
EventSeer: Testing Different Approaches to
Topical Crawling for Call for Paper

Announcements

Knut Eivind Brennhaug

June 30, 2005

Contents

1 Introduction 3
1.1 Introduction . 3
1.2 Motivation . 3
1.3 Goal . 3

2 Background 4
2.1 Topical Crawling . 4
2.2 Eventseer . 5
2.3 Related Work . 5

3 Materials and Methods 9
3.1 Materials . 9
3.2 Strategies . 11
3.3 Crawling Using Context Graphs 13
3.4 Back-and-Forward Crawling 15

4 Results 20
4.1 Context Graphs . 20
4.2 Backward-Forward Crawling 21

5 Conclusive Remarks 24

Bibliography 26

2

Chapter 1

Introduction

1.1 Introduction

The amount of information on the World Wide Web is vast and rapidly
increasing. Various tools have been developed to help the user to navigate on
the Web and filter out information that is not useful. Search engines provide
indexing of crawled pages, but building and maintaining such a library is
a time consuming task. If the aim is just to crawl pages about specific
topics, performing exhaustive crawls is mostly a waste of time and resources.
A topical crawler deal with this problem by focusing the crawl on regions
where it is likely to find pages relevant to its topic.

1.2 Motivation

Eventseer is an easily navigable search engine that provides access to future
conferences in the computer science domain. Today, it automatically deter-
mines whether a document is a call for paper announcement, and extracts
information such as title, important deadlines, organizing and program com-
mittees and important topics. The sources of the documents are mainly
different mailing lists. Many call for paper announcements are posted on the
Web, and a lot of these are not captured by Eventseer.

1.3 Goal

The goal of this master thesis is to explore and test out different topical crawl-
ing approaches in order to build a topical crawler that can feed Eventseer
with new call for paper announcements from the Web.

3

Chapter 2

Background

2.1 Topical Crawling

Topical crawling, or focused crawling, differs from standard exhaustive crawl-
ing in the way that it narrows the search down to regions on the Web which
are likely to contain relevant pages. An exhaustive crawler just downloads
the pages it visits, index them, and follow the hyperlinks without further
analysis of the page contents. A focused crawler limits its search to regions
of the web that are likely to lead to pages of interest. It uses measures to
determine the goodness of a page, and skips further crawling of pages that
seem to be fruitless. [CvdBD99] lists the following measures: Site rating,
linkage, community behaviour, semi-supervised learning and lifetime.

According to [LMJ04], the Web is growing exponentially, and crawling
the whole Web is an infeasible task. In 1999, the largest crawls were covering
only about 30-40 percent of the Web, and took weeks to a month to complete
[CvdBD99]. In 2005, Google has declared to index 8 billion pages, and tests
performed in [GS05] concludes that Google covers 76.1 % of the indexable
web.

When only a very small part of the information gathered from a crawl is
relevant, one may question whether an exhaustive crawl is worth the effort for
others than the large search engines like Google, AlltheWeb and AltaVista.
If one lacks the necessary hardware resources to perform exhaustive crawling,
the solution is to use a focused crawler that crawls only small parts of the
web.

4

Background Chapter 2

2.2 Eventseer

The purpose of the Eventseer project [BS04] is to ease the task of finding
relevant call for papers. Conferences are presented in numerous media, ;
using mailing lists or the World Wide Web. The different mailing lists have
limited range, so several mailing lists are needed to keep the user updated
about the events. Typically, only a limited amount of the call for papers are
of interest. These circumstances make it a time consuming task for the user
to find relevant call for papers.

The purpose of the Eventseer project is to ease the task of finding relevant
call for papers. This task is done in two main steps; the search for call for
papers, and information extraction to help the user to determine quickly
whether the conference is of interest.

In the information extraction step, entities such as important dates, pro-
gram committee members and important topics are extracted.

The search step includes the harvest of data. Initially, a set of mail-
ing lists are manually determined to be relevant. E-mails are automatically
downloaded from the mailing lists, and a classificator is used to filter out
e-mails that are not call for paper announcements. According to [BS04], the
best classificator was SVM with a vocabulary of 40 n-grams, that achieved
an accuracy of 98,7 %. The goal of this master thesis is to develop a topical
crawler that can crawl the web for more call for papers.

2.3 Related Work

2.3.1 Focused Crawling: A New Approach to Topic-
Specific Resource Discovery

The concept of focused crawling is introduced in [CvdBD99]. The focused
crawler uses a taxonomy of common web topics, and lets the user specify
which topics that are of interest. This is used to guide the crawler, which
operates with two measures to calculate the goodness of a page; relevance
and popularity. Relevance is calculated by analyzing the content, while pop-
ularity is calculated by analyzing link structure, a page that is not necessarily
relevant, may link to other pages that are.

2.3.2 Focused Crawling Using Context Graphs

A focused crawler that uses context graphs is described in [DCL+00]. It
addresses a common problem of focused crawling; that a lot of off-topic

5

Chapter 2 Background

pages may lead to a desired page, but that they are discarded from the crawl
because they are not considered relevant. The idea of context graphs is to
create a model of pages closely linked to a target page, in order to capture
discarded crawling paths. The context-focused crawler is built through the
following steps:

- build context graphs from a set of seed pages

- use classifiers to learn the context

- let the classifier guide the focused crawler

In the first step, backward crawling is performed on a set of seed pages.
Google and AltaVista are queried to find pages linking to them. The pro-
cedure is then repeated on the resulting pages. This process is iterated in
a user-specified number of steps. The seed pages are assigned to layer 0,
pages linking to a seed page are assigned to layer 1, and pages with distance
i from a seed page are assigned to layer i. Each layer represents an expected
distance to a target document.

In the second step, classifiers for the different layers are built. A modified
TF-IDF representation is computed for each of the pages, except in cases
where the number of pages in a layer is very large, in that case a set of pages
from the layer is sampled. The TF-IDF vectors are used to feed the learners.
The implementation uses a modification of the Naive Bayes Classifier.

In the last step, the classifiers are used to guide the crawler by assigning
a retrieved page to a layer. Pages not assigned to any of the layers are
discarded from the crawl.

The result was an improved efficiency compared to a traditional focused
crawler.

2.3.3 DEADLINER: Building a New Niche Search En-
gine

DEADLINER [KGC+00] is a search engine that catalogs conference and
workshop announcements, and extracts information like important dates,
topics and program committees. The DEADLINER architecture forms the
basis for Eventseer, and is shown in Figure 2.1, where the crawling is per-
formed in the input stages. The focused crawler that is used, is the one
described in [DCL+00].

6

Background Chapter 2

Figure 2.1: DEADLINER Architecture

7

Chapter 2 Background

2.3.4 Panorama: Extending Digital Libraries with Top-
ical Crawlers

Panorama is an engine that applies topical crawling to provide additional
knowledge and understanding for given research papers. It uses information
extracted from a set of documents to query a search engine (Google), and
train a classifier to guide the topical crawler. Cluster analysis is performed
on the crawled pages.

2.3.5 SmartCrawl: A New Strategy for the Exploration
of the Hidden Web

SmartCrawl [dCFS04] is a search engine that explores the hidden Web, which
is not visible to regular crawlers. SmartCrawl differs from other search en-
gines in that it makes attempts to fill out forms in order to get access to the
hidden contents.

2.3.6 Probalistic Models for Focused Web Crawling

In [LMJ04], Hidden Markov Models and Conditional Random Fields are used
to learn optimal crawling paths that can guide a focused crawler.

8

Chapter 3

Materials and Methods

3.1 Materials

3.1.1 Programming Languages and Tools

Python 2.3.4

Python (www.python.org) is a high-level dynamic programming language cre-
ated in 1990. It is interpreted, supports object-orientation and has a compact
and simple syntax. Writing an application in Python requires significantly
less lines of code than if it was to be written in a compiled language like
Java or C++, and testing is correspondingly made easier. This makes it
suitable for fast development of prototypes where specific implementation
details are of less interest. A weakness of Python is its run-time speed, so
performance-critical modules may be written in C/C++ and embedded in
Python.

In addition to the above mentioned issues, the reasons to choose Python
for this project was that it has a built-in module for text processing (regular
expressions module), and that a lot of external modules are available, where
NLTK and the Google Web API are of particular interest for this project.

NLTK - Natural Language Toolkit

The Natural Language Toolkit, NLTK(nltk.sourceforge.net), is a collection of
python libraries for natural language processing. While it is mainly intended
as a teaching instrument, it can also be used for prototype development and
research. Among various items, the tokenizer and the Porter stemmer will
be used in this project.

9

Chapter 3 Materials and Methods

Porter Stemming Algorithm

Words with common stems often have similar meanings, and therefore classi-
fication of documents will be easier if the suffixes of such words are stripped,
so that they all become one word. The Porter stemming algorithm [Por80]
is an algorithm that perform suffix stripping, and reduces the size of the
vocabulary significantly.

TF-IDF Algorithm

TF-IDF representation (Term Frequency Inverse Document Frequency) is
a way of describing a document with a vector, where the vector elements
correspond to the weighted frequency of particular phrases in a document.
The weighted frequency of a phrase decreases the more often it occurs in the
reference corpus. The TF-IDF score v(w) of a phrase w is calculated using
the following formula:

v(w) =
fd(w)

fd
max

log
N

f(w)

where fd(w) is the number of occurrences of w in a document d, fd
max

is the maximum number of occurrences of a phrase in document d, N is
the number of documents in the reference corpus and f(w) is the number of
documents in the corpus where the phrase f(w) occurs at least once.

In this project, a reduced TF-IDF score is computed, where only the
forty highest scoring components are included in the vector. This is done
to increase the speed of the classifiers. A TF-IDF representation is built
through the following steps:

1. Remove tags and content between tags that is not shown as plain text

2. Remove stop-words such as ”and”, ”by”, ”or” and ”at”.

3. Stem the page using the Porter stemmer algorithm

4. Build a reduced TF-IDF representation using the vocabulary built from
the 20 newsgroups dataset

Support Vector Machines

The original support vector machine (SVM) algorithm is described in [Vap95].
It separates binary classes by placing an optimal hyperplane between them,

10

Materials and Methods Chapter 3

and then maximizing the margin to each class. If the examples are not lin-
early separable, the problem is transformed to a higher-dimensional space
where a linear separation is possible. The transformation is obtained by the
use of non-linear kernel functions that replace the inner product. Kernels
can for example be polynomial or radial-basis functions.

SVM-Light (http://svmlight.joachims.org/) by Joachims is an implemen-
tation of Support Vector Machines in C, that solves classification, regression
and ranking problems. In this project, it is used for classification of web
pages.

3.1.2 Datasets

20 Newsgroups Dataset

The 20 Newsgroups Dataset is a corpus of 20,000 messages collected from 20
different newsgroups, where 1,000 messages were sampled from each of the
groups. From these messages, a reference vocabulary was built to be used
for the TF-IDF algorithm. For each word in the vocabulary, the number of
occurrences in the corpus was counted.

Training and Test Sets

Call for paper announcements from five different disciplines (informatics,
mathematics, physics, chemistry, sociology) were collected. For each disci-
pline, 40 call for paper announcements were collected. The informatics CFPs
were collected from Eventseer, while the rest was collected querying Google.

Stop-words

There are frequently used words that are so common, that they are rather
useless for retrieving documents. Examples are ”by”, ”and”, ”at” and ”or”.
These are called stop-words, and are ignored by search engines. When pre-
processing a page, stop-words are removed to ease the classification. A
list of stop words was downloaded from Search Engine World (http://www.
searchengineworld.com/spy/stopwords.htm).

3.2 Strategies

Backward Crawling

Search engines like Google and AltaVista have functions for finding pages
that links to a specified page. An initial assumption was that pages linking

11

Chapter 3 Materials and Methods

to a call for paper announcement also are likely to link to other call for paper
announcements (Figure 3.1).

Figure 3.1: Pages linking to a call for paper announcement are also likely to
link to other call for paper announcements.

The Python Google API provides methods for querying Google and ac-
cessing Google cached pages. A license key is needed, and there is a limit
of 1,000 requests per day for each license key. AltaVista search is performed
by direct manipulation of the URLs (Figure 3.2) and use of Python libraries
for Internet protocols. Manually testing suggests that it is usually AltaVista
that provides the best search results.

12

Materials and Methods Chapter 3

Figure 3.2: AltaVista search by direct manipulation of URL.

Building Context Graphs

The context focused crawling approach was tested with call for paper an-
nouncements. Context graphs with 5 layers were constructed for five dis-
ciplines: Informatics, mathematics, physics, chemistry and sociology. Each
discipline had a seed set of 40 URLs, and AltaVista was used for back crawl-
ing.

Back-and-Forward Crawling

The idea of back-and-forward crawling is to query a search engine to find
the in-links for a page, and do forward crawling on the resulting pages. The
process is iterated until the harvest reaches a low, or to a user-specified time
limit or harvest limit. An issue that has to be considered is whether the
focused crawler shall classify parent pages or child pages.

3.3 Crawling Using Context Graphs

The context focused crawling approach was tested with call for paper an-
nouncements. The process follows the following steps:

13

Chapter 3 Materials and Methods

1. build context graphs from the seed sets

2. download the pages from the nodes in the context graphs and prepro-
cess them

3. sample a training set and a test set (that do not overlap) from the
whole graph and build classifiers for each layer

4. evaluate results

Context graphs with 5 layers were constructed for five disciplines: Infor-
matics, mathematics, physics, chemistry and sociology. Each discipline had
a seed set of 40 URLs to conferences within the discipline, and AltaVista
was used for back crawling. Backward crawling was performed in four steps
for each of the disciplines. For simplicity purposes, duplicate URLs are not
removed.

In the second step, the pages corresponding to the URLs are downloaded.
Since the sizes of the layers increases, only a sampled set of the layers are
selected for the highest layer.At this stage problems like that a page is un-
available or in a format not directly readable from Python can occur. In this
case, the following is done:

- unavailable pages are discarded

- pages in pdf-format are accessed using Google API to access cached
versions

- pages in doc-format are discarded

The preprocessing involves the following steps:

1. remove tags and content between tags that is not shown as plain text

2. remove stop-words such as ”and”, ”by”, ”or” and ”at”.

3. stem the page using the Porter stemmer algorithm

4. build a reduced TF-IDF representation using the vocabulary built from
the 20 newsgroups dataset

To preserve high speed of the classifiers, only the forty highest scoring
components are included in the reduced TF-IDF representation.

14

Materials and Methods Chapter 3

In the third step, a training and a test set is sampled from the context
graph for each discipline. The whole set is sampled at once, and then split
into training and test set, so that overlap is avoided. Support Vector Ma-
chines are used to build the classifier

Finally, the accuracy of the classifier is tested on the test set. If the
accuracy is above a predefined threshold, it is considered good enough to
guide the crawler.

3.4 Back-and-Forward Crawling

Back-and-forward crawling differs from the context focused crawling in that
the crawler only goes back one step, and then goes forward again. In general,
back-and-forward crawling is done by iterating the following loop:

1. search for pages linking to a page

2. determine the goodness of each of the pages retrieved

3. go back to the first step for pages classified as good, discard pages
classified as not good

There are mainly two ways to determine whether a parent page is good.
One can assign it to a predefined class, or one can sample some of the hy-
perlinks and determine whether they are interesting targets.

Google and AltaVista were queried for pages linking to two large confer-
ences; The 14th International World Wide Web Conference (www2005.org),
and 31st Conference on Very Large Databases (www.vldb2005.org). 50 pages
from each of the queries were manually assigned a class. After human in-
spections of the results, the conclusion is that most pages fit into one of the
following classes:

• List of Call for Paper Announcements Finding a list of CFP
announcements (Figure 3.3) is common, and is a very good page to
continue crawling with.

• Institution or Topic Page This class includes institution pages, e.g.
the homepage of an university, and pages dedicated to a specific topic.
Pages of this class often include a list of conferences, and may be hard to
distinguish from the previous class, even for a human observer. Such
pages are usually less clean than pages of the previous category(see
Figure 3.4).

15

Chapter 3 Materials and Methods

• Conference Page This class includes homepages of conferences (see
Figure 3.5). Information could be extracted, but a page of this class is
not very likely to lead to other CFPs. However, it is a hot subject for
backward crawling.

• Mail Announcement A mail announcement is usually a part of a
mail archive, and is likely to lead to other CFPs, and even lists of CFP
announcements.

• Homepage Quite often a homepage of a program committee member
or someone who plans to visit a conference is retrieved. A homepage
also contains a list of conferences the owner of the homepage has been
to, and conferences that he or she plans to go to. Usually, most links
point to off-topic pages, and thus a homepage might be discarded from
the crawl.

• Weblog A retrieved page might also be a weblog (see Figure 3.6).
There is typically an entry that refers to a conference, or perhaps lists
some conferences, while the rest of the entries are unrelated.

Figure 3.3: Example of a CFP list.

16

Materials and Methods Chapter 3

Figure 3.4: Example of a topic page.

Figure 3.5: Example of a conference page.

17

Chapter 3 Materials and Methods

Figure 3.6: Example of a weblog page.

The other way is to classify pages to be CFPs or non-CFPs. This could
be done by sampling a small set of the hyperlinks of a parent page. The
pages corresponding to the links are then downloaded and classified to be
CFPs or non-CFPs. If at least one of these pages are classified as a CFP,
all the hyperlinks of the parent page are checked, if not, it is discarded from
the crawl. In [BS04], an SVM classifier using feature vectors built from uni-,
bi- and trigrams had an accuracy of 98,7 % when classifying e-mails, but
classifying web pages is a more challenging task. In most cases, a web page
is less structured than an e-mail, and there might be some formatting code
that is not removed in the preprocessing step.

In order to build a CFP classifier, the 40 seed URLs for informatics that
were used to build a context graph were selected as the positive examples
of the training set. 98 negative examples were provided by querying Google
for computer science related pages that are not CFPs, job announcements,
CFPs from other disciplines than computer science, and some pages neither
related to computer science or conferences. The test set contained 79 URLs,
where 39 of them were positive examples, and where the negative examples
were collected in the same way as the training examples were collected.

The best solution is to combine the two approaches, since what is best
to do with a parent page, is dependent of the class it belongs to, if it is

18

Materials and Methods Chapter 3

list of CFPs one would like to crawl forward, while one would like to crawl
backward if it is a conference page.

19

Chapter 4

Results

This chapter shows the results for the strategies described in chapter 3, the
context graphs method and the backward-forward crawling method. The
results are followed by a brief discussion.

4.1 Context Graphs

4.1.1 Layer Sizes

Layer Informatics Mathematics Physics Chemistry Sociology
0 2 KB 2 KB 2 KB 2 KB 3 KB
1 13 KB 9 KB 4 KB 2 KB 4 KB
2 64 KB 35 KB 18 KB 8 KB 10 KB
3 305 KB 143 KB 57 KB 31 KB 33 KB
4 1,504 KB 307 KB 271 KB 155 KB 133 KB

Table 4.1: Sizes of the layers of the context graph for the different disciplines.

As can be seen in Table 4.1, the sizes of the layers seem to grow ex-
ponentially, and the context graph for the informatics discipline is growing
fastest. A reason for this is that this set entirely consists of fresh URLs from
Eventseer, while the other seed sets contain a mixture of new and older CFP
pages. The older a CFP page is, the more likely it is that links to it have
been removed.

20

Results Chapter 4

4.1.2 Classifications of Layers

The classifier was not at all able to assign a page to a layer. The recall values
were very low, and in some cases even zero.

4.1.3 Discussion of the Results

The results obtained from the context graphs are clearly unfit for further
processing. Possible reasons for the poor results may be the following:

• Too Small Datasets for the Seed Layer and Layer 1. The sizes
of each of the seeds were 40 pages. Although these are small sets,
one would anyway expect that the results were directed in a positive
direction despite the classifier being inaccurate

• Inadequate Preprocessing. There is room for improvement in the
preprocessing stage, but again one would just expect weaker classifica-
tion accuracies, and not a complete lack of recall.

• No Typical Representation for the Different Layers. The re-
sults of the backward-forward crawling show that there are different
types of pages linking to a CFP announcement. According to Table
4.2, 10 of the 94 parent pages are CFPs themselves, and should conse-
quently be classified to layer 0. After only a few steps of backcrawling,
the results tend to be very general. And the results of backcrawling
a page, are often pages from the same site. All these issues make it
understandable that the classifier fails to build model representations
for the different layers.

4.2 Backward-Forward Crawling

Class Number of Pages
CFP list 24
Inst./Topic page 13
Conference 10
Mail announcement 6
Homepage 33
Weblog 18

Table 4.2: Distribution of the classes on the training set.

21

Chapter 4 Results

Class Number of Pages
CFP list 29
Inst./Topic page 15
Conference 17
Mail announcement 1
Homepage 33
Weblog 2

Table 4.3: Distribution of the classes on the test set.

Class # correct # incorrect Accuracy Precision Recall
CFP list 84 13 0.866 0.767 0.793
Inst./Topic page 82 15 0.845 N/A 0.0
Conference 80 17 0.825 N/A 0.0
Mail announcement 96 1 0.990 N/A 0.0
Homepage 70 27 0.722 0.875 0.212
Weblog 94 3 0.969 0.0 0.0

Table 4.4: Classification results for the parent classes

Class # correct # incorrect Accuracy Precision Recall
CFP 61 16 0.792 0.923 0.632

Table 4.5: Classification results for CFPs

22

Results Chapter 4

Table 4.2 shows the distribution of classes in the training set, and Table
4.3 shows the distribution of classes for the test set. One note that the classes
Mail announcement and Weblog are rarely represented in the test set, and
the classification results for these classes are therefore not of interest. Addi-
tionally Table 4.4 says that the classifier was unable to recognize any pages
of the classes Institution/Topic page and Conference. The precision/recall
values for the CFP lists are reasonable, but not good enough to make the
classifier a good guide for the topical crawler. The homepage class has a poor
recall value, but quite good precision.

Table 4.5 shows the result for the CFP classifier. It has good precision,
but not very good recall. The classifiers from [BS04] were tested on the same
sets, and the Orange SVM classifier had a classification accuracy of 84,9 %,
which is slightly better than the SVM light classifier. This suggests that use
of uni-, bi- and trigrams may be a better option than the TF-IDF algorithm.
It also illustrates that classifying web pages is more difficult than classifying
e-mails, where Orange SVM achieved an accuracy of 98,7 %.

4.2.1 Discussion of the Results

Although the results are far from optimal, the classifier is to some extent able
to recognize homepages, and quite good to recognize CFP lists. It is obvious
that the test set should be larger, since two classes had too few examples to
test the classifier on. Appearantly, text analysis alone does not seem to be
sufficient to create a reliable classifier, performing structural analysis of the
pages could perhaps aid the classifiers to become more accurate.

23

Chapter 5

Conclusive Remarks

In this paper, different methods for building topical crawlers were investi-
gated.

The context graph method did not at all provide useable results, and the
main reason is probably that it is hard to distinguish the different layers from
each other. The backward-forward crawling methods looks more promising,
but will need improvements in order to make it valuable for practical pur-
poses.

The combination of using a CFP-classifier for target pages and assigning
pages linking to target pages to classes is an exciting approach that should be
further investigated. By using a larger training and test set, the classifications
could be more accurate, and at least be accurate for retrieving CFP lists,
which represents the best class for further crawling.

Another area that has potential of improvement is the preprocessing step.
A more detailed text analysis could determine what parts of a page that
are related to the topic, and what parts that are only weakly related or
not related at all. When a good classifier is built, one may advance to
the crawling step and extract information from the crawled pages, where
especially extraction of important dates could be useful in the crawl.

24

Bibliography

[AAGY01] Charu C. Aggarwal, Fatima Al-Garawi, and Philip S. Yu. Intel-
ligent crawling on the world wide web with arbitrary predicates.
In World Wide Web, pages 96–105, 2001.

[BS04] Knut Eivind Brennhaug and Martin Stein. Eventseer: Informa-
tion extraction of call for paper announcements, 2004.

[CvdBD99] Soumen Chakrabarti, Martin van den Berg, and Byron Dom.
Focused crawling: a new approach to topic-specific Web resource
discovery. Computer Networks (Amsterdam, Netherlands: 1999),
31(11–16):1623–1640, 1999.

[dCFS04] Augusto de Carvalho Fontes and Fábio Soares Silva.
Smartcrawl: a new strategy for the exploration of the hidden
web. In WIDM ’04: Proceedings of the 6th annual ACM inter-
national workshop on Web information and data management,
pages 9–15, New York, NY, USA, 2004. ACM Press.

[DCL+00] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee
Giles, and Marco Gori. Focused crawling using context graphs.
In 26th International Conference on Very Large Databases,
VLDB 2000, pages 527–534, Cairo, Egypt, 10–14 September
2000.

[GS05] Antonio Gulli and A. Signorini. The indexable web is more than
11.5 billion pages. In WWW (Special interest tracks and posters),
pages 902–903, 2005.

[HYJS04] Y. L. Hedley, M. Younas, A. James, and M. Sanderson. A two-
phase sampling technique for information extraction from hid-
den web databases. In WIDM ’04: Proceedings of the 6th an-
nual ACM international workshop on Web information and data
management, pages 1–8, New York, NY, USA, 2004. ACM Press.

25

Chapter 5 BIBLIOGRAPHY

[KGC+00] Andries Kruger, C. Lee Giles, Frans Coetzee, Eric Glover, Gary
Flake, Steve Lawrence, and Cristian Omlin. DEADLINER:
Building a new niche search engine. In Ninth International
Conference on Information and Knowledge Management, CIKM
2000, pages 272–281, Washington, DC, November 6–11 2000.

[LMJ04] Hongyu Liu, Evangelos E. Milios, and Jeannette Janssen. Proba-
bilistic models for focused web crawling. In WIDM, pages 16–22,
2004.

[MPS04] Filippo Menczer, Gautam Pant, and Padmini Srinivasan. Topi-
cal web crawlers: Evaluating adaptive algorithms. ACM Trans.
Inter. Tech., 4(4):378–419, 2004.

[PM] G. Pant and F. Menczer. Topical crawling for business intelli-
gence.

[Por80] M.F. Porter. An algorithm for suffix stripping, 1980.

[PTJG] Gautam Pant, Kostas Tsioutsiouliklis, Judy Johnson, and C. Lee
Giles. Panorama: Extending digital libraries with topical
crawlers.

[Vap95] Vladimir N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

26

