies here. We have di�erent reasoning necessities. In UML the
queries will be done by a person and in OWL by an agent, therefore we need
di�erent ways for representing data.

Speci�cation

Here we will have the same concepts speci�ed than in RDF(S). We have the same
situation than in the Representation section and we have a similar analysis. As
we can see in the Table D.2 11.1% of the OWL classes are speci�ed in the UML

92

Chapter 9. Analysis of the Transformation

representation. The classes which are not represented can be divided in two
groups. The �rst group of classes which have no representation in UML but in
OWL are those classes created to improve the ontological design. These classes
are Human or Information, for example. We do not have these classes in UML
because we do not need them, but we need them in the ontology. The second
group of classes not speci�ed in the UML model but present in the OWL model
are those classes which we need for representing special features for reasoning.
An example is the VisitCard class. We do not have it in UML but in OWL
because we use it to relate all the information needed for a person to locate it.
In UML we do not need it because we will do this by queries using the existing
relationships.

As we can see in the Table D.2 6.6% of the OWL attributes are speci�ed in
UML. This is because almost all attributes are represented and we do not need
to specify them. The only attributes that are not represented are the attributes
that are speci�ed.

As we can see in the Table D.2 83.3% of the OWL relationships are speci�ed
in UML. This is because we have similar relationships in both models. In the
OWL model we have almost all these relationship represented but they do not
exist in UML. But these relationships are speci�ed in UML. We have similar
relationships like hasTitle to indicate a Person can have zero or more Titles. This
relationship is represented within UML. No the relationships which are neither
speci�ed nor represented are those relationships which relate classes that are not
in the UML model but in the OWL model. The relationship between Person and
VisitCard is an example. We do not have the relationship in UML because we
use di�erent relationships to retrieve the information.

Restrictions

The restrictions are based on the restrictions speci�ed in the DTD document
where it is speci�ed the Swedish database. Initially we will maintain these re-
strictions because we will �nd them in the data we read and we store. Once
we designed the new UML model we translated most of the restrictions to this
model but we added more. We added more restrictions to maintain the coher-
ence of the model. We will chose which data is useful and we will chose also
which kind of restrictions we want in this data.

The restrictions are di�erent than in RDF(S). Here we can put more restric-
tions because OWL o�ers more constructs to do it. As we can see in the Table
D.2 almost all the restrictions speci�ed in OWL are in the UML representation.
We can model easily the cardinality restrictions within UML. The restrictions
like disjoint are not present in the UML representation. This representation does
not o�er them. We added these restrictions to groups of classes to facilitate the
reasoning of the information agents. These types of restrictions are a particular
way for modelling frames. They are not applied in databases design because
the databases are not designed for such reasoning. Restrictions can be mainly
applied to classes. Here we can specify �rst order logic predicates, rules, cardi-
nalities, etc. This is because in the Table D.2 we can see that there are not the

93

9.2. Meaning based evaluation

same restrictions. We have added more restrictions in OWL. We added �rst or-
der predicates in classes to restrict what instances can belong to a determinate
class. This column is di�erent from the other languages because OWL is the
only languages which o�ers this kind of restrictions.

9.2.4 Topic Maps and UML comparison

The comparison between UML and Topic Maps is represented in the Table
D.3. The rows represent the UML classes, attributes and relationships between
classes. The notation is speci�ed in the Appendix D and here we will use the
coded names. In the columns are represented the concepts we are going to
analyse: if the ontology in UML is represented in Topic Maps or not, if the
concept in UML is speci�ed in Topic Maps or not and if the concept in UML
has restrictions or not.

In the two previous languages the Representation, Speci�cation and cardi-
nality sections were the same. Here we will �nd again the same question. Topic
Maps provides the same constructs as RDF(S) and OWL and we have used the
same tool for designing the ontologies. Therefore we will get the same analysis
as before in the initial sections.

Representation

As we can see in the Table D.3 33.3% of the classes that are represented in Topic
Maps are not represented in UML. This is due to the expressivity of Topic Maps.
We have modelled our ontology to provide the maximum expressiveness we can
get. In UML we have modelled a database, optimized for SQL queries. The
di�erence between these two approaches is who will do the queries. Within UML
the queries will be done by a person who will reason about the relationships we
have in the model. Within Topic Maps, like in OWL the queries will be managed
by an agent and due to this the classes in Topic Maps should be more richly
speci�ed. Therefore we have more classes in the Topic Maps representation to
permit a better reasoning.

As we can see in the Table D.3 93.3% of the attributes in the Topic Maps
representation are in the UML representation. The only attributes that are not
in the UML representation is due to we are using them as help attributes to
ful�l some classes in Topic Maps. Almost all the attributes are present because
we have the same data in both representations. Here the most important is to
maintain the data, the attributes have less expressiveness than the classes.

Here happens the same than with the classes and attributes. We have to
specify the same schema and we have the same constructs to do it. As we can
see in the Table D.3 none of the relationships present in the Topic Maps rep-
resentation are in the UML representation. This is because we have di�erent
classes and to relate them we need di�erent relationships. Also the same rea-
son we gave to explain the di�erences between the classes representation within
Topic Maps and UML can be applies here. We have di�erent reasoning neces-
sities. In UML the queries will be done by a person and in Topic Maps by an

94

Chapter 9. Analysis of the Transformation

agent, therefore we need di�erent ways for representing data.

Speci�cation

As we can see in the Table D.3 11.1% of the Topic Maps classes are speci�ed in
the UML representation. The classes which are not represented can be divided in
two groups. The �rst group of classes which have no representation in UML but
in Topic Maps are those classes created to improve the ontological design. These
classes are Human or Information, for example. We do not have these classes
in UML because we do not need them, but we need them in the ontology. The
second group of classes not speci�ed in the UML model but present in the Topic
Maps model are those classes which we need for representing special features for
reasoning. An example is the VisitCard class. We do not have it in UML but in
Topic Maps because we use it to relate all the information needed for a person
to locate it. In UML we do not need it because we will do this by queries using
the existing relationships.

As we can see in the Table D.3 6.6% of the Topic Maps attributes are
speci�ed in UML. This is because almost all attributes are represented and
we do not need to specify them. The only attributes that are not represented
are the attributes that are speci�ed.

As we can see in the Table D.3 83.3% of the Topic Maps relationships are
speci�ed in UML. This is because we have similar relationships in both models.
In the Topic Maps model we have almost all these relationship represented but
they do not exist in UML. But these relationships are speci�ed in UML. We have
similar relationships like hasTitle to indicate a Person can have zero or more
Titles. This relationship is represented within UML. No the relationships which
are neither speci�ed nor represented are those relationships which relate classes
that are not in the UML model but in the Topic Maps model. The relationship
between Person and VisitCard is an example. We do not have the relationship
in UML because we use di�erent relationships to retrieve the information.

Restrictions

The restrictions are based on the restrictions speci�ed in the DTD document
where it is speci�ed the Swedish database. Initially we will maintain these re-
strictions because we will �nd them in the data we read and we store. Once
we designed the new UML model we translated most of the restrictions to this
model but we added more. We added more restrictions to maintain the coher-
ence of the model. We will chose which data is useful and we will chose also
which kind of restrictions we want in this data.

As we can see in the Table the Table D.1 almost all the restrictions speci�ed
in Topic Maps are in the UML representation. We can model easily the car-
dinality restrictions within UML. The restrictions like disjoint are not present
in the UML representation. This representation does not o�er them. We added
these restrictions to groups of classes to facilitate the reasoning of the infor-
mation agents. These types of restrictions are a particular way for modelling

95

9.3. Concluding Remarks

frames. They are not applies in databases design because the databases are not
designed for reasoning. Here we can apply similar restrictions as in RDF(S).
This language does not o�er logic predicates to specify restrictions and hence
we are in the same level as RDF(S). We see in the Table D.3 we have the same
restrictions as in UML or RDF(S).

We have seen in this section that the languages in their basic functions are
quite similar. The main di�erence between them are the tools for creating re-
strictions they have. We can see many di�erences with the UML representation.
There are classes that are not needed in the UML representation, attributes bet-
ter represented as classes in the ontological format and di�erent relationships
in both representations. One thing is common for all, the basic concepts are
represented or speci�ed in both schemas.

9.3 Concluding Remarks

We have seen in this section the analysis of the representation of our languages
compared to UML. We have to conclude after this chapter OWL is the best
language for representing our domain problem. It o�ers more constructs for
specifying restrictions than the others. We can observe after the analysis that in
the other sections like representing classes or attributes all languages are quite
similar. This is because they o�er the basic elements to model our domain and
these elements are present in all three languages. The main di�erence between
all three Web ontology languages are the restrictions that can be applied.

96

Part IV

Conclusions and Appendixes

97

Chapter 10

Conclusions and future work

In this chapter, we are going to present the extracted conclusions from the
research process done and the future work recommended. In the conclusions we
will describe the results of our analysis of the case study and in the future work
we will present the possible ways for improving and continuing the research.

10.1 Conclusions

In this thesis we have analysed the suitability of the semantic Web technolo-
gies for a concrete domain. These technologies have demonstrated a very good
performance and they suppose a good technology for using in knowledge repre-
sentation problems.

This analysis will provide to Invenio a clear view of the most suitable tech-
nology to solve its case. The analysis has covered the necessities of Invenio for
directory services and it provides clear theoretical and practical recommenda-
tions.

This analysis can be used for analysing the requirements of this case study
can be applied to others. The way for analysing the suitability of the semantic
Web languages can be applied to other case studies by using the same tools and
framework. It will provide a recommendation of the most suitable technology if
it is needed.

The technical conclusions we can obtain from the research process are the
following. First, the design of the databases is a primary concept. We need a clear
view of what the database is representing. Without this view it is very di�cult to
create the appropriate ontology, even if we only want the data. Second, without
data it is not possible to get proper results. We have thousands of instances
but instances from the same group of classes, like person or street. An agent
can reason about this data but without relationships and more classes can not
get the best performance. Third, the evaluation of the languages gives a clear
winner, OWL. It o�ers more constructs to design a good ontology and elements
to reason about. The other two languages o�er fewer constructs and are not
oriented to enterprise solutions. Also, with OWL-S we can extend our services
and be more competitive. Fourth, the tool for storing and accessing the data in
the ontological format is another key concept. It makes a huge di�erence when
you have to load a database in memory and to consult this data with speed. If

10.2. Future Work

you do not want to use an information agent to consult the tool will be a key
concept. Fifth, conversion parsers are just translators, but they are necessary.
They can be less accurate than other things but it is needed to use a large
amount of time developing them.

10.2 Future Work

One important thing to improve is the tools used in this study. We have used
Protégé 3.0 for OWL, RDF(S) and the design of Topic Maps and Ontopia Om-
nigator Eight for accessing the data in Topic Maps. These tools o�er enough
functionalities with a certain amount of data but if we want to load thousands
of instances of each class we will need a more powerful tool. For example, when
we want to load an OWL project the told and the computer need time and in
the same way if we want to save our project. With Ontopia Omnigator we had
problems when browsing the data. If there are so many instances and we want
to access to the master index we will not see al the instances, only a few of
them.

The next step in this project is to extend the ontology by adding more
relationships and restrictions. This ontology has been based on the data available
and can be extended by adding new constructs to it. These constructs should
be �lled in by new data. The ontology is prepared to add this data in the case of
companies and persons and it can be done in more cases if the data is available.

One of the most interesting objectives for a future is to o�er a service with
the directory service of the two countries. This can be done by using OWL-
S, the semantic Web services extension for OWL, and only will be needed to
develop these services. The core ontology is already created. In a more exhaustive
analysis of the case study the evaluation can be re�ned by adding to the analysis
Web Ontology Languages such DAML+OIL or the new version of the Web
Ontology Language OWL-S or analyzing more ontology creation tools. These
improvements will create a more concrete evaluation of the case study and will
provide better results, but also will require more time.

The results obtained with the evaluation framework can be improved by
using a better by going into more detail when evaluating. The results obtained
in the Table 6.7 are close between them but are more di�erences between the
three languages selected.

100

Bibliography

[1] H. Alani, S. Kim, D. E. Millard, M. J. Weal, W. Hall, P. H. Lewis, and
N. R. Shadbolt, Automatic ontology-based knowledge extraction from web
documents, IEEE Intelligent Systems 18 (2003), no. 1, 14�21.

[2] D. Austin, A. Barbir, N. Networks, C. Ferris, and S. Garg (eds.), Web ser-
vices architecture requirements, http://www.w3.org/TR/wsa-reqs/, W3C,
February 2004.

[3] J. Barrasa, O. Corcho, and A. Gómez-Pérez, Fund �nder wrapper: A case
study of database-to-ontology mapping, October 2003, ISWC2003 Workshop
on Semantic Integration, Sanibel Island, Florida.

[4] T. Berners-Lee, J. Handler, and O. Lassila, The semantic web, Scienti�c
American (2001), 35�43.

[5] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and
D. Orchard (eds.), Web services architecture, http://www.w3.org/TR/ws-
arch/, W3C, February 2004.

[6] D. Brickley and R.V. Guha (eds.), Rdf vocabulary description lan-
guage 1.0: Rdf schema, Brian McBride, Hewlett-Packard Laboratories,
http://www.w3.org/TR/rdf-schema/, W3C, February 2004.

[7] N.R. Brisaboa, M.R. Penabad, A.S. Places, and F.J. Rodriguez, Ontologies
for database federation, UPGRADE - cepis-upgrade.org (2002).

[8] C. Buil-Aranda, Development of semantic web solutions for directory ser-
vices, December 2004, Autumn project at IDI, Norwegian University of
Science and Technology.

[9] M. Dean and G. Schreiber (eds.), Owl web ontology language reference,
http://www.w3.org/TR/owl-ref/, W3C, February 2004.

[10] C. B. Freie, D2r map � a database to rdf mapping language, 2003.

[11] T.R. Gruber, A translation approach to portable ontology speci�cations,
Knowledge Acquisition (1993).

101

Bibliography

[12] S. Hakkarainen, D. Strasunskas, L. Hella, and S. Tuxen, Weighted eval-
uation of web-based ontology building method guidelines, The 24th Inter-
national Conference on Conceptual Modeling (ER2005), Springer Verlag,
2005, To appear.

[13] S. E. Hakkarainen, A. Kofod-Petersen, and C. Buil-Aranda, Situated sup-
port for choice of representation for a semanticweb application, September
2005, In the IEEE/WIC/ACM International Conference on Web Intelli-
gence, To appear.

[14] J. Hendler, T. Berners-Lee, and E. Miller, Integrating applications on the
semantic web, Journal of the Institute of Electrical Engineers of Japan
122(10) (2002), 676�680.

[15] J. Hjelm, Creating the semantic web with rdf: Professional developer's guide,
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[16] M. Horridge, A practical guide to building owl ontologies with the protege-
owl plugin and co-ode tools 1.0, The University of Manchester, August 2005.

[17] H. Knublauch, Protege owl plugin, Stanford Medical Informatics,
http://protege.stanford.edu/plugins/owl/index.html.

[18] J. Korhonen and P. Isto, Practical experiences in developing ontology-based
multi-agent system, Business Information Systems, Proceedings of BIS 2003
(Gary Klein Witold Abramowicz, ed.), 2003.

[19] J. Krogstie and A. Solvberg, Information systems engineering - concep-
tual modeling in a quality perspective, Norwegian University of Science and
Technology, Trondheim, Norway (1999).

[20] F. Manola and E. Miller (eds.), RDF Primer, W3C Recommendation, W3C,
2004.

[21] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara, Owl-s: Semantic markup for web services,
http://www.w3.org/Submission/OWL-S/, Nobember 2004.

[22] N. Mitra (ed.), Soap version 1.2 part 0: Primer,
http://www.w3.org/TR/soap12-part0/, W3C, June 2003.

[23] V. Morocho and L. Perez-Vidal, Database schema detection and mapping
on mobile applications: An ontology-based approach.

[24] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, and M. A.
Musen, Creating semantic web contents with protégé-2000, IEEE Intelligent
Systems 16 (2001), no. 2, 60�71.

[25] Ontoknowledge.org,Description of oil, http://www.ontoknowledge.org/oil/.

102

Bibliography

[26] S. B. Palmer, The semantic web: An introduction,
http://infomesh.net/2001/swintro/, September 2001.

[27] J. Z. Pan and I. Horrocks, Metamodeling architecture of web ontology lan-
guages, International Semantic Web Working Symposium (SWWS) (Cali-
fornia, USA), Stanford University, July 2001, pp. 131�149.

[28] P. F. Patel-Schneider and D. Fensel, Layering the semantic web: Problems
and directions, ISWC '02: Proceedings of the First International Semantic
Web Conference on The Semantic Web (London, UK), Springer-Verlag,
2002, pp. 16�29.

[29] S. Pepper and G. Moore (eds.), Xml topic maps (xtm) 1.0 speci�cation,
http://www.topicmaps.org/xtm/1.0/, International Organization for Stan-
dardization ISO, TopicMaps.org, 2001.

[30] S. A. Petersen, Web services: Architectures and standards, Trial Lecture,
November 2003, NTNU.

[31] S. Powers, Practical rdf, O'Reilly & Associates, Inc., Sebastopol, CA, USA,
2003.

[32] C. Robson, Real world research, Blackwell Publishers, Oxford, UK ; Cam-
bridge, Mass., USA, 2002.

[33] M. K. Smith, C. Welty, and D. L. McGuinness, Owl web ontology language
guide, http://www.w3.org/TR/owl-guide/, February 2004, W3C Recom-
mendation.

[34] L. Stojanovic, N. Stojanovic, and R. Volz, Migrating data-intensive web
sites into the semantic web, SAC '02: Proceedings of the 2002 ACM sym-
posium on Applied computing (New York, NY, USA), ACM Press, 2002,
pp. 1100�1107.

[35] X. Su and L. Ilebrekke, A comparative study of ontology languages and
tools, CAiSE '02: Proceedings of the 14th International Conference on Ad-
vanced Information Systems Engineering (London, UK), Springer-Verlag,
2002, pp. 761�765.

[36] IBM T. Bellwood (ed.), Uddi version 2.04 api speci�cation,
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm,
UDDI Committee Speci�cation, July 2002.

[37] M. Uschold and M. Gruninger, Ontologies: Principles, methods and appli-
cations, Knowledge Engineering Review 11 (1996), no. 2.

[38] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-
mann, and S. Hübner, Ontology-based integration of information a survey
of existing approaches, IJCAI�01 Workshop: Ontologies and Information
Sharing (2001).

103

Appendix A

(Semantic) Web Services

In this chapter, a brief description of Semantic Web Services is provided. It is
also shown what a Web Service is, what structure doe the Web Service have and
what are the recommendations that W3C provides for building Web Services.

A.1 Web Services

In the W3C Web page it is possible to see the following de�nition of Web Service
from the Web Services working group:

"A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-process able format (speci�cally WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP mes-
sages, typically conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards." [2].

Web Services constitute a new model for using the Web which allows the
publishing of business functions to the Web and enables universal access to these
functions[30]. The main functions that a Web Service should support are Web
Service Creation, Description, Publishing, Discovery, Invocation and Unpub-
lishing. The services o�ered to the customer via the Web page of the company
o�ers the business processes to the customer. In these main tasks the human
interaction is required.

A.1.1 Web Service Layers

The Web Services Architecture is composed by four layers and they can be
seen in Picture A.1 1. These layers are the Processes Layer (the most important
technology is the Universal Description, Discovery and Integration, UDDI), the
descriptions layer (the most important technology related to this layer is the
Web Services Description Languages, WSDL), the Messages layer (the most
important technology related to this layer is the Simple Object Access Protocol,
SOAP) and the layer communication built with Web Standards.

1http://www.w3.org/TR/2003/WD-ws-arch-20030808/

A.1. Web Services

Figure A.1: Web Services Architecture Layers

WSDL is the web Service Description Language and its function is to de-
scribe a Web Service. Web Services Description Language (WSDL) provides
a model and an XML format for describing Web services. WSDL enables one
to separate the description of the abstract functionality o�ered by a service
from concrete details of a service description such as "how" and "where" that
functionality is o�ered. The main concept of WSDL is that WSDL divides the
description into two di�erent sections, one abstract section and another "real"
section. At the abstract level WSDL describes the messages that a Web Service
sends and receives using these messages for characterize the service and At a
concrete level, a binding speci�es transport and wire format details for one or
more interfaces. An endpoint associates a network address with a binding. And
�nally, a service groups together endpoints that implement a common interface.

SOAP is fundamentally a stateless, one-way message exchange paradigm,
but applications can create more complex interaction patterns (e.g., re-
quest/response, request/multiple responses, etc.) by combining such one-way
exchanges with features provided by an underlying protocol and/or application-
speci�c information [22]. Provides the way to send and receive messages between
applications.

Universal Description, Discovery and Integration, or UDDI, is the name of
a group of web-based registries that expose information about a business or
other entity and its technical interfaces (or API's)[36]. UDDI is used for service
discovery and de�nes a common means to publish information about businesses
and services. UDDI speci�cation consists of an XML schema for SOAP messages
and a description of the UDDI API's speci�cation.

The W3C consortium has de�ned the main requirements that a Web Service
should achieve. These requirements are accessible at [2]:

• Interoperability: The WSA should enable the development of interoperable

106

Appendix A. (Semantic) Web Services

Web services across a wide array of environments.

• Reliability: The WSA must be reliable and stable over time. " Integration
with the World Wide Web The WSA must be consistent with the current
and future evolution of the World Wide Web.

• Integration with the World Wide Web: The WSA must be consistent with
the current and future evolution of the World Wide Web.

• Security: The WSA must provide a secure environment for online
processes.

• Scalability and Extensibility: The WSA must enable implementations that
are scalable and extensible.

• Team Goals: The Web Services Architecture Working Group will work to
ensure that the Architecture will meet the needs of the user community.

• Management and Provisioning: The standard reference architecture for
Web Services must provide for a manageable, accountable environment
for Web Services operations.

A.1.2 Web Service Architecture

The Web Services Architecture model is speci�ed in [5] and it contains four
sub-architecture models. The main model is the following show in the Picture
A.2 which indicates the main concepts and the relationships between them.

Figure A.2: Meta Model of the Web Services Architecture

The Message Oriented Model main task is to manage the messages, message
structure, message transport and so on. This model it is not interested in any
other question di�erent. The key concepts are the agent who sends and receives
the messages and the structure of the messages.

107

A.2. Semantic Web Services

The Service Oriented Model main task is to manage the service. The model
is the means of messages and use to be an agent. One agent on the receiver's
side and other agent on the provider's side.

The Resource Oriented Model main task is to manage the resources that
exist and have owners.

The Policy Model main task is to manage the policies of access and con-
straints on the behavior of agents and services. This is the security level of the
services, to grant the security of both systems.

A.1.3 Composition Cycle of Web Services

Figure A.3: The General Process of Engaging a Web Service

A Web service use to need three parties: the requester of the service (a client),
one or more provider (the server) of the service and a registry that supports the
transactions. The Figure A.3shows how the Web service is executed.

First both, the requester and the provider must become known to each other
and second the interaction among both will happen. The provider should �rst
advertise itself in the registry and then it is available for the requesters. The
provider and the requester should be agree about the semantics and the service
description and when they are agree in the way the communication will be the
actors start to exchange messages in order to perform the service.

A.2 Semantic Web Services

As we have seen in the previous section Web Services are program-to-program
interaction that o�ers dynamic integration contents but in the main activities
that a Web Service should support human interaction is required. Also, Web

108

Appendix A. (Semantic) Web Services

Services architecture does not provide any mechanism to extract the meaning
of the messages that have been exchanged by the Services involved in the trans-
action. Web Services architecture provides the technology for understanding the
messages but not the content of these messages. With Semantic Web Services
these lacks will be �xed.

Semantic Web Services are Web services with semantic information added.
With Semantic Web Services we join together two of the most important tech-
nologies in the actual Web, the Web Services explained in the previous section
and the Semantic Web, the next generation of Web, explained in Chapter 2.

A.2.1 Semantic Web Services Language Requirements

The SWSI language Committee has elaborated a list of requirements that a
Semantic Web Language needs to support the Semantic Web Services properties.
In the next lines a brief description of these requirements or recommendations
is presented. The following recommendations are present in [21] that is still a
draft waiting for the �nal approval.

The committee speci�es two di�erent requirements: functional requirements
and formalization. Functional requirements are these requirements that are
needed to support the interaction between di�erent Web Services. Also, the
functional requirements are divided in three sections:

• Advertising and matchmarking: A key concept for the use of a Service is
to discover this service. If the machine does not know anything about the
service this service is useless. The Semantic Web Language should allow to
publish and advertising this service in order to make it available for other
services. Also, the description should include the goals of the service, both
in the client side and in the server side. This is for not produce mistakes
between the services, to make sure that the services will get what they
need.

• Negotiation and contracting: The process of matchmarking could not be
enough and will not guarantee that the client can use the service. Several
problems like the customer needs certain type of requirements in order to
complete the transaction may appear. To solve this problem it is needed to
make sure that the client can indeed use the service and this is the purpose
of the negotiation ad contracting requirements. The contracts may require
behavioral, process-like aspects which should describe what the service will
do in response to certain actions.

• Process modeling: One of the key concepts within Web Services is the
composition of several Web Services inn order to create a new service.
The Semantic Web Service Language should provide elements to facilitate
this process modeling, the construction of a new service based in others.

• Process enactment: The client must be able to monitor what is happen-
ing when the process is running, if the process will �nish in a successful

109

A.2. Semantic Web Services

way and if will return the desired solution. The language should provide
elements to track the services.

Functional requirements are intended to help identify the formalisms that
can adequately support the functional requirements. Also, some requirements
are needed like general language requirements and process modeling require-
ments.

110

Appendix B

The Semiotic Quality Framework

In order to evaluate the Web representation languages, the Semiotic Quality
Framework (SQF) [19], [35], a model quality framework consisting of �ve semi-
otic factors of quality modelling languages is chosen. The framework has three
main characteristics that make it well-suited as an evaluation instrument 1) it
distinguish between goals and means separating what to achieve from how, 2)
it is closely related to linguistics and semiotic concepts, and 3) it is based on a
constructivist world-view, the framework recognizes that models are build from
interaction between the designer and the user. The main model of the semiotic
quality framework is as follows.

A - Audience refer to the individual, Ai, organisational, As, and technical
actors, At who relate to the model. This includes both human participants
and arti�cial actors.

K - Participant knowledge is the explicit knowledge that is relevant for the
audience A. This is the combined knowledge of all participants in the
project.

L - Language extension is what can be represented according to the graph-
ical symbols, vocabulary and syntax of the language; the set of all state-
ments that may be informal Ai, semi-formal As, or formal Af.

M - Model externalization is the set of all statements in an actor�s model
of a part of a perceived reality written in a language L.

I - Social actor interpretation is the set of all statements which the exter-
nalised model consists of, as perceived by the social audience Ai and As.

T - Technical actor interpretation is all the statements in the conceptual
model L as they are interpreted by the technical audience At.

D - Modelling domain is the set of all statements that can be stated about
a particular situation.

The framework evaluates the physical, empirical, syntactic, semantic, prag-
matic, perceived semantics, social and knowledge quality; it evaluates the quality
of conceptual models, modelling environments, and modelling languages. This
work focuses on the evaluation of the Web representations as modelling lan-
guages.

B.1. Adapted appropriateness of languages

B.1 Adapted appropriateness of languages

The Semiotic Quality Framework consists of �ve quality factors, called ap-
propriateness namely, Domain Appropriateness (DA), Participant Knowledge
Appropriateness (PAK), Knowledge Externalizability Appropriateness (KEA),
Comprehensibility Appropriateness (CA), and Technical Actor Interpretation
Appropriateness (TAIA). Here we modify the DA as in [14], as follows. DA
covers seven perspectives for languages: 1) Structural Perspective refers to the
static structure, classes and properties, 2) Functional Perspective refers to the
processes, activities, and transformations, 3) Behavioural Perspective refers to
the states and transitions between them, 4) Rule Perspective refers to the rules
for certain processes, activities, and entities, 5) Object Perspective refers to the
resources, processes and classes, 6) Communication Perspective refers to the
language actions, meaning and agreements, and 7) Actor and Role Perspective
refers to the actor, role, society and organisation.

With the modi�cation of the DA we acquire the elements needed for
analysing the most practical features of the languages. With the PKA we mea-
sure the knowledge of the user. With the KEA we analyse if the language pro-
vides enough elements to represent the domain model speci�ed. With CA we
analyse if the language is consistent enough and provides clear elements for mod-
elling the domain, and with TAIA we analyse if the language provides enough
features for allowing automatic reasoning, the key concept in our investigation.
The quality factors will be further developed in the next section.

112

Appendix C

The Tool: Protégé 2000

The tool used to design the di�erent ontologies in the three languages mentioned
in the previous chapters is Protégé 2000. This tool enables the user the creation
of ontologies and also can be used as knowledge-based editor. Protégé is devel-
oped by the Stanford Medical Informatics at the Stanford University School of
Medicine.

The tool is available at http://protege.stanford.edu as free software under
the open source Mozilla Public License. Also, you can download various plugging
that will enable Protégé to develop di�erent kinds of projects. Protégé 2000 has
been developed in Java.

C.1 Why Protégé 2000

We have selected the tool Protégé 2000 partly due to it is very easy to use. This
is mainly because of its screen interface and also because it is highly con�gurable
and you can download many plug-in from the Protégé web site. For example,
Protégé 2000 easily supports editing all the three languages that are part of the
study.

The easy of use originates from the graphic interface. One you run Protégé
2000 you will se the initial screen that o�ers you the possibility of creating a new
project, Figure C.1 (also you can select the format to save this project RDF(S),
OWL, database or just plain text) or open a previously created project. This
screen doesn't have any particular option but once initiated the tool we will
see that it can o�er many options, also we will be capable of creating our own
ontologies and administrating knowledge-based systems.

113

C.1. Why Protégé 2000

Once Protégé 2000 is initiated with a new project or with an existing project
we can see a tab division of Protégé that includes a Class tab, Slots Tab, Forms
Tab, Instances Tab and Queries Tab.

Figure C.1: Create Project

C.1.1 Class Tab

Class Tab The process of create a class it is easy as illustrated in Figure C.2.
You only have to click in the super class THING (on the left of the screen) and
the click the C button situated on the left of the screen, on top of the classes
screen. Then we will see on the right of the screen that a new screen is open
and we will proceed to full the properties of the class.

Figure C.2: Classes Tab

It is also possible create classes with inheritance from a previously created
class from the THING metaclass. The process is the same as create a class from
THING. The super classes of one class are indicated in a dialog situated on the
left down of the main screen.

The easy of creation classes is extended to the modi�cation of the relations

114

Appendix C. The Tool: Protégé 2000

created because if it is necessary to make any modi�cation to an inheritance
relationship the only thing needed to make that is to drag the class to the class
that will its parent, for example THING.

It is also possible to add to the class's information about them like some
documentation, constraints or assign a di�erent role. To make that the only
necessary is to check the dialogs on the top right of the main screen having
selected one class.

C.1.2 Slots Tab

In order to create a slot the same process as the used for creating a class is
used. Once selected the class in the classes tab it is only necessary to click on
the C button on the left screen of the main window of Protégé 2000. Then it
will appear a screen with the attributes of the slot as depicted in Figure C.3.

Figure C.3: Slots Tab

There is also a tab on the right of the classes tab and there is a list of all
slots created. You can also create the attributes there and assign super slots of
one attribute like with the classes, the domain where the slot will be applied.
We can add facets into the slots for expressing information about those slots.

C.1.3 Forms Tab

When the Form tab is selected it is possible to see on the left of the screen
the list of classes that have been created with a di�erent icon. When a class is
selected it is possible to see on the right of the screen the picture that represents
the �elds of the slot that had been created before. It is possible to select each
�eld and modify its di�erent visual properties and put them into the best place.

C.1.4 Instances Tab

In the instances tab Protégé 2000 allow us to create instances from the classes
created before. For creating instances it is only necessary to select the main class
of the instance of it and then click the C button on the middle of the screen.

115

C.2. Core of Protégé 2000

Once the instance is created it is possible to �ll in the di�erent slots of the class,
also creating new instances if one slot is an instance. Then a new window will
be opened with the slots of the new instance. The new instance will be stored
in the instances screen.

C.1.5 Queries Tab

In the last tab of Protégé 2000 we can make queries to the knowledge base
created. It is possible to access some �elds for con�guring the query. It is possible
to specify the class, the slots and some properties. The result will be shown on
the results screen, on the left of the screen. The queries also can be stored in a
database of queries. An example of this feature is shown in Figure C.4.

Figure C.4: Queries Tab

C.2 Core of Protégé 2000

We have seen the basics functionalities of Protégé 2000, creating our knowledge
model from the initial constructs of Protégé but it is also possible to extend
these basic constructs for generating out own metaclasses or our own metaslots.

Metaclasses are templates for classes in the same way that classes are tem-
plates for instances [24]. In order to de�ne our own metaclasses we have to create
a new class from the abstract class META-CLASS and de�ne the properties that
the new class should have. To create metaslots the same process is needed, just
select the META-CLASS and create a new class for the new slot template.

For creating a new editor for our language it is necessary to de�ne the new
kinds of classes and attributes in Protégé. In order to do that there are some
general considerations about the similarities and di�erences between the tool
and the new language. Four categories are identi�ed [24].

• Concepts that are exactly the same in the two languages

• Concepts that are the same but expressed di�erently in the two languages

• Concepts in the language of choice that do not have an equivalent in
Protégé 2000

• Concepts that Protégé 2000 support and the language of choice does not.

116

Appendix C. The Tool: Protégé 2000

Depending of the concepts of the language that we will de�ne in Protégé we
should create the elements in the tool. When it is necessary to save the work
Protégé will save it in the Protégé format, but if one wants to save the work in
another format one should to create a back-end plug-in. An example of back-end
plug-gin is the TM-Tab plug-in used for creating of the ontology in Topic Maps.
This plug-in adds one tab for extracting the ontology created with Protégé to
the XTM format.

C.3 Protégé 2000 Plug-in

You can create plug-in using the steps speci�ed before, but there are many plug-
in created for users. These plug-in are available at the Protégé Web site and are
classi�ed in the Topics related. The examples of plug-in are:

OWL Support Load, save, and edit Web Ontology Language (OWL) ontolo-
gies in Protégé.

ezOWL Tab Widget Visual OWL (Web Ontology Language) editor for Pro-
tégé.

RDF Storage Backend Create, import, and save RDF(S) �les in Protégé.

Dublin Core Representation of Dublin Core metadata in Protégé.

DAML+OIL Storage Backend Create and edit DAML+OIL ontologies
with Protégé.

UML Storage Backend Store a Protégé knowledge base in UML.

XMI Storage Backend Store a Protégé knowledge base as XMI �les. XMI is
a standard format for metadata exchange supported by OMG, the group
that is responsible for standards such as UML, CORBA and the Common
Warehouse Metamodel.

UMLS Tab Widget Search the Uni�ed Medical Language System (UMLS)
and annotate your current Protégé ontology with terms, concept ids, syn-
onyms, relations, and other information from UMLS.

In order to use any of the Protégé 2000 Plugging you have to go activate it
in the screen File-Con�gure. Figure C.5 shows the Plug-in selection screen.

117

C.3. Protégé 2000 Plug-in

Figure C.5: Plugging activation

C.3.1 OWL Plugging

OWL plug-in enables the user to create easily with Protégé 2000 ontolo-
gies in the Ontology Web Language. The plug-in can be downloaded from
http://protege.stanford.edu/plugins/owl/ and o�er many features. The Protégé
2000 OWL plug-in enables you to[17]:

• Load and save OWL and RDF ontologies

• Edit and visualize OWL classes and their properties

• De�ne logical class characteristics as OWL expressions

• Execute reasoners such as description logic classi�ers and

• Edit OWL individuals for Semantic Web markup

118

Appendix C. The Tool: Protégé 2000

Figure C.6: OWL Plugging for Protege

In the Figure C.6 the main screen of Protégé 2000 with OWL is shown. We
can see more features than in the original screen of Protégé 2000. These features
are concentrated in the classes tab. In the middle section, we can create new
restrictions in the selected class domain. There are two kinds of restrictions,
Necessary and Su�cient and Necessary. We can select one of these two and
click the R button for creating one new restriction or C button to add one
restriction previously created. The restrictions will be applied to the properties
of the class and the plug-in o�ers one editor in order to create them. With this
editor we can create easily restrictions to our properties. The editor allows us
to navigate between classes or properties and create new properties if necessary.
We can also create the existential or universal restrictions pushing a button.
The restriction that has been created is parsed in every moment.

In the OWL section in the main menu we can access to more OWL features.
It is possible to check which OWL sublanguage (Lite, DL or Full) are we using
in the ontology, run ontology test to check if our ontology language is correct,
con�gure the parameters of the test, check the consistency and so forth.

Other new feature is in the properties tab, we can create object properties
for creating relationships between classes. Also, in the plug-in there is a new
tab, Metadata Tab that will allow us to specify the namespaces used in our
ontology.

119

C.3. Protégé 2000 Plug-in

C.3.2 ezOWL Plug-in

ezOWL Plug-in is a Visual OWL (Web Ontology Language) Editor for
Protégé 2000. This plug-in enables the user to create graphically ontolo-
gies with OWL. In combination with the OWL extension for Protégé 2000
we can create easily the ontologies. The plug-in can be downloaded from
http://iweb.etri.re.kr/ezowl/index.html.

Figure C.7: ezOWL Plug-in for Protégé 2000

In the Figure C.7 we can see how an ontology is developed. On the right
section of the screen we can access to all the classes that have been crated and
put them into the diagram by dragging them to the design space. We can create
descriptions, relations, slots or restrictions in these classes by clicking one of the
buttons situated on the left of the design space.

We can adjust the size of the screen, redraw the design or move the classes to
the best position but it is disordered. If the ontology has more than ten classes
with restrictions and object properties between these classes the design screen
will be full of lines and it will be di�cult to navigate in the design.

120

Appendix C. The Tool: Protégé 2000

C.3.3 TMTab Plug-in

TMTab is a plug-in for Protégé that allows you to build an ontology which may
be exported as a topic map in XTM syntax. This plug-in is accessible on the
web page http://www.techquila.com/tmtab/index.html.

Figure C.8: TMTab Plug-in for Protégé 2000

As it is shown in the Figure C.8 there are only a few new characteristics in
Protégé but we can design our Topic Maps ontology easily. The web page of TM
Tab contains a brief description of the plug-in with a short tutorial for starting
to create your own ontology.

In the plug-in you can create all the elements of a Topic Map by creating
subclasses from Topic. To export the project to a XTM �le format it is necessary
to access the TMTab and choose the export �lename and the con�guration of
the project. Figure C.9 shows the tab.

Figure C.9: TMTab Plug-in for Protégé 2000

C.4 Concluding Remarks

In this chapter, we have studied the tool for creating ontologies and knowledge-
based editor. This tool o�er many functionalities, from the basics like class
creation or slots creation to most advanced features like de�ning the constructs
in order to create our own language in order to model it in Protégé.

We can download from the Protégé Web site several plug-in created in diverse
�elds of knowledge management like the Protégé Axiom Language (PAL) Tab
Widget, Semantic Web like the OWL extension1 or Software Engineering like

1http://protege.stanford.edu/plugins/owl/

121

C.4. Concluding Remarks

the UML Storage Backend2 and manuals, FAQs and more information about
the topic of Protégé 2000.

2http://protege.stanford.edu/plugins/uml/

122

Appendix D

Comparison Tables

These tables represent the analysis done to the transformation models. We com-
pare our models represented in the three Web ontology languages with the model
designed in UML.

D.1 Description of the Tables

The tables are divided in three sections. The �rst section contains the classes,
the second section contains the attributes and the third section contains the
relationships. The names are represented by C* for classes, A* for attributes
and R* for relationships where * can be a number (for example RDF(S)C1).

D.1.1 Legend of the tables

TelephoneNumber: LanguageC1, Person: LanguageC2, Company: LanguageC3,
Administration: LanguageC4, Human: LanguageC5, Information: LanguageC6,
Place: LanguageC7, Organization: LanguageC8, Coordinate: LanguageC9, Sub-
scription: LanguageC10, PostalCode: LanguageC11, Title: LanguageC12, Visit-
Card: LanguageC13, StreetNumber: LanguageC14, City: LanguageC15, Coun-
try: LanguageC16, Region: LanguageC17, Street: LanguageC18.

Attributes:
CityName: LanguageA1, Classi�edCode: LanguageA2, CountryName: Lan-

guageA3, DirectoryArea: LanguageA4, Entrance: LanguageA5, ExtraName:
LanguageA6, First: LanguageA7, Full: LanguageA8, Id: LanguageA9, Inter-
net: LanguageA10, Last: LanguageA11, Level: LanguageA12, Middle: Lan-
guageA13, Name: LanguageA14, Number: LanguageA15, PostalCodeAttr: Lan-
guageA16, PostBox: LanguageA17, RegionCode: LanguageA18, RegionName:
LanguageA19, SectionCode: LanguageA20, StreetName: LanguageA21, Street-
NumberAttr: LanguageA22, StreetNumbers: LanguageA23, Subdivision: Lan-
guageA24, TelAddress: LanguageA25, TextAfter: LanguageA26, TitleName:
LanguageA27, Type: LanguageA28, xCor: LanguageA29, yCor: LanguageA30.

Relationships:
BelongsPerson: LanguageR1, hasCities: LanguageR2, hasPerson: Lan-

guageR3, hasPostalCOde: LanguageR4, hasRegions: LanguageR5, hasStreet:
LanguageR6, hasStreetNumber: LanguageR7 ,hasSubscriptors: LanguageR8,

D.2. RDF(S) and UML Comparison Table

hasTelephoneNumber: LanguageR9, hasTitle: LanguageR10, hasVisitCard: Lan-
guageR11, hasWorkers: LanguageR12, isInaCOuntry: LanguageR13, isInaRe-
gion: LanguageR14, isInCIty: LanguageR15, isInStreet: LanguageR16, isSub-
scribed: LanguageR17, worksFor: LanguageR18.

The rows represent if a concept is represented or not, speci�ed or not, what
cardinality does the concept have and if this concept has the same restrictions
in both languages or not. The columns represent the concepts in the ontology
in each Web ontology language. These concepts are classes, attributes and rela-
tionships. In each cell we can �nd 1 if the concept ful�ls the property indicated
in the column, 0 if not, same if it has the same restrictions,more if the analysed
language has added more restrictions to the representation, - if it is no applicable
and the type of cardinality.

D.2 RDF(S) and UML Comparison Table

Represented Speci�ed Cardinality Restrictions
RDF(S)C1 1 0 * same
RDF(S)C2 1 0 * same
RDF(S)C3 1 0 * same
RDF(S)C4 1 0 * same
RDF(S)C5 0 0 * -
RDF(S)C6 0 0 * -
RDF(S)C7 0 0 * -
RDF(S)C8 1 0 * same
RDF(S)C9 1 0 1 same
RDF(S)C10 1 0 1 same
RDF(S)C11 0 1 1 -
RDF(S)C12 1 0 * same
RDF(S)C13 0 0 * -
RDF(S)C14 0 1 1 -
RDF(S)C15 1 0 1 same
RDF(S)C16 1 0 * same
RDF(S)C17 1 0 * same
RDF(S)C18 1 0 * same

RDF(S)A1 1 0 1 same
RDF(S)A2 1 0 1 none
RDF(S)A3 1 0 1 same
RDF(S)A4 1 0 1 none
RDF(S)A5 1 0 1 none
RDF(S)A6 1 0 1 none
RDF(S)A7 1 0 1 none
RDF(S)A8 1 0 1 same
RDF(S)A9 1 0 1 same

124

Appendix D. Comparison Tables

RDF(S)A10 1 0 1 none
RDF(S)A11 1 0 1 none
RDF(S)A12 1 0 1 none
RDF(S)A13 1 0 1 none
RDF(S)A14 1 0 1 same
RDF(S)A15 1 0 1 same
RDF(S)A16 0 1 1 none
RDF(S)A17 1 0 1 none
RDF(S)A18 1 0 1 none
RDF(S)A19 1 0 1 same
RDF(S)A20 1 0 1 none
RDF(S)A21 0 1 1 same
RDF(S)A22 1 0 1 none
RDF(S)A23 1 0 1 none
RDF(S)A24 1 0 1 none
RDF(S)A25 1 0 1 same
RDF(S)A26 1 0 1 none
RDF(S)A27 1 0 1 same
RDF(S)A28 1 0 1 none
RDF(S)A29 1 0 1 none
RDF(S)A30 1 0 1 none

RDF(S)R1 0 1 1 none
RDF(S)R2 0 1 1 none
RDF(S)R3 0 1 1 none
RDF(S)R4 0 0 1 none
RDF(S)R5 0 1 1 none
RDF(S)R6 0 1 1 none
RDF(S)R7 0 0 1 none
RDF(S)R8 0 1 1 none
RDF(S)R9 0 1 1 none
RDF(S)R10 0 1 1 none
RDF(S)R11 0 0 1 none
RDF(S)R12 0 1 1 none
RDF(S)R13 0 1 1 none
RDF(S)R14 0 1 1 none
RDF(S)R15 0 1 1 none
RDF(S)R16 0 1 1 none
RDF(S)R17 0 1 1 none
RDF(S)R18 0 1 1 none

Table D.1: RDF(S)-UML comparison model

The results in the Table D.1 are the following. Six classes are not represented

125

D.3. OWL and UML Comparison Table

within UML but in RDF(S). That means 33% of classes can not be represented
in UML but in RDF(S). Two attributes can not be represented in UML. That
means 6,66% of attributes can not be represented in UML but in RDF(S). None
of the relationships are represented in UML but in RDF(S).

In the speci�cation section 11% of classes are not speci�ed in RDF(S) but in
UML. 6,66% of attributes are speci�ed in UML and 83,33% of relationships in
the RDF(S) representation are speci�ed in UML. The cardinality is the same in
both representations, RDF(S) and UML when the attribute, class or relationship
is present in both representations. The restrictions are the same when the class,
attribute or relationship is present, required when in both representations the
restriction is required and none when the restriction can not be applied in UML.

D.3 OWL and UML Comparison Table

Represented Speci�ed Cardinality Restrictions
OWLC1 1 0 * more
OWLC2 1 0 * more
OWLC3 1 0 * more
OWLC4 1 0 * more
OWLC5 0 0 * -
OWLC6 0 0 * -
OWLC7 0 0 * -
OWLC8 1 0 * more
OWLC9 1 0 1 same
OWLC10 1 0 1 same
OWLC11 0 1 1 same
OWLC12 1 0 * same
OWLC13 0 0 * -
OWLC14 0 1 1 more
OWLC15 1 0 1 same
OWLC16 1 0 * same
OWLC17 1 0 * more
OWLC18 1 0 * more

OWLA1 1 0 1 same
OWLA2 1 0 1 same
OWLA3 1 0 1 same
OWLA4 1 0 1 same
OWLA5 1 0 1 same
OWLA6 1 0 1 same
OWLA7 1 0 1 same
OWLA8 1 0 1 same
OWLA9 1 0 1 same
OWLA10 1 0 1 same

126

Appendix D. Comparison Tables

OWLA11 1 0 1 same
OWLA12 1 0 1 same
OWLA13 1 0 1 same
OWLA14 1 0 1 same
OWLA15 1 0 1 same
OWLA16 0 1 1 same
OWLA17 1 0 1 same
OWLA18 1 0 1 same
OWLA19 1 0 1 same
OWLA20 1 0 1 same
OWLA21 0 1 1 same
OWLA22 1 0 1 same
OWLA23 1 0 1 same
OWLA24 1 0 1 same
OWLA25 1 0 1 same
OWLA26 1 0 1 same
OWLA27 1 0 1 same
OWLA28 1 0 1 same
OWLA29 1 0 1 same
OWLA30 1 0 1 same

OWLR1 0 1 1 same
OWLR2 0 1 1 same
OWLR3 0 1 1 same
OWLR4 0 0 1 -
OWLR5 0 1 1 same
OWLR6 0 1 1 same
OWLR7 0 0 1 same
OWLR8 0 1 1 same
OWLR9 0 1 1 same
OWLR10 0 1 1 same
OWLR11 0 0 1 -
OWLR12 0 1 1 same
OWLR13 0 1 1 same
OWLR14 0 1 1 same
OWLR15 0 1 1 same
OWLR16 0 1 1 same
OWLR17 0 1 1 same
OWLR18 0 1 1 same

Table D.2: OWL-UML comparison model

The results in the Table D.2 are the following. Six classes are not represented
within UML but in OWL. That means 33% of classes can not be represented

127

D.4. Topic Maps and UML Comparison Table

in UML but in RDF(S). Two attributes can not be represented in UML. That
means 6.66% of attributes can not be represented in UML but in OWL. None
of the relationships are represented in UML but in OWL.

In the speci�cation section 11.11% of classes are speci�ed in OWL and the
rest of the classes are speci�ed in UML. 6.66% of attributes are speci�ed in
UML and 93.33% are not speci�ed in OWL. 83.33% of relationships in the
OWL representation are speci�ed in UML and only 16.66% are speci�ed in
OWL. The cardinality is the same in both representations, OWL and UML
when the attribute, class or relationship is present in both representations. The
restrictions are the same when the class, attribute or relationship is present,
required when in both representations the restriction is required and none when
the restriction can not be applied in UML. Here are more "none" than others.
This is because we specify in OWL the "disjoint" restriction and it can only be
speci�ed in OWL.

D.4 Topic Maps and UML Comparison Table

Represented Speci�ed Cardinality Restrictions
TopicMapsC1 1 0 * same
TopicMapsC2 1 0 * same
TopicMapsC3 1 0 * same
TopicMapsC4 1 0 * same
TopicMapsC5 0 0 * -
TopicMapsC6 0 0 * -
TopicMapsC7 0 0 * -
TopicMapsC8 1 0 * same
TopicMapsC9 1 0 1 same
TopicMapsC10 1 0 1 same
TopicMapsC11 0 1 1 -
TopicMapsC12 1 0 * same
TopicMapsC13 0 0 * -
TopicMapsC14 0 1 1 -
TopicMapsC15 1 0 1 same
TopicMapsC16 1 0 * same
TopicMapsC17 1 0 * same
TopicMapsC18 1 0 * same

TopicMapsA1 1 0 1 same
TopicMapsA2 1 0 1 same
TopicMapsA3 1 0 1 same
TopicMapsA4 1 0 1 same
TopicMapsA5 1 0 1 same
TopicMapsA6 1 0 1 same
TopicMapsA7 1 0 1 same

128

Appendix D. Comparison Tables

TopicMapsA8 1 0 1 same
TopicMapsA9 1 0 1 same
TopicMapsA10 1 0 1 same
TopicMapsA11 1 0 1 same
TopicMapsA12 1 0 1 same
TopicMapsA13 1 0 1 same
TopicMapsA14 1 0 1 same
TopicMapsA15 1 0 1 same
TopicMapsA16 0 1 1 same
TopicMapsA17 1 0 1 same
TopicMapsA18 1 0 1 same
TopicMapsA19 1 0 1 same
TopicMapsA20 1 0 1 same
TopicMapsA21 0 1 1 same
TopicMapsA22 1 0 1 same
TopicMapsA23 1 0 1 same
TopicMapsA24 1 0 1 same
TopicMapsA25 1 0 1 same
TopicMapsA26 1 0 1 same
TopicMapsA27 1 0 1 same
TopicMapsA28 1 0 1 same
TopicMapsA29 1 0 1 same
TopicMapsA30 1 0 1 same

TopicMapsR1 0 1 1 same
TopicMapsR2 0 1 1 same
TopicMapsR3 0 1 1 same
TopicMapsR4 0 0 1 same
TopicMapsR5 0 1 1 same
TopicMapsR6 0 1 1 same
TopicMapsR7 0 0 1 same
TopicMapsR8 0 1 1 same
TopicMapsR9 0 1 1 same
TopicMapsR10 0 1 1 same
TopicMapsR11 0 0 1 same
TopicMapsR12 0 1 1 same
TopicMapsR13 0 1 1 same
TopicMapsR14 0 1 1 same
TopicMapsR15 0 1 1 same
TopicMapsR16 0 1 1 same
TopicMapsR17 0 1 1 same
TopicMapsR18 0 1 1 same

Table D.3: Topic Maps-UML comparison model

129

D.4. Topic Maps and UML Comparison Table

The results in the Table D.3 are the following. Six classes are not represented
within UML but in Topic Maps. That means 33% of classes can not be repre-
sented in UML but in RDF(S). Two attributes can not be represented in UML.
That means 6.66% of attributes can not be represented in UML but in Topic
Maps. None of the relationships are represented in UML but in Topic Maps.

In the speci�cation section 11.11% of classes are speci�ed in Topic Maps
and the rest of the classes are speci�ed in Topic Maps. 6.66% of attributes are
speci�ed in UML and 93.33% are not speci�ed in Topic Maps. 83.33% of re-
lationships in the Topic Maps representation are speci�ed in UML and only
16.66% are speci�ed in Topic Maps. The cardinality is the same in both rep-
resentations, Topic Maps and UML when the attribute, class or relationship is
present in both representations. The restrictions are the same when the class,
attribute or relationship is present, required when in both representations the
restriction is required and none when the restriction can not be applied in UML.

130

Appendix E

Interview

The process for creating this interview has been based in [32]. To write the
structure and the questions of this interview we decided to search for a good
theoretical basis before start. We used [32] and as it is indicated in the book
there are mainly three types of interview: fully structured interview (predeter-
mined questions, with �xed words in determinate moments of the interview),
semi structured interviews (predetermined questions but with a more �exible
disposition of words) and unstructured interviews (without any kind of struc-
ture). We selected the second type of interview because the other two do not �t
in our goals. We need some �exibility to allow the person interviewed to tell to
us all his knowledge but we need some kind of structure in the interview.

The question focus will be the databases. All the questions will be related to
our databases. We will mainly make direct questions to know the information
we need but if it is necessary we will be �exible when asking to our interviewed.
The core of the interview is shown in the following lines. The questions are
asked by us (We in the interview) and the answers come from the Invenio
domain expert Anders Kofod-Petersen (Invenio Expert IE).

We: Our �rst question is, do you have the design model for the databases?
I mean a graphical schema or something like that?

IE: No, we bough the databases, just the data from another company. We
did not receive a model. We only got the DTD for the Swedish database.

We: We have been looking at the data you gave to us and we have some
questions about it. First of all, this design is a bit messy. Where did you get
this database?

IE: The company bough the databases to a company dedicated to print
directory services. Probably the databases are designed for this purpose.

We: We have printed several examples of the data stored in these databases;
can you have a look at them?

IE: Yes, it seems what I have told you. This format seems to be for printing
a directory service. Like a "yellow pages" or something like that. At least if we
look at these examples of both databases.

We: Can we start to look at the structure of the databases? We have several
questions about the structures and attributes of the databases. First the Swedish
one. What is the Publications structure for?

IE: It seems the main structure of the database. It contains all the Publica-
tion.

We: And Publication? What is it for?
IE: Is the structure for storing the elements of each region. Publication and

its attributes are for representing the people who lives in this region.
We: Then, Placement and Row are structures that contain all the informa-

tion related to a region.
IE: Yes, Placement seems to be the elements that identify a region, this is

because it can only have one in each Publication and we can have several Row.
We: If we have understood correctly, Row represents one person.
IE: Not exactly. Row represents one set of addresses which belong to the

same person. Each Row can have assigned several telephone numbers, but to
the same person. Or in one Row has several telephone numbers, with several
addresses and several names, but all related.

We: Where the telephone number is represented?
IE: It is represented in the TelAddress attribute.
We: What is the Subscription structure for?
IE: It is for indicate the kind of subscription to the company. You can �nd

there the telephone number, maybe an email.
We: What are Name and ExtraName for?
IE: They represent a Person. ExtraName contains some extra names, aliases

or something like that for the person represented in Name.
We: Does Address represent the data of the address of the person represented

in the Name class?
IE: Yes, it does. It contains all the information of the address of one person.
We: What is the structure Coordinate for?
IE: It is for representing the coordinates of the addresses we have.
We: But, there is no data in this structure in the database.
IE: This is because it is a proposed extension to the database that it has not

been developed yet.
We: We have �nished with our questions about the Swedish database. Let's

start with the Norwegian database. We do not have any kind of schema, model
or design here. We will start asking for the attributes. What is each attribute
for?

IE: If we look at this example of data from the database we can guess the
meaning of each attribute.

We: Ok, we can suppose that the �rst attribute is the identi�er of the each
company, because we have not seen any person name here. And the second one
is the name of the company.

IE: Exactly, �rst the Id and second the name.
We: What is the third attribute?
IE: It seems a subdivision of the company. For example, university and

faculty inside this university.

132

Appendix E. Interview

We: What is the fourth attribute?
IE: It is a Post O�ce box.
We: Can you explain us the rest of the attributes of the database?
IE: Yes. The �fth attribute is the zip code for the post o�ce box. The next

one is the city where this name is. The seventh is the street where the company
is and the next one is the street zip code. The ninth attribute is the region and
the next two attributes are telephone numbers assigned to this company. The
twelfth and the thirteenth attributes are codes for identifying the region and
the last one is the classi�cation of the company.

We: What kind of classi�cation?
IE: It is divided in two. A code for identifying the kind of activity of the

company and a short description of this activity.
We: We have �nished with our questions about the databases. Do you have

any recommendation for the next steps we have to do?
IE: The most important question is the design of the ontologies. This should

center the approach to the case study. The databases are only data and you can
only use it to extract data. The data will become in information and knowledge
in the ontology. Therefore the ontology is the most important. But of course we
need the data to obtain the knowledge we want.

133

Appendix F

The Thesis CD

In this chapter, we indicate the contents of the CD that is attached to the
documentation. In this CD it is possible to �nd all the necessary �le for running
and creating the ontologies.

This CD contains:

readme.txt: this file

Directory Documentation:

Contains the directory:

\documentation\References: Inside this directory are stored

most of the references used.

Contains the files:

\documentation\thesis.pdf: Main document of this master's

thesis.

\documentation\planning.mpp: Planning of the master's thesis.

Directory Ontologies:

Contains the subdirectories:

\Ontologies\MergedDB:

Contains the subdirectories:

\Ontologies\MergedDB\OWL

\Ontologies\MergedDB\RDFS

\Ontologies\MergedDB\TopicMaps

In each subdirectory there are the corresponding files for the

Protege projects in each language.

The TopicMaps directory also contains the TMMerged.xtm that

contains the ontology in XTM format.

The OWL directory also contains the OWLMergedDBinferred.owl

which contains the inferred version of the OWL ontology.

\Ontologies\SweOWL

Contains the initial OWL ontology for the Swedish database.

\Ontologies\SweRDF

Contains the initial RDFS ontology for the Swedish database.

\Ontologies\SweTopicMaps

Contains the initial TopicMaps ontology for the Swedish database.

Directory Parser:

Contains the files:

Conversion parsers for the Norwegian database:

\Parser\OWLParser1Nor.java

\Parser\RDFNorMerged.java

\Parser\TMNorMerged.java

Conversion parsers for the Swedish database:

\Parser\MergedParser.java

\Parser\RDFMerged.java

\Parser\TMMerged.java

An example of the Norwegian database in the ontology format

after the parsing process:

\Parser\NorOWLontoparsed.txt

\Parser\NorRDFontoparsed.txt

\Parser\NorTopicMapsontoparsed.txt

An example of the Swedish database in the ontology format

after the parsing process:

\Parser\RDFontoparsed.txt

\Parser\OWLontoparsed.txt

\Parser\TopicMapsontoparsed.txt

Usage of the parser:

For compiling them: javac parsername.java

For running them: java parsername and follow the instructions.

The output is in the directory c:\temp

Directory tools:

136

Appendix F. The Thesis CD

Contains the files:

\Tools\install_protege.exe (installation file for Protege)

\Tools\tmtab.zip (Topic Maps plugging for Protege)

Directory databases:

Contains the files:

\databases\norwegian.txt (sample of the data stored in the

Norwegian database)

\databases\swedish.txt (sample of the data stored in the

Swedish database)

Note: once the output files are generated from the conversion

parsers it is necessary to copy and paste the data parsed into the

ontology files. Be careful not to delete the definition of the

ontology in each format.

137

Appendix G

The Project Planning

In this chapter, we are going to explain the planning of our project. The planning
contains a Gantt diagram that shows the way of working during the semester.
It also shows some unexpected events and how we managed them. We started
the 24th of January and the initial idea was to deliver on 16th of June. Finally
we delivered the 30th of June because I had to return to Spain. My grandfather
died the 30th of April.

G.1 The Planning

We started our project by planning all the research process. We needed two
working days to do this task. After this task we had planned the project. We
left several free days because we thought the things may don't go like we want.
The next task planned was to make the interview to the domain expert of the
company and develop the initial design of the ontologies. We needed 10 working
days to do this. The interview needed most of the time because we had to choose
correctly the questions, how to do it and select a proper date for the interview.
The initial design for the models needed less time because we had an initial view
of the problem from the last semester project [8].

Once we had the initial model we started to develop the conversion parsers
for translating the data represented in the original databases into the ontology
format of each Web ontology language. To do this we needed 17 working days.
We needed two working days to plan the way for developing the conversion
parsers and �ve days for each parser. This was our initial planning, but we
modify the time for each parser. Topic Maps was more di�cult than the others,
but we managed to get everything on time. We used less time for the RDF(S)
and OWL conversion parsers.

Once we had the conversion parsers we saw that the data was quite similar
and we can merge both databases. We started with the new design and we
�nished it in �ve days, as we planned.

After the new design, we analysed OWL-S, the Web services extension for
OWL. We planned to need about 12 working days. We achieve this objective in
this time because we already know how to analyse the languages and the time
we will need.

We saw the parsers didn't work properly, mainly the Topic Maps parser

G.1. The Planning

and we had to add ten more working days for improving them. Once we had
the parsers completed we started to test the ontologies. The 25th of April I re-
ceived sad news. My grandfather was dying. I had to return to Spain. I returned
from Spain the 5th of May. Because of this reason I extended the deadline for
delivering the master's thesis. In the Gantt diagram this is not shown.

We planned 15 days for improving and testing the ontologies. We used a bit
more due to we had to modify and test again the conversion parser. We needed 15
days to �nish the documentation. Reports of all the tasks have been done during
all the tasks. Five days were used to try to access the databases via RACER
and PAL tab was unsuccessful. The eastern holidays are not represented in the
diagram. With these holidays, the days for the RACER test and the travel to
Spain we arrive to the 25th of June. We have to count the weekends and we get
the full planning. The planning is shown in Figure G.2 and Figure G.1.

Figure G.1: Planning tasks

Figure G.2: Gantt Diagram

140

Appendix G. The Project Planning

G.2 Concluding Remarks

We have seen in this chapter that to plan a project is a useful idea. It helps
to work when you need to and the planning tool helps to ful�l the objectives
on time. Of course always happen mistakes and unexpected situations and it is
important to know how to manage them.

141

	Abstract
	Sammendrag
	Sinopsis
	Acknowledgements
	List of Figures
	List of Tables
	I Introduction to the Case Study
	Introduction
	Background
	Problem
	Objectives
	Scope
	Technological Scope
	Way of Working
	Expected Results
	Outline of the Report

	The Semantic Web
	The Semantic Web
	The Semantic Web Structure
	Semantic Web Applications
	Concluding Remarks

	Enquiry for the Problem
	Our Problem
	The process of enquiry
	Need for a Parser
	Similar Approaches
	Concluding Remarks

	II Theoretical Approach to the Case Study
	Overview of languages
	Overview of Resource Description Framework (RDF)
	Overview of Web Ontology Language (OWL)
	Overview of Topic Maps
	Overview of OWL-S
	Other Languages
	Concluding Remarks

	Comparative Evaluation of Ontologies
	RDF(S) Evaluation
	OWL Evaluation
	Topic Maps Evaluation
	OWL-S Analysis
	Concluding Remarks

	Comparison of languages
	Comparison of the languages
	Concluding Remarks

	III Practical Approach to the Case Study
	Conversion Parsers
	The conversion parser
	Structure of the Parsers
	Common concepts
	Differences between conversion parsers
	Concluding Remarks

	Design of the Models
	Need of a new design
	Extracted Model
	New Ontology Design
	Restrictions and OWL
	Concluding Remarks

	Analysis of the Transformation
	Information need based evaluation
	Meaning based evaluation
	Concluding Remarks

	IV Conclusions and Appendixes
	Conclusions and future work
	Conclusions
	Future Work

	Bibliography
	(Semantic) Web Services
	Web Services
	Semantic Web Services

	The Semiotic Quality Framework
	Adapted appropriateness of languages

	The Tool: Protégé 2000
	Why Protégé 2000
	Core of Protégé 2000
	Protégé 2000 Plug-in
	Concluding Remarks

	Comparison Tables
	Description of the Tables
	RDF(S) and UML Comparison Table
	OWL and UML Comparison Table
	Topic Maps and UML Comparison Table

	Interview
	The Thesis CD
	The Project Planning
	The Planning
	Concluding Remarks

