
Foreword

I would like to thank my supervisor, Roger Midtstraum, for his helpful advice
during the course of this work.

i

ii

Summary

In this thesis the image segmentation system EDISON, was tested against an
automatic version snake, which is an algorithm active contour models. The
algorithms were tested against each to see if an automatic snake algorithm
could be feasible for use in an image database for shape extraction.

The conducted tests showed that EDISON yielded the best results, and
that snake should be given further work before being considered.

iii

iv

Contents

1 Introduction 1

1.1 Vision . 1

1.1.1 Background . 1

1.1.2 The issues . 2

1.1.3 The case for QBE . 2

1.2 The process of image-retrieval in an image database 2

2 Image segmentation 5

2.1 General background . 5

2.2 Different types of segmentation 5

2.3 Threshold based segmentation 6

2.3.1 Automatically assigning threshold 8

2.3.2 Adaptive methods . 8

2.3.3 Optimal thresholding 8

2.4 Edge based segmentation . 9

2.5 Active contour models . 9

2.5.1 Kass snakes . 10

2.5.2 Discretising . 13

2.5.3 Dynamic contour . 13

2.6 Gradient Vector Flow . 14

2.6.1 GVF snakes . 15

3 Implementation 17

3.1 Test environment . 17

3.2 The algorithms . 17

3.2.1 EDISON-implemenation 18

3.2.2 Snake-implementation 18

3.3 Other software . 19

3.3.1 Image retrieval from database 19

3.3.2 Support software . 19

v

vi CONTENTS

4 Test of segmentation algorithms 21
4.1 Segmentation - one link in the chain 21
4.2 Proposed segmentation goals 21
4.3 Test motives . 22
4.4 Testset . 22

4.4.1 Test criteria . 23
4.4.2 Hand-crafted solution 24
4.4.3 Evaluating the criteria 24
4.4.4 The images in the testset 25

4.5 Solution set . 28
4.5.1 Notes on hand made object masks 28

4.6 Test 1 - EDISON . 31
4.6.1 About EDISON . 31
4.6.2 Setup of EDISON . 31

4.7 Result from test 1 . 32
4.8 Discussion EDISON . 35

4.8.1 Troublesome segmentations 36
4.8.2 Summary edison . 38

4.9 Test 2 - snake . 39
4.9.1 About snake . 39
4.9.2 Making snake automatic 39
4.9.3 Setup of snake . 39

4.10 Results from test 2 . 40
4.11 Discussion snake . 46

4.11.1 General remarks . 46
4.11.2 Identified problems . 49
4.11.3 Summary snake . 53

5 Conclusion 55
5.1 Conclusive remarks . 55

Chapter 1

Introduction

1.1 Vision

1.1.1 Background

The number of digital images stored on computers is increasing rapidly. The
use of digital cameras and other digital media, such as mobile phones and
camcorders contributes to the growing amount of images. A large number of
images introduces another problem, that of retrieving one specific image, or
several images belonging to a conceptual category.

In the world of image databases, the ability to automatically acquire
metadata derived from an image’s spatial properties1, is highly desirable,
since the work involved with manually categorizing images can be tremendous
and in practice not feasible. This step is considered to be important to
facilitate the notion of content-based indexing, as well as content-based image
retrieval.

Current approaches to this concept rely among others upon low-level
operations on the pictorial data. Methods pertaining to images, e.g. feature
extraction, are known to be computationally expensive. As a side note image
processing as a discipline itself, is relatively young. The methods involved
are still somewhat immature. Therefore, hybrid solutions which leverage
both the benefits of textual annotation and spatial information are indeed
interesting.

1With sptial properties we mean the intrinsic properties in an image. which have to be
extracted with methods from computer vision, to be indexed upon.

1

2 CHAPTER 1. INTRODUCTION

1.1.2 The issues

An issue with a large multimedia database is retrieval. Adjeroh et.al. [2]
considers that even though textual keywords is a popular way of annotating
multimedia data, they are flawed. Manual annotation has problems beyond
being labour intensive. More precisely, humans lay their subjective interpre-
tation of the data in the keywords they attach. For instance an image may
symbolize one thing to one person, yet have completely different meaning to
the next person. Vocabulary may play a role in this process as well. To help
overcome these troubles an automated process of content-based indexing is
desirable.

With a growing number of images, there comes an urgent need for image
retrieval [26]. In later years, content-based indexing has been used on mul-
timedia data, perhaps on images in particular [2]. Images are analyzed to
derive inherent spatial metadata. This process tries to extract low-level fea-
tures as colour, shape, texture and spatial information. These features can
be represented by a feature vector and associated with the image. The na-
ture of the algorithms extracting features make the prospect of exact matches
between images poor. Therefore when searching multimedia data, a form for
similarity measure is normally used [2]. It is difficult to express spatial prop-
erties from images using textual queries. Likewise it is difficult to express
semantic features with spatial properties. This can be called an semantic
gap, a discrepancy between what the user want, and what can be described.

1.1.3 The case for QBE

Query-by-example is one method which is more intuitive [26]. Describing a
desired image in terms of feature vectors would be meaningless and absurd
to a human user. Using an image, similar to what one wants as output, a
MDBMS can use the feature vectors attached to the example image, and
search for images with similar feature vectors in the database. Searching
for similar vectors can be a problem in its own right. The vectors can be
fairly long, and this high dimensionality is often not supported natively in
databases. Lu [14] is suggested for further reading in that area.

1.2 The process of image-retrieval

To query for results in an image database, using query-by-example can be
outlined as shown in figure 1.2. Note however, this process may vary, de-
pending on method used to query for images, and desired output.

1.2. THE PROCESS OF IMAGE-RETRIEVAL 3

Start

Disk

Query for similar
image

Exists images
within similarity

constraint

Fetch/calculate
feature vector for

input image

Compare feature
vectors

Pre-computed
feature vectors

Return list of
images, fulfilling

constraints
Return a list, of k
nearest images

Yes No

Done

Figure 1.1: Process for an image query

4 CHAPTER 1. INTRODUCTION

Chapter 2

Image segmentation

This chapter will cover the underlying theory of some segmentation algo-
rithms.

2.1 General background

The objective with segmentation is to apply a label to the pixels. After
the segmentation has completed, the pixels will have a label, which effec-
tively divide the pixels into groups that share some spectral property. In the
case of image databases, the result is hopefully objects separated from the
background of the images.

Segmentation is really one of the first steps on the way to describe objects
in images. The process which succeeds image segmentation can be outlined
as:

1. Obtaining the shape

2. Describing the shape

3. Devise a way to compare different shapes

Segmentation in general is very hard, and can be a time-consuming operation.
One of the struggles is to avoid confusion caused by ambiguity and noise. [22]

2.2 Different types of segmentation

According to [22], segmentation algorithms can roughly be divided into three
categories. Threshold based, edge based and region based. In the next
sections a short description of the different segmentation approaches will
follow.

5

6 CHAPTER 2. IMAGE SEGMENTATION

2.3 Threshold based segmentation

Threshold based segmentation or thresholding can be considered, the techni-
cally least complex segmentation approach. First let us a consider an image.
Images can be viewed as spatial data structures, a matrix containing grey-
levels for each pixel in the image. High grey-levels e.g. 255 represents the
colour white, whereas value 0 is black. In this discussion only grey images are
considered. (Though thresholding can still be applied to colour images after
a grayscale conversion.) The underlying idea behind thresholding is that an
object comprise grey-levels which are relatively uniform and distinguishable
from that of the background. This can be observed in a histogram of the
grey-levels, for instance consider figure 2.1. The upper left image shows the
original image, the upper right image, shows the histogram of grey-levels.
The lower left image, show the threshold version of figure 2.1(a), with a
threshold equal to 165, it can be seen that this, divides the image into two
groups. And the bowl has been segmented.

The purpose of thresholding, is to separate the object from the back-
ground, that is, to extract the object. This is achieved by setting a threshold
which divides pixels into object-pixels and background-pixels. Thus the re-
sulting thresholded image is a binary image. In [7] a thresholded image g(x, y)
of an image f(x, y) with light objects on a dark background, is defined as:

g(x, y) =

{
1 if f(x, y) > T
0 if f(x, y) ≤ T

(2.1)

By using a single threshold for the entire image, one performs a global
thresholding. However often this method is too crude. The same can be said
about thresholding in general, still, it remains a popular technique, because
of its ease of implementation and speed. The literature [7, 22] list problems
such as illumination, which complicates the case of thresholding. Problems
arising might be objects not consisting of uniform grey-levels, either as a
cause of lighting or some deviations associated with the input-method of the
image. This makes the use of a global threshold likely to fail, since different
part of the object or image probably need different local thresholds.

There are more than one technique which can be put to use, to improve
the results. For example, the threshold can be adjusted dynamically as the
algorithm traverse various parts of the image. There are several ways of
optimising the threshold. Many algorithms involve some statistical consid-
erations on the histogram as well as local low-level features in an image.

2.3. THRESHOLD BASED SEGMENTATION 7

(a) Original greyscale image

0 50 100 150 200 250

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(b) The corresponding histogram of grey-
levels

(c) The resulting thresholded image with
threshold 165

Figure 2.1: Histogram of grey-levels

8 CHAPTER 2. IMAGE SEGMENTATION

2.3.1 Automatically assigning threshold

Gonzalez et.al [7] describe on page 599, of their book the following method
for automatically selecting a threshold.

1. Select a starting threshold T, as an estimate.

2. Segment the image in two regions G1 and G2, with this threshold.
(G1 > T and G2 ≤ T

3. Compute average grey-levels, µ1 and µ2 for, G1 and G2 respectively.

4. Finally, calculate a new threshold T = 1
2
(µ1 + µ2). Repeat step 1-4

until the difference between each iteration is below a certain value.

2.3.2 Adaptive methods

Adaptive thresholding is a method which depends not only on threshold, but
also spatial location within the image. One approach in this category is to
divide an image into a sufficient number of sub-images. This can produce
sub-images with bi-modal histograms. A bi-modal histogram is instrumental
in obtaining a sound segmentation. Bi-modal can be understood as an image
with background of on colour, and one or more objects, of a different colour.
This will produce a histogram, with two peaks, one for each class of pixels.
The peaks need not be at separate places, depending on the actual colours.

A situation which can occur if a large area of the image or sub-image is
dominated by one grey-level or a band of grey-levels, is that the resulting
histogram becomes unimodal. This situation may be remedied by further
subdivision of the image.

Determination of the actual threshold, can for instance be calculated with
the same algorithm as described above.

2.3.3 Optimal thresholding

Another take on threshold estimation, is that of the estimation of the opti-
mal threshold. The method is based on finding the minimal average error in
segmentation. The histogram of grey-levels is used as a probability density
function. One assumes a known distribution, for which parameters can be
calculated and solves the equation which yields the optimal solution. How-
ever, as a side-note, this calculation is not trivial per se, and numerical
methods must be used.

2.4. EDGE BASED SEGMENTATION 9

2.4 Edge based segmentation

Edge based segmentation, involves the use of edge operators [22, 7]. These
are operators which give response for sudden changes in grey-values. They
give response on change, and consequently, edge operators can be under-
stood as derivatives. The gradient, is often used as an approximation for the
derivatives, and therefore, as an edge operator.

∇f =

[
Gx

Gy

]
=

[∂f
∂x
∂f
∂y

]
(2.2)

The gradient is most often implemented as a spatial mask which is convoluted
over the image.

The problem in edge segmentation, can be summarised as generating
complete, connected edges. Most edge operators result in partial edges. The
problem can sometimes be solved by inspecting the neighbourhood pixels,
for matching grey-levels. This can help determine if the edge is a weak one
i.e. no supporting edges in the neighbourhood, or a strong one, weak edges
are usually discarded.

2.5 Active contour models

Active contour models, popularly called snakes, have gained attention the
later years and have been put to use in medical imaging. Then concept of
the snake model was introduced by Kass et. al. in [11]. This notion of a snake
consist of a parametric contour. The contour is later deformed to encompass
the wanted object to be segmented. There are problems associated with
the use of snakes however, see [23, 20]. That is, there are some concern
regarding the initialisation of the snake contour, and some also with its ability
to reach into cavities in image contours. As a parametric structure the snakes
have a possibility to be controlled interactively, this has also been a widely
used method of snake initialisation. While semiautomatic techniques are the
dominating type of snakes, hope is to achieve fully automatic segmentation
with snakes.

McInerney and Terzopoulos [16] explain that one reason the snake has
been popular in the medical imaging is the use of indigenous constraints
in images. Combined with a priori knowledge of the anatomical structures
targeted for segmentation, the snake, or shape models could be manipulated
with this information.

10 CHAPTER 2. IMAGE SEGMENTATION

2.5.1 Kass snakes

The original snake is an energy-minimizing parametric contour, it is deformed
by forces which move the contour toward image features as edges [11]. The
contour will deform until an energy function 2.4 is minimized. Usually, two
forces are included in this function, an internal energy and an external force.
The internal energy is related to the snake and controls its stretching and
bending. Meanwhile the external force represents the image features, it is
responsible for connecting the contour to the image. This results in a snake
that is an elastic structure that can bend and form to complex objects in
an image. The energy functions must be defined so that the snake reaches a
minimum on or near the wanted features in the image.

The contour of the snake in the image plane as represented in [16] is given
by

ν(s) =

[
x(s)
y(s)

]
s ∈ [0, 1] (2.3)

The total energy for the snake in the plane is given by1

E∗
snake =

∫ 1

0

Esnake(ν(s))ds (2.4)

=

∫ 1

0

Einternal(ν(s)) + Eimage(ν(s))ds (2.5)

Where Einternal denotes the internal force controlling the snake, and Eimage

by the force connecting it to the image. The energy of the internal force
from the snake, on a point ν(s) on the contour is stated in equation 2.6. The
snake model is inspired by elasticity theory from physics [16].

Einternal(ν) =

∫ 1

0

1

2
(α(s)|∂ν

∂s
|2) + (β(s)|∂

2ν

∂s2
|2)ds (2.6)

The equation has two parameters α(s) and β(s), which control the snake’s
physical properties, respectively elasticity and bending. Essentially, these
parameters are weighting factors, that control how easily the snake should
bend, or resist changes. These parameters can be changed to better suit any
given situation.

Eimage should draw the snake to interesting features in the image. This
demands that Eimage has low values for such features in the original image

1In [11] the total snake energy also contains an external constraint force. This is omitted
in the overview here. It can be used to incorporate user guided constraints on the snake
energy.

2.5. ACTIVE CONTOUR MODELS 11

[10]. Edges are especially interesting. Techniques from chapter 2.4 can be
employed in the process of creating the image forces. The main intention
for doing segmentation is feature extraction and description. Allowing later
comparison to other analysed images. In this sense, the main concern will
be to separate object from background. So the edges from between the
background and object are ideal for image force.

Using edge-operators to enhance existing edges in the image is one of the
more common bases for image forces, in the literature of snakes. The image
force can be understood as potential function, or like a force field in physics.
An area where objects are subject to a force. The force must pull the objects,
e.g. the snake to desired positions in the image plane, as mentioned earlier.
That translates to defining an expression, which have a minima on these
locations, which explains why Eimage should have small values for interesting
image objects.

The range of the force field of Eimageis important, because it is essentially
represents the capture range of this method. If the snake is not initialised
within the force field it may take long for the snake to reach an equilibrium,
or it may not reach that state at all. Common formulations of Eimage are:

• Eimage = −|∇I|2

• Eimage = −|Gσ ∗ ∇I|2

Here I represents the original image, ∇ is the gradient operator. Gσ ∗ I
represents a convolution on the image I with a Gaussian convolution mask,
a blurring operation. The purpose is to attract the snake to high image
gradients, in effect, edges in the image. By blurring, the image one can
extend the capture range of the force field, and reduce noise in the image.
Note also, that it is the magnitude of the gradient that is used in the energy
expression. See figure 2.2 for illustrations.

The process of segmenting an image with a snake, is to find a a contour
ν(s) that minimise the energy expression given in equation 2.7. This involves
moving and deforming the snake until it stabilises in an energy minima.

E(ν) =

∫ 1

0

1

2
(α(s)|∂ν

∂s
|2) + (β(s)|∂

2ν

∂s2
|2) + Eimage(ν)ds (2.7)

The calculus of variation gives the Euler-Lagrange equation shown in 2.8. A
minima of E(ν) in equation 2.7 must adhere to this new equation. Thus, a
stable snake must satisfy this equation, since an energy minimum represents
the system at rest, a balance between internal and external forces on the
snake.

−(α(s)
∂2ν

∂s2
) + (β(s)

∂4ν

∂s4
) +∇Eimage(ν) = 0 (2.8)

12 CHAPTER 2. IMAGE SEGMENTATION

(a) Original image (b) Blurred gradient image

(c) Standard potential field

Figure 2.2: Image and standard potential field

2.5. ACTIVE CONTOUR MODELS 13

2.5.2 Discretising

Digital images are discrete data, and the above expressions must be solved
numerically. To approximate the derivatives, one can use finite differences
[11, 16]. The snake contour is represented as a vector of parameters. The
derivatives become

ν ′(s) ≈ ν ′(ih) = ν((i + 1)h)− v(ih) (2.9)

Here h is a step in s, and i is the index, s = ih. Further discretisation
of the internal energy equation 2.6 with vector notation νi = (xi, yi)

> =
(x(ih), y(ih))>, gives

Einternal = αi|νi − νi−1|2/2h2 + βi|νi−1 − 2νi + ν2
i+1/2h|4 (2.10)

The Euler-Lagrange equation becomes

− (αi+1(νi+1 − νi)− αi(νi − νi−1))

+ (βi+1(νi+2 − 2νi+1 + νi)− 2βi(νi+1 − 2νi + νi−1) + βi−1(νi − 2νi−1 + νi−2))

+∇Eimage(ν) = 0 (2.11)

Representing ∇Eimage(ν) as ∇Eimage(ν) = (∂F
∂x

, ∂F
∂y

) = (Fx, Fy) the Euler-
Lagrange equation can be written in matrix form, as two indepedent equa-
tions.

Ax + Fx = 0 (2.12)

Ay + Fy = 0 (2.13)

2.5.3 Dynamic contour

A dynamic contour, which is changed iteratively is desirable. By making the
contour ν(s) also dependent on time, this can be achieved. So for a dynamic
contour ν(s, t) the energy can be expressed as

E(ν(s, t)) =

∫ 1

0

1

2
(µ(s)(

∂ν(s, t)

∂t
)2 + γ(s)|νt|2

+ α(s)|∂ν(s, t)

∂s
|2 + β(s)|∂

2ν(s, t)

∂s2
|2) + Eimage(v(s, t))ds (2.14)

In equation 2.14 µ(s) and γ(s) is the mass density and damping density
respectively. The corresponding Euler-Lagrange equation becomes

µ
∂2ν(s, t)

∂t2
+γ

∂ν(s, t)

∂t
−α

∂2ν(s, t)

∂s2
+β

∂4ν(s, t)

∂s4
+∇Eimage(ν(s, t)) = 0 (2.15)

14 CHAPTER 2. IMAGE SEGMENTATION

We assume the parameters are constant along the contour, we also assume
the mass µ is zero. Using the same discretisation approach in section 2.5.2,
isolating x(t) and y(t) and solving the equations with matrix-inversion, the
solutions are (more details available in [11]:

x(t) = (A + γI)−1(γx(t− 1)− Fx(x(t− 1), y(t− 1))) (2.16)

y(t) = (A + γI)−1(γy(t− 1)− Fy(x(t− 1), y(t− 1))) (2.17)

Also a scaling factor is usually included κ, to weigh the external force field.

2.6 Gradient Vector Flow

C. Xu and J.L. Prince highlighted in [24, 23] certain problems with the tradi-
tional snake model. More precisely they showed some drawbacks pertaining
to the potential forces guiding the snake contour to edges in the images. The
issues were related to the standard potential field used as an external/image
force in Kass et.al. [11], and described in section 2.5.1. The main issues are
initialisation of the snake contour, its convergence properties, and the ability
for the contour to reach into cavities.

The original potential force, makes the snake sensitive to initialisation. If
the snake is initialised too far away the wanted features, it may not converge
to those features at all, or it can converge to an undesirable feature. Xu and
Prince note that some work has been done in this area to partially rectify this
specific problem, namely the distance potential field. One issue the distance
potential field [5] tried to enhance was the capture range, guiding the snake
to edges. While it accomplished that one problem remained, to reach into
cavities.

Xu et.al. list several proposals in their articles, which try to solve the
mentioned problems. They conclude that when partially solving some the
problems mentioned above, they introduce others. For instance they look at
multiresolution methods, which have solutions for capture range, but they
note, are problematic when specifying how the snake should move between
resolutions. In the articles regarding gradient vector flow, Xu. et.al. propose
a method, solving both the problem of capture range and cavities. The new
method consists of a different type of external force, replacing the image
forces mentioned in this report. The new force, or force fields are called
gradient vector flow (GVF) fields. The new method of energy minimisation
is done through diffusion of gradient vectors of the edge map.

2.6. GRADIENT VECTOR FLOW 15

Figure 2.3: GVF field of 2.2(b)

2.6.1 GVF snakes

Xu et.al. call active contours that uses the GVF as an external field, GVF
snakes. Since the GVF snake can not be expressed as the traditional Kass
snake, the energy-minimisation formulation does not apply. Instead, it is
expressed from a force balance condition. In place of the old external force
field, a new static potential field is wanted. The theoretical basis for this
field comes from the Helmholtz theorem [23].

Equation 2.8 can still be used as the basis for the GVF snake. We can
reformulate 2.8 as

Fint + F
(p)
ext = 0 (2.18)

Replacing the potential external force field with F
(g)
ext = g(x, y) gives the

equation for the dynamic snake

xt(s, t) = αx′′(s, t)− βx′′′′(s, t) + g (2.19)

To obtain a GVF field we need an edge map f(x, y) which contain edge
information from the original image I(x, y). If the input image is a grey-level
image, suitable definitions are:

f(x, y) =|∇I(x, y)|2 (2.20)

f(x, y) =|∇[Gσ ∗ I(x, y)]|2 (2.21)

16 CHAPTER 2. IMAGE SEGMENTATION

The magnitude of the gradient of the image, or the magnitude of the blurred
image, will have the desirable high values for edge features. The gradient is
vector consisting of both value and direction. The gradient of an edge map
will have vectors in the direction of edges. But like the image force field
in connection with the Kass snakes, the vectors only have a large magni-
tude, in the direct neighbourhood of the edges, resulting in a short capture
range. Additionally, areas with solid grey-values, the gradient is zero, and
this results in large areas where there is no force, affecting the contour.

To remedy the two shortcomings of capture range, and lack of force in ho-
mogenous areas, the new force field is calculated using vector diffusion. This
process will spread gradients across the gradient map, effectively extending
the reach of the force field. The process will also create vectors pointing into
cavities.

In [24] the gradient vector fow field v(x) is defined as the solution to
equation 2.22.

ut = g(|∇f |)∇2u− h(|∇f |)(u−∇f)
u(x, 0) = ∇f(x)

(2.22)

This yields as a solution to u(t)

u(t + 1) = u(t) + g(|∇f |)∇2u(t)− h(|∇f |)(u(t)−∇f) (2.23)

Gradient vector flow, can be understood as a diffusion process. In fact it
is similar to what goes on in heat conduction, where heat dissipates out in
a surface, heating the near surroundings in the surface. Similarly, gradient
vector flow, can be seen as a smoothing, where the gradients are smoothed out
over the image plane, and as can be seen from the equation above, gradient
vector flow, also involves a data term, reenforcing the original edge in the
plane, preventing it from being washed out. The equation directly, above,
can be seen as consisting of a smoothing term, and a data term.

Chapter 3

Implementation

This chapter will detail aspects of the implementation of the algorithms and
other non-essential components used in the testing.

3.1 Test environment

The tests and software used in this thesis, were all run on an Apple Power-
book computer. A brief overview of the technical specifications of the system
are as follows.

• Processor: Motorola 1.0 GHz G4

• Memory: 512MB

• os: Mac os x

• Java-version: Java J2SE 1.4.2

• Matlab 7.0 R14

• ImageMagick 6 (with PerlMagick)

• Perl 5.8

• Gimp.app 2.0

3.2 The algorithms

Several software packages were used in the tests. Both in the case of edison
and the snake method, the implementation were based on existing code.

17

18 CHAPTER 3. IMPLEMENTATION

3.2.1 EDISON-implemenation

edison can almost be described as a framework for image segmentation.
It is a system which performs segmentation with a region based mean shift
algorithm. The algorithm was developed at the Robust Image Understanding
Laboratory [3] at Rutgers University, by Chris M. Christoudias and Bogdan
Georgescu. The theory and methods implemented within edison are covered
in detail in the following papers [6, 18, 4], which together form the theoretical
basis for that system.

The original source code of edison can be found on webpage here [3],
where it is implemented in C++. In the tests conducted during this thesis a
Java-port of the edison-system was used. This port was developed by Brian
E. Pangburn and Jonathan P. Ayo, it is called jedison [19]. The port was
compiled, and could be run directly to create region maps of the inputted
images.

Supporting software

In addition to the jedison bundle, more software was needed to to test
edison. To carry out the tests of edison in the wanted manner, a shell script
was created in Perl. This shell script linked into ImageMagick [13], which
is a library of image processing functions. The shell script executed edison
on each image in theset. Furthermore the shell script generate segmentation
masks of the outputted region maps. Therefore each region map is examined
according to section 4.6.2, and the edison is rerun until a satisfying number
of ojbects are identified. Finally a segmentation mask is created.

3.2.2 Snake-implementation

At the core of the snake-implementation, is a framework created by Chenyang
Xu and J.L. Prince, in connection to their work on GVF-fields combined
with snakes. This framework is available from Xu’s and Prince’s webpage
[25]. This framework covers calculation of snake deformation and GVF force
field, as described in section 2.5.

A graphical user interface is used as a wrapper around the snake frame-
work by Xu and Prince. The graphical user interface is based on code from
H. Heuch’s master thesis. [10]. The code and user interface from Heuch, was
originally intended to facilitate semi-automatic segmentation on MR-images
of liver slices.

This code has been modified for the purpose of this thesis, to allow for
testing of fully automatic snake segmentation. That means that the original

3.3. OTHER SOFTWARE 19

methods used in the program, where one the contour for the current image,
was based on the contour from the previous image, is altered. For the purpose
of simplicity in testing, the semi-automatic nature of the user interface is
retained, where each image is elected manually, however the initialization of
the contour is automatic. Further description of the behaviour of the changed
program can be found in section 4.9.

3.3 Other software

This section describes other software pieces used in testing.

3.3.1 Image retrieval from database

The tool sesam [1], was used to access the database with images of the
artifacts from The Norwegian Folk Museum. This Java-application was de-
veloped in connection with J.O. Hauglid’s doctoral thesis [9]. Sesam was
used as-is, to find suitable images for segmentation. The images were saved
on the test-computer’s harddisc, and used locally from that point on.

3.3.2 Support software

Some pieces of software accompany the actual tested algorithms. These are
software pieces developed to make testing more simple, and to help yield
comparative results between the different algorithms. Two such extra tools
were made.

Image mask tool

This tool (EdSeg.java), processes the output from edison, and converts it
to a binary image, with the segmentation mask of the object. The imple-
mentation is based on code from Grotan [8].

Conformity percentage tool

The tool (TestResult.java), is used to measure to what degree the out-
putted segmentation mask from the algorithms, match with the segmenta-
tion mask from the man made solution. It shares some code with the image
mask tool above. Further details can be found in section 4.4.3.

20 CHAPTER 3. IMPLEMENTATION

Chapter 4

Test of segmentation algorithms

The chapter contains a test of the snake-algorithm versus the EDISON
algorithm

4.1 Segmentation - one link in the chain

Segmentation is a intermediate step in an image-analysis process. As such,
it receives data from from an earlier step like a preprocessing step, or it just
begins it work on raw pictorial data from an image. After the segmentation
is finished, the output is forwarded to the next step in the chain of the
analysis. It is the overall motive of the analysis, which decides what sort of
goals the segmentation should target, therefore the goals will change with
the application. The form and nature of the the output should also reflect
this motive. In the introductory text on segmentation in [7], it is stated that
segmentation should be stopped when the applicable objects have been found
and separated from the other parts of the image. That is a useful condition
in this situation as well.

4.2 Proposed segmentation goals

The current motivation for the image-analysis, is to extract shape. Shape
is not an image property, it is an object property. With this in mind, it
is clear that the segmentation must yield an object mask, or some measure
to successfully separate the object of interest, from the background of the
image. In other words, the main object will suffice. The segmentation does
not need to discern finer details in the image, such as different regions in
object.

21

22 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

It is relevant for the problem at hand, that the shape of the object, with
relative ease, can be extracted and calculated from the object, produced by
the segmentation. This will help reduce complexity in the representation
phase.

Lastly but not least, the quality of the segmentation is important. Several
studies have shown that the quality of the segmentation is directly respon-
sible for the quality of the derived search, see [12]. Therefore the desired
segmentation algorithm should be as precise as possible, when extracting the
object mask.

To sum up, the segmentation goals become:

1. Extract main object of interest

2. Provide easy way of establishing and representing object boundary

3. Accurate segmentation of the object of interest

Often the output from a segmentation operation is a labeled image, where
contiguous regions of same texture or spectral properties share the same label.
This label is usually a predefined integer. This must be handled when doing
shape representation.

4.3 Test motives

The goal of this test is to help determine whether segmentation with auto-
matic snake will be feasible. It can be argued that, if one is to create a better
representation of an image, the segmentation and separation of the object,
from which the representation is derived, is the most important step. Refer
to figure 4.1 for an outline of the process from image to shape query. In [21]
a semi-automatic snake-implementation was tested against edison , and the
results suggested that the snake approach was promising. However for use
in an image database, a semi-automatic approach is not practical.

Therefore the main motivation by testing an automatic snake algorithm
against a edison, is to see whether it can yield better segmentation results,
and if it has other properties which might make it more attractive as seg-
mentation algorithm of choice, rather than edison.

4.4 Testset

A set of test images from the image database of the Norwegian folk museum
is selected to test the applicability of the snake-algorithm versus the segmen-
tation done by edison. As the overall goal for this segmentation is to yield a

4.4. TESTSET 23

Image
database

Image Shape query
(QBE)

Segment object of
interest

Calculate and
represent shape

Figure 4.1: Derivation of shape

basis for shape representation, images relevant and suitable for this purpose
is selected. The images consists of different types of objects depicted on a
neutral background.

A solution will be created for each image by hand, that is a human created,
correct segmentation mask. Then afterwards each segmentation algorithm
will be measured up against this solution.

4.4.1 Test criteria

In order to determine which algorithm is most suitable for our purpose,
segmentation goals 1 and 3 will be tested. Goal 2 needs more discussion,
as there are several possibilities this can be achieved. Pros and cons by both
methods will be inspected.

Even segmentation goals 1 and 3 can in fact be a matter of controversy. As
humans we each have our own view, of what a correct segmentation might
be. In this test this is remedied in this test, by using images suitable for
shape extraction, in which the main object of interest is clear, and can be
segmented by hand.

A numerical measure for the quality of this segmentation, is calculated
by the degree the segmentation mask given by the algorithms, conform to

24 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

the hand-crafted solution to the segmentation. This action serves a dual-
purpose. Firstly we get a numerical measure on the accuracy of the algorithm.
Secondly, we reduce the subjectivity, when deciding which algorithm has
the best segmentation mask. Nevertheless a qualitative consideration of the
segmentation may still be in place.

4.4.2 Hand-crafted solution

This section outlines procedure for attaining correct solution.

1. Each image is loaded into an image-editor

2. An outline is drawn around the object of interest

3. This outline is a closed curve, so that the area it surrounds can be filled
with a colour label

4. The outline is filled with a determined colour, which is shared by all
these images.

5. The filled outline should be saved as a flattened, binary image, repre-
senting a correct segmentation of the image.

This sequence details the step in creating a logical mask, which will be-
come the solution to the given image.

4.4.3 Evaluating the criteria

Checking the test criteria will be done by comparing logical masks from the
output of the segmentation algorithm, with the solution, given from the file
created above. The logical mask, given by the segmentation algorithm in
question, is analyzed pixel by pixel, checking whether it represents a correct
solution, as given by the solution mask.

Calculating percentage of conformity

First, the number of object pixels in the solution mask is calculated. Next,
the number of pixels in the test mask representing correct object pixels in
the solution mask is counted. Then the number of erroneously marked as
object pixels in the test mask is counted. This step tests if the object mask
in question has object pixels outside the boundaries of the solution mask.
That situation is a detriment to the quality of the mask, and should there

4.4. TESTSET 25

be taken into account. Finally a percentage of conformity is calculated by
the following formula:

(#correct pixels)− (#erroneous pixels)

(#object pixels)

This will provide a measure, as to how well an object mask conforms to
the solution mask. However it should be noted that this measure, is just
a measure, it serves as a tool to bring objectiveness into the the testing
process. It is not a perfect measure for match between the masks, this is
not desirable, as there are some uncertainty in the calculations, as the the
solution is hand-crafted.

4.4.4 The images in the testset

Table 4.1: The testset of images

1 2

3 4

26 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Table 4.1: (continued)

5 6

7 8

9 10

4.4. TESTSET 27

Table 4.1: (continued)

11 12

13 14

15 16

17 18

28 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Table 4.1: (continued)

19 20

4.5 Solution set

The hand-crafted objects masks, which will serve as our solution material
can be found in table 4.2

4.5.1 Notes on hand made object masks

These masks were created by the author, according to section 4.4.2. As these
masks are hand made, the object masks will not be completely perfect. They
are however, to the best of the authors ability, as accurate as possible. As
such they should still be usable as solution material. The point where error
is likely introduced is around the borders, however the discrepancy is likely
so small, that it will not affect the calculations notably.

Table 4.2: The hand-made object masks

1 2

3 4

4.5. SOLUTION SET 29

Table 4.2: (continued)

5 6

7 8

9 10

30 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Table 4.2: (continued)

11 12

13 14

15 16

17 18

4.6. TEST 1 - EDISON 31

Table 4.2: (continued)

19 20

4.6 Test 1 - EDISON

The first step in testing the applicability of the snake algorithm for shape
extraction, is to obtain a basis of comparison. In previous work in the field
of content-based image retrieval, see Hauglid [9] and Grøtan [8], the algo-
rithm edison was tested and found to yield the best segmentation results.
Therefore to establish a comparative basis, the snake-algorithm will be tested
along with edison.

4.6.1 About EDISON

edison is an image segmentation system consisting of several segmentation
techniques. These techniques are covered in the following papers by Co-
maniciu [6] and Meer et.al. [18]. At the heart of the edison is the mean
shift-alorithm. For in-depth details about this approach, please consult the
above mentioned papers.

4.6.2 Setup of EDISON

Since there exist previous work, where edison have been used on images
from the primus database1, these interim results will be exploited in this
test. Hauglid [9] tuned edison on a subset of images from the primus
database. In this work, a scheme were used, where particularly one parameter
of edison was tweaked. The parameter is minRegion or MiniumRegionArea,
from jedison and edison respectively. This parameter controls how large a
region must be, in order to be consider a region by the algorithm. The goal
is to separate at least one object from the background.

In the test minRegion was changed by the following regime

1. Initial value of minRegion = 15%

2. If the current percentage did not at least yield one one object, it is
reduced by 50%

3. Repeat percentage decrease, until one object is separated from back-
ground during segmentation

1primus is the name of the database containing the images from the Norwegian folk
museum

32 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

The other parameters are:

• colorRadius = 6.5

• spatialRadius = 7

These two parameters are from the Java edition, jedison, they were kept
constant while minRegion was changed.

4.7 Result from test 1

The object masks produced by edison are included in table 4.3. Also the
percentage of each masks conformity against the solution is given in table
4.4. The percentages are rounded up to nearest whole percentage.

Table 4.3: The object masks produces by EDISON

1 2

3 4

4.7. RESULT FROM TEST 1 33

Table 4.3: (continued)

5 6

7 8

9 10

34 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Table 4.3: (continued)

11 12

13 14

15 16

17 18

4.8. DISCUSSION EDISON 35

Table 4.3: (continued)

19 20

Name % Correct pixels Error pixels total pixels
TS1 97% 58303 79 60108
TS2 98% 145951 126 148983
TS3 65% 100697 265 154952
TS4 97% 69722 136 71842
TS5 48% 26639 82 54839
TS6 97% 66340 965 67410
TS7 98% 73531 170 75074
TS8 97% 82211 123 84732
TS9 16% 75482 63105 75708
TS10 97% 50739 106 52131
TS11 98% 80457 150 81734
TS12 98% 63843 48 65091
TS13 0% 27760 29349 31042
TS14 57% 136631 56597 139600
TS15 97% 61426 191 62915
TS16 98% 100125 76 102533
TS17 98% 69131 533 69962
TS18 98% 76482 189 78134
TS19 98% 70728 88 71914
TS20 94% 32731 117 34742

Table 4.4: Percentage object mask conformity

4.8 Discussion EDISON

The result from running edison on the test, show that the majority of the
produced object masks conform to the hand-made solution rather well. The
percentage of conformity between the solution and the test result is shown
in table 4.4, for each image. It is obvious that the algorithm works well on
the type of images selected for testing, images which are inherently suitable
for shape extraction. Most of the of the object masks match so closely, that
they are hard to distinguish from the hand crafted solution masks. A fact
which is reflected in the percentages shown in table 4.4.

36 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Some of the results stand out however, with a lacking segmentation. Ac-
cording to the percentages, image 3, 5, 9, 13 and 14 all have lesser object
separation than the other images. The rest of the set of images end up with
masks conforming close to 100%.

Upon visual inspection of these results, we see that the all the mentioned
images have a degraded object mask where parts of the object has been
merged with background. Inspecting image number 13, it seems as the object
is nearly perfectly separated, yet it has the lowest percentage. This is the
result of a weakness in the method for calculating object mask conformity.
More on this in the next section.

4.8.1 Troublesome segmentations

To better understand the problems discovered with segmentation with edi-
son, the process will be examined closer. Here all the troublesome segmen-
tations will be discussed, as the reason for them are different in each case.

TS13

The reason why image 13 gives such a poor percentage, despite it seems to
be a good segmentation. In figure 4.2 we can compare the different version of
test image 13. The original image depicts the tool and a photographic ruler

Original image Solution mask Test mask Region map

Figure 4.2: TS13

at the bottom. A comparison between the solution mask and the test mask,
shows that a part of the tool is not marked as an object. But at the bottom
of the test mask, the image is white, indicating it is an object. The result
is that the ruler is also labeled as an object. This will, when the percentage
calculation is run, affect the count of erroneous pixels. Thus leaving a low
percentage, the reason the percentage becomes so small, is that the number of
correct object pixels is small compared to the number of error pixels. Further
inspection of the direct output from edison, the region map, it becomes clear
that the method of generating the object mask is unsatisfactory.

4.8. DISCUSSION EDISON 37

TS3 and TS5

The first images in the test set which experienced problems with the segmen-
tation were TS3 (fig. 4.3) and TS5 (fig. 4.4). In these two cases there is not a
reason to question the percentage awarded to the test masks, when visually
comparing the test results with the solution masks. For reasons of compar-
ison we inspect the region maps. For TS3 it seems that the post-processing

Original image Solution mask Test mask Region map

Figure 4.3: TS3

of the region map is not at fault this time. And again for TS5. It is clear
that edison has only managed to successfully extract the torso of the toy
figure.

Original image Solution mask Test mask Region map

Figure 4.4: TS5

TS9

The test mask of image TS9 (fig. 4.5) leaves little of the original object
intact. The only thing which still is detectable is the bottom arc. The region
map, show clearly that edison has successfully segmented the bowl from
the background. Yet again it seems like the post-processing step is at fault,
loosing the detected object mask.

38 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Original image Solution mask Test mask Region map

Figure 4.5: TS9

TS14

The final image, which got a low percentage, was TS14 (fig. 4.6). When
looking at the resulting test mask, that is easily understandable. It is possible
to see the contours of the cup, but it has merged with the background. In

Original image Solution mask Test mask Region map

Figure 4.6: TS14

this case it becomes hard to understand how the the resulting mask from
edison end up looking as it does. Loading the region map in an image
editor, reveals that the black colour is not uniform, but there are several
hues, indistinguishable to the human eye, thus resulting in a mask where the
cup is merged with the background.

4.8.2 Summary edison

Overall the performance of edison was good. In the majority of cases the
object was successfully separated from the background, and could be used
for further shape analysis. In the cases where the segmentation did not
produce a satisfactory result, the main fault was the post-processing of the
segmentation, not the segmentation itself. Therefore a better post-processing
method should be made. An improved method will also boost the quality of
the overall edison results.

4.9. TEST 2 - SNAKE 39

4.9 Test 2 - snake

The topic of this section will be the test of the snake-algorithm, and its
results.

4.9.1 About snake

Snakes, or active contour models, have as shown in the papers [16, 15, 17],
gained results in medical imaging, in recent years. In [21] the author tested
a semi-automatic variant of the snake algorithm, which yielded promising
results. Therefore the outset here is to test the applicability of an automatic
version of the snake algorithm for shape extraction in image databases.

The main problem in creating an automatic snake, is to create a good
initialization. In previous work, and most other implementations of snakes,
the process is semi-automatic. The step which is under human control, is
to create a starting contour, which the algorithm subsequently deforms, to
match the underlying object.

In this test we wish to test the feasibility of an automatic snake segmen-
tation. This is accomplished by automating the initialization process of the
contour. Second we let the algorithm deform this initial contour and see how
it fits the underlying object. These results are compared to those of edison
and with the results from [21] in mind.

4.9.2 Making snake automatic

In this test a relatively simple method is used to initialize the snake or con-
tour. Before deformation and resampling the contour, the user can choose
to initialize the contour from the interface. This will begin a process where
a coarse thresholding segmentation is run in the background, to pinpoint
where in the image one might find an object. This temporary output is then
analyzed, and the biggest region is identified. The region’s center of gravity
and bounding box is calculated. In the the test set, with images depicted on
neutral background, it is very likely that this bound box confine the object
of interest. Therefore the initial contour is set to be equal to the bounding
box.

4.9.3 Setup of snake

Parameters

The initial value of the parameters used in the snake algorithm are as shown
below. Except for the value of µ , the values are the standard values used in

40 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

[10]. A further explanation of these parameters can be found in 2.5.

• µ = 0.03

• α = 0.1

• β = 10

• γ = 1

• κ = 0.6

Force field

The performance of the snake algorithm is not only governed by its param-
eters. The force field plays an important part, in this test, the GVF force
field will be used. The force field, is created upon an edge map of the given
image. The initial edge map is created with Matlab’s canny edge detector.
More information on this edge detection method can be found in [22]. The
second test with snake, will use another edge detection mechanism as a basis
for the GVF field, where the image convoluted with the sobel masks.

Other notes

For every image in the test the snake algorithm, ran for 150 iterations. A
selection of images will be further analyzed, and will run for more iterations.
To speed up the the process the force field will be calculated at half resolution,
this was found to have no negative implications in [10]. An overview of the
segmentation process is visualized in figure 4.7

4.10 Results from test 2

The segmentation masks from snake, with GVF field calculated with edgemap
based on the Canny edge detector can be seen in table 4.6. The accompa-
nying table which show how well the segmentation masks fit the solution set
are found in table 4.5.

The results from the second snake test, where we created an edgemap
with the sobel operator are found in table 4.8. In table ?? the degree of
conformity with the solution set is listed.

Table 4.6: The object masks produced by snake (canny)

4.10. RESULTS FROM TEST 2 41

Table 4.6: (continued)

1 2

3 4

5 6

7 8

42 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Table 4.6: (continued)

9 10

11 12

13 14

15 16

4.10. RESULTS FROM TEST 2 43

Table 4.6: (continued)

17 18

19 20

Table 4.8: The object masks produced by snake (sobel)

1 2

3 4

44 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Table 4.8: (continued)

5 6

7 8

9 10

4.10. RESULTS FROM TEST 2 45

Table 4.8: (continued)

11 12

13 14

15 16

17 18

46 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Table 4.8: (continued)

19 20

4.11 Discussion snake

In this section the results from the automatic snake segmentation will be
discussed, along with the identified problems pertaining to automatic snake
segmentation.

4.11.1 General remarks

It is clear when comparing the segmentation masks with the solution set,
that there are discrepancies. One feature which all of the the masks coming
from snake seem to have in common, is the presence of ”ears” situated in the
corner of the object. This feature is clearly not desirable. When inspecting
the masks the edges of the object mask seem to be less smooth than what was
the case with edison, particularly the masks in table 4.6. These deficiencies
will be revisited shortly.

Another observation is that the algorithm failed segmentation for three
images, image 2, 3 and 10. This issue will be discussed later, but again it
is a fault which did not exist in edison. The second batch of segmentation
masks made with snake, produced slightly different results. The masks in
in this batch have overall a smoother edge along the mask. However, as is
the case the case with the first batch, the segmentation tend to so exceed
the boundaries of the object. In the case of snake, the contour of the snake
has failed to snap onto the innermost object boundaries. These problems
will now be looked into, as will be shown there is not necessarily one single
problem, but a combination which combined, degrade the quality of the snake
segmentation in the test set.

It might be justifiable to consider the segmentation masks qualitatively.
The values in the table of conformity, does indeed suggest that the quality
of segmentation is less than that of edison, however the numbers are not
always largely different from that in table from edison. This is indicative of
the difficulty, in assigning visual quality, a numerical value. To sum up some
of the identified problems with the snake segmentation:

• ”Ears” and nooks along the edge of the object mask

• Edge of segmentation mask, seem to fall to ease along edges, not part
of object

4.11. DISCUSSION SNAKE 47

Name % Correct pixels Error pixels total pixels
mask01 87 % 59501 7401 60108
mask02 0 % 148968 51209 148983
mask03 0 % 154153 39713 154952
mask04 91 % 70000 4468 71842
mask05 34 % 37898 19110 54839
mask06 89 % 64795 4684 67410
mask07 91 % 72496 4234 75074
mask08 87 % 82630 8682 84732
mask09 91 % 74385 5828 75708
mask10 0 % 52105 46135 52131
mask11 88 % 79217 7538 81734
mask12 96 % 63348 877 65091
mask13 0 % 29800 104543 31042
mask14 69 % 133394 37314 139600
mask15 80 % 61262 10884 62915
mask16 86 % 100646 12629 102533
mask17 87 % 68926 8054 69962
mask18 87 % 76122 8073 78134
mask19 92 % 69990 4003 71914
mask20 53 % 33576 15054 34742

Table 4.5: Object mask conformity in snake with canny based GVF field

48 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Name % Correct pixels Error pixels total pixels
mask01 87 % 57337 5262 60108
mask02 0 % 148968 51209 148983
mask03 0 % 154153 39713 154952
mask04 82 % 69614 10617 71842
mask05 27 % 37410 22586 54839
mask06 82 % 60508 5212 67410
mask07 88 % 71908 5765 75074
mask08 83 % 80797 10677 84732
mask09 82 % 73467 11523 75708
mask10 11 % 52105 46135 52131
mask11 76 % 75927 13698 81734
mask12 98 % 64229 388 65091
mask13 0 % 28044 99900 31042
mask14 70 % 132238 35044 139600
mask15 75 % 61878 14628 62915
mask16 77 % 99540 20428 102533
mask17 78 % 69442 14688 69962
mask18 86 % 77096 10005 78134
mask19 85 % 65764 4457 71914
mask20 49 % 33259 16310 34742

Table 4.7: Object mask conformity in snake with sobel based GVF field

4.11. DISCUSSION SNAKE 49

Start

Fetch Image

Calculate the
GVF-field

Init contour with
bounding-box

Deform snake

Save contour to
file

Start/Stop
Calculate edge
map of image

Figure 4.7: Snake segmentation process

• Segmentation mask covers area outside of object

4.11.2 Identified problems

When the segmentation was inspected in the previous section, it was clear
that the segmentation was not optimal. The number of erroneous pixels in
the segmentation mask are consistently higher for the snake masks. This is
the opposite result when snake was tested in semi-automatic fashion in [21].
This section will discuss and identify the source of the experienced problems.

Automatic snake initialization

One apparent candidate, which can explain some of the difficulties seen, is the
the way the the contour now is automatically initialized. When the bounding
box is used as initialization, there are some points on the contour that will
be located further away from the object than desirable. These points are the
corner points of the bounding box, specifically. The problem which may arise,
is that the contour points will be too far way from the force field and thus will
not be guided by the force field to the desired features in the image, namely
the edges of the object of interest. In figure 4.8(a) we can see the effect where
parts of the contour has failed to snap onto the object. Image 4.8(b) shows

50 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

(a) Image 14 with contour overlayed (b) The contour overlayed on GVF field

Figure 4.8: Image 14 with contour and part of the underlying GVF field

the GVF field, around the area where the contour has not converged against
the object. It is clear from this picture that there are no, or very little forces,
pulling the contour into the right direction. To overcome this problem there
are a few possibilities to try out. On can in principle increase the value of µ
when calculating the GVF field, thus resulting in spreading out the vectors
in the GVF field, resulting in larger capture range. However, increasing the
parameter too much, and you might end up confusing the contour, since the
vectors located elsewhere in the force field will also be spread out. Another
possibility is to make a better initialization of the contour, but as there will be
a vast amount of shapes, other difficulties may arise. It might be worthwhile
to attach a force to the contour points located in the corners of the bounding
box, pointing towards the center of gravity. This would give some initial
movement to the contour, and might lead it into the force field where it is
affected by the other vectors.

The GVF field

Some problems were identified with the calculation of the GVF field. On
some images the GVF code seemed to produce a border around the object
with vectors pointing directly at the image edge. It is not certain what causes
this effect, there might be some problems as to how the snake framework cal-
culates the second order derivatives near the border. It warrants for further
testing to check whether this calculation can be improved. To remedy this
problem, the force field was nullified outside of the object’s bounding box.
This made the problem of non-converging contours in some images, while

4.11. DISCUSSION SNAKE 51

small traces of this vector border persisted in other images. Figure ?? show
the horizontal band of outwards-pointing vectors, which in practice traps the
contour from converging inwards to the object. The part shown is the lower
left part of the contour. Bands as these, in combination with being placed

(a) Image 16 with contour overlayed

10 20 30 40 50 60 70 80 90

130

135

140

145

150

155

160

165

170

175

(b) Erroneous band of vectors trapping the
contour

Figure 4.9: Image 16 with contour and part of the underlying GVF field

on the extreme border of the image, resulted in the failed segmentations of
image 2,3 and 10.

Convergence and parameters

In this test the iteration count were capped at 150 for all images, however
different images may need a different amount of iterations to converge to
the correct solution. This is a major problem in automatic application of
snake, an issue which easily overcome in semi-automatic situations. More
iterations would have yielded better results for some images. Which is the
case for image 9, see figure 4.11(a). To find a satisfactory solution for the
convergence problem might not be possible. In situations as these, where the
algorithms are based on derivatives, and second order derivatives, you can
end with a very tiny change from the iteration before, so in fact, the contour

52 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

will change just slightly and unnoticeable. Some images will converge to a
wrong solution, or there might be an error in the force field, which traps the
contour, and you experience no change between iterations. If one looks aside
from the cases where segmentations will fail, it might be possible to define a
lower threshold of change, and iterations which yield less change than that
threshold, should be terminated. More testing is required on this subject.

(a) Image 9 with contour overlayed, after 250
iterations and new GVF field

(b) New segmentation mask after more itera-
tions

Figure 4.10: Image 9 segmented again with more iterations and a more pow-
erful GVF field

Parameters are another problem with snakes, whereas edison is designed
to be used in a non parametric fashion, snakes are not. Therefore it is a large
body of work, to identify ideal parameters for different images. In an image
database with a diverse collection of images, this is likely not even possible
to find some common ground, for all parameters. This is perhaps why, it is
particularly in medical imaging, that snake has gained ground first, where
series of similar images are analyzed serially (organs). Changing parameters
can make a difference, in figure 4.10 the value mu was changed to 0.15, in
addition to up the iteration count. The higher value of mu means that the
GVF field will spread out more giving a higher chance of affecting the contour,
a higher iteration count, also gives the contour more time to converge to the
correct solution. This yielded an almost perfect solution for image 9.

Edge map

An issue where the contour seemed to attach to an edge outside of the actual
object, are usually caused by shadows in the original images. Even though

4.11. DISCUSSION SNAKE 53

the background were reasonably homogenous, the shadows are still captured
by some edge detectors, and when they are captured, they will contribute just
as much to the fore field as the desired object edges. This is demonstrated
in figure 4.11, we can see that the sobel edge map has more emphasis on
object edges, that is the reason why the second batch of snake images came
out with more smooth edges also.

(a) Sobel edge map (b) Canny edge map

Figure 4.11: Two edge maps compared

4.11.3 Summary snake

All in all, the combination of the issues laid out above, and the relatively
straightforwardness of edison it seems snake will need more work, before it
is feasible for use in image databases.

54 CHAPTER 4. TEST OF SEGMENTATION ALGORITHMS

Chapter 5

Conclusion

5.1 Conclusive remarks

An automated version of the snake algorithm has been tested. It has also
been tested side by side another system, edison. The results of the edison
test was uplifting the system yielded very good results. In addition the
cases where the system did not deliver, was the fault of the post-processing
algorithm was not robust enough.

The snake tests revealed certain difficulties in using an automatic version
of snake, which introduce some uncertainty and problems in certain situa-
tions, detailed in the previous chapter. Therefor at this time, in the short
run edison will be the most suitable choice of the two, for use as shape ex-
traction in image databases. At this time, there are enough challenges with
the snake algorithm, to not see it as a feasible choice for image databases in
the short term.

55

56 CHAPTER 5. CONCLUSION

Bibliography

[1] SESAM - Searching Supported by Analysis of Metadata, Madrid, March
2002.

[2] Donald A. Adjeroh and Kingsley C. Nwosu. Multimedia database man-
agment - requirements and issues. IEEE Multimedia, 4(3), 1997.

[3] Chris M. Christoudias and Bogdan Georgescu. The robust image under-
standing laboratory. http://www.caip.rutgers.edu/riul/research/
robust.html.

[4] Christopher M. Christoudias, Bogdan Georgescu, and Peter Meer. Syn-
ergism in low level vision. 16th International Conference on Pattern
Recognition, IV:150–155, 2002.

[5] L.D. Cohen and I. Cohen. Finite-element methods for active contour
models and ballons for 2-d and 3-d images. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15:1131–1147, November 1993.

[6] D. Comanicu and P. Meer. Mean shift: A robust apraoch toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(5), May 2002.

[7] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.
Prentice Hall, 2001.

[8] Magnus Grøtan. Søk i bildedatabaser med fokus p̊a innholdsbasert
bildegjenfinning. Master’s thesis, Norwegian University of Science and
Technology, 2003.

[9] Jon Olav Hauglid. User Interfaces for Accessing Information in Digital
Repositories. PhD thesis, Norwegian University of Science and Technol-
ogy, 2005.

[10] H̊akon Heuch. Segmentation of the liver from mr and ct images. Master’s
thesis, Norwegian University of Science and Technology, 2003.

57

58 BIBLIOGRAPHY

[11] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Ac-
tive contour models. International Journal of Computer Vision, 1988.

[12] A. Langmyr and M. Grøtan. Gjenfinning av bilder i multimedia-
databaser. Technical report, Norwegian University of Science and Tech-
nology, 2002.

[13] ImageMagick Studio LLC. Imagemagick webpage. http://www.

imagemagick.org/.

[14] Guojun Lu. Techniques and data structures for efficient multimedia
retrieval based on similarity. IEEE Transactions on Multimedia, 4(3),
September 2002.

[15] Tim McInerney and Demetri Terzopoulos. Topologically adaptable
snakes. In Proceedings of the Fifth International Conference on Com-
puter Vision, pages 840–850, June 1995.

[16] Tim McInerney and Demetri Terzopoulos. Deformable models in medi-
cal image analysis: a survey. Medical Image Analysis, 1(2):91–108, 1996.

[17] Tim McInerney and Demetri Terzopoulos. Topology adaptice de-
formable surfaces for medical image colume segmentation. IEEE Trans-
actions on Medical Imaging, 18(10), October 1999.

[18] Peter Meer and Bogdan Georgescu. Edge detection with embedded con-
fidence. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23:1351–1365, 2001.

[19] Brian E. Pangburn and Jonathan P. Ayo. jedison. From
www.greatmindsworking.com http://sourceforge.net/projects/

ebla/.

[20] Stan Sclaroff and Lifeng Liu. Deformable shape detection and descrip-
tion via model-based region grouping. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(5), May 2001.

[21] Ole Marius Smestad. Image databases -content based image retrieval, fo-
cus on segmentation. Technical report, Norwegian University of Science
and Technology, 2004.

[22] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image processing, Anal-
ysis, and Machine Vision. PWS Publishing, second edition, 1999.

BIBLIOGRAPHY 59

[23] Chenyang Xu and Jerry L. Prince. Snakes, shapes, and gradient vector
flow. IEEE Transactions on Image Processing, 7(3), March 1998.

[24] Chenyang Xu and Jerry L. Prince. Gradient vector flow deformable
models. Handbook of Medical Imaging, pages 159–169, 2000.

[25] Chenyang Xu and J.L. Prince. Active contours and gradient vector flow.
http://iacl.ece.jhu.edu/projects/gvf/.

[26] Atson Yoshitaka and Tadao Ichikawa. A survey on content-based re-
trieval for multimedia data. IEEE Transactions on Knowledge and Data
engineering, 4(3), 1999.

