
Abstract

With the emergence and growth of large databases of information, efficient meth-
ods for storage and processing are becoming increasingly important. The exis-
tence of a metric distance measure between data entities enables efficient index
structures to be applied when storing the data. Unfortunately, this is often not
the case. Amino acid substitution matrices, which are used to estimate similar-
ities between proteins, do not yield metric distance measures. Finding efficient
methods for converting a non-metric matrix into a metric one is therefore highly
desirable. In this work, the problem of finding such conversions is approached
by embedding the data contained in the non-metric matrix into a metric space.
The embedding is optimized according to a quality measure which takes the
original data into account, and a distance matrix is then derived using the met-
ric distance function of the space.

More specifically, an evolutionary scheme is proposed for constructing such an
embedding. The work shows how a coevolutionary algorithm can be used to
find a spatial embedding and a metric distance function which try to preserve as
much of the proximity structure of the non-metrix matrix as possible. The evo-
lutionary scheme is compared to three existing embedding algorithms. Some
modifications to the existing algorithms are proposed, with the purpose of han-
dling the data in the non-metric matrix more efficiently. At a higher level, the
strategy of deriving a metric distance function from a spatial embedding is com-
pared to an existing algorithm which enforces metricity by manipulating the
data in the non-metric matrix directly (the triangle fixing algorithm).

The methods presented and compared are general in the sense that they can be
applied in any case where a non-metric matrix must be converted into a metric
one, regardless of how the data in the non-metric matrix was originally derived.

The proposed methods are tested empirically on amino acid substitution matri-
ces, and the derived metric matrices are used to search for similarity in a data-
base of proteins. The results show that the embedding approach outperforms
the triangle fixing approach when applied to matrices from the PAM family.
Moreover, the evolutionary embedding algorithms perform best among the em-
bedding algorithms. In the case of the PAM250 scoring matrix, a metric distance
matrix is found which is more sensitive than the mPAM250 matrix presented in
a recent paper. Possible advantages of choosing one method over another are
shown to be unclear in the case of matrices from the BLOSUM family.

Preface

This thesis is submitted to the Norwegian University of Science and Technology
in fulfillment of the requirements for the degree Master of Science. The work has
been conducted at the Department of Computer and Information Science, from
January 2005 to June 2005.

Acknowledgments

First of all I would like to thank my supervisors, Asc. Prof. Magnus Lie Hetland
and Prof. Finn Drabløs, for tutoring me through the project. Their suggestions
have been invaluable, and the steady stream of background literature they pro-
vided me with made it easy for me to get the project started. I would also like
to thank Geir Kjetil Sandve, Petter Braute and Jorg Rødsjø for contributing with
valuable inputs and ideas, and Vassilis Athitsos for answering questions regard-
ing the BoostMap algorithm. A final thanks goes to friends and fellow MSc
candidates for many a good time at Pia’s Café after a long day in front of the
computer.

Contents

Abstract i

Preface iii

1 Introduction 1

1.1 Motivation and problem definition 2

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Structure of the thesis . 3

1.5 Notation . 4

2 Background 5

2.1 Sequences in computational biology 5

2.1.1 Genetic sequences . 6

2.1.2 Proteins - sequences of amino acids 6

2.2 Computing similarity between symbol sequences 7

2.2.1 Terminology and concepts 8

2.2.2 Simple edit distance . 9

2.2.3 The Smith-Waterman local alignment algorithm 10

2.2.4 Searching in large databases 12

2.3 Substitution matrices . 13

2.3.1 Some simple substitution matrices 13

2.3.2 Amino acid substitution matrices 14

2.3.3 Similarity versus dissimilarity 15

2.4 Metric spaces and distance functions 16

2.4.1 Formal definitions . 16

v

vi CONTENTS

2.4.2 Some metric and non-metric distance functions 17

2.4.3 Measuring metricity . 18

2.5 Data indexing . 19

2.5.1 Types of queries . 19

2.5.2 Utilizing the triangle inequality 20

2.5.3 Some illustrative index structures for range queries 22

2.5.4 Index structures for nearest neighbour queries 24

2.5.5 The challenge of non-metricity 25

2.6 Related work . 26

3 Methods and solutions 29

3.1 The triangle-fixing algorithm . 30

3.2 Deriving metrics from spatial embeddings 32

3.3 Multi-dimensional scaling . 33

3.3.1 Metric and non-metric multidimensional scaling 33

3.3.2 NMDS with proposed modification 34

3.4 FastMap . 35

3.5 BoostMap . 39

3.5.1 AdaBoost - Adaptive Boosting 40

3.5.2 BoostMap - using AdaBoost to produce embeddings . . . 41

3.5.3 Proposed BoostMap modifications 45

3.6 Proposed genetic embedding algorithms 47

3.6.1 A brief introduction to genetic algorithms 48

3.6.2 A preliminary genetic algorithm 50

3.6.3 Algorithm using fixed metric distance function 53

3.6.4 Algorithm using evolving metric distance function 57

3.7 Summary of proposed methods and algorithms 62

4 Experiments and results 65

4.1 Evaluating generated substitution matrices 65

4.1.1 Method of evaluation . 66

4.1.2 Dataset . 67

4.1.3 Performance measure . 68

CONTENTS vii

4.1.4 Matrices . 69

4.2 Homology search results . 69

4.2.1 Matrices derived from PAM70 71

4.2.2 Matrices derived from PAM120 72

4.2.3 Matrices derived from PAM250 74

4.2.4 Matrices derived from BLOSUM80 75

4.2.5 Matrices derived from BLOSUM62 77

4.2.6 Matrices derived from BLOSUM40 78

4.3 Test for statistical significance . 79

5 Analysis and discussion 81

5.1 Analytical comparison of methods 81

5.1.1 Analysis . 82

5.1.2 Comparison and discussion 84

5.2 Homology search results . 86

5.2.1 PAM matrices . 87

5.2.2 BLOSUM matrices . 91

5.3 Synthesis and summary . 92

6 Conclusions and future work 95

A Derivation of PAM and BLOSUM matrices I

A.1 PAM matrix derivation . I

A.2 BLOSUM matrix derivation . III

A.3 A brief comparison of PAM and BLOSUM V

A.4 Other amino acid substitution matrices VI

B CCA-PAM70 matrix VII

C GA-PAM250 matrix IX

Bibliography XI

List of Figures

2.1 Secretory protein (SSp120p) in Saccharomyces cerevisiae 7

2.2 Example of a global alignment . 8

2.3 Example of a local alignment . 9

2.4 Edit distance between two character strings 10

2.5 Identity score matrix . 14

2.6 a) Similarity matrix b) Dissimilarity matrix 14

2.7 PAM250 score matrix . 15

2.8 An example of a distance matrix 18

2.9 a) Two first steps of a BKT b) First step c) Second step 23

2.10 a) First step of the construction of a VPT b) Final tree 24

3.1 Notation used in the triangle fixing algorithm 31

3.2 Illustration of the cosine law . 36

3.3 Initial distance matrix (D) and final embedding (X) 37

3.4 a) Two-dimensional points b) M1 embedding of two-dimensional
points c) Calculation of M2 embedding of a point 41

3.5 Evolutionary process of a generic genetic algorithm 49

3.6 Mutation operator can guide the search out of local extremes . . . 50

4.1 Relation between sequence divergence and substitution matrices 69

4.2 Range of difference from PAM70 ROC50 score 71

4.3 Range of difference from PAM120 ROC50 score 72

4.4 Plot of sorted ROC50 scores for PAM70 and CCA-PAM70 73

4.5 Plot of sorted ROC50 scores for PAM120 and CCA-PAM120 73

4.6 Range of difference from PAM250 ROC50 scores 74

4.7 Range of difference from BLOSUM80 ROC50 scores 75

ix

x LIST OF FIGURES

4.8 Plot of sorted ROC50 scores for PAM250, mPAM250 and GA-PAM250 76

4.9 Plot of sorted ROC50 scores for BLOSUM80, TF-BLOSUM80 and
BM-BLOSUM80 . 76

4.10 Range of difference from BLOSUM62 ROC50 scores 77

4.11 Range of difference from BLOSUM40 ROC50 scores 78

4.12 Plot of sorted ROC50 scores for BLOSUM40, GA-BLOSUM40 and
BM-BLOSUM40 . 79

4.13 Plot of sorted ROC50 scores for BLOSUM62, TF-BLOSUM62 and
BM-BLOSUM62 . 79

5.1 ROC curves for PAM250, mPAM250 and GA-PAM250 90

A.1 PAM250 score matrix . III

A.2 Example of a BLOCK of four proteins IV

A.3 BLOSUM62 score matrix . V

B.1 Derived CCA-PAM70 matrix, scaled by 0.05 VII

C.1 Derived GA-PAM250 matrix, scaled by 0.1 IX

Chapter 1

Introduction

With the emergence and growth of large databases of information, efficient meth-
ods for storage and processing are becoming increasingly important. In the field
of bioinformatics, for example, large amounts of proteins are being encoded and
stored as strings of symbols. When studying a specific protein, scientists need
fast methods of finding proteins in existing databases which are similar to the
one at hand. This enables them to gain knowledge of how proteins are related
to each other in terms of evolutionary relationships. Similar search methods are
required in other scenarios, for example when processing large databases of tex-
tual documents. In general, the problem of finding such methods are relevant
in all cases where one is dealing with databases where inter-object distances or
similarities are defined.

Because of the size and growth rate of current databases, and uninformed se-
quential scan of the database is not feasible in most cases. As with many other
computational challenges, the demands of the problem can be eased by intro-
ducing a trade-off between speed and sensitivity (which, informally, can be de-
scribed as the ability to identify all of the database objects which are similar in
some sense to the one at hand). When processing protein databases, heuristic
search algorithms are most commonly used. Such algorithms exploit the struc-
tures of the inter-object relationships to exclude from further consideration parts
of the search space which are not likely to contain candidate solutions. Of course,
this introduces a risk of excluding true positive hits from the solution, because
the entire search space is not examined.

Instead of resorting to heuristic search methods, one might try to structure the
data in a way which enables large subsets of objects to be excluded at an early
stage of the search process. The central question is: Can the properties of the
inter-object distances be used to identify such subsets? If one object from the sub-
set can be excluded from further consideration, we would like the inter-object
distance function to ensure that this holds for all the other objects in the subset
as well. This way of structuring the data falls under the category of indexing
methods. Such methods generally require the distance function to be metric. An

2 1 INTRODUCTION

introduction to metric spaces and distance functions will be given in chapter 2,
but for now the following informal definition can be used:

• No inter-object distances can be negative.

• Given two objects X and Y, the distance from X to Y should be equal to the
distance from Y to X.

• Given three objects X, Y and Z, the distance from X to Y via Z should not
be shorter than the direct distance from X to Y.

Unfortunately, these conditions do not hold in many cases. In bioinformatics,
the functions which describe the relationships between proteins are not metric.
It is therefore highly desirable to find efficient methods for making the functions
metric. The metric distance function should produce search results which are as
similar as possible to search results obtained using the original distance function.

This thesis addresses the problem of converting a non-metric distance function
into a metric one. Several methods and algorithms are proposed and compared.
The following sections elaborate on the motivation and objectives of the work.

1.1 Motivation and problem definition

Although the methods proposed and investigated in this work are intended to
be general to the problem of finding metric mappings for non-metric distance
functions, the work has mainly been inspired by the specific problem of non-
metricity in bioinformatics.

Functions which are used to compute the similarity between two proteins are
specified as substitution matrices. As will be presented in depth in chapter 2,
proteins can be represented as strings of symbols from a finite alphabet. The
substitution matrices specify the costs of replacing one symbol by another, and
are used to calculate the total similarity between two such strings.

There exists no straightforward way of converting such a substitution matrix
into a metric distance matrix while still preserving the sensitivity in relation to
database queries. Assuming that the sensitivity is governed by the informa-
tion contained in the substitution matrix, the problem can be stated as: Find a
method for generating a metric distance matrix which preserves as much of the
information from the original matrix as possible.

As the methods are intended to be general, they should be based on processing
the data in substitution matrices without regards to the methods originally used
to derive the matrices.

1.2 OBJECTIVES 3

1.2 Objectives

The work aims at proposing and comparing a number of different methods for
generating a metric distance matrix from a non-metric one. The methods should
be presented and evaluated both analytically and empirically. More specifi-
cally, the empirical analysis should be based on protein substitution matrices,
and search results should be compared with search results obtained using the
original matrices.

Finally, the work should give a conclusion as to whether the proposed methods
and the generated metric distance matrices could be used to organize proteins
in index structures. The design and implementation of such protein index struc-
tures will not be considered in the work.

1.3 Contributions

The work presents the idea of embedding the data of a non-metric substitution
matrix into a metric space. A metric distance matrix can then be derived directly
from this space. Furthermore, the work shows that the fitness of such metric
embeddings can be evaluated by comparing ranked inter-object distances in the
embedding with ranked inter-object similarities in the original matrix.

Several existing algorithms are suggested for the purpose of mapping elements
into a metric space. The work compares these algorithms both analytically and
empirically in terms of their ability to retain the information inherent in the in-
put substitution matrix. In addition, the mapping algorithms are compared to
an algorithm which enforces metricity of a non-metric matrix explicitly by ma-
nipulating the matrix values directly.

Two evolutionary embedding algorithms are proposed as possible solutions to
the metric mapping problem. Their designs are inspired by possible limitations
of existing algorithms.

The methods and algorithms presented are general and not tied to the case of
protein substitution matrices. This means that they can be applied to any such
matrix, regardless of how the data in it was originally calculated or derived.

1.4 Structure of the thesis

Chapter 2 presents background theory which is necessary to understand the
problem at hand and how it can be solved. Since the methods are tested on
protein substitution matrices, the material in this chapter will be biased towards
proteins and protein databases. Chapter 3 presents the proposed methods and

4 1 INTRODUCTION

the concrete algorithms which are used to implement them. It suggests possi-
ble modifications to existing algorithms, and proposes two new evolutionary
algorithms for solving the problem. Chapter 4 explains how experiments were
carried out to evaluate the metric matrices produced by the algorithms. Experi-
mental results are also presented in this chapter. Chapter 5 provides an analyti-
cal comparison of the methods and algorithms, a discussion of the experimental
results and a synthesis of analytical an empirical results. Finally, chapter 6 reca-
pitulates and concludes the thesis.

1.5 Notation

Some comments must be made regarding notations used in the remaining chap-
ters of the thesis:

• Normal fonts are used when referring to algorithms and methods in their
general and/or original form. Small capital letters are used when referring
to an explicit specification in this report. For example, BoostMap refers to
the BoostMap algorithm in its general and original form, while BOOSTMAP
refers to the specific pseudocode presented in section 3.5. Some small pro-
cedures referred to in small capital letters inside algorithms are explained
in words in the text rather than in pseudocode.

• In algorithms, blocks of statements are specified by indentation. As an
example, consider the following lines of pseudocode:

1: if condition met then
2: Statement 1
3: Statement 2
4: Statement 3

Because statements 1 and 2 are indented, they both belong to the body of
the if test, and are therefore only run if the condition is met. Statement 3,
in contrast, is run regardless of whether the condition is met or not.

• A notation where numerous variable assignments can occur on a single
line in an algorithm is used. The ordering of symbols on either side of
the assignment operator determines the assignments. For example, line 1
below is equivalent to lines 2 and 3.

1: X, Y ← A, B
2: X ← A
3: Y ← B

Chapter 2

Background

This chapter presents background theory which is necessary in order to under-
stand the context of the problem and the advantages of metric distance func-
tions. The sections are organized in a natural order, where transitions are as
smooth as possible. Section 2.1 gives an overview of how strings of symbols are
used to represent genetic sequences and proteins. In section 2.2, methods for
computing the similarity between two such strings of symbols are introduced.
The connection to distance functions is made in section 2.3, which introduces
and presents amino acid substitution matrices. Section 2.4 defines and describes
metric spaces and distance functions, while 2.5 shows how the properties of such
spaces can be used to organize data in efficient index structures. This latter sec-
tion also discusses some of the challenges of non-metric distance functions and
what characteristics a mapping from a non-metric to a metric distance function
should have. Finally, section 2.6 reviews some recent related works.

2.1 Sequences in computational biology

As mentioned, the methods proposed and analyzed in this work for convert-
ing non-metric distance functions to metric ones have been tested in the field
of bioinformatics. More specifically, amino acid substitution matrices are sub-
jected to the proposed methods, and the resulting distance functions are tested
by searching in a database of proteins. Thus, many methods and concepts in
this thesis will be illustrated using examples from bioinformatics, which in turn
requires a brief introduction to some important concepts to be given. The intro-
duction is concerned with data processing in the field and computational chal-
lenges which lie therein. A more thorough introduction to the background of
computational biology can be found in a book like [Wat95].

6 2 BACKGROUND

2.1.1 Genetic sequences

A genetic sequence, sometimes also called a DNA sequence, is a string of sym-
bols from an alphabet consisting of the four nucleotide bases of DNA - adenine,
cytosine, guanine and thymine. The symbols A, C, G and T are commonly used
to represent these nucleotide bases. They encode the chromosomes of an organ-
ism, which contain genes and other nucleotide subsequences. A complete DNA
sequence of the chromosomes of an organism is called the genome of the organ-
ism. The Human Genome Project1, started in 1986, aimed at mapping the human
genome at nucleotide level. Another goal was to identify all genes present in the
human genome. The project was completed two years ahead of schedule in april
2003.

The genetic code is a set of rules for mapping DNA sequences (genes) to proteins.
It determines the structure of the proteins in a process called protein synthe-
sis. Proteins are composed of amino acids, and a combination of three nucleotide
bases in a genetic sequence codes a single amino acid. Although there are a total
of 64 possible combinations of three nucleotide bases, only 61 are used in the
synthesis. In addition, several different triples may code the same amino acid.

2.1.2 Proteins - sequences of amino acids

Proteins are molecular structures in the form of chains of amino acids. A total of
20 amino acids are encoded by the genetic code. These are called proteinogenic
or standard amino acids. Thus, a protein may be described as a string of symbols
from an alphabet of 20 symbols. The amino acids, together with the symbols
commonly used to represent them, are shown in table 2.1.

Table 2.1: The 20 amino acids

Abbr. Name Abbr. Name
A Alanine L Leucine
R Arginine K Lysine
N Asparagine M Methionine
D Aspartic acid F Phenylalanine
C Cysteine P Proline
Q Glutamine S Serine
E Glutamic acid T Treonine
G Glycine W Tryptophan
H Histidine Y Tyrosine
I Isoleucine V Valine

1http://gdbwww.gdb.org/

2.2 COMPUTING SIMILARITY BETWEEN SYMBOL SEQUENCES 7

Figure 2.1: Secretory protein (SSp120p) in Saccharomyces cerevisiae

An example of a protein represented as a string of amino acid symbols is shown
in figure 2.1. The protein shown is the secretory protein in the yeast saccha-
romyces cerevisiae, which is commonly known as baker’s or budding yeast.

Since the human genome project was completed in 2003, focus has shifted to-
wards finding functional descriptions of the more than 30.000 proteins encoded
by the human genome. This is commonly referred to as the human proteome
project. So far, only a small fraction of the proteins has been mapped. Since
almost everything in the body involves or is made from proteins, it is very de-
sirable to gain knowledge of how they function and relate to each other. Such an
understanding could be the first step towards finding cures for diseases which
involve mapped proteins.

The amount of data available, and the computational demands of the methods
used to compare different proteins, makes this a very challenging task. Much
research activity has therefore recently focused on finding more efficient ways
of handling the data at hand. The existence of a metric function specifying the
distances between different proteins would enable us to store the data in efficient
index structures. Metric spaces and distance functions are presented in section
2.4, and an overview of data indexing based on the properties of such spaces is
given in section 2.5.

2.2 Computing similarity between symbol sequences

Many problems involve the calculation of similarity between strings of symbols.
Examples of such problems include searching for similar patterns in time series,
finding replacement words in a spelling corrector, and identifying similar bio-
logical sequences like the ones presented in the previous section. Searching for
similar patterns in time series can include any kind of string, for example a se-
quence of discrete signals sampled at a uniform rate. A spelling corrector would
obviously work on strings of characters from an alphabet, such as the latin one.
Identifying similar biological sequences involves analysis of strings from an al-
phabet consisting of biological base units. Table 2.1 presents such an alphabet,
where each amino acid is associated with a symbol.

This section introduces some important concepts and algorithms necessary to
understand how such sequence similarity may be calculated. Subsection 2.2.1 in-
troduces some important concepts and terminology used when describing such

8 2 BACKGROUND

Figure 2.2: Example of a global alignment

calculations. The remaining subsections describe how the calculations may be
done.

2.2.1 Terminology and concepts

The process of searching for similarity between strings of symbols is often de-
scribed as an alignment of the two sequences. The actual result of the calculation
is called the score of the alignment. There are two main classes of alignments:
global alignments and local alignments.

Global alignments treat the two input sequences as potentially equivalent. The
alignment process aims to identify conserved regions and regions of difference
in the sequences. An alignment can be illustrated by writing the sequences on
separate lines and marking the matching symbols. Figure 2.2 shows an example,
where the global alignment between the two genetic sequences TTGACACC-
CTCCCAATTGTA and ACCCCAGGCTTTACACAT is illustrated (adapted from
[GD91]).

An example application of global alignments is the comparison of genes or pro-
teins with similar functionality. Well known algorithms for computing global
alignments include the simple edit distance algorithm presented in section 2.2.2,
and the Needleman-Wunsch algorithm introduced in [NW70]. Since this report
is mainly concerned with local alignments (to be explained below), the latter al-
gorithm is not presented here. The simple edit distance algorithm is presented
as a general example of how dynamic programming can be used to estimate the
similarity between two sequences.

In contrast to global alignments, local alignments aim to find the two best match-
ing subsequences. An example of such an alignment is shown in figure 2.3. Lo-
cal alignments are used when searching for conserved regions in two proteins,
or when searching for local similarities in large sequences in general. A well
known algorithm for computing the local alignment of two sequences is the
Smith-Waterman dynamic programming algorithm. This algorithm is presented
in section 2.2.3.

The process of computing alignments between sequences is often called homol-
ogy search. Such searches are inherently computationally expensive, since the
computation of alignments is an order of magnitude more complex than a lin-
ear scan to check for an exact match between sequences. Alignment algorithms
employ scored matching, where different scores are given for the preservation of

2.2 COMPUTING SIMILARITY BETWEEN SYMBOL SEQUENCES 9

Figure 2.3: Example of a local alignment

different symbols in the alphabet in consideration, and penalties are given for
gaps in the alignment. The resulting alignment is the one with the highest score.

Because of the computational complexity, finding the best matches between a
query sequence and a large database by computing the alignment with all of the
stored sequences is often not feasible in practice. Therefore, a number of com-
monly used heuristic alignment algorithms have been developed. Although this
work is not concerned with heuristic high-performance alignment algorithms,
brief descriptions of some of these are given in section 2.2.4.

2.2.2 Simple edit distance

One of the simplest measures of similarity between two sequences of symbols
is the edit distance. Given the costs of deleting a symbol, inserting a symbol
and replacing a symbol by another, this distance represents the minimal cost of
transforming one sequence into the other. Such a simple scheme is rarely used
in practice, but it serves as a basic example of how dynamic programming is
usually used in most alignment algorithms.

Three cost constants are given; del represents the cost of deleting a symbol, ins
represents the cost of inserting a symbol and sub represents the cost of replacing
a symbol with another symbol. Usually, sub is chosen to be less than the sum of
del and ins. Representing the edit distance from the first i symbols of sequence
s to the first j symbols of sequence t by di,j, equations 2.1 to 2.4 can be used to
calculate the total distance between the two sequences.

d0,0 = 0 (2.1)
di,0 = di−1,0 + del (2.2)
d0,j = d0,j−1 + ins (2.3)

di,j = min

di−1,i + del
di,j−1 + ins{

di−1,j−1 si = tj
di−1,j−1 + sub si 6= tj

(2.4)

Equation 2.2 initializes the distances from the first i symbols of s to an empty
sequence. For example, i = 3 gives the distance from the first three symbols
of s to an empty sequence, which corresponds to three deletions. Equation 2.3

10 2 BACKGROUND

Figure 2.4: Edit distance between two character strings

initializes the distances from an empty string to the first j symbols of t. This cor-
responds to j insertions. Equation 2.4 gives the general recurrence relationship
from which all other distances are calculated. This relationship states that the
cost of transforming [s1, si] to [t1, tj] can be seen as the minimum cost of trans-
forming

1. [s1, si−1] to [t1, tj] and deleting a symbol from t.

2. [s1, si] to [t1, tj−1] and inserting a symbol into s.

3. [s1, si−1] to [t1, tj−1], if si and tj are equal.

4. [s1, si−1] to [t1, tj−1] and replacing si by tj, if these two symbols are unequal.

It is quite clear that this recursive relationship has both overlapping subprob-
lems and optimal substructure, and that dynamic programming can therefore
be applied to solve it. The memoization process can be seen as the process of
filling in the values of a two-dimensional array where the rows correspond to
the symbols of s and the columns correspond to the symbols of t. An example of
such an array is given in figure 2.4. For each cell in the array, three neighbouring
cells must be examined to determine its value. Therefore, it is obvious that the
complexity of the algorithm is Θ(mn), where m is the length of s and n is the
length of t. The total edit distance between the two sequences is found as dm,n.

2.2.3 The Smith-Waterman local alignment algorithm

A common way of identifying common subsequences in two strings of symbols
is the Smith-Waterman algorithm introduced in [SW81]. This algorithm utilizes
dynamic programming to find the pair of subsequences, one from each string,
with the highest degree of homology.

To describe the algorithm, let S = [s1, s2, ..., sn] denote the first sequence and
T = [t1, t2, ..., tm] the second one. A substitution matrix Si,j is assumed to be
known. This matrix gives a measure of similarity for each pair of symbols in the

2.2 COMPUTING SIMILARITY BETWEEN SYMBOL SEQUENCES 11

alphabet. For example, in the case of homology searching in proteins S would
be a 20× 20 matrix. A similarity matrix H of size m× n is set up. An element
(i, j) of this matrix represents the highest similarity observed between two sub-
sequences ending in si and tj. The matrix is initialized by setting

Hk0 = H0l = 0 for 0 ≤ k ≤ n and 0 ≤ l ≤ m (2.5)

Thereafter, the remaining matrix elements (1 ≤ i ≤ n and 1 ≤ j ≤ m) are
calculated using dynamic programming on the recurrence relationship

Hi,j = max

Hi−1,j−1 + Ssi,tj ,
max

l≥i
{Hi,j−l −Wl},

max
k≥j
{Hi−k,j −Wk},

0

(2.6)

where Wk represents the cost of a deletion of length k. As can be seen, there are
four possibilities at each position (i, j) of the similarity matrix. Either si and tj
are associated (and thus part of the subsequence of highest similarity observed
so far), si is at the end of a deletion of length k, tj is at the end of a deletion
of length l, or no similarity has been observed so far in this subsequence. The
last case (zero similarity observed so far) is enforced because we do not allow
negative similarity values for subsequences.

The straightforward Smith-Waterman algorithm is clearly O(n2m) if n > m or
O(m2n) if n < m. However, [Got82] introduces some modifications to the orig-
inal algorithm which have the effect of reducing the computational complexity
to O(nm). In his work, Gotoh introduces two addition matrices P and Q. Pi,j
holds the score of the highest scoring alignment between [s1, si] and [t1, tj], given
that the alignment ends with si aligned to an insertion or a deletion. Similarly,
Pi,j holds the score of the highest scoring alignment between [s1, si] and [t1, tj],
given that the alignment ends with an insertion or a deletion aligned to tj. The
recursive relation assumes that we are given an affine penalty model, i.e. a model
which can be written as

Wk = −o− (k− 1)e (2.7)

where k is the length of the gap, o is the penalty for opening a new gap and e is
the penalty for extending an existing gap. Using this affine gap model, Gotoh
shows that the recurrence relationship can be rewritten as

Hi,j = max

Hi−1,j−1 + Ssi,tj ,
Pi−i,j−i + Ssi,tj ,
Qi−1,j−1 + Ssi,tj

(2.8)

12 2 BACKGROUND

Pi,j = max{Hi−l,j − o, Pi−1,j − e} (2.9)

Qi,j = max{Hi,j−1 − o, Qi,j−1 − e} (2.10)

The derivations of Pi,j and Qi,j are based on the original recurrence relationship
in equation 2.6. If Pi,j is chosen to represent max1≤k≤i{Hi−k,j − o − (k− 1)e}, it
can be rewritten as

Pi,j = max
1≤k≤i

{Hi−k,j − o− (k− 1)e}

= max{Hi−1,j − o, max
2≤k≤i

{Hi−k,j − o− (k− 1)e}}

= max{Hi−1,j − o, max
1≤k≤i−1

{Hi−1−k,j − o− ke}}

= max{Hi−1,j − o, Pi−1,j − e}

(2.11)

Qi,j can be rewritten in the same way. Thus, the cost of the most similar sub-
sequences can be computed in O(nm) time if Wk = −o − (k − 1)e, by storing
the Pi,j and Qi,j values along the way when computing the values of the simi-
larity matrix H. The final score is found as the maximum local alignment score
observed while iterating through the algorithm.

2.2.4 Searching in large databases

In practice, aligning a query protein with all proteins in a database using the
Smith-Waterman algorithm is not feasible. Many heuristic search algorithms
have been developed for easing the computational demands of such linear data-
base scans. Among these, BLAST and FASTA are by far the most commonly
used ones. As such heuristic search algorithms are not directly linked to this
work, none of them will be presented in detail here. However, brief descriptions
of the two mentioned algorithms are included as examples of methods which
are commonly used at the present time.

BLAST (Basic Local Alignment Search Tool) was introduced by Altschul et al.
in [AGM+90]. It works by breaking the query sequence and all database
sequences into fragments of a specified length. The query fragments are
then matched with the database fragments. The pairs which score lower
than a certain threshold are rejected. For the ones which are selected for
further investigation, the alignments are extended in either direction in an
attempt to construct a full alignment.

2.3 SUBSTITUTION MATRICES 13

FASTA was introduced by Lipman and Pearson in [LP85]. As BLAST, FASTA
works by attempting to match fragments of the query sequence and data-
base sequences. The difference is that FASTA identifies exact matches. The
10 regions with the highest density of matches in a protein are then selected
and re-scored using an appropriate substitution matrix. When the scores
of regions exceed a certain threshold, the regions are joined to form a larger
region with gaps. Finally, a variation of the Smith-Waterman algorithm is
used to re-score the joined region.

2.3 Substitution matrices

As explained in the previous section, algorithms for computing alignments use
some kind of scoring scheme to compute the cost of an alignment. Simple edit
distance only considers penalties, whereas more sophisticated methods give
scores to matching pairs of symbols in the two sequences to be aligned. The
Smith-Waterman algorithm introduced in section 2.2.3, for example, requires the
scores of all possible pairs from the alphabet of symbols to be specified. Such
scores may be specified in the form of a matrix where the cells correspond to the
different pairs of symbols. Scoring matrices are often called substitution matrices
because a cell specifies the score or penalty obtained when substituting one sym-
bol for another. This section gives an introduction to such substitution matrices.
Subsection 2.3.1 provides some examples of basic substitution matrices. Sub-
section 2.3.2 gives an overview of substitution matrices used in bioinformatics
when searching for similarity in proteins. Finally, 2.3.3 points out some issues
which occur when attempting to convert a similarity matrix into a dissimilarity
matrix.

2.3.1 Some simple substitution matrices

The most simple substitution matrix imaginable is the identity matrix. An ex-
ample is shown in figure 2.5, where the alphabet consists of the four nucleotide
bases of DNA. This scheme awards identical nucleobases in the same position
in an alignment with a score of 1.0. Dissimilar nucleobases in the same position
receives no award, but no penalty either. The same scheme can be defined for
protein scoring by using the 20 × 20 identity matrix corresponding to the 400
possible pairs of amino acids.

Two other simple substitution matrices are shown in figure 2.6. Figure 2.6a
shows a matrix where identical nucleobases in the same position in an align-
ment are awarded a score of 5, whereas dissimilar nucleobases in the same po-
sition are penalized with a score of -4. Both this matrix and the identity matrix
in figure 2.5 are examples of scoring schemes based on similarity; symbols in
the same position in an alignment receive scores according to their degree of

14 2 BACKGROUND

Figure 2.5: Identity score matrix

conformity. In contrast, figure 2.6b shows an example of a dissimilarity based
substitution scheme. The entries of the matrix correspond to distances between
symbols rather than similarity values, so that symbols defined to be similar are
close and dissimilar ones are farther apart. This means that we are interested
in finding alignments of low dissimilarity instead of high similarity, and the al-
gorithms used when dealing with similarity scores cannot be used unmodified.
Such issues are covered in subsection 2.3.3.

Figure 2.6: a) Similarity matrix b) Dissimilarity matrix

2.3.2 Amino acid substitution matrices

A number of commonly used substitution matrices exist for searching in protein
databases. Amino acid substitution matrices contain 400 entries, each giving a
measure of the similarity or dissimilarity between a pair of amino acids. By far
the most commonly used ones are the matrices from the PAM and BLOSUM
families.

PAM (Point Accepted Mutation) matrices were introduced by Dayhoff et al. in
[DSO78]. Each PAM matrix is associated with a number which specifies the ex-
pected number of mutations per 100 amino acids. For example, the PAM250
matrix applies to time intervals of 250 mutations per 100 amino acids. In other
words, the number associated with a PAM matrix specifies the degree of evo-
lutionary divergence which it applies to. The PAM250 matrix is included as a
general example of an amino acid substitution matrix in figure 2.7.

The BLOSUM (BLOcks SUbsitution Matrices) family of matrices was introduced
in [HH92]. These matrices are derived using another method and another dataset
than the PAM model uses. BLOSUM matrices are also associated with numbers.
Generally speaking, BLOSUM matrix numbers approximately match the per-
centage of identical amino acids in the aligned sequences (i.e. BLOSUM62 for
sequences which are 50% identical).

2.3 SUBSTITUTION MATRICES 15

Figure 2.7: PAM250 score matrix

The details of how PAM and BLOSUM matrices are derived are not necessary to
understand the algorithms and methods presented in this work. Nevertheless,
detailed descriptions of the two models are included in appendix A for readers
who want a basic understanding of the meaning of the data contained in the
matrices. The appendix also contains a brief survey of other commonly used
amino acid substitution matrices.

2.3.3 Similarity versus dissimilarity

In many cases, it is desirable to be able to convert similarity matrices like the
ones presented in the previous section into dissimilarity (distance) matrices. As
will be shown in the next section, metric spaces are based on the properties of
the distance function associated with the them. The first step towards the con-
struction of a metric matrix from a substitution matrix will therefore often be
such a conversion.

If the diagonal elements of the similarity matrix are equal, the conversion simply
involves subtracting each matrix cell value from this diagonal value to obtain a
new cell value. Unfortunately, this is not the case with most amino acid substitu-
tion matrices. We would like the conversion to produce a (possibly non-metric)
distance matrix with zeros on the diagonal. However, since the diagonal ele-
ments in the similarity matrix are not equal, we cannot simply subtract a value
from each matrix cell.

A conversion method introduced by Linial et al. in [LLTY97] and later general-
ized by Halpering et al. in [HBK+03] is shown in equation 2.12, where D is the
distance matrix and S is the similarity matrix.

Du,v = Su,u + Sv,v − 2Su,v (2.12)

16 2 BACKGROUND

Originally proposed as a distance measure for subsequences of fixed length,
Halperin et. al extend the definition to subsequences of arbitrary length, and use
the equation 2.12 to produce distance values from similarity scores. The equa-
tion is also adopted in this work in cases where such a conversion is needed. It
is questionable whether the method is able to preserve all information from the
similarity matrix. This will be elaborated on in section 3.5.3. As will become
apparent in chapter 3, however, some of the proposed algorithms use the step
only as an initial estimate – the final metric matrix is produced using data from
the original similarity matrix.

2.4 Metric spaces and distance functions

The computational demands of many problems, including the search for simi-
larity in a database of proteins, can be eased considerably when the similarity or
dissimilarity measure to be used possesses the properties of a metric system. Un-
fortunately, this is often not the case. As the concern of this work is to propose
and compare methods for deriving distance metrics from non-metric similarity
or dissimilarity measures, this section introduces the concept of metric spaces
and distance functions. Section 2.4.1 provides the necessary formal definitions,
while section 2.4.2 gives some examples of metric and non-metric distance func-
tions. Finally, section 2.4.3 discusses how metricity can be measured.

2.4.1 Formal definitions

Assume that we have a set S of elements and a function d which for all ordered
pairs of elements (a, b) from S returns the distance d(a, b) from a to b. Some
desirable properties of the function d are defined in equations 2.13 to 2.16.

∀a, b ∈ S : d(a, b) = d(b, a) (2.13)
∀a, b ∈ S : d(a, b) = 0⇔ a = b (2.14)
∀a, b ∈ S : d(a, b) ≥ 0 (2.15)
∀a, b, c ∈ S : d(a, b) ≤ d(a, c) + d(c, b) (2.16)

Equation 2.13 requires that symmetry is satisfied for all distances between pairs
of elements in S. Equation 2.14 requires all distances from elements of S to them-
selves to be of zero length. Equation 2.15 states that all distances returned by the
function d should be non-negative. The triangle inequality is satisfied for function
d if condition 2.16 holds.

From these four conditions, some classes of spaces can be defined. First, define
a space to be a pair (S, d) consisting of a set S of elements and a distance function

2.4 METRIC SPACES AND DISTANCE FUNCTIONS 17

d : S × S → R. A space where the distance function satisfies conditions 2.13
and 2.14 is called a premetric space. A premetric space whose distance function
also satisfies condition 2.15 is called a semimetric space. Metric spaces are spaces
where the distance functions satisfy all four conditions. If the triangle inequality
is strengthened to d(a, b) ≤ max{d(a, c), d(c, b)} for all a, b, c ∈ S, the space is
called ultrametric. Since the distance function determines if a space is metric
or not, one often talks about metric or non-metric distance functions instead of
spaces.

From a computational point of view, the properties of metric spaces are most
desirable. This will become apparent in section 2.5, where the concepts of data
indexing are introduced.

2.4.2 Some metric and non-metric distance functions

Many distance functions satisfy the conditions of metricity. The most common
metric distance functions are contained in the set of Lp norms, where p ≥ 1 is
required for metricity. These distance functions are defined as shown in equation
2.17, where xak is the value of element a along the kth axis of the D dimensions
in which the elements are embedded.

dp(a, b) =

(
D

∑
k=1
|xak − xbk|p

)1/p

(2.17)

The most commonly used Lp norms are given by p ∈ {1, 2, ∞}. They are shown
in equations 2.18, 2.19 and 2.20. Setting p = 1 gives a distance function which is
often referred to as the Manhattan or city block distance. The equation reduces to
the euclidean distance function when setting p = 2.

d1(a, b) =
D

∑
k=1
|xak − xbk| (2.18)

d2(a, b) =

√√√√ D

∑
k=1

(xak − xbk)
2 (2.19)

d∞(a, b) = max
1≤k≤D

|xak − xbk| (2.20)

Many physical systems have distance functions which are not metric. For ex-
ample, consider a distance function which specifies the travel time distance be-
tween cities. For a set of four cities, such a distance function could be repre-
sented as the distance matrix shown in figure 2.8. This function does not sat-
isfy the triangle inequality, because d(C, D) > d(C, B) + d(B, D). Also note that

18 2 BACKGROUND

Figure 2.8: An example of a distance matrix

although this distance matrix is symmetric, this is not necessarily the case for
distance measures such as travel time distance. We could perfectly well have a
non-symmetric distance matrix representing travel time distance (e.g. the routes
could include unidirectional paths).

Another example of non-metric distance functions is the set of mutation prob-
ability matrices used when searching for similarity between protein sequences,
including the PAM and BLOSUM family of matrices. Although these matrices
contain similarity scores instead of distances, they are non-metric in the sense that
there exists no straightforward ways of converting the similarity scores to metric
distance functions without losing information.

2.4.3 Measuring metricity

When evaluating a distance function, it is often desirable to measure its metric-
ity. An exact formal definition of what is meant by metricity is hard to specify.
Intuitively, one would like the metricity of a matrix to represent how close the
matrix is to being metric.

Thus, there are several possible ways of defining the metricity. Assume that the
distance function is given in the form of a distance matrix, and that the distance
matrix satisfies the conditions given in 2.13, 2.14 and 2.15. The perhaps most
straightforward measure of metricity would be a simple count of the number of
triangle inequality violations. This measure does not, however, take into account
how much the triangle inequalities are violated. The amount of violation can be
seen as the difference between d(a, c) + d(c, b) and d(a, b) for a triangle (a, b, c).
Intuitively, one would like a matrix where triangle inequalities are violated by a
small amount to have a higher degree of metricity than matrices where the same
triangle inequalities are violated by larger amounts.

One possible measure of metricity can be derived from [CNBYM99], where a
relaxation of the triangle inequality is suggested to enable indexing of data based
on non-metric distance functions. Assume that we can find a constant α such
that the triangle inequality shown in equation 2.21 holds for all triples (a, b, c) of
elements. Then α could be adapted as a measure of metricity.

d(a, b) ≤ α[d(a, c) + d(c, b)] (2.21)

2.5 DATA INDEXING 19

The problem with using α as metricity measure is that the constant must be
chosen high enough to relax the worst triangle inequality violation, and does
not take into account how much the other triangle inequalities are violated. The
metricity measure introduced in [GKM03] therefore seems like a better choice.
This measure can be calculated as 1− nm, where nm is calculated as given by
equation 2.23. The value nm is a real number in the interval [0, 1] measuring the
non-metricity of the distance function, i.e. nm = 0 for a metric matrix.

d′(a, b) = min

{
d(a, b),
min
c 6=a,b
{d(a, c) + d(c, b)} (2.22)

nm = averagea,b

(
d(a, b)− d′(a, b)

d(a, b)

)
(2.23)

If the distance matrix is metric, equation 2.22 gives d′(a, b) = d(a, b) for all or-
dered pairs (a, b). But if the matrix is non-metric, one would find that for some
of the distances in the matrix there exists a non-empty set M ∈ N such that
∀c{c ∈ M → d(a, c) + d(c, b) < d(a, b)}, i.e. the triangle inequality is vio-
lated for the triangle (a, b, c). For these distances, equation 2.22 gives d′(a, b) =
minc 6=a,b{d(a, c) + d(c, b)}, which increases the value of nm.

2.5 Data indexing

As mentioned in the previous section, the properties of metric spaces can be
used to efficiently index the data. If the distance function used to calculate the
similarity or dissimilarity between entities of the database satisfies the triangle
inequality, a number of well known indexing methods can be used. This enables
queries to be performed in sublinear time.

Section 2.2.4 provided an overview of common heuristics used to ease the com-
putational demands of a linear database scan. The problem with such heuristic
methods, however, is that the results returned in response to a query are not nec-
essarily correct. In contrast, queries on an index always produce correct results if
the data to be organized possesses the properties assumed by the structure. This
section gives an informal overview of how the properties of a metric system can
be used to organize data in efficient index structures.

2.5.1 Types of queries

Assume that we are given a query string of symbols, q, a database of stored
strings, U, and a distance function d(q, u) which for each u ∈ U returns the
distance between q and u. In [CNBYM99], Chávez et al. define three basic

20 2 BACKGROUND

types of queries against U: Range queries, nearest neighbour queries and k nearest
neighbours queries. Since the nearest neighbour query is the same as a k nearest
neighbours query with k = 1, the basic types can be further generalized to the
following two:

Range queries Find all elements in the database which are within a distance r
to the query q. That is, find all u ∈ U such that d(q, u) ≤ r.

Nearest neighbours queries Find the k elements in the database which are clos-
est to q. That is, find a set R ⊆ U such that |R| = k and ∀v∀w{v ∈ R ∧ w ∈
(U − R)→ d(q, v) ≤ d(q, w)}.

Several additional restrictions may be imposed, such as specifying a maximum
distance from the query string in a nearest neighbours query.

It is clear that both range queries and nearest neigbour queries can be answered
by comparing the query string with every string stored in the database. In gen-
eral, the cost of evaluating the distance between two strings and the size of the
database makes this approach unfeasible. The goal of indexing is to organize
the strings of the database in such a way that it is not necessary to compare the
query string to all of them. Such a structure, where a number of database strings
can be discarded at each stage of the search process based on properties of the
distance function, will be beneficial for both types of queries. Both of them seek
to minimize the distance function over the database - the difference is merely
that range queries keep the maximum distance fixed while nearest neighbours
queries keep the size of the result set fixed.

2.5.2 Utilizing the triangle inequality

The idea to use the triangle inequality to exclude database elements which can-
not satisfy a query was first introduced by Burkhard and Keller in [BK73]. As-
sume that we are interested in finding the database element which is closest to
the query element q. At each step of the search algorithm, we keep track of the
best match found so far, y. If a new element x is found at this step which satisfies
d(q, x) < d(q, y), we set y← x. Prior to the search process, a reference element u is
chosen. When searching, distance evaluations between database elements and u
are used together with the triangle inequality in two cutoff criteria:

First cutoff criterion From d(q, x)+ d(x, u) ≥ d(q, u) we see that d(q, x) ≥ d(q, u)−
d(x, u). Thus, if d(q, u)− d(x, u) is greater than the distance between q and
the best match found so far, x can immediately be excluded.

Second cutoff criterion From d(q, x) + d(q, u) ≥ d(x, u) we see that d(q, u) ≥
d(x, u)− d(q, x). Thus, if d(x, u)− d(q, u) is greater than the distance be-
tween q and the best match found so far, x can immediately be excluded.

2.5 DATA INDEXING 21

These two cutoff criteria can be combined into a joint cutoff criterion:

Joint cutoff criterion Element x can be excluded from further consideration if
|d(x, u)− d(q, u)| is greater that the distance between q and the best match
found so far.

The idea underlying many indexing structures is simply that, given a reference
element u, distances between u and all other elements of the databases can be
precomputed. These precomputed values can be stored in a structure which
enables us to exclude elements from considerations without having to compute
the distance to the query element. Algorithm 1, adapted from [BFM+96], gives
a simple example of such a scheme.

Algorithm 1 Simple search algorithm
1: procedure PREPROCESS(U, u) . Executed only once
2: X ← ∅
3: for all x ∈ U do
4: X ← X ∪ d(u, x)
5: X ← SORT(X)
6: end procedure

7: procedure QUERY(q, u)
8: V ← X
9: ε← d(u, q)

10: t← d(u, q)
11: y← u
12: x ← BINARYSEARCH(V, t) . Find x with d(x, u) closest to t
13: while |d(x, u)− d(q, u)| > ε do
14: if d(q, x) < ε then
15: y← x
16: ε← d(q, x)
17: V ← V − x
18: x ← BINARYSEARCH(V, t)
19: end procedure . Variable y now holds element closest to q

In this algorithm, U denotes the initial database of elements. The procedure
PREPROCESS is called once to a create a sorted list, X, of distances between the
reference element u and every element in U. Thereafter, procedure QUERY can
be used to search for the database element closest to query element q. As can be
seen, variable x is initialized to the element which has d(x, u) closest to d(q, u).
Because the list V is sorted, this can be found by a simple binary search. As long
as the joint cutoff criterion does not hold, the algorithm proceeds by checking if
x is the best match found so far. Then the element pointed to by x is subtracted

22 2 BACKGROUND

from V, and x is updated to the database element with d(x, u) next closest to
d(q, u). Actually, the latter step can be achieved by simply checking the neigh-
bours of x in V, but a repeated application of the BINARYSEARCH function has
been included in the algorithm for simplicity. Since |d(x, u)− d(q, u)| can only
increase, a point will eventually be reached where all the remaining elements of
V can be discarded because the joint cutoff criterion holds.

Thus, algorithm 1 can be seen as a simple example of the general strategy to
structure the data in a way which enables us retrieve the correct answer without
having to evaluate the distances between the query element and all database
elements.

2.5.3 Some illustrative index structures for range queries

Many methods for indexing metric spaces exist which are more efficient than the
one presented in algorithm 1. This section includes some illustrative examples
of common index structures. Readers interested in a more detailed introduc-
tion to searching in metric spaces should consult a more extensive survey like
[CNBYM99].

BKT - Burkhard-Keller Tree

One of the first general methods for indexing data from metric spaces was pre-
sented by Burkhard and Keller in [BK73]. A Burkhard-Keller Tree (BKT) assumes
a discrete distance function. Given a database U of elements, the first step of the
indexing process is to select a reference element u. This first reference element
represents the root of the BKT. Since the distance function is discrete, we have
a finite set of distances, D, from u to all other elements of V. For each distance
d ∈ D, we define Ud = {v ∈ U | d(v, u) = d}. Each set Ud represents a child
node. The tree is completed by simply applying this method recursively on each
Ud with more than one element.

Figure 2.9 shows the two first steps of the creation of a BKT. Element D is se-
lected as the first reference element. The other elements are partitioned into four
sets, where elements of each set are equally distant from D. Element E is then
selected as the reference element for the set {E, G, H, I}, and the process is ap-
plied recursively. The corresponding first step of the BKT is shown in figure
2.9b, while figure 2.9c shows the second step.

Given a query element q and a range r, we check nodes to see if they can be
excluded. When arriving at a node u in the tree, we know that this node and all
its children nodes are at a distance d(p, u) from u’s parent node p. We then check
if |d(p, q)− d(p, u)| > r. If this holds, u and the entire subtree below this node
can immediately be excluded. To see this, note that d(u, q) ≥ d(p, q)− d(p, u) by
the triangle inequality. Thus, if |d(p, q)− d(p, u)| > r, we know that d(u, q) >

2.5 DATA INDEXING 23

Figure 2.9: a) Two first steps of a BKT b) First step c) Second step

r. Because both u and all its children nodes are equally distant from p, this
argument is used to exclude both u and its children from further consideration.

For elements which are not excluded, we calculate d(q, u) and include element
u in the result set if d(q, u) ≤ r.

For a database of n elements, the construction complexity of BKTs is O(n log n).
Query complexity is O(nα), where α < 1 (i.e. sublinear). Numerous improve-
ments to BKTs have been suggested in the literature. In [BYCMW94], a modifi-
cation of BKT called FQT (Fixed Query Trees) is presented. The difference from
BKTs is that the same reference element is used at each tree level, regardless of
whether it belongs to a subset or not. The database elements are all stored at the
leaves of the tree. The authors show by empirical experiments that this approach
outperforms BKTs by performing less distance evaluations. Another variant of
BKT is FHQT (Fixed Height FQT), presented in [BYCMW94] and [BY97]. In this
data structure, all leaves are stored at the same depth. In addition, the same
reference element is used at each tree level. It is shown that by making the tree
deeper than necessary in this way, more distance evaluations can be avoided.

VPT - Vantage Point Tree

Data structures like BKT and FQT can only be used when the distance function
is discrete, which is often not the case. Vantage-Point Trees (VPTs), presented in
[Yia93] and [Chi94], are data structures applicable to continuous distance func-
tions. They are built recursively in the following way. First, a reference element
u is chosen as the root node. The distances from u to all other elements of the
database U is then calculated, and the median distance m is found. Then the re-
maining elements of U are divided into two sets L = {p ∈ U | d(p, u) ≤ m} and
R = {p ∈ U | d(p, u) > m}, and the procedure is applied recursively on those
sets.

24 2 BACKGROUND

Figure 2.10: a) First step of the construction of a VPT b) Final tree

Figure 2.10a shows an example of the first step of the creation of a VPT. Element
F is chosen as the root node. The median distance m (d(F, B) in this case) is
found, and the remaining elements are partitioned into two sets. The final VPT
is shown in figure 2.10b.

Given a query q and a range r, the result set is found in the following way. Start-
ing at the root node p, we first check if d(q, p) < r. If so, p is added to the result
set. We then check if d(q, p)− r ≤ m. If this is the case, the procedure is applied
recursively on the left subtree of p. If not, the entire left subtree can be discarded
from further consideration. Similarly, if d(q, p)− r > m, we enter the right sub-
tree. If not, the right subtree can be discarded. Note that we may have to check
both the left and the right subtree.

For very small ranges r, [Yia93] argues that query complexity on VPTs is O(log n).
However, as r increases, the number of times we have to enter both the left and
the right subtree also increases. So the argument that VPT query processing is
O(log n) is actually only true when searching for exact matches (r = 0).

As with BKT, numerous improvements have been suggested for VPT. In [BO97],
the MVPT (Multi Vantage Point Tree) is introduced. A MVPT is an m-ary tree,
where m > 2 (in contrast to the binary VPT). Empirical experiments show that
MVPTs outperform VPTs in some cases. Other advantageous modifications of
VPT can be found in [CNBYM99].

2.5.4 Index structures for nearest neighbour queries

The index structures presented in section 2.5.3 are designed for range queries.
There exist several techniques for using these structures to answer nearest neigh-
bour queries. The simplest possible scheme is to start with range r = 1 and
increase r until the size of the result set is appropriate. A common way of in-
creasing r is to start with r = ai and, if the size of the result set is too small, set
r = ai+1. For the first iteration we set i = 0. When a point is reached where the
size of the result set is too big, the range is refined between ai−1 and ai.

2.5 DATA INDEXING 25

The problem with such schemes is that the complexity of the range queries
grows as the range grows. Thus, several methods have been suggested for lim-
iting both the number of range queries and the size of the largest range used in
the search. Again, readers are referred to [CNBYM99] for an in-depth survey.

2.5.5 The challenge of non-metricity

The index structures presented in the previous section rely on the triangle in-
equality for excluding database elements from consideration without having to
compute the distance to the query element. If the distance function is not metric,
queries on such structures will not produce correct results.

Some simple techniques have been suggested for dealing with distance func-
tions where the triangle inequality does not hold. In [CNBYM99], it is sug-
gested that if one can find constants α, β and δ such that the triangle inequal-
ity can be relaxed to d(x, y) ≤ αd(x, z) + βd(z, y) + δ, the algorithms designed
for metric spaces can be modified to handle this new inequality. There are two
problems with this approach. Firstly, we may not be able to specify such con-
stants at a general level for the distance function at hand. Secondly, the num-
ber of exclusions we can make during query processing decreases rapidly as
the constants increase. To see this, assume that we are given an α such that
d(x, y) ≤ α[d(x, z) + d(z, y)] holds, and that the data is indexed in a BKT. Given
a query element q and a node element u, recall from section 2.5.3 that we cal-
culate |d(p, q)− d(p, u)| (where p is u’s parent) and eliminate the entire subtree
under p if this value is greater than the range r. However, the existence of the
constant α makes it necessary to check | d(p,q)

α − d(p, u)| > r, which holds in a
decreasing number of cases as α increases. Thus, query processing performance
degrades sharply when the triangle inequality is relaxed in this way.

Therefore, much research effort has recently focused on finding efficient map-
pings from non-metric to metric distance functions. A number of requirements
could be stated for such a mapping:

• The distances produced by the mapping should be as close as possible to
the original distances.

• The number of misclassification made by the distance function produced
by the mapping should be as small as possible. In other words, if the origi-
nal distance function classifies element B as being closer to element A than
element C is, this should ideally also be the case for all triples of elements
(A, B, C) with the new distance function.

• The distance function produced by the mapping should underestimate the
original distance function. If this is the case, we are guaranteed the correct
answer to a range query. The index is first used to obtain an intermediate

26 2 BACKGROUND

answer. Then the solution set is refined using the original distance func-
tion.

Finding such a mapping means that efficient methods like the ones presented
in the previous sections can be used to index the data, thereby providing sub-
linear access to the data. This is very desirable in cases where large amounts of
data are available, such as protein databases. However, the problem has proved
to be very challenging since there exists no direct mapping from the similarity
scores of mutation matrices like PAM and BLOSUM to a metric distance function
which preserves all the information contained in the matrix. The methods pro-
posed, presented and compared in this work aims at producing metric distance
matrices where the information loss is minimal.

2.6 Related work

The problem of deriving a metric distance matrix from existing mutation matri-
ces has been previously been adressed in a few different ways.

In [XM04], the matematics of the original PAM series of mutation matrices have
been reworked. Instead of using the empirically derived mutation frequency
data to derive a matrix which gives the probability of amino acid i changing to
amino acid j within a number of evolutionary steps, this work attempts to derive
a metric distance between amino acids by considering the expected time period
between a transition from amino acid i to amino acid j. Using such a distance
measure, amino acid pairs with a high mutation probability will be associated
with a short time interval, thus providing a dissimilarity function instead of a
similarity function. The method prodces a distance matrix with minimal met-
ric disortions. Some small manual adjustments results in the mPAM250 matrix,
which is shown empirically to retain a large fraction of the sensitivity of PAM250
when used in a homology search. There are two main problems with this ap-
proach. Firstly, it is specific to the PAM series of matrices, since it is based on the
mathematical foundation of this model. Secondly, the derived distance matrices
are not guaranteed to be metric, requiring manual adjustments for the triangle
inequality to be satisfied. In essence, this brings us back to the original problem.

Halpering et al. introduce a metric distance mapping for the BLOSUM family of
matrices in [HBK+03]. In their work, peptides (short sequences of amino acids)
are mapped into bit vectors. The distance between any two peptides can then
be approximated by the Hamming distance between the bit vectors, which is
a metric. The problem is slightly different from the problem addressed in this
work, because the method is applied to protein data directly rather than being
used to produce a metric distance matrix. Furthermore, the method is specific to
the BLOSUM series of matrices.

2.6 RELATED WORK 27

Dhillon et. al state in [DST04] that their triangle fixing algorithm was originally
motivated by the need to convert amino acid substitution matrices into metric
distance matrices. This algorithm is described in detail in chapter 3. It has been
implemented in this work as a point of comparison for the other methods and
algorithms proposed. The problem with the algorithm in the form it is presented
in the original paper is that it accepts a non-metric distance metric as input. Thus,
we are faced with the question of how to convert a similarity matrix into a dis-
tance matrix.

Taylor and Jones have previously proposed and compared a number of methods
for projecting substitution matrices into low-dimensional metric spaces in [TJ93].
They also propose an inter-row method of transforming the PAM250 matrix into
a metric distance matrix, which performs relatively well when being used for
homology search. The work by Taylor and Jones is one of the main inspirations
behind methods proposed and evaluated in this work.

Chapter 3

Methods and solutions

As shown in chapter 2, the properties of metric distance functions are very de-
sirable, since they enable indexing of the data at hand. Many distance functions
do not possess these properties, so algorithms for converting non-metric sub-
stitution matrices into metric ones are also very desirable. Assuming that the
distance functions are given as matrices, the metric distance matrix produced
by such an algorithm should ideally preserve all the sensitivity of the original
non-metric one. A sensitive distance matrix will produce result sets with large
fractions of true positive hits and small fractions of false positive hits when used
for searching in a database of elements. This raises a number of questions:

• What algorithms can be used to convert the non-metric matrix into a metric
distance matrix?

• Given a matrix with similarity values instead of distance values, how can
this fact be incorporated into the algorithms?

• Which algorithm produces the most sensitive metric distance matrix?

• Which factors determine the sensitivity of a metric matrix relative to the
original non-metric one? How are these factors controlled in the algo-
rithms?

• How efficient are the algorithms in terms of computational resource usage?
Can they be used to convert large non-metric matrices into metric ones?

To answer these questions, a number of methods and algorithms for generating
metric distance matrices from non-metric substitution matrices are presented in
this chapter. Although tested and compared in the field of bioinformatics, the
methods are intended to be generic to the problem of generating metric distance
matrices from non-metric ones. Two main approaches to solving the problem
are presented. Section 3.1 presents an existing algorithm for converting a non-
metric distance matrix into a metric one directly. The main idea underlying this

30 3 METHODS AND SOLUTIONS

work an approach where N elements (e.g. amino acids) are mapped into a metric
space, from which a metric distance matrix is thereafter recovered. Section 3.2
presents this idea in general, while sections 3.3 to 3.6 are devoted to specific
algorithms. Some of the suggested solutions are based on existing algorithms,
while others are unique to this work:

• Multidimensional scaling (section 3.3), FastMap (section 3.4) and Boost-
Map (section 3.5) are existing algorithms which have been adopted in this
work for solving the problem of mapping N elements into a metric space.

• Some modifications specific to the problem at hand are proposed for mul-
tidimensional scaling in section 3.3.2 and for BoostMap in section 3.5.3.

• Based on potential limitations of the other methods, two genetic algorithms
for solving the problem are proposed in section 3.6.

Finally, section 3.7 rounds off the chapter with a summary of the proposed meth-
ods and and how they solve the problem. The main conclusions are drawn in
chapter 4 and 5, where experimental results are presented and discussed, re-
spectively. Also note that algorithms will be analyzed and compared in terms of
computational complexity in chapter 5 rather than in this chapter.

3.1 The triangle-fixing algorithm

The metric nearness problem has been defined by Dhillon et al. in [DST04]. Given a
non-metric matrix D of dissimilarity measures, the problem is to find the “near-
est” matrix of dissimilarity values which satisfies the triangle inequality. To
solve this problem, a class of triangle fixing algorithms has been developed for
the Lp norms (see section 2.4.2). An explicit algorithm is given for the L2 norm. It
works by iteratively enforcing the triangle inequality for each violated triangle.
The pseudocode is shown in algorithm 2, which has been adopted directly from
[DST04].

In this algorithm, the dissimilarity measures are seen as edges of a graph G.
Associated with the graph is a matrix A representing all possible triangles. T
is simply a list of all triangles, corresponding to the rows of A. An example is
shown in figure 3.1. In each row of T, the number 1 indicates that the edge is the
hypotenuse of the triangle. If the triangle inequality is not satisfied for a specific
triangle, the corresponding element of Td′ will be negative.

In each iteration of the algorithm, all triangles are looped through and cor-
rected. In essence, Dykstra’s algorithm (presented in [Dyk83]) is used to min-
imize 1

2 ||x2|| subject to Ax ≤ −Ad in lines 7 to 16 of the algorithm. In line 7,
ab represents the column of A labeled 1, while bc and ca represent the columns
labeled −1. The mathematical derivations necessary to arrive at steps 7 to 16

3.1 THE TRIANGLE-FIXING ALGORITHM 31

Algorithm 2 TRIANGLEFIX

Input: G, T, ε
1: for each (i, j, k) ∈ T do
2: δijk = 0 . Initialize correction terms

3: ∆← ε + 1
4: while ∆ > ε do
5: ∆← 0
6: for each (a, b, c) ∈ T do
7: (oa, ob, oc)← (ab, bc, ca)
8: ab← ab + δabc . Apply correction
9: bc← bc− δabc

10: ca← ca− δabc
11: δ← ab− bc− ca
12: if δ > 0 then
13: ab← ab− δ/3
14: bc← bc + δ/3
15: ca← ca + δ/3
16: δabc ← δabc − ab + oa
17: ∆← |oa− da|
18: return corrected G

Figure 3.1: Notation used in the triangle fixing algorithm

of the algorithm are considered to be outside the scope of this work. Here it is
sufficient to know that the steps add a correction term to each edge of G. The
correction terms together correspond to one iteration of Dykstra’s solution to
the minimization problem. Readers are referred to [DST04] for details on this
derivation.

The algorithm terminates and returns the corrected graph G when no triangle
receives a significant update. A corrected distance matrix can then be found
simply as the edges of the corrected graph G. If ε is chosen low enough to reach
some degree of convergence, the corrected distance matrix will be metric.

In this work, the L2 triangle fixing algorithm has been implemented to test its
ability to derive a metric distance matrix from a non-metric substitution matrix.
The fact that substitution matrices like PAM and BLOSUM (see section 2.3) are
similarity matrices poses a problem, since the triangle fixing algorithm takes a

32 3 METHODS AND SOLUTIONS

dissimilarity matrix as input. Amino acid substitution matrices must therefore
be transformed into distance matrices before the algorithm can be applied. The
transformation specified in equation 2.12 has been used in this work.

The fact that the substitution matrix must be transformed into a distance matrix
is a potential problem. There is no straightforward way of converting a similar-
ity matrix, like an amino acid substitution matrix, into a distance matrix with
zeros on the diagonal without losing information. Section 2.3.3 elaborates fur-
ther on this. The algorithm finds the best metric fit to a distance matrix, but it
is questionable how good this matrix reflects the data in the original similarity
matrix in the first place. This suggests that finding methods for deriving a metric
distance matrix using the data in the substitution matrix directly could prove to
be advantageous.

Nevertheless, the triangle fixing algorithm is included as a possible solution
to the problem of making substitution matrices metric. The next section will
present a conceptually different approach, where metric matrices are derived by
first mapping elements (for example amino acids) into a metric space. Analytical
and empirical comparisons of the two approaches will be given in chapter 5.

3.2 Deriving metrics from spatial embeddings

Recall from section 2.4 that a space can be defined as a pair (S, d) of a set S of ele-
ments and a distance function d : S× S → R. The distance function determines
if the space is metric or not. Based on this definition, the problem of deriving
a distance metric can be approached using the general idea to construct a new
distance matrix from N points embedded in a metric space. Three basic steps
are necessary for this scheme:

1. Define a metric space.

2. Given an N × N input matrix (possibly non-metric), find the embedding
of N elements in this space which minimizes some penalty function.

3. Use the distance function of the metric space to generate a metric output
matrix.

In the following sections, a number of methods are presented which use this
scheme of deriving distance metrics using spatial embeddings. Section 3.3 presents
a solution based on multi-dimensional scaling. Section 3.4 shows how the FastMap
algorithm can be used. In section 3.5 it is shown how the BoostMap algorithm can
be used in the case when the input matrix consists of dissimilarity values, while
section 3.5.3 presents some advantageous modifications which can be done to
the algorithm when the input matrix is a similarity matrix (e.g. an amino acid
substitution matrix). Finally, section 3.6 proposes two genetic algorithms for
generating a metric distance matrix.

3.3 MULTI-DIMENSIONAL SCALING 33

3.3 Multi-dimensional scaling

3.3.1 Metric and non-metric multidimensional scaling

Multidimensional scaling (MDS) techniques have been known for decades, and
are among the most commonly used methods for finding an embedding of ob-
jects corresponding to the dissimilarity relations between them. The basic idea
is to find a constellation of points in d dimensions corresponding as close as
possible to the data at hand. The term “scaling” stems from the fact that such
a transformation can be seen as a scaling of points in a space with unknown
dimensionality. Multidimensional scaling techniques are sometimes called di-
mensionality reduction techniques, because the unknown space in which the data
is embedded is assumed to have higher dimensionality than the d-dimensional
space which it is to be embedded into. There a two basic types of multidimen-
sional scaling:

Metric MDS makes the assumption that dissimilarity measures between objects
to be embedded are available. It is called “metric MDS” because the trans-
formation assumes that the metricity of the data should be preserved, i.e.
it implicitly assumes metricity of the data at hand.

Non-metric MDS makes the assumption that the rank order of pairs of objects
are available; i.e. it is known for all (i, j) and (k, l) whether Di,j < Dk,l or
not. A scaling based on rank orders does not necessarily preserve the as-
sumed metricity of the original space, hence the name “non-metric MDS”.
In fact, the method makes no assumption as to whether the data at hand is
metric or not.

As briefly described in section 2.3.3, converting a similarity matrix into a dissim-
ilarity matrix, metric or not, without loss of information is problematic. Non-
metric MDS therefore seems more appealing than metric MDS, since the latter
technique assumes that dissimilarities between objects are available. Further-
more, the metricity preserving transformation of metric MDS may be problem-
atic if the dissimilarity measures at hand are not metric. This is true in most
cases when equation 2.12 is used to transform an amino acid similarity matrix
into a dissimilarity matrix.

Thus, non-metric MDS (hereafter referred to as NMDS) has been considered as
a candidate solution to the problem of recovering a metric from a metric space.
An important observation to make is that rank order of pairs of elements can
be derived directly from a similarity substitution matrix rather than from an in-
termediate dissimilarity matrix; sorting dissimilarity values ascendingly is the
same as sorting similarity values descendingly. Thus, it should not be necessary
to use equation 2.12 to convert the substitution matrix into a dissimilarity ma-
trix first. This independence from an intermediate dissimilarity matrix makes
NMDS especially appealing.

34 3 METHODS AND SOLUTIONS

Most NMDS algorithms work in iterations, where a monotonic transformation
of the current point constellation is applied to ensure that distances between
points are monotone with respect to the original ranking. Further details on this
can be found in [GCS70]. For technical reasons, this monotonic transformation
has traditionally been implemented by using the data in the distance matrix to
generate a set of “pseudo-distances”. As noted by Taguchi and Oono in [TO04],
this dependence on the data of the distance matrix conflicts with the idea that
only the rankings of distance (or similarity) measures should be required. They
propose a “pure” NMDS algorithms which does not depend on data in any dis-
tance matrix. This independence from intermediate distance measures, together
with the idea to rank object pairs according to similarity value, suggests that
this algorithm should be the ideal multidimensional scaling technique for the
problem at hand. It has previously been applied in the field of bioinformatics to
analyse genes from microarray data [TO05].

3.3.2 NMDS with proposed modification

Algorithm 3 is a slightly modified version of the “pure” NMDS algorithm pre-
sented in [TO04]. The modification is that an N × N similarity matrix S is used
to produce the ranks of pairs of objects instead of a distance matrix. In line 1, a
list G of ranked pairs (i, j) of objects is generated. The pair with highest similar-
ity value is stored at index 0, the pair with the next highest similarity value is
stored at index 1, and so on. The N objects (e.g. amino acids) to be embedded are
represented as d-dimensional position vectors ri, i ∈ {1, ..., N}. At each iteration
of the algorithm, the L1 (Manhattan) distances are computed between position
vectors. These distances are then ranked ascendingly, and differences in posi-
tions in G and H are calculated for all pairs (i, j). The values Ci,j are measures
of how closely ranked a pair is in G and H. They are used in line 13 to calcu-
late displacement vectors for all N position vectors. It it shown in [TO04] that
these displacement vectors are directed towards constellations of less potential
energy. The parameter s is an empirically derived scaling constant, typically set
to s = N−3.

The algorithm iterates until some convergence goal is reached. Such a goal may
be that the sum of magnitudes of the displacement vectors (the “potential en-
ergy”) is sufficiently small, that the mean of Ci,j is sufficiently small, or that a
maximum number of iterations has been reached.

As noted in the original paper, the algorithm is not free from the problem of local
minima. However, when dealing with a relatively small number of points, it is
affordable to run the algorithm repeatedly. The best embedding is then chosen
as the one where the Ci,j shows the least difference in ranks. For the purpose of
mapping the data of 20× 20 amino acid substitution matrices into d dimensions
to obtain a metric distance matrix, the SIMILARITYNMDS algorithm has been
implemented in Matlab. The source code is included on the CD which should

3.4 FASTMAP 35

Algorithm 3 SIMILARITYNMDS
Input: S, d, s

1: G ← [... ≥ Si,j ≥ Sk,l ≥ ...]
2: Generate N random position vectors ri in Rd

3: while not converged do
4: Scale each position vector ri in Rd so that

√
∑i |ri|2 = N

5: for all pairs (i, j) do
6: δi,j ← |ri − rj|
7: H ← [... ≤ δi,j ≤ δk,l ≤ ...]
8: for all pairs (i, j) do
9: n← index of Di,j in G

10: m← index of δi,j in H
11: Ci,j ← n−m

12: for i ∈ {1, ..., N} do
13: ri ← ri + s ∑j Ci,j(ri − rj) / |ri − rj|
14: for all pairs (i, j) do
15: Di,j ← |ri − rj|
16: return D

accompany this report.

3.4 FastMap

FastMap is an algorithm for mapping points into a d-dimensional space which
has gained much popularity since its introduction by Faloutsos et al. in [FL95].
Like MDS, FastMap is called a dimensionality reduction technique, because it solves
the problem of mapping points from a space of unknown dimensionality into a
d-dimensional space while preserving the dissimilarities as good as possible. It
solves the same problem as MDS, but with an order of magnitude lower compu-
tational complexity. Like metric MDS, FastMap assumes that N2 dissimilarities
between N objects are specified, and that these dissimilarities satisfy the triangle
inequality. As will be explained below, the algorithm works by recursively pro-
jecting points into spaces of lower dimensionality. The triangle inequality must
be satisfied for these projections to be correct. However, the resulting distance
matrix derived from the embedding is assured to be metric if a metric distance
function is chosen for the d-dimensional space. Therefore, FastMap is included
as a candidate solution to the problem of deriving a metric distance matrix from
a mapping of N points in a d-dimensional space. The effects of providing non-
metric data to the algorithm are not known in advance; experimental results will
uncover their impact on the ability of the algorithm to preserve the information
in the original matrix. FastMap has previously been applied to non-metric data

36 3 METHODS AND SOLUTIONS

Figure 3.2: Illustration of the cosine law

in [YJF98].

The main idea behind FastMap is to to recursively map points from a space of
dimensionality d into a hyperplane in this space of dimensionality d − 1. As
an example, assume that we are given a set of points in two dimensions. Two
points, a and b, are picked as pivot points, and a line is drawn between them. This
line can be seen as a one-dimensional hyperplane in the two-dimensional space.
All remaining points are projected onto this line using the cosine law. For a point
i, the distance to the first pivot point can be found using equation 3.1, where D is
a matrix containing the distances between points in the two-dimensional space.
The equation is illustrated in figure 3.2.

xi =
D2

a,i + D2
a,b − D2

b,i

2Da,b
(3.1)

As shown in [FL95], this equation can be used in the general case for mapping
points from any d-dimensional space into a d− 1-dimensional hyperplane. The
same paper also given a formal proof of equation 3.2, which specifies how a
new distance function can be computed for the projected points in the d − 1-
dimensional hyperplane.

D′i,j =
√

D2
i,j − (xi − xj)2 (3.2)

The idea of FastMap is as follows. Given an N × N distance matrix D, we pre-
tend that the N points are indeed points in d dimensions, and use equation 3.1
to project the points into a d− 1-dimensional hyperplane. For each point i, the
xi value is stored as the first coordinate of the final d-dimensional embedding.
A new distance matrix is then computed for the projected points using equation
3.2, and the entire procedure is repeated to obtain the second coordinate of the
final embedding. We continue recursively in this way until a one-dimensional
projection is reached. This projection then represents the last coordinates of the
d-dimensional embedding.

3.4 FASTMAP 37

Figure 3.3: Initial distance matrix (D) and final embedding (X)

An example is shown in figure 3.3, where D is the initial distance matrix and X
is the final embedding produced by FastMap. The example has been adopted
from [FL95]. Clearly, d = 3 has been selected in this case. The rows of X repre-
sent the the N embeddings, and each column of a row represents a coordinate.
Some readers may observe a similarity to principal component analysis (PCA),
where the principal components are decreasingly capable of preserving informa-
tion. The same can be said about the embedding produced by FastMap, where
the projection into the first hyperplane (of dimensionality d − 1) preserves the
largest fraction of information.

Algorithm 4 FASTMAP

Input: d, D
Extern: X, c . X and c are global variables

1: if d = 0 then
2: return X
3: c← c + 1
4: a, b← CHOOSEDISTANTOBJECTS(D)
5: if Da,b = 0 then
6: for i← 1, N do
7: Xi,c ← 0
8: return X
9: for i← 1, N do . Project points using the cosine law

10: Xi,c ← (D2
a,i + D2

a,b − D2
b,i) / 2Da,b

11: for i← 1, N − 1 do . Generate new distance function
12: for j← i + 1, N do
13: D′i,j ←

√
D2

i,j − (Xi,c − Xj,c)2

14: D′j,i ← D′i,j
15: return FASTMAP(d− 1, D′)

Pseudocode for FastMap is shown in algorithm 4. As explained, the algorithm
calls itself recursively. Variables X and c are global to all recursive calls. X stores
the coordinates of the final embedding, while c simply points to the appropri-
ate column of X. Line 1 checks if the algorithm has reached a point of zero
dimensionality, which means that the final embedding can be returned. In line
4, two pivot points are chosen for the current recursive call using the external

38 3 METHODS AND SOLUTIONS

procedure CHOOSEDISTANTOBJECTS. This procedure is explained in detail be-
low. Lines 5 to 8 simply check if the distance between the two pivot points is
zero, which means that all distances between all points are zero (because the
two pivot points should ideally be the two points farthest apart in the current
space). If this is the case, there is no point in continuing, so the coordinate values
are set to zero and the resulting embedding is returned. Lines 9 to 10 project all
points onto a hyperplane of dimensionality d− 1, and lines 11 to 14 calculates a
new distance matrix for the projected points. Finally, the recursive call is made in
line 15 with a decremented dimensionality counter and the new distance matrix
as arguments.

It should be noted that the calculation of a new distance matrix in lines 11 to 14 is
not strictly necessary. Instead, distance values could be computed on the fly for
a specific d using equation 3.2 and X in lines 9 to 10. Thus, the pseudocode is not
the most efficient one, but the most illustrative one in terms of understanding
the algorithm.

Using the final embedding returned by the algorithm, any metric distance func-
tion can be used to generate a metric distance matrix. For example, the euclidean
distance between two points i and j can be calculated as follows:

δi,j =
√

(Xi − Xj)(Xi − Xj)T (3.3)

where Xi and Xj are row vectors of X.

Algorithm 5 CHOOSEDISTANTOBJECTS

Input: D
1: b← randomly selected number from {1, ..., N}
2: a← argmaxa∈{1,...,N}Da,b
3: b← argmaxb∈{1,...,N}Da,b
4: return a, b

A question which remains to be answered is how to pick the pivot points a and
b. All other points are to be projected onto a hyperplane perpendicular to the
line between these two points, so it is intuitively desirable to choose the two
points farthest apart. The straightforward way of finding the two points farthest
apart clearly has a complexity which is quadratic in N. This is not ideal in cases
where N is large, so a heuristic algorithm which is linear in N is proposed in
the original paper. Pseudocode is shown in algorithm 5. The algorithm starts
by initializing b to a random point. Then a is selected to be the point farthest
apart from b. This can clearly be achieved in Θ(N) time. Finally, b is updated
to the point farthest part from a. Points a and b should now intuitively be a
good candidate solution to the problem of finding the two points separated by
the greatest distance. As noted in the original paper, the two middle steps of the
algorithm can be repeated a constant number of times while still preserving a
complexity linear in N.

3.5 BOOSTMAP 39

In this work, FastMap is compared with other algorithms for generating a metric
distance function from a metric embedding. Since FastMap requires a matrix
of distances to be specified, a similarity matrix like an amino acid substitution
matrix must fist be converted into a dissimilarity matrix before the algorithm
can be applied. Thus, the necessary steps to generate a metric distance matrix
from a substitution matrix are:

1. Convert similarity matrix S into a dissimilarity matrix D using equation
2.12.

2. X ← FASTMAP(d, D).

3. Generate a metric distance matrix O from X using a metric distance func-
tion. The L2 norm was found to produce the best matrices in this work.

4. Return O.

Two points should be made regarding the steps presented above:

• The preservation of information is questionable when converting a similar-
ity matrix into a dissimilarity matrix using a transformation such as equa-
tion 2.12. This is explained in detail in section 3.5.3, where the concept of
triangular misclassifications is introduced.

• The result of converting a similarity matrix like an amino acid substitution
matrix into a dissimilarity matrix using equation 2.12 is not metric. As ex-
plained above, FastMap assumes data which satisfy the triangle inequality,
and it is uncertain how it will perform when provided with a non-metric
distance matrix.

Nevertheless, FastMap represents a straightforward approach to the problem of
mapping N points into a d-dimensional space using an N × N distance matrix.
Metric multidimensional is a classical approach to this problem, but FastMap
was chosen because it essentially solves the same problem with an order of mag-
nitude lower computational complexity. The Matlab source code of the imple-
mentation is included on the enclosed CD.

3.5 BoostMap

BoostMap is an algorithm introduced recently by Athitsos et al. in [AASK04b]
and [AASK04a]. It is used to map both metric and non-metric data into a metric
space. This makes it highly interesting as a possible solution to the problem of
mapping non-metric substitution matrices into metric space. BoostMap is based
on the more general optimization algorithm AdaBoost, which is presented first.

40 3 METHODS AND SOLUTIONS

3.5.1 AdaBoost - Adaptive Boosting

BoostMap builds upon AdaBoost (Adaptive Boosting), an algorithm introduced
in [FS97] for improving the accuracy of prediction rules. In general, boosting
refers to the strategy of combining many less accurate prediction rules into a
highly accurate combined prediction rule. In AdaBoost, such a prediction rule
is a classifier hj. Assume that we are given a set {x1, ..., xt} of entities xi of some
kind. The entities may be scalars, vectors or any kind of data structure. Given
such an entity xi as input, the classifier hj outputs a value from the set {−1, 1}.
For each entity xi, we are also given a label yi ∈ {−1, 1}. This label makes is
possible to measure the accuracy of the classifier hj; a perfect classifier would
output hj(xi) = yi for all xi.

A core idea of the AdaBoost algorithm is to maintain a distribution w of weights,
where wi,j corresponds to the weight of the pair (xi, yi) in training round j. The
set of pairs (xi, yi) is called a training set. At each iteration of the algorithm, a
weak learning algorithm is called. Such a weak learning algorithm takes the cur-
rent weights of the training set as input, and outputs a weak classifier hj for
training round j. The accuracy of this classifier is then calculated, and a para-
meter αj is assigned to it based on the accuracy. Then the training weights are
updated. Weights of incorrectly classified entities are increased, so that the weak
learning algorithm is forced to focus on these the next training round. Intuitively,
this would cause the weak learning algorithm to choose a weak classifier which
corrects the “mistakes” done by other weak classifiers.

A total of J weak classifiers are selected. The final strong classifier is found by
taking the sign of the sum of output values from the weak classifiers, where each
classifier is weighted by its importance parameter αj. Pseudocode for AdaBoost
is shown in algorithm 6.

Algorithm 6 ADABOOST, high-level pseudocode
Input: (x1, y1), ..., (xt, yt) . xi ∈ X, yi ∈ {−1, 1}
Extern: WEAKLEARNER

1: for i← 1, t do
2: wi,1 = 1

t

3: for j← 1, J do
4: Call WEAKLEARNER({wi,j | i ∈ {1, ..., t}})
5: Get weak classifier hj
6: Calculate the error of hj
7: Choose an optimal αj ∈ R

8: Set wi,j+1 = wi,j exp(−αjyihj(xi))/zj . zj is a normalization factor

9: return H(x) = sign(∑J
j=1 αjhj(x))

The full details of significance of the weight update factor (line 8) can be found
in [SS99].

3.5 BOOSTMAP 41

Figure 3.4: a) Two-dimensional points b) M1 embedding of two-dimensional
points c) Calculation of M2 embedding of a point

3.5.2 BoostMap - using AdaBoost to produce embeddings

The main idea of BoostMap is to use one-dimensional embeddings as classifiers,
and combine many such one-dimensional embeddings into a high-dimensional
embedding with a low error rate in relation to the given distance matrix. In
essence, this is achieved as follows.

• Given an N × N distance matrix, the goal is to find a metric embedding of
N objects Z = {z1, ..., zN}.

• The set X consists of triples xi = (za, zb, zc) of distinct objects.

• A proximity classifier PX(za, zb, zc) is defined. PX outputs 1 if zc is closer
to za than zb is, -1 if zb is closer to za than zc is or 0 if zb and zc are equally
close to za. For a given triple xi = (za, zb, zc), the associated label is yi =
PX(za, zb, zc).

• Each one-dimensional embedding M(x) has a proximity classifier h(x) =
h(za, zb, zc) with the same interpretation as PX.

• Using the AdaBoost algorithm presented in the previous section, weak
classifiers from one-dimensional embedding are chosen by a weak learner.
The corresponding one-dimensional embeddings are then combined into
a high-dimensional embedding. Weak classifiers are weighted so that the
number of misclassifications done by the high-dimensional embedding in
relation to the PX values is minimized.

Two types of one-dimensional embeddings of objects are specified: M1 and M2.
Given an N × N distance matrix D, both M1 and M2 can be calculated in Θ(N)
time. For an M1 embedding, a single reference object r is selected. The embed-
dings of all other objects are then calculated as M1r(x) = Dx,r. For example,

42 3 METHODS AND SOLUTIONS

consider the set of two-dimensional objects shown in figure 3.4a. If y is selected
as reference object, we obtain the embedding M1y, which is shown in figure 3.4b.
Figure 3.4 has been reproduced and slightly modified from [AASK04a].

The idea behind M2 is to draw a line between two reference objects x1 and x2.
One-dimensional embeddings of all other objects are then found as the orthog-
onal projections of the objects onto this line. They are calculated as shown in
equation 3.4, which is illustrated in figure 3.4c. Observe that this is exactly the
same one-dimensional embedding as used by FastMap.

Each M1 or M2 embedding has a classifier h(x) associated with it. The classifi-
cation error of h(x) is expected to be high, but nevertheless better than a random
classifier since the embeddings are based on data from the distance matrix.

M2x1,x2 =
D2

x,x1
+ Dx1,x2 − D2

x,x2

2Dx1,x2

(3.4)

To evaluate the accuracy of a classifier, Schapire et al. has defined the function
Zj which gives a measure of the appropriateness at iteration j of the algorithm.
The function is shown in equation 3.5.

Zj(h, α) =
|T|

∑
i=1

wi,j exp(−αyih(za,i, zb,i, zc,i)) (3.5)

In this function, T is the training set {x1, ..., x|T|}, where a triple xi is represented
as (za,i, zb,i, zc,i). If yi and h(xi) = h(za,i, zb,i, zc,i) has the same value, the product
between them equals one, thereby contributing less to Zj than if they were un-
equal. The full details of Zj can be found in [SS99]. In this context it is sufficient
to say that if Zj < 1, the error of the combined strong classifier H(x) is expected
to decrease if the weak classifier h(x) is chosen.

BoostMap is shown in algorithm 7. B is a set consisting of pairs (hc, αc) of classi-
fiers and classifier weights. Lines 4 to 20 represent the weak learning steps of the
algorithm. Lines 4 to 9 check if the Zj value of any selected classifier, calculated
with inversed classifier weight, is less than one. If so, it states that it is advanta-
geous to add this classifier to B using its inversed weight. This is obviously the
same as removing the classifier.

Lines 10 to 16 check all currently selected weak classifiers to see if there exists a
new α which gives the classifier a Zj value of less than one. If this is the case,
it means that it is advantageous to add this classifier with the new weight, so
the weight is effectively added to the classifier which is already included in B.
A z value of 0.9999 is used in practice, to avoid many small weight adjustments
which do not contribute significantly to the combined strong classifier. Note
that the range of possible values for the new α is lower bounded by the existing
weight. This is required to ensure that the embedding induced by the combined

3.5 BOOSTMAP 43

Algorithm 7 BOOSTMAP

Input: T = {(x1, y1), ..., (xt, yt)} , |F1|, |F2| . T is the training set
1: for all training triples xi do
2: wi,1 ← 1/|T|
3: while termination conditions not met do
4: z← minc=1,...|B| Zj(hc,−αc)
5: if z < 1 then
6: g← argminc=1,...|B|Zj(hc,−αc)
7: hj, αj ← hg, −αg
8: B← B− (hj, αj) . Remove classifier
9: goto 24

10: z← minc=1,...|B|{minα∈[−αc,∞) Zj(hc, α)}
11: if z < .9999 then
12: g← argminc=1,...|B|{minα∈[−αc,∞) Zj(hc, α)}
13: hj ← hg
14: αj ← argminα∈[−αc,∞)Zj(hg, α)
15: αg ← αg + αj . Modify weight
16: goto 24
17: Fj1 ← set of |F1| random M1 embeddings
18: Fj2 ← set of |F2| random M2 embeddings
19: Fj ← Fj1 ∪ Fj2
20: g← argminc=1,...|Fj|{minα∈[0,∞) Zj(hc, α)}
21: hj ← hg
22: αj ← argminα∈[0,∞)Zj(hc, α)
23: B← B ∪ (hj, αj) . Add new classifier
24: for all training triples xi do
25: wi,j+1 ← wi,j exp(−αjyihj(xi)) / Zj(hj, αj)

26: j← j + 1
27: return H(x) = sign(∑J

j=1 αjhj(x))

44 3 METHODS AND SOLUTIONS

classifier H(x) is a metric space, because non-negative weights are required for
non-negative distance values [AASK04b].

As for the problem of finding an optimal α value, it it convenient that Zj is a con-
vex function with exactly one extremal point [SS99]. Thus, minα∈[−αc,∞) Zj(hc, α)
can be implemented as a binary search procedure, a strategy which has been fol-
lowed in this work. The procedure simply starts at the existing weight value and
doubles it until a point is reached where the gradient is positive. This point is
then used as an upper bound, and a binary search is applied between the upper
and lower bounds until the extremal point is found with the desired amount of
precision.

The strong classifier H(x) produced by BoostMap is a J-dimensional embed-
ding, where J is the number of weak classifiers. The weights of the weak clas-
sifiers are used to define a weighted Manhattan distance. Given two objects u
and v, the distance between them in the J-dimensional space can be calculated as
shown in equation 3.6. The values uj and vj are found using the one-dimensional
embedding associated with classifier hj.

D((u1, ..., uJ), (v1, ..., vJ)) =
J

∑
j=1

αj|uj − vj| (3.6)

Given a non-metric distance function in the form of a N × N distance matrix, a
straightforward way of deriving a metric distance matrix would be to use algo-
rithm 7 directly. The metric distance matrix is then found by applying equation
3.6 to all N × N pairs of objects.

In the case of amino acid substitution matrices, however, we are dealing with
similarity matrices. Recall that the one-dimensional M1 and M2 embeddings
require distances between objects to be specified to be able to project them into
one dimension. Therefore, it is necessary to convert the similarity matrix into a
dissimilarity matrix before using BoostMap. Given a similarity matrix, the steps
necessary to generate a distance matrix using BoostMap are:

1. Use equation 2.12 to convert the similarity matrix S into a distance matrix
Dnon-metric.

2. Use BoostMap to produce an embedding based on the distance matrix
Dnon-metric.

3. Obtain a metric distance matrix Dmetric using the embedding produced by
BoostMap and equation 3.6.

Readers should note that the presentation of the algorithm in [AASK04b] con-
tains an error. Step 1 and 2 of the algorithm presented there states that a selected
classifier should be removed if the Zj value using its current classifier weight is

3.5 BOOSTMAP 45

less than one. The correct action is to remove a classifier if the Zj value using its
inversed current classifier weight is less than one, which has been confirmed by
the authors.

3.5.3 Proposed BoostMap modifications

Recall that a BoostMap classifier checks whether j is closer to i than k is. In
this work, such a classification in called a triangular misclassification if it does not
correspond with the data in the original substitution matrix.

The strategy of minimizing an explicit measure of embedding quality (i.e. tri-
angular misclassifications) separates BoostMap from many other embedding
methods like classical multidimensional scaling and FastMap, which do not at-
tempt to optimize a quantitative quality measure.

This seems especially appealing when the matrices are given in the form of simi-
larity matrices, for example amino acid substitution matrices. Because the diago-
nal similarity scores of amino acid substitution matrices are not equal, there is no
straightforward way of converting them into a distance matrix with d(i, i) = 0
for all i ∈ {1, ..., N}, metric or not, without losing information. As an example,
consider applying the similarity to dissimilarity conversion defined in equation
2.12 to the PAM250 substitution matrix to obtain the distance matrix DPAM250.
Then check all triples (i, j, k) where 0 < i < j < k ≤ 20. For PAM250, check
whether j is more similar to i than k is. For DPAM250, check whether j is closer to
i than k is. A simple program to do these checks reveals that the two matrices
disagree on almost 20% of the triples.

This problem of transforming a similarity matrix (with unequal diagonal ele-
ments) into a distance matrix suggests that BoostMap may be a more appro-
priate choice than algorithms which try to minimize the distance between two
matrices, because it is not clear which matrix we want to minimize the distance
from. However, the straightforward way of using the BoostMap algorithm pre-
sented in the previous section has the paradoxical disadvantage of using a ma-
trix where a relatively large amount of misclassifications has already been made.
We are interested in a metric distance matrix which reflects the data in the simi-
larity matrix as close as possible, not the intermediate distance matrix generated
by equation 2.12.

To avoid this problem, two modifications to the algorithm are proposed for the
purpose of handling similarity matrices like amino acid substitution matrices:

• Training triples x = (i, j, k) are assigned labels based on the original sim-
ilarity matrix, not the generated distance matrix. If j is more similar to i
than k, x is assigned the label 1. If k is more similar to i than j, x is assigned
the label −1. If j and k are equally similar to i, x is assigned the label 0.

46 3 METHODS AND SOLUTIONS

• One-dimensional embeddings are extracted directly from the similarity
matrix, in addition to embeddings from the distance matrix generated by
equation 2.12.

The second point requires some further explanation. The one-dimensional em-
beddings produced by BoostMap are expected to maintain some degree of clas-
sification accuracy relative to the distance matrix generated by equation 2.12.
However, it is not clear how accurate they will be relative to the original sim-
ilarity matrix, since the distance matrix already includes a significant amount
of classification error. In addition, a larger set of unique one-dimensional em-
beddings to choose from is intuitively better, since its greater degree of diversity
increases the probability of finding a weak classifier which can correct the mis-
takes made by classifiers already chosen.

Therefore, a simple method of extracting one-dimensional embeddings from the
similarity matrix is proposed. Assume that a reference object r is given. If the
similarity matrix is symmetric, all similarities between r and other elements are
given by a single column (or row) of the matrix (s(r, t) = s(t, r) for all t because
of symmetry). Thus, this column (or row) can be extracted and converted sepa-
rately into a one-dimensional embedding. Converting this similarity vector svr
into a distance vector is much simpler than converting the similarity matrix into
a distance matrix. For amino acid substitution matrices, the largest element of
such a similarity vector is svr(r) in most cases. The corresponding distance vec-
tor dvr can then be found as dvr(i) = svr(r) − svr(i) for all i ∈ {1, ..., N}. It
represents a one-dimensional spatial embedding directly, since elements of the
vector specifies the distance to the reference object r. Furthermore, this distance
vector makes no misclassifications relative to the similarity vector from which it
was generated. The name M3 will be used when referring to such embeddings
below.

The case of two reference objects is a bit trickier. Using the same rationale as
above, two columns (or rows) can be extracted from the similarity matrix. These
need to converted into distance vectors so that the one-dimensional embedding
can be computed using equation 3.4. However, a problem occurs if svx1(x1) 6=
svx2(x2). This means that the vector elements will be translated by different
amounts when using the method described above for conversion into a distance
vector. It is a problem because it leads to a situation where dvx1(x2) 6= dvx2(x1),
which in turn leads to ambiguity in relation to equation 3.4. An ad hoc solution
which was found to work well is to calculate the mean of svx1(x1) and svx2(x2).
The distance vector elements can then be found as shown in equation 3.7 for
j ∈ {1, 2} and i ∈ {1, ..., N}.

dvxj(i) =
svx1(x1) + svx2(x2)

2
− svxj(i) (3.7)

The resulting values of dvx1(x1) and dvx2(x2) are set to zero regardless of the
result of the computation in equation 3.7. Using the two distance vectors dvx1

3.6 PROPOSED GENETIC EMBEDDING ALGORITHMS 47

and dvx2 , equation 3.4 is used to generate a one dimensional embedding. Em-
beddings generated in this way will be called M4 from here on.

In essence, the proposed modification of BoostMap can be summarized as fol-
lows:

1. Generate distance matrix S from similarity matrix Dnon-metric using equa-
tion 2.12.

2. Generate training set T using similarity matrix S to assign labels to triples
of objects instead of distance matrix Dnon-metric.

3. Run BoostMap as shown in algorithm 7, with the modification that |F3| M3
embeddings and |F4| M4 embeddings are generated in addition to the M1
and M2 embeddings. Use Dnon-metric to generate M1 and M2 embeddings.
Use S to generate M3 and M4 embeddings. Set Fj ← Fj1 ∪ Fj2 ∪ Fj3 ∪ Fj4.

4. Obtain a metric distance matrix Dmetric using the embedding produced by
BoostMap and equation 3.6.

The inclusion of the M3 and M4 embeddings means that the computational com-
plexity of BoostMap is increased. Although this is affordable in most cases when
dealing with 20× 20 matrices, the computation time can be controlled by tuning
the number of embeddings considered at each iteration – obviously at the cost
of less accuracy.

Source code for both the original and the modified versions of BoostMap is in-
cluded on the enclosed CD.

3.6 Proposed genetic embedding algorithms

Two potential problems can be observed in the embedding algorithms presented
in the previous sections:

• Algorithms FASTMAP and SIMILARITYNMDS use a fixed metric distance
function. It is unclear whether this function is the best one to preserve the
information in the original substitution matrix.

• Algorithms like FASTMAP and BOOSTMAP are based on the idea to project
elements into spaces of lower dimensionality, and to combine these pro-
jections into a final embedding. This approach may not be able to rep-
resent all possible constellations of points in the d-dimensional space. In
BOOSTMAP, each one-dimensional embedding represents one dimension
of the d-dimensional embedding. Thus, the number of points which can
be represented by the algorithm is determined by the number of possible
one-dimensional embeddings.

48 3 METHODS AND SOLUTIONS

To overcome these potential limitations, it is desirable to introduce higher de-
grees of freedom. An algorithm for embedding N points in d dimensions based
on a (possibly) non-metric distance function should ideally have the following
two degrees of freedom:

• The algorithm should be able to represent all possible constellations of
points in d dimensions.

• The algorithm itself should choose the metric distance function which fits
the data at hand best.

Higher degrees of freedom mean that the size of the solution space is increased
dramatically, in turn leading to problems of higher computational complexity.
The problem of finding an optimal spatial embedding with respect to some cost
function can be seen as a search in a solution space consisting of all embed-
dings in a metric space. Removing the limitation of using a fixed distance func-
tion means that the size of the solution space is increased exponentially; it now
consists of all embeddings in all metric spaces. An exhaustive search scheme
is obviously not an option, since the size of the solution space is infinite. To
find near-optimal candidate solutions to such problems, some kind of stochastic
algorithm must therefore be applied. Genetic algorithms are popular stochastic
algorithms for estimating near-optimal solutions to such problems.

In this section, two genetic algorithms for embedding N points in a metric space
are proposed. First, an introduction to genetic algorithms is given by means of a
preliminary attempt to use an evolutionary scheme to generate a metric distance
function. Then a genetic algorithm which uses a fixed metric distance function
is proposed. Finally, a cooperative coevolutionary genetic algorithm is proposed.
This final algorithm eliminates the limitation of using a fixed metric distance
function, and thus attempts to find a near-optimal metric embedding in a search
space consisting of all possible embeddings in a large set of metric spaces.

3.6.1 A brief introduction to genetic algorithms

Most stochastic search algorithms operate on a single solution of the problem at
hand. In contrast, genetic algorithms (often called evolutionary algorithms) oper-
ate on populations of many solutions from the search space. The idea is to evolve
the population of solutions through a number of evolutionary steps which pro-
duce new generations of solutions. Each such step is designed so that it increases
the average fitness of the candidate solutions in the population with respect to
the problem. Fitness is simply the value of a function which estimates how capa-
ble the candidate solution is of solving the problem. For the problem of finding
a metric distance matrix, a measure of metricity would obviously be included in

3.6 PROPOSED GENETIC EMBEDDING ALGORITHMS 49

Figure 3.5: Evolutionary process of a generic genetic algorithm

the fitness function. Note that a cost function will be used in the genetic algo-
rithms presented in this work. Obviously, maximizing a fitness function is the
same as minimizing a cost function.

There are three basic steps in the evolutionary process of a genetic algorithm:

Survival Some of the fittest solutions survive by being copied directly from gen-
eration n to generation n + 1.

Crossover Two fit parent solutions are selected from generation n. A new solu-
tion is generated for generation n + 1 by applying a binary crossover oper-
ator to the two parent solutions. The crossover operator generates the new
solution by copying some pieces from each of the parent solutions.

Mutation A small number of new solutions are generated for generation n + 1
by selecting a fit solution from generation n and applying a mutation op-
erator to it. The mutation operator works by changing some pieces of the
selected solution.

The same evolutionary process is then applied to the new generation of candi-
date solutions. Carefully designed genetic algorithms will guide the search into
areas of the search space containing good candidate solutions to the problem at
hand. A graphical illustration of the three basic steps of the evolutionary process
is shown in figure 3.5, where candidate solutions are represented as geometrical
constructions.

The search stops when the evolutionary process has reached a maximum num-
ber of generations, or when the fitness of the best solution found so far has
reached an appropriate level. The search process is vulnerable to local extremal
points because the crossover operator will typically produce candidate solutions
which are similar to their parents. The purpose of the mutation operator is to
introduce a jump in diversity in the population, thereby enabling the search
process to escape such local extremes. This is illustrated in figure 3.6, where
candidate solutions are shown as points of a cost function over the search space.
Mutation allows one of the candidate solutions to escape the “valley” which all

50 3 METHODS AND SOLUTIONS

Figure 3.6: Mutation operator can guide the search out of local extremes

of the solutions are currently in. If this solution survives further evolutionary
steps, a new sub-population can begin to evolve in the other “valley”, which
contains the global minimum. Note that the mutation step can be dropped if the
fitness function contains no local maxima or, alternatively, if the cost function
contains no local minima.

Readers interested in a more thorough introduction to genetic algorithms are
referred to [BBM93a].

3.6.2 A preliminary genetic algorithm

As a preliminary solution to the problem of finding a metric distance matrix
which corresponds as close as possible to the data in a non-metric substitution
matrix, consider a solution space consisting of positive symmetric matrices. Al-
gorithm 8 shows how the genetic approach could be used to find a metric dis-
tance matrix which retains some proximity to the original non-metric matrix.
The initial population is generated by sampling values from a normal distribu-
tion (line 5). Elements from the non-metric distance matrix D are used as mean
values, and input parameter σ is used as standard deviation. The parameter σ
must be chosen with care; if the distance matrix D is far from being metric, it
should be given a larger value than if D is almost metric.

Each evolutionary step starts by computing the cost of all matrices in the current
population (line 12). In the same loop, each solution is checked to see if it is the
best one found so far. If so, it is stored in a separate variable. Precomputing all
cost values in this way is not strictly necessary. However, since each call to the
TOURNAMENTSELECT procedure (to be explained below) implies checking the
cost of several matrices from the population, this avoids having to recompute
the cost of the same matrix more than once. The COST function is merely an im-
plementation of equation 3.8. In this equation, P[i] is the ith candidate solution
matrix of the current population. P[i]′m,n is found using equation 2.22.

cost =
N−1

∑
m=1

N

∑
n=m+1

γ(P[i]m,n − Dm,n)
2 + υ(P[i]m,n − P[i]′m,n) (3.8)

3.6 PROPOSED GENETIC EMBEDDING ALGORITHMS 51

Algorithm 8 Preliminary algorithm for generating metric distance matrices
Input: D, S, σ, α, β . D is an N × N matrix, S is the population size

1: P← ∅ . P is the initial population
2: while |P| < S do
3: C ← empty N × N matrix
4: for all upper triangular matrix elements Cm,n do
5: Cm,n ← NORMDIST(Dm,n, σ)
6: Cn,m ← Cm,n

7: P← P ∪ C . Add matrix to initial population
8: ε, B← ∞, D . ε is the cost of best solution B
9: while ε is too large do

10: Q← ∅
11: for i← 1, |P| do
12: E[i]← COST(P[i], D)
13: if E[i] < ε and ISMETRIC(P[i]) then
14: ε, B← E[i], P[i]
15: while |Q| < α|P| do . α controls survival rate
16: i← TOURNAMENTSELECT(E)
17: if i has not been selected previously in this iteration then
18: Q← Q ∪ P[i]
19: Q← Q ∪ {β|P| elements crossed over from P}
20: Q← Q ∪ {(1− α− β)|P| elements mutated from P}
21: P← Q
22: return B . Return the best solution found

52 3 METHODS AND SOLUTIONS

As can be seen, the constant γ governs the influence of the distance between
P[i] and D. Likewise, the constant υ governs the influence of the non-metricity of
P[i]. Setting γ = 0 results in a cost function equal to the non-metricity value of
the candidate solution matrix. In contrast, υ = 0 results in a cost function equal
to the squared distance between the candidate solution matrix and the original
distance matrix. Obviously, the latter case is not interesting here, since we are
interested in finding metric matrices.

Note that the call to the ISMETRIC function in algorithm 8 (line 13) can be skipped
by having the COST function return two values, the squared distance between
P[i] and D and the non-metricity of P[i]. The call can then be replaced by a
simple metricity value check.

Algorithm 9 TOURNAMENTSELECT

Input: E . E is an array of cost values
Extern: K . The value of K is problem dependent

1: min, k← ∞, 1
2: for i← 1, K do
3: j← b RAND ×|E| c+ 1
4: if E[j] < min then
5: min, k← E[j], j
6: end if
7: end for
8: return k

Procedure TOURNAMENTSELECT generates K random indices for the list E of
cost values, and returns the index corresponding to the least costly of the cor-
responding matrices. This is known as tournament selection (hence the name of
the procedure), a selection technique commonly used in genetic algorithms. To
avoid premature convergence in a local extremal point, we should not simply
copy the α|P| best solutions from the current population. Parameter K allows us
to adjust the balance between selection greediness and population diversity. Set-
ting K = |P| results in a greedy selection scheme. K = 1 is the same as selecting
elements at random. The implementation is shown in algorithm 9, where RAND
is a function which returns a number in the interval [0, 1).

The crossover step (line 19) is not shown in detail. It simply selects two parent
matrices from the current population by tournament selection. Upper triangu-
lar cells of the offspring matrix are then generated by selecting k crossover points,
where the sequence of matrix cells between two crossover points are copied from
a randomly selected parent. This can be achieved by storing the upper triangu-
lar cells of each matrix as a one-dimensional vector. For example, a one-point
crossover starts by generating a random cut point. The offspring is then gener-
ated by copying the value on one side of the cut from one parent, and the value
on the other side from the other parent. An alternative to this scheme is uni-
form crossover, where each matrix cell value is copied from a randomly selected

3.6 PROPOSED GENETIC EMBEDDING ALGORITHMS 53

parent. This is effectively the same as setting k equal to the number of upper
triangular cells. Several analysis have been carried out to determine which tech-
nique is best, uniform crossover or k-point crossover. In [BBM93b], a summary
of important comparison results is given. The conclusions are contradictive, and
show that the choice of k is highly problem dependent.

The mutation step (line 20) picks a candidate solution matrix by tournament
selection. This matrix is then mutated by sampling new matrix cell values from
a normal distribution, where the original cell values are used as means and σ
is used as standard deviation. As mentioned earlier, σ must be chosen large
enough to allow the search process to escape local extremes.

In essence, algorithm 8 generates a matrix by minimizing a cost function which
consists of two parts, the non-metricity of the matrix and the distance to the
input matrix. This should guide the search into areas of the search space which
contain candidate matrices of high metricity. The algorithm was, however, not
found to perform well in practice. For the search to find any metric matrix at all,
the non-metricity component of the cost must be weighted much heavier than
the distance component. In addition, σ must be chosen so large that it causes
the search to fluctuate out of areas where proximity to the original non-metric
matrix is preserved.

The problem lies in the crossover operator of the algorithm. Given two parent
matrices with some degree of metricity, how do we design a crossover operator
which carries this metricity over to the child matrix? Observe that an N × N
distance matrix can be seen as a fully connected graph of N nodes. A cut in this
graph will affect all triangles which include edges crossing the cut. If there are
N1 nodes on one side of the cut and N2 nodes on the other side, a total of N1N2
triangles will be affected. Thus, the crossover operator presented above does not
preserve the the triangle inequality well.

Nevertheless, algorithm 8 serves as an introduction to the idea of using a genetic
scheme to generate a metric distance matrix. It is desirable to modify the algo-
rithm so that metricity is implicit in the way the solutions to the problem are rep-
resented. The algorithm can then focus on preserving the information contained
in the original non-metric matrix, and does not have to minimize metricity at
the same time. The idea of embedding N elements in a metric space fits this re-
quirement perfectly; rather than trying to find a metric distance matrix directly,
a genetic scheme is used to find the least costly embedding. The next section
presents the first of two such algorithms proposed in this work.

3.6.3 Algorithm using fixed metric distance function

The algorithm GAEMBEDDING (Genetic Algorithm Embedding) uses a fixed
metric distance function to find a near-optimal embedding of N elements in d
dimensions, in accordance with a specific cost function. Its pseudocode is shown
in algorithm 10.

54 3 METHODS AND SOLUTIONS

Algorithm 10 GAEMBEDDING

Input: M, S, σ, α, β, d . M is a (possibly) non-metric matrix

1: R← CLASSICALMDS(M, d) . d is the number of dimensions
2: P← ∅
3: while |P| < S do . S is the size of populations
4: C ← R
5: for each matrix element Cm,n do . Generate initial population
6: Cm,n ← NORMDIST(Cm,n, σ) . σ controls population diversity
7: P← P ∪ C

8: ε, B← ∞, R . ε is cost of best solution B
9: while ε is too large do

10: Q← ∅
11: for i← 1, |P| do
12: E[i]← GAEMBEDDINGCOST(P[i], M)
13: if E[i] < ε then
14: ε, B← E[i], P[i]
15: while |Q| < α|P| do . α controls survival rate
16: i← TOURNAMENTSELECT(E)
17: Q← Q ∪ P[i]
18: while |Q| < (α + β)|P| do . β controls crossover rate
19: i← TOURNAMENTSELECT(E)
20: j← TOURNAMENTSELECT(E)
21: C ← empty N × d matrix
22: for each matrix element Cm,n do
23: if RAND < .5 then
24: Cm,n ← P[i]m,n . Select from mother embedding
25: else
26: Cm,n ← P[j]m,n . Select from father embedding
27: Q← Q ∪ C
28: while |Q| < |P| do . Mutation rate is 1− α− β
29: i← TOURNAMENTSELECT(E)
30: C ← P[i]
31: for each matrix element Cm,n do
32: if RAND< .5 then
33: Cm,n ← NORMDIST(Cm,n, σ)
34: Q← Q ∪ C
35: P← Q . Update population for next iteration

36: for each row vector Bi of B do
37: for each row vector Bj of B do

38: Oi,j =
√

(Bi − Bj)(Bi − Bj)T . Euclidean distance

39: return O . Return metric distance matrix

3.6 PROPOSED GENETIC EMBEDDING ALGORITHMS 55

Line 1 of the algorithm uses classical metric multidimensional scaling to obtain
an initial candidate embedding of the N elements in d dimensions. As explained
in section 3.3, metric multidimensional scaling could be problematic if the data
at hand is not metric. Nevertheless, it quickly produces an embedding which
can be seen as an approximate solution. An alternative would be to generate
random constellations of N points in d dimensions. Some initial trials showed
that the two alternatives were able to find embeddings of near equal minimal
cost as long as σ was chosen large enough, but typically after a smaller number
of iterations when starting with the metric MDS solution.

Lines 5 to 7 generate an initial population of embeddings. Each embedding C is
coded as a N × d matrix, where each row corresponds to the coordinates of one
element. This is the same way of representing embeddings as the X matrix used
by FastMap (see figure 3.3). Coordinates are sampled from a normal distribution
where the corresponding coordinate of the metric MDS solution is used as mean
and the user defined parameter σ as standard deviation.

At each iteration of the algorithm, the next generation population Q is initialized
as an empty set. The costs of all embeddings in the current population are then
calculated using the GAEMBEDDINGCOST procedure, which is explained below.
Each embedding is checked to see if it is the best one found so far. Then a total of
α|P| embeddings are copied directly from population P to population Q in lines
15 to 17. Each surviving embedding is picked by tournament selection.

A total of β|P| new embeddings are generated by crossover as follows. A father
and a mother embedding is picked by tournament selection. For each coordinate
n ∈ {1, ...d} of each element m ∈ {1, ..., N}, a uniformly distributed random
number from the interval [0, 1] is sampled. If this number is lower than 0.5, the
coordinate is copied from the father embedding. If not, it is copied from the
mother embedding.

Finally, (1− α− β)|P| elements of Q are generated in lines 28 to 34 by “mutat-
ing” elements picked by tournament selection from P. The mutation is achieved
by sampling new coordinate values from a normal distribution, using the origi-
nal coordinate value as mean. This is a rather radical kind of mutation. In fact, it
does not correspond with the biological meaning of the word at all. In most kind
of genetic algorithms where individuals from a population are represented as bit
vectors, the mutation step is achieved by flipping the bit value in one position
of such a vector. However, the steps used in lines 28 to 34 of GAEMBEDDING
were found to work well in practice. Observe that embeddings are “mutated”
in the same way as the initial population is generated. If the embedding picked
by tournament selection is close to a local extremal point, sampling a new em-
bedding using the same measure of diversity as was used to generate the initial
population should help to guide the search out of this local extreme. Chang-
ing one coordinate of one embedded element represents a much smaller spatial
change, and is intuitively not very likely to guide the search out of the local
minimum.

56 3 METHODS AND SOLUTIONS

It is assumed that the size of the population remains the same between iterations.
Thus, we require α + β ≤ 1. If α + β = 1, the entire mutation step will be
skipped. Typical values found to work well are α = 0.1 and β = 0.88, which
means that the mutation rate is 0.02.

The cost of an embedding is computed as shown in algorithm 11. In addition
to the embedding, it takes the original similarity matrix M as an input parame-
ter. M is first converted into a distance matrix D using equation 2.12. In an
implementation, this would of course be done once at the start of GAEMBED-
DING, and D would be passed as an extra parameter to GAEMBEDDINGCOST.
This has been skipped in the pseudocode for clarity and simplicity. Using the
coordinates of the N embedded elements, represented as rows of C, euclidean
distances are then calculated between points. The squared sum of differences
between the two distance matrices D and O is stored in the variable δ.

Algorithm 11 GAEMBEDDINGCOST

Input: C, M . C is an embedding, M is an N × N similarity matrix
Extern: ϕ, θ . Scaling constants

1: δ, m← 0, 0
2: D ← distance matrix from using eq. 2.12 on M
3: for each row vector Ci of C do
4: for each row vector Cj of C do

5: Oi,j =
√

(Ci − Cj)(Ci − Cj)T . Euclidean distance

6: δ← δ + (Di,j −Oi,j)2

7: for each triple (i, j, k) where 0 < i < j < k ≤ N do
8: a← Mi,k −Mi,j
9: b← Oi,j −Oi,k

10: if (b > 0 and a ≤ 0) or (a > 0 and b ≤ 0) then
11: m← m + 1
12: return ϕm + θδ

Lines 7 to 11 of the algorithm are essentially adopted from BoostMap. Using M,
all unique triangles (i, j, k) of distinct elements are checked to see whether j is
more similar to i than k is. Similarly, O is used to check whether j is closer to i
than k is in the embedding. If the two tests disagree, m is incremented.

The final cost of the embedding is returned as a weighted sum of δ and m. The
constant ϕ is typically chosen to be larger than θ. In fact, some of the best re-
sults in this work were obtained by setting θ = 0. In that case, GAEMBEDDING
essentially performs the same minimization as BoostMap. They still differ in
methodology and distance function, though.

Note that euclidean distances between points are used both in GAEMBEDDING-
COST and in GAEMBEDDING to obtain the final metric distance matrix. Any
other metric distance function could be chosen. This freedom to plug any metric

3.6 PROPOSED GENETIC EMBEDDING ALGORITHMS 57

distance function into the genetic embedding algorithm was the main inspira-
tion behind the cooperative coevolutionary algorithm proposed in the next sec-
tion.

3.6.4 Algorithm using evolving metric distance function

This section proposes a genetic algorithm that minimizes the cost function with
respect to both spatial embedding and distance function. Some background the-
ory is given before the algorithm itself is presented.

If an embedding algorithm is to learn a metric distance function itself, it must
basically learn two things at once. Observe that the problems of finding the least
costly embedding and finding the least costly distance function are intertwined;
they both strive to minimize the same cost function. There should be some sort
of cooperation between the process of minimizing the cost function with respect
to embeddings and the process of minimizing the cost function with respect to
distance function. Two main questions must be answered to be able to construct
an algorithm which achieves this:

• How can such a cooperation scheme be incorporated into a genetic algo-
rithm?

• How do we represent a distance function as a data structure in a genetic
algorithm?

The first question will be addressed first. Using a genetic scheme, a population
of distance functions should be evolved in parallel with the population of spatial
embeddings. Genetic algorithms for evolving populations in parallel are called
coevolutionary algorithms [Par98]. There are two basic types of coevolutionary
genetic algorithms, competitive and cooperative ones [WLDJ01]. Competitive co-
evolutionary algorithms evolve different populations by having them compete
against each other. The fittest individuals are the ones which are most success-
ful in such competitions. In cooperative coevolutionary algorithms, on the other
hand, different populations represent different parts of the problem to be solved.
A candidate solution consists of one individual from each population. The pop-
ulations are cooperating in the sense that they all strive to minimize the same
cost function (or maximize the same fitness function). It is clear that a cooper-
ative coevolutionary scheme is the most natural one in this case. We have two
populations, each of which contains parts of candidate solutions. A candidate
solution is merely a pair of a spatial embedding and a metric distance function.

The basic structure of a cooperative coevolutionary scheme is shown in algo-
rithm 12. As can be seen, the coevolution lies in the computation of cost values.
A central question is: How do we assign a cost value to an individual? Since a
complete candidate solution is required to calculate a cost value, the cost of an

58 3 METHODS AND SOLUTIONS

Algorithm 12 Basic structure of a cooperative coevolutionary algorithm
1: Initialize all populations
2: while not terminated do
3: for all populations do
4: for each individual i in population do
5: Select collaborators from all other populations
6: Calculate cost of i based on encounters with collaborators
7: Select individuals for survival
8: Select individuals by crossover
9: Select individuals by mutation

10: Update population

individual in a population is highly dependent on which individuals we select
from other populations. Calculating the average cost value is, in most cases, too
computationally expensive to be an option. Only a few individuals can be se-
lected from each population. This problem of selecting collaborators from other
populations has been analysed empirically in [WLDJ01]. Questions addressed
include:

• What degree of greediness should be used when selecting collaborators?
Should the best individuals from the other populations be selected, or
should individuals from other populations be selected randomly?

• Given that many collaborators are selected from each of the other popula-
tions, which cost value should be chosen? An optimistic approach would
be to choose the smallest cost observed. A pessimistic approach would be
to choose the highest cost observed.

The analysis concludes that an optimistic approach is generally best for choosing
cost value. The degree of greediness, however, is more problem dependent.

The second initial question remains to be answered: How do we represent a
distance function as a data structure in a genetic algorithm? Given two points
x and y with position row vectors x and y, first note that the euclidean distance
between them is found as d(x, y) =

√
(x− y)(x− y)T =

√
(x− y)I(x− y)T,

where I is the identity matrix. If I is replaced with a matrix A whose inverse
matrix has the property of a covariance matrix, we get a distance function known
as the Mahalanobis distance between x and y. This distance function is shown in
equation 3.9.

d(x, y) =
√

(x− y)A(x− y)T (3.9)

In statistics, the Mahalanobis distance is the dissimilarity measure between two
random vectors x and y (from the same distribution) with covariance matrix

3.6 PROPOSED GENETIC EMBEDDING ALGORITHMS 59

A−1. Thus, the difference between the euclidean distance and the Mahalanobis
distance is that the latter takes correlations of the data set into account. To en-
sure metricity, A must be positive semi-definite, i.e. it must satisfy xAxT ≥ 0
for all x [XNJR03]. If A is restricted to be a matrix with non-negative values on
the diagonal and zeros elsewhere, we obtain a distance function where differ-
ent axes of the d-dimensional space are weighted by different amounts. Such
a matrix is clearly positive semi-definite, since the product xAxT cannot possi-
bly be negative if the elements of A are non-negative on the diagonal and zero
elsewhere.

Clearly, a Mahalanobis distance function can be represented by its A matrix.
The core idea of the proposed coevolutionary algorithm is to evolve a popula-
tion of such matrices in parallel with the population of spatial embeddings. The
matrices are restricted to have non-zero values on the diagonal and zeros else-
where. This is because the general case of positive semi-definite matrices causes
problems when generating new matrices by crossover and mutation; it is hard
to find operators of low computational complexity which preserve the proper-
ties of positive semi-definite matrices. In contrast, this is easy to ensure if the
Mahalanobis matrices are restricted to be diagonal.

Algorithm 13 shows CCAEMBEDDING, the proposed method of embedding N
points using a coevolutionary scheme. Lines 3 to 12 initialize the two popu-
lations P1 and P2. The population of N × d embeddings, P1, is initialized as in
GAEMBEDDING. The population of d× d Mahalanobis matrices, P2, is initialized
by sampling diagonal elements from a normal distribution with the parameters
µ and σ2 as mean and standard deviation.

The algorithm then follows a standard coevolutionary scheme. Procedure CCAEM-
BEDDINGCOST, which is explained in detail below, is used to calculate the cost
of individual embeddings and matrices. When calculating the cost of an em-
bedding, the population of matrices must be supplied as an argument to the
procedure. This is because collaborators will have to be selected to be able to
estimate the cost. Similarly, the population of embeddings must be provided as
an argument when calculating the cost of a matrix.

Lines 25 to 27 follow the exact same steps as the crossover and mutation steps
of GAEMBEDDING. The same operators are also applied to the population of
Mahalanobis matrices in lines 27 to 30, with two differences:

• The operators are applied to d× d matrices instead of N × d matrices (em-
beddings).

• The mutation operator must assure that no matrix elements are negative.

Finally, lines 33 to 35 calculate the distances between embedded points using
the spatial embedding B and the Mahalanobis matrix A, which were found to
minimize the cost. The properties of A ensure that the resulting distance matrix
is metric.

60 3 METHODS AND SOLUTIONS

Algorithm 13 CCAEMBEDDING

Input: M, S1, S2 σ1, σ2, µ, α, β, d
Extern: CCAEMBEDDINGCOST

1: R← CLASSICALMDS(M, d)
2: P1, P2 ← ∅, ∅
3: while |P1| < S1 do
4: C ← R
5: for each matrix element Cm,n do
6: Cm,n ← NORMDIST(Cm,n, σ1)
7: P1 ← P1 ∪ C
8: while |P1| < S2 do
9: F ← empty d× d matrix

10: for each diagonal matrix element Fm,m do
11: Fm,m ←max(0, NORMDIST(µ, σ2))
12: P2 ← P2 ∪ F

13: ε, B← ∞, R . ε is cost of best embedding B
14: A← d× d identity matrix . A is the best parameter matrix
15: while ε is too large do
16: Q1, Q2 ← ∅, ∅
17: for i← 1, |P1| do
18: E1[i], F ← CCAEMBEDDINGCOST(P1[i], P2, M)
19: if E1[i] < ε then
20: ε, B, A← E1[i], P1[i], F
21: for i← 1, |P1| do
22: E2[i], F ← CCAEMBEDDINGCOST(P2[i], P1, M)
23: if E[i] < ε then
24: ε, B, A← E2[i], F, P2[i]
25: Q1 ← Q1 ∪ {α|P1| tournament selected embeddings from P1}
26: Q1 ← Q1 ∪ {β|P1| embeddings crossed over from P1}
27: Q1 ← Q1 ∪ {(1− α− β)|P1| embeddings mutated from P1}
28: Q2 ← Q2 ∪ {α|P2| tournament selected matrices from P2}
29: Q2 ← Q2 ∪ {β|P2|matrices crossed over from P2}
30: Q2 ← Q2 ∪ {(1− α− β)|P2|matrices mutated from P2}
31: P1 ← Q1
32: P2 ← Q2

33: for each row vector Bi of B do
34: for each row vector Bj of B do

35: Oi,j =
√

(Bi − Bj)A(Bi − Bj)T

36: return O . Return metric distance matrix

3.6 PROPOSED GENETIC EMBEDDING ALGORITHMS 61

Algorithm 14 CCAEMBEDDINGCOST

Input: X, Y, M
Extern: K, ϕ, θ

1: k← 1 if X is an embedding, 0 if not
2: D ← distance matrix from using eq. 2.12 on M
3: ε, W ← ∞, []
4: for l ← 1, K do
5: n← b RAND ×|Y| c+ 1
6: Z ← Y[n]
7: if k = 0 then
8: T ← Z
9: Z, X ← X, T

10: δ, m← 0, 0
11: for each row vector Xi of X do
12: for each row vector Xj of X do

13: Oi,j =
√

(Xi − Xj)Z(Xi − Xj)T

14: δ← δ + (Di,j −Oi,j)2

15: for each triple (i, j, k) where 0 < i < j < k ≤ N do
16: a← Mi,k −Mi,j
17: b← Oi,j −Oi,k
18: if (b > 0 and a ≤ 0) or (a > 0 and b ≤ 0) then
19: m← m + 1
20: if (ϕm + θδ) < ε then
21: ε← (ϕm + θδ)
22: if k = 0 then
23: W ← X
24: else
25: W ← Z
26: return ε, W

62 3 METHODS AND SOLUTIONS

Algorithm 14 shows CCAEMBEDDINGCOST, the procedure used to estimate the
cost of an individual from one of the two populations. Given an embedding or
a Mahalanobis matrix, the idea is to pick K random individuals from the other
population. The lowest observed cost is then returned. This is an optimistic
approach to the problem of cost assignment. The greediness is, however, not
as high as possible; observe that none of the collaborators are selected based on
cost values from the previous evolutionary round. Instead, an approach based
on tournament selection has been adopted. Preliminary tests indicated that this
approach seems to be better than a greedy approach where the highest ranked
individuals from the previous round are chosen.

Lines 7 to 9 and 22 to 25 are needed to determine the meaning of input para-
meters and variables. If X is a an embedding, then Y is the population of Maha-
lanobis matrices. Similarly, if X is a Mahalanobis matrix, then Y is the population
of embeddings. For the core cost calculations in steps 10 to 19 to make sense, X
and Z must therefore be swapped (in lines 7 to 9) if X is not an embedding. It is
simply a way of enabling the same procedure to be used for both populations.

The core cost calculation steps of the procedure, lines 10 to 19, are exactly the
same as the cost calculation steps in GAEMBEDDINGCOST (algorithm 11). In
other words, CCAEMBEDDING minimizes a weighted sum of the number of
misclassifications and the squared distance between an embedding and an ap-
proximate distance matrix.

It should be noted that the introduction of an additional population increases the
computational demands of the algorithm significantly. In general, the popula-
tion sizes of CCAEMBEDDING must be chosen to be smaller than the population
size of GAEMBEDDING. The parameter K in CCAEMBEDDINGCOST is also cru-
cial to the performance of the algorithm, since it determines how many times the
core cost calculation loop must be run for each individual in each population in
each iteration. Promising results have been obtained when setting K = 4.

The GAEMBEDDING and CCAEMBEDDING algorithms proposed in this sec-
tion have been implemented in Matlab. Although Matlab is an interpreted and
untyped programming language, acceptable performance is achieved because
many of the calculations can be expressed as matrix operations. The source code
is included on the enclosed CD.

3.7 Summary of proposed methods and algorithms

Tom sum up the methods and algorithms presented in this chapter, two main
methods have been identified and presented:

• The triangle fixing algorithm solves the problem of making a non-metric
distance matrix metric by enforcing triangle constraints until all of them
are satisfied.

3.7 SUMMARY OF PROPOSED METHODS AND ALGORITHMS 63

• The embedding algorithms solve the problem by mapping an N × N sub-
stitution matrix into a metric space. Thereafter, a metric distance matrix is
recovered using the distance function of the metric space.

The embedding approach requires a concrete algorithm to be chosen. Five dif-
ferent algorithms are considered in this work:

NMDS attempts to find an optimal metric embedding in the sense that the dif-
ference in rank between inter-object distances and similarity values from
the original substitution matrix is minimized. Some small modifications of
the original algorithm have been proposed and included in the implemen-
tation.

FastMap assumes that the substitution matrix values are inter-object distances
in a space of a certain dimensionality. Coordinates are then found by re-
cursively projecting objects into hyperplanes of one less dimension. No
explicit measures of embedding quality are minimized.

BoostMap combines many one-dimensional embeddings into a high-dimensional
embedding using adaptive boosting. The algorithm attempts to minimize
the number of triangular misclassifications. Modifications of the original
algorithm have been proposed and included in the implementation.

GAEmbedding evolves a population of embeddings of fixed dimensionality by
attempting to minimize a cost function. The cost function is a weighted
sum of the squared distance to the original substitution matrix and the
number of triangular misclassifications.

CCAEmbedding uses a coevolutionary scheme with one population of spatial
embeddings and one population of Mahalanobis matrices. The cost func-
tion is the same as the single-population genetic algorithm.

An analytical comparison of the algorithms in terms of computational complex-
ity is given in chapter 5.

Having identified a set of possible methods for solving the problem, we are nat-
urally interested in knowing which ones perform best in terms of begin able to
retain the information inherent in the original matrix. Are there any differences
between the algorithms? If so, which factors determine these differences? Is the
triangle fixing approach better than the embedding approach? To answer these
question, this work compares the methods using empirical experiments. The
experiments and the results obtained from them are the subjects of chapter 4.

Chapter 4

Experiments and results

The algorithms presented in chapter 3 are general in the sense that any matrix
can be used as input to produce a metric distance matrix. However, the non-
metricity of amino acid substitution matrices in the field of bioinformatics has
been the main motivation for the development of the methods. As mentioned
in section 2.5.5, finding information-preserving metric mappings for such ma-
trices are highly desirable, since it enables data to be indexed efficiently. Much
research effort has therefore been put into finding metric conversions for such
substitution matrices. As they have been the main motivation behind this work,
they have also been chosen as subjects of evaluation here.

Chapter 2 explained how amino acid substitution matrices are used for homol-
ogy search in databases of proteins. When measuring the performance of such
matrices, we are mainly interested in their sensitivity, i.e. their ability to find the
biologically correct homologous proteins. This should be reflected in the chosen
method of testing and evaluating the proposed algorithms. The algorithms dif-
fer in the way they attempt to preserve the information inherent in the original
substitution matrix. The experiments must therefore try to uncover which algo-
rithm uses the “correct” way of preserving the information, in the sense that the
sensitivity of the input matrix is preserved as good as possible.

This chapter presents the experiments which have been carried out for the pur-
pose of testing the performance of the proposed methods and algorithms. Sec-
tion 4.1 presents the methods which have been chosen for evaluating the matri-
ces, and the dataset which has been used. Section 4.2 presents the actual results.
Finally, section 4.3 performs tests for statistical significance on the results.

4.1 Evaluating generated substitution matrices

To be able to assess the performance of the metric matrices produced by the pro-
posed methods, it is quite clear that they should be used as substitution matrices

66 4 EXPERIMENTS AND RESULTS

in a homology search. The results from such a search can then be compared with
the results from a search with the original non-metric matrix. This section ex-
plains in detail how this has been done, by presenting the method of evaluation
and the dataset which has used. A final section gives a description of the scheme
used to measure the sensitivity of the matrices.

4.1.1 Method of evaluation

To compare the generated substitution matrices with the original ones, the Smith-
Waterman algorithm for computing local alignments, presented in section 2.2.3,
has been implemented. Gotoh’s optimizations for affine gap penalty have been
included. Search results obtained using the generated substitution matrices can
then be compared to search results obtained using the original substitution ma-
trices. To get the true optimal alignment scores, a straightforward implemen-
tation using no heuristics was developed. The SSEARCH program from the
FASTA1 package was considered, but ultimately discarded because it includes
heuristics to achieve some computation speed improvements. In addition, the
programs in the FASTA package do not allow custom substitution matrices to be
specified.

Because the Smith-Waterman algorithm uses similarity scores to compute align-
ments, the dissimilarity values in the metric matrices must be converted into
similarity values before the algorithm can be applied. The version of the al-
gorithm presented in [Got82] uses a matrix of dissimilarity values, but proves
to be problematic to use for computing local alignments. When computing the
score using similarity scores, observe that a local alignment can immediately be
closed if its similarity value drops below zero. In contrast, the version using
distance penalties will have to specify a maximal acceptable distance value be-
yond which further expansion of the alignment can be skipped. Such a maximal
distance value is not available in most cases.

Therefore, the strategy of converting the metric distance matrices into similarity
matrices has been chosen in this work. This can be achieved by simply subtract-
ing the maximum matrix value from the distance value in a matrix cell, which
produces a similarity value. However, the correctness of the Smith-Waterman
algorithm requires a mix of positive and negative similarity scores in the sub-
stitution matrix. Xu et al. has found in [XM04] that the best way of achieving
this is to subtract the median matrix element from the positive similarity matrix
generated as described above. This strategy has also been adopted in this work.
The resulting similarity matrix is also scaled by a constant which minimizes the
squared distance to the original matrix. Note that these transformations do not
pose any problems to the algorithms which are based on preserving triangu-
lar proximities; if j is classified as being closer to i than k is, then y(j + x) will

1http://fasta.bioch.virginia.edu/

4.1 EVALUATING GENERATED SUBSTITUTION MATRICES 67

be classified as being closer to y(i + x) than y(k + x) will. In other words, the
proximities are invariant to translation and scaling.

A program was developed for sequentially searching a database of proteins. The
program reads a sequence of query proteins in FASTA format. For each of these
proteins, the entire database is searched sequentially for homology. Similarity
between a query protein and a database protein is measured using the Smith-
Waterman local alignment score, which is computed using the input substitution
matrix.

As may be apparent, this brute force way of computing local alignments and
sequentially searching the entire database is computationally heavy. In this con-
text, however, we are interested in obtaining the most accurate measure of the
sensitivity of the substitution matrices. Thus, exact search results are more in-
teresting than heuristic search results obtained using algorithms such as BLAST
and FASTA.

The implementation of the database search program allows users to define sub-
sets of the set of query proteins. Parallel processing is thereby enabled – sim-
ply by running the program with different subsequences of queries on different
computers. Using the test database presented in section 4.1.2, this enables the
entire search process to be completed in reasonable time (in order of minutes)
using a couple of workstations.

The C++ source code for the search program can be found on the enclosed CD.
The CD also contains Matlab source code (which is compatible with GNU Oc-
tave2) for the methods and algorithms presented in chapter 3.

4.1.2 Dataset

To test the sensitivity of the generated substitution matrices, three types of data
sets are required:

• A database of proteins coded as sequences of amino acid symbols.

• A set of query sequences to be used when searching the database for ho-
mology.

• For each query sequence, a list of true positive hits in the database.

In this work, the database used in both [SAM+01] and [XM04] has been adopted.
This database consists of 6433 proteins from saccharomyces cerevisiae, commonly
known as baker’s or budding yeast. The query set contains a total of 103 se-
quences. Accompanying these queries are 103 distinct lists of true database
hits. These true hits have been identified by human domain experts. All data

2http://www.octave.org/

68 4 EXPERIMENTS AND RESULTS

is publically available from NCBI (National Center for Biotechnology Informa-
tion) at ftp://ftp.ncbi.nlm.nih.gov/pub/impala/blasttest/. The
data used in this work were downloaded in February 2005.

Some proteins contain the symbols B, Z and X, corresponding to amino acids
which have not been uniquely determined. Seven of the 103 query sequences
contain such symbols: ACTIN, ARR, CATH, DHHC, DNASE1, HISDAC and S1.
Some of the substitution matrices to be tested only specify scores for the 20
amino acids, not for these additional symbols. This is a problem, since it is desir-
able to be able to compare results from different substitution matrices. A choice
was therefore made to remove these seven sequences from the query set. Thus,
the query set used in this work consists of 96 query sequences.

4.1.3 Performance measure

When measuring the performance of homology search results, a modified ver-
sion of receiver operating characteristics (ROC) scoring introduced by Gribskov
and Robinson in [GR96] has established itself as a common choice in the field of
bioinformatics. Given a ranked list of search results and a list of true positive
hits, the ROCn value is calculated as shown in equation 4.1.

ROCn =
1

nT

n

∑
i=0

ti (4.1)

In this equation, T is the total number of true positives, and ti is the number of
true positive hits ranked ahead of the ith false positive. Obviously, given a list
of true positive hits of length m, one needs a search result list of length n + m to
compute the ROCn score. A score of 1 indicates a perfect match, where the first
m elements of the result list are true positive hits. A score of 0 indicates that no
true positive hits were found among the n highest ranked elements of the result
list.

In bioinformatics, the ROC50 score has been chosen as a performance measure-
ment in many recent works where homology search results are evaluated. As
noted in [GB99], “this value has the advantages of yielding a wider spread of
values, requiring less storage space, and corresponding to the typical biologist’s
willingness to sift through only about 50 false positives”. The ROC50 score is
used a number of places referenced from this work. In [XM04], ROC50 is used to
measure the performance of the metric mPAM matrix (see section 2.6). It is also
used to evaluate the search results in [HHLB04] and [GB99].

ROC50 has also been chosen to measure the performance of the matrices in this
work, mainly motivated by its widespread usage in similar works. This makes
the results from the methods proposed here comparable to other results where
ROC50 has been used. In particular, it enables the results to be directly compared
to the results presented in [XM04], which uses the same dataset as this work.

4.2 HOMOLOGY SEARCH RESULTS 69

Generated substitution matrices can then be evaluated by comparing the ROC50
score obtained from a database search with the ROC50 score from a search with
the original matrix.

4.1.4 Matrices

A representative selection of commonly used substitution matrices must be se-
lected as subjects of evaluation. The PAM and BLOSUM family of substitution
matrices are by far most commonly used. Different members of these families
represent different levels of evolutionary divergence. Choosing a matrix there-
fore depends on the expected degree of sequence divergence in the data at hand.
This is illustrated in figure 4.1.

Figure 4.1: Relation between sequence divergence and substitution matrices

Thus, to evaluate methods across the scale of divergence, the following matrices
have been selected:

• PAM70, PAM120, PAM250

• BLOSUM80, BLOSUM62, BLOSUM40

Each of the algorithms presented in chapter 3 are applied to each of these ma-
trices. The resulting metric distance matrices are then supplied as inputs to the
database search program described in section 4.1.1. In addition, the mPAM250
matrix introduced in section 2.6 has been included in the evaluation of metric
distance matrices derived from the PAM250 matrix. Since 6 proteins have been
removed from the query set in this work, the ROC50 performance score has been
recalculated for the mPAM250 matrix rather than using the score presented in
the original paper.

4.2 Homology search results

The homology search results presented in this section were obtained by running
the database search program in parallel on three different computers – one run-
ning Linux 2.4.30 on an x86/32 processor, a second one running Linux 2.6.11-
1 on an x86/64 processor and a third one running Solaris 9 on an ultrasparc

70 4 EXPERIMENTS AND RESULTS

processor. The results were then gathered from the three computers and aver-
age ROC50 scores were calculated. Metric distance matrices were derived using
the Matlab implementations of the algorithms. All the produced algorithms are
included on the enclosed CD. For each algorithm, parameters were tuned by
repeatedly generating new distance matrices and running trial searches on the
database. The parameters are presented in the list below, along with abbrevia-
tion chosen for the algorithms (to simplify notation in tables and figures).

• TF - Triangle Fixing algorithm, presented in section 3.1. The value of the
constant ε was set to 0.0001, which enabled the algorithm to converge in a
metric distance matrix.

• NMDS - Non-metric Multidimensional Scaling, presented with proposed
modifications in section 3.3.2. The value of the constant s was set to 0.1×
N−3, in accordance with the advice in [TO04]. The maximum number of
iterations was set to 5000, and the number of dimensions was set to 19.

• FM - FastMap, presented in section 3.4. The number of dimensions was set
to 19.

• BM - BoostMap with proposed modifications, presented in section 3.5.3.
The values of |F1|, |F2|, |F3| and |F4| were all set to N.

• GA - proposed Genetic embedding Algorithm using euclidean distance
function, presented in section 3.6. All triples of objects were included in
the training set. Parameter values were chosen as follows: σ = 6, α = 0.1,
β = 0.89, ϕ = 1 and θ = 0. The number of dimensions, population size
and the maximum number of evolutionary steps were set to 19, 1000 and
100, respectively. This enabled the algorithm to reach convergence.

• CCA - proposed Coevolutionary Cooperative genetic embedding Algo-
rithm, presented in section 3.6. Parameter values were chosen as follows:
σ1 = σ2 = 6, µ = 10, α = 0.1, β = 0.88, ϕ = 1, θ = 0 and K = 4. The
size of both populations was set to 500. The number of dimensions and the
maximum number of evolutionary steps were 19 and 100, respectively.

The following sections present the homology search results for the six selected
matrices. Average ROC50 scores are specified for all the matrices. The best re-
sults are selected and plotted as differences in ROC50 score from the original
matrix and as sorted ROC50 scores. The full search results (i.e. all ROC50 scores
for all query proteins for all matrices) are available on the enclosed CD.

4.2 HOMOLOGY SEARCH RESULTS 71

4.2.1 Matrices derived from PAM70

Table 4.1: Homology search performance for matrices derived from PAM70

PAM70 TF NMDS FM BM GA CCA
Open penalty 18 18 18 18 18 18 18
Extend penalty 2 2 2 2 2 2 2
Average ROC50 0.50 0.46 0.45 0.48 0.48 0.50 0.50
Std.dev. ROC50 0.35 0.37 0.36 0.37 0.36 0.36 0.35

The homology search results obtained using matrices derived from PAM70 are
shown in table 4.1. The gap open penalty was set to 18 and the extend penalty
to 2 in all cases. As can be seen, both of the genetic algorithms produce matrices
which give search results with the same average ROC50 score as the original
matrix. FastMap and BoostMap also produce very good results compared to
PAM70.

The plot in figure 4.2 is calculated by subtracting the ROC50 score of a derived
matrix from the ROC50 score of the original matrix. As can be seen, both the
TF-PAM70 and CCA-PAM70 matrices achieve the same ROC50 score as PAM70
on roughly half of the queries, with CCA-PAM70 being slightly more symmetric
around zero. As show by the plot of sorted ROC50 values in figure 4.4 (page 73),
CCA-PAM70 corresponds closely to PAM70.

Figure 4.2: Range of difference from PAM70 ROC50 score

72 4 EXPERIMENTS AND RESULTS

4.2.2 Matrices derived from PAM120

Table 4.2: Homology search performance for matrices derived from PAM120

PAM120 TF NMDS FM BM GA CCA
Open penalty 12 12 12 12 12 12 12
Extend penalty 1 1 1 1 1 1 1
Average ROC50 0.59 0.44 0.42 0.49 0.47 0.49 0.51
Std.dev. ROC50 0.35 0.37 0.36 0.36 0.36 0.35 0.36

As table 4.2 shows, the results for matrices derived from PAM120 show less de-
gree of information preservation than the ones derived from PAM70. The co-
operative coevolutionary algorithm is again able to produce the most sensitive
metric distance matrix, closely followed by the single-population genetic algo-
rithm and FastMap. Non-metric multidimensional scaling again produces the
least sensitive metric matrix.

In this case, the information loss is easily observable from the difference plot in
figure 4.3. Both TF-PAM120 and CCA-PAM120 are strongly biased towards the
right side, which indicates that the original matrix scored better. However, the
CCA-PAM120 matrix seems to follow a narrower curve than TF-PAM120. This
is confirmed by the difference in average ROC50 score. Figure 4.5 on page 73
clearly shows that some of the sensitivity of the original matrix is lost, since the
area under the plot of CCA-PAM120 is smaller than the area under the plot of
PAM120.

Figure 4.3: Range of difference from PAM120 ROC50 score

4.2 HOMOLOGY SEARCH RESULTS 73

Figure 4.4: Plot of sorted ROC50 scores for PAM70 and CCA-PAM70

Figure 4.5: Plot of sorted ROC50 scores for PAM120 and CCA-PAM120

74 4 EXPERIMENTS AND RESULTS

4.2.3 Matrices derived from PAM250

Table 4.3: Homology search performance for matrices derived from PAM250

PAM250 TF NMDS FM
Open penalty 12 10 10 10
Extend penalty 2 1 1 1
Average ROC50 0.62 0.38 0.47 0.44
Std.dev. ROC50 0.35 0.36 0.36 0.36

mPAM250 BM GA CCA
Open penalty 10 9 10 10
Extend penalty 1 1 1 2
Average ROC50 0.48 0.49 0.53 0.49
Std.dev. ROC50 0.36 0.37 0.37 0.36

Table 4.3 gives the results produced by matrices derived from PAM250. In this
case, the metric mPAM250 matrix mentioned in section 2.6 is also included. As
can be seen, one of the evolutionary algorithms (GA) is again capable of pro-
ducing the most sensitive metric matrix. Interestingly, both GA-PAM250, CCA-
PAM250 and the metric matrix produced by the modified BoostMap algorithm
perform better than the mPAM250 matrix. In the case of GA-PAM250, both the
difference plot in figure 4.6 and the plot of sorted ROC50 scores in figure 4.8 on
page 76 confirms that it has a sensitivity somewhere in between PAM250 and
mPAM250.

Figure 4.6: Range of difference from PAM250 ROC50 scores

4.2 HOMOLOGY SEARCH RESULTS 75

4.2.4 Matrices derived from BLOSUM80

Table 4.4: Homology search performance for matrices derived from BLOSUM80

BL80 TF NMDS FM BM GA CCA
Open penalty 12 12 12 12 12 12 12
Extend penalty 2 2 2 2 2 2 3
Average ROC50 0.64 0.54 0.49 0.52 0.54 0.52 0.53
Std.dev. ROC50 0.33 0.35 0.36 0.35 0.34 0.34 0.35

As can be seen from table 4.4, the homology search results obtained when search-
ing with matrices derived from BLOSUM80 are relatively similar. All of the
derived matrices, with the exception of the one produced by non-metric multi-
dimensional scaling, score roughly 0.1 less than the original BLOSUM80 matrix.
In contrast to the PAM-derived matrices, the triangle fixing algorithm is able
to generate a matrix which achieves a performance equal to or better than the
performance of the embedding algorithms.

The difference plot in figure 4.7 clearly indicates that TF-BLOSUM80, CCA-
BLOSUM80 and BM-BLOSUM80 are almost equal in performance. The bias
towards the right side of zero, however, shows that some sensitivity from BLO-
SUM80 is lost. This is confirmed by the plot of sorted ROC50 scores in figure
4.9 (page 76), which also shows that TF-BLOSUM80 and BM-BLOSUM80 have
almost identical score profiles.

Figure 4.7: Range of difference from BLOSUM80 ROC50 scores

76 4 EXPERIMENTS AND RESULTS

Figure 4.8: Plot of sorted ROC50 scores for PAM250, mPAM250 and GA-PAM250

Figure 4.9: Plot of sorted ROC50 scores for BLOSUM80, TF-BLOSUM80 and BM-
BLOSUM80

4.2 HOMOLOGY SEARCH RESULTS 77

4.2.5 Matrices derived from BLOSUM62

Table 4.5: Homology search performance for matrices derived from BLOSUM62

BL62 TF NMDS FM BM GA CCA
Open penalty 8 8 8 8 8 8 8
Extend penalty 1 1 1 1 1 1 1
Average ROC50 0.66 0.52 0.50 0.52 0.54 0.49 0.50
Std.dev. ROC50 0.32 0.35 0.35 0.35 0.35 0.35 0.34

The search performance of matrices derived from BLOSUM62, shown in table
4.5, shows a large degree of resemblance to the BLOSUM80 results. Again, the
algorithms are almost equal in performance. The matrix produced by the trian-
gle fixing algorithm is only beaten by BM-BLOSUM62 in terms of average ROC50
score.

Figure 4.10 clearly illustrates that a significant fraction of sensitivity from the
original BLOSUM62 matrix is lost in the conversion process. TF-BLOSUM62 and
BM-BLOSUM62 score better than BLOSUM62 in only on a very small number
of queries, the original matrix scores better than the derived matrices on the
majority of the queries. Figure 4.13 shows this from another point of view; the
area under the BLOSUM62 curve is significantly larger than the areas under the
two other curves.

Figure 4.10: Range of difference from BLOSUM62 ROC50 scores

78 4 EXPERIMENTS AND RESULTS

4.2.6 Matrices derived from BLOSUM40

Table 4.6: Homology search performance for matrices derived from BLOSUM40

BL40 TF NMDS FM BM GA CCA
Open penalty 10 10 10 10 10 10 10
Extend penalty 1 1 1 1 1 1 1
Average ROC50 0.62 0.46 0.49 0.48 0.51 0.51 0.50
Std.dev. ROC50 0.32 0.36 0.36 0.37 0.34 0.35 0.34

Results obtained with matrices derived from BLOSUM40 are shown in table 4.6.
As can be seen, the three algorithms which are based on minimizing the num-
ber of triangular misclassification (i.e. BoostMap and the two embedding algo-
rithms) perform marginally better than the other approaches.

The difference plot in figure 4.11 shows that both GA-BLOSUM40 and BM-
BLOSUM40 perform significantly better than the matrix derived using the trian-
gle fixing algorithm, since they score equal to BLOSUM40 on a higher number
of queries and seem to follow a narrower curve. Figure 4.12 shows that although
there are some difference in the curve profiles between GA-BLOSUM40 and BM-
BLOSUM40, they perform roughly equal because the areas under the curves are
approximately equal.

Figure 4.11: Range of difference from BLOSUM40 ROC50 scores

4.3 TEST FOR STATISTICAL SIGNIFICANCE 79

Figure 4.12: Plot of sorted ROC50 scores for BLOSUM40, GA-BLOSUM40 and
BM-BLOSUM40

Figure 4.13: Plot of sorted ROC50 scores for BLOSUM62, TF-BLOSUM62 and
BM-BLOSUM62

4.3 Test for statistical significance

The results presented in the previous sections can be used to test whether the
metric matrices produced by the proposed methods perform as well as the orig-
inal matrices, from a statistical point of view. Assuming that both the database
to be searched in and the substitution matrix are fixed, the distribution of ROC50
scores depends on properties of the query proteins. This distribution is not

80 4 EXPERIMENTS AND RESULTS

known in advance, so we cannot apply tests for statistical significance based
on defined probability distributions. Thus, a non-parametric test must be used.

When comparing the ROC scores obtained using a metric matrix with the ROC
scores obtained using the original matrix, we are essentially dealing with paired
observations. This means that the sign test presented in [WMMY02] can be ap-
plied. A sign test is used to test hypotheses on population medians rather than
means. If Moriginal and Mmetric are used to denote the median ROC score ob-
tained using the original and the metric matrix, respectively, the following hy-
pothesis test can be formulated:

H0 : Mmetric = Moriginal

H1 : Mmetric < Moriginal

To test the hypothesis, we start by subtracting Moriginal from each ROC score
obtained with the metric matrix, and then take the sign of the resulting values.
If H0 holds, we expect the number of plus and minus signs to be approximately
equal. Since we are now dealing with a distribution of binary values, this can
be tested using a binomial distribution where the success probability of a trial
is 0.5 under H0. Representing the number of plus signs by x, the probability of
obtaining x or less can be calculated as

P = P(X ≤ x when p = 0.5) =
x

∑
i=0

b(i; 96, 0.5)

where 96 is the number of queries. This P value can then be used to either
accept or reject H0 at some level of significance. Table 4.7 shows the P values
of homology search results in this work.

Table 4.7: P values of search results

TF NMDS FM BM GA CCA
PAM70 0.238 0.131 0.459 0.380 0.459 0.459
PAM120 0.0037 0.0028 0.063 0.026 0.0052 0.075
PAM250 1.1 · 10−6 0.0028 6.6 · 10−6 0.016 0.026 0.026
BLOSUM80 0.041 0.0052 0.016 0.041 0.016 0.016
BLOSUM40 0.0028 0.0092 0.0092 0.016 0.0092 0.016
BLOSUM62 0.0092 0.0014 0.0092 0.0092 0.0007 0.0028

Chapter 5

Analysis and discussion

This chapter discusses the experimental results presented in chapter 4. An an-
alytical comparison of the proposed methods is also given. We are mainly in-
terested in finding patterns in the empirical results which can be related to the
design of the algorithms. This will enable questions such as the ones posed at
the end of chapter 3 to be answered.

The first section of the chapter gives a formal analysis and comparison of the
methods and algorithms in terms of design and computational complexity. Then
the empirical results are discussed. Finally, the discussions are synthesized and
summarized in the last section.

5.1 Analytical comparison of methods

Differences between the proposed methods can be discussed both in terms of
computational resource usage and in terms of general advantages and disad-
vantages. As for comparing algorithms in terms of computational resource us-
age, first note that the complexity of the algorithms has no connection to the
complexity of homology search methods which use the produced metric matrix.
Once such a matrix has been generated, it can be used to index the data using a
method like the ones presented in section 2.5. The algorithm for producing the
metric matrix is only run once, and search procedures subsequently utilize the
metricity of the output matrix directly.

However, since the methods are intended to be generic to the problem of making
a matrix metric, one may come across problems where the complexity of the
algorithms is crucial:

• If the algorithm needs to be run repeatedly, perhaps as part of a looping
procedure, its computational complexity is obviously crucial.

82 5 ANALYSIS AND DISCUSSION

• If the size of the input matrix is large, algorithms of high computational
complexity may not be able to produce results within acceptable time lim-
its. In this work 20× 20 amino acid substitution matrices have been con-
sidered, but it is not hard to imagine that there may exist cases where one
would like to apply the algorithms to larger matrices.

Therefore, the following subsection gives a brief analysis of each algorithm in
terms of complexity. The algorithms are then discussed in general terms, taking
the complexity into account.

5.1.1 Analysis

Table 5.1: Computational complexity of algorithms, where d is the number of
dimensions, M is the number of classifiers considered at each iteration, P is the
population size, K is the number of collaborators selected from the other popu-
lation and c is the number of iterations needed for convergence.

Algorithm Complexity
Non-metric multidimensional scaling c×O(N2 log N2)
FastMap O(d2N)
BoostMap c×O(MN3)
Genetic embedding algorithm c×O(P max (dN2, N3))
Coevolutionary embedding algorithm c×O(PK max (dN2, N3))
Triangle fixing algorithm c×O(N3)

The algorithm for non-metric multidimensional scaling presented in section 3.3
iterates until convergence. In most cases, it is not possible to find an analytical
expression for the total computational complexity of such algorithms. Instead,
we focus on the complexity of the procedures which are run at each iteration. As
can be seen in algorithm 3, the complexity of each iteration is upper bounded by
the need to sort the distance values between embedded points. For an N × N
matrix, there are N2 such values. Sorting these can be done in O(N2 log N2)
time. The total complexity of the algorithm is therefore c×O(N2 log N2), where
c is the number of iterations needed for convergence. This notational convention
of representing the number of iterations necessary for convergence by c will be
used in all following complexity formulas.

The FastMap algorithm introduced in section 3.4 is dominated by the d recur-
sive calls to produce a d-dimensional embedding. Algorithm 4 shows that the
most complex operation in each recursive call is quadratic in N. However, as
explained, the steps which calculate a new distance matrix are only included
for clarity in the pseudocode. Instead of computing a distance matrix in O(N2)

5.1 ANALYTICAL COMPARISON OF METHODS 83

time, the distance between two elements in an iteration can be computed “on
the fly” in O(d) time using equations 3.1 and 3.2. As can be seen (line 10 in al-
gorithm 4), three such distance values are needed to compute the coordinates
of N elements in a particular iteration. Thus, the total complexity of FastMap is
O(d2N). Note, however, that the construction of a new distance matrix from the
final embedding is O(N2).

As noted by Athitsos et al. in [AASK04b], the complexity of BoostMap is highly
sensitive to the size of the training set. Recall from section 3.5 that the training set
consists of triples (i, j, k) where 0 < i < j < k ≤ N. Thus, the maximum size is
T = Θ(N3) (but nevertheless adjustable to the user). If M is the number of clas-
sifiers considered for inclusion in each iteration, a total of Θ(MT) evaluations
between embeddings and training triples are needed, because one evaluation of
the Zj function (equation 3.5) takes Θ(T) time. These evaluation dominate the
complexity of each iteration, so the total complexity of BoostMap is c×O(MT).
If all triples are included in the training set, as done in the implementation used
in this work, the complexity is c×O(MN3). Note that this analysis assumes that
Zj can be minimized with respect to α in a constant amount of time.

Each iteration of the genetic embedding algorithm proposed in section 3.6 is
dominated by the computation of embedding costs, assuming that the tourna-
ment selection procedure picks a relatively small constant number of embed-
dings (7 was used in this work). Algorithm 11 shows that computing the cost
of an embedding is Θ(max (dN2, N3)), where d is the number of dimensions.
The computation of N2 euclidean distances is Θ(dN2), while the computation of
triangular misclassifications is Θ(N3) since all triples (i, j, k) of elements where
0 < i < j < k ≤ N are considered. If P is the desired population size, the
complexity of the algorithm is c×O(P max (dN2, N3)).

The cooperative coevolutionary embedding algorithm presented in section 3.6
is the most complex one in terms of resource usage, since it attempts finding
a near-optimal embedding while at the same time finding a near-optimal met-
ric distance function. This algorithm is also dominated by the computation of
embedding costs. As can be seen in algorithm 14, a Mahalanobis matrix or an
N-dimensional embedding is compared with K individuals from the other pop-
ulation. Computing the distance between two points takes Θ(d2N2) time if im-
plemented straightforward. However, since it is known in advance that Z is a
matrix with non-negative values on the diagonal and zeros elsewhere, the com-
putation can be achieved in Θ(dN2) time. As with the single-population genetic
algorithm, computing triangular misclassifications is Θ(N3). Thus, the complex-
ity of computing the cost of one matrix or embedding is Θ(K max (dN2, N3)).
Assuming that a small constant number of elements are picked at random by
the tournament selection procedure, this cost computation step is dominant in
each iteration. The full complexity of the algorithm is c×O(PK max (dN2, N3)).

Algorithm 2 shows that each iteration of the triangle fixing algorithm apply cor-
rection terms to each triangle (a, b, c). For an N × N matrix, there are O(N3)

84 5 ANALYSIS AND DISCUSSION

such triangles. Thus, the total complexity of the algorithm is c×O(N3).

Table 5.1 summarizes the computational complexities of the algorithms.

5.1.2 Comparison and discussion

As the analysis in the previous section shows, FastMap is the best choice when
only considering computational complexity. It is linear in N, while the other al-
gorithms are quadratic or cubic. This means that it will be able to handle much
larger matrices. FastMap will outperform the other algorithms even when tak-
ing into account the N2 steps necessary to construct the final metric substitu-
tion matrix from the d-dimensional embedding. All the other algorithms require
some steps to be run repeatedly until some termination condition is met. It is
difficult to compare the complexity of these directly, since no analytical expres-
sions for the termination conditions are available. It is, however, clear that the
evolutionary algorithms require more computational resources than the other
ones in most cases. The population size is typically selected to be much larger
than N, leading to computation times in order of minutes even for small N.

Other factors must of course be taken into account when comparing the algo-
rithms. The performance of the metric matrix produced by the algorithm, to be
discussed in section 5.2, is obviously essential. But there are a number of inher-
ent differences between the algorithms which are worth pointing out:

• As mentioned in chapter 3, the triangle fixing algorithm is conceptually
different from the others in that it constructs a metric matrix by explicitly
enforcing triangle constraints. Metricity is implicit in the other algorithms.

• If the substitution matrix to be converted is a similarity matrix (as in this
work), both the triangle fixing algorithm and FastMap require this matrix
to be transformed into a dissimilarity matrix first. Section 3.5.3 showed
that it is questionable how much information such a transformation is able
to preserve. The problem is that diagonal cell values of matrices like amino
acid substitution matrices may not be equal, so the transformation is not
as easy as subtracting the maximum matrix value from each cell value.
The other four algorithms takes this into account by utilizing the data in
the similarity matrix directly. In the case of non-metric multidimensional
scaling and BoostMap, some modifications to the original matrices have
been proposed in this work for the purpose of handling similarity matrices.

• Non-metric multidimensional scaling, FastMap and the first genetic em-
bedding algorithm require a metric distance function to be chosen and
fixed before the metric distance matrix is recovered. The cooperative co-
evolutionary embedding algorithm introduces a new degree of freedom by
attempting to evolve a population of distance functions in parallel to the

5.1 ANALYTICAL COMPARISON OF METHODS 85

population of spatial embeddings. BoostMap also uses a distance func-
tion which is determined dynamically by the algorithm; recall that the dis-
tances recovered from the final embedding is computed using a weighted
Manhattan distance, where the weights of the axis are learned by the algo-
rithm. An explicit choice of distance function is not relevant to the triangle
fixing algorithm.

• BoostMap determines the dimensionality of the metric space dynamically.
Recall that each one-dimensional embedding selected by the algorithm
represents one dimension of the final embedding, and that the algorithm
has the ability to both add and remove such one-dimensional embeddings
during execution. All the other embedding algorithms require a fixed
number of dimensions to be specified in advance. Again, the problem is
not relevant to the triangle fixing algorithm.

• Non-metric multidimensional scaling, the two genetic/evolutionary algo-
rithms and BoostMap all construct a spatial embedding by minimizing
some cost function. The first three of these four can converge into a lo-
cal minima of the cost function, and the author is not aware of any proof
which shows that this is not also the case for BoostMap. This is clearly a
disadvantage. Especially the cooperative coevolutionary embedding algo-
rithm was found to be affected by this problem, requiring a lot of parame-
ter tuning and trials before being able to produce better embeddings than
the single-population genetic algorithm. FastMap does not minimize any
cost function, so we cannot speak in concrete terms about local minima for
this algorithm. As for the triangle fixing algorithm, it can be shown that it
computes the globally optimal solution to the metric nearness problem de-
fined in section 3.1 [DST04]. It should be obvious that being able to avoid
local minima is highly desirable, especially in cases where successive trials
is not an option.

The differences between the algorithms discussed above is expected to have an
effect on the ability to preserve the information in the original substitution matri-
ces. Possible effects are uncovered in sections 5.2 and 5.3, where the algorithms
are discussed in light of homology search results.

Some justifications should be made regarding the actual choice of algorithms,
and possible alternative choices should be pointed out:

• Among the algorithms used, all but the two evolutionary ones are based
on existing works. These represent only a subset of the many embed-
ding algorithms available. An overview of some alternative algorithms
can be found in [HS03]. Multidimensional scaling was selected because of
its widespread usage. This was also the case for FastMap, which seems
to have gained much popularity since its introduction in 1995. BoostMap
was selected because of its idea of minimizing the number of triangular

86 5 ANALYSIS AND DISCUSSION

misclassifications, which in turn was the inspiration behind the two evo-
lutionary algorithms and the modifications of the original BoostMap algo-
rithm. As mentioned in the introduction to chapter 3, the triangle fixing
algorithm was chosen so that the idea of deriving distance metrics from
spatial embeddings could be compared with a conceptually different ap-
proach.

• Both FastMap and the single-population genetic algorithm allows an arbi-
trary metric distance function to be used for recovering a distance matrix.
In this work, only the classical euclidean distance function has been con-
sidered. The main motivation for this has been results from preliminary
tests showing that the methods were outperformed by other algorithms re-
gardless of distance function. In the case of the single-population genetic
algorithm, experimentation with alternative distance functions ultimately
resulted in the design of the coevolutionary algorithm. This coevolution-
ary approach was then expected to outperform the single-population ap-
proach in any case.

• The class of Mahalanobis matrices used to represent metric distance func-
tions in the coevolutionary algorithm is restricted to matrices with non-
negative values on the diagonal and zeros elsewhere. In theory, any pos-
itive semi-definite matrix can be used. Thus, the limitation could be re-
moved if an efficient crossover operator was found which guarantees that
the offspring matrix is positive semi-definite.

5.2 Homology search results

Chapter 4 presented homology search results for six commonly used amino acid
substitution matrices. As explained in section 4.1.4, these were selected to rep-
resent a wide range of divergence between protein sequences. Based on these
empirical results, we are mainly interested in knowing:

• Are the metric matrices produced by the proposed methods able to retain
the sensitivity of the original matrices?

• Which algorithms produce the best matrices in terms of sensitivity preser-
vation? How do the algorithms based on deriving distance metrics from
spatial embeddings compare with the “straightforward” triangle fixing al-
gorithm?

• Do algorithms perform equally well on all matrices? If not, are there any
apparent patterns in terms of matrix family (PAM or BLOSUM) or target
divergence?

5.2 HOMOLOGY SEARCH RESULTS 87

This subsection summarizes and discusses the homology search results in light
of these questions. Results from the six chosen substitution matrices are dis-
cussed in separate sections. A summary of the findings is given in section 5.3.

5.2.1 PAM matrices

PAM70

All of the algorithms seem to work well on the PAM70 matrix. In fact, matrices
produced by the two proposed genetic embedding algorithms are able to pro-
duce search results with the same average ROC50 score as the original matrix.
They are closely followed by FastMap and BoostMap, which produce results
with a marginally lower ROC50 score. With the exception of non-metric multidi-
mensional scaling, the triangle fixing algorithm performs slightly worse than the
embedding algorithms. Nevertheless, the P values presented in table 4.7 show
that the level of significance must be chosen larger than 0.131 to be able to reject
the null hypothesis (see section 4.3) for any of the matrices. Recall that the P
value tests the hypothesis by assuming that the observed ROC50 scores for the
original and the derived matrices are samples from the same distribution. Using
a significance level of 0.05 or 0.10, this cannot be rejected for any of the matrices.

In the case of the CCA-PAM70 matrix (i.e. the metric matrix produced by the
cooperative coevolutionary algorithm), the difference plot in figure 4.2 confirms
this. About half of the score values are equal to the ones obtained using the
original PAM70 matrix. Among the ones which are not, about half of them are
lower and half of them are higher than the PAM70 scores. The plot of sorted
ROC50 scores in figure 4.4 also shows that the two matrices are close to equal in
performance.

This apparent ability of the metric matrices to retain the sensitivity of the orig-
inal matrix was actually quite unexpected. Previous attempts to convert amino
acid substitution matrices into metric distance matrices have proved that some
property loss is inevitable. Recall that the two evolutionary algorithms work by
trying to minimize the number of triangular misclassifications in relation to the
original substitution matrix. BoostMap takes a similar approach, by using tri-
angular misclassifications to evaluate and select weak classifiers. Calculations
of the triangular misclassifications made by the final metric matrices show that
CCA-PAM70 makes 109 misclassifications, GA-PAM70 makes 111 misclassifi-
cations and BM-PAM70 makes 171 misclassifications. There are a total of 1140
triples (i, j, k) where 0 < i < j < k ≤ 20, so the numbers represent a small but
significant fraction of all possible misclassifications.

This suggests, as might be expected, that there is no direct equivalence between
preservation of sensitivity and preservation of triangular classifications. The
average ROC50 score of PAM70 is only 0.50, which is a relatively modest per-
formance. It means that a relatively large amount of false positives are ranked

88 5 ANALYSIS AND DISCUSSION

ahead of the true positives in many query results. An explanation to the sensi-
tivity preservation may therefore be that the produced metric matrices are able
to correct some of the mistakes made by the original PAM70 matrix. Whether
this has a formal explanation in the design of the algorithms or has happened by
chance in the case of PAM70 has not been further investigated. In any case, the
results show that the two evolutionary algorithms, BoostMap and FastMap are
able to produce metric matrices which preserves the sensitivity of PAM70.

Because of its good performance, the entire CCA-PAM70 matrix has been in-
cluded in appendix B. In the figure, the matrix produced by the cooperative
coevolutionary algorithm has been scaled by a factor of 0.05 and rounded to one
decimal.

PAM120

Contrary to the case of PAM70, none of the algorithms are able to produce a met-
ric matrix with the same sensitivity as the PAM120 substitution matrix. Closest
in average ROC50 score is the matrix produced by the cooperative coevolution-
ary algorithm, with a score of 0.51. This is 0.08 lower than PAM120. Neverthe-
less, this suggests that a large fraction of the sensitivity is preserved. In relation
to the results obtained with the PAM70 matrix, two key observations can be
made:

• The rank order of the matrices produced by the different algorithms (in
terms of average ROC50 score) seems to be similar. In both cases, all em-
bedding algorithms except for non-metric multidimensional scaling out-
performs the triangle fixing algorithm. Furthermore, the cooperative co-
evolutionary algorithm produces the best matrices, while FastMap, Boost-
Map and the single-population genetic algorithm are roughly equal in per-
formance.

• Triangular misclassifications made by the PAM120-derived matrices sug-
gest that there may be some connection to ROC50 performance. CCA-
PAM120 makes 141 misclassifications, GA-PAM120 makes 132 misclassi-
fications and BM-PAM120 makes 180 misclassifications. In comparison,
NMDS-PAM120 makes 302 misclassifications. However, triangular mis-
classifications do not dictate ROC50 performance alone. The fact that FM-
PAM120 makes 260 misclassification while still performing equal to GA-
PAM120 is an indication of this.

Table 4.7 shows that we can reject the null hypothesis and conclude that none
of the derived matrices have sensitivities equal to PAM120 if a significance level
of 0.05 is chosen. If we choose 0.10 as significance level, the null hypothesis
cannot be rejected in the cases of CCA-PAM120 and BM-PAM120. Figure 4.3
confirms that the best performing matrix, CCA-PAM120, preserves much of the

5.2 HOMOLOGY SEARCH RESULTS 89

sensitivity from PAM120, although the difference plot seems to be slightly biased
towards positive values (i.e. PAM120 ROC50 score higher than CCA-PAM120
ROC50 score). The plot of sorted scores in figure 4.5 confirms this. Surprisingly,
GA-PAM120 is still rejected even though its average ROC50 score is equal to the
score of the matrix produced by BoostMap. This is because the hypothesis test
uses the median instead of average ROC50, and shows that GA-PAM120 has a
distribution of values which is more biased towards one side of the PAM120
median value than CCA-PAM120 and BM-PAM120.

PAM250

In terms of sensitivity preservation, the PAM250-derived matrices seem to re-
semble the ones derived from PAM120. Again, the three algorithms based on
preserving triangular classification produce the most sensitive metric matrices.
The number of misclassifications in this case are 131 for the matrix produced
by the single-population genetic algorithm, 136 for the matrix produced by the
cooperative coevolutionary algorithm and 162 for the matrix produced by Boost-
Map.

As in the cases of PAM70 and PAM120, matrices produced by the embedding
algorithms outperform the matrix produced by the triangle fixing algorithm by a
significant amount. The difference in average ROC50 score between TF-PAM250
and GA-PAM250 is 0.15. In contrast, the difference in average score between
GA-PAM250 and the original matrix is only 0.09. This latter difference is still,
however, not small enough to claim that all the sensitivity of PAM250 has been
preserved. As table 4.7 shows, we would have to choose a level of 0.026 or lower
for any of the results to be statistically significant. Since significance levels are
commonly set to 0.10 or 0.05, it would be very optimistic to claim that any of the
derived matrices perform equal to the original matrix.

Not considering full sensitivity preservation, the matrices produced by the two
evolutionary algorithms and BoostMap nevertheless seem to be good approxi-
mations. It is interesting to note that these three matrices produce search results
with higher average ROC50 scores than the mPAM250 matrix recently proposed
by Xu and Miranker in [XM04]. To compare mPAM250 and GA-PAM250, the
full ROC curves were calculated and plotted. They are shown in figure 5.1.

ROC curves show the average fraction of true positive hits returned per number
of false hits. Thus, the area under the curve can be seen as a measure of sensitiv-
ity performance. As figure 5.1 shows, the GA-PAM250 matrix produced by the
single-population genetic algorithm performs better than the mPAM250 matrix.
All three curves have the same shape, which shows that both of the two metric
matrices have characteristics similar to PAM250.

In relation to the results with PAM70 and PAM120, it is worth noticing that non-
metric multidimensional scaling performs better in this case. Another difference
is that the cooperative coevolutionary algorithm is not able to produce a metric

90 5 ANALYSIS AND DISCUSSION

Figure 5.1: ROC curves for PAM250, mPAM250 and GA-PAM250

matrix which performs better than the one produced by the single-population
genetic algorithm. Finding an explanation to these facts is hard, since a formal
connection between the philosophy of the algorithms and the data in the substi-
tution matrices is yet to be found. It simply shows that the inherent structure of
the input matrix has an impact on the performance of the output matrix. Local
minima are also possibly part of the explanation, since both non-metric multidi-
mensional scaling and the cooperative coevolutionary algorithm are exposed to
this problem.

Because of its good performance in relation to other attempts to construct a met-
ric matrix based on PAM250, the GA-PAM250 is included in its entirety in ap-
pendix C.

PAM matrices - a summary

The main observations which can be extracted from the homology search results
with PAM matrices are:

• In the case of PAM70, the two evolutionary algorithms are able to produce
metric matrices which preserve all the sensitivity of the original matrix.

• In all three cases, the two evolutionary algorithms produce matrices per-
forming better than matrices produced by the other algorithms.

• FastMap, BoostMap and the two evolutionary algorithms perform better
than the triangle fixing algorithm in all three cases. FastMap is able to
produce well-performing distance matrices even though its mathematical
foundation requires the input matrix to be metric.

5.2 HOMOLOGY SEARCH RESULTS 91

5.2.2 BLOSUM matrices

BLOSUM80

The results from homology search using metric matrices derived from the BLO-
SUM80 matrix are quite different from results with PAM-derived matrices. As
table 4.4 shows, the difference in average score is marginal between different al-
gorithms. The triangle fixing algorithm and BoostMap produce the most sensi-
tive matrices, while the matrix derived using non-metric multidimensional scal-
ing performs worst. The difference in average score from the original matrix
varies between 0.10 and 0.15, which must be considered to be a significant dif-
ference. This is confirmed by table 4.7, which shows that none of the results have
a statistical significance which is high enough to claim that the entire sensitivity
of the BLOSUM80 matrix is preserved (assuming a significance level of 0.05).

Nevertheless, the matrices produced by all of the algorithms are able to preserve
a large amount of sensitivity.

The possible connection between sensitivity preservation and number of trian-
gular misclassifications seems not to apply in this case. Calculations show that
BM-BLOSUM80 makes 161 misclassifications, while the corresponding numbers
for GA-BLOSUM80 and CCA-BLOSUM80 are 129 and 133, respectively. Still the
BoostMap-generated matrix is able to outperform matrices produced by the two
evolutionary algorithms.

BLOSUM62

The results obtained with matrices derived from BLOSUM62 are very similar to
the results in the case of BLOSUM80. All algorithms produce matrices of roughly
equal sensitivity. BoostMap is marginally best, closely followed by the triangle
fixing algorithm and FastMap. Choosing a significance level of 0.05, none of the
produced matrices can be claimed to have the same performance as the original
matrix.

An investigation of the triangular misclassifications made by the three algo-
rithms which are based on minimizing this measure confirms that the connec-
tion to sensitivity preservation seems to be very loose in the case of BLOSUM
matrices. The number of misclassifications is 253 for BM-BLOSUM62, 233 for
GA-BLOSUM62 and 230 for CCA-BLOSUM62. These scores correspond nei-
ther with the ranking of the average ROC50 scores, nor with the actual value of
the scores. Thus, the patterns observed with the PAM matrices seem not to be
present in the case of BLOSUM matrices.

92 5 ANALYSIS AND DISCUSSION

BLOSUM40

Average ROC50 scores from homology search using BLOSUM40-derived matri-
ces shows a higher level of resemblance to the PAM results than BLOSUM80 and
BLOSUM40. Matrices derived using spatial embedding algorithms are roughly
equal in performance, while the matrix derived using the triangle fixing algo-
rithm performs slightly worse. Thus, there seems to be an advantage in choosing
one of the embedding algorithms in this case.

Nevertheless, differences in sensitivity between different matrices are not as
high as with the PAM matrices. For example, observe that the difference be-
tween the most sensitive and least sensitive matrix is 0.15 in the case of PAM250
(see table 4.3). In this case, the difference is only 0.05. Even though the embed-
ding algorithms are marginally better than the triangle fixing algorithm in this
case, it confirms that the differences between the conceptually different methods
are questionable in the case of BLOSUM matrices.

BLOSUM matrices - a summary

The main observations which can be extracted from the homology search results
with PAM matrices are:

• The advantage of choosing an embedding algorithm over the triangle fix-
ing algorithm is more questionable than in the case of PAM matrices.

• Differences between matrices produced by the different algorithms are smaller
than with PAM matrices.

• All of the produced matrices are able to preserve a significant part of the
sensitivity of the original matrix.

5.3 Synthesis and summary

As discussed in the previous section, the experimental results suggest that the
effects of the produced metric matrices depend on the family of the input matrix:

• When dealing with matrices from the PAM family, there is an advantage
in choosing one of the algorithms which derive a metric distance matrix
from a spatial embedding over the triangle fixing algorithm. Furthermore,
the two genetic algorithms proposed in this work outperform the other
embedding algorithms by a slight amount.

• When dealing with matrices from the BLOSUM family, differences between
the embedding algorithms and the triangle fixing algorithm are less clear.

5.3 SYNTHESIS AND SUMMARY 93

The most likely explanation to these differences is that there are inherent differ-
ence between data contained in matrices from the two families. As shown in
section 2.3, there are fundamental differences in the way they are derived from
empirically collected data.

An interesting aspect of the average ROC50 scores is the fact that they seem to
be relatively similar across the six mutation matrices. Based on this, one might
wonder if the results are somehow effects of randomness. The difference plots
presented in chapter 4 show that this is most probably not the case. For many
of the produced matrices, the difference in ROC50 from the original matrix is
zero for almost half of the protein queries. This, in turn, shows that there is a
significant amount of correlation between the metric matrices and original ones.

The similarity in average ROC50 score also raises the question: Does this score
level (just above 0.5) represent a maximum amount of sensitivity which can be
preserved from a matrix from the PAM and BLOSUM families? This work does
not attempt to answer this question.

Some key observations can also be pointed out in relation to the design of the
different algorithms:

• Using matrices from the PAM family, BoostMap and the two evolution-
ary algorithms are among the best performers. Recall that these three al-
gorithms are based on minimizing the number of triangular misclassifica-
tions. This suggests that triangular misclassifications are suitable measures
of cost when constructing metric substitution matrices from spatial embed-
dings.

• The idea of using difference in rank between distance and similarity val-
ues, as non-metric multidimensional scaling does, seems not to work as
well as using triangular misclassifications.

• Even though FastMap requires input matrices to satisfy the triangle in-
equality, it produces metric embeddings from which well-performing ma-
trices can be derived.

• The difference in performance between the single-population genetic algo-
rithm and the coevolutionary one is only marginal. The most likely expla-
nation to this is the large difference in search space sizes between the algo-
rithms. Since the coevolutionary algorithm must search in a space which is
exponentially larger than that of the single-population algorithm, finding
a near-optimal solution is obviously a more difficult problem.

These observations suggest that the evolutionary algorithms proposed in this
work are appropriate for matrices of modest size, like amino acid substitution
matrices. As the size of input matrices increases, the computational resources
demanded by the algorithms will reach levels which are not feasible. In such

94 5 ANALYSIS AND DISCUSSION

cases, BoostMap or FastMap are better choices. Note, however, that the results
from the PAM and BLOSUM families of substitution matrices show that the ap-
propriateness of the algorithms is problem dependent. It is therefore difficult to
give any advice as to which should should be chosen in the general case.

Finally, it should be emphasized that the algorithms proposed in this work are
able to produce a metric distance matrix from PAM70 which preserves the sen-
sitivity of the original matrix. Furthermore, the proposed genetic algorithm pro-
duced a metric matrix from PAM250 which performs better than the mPAM250
matrix presented recently.

Chapter 6

Conclusions and future work

The work presented in this report has investigated different ways of convert-
ing a non-metric matrix into a metric distance matrix. In particular, two main
methods of achieving this goal have been considered and evaluated. The first
method enforces metricity explicitly by manipulating data in the matrix directly.
The other one is based on the general idea to embed the data in the substitu-
tion matrix into a metric space, from which a metric distance matrix is thereafter
recovered. Metricity is ensured implicitly in this latter approach. Two evolu-
tionary algorithms have been proposed in the work for performing the actual
mapping of data into metric space. The algorithms are based on comparing
proximities within triples of embedded elements with corresponding proxim-
ities in the non-metric matrix. They have been evaluated together with three
existing embedding algorithms, two of which have been modified in this work
for handling substitution matrices in the form of similarity matrices.

The algorithms and methods presented and compared are general in the sense
that they can be applied to any substitution matrix, without regards to how the
data in the matrix has been derived.

The methods have been tested on amino acid substitution matrices. These em-
pirical tests show that the embedding approach produces the best performing
metric matrices when dealing with input matrices from the PAM family. Fur-
thermore, the proposed evolutionary algorithms outperform the other embed-
ding algorithms by a slight amount. Very promising search results were ob-
tained with the CCA-PAM70 and GA-PAM250 matrices. The latter one is able
to outperform the mPAM250 matrix recently presented in a similar work. Re-
sults obtained from matrices derived from the BLOSUM family are less clear;
there seems to be no immediate advantage in choosing an embedding algorithm
instead of the triangle fixing algorithm.

This enables us to conclude that the suitability of the suggested methods is de-
pendent on the inherent nature of the data in the original matrix. For the specific
case of PAM substitution matrices, it seems to be suitable to apply the strategy of

96 6 CONCLUSIONS AND FUTURE WORK

deriving a distance matrix from a metric space where an attempt is made to pre-
serve triangular proximities. As the derived distance matrix represents a metric
distance measure between proteins, it can be utilized to store protein sequences
in efficient index structures. Although the entire sensitivity of the original ma-
trix is not preserved, this could prove to be useful in cases where approximate
search results are acceptable.

Future work should focus on investigating alternative ways of measuring the
quality of spatial embeddings. It is quite possible that there may exist other
schemes which are more effective than minimization of triangular misclassifica-
tions. Furthermore, the evolutionary embedding scheme proposed in this work
should be investigated further; better ways of representing the embedding, re-
combining embeddings and evaluating embeddings could exist.

Appendix A

Derivation of PAM and BLOSUM
matrices

This appendix explains how the PAM and BLOSUM families of matrices are
derived from empirically collected data. A brief comparison of the two models
is also given. Finally, a brief survey of alternative amino acid substitution matrix
models rounds off the appendix.

A.1 PAM matrix derivation

The PAM series of mutation probability matrices were introduced by Dayhoff
et al. in [DSO78]. PAM is an acronym for Point Accepted Mutation, which is a
mutation (a substitution of amino acids in a protein) that is accepted by evolution
in the sense that it has not been rejected by natural selection. PAM matrices are
associated with a number which gives the number of mutations per 100 amino
acids. For example, the PAM1 matrix contains the probabilities of mutation on
a time interval of 1 mutation per 100 amino acids - that is, we expect 1% of
the amino acids to undergo mutation. Similary, the probabilities in the PAM250
matrix applies to time intervals of 250 mutations per 100 amino acids.

Random and independent mutations are assumed. Thus, the mutation proba-
bility of a specific amino acid depends only on the amino acid itself, implying a
Markovian model of evolution. The PAM matrices are therefore Markov chains.

All of the PAM matrices can be derived from the PAM1 matrix. To build this
matrix, one needs a collection of phylogenetic trees representing the accepted mu-
tations in families of sequences (i.e. proteins). A phylogenetic tree shows the
evolutionary relationships among species or other biological entities which are
assumed to have a common ancestor. Given a node in such a tree, the parent
node represents the most recent common ancestor. Edge lengths, if given, corre-
spond to some kind of time estimate.

I

II A DERIVATION OF PAM AND BLOSUM MATRICES

Immediate mutations like i → j, are assumed (not intermediate ones like i →
k → j). To avoid a large degree of ambiguity, Dayhoff et al. therefore restricted
the collection to sequence families with more than 85% identity. Using this col-
lection, the number of changes from amino acid i to amino acid j, Aij, is counted.
The total number of changes into amino acid j can then easily be calculated as
Cj = ∑20

i=1 Aij. Using Tj to represent the number of appearences of j in the trees,
the relative mutability of j is defined as shown in equation A.1.

mj =
Cj

Tj
(A.1)

The relative mutability of amino acid j is proportional to the probability of j
changing into another amino acid, P(j changes) = cmj, where c is a constant
which depends on evolutionary time. Remembering that P(A, B) = P(B|A)P(A),
the probability of i changing into j can be found as shown in equation A.3. Equa-
tion A.2 gives the probability of j changing into i given that j was observed to
change, which can be found using the amino acid change counts.

P(j changes to i | j changes) =
Aij

Cj
=

Aij

∑20
l=1 Al j

(A.2)

Pij = P(j changes to i) = cmj
Aij

Cj
=

cmj Aij

∑20
l=1 Al j

(A.3)

The 400 Pij values constitute the PAM1 probability matrix. Diagonal elements in
this matrix can be seen as the probability that the amino acids do not change over
the evolutionary distance of interest. They are calculated as shown in equation
A.4.

P(j does not change) = Pjj = 1− cmj (A.4)

The value of c is chosen so that the average number of changes per 100 amino
acids is 1. Given the relative frequency f j of the amino acid j in the data set, it
can be calculated as shown in equation A.5.

c =
1

100 ∑20
j=1 f jmj

(A.5)

It turns out that all PAM matrices can be derived directly from PAM1 by simply
multiplying the PAM1 matrix by itself the desired number of times. For example,
the PAM250 probability matrix can be calculated by multiplying PAM1 by itself
250 times.

For two amino acids i and j paired in an alignment, Pij gives the probability of
i having changed into j due to mutation. But there is a problem with using the

A.2 BLOSUM MATRIX DERIVATION III

Figure A.1: PAM250 score matrix

mutation probabilities directly as alignment scores: We are not sure whether the
pair ij was actually a mutation. We cannot simply assume that all pairs in an
alignment are have a common evolutionary ancestor. Instead, given a pair ij,
we are interested in knowing if j replaces i more frequently than it appears by
chance. The probability that an amino acid j appears by chance in a sequence
can be estimated as the relative frequency f j of j in the data set. The ratio Pij/ f j
is called likelihood or odds. Given a mutation probability matrix P, the scoring
matrix S can finally be calculated as shown in equation A.6.

Sij = 10 log10
Pij

f j
(A.6)

Thus, the scoring matrix distinguishes real mutations from chance alignments.
When computing the score of an alignment, the relatedness odds of all pairs
needs to be multiplied to give the final probability. Since alignment algorithms
like the Smith-Waterman algorithm introduced in section 2.2.3 require the scores
to be additive, the logarithm of the odds is taken in equation A.6. The quantity
Sij is often referred to as the similarity between amino acids i and j. An example
of a commonly used matrix from the PAM family, the PAM250 score matrix, is
shown in figure A.1.

A.2 BLOSUM matrix derivation

The BLOSUM (BLOcks SUbsitution Matrices) family of substitution matrices
was introduced in [HH92]. The work was driven by the need to model pro-
tein sequences of lesser degree of divergence than the PAM family (recall from
the previous subsection that these matrices are derived from proteins which are
at least 85% similar). The matrices are derived from 2000 BLOCKS coming from
over 500 protein families. BLOCKS are sequence regions in proteins which do

IV A DERIVATION OF PAM AND BLOSUM MATRICES

Figure A.2: Example of a BLOCK of four proteins

not contain any insertions or deletions. A BLOCK can be visualized by stacking
the sequences on top of each other. An example is shown in figure A.2, which
has been adapted from [Car05].

Given a BLOCK, the first step is to count all possible pairs of amino acids in each
column. For a column with n amino acids, the number of such pairs for this
column is n(n−1)

2 . The frequency of the pair ij is denoted as fij. Note that fij = f ji
since the pairs are undirected. For example, the column containing amino acids
RKRE in figure A.2 contains one RR pair, two KR pairs, two ER pairs and one
EK pair. Using these frequencies, the probability of occurrence can be calculated
for each pair ij as shown in equation A.7.

qij =
fij

∑20
i=1 ∑i

j=1 fij
(A.7)

The probability of amino acid i occurring in any pair can then be calculated as
shown in equation A.8.

pi = qii + ∑
j 6=i

qij

2
= qii + ∑

j>i
qij (A.8)

Assuming that the amino acids occur independently of each other in pairs, the
expected probability of occurrence for each amino acid pair is calculated as
shown in A.9.

eij =
{

pi pj i = j
2pi pj i 6= j (A.9)

As with the PAM matrices, we are interested in the odds or likelihood of each
amino acid pair. For a pair ij, this is the ratio between the probability that the
transition i↔ j is a mutation and the probability that the pair occurs by random
chance. The former is given by qij and the latter is given by eij, so the odds pairs
are found as qij/eij. To make the scoring scheme additive, the logarithm of the
odds is taken, so the final BLOSUM scoring matrix is found using equation A.10.

Sij = 2 log2
qij

eij
(A.10)

A.3 A BRIEF COMPARISON OF PAM AND BLOSUM V

Figure A.3: BLOSUM62 score matrix

Each BLOSUM matrix is associated with a number indicating the threshold of
identity used when deriving the matrix. For example, the BLOSUM62 matrix
was derived using sequences (BLOCKS) more than 62% identical. BLOCKS of
less similarity were not considered. This matrix is included as an example of a
matrix from the BLOSUM family in figure A.3.

A.3 A brief comparison of PAM and BLOSUM

The first difference to notice between the PAM and BLOSUM models is that
PAM uses an explicit model of evolution, whereas BLOSUM uses an implicit
model. Recall from the presentation of PAM that the PAM1 matrix is constructed
from a pholygenetic tree which has been assembled by human domain experts.
In this model, common evolutionary origin is specified explicitly. In contrast,
evolutionary origin in BLOSUM matrices is implicit in the amino acid counts
derived directly from highly conserved blocks - there is no explicit specification
of common evolutionary ancestry.

Another key difference between the two models lies in the nature of the se-
quences used in the derivation process. The PAM model includes both highly
conserved and highly mutated sequence regions, because the observed muta-
tions are based on global rather than local alignments. In contrast, recall from
the previous section that BLOSUM uses conserved regions in alignments where
insertions or deletions do not occur (BLOCKS).

Empirical tests have shown that both the PAM and BLOSUM series of matri-
ces perform well when used as scoring matrices in database searches [HH93].
However, as a local alignment scheme is often used in such searches, BLOSUM
matrices are often found to perform slightly better. A general “rule of thumb”
is to use BLOSUM matrices when searching for conserved domains in proteins
regardless of evolutionary distance, and to use PAM matrices when searching
for evolutionary origin.

VI A DERIVATION OF PAM AND BLOSUM MATRICES

A.4 Other amino acid substitution matrices

A number of alternative amino acid substitution matrices exist, differing in deriva-
tion method and dataset used. This subsection describes some of these briefly.

An approach different from the PAM and BLOSUM models is taken by Gonnet
et al. in [GCB92]. In their work, exhaustive pairwise alignments of proteins in
the entire database as it existed at that time are calculated. The results of these
alignments are then used to estimate a distance matrix. The authors suggest that
their matrix should be used instead of the PAM250 matrix. Refinements on the
search results can thereafter be done using an appropriate matrix from the PAM
family.

Yet another approach is taken by Risler et al. in [RDDH88] and Overington et al.
in [ODJ+92], where proteins are aligned based on three-dimensional structure
rather than sequence. Therefore, only proteins for which a spatial structure has
been determined are used. Substitution statistics are gathered from the resulting
alignments. In theory, the substitution matrices generated using this method
should perform better than both PAM, BLOSUM and Gonnet matrices. How-
ever, the reliability of the substitution statistics is questionable since a limited
number of three-dimensional protein structures are available, so this has not
proved to be the case in practice.

A problem with the PAM series of matrices derived in 1978 is that many of the
possible amino acid substitutions were not observed in the dataset available.
Jones et al. has constructed an updated version of the PAM250 mutation matrix,
called PET91, in [JTT92]. This substitution matrix is based on 2621 families of
sequences from the Swiss-Prot database1, and covers many of the substitutions
which were poorly represented in the original dataset.

1http://www.ebi.ac.uk/swissprot/

Appendix B

CCA-PAM70 matrix

Figure B.1: Derived CCA-PAM70 matrix, scaled by 0.05

VII

Appendix C

GA-PAM250 matrix

Figure C.1: Derived GA-PAM250 matrix, scaled by 0.1

IX

Bibliography

[AASK04a] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Boostmap: A
method for efficient approximate similarity ranknings. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2004.

[AASK04b] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Learning euclid-
ean embeddings for indexing and classification. Technical Report
2004-014, Boston University, April 2004.

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.
Basic local alignment search tool. J. Mol. Biol., 215(3):403–410, 1990.

[BBM93a] D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic
algorithms: Part 1, fundamentals. University Computing, 15(2):58–
69, 1993.

[BBM93b] D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic al-
gorithms: Part 2, research topics. University Computing, 15(4):170–
181, 1993.

[BFM+96] J. E. Barros, J. French, W. Martin, P. M. Kelly, and T. M. Cannon.
Using the triangle inequality to reduce the number of comparisons
required for similarity-based retrieval. In SPIE Vol. 2670 Storage
and Retrieval for Still Image and Video Databases IV, pages 392–403.
1996.

[BK73] W. A. Burkhard and R. M. Keller. Some approaches to best-match
file searching. Commun. ACM, 16(4):230–236, 1973.

[BO97] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-
dimensional metric spaces. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 357–368, 1997.

[BY97] R. Baeza-Yates. Searching: An algorithmic tour, volume 37, pages
331–359. Marcel Dekker Inc., 1997.

XI

XII BIBLIOGRAPHY

[BYCMW94] R. Baeza-Yates, G. Cunto, U. Manber, and S. Wu. Proximity match-
ing using fixed-queries trees. In Proc. 5th Combinatorial Pattern
Matching (CPM’94), pages 192–212, 1994.

[Car05] M. Caron. The bioinformatics knowledge base: BLOCKS,
2005. http://apps.bioneq.qc.ca/twiki/bin/view/
Knowledgebase/BLOCKS. Cited May 15th 2005.

[Chi94] T. Chieueh. Content-based image indexing. In Proc. 20th Conference
on Very Large Databases (VLDB’94), pages 582–593, 1994.

[CNBYM99] C. Chávez, E. Navarro, G. Baeza-Yates, and R. Marroquín. Search-
ing in metric spaces. Technical Report TR/DCC-99-3, University
of Chile, Department of Computer Science, 1999.

[DSO78] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolu-
tionary change in proteins. In Atlas of protein sequence and structure,
supplement 3, pages 345–352. National Biomedical Research Foun-
dation, Washington DC, 1978.

[DST04] I. S. Dhillon, S. Sra, and J. A. Tropp. Triangle fixing algorithms for
the metric nearness problem. Technical Report TR-04-22, Univer-
sity of Texas, Austin, Department of Computer Sciences, Septem-
ber 2004.

[Dyk83] R. L. Dykstra. An algorithm for restricted least squares regression.
Journal of the American Statistical Association, 78(384):837–842, 1983.

[FL95] C. Faloutsos and K. I. Lin. FastMap: A fast algorithm for index-
ing, data-mining and visualization of traditional and multimedia
datasets. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 163–174, San Jose, Cali-
fornia, 22–25 1995.

[FS97] Y. Freund and R. E. Schapire. A decision-theoretic generalization
of on-line learning and application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1997.

[GB99] W. N. Grundy and T. L. Bailey. Family pairwise search with em-
bedded motif models. Bioinformatics, 15(6):463–470, 1999.

[GCB92] G. H. Gonnet, M. A. Cohen, and S. A. Benner. Exhaustive matching
of the entire protein sequence database. Science, 256(5062):1443–
1445, June 1992.

[GCS70] P. E. Green, F. J. Carmone, and S. M. Smith. Multidimensional scal-
ing: concepts and applications. Allyn and Bacon, Boston, 1970.

BIBLIOGRAPHY XIII

[GD91] M. Gribskov and J. Devereux. Sequence Analysis Primer, chapter 3.
Stockton Press, New York, 1991.

[GKM03] P. Gupta, A. B. Kahng, and S. Mantik. Routing-aware scan chain
ordering. In Proceedings of the Asia and South Pacific Design Automa-
tion Conference, pages 857–862, January 2003.

[Got82] O. Gotoh. An improved algorithm for matching biological se-
quences. J. Mol. Biol., 162:705–708, 1982.

[GR96] M. Gribskov and M. L. Robinson. Use of receiver operating charac-
teristic (ROC) analysis to evaluate sequence matching. Computers
& Chemistry, 20(1):25–33, 1996.

[HBK+03] E. Halpering, J. Buhler, R. Karp, R. Krauthgamer, and B. Westover.
Detecting protein sequence conservation via metric embeddings.
Bioinformatics, 19(Suppl. 1):i122–i129, 2003.

[HH92] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices
from protein blocks. In Proc. Nat. Acad. Sci USA, pages 10915–
10919, November 1992.

[HH93] S. Henikoff and J. G. Henikoff. Performance evaluation of amino
acid substitution matrices. Proteins, 17(1):49–61, 1993.

[HHLB04] Y. Hou, W. Hsu, M. L. Lee, and C. Bystroff. Remote homol-
ogy detection using local sequence-structure correlations. Proteins,
57(3):518–530, 2004.

[HS03] G. R. Hjaltason and H. Samet. Properties of embedding methods
for similarity searching in metric spaces. IEEE Trans. Pattern Anal.
Mach. Intell., 25(5):530–549, 2003.

[JTT92] D. T. Jones, W. R. Taylor, and J. M. Thornton. The rapid generation
of mutation data matrices from protein sequences. Comput. Appl.
Biosci., 8:275–282, 1992.

[LLTY97] M. Linial, N. Linial, N. Tishby, and G. Yona. Global self organi-
zation of all known protein sequences reveals inherent biological
signatures. J. Mol. Biol., 268(2):539–556, 1997.

[LP85] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein simi-
larity searches. Science, 227(4693):1435–1441, 1985.

[NW70] S. B. Needleman and C. D. Wunsch. A general method applicable
to search for similarities in the amnio acid sequence of proteins. J.
Mol. Biol., 48(3):443–453, March 1970.

XIV BIBLIOGRAPHY

[ODJ+92] J. Overington, D. Donnelly, M. S. Johnson, A. Sali, and T. L. Blun-
dell. Environment-specific amino acid substitution tables: Tertiary
templates and prediction of protein folds. Protein Sci., 1(2):216–226,
Feb 1992.

[Par98] J. Paredis. Coevolutionary algorithms. In T. Bäck, D. Fogel, and
Z. Michalewicz, editors, The Handbook of Evolutionary Computation,
1st supplement. Oxford University Press, 1998.

[RDDH88] J. L. Risler, M. O. Delorme, H. Delacroix, and A. Henaut. Amino
acid substitutions in structurally related proteins. A pattern recog-
nition approach. J. Mol. Biol., 204:1019–1029, 1988.

[SAM+01] A. A. Schäffer, L. Aravind, T. L. Madden, S. Shavirin, J. L. Spouge,
Y. I. Wolf, E. V. Koonin, and S. F. Altschul. Improving the accu-
racy of PSI-BLAST protein database searches with composition-
based statistics and other refinements. Nucleid Acids Research,
29(14):2994–3005, 2001.

[SS99] R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidece-rated predictions. Machine Learning, 37(3):297–336, 1999.

[SW81] T. F. Smith and M. S. Waterman. Identification of common molec-
ular subsequences. J. Mol. Biol., 147:195–197, 1981.

[TJ93] W. R. Taylor and D. T. Jones. Deriving an amino acid distance
matrix. J. Theor. Biol., 164:65–83, 1993.

[TO04] Y. H. Taguchi and Y. Oono. Novel non-metric MDS al-
gorithm with confidence level test, 2004. Published at
http://www.granular.com/MDS/src/paper.pdf. Cited
March 3rd 2005.

[TO05] Y. H. Taguchi and Y. Oono. Relational patterns of gene expression
via non-metric multidimensional scaling analysis. Bioinformatics,
21(6):730–740, 2005.

[Wat95] M. S. Waterman. Introduction to Computational Biology: Maps, Se-
quences and Genomes. CRC Press, 1st edition edition, 1995.

[WLDJ01] R. P. Wiegand, W. C. Liles, and K. A. De Jong. An empirical analy-
sis of collaboration methods in cooperative coevolutionary algo-
rithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pages 1235–1245, 2001.

[WMMY02] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye. Probability
and statistics for Engineers and Scientists, Seventh edition, chapter 16,
pages 601–605. Prentice Hall, Inc., Upper Saddle River, New Jer-
sey, 2002.

BIBLIOGRAPHY XV

[XM04] W. Xu and D.P. Miranker. A metric model of amino acid substitu-
tion. Bioinformatics, 20(8):1214–1221, 2004.

[XNJR03] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning,
with application to clustering with side-information. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in neural information
processing systems 15, pages 505–512. MIT Press, Cambridge, MA,
USA, 2003.

[Yia93] P. Yianilos. Data structures and algorithms for nearest neighbour
search in general metric spaces. In Proc. 4th ACM-SIAM Symposium
on Discrete Algorithms (SODA’93), pages 311–321, 1993.

[YJF98] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of
similar time sequences under time warping. In Proceedings of the
14th International Conference on Data Engineering (ICDE’98), pages
201–208, 1998.

