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Project text: A node failure in a multi-node shared nothing DBMS reduces the
system’s fault-tolerance level. It is therefore essential, for a DBMS providing high-
availability based on a shared nothing platform, to be able to efficiently create a new
fragment replica after a node failure. This project should address different methods
for creating a new consistent fragment replica using a catch-up production method.
The project should evaluate the completion time of the methods, under different
conditions, on each of the nodes involved in the process. If possible a simulation of
the network speed’s effect on the methods should be performed.

i



Summary

High availability in database systems is achieved using data replication and online
repair. On a system containing 2 replicas of each fragment, the loss of a fragment
replica due to a node crash makes the system more vulnerable. In such a situation,
only one replica of the fragments contained in the crashed node will be available until
a new replica is generated. In this study we have investigated different methods of
regenerating a new fragment replica that is up to date with the transactions that
have happened during the process of regenerating it. The objective is to determine
which method performs the best in terms of completion time at each of the nodes
involved, in different conditions.

We have investigated three different methods for sending the data from the node
containing the primary fragment replica to the node being repaired, and one method
for catching-up with the transactions executed at the node containing the primary
fragment replica during the repair process. These methods assume that the access
method used by the DB system is B-trees. The methods differ by the volume of
data sent over the network, and by the work (and time) needed to prepare the data
prior to sending. They consist respectively in sending the entire B-tree, sending the
leaves of the B-tree only, and sending the data only; the latter has two alternatives
on the node being repaired, depending on whether the data is being inserted into a
new B-tree, or whether the B-tree is being regenerated from the leaf-level and up.

This study shows that the choice of recovery method should be made considering
the network configuration that will be used. For common network configurations
like 100Mbits or lower, it is interesting to use methods that minimize the volume of
data transfered. For higher network bandwidth, it is more important to minimize
the amount of work done at the nodes.
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Introduction

ClustRa is a telecom database management system designed to provide high avail-
ability, high throughput and real-time response. It uses a 2-safe replication scheme
over two sites with independent failure modes, a novel declustering stategy, early
detection of failures with fast takeover, on-line self-repair, and on-line maintenance
[7], to achieve availability class 5.

The takeover and online self-repair capabilities, in particular, play a crucial role
in the high availability of this DBMS. Takeover allows the system to mask a node
failure, while online self-repair automatically reestablishes the fault tolerance level
of the system after a node failure.

The node recory algorithm used by ClustRa varies depending on the level of
corruption of the node. The recovery can either be done from main memory, from
disk or from the neighbor node. During the recovery of a fragment replica, operations
may have been executed to the fragment in the time interval during which the replica
was unavailable. In addition to performing a recovery of the replica, failed node must
also catch-up with these remaining operations [6]. Figure 1 illustrates a case where
recovery from the neighbor is performed.

Normal operation

Node
crash

Take
over

Node crash
recovery
started

Node
crash

recovery

Failed

Failed node crash
recovery detected

Non-blocking
fuzzy fragment

replication

Catch-up

Primary replica
Hot stand-by replica

Time

Figure 1: In the node crash recovery process, failure of the original mode during
recovery triggers the online self-repair on a spare node [6].
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2 INTRODUCTION

The study presented in this report examines three different methods for repro-
ducing lost replicas after a node failure, in ClustRa or other similar DBMS. The
objective is to determine which of the methods studied has the best performance in
terms of completion time at both nodes, for regenerating a new fragment replica and
catching-up with the operations executed during the recovery process. The methods
are evaluated under different conditions in terms of fill level of the B-tree, number
of operations executed on the fragment per second, size of the database and network
bandwidth. One of the methods is used in ClustRa, and a motivation for the project
was to examine whether other recovery methods could be implemented preferably.

The report is organized as follows. In Chapter 1, we give an overview of the
harware and DBMS architecture of ClustRa. All methods studied use B-trees as
access method, because that is the access method used by ClustRa. We present that
type of access method, and some of its variants that are relevant to the project, in
Chapter 2, together with a short introduction to transaction logging. The alternative
recovery methods investigated are discussed in Chapter 3, and our implementation of
these methods is presented in Chapter 4. Chapter 5 provides a detailled description
of the experiments and a discussion of their results. The main conclusions of and
the prospects to the project are finally discussed in Chapter 6.



Chapter 1

ClustRa

In this chapter we give a short overview of a database system that uses recovery
methods similar to those investigated in this project. The recovery methods that
we address could be potential candidate implementations for such a system. The
particular DBMS that we present here is ClustRa.

1.1 Overview

ClustRa [7] is a database system designed to provide high availability, high through-
put and real-time response. To achieve high troughput and real-time response, Clus-
tRa is a memory-based database with neighbour write-ahead logging. To achieve
high availability ClustRa uses data replication and allocation of primary and hot
stand-by replicas in nodes with different failure modes, early detection of failures
with fast take-over, and on-line self-repair and maintenance.

The ClustRa database system is based on a shared nothing architectures. It
consists of a collection of interconnected nodes that are functionally identical and
act as peers, without any node being singled out for a particular task. The fact
that each of these nodes has its own disk and large main memory and neither disk
nor memory are shared between the nodes makes it possible for a node to fail or be
replaced without affecting the other nodes.

Nodes are grouped into sites, which are collections of nodes with correlated
failure probabilities. Sites are failure-independent with respect to environmental and
operational maintenance and each site contains a replica of the database. Figure 1.1
illustrates the hardware architecture of ClustRa.

Each table may be distributed over multiple nodes by horizontal fragmentation
according to a hash or range partitioning algorithm. ClustRa uses an asymetric
replictation scheme, where there is one primary replica, but there might be several
hot stand-by replicas. Each node in the system may be primary for some fragments

3



4 CHAPTER 1. CLUSTRA

Site BSite A

Spare

Node 4

Node 6

Spare

Node 0

Node 2

Node 7

Node 5

Node 3

Node 1

Figure 1.1: Example of ClustRa’s hardware architecture with two sites, A and B,
containing five nodes each, one of the nodes on each site being a spare node. The
network connection is done using a switch.

at the same time as it is hot stand-by for others. This facilitates load balancing
both during normal processing and during node failure, where takeover must take
place. Figure 1.2 illustrates the data distribution.

All of the nodes in the system play the same role and run the same software. The
only difference between them is the data they store. Each node runs the following
services:

• transaction controller : service that is responsible for handling the connections
to the clients and managing the transactions they run;

• database kernel : service that is the data manager, responsible for storing both
the log and the database;

• update channel : service that is responsible for reading the local log and ship-
ping log records from primary fragment replicas to hot stand-by replicas;

• node supervisor : service in charge of collecting information about the avail-
ability of different services and of providing the nodes with information about
changes.

During the execution of a transaction, the transaction controller at the node that
receives it becomes the primary controller. A hot stand-by transaction controller,



1.1. OVERVIEW 5
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Figure 1.2: Fragmentation of a table in 8 fragments and distribution in two sites
with five nodes each, where one node on each site is a spare node.

belonging to a site different from the site of the primary controller, is assigned.
The hot stand-by transaction controller will be responsible for taking over if the
primary controller fails. The transaction controller is responsible for (i) finding the
nodes involved in a transaction; (ii) sending ’start transaction’ and the operation to
execute to the nodes containing the primary replica of the records involved in the
operation; (iii) sending ’start transaction’ and the number of log records that will
be produced by the transaction to the nodes containing the hot stand-by replica(s)
of the records involved in the operation; (iv) sending an early answer to the client
and (v) coordinating the transaction by sending ’start transaction’, ’commit’ and
eventual ’roll-back’ to the nodes that take part in the transaction. The database
kernel at the node containing the primary replica of a record will always be the one
responsible for executing a request on that record. To keep its hot stand-by replicas
consistent, the update channel at the same node will be responsible for reading
the log records produced by the transaction and sending them to the hot stand-by
replica(s). The database kernel at the node(s) containing the hot stand-by replicas
will be responsible for redoing these log records. Figure 1.3 illustrates the execution
of a transaction.

ClustRa combines two logging methods: a logical, and a physiological log. The
logical log is used to keep the hot stand-by replicas consistent and to provide trans-
action durability, while the physiological log is used as a node-internal log.
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Node 0
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Figure 1.3: Transaction execution at a ClustRa system with two sites. Node 0 is the
node receiving the request from the clients and becomes the transaction controller and
node1 is assigned as hot stand-by controller. Node2 and node3 contain the primary
and hot stand-by fragment replicas of all records involved in the transaction.

The node-internal physiological log is used for storing node-internal operations
for access methods, free block management, and file directory. These operations are
implemented transactionally. It is disk-based and is not shipped to any other node.

The distributed logical log is used for record operations. Each log record is
identified by the primary key and a log sequence number, and contains both redo
and undo information. Thus, it can be applied to any replica of a fragment. The
distributed log applies a neighbour write-ahead logging [6], which is a main-memory
logging technique where transaction commit does not force log to disc; instead, a log
record must be written to two nodes in different sites before an update operation
is allowed to be reflected on disk, and before the transaction commits. This log
shipping is also used for data replication.

ClustRa supports parallel, online, non-blocking scaleup. The scaling is performed
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by gradually redistributing the database so that all the available nodes are taken into
operation. ClustRa performs scaleup by redistributing a table at a time. Within a
table, a few fragments are refragmented in parallel to avoid overload of the sender
and receiver nodes. Scaleup involves subfragmenting a table, thus the number of
fragments increases as part of a scaleup. This strategy allows, in addition to keeping
the additional load on the system low, to minimize the extra storage needed as part
of the subfragmentation. Only fragments under redistribution need an extra replica.

When the subfragmentation of a fragment is completed, the subfragmented
replica takes over as the hot stand-by replica for the fragment, and the old hot
stand-by replica is deleted. The storage for the old replica is then freed. The new
hot stand-by fragment replica then takes the role of primary replica for the fragment.
Another subfragmented replica is then produced, based on the current replica. When
this replication is finished, the new subfragmented replica takes the role of the hot
stand-by and the old not-subfragmented replica is deleted. The subfragmentation
of a fragment is run as a transactions with savepoints per replication.

Scaledown is performed through parallel replication, in a similar way as for
scaleup. Parallel scaledown requires that multiple fragments are merged. The
same techniques as for scaleup are used in respect to minimizing additional stor-
age needed [3].

1.2 Failure detection and recovery

An I-am-alive protocol is applied to discover failed services or nodes. The I-am-
alive protocol between the nodes is organized as a circle. The node supervisor at
each node periodically polls all processes at the node to detect their state. Each
node sends and receives I-am-alive messages from both its neighbours in the circle.
If consecutive I-am-alive messages are missing from a node, the virtual node set
protocol is activated. The node supervisor sends a build node set message to all
known nodes, who respond with their services. If a node has not responded within
a certain number of resends, it is assumed to be down, and a new node set is
distributed.

A primary fragment replica crash causes a fragment to be unavailable. A node
crash or a controlled node stop similarly causes the fragments with their primary
replicas at the failed node to be unavailable. These fragments will continue to be
unavailable until the hot stand-by replicas of the fragment change their roles to
primary. Before a hot stand-by replica can become available, it must redo the hot
stand-by log records that arrived before the new node set, and roll back in-flight
transactions being active at a crashed node. This process of changing the role from
hot stand-by to primary is called take-over.

After a take-over the failed node is tried restarted. If the node failure was caused
by a transient error, the node will restart and a take-back can take place. If the node
does not restart, the recovery of the failed node is started. The recovery method
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used by ClustRa will vary depending on the degree of corruption of the node.

When only parts of the main memory are corrupted and the database buffer and
main memory log are intact, a recovery from main memory is done. It involves just
undoing the eventual ongoing node-internal transactions and undoing the record
operations that were not reflected on any other node before the crash occurred.

When the contents of the main memory is garbled, a recovery from disk is done.
It involves performing a ’redo’ followed by an ’undo’ recovery from the stable node-
internal log, before a redo recovery is executed. The redo recovery is based on the
distributed log shipped from the nodes with primary fragments for those stored at
the recovering node.

When the disk(s) is/are corrupted or the node will not restart, a recovery from
the neighbour is done. It involves reloading the fragments stored in the node being
repaired from the primary fragment replicas stored in other nodes.

Operations can be executed during the period during which the recovering node
is unavailable. The recovering node will then have to catch-up with these operations.
This is done by redoing the distributed transaction log. After the recovering node
has caught-up, it forces a takeback, which is the opposite of a takeover. The original
primaries and hot stand-bys get their original roles and the system state is restored.

1.2.1 Recovery from main memory

ClustRa uses checksums on the buffer data structure, the log access structured, and
the log structure to decide whether a recovery from main memory can be done. The
recovery from main memory will be done if these checksums are found to be in order.

If during a main memory-based recovery a block is found to be corrupted upon
access, a partial recovery is performed. The block is read from disk, the node
internal log records regarding that block are redone, and the distributed log records
regarding that block are also redone.

1.2.2 Recovery from disk

A recovery based on main memory is performed when the main memory is gargled.
In such a recovery, memory structures are rebuilt based on the stable node internal
log.

The recovery starts from the penultimate checkpoint log record of the node
internal log. The transactions stored on this checkpoing log record are retrieved,
and the log records starting by the checkpoint LSN are redone. The transactions
that are still active when the end of the node interal log is achieved, and can be
rolled forward, are rolled forward. Then the node internal log is scanned backwards
and the transactions that are still active are undone. [9]
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1.2.3 Recovery from a neighbour

A recovery based on the neighbour happens when either the contents of the disk are
garbled, or the failed node fails to restart. In such a recovery, the complete database
is reloaded from other nodes.

The recovery in this case is based on the data at the repairing node. During the
process the repairing node will be responsible for sending the records it containd
to the node being repaired. This is done without locking any records, so that
they will be available for online transactions, and in a fuzzy manner because the
fragment replica is not in a transaction-consistent state. The node being repaired
will reconstruct the access method, by receiving the data and inserting it.

In the following chapters we will evaluate different node recovery strategies for
the case where the recovery is done from the neighbour.



Chapter 2

B-trees and Transaction Log

In this chapter we give a short presentation of B-trees and transaction log. We have
included this introduction to B-trees because it is the access method that we shall
use for the implementation of the recovery methods. We have chosen to also include
an introduction to transaction logging because we refer to it when we discuss the
catch-up process later in paragraph 3.2.

2.1 B-trees

As presented in [4], B-trees are balanced search trees. As in binary search trees, in
a B-tree the branch taken at a node depends on the outcome of a comparison. A
binary search tree contains only one key per node, so the comparison between the
key stored in the node and the query key gives the branch to follow. While in a
B-tree a node can contain several keys, thus several comparisons might be needed
to chose the correct branch to follow.

Each node of a B-tree of order d contains at most 2n keys and 2n + 1 pointers,
and at least d keys and d + 1 pointers. Keys and pointers are organized so that, if
a pointer is on the left of a key, it points to data that is smaller than the key, and
a pointer in the left of a key points to data that is bigger or equal to the key.

The beauty of a B-tree lies in that the methods for inserting and deleting records
always leave the tree balanced. The insertion of a new key requires two steps: (i)
search from the root to locate the proper leaf for insertion; (ii) insert the key in the
node found. To keep the tree balanced, whenever a key needs to be inserted in a
node that is already full, a split occurs, the node is divided in two, of the 2d+1 keys,
the smaller ds are placed in one node, and the larger ds are placed in another node,
the remaining value is promoted to the parent node where it serves as a separator.
If the parent node is also full, then the same splitting process will happen again.
The deletion in a B-tree is done in the opposite way of an insertion. Figure 2.2
illustrates the insertion of a new record into a B-tree causing a page split.

10
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Figure 2.1: Sketch of a B-tree structure. Each page has a maximum of 3 indexes
and 4 pointers. The pointer in the left (respectively, right) side of an index points
to pages containing keys that are smaller (respectively, larger) than the index. The
insertion and deletion algorithms ensure that the tree remains balanced.
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Figure 2.2: Sketch of the insertion of a new record into a B-tree causing a page split.

The implementation of the fragment replication methods, presented in chapter 4
and used for the experiments presented in chapter 5, was done using Berkeley DB’s
implementation of B-trees, and the database(s) used for measuring the performace
of these methods were generated using Berkeley DB. Berkeley DB implements a
variation of B-trees called B+-tree. In a B+-tree all the data resides in the leaves.
The upper levels, consist only of an index to enable rapid location of the record. Leaf
nodes are usually linked together left-to-right to allow easy sequential processing.
Figure 2.3 illustrates the structure of a B+-tree.

V WR SN PJ K LF GB C

N RB F

N

DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATA

Figure 2.3: Sketch of the structure of a B+-tree. The leaf nodes are linked left-
to-right. The dotted lines indicates that in some implementations, as the one in
Berkeley DB, these nodes are also linked right-to-left.
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Figure 2.4: Sketch of the structure used by ClustRa. Nodes in all levels of the tree
are linked both left-to-right and right-to-left.

Clustra implements another variant of B-trees. As in B+-tree all the data resides
on the leaves. But on ClustRa’s implementation nodes at a given level whether at
leaf level or not, are linked together both left-to-right and right-to-left. ClustRa’s
implementation of B-trees is illustrated in figure 2.4.

2.2 Transaction log

The transaction manager [1] ensures the A, C and D of the ACID properties. It
provides (i) atomicity by undoing aborted transactions, redoing commited ones, and
coordinating commitment with other transaction managers for distributed transac-
tions; (ii) consistency by aborting any transactions that fail to pass the resource
manager consistency test at commit; and (iii) durability by, as part of the commit
processing, forcing all log records of commited transactions to: either durable mem-
ory when using WAL protocol, or two copies of the log records in main memory at
nodes with independent failure modes when using nWAL protocol.

During normal processing, the transaction manager simply gathers information
that will be needed in case of failure. As a transaction progresses, its update op-
erantions generate a sequence of log records, which is called the transaction’s log.
It is stored in a common log table. Each log record has a unique key, called Log
Sequence Number (LSN).

The transaction manager can undo the whole transaction by undoing each of its
individual actions. This is done by reading the transaction log and invoking each of
the log record’s UNDO operation.

During a system restart after failure, the transaction manager must ensure that
committed transactions are preserved. The transactions manager scans the log for-
ward and applies the log record’s REDO operation. After the REDO has been
applied, there may be some transactions that generated log records but did not
commit. These uncommitted transactions must be rolled back. This is done by
applying the UNDO operation of log records for these transactions in backward di-
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rection, starting by the most recent operation. The result is a consistent state where
all committed transactions have been redone and all uncommitted transactions have
been undone.

Undo work should always be done by reading the log backward; the most recent
log record for should be the first one to be redone. In contrast redo should be applied
in forward direction, starting by the first log record for a transaction.

Each log record contains a standard header and a type-dependent body that
describes the operation that generated it. The header carries the log sequence
number, transaction identifier and some other fields. The log body contains whatever
information is needed by the UNDO and the REDO operations.

2.2.1 Physical logging or value logging

The simplest technique of writing log records and the corresponding UNDO-REDO
programs for durable data places the old and new object states in the log record.
UNDO and REDO are then trivial: the object needs only to be reset from the
appropriate value to the appropriate value contained in the log records.

Value logging is a good design if the object state is small. But if the object state
is large and the change is small, then the log record is often compressed so that it
contains only the changed portion(s) of the object, see [1].

2.2.2 Logical logging or operation logging

Logical logging records the name of an UNDO-REDO funcion and its parameters,
rather than the object values themselves. For example, a single log record like

<insert op, table name, record value>

can be used to record the insertion of a certain record into a certain table. This
insertion may cause disk space to be allocated, other records to move within that
page, or even a complex index update like a B-tree split. Thus, a single logical log
can correspond to several physical log records.

Clearly, logical logging is the best approach; the log records are small, and the
UNDO-REDO operations are mirrors of one another. However, logical logging as-
sumes that each action is atomic and that in each failure situation the system state
will be action-consistent: each logical action will have been completely done or com-
pletely undone. In some failure cases, actions will be partially completed, and the
state will not be action consistent. The UNDO operation will then be requested to
UNDO stated produced by such partially completed actions, see [1].
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2.2.3 Physiological logging

Physiological logging is a compromise between logical and physical logging. The
term physiological logging derives from the use of logical logging to represent trans-
formation of physical objects. The physical part of the design refers to the fact that
each log record applies to a particular physical page or a particular communication
session. The state transformation of a physical object can be represented physically
or logically.

Complex actions generate a sequence of physiological log records. In addition
to the log record describing the table insert, there would be additional log records
describing the insert to the table indeces, the updates performed by triggers, and so
on.

For example, let us consider a logical log record like in the form:

<insert op, table name = A, record value = r>

If the table for example had two indeces, the corresponding physioligical log record
would be:

<insert op, base filename = A, page number = 508, record value = r>

<insert op, index1 filename = B, page number = 72, index1 record value = keyB of r = s>

<insert op, index2 filename = C, page number = 94, index2 record value = keyC of r = t>

Physiological logging has many of the benefits of logical logging. The UNDO and
REDO operations are often similar to other operations. When compared with phys-
ical logging, it has small log records, see [1].

2.2.4 Compensation log records

Log records generated during UNDO are often called compensation log records. A
compensation log record will be produced for each log record produced by a trans-
actions. The REDO information of the compensation log record will be the UNDO
information of the log record it compensates and respectively the UNDO informa-
tion of the compensation log record is the REDO information of the log record it is
a compensation for.

Pages frequently carry a monotonically increasing sequence number used to
record the page version, enforce the write-ahead protocol, and provide idempotence.
This sequence number is usually just the LSN of the most recent update that trans-
formed the page and is called the page LSN. Without the use of compensation log
records, the undo of an operation would not be shown in the page LSN, because the
undo of an operation would produce a new log record and therefore not produce a
new LSN.
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Compensation logging simplifies the design of physiological logging. With that
design, each update on a page or session is accompanied by a log record. The action
is undone, the UNDO looks just like a new action that generates a new log record -
a compensation log record, see [1].



Chapter 3

Node Crash Recovery Methods

In this chapter we present three different methods for recovering a failed node. As
mentioned in paraghaph 1.2, the recovery method used by ClustRa varies according
to the degree of corruption of a node. The methods discussed in this chapter are
intended for the case where the node crash causes complete loss of data and the
recovery is done from the neighbour nodes.

First, we present each of the three methods for fragment replication that we are
evaluating. Then, we present the catch-up process. During the fragment recovery
process, the repairing node continues to execute transactions. The catch-up process
is used to keep the node being repaired up to date with these transactions.

Note that both the methods for fragment replication and catch-up that we are
using are designed for database system using B-trees (or a variant of B-trees) as
access methods. The catch-up process assumes that the logging sub-system of the
database system uses compensation log records.

3.1 Methods for Fragment Replication

In this section we present each of the methods for fragment replication, and discuss
different ways of implementing them. For each of the methods we give special
attention to: (i) how the method behaves when the nodes operate with different
page sizes, (ii) how soon the catch-up process can be started, and (iii) how to
implement a startup protocol that allows the method to restart recovery if one of
the nodes crashes during the recovery process.

3.1.1 Sending the Entire B-tree

This method consists in sending the entire B-tree from one node to another. In
order to do so, each page must be read by the repairing node, and sent to the node

16
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Node1Node0

Figure 3.1: Sending an entire B-tree from the repairing node to the node being
repaired.

Empty spaces
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Figure 3.2: Illustration of a typicall B-tree page. It contains a header with informa-
tion about the page, pointers to the location of the items, which can be pointers to
child pages, pointers to the location of the data, or the data itself.

being repaired, where it will be stored. Figure 3.1 illustrates this method.

Data compression

A B-tree page, as illustrated in figure 3.2, may contain some empty space. To reduce
the volume of data sent over the network, the empty space inside a B-tree page can
be removed before the page is sent and inserted again when the page is received.

The fill level of a B-tree is garanteed to be at least 50%, or 67% for some vari-
ants [2]. However, in some implementation, B-tree page splits happen normally, but
the pages are not merged when tuples are deleted. This can cause an even lower
fill level than 50% (or 67%). In such cases, removing the empty spaces inside the
B-tree page can reduce the amount of data transfered considerably.
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Applying the method between nodes with different page sizes

This method can be used to replicate a fragment replica between nodes that operate
with different page sizes. This may involve extra work. In the most simple case,
the node being repaired operates with a larger page size than the repairing node.
In such a case, the only necessary actions are: (i) to expand the pages as they are
received so that they will have the same size as the node operates with, and (ii) to
update the pointers to locations inside the page.

When the page size of the node being repaired is smaller than that of the repairing
node, there are two alternatives: either the received page after the empty space has
been removed is still larger than the page size the node is operating with, or it is
smaller.

If the received page after removal of the empty spaces is still larger than the page
size the node is operating with, the page will have to be split into two new pages. A
B-tree page split will cause a new item to be added to the level above the one where
the split happened. This can, if the page in the level above is full, cause another
page split to happen. Thus, a page split can propagate all the way up to the B-tree
root. In this method where pages of all levels of the B-tree are being received, such
a page split would involve some extra work, depending on the order the pages are
being received. For instance, if the page in which the new item should be inserted
has not yet been received at the time the page split happens, the system will have
to keep track of the item and insert it when the page is received.

If the received page after removal of the empty spaces is still smaller than the
page size the node operates with, the following must be done: (i) the page must be
expanded to the page size the node operates with, and (ii) all pointers to locations
inside the page must be updated.

When can the catch-up process be started

During the period during which a new fragment replica is being copied over to the
node being repaired, transactions will still be running at the repairing node. The
outcome of these transactions have to be reflected in the new fragment replica being
generated. This can be done by redoing the log records produced by these transac-
tions at the node under repair. This process is called catch-up and is explained in
more detail in paragraph 3.2.

We are interested in starting the catch-up process as soon as possible. The
repairing node is able to start sending log records as soon as they are generated,
but the node being repaired needs to have an access method available to be able to
redo these log records.

For this method, where all pages of a B-tree are sent from one node to the other,
whether an access method is available or not depends on the order in which the
pages of the B-tree is sent.



3.1. METHODS FOR FRAGMENT REPLICATION 19

Figure 3.3: Pre-order tree walk.

Pages already received

Pages yet to be received

Figure 3.4: Tree received in a pre-order walk order. This figure shows that the access
method is, during the entire process, able to reach all pages that have been received.

If the pages are sent in an order so that it is not possible to have access to all
received records until all pages have been received, the log records have to be stored
until all pages have been received. Only then, will it be possible to apply these log
records. If the pages are sent in an order such that during the whole process there
will be an access method available that allows access to all the received records, the
log records can be applied as soon as they are received.

To ensure that an access method will be available and allow access to the received
leaf pages, the B-tree pages must be sent in a special order. It is very important
that all internal pages that are located in the path of a leaf page are received before
the leaf page is received. Sending pages in the order shown in figure 3.3 would make
this possible. This way of accessing a tree is often called pre-order tree walk [5].
Figure 3.4 illustrates how this order for sending the B-tree ensures access to the
received leaf pages through the B-tree, at all times. This strategy makes it possible
for the catch-up process to start applying log records as soon as they are received.

Node crash during recovery

A startup protocol is necessary to allow the replication process to restart in case of
node failure. This protocol must include information about, the last page that was
successfully written to disk by the node being repaired before the failure happened.
This is necessary for the repairing node to know from which page to restart the
process.
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Node1Node0

Send
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Figure 3.5: Sending B-tree leaf pages from the repairing node to the recovering node
and regenerating the internal pages of the tree.

3.1.2 Sending leaf pages of the B-tree

This method is similar to that presented on paragraph 3.1.1, but here, instead
of sending all pages of the B-tree, only the leaf pages are sent from one node to
another. The leaf pages are the pages of the B-tree that contain the data, while the
internal pages contain only indexes (or pointers to other pages) and can easily be
reregenerated by the node being repaired. Figure 3.5 illustrates this method.

We have included this method as an alternative to the ones discussed in para-
graph 3.1.1, because less pages are sent from the repairing node to the node being
repaired. This reduces the volume of data sent over the network, but it requires
extra work to be done at the node being repaired in order to regenerate the internal
pages of the B-tree.

Data compression

As in paragraph 3.1.1, it is also possible here to remove the empty spaces inside the
B-tree page before transferring it to the node being repaired. This is done to reduce
the volume of data that is sent over the network.

Applying the method between nodes with different page sizes

Applying this method between nodes that operate with different page sizes may
involve some extra work. This is similar to what was presented in paragraph 3.1.1.
If the page size of the node being repaired is larger than that of the repairing node,
then it will be necessary to do the same as explained in paragraph 3.1.1.
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Figure 3.6: Regenerating the B-tree as soon as the leaf pages are received.

If the page size of the node being repaired is smaller than that of the repairing
nodes, there are also the same two alternatives as in paragraph 3.1.1. The advantage
in this case is that the internal pages of the B-tree are regenerated as the leaf pages
are being received, splitting B-tree pages that are two big for the page size of the
node does not cause as much extra work in this method as it does for the method
presented in paragraph 3.1.1.

When can the catch-up process be started

As in paragraph 3.1.1, we are interested in starting the catch-up process as soon
as possible. How early the log records can start being redone at the node being
repaired depends on when the internal page of the B-tree are regenerated. If the
internal pages are regenerated only after all of the leaf pages have been received, the
log records received have to be stored until all leaf pages have been received and the
internal pages have been regenerated. After all pages have been received, these log
records can start being applied. If the internal pages start being regenerated as the
leaf pages are being received, there will be an access method available during the
entire process and the log records can start being applied. This is shown in figure
3.6.

Node crash during recovery

A startup protocol that initiates recovery after a node crash can be implemented in
the same way as previously discussed in paragraph 3.1.1.

3.1.3 Extracting the data from the B-tree and sending only
the data

This method differs from the ones presented in paragraphs 3.1.1 and 3.1.2, in that
it only sends the data. In order to extract the data from the B-tree, each leaf page
of the B-tree has to be read, and the tuples extracted from it. These tuples are
then packed into a new data block. When the block reaches a specific size (the
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Pack Unpack

Figure 3.7: Sending data from the repairing node to the node being repaired by
extracting the tuples from each leaf page of the B-tree, packing the tuples into a new
block, receiving the block, unpacking it and finally inserting into a B-tree when they
are received.

same size as a database page, for example), it is sent to the node being repaired,
where the tuples are extracted and inserted into a B-tree. Figure 3.7 illustrates this
method. It requires more work at both the sender and the receiver nodes than the
ones presented earlier. Its advantage, though, is that the volume of data being sent
over the network is smaller than with the other methods.

Applying the method between nodes with different page sizes

The LSN of the last log record applied to a page is often registered in the page.
This is done to enable to database system to know whether a log record has already
been applied to a page or not. Until now, we have been discussing methods where
we send physical database pages from one node to another, and the LSN would be
sent inside the page, so in the methods presented before, having the LSN stored by
page has not been a problem.

To be able to use a method where database pages are not being sent, it is
necessary to include a strategy for sending the LSN for the last transaction applied
to each object. This can be done by either storing the LSN for each tuple instead
of storing it for each page, or by having the data block that is sent contain page
delimiters with their corresponding LSN, so that records will be in the same page
and with the same LSN in both nodes.

If the LSN is stored for each tuple, the tuples are independent of the page, and
there is no problem in applying the method for nodes that operate with different
page sizes. On the other hand, if the LSN is stored for each page, the same issues
concerning pages that are bigger than the page size of the node being repaired will
be met, as for the method discussed in paragraph 3.1.2.

When can the catch-up process be started

As we have pointed out in paragraphs 3.1.1 and 3.1.2, it is important to have an
access method available in order to be able to start the catch-up process before the
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entire B-tree is received. As in paragraph 3.1.2, the same issues on whether an access
method is available or not are present, depending on the implementation chosen for
this method. If the internal pages of the B-tree are only regenerated after all the
leaf pages have been regenerated, the catch-up process will have to wait to apply
the log records until the internal pages have been regenerated. If the internal page
are being regenerated as the data arrives, the log records can be applied as they are
received.

The access method can be restored before all pages have been received using two
alternative methods:

• The first alternative is to copy the tuple into leaf pages of a B-tree and regen-
erate it’s internal pages from these leaf pages. Regenerating the leaf pages of
the B-tree is possible because the records are being sent in increasing primary
key order by the repairing node. As the leaf-pages are being generated, the
internal structure of the B-tree can be rebuilt as explained in paragraph 3.1.2.
This method will work independently of whether the LSN is stored within
each page or within each tuple. As mentioned earlier, some extra work may
be necessary of the LSN is stored on each page, though.

• The second alternative, which is the method used by ClustRa, consists in
inserting the records one by one into a new B-tree, using the same insert
procedure as used to insert a record under normal processing. This method
only works if the LSN is stored for each tuple, because the rebuilding algorithm
has no control over which page the record is being placed into.

Both alternative methods for rebuilding the B-tree allow the catch-up process
to start as soon as the tuples start being received, because there will always be
an access method available. The latter method, though, is more time consuming
because (i) even though the tuples arrive in order, the position in which to insert
a tuple in the B-tree has to be searched for each insert, and (ii) page splits shall
happen.

Node crash during recovery

A startup protocol is necessary to allow the replication process to restart in case of
node failure. This protocol must include information about the last key that was
successfully written to disk by the node being repaired before the failure happend.
This is necessary for the repairing node to know from which page to restart the
process.
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3.1.4 Summary on the respective qualities of the different
methods.

The method presented in paragraph 3.1.1 is the most simple method presented. It
requires the least work to be performed at both the repairing node and the node
being repaired. The repairing node only needs to read each of the B-tree pages,
and send them over to the node being repaired. The node being repaired only has
to store the pages it receives. The entire B-tree structure is sent, in opposition to
the other methods, and therefore no B-tree pages need to be regenerated. However,
it is the method that sends the largest volume of data over the network, because
compared to the method presented in paragraph 3.1.2 a larger number of pages are
being sent, and compared to the method presented in paragraph 3.1.3 not only the
data is being sent, but also structures internal to the B-tree, such as page headers,
pointers, and internal pages.

The method presented in paragraph 3.1.2 is included as an alternative to the
method presented in paragraph 3.1.1 because it reduces the volume of the data
transfer. It increases the amount of work at the node being repaired because the
internal pages of the B-tree have to be regenerated, but it has some advantages
when the two nodes operate with different page sizes. We are interested in finding
out whether the reduction in the amount of data sent over the network balances the
time spent rebuilding the internal pages of the B-tree.

The method presented in paragragh 3.1.3 is the method sending the least amount
of data, at the same time as it is the method that demands largest amount of work
to be performed at the node being repaired. Its supremacy depends on whether
the work involved in preparing a block to be sent and inserting the tuples into
the database is less time consuming than sending a larger amount of data over the
network, with less preparation, as in the other two methods.

3.2 Catch-up

During the process of recovering a node, the database system is still running and
transactions are executed at the repairing node. The transaction log generated by
these transactions can be used to make sure that their outcome are reflected at the
node that is being repaired. To ensure this, the log records have to be sent to the
node that is being repaired, where they must be redone.

Since the records are sent in a fuzzy manner, log records concerning tuples that
have not yet been sent over to the node being repaired do not need to be sent,
because the changes contained in these log records will be reflected at the records
by the time they are sent. The transactions can affect any of the records with the
same probability. Consequently, at the beginning of the transmission, when a small
amount of data has been shipped to the node being repaired, the number of log
records that need to be shipped is also small. As the amount of data that has



3.2. CATCH-UP 25

been shipped over increases, the number of log records that need to be shipped also
increases.

A log record contains both redo and undo information, but for the purpose of
keeping the node up to date with the changes that are happening on the neighbour
node, it is sufficient to send the redo information. In the case of a transaction being
rolled back, the redo data of the compensation log record will be shipped which is
equivalent to having the undo data of the regular log record. By sending only the
redo information on the log record, the amount of data sent over the network will
be reduced. In the case of very large records this reduction can be close to 50%
(redo and undo data have the same size and will be much bigger than the rest of
the information in the log record).



Chapter 4

Implementation of the Node
Crash Recovery Methods

In this chapter we present our implementation of the three different recovery meth-
ods and the catch-up method 1. This is the implementation used for the experiments
presented in chapter 5. Note that the different recovery methods for these experi-
ments have been implemented assuming that (i) the node being repaired and the
repairing node operate with the same page size, and (ii) that the nodes do not
crash during recovery, so a startup protocol has not been implemented for any of
the methods.

4.1 Program structure

Each of the recovery methods has been implemented using four threads at each of
the nodes participating in the recovery process. Two of the threads are responsible
for transferring data and log records between the nodes, while the other two are
responsible for implementing one of the fragment replication methods presented in
paragraph 3.1.

The implementation of the repairing node is illustrated in figure 4.1. Each of the
boxes in the figure illustrates one of the threads running at the node. The threads
Prepare data block and Send data block implement the different fragment replication
methods, while Prepare log block and Send log block implement the catch-up method.
Send data block and Send log block have the same function, they read a block and
send it over the network. They communicate with Prepare data block and Prepare
log block through a queue. Prepare data block and Prepare log block generate blocks
to be sent and add them to a queue, and Send data block and Send log block read
blocks from the queue and send them to the node being repaired.

1The source code for the implementation of the recovery methods including catch-up can be
found in A

26
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Repairing node

Prepare data block

Prepare log block

Send data block

Send log block

Figure 4.1: Sketch of the implementation of the recovery methods at the repairing
node (sender node), using four threads.

Node being repaired

Regenerate database

Apply log records

Receive data block

Receive log block

Figure 4.2: Sketch of the implementation of the recovery methods at the node being
repaired (receiver node), using four threads.

Respectively, at the node being repaired, the thread Receive data block and
Regenerate database implement the different fragment replication methods, while
Receive log block and Apply log records implement the catch-up method. This is
illustrated in figure 4.2. Similarly to what occurs at the repairing node, Receive
data block and Receive log block receive blocks from the network and add them to
a queue, while Regenerate database and Apply log records read the blocks from the
queue and rebuild the access method, and apply the log records to the data that
has been received.

In the following paragraphs we present the implementation of the threads Pre-
pare data block and Regenerate database for each of the methods discussed in para-
graph 3.1, and the implementation of Prepare log record and Apply log record for
the catch-up method presented in paragraph 3.2.
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Figure 4.3: The first page of the B-tree is found by navigating the left side of the
tree.

4.2 The ”Send all pages” method

At the repairing node the B-tree is read in a pre-order tree walk order as previously
discussed (see also figure 3.3). The empty spaces are removed from the page, which
is then added to the queue in order to be sent to the node being repaired.

Once the pages have been received by the node being repaired, they are added
to a queue. Each page that is read from the queue goes through the following
procedure: (i) it is expanded back to its original size, by having its empty spaces
added again; (ii) it receives a new page number (number that identifies the pages);
and (iii) it has the link to it from its parent page updated.

The reason why the page has to be given a new page number and why the link
from its parent page must be updated is related to the implementation of B-tree that
we are using, namely Berkeley DB. In Berkeley DB’s implementation of B-tree, the
page number is used to calculate the offset from the start of the file to the position
where the page can be found in the file, and the link between pages is done using
the page number. Thus, if the pages are stored at the node being repaired in an
order different from the one they had at the repairing node, a new page number
corresponding to the position where they are stored must be assigned to them, and
the links between the pages must be updated.

4.3 The ”Send leaves” method

The repairing node starts by navigating the left side of the B-tree so as to find the
first leaf page (see figure 4.3). Once the first leaf page is found, it (i) reads each of
the leaf pages as shown in figure 4.4, (ii) removes the empty spaces inside the page,
and (iii) adds the page to the queue of pages to be sent to the node being repaired.
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Figure 4.4: Reading the leaf pages of the B-tree.

Once the pages have been received by the node being repaired, they are added
to a queue. Each page is then read from the queue and goes through the following
preocedure: (i) it is expanded back the its orginal size, by having its empty spaces
added again; (ii) it receives a new page number; and (iii) a link to the new page is
inserted in a page in the upper level. If the page in the upper level has not been
created yet or is full, a new page is created in the next-upper level of the tree; this
page creation process can propagate all the way up to the root of the tree.

The pages must receive a new page number for the same reason as in para-
graph 4.2.

4.4 The ”Send data” method

As in paragraph 4.3, the node being repaired starts by navigating the left side of
the B-tree to find the first leaf page. Once the first leaf page has been found, it (i)
reads each leaf page as shown in figure 4.4, (ii) extracts each tuple from the page,
(iii) adds the tuple to a new block containing only tuples, and (iv) once the block is
full, it adds the block to the queue of blocks to be sent to the node being repaired.
The size of the blocks that are sent between the nodes is the same as the page size
the nodes operate with.

For this method we have implemented two different alternatives for how the
blocks are treated by the node being repaired.

4.4.1 Alternative 1

Once the blocks have been received by the node being repaired, they are added
to a queue. Each block is then read from the queue and undergoes the following
treatmeant: (i) each tuple is extracted from the block; (ii) each tuple is added to
a leaf page of the B-tree; and (iii) when a leaf page is full, a link to the new page
is inserted in a page in the upper level, and a new leaf page is created for the next
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tuples. If the page in the upper level has not been created yet or is full, a new page
will be created in the upper level of the tree, and a link to it must be inserted in
the page in the next-upper level; this step can propagate all the way up to the root
of the tree.

4.4.2 Alternative 2

Once the blocks are received by the node being repaired, they are added to a queue.
Each block is then read from the queue and undergoes the following scheme: (i) each
tuple is extracted from the block; and (ii) each tuple is inserted to a new database
using the insert method implemented by Berkeley DB.

4.5 Catch-up

Since there are no transactions taking place during the experiments, the catch-up
process uses an artificial log file generated for testing. This log file contains a large
number of log records with monotonically increasing LSN starting from LSN = 1.
Since only the redo part of the log records is sent over to the node being repaired,
the log file does not contain the undo part of the log records.

The repairing node has a timer that keeps track of for how long the repair process
has been running. The last LSN that has been generated is calculated by using this
timer and a constant indicating the number of log records generated by transactions
per second.

In order to be able to know whether a tuple has already been sent to the node
being repaired or not, each of the three fragment replication methods keeps a variable
up to date with the primary key of the last tuple that has been sent. Since tuples
are being sent in order, it is possible to check if a tuple has been sent or not by
checking its primary key against the primary key of the last tuple that has been
sent.

The repairing node loops through the following procedure: (i) if the current LSN
is higher than the LSN of the last log records read, it reads a new log record; (ii)
it checks if the tuple to which the log record applies has already been sent to the
node being repaired; (iii) if the tuple has already been sent, the log record is added
to the block of log records to be sent, and (iv) when the block, is full, it is added to
the queue in order to be sent to the node being repaired, and a new block is started.
Once the fragment replication part of the process is finished, the timer is stopped,
and the last LSN to be a part of the recovery process can be calculated.

Once the blocks have been received by the node being repaired, they are added
to a queue. Each block is then read from the queue and undergoes the following
procedure: (i) each log record is extracted from the block; (ii) the tuple the log
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record applies to is searched; and (iii) the log record is applied to the tuple.

The method presented in paragraph 4.4 has two implementations. For the second
alternatice of that method, the node being repaired also has a special implementation
for the catch-up process. It does the following: (i) each log record is extracted from
the block, and (ii) the log record is applied by using the update method implemented
by Berkeley DB.

In order to simplify the implementation, the methods work with records of fixed
sizes and the log file contains only update operation to existing records; no insert
or delete operations have been included in the log file. This allows to limit the
complexity of the implementation, as insert and delete operations can cause split or
join of pages in the B-tree.



Chapter 5

Experiments

In this chapter we describe the different conditions in which the experiments were
carried out, and discuss their results. The experiments consisted in transferring a
B-tree between two nodes, using the three different methods discussed in chapters 3
and 4. For the method ”Send data only” two alternative implementation of the
methods were tested, these alternatives were presented in paragraphs 4.4.1 and 4.4.2.
In this chapter they will be denoted ”Send data insert from bottom” and ”Send data
insert from top”, respectively . Thus, four different protocols for transfering a B-tree
between two nodes have in fact been examined.

5.1 General information about the experiments

The goal of the experiments was to evaluate the effect of different parameters on
the performance of the various recovery methods. The following parameters where
addressed: (i) the fill level of the B-tree; (ii) the number of log records generated per
second; (iii) the size of the database in number of records; and (iv) the bandwidth
of the network between the two nodes.

A reference configuration was chosen for each of the parameters, and the tests
where performed varying one of the parameters at a time, all the other parameters
being set to their reference value. Parameters (i), (ii), and (iii) where tested by
running the implementation of the different methods as presented in chapter 4.
Since we did not have the mandatory hardware available, parameter (iv) was tested
using a simulation.

In this section we first describe the hardware platform and database used during
the experiments. We then present the measures used to quantify the results of all
experiments, and the reference configuration. In the last subsection, we present
the simulation used for testing the effects of the network bandwidth on each of the
methods.

32
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5.1.1 Hardware platform

The experiments where run on two identical machines with the following configura-
tion:

• processor: dual-CPU Athlon 1.4GHz

• memory: 1GB RAM

• operating system: Debian ”Sarge” Linux with kernel 2.6.7-1-k7-smp

• network bandwith: 100Mbps.

The communication between the two machines was done using the TCP-IP pro-
tocol.

5.1.2 Database

The database used for the experiments was generated using Berkeley DB, an open
source database system that implements B-trees, among other access methods. Us-
ing an open source database system enabled us to avoid implementing the access
method, while still being provided full information about the internal structures of
its B-tree implementation.

The B-tree contained 1.000.000 records. Each record contained two fields of fixed
size, a primary key (4 bytes) and a string (96 bytes). The records where inserted in
increasing order by primary key into the B-tree so as to obtain a high fill level. The
fill level of the B-tree was approximately 100%.

5.1.3 Performance metrics

For each of the experiments we measured the following quantities:

• Time to complete at the Repairing Node: Total time at the node sending the
data. We start counting when the first data block/page is sent, and stop when
the last data block/page or log block is sent.

• Time to complete at the Node Being Repaired : Total time at the node receiving
the data. We start counting when the first block/page is received and stop
when the last data block/page or log block is processsed.
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5.1.4 Reference configuration

The default configuration defined for the experiments was the following:

• Database: The standard database is the database presented in paragraph 5.1.2.

• Log records per second : The standard number of log records per second was
set to 2000.

• Fill level : The standard fill level of the database was set to the fill level of the
standard database presented on paragraph 5.1.2.

• Network bandwidth: The standard network bandwidth was set to 100Mbps.

5.1.5 Simulation model

Since we did not have the equipment necessary to run the implementations with
different network configurations, a simulation of the different recovery methods was
built in order to test the effects of the network bandwidth on the different methods.
The simulation is not meant as an exact model of the system, it is meant as a
simplification allowing to get insight into the behavior of a real system with different
network configurations.

Figure 5.1 illustrates the model of the simulation. In this sketch, Data block
provides the system with data blocks. For ”Send all pages” and ”Send leaf pages”
methods, this simulates reading the pages from disk and removing the empty spaces,
while for both alternatives of the ”Send data” method, it simulates reading the
tuples and packing them into a new block. Log record is responsible for generating
the 2.000 log records per second, while Pack log record is responsible for checking
whether the log record should be pack into a block and shipped or not. Network
simulates the network connection between the two nodes and Process data block and
Process log block simulate the part of the system that regenerates the B-tree from
the data received, and the part of the system resposible for applying the log records
received respectively. This simulation model was implemented using a descrete event
simulator called JSim1.

The model is controlled by the following parameter:

• Data block : average arrival rate for data blocks.

• Log records : arrival rate for log records.

• Pack log records : average time used to add each of the log records to the block.

• Network : average time used to send a packet over the network.

1The source code of the simulation can be found on Apendix B
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Data block

Log records Pack log records

Log record > last sent key

Network Process data block

Process  log block

Figure 5.1: Simulation model for the four methods studied.

• Process data block : average time used to process a data block.

• Process log block : average time used to process a block containing log records.

The values for parameters Data block, Log records, Pack log records, Process data
blocks, and Process log blocks were obtained from runs of the methods’ implemen-
tations as the average values of the times measured. The parameter Network could
not be measured and was estimated analytically. Indeed, assuming that there is only
one network between two nodes, the service time (Network) for sending a message
between two nodes can be calculated as follows [8]:

Let:

• MessageSize = size, in bytes, of the message exchanged between the node

• MSS = maximum segment size in bytes

• TCPOvhd = overhead, in bytes, of the TCP protocol

• IPOvhd = overhead, in bytes, of the IP protocol

• FrameOvhd = overhead, in bytes, of the frames

• Overhead = total overhead (TCP + IP + frame), in bytes, for all frames
necessary to carry a message on the network

• Bandwidth = bandwidth, in Mbps, of the network

• NDatagrams = number of IP datagrams transmitted over the network to carry
a message

Each datagram carries MSS bytes worth of message data. The number of datagrams
needed to transmit a message over the network is

NDatagrams =

⌈
MessageSize

MSS

⌉
. (5.1)
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In the case of TCP/IP the total protocol overhead involved on transmitting a
mesasge over the network is given by

Overhead = NDatagrams ∗ (TCPOvhd + IPOvhd + FrameOvhd). (5.2)

Finally, the service time at the network for a message is equal to the total number of
bits needed to transmit a message (including the overhead) divided by the bandwidth
in bps. Hence,

Network =
(MessageSize + Overhead) ∗ 8

106 ∗Bandwidth
. (5.3)

The overhead involved in transmitting a message is given in the following table:

Protocol Parameter Overhead(bytes)
TCP TCPOvhd 20
IP version 4 IPOvhd 20
IP version 6 40
ATM 5
Ethernet FrameOvhd 18

5.2 Experiments and results

In this paragraph we first present the results for the reference configuration defined
in paragraph 5.1.4. Then we present the results obtained when varying each of the
parameters at a time, with respect to the reference configuration.

5.2.1 Reference configuration

We have measured the two performance metrics for each alternative of the meth-
ods 10 time with the reference configuration. To compare the performance of the
methods, we have plotted, for each of the methods, the relative variations of the
two perfomance metrics as a function of the run index (see Fig. 5.2). The dispersion
of the results over the different runs is small, which shows that the average over
the 10 runs of the measurements for a given performance metrics and for a given
method is a satisfying estimate of the performance of the method with respect to
that particular metrics.

The results for the mean behavior of each method and their variants with respect
to the two performance metrics are shown in table 5.1.

Figures 5.3.a and 5.3.b show the total time to complete at the repairing node, and
at the node being repaired, respectively. At the repairing node, the method ”Send
data insert from bottom” apears to be the fastest, followed by ”Send data insert
from top”. At the node being repaired, the method ”Send data insert from bottom”
apears to be the fastest, followed by ”Send leaf pages” and ”Send all pages”, while
”Send data insert from top” apears to be the slowest.
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Figure 5.2: Relative variations, as a function of the run index, of the performance
metrics, measured for the different methods and their alternatives: (a) time to com-
plete at repairing node, and (b) time to complete at the node being repaired.

Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Time to complete at repairing
node (µs)

9865117.1 9858224.9 9312353.7 9434051.6

Time to complete at node be-
ing repaired (µs)

9814547.1 9808255.2 9265612.1 11739039

Table 5.1: Results averaged over 10 runs of the 4 different recovery methods.

”Send data insert from top” and ”Send data insert from bottom” run the exact
same algorithm at the node being repaired. The small difference in their performance
at the repairing node might be due to ”Send data only insert from top” being much
slower at the node being repaired, which might result in the buffers at this node
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being filled up, and consequently the other node being idle until there is space again
in the buffers.

5.2.2 Varying the B-tree’s fill level

We have run each of the methods using a database with fill level of aproximately 50%
to investigate what effect the variation of the fill level would have on the performance
at both nodes. The results for the mean behavior of each method and their variants
are shown in table 5.2, with respect to the two performance metrics.

Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Time to complete at repairing
node (µs)

13201006 9772824 9305144 9462078

Time to complete at node be-
ing repaired (µs)

23794430 9653825 9253099 11750465

Table 5.2: Results averaged over 10 runs of the 4 different recovery methods when
running the experiments with a database with fill level of aproximately 50%.

Figure 5.4 shows a comparison between the results obtained with the refer-
ence configuration (fille level of approximately 100%) and the results obtained for a
database with a fill level of aproximately 50%. ”Send leaf pages”, ”Send data insert
from top”, and ”Send data insert from bottom” where not very much affected by
the variation of the fill level, while the performance of ”Send all pages” decreased
considerably with the lower fill level. This decrease in performance might have been
due to the number of internal pages of the B-tree dramatically increasing and the
node being repaired not being able to keep all internal pages in memory. This would
cause a bigger number of disk accesses which would have a bad influence on the per-
formance of the node. This did not happen on the other nodes because the internal
pages are being regenerated with 100% fill level, so the number of internal pages
for the other methods are not as high. More experiments would be necessary to
invertigates what causes this behaviour.

5.2.3 Varying the number of log records generated per sec-
ond

Each method has been run with 0 and 4000 log records per second and ivestigated
how the performance metrics are modified. The results for the mean behavior of
each method and their variants are shown in table 5.3 and 5.4, for 0 and 4000 log
records per second respectively.

A comparison between the results obtained with 0, 2000 (reference configura-
tion), and 4000 log records per second is shown in figure 5.5. ”Send data only insert
from bottom” appears to be the fastest method at both nodes. The time to com-
plete at both nodes for the methods ”Send leaf pages”, ”Send data only insert from
top”, and ”Send data only nsert from bottom” appears to increase linearly as the
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Figure 5.3: Results averaged over ten runs of the 4 different recovery methods with
respect to: (a) time to complete at repairing node, and (b) time to complete at the
node being repaired.
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Figure 5.4: Results averaged over 10 runs of the 4 different recovery methods when
running the experiments with databases with 50% and 100% fill levels with respect
to: (a) time to complete at repairing node, and (b) time to complete at the node
being repaired.

Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Time to complete at repairing
node (µs)

9632766 9727580 9239989 9070043

Time to complete at node be-
ing repaired (µs)

9579257 9557672 9013507 11439680

Table 5.3: Results averaged over the 10 of the 4 different recovery methods when
running the experiments with 0 log records being generated per second.

number of log records per second increases. The time to complete at both nodes
for ”Send all pages” presents a behaviour different from that of the other methods.
More experiments would be necessary to invertigate the reasons for that behaviour.
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Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Time to complete at repairing
node (µs)

11458393 10033647 9411427 9973364

Time to complete at node be-
ing repaired (µs)

20150361 9965961 9367019 12325112

Table 5.4: Results averaged over the 10 of the 4 different recovery methods when
running the experiments with 4.000 log records being generated per second.
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Figure 5.5: Results averaged over 10 runs of the 4 different recovery methods when
running the experiments with 0, 2000, and 4000 log records being generated per
second with respect to: (a) time to complete at repairing node, and (b) time to
complete at the node being repaired.

5.2.4 Varying the size of the database

We have also run each method with databases containing 500.000 and 1.500.000
tuples of equal size (those used in the reference configuration, see paragraph 5.1.2).
The results for the mean behavior of each method and their variants are shown in
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table 5.5 and 5.6.

Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Time to complete at repairing
node (µs)

4911645 4912763 4628378 5913510

Time to complete at node be-
ing repaired (µs)

5003681 4930106 4642916 4668942

Table 5.5: Results averaged over the 10 runs of the 4 different recovery methods
when running the experiments with a database containing 500.000 records.

Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Time to complete at repairing
node (µs)

27665897 14703969 13863829 18271793

Time to complete at node be-
ing repaired (µs)

17873712 14778307 14055106 14283359

Table 5.6: Results averaged over the 10 runs of the 4 different recovery methods
when running the experiments with a database containing 1.500.000 records.

Figures 5.6a. and 5.6b. show a comparison between the results obtained with
databases containing 500.000, 1.000.000, and 1.500.000 fixed size tuples. At the
recovering node, it appears that ”Send data insert from bottom”, and ”Send data
insert from top” are the fastest methods, followed by ”Send leaf pages”, while ”Send
all pages” appears to be the slowest of the methods. At the node being repaired,
”Send data insert from bottom” appears to be the fastest method, followed by ”Send
leaf pages”. The time to complete at both nodes for the methods ”Send leaf pages”,
”Send data only insert from top”, and ”Send data only nsert from bottom” appear
to increase linearly as the size of the database increases. The time to complete at
both nodes for ”Send all pages” presents a different behaviour than that of the other
methods. More experiments would be necessary to invertigates what are the causes
for this behaviour.

5.2.5 Varying the network’s bandwidth

Prior to running the simulation, the first step was to find values for the various
parameters of the simulation model. We used the implementation of the methods
to repeatedly measure characteristic times for each of the method. After removing
values corresponding to events that seemed to have suffered external influence, from
other threads or processes running at the same time, the average values measured
where set as model parameters for the simulation. These values are listed in table 5.7.
Due to the subjective removing of inconsistent values, this mean values should not
be taken as absolute values, they can be subject to errors in measurement, and/or
misinterpretation2.

We then used equation (5.3) to calculate the service time at the network for each
of the methods, for bandwidths: 10Mbps, 100Mbps and 1Gbps.

2A graph with the different values measured for each parameter can be found on C
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Figure 5.6: Results averaged over ten runs of the 4 different recovery methods with
database for 500.000, 1.000.000, and 2.000.000 fixed size tuples with respect to:
(a) time to complete at repairing node, and (b) time to complete at the node being
repaired.

Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Prepare data 35 60 66 62
Prepare log 5 5 5 5
Process data 157 118 149 464
Process log 234 207 210 147
Number of data blocks 14119 14086 12989 12989
Average block size 7979 7979 8160 8160
MMS 1448 1448 1448 1448
Log record size 112 112 112 112

Table 5.7: Values set to the different parameters of the simulation.

Comparing these values to those obtained for the other parameters of the sys-
tem we note that for network connections of 10Mbps and 100Mbps the values are
somewhat larger than the average time for the other parameters. This could be
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Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

10Mbps 6661 6661 6806 6806
100Mbps log 666 666 680 680
1Gbps 66 66 68 68

Table 5.8: Calculated service times for sending a message through the networks with
bandwidths 10Mbps, 100Mbps and 1Gbps (µs).

an indication that the bottleneck of the system for 10Mbps and 100Mbps be the
network, while for 1Gbps this is not expected.

The service time for sending log blocks has to be calculated inside the simulation,
because the number of log records that are sent from one node to the other depends
on the completion time at the repairing node for each of the methods, in a given
configuration.

After having all necessary parameters in place, we were able to run the simulation
for each method. The results obtained with the simulation for network bandwidths
of 10Mbps and 1Gbps are presented in tables 5.9 and 5.10.

Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Time to complete at repairing
node (µs)

104661759 104447466 98379867 98386726

Time to complete at node be-
ing repaired (µs)

104655235 104440901 98379867 98380364

Table 5.9: Results from the simulation of the 4 different recovery methods when
simulating a network bandwidth of 10Mbps.

Send all pages Send leaf pages Send data Send data
insert from bottom insert from top

Time to complete at repairing
node (µs)

2496798 1928488 2192822 3133632

Time to complete at node be-
ing repaired (µs)

2499063 1929782 2195141 6286676

Table 5.10: Results from the simulation of the 4 different recovery methods when
simulating a network bandwidth of 1000Mbps.

Figure 5.7 shows a comparison between the results with network bandwidths of
10Mbps, 100Mbps and 1Gbps, where the results for 10Mbps and 1Gbps have been
obtained by using the simulation, while those for 100Mbps have been obtained by
running the implementation of the methods. ”Send data only insert from bottom”
and ”Send data only insert from top” appear to be the fastest methods at both nodes
when using a 10Mbps and 100Mbps network bandwidth. As the network bandwidth
increases to 1Gbps, ”Send leaf pages” becomes the fastest method at both nodes.
This indicates that the network might be the bottleneck for 10Mbps and 100Mbps,
and that, as soon as the network is not the bottleneck, other methods that perform
less work at both nodes, but transfer larger amount of data on the network, have
better performance.

At 1Gbps we notice that, for the first time in these experiments, neither of the
two alternatives of the ”Send data only” method exibited the best performance.
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Figure 5.7: Results averaged over 10 runs of the 4 different recovery methods with
network bandwidths of 10Mbps, 100Mbps and 1Gbps with respect to: (a) time to
complete at repairing node, and (b) time to complete at the node being repaired.

For that reason we decided to run several more experiments, with network band-
widths intermediate with respect to those studied earlier. The results obtained by
running the simulation for each of the different methods with network bandwidths
of 250Mbps, 500Mbps, 750Mbps and 1Gbps are shown in figure 5.8. It appears
that as the network speed is being increased, the different methods at the node
being repaired reach a point where their performance stops improving. That seems
to influence the performance at the repairing node in a negative way. A possible
explanation is that both the implementation of the methods and their simulation
operate with a maximum queue length of 10 blocks; once the queues starts being
full at the node being repaired, the repairing node has to stop processing until there
is space again on the queues. More experiments varying the queue length would be
necessary in order to further investigate this point.

If we consider again the parameters measured as input for the simulation, we can
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Figure 5.8: Results averaged over 10 runs of the 4 different recovery methods with
network bandwidth of 250Mbps, 500Mbps, 750Mbps and 1Gbps with respect to: (a)
time to complete at repairing node, and (b) time to complete at the node being
repaired.

see that the Process data increases between the methods in the same order as the
methods achieve saturation, this might be an indication that once the network is no
longer the bottleneck of the system, the time it takes to process the data becomes
the bottleneck.



Chapter 6

Conclusions and prospects

6.1 Conclusions

The objectives of this project were to evaluate the performances of different node
crash recovery methods, in different configuration, in order to find out which method
performs best under which circumstances. The main goal was to find out which
method minimizes the completion time at both nodes involved in the recovery pro-
cess, specially at the repairing node.

”Send all pages” can be considered as the method presenting the worse perfor-
mance. It does not perform best in any of the different configurations examined in
this project. With a 1Gbps network it presents a better performance than ”Send
data insert from top”, but this is not sufficient for this method to be considered a
valuable candidate.

”Send leaf pages” presents an intermediate performance in most of the configu-
rations studied. It often performs worse at the repairing node than the two methods
where only data is sent, but it performs often better at the node being repaired
than ”Send data insert from top”. However, if the network reached a bandwidth of
1Gbps, this node presents the best performance at both nodes and therefore could
be a good alternative.

”Send data insert from bottom” and ”Send data insert from top” present the
best performance at the repairing node in most of the configurations. At the node
being repaired ”Send data insert from bottom” performs better than ”Send data
insert from top”, and could therefore be considered as the best method. Considering
that the load imposed by transactions being executed during the recovery period is
carried by the repairing node, the performances of the methods at the repairing node
is more important than their performances at the node being repaired. Therefore,
both methods can be considered good candidates.

It appears that the network characteristics should be taken into consideration
when choosing a recovery method. For the most common network configurations

47
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in use nowadays, i.e, 100Mbps or lower, methods that send less data through the
network are recommended. Such are ”Send data insert from top” and ”Send data
insert from bottom”. However, as 1Gbits (or faster) network configurations will
become more common with time, methods like ”Send leaf pages” will probably
become good alternatives.

One limitation to the study should be emphasized: in the experiments that we
have presented, none of the nodes involved was subjected to any sort of external
load. Having load applied at the repairing node, which is the conditions under which
these recovery methods would run in a real system, may change the overal mutual
rankings between the different methods.

6.2 Further work

Some prospects have arised from the results of this study:

1. Further experiments would be needed in order to determine why the perfor-
mance of the ”Send all pages” method behaved in a different manner from the
other methods when the fill level decreased, the database size increased, or
the number of log records per second increased. Is this behaviour due to the
implementation of this method or is it characteristic of the method itself?

2. Applying a controlled load on the machine that runs as the repairing node
(sender) would result in more complete experiments. How would this addi-
tional load affect the performances of the different methods and their mutual
rankings?

3. It would be interesting to implement the methods keeping the database in
memory and only storing it on disk in sequential order after all the database
has been received and all log records have been applied, to see how this affects
the performance of the methods.
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A.1 Main program

1 #include <s t d i o . h>
#include <s t d l i b . h>

#include ” b lo ck s ende r . h”
#include ” b l o c k r e c e i v e r . h”

int main ( int argc , char ∗argv [ ] )
{

int opt ion = a t o i ( argv [ 1 ] ) ;
int a lg = a t o i ( argv [ 2 ] ) ;

11 int i ;

i f ( opt ion == 1) {
getSenderSocket ( ) ;

} else {
getRece ive rSocket ( ) ;

}

i f ( opt ion == 1)
switch ( a l g ) {

21 case 1 :
SendAllPages ( ) ;
break ;

case 2 :
SendLeaves ( ) ;
break ;

case 3 :
SendData ( ) ;
break ;

}
31 else

switch ( a l g ) {
case 1 :

Rece iveAl lPages ( ) ;
break ;

case 2 :
ReceiveLeaves ( ) ;
break ;

case 3 :
ReceiveData ( ) ;

41 break ;
}

i f ( opt ion == 1) {
c l o s eSenderSocke t ( ) ;

} else {
c l o s eRece i v e rSocke t ( ) ;

}

return EXIT SUCCESS ;
51 }
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A.2 Sender side

#include ” b lo ck s ende r . h”

bu f f e r t yp e bu f f e r ;
bu f f e r t yp e l o g b u f f e r ;

int s end data socke t ;
int s e nd l o g s o c k e t ;

8

struct t imeva l s t a r t t ime , end time ;

unsigned long l a s t s e n t k e y ;
char end se t = 0 ;

void getSenderSocket ( ) {
s end data socke t = getSocket ( ) ;
prepareToSend ( send data socket , RECEIVER IP , RECEIVER PORT) ;

18 s e nd l o g s o c k e t = getSocket ( ) ;
prepareToSend ( s end l og so cke t , RECEIVER IP , RECEIVER LOG PORT) ;

}

void c l o s eSenderSocke t ( ) {
c l o s e ( s end data socke t ) ;
c l o s e ( s e nd l o g s o ck e t ) ;

}

unsigned long CalcLogCount (unsigned long t ime spent ) {
28 unsigned long l og count ;

double l o g r e c o r d s p r s e c ;
l o g r e c o r d s p r s e c = LOG RECORDS PER SEC;
log count = t ime spent ∗ ( l o g r e c o r d s p r s e c / 1000000 . 0 ) ;
return l og count ;

}

void SetTimeStart ( ) {
gett imeofday(&s ta r t t ime , 0 ) ;

}
38

void SetTimeEnd ( ) {
end se t = 1 ;
gett imeofday(&end time , 0 ) ;

}

unsigned long GetTimeSpent ( ) {
struct t imeva l cu r r en t t ime ;
unsigned long seconds , microseconds , t ime spent ;

48 i f ( end se t == 0)
gett imeofday(&current t ime , 0 ) ;

else
cur r en t t ime = end time ;

seconds = ( cur r en t t ime . t v s e c − s t a r t t ime . t v s e c ) ;
microseconds = ( cur r en t t ime . tv u s e c − s t a r t t ime . tv us e c ) ;
t ime spent = ( seconds ∗ 1000000) + microseconds ;
return t ime spent ;

}
58

void ∗SendLog ( ) {
int res , o l d s t a t e ;
u i n t 8 t ∗block ;
u i n t 3 2 t b l o c k s i z e ;

p t h r e ad s e t c an c e l s t a t e (PTHREAD CANCEL DISABLE, &o l d s t a t e ) ;

b lock = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;

68 do {
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b l o c k s i z e = GetNextBlockFromBuffer(& l o g bu f f e r , b lock ) ;
r e s = sendPacket ( s end l og so cke t , block , b l o c k s i z e ) ;

} while ( r e s != s izeof ( u i n t 8 t ) ) ;

p th r ead ex i t (NULL) ;
}

void ∗PrepareLog ( ) {
LOGRECORD ∗ l r e c o r d ;

78 FILE ∗ l og ;
unsigned long next l sn , l sn key , t ime spent ;
u i n t 8 t ∗block ;
u i n t 8 t end ;
db indx t b l o c k o f f s e t ;
p thread t sender ;
int o l d s t a t e ;

p t h r e ad s e t c an c e l s t a t e (PTHREAD CANCEL DISABLE, &o l d s t a t e ) ;
p th r ead c r ea t e (&sender , NULL, SendLog , NULL) ;

88

l og = OpenLogReadOnly (LOG FILE ) ;

l r e c o r d = (LOGRECORD ∗) mal loc ( s izeof (LOGRECORD) ) ;
b lock = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;
bzero ( block , MAX PAGE SIZE) ;

b l o c k o f f s e t = 0 ;
n ex t l s n = 1 ;
while ( l a s t s e n t k e y != 0) {

98 t ime spent = GetTimeSpent ( ) ;
i f ( CalcLogCount ( t ime spent ) >= nex t l s n ) {

l r e c o r d = ReadLogRecord ( log , n ex t l s n ) ;
n ex t l s n++;

memcpy( ( void ∗)& l sn key , (void ∗) l r e co rd−>data key , l r e co rd−>l en key ) ;
i f ( l s n key <= l a s t s e n t k e y ) {

i f ( (MAX PAGE SIZE − b l o c k o f f s e t ) < s izeof (LOGRECORD)) {
AddBlockToBuffer(& l o g bu f f e r , block , b l o c k o f f s e t ) ;
b l o c k o f f s e t = 0 ;

108 bzero ( block , MAX PAGE SIZE) ;
}
AddDataToBlock ( block , &b l o c k o f f s e t , ( u i n t 8 t ∗) l r e co rd , s izeof (LOGRECORD) ) ;

}
}

}
i f ( b l o c k o f f s e t != 0) {

AddBlockToBuffer(& l o g bu f f e r , block , b l o c k o f f s e t ) ;
}

118 end = 0 ;
AddBlockToBuffer(& l o g bu f f e r , &end , s izeof ( u i n t 8 t ) ) ;

p th r ead j o i n ( sender , NULL) ;

p th r ead ex i t (NULL) ;
}

void ∗SendPackets ( ) {
int res , o l d s t a t e ;

128 u i n t 8 t ∗block ;
u i n t 3 2 t b l o c k s i z e ;

p t h r e ad s e t c an c e l s t a t e (PTHREAD CANCEL DISABLE, &o l d s t a t e ) ;

b lock = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;

do {
b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , b lock ) ;
r e s = sendPacket ( send data socket , block , b l o c k s i z e ) ;

138 } while ( r e s != s izeof ( u i n t 8 t ) ) ;
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pth r ead ex i t (NULL) ;
}

void SendPagesPreFix (
FILE ∗db ,
db pgno t pgno ,
db indx t page s i z e ,
unsigned long long ∗min send pages t ime ) {

148 u i n t 8 t ∗page , ∗ sendPage ;
PAGE ∗header ;
db indx t pageSize , entry , o f f s e t ;
unsigned int r e c o r d s i z e ;
BINTERNAL ∗ i n t e r n a l ;

page = ReadPage (db , pgno , p ag e s i z e ) ;
header = GetHeader ( page ) ;

sendPage = ( u i n t 8 t ∗) mal loc ( p ag e s i z e ) ;
158 memcpy( sendPage , page , p a g e s i z e ) ;

pageS ize = CompressPage ( sendPage , p a g e s i z e ) ;
AddBlockToBuffer(&bu f f e r , sendPage , pageS ize ) ;
f r e e ( sendPage ) ;

i f ( header−>l e v e l != LEAFLEVEL) {
for ( entry =1; entry<=header−>e n t r i e s ; entry++) {

o f f s e t = GetOf fset ( page , entry ) ;
i n t e r n a l = GetDataInternal ( page , o f f s e t , &r e c o r d s i z e ) ;
SendPagesPreFix (db , i n t e rna l−>pgno , page s i z e , min send pages t ime ) ;

168 }
} else {

SetLastSentKey ( page , &l a s t s e n t k e y ) ;
}
f r e e ( page ) ;

}

void SendAllPages ( ) {
FILE ∗db ;
BTMETA ∗btMeta ;

178 u i n t 8 t end ;
unsigned long totalTime , logCount ;
pthread t sender , l o g s ende r ;

SetTimeStart ( ) ;

db = OpenDatabaseReadOnly (DB FILE ) ;
btMeta = GetMetaPage (db ) ;
I n i tBu f f e r (&bu f f e r , btMeta−>dbmeta . page s i z e ) ;
I n i tBu f f e r (& l o g bu f f e r , btMeta−>dbmeta . page s i z e ) ;

188 l a s t s e n t k e y = 1 ;

// send metapage
AddBlockToBuffer(&bu f f e r , ( u i n t 8 t ∗) btMeta , DBMETASIZE) ;

// s t a r t b l o c k sender
pthr ead c r ea t e (&sender , NULL, SendPackets , NULL) ;
// s t a r t l o g sender
pthr ead c r ea t e (& log sender , NULL, PrepareLog , NULL) ;

198 SendPagesPreFix (db , btMeta−>root , btMeta−>dbmeta . pages i ze , NULL) ;

// s top and wait f o r sender to f i n i s h
end = 0 ;
AddBlockToBuffer(&bu f f e r , &end , s izeof ( end ) ) ;
SetTimeEnd ( ) ;
l a s t s e n t k e y = 0 ;

p th r ead j o i n ( sender , NULL) ;
p th r ead j o i n ( l og s ende r , NULL) ;

208
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TermBuffer(&bu f f e r ) ;
TermBuffer(& l o g b u f f e r ) ;

totalTime = GetTimeSpent ( ) ;
logCount = CalcLogCount ( totalTime ) ;

p r i n t f ( ”Send a l l pages time : %lu logCount : %lu \n” , totalTime , logCount ) ;

CloseDatabase (db ) ;
218 }

void SendLeaves ( ) {
FILE ∗db ;
BTMETA ∗btMeta ;
u i n t 8 t ∗page , end ;
unsigned int pageS ize ;
pthread t sender , l o g s ende r ;
db indx t pgno ;
PAGE ∗header ;

228 unsigned long totalTime , logCount ;

SetTimeStart ( ) ;

db = OpenDatabaseReadOnly (DB FILE ) ;
btMeta = GetMetaPage (db ) ;
I n i tBu f f e r (&bu f f e r , btMeta−>dbmeta . page s i z e ) ;
I n i tBu f f e r (& l o g bu f f e r , btMeta−>dbmeta . page s i z e ) ;
l a s t s e n t k e y = 1 ;

238 // send metapage
AddBlockToBuffer(&bu f f e r , ( u i n t 8 t ∗) btMeta , DBMETASIZE) ;

// s t a r t b l o c k sender
pthr ead c r ea t e (&sender , NULL, SendPackets , NULL) ;

// s t a r t l o g sender
pthr ead c r ea t e (& log sender , NULL, PrepareLog , NULL) ;

pgno = FindFi r s tLea f (db , ( u i n t 8 t ∗) btMeta ) ;

248 while ( pgno != 0) {
page = ReadPage (db , pgno , btMeta−>dbmeta . page s i z e ) ;
SetLastSentKey ( page , &l a s t s e n t k e y ) ;
pageS ize = CompressPage ( page , btMeta−>dbmeta . page s i z e ) ;
AddBlockToBuffer(&bu f f e r , page , pageS ize ) ;
header = GetHeader ( page ) ;
pgno = header−>next pgno ;

}

// s top and wait f o r sender to f i n i s h
258 end = 0 ;

AddBlockToBuffer(&bu f f e r , &end , s izeof ( end ) ) ;
SetTimeEnd ( ) ;
l a s t s e n t k e y = 0 ;

p th r ead j o i n ( sender , NULL) ;
p th r ead j o i n ( l og s ende r , NULL) ;

TermBuffer(&bu f f e r ) ;
TermBuffer(& l o g b u f f e r ) ;

268

totalTime = GetTimeSpent ( ) ;
logCount = CalcLogCount ( totalTime ) ;

p r i n t f ( ”Send l e a f pages time : %lu logCount : %lu \n” , totalTime , logCount ) ;

CloseDatabase (db ) ;
}

278 void SendData ( ) {
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FILE ∗db ;
BTMETA ∗btMeta ;
BKEYDATA ∗data , ∗key ;
u i n t 8 t ∗page , end , ∗block ;
unsigned int i , r e c o rd s i z e da t a , r e c o r d s i z e k e y ;
pthread t sender , l o g s ende r ;
db indx t pgno , o f f s e t , b l o c k o f f s e t ;
unsigned long totalTime , logCount , b locks = 0 ;

288 SetTimeStart ( ) ;

db = OpenDatabaseReadOnly (DB FILE ) ;
btMeta = GetMetaPage (db ) ;
I n i tBu f f e r (&bu f f e r , btMeta−>dbmeta . page s i z e ) ;
I n i tBu f f e r (& l o g bu f f e r , btMeta−>dbmeta . page s i z e ) ;
l a s t s e n t k e y = 1 ;

// send metapage
AddBlockToBuffer(&bu f f e r , ( u i n t 8 t ∗) btMeta , DBMETASIZE) ;

298

// s t a r t b l o c k sender
pthr ead c r ea t e (&sender , NULL, SendPackets , NULL) ;
// s t a r t l o g sender
pthr ead c r ea t e (& log sender , NULL, PrepareLog , NULL) ;

pgno = FindFi r s tLea f (db , ( u i n t 8 t ∗) btMeta ) ;

b lock = ( u i n t 8 t ∗) mal loc ( btMeta−>dbmeta . page s i z e ) ;
bzero ( block , btMeta−>dbmeta . page s i z e ) ;

308 b l o c k o f f s e t = 0 ;

while ( pgno != 0) {
page = ReadPage (db , pgno , btMeta−>dbmeta . page s i z e ) ;
SetLastSentKey ( page , &l a s t s e n t k e y ) ;
for ( i =1; i <=((PAGE ∗) page)−> e n t r i e s ; i=i +2) {

// two by two . . . key miss ing
o f f s e t = GetOf fset ( page , i ) ;
data = GetDataLeaf ( page , o f f s e t , &r e c o r d s i z e d a t a ) ;
o f f s e t = GetOf fset ( page , i +1);

318 key = GetDataLeaf ( page , o f f s e t , &r e c o r d s i z e k e y ) ;
i f ( b l o c k o f f s e t + ( r e c o r d s i z e d a t a + r e c o r d s i z e k e y )> btMeta−>dbmeta . page s i z e ) {

AddBlockToBuffer(&buf f e r , block , b l o c k o f f s e t ) ;
b locks ++;
bzero ( block , btMeta−>dbmeta . page s i z e ) ;
b l o c k o f f s e t = 0 ;

}
AddDataToBlock ( block , &b l o c k o f f s e t , ( u i n t 8 t ∗) data , r e c o r d s i z e d a t a ) ;
AddDataToBlock ( block , &b l o c k o f f s e t , ( u i n t 8 t ∗) key , r e c o r d s i z e k e y ) ;

328 }
pgno = ( (PAGE ∗) page)−>next pgno ;

}
AddBlockToBuffer(&bu f f e r , block , b l o c k o f f s e t ) ;
b locks++;

// s top and wait f o r sender to f i n i s h
end = 0 ;
AddBlockToBuffer(&bu f f e r , &end , s izeof ( end ) ) ;
SetTimeEnd ( ) ;

338 l a s t s e n t k e y = 0 ;

p th r ead j o i n ( sender , NULL) ;
p th r ead j o i n ( l og s ende r , NULL) ;

TermBuffer(&bu f f e r ) ;
TermBuffer(& l o g b u f f e r ) ;

totalTime = GetTimeSpent ( ) ;
logCount = CalcLogCount ( totalTime ) ;

348
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p r i n t f ( ”Send data time : %lu logCount : %lu \n” , totalTime , logCount ) ;

CloseDatabase (db ) ;
}
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A.3 Receiver side

#include ” b lo ck s ende r . h”

bu f f e r t yp e bu f f e r ;
bu f f e r t yp e l o g b u f f e r ;

int r e c v l o g s o ck e t , s e nd l o g t o s o c k e t ;
7 int r e cv data socke t , s end da ta t o s o ck e t ;

void getRece ive rSocket ( ) {
r e cv da t a s o ck e t = getSocket ( ) ;
s end da ta t o s o ck e t = prepareToListen ( r e cv data socke t , RECEIVER PORT) ;
r e c v l o g s o c k e t = getSocket ( ) ;
s e nd l o g t o s o c k e t = prepareToListen ( r e c v l o g s o ck e t , RECEIVER LOG PORT) ;

}

void c l o s eRece i v e rSocke t ( ) {
17 c l o s e ( r e cv da t a s o ck e t ) ;

c l o s e ( s end da ta t o s o ck e t ) ;
c l o s e ( r e c v l o g s o c k e t ) ;
c l o s e ( s e nd l o g t o s o c k e t ) ;

}

void ∗ReceiveLog ( ) {
int o l d s t a t e ;
u i n t 8 t ∗block ;
u i n t 3 2 t b l o c k s i z e ;

27

p th r e ad s e t c an c e l s t a t e (PTHREAD CANCEL DISABLE, &o l d s t a t e ) ;

b lock = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;

do {
b l o c k s i z e = rece ivePacke t ( s end l o g t o s o ck e t , block , MAX PAGE SIZE) ;
AddBlockToBuffer(& l o g bu f f e r , block , b l o c k s i z e ) ;

} while ( b l o c k s i z e != s izeof ( u i n t 8 t ) ) ;

37 f r e e ( b lock ) ;

p th r ead ex i t (NULL) ;
}

void ∗ProcessLog (void ∗db) {
pthread t r e c e i v e r ;

u i n t 8 t ∗block ;
u i n t 3 2 t b l o c k s i z e , o f f s e t ;
LOGRECORD ∗ l r e c o r d ;

47 int o l d s t a t e ;

p t h r e ad s e t c an c e l s t a t e (PTHREAD CANCEL DISABLE, &o l d s t a t e ) ;
p th r ead c r ea t e (& r e c e i v e r , NULL, ReceiveLog , NULL) ;

b lock = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;

b l o c k s i z e = GetNextBlockFromBuffer(& l o g bu f f e r , b lock ) ;
while ( b l o c k s i z e != s izeof ( u i n t 8 t ) ) {

o f f s e t = 0 ;
57 // Process the l o g

while ( o f f s e t < b l o c k s i z e ) {
l r e c o r d = (LOGRECORD ∗) GetDataFromBlockFixedSize ( block , &o f f s e t , s izeof (LOGRECORD) ) ;
// app ly l o g
FindAndSetData (

(FILE ∗)db ,
l r e co rd−>data data ,
l r e co rd−>l en data ,
l r e co rd−>data key ,
l r e co rd−>l en key ) ;

67 }
b l o c k s i z e = GetNextBlockFromBuffer(& l o g bu f f e r , b lock ) ;
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}

f r e e ( b lock ) ;
// wait f o r r e c e i v e r to f i n i s h
pth r ead j o i n ( r e c e i v e r , NULL) ;

return NULL;

77 }

void ∗Rece ivePackets ( ) {
int o l d s t a t e ;
u i n t 8 t ∗block ;
u i n t 3 2 t b l o c k s i z e ;

p t h r e ad s e t c an c e l s t a t e (PTHREAD CANCEL DISABLE, &o l d s t a t e ) ;

b lock = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;
87

do {
b l o c k s i z e = rece ivePacke t ( s end data to socke t , block , MAX PAGE SIZE) ;
AddBlockToBuffer(&bu f f e r , block , b l o c k s i z e ) ;

} while ( b l o c k s i z e != s izeof ( u i n t 8 t ) ) ; // && b l o c k s i z e != 0) ;

f r e e ( b lock ) ;

p th r ead ex i t (NULL) ;
97 }

void Rece iveAl lPages ( ) {
FILE ∗db ;
u i n t 8 t ∗btMeta ;
u i n t 8 t ∗page ;
unsigned long currentPage , totalTime = 0 , tota lData = 0 ;
pthread t r e c e i v e r , l o g r e c e i v e r ;
u i n t 3 2 t b l o c k s i z e ;

107 db = OpenDatabaseReadWrite (DB REC) ;

I n i tBu f f e r (&bu f f e r , MAX PAGE SIZE) ;
I n i tBu f f e r (& l o g bu f f e r , MAX PAGE SIZE) ;
In i tDatabase ( ) ;

// s t a r t b l o c k r e c e i v e r
pthr ead c r ea t e (& r e c e i v e r , NULL, ReceivePackets , NULL) ;
// s t a r t l o g r e c e i v e r
pthr ead c r ea t e (& l o g r e c e i v e r , NULL, ProcessLog , (void ∗) db ) ;

117

btMeta = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;

// ge t metapage
b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , btMeta ) ;

SetTimeStart ( ) ;

SetMetaPage (db , btMeta ) ;

127 page = ( u i n t 8 t ∗) mal loc ( ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;

for ( currentPage =1; currentPage <=((BTMETA ∗) btMeta)−>dbmeta . l a s t pgno ; currentPage++) {
bzero ( page , ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;
b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , page ) ;
tota lData += b l o c k s i z e ;
ExpandPage ( page , b l o c k s i z e , ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;
AddPageToTree (db , page , 1 , 1 ) ;

}

137 // wait f o r r e c e i v e r to f i n i s h
pth r ead j o i n ( r e c e i v e r , NULL) ;
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pth r ead j o i n ( l o g r e c e i v e r , NULL) ;

TermBuffer(&bu f f e r ) ;
TermBuffer(& l o g b u f f e r ) ;

CloseDatabase (db ) ;

SetTimeEnd ( ) ;
147

totalTime = GetTimeSpent ( ) ;

p r i n t f ( ”Receive a l l pages time : %lu , data r e c e i v ed : %lu \n” , totalTime , tota lData ) ;

f r e e ( page ) ;
// f r e e ( btMeta ) ;

}

void ReceiveLeaves ( ) {
157 FILE ∗db ;

u i n t 8 t ∗btMeta ;
u i n t 8 t ∗page ;
unsigned long totalTime = 0 , tota lData = 0 ;
pthread t r e c e i v e r , l o g r e c e i v e r ;
u i n t 3 2 t b l o c k s i z e ;

db = OpenDatabaseReadWrite (DB REC) ;

I n i tBu f f e r (&bu f f e r , MAX PAGE SIZE) ;
167 I n i tBu f f e r (& l o g bu f f e r , MAX PAGE SIZE) ;

In i tDatabase ( ) ;

// s t a r t b l o c k r e c e i v e r
pthr ead c r ea t e (& r e c e i v e r , NULL, ReceivePackets , NULL) ;
// s t a r t l o g r e c e i v e r
pthr ead c r ea t e (& l o g r e c e i v e r , NULL, ProcessLog , (void ∗) db ) ;

btMeta = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;

177 // ge t metapage
b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , btMeta ) ;

SetTimeStart ( ) ;

( (BTMETA ∗) btMeta)−>dbmeta . l a s t pgno = 0 ;
SetMetaPage (db , btMeta ) ;

page = ( u i n t 8 t ∗) mal loc ( ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;
bzero ( page , ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;

187 b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , page ) ;

while ( b l o c k s i z e != s izeof ( u i n t 8 t ) && b l o c k s i z e != 0) {
tota lData += b l o c k s i z e ;
ExpandPage ( page , b l o c k s i z e , ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;
// bu i l d t r e e
AddPageToTree (db , page , 0 , 1 ) ;
bzero ( page , ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;
b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , page ) ;

}
197

// wait f o r r e c e i v e r to f i n i s h
pth r ead j o i n ( r e c e i v e r , NULL) ;
p th r ead j o i n ( l o g r e c e i v e r , NULL) ;

TermBuffer(&bu f f e r ) ;
TermBuffer(& l o g b u f f e r ) ;

CloseDatabase (db ) ;

207 SetTimeEnd ( ) ;
totalTime = GetTimeSpent ( ) ;
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p r i n t f ( ”Receive l e a f pages time : %lu , data r e c e i v ed : %lu \n” , totalTime , tota lData ) ;

f r e e ( page ) ;
// f r e e ( btMeta ) ;

}

void ReceiveData ( ) {
217 FILE ∗db ;

u i n t 8 t ∗btMeta ;
u i n t 8 t ∗block , ∗page , ∗data , ∗key ;
PAGE ∗header ;
unsigned long totalTime = 0 , tota lData = 0 ;
unsigned int r e c o rd s i z e da t a , r e c o r d s i z e k e y ;
pthread t r e c e i v e r , l o g r e c e i v e r ;
u i n t 3 2 t b l o c k s i z e ;
db indx t b l o c k o f f s e t , o f f s e t ;
unsigned char end = 0 ;

227 int count = 0 ;

db = OpenDatabaseReadWrite (DB REC) ;

I n i tBu f f e r (&bu f f e r , MAX PAGE SIZE) ;
I n i tBu f f e r (& l o g bu f f e r , MAX PAGE SIZE) ;

In i tDatabase ( ) ;

// s t a r t b l o c k r e c e i v e r
237 pthr ead c r ea t e (& r e c e i v e r , NULL, ReceivePackets , NULL) ;

// s t a r t l o g r e c e i v e r
pthr ead c r ea t e (& l o g r e c e i v e r , NULL, ProcessLog , (void ∗) db ) ;

btMeta = ( u i n t 8 t ∗) mal loc (MAX PAGE SIZE) ;

// ge t metapage
b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , btMeta ) ;

SetTimeStart ( ) ;
247

SetMetaPage (db , btMeta ) ;

b lock = ( u i n t 8 t ∗) mal loc ( ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;
bzero ( block , ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;
b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , b lock ) ;
count++;

page = CreatePage (LEAFLEVEL) ;
header = GetHeader ( page ) ;

257

while ( b l o c k s i z e != s izeof ( u i n t 8 t ) && b l o c k s i z e != 0) {
// parse b l o c k
b l o c k o f f s e t = 0 ;
tota lData += b l o c k s i z e ;
while ( b l o c k o f f s e t < b l o c k s i z e ) {

key = ( u i n t 8 t ∗)GetDataFromBlock ( block , &b l o c k o f f s e t , &r e c o r d s i z e k e y ) ;
data = ( u i n t 8 t ∗)GetDataFromBlock ( block , &b l o c k o f f s e t , &r e c o r d s i z e d a t a ) ;
i f ( CheckSpace ( page , ( r e c o r d s i z e d a t a + r e c o r d s i z e k e y ) ) < 0) {

AddPageToTree (db , page , 0 , 0 ) ;
267 bzero ( page , ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;

page = CreatePage (LEAFLEVEL) ;
header = GetHeader ( page ) ;

}
// s e t key
o f f s e t = header−>h f o f f s e t ;
o f f s e t −= r e c o r d s i z e k e y ;
header−>e n t r i e s ++;
Se tO f f s e t ( page , header−>en t r i e s , o f f s e t ) ;
SetDataLeaf ( page , o f f s e t , r e c o rd s i z e k ey , key ) ;

277 // s e t data
o f f s e t −=r e c o r d s i z e d a t a ;
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header−>e n t r i e s ++;
Se tO f f s e t ( page , header−>en t r i e s , o f f s e t ) ;
SetDataLeaf ( page , o f f s e t , r e c o r d s i z e da t a , data ) ;
header−>h f o f f s e t = o f f s e t ;

}
bzero ( block , ( (BTMETA ∗) btMeta)−>dbmeta . page s i z e ) ;
b l o c k s i z e = GetNextBlockFromBuffer(&bu f f e r , b lock ) ;
count ++;

287 }

i f ( header−>e n t r i e s > 0)
AddPageToTree (db , page , 0 , 0 ) ;

// wait f o r r e c e i v e r to f i n i s h
pth r ead j o i n ( r e c e i v e r , NULL) ;
p th r ead j o i n ( l o g r e c e i v e r , NULL) ;

TermBuffer(&bu f f e r ) ;
297 TermBuffer(& l o g b u f f e r ) ;

CloseDatabase (db ) ;

SetTimeEnd ( ) ;
totalTime = GetTimeSpent ( ) ;

p r i n t f ( ”Receive data time : %lu , data r e c e i v ed : %lu \n” , totalTime , tota lData ) ;

f r e e ( b lock ) ;
307 // f r e e ( btMeta ) ;

f r e e ( page ) ;
}
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A.4 Libraries

1 /∗ Pages and b l o c k s ∗/

#include ” db u t i l . h”
#include ” cons tant s . h”

int compare (DB ∗db , const DBT ∗dbt1 , const DBT ∗dbt2 ) {
unsigned long key1 , key2 ;

memcpy( ( char ∗) &key1 , (char ∗) dbt1−>data , dbt1−>s i z e ) ;
memcpy( ( char ∗) &key2 , (char ∗) dbt2−>data , dbt2−>s i z e ) ;

11 return ( key1 − key2 ) ;
}

u i n t 3 2 t p r e f i x (DB ∗db , const DBT ∗dbt1 , const DBT ∗dbt2 ) {
return dbt1−>s i z e ;

}

void In i tDatabase ( ) {
root = c u r r e n t l e a f = NULL;
cur rent page no = 0 ;

21 }

FILE ∗OpenDatabaseReadOnly (char ∗path ) {

FILE ∗db = fopen ( path , ” r ” ) ;

i f (db == NULL)
p r i n t f ( ”Error opening database readonly !\n” ) ;

r e a d w r i t e f i l e = ( pthread mutex t ∗) mal loc ( s izeof ( pthread mutex t ) ) ;
31 pthread mutex in i t ( r e a d w r i t e f i l e , NULL) ;

return db ;
}

FILE ∗OpenDatabaseReadWrite (char ∗path ) {

FILE ∗db ;

i f ( r e a d w r i t e f i l e == NULL)
41 r e a d w r i t e f i l e = ( pthread mutex t ∗) mal loc ( s izeof ( pthread mutex t ) ) ;

else
p r i n t f ( ” r e a d w r i t e f i l e not nu l l \n” ) ;

p thread mutex in i t ( r e a d w r i t e f i l e , NULL) ;

pthread mutex lock ( r e a d w r i t e f i l e ) ;

i f ( ( db = fopen ( path , ”w+” ) ) == NULL)
p r i n t f ( ”Error opening database read/ wr i t e !\n” ) ;

51

pthread mutex unlock ( r e a d w r i t e f i l e ) ;

return db ;
}

void CloseDatabase (FILE ∗db) {
t r e e i t em type ∗ current , ∗ prev ious ;
for ( cur r ent = root ; cur r ent !=NULL; cur rent = current−>c u r r e n t c h i l d )

WritePage (
61 db ,

( (PAGE ∗ ) ( current−>page))−>pgno ,
meta page−>dbmeta . pages i ze ,
current−>page ) ;

i f ( root != NULL && meta page != NULL) {
meta page−>root = ( (PAGE ∗ ) ( root−>page))−>pgno ;
SetMetaPage (db , ( u i n t 8 t ∗) meta page ) ;
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}

71 i f ( root != NULL) {
prev ious = root ;
for (

cur r ent = previous−>c u r r e n t c h i l d ;
cur r ent !=NULL;
cur rent = current−>c u r r e n t c h i l d ) {

i f ( prev ious−>page != NULL)
f r e e ( prev ious−>page ) ;

f r e e ( prev ious ) ;
p rev ious = cur rent ;

81 }
f r e e ( prev ious ) ;

}

root = NULL;
c u r r e n t l e a f = NULL;

i f ( meta page != NULL)
f r e e ( meta page ) ;

91 pthread mutex lock ( r e a d w r i t e f i l e ) ;

i f ( f c l o s e (db) != 0)
p r i n t f ( ” e r r o r c l o s i n g database \n” ) ;

pthread mutex unlock ( r e a d w r i t e f i l e ) ;

i f ( pthread mutex destroy ( r e a d w r i t e f i l e ) != 0)
p r i n t f ( ” e r r o r on des t roy \n” ) ;

f r e e ( r e a d w r i t e f i l e ) ;
101 r e a d w r i t e f i l e = NULL;

}

BTMETA ∗GetMetaPage (FILE ∗db) {
BTMETA ∗metaPage ;

metaPage = (BTMETA ∗) mal loc (DBMETASIZE) ;
f s e e k (db , 0 , SEEK SET) ;
f r ead (metaPage , DBMETASIZE, 1 , db ) ;

111 return metaPage ;
}

void SetMetaPage (FILE ∗db , u i n t 8 t ∗metaPage ) {
u i n t 8 t ∗ f i l l e r ;

pthread mutex lock ( r e a d w r i t e f i l e ) ;

f s e e k (db , 0 , SEEK SET) ;
fw r i t e (metaPage , DBMETASIZE, 1 , db ) ;

121

f s e e k (db , DBMETASIZE, SEEK SET) ;
f i l l e r = ( u i n t 8 t ∗) mal loc ( ( (BTMETA ∗)metaPage)−>dbmeta . page s i z e − DBMETASIZE) ;
bzero ( f i l l e r , ( (BTMETA ∗)metaPage)−>dbmeta . page s i z e − DBMETASIZE) ;
fw r i t e ( f i l l e r , ( (BTMETA ∗)metaPage)−>dbmeta . page s i z e − DBMETASIZE, 1 , db ) ;

pthread mutex unlock ( r e a d w r i t e f i l e ) ;

meta page = (BTMETA ∗)metaPage ;
}

131

u i n t 8 t ∗CreatePage ( u i n t 8 t l e v e l ) {
u i n t 8 t ∗page ;
PAGE ∗header ;

page = ( u i n t 8 t ∗) mal loc ( meta page−>dbmeta . page s i z e ) ;
bzero ( page , meta page−>dbmeta . page s i z e ) ;
header = GetHeader ( page ) ;
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cur rent page no++;
meta page−>dbmeta . l a s t pgno = current page no ;

141

// I n i t i a l i z e page Header
header−>pgno = current page no ;
header−>h f o f f s e t = meta page−>dbmeta . page s i z e ;
header−>e n t r i e s = 0 ;
header−>type = ( l e v e l == LEAFLEVEL) ? P LBTREE : P IBTREE ;
header−>l e v e l = l e v e l ;

return page ;
}

151

void UpdatePointer ( t r e e i t em type ∗parent page , db pgno t pgno , db pgno t new pgno ) {
db indx t entry , o f f s e t ;
unsigned int r e c o r d s i z e ;
BINTERNAL ∗data ;
PAGE ∗header ;
u i n t 8 t ∗ page ;

page = ( u i n t 8 t ∗) mal loc ( meta page−>dbmeta . page s i z e ) ;
page = parent page−>page ;

161

header = GetHeader ( page ) ;

o f f s e t = GetOf fset ( page , parent page−>cu r r en t en t ry ) ;
data = GetDataInternal ( page , o f f s e t , &r e c o r d s i z e ) ;
i f ( data−>pgno == pgno && data−>unused != 1) {

data−>pgno = new pgno ;
data−>unused = 1 ;
SetDataInterna l ( page , o f f s e t , r e c o r d s i z e , ( u i n t 8 t ∗) data ) ;

}
171 parent page−>cu r r en t en t ry ++;

}

int CheckSpace ( u i n t 8 t ∗page , db indx t r e c o r d s i z e ) {
PAGE ∗header ;
db indx t space ;

header = GetHeader ( page ) ;
space = header−>h f o f f s e t ;

181 space −= (SIZEOF PAGE + ( s izeof ( db indx t ) ∗ header−>e n t r i e s ) ) ;
return ( space − r e c o r d s i z e ) ;

}

void AddPointer (FILE ∗db , u i n t 8 t ∗parent , u i n t 8 t ∗page , db pgno t new pgno ) {
db indx t entry , o f f s e t , r s i z e ;
unsigned int r e c o r d s i z e ;
BINTERNAL ∗ da t a i n t e r n a l ;
BKEYDATA ∗ da t a l e a f ;
u i n t 8 t ∗new parent = NULL, ∗ o ld pa ren t = NULL; // , ∗ parent parent ;

191 t r e e i t em type ∗ cur rent = NULL;

i f ( ( (PAGE ∗) page)−> l e v e l == LEAFLEVEL) {
o f f s e t = GetOf fset ( page , 1 ) ;
d a t a l e a f = GetDataLeaf ( page , o f f s e t , &r e c o r d s i z e ) ;
r e c o r d s i z e = s izeof (BINTERNAL) + ( r e c o r d s i z e − s izeof (BKEYDATA) ) ;
d a t a i n t e r n a l = (BINTERNAL ∗) mal loc ( r e c o r d s i z e ) ;
da t a i n t e rna l−>l en = da ta l e a f−>l en ;
da ta i n t e rna l−>type = ( (PAGE ∗) page)−>type ;
da ta i n t e rna l−>nrec s = ( (PAGE ∗) page)−> e n t r i e s ;

201 memcpy( ( void ∗) da ta i n t e rna l−>data , (void ∗) da t a l e a f−>data , da t a l e a f−>l en ) ;
} else {

o f f s e t = GetOf fset ( page , 1 ) ;
d a t a i n t e r n a l = GetDataInternal ( page , o f f s e t , &r e c o r d s i z e ) ;

}

da ta in t e rna l−>pgno = new pgno ;
r s i z e = r e c o r d s i z e ;
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i f ( CheckSpace ( parent , r s i z e ) <= 0) {
211 // Get current parent

o ld pa ren t = ( u i n t 8 t ∗) mal loc ( meta page−>dbmeta . page s i z e ) ;
memcpy( ( void ∗) o ld parent , parent , meta page−>dbmeta . page s i z e ) ;

// Write parent to d i s k
WritePage (db , ( (PAGE ∗) parent)−>pgno , meta page−>dbmeta . pages i ze , parent ) ;

// Create new parent
new parent = CreatePage ( ( (PAGE ∗) o ld par en t)−> l e v e l ) ;

221 // s e t new parent to parent
memcpy ( ( void ∗) parent , (void ∗) new parent , meta page−>dbmeta . page s i z e ) ;

// check t ha t the parent has a parent
cur rent = root ;
while ( ( (PAGE ∗ ) ( current−>page))−> l e v e l > ( (PAGE ∗) parent)−> l e v e l )

cur r ent = current−>c u r r e n t c h i l d ;

current−>cu r r en t en t ry = 1 ;

231 }

//update po in t e r in the parent
( (PAGE ∗) parent)−> e n t r i e s++;
o f f s e t = ( ( (PAGE ∗) parent)−>h f o f f s e t ) ;
o f f s e t −= r s i z e ;
entry = ( (PAGE ∗) parent)−> e n t r i e s ;
S e tO f f s e t ( parent , entry , o f f s e t ) ;
SetDataInterna l ( parent , o f f s e t , r e c o r d s i z e , ( u i n t 8 t ∗) d a t a i n t e r n a l ) ;
( (PAGE ∗) parent)−>h f o f f s e t = o f f s e t ;

241

// i f parent does not e x i s t , c r ea t e new root and s e t i t as parent
i f ( cur r ent != NULL) {

i f ( current−>parent == NULL) {
current−>parent = ( t r e e i t em type ∗) mal loc ( s izeof ( t r e e i t em type ) ) ;
current−>parent−>page = CreatePage ( ( (PAGE ∗) parent)−> l e v e l + 1 ) ;
current−>parent−>parent = NULL;
current−>parent−>c u r r e n t c h i l d = root ;
current−>parent−>cu r r en t en t ry = 1 ;
root = current−>parent ;

251 AddPointer (db , current−>parent−>page , o ld parent , ( (PAGE ∗) o ld par en t)−>pgno ) ;
}

}

i f ( new parent != NULL) {
memcpy ( ( void ∗) new parent , (void ∗) parent , meta page−>dbmeta . page s i z e ) ;
AddPointer (db , current−>parent−>page , new parent , ( (PAGE ∗) new parent)−>pgno ) ;

}
f r e e ( new parent ) ;
f r e e ( o ld par en t ) ;

261 }

int AddPageToTreeCreateParent (FILE ∗db , u i n t 8 t ∗page , db pgno t new pgno ) {
PAGE ∗page header ;
u i n t 8 t ∗prev page = NULL;
u i n t 8 t ∗parent page = NULL;

//Get page header
page header = GetHeader ( page ) ;

271 i f ( root == NULL) {
// Create root page
root = ( t r e e i t em type ∗) mal loc ( s izeof ( t r e e i t em type ) ) ;
root−>page = CreatePage ( page header−>l e v e l + 1 ) ;
root−>parent = NULL;
root−>c u r r e n t c h i l d = NULL;
root−>cu r r en t en t ry = 1 ;
// Add p lace f o r the rece i v ed l eave
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c u r r e n t l e a f = ( t r e e i t em type ∗) mal loc ( s izeof ( t r e e i t em type ) ) ;
c u r r e n t l e a f−>page = NULL;

281 c u r r e n t l e a f−>parent = root ;
c u r r e n t l e a f−>c u r r e n t c h i l d = NULL;
c u r r e n t l e a f−>cu r r en t en t ry = 1 ;
root−>c u r r e n t c h i l d = c u r r e n t l e a f ;

}

// Update l i n k to next in prev page and wr i t e to d i s k
i f ( c u r r e n t l e a f−>page != NULL) {

prev page = ( u i n t 8 t ∗) mal loc ( meta page−>dbmeta . page s i z e ) ;
memcpy( ( void ∗) prev page , (void ∗) c u r r e n t l e a f−>page , meta page−>dbmeta . page s i z e ) ;

291 ( (PAGE ∗) prev page)−>next pgno = new pgno ;
WritePage (db , ( (PAGE ∗) prev page)−>pgno , meta page−>dbmeta . pages i ze , prev page ) ;

} else {
c u r r e n t l e a f−>page = ( u i n t 8 t ∗) mal loc ( meta page−>dbmeta . page s i z e ) ;

}

c u r r e n t l e a f−>cu r r en t en t ry = 1 ;
memcpy( ( void ∗) c u r r e n t l e a f−>page , (void ∗) page , meta page−>dbmeta . page s i z e ) ;

parent page = ( u i n t 8 t ∗) mal loc ( meta page−>dbmeta . page s i z e ) ;
301 memcpy(

(void ∗) parent page ,
(void ∗) ( ( t r e e i t em type ∗) c u r r e n t l e a f−>parent)−>page ,
meta page−>dbmeta . page s i z e ) ;

page = cu r r e n t l e a f−>page ;
page header = GetHeader ( page ) ;
page header−>pgno = new pgno ;
meta page−>dbmeta . l a s t pgno = new pgno ;

311 page header−>prev pgno = ( prev page == NULL) ? 0 : ( (PAGE ∗) prev page)−>pgno ;
AddPointer (db , parent page , page , new pgno ) ;

memcpy(
(void ∗) ( ( t r e e i t em type ∗) c u r r e n t l e a f−>parent)−>page ,
(void ∗) parent page ,
meta page−>dbmeta . page s i z e ) ;

f r e e ( prev page ) ;
f r e e ( parent page ) ;

321

return 0 ;
}

int AddPageToTreeUpdateParent (FILE ∗db , u i n t 8 t ∗page , db pgno t new pgno ) {
PAGE ∗page header , ∗ prev page header ; // , ∗ parent page header ;
u i n t 8 t ∗prev page , ∗ parent page ;
t r e e i t em type ∗parent , ∗ cur rent ;
int page s i z e = ( (BTMETA ∗) meta page)−>dbmeta . page s i z e ;

331 //Get current and prev header
page header = GetHeader ( page ) ;
i f ( c u r r e n t l e a f != NULL) {

prev page = mal loc ( page s i z e ) ;
memcpy( prev page , c u r r e n t l e a f−>page , page s i z e ) ;
prev page header = GetHeader ( prev page ) ;

}

i f ( root == NULL) {
i f ( meta page−>root == page header−>pgno ) {

341 root = ( t r e e i t em type ∗) mal loc ( s izeof ( t r e e i t em type ) ) ;
root−>page = ( u i n t 8 t ∗) mal loc ( page s i z e ) ;
root−>cu r r en t en t ry = 1 ;
memcpy( root−>page , page , page s i z e ) ;
root−>parent = NULL;
root−>c u r r e n t c h i l d = NULL;
c u r r e n t l e a f = root ;
cur r ent = root ;
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} else
return (−1);

351 } else {
i f ( prev page header−>l e v e l != page header−>l e v e l ) {

cur rent = root ;
parent = root ;
while ( parent != NULL) {

i f ( ( (PAGE ∗) parent−>page)−> l e v e l >= page header−>l e v e l ) {
cur rent = parent ;

}
parent = parent−>c u r r e n t c h i l d ;

}
361 i f ( ( (PAGE ∗) current−>page)−> l e v e l == page header−>l e v e l ) {

WritePage (db , ( (PAGE ∗) current−>page)−>pgno , pages i ze , current−>page ) ;
memcpy( ( void ∗) current−>page , page , page s i z e ) ;
current−>cu r r en t en t ry = 1 ;

}
else {

parent = cur rent ;
c u r r e n t l e a f = ( t r e e i t em type ∗) mal loc ( s izeof ( t r e e i t em type ) ) ;
c u r r e n t l e a f−>parent = parent ;
c u r r e n t l e a f−>page = ( u i n t 8 t ∗) mal loc ( page s i z e ) ;

371 memcpy( ( void ∗) c u r r e n t l e a f−>page , page , page s i z e ) ;
c u r r e n t l e a f−>c u r r e n t c h i l d = NULL;
c u r r e n t l e a f−>cu r r en t en t ry = 1 ;
parent−>c u r r e n t c h i l d = c u r r e n t l e a f ;
cur r ent = c u r r e n t l e a f ;

}
} else {

i f ( prev page header−>l e v e l == page header−>l e v e l ) {
memcpy( ( void ∗) c u r r e n t l e a f−>page , (void ∗) page , page s i z e ) ;
cur r ent = c u r r e n t l e a f ;

381 current−>cu r r en t en t ry = 1 ;
page header = GetHeader ( c u r r e n t l e a f−>page ) ;

i f ( prev page header != NULL) {
prev page header−>next pgno = new pgno ;
page header−>prev pgno = prev page header−>pgno ;

} else {
page header−>prev pgno = 0 ;

}
page header−>next pgno = 0 ;

391 WritePage (db , prev page header−>pgno , pages i ze , prev page ) ;
}

}
}

//update po in t e r in the parent and pgno
page header = GetHeader ( current−>page ) ;
parent = current−>parent ;
i f ( parent != NULL) {

parent page = parent−>page ;
401 UpdatePointer ( parent , page header−>pgno , new pgno ) ;

}
page header−>pgno = new pgno ;
return ( 0 ) ;

}

/∗ pa r en t r e c e i v e d c r ea t e d i n d i c a t e s whether the i n t e r na l pages are be ing
sent o f shou ld be generated . Use 0 fo r sent and 1 fo r generated .
new page no used to dec ide whether as new pgno i s needed fo r the page ∗/

void AddPageToTree (
411 FILE ∗db ,

u i n t 8 t ∗page ,
u i n t 8 t pa r en t r e c e i v ed c r e a t ed ,
u i n t 8 t new page no ) {

db pgno t new pgno ;

//Get new pgno
i f ( new page no != 0) {
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cur rent page no++;
new pgno = current page no ;

421 }
else

new pgno = ( (PAGE ∗) page)−>pgno ;

// bu i l d t r e e or r e c e i v e i n t e rna l ?
i f ( p a r en t r e c e i v ed c r e a t ed == 0)

AddPageToTreeCreateParent (db , page , new pgno ) ;
else

AddPageToTreeUpdateParent (db , page , new pgno ) ;
}

431

u i n t 8 t ∗ReadPage (FILE ∗db , db pgno t page no , int pag e s i z e ) {
unsigned long int o f f s e t ;
u i n t 8 t ∗page , ∗ found page ;

u i n t 8 t found = 0 ;
t r e e i t em type ∗ cur rent ;

cur r ent = root ;
while ( cur r ent != NULL) {

page = current−>page ;
441 i f ( ( (PAGE ∗) page)−>pgno == page no ) {

found page = page ;
found = 1 ;

}
cur rent = current−>c u r r e n t c h i l d ;

}

page = ( u i n t 8 t ∗) mal loc ( p ag e s i z e ) ;
i f ( found != 1) {

pthread mutex lock ( r e a d w r i t e f i l e ) ;
451 o f f s e t = page no ∗ pag e s i z e ;

i f ( f s e e k (db , o f f s e t , SEEK SET) != 0)
i f ( f r ead ( page , page s i z e , 1 , db ) == 0)

p r i n t f ( ”\nERROR READING PAGE \n\n” ) ;
pthread mutex unlock ( r e a d w r i t e f i l e ) ;

} else {
memcpy( page , found page , p a g e s i z e ) ;

}
return page ;

}
461

void WritePage (FILE ∗db , db pgno t page no , int page s i z e , u i n t 8 t ∗page ) {
unsigned long int o f f s e t ;

o f f s e t = page no ∗ pag e s i z e ;
pthread mutex lock ( r e a d w r i t e f i l e ) ;

i f ( f s e e k (db , o f f s e t , SEEK SET) != 0)
p r i n t f ( ”Error on f s e e k \n” ) ;
i f ( fw r i t e ( page , page s i z e , 1 , db ) != 1)
p r i n t f ( ”Error wr i t t i n g page\n” ) ;

471 pthread mutex unlock ( r e a d w r i t e f i l e ) ;
f f l u s h (db ) ;

}

PAGE ∗GetHeader ( u i n t 8 t ∗page ) {
return (PAGE ∗) page ;

}

unsigned int CompressPage ( u i n t 8 t ∗page , int pag e s i z e ) {
PAGE ∗header ;

481 unsigned int o f f s e t ;

header = GetHeader ( page ) ;
o f f s e t = SIZEOF PAGE + (( header−>e n t r i e s + 1) ∗ s izeof ( db indx t ) ) ;
memcpy (

(void ∗ ) ( page + o f f s e t ) ,
(void ∗) ( page + header−>h f o f f s e t ) ,
( p a g e s i z e − header−>h f o f f s e t ) ) ;
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pag e s i z e = o f f s e t + ( pag e s i z e − header−>h f o f f s e t ) ;
return pag e s i z e ;

491 }

void ExpandPage ( u i n t 8 t ∗page , int c u r r e n t s i z e , int pag e s i z e ) {
unsigned int o f f s e t , s t a r t ;
PAGE ∗header ;
u i n t 8 t ∗ tmp page = ( u i n t 8 t ∗) mal loc ( p ag e s i z e ) ;

header = GetHeader ( page ) ;
s t a r t = SIZEOF PAGE + (( header−>e n t r i e s + 1) ∗ s izeof ( db indx t ) ) ;

501 o f f s e t = pag e s i z e − ( c u r r e n t s i z e − s t a r t ) ;

memcpy ( ( void ∗) tmp page , (void ∗) page , s t a r t ) ;
memcpy (

(void ∗) ( tmp page + header−>h f o f f s e t ) ,
(void ∗) ( page + s t a r t ) ,
( c u r r e n t s i z e − s t a r t ) ) ;

memcpy ( ( void ∗) page , (void ∗) tmp page , p a g e s i z e ) ;
}

511 db indx t GetOf fset ( u i n t 8 t ∗page , db indx t entry ) {
int po s i t i o n ;

db indx t ∗ o f f s e t ;

p o s i t i o n = SIZEOF PAGE + (( entry − 1)∗ s izeof ( db indx t ) ) ;
o f f s e t = ( db indx t ∗ ) ( page + po s i t i o n ) ;

return ∗ o f f s e t ;
}

void Se tO f f s e t ( u i n t 8 t ∗page , db indx t entry , db indx t o f f s e t ) {
521 int po s i t i o n ;

p o s i t i o n = SIZEOF PAGE + (( entry − 1) ∗ s izeof ( db indx t ) ) ;
memcpy( ( db indx t ∗) ( page + po s i t i o n ) , &o f f s e t , s izeof ( db indx t ) ) ;

// ∗( page + po s i t i on ) = o f f s e t ;
}

BINTERNAL ∗GetDataInternal (
u i n t 8 t ∗page ,
db indx t o f f s e t ,

531 unsigned int ∗ r e c o r d s i z e ) {
BINTERNAL ∗data ;

data = (BINTERNAL ∗) ( page + o f f s e t ) ;
∗ r e c o r d s i z e = s izeof (BINTERNAL) + data−>l en − 1 ;
// p r i n t f (” l eng t h in ge tDataIn terna l : %i \n” , data−>l en ) ;
return data ;

}

void SetDataInterna l (
541 u i n t 8 t ∗page ,

db indx t o f f s e t ,
unsigned int r e c o r d s i z e ,
u i n t 8 t ∗data ) {

memcpy( ( void ∗) ( page + o f f s e t ) , (void ∗) data , r e c o r d s i z e ) ;
}

BKEYDATA ∗GetDataLeaf (
u i n t 8 t ∗page ,
db indx t o f f s e t ,

551 unsigned int ∗ r e c o r d s i z e ) {
BKEYDATA ∗data ;

data = (BKEYDATA ∗) ( page + o f f s e t ) ;
∗ r e c o r d s i z e = s izeof (BKEYDATA) + data−>l en − 1 ;
return data ;

}
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void SetDataLeaf (
u i n t 8 t ∗page ,

561 db indx t o f f s e t ,
unsigned int r e c o r d s i z e ,
u i n t 8 t ∗data ) {

memcpy( ( void ∗) ( page + o f f s e t ) , (void ∗) data , r e c o r d s i z e ) ;
}

void AddDataToBlock (
u i n t 8 t ∗block ,
db indx t ∗ o f f s e t ,
u i n t 8 t ∗data ,

571 unsigned int s i z e ) {
memcpy ( ( void ∗) ( b lock + ∗ o f f s e t ) , (void ∗) data , s i z e ) ;
∗ o f f s e t += s i z e ;

}

BKEYDATA ∗GetDataFromBlock (
u i n t 8 t ∗block ,
db indx t ∗ o f f s e t ,
unsigned int ∗ r e c o r d s i z e ) {

BKEYDATA ∗data ;
581

data = (BKEYDATA ∗) ( b lock + ∗ o f f s e t ) ;
∗ r e c o r d s i z e = s izeof (BKEYDATA) + data−>l en − 1 ;
∗ o f f s e t += ∗ r e c o r d s i z e ;
return data ;

}

u i n t 8 t ∗GetDataFromBlockFixedSize (
u i n t 8 t ∗block ,
u i n t 3 2 t ∗ o f f s e t ,

591 u i n t 3 2 t r e c o r d s i z e ) {
u i n t 8 t ∗data ;

data = ( u i n t 8 t ∗) ( b lock + ∗ o f f s e t ) ;
∗ o f f s e t += r e c o r d s i z e ;
return data ;

}
db pgno t F indFi r s tLea f (FILE ∗db , u i n t 8 t ∗metaPage ) {

u i n t 8 t ∗page ;
PAGE ∗header ;

601 BINTERNAL ∗ i n t e r n a l ;
db indx t o f f s e t ;
unsigned int ∗ r e c o r d s i z e ;

r e c o r d s i z e = (unsigned int ∗) mal loc ( s izeof (unsigned int ) ) ;
page = ReadPage (db , ( (BTMETA ∗)metaPage)−>root , ( (BTMETA ∗)metaPage)−>dbmeta . page s i z e ) ;
header = GetHeader ( page ) ;
while ( header−>l e v e l != LEAFLEVEL) {

o f f s e t = GetOf fset ( page , 1 ) ;
i n t e r n a l = GetDataInternal ( page , o f f s e t , r e c o r d s i z e ) ;

611 page = ReadPage (db , i n t e rna l−>pgno , ( (BTMETA ∗)metaPage)−>dbmeta . page s i z e ) ;
header = GetHeader ( page ) ;

}

return ( header−>pgno ) ;
}

void SetLastSentKey ( u i n t 8 t ∗page , unsigned long ∗ l a s t s e n t k e y ) {
PAGE ∗header ;
db indx t o f f s e t ;

621 unsigned int r e c o r d s i z e ;
BKEYDATA ∗data ;

header = GetHeader ( page ) ;
o f f s e t = GetOf fset ( page , header−>e n t r i e s − 1 ) ;
data = GetDataLeaf ( page , o f f s e t , &r e c o r d s i z e ) ;
memcpy( l a s t s e n t k ey , data−>data , s izeof (unsigned long ) ) ;
// p r i n t f (” l a s t sent key %i \n” , ∗ l a s t s e n t k e y ) ;
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}
631

// f ind
BINTERNAL ∗FindInte rna l (

u i n t 8 t ∗page ,
db indx t s ta r t ,
db indx t end ,
DBT ∗ l o o k i n g f o r ) {

BINTERNAL ∗mid , ∗next ;
db indx t mid index , o f f s e t ;
unsigned int r e c o r d s i z e ;

641 DBT mid dbt , next dbt ;
long long compare res , compare res next ;

//Get o b j e c t in the middle
mid index = ( s t a r t + end ) / 2 ;
o f f s e t = GetOf fset ( page , mid index ) ;
mid = GetDataInternal ( page , o f f s e t , &r e c o r d s i z e ) ;

// Copy o b j e c t in to DBT and compare
mid dbt . data = mal loc ( l o ok i n g f o r−>s i z e ) ;

651 i f (mid−>l en == 0) {
bzero ( mid dbt . data , 4 ) ;
mid−>l en = 4 ;

} else {
memcpy( mid dbt . data , mid−>data , mid−>l en ) ;

}
mid dbt . s i z e = mid−>l en ;
compare res = compare (NULL, l o ok i n g f o r , &mid dbt ) ;

// Check i f found
661 i f ( s t a r t == end ) {

return mid ;
}
i f ( end == ( s t a r t + 1) ) {

o f f s e t = GetOf fset ( page , end ) ;
next = GetDataInternal ( page , o f f s e t , &r e c o r d s i z e ) ;

next dbt . data = mal loc ( l o ok i n g f o r−>s i z e ) ;
i f ( next−>l en == 0) {

bzero ( next dbt . data , 4 ) ;
671 next−>l en = 4 ;

} else {
memcpy( next dbt . data , next−>data , next−>l en ) ;

}
next dbt . s i z e = next−>l en ;
compare res next = compare (NULL, l o ok i n g f o r , &next dbt ) ;
i f ( ( compare res >= 0) && ( compare res next < 0) ) {

return mid ;
} else {

return next ;
681 }

}

// Search wi th in the co r r e c t h a l f
i f ( compare res <= 0)

return FindInte rna l ( page , s t a r t , mid index , l o o k i n g f o r ) ;
else

return FindInte rna l ( page , mid index , end , l o o k i n g f o r ) ;
}

691 int ∗FindLeaf ( u i n t 8 t ∗page , db indx t s ta r t , db indx t end , DBT ∗ l o o k i n g f o r ) {
BKEYDATA ∗mid , ∗next ;
db indx t mid index , o f f s e t ;
unsigned int r e c o r d s i z e ;
DBT mid dbt , next dbt ;
long long compare res , compare res next ;

//Get o b j e c t in the middle
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mid index = ( s t a r t + end ) / 2 ;
i f ( ( mid index % 2) == 0) {

701 mid index −−;
}

o f f s e t = GetOf fset ( page , mid index ) ;
mid = GetDataLeaf ( page , o f f s e t , &r e c o r d s i z e ) ;

// Copy o b j e c t in to DBT and compare
mid dbt . data = mal loc ( l o ok i n g f o r−>s i z e ) ;
i f (mid−>l en == 0) {

bzero ( mid dbt . data , 4 ) ;
711 mid−>l en = 4 ;

} else {
memcpy( mid dbt . data , mid−>data , mid−>l en ) ;

}
mid dbt . s i z e = mid−>l en ;
compare res = compare (NULL, l o ok i n g f o r , &mid dbt ) ;

// p r i n t f (” compare res : %l i \n” , compare res ) ;

// Check i f found
721 i f ( s t a r t == end ) {

return mid index ;
}

i f ( end == ( s t a r t + 2) ) {
o f f s e t = GetOf fset ( page , end ) ;
next = GetDataLeaf ( page , o f f s e t , &r e c o r d s i z e ) ;

next dbt . data = mal loc ( l o ok i n g f o r−>s i z e ) ;
i f ( next−>l en == 0) {

731 bzero ( next dbt . data , 4 ) ;
next−>l en = 4 ;

} else {
memcpy( next dbt . data , next−>data , next−>l en ) ;

}
next dbt . s i z e = next−>l en ;
compare res next = compare (NULL, l o ok i n g f o r , &next dbt ) ;
i f ( ( compare res >= 0) && ( compare res next < 0) ) {

return mid index ;
} else {

741 return end ;
}

}

// Search wi th in the co r r e c t h a l f
i f ( compare res <= 0)

return FindLeaf ( page , s t a r t , mid index , l o o k i n g f o r ) ;
else

return FindLeaf ( page , mid index , end , l o o k i n g f o r ) ;
}

751

db pgno t Search (FILE ∗db , u i n t 8 t ∗page , DBT ∗ l o o k i n g f o r ) {
PAGE ∗header ;
db indx t o f f s e t ;
BINTERNAL ∗data = NULL, ∗ prev data = NULL;
unsigned int r e c o r d s i z e , i ;
DBT cur r ent da ta ;
unsigned long found ;
long long compare res ;
int page s i z e = meta page−>dbmeta . page s i z e ;

761 db pgno t pgno ;

cu r r en t data . data = mal loc ( l o ok i n g f o r−>s i z e ) ;

i f ( page != NULL) {
header = GetHeader ( page ) ;
i f ( header−>l e v e l != LEAFLEVEL && header−>e n t r i e s > 0) {
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data = FindInte rna l ( page , 1 , header−>en t r i e s , l o o k i n g f o r ) ;

771 page = ReadPage (db , data−>pgno , page s i z e ) ;
pgno = Search (db , page , l o o k i n g f o r ) ;

} else {
pgno = ( (PAGE ∗) page)−>pgno ;

}
} else {

pgno = 0 ;
}
return pgno ;

781 }

void FindAndSetData (
FILE ∗db ,
u i n t 8 t data data [MAXLENGTHDATA] ,
u i n t 1 6 t data len ,
u i n t 8 t key data [MAXLENGTHKEY] ,
u i n t 1 6 t key l en ) {

u i n t 8 t ∗ cur rent page ;
PAGE ∗header ;

791 DBT look i n g f o r , cu r r en t data ;
unsigned int i , r e c o r d s i z e ;
BKEYDATA ∗data ;
db indx t o f f s e t ;
unsigned long key1 ;
db pgno t pgno ;
long long compare res ;
int page s i z e = meta page−>dbmeta . page s i z e ;

i f ( root != NULL) {
801 l o o k i n g f o r . data = (char ∗) mal loc ( key l en ) ;

memcpy( l o o k i n g f o r . data , key data , key l en ) ;
l o o k i n g f o r . s i z e = key l en ;

cu r r en t data . data = (char ∗) mal loc ( key l en ) ;

memcpy( ( char ∗) &key1 , (char ∗) l o o k i n g f o r . data , l o o k i n g f o r . s i z e ) ;
// p r i n t f (” crea ted DBT %l i \n” , key1 ) ;

cur rent page = ( u i n t 8 t ∗) mal loc ( page s i z e ) ;
811 memcpy( ( void ∗) current page , (void ∗) root−>page , page s i z e ) ;

pgno = Search (db , current page , &l o o k i n g f o r ) ;

i f ( pgno != 0)
cur rent page = ReadPage (db , pgno , page s i z e ) ;

else
cur rent page = NULL;

i f ( cur rent page != NULL) {
821 header = GetHeader ( cur rent page ) ;

i f ( header−>l e v e l == LEAFLEVEL) {
compare res = 1 ;

i = FindLeaf ( current page , 1 , header−>e n t r i e s − 1 , &l o o k i n g f o r ) ;

o f f s e t = GetOf fset ( current page , i ) ;
data = GetDataLeaf ( current page , o f f s e t , &r e c o r d s i z e ) ;

f r e e ( cu r r en t data . data ) ;
831 cu r r en t da ta . data = (char ∗) mal loc ( data−>l en ) ;

memcpy( cur r en t data . data , data−>data , data−>l en ) ;
cu r r en t da ta . s i z e = data−>l en ;

compare res = compare (NULL, &l o ok i n g f o r , &cur r en t data ) ;

i++;
// s e t data
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i f ( compare (NULL, &l o ok i n g f o r , &cur r en t data ) == 0) {
o f f s e t = GetOf fset ( current page , i ) ;

841 data = GetDataLeaf ( current page , o f f s e t , &r e c o r d s i z e ) ;
memcpy( ( void ∗) data−>data , (void ∗) data data , data−>l en ) ;

}
WritePage (db , header−>pgno , pages i ze , cur r ent page ) ;

} else {
p r i n t f ( ” returned not l e a f \n” ) ;

}
} else {

p r i n t f ( ” returned NULL\n” ) ;
}

851 }
f r e e ( l o o k i n g f o r . data ) ;
f r e e ( cu r r en t da ta . data ) ;

}

/∗ Log ∗/

#include ” l o g u t i l . h”

861 FILE ∗OpenLogReadOnly (char ∗path ) {
FILE ∗ l og = fopen ( path , ” r ” ) ;

i f ( l og == NULL)
p r i n t f ( ” e r r o r opening log f i l e \n ” ) ;
return l og ;

}

LOGRECORD ∗ReadLogRecord (FILE ∗ log , int LSN) {
LOGRECORD ∗ l o g r e c o r d ;
unsigned long o f f s e t ;

871

l o g r e c o r d = (LOGRECORD ∗) mal loc ( s izeof (LOGRECORD) ) ;

o f f s e t = LSN ∗ s izeof (LOGRECORD) ;
f s e e k ( log , o f f s e t , SEEK SET) ;

o f f s e t = f r ead ( l og r e co rd , s izeof (LOGRECORD) , 1 , l og ) ;
return l o g r e c o r d ;

}

881 void CloseLog (FILE ∗ l og ) {
f c l o s e ( l og ) ;

}

/∗ Queues ∗/
#include ” b u f f e r u t i l . h”

void I n i tBu f f e r ( bu f f e r t yp e ∗ bu f f e r , int s i z e ) {
int i ;

891

pth r ead cond in i t (&( bu f f e r−>empty ) , NULL) ;
p th r ead cond in i t (&( bu f f e r−> f u l l ) , NULL) ;
pthread mutex in i t (&( bu f f e r−>a l low ) , NULL) ;

bu f f e r−>f r e e = BUFFER SIZE ;
bu f f e r−>s t a r t = 0 ;
bu f f e r−>end = 0 ;

for ( i =0; i<BUFFER SIZE ; i++) {
901 bu f f e r−>queue [ i ] = ( u i n t 8 t ∗) mal loc ( s i z e ) ;

bu f f e r−>b l o c k s i z e [ i ] = 0 ;
}

}

void TermBuffer ( bu f f e r t yp e ∗ bu f f e r ) {
int i ;
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pthread cond des t roy (&( bu f f e r−>empty ) ) ;
pthread cond des t roy (&( bu f f e r−> f u l l ) ) ;

911 pthread mutex destroy (&( bu f f e r−>a l low ) ) ;

bu f f e r−>f r e e = 0 ;
bu f f e r−>s t a r t = 0 ;
bu f f e r−>end = 0 ;

for ( i =0; i<BUFFER SIZE ; i++) {
f r e e ( bu f f e r−>queue [ i ] ) ;
bu f f e r−>b l o c k s i z e [ i ] = 0 ;

}
921 }

void AddBlockToBuffer ( bu f f e r t yp e ∗ bu f f e r , u i n t 8 t ∗block , u i n t 3 2 t s i z e ) {
pthread mutex lock (&( bu f f e r−>a l low ) ) ;
i f ( bu f f e r−>f r e e == 0) {

pthread cond wait (&( bu f f e r−> f u l l ) , &(bu f f e r−>a l low ) ) ;
}
bu f f e r−>f r e e −−;

memcpy( bu f f e r−>queue [ bu f f e r−>end ] , block , s i z e ) ;
bu f f e r−>b l o c k s i z e [ bu f f e r−>end ] = s i z e ;

931 bu f f e r−>end = ( bu f f e r−>end + 1) % BUFFER SIZE ;
p th r ead cond s i gna l (&( bu f f e r−>empty ) ) ;
pthread mutex unlock (&( bu f f e r−>a l low ) ) ;

}

u i n t 3 2 t GetNextBlockFromBuffer ( bu f f e r t yp e ∗ bu f f e r , u i n t 8 t ∗block ) {
u i n t 3 2 t s i z e ;
pthread mutex lock (&( bu f f e r−>a l low ) ) ;
i f ( bu f f e r−>f r e e == BUFFER SIZE) {

pthread cond wait (&( bu f f e r−>empty ) , &(bu f f e r−>a l low ) ) ;
941 }

s i z e = bu f f e r−>b l o c k s i z e [ bu f f e r−>s t a r t ] ;
memcpy( block , bu f f e r−>queue [ bu f f e r−>s t a r t ] , s i z e ) ;
bu f f e r−>s t a r t = ( bu f f e r−>s t a r t + 1) % BUFFER SIZE ;
bu f f e r−>f r e e++;
p th r ead cond s i gna l (&( bu f f e r−> f u l l ) ) ;
pthread mutex unlock (&( bu f f e r−>a l low ) ) ;
return ( s i z e ) ;

}

951 /∗ Network ∗/

#include ” n e t u t i l . h”

int getSocket ( ) {
return ( socke t (AF INET, SOCK STREAM, 0 ) ) ;

}

int prepareToListen ( int socket , int port ) {
struct sockaddr in any addr , addr ;

961 int s i z e , connfd ;

//˜ p r i n t f (” Prepare to l i s t e n %i \n” , por t ) ;

bzero(&any addr , s izeof ( any addr ) ) ;
any addr . s i n f am i l y = AF INET ;
any addr . s i n addr . s addr = hton l (INADDR ANY) ;
any addr . s i n p o r t = htons ( port ) ;

i f ( bind ( socket , ( struct sockaddr ∗) &any addr , s izeof ( any addr ) ) != 0)
971 p r i n t f ( ”Error in bind\n” ) ;

i f ( l i s t e n ( socket , 1) != 0)
p r i n t f ( ”Error in l i s t e n \n” ) ;

s i z e = s izeof ( addr ) ;
connfd = accept ( socket , ( struct sockaddr ∗) &addr , &s i z e ) ;

i f ( connfd < 0)
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p r i n t f ( ”Error in accept \n” ) ;

981 return ( connfd ) ;
}

int prepareToSend ( int socket , char ∗ ip , int port ) {
struct sockaddr in addr ;
struct hostent ∗h ;

// ine t p t on (AF INET, ip , &addr . s in addr ) ;
i f ( ( h = gethostbyname ( ip ) ) != NULL) {

addr . s i n f am i l y = h−>h addrtype ;
991 memcpy( ( char ∗) &addr . s i n addr . s addr , h−>h a d d r l i s t [ 0 ] , h−>h length ) ;

addr . s i n p o r t = htons ( port ) ;
}

while ( connect ( socket , ( struct sockaddr ∗) &addr , s izeof ( addr ) ) < 0) {
// p r i n t f ( ” . ” ) ;
}

return 0 ;
}

1001

int sendPacket ( int socket , u i n t 8 t ∗packet , int s i z e ) {
unsigned int s e n t s i z e , dummy, sent = 0 ;

// Agree with the r e c e i v e r on the number o f by t e s to send
wr i t e ( socket , &s i z e , s izeof ( int ) ) ;

while ( sent < s i z e ) {
s e n t s i z e = wr i t e ( socket , ( packet + sent ) , ( s i z e − sent ) ) ;
s ent += s e n t s i z e ;

1011 }
return ( sent ) ;

}

int r e ce ivePacke t ( int socket , u i n t 8 t ∗packet , int s i z e ) {
unsigned int r e c v s i z e , dummy, l e f t t o r e c e i v e ;

// Agree with the sender on the number o f b y t e s to send

dummy = recv ( socket , &r e c v s i z e , s izeof (unsigned int ) , MSG WAITALL) ;
1021

i f ( r e c v s i z e < s i z e )
s i z e = r e c v s i z e ;

l e f t t o r e c e i v e = s i z e ;
while ( l e f t t o r e c e i v e > 0) {

r e c v s i z e = read ( socket , packet , l e f t t o r e c e i v e ) ;
packet += r e c v s i z e ;
l e f t t o r e c e i v e −= r e c v s i z e ;

}
1031

return ( s i z e ) ;
}

int c lo seConnect ion ( int socke t ) {
return ( c l o s e ( socke t ) ) ;

}
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B.1 Main program

import cz . zcu . fav . k iv . j s im . ∗ ;
2

pub l i c c l a s s S imulat ion {

pub l i c stat ic void main ( St r ing [ ] a rgs ) {
JSimSimulation s imu la t i on = nu l l ;
QueueWithServer

prepare log queue ,
net queue data ,
net queue log ,
p roce s s l og queue ,

12 proce s s data queue ;
NetServer n e t s e r v e r ;
PageLogServer p r o c e s s l o g s e r v e r , p r o c e s s d a t a s e r v e r ;
LogBlocksServer p r e p a r e l o g s e r v e r ;
PageSource page source ;
LogSource l o g s ou r c e ;

double a r r i v a l r a t e p a g e = 62 . 0 ;
double a r r i v a l r a t e l o g = 500 . 0 ;

22 double s e r v i c e t im e p r e p a r e l o g = 5 . 0 ;
double s e r v i c e t ime p r o c e s s d a t a = 464 . 0 ;
double s e r v i c e t im e p r o c e s s l o g = 147 . 0 ;

int av g b l o c k s i z e = 8160 ;
int max b l o ck s i z e l o g = 8192 ;
int count data b lock s = 12989;
int l o g r e c o r d s i z e = 112 ;

double net bandwidth = 1000 ;
32 double max message s ize = 1448 ;

boolean queues are empty = f a l s e ;

t ry
{

System . out . p r i n t l n ( ” I n i t i a l i z i n g the s imu la t i on . . ” ) ;

s imu la t i on = new JSimSimulation ( ”Queueing Networks Simulat ion ” ) ;
42

prepare l og queue = new QueueWithServer ( ”Pack log r e co rd s ” , s imulat ion , nu l l ) ;
net queue data = new QueueWithServer ( ”Network queue” , s imulat ion , nu l l ) ;
n e t queue l og = new QueueWithServer ( ”Network queue” , s imulat ion , nu l l ) ;
p roce s s data queue = new QueueWithServer ( ” Process data queue” , s imulat ion , nu l l ) ;
p r o c e s s l o g queue = new QueueWithServer ( ” Process l og queue” , s imulat ion , nu l l ) ;

page source = new PageSource (
”Page source ” ,
s imulat ion ,

52 a r r i v a l r a t e p a g e ,
net queue data ,
count data b locks ,
a v g b l o c k s i z e ) ;

l o g s ou r c e = new LogSource (
”Log Source ” ,
s imulat ion ,
a r r i v a l r a t e l o g ,
prepare log queue ,
page source ) ;

62

p r e p a r e l o g s e r v e r = new LogBlocksServer (
”Prepare l og s e r v e r ” ,
s imulat ion ,
s e r v i c e t ime p r epa r e l o g ,
( int )Math . f l o o r ( (double ) max b l o ck s i z e l o g / (double ) l o g r e c o r d s i z e ) ,
l o g r e c o r d s i z e ,
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prepare log queue ,
net queue log ,
page source ) ;

72

n e t s e r v e r = new NetServer (
”Network s e r v e r ” ,
s imulat ion ,
net bandwidth ,
max message s ize ,
net queue data ,
net queue log ,
proces s data queue ,
p roce s s l og queue ,

82 page source ,
p r e p a r e l o g s e r v e r ) ;

p r o c e s s d a t a s e r v e r = new PageLogServer (
” Process data s e r v e r ” ,
s imulat ion ,
s e r v i c e t ime p r o c e s s d a t a ,
proces s data queue ,
count data b locks ,
l o g r e c o r d s i z e ,

92 n e t s e r v e r ) ;

p r o c e s s l o g s e r v e r = new PageLogServer (
” Process l og s e r v e r ” ,
s imulat ion ,
s e r v i c e t im e p r o c e s s l o g ,
p roce s s l og queue ,
count data b locks ,
l o g r e c o r d s i z e ,
n e t s e r v e r ) ;

102

prepare l og queue . s e tS e rv e r ( p r e p a r e l o g s e r v e r ) ;
net queue data . s e tS e rv e r ( n e t s e r v e r ) ;
n e t queue l og . s e tS e rv e r ( n e t s e r v e r ) ;
p roce s s data queue . s e tS e rv e r ( p r o c e s s d a t a s e r v e r ) ;
p r o c e s s l o g queue . s e tS e rv e r ( p r o c e s s l o g s e r v e r ) ;

s imu la t i on . message ( ” Act ivat ing the gene ra to r s . . . ” ) ;

page source . a c t i v a t e ( 0 . 0 ) ;
112 l o g s ou r c e . a c t i v a t e ( 0 . 0 ) ;

s imu la t i on . message ( ”Running the s imulat ion , p l e a s e wait . ” ) ;

while ( ( ! p r o c e s s d a t a s e r v e r . getEnd ( ) ) | | ( ! queues are empty ) ) {
i f ( ! s imu la t i on . s tep ( ) )

s imu la t i on . message ( ”Step returned f a l s e ” ) ;
else

s imu la t i on . message ( ”Current s imu la t i on time ” + s imu la t i on . getCurrentTime ( ) ) ;
queues are empty =

122 prepare l og queue . empty ( ) &&
net queue data . empty ( ) &&
net queue l og . empty ( ) &&
proce s s data queue . empty ( ) &&
proc e s s l o g queue . empty ( ) ;

}

s imu la t i on . message ( ”\n\nSimulat ion in t e r rup t ed at time ” + s imu la t i on . getCurrentTime ( ) ) ;
s imu la t i on . message ( ”\n\nTotal time at sender : ” + ne t s e r v e r . getEndSenderTime ( ) ) ;
s imu la t i on . message ( ”\n\nTotal time at r e c e i v e r : ”

132 + ( s imu la t i on . getCurrentTime ( ) − ne t s e r v e r . getStartRecvTime ( ) ) ) ;
s imu la t i on . message ( ”\n\n” ) ;

} catch ( JSimException e ) {
e . pr intStackTrace ( ) ;
e . printComment ( System . e r r ) ;

} f i n a l l y {
s imu la t i on . shutdown ( ) ;
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}
}

142 }
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B.2 Sources

import cz . zcu . fav . k iv . j s im . ∗ ;

pub l i c c l a s s PageSource extends JSimProcess
{

pr i va t e double lambda ;
7 pr i va t e QueueWithServer queue ;

p r i va t e int count b locks ;
p r i va t e int avg b l o c k s i z e ;

p r i va t e boolean end ;
p r i va t e double s en t pcent ;

// cons t ruc tor
pub l i c PageSource (

17 St r ing name ,
JSimSimulation sim ,
double l ,
QueueWithServer q ,
int parCountBlocks ,
int parBlockS ize )

throws
JSimSimulationAlreadyTerminatedException ,
JSimInval idParametersException ,
JSimTooManyProcessesException

27 {
super (name , sim ) ;
lambda = l ;
queue = q ;
count b locks = parCountBlocks ;
a v g b l o c k s i z e = parBlockS ize ;

end = f a l s e ;
s en t pcent = 0 . 0 ;

}
37

protec ted void l i f e ( )
{

JSimLink l i n k ;
int count ;

t ry {
for ( count = 1 ; count <= count b locks ; count ++) {

l i n k = new JSimLink (new Transact ion (1 , avg b l o ck s i z e , count ) ) ;

47 l i n k . i n to ( queue ) ;

hold ( 2 0 . 0 ) ; // adding to queue

i f ( queue . ge tSe rve r ( ) . i s I d l e ( ) )
{

queue . ge tSe rve r ( ) . a c t i v a t e (myParent . getCurrentTime ( ) ) ;
}
message ( ”added page ” + count ) ;
hold ( lambda ) ;

57

i f ( queue . c a rd i na l ( ) >= 10) {
pa s s i v a t e ( ) ;

}

}
} catch ( JSimException e ) {

e . pr intStackTrace ( ) ;
e . printComment ( System . e r r ) ;

}
67 }
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pub l i c void isEnd ( long t rans count ) {
i f ( t rans count == count b locks )

end = true ;
}

pub l i c boolean getEnd ( ) {
return end ;

}
77

pub l i c void setPcent ( long t rans count ) {
s en t pcent = (double ) t rans count / count b locks ;

}

pub l i c double getPcent ( ) {
return s en t pcent ;

}
}

87 import cz . zcu . fav . k iv . j s im . ∗ ;

pub l i c c l a s s LogSource extends JSimProcess
{

pr i va t e double lambda ;
p r i va t e QueueWithServer queue ;
p r i va t e boolean end ;
PageSource page source ;

// cons t ruc tor
97 pub l i c LogSource (

S t r ing name ,
JSimSimulation sim ,
double l ,
QueueWithServer q ,
PageSource parPageSource )

throws
JSimSimulationAlreadyTerminatedException ,
JSimInval idParametersException ,
JSimTooManyProcessesException

107 {
super (name , sim ) ;
lambda = l ;
queue = q ;
page source = parPageSource ;

}

protec ted void l i f e ( )
{

JSimLink l i n k ;
117

long count ;

t ry {
while ( ! page source . getEnd ( ) ) {

l i n k = new JSimLink (new Transact ion (0 , 0 , 0 ) ) ;
l i n k . i n to ( queue ) ;
i f ( queue . ge tSe rve r ( ) . i s I d l e ( ) )
{

queue . ge tSe rve r ( ) . a c t i v a t e (myParent . getCurrentTime ( ) ) ;
127 }

hold ( lambda ) ;
}

} catch ( JSimException e ) {
e . pr intStackTrace ( ) ;
e . printComment ( System . e r r ) ;

}
}

}
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B.3 Transactions

import cz . zcu . fav . k iv . j s im . ∗ ;

3 pub l i c c l a s s Transact ion
{

pr i va t e int t r an s type ;
p r i va t e int b l o c k s i z e ;
p r i va t e int t rans count ;

pub l i c Transact ion ( int tType , int bSize , int tCount ) {
t r an s type = tType ;
b l o c k s i z e = bSize ;
t rans count = tCount ;

13 }

pub l i c int getTransType ( ) {
return t r an s type ;

}

pub l i c int ge tB lockS i ze ( ) {
return b l o c k s i z e ;

}

23 pub l i c void s e tB l o ckS i z e ( int parBlockS ize ) {
b l o c k s i z e = parBlockS ize ;

}
pub l i c int getTransCount ( ) {

return t rans count ;
}

}
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B.4 Queues

import cz . zcu . fav . k iv . j s im . ∗ ;

pub l i c c l a s s QueueWithServer extends JSimHead
{

pr i va t e JSimProcess s e r v e r ;

pub l i c QueueWithServer (
S t r ing name ,
JSimSimulation sim ,

10 JSimProcess s )
throws

JSimInval idParametersException ,
JSimTooManyHeadsException

{
super (name , sim ) ;
s e r v e r = s ;

}

pub l i c JSimProcess ge tSe rve r ( ) {
20 return s e r v e r ;

}

pub l i c void s e tS e rv e r ( JSimProcess s ) {
s e r v e r = s ;

}
}
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B.5 Servers

import cz . zcu . fav . k iv . j s im . ∗ ;

pub l i c c l a s s PageLogServer extends JSimProcess
4 {

pr i va t e double s e r v i c e t ime ;
p r i va t e QueueWithServer queueIn ;
p r i va t e QueueWithServer queueOut ;
p r i va t e int max trans count ;
p r i va t e int l o g r e c o r d s i z e ;
p r i va t e NetServer n e t s e r v e r ;

p r i va t e boolean end ;

14 pub l i c PageLogServer (
S t r ing name ,
JSimSimulation sim ,
double parServiceTime ,
QueueWithServer parQueueIn ,
int parMaxTransCount ,
int parLogRecordSize ,
NetServer parNetServer )

throws
JSimSimulationAlreadyTerminatedException ,

24 JSimInval idParametersException ,
JSimTooManyProcessesException

{
super (name , sim ) ;
s e r v i c e t ime = parServiceTime ;
queueIn = parQueueIn ;
max trans count = parMaxTransCount ;
l o g r e c o r d s i z e = parLogRecordSize ;
n e t s e r v e r = parNetServer ;

34 end = f a l s e ;
}

protec ted void l i f e ( )
{

Transact ion t ;
JSimLink l i n k ;

t ry
{

44 while ( t rue )
{

i f ( queueIn . empty ( ) ) {
pa s s i v a t e ( ) ;

} else {

l i n k = queueIn . f i r s t ( ) ;

t = ( Transact ion ) l i n k . getData ( ) ;
l i n k . out ( ) ;

54

hold ( 2 0 . 0 ) ; // removing from queue

i f ( n e t s e r v e r . i s I d l e ( ) ) {
n e t s e r v e r . a c t i v a t e (myParent . getCurrentTime ( ) ) ;

}

i f ( t . getTransType ( ) == 1)
hold ( s e r v i c e t ime ) ;

else
64 hold ( s e r v i c e t ime ∗ ( t . g e tB lockS i ze ( ) / l o g r e c o r d s i z e ) ) ;

message ( ” p ro c e s s i ng t r an s a c t i on s count ” + t . getTransCount ( ) ) ;

i f ( t . getTransType ( ) == 1 && t . getTransCount ( ) == max trans count ) {
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end = true ;
}

l i n k = nu l l ;

74 }
}

} catch ( JSimException e ) {
e . pr intStackTrace ( ) ;
e . printComment ( System . e r r ) ;

}
}

pub l i c boolean getEnd ( ) {
return end ;

84 }

}

import cz . zcu . fav . k iv . j s im . ∗ ;

pub l i c c l a s s LogBlocksServer extends JSimProcess
{

pr i va t e double s e r v i c e t ime ;
p r i va t e long max log records ;

94 pr i va t e int l o g r e c o r d s i z e ;
p r i va t e QueueWithServer queueIn ;
p r i va t e QueueWithServer queueOut ;
p r i va t e PageSource page source ;

p r i va t e int cur r ent count ;

pub l i c LogBlocksServer (
S t r ing name ,
JSimSimulation sim ,

104 double parServiceTime ,
long parMaxLogRecords ,
int parLogRecordSize ,
QueueWithServer parQueueIn ,
QueueWithServer parQueueOut ,
PageSource parPageSource )

throws
JSimSimulationAlreadyTerminatedException ,
JSimInval idParametersException ,
JSimTooManyProcessesException

114 {
super (name , sim ) ;
s e r v i c e t ime = parServiceTime ;
max log records = parMaxLogRecords ;
l o g r e c o r d s i z e = parLogRecordSize ;
queueIn = parQueueIn ;
queueOut = parQueueOut ;
page source = parPageSource ;
cu r r ent count = 0 ;

}
124

protec ted void l i f e ( )
{

Transact ion t ;
JSimLink l i n k ;

t ry
{

while ( t rue )
{

134 i f ( queueIn . empty ( ) ) {
pa s s i v a t e ( ) ;

} else {

hold ( s e r v i c e t ime ) ;
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l i n k = queueIn . f i r s t ( ) ;

t = ( Transact ion ) l i n k . getData ( ) ;
l i n k . out ( ) ;

144

i f ( queueOut . c a rd i na l ( ) >= 10)
pa s s i v a t e ( ) ;

i f ( cur r ent count != max log records ) {
i f ( JSimSystem . uniform (0 . 0 , 1 . 0 ) < page source . getPcent ( ) )

cur r ent count ++;
l i n k = nu l l ;

} else {
t . s e tB l o ckS i z e ( cur r ent count ∗ l o g r e c o r d s i z e ) ;

154 l i n k . i n to ( queueOut ) ;

hold ( 2 0 . 0 ) ; // adding to queue ;

i f ( queueOut . ge tSe rve r ( ) . i s I d l e ( ) ) {
queueOut . ge tSe rve r ( ) . a c t i v a t e (myParent . getCurrentTime ( ) ) ;

}
cur r ent count = 0 ;

}

164 }
}

} catch ( JSimException e ) {
e . pr intStackTrace ( ) ;
e . printComment ( System . e r r ) ;

}
}

}

174 import cz . zcu . fav . k iv . j s im . ∗ ;
import java . lang . Math ;

pub l i c c l a s s NetServer extends JSimProcess
{

pr i va t e double bandwidth ;
p r i va t e double max msg size ;
p r i va t e QueueWithServer queueInData ;
p r i va t e QueueWithServer queueInLog ;
p r i va t e QueueWithServer queueOutData ;

184 pr i va t e QueueWithServer queueOutLog ;
p r i va t e PageSource page source ;
p r i va t e LogBlocksServer l o g b l o c k s s e r v e r ;

p r i va t e double end sender t ime = 0 ;
p r i va t e double s t a r t r e c e i v e r t im e = 0 ;

pub l i c NetServer (
S t r ing name ,
JSimSimulation sim ,

194 double parBandwidth ,
double parMaxMessageSize ,
QueueWithServer parQueueInData ,
QueueWithServer parQueueInLog ,
QueueWithServer parQueueOutData ,
QueueWithServer parQueueOutLog ,
PageSource parPageSource ,
LogBlocksServer parLogBlocksServer )

throws
JSimSimulationAlreadyTerminatedException ,

204 JSimInval idParametersException ,
JSimTooManyProcessesException

{
super (name , sim ) ;
bandwidth = parBandwidth ;
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max msg size = parMaxMessageSize ;
queueInData = parQueueInData ;
queueInLog = parQueueInLog ;
queueOutData = parQueueOutData ;
queueOutLog = parQueueOutLog ;

214 page source = parPageSource ;
l o g b l o c k s s e r v e r = parLogBlocksServer ;

}

protec ted void l i f e ( )
{

Transact ion t ;
JSimLink l i n k ;
JSimHead head ;
long count ;

224 int queue ;
double s e r v i c e t ime , overhead , ndatagrams ;

t ry
{

for ( count =0; ; count++)
{

i f ( ( (Math . IEEEremainder ( count , 2 ) ) != 0 && ! queueInData . empty ( ) ) | |
queueInLog . empty ( ) ) {

queue = 1 ;
234 } else {

message ( ”\n\n∗∗∗ queue 2 ∗∗∗\n\n” ) ;
queue = 0 ;

}
i f ( queueInData . empty ( ) && queueInLog . empty ( ) ) {

pa s s i v a t e ( ) ;
} else {

i f ( queue == 1)
l i n k = queueInData . f i r s t ( ) ;

244 else
l i n k = queueInLog . f i r s t ( ) ;

hold ( 2 0 . 0 ) ; // removing from queue

t = ( Transact ion ) l i n k . getData ( ) ;
l i n k . out ( ) ;

ndatagrams = Math . c e i l ( t . g e tB lockS i ze ( ) / max msg size ) ;

254 overhead = ndatagrams ∗ (20 + 20 + 18 ) ;

s e r v i c e t ime = ( ( t . ge tB lockS i ze ( ) + overhead ) ∗ 8 . 0 ) / bandwidth ;

hold ( s e r v i c e t ime ) ;

i f ( queue == 1 && page source . i s I d l e ( ) ) {
page source . a c t i v a t e (myParent . getCurrentTime ( ) ) ;

}

264 i f ( queue == 0 && l o g b l o c k s s e r v e r . i s I d l e ( ) ) {
l o g b l o c k s s e r v e r . a c t i v a t e (myParent . getCurrentTime ( ) ) ;

}

i f ( s t a r t r e c e i v e r t im e == 0 . 0 )
s t a r t r e c e i v e r t im e = myParent . getCurrentTime ( ) ;

i f ( t . getTransType ( ) == 1) {
page source . setPcent ( t . getTransCount ( ) ) ;

274 page source . isEnd ( t . getTransCount ( ) ) ;
i f ( page source . getEnd ( ) )

end sender t ime = myParent . getCurrentTime ( ) ;
l i n k . i n to ( queueOutData ) ;
i f ( queueOutData . ge tSe rve r ( ) . i s I d l e ( ) ) {
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queueOutData . ge tSe rve r ( ) . a c t i v a t e (myParent . getCurrentTime ( ) ) ;
}

} else {
l i n k . i n to ( queueOutLog ) ;
i f ( queueOutLog . ge tSe rve r ( ) . i s I d l e ( ) ) {

284 queueOutLog . ge tSe rve r ( ) . a c t i v a t e (myParent . getCurrentTime ( ) ) ;
}

}

hold ( 2 0 . 0 ) ; // adding to queue ;

i f ( queue == 1 && queueOutData . c a rd i na l ( ) >= 10) {
pa s s i v a t e ( ) ;

}
i f ( queue == 0 && queueOutLog . c a rd i na l ( ) >= 10) {

294 pa s s i v a t e ( ) ;
}

}
}

} catch ( JSimException e ) {
e . pr intStackTrace ( ) ;
e . printComment ( System . e r r ) ;

}
304 }

pub l i c double getEndSenderTime ( ) {
return end sender t ime ;

}

pub l i c double getStartRecvTime ( ) {
return s t a r t r e c e i v e r t im e ;

}

314 }



Appendix C

Measured values for the simulation

92
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C.1 Send all pages
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Figure C.1: Measured values for (a) Data block, (b) Process data block, (c) each log
record in Process log block.
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C.2 Send leaf pages
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Figure C.2: Measured values for (a) Data block, (b) Process data block, (c) each log
record in Process log block.
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C.3 Send data insert from bottom
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Figure C.3: Measured values for (a) Data block, (b) Process data block, (c) each log
record in Process log block.
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C.4 Send data insert from top
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Figure C.4: Measured values for (a) Data block, (b) Process data block, (c) each log
record in Process log block.
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C.5 Pack log records

0 5000 10000 15000
Run

0

50

100

150

200

Ti
m

e 
(m

ic
ro

se
co

nd
s)

Figure C.5: Measured values for Pack log records, used for all methods.


