
 2

Abstract
This report describes a prototype middleware system for optimising transfer and

processing times of XML based data between mobile, heterogeneous clients, supporting

servers and context providers. The system will achieve these objectives by compressing

or compacting the XML data in different ways, and using different parsing techniques.

Two such techniques are examined more thoroughly, namely tag redundancy reduction,

and binary compression. These optimisation techniques are implemented in a fully

functioning XML data optimising system, and their effectiveness is tested and compared.

A long term goal is discussed and considered in relation to these techniques: To develop a

set of heuristic rules that will allow the system to determine dynamically which

optimisation methods are most efficient at any given time based on available context data.

The prototype system described is developed in Java, with a client for mobile devices

written in Java2ME.

 3

Preface

This paper is the result of my master degree work at the Department of Computer and

Information Science at the Norwegian University of Science and Technology in

Trondheim during spring 2005.

I would like to thank my supervisors, Carl-Fredrik Sørensen and Alf Inge Wang for all

their help, guidance and patience during this work.

 Trondheim, June 2005

 Anders Kristian Harang Walla

 4

Table of contents
PART I: INTRODUCTION.. 7

CHAPTER 1: INTRODUCTION... 8
1.1 Motivation... 8
1.2 Project context: MOWAHS... 9
1.3 Problem description ... 9

CHAPTER 2: RESEARCH AGENDA... 10
2.4 Research questions ... 10
2.5 Research hypotheses... 10
2.6 Research method... 11

PART II: STATE-OF-THE-ART.. 12

CHAPTER 3: CHALLENGES IN MOBILE COMPUTING.. 13
CHAPTER 4: JAVA 2 PLATFORM, MICRO EDITION.. 14

4.7 Architecture .. 14
4.7.1 Java Virtual Machine .. 14
4.7.2 Configurations... 15
4.7.3 Profiles... 15

CHAPTER 5: THE EXTENSIBLE MARKUP LANGUAGE (XML) .. 17
5.8 The XML Components .. 18
5.9 Compressing techniques... 19

5.9.1 Tag redundacy reduction... 19
5.9.2 Binary compression... 19

5.10 XML parsing ... 20
5.10.1 kXML 2 ... 21

5.11 XML transformations (XSLT) and XPath... 21

PART III: OWN CONTRIBUTION... 24

CHAPTER 6: A MODEL OF A SYSTEM FOR XML OPTIMISATION ... 25
6.12 Model Requirements ... 26

6.12.1 Requirements regarding XML properties ... 26
6.12.2 Requirements regarding the mobile environment .. 26

6.13 Model description ... 26
CHAPTER 7: REQUIREMENTS ENGINEERING ... 28

7.14 Use cases... 28
7.15 Requirements specification... 36

7.15.1 External Interface Requirements... 36
7.15.2 Functional Requirements .. 36
7.15.3 Performance requirements .. 37
7.15.4 Design constraints ... 37
7.15.5 Software system attributes .. 37

7.16 Requirements summary .. 38
CHAPTER 8: IMPLEMENTATION .. 40

8.17 General description .. 40
8.18 The communications protocol .. 41
8.19 The Mobile Client ... 43
8.20 The Proxy Server .. 45
8.21 The Content Provider ... 46

CHAPTER 9: TESTING ... 47
9.22 Planning.. 47
9.23 Execution .. 48

9.23.1 Small document... 48
9.23.2 Medium document .. 49
9.23.3 Large document... 50

9.24 Result analysis .. 51

PART IV: DISCUSSION AND CONCLUSION... 52

CHAPTER 10: DISCUSSION... 53
CHAPTER 11: FUTURE WORK... 54
CHAPTER 12: CONCLUSION ... 55

 5

List of figures
FIGURE 1 – J2ME AND THE OTHER JAVA PLATFORMS .. 14
FIGURE 2 – J2ME ARCHITECTURE... 15
FIGURE 3 – SAMPLE XML FILE ... 18
FIGURE 4 - XML DOCUMENT BEFORE XPATH QUERY .. 22
FIGURE 5 - RESULT FROM XPATH QUERY ... 23
FIGURE 6 - XSLT TRANSFORMED DOCUMENT .. 23
FIGURE 7 - OVERALL VIEW OF THE SYSTEM.. 27
FIGURE 8 - THE XTRANS USE CASE DIAGRAM ... 29
FIGURE 9 - THE OVERALL PROTOTYPE SYSTEM ARCHITECTURE ... 40
FIGURE 10 - SAMPLE MESSAGE FROM CLIENT TO PROXY .. 41
FIGURE 11 - SAMPLE MESSAGE FROM PROXY TO CONTENT PROVIDER ... 42
FIGURE 12 - UML SEQUENCE DIAGRAM SHOWING MESSAGING ... 42
FIGURE 13 - DATA FLOW WITHIN THE CLIENT, OPTION A ... 43
FIGURE 14 - DATA FLOW WITHIN THE CLIENT, OPTION B ... 44

 6

List of tables
TABLE 1 - A SELECTION OF AVAILABLE XML PARSERS ... 20
TABLE 2 - USE CASE #1: REQUEST AN XML DOCUMENT ... 30
TABLE 3 - USE CASE #2: OPTIMISE AN XML DOCUMENT ... 31
TABLE 4 - USE CASE #3: RETURN AN XML DOCUMENT ... 32
TABLE 5 - USE CASE #4: RETURN AN XML DOCUMENT ... 33
TABLE 6 - USE CASE #5: SUSPEND COMMUNICATION ... 34
TABLE 7 - USE CASE #6: UPLOAD AN XML DOCUMENT... 35
TABLE 8 - PRIORITISED REQUIREMENTS.. 39
TABLE 9 - TEST CASE 1: SMALL DOCUMENT ... 48
TABLE 10 - TEST CASE 2: MEDIUM DOCUMENT .. 49
TABLE 11 - TEST CASE 3: LARGE DOCUMENT ... 50

 7

Part I: Introduction

 8

Chapter 1: Introduction

This project aims to provide a solution for better support for XML data transfer in a

mobile, heterogeneous environment. This chapter begins with the motivation for

developing such a solution and goes on to describe MObile Work Across Heterogenous

Systems (MOWAHS) – the larger project in which this project is encompassed. Lastly,

the original problem description is presented.

1.1 Motivation

With the recent and ongoing developments in handheld computers, digital assistants,

mobile phones and even computers integrated in clothing, ubiquitous computing [19] is

increasingly and rapidly making its way into our everyday life. Wireless networks of

different kinds surround us and connect people to their information sources wherever they

go through a wide variety of heterogeneous devices. In this new and rapidly growing

environment, we have more and more companies working as virtual organizations, with

people distributed across several locations and time zones. In the near future, people and

machines may be working safely together with the help of location-aware devices

interacting with each other over wireless networks. In both these scenarios, a number of

heterogeneous devices need to communicate over unreliable, wireless networks.

The heterogeneity both in devices and networking protocols that is part of the nature of

ubiquitous computing, will surely lead to the need for a common format for data storage

and exchange. XML is already a standard growing rapidly in popularity and usage

because of its simplicity and interoperability across platforms. We can already observe

the interest in support for data exchange via XML by the two major tools in software

development for limited computer devices, Microsoft .NET and Java2 Micro Edition.

However, as appealing as it might be to utilize XML in this context, there are two obvious

problems with doing so. Firstly, XML stores its data explicitly, with little regard to

conserving space. As keeping the load on our available wireless networks as low as

possible may be of significance, we do want to keep the transmitted data to a minimum.

Secondly, parsing XML data is a resource-demanding operation in terms of both

processing power and memory usage, both of which are often scarce on limited mobile

devices.

In this project a middleware system for reducing the size of any transferred XML data and

minimizing parsing time will be designed, implemented and tested in Java and Java2ME.

Different techniques will be applied to achieve this, and assessed individually. Finally, the

possibility of dynamically choosing which techniques to apply in a given situation based

on context data will be investigated.

 9

1.2 Project context: MOWAHS

This report is written as a part of the MOWAHS[25] research project, conducted at the

Norwegian University of Science and Technology. The project is funded with NOK 5

million over four years by the Norwegian Research Council through its IKT-2010

program and it is carried out jointly by IDI’s (Department of Computer and Information

Science) groups for software engineering and database technology.

The project has two parts: 1) Process support for mobile users using heterogeneous

devices (PC, PDA, mobile phones); and 2) support for cooperating

transactions/workspaces holding work documents. This report, dealing with

communication between heterogeneous devices, falls under the former.

The goals of MOWAHS are threefold:

G1 Helping to understand and to continuously assess and improve work processes in

virtual organizations

G2 Providing a flexible, common work environment to execute and share real work

processes and their artefacts, applicable on a variety of electronic devices (from

big servers to small PDAs).

G3 Disseminating the results to colleagues, students, companies, and the community

at large.

This project will mainly deal with the second goal of MOWAHS as it aims to make

improvements to the communication between electronic devices.

1.3 Problem description

The initial task description for this thesis was as follows:

MOWAHS – Optimised support for XML in mobile environments.

XML parsing is a relatively resource-heavy operation. Your task will be to develop

models, and one or more systems that use XML to communicate between mobile devices

such as PDAs and mobile phones. How can we build a system based on mobile clients

and proxy servers that will optimise processing time and the transfer time of XML-based

information between these devices? This will continue work done in depth studies during

autumn 2003/2004. The results from 2003 show resource usage (memory usage,

processing times, transfer times, total times) acquired from different solutions. Is it

possible to construct a set of heuristic rules for whether or not XML data should be

transformed before being transferred to the mobile device based on these results? This

project will build a prototype system that performs transformations on the XML files and

transfers these to a J2ME/.NET-based device (PDA, mobile phone etc.)

 10

Chapter 2: Research Agenda

This chapter presents the basis of the report - the research questions which this project

aims to answer. A few hypotheses are also presented, whose validity will be challenged

later through practical experiments. Finally, the research methodology that the work is

based upon is described.

2.4 Research questions

From the problem description, the main question that this report will try to answer is

deduced:

How can a system be built that optimises the transfer and processing of XML-based

information between mobile, heterogeneous clients and supporting servers by introducing

an intervening proxy server that will perform certain transformations of the XML data

sent according to sensory data? Which technologies are candidates for such an

optimisation, and how well do they really perform?

The following sub-questions will help lead the way to a solution to this question.

• Current state – Are there any current efforts to solve the question at hand? What

technologies are available for a possible solution?

• Requirements – Which limitations and challenges exist in the context of XML

data transferring and parsing in a mobile environment?

• Solution – How can the requirements be met? Is it possible to build a prototype

system to use as a testing platform for evaluating the different techniques?

• Evaluation – How well do the solutions provided deal with the original problem?

How can the validity of the solution be properly tested?

2.5 Research hypotheses

To further illuminate the problem at hand, a set of research hypotheses has been devised

from the problem description in 1.3 and the research questions in 2.4. They give a

concrete representation of the issues this report will look into.

H1 There exists a way of optimising the process of transferring (T) and parsing (P)

XML data between a content provider and mobile units via an intervening proxy

server with an overhead (O) in processing time small enough for the following to

be true.

time(Toptimised + Poptimised + O) < time(Tunoptimised + Punoptimised)

H2 It is possible to select the optimal compression and parsing techniques

dynamically in any situation according to a heuristic rule-set.

 11

2.6 Research method

Choosing an appropriate, systematic research method is important for the successful

completion of a project. In general, a method represents the means, procedure or

technique used to carry out a process in a logical, orderly or systematic way. According to

Berndtsson, Hannsson, Olsson and Lundell [8], a method, in the context of a research

project, refers to an organized approach to problem-solving that includes the following

five points.

i. Collecting data – The pre-study is an important part of the report, as it surveys

the current state in the field of investigation. Available technologies for a solution

are uncovered and explored thoroughly.

ii. Formulating a hypothesis or proposition – The research hypotheses in chapter

2.5 clearly states what the work in the report aims to cover.

iii. Testing the hypothesis – The knowledge gathered in the pre-study is put to use

and a prototype system is built to test the hypotheses. This is set out in the part of

the report under “Own Contribution”.

iv. Interpreting results – In this section of the report the results of the testing of the

hypotheses are discussed.

v. Stating conclusions that can later be interpreted by others – Finally, the

knowledge gained from the process is extracted, and presented in the final chapter.

This method is also known as the scientific method and the work in this report is based

upon it

 12

Part II: State-of-the-art

 13

Chapter 3: Challenges in mobile computing

The science of mobile computing is a relatively new one, and working in such an

environment we face different challenges than the ones we are used to in a stationary

setting. In the following, we will briefly look at some of the challenges [11] within mobile

computing:

• Disconnections: Wireless networking may expose users to frequent

disconnections, as opposed to traditional computer systems. This is important to

bear in mind when designing software for mobile units, as these applications have

to tolerate such unreliable network conditions.

• Low bandwidth: Even though third generation mobile networks are slowly

seeing their way into the market; bandwidth is still generally very limited on

mobile networks. In many cases the user is charged per volume used, so one

would want to limit the bandwidth usage anyways.

• Bandwidth variability: The network conditions in a mobile environment can

change very rapidly, and applications will have to deal with this in an appropriate

manner.

• Heterogeneous networks: Mobile units may need to adapt to a number of various

network types on the go, and even variations within a single network type.

• Security risks: The security of mobile units can much more easily be

compromised than wired units, due to the availability and connectivity of wireless

links.

• Address migration: Today’s networks are not designed for dynamically changing

addresses, and therefore mobile users on these networks must overcome the

challenge of somehow establishing some kind of mobile IP.

• Location-awareness: There are advantages of combining mobility and

computing, and location-specific information should be utilised fully by future

mobile applications.

• Low power: Mobile devices often have limited battery capacity, so conserving

power is of the essence.

• Risks to data: Portable units are easily lost, damaged or stolen, so steps should be

taken to avoid unauthorized disclosure of information.

• Small user interface: Making good user interfaces on small, portable devices is

always challenging.

• Small storage capacity: Small units often does not have a lot of available storage

space, a solution to this could be to store data off the device.

 14

Chapter 4: Java 2 Platform, Micro Edition

Java 2 Platform, Micro Edition (J2ME) was introduced by Sun Microsystems in June

1999. The platform is targeted at consumer electronics (e.g. satellite TV receiver), mobile

devices (PDAs, mobile phones, pagers) and embedded devices (ATMs, driving computers

etc). As shown in Figure 1, J2ME is one of the four software development platforms

provided by Sun, the others being Java2 Enterprise Edition (J2EE) for large, complex

systems, Java2 Standard Edition (J2SE) for normal applications and Java Card for smart

cards. [5]

Figure 1 – J2ME and the other Java platforms

4.7 Architecture

J2ME consists of three modular and scalable layers: Java Virtual Machine,

Configurations and Profiles. [6][7]

4.7.1 Java Virtual Machine

The Java Virtual Machine’s (JVM) layer’s main function is to communicate with the

device’s operating system, so every operating system will have its own custom tailored

JVM. For larger, resource heavy units such as consumer electronics, this will be a

standard JVM, but for smaller units like PDAs and mobile phones a lighter version has

 15

been developed: the Kilobyte Virtual Machine (KVM). These units often have limited

resources, such as 160 to 512 KB of memory, into which the standard JVM would never

fit. In addition, some of the features of the JVM would not necessarily be useful to these

smaller units and these features have therefore been sacrificed to minimize the size of the

KVM, for example, floating-point type and AWT
1
 . Instead, the LCDUI (Liquid Crystal

Display User Interface), a reduced set of UI functions aimed for small devices, was

introduced as a substitute for AWT. As a result, the KVM is in the range of 40 to 80

Kbytes (hence the “K” in KVM).

4.7.2 Configurations

The configuration layer lies above the JVM. This layer defines a minimum set of JVM

features and core Java class libraries available on a particular category of devices. As of

today, two configurations exist: Connected Device Configuration (CDC) and Connected

Limited Device Configuration (CLDC). The former is designed for larger devices that are

always connected, but still considered relatively resource poor compared to standard

computers, such as a satellite TV receiver. CDC runs on a traditional JVM. The latter is

designed for smaller, weaker units such as PDAs and mobile phones, and runs on the

aforementioned KVM.

4.7.3 Profiles

The final part of the J2ME architecture is the profile. The idea of the profile was to

provide an interface towards the programmer, built on top of the configuration for a

certain group of units. The purpose of the profile is twofold: Device specialization (APIs

that capture or exploit particularities of the device interface and capability) and device

portability (APIs that behave consistently on any device supporting the profile).

The Mobile Information Device Profile (MIDP) was the first available profile. Later there

were attempts at creating additional profiles, such as a profile for a certain group of

PDAs, however MIDP has emerged as the de facto standard for such small devices.

Figure 2 – J2ME architecture

MIDP provides API classes related to interface, persistence storing and network

connections. It also provides a set of requirements for device manufacturers to use as

1 Java Abstract Window Tookit

 16

guidelines if they want their devices to be CLDC and MIDP branded, for instance the

minimum display requirements are a 96 x 54 pixel screen size, and the device needs to

have at least 128 Kbytes of RAM.

Figure 2 shows the architectural view of the relationship between the KVM (Native

system operating system), CLDC, and MIDP layers. The immediately adjacent

neighbours to the “Mobile Information Device” block show functionality what will be

available to a potential mobile software developer for this device. We can see that some

of the device’s functions may be unavailable to the developer; a device could for example

have Bluetooth support and pre-installed software that utilizes it while still not providing

it to the J2ME developer. This could lead to problems when developing software for

different devices because the full capabilities of the device may not be available to the

developer.

MIDP 1.0 was the first profile to be available when J2ME was introduced. MIDP 2.0 was

introduced in November 2002, but even today a vast amount of devices only support

MIDP 1.0. This is a potential problem area for developers who want their software to be

available to as many as possible but require functionality in MIDP 2.0, but should be

insignificant in terms of this project since our primary scope is to use the system for

testing performance on selected devices.

 17

Chapter 5: The Extensible Markup Language (XML)

The Extensible Markup Language is a general-purpose markup language for creating

special-purpose markup languages [1]. It was developed by an XML Working Group

formed under the auspices of the World Wide Web Consortium (W3C) in 1996 [2]. Much

like HTML, XML is a subset of the more complex SGML (Standard Generalized Markup

Language). XML however, has no predefined elements known from HTML such as

and <table>, and has a slightly stricter syntax, as its usage falls more towards structuring,

describing and interchanging data. However, comparing XML to SGML, it is being said

that XML offers about 90% of the functionality of SGML at some 10% of its complexity.

The design goals for XML, as laid out in the XML Specification [2] are:

1. XML shall be straightforwardly usable over the Internet.

With an XML-capable browser, XML source documents must be viewable as

quickly and easily as HTML documents are today.

2. XML shall support a wide variety of applications.

XML usage must not be limited to only web applications, but also be available for

more general use. Examples are authoring, data presentation, content analysis and

validation, and database applications.

3. XML shall be compatible with SGML.

This point is really a given, since XML originally was designed as a subset of

SGML.

4. It shall be easy to write programs that process XML documents.

XML, being a light version of SGML, has eliminated the parts of SGML that are

difficult to implement, and writing an XML parser is therefore a quite trivial task.

As a result of this, many different XML parsers are available today.

5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.

No optional features are allowed in XML. This keeps confusion to a minimum

when writing an XML parser and it also ensures that every XML parser in the

world can interpret any given valid XML document.

6. XML documents should be human-legible and reasonably clear.

We know from experience that being able to read the contents of a document

without having to resort to a designated program to do so is a huge advantage.

Making small changes to an XML document with your favourite text editor in no

time is a trivial task.

7. The XML design should be prepared quickly.

It was necessary to come up with a solution to HTML’s problems very quickly,

and the XML Working Group did so in minimal time.

8. The design of XML shall be formal and concise.

This point suggests that the XML language should be easy to describe formally,

thus easing parsing, and allowing the average document programmer to master the

language easily.

9. XML documents shall be easy to create.

Generating correct XML should be a trivial task to intelligent editors.

 18

10. Terseness in XML markup is of minimal importance.

No minimization of the markup is allowed, again to obtain readability.

Conciseness comes second to clarity.

5.8 The XML Components

The basic concept of XML is that every document is composed of a series of entities.

Each entity contains one or more elements, and elements can in turn be characterized by

attributes. In the following example everything between “<staff>” and ”</staff>” belongs

to the staff element, and other elements (employee, name and address) are nested within

this element. ”id” is an attribute assigned to the employee-elements, the value “1” is

assigned to the first employee, while the value “2” is assigned to the second.

Figure 3 – Sample XML file

The relationship between elements and their possible attributes can be defined by a

Document Type Description (DTD), and much of the beauty of XML lies in that by

defining a simple DTD the user can define his own language for whichever kind of

document he has to deal with. By choosing user-friendly and human-legible markup tags,

the use of the tags will be easier to comprehend.

Elements and any attributes are entered between matched pairs of angle brackets (< and

>), and attribute values are always between a pair of single or double quotes:

<element attribute1=”value1” attribute2=’value2’ ...>

Entity references start with an ampersand and end with a semicolon:

&eref;

Element, attribute and entity names are all case-sensitive, so <Element>, <element> and

<ELEMENT> are corresponding to three different element types. Likewise, <element

att=”1” ATT=”2> denote two different attribute values for the given element. Naturally,

one would be careful with this feature, as misuse could easily confuse users of the tag set.

<?xml version=”1.0” encoding=”UTF-8”?>

<staff>

 <employee id=”1”>

 <name>Anders</name>

 <address>165 Grattan Street</address>

 </employee>

 <employee id=”2”>

 <name>Mel</name>

 <address>42 Flowerdale Road</address>

 </employee>

</staff>

 19

5.9 Compressing techniques

In this section two ways of reducing the size of an XML document will be briefly

explained: Reducing tag redundancy, and binary end-to-end compression.

5.9.1 Tag redundacy reduction

XML files often contain many repetitions of long tag-names, with matching end-tags.

With XML namespaces the tags just become even longer. A book list encoded in XML

for instance, would probably contain hundreds and hundreds of

<AUTHOR>…</AUTHOR>-tags. This naturally leads to XML files taking up much

more space than they actually would need to do, but it is actually possible to avoid it. By

sacrifising some of XML’s human-readable properties, we can replace all similar-looking

tags with shorter, non-human-readable tags. For instance, we could replace <AUTHOR>

with <A> and still have a valid XML file. WAP Binary XML format (WBXML) is a

standard endorsed by the W3C, which helps transform a normal XML document to a tag

redundancy reduced WBXML file in a standardised way. WBXML will be used in this

project.

5.9.2 Binary compression

Binary compression is well-known from standards such as PKZIP and gZIP. Text-based

data can often be compressed up to 90% with binary compression techniques, and that

might be well worth a try for a format as text-based as XML. The compression procedure

will introduce overehead at both the sending and the receiving end, so tests will have to

be performed to see if the compression gain is worth the overhead loss.

 20

5.10 XML parsing

It is stated in research hypothesis H1 from section 2.5, that we want to minimize the total

time taken to process an XML document on the client side. In achieving this, a certain

degree of XML parsing will be necessary, both on the optimising proxy server and on the

mobile client. In this section we will take a closer look at the field of XML parsing, as

there are several parameters to pay attention to, especially when dealing with limited

devices.

On the limited, mobile client, XML parsing can be quite a challenge. As discussed in

Chapter 3: , some of the limitations on such a device include:

1) The setup time of a network connection is slow.

2) Data transfer rates are slow.

3) Processor speeds are slow.

4) Available memory is limited.

An approach to the first point could be to collect and aggregate messages going to the

same client, the second point can be addressed by compacting the XML document to

minimize the amount of data transferred. However, there are no solutions directly related

to parsing that can fix these problems. On the other hand, point 3 and 4 can be greatly

improved by selecting the correct kind of parser for the job.

Several XML parsers with different properties are available for Java today [18], each one

tailored for different situations (Table 1). Many of these turn out to be unusable on mobile

devices running CLDC because they are too memory dependant, or they utilize classes

that are unavailable in the CLDC limited API.

Table 1 - A selection of available XML parsers

There are three fundamental kinds of parsers for XML documents. Each kind has its

strengths and weaknesses in different situations.

• A model parser reads the entire document and produces a structured, object-based

representation of the document in the system memory. This way one can freely

move around the tree structure of the document an make changes at will. This kind

of parser is too heavy weight for use in mobile applications, both in terms of size,

memory consumption, and services offered that will not be utilised.

 21

• A push parser works its way through the entire document and utilises a system of

listeners and events to notify a given object when it encounters different elements

in the XML document. This parser implementation is more memory friendly than

the latter one, but the mechanism can be tricky to use.

• A pull parser is probably the easiest and most basic way of parsing. The entire

document is read bit by bit while the controlling application drives the parser

forward by requesting the next bit repeatedly. With this implementation there is no

need to keep a copy of the model in the system memory, but on the downside one

has very limited possibilities of moving back and forth during parsing.

Advantages include simplicity and ease of use, as well as a minimal memory

footprint. In other words, perfect for use in mobile computing.

5.10.1 kXML 2

Several parsers were considered for use on the mobile client in this project, but the choice

fell on kXML 2
2
, one of the fastest XML pull parsers for Java. There are several faster

parsers out there, but kXML has a strong focus on optimal performance on limited

devices.

kXML 2 is built upon a standard, common API for XML pull-parsing that is currently

under development, XMLPULL
3
. All parsers implementing XMLPULL can easily be

interchanged very easily, only by changing the code line where the parser is instantiated.

kXML 2 is open source, meaning that one can pick whichever components that is

necessary at any given time, and include them in the project at will. This is useful on

mobile units, to minimise the amount of space occupied.

Another distinct feature of the kXML 2 library is that it includes a WBXML parser as

well. Since our tag redundancy reduction functionality will use WBXML, this is a perfect

choice of parser for the mobile client.

5.11 XML transformations (XSLT) and XPath

XSLT is a language for transforming XML documents into other XML documents. The

technology is well-established, and XSLT processors are widely available for Java.

(http://www.w3.org/TR/xslt)

XPath is a language for addressing given parts of an XML document, designed to be used

by the XSLT language. (http://www.w3.org/TR/xpath)

The idea is to utilize knowledge of the structure of an XML document (either from DTDs

or from XML schemas) to request only the relevant pieces, minimizing both the amount

of data transferred to the mobile unit, and the amount of parsing that needs to be done on

the unit. This is what will happen:

• The client sends an XPath query along with the request for an XML document to

the proxy server.

2 kxml website: http://kxml.org
3 xmlpull website: http://xmlpull.org

 22

• The proxy fetches the XML document from the content provider.

• The proxy performs the requested XPath query on the XML document,

transforming it into a much smaller one containing only the relevant data.

• The proxy transfers the reduced XML document to the client.

In addition, the aforementioned compacting techniques can be applied to further reduce

the size of the dataset.

Figure 4 - XML document before XPath query

For example, Figure 4 depicts a book list returned by a fictional book directory web

service. Let’s say we are only interested in the titles and listed prices of the books, so the

client supplies the following XPath query to the proxy server:

“//title|//price”

The proxy will fetch the document and apply the query to it, yielding the document

shown in Figure 5.

<?xml version=”1.0” encoding=”UTF-8”?>

<booklist>

 <book isbn=”112344444321”>

 <author>Ben Kenobi</author >

 <title>ABC</title>

 <price>123</price>

 <publisher>ACME publishing</publisher>

 <year>2000</year>

 </book >

 <book isbn=”212333334433”>

 <author>Luke Skywalker</author >

 <title>XML for dummies</title>

 <price>1337</price>

 <publisher>Imperial Books</publisher>

 <year>1994</year>

 </book >

 <book isbn=”3453437456”>

 <author>Leia Organa</author >

 <title>Foobar</title>

 <price>567</price>

 <publisher>Springer</publisher>

 <year>2002</year>

 </book >

</booklist>

 23

Figure 5 - Result from XPath query

This is clearly a reduction both in size and complexity, but it is no longer a valid XML

document. However, using a similar XPath query in an XSL Transformation we can build

a fully functional, reduced XML document as shown in Figure 6.

Figure 6 - XSLT transformed document

<?xml version=”1.0” encoding=”UTF-8”?>

<booklist>

 <book>

 <title>ABC</title>

 <price>123</price>

 </book >

 <book>

 <title>XML for dummies</title>

 <price>1337</price>

 </book >

 <book>

 <title>Foobar</title>

 <price>567</price>

 </book >

</booklist>

<title>ABC</title>

<price>123</price>

<title>XML for dummies</title>

<price>1337</price>

<title>Foobar</title>

<price>567</price>

 24

Part III: Own contribution

 25

Chapter 6: A model of a system for XML optimisation

After surveying the relevant technologies available for my task, it was necessary to find

out how some of them would work out in practice. The earlier work [10] on this subject

describes a basic model for optimising XML data transfer performance, and some source

code for a framework was also available. This framework however, was merely a very

basic shell consisting of three parts:

• A very lightweight mobile client able to request and receive an XML document

from a given source,

• A content provider serving a selection of XML documents, and

• A proxy server, able to set up and receive connections from the client and

provider, but lacking functionality to actually manipulate the XML data in any

way.

It was my intention to develop a major extension to this model, primarily focusing on the

proxy server, and implementing a selection of the aforementioned ideas for optimisation.

Furthermore, the effect of the ideas would be tested and evaluated. This part of the report

will describe the work conducted with regards to this prototype system, and show and

discuss the results.

A basic model for optimisation of XML documents is described in [10]. In this model, the

optimisation is mainly achieved by reducing the size of the XML file, primarily through

tag redundancy reduction. In my work I want to extend this model to include size

reduction by binary compression techniques, and explore the possibilities of utilizing

different parsing methods on the client side to optimise resource usage. The model will

also provide means to control the amount of XML data transferred to the client by

performing an XSL Transformation specified by the client on the proxy server.

The model described in [10] required the content provider to be aware of the system. In

other words, the content providers have to be custom-tailored for use with the system. My

model will not suffer from this limitation, as it would be a tremendous advantage to have

the system work with existing services.

 26

6.12 Model Requirements

The following two sub chapters will describe general requirements for a model, based on

the earlier work and research performed in part I, for optimising the transfer of XML data

in a mobile environment.

6.12.1 Requirements regarding XML properties

MR1 Supporting a diversity of parsers: As earlier described, the performance of XML

parsing depends largely on the implementation of the specific parser. Different situations

could require different parsers for optimal performance, and the framework should always

use the appropriate parser in any given situation.

MR2 Information adaptation: Even with the optimal choice of parser, an XML

document might be too big and complex to be handled by the limited memory of the

mobile device. The model should provide viable alternatives for such situations, for

instance splitting up and handling the document in question in smaller fragments, or

downloading only the relevant parts of the document onto the mobile device.

MR3 Compression and compaction: A central part of the model will be the capability to

minimize the amount of transferred data by using compression techniques. Relevant

techniques are tag redundancy reduction, and binary compression.

6.12.2 Requirements regarding the mobile environment

MR4 Dynamic optimising: The model should take ever-changing parameters such as

memory capacity, available bandwidth, battery capacity, urgency and the complexity of

the XML document into consideration and automatically try to find an optimal selection

of optimisations for any given situation. This can be achieved by developing a system

where heuristic rules are used to determine when to apply each optimisation technique.

MR5 Support for distribution and heterogeneity: The system will exist in a mobile

environment with a high degree of distribution and heterogeneity, and these factors will

have to be taken into consideration.

MR6 Asynchronous communication: In a mobile environment, we often see poor

connection quality with frequent disconnections and reconnections. This has to be

handled transparently by the model, for instance by allowing a download interrupted by

connection loss to resume when the connection is restored.

6.13 Model description

Based on the model requirements, a model for optimising XML data transfer and

processing in a mobile environment can be devised. Much like the earlier model, the idea

is to have two components; a function library on the mobile device, and a proxy server

connected both to the mobile device, and to the outside world.

The core of the system resides within the proxy server. This server acts as a portal for

mobile units to communicate with any external providers of XML data, which I will refer

to as “content providers”. The proxy server’s role will be to receive information requests

from mobile clients, and perform necessary data gathering from content providers. The

resulting XML data will be processed according to information about the calling client

 27

stored in a profile on the proxy server, in an attempt to optimise transfer and processing

times of the data. The processed XML data will then be sent back to the mobile client.

The piece of the system residing on the mobile unit is really an extended XML parser.

Layer-wise it will be located just below the application layer, providing a function library

to any participating applications. There will be functions for making requests for XML

data, and functions for extracting information from the resulting XML documents in the

most efficient manner. The idea is that this layer can exist independently from the main

application, in the same manner as an ordinary XML parser.

In this model, in contrast to the previously suggested model, the content providers do not

need to be aware of the proxy servers’ existence. All communication from the mobile

clients will pass through the proxy servers, so from the content provider’s point of view it

looks as if the request is made by the same entity that will receive the reply. This is

advantageous, as the content providers will not need to be custom-tailored to the system

in any way, and the system is adaptable to any available content providers already in

existence, such as web services.

Mobile client
Mobile client

Proxy server
Proxy server

Content provider Content provider

Internet

Mobile client

Figure 7 - Overall view of the system

 28

Chapter 7: Requirements engineering

In order to build a system, a requirements specification should be devised. In this chapter

we will try to deduce a specification by first constructing a set of use cases for the system.

7.14 Use cases

The intended functionality of the system is presented through a set of use cases [15].

These diagrams are based on the model requirements presented in 6.12, and the earlier

work performed in [10]. The primary function of the use cases is to help deduce the

requirements, which are presented in the next chapter.

Seven use cases have been created to describe the main functionality of the system. The

functionalities described are:

• The client requests an XML document

• The proxy server optimises an XML document

• The content provider returns an XML document to the client through the proxy

server

• The client parses a transformed XML document

• Communication is suspended as the client downloads an XML document from the

proxy server

• The client uploads an XML document to the content provider through the proxy

server

The following three “actors” of the system has been identified:

• The mobile client

• The proxy server

• The content provider

 29

Request an XML

document

Optimise an XML

document

Return an XML

document

Parse a

transformed XML document

Suspend

communication

Upload an XML

document

Mobile client

Proxy Server

Content provider

Xtrans System

«uses»

«uses»

Figure 8 - The XTrans Use Case diagram

The use case diagram shown in Figure 8 shows the six use cases described in this chapter.

It also shows the relations between the respective use cases and the actors of the system.

Even though the Proxy Server could be considered an integrated part of the system itself

and thus should not appear outside the system boundaries, it is shown as an actor in this

diagram because it is a good way of illustrating the relationship between the three

interacting entities of the system.

 30

Use-case name Request an XML document

Iteration Filled

Abstract The client requests an XML document to be sent from the

system.

Trigger Started by user.

Main path 1: The user starts his application on the mobile client.

2: The mobile client establishes a connection with a proxy

server.

3: The mobile client sends its XML document request to

the proxy server, along with information about its current

state.

4: The proxy server saves the info on the client’s current

state in its database.

5: The proxy server forwards the request for the XML

document to the proxy server.

Alternate path Register a new user

2a: If the mobile client is a new user to the system, it has

to register itself in the proxy server.

2b: The mobile client sends information about itself to the

proxy server.

2c: The proxy server registers the information in a

database.

2d: The proxy-server notifies the mobile client that the

system is now ready for use; jump to 3

Exception path 2a: If the connection to the proxy server cannot be

established, the user is informed and given a choice

whether to cancel or to try again.

2b: If “cancel” is selected the application on the mobile

client quits. If “try again” is selected the application tries

to establish a connection and if it succeeds; jump to 3.

Preconditions The user has installed an application on the mobile client

supporting the system.

Author Anders K. H. Walla

Date 27.04.05
Table 2 - Use case #1: Request an XML document

 31

Use-case name Optimise an XML document

Iteration Filled

Abstract An XML document is optimised according to a dynamic

set of rules.

Trigger The proxy server receives an XML document from a

content provider.

Main path 1: The XML document is parsed by an XML parser.

2: The structure of the document is analysed and compared

to values stored in the rule-base.

3: A decision about how to transform the document is

made based on the stored information about the state of the

mobile unit and the information about the parsed

document.

4: The proxy server applies the relevant transformations to

the XML document.

Alternate path 3a: If the documents structure and/or the state of the

mobile unit imply no transformation, point 4 is skipped.

Exception path -

Preconditions The communication path between the content provider,

proxy-server and the mobile client has been initialised.

Author Anders K. H. Walla

Date 27.04.05
Table 3 - Use case #2: Optimise an XML document

 32

Use-case name Return an XML document

Iteration Filled

Abstract An XML document is sent from the content provider

through the proxy server to the mobile client.

Trigger The content provider receives a request for an XML

document from the proxy server.

Main path 1: The content provider looks up the XML document in

question.

2: The content provider sends the requested XML

document to the proxy server.

3: The proxy-server receives the document from the

content provider and handles it as shown in the use-case

“Optimising an XML document”

4: The proxy-server forwards the document to the

destination provided by the content provider.

5: The mobile client receives the XML document from the

proxy-server.

6: The document is parsed by the software on the mobile

client, as shown in the use case “Parse a transformed XML

document”.

Exception path -

Preconditions The communication path between the content provider,

proxy-server and the mobile client has been initialised.

Author Anders K. H. Walla

Date 27.04.05
Table 4 - Use case #3: Return an XML document

 33

Use-case name Parse a transformed XML document

Iteration Filled

Abstract A received XML document is parsed.

Trigger The mobile client receives an XML document from the

proxy server.

Main path 1: It is determined which kind of optimisation techniques

are applied to the received XML document

2: The applied techniques are reversed to restore the

original XML document.

3: The XML document is parsed by an XML parser.

3: The information from the parsed XML document is

provided to the application on the mobile client.

Exception path -

Preconditions a) The communication path between the content provider,

proxy-server and the mobile client has been initialised.

Author Anders K. H. Walla

Date 27.04.05
Table 5 - Use case #4: Return an XML document

 34

Use-case name Suspend communication

Iteration Filled

Abstract The connection is broken for some reason during the

transfer of an XML document. Both the mobile client and

the proxy-server save their current state to be able to

resume the transfer at a later stage.

Trigger The connection between the proxy-server and the mobile

client is broken.

Main path 1: The proxy server stops transmitting the XML file.

2: The mobile client saves the received part of the file, and

notes how much of the file is missing.

3: The proxy-server notes the point in the XML document

when communication was lost and saves the document to a

database.

4: The mobile client reconnects to the proxy server and

indicates that it wishes to resume the transfer.

5: The proxy server resumes the transfer of the XML file

from the given offset.

Alternate path 4a: If the mobile client does not reconnect within a given

time (ideally a couple of days), the database entry is

removed, and the transfer can no longer be resumed.

Exception path -

Preconditions a) The communication path between the content provider,

proxy-server and the mobile client has been initialised.

b) The proxy-server is sending an XML document to the

mobile client.

Author Anders K. H. Walla

Date 27.04.05
Table 6 - Use case #5: Suspend communication

 35

Use-case name Upload an XML document

Iteration Filled

Abstract An XML document is sent from the mobile client through

the proxy-server to a recipient.

Trigger The user wishes to return an XML document to the content

provider.

Main path 1: The application chooses send an XML document.

2: The mobile client transforms the XML document

according to the current state of the client.

3: The mobile client includes information about the

destination and sends the document to the proxy-server.

4: The proxy-server receives the document from the

mobile client and transforms it into a valid XML

document.

5: The proxy-server forwards the document to the

destination provided by the mobile client.

6: The content provider receives the XML document from

the proxy-server.

Alternate path 4a: If the XML is valid upon arrival at the proxy-server, a

transformation is unnecessary; jump to 4.

Exception path -

Preconditions The communication path between the proxy-server and the

mobile client has been initialised.

Author Anders K. H. Walla

Date 27.04.05
Table 7 - Use case #6: Upload an XML document

 36

7.15 Requirements specification

From the use cases and the underlaying model description, a requirement specification

can be deduced. As described in 6.13 the system will have two components: A function

library located on the mobile device, and a proxy server for mobile devices to connect to,

that will connect to the outside world and optimise the XML data before forwarding it to

the mobile device. The functional requirements will therefore be divided into two classes,

client requirements and proxy requirements.

The requirements will be presented according to the pattern defined in [16].

7.15.1 External Interface Requirements

These requirements describe the different kinds of interfaces that the system will provide.

EIR1 Software Interfaces: The proxy side will run on the J2SE Virtual Machine, while

the client layer is developed in J2ME.

EIR2 Communications interfaces: The components will communicate using socket level

programming.

7.15.2 Functional Requirements

Functional requirements for the proxy server:

PRX-FR1 Connections: The proxy server must be able to accept and manage

connections from several mobile clients simultaneously. Furthermore, it

must be able to establish connections to arbitrary content providers serving

XML data on the internet over TCP/IP.

PRX-FR2 User profiles: The proxy server has to keep track of its set of users. Each

user should have a profile stored in the proxy server, that keeps track of the

given client’s preferences and any interrupted downloads.

PRX-FR3 XML traffic: XML documents will be sent and received through the proxy

server’s connections to the mobile clients, and the content providers. The

proxy server needs to know where to route a given document at any time.

PRX-FR4 Resumed downloads: If at any time the connection between the proxy server

and the mobile client is interrupted while transferring an XML document, the

proxy server must be able to resume the data transfer session whenever the

connection is restored, with minimal overhead, and no data loss.

PRX-FR5 XML parsing: In order to be able to perform XML optimisation, the proxy

server needs to be able to parse XML files. The parsing should be performed

as efficiently as possible on the given hardware of the proxy server.

PRX-FR6 XML optimisation: The overall purpose of the system is to transform an

XML document to a form that is more suitable for handling in a mobile

environment. This functionality must lie within the proxy server, and

includes methods such as redundancy reduction, binary compression, and

XSLT transformations.

PRX-FR7 Dynamic optimisation: The proxy server will use a set of heuristic rules to

determine in which situations to apply the different optimisation techniques

to achieve the best performance.

 37

Functional requirements for the mobile client software:

CLI-FR1 Connections: The client must be able to establish a connection to an

available proxy server. It must also provide the possibility to override the

optimisation system and connect directly to a content provider.

CLI-FR2 XML traffic: The client must be able to both send and receive XML data

over an open connection.

CLI-FR3 Optimised XML parsing: The client must be able to parse both ordinary

XML data, and XML data optimised by the proxy server. This parsing

should be conducted in as resource friendly a manner as possible in any

given setting.

7.15.3 Performance requirements

The requirements in this section normally state static and dynamic requirements

concerning performance, in measurable terms. However, the very purpose of building this

prototype system will be to determine actual values for such variables, so specific values

will only be stated to a certain extent.

PRFR1 System performance: The use of the optimising system must prove an overall

gain in performance of at least 10%.

PRFR2 Load management: The system must not stop yielding performance

increases even though several users are using the system at the same time.

7.15.4 Design constraints

Design constraints may result from such things as the prescribed use of certain standards

or hardware.

DSGN1 Client size: The maximum size of the software on the mobile application

should not exceed 60kB.

DSGN2 XML adherence: The standard rules of the XML format should not be

“broken” in order to yield a performance increase.

7.15.5 Software system attributes

This section deals with software quality concerns.

SWSA1 XML restoration: XML data that is optimised by the system must be able to

be fully restored to its original state, even in the case of connectivity loss.

SWSA2 Source code quality: The source code must be thoroughly commented and

explained so that future enhancements or studies of the software can be

conducted.

SWSA3 Modularity: The software must be module-based and should utilise well-

defined interfaces where possible, so that certain components may be

swapped out at a later stage.

 38

7.16 Requirements summary

The limited time and resources of this project unfortunately limits the amount of

functionality that can be implemented in the prototype. Table X will prioritise the

presented requirements using the values H (high), M (medium) and L (low). The purpose

of stating these priorities is to sort out which parts of the system is necessary in order to

conduct a test that compares optimisation techniques in different situations, in an attempt

to establish a basis for a heuristic rule set. The table also shows which requirements

cannot be fulfilled in this iteration due to time constraints.

 39

ID Description Priority Postponed

EIR1 Software interfaces H

EIR2 Communications interfaces H

PRX-FR1 Connections H

PRX-FR2 User profiles M X

PRX-FR3 XML traffic H

PRX-FR4 Resumed downloads M X

PRX-FR5 XML parsing H

PRX-FR6 XML optimisation H

PRX-FR7 Dynamic optimisation L X

CLI-FR1 Connections H

CLI-FR2 XML traffic H

CLI-FR3 Optimised XML parsing H

PRFR1 System performance M

PRFR2 Load management L X

DSGN1 Client size M

DSGN2 XML adherence H

SWSA1 XML restoration H

SWSA2 Source code quality H

SWSA3 Modularity H
Table 8 - Prioritised requirements

 40

Chapter 8: Implementation

This chapter will describe the actual implementation of a system that is able to perform

XML optimisation, according to the selection of requirements shown in 7.16. The first

section will give a general description of the system, while the subsequent sections

describe its individual components.

8.17 General description

The system has been described to consist of two main components: A proxy server

performing the optimising XML transformations and a layer on the mobile unit able to

parse the transformed XML document. However, in order to run the system we need a

third component, namely a content provider able to feed XML documents into the system.

This could be an external provider, but for testing purposes it is advantageous to have a

custom tailored content provider.

The purpose of implementing the prototype at this stage was twofold:

• To evolve the earlier very basic attempt of an implementation into a functional

platform for further experimenting and developing.

• To be able to conduct performance testing on some optimisation techniques.

Figure 9 gives an overview of the system architecture. The shaded blocks are considered

parts of the system, and the raised boxes are the parts that actually need to be

implemented to have a functioning prototype. In the following sections the individual

components is described.

Parsing

kXML

Mobile Informationn

Device Profile 2.0

Connected Limited

Device Configuration

1.0

Java 2 Micro Edition

Operating system

Testing application

kXML

Xerces

XML optimisation

Java 2 Standard

Edition

Operating system

Testing content

provider

Java 2 Standard

Edition

Operating system

Communication layer

Xerces

The Mobile

Client

The Proxy

Server

The Content

Provider

Figure 9 - The overall prototype system architecture

 41

8.18 The communications protocol

A vital part of a system of this kind is the communication between the components. An

overall goal is to keep the amount of traffic as low as possible, while still being practical

and realistic about message formats. Generally, messages that require metadata to be

“piggybacked” use a custom tailored XML message for this purpose. In the following, I

will describe a typical scenario with a mobile client requesting a document from the

content provider via the proxy server, and the messaging format chosen for the prototype

implementation.

The first message to move through the system is the one going from the mobile client to

the proxy server. This is originally the message that would go directly to the content

provider, but as it must pass through the proxy server it needs to have additional

information attached. A sample message is shown in Figure 10.

Figure 10 - Sample message from client to proxy

This message has information on where the date of issue, where the message is to be

forwarded (the content provider’s address) and what kind of optimisation should be

performed (we will look at the enumeration for this later). The <body> section contains

the part that will actually be sent to the content provider. In this instance it is merely the

file name of the XML document in question, but in cases where the content provider is a

web service provider it can be another XML document nested within the request.

Information such as the client’s own IP address is not necessary at this stage, as the

communications channel with the proxy server will be kept open during the operation. In

a future implementation however, this might be implemented as part of the profile

functionality described in PRX-FR2. Any information about the state of the client will

also be located in the <header> section in later iterations.

The proxy server now knows where to forward the given message. The next message will

be the one going from the proxy server to the content provider. In our case the content

provider simply returns a named XML document stored on the provider server, and it

accepts messages such as the one shown in Figure 11.

<?xml version=”1.0” encoding=”UTF-8”?>

<request>

 <header>

 <date>10/07/2005</date>

 <target ip=”129.241.102.194” port=”8189”/>

 <optimise>2</optimise>

 </header>

 <body>

marc100.xml

 </body>

</request>

 42

Figure 11 - Sample message from proxy to content provider

Our content provider’s reply to this message will be the XML document in question. A

sample document is shown in Appendix A . This document is sent directly back to the

proxy server through the established communications channel.

After being processed by the proxy server, the now optimised XML document is finally

sent unwrapped back to the awaiting client. At a later stage, when the proxy server might

have a larger degree of control of when to perform different optimisations it might be

necessary to wrap this optimised XML document in another XML document in order to

supply information about what optimisations that have been performed and will need to

be reversed on the client side.

An overview of the messages exchanged between the three actors is shown in Figure 12,

which also shows when the respective components are active.

Client Proxy Server Content provider

Wrapped request

Request

XML document

Optimised XML document

Figure 12 - UML Sequence diagram showing messaging

marc100.xml

 43

8.19 The Mobile Client

The model describes the software on the client as a “layer” of functions to be offered to

any mobile application. The reason for having a part of the system on the mobile unit is

naturally to “reverse” any effect the optimisation performed by the proxy server have

inflicted on the XML. An approach to this would be to fully restore the XML document to

its original state before offering it to the application as a stream of XML data, as shown in

Figure 13. This will require the mobile application to take care of the XML parsing on its

own, but it will be a clear and easy way to separate the system from the application.

Figure 13 - Data flow within the client, option A

Another approach (shown in Figure 14) would be to include the XML parsing in the

XTrans layer on the mobile device. This allows us to a) ensure that the parsing is done in

the most optimal way possible with regards to choosing the best parser in a given

situation, and b) to combine restoring and parsing the document, when this is possible.

This will often eliminate one of the iterations through the dataset and thus increase

performance. However, this approach imposes another challenge on us: How to

consistently present the parsed data to the application in an orderly manner. An option

would be to supply a typical parser’s interface between the system and the application,

such as the XmlPullParser
4
, but this would not be very elegant and may be too hard to

enforce efficiently in practice.

4 See http://www.xmlpull.org/

 44

Deciding on and implementing one of the discussed approaches is left for further work,

and the boundary between the application and the system remains somewhat clouded in

this implementation.

Figure 14 - Data flow within the client, option B

The implemented client is a basic application that asks for some user input regarding the

request to be made through a simple interface. On the arrival of the requested document,

the different stages of the XML restoration are timed and presented. The client performs a

typical parse operation on the received XML book data.

 45

8.20 The Proxy Server

The proxy server implementation is fairly straight forward. The main thread runs a

ServerSocket that constantly listens for incoming connections. Whenever a connection

attempt is detected, a separate thread, called a SocketConnection, is spawned to handle

that specific client. The connection to this client is kept alive during the entire transaction.

By using separate independent threads to handle the incoming connections, the server is

capable of handling multiple requests simultaneously, which is a natural requirement of

such a system.

The SocketConnection will receive the request from the client and separate the encasing

metadata from the request aimed for the content provider. Information regarding what

optimisation techniques to apply is included in the metadata, and is saved in the thread for

later use. Once the information about the content provider is extracted, the proxy server

establishes a connection and forwards the request.

When the request is sent, the proxy server will wait for the resulting XML document to

arrive from the content provider. On arrival the document will be parsed and analysed

according to the clients request for optimisation, and the requested optimisation

techniques will be applied. The available techniques in this implementation are binary

compression, tag redundancy reduction, or a combination of both. The optimisation steps

are timed, and a summary of the time consumed is shown at completion.

Finally the optimised data is streamed on to the client over the waiting, open connection.

Any engaged resources are released and the thread is closed.

 46

8.21 The Content Provider

The content provider implementation is a static one, mainly functioning as a placeholder

while the rest of the system undergoes a few iterations. At a later stage, “real” content

providers should be supported, such as web service providers, but while the system is in

its early stages of development a custom-tailored one is easier to deal with.

The service provided is very simple: The content provider contains a database of static

XML files, and these can be accessed by establishing a socket connection and simply

sending the name of the file. The files provided in this implementation are:

• marc1.xml (1.46 KB) – A small document containing one record of a booklist.

• marc100.xml (37.1 KB) – A medium sized document containing a hundred

records of a booklist.

• marc300.xml (111 KB) – A relatively large sized document containing 300

records of a booklist.

The requested file will be returned to the proxy server over the same socket connection.

 47

Chapter 9: Testing

In order to find an answer to research hypothesis H1 presented in section 2.5, I found it

necessary to evaluate some optimisation strategies in different situations to try to

determine parameters for use in future work on this matter. From earlier experiences [17]

I knew that there was a lot of potential in compressing and compacting XML data for

transfer in mobile environment, just not to which extent.

9.22 Planning

The main purpose of these test cases is to compare the two main compression techniques

explored in this report: Binary compression, in our case a gZIP library, and tag

redundancy reduction, for which we use the WBXML standard. Both are explored in the

state of the art survey. In addition to comparing the techniques to one another, both

techniques will be applied simultaneously, and will also examine the case of no

compression, for comparison purposes.

The testing will be performed by using the prototype system which was described in the

earlier chapters. The code on the mobile device and the proxy server has been modified so

that it will display the amount of time spent on different tasks related to the techniques at

hand. It will also reveal any gains or reductions in file size.

The XML data used for the testing is a book list provided by Bibsys’ SRU client, which is

freely available on the web
5
. A sample is shown in Appendix A. To fully explore the

effect that overhead may have on differently sized data, three tests will be conducted: A

small document containing one record, a larger document containing 100 records, and a

fairly large document containing 300 records. Each technique is performed three times on

every document, and the results are averaged, to minimise the effect of any deviations.

Unfortunately, a mobile phone capable of running the designed prototype software was

not available at the time of the testing. The content provider and the proxy server were

run on different ports on the same computer, and the client was run on an emulator, also

on the same computer. This means that issues related to bandwidth will be hard to spot,

but it would illuminate non-bandwidth related issues.

5 See: http://www.bibsys.no/z/sru.html

 48

9.23 Execution

The results from the testing are presented in the following tables. All the times are given

in milliseconds.

9.23.1 Small document
Small

Method Iteration Bytes %

C
o
m
p
re
s
s
in
g

T
a
g
 re

d
u
c
tio
n

T
ra
n
s
fe
rrin

g

O
v
e
rh
e
a
d

T
o
ta
l

%

T
ra
n
s
fe
rrin

g

P
a
rs
in
g

D
e
c
o
m
p
re
s
s
in
g

O
v
e
rh
e
a
d

T
o
ta
l

%

1 0 16 218 16 250

2 0 16 266 31 313

3 0 15 219 16 250

AVG 1497 100 % 16 234 21 271 100 %

1 62 0 0 62 15 78 16 109

2 141 109 0 250 109 78 32 219

3 125 109 0 234 110 63 15 188

AVG 1243 83 % 109 73 0 182 78 73 21 172 63 %

1 0 109 16 125 109 172 47 47 375

2 0 109 16 125 110 187 62 16 375

3 0 0 0 0 16 203 31 16 266

AVG 619 41 % 0 73 11 83 78 187 47 26 339 125 %

1 0 31 109 0 140 109 63 47 15 234

2 0 0 109 0 109 110 78 31 16 235

3 0 31 0 0 31 16 110 31 15 172

AVG 655 44 % 0 21 73 0 93 78 84 36 15 214 79 %

Tag reduction

Time on client

Compression

Tag reduction and

compression

Size Time on proxy

Plain XML

Table 9 - Test case 1: Small document

Note that the Time on proxy column does not have percentage values. This is because the

time spent by the proxy forwarding the small document came out as 0, which is pointless

to compare to.

 49

9.23.2 Medium document
Medium

Method Iteration Bytes %

C
o
m
p
re
s
s
in
g

T
a
g
 re

d
u
c
tio
n

T
ra
n
s
fe
rrin

g

O
v
e
rh
e
a
d

T
o
ta
l

%

T
ra
n
s
fe
rrin

g

P
a
rs
in
g

D
e
c
o
m
p
re
s
s
in
g

O
v
e
rh
e
a
d

T
o
ta
l

%

1 187 344 2672 16 3032

2 62 344 2797 15 3156

3 171 375 3001 15 3391

AVG 38059 100 % 140 100 % 354 2823 15 3193 100 %

1 157 109 0 266 188 485 15 688

2 78 109 0 187 187 531 0 718

3 47 109 0 156 188 750 15 953

AVG 19308 51 % 94 109 0 203 145 % 188 589 10 786 25 %

1 0 109 32 141 110 2672 343 16 3141

2 0 109 32 141 94 2688 281 0 3063

3 16 109 16 141 109 2844 453 16 3422

AVG 5829 15 % 5,3 109 27 141 101 % 104 2735 359 11 3209 100 %

1 0 31 109 0 140 110 422 312 16 860

2 0 62 0 0 62 47 407 281 15 750

3 0 32 109 0 141 110 421 266 31 828

AVG 5520 15 % 0 42 73 0 114 82 % 89 417 286 21 813 25 %

Tag reduction

Time on client

Compression

Tag reduction

and

compression

Size Time on proxy

Plain XML

Table 10 - Test case 2: Medium document

 50

9.23.3 Large document
Large

Method Iteration Bytes %

C
o
m
p
re
s
s
in
g

T
a
g
 re

d
u
c
tio
n

T
ra
n
s
fe
rrin

g

O
v
e
rh
e
a
d

T
o
ta
l

%

T
ra
n
s
fe
rrin

g

P
a
rs
in
g

D
e
c
o
m
p
re
s
s
in
g

O
v
e
rh
e
a
d

T
o
ta
l

%

1 812 984 7312 16 8312

2 735 906 7187 0 8093

3 734 906 7187 32 8125

AVG 110737 100 % 760 100 % 932 7229 16 8177 100 %

1 172 328 0 500 437 1438 16 1891

2 172 343 0 515 468 1500 16 1984

3 62 344 0 406 469 1484 0 1953

AVG 54947 50 % 135 338 0 474 62 % 458 1474 11 1943 24 %

1 15 0 157 172 141 7266 468 32 7907

2 15 110 63 188 141 7282 578 30 8031

3 0 125 94 219 141 7156 750 31 8078

AVG 14446 13 % 10 78 105 193 25 % 141 7235 599 31 8005 98 %

1 16 78 125 0 219 141 1469 594 15 2219

2 16 47 109 0 172 125 1469 500 16 2110

3 16 63 125 0 204 141 1469 468 32 2110

AVG 13342 12 % 16 63 120 0 198 26 % 136 1469 521 21 2146 26 %

Tag reduction

Time on client

Compression

Tag reduction and

compression

Size Time on proxy

Plain XML

Table 11 - Test case 3: Large document

 51

9.24 Result analysis

The test cases reveal several interesting, positive results. The most apparent one is that the

binary compression truly excels at limiting the space consumed, reducing a medium or

large sized document to about 15% of it’s original size. Also, the compression procedure

is a trivial task for a server-sized computer, and is performed at a maximum of 16ms,

even on the largest document. On the mobile client the decompression take a little longer

to perform, but still at a very low addition in time. On the smaller documents, there is a

small time penalty to using binary compression; at larger sizes this penalty is

insignificant.

The tag reduction scheme performs adequately at compressing data, averaging at about

50% for medium/large documents. However, the most interesting point on this technique

is the tremendous increase in parsing speed. This is most likely due to the fact that the tag

reduction library used does not transform the tag reduced XML file back to its original

form in order to parse it, but rather sticks with the reduced tags. This saves the mobile

client from the need to perform as many string compare operations, which are relatively

resource heavy operations. The tag reduction scheme yields a speed increase of roughly

75% on medium and large sized documents.

An interesting point to note is that the combination of the two techniques provides a

highly desirable performance increase combined with size reduction, losing only a few

percentages to the optimal performance with either technique.

As a side note, looking at the time usage on the proxy server shows that the non-

compressed data usually yields the longest processing times. A closer look reveals that

the time consumed on the proxy is proportional to the size of the resulting XML

document, and that indicates that transferring the file is what takes up the most time, not

processing the data. This is good news because there does not appear to be a heavy

demand for processing power on the proxy server, especially since the proxy server will

most likely be handling several clients at once.

It is also intriguing to note that we here have two different techniques that yield two

different kinds of performance increase, speed and size. They are therefore perfect targets

for the planned heuristic rule set. The binary compression technique can be applied when

the bandwidth is limited, while the tag redundancy reduction scheme can be applied when

time, or low battery consumption is of the essence. However, according to these tests it

would appear that the optimal solution at any time would be to use both tag redundancy

reduction and binary compression, as this gives the best overall increase in size and

speed.

It should be noted that the tests were run on a single computer, and that running the same

tests in a distributed environment could illuminate different issues.

 52

Part IV: Discussion and conclusion

 53

Chapter 10: Discussion

This report has looked into several issues regarding optimisation of transfer and

processing of XML-based information between mobile, heterogeneous clients and

supporting servers. A survey of the current state was performed, and through a

requirements engineering process, a model was built which aims to fulfil these

requirements.

The model has also been put to life through a working implementation, based on

technologies from the state-of-the-art studies. Two optimisation schemes have been

thoroughly tested, and found to be satisfactory effective, both in different, complimentary

ways. The testing was however performed on a single, stationary computer, so the results

could possibly be slightly different in a distributed environment.

Research hypothesis H1 was tested and found to be true, there are definitely techniques

available to optimise XML traffic in mobile environments. Hypothesis H2 has been

thoroughly looked into, and while no verification has been conducted, the hypothesis has

been significantly strengthened by the two implemented optimisation schemes, as they

have proved to be viable candidates for use in a heuristic rule-set:

The tag reducing scheme was found to not only reduce the size of a document, but more

importantly it increased the client-side parsing speed by a factor of 4.5x. This is a very

significant increase, especially considering that the parsing is the most time-consuming

activity involved in receiving an XML document, according to the tests. Encoding files

for use with the tag reducing scheme on the proxy server was also shown to be quite a

trivial task, as the proxy server has more than enough resources available.

The binary compression on the other hand, proved to be highly effective at size-reduction,

reducing the larger documents in the test by up to 85% in size, with only a reasonably

small performance hit on the client side when decompressing. Some may argue that

applying binary compression to the data removes the properties of XML data while the

data is in transit, and should therefore be avoided. On the other hand, the transformed tag

reduced data is also close to unusable while in transit unless one has prior knowledge of

the decoding scheme.

However, what might weaken H2 is the fact that when both tag reducing and binary

compression are combined we actually get the best of both worlds: near-optimal size-

reduction and speed-increase. In practice this means that as long as the file size is above a

given threshold we should simply always apply both techniques and have optimal

performance, and there will be no use for the system proposed in H2.

 54

Chapter 11: Future work

Designing a complete framework for XML traffic optimisation is not a trivial task. My

work however, shows a large step towards a complete solution, and gives important test

data for further development. It is my belief that a complete system for optimising XML

data handling in a mobile environment could be developed within a few semesters. The

following section outlines steps that should be taken towards this goal.

The supplied implementation is a prototype in its early stages. However, the basis has

been made for a larger and richer prototype that could eventually lead to the realisation of

this system.

An immediate next step would be to implement XSLT transformations on the proxy

server, requested by the client, and conduct performance testing on this. However, this

was the first feature that had unfortunately had to be left out of this implementation due to

time constraints, as it is fairly obvious that cutting out only the necessary bits of the XML

document will lead to a significant decrease in file size. The time aspect of this on the

other hand, is most interesting. Implementation and testing will show whether the time

spent on the transformation is worth the size reduction, also in relation to and combined

with the other techniques.

Further testing should be conducted in a distributed setting. The content provider and the

proxy server should run on different servers, and the mobile client should, if possible, be

run on an actual mobile unit. This will ensure more reliable and useful test data, and is

imperative as a basis for developing the heuristic rule set.

The self-defined content provider should eventually be replaced with actual content

providers, such as web service providers.

When the aforementioned measures have been taken and enough data has been gathered,

attention should be paid to the defining of the heuristic rule set. With the implementation

of this feature, the system will be able to dynamically scale itself to different situations

and conditions.

A solution to the layering problem discussed in 8.19 should be sought to provide a

practical plug-in solution for mobile applications on the client side.

 55

Chapter 12: Conclusion

This report has described a prototype middleware system for optimising transfer and

processing times of XML based data between mobile, heterogeneous clients, supporting

servers and content providers. Firstly, a state-of-the-art survey was conducted, in order to

uncover necessary and available technologies for such a solution. Then a model was built,

attempting to cover relevant details of a solution, and a requirements specification was set

up.

A prototype system has been implemented, according to a selection of the requirements.

In this system, a client can request an XML file from a content provider through a proxy

server. The proxy server will fetch the document from the content provider, and perform a

selection of optimisation techniques on this XML document before sending it back to the

client, who parses the document. Two such optimisation techniques have been

implemented: Tag redundancy reduction and binary compression.

The two techniques was thoroughly tested with documents ranging up to about 100KB,

and found to be satisfactory effective. The tag redundancy scheme managed to reduce the

parsing time on the mobile client significantly, and the binary compression scheme

heavily reduced the size of the document. The techniques were also proven to work in

conjunction with each other, yielding the best benefits of both techniques.

Placed in the context of having a heuristic set of rules determining when to apply a given

optimisation technique in a given situation, these two schemes fit right in, as each one has

its speciality. Tag reducing could be used when fast or battery-friendly parsing was

required, and binary compression could be used when the bandwidth was low. However,

the fact that both schemes paired together seem to yield the most optimal solution for all

documents over a given size seem to defeat the purpose of having a dynamic selection of

optimisation techniques. More thorough testing in actual distributed environments should

be conducted to gain more insight into this question.

 56

References

[1] http://en.wikipedia.org/wiki/XML [Last visit: 01/03/05]

[2] http://www.w3.org/TR/2004/REC-xml-20040204/ [Last visit: 01/03/05]

[3] Michel Goossens and Sebastian Rahtz. The Latex Web Companion. Addison

Wesley, 1999: Chapter 6: HTML, SGML, and XML: Three markup languages

[4] http://java.sun.com/j2me/ [Last visit: 10/06/05]

[5] Sun Microsystems. J2ME Datasheet. (URL: http://java.sun.com/j2me/j2me-ds.pdf)

[Last visit: 21/04/2004]

[6] Helal, Sumi. Pervasive Java Part 1. Pervasive Computing, 1536-1268/02, 2002

[7] Helal, Sumi. Pervasive Java Part 2. Pervasive Computing, 1536-1268/02, 2002

[8] M. Berndtsson, J. Hansson, B. Olsson and B. Lundell. Planning and Implementing

your Final Year Project with Success! Springer, 2002

[9] Knutsen, Andreas. Cheaper parsing of XML on Mobile Devices. NTNU - Autumn

2003

[10] Melcher, Tobias. MOWAHS – Optimised Xml Management in Mobile

Environments. NTNU - Autumn 2004

[11] George H. Forman and John Zahorjan. The Challenges of Mobile Computing. April

1994.

[12] van Vliet, Hans. Software Engineering, Principles and Practice, Second edition.
John Wiley & Sons Ltd, 2000

[13] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12,

1990.

[14] http://www.mowahs.com/ [Last visit: 01/06/05]

[15] Martin Fowler, UML Distilled – Second edition. Addison-Wesley, 2002

[16] IEEE Recommended Practice for Software Requirements Specifications, IEEE Std

830-1993.

[17] Walla, Anders and Berg, Morten, Mobilt biblioteksystem, NTNU - Autumn 2004

[18] Knudsen, Jonathan, Parsing XML in J2ME, Sun Microsystems, (URL:

http://developers.sun.com/techtopics/mobility/midp/articles/parsingxml/) 07/03/02,

[Last visit: 01/05/05]

[19] Mark Weiser, The Computer for the Twenty-First Century, Scientific American, pp.

94-10, September 1991

 57

Appendix A XML sample
A sample XML file as provided by the content provider.

 58

Appendix B Javadoc
Javadoc for the XTrans-system can be found on the enclosed CD, along with the source

code.

