
 Abstract

 I

Abstract

With an ever-growing competition among software vendors in supplying
customers with tailored, high-quality systems, an emphasis is put on creating
products that are well-tested and reliable. During the last decade and a half
numerous articles have been published that deal with code coverage and its
effect, whether existent or not, on reliability. The last few years have also
witnessed an increasing number of software tools for automating the data
collection and presentation of code coverage information for applications
being tested.

In this report we aim to present available and frequently used measures of
code coverage, the practical applications and typical misconceptions of code
coverage and its role in software development nowadays. Then we take a look
at the notion of reliability in computer systems and which elements that
constitute a software reliability model. With the basics of code coverage and
reliability estimation in place, we try to assess the status of the relationship
between code coverage and reliability, highlight the arguments for and against
its existence and briefly survey a few proposed models for connecting code
coverage to reliability. Finally, we examine an open-source tool for automated
code coverage analysis, focusing on its implementation of the coverage
measures it supports, before assessing the feasibility of integrating a proposed
approach for reliability estimation into this software utility.

 Preface

 II

Preface

This report is the product of a master thesis – formally referred to as
“TDT4900 Datateknikk, masteroppgave” – at the Department of Computer
and Information Science. The “Code Coverage and Software Reliability”
project has been performed by two master students – Lars Fugelseth and Stian
Frydenlund Lereng – during our 5th and final year at the Norwegian
University of Science and Technology.

The assignment was proposed by professor Tor Stålhane, who gave us
freedom to define the scope of the task ourselves. Having been given a bunch
of IEEE articles on the relationship between code coverage and reliability to
start with, we chose to compose the assignment with a basis on this particular
matter. For this reason we found it necessary to take a broader look at both
code coverage and reliability estimation, hence putting the relationship debate
in a context. We also found it feasible to look at an automated tool for
measuring code coverage and how this utility made practical use of code
coverage theory in its implementation.

We would like to thank our supervisor Tor Stålhane for taking the time to
listen to our ideas, for providing us with relevant information to get started,
and for giving valuable feedback in the later stages.

 Trondheim, June 20th 2005

Stian Frydenlund Lereng

Lars Fugelseth

 Table of Contents

 III

Table of Contents

CHAPTER 1: Introduction ...1

1.1 Motivation...1
1.2 Project Context..2
1.3 Problem Definition..2
1.4 Project Scope ..3
1.5 Project Goals...3
1.7 Report Outline...4

CHAPTER 2: Code Coverage ..6
2.1 Code Coverage Basics ..6
2.2 Code Coverage Measures ...7

2.2.1 Essential Measures...7
2.2.1.1 Statement Coverage ..7
2.2.1.2 Decision Coverage ..8
2.2.1.3 Condition Coverage ..9
2.2.1.4 Multiple Condition Coverage ...9
2.2.1.5 Path Coverage ...10
2.2.1.6 All-uses Coverage...11

2.2.2 Alternative Measures ...12
2.2.3 Coverage Measure Hierarchy ..14

2.3 Practical Code Coverage Application...15
2.3.1 Choosing the Right Coverage Threshold and Measures..............16
2.3.2 Coverage Progress and Effort ..16

2.4 Pitfalls and Misconceptions ..17
2.4.1 Complete Coverage is No Guarantee...17
2.4.2 Code Coverage and the Design of Tests18

2.5 Code Coverage Implementations..19
2.5.1 Implementation Approaches ..19
2.5.2 Tool Features ...20

2.6 The Effect of Test-driven Development Methodologies20
2.6.1 The Role of Code Coverage...21
2.6.2 Object-oriented Testing ...22

CHAPTER 3: Software Reliability Growth Models.....................................24
3.1 Reliability of Computer Systems ..24

3.1.1 Implications of Component Failures..24
3.2 The Importance of Software Reliability ...27
3.3 Software Reliability Models ...28

3.3.1 Introduction to Reliability Models...28
3.3.2 Reliability Model Ingredients ..29

3.3.2.1 Time ..29
3.3.2.2 Failures..30

3.3.3 Randomness of Variables ..31
3.3.3.1 Causes of Randomness ...31
3.3.3.2 Failure Probability Distribution ..31

 Table of Contents

 IV

3.3.4 Operational Environment...33
3.3.5 Reliability Modeling ..35
3.3.6 Parametrizing the Model of Choice ...36
3.3.7 Model Variants...37

3.3.7.1 Jelinski and Moranda/Shooman (1971)38
3.3.7.2 Littlewood-Verrall (1973)...38
3.3.7.3 Goel and Okumoto (1979) ..38
3.3.7.4 Basic Musa (1979) ..38

3.3.8 Reliability Model Usage ..39
CHAPTER 4: Code Coverage and Reliability..40

4.1 Term Definitions...40
4.2 Operational Profiles ..41

4.2.1 Purpose of Operational Profiles ...41
4.2.2 Problems and Challenges...42

4.3 Reliability Overestimation ..43
4.3.1 Saturation Effect ..43
4.3.2 Pre-process Model for Improved Reliability Estimates...............44

4.4 The Code Coverage – Reliability Relationship45
4.4.1 Models for Relating Code Coverage to Reliability......................46

4.4.1.1 Node-based Reliability Model ..46
4.4.1.2 Logarithmic-exponential Model ...48
4.4.1.3 Hyper-geometric Distribution Model49
4.4.1.4 Detectability Profile Model...50
4.4.1.5 Influential Factors to the Coverage – Reliability Relationship51

4.4.2 Experimental Results and Conclusions Reached.........................52
4.4.2.1 Code Coverage – Reliability Correlation..............................52
4.4.2.2 Fault Removal Behavior ...54

4.4.3 Critics and Experimental Weaknesses ...55
4.4.3.1 The Effect of Test Intensity on Reliability55
4.4.3.2 Absence of Operational Profile Leads to Unweighted Testing
...57
4.4.3.3 Inconclusive Results ...59

CHAPTER 5: The Musa-Okumoto Model with Data Pre-processing.........60
5.1 The Musa-Okumoto Model...60

5.1.1 Execution Time Component ..61
5.1.2 Calendar Time Component ..63

5.1.2.1 Description of Resource Measures64
5.2 Code Coverage Pre-process Model...64

5.2.1 Model Rationale...65
5.2.2 Compression Ratio through Smoothing Parameters65
5.2.3 Compression Ratio through Scaled Parameters...........................66

CHAPTER 6: A Software Implementation of Automated Code Coverage
Analysis: JCoverage..67

6.1 Characteristics and Environment ..67
6.2 JCoverage Operation...69

6.2.1 Instrumentation ..69

 Table of Contents

 V

6.2.2 Code Coverage Presentation and Computation72
6.2.2.1 Coverage Reports..73
6.2.2.2 Computation of Coverage Measures.....................................74

6.3 Suggested Improvements ..79
6.4 An Approach to Implementing Reliability Estimation in JCoverage .80

6.4.1 The Road to Obtaining Reliability Estimates81
6.4.1.1 Code Coverage (1) ..81
6.4.1.2 Failures (2) ..83
6.4.1.3 Test Time (3)...83
6.4.1.4 Pre-process Technique (4) ..84
6.4.1.5 Musa-Okumoto (7)..84
6.4.1.6 Reliability Estimates (8) ...85

6.4.2 Solving the Calendar Time Issue ...85
6.5 An Alternative Instrumentation Technique and Code Coverage Tool87

6.5.1 A General Technique for Source Code Instrumentation..............87
6.5.2 A Brief Presentation of Clover ..88

CHAPTER 7: Conclusion ...91
7.1 Summary ...91
7.2 Further Work...93

 List of Figures

 VI

List of Figures

Figure 2.1 Subsumption hierarchy 14
Figure 2.2 An illustration of structural and functional testing 15
Figure 2.3 Implementation sketch 19
Figure 2.4 User-centered versus code-centered development 22
Figure 3.1 Fault tree sample 25
Figure 3.2 Example of a redundant system 26
Figure 3.3 Probability distribution for number of failures in one and

five hours respectively 32
Figure 3.4 An illustration of equivalence partitioning 34
Figure 4.1 The operational profile deals with the identified input

domain 41
Figure 4.2 Illustration of the saturation effect 44
Figure 4.3 Node representation of software 47
Figure 4.4 Internal validity represented as the black arrow between

treatment and outcome 56
Figure 6.1 The respective roles of JCoverage, Ant and Eclipse 68
Figure 6.2 HTML page for presenting coverage measures for all

packages and classes being tested 72
Figure 6.3 HTML page generated by JCoverage for presenting the

source code of a tested class 73
Figure 6.4 XML version of the coverage report 74
Figure 6.5 Coverage report for testing of a sample program 75
Figure 6.6 An example highlighting the branch coverage dilemma 76
Figure 6.7 Illustration of the proposed reliability estimation

 approach 80
Figure 6.8 The cumulative frequency of test executions per line of

code 81
Figure 6.9 Consequences of adding or modifying code 82
Figure 6.10 Sequence of modifications to code 88
Figure 6.11 HTML report generated by Clover 89

 List of Tables

 VII

List of Tables

Table 2.1 Summary of essential coverage measures 13
Table 2.2 Facts and misconceptions of code coverage 18
Table 3.1 Time definitions 29
Table 3.2 Failure measures 30
Table 3.3 Alternative representations of reliability 35
Table 4.1 Summary of models incorporating code coverage 51

Chapter 1 Introduction

 1

”There was no ʺbeforeʺ the beginning of our universe,
because once upon a time there was no time.”

John D. Barrow

CHAPTER 1:

Introduction
CHAPTER 1: Introduction

This introduction section will briefly state the main motivation and objectives
related to the project we have been assigned: ”Code Coverage and Software
Reliability”. Further we explain the project context, try to define the most
important problems with respect to code coverage and reliability estimation,
and highlight the direction that we have chosen within the theme. Finally we
put our goals for the project into concrete terms and give a presentation of the
report outline and what each chapter will contain.

1.1 Motivation

reating high quality products is a necessity for modern day software
vendors, and thus finding a testing strategy that will contribute to
highly reliable software is a challenge for any company in the software

industry. Code coverage is known to be an indirect indicator of product
quality, determining to what extent the tests cover the program code to be
evaluated. As opposed to measures such as test effort, code coverage directly
measures how thoroughly a system has been exercised. Code coverage as a
testing strategy has proven to be a feasible approach when testing applications
that are logic-intensive and hence consist of multiple decision points.

As is the case with most fields of research, code coverage and its relationship
to software reliability still has room for further exploration. There are plenty
of publications available on code coverage as a testing strategy, and also on
what implications code coverage has on the actual reliability of the end
product. The different articles and their corresponding approaches and results
do not only suggest that a definite conclusion to the matter is far from
imminent, but also that the variation in theoretical reasoning and results
obtained contributes to a blurry overall picture. With this in mind, we feel
there is a definite need for creating an overview of existing approaches and
theories.

In spite of several articles and empirical investigations on the subject, the
seemingly never-ending hunt for perfect reliability estimates goes on. Several
reliability models are referred to in software literature and we aim at getting to
know a few of them and even take an in-depth dive into what is considered to
be an extension to well-known reliability models such as Musa-Okumoto and
Goel-Okumoto. This extension aims at pre-processing data to be used by

C

Chapter 1 Introduction

 2

reliability models and thus improve the generated reliability estimates.
Whereas there exist numerous software tools that can automatically track
coverage measures as testing progresses, there are few, if any, tools that
implement the existing reliability models to estimate end product reliability
based on code coverage measures.

On a personal note, our motivation for choosing this topic comes as a result of
recent projects that we have participated in, where we dealt with testing and
quality assurance issues in a web context.

1.2 Project Context

his project was assigned to us as a master thesis by the department of
software engineering at the Norwegian University of Science and
Technology (NTNU). The “Code Coverage and Software Reliability”

project is part of an ongoing research project titled Business-Critical Software
– BUCS.

The main purpose of BUCS is to develop methods for improving support of
development, operation and maintenance of business-critical systems. The
project is funded by the Norwegian Research Council and is scheduled to run
from 2003 to 2007. More information on BUCS can be found on the following
web site: http://www.idi.ntnu.no/grupper/su/bucs

A time frame of 20 weeks for this thesis implies that we had to restrict our
focus to chosen parts of the problem domain, and the resulting project scope is
elaborated in chapter 1.4.

1.3 Problem Definition

he many existing coverage measures present an array of alternatives.
Although this might seem like a blessing, it poses a real challenge in
choosing what measure or set of measures that would paint the most

realistic picture of the actual code coverage, and what set of measures would
be the most representative with respect to the system’s actual reliability. Code
coverage measures can be placed in a hierarchy where certain measures are
said to subsume others, meaning that complete coverage of one measure
implies complete coverage of the measure it subsumes. We will return to this
issue in the next chapter.

Articles have been published that propose several ways of connecting code
coverage to reliability, but would the implementation of an existing reliability
model be feasible if one was to generate reliability estimates based on code
coverage values? Software tools that automate code coverage analysis can no

T

T

Chapter 1 Introduction

 3

longer be considered scarce products, however the people creating such tools
seem reluctant to find ways of coming up with reliability estimation values.
Perhaps it is merely a sign that the theoretical foundation for the coverage-
reliability relationship has yet to be built, if researches will ever agree on such
a foundation.

A considerable problem when it comes to existing reliability growth models
for software, is that they tend to overestimate the reliability of a given
program, also known as the saturation effect. Hence, several articles suggest
that a test case that does not increase coverage values, and at the same time is
unsuccessful in causing one or more failures, should be considered ineffective.
One of the problems with code coverage is that it is destined to increase as the
number of test cases applied increases, assuming that complete code coverage
has yet to be reached and that no test case is repeated. Thus, since both code
coverage and defect coverage increases as time passes by or test intensity
increases, it is far from surprising that empirical investigations end up
concluding that a relationship exists. However, it does not necessarily mean
that an increase in code coverage drives the detection of new defects.

1.4 Project Scope

n this project we seek to perform a general and rough literature study of
what has been done with regards to code coverage and its relationship to
software reliability. Our hope is that such a study will provide us with the

status of reliability estimation and of code coverage as a testing strategy. We
intend to use the literature study as a platform for considering the feasibility of
integrating reliability estimation into an existing code coverage analysis tool.

We will only focus on the relationship between code coverage and reliability,
and hence neglect other related quality attributes that might prove relevant,
such as availability. Neither will we attempt to look at how the total reliability
of a software product can be estimated based on reliability values for
individual modules or components. Although an interesting prospect, we
consider the latter challenge to be outside the scope of the current project.

1.5 Project Goals

ur goals for the project can be extracted from what has been written in
the previous sections, but nevertheless we find it feasible to devote a
separate section to our expectations. The most evident goal is to get to

know the basics of code coverage and how it can be employed to form a
testing strategy. As mentioned earlier in this chapter, there is a myriad of
coverage measures to choose from, and we want to get an overview of the
most popular ones, along with their respective strengths and weaknesses. We

I

O

Chapter 1 Introduction

 4

also seek to familiarize ourselves with the most noteworthy reliability models
with respect to software.

With the recent emergence of numerous automated tools for code coverage
analysis, we want to look at one of them in detail and uncover how code
coverage theory can be implemented in a software program. We will also try
to highlight possible areas that need improvement and come up with
suggestions as to additional features that would make the product more
complete.

Finally, it would be interesting to touch upon how code coverage affects and
has been affected by the existing software development methodologies. The
vast majority of the articles we have read on code coverage and reliability
estimation dates back to the 1990s, and it is during the latter stages of this
decade that new and test-driven methodologies such as the Rational Unified
Process and eXtreme Programming were introduced to the software industry.
Thus, it might be of interest to determine if the presence of these
methodologies have somehow interfered with the popularity of code coverage.

1.6. Introductory Remarks

hroughout this report we have used the terms software system,
application and program interchangeably. This is also the case for
software reliability growth model, software reliability model and

reliability model. The motivation for this has been to add language variety and
thus avoid repeating one specific term over and over again. We would also
like to point out that parts of the information presented early in the report will
occasionally be referred to or briefly repeated in later chapters for the sake of
context.

1.7 Report Outline

e have aimed at creating a report structure that follows a logical
path, starting with a presentation of code coverage, its various
measures and well-known reliability models, while progressively

getting more specific as the report goes on. As a consequence, the first three
chapters are rather broad in their content and can be seen as an introduction or
build-up for the subsequent chapters. The intention is to build a reference or
context for chapters 4 through 6, which deal with the core issues of this
assignment.

Chapter 1 gives an introduction to the project, defining its context, motivation
and scope and explaining our goals for the assignment.

T

W

Chapter 1 Introduction

 5

Chapter 2 takes a look at code coverage analysis, the different measures
available and the impact of test-driven development methodologies on code
coverage.

Chapter 3 seeks to explain the role of reliability in computer systems, before
presenting the essentials of software reliability models.

Chapter 4 deals with the relationship between code coverage and reliability by
looking at proposed models for connecting them, experimental results and
theoretical considerations as to the existence of such a relationship.

Chapter 5 takes a closer look at the Musa-Okumoto model for reliability
estimation, as well as a technique which employs coverage information to pre-
process data for use in a reliability model.

Chapter 6 presents an automated tool for code coverage analysis, discussing
its use and implementation of selected coverage measures, before proposing
an approach and considering the feasibility of integrating reliability estimation
into JCoverage.

Chapter 7 rounds off the report by drawing conclusions, describing lessons
learned, and looks at the possibility of further work.

Chapter 2 Code Coverage

 6

”You got to be careful if you donʹt know where youʹre
going, because you might not get there.”

Yogi Berra
CHAPTER 2:

Code Coverage
CHAPTER 2: Code Coverage

This chapter will look at what code coverage is and present the most popular
code coverage measures. Moving on, there is a section on how code coverage
can and ought to be used in practice when testing software, followed by a
description of common misconceptions and possible pitfalls in using code
coverage analysis. Finally, we briefly explain the main ways of implementing
code coverage principles into automated software tools, before rounding off
this chapter with thoughts on how test coverage has been influenced by the
modern-day, test-driven software development methodologies.

2.1 Code Coverage Basics

ode coverage analysis, also referred to as test coverage analysis, is
described as a software testing technique aimed at discovering
program code that has not been exercised by a set of test cases, in

Steve Cornett’s “Code Coverage Analysis” [Cor04]. In other words, code
coverage refers to what extent the designed tests exercise the code base, or
simply the thoroughness of the test case suite. As mentioned in “Introduction
to Code Coverage” by Lasse Koskela [Kos04], code coverage can serve the
purpose of an indirect quality measure – indirect in the sense that it is all
about to what extent the tests cover the code, and thus an indicator of the
quality of the tests. Needless to say, code coverage analysis requires the
availability of source code for the program to be tested.

According to [Kos04], code coverage can be classified as a white box or
structural testing technique, because assertions are made on class internals as
opposed to system interfaces. Structural testing compares program behavior to
the apparent intention of the source code, thus investigating how the program
works by taking into consideration possible pitfalls in structure and logic.
Structural testing is sometimes referred to as path testing, since chosen test
cases lead to different paths through the program structure being exercised
[Cor04].

[Cor04] presents code coverage analysis as the process of determining a
quantitative measure of coverage and then creating additional test cases with
the purpose of increasing coverage values. Optionally code coverage analysis
can be used to identify redundant test cases, implying test cases that do not
contribute to an increase in coverage. The article “Using Simulation for
Assessing the Real Impact of Test-Coverage on Defect-Coverage” by Lionel

C

Chapter 2 Code Coverage

 7

C. Briand and Dietmar Pfahl [BP00] claims that test coverage increases
testing control, and hence improves allocation of test resources, by using
coverage measures as estimators for the fraction of defects being detected
during testing. The latter statement is probably what fuels the assumption that
there exists a significant, causal effect between test coverage and defect
coverage. One has to keep in mind, though, that code coverage analysis by no
means ensures the quality of the end product, but merely contributes to the
quality of the actual test set.

2.2 Code Coverage Measures

here is a multitude of code coverage measures to choose from. We
begin this section by describing the most well-known measures, while
later on giving a brief overview of less common measures and finally

looking at the hierarchy that exist among them.

2.2.1 Essential Measures

Statement coverage and decision coverage are probably the most straight-
forward and household coverage measures known to the software community,
but there are a few more that deserve attention. We will look at each of them
in turn below.

2.2.1.1 Statement Coverage

Statement coverage, also known as line coverage or basic block coverage,
indicates to what extent individual statements have been encountered during
testing. One advantage of this measure is that it can be applied directly to
object code, and hence does not require source code processing [Cor04]. Its
widespread use is most likely a result of developers being able to easily
associate statement coverage with source code lines. Another strength when

1: public class HelloWorld {

2: public static void main(String[] args) {

3: System.out.print("Hello");

4: System.out.print(" ");

5: System.out.println("World!");

6: }

7: }

compared to alternative measures is the fact that faults are assumed to be
evenly distributed through the source code, and thus the percentage of
executable statements encountered reflects the percentage of faults uncovered

T

Chapter 2 Code Coverage

 8

[Cor04]. In the code example above each line represents a statement, while
line 3 to 5 forms a block of code.

However, statement coverage poses a few challenges. Its insensitivity with
respect to certain control structures such as if statements, as well as logical
operators, is a definite weakness. Hence, it comes as no surprise that [Kos04]
highlights the inability of statement coverage to assess how thorough the
program logic has been covered. It simply reports whether each statement has
been executed at least once, and as such will not report whether or not loops
have reached their termination conditions, merely if the body of the loop was
executed or not.

Basic block coverage and block coverage are known as related measures or
variations of statement coverage. They view each sequence of non-branched
statements as its unit of code as opposed to individual statements. As a result,
basic block coverage will consider each branch “equal” to the other,
irrespective of how much code the branch carries [Kos04]. A code block can
be seen as a sequence of statements in a program where control enters at the
first statement and leaves the block at the last statement of the sequence.

2.2.1.2 Decision Coverage

Decision coverage, some places referred to as branch coverage or basic path
coverage, is a measure based on whether boolean expressions evaluate to both
true and false when used in control structures such as if and while
statements. This causes both paths to be exercised, but does not pay attention
to how the boolean value was set [Kos04]. Decision coverage includes
coverage of switch statements, exception handlers as well as interrupt
handlers. In the method implemented below, decision coverage will reach

1 : public void prnTrail(boolean greeting, boolean weekend) {

2 : System.out.println("Thank you for shopping!\n");

3 : if(greeting) {

4 : System.out.print("Have a nice ");

5 : if(weekend)

6 : System.out.println("day!");

7 : else

8 : System.out.println("weekend!");

9 : }

10: }

100% if the created tests trigger the boolean variables greeting and weekend
to evaluate to both true and false, but for all parts of the code to be
exercised the tests need to include the test pairs true/true and true/false.

Chapter 2 Code Coverage

 9

As was the case with statement coverage, this measure is simple and intuitive,
but it avoids the problems caused by the former. Unfortunately, the ignorance
of branches within boolean expressions which occur due to short-circuited
operators is a considerable weakness [Cor04]. Short-circuit operators are
illustrated by the following example, where the last expression will not be
evaluated given that the first expression is true. This is caused by the logical

5 : if(isRegularCustomer || price > 2000000) {

OR operator, which makes the if statement evaluate to true if at least one of
the sub-expressions has the value true. Similar cases occur when using the
AND operator, where it is sufficient for one of the sub-expressions to evaluate
to false to cause the entire if expression to be false.

2.2.1.3 Condition Coverage

Condition coverage resembles decision coverage, but has superior control
flow sensitivity. This is achieved by extending the boolean evaluation of
decision coverage to consider sub-expressions, separated by logical ANDs and
ORs, to ensure that each of them evaluates to both true and false. Each sub-
expression is considered independently, without attention being paid to
whether the complete expression is evaluated both ways [Kos04]. Thus, full
condition coverage does not imply full decision coverage. This is illustrated
below where an if statement contains two boolean sub-expressions that are
tied together by a logical AND operator. As far as this particular case is
concerned, having one of the boolean sub-expressions never evaluating to
false translates to complete decision coverage without achieving complete
condition coverage.

1: public boolean sendSMS(String cellNum, String msg) {

2: if(cellNum.getLength() != 0 && msg.getLength() != 0) {

3: ...

2.2.1.4 Multiple Condition Coverage

Contrary to condition coverage, multiple condition coverage takes into
account the complete expression, as well was sub-expressions. It reports
whether each possible combination of boolean sub-expressions takes place;
hence the test cases required to achieve complete multiple coverage for a
condition, is given by the truth table of the condition’s logical operator
[Cor04].

The main downside of multiple condition coverage is the time-consumption
involved in using it. It is a tedious task to determine the minimum set of test
cases required, and the number of test cases required may vary significantly

Chapter 2 Code Coverage

 10

among conditions that have comparable complexities [Cor04]. The fact that
this measure considers the complete expression as well as sub-expressions
often leads to a great rise in the number of test cases required, thus
underlining the tediousness. However, for short-circuiting languages such as
C, C++ and Java, multiple condition coverage is virtually the same as
condition coverage.

1: public boolean sendSMS(String cellNum, String msg) {

2: if(cellNum.getLength() != 0 && msg.getLength() != 0) {

3: ...

To reach complete multiple condition coverage in the scenario above, both
boolean sub-expressions must evaluate to true and false, in addition to
every possible combination of these combinations being executed. Finally, the
main expression needs to evaluate to both true and false. The table below
shows how the if statement evaluates depending on the boolean sub-
expressions. If existing tests, for instance, prove incapable of causing both
expressions to evaluate to false at the same time, the criteria for multiple
condition coverage will not have been satisfied. Condition coverage and
decision coverage will, on the other hand, be satisfied.

Expression Evaluates to

cellNum.getLength() != 0 T T F F
msg.getLength() != 0 T F T F
cellNum.getLength() != 0 && msg.getLength() != 0 T F F F

2.2.1.5 Path Coverage

Another common coverage measure is path coverage which reports whether
each possible path in every single function has been covered. [Cor04] defines
a path as a unique sequence of branches from function or method entrance to
exit, the latter typically being a return statement or a thrown exception. Loops
present a delicate challenge to path coverage by possibly introducing an
enormous number of paths. Making sure every single path is executed can
thus prove both tedious and infeasible, although the thorough testing that path
coverage requires can be seen as an advantage.

To deal with an excessive number of paths, several variations of path
coverage have been proposed. Boundary-interior path testing considers two
possibilities with regards to loops – zero repetitions or more than zero
repetitions. Hence, one effectively reduces the number of paths by considering
two scenarios, regardless of how many possible paths the loop presents.
Another alternative mentioned in [Cor04] is n-length sub-path coverage,
which reports whether each path of length n branches has been exercised.

Chapter 2 Code Coverage

 11

Linear code sequence and jump coverage, LCSAJ for short, as well as data
flow coverage are related measures to path coverage. The former restricts its
focus to consideration of sub-paths that can easily be represented in the source
code. A linear code sequence may contain decisions, given that control flow
continues from one line to the next at runtime [Cor04]. Not only does this
measure deal with the explosive nature of path coverage, where the number of
paths grows exponentially with the number of branches, but it is also known
to be more thorough than decision coverage. Data flow coverage, on the other
hand, merely considers sub-paths from variable assignments to subsequent
variable references and has a tendency of turning out overly complex.

1: public float calcPrice(float price, float deliveryCosts) {

2: if(price < 200)

3: return price + deliveryCosts;

4: else

5: return price * TAX + deliveryCosts;

6: }

The code example above presents a method with two possible return
statements at line 3 and 5. In this case, complete path coverage is only
achieved when the method has returned both statements. Thus, the test set has
to include data that causes the price variable to be both less than 200 and
greater than or equal to 200.

2.2.1.6 All-uses Coverage

All-uses coverage criteria are based on a program’s data flow as well as its
control flow and as such all-uses coverage is considered to be an advanced
coverage measure. It consists of a def-use pair, which in turn consists of two
statements – the first statement assigns a value to a program variable, while
the second statement uses the value of the same variable. According to Fabio
Del Frate, Praerit Garg, Aditya Mathur and Alberto Pasquini in their article
titled “On the Correlation between Code Coverage and Software Reliability”
[FGMP95], a def-use pair for a given variable x is covered when control
reaches the first statement of the pair, and during the same program execution
control reaches the second statement without reaching a statement that assigns
a value to x. All-uses coverage is the sum of computational-use and predicate-
use coverage measures – c-use and p-use coverage for short – which will be
explained next.

To explain what c-use and p-use coverage is, one needs to know what a c-use
and p-use pair consist of. In the article “Software Reliability Growth With Test
Coverage” written by Yashwant Malaiya, Michael Naixin Li, James Bieman
and Rick Karcich [MLBK02], a c-use pair is said to include two points in the
program, the first where the value of a variable is defined or modified,

Chapter 2 Code Coverage

 12

followed by a point where the variable is used within a computation. C-use
coverage thus reports the fraction of the total number of c-uses that have been
covered during testing. As was the case with a c-use pair, a p-use pair includes
two points in the program – the first point being where the value of a variable
is defined or modified, followed by a point where the variable is used within a
conditional expression as a predicate. Hence, complete p-use coverage implies
complete decision coverage, assuming that all conditional expressions contain
variables. In the code example below c-use pairs exist on the lines (45, 49),
(45, 51), (46, 49) and (46, 51). P-use pairs can be found on lines (45, 48) as
well as (46, 48).

43: ...

44: int difference = 0;

45: int myAge = 25;

46: int yourAge = 65;

47:

48: if(myAge < yourAge)

49: difference = yourAge - myAge;

50: else

51: difference = myAge - yourAge;

52:

53: System.out.println("There's a " + difference

 + " year age difference!");

2.2.2 Alternative Measures

In addition to the coverage measures already described with their respective
strengths and weaknesses summarized in table 2.1 on the next page, there is a
wealth of more specific and less widespread measures to choose from.
Function coverage is used to make sure that each function or method has been
invoked, and is particularly useful when performing preliminary testing. Call
coverage is a measure which is used to verify that all function calls have been
executed. Its purpose is based on the hypothesis that faults typically occur in
interfaces between modules [Cor04]. The same paper claims that boundary
test cases often detect so-called off-by-one errors, commonly due to
misunderstandings when using relational operators. Relational operator
coverage thus reports whether expressions containing relational operators are
tested with boundary values. In the for loop below faults may arise if the less-
than-or-equal-to operator was intended as opposed to the less-than operator.

32: ...

33: for(int i = 0; i < array.length; i++) {

34: ...

Chapter 2 Code Coverage

 13

Condition/decision coverage is a hybrid measure derived from more essential
and basic measures already described in chapter 2.2.1, consisting of the union
of condition coverage and decision coverage. Its main advantage is its
simplicity, while at the same time avoiding shortcomings found in both
condition and decision coverage [Cor04]. Another convenient measure when
dealing with multithreaded applications is race coverage. Race coverage
considers multiple threads that execute code simultaneously, thus contributing
to failure detection when synchronizing access to resources.

Coverage measure Strengths & weaknesses

Statement coverage

+ intuitive
+ direct application to object code
+ source code processing not required
÷ insensitivity with respect to control structures

Decision coverage + intuitive
+ exercises control structures
÷ ignores branches within boolean expressions
which occur due to short-circuit operators found
in C, C++ and Java

Condition coverage + flow sensitivity

+ considers sub-expressions

Multiple condition
coverage

+ considers both sub-expressions and the
complete expression
÷ time-consuming

Path coverage + thorough
÷ tedious
÷ complicated loop treatment

All-uses coverage + exercises the relationship between the
assignment of a value to a variable and the
subsequent use of that value
÷ computationally expensive

Table 2.1: Summary of essential coverage measures

Finally, we mention mutation coverage, which tests the computational
structure of a program. According to an article titled “Connecting Test
Coverage to Software Dependability” by Dick Hamlet [Ham94], mutation can
be viewed as massive fault seeding and considered a technique for estimating
how many failures are yet to be found. This coverage measure is known to be

Chapter 2 Code Coverage

 14

computationally expensive and challenging to employ, partly because the test
data required to achieve high mutation coverage are less obvious and harder to
collect systematically. [Cor04] mentions weak mutation coverage as a more
general alternative to relational operator coverage. This variation of mutation
coverage reports whether there exist test cases that expose the use of wrong
operators and operands. Mutations typically include exchanging operators,
data types and adjustment of constants.

2.2.3 Coverage Measure Hierarchy

As was noted in the introductory chapter of this report, relationships exist
among measures, with the “stronger” measure said to subsume the “weaker”
one, thus forming the basis for a subsumption hierarchy. Parts of the hierarchy
are presented visually in figure 2.1 below.

Decision coverage includes statement or block coverage since execution of
each branch implies that each statement has been exercised. Complete
decision coverage is, according to Yashwant Malaiya et al. in the article “The
Relationship Between Test Coverage and Reliability” [Mal+94], achieved by
complete p-use coverage. The same article concludes that both branch
coverage and to a lesser extent p-use coverage correlate significantly with
block coverage, whereas c-use coverage appears to have no such relation to
other measures.

Figure 2.1

Subsumption hierarchy – the brighter
rectangles subsumes the darker ones

Predicate coverage

Path coverage

P-use coverage

Decision/branch
coverage

Statement
coverage

Multiple condition coverage

Condition/decision coverage

Decision
coverage

Statement
coverage

Condition
coverage

Chapter 2 Code Coverage

 15

Yet another measure known to subsume decision coverage, along with the
ones already mentioned, is path coverage. This is also the case for the hybrid
measure of condition/decision coverage, which per definition includes
condition coverage. As was mentioned in chapter 2.2.1.6 when presenting c-
use and p-use coverage, complete p-use coverage implies complete decision
or branch coverage, assuming that all conditional expressions contain
variables.

Moving up in the hierarchy, exercising all paths in a program implies that all
p-uses have been covered, hence resulting in path coverage subsuming p-use
coverage [MLBK02]. Finally, [Cor04] places predicate coverage at the top of
the hierarchy. Predicate coverage is strongly related to path coverage and
considers paths as possible combinations of logical conditions, thus including
strong measures such as path coverage and multiple condition coverage
[Bei90].

2.3 Practical Code Coverage Application

e have already underlined the fact that code coverage is a more
feasible and beneficial approach when testing applications that
contain a large amount of decision points, as opposed to data-

centric systems. Being a structural testing technique, code coverage analysis
may prove particularly useful if the requirements specification lacks detail or
simply has not been subjected to regular updates as the development process
has progressed. Functional testing techniques, on the other hand, rely on an
up-to-date specification when evaluating test program behavior [Cor04].
Figure 2.2 below illustrates the difference between structural and functional
testing.

Figure 2.2
An illustration of structural

and functional testing

W

Application server

GUI

Client Database server

Application code

Structural
testing

Functional
testing

Application data

Chapter 2 Code Coverage

 16

In his article titled “How to Misuse Code Coverage” [Mar99], Brian Marick
acknowledges the usefulness of code coverage because of its ability to detect
parts of the source code that have been neglected by the test set. He goes on to
claim that code is typically covered in sections, where a section represents a
considerable part of software functionality and not merely a line or two. If
such a section or part of the code escaped testing unintentionally, the test team
can direct focus towards that specific part of the program.

2.3.1 Choosing the Right Coverage Threshold and Measures

Choosing appropriate coverage measures can be quite challenging. The
coverage tools available on the market tend to support different algorithms as
well as using their own accent, according to [Kos04]. The author urges
software developers who aim at integrating code coverage analysis with their
existing development practice, to be consequent in the decisions being made.
For popular programming languages such as C, C++ and Java, the general
advice is to employ condition/decision coverage. Other measures might be
used in addition to add coverage details and remedy possible weaknesses of
the chosen measure.

When it comes to coverage thresholds, each project ought to decide on a
minimum percentage value of code coverage, which has to be attained before
releasing the software. Such a threshold should take into account the available
test resources as well as the importance of avoiding post-release failures
[Cor04]. Generally speaking, one should aim at reaching 80-90% coverage
prior to release when using traditional coverage measures such as statement
coverage, decision coverage or even condition/decision coverage. Code
coverage is likely to increase as more test cases are applied, assuming that no
test case is repeated and that complete code coverage is yet to be attained.

In the context of coverage thresholds, [Mal+94] refers to experiments where
fault coverage was a mere 10% at 50% branch coverage. However, when
increasing branch coverage to 84%, which relatively speaking is a modest rise
compared to the initial 50% when considering the drastic improvement in
fault coverage, an impressive fault coverage of 90% was attained. Such results
support the general comprehension that 80% branch coverage is sufficient for
most applications.

2.3.2 Coverage Progress and Effort

In order to make sure that coverage increases in the early stages of testing one
should aim at attaining a broad coverage through the entire program before
striving for high coverage percentages in specific areas of the code. This can
be fulfilled by visiting each feature of the program under test and hence
increasing the likelihood of detecting obvious or significant failures early on.

Chapter 2 Code Coverage

 17

The initial strategy should be to look for easy-to-find failures with minimal
testing [Cor04].

Test productivity is a keyword not only when talking about code coverage
analysis, but also for testing techniques and strategies in general. For the
purpose of maintaining a high level of test productivity one has to strive for
achieving optimal results with minimal effort. This implies detecting and
removing as many failures as possible, while at the same time spending a
limited time on creating test cases, adding them to the existing test suite and
eventually executing them. As such, focus should not rest on reaching 100%
coverage for each of the initial measures, but rather on choosing appropriate
intermediate coverage measures and deferring testing to areas deemed
challenging and critical by an operational profile, if one exists.

Although code coverage has its advantages, it is only one of many testing
techniques to choose from, and relying on code coverage alone is not the way
to approach testing activities. However, it is undoubtedly a useful addition to
other strategies and may serve the purpose of an alerting service, signaling the
fact that the existing test suite has room for improvement. A challenging
prospect unfolds when considering software applications that are under
development while testing is performed. The addition of new modules to the
existing core application is deemed to cause the entrance of new defects.
Analysis of such programs are, however, considerably more complex and a
field of future research [Mal+94].

2.4 Pitfalls and Misconceptions

everal articles are quick to point out that code coverage analysis by no
means presents a silver bullet in software testing. Brian Marick
highlights a few pivotal and common misconceptions concerning code

coverage in [Mar99] that suggest how this testing technique has the potential
to mislead unaware software testers.

2.4.1 Complete Coverage is No Guarantee

According to [Mar99], making sure that all logical expressions evaluate to
both true and false is hardly sufficient for claiming that testing is
completed: “Coverage tools can only tell me how the code that exists has
been exercised. It can’t tell me how code that ought to exist would have been
exercised”. For instance, faults that can be removed and fixed by adding new
code – known as faults of omission – may pass tests without being discovered.
Thus, there is no way of guaranteeing a faultless program in spite of running
tests and making sure they cover every single line of source code. Coverage
tools will, however, be able to improve overall quality by detecting possible
“holes” in the existing test set.

S

Chapter 2 Code Coverage

 18

Code coverage is also capable of revealing errors in the implementation of
tests. A particular test may, for instance, do something entirely different than
what it was set out to do and hence need modification in order to fulfill its
initial intention. However, the bottom line is that 100% code coverage does
not imply a program free of faults.

2.4.2 Code Coverage and the Design of Tests

When performing code coverage analysis it might be tempting to create a set
of tests that aim for a rapid increase in coverage. Designing tests with high
coverage percentages in the back of one’s mind is, however, not the way to go
[Mar99]. On the contrary, focus should be on comprehending why the tests
being executed failed at exercising the parts of the software or source code
that ended up untested. Coverage tools will only prove helpful if they are
utilized to increase understanding, and not if they result in testers leaving the
thinking and analyzing to the tools.

[Mar99] also mentions the importance of management not using code
coverage percentages as a means of measuring the quality and end result of
testing efforts. This will only lead to testers optimizing tests with respect to
high code coverage, since this will please managers and make sure the goals
set forth are met. Such a focus is likely to come at the expense of thought-
through tests designed to optimize fault detection. Thus, code coverage serves
a one-way purpose; notifying testers that additional testing is necessary, but
not capable of telling that sufficient testing has been carried out. Table 2.2
below presents a rough overview of what code coverage contributes with and
what it is not capable of.

Code coverage does Code coverage does not

- report how existing code has

been exercised
- improve the quality of a test

set
- reveal errors/faults in test

implementation
- increase understanding of

existing tests

- detect faults of omission
- guarantee a fault-free software

application
- ensure end product quality
- indicate that sufficient testing

has been performed

Table 2.2: Facts and misconceptions of code coverage

Chapter 2 Code Coverage

 19

2.5 Code Coverage Implementations

good number of code coverage tools have emerged lately. JCoverage,
whose implementation and features we will take an in-depth look at
in chapter 6, is just one of several household tools to choose from.

The way these tools implement code coverage theory boils down to two main
approaches briefly described in [Kos04]: Instrumentation and custom Java
Virtual Machine – JVM.

2.5.1 Implementation Approaches

Basic instrumentation, also known as source instrumentation, is probably the
most intuitive way of implementing code coverage in a software tool. It relies
on manipulating application code by inserting reporting code in strategic
places of the source code, whereas class instrumentation inserts reporting code
directly into compiled class files, represented as byte code. This latter
approach is found in our coverage tool of choice – JCoverage.

Figure 2.3

Implementation sketch

The custom Java Virtual Machine approach causes the virtual machine to take
responsibility for keeping track of the parts of the loaded classes that have
been executed. Compared to the instrumentation alternative, this approach is
yet to enjoy the same popularity. Both strategies are depicted in figure 2.3
above. There is also a third way of dealing with code coverage
implementation mentioned in [Kos04]. It involves instrumenting application

A

Source code (.java)

Class files (.class)

Running application

Compiler (javac)

Java Virtual Machine (java)

1

2

3

Chapter 2 Code Coverage

 20

code through reporting code explicitly, by using wrapper classes responsible
for inserting code at runtime as opposed to pre-processing source code or byte
code at build-time.

2.5.2 Tool Features

The set of features that code coverage tools offer tend to vary slightly, partly
depending on the coverage measures chosen. However, the most well-known
ones share a few, but nonetheless essential features, namely related to:

 Ant integration
 Report formats
 Source code linking
 Checks
 Historical reports

According to [Kos04] most Java projects taking place nowadays use Ant, or
alternatively Maven, to manage the build process as well as running unit tests.
As such, proper Ant integration is practically a necessity for any high-quality
coverage tool. Ant is briefly explained later in chapter 6. Needless to say,
presenting code coverage reports in an intuitive and well-arranged way is of
utter importance, although report formats and actual layout will differ slightly
from tool to tool. Some tools might also provide historical reports to illustrate
coverage progress from start to finish.

Another requested feature is the linking of source code to code coverage
reports, where uncovered parts of code are highlighted in an annotated copy of
the original source code. This helps to guide the user’s attention to code or
blocks of code yet to be exercised, instead of merely reporting line numbers.
Finally, incorporating checks into the tool implies notifying the user when
coverage drops below a pre-defined level.

2.6 The Effect of Test-driven Development
Methodologies

y now we have concluded that code coverage should be used as an
indicator as to how thorough the software has been tested and that test
teams should resist the temptation of designing tests with the purpose

of reaching 100% coverage. In modern-day development methodologies, tests
are typically designed prior to the actual code to be tested, thus resulting in
code being created to satisfy the designed tests. Logically, this might easily
lead to tests reaching coverage values close to 100%. With tests attaining high
coverage straight away, code coverage reporting seemingly ends up as a mere
confirmation that most, if not all parts of the code were exercised. Intuitively,
this could mean that code coverage analysis is turning into a redundant

B

Chapter 2 Code Coverage

 21

supplement for applications engineered with test-driven development
methodologies.

2.6.1 The Role of Code Coverage

One of the biggest challenges of testing is to decide how much testing should
be performed. The question of determining when sufficient testing has taken
place has no evident answer. Earlier in this chapter we pointed out that faults
will not be found in code that has escaped testing. This fact is reasonably
obvious to everyone. However, the claim that code can be tested without
detecting possible faults residing in it is not as intuitive for most of us. This is
where code coverage contributes by using reported coverage values as a
confirmation that more testing is necessary.

It is tempting to ask oneself what is really wrong with designing tests that
achieve complete code coverage. Does creating a test set without the
conscious strive of having all parts of the code covered, result in more faults
getting exposed? We believe that it may lead to additional tests being created
and executed in order to satisfy coverage requirements and that the sum of
initial tests and supplementary tests will contribute to more faults being
detected. Another motivation for employing code coverage is its ability to
guide testers to parts of code not yet exercised, as mentioned earlier. This
raises the question of whether it is the process of gradually improving the test
set or the fact that additional tests are performed which encourages this
recommendation. According to our understanding, code coverage analysis
provides suggestions and information regarding what parts of the program
require further testing, and that this piece of information is lost when the
initial tests already cover substantial parts of the code. As a result, the task of
deciding how additional tests should be designed is left entirely to the test
team.

This brings us to consider how test-driven development methodologies leads
testing to become programming-centric as opposed to software applications
engineered with traditional development frameworks, where testing is
typically performed from a user perspective. Even so, tests that exercise
programs developed with traditional methodologies may be characterized as
programming-centric if they are designed to satisfy code and code coverage
criteria intentionally. Our impression of relevant literature is that performing
testing with an operational profile as a platform is both common and
recommended. Operational profiles are said to contribute to realistic results by
seeking to mirror the actual usage and environment of the software. This
appears to be in line with [Mar99], who encourages use of coverage
knowledge to encounter user needs that are insufficiently covered by the
current test set. We will take a closer look at operational profiles and their
impact on reliability estimation in chapter 4.

Chapter 2 Code Coverage

 22

Once a product is fully developed and testing has covered all parts of the
code, the question of whether enough testing has been undertaken still stands.
Software literature suggests that methodologies embracing test-driven
development tends to achieve 100% code coverage – an understandable
assertion considering how closely connected tests and application code are. In
spite of complete code coverage being incapable of guaranteeing fault-free
software and high quality products, test-driven methodologies thrive on words
of praise from the software community because of its contribution to end
product quality. We believe that this boils down to differences beyond the
testing itself, and that a successful development process must be seen as a
significant tool in quality work as well as the tests it creates. Figure 2.4
highlights some aspects that typically separate user-centered testing from
code-centered.

Figure 2.4
User-centered versus code-centered development

The perceptions and opinions as far as code coverage is concerned, seem to be
many and contrasting. What suits certain development environments might
not match the requirements and preferences of others. Hence, discussions on
the pros and cons of code coverage and its range of application are deemed to
carry on.

2.6.2 Object-oriented Testing

Object-oriented testing introduces new elements and hence new challenges as
far as software testing is concerned. The two fundamental design features of
object-orientation are information encapsulation and polymorphism. In short,
encapsulation hides internal structures from the rest of the program and thus
creates a considerable challenge, since traditional tests usually are external.

Functional Structural

User perspective Code-centered

Tests tend to be:

User needs Fault detectionFocus:
Modest RapidCoverage growth:

Faults in frequently used
functionality

Many faultsFinds:

Chapter 2 Code Coverage

 23

This matter can be solved by injecting test functions directly into the classes
to be tested; however, this is not within the scope of this project.

Polymorphism, on the other hand, represents a greater problem with respect to
code coverage, since classes can be sub-typed after testing has taken place.
According to Craig E. Damon in his course notes from the subject “Software
Engineering” at the University of Vermont [Dam04], additional tests have to
be designed to ensure that the current class is protected from “unusual”, yet
perfectly legal sub-classes, because of the introduction of polymorphism. He
deems existing code coverage measures as insufficient within an object-
oriented context and presents two newly suggested measures tailored to
object-orientation:

 Functions or methods that have been overridden in sub-class
 Combinations of sub-class and super-class that have been tested

Thus, it seems as though code coverage is very much alive. However, as is the
case with software development methodologies, programming languages and
paradigms as well as technology in general, it needs modifications and
additions to be tailored to modern-day standards.

Chapter 3 Software Reliability Growth Models

 24

“We are ready for any unforeseen event which
may or may not happen.”

George W. Bush

CHAPTER 3:

Software Reliability Growth Models
CHAPTER 3: Software Reliability Growth Models

With software systems playing an increasingly prominent role in most
organizations and businesses, regardless of domain, reliability is becoming a
quality attribute of great focus. Software developers, as well as customers, do
not only worry about releasing and eventually employing highly reliable
products – they also seek predictions and estimates as to reliability during
development and testing. In this chapter we take a look at general challenges
in attaining reliability and what factors influence it, before moving on to
existing models for estimating reliability in software products – the software
reliability growth models. Substantial parts of this chapter is inspired by the
representation given in “Software Reliability: Measurement, Prediction,
Application” by John D. Musa, Anthony Iannino and Kazuhira Okumoto
[MIO87].

3.1 Reliability of Computer Systems

 multitude of computer systems serve as the backbone of processes
and services requiring high levels of availability, either because lives
depend on them or because economical considerations deem their

reliable operation crucial to the company. Computer systems that manage and
control day-to-day operation of nuclear plants or web-based shopping
facilities such as Amazon.com are two examples. Although not all systems are
labeled indispensible, proper operation and, hence, stable functionality is
desirable at any time; however, this is not always possible due to the
economical constraints of the market, which inevitably affect developers.

3.1.1 Implications of Component Failures

No matter how many considerations are taken or unlikely scenarios predicted,
things can always find a way of catching users and developers by surprise. In
the case of critical computer systems, vast amounts of resources are spent to
avoid the presence of unforeseen actions and operations. In certain critical
systems, safety might depend on reliable operation of a computer system, thus
making unreliable systems a risk factor in a safety context. Marvin Rausand
defines safety management as systematic efforts directed at achieving and
maintaining a given level of safety, in his book on risk management,
“Risikoanalyse – Veiledning til NS5814” [MR91]. The safety level could be
determined by the owner, public authorities or other system stakeholders. The

A

Chapter 3 Software Reliability Growth Models

 25

actual work consists in surveying risk factors, managing possible deviations
and considering actions and initiatives targeted at reducing overall risk. In
cases where computer systems are part of a critical process there are rigid
safety requirements to obey. As will be illustrated below, the structure or
architecture, as well as higher level design of computer systems is likely to
influence reliability significantly.

Computer systems typically consist of several components that cooperate in
order to offer system services and functionality. A failure in one of these
components may lead to service disruption and hence, all components
constituting a computer system will affect reliability. The fault tree depicted in
figure 3.1 illustrates the essence of this discussion.

Figure 3.1

Fault tree example – a failing
component will cause system failure

One way of improving reliability is to introduce redundant components with
the intention of ensuring system operation in spite of a single component
failure. The system approach of Redundant Array of Independent Disks –
RAID – serves as an example of this, where several hard drives are employed
to avoid loss of data in case of a disk crash. The duplicated functionality will
lead to additional costs for the organization. An exemplified redundant system
is represented in terms of a fault tree in figure 3.2 below. As far as this
instance is concerned, all components are duplicated to guarantee successful
operation regardless of one or more components failing. In cases where
several components fail, the system may only continue operation if there
exists a well-functioning, duplicated component which can resume operation

Failure Failure Failure Failure Failure

Comp.
1

Comp.
2

Comp.
3

Comp.
4

Comp.
5

System failure

Chapter 3 Software Reliability Growth Models

 26

Sy
st

em
 fa

ilu
re

Fa
ilu

re

Fa
ilu

re
Fa

ilu
re

C
om

p.

1
A

C
om

p.

1
B

Fa
ilu

re

Fa
ilu

re
Fa

ilu
re

C
om

p.

2
A

C
om

p.

2
B

Fa
ilu

re

Fa
ilu

re
Fa

ilu
re

C
om

p.

3
A

C
om

p.

3
B

Fa
ilu

re

Fa
ilu

re
Fa

ilu
re

C
om

p.

4
A

C
om

p.

4
B

Fa
ilu

re

Fa
ilu

re
Fa

ilu
re

C
om

p.

5
A

C
om

p.

5
B

Fi
gu

re
 3

.2

Ex
am

pl
e

of
 a

 re
du

nd
an

t s
ys

te
m

Chapter 3 Software Reliability Growth Models

 27

for the failed component. Alternative configurations may also be found; for
instance one might opt for a more selective strategy and only duplicate
components that are reckoned to be exceptionally vulnerable.

If probabilities of component failures are available for each and every
component constituting the overall system, the probability of system failure
can be computed. Several hardware manufacturers state the likelihood of
failure for their respective components, hence making it a rather trivial task to
calculate the probability of failure for the hardware part of a computer system.
As was the case with hardware components, software modules are also
capable of failing, typically caused by flaws in design or code. When
hardware components are seen to fail, on the other hand, physical tear and
wear is normally the main factor, whereas constructional flaws contribute to a
lesser extent.

By employing comparative measures of reliability for both hardware and
software components, these figures can be combined to yield an overall
measure of system reliability. In order to make realistic assertions as to system
reliability, fairly accurate estimates are required for each system component.
Hence, software developers need a means of acquiring reliability estimates,
with an appropriate level of correctness, for the software they engineer.

3.2 The Importance of Software Reliability

eliability is known to be a prominent quality attribute of a software
product and thus a property used to describe the qualities of a given
system. [MIO87] emphasizes quality, costs and schedule as the three

most essential characteristics of a software application. Because of the
difficulties in measuring or quantifying quality in software, determining the
relative importance of the aforementioned characteristics is a challenging task.
According to [MIO87] this could be a possible explanation with regards to
general quality problems in the software industry.

Finding the right balance between quality, costs and schedule is of utmost
importance in order to make a product a commercial success. For instance, a
computer game crashing every now and then may not be thought of as critical.
However, it is nonetheless deemed to affect the customer’s attitude towards
the game itself and the vendor, as well as developers, if problems frequently
arise as a consequence of unsatisfactory quality. Spending vast resources on
quality assurance and improvement, on the other hand, runs the risk of
developing a costly, hard-to-sell product. The third factor – time – comes into
play in an industry of constant evolvement, where computer games stand the
risk of being labeled old-fashioned by the time they hit the shelves if timing is
wrong. Thus, systems stemming from different areas of usage, whether
computer games, financial applications or real-time monitoring systems, are

R

Chapter 3 Software Reliability Growth Models

 28

likely to have a different emphasis with respect to the three characteristics and
their relative importance.

Being able to quantify the reliability of a software system can be viewed as a
selling point or a platform for decision-making if the product is considered
employed in a critical context. For safety-critical applications it becomes all
the more important that the produced estimates closely mirror the actual,
observed reliability. Achieved reliability in software is impacted by the
following three factors, according to [Mal+94]:

 Test strategy – black box or white box
 The relationship between calendar time and execution time
 Testing of infrequently executed modules

The third and final factor relates to methods and functions dealing with
exception handling, error recovery and the likes. [Mal+94] claims that
reliability can only be predicted with a high degree of precision by having
tests cover low-usage, yet critical components like those mentioned above. In
spite of extensive efforts in the past, accurate estimation of reliability has
proven to be a daunting challenge, thus making improved reliability prediction
methods a field of active research. In the subsequent section we will present
the current means of reliability estimation – software reliability models.

3.3 Software Reliability Models

oftware developers often desire a measurable unit of how reliable a
system under construction is. The reliability measures of the early days
were limited to quantifying the number of failures in the software.

Although far from being a feasible indicator, it was used to make rough
comparisons between various projects. Aside from lacking precision, the
measure did not convey particularly useful information to end users nor
developers.

3.3.1 Introduction to Reliability Models

Nowadays software reliability growth models are employed to statistically
determine how reliable a given program is. This implies the use of failure data
gathered during testing to discover trends that could give an indication as to
the quality of the current system. [MIO87] argues that reliability measures are
easily graspable even for people without programming knowledge or
experience. This, in turn, simplifies the process of controlling whether the
development organization has delivered a product in conformance with a
service level agreement – not only for customers, but for the vendor as well.

S

Chapter 3 Software Reliability Growth Models

 29

The reliability growth models have evolved empirically through steady
development and refinement. Typically, researchers launch hypotheses as to
what affects reliability and subsequently challenge them through empirical
experiments. In these experiments, reliability models are put to use and their
estimates are compared to the real, observed reliability. The actual reliability
can be measured once the software under scrutiny has been operational for a
while and hence provided system administrators with useful information of its
operation. An alternative approach encountered is to utilize existing software
applications with proven levels of outstanding reliability, and then expose the
source code to a fault-seeding process. Moving on, the faulty code is tested
and subsequently investigated through a chosen reliability model. The
deviations observed from the different models are finally used to discuss the
pros and cons of each of them.

3.3.2 Reliability Model Ingredients

A software reliability growth model is a mathematical representation of
various program properties. The operation of the most renowned models relies
on two main ingredients – time and failures. We will now take a closer look at
these two input parameters to the models, which yield reliability estimates for
a given application.

3.3.2.1 Time

Most reliability measures connect reliability to some notion of time. However,
as [MIO87] points out, there is no real hinderance as to the employment of
other variables considered feasible. This could for instance be the number of
executed transactions or some other variables capable of quantifying system
usage. The use of time in reliability estimation requires a set of specific

Time notion Definition
Execution time Time during which the program

utilizes the central processing unit
(CPU)

Clock time

Time elapsed between program start
and termination on a computer. This
includes idle time – time where the
software awaits user input or
information from a different system
before resuming operation

Calendar time Regular time corresponding to the
human-made calendar – the way we
usually deal with the notion of time

Table 3.1: Time definitions

Chapter 3 Software Reliability Growth Models

 30

definitions of the term, with the purpose of avoiding ambiguity. Table 3.1
presents time definitions in accordance with [MIO87].

Reliability growth models that make use of execution time in their estimation
are considered to be superior [MIO87]. This assertion makes sense assuming
that idle time does not contribute to increased reliability. Yet there is an
evident need for calendar time, since it carries an intuitive meaning and
represents the notion of time which we relate to in our everyday lives. To
illustrate this case, a reliability measure of 0.95 probability for error-free
operation in a time period of five execution hours, does not make immediate
sense to most of us. This is because we do not relate to execution time in the
same way we relate to calendar time. Thus, by converting the notion of CPU
time to the familiar calendar time we end up with a probability measure of
error-free operation that actually conveys processable information. An
execution time of five hours could, for instance, translate into 48 calendar
hours of software operation. Naturally, these translations between the different
time notions are not fixed, but will vary from program to program and from
environment to environment.

3.3.2.2 Failures

The second and final input parameter to the reliability growth models is the
number of failures detected during testing. Failures are measured with respect
to time, with the possibility of employing any of the three notions of time
defined in the previous section. Table 3.2 below gives an overview of the
failure measures as presented in [MIO87].

Failure measure Definition
Time of failure Time elapsed between program start

and failure detection, typically
measured in seconds

Time interval between failures

Time elapsed between observed
failure fn and the previous failure
detection fn-1

Cumulative failures experienced up to
a given time

The total number of failures observed
during testing up until time t. This
measure can be calculated at fixed
intervals during testing

Failures experienced in a time
interval

Division of testing into time intervals,
with the number of discovered
failures in each interval reported

Table 3.2: Failure measures

Chapter 3 Software Reliability Growth Models

 31

3.3.3 Randomness of Variables

There is some uncertainty involved in the variables entering the reliability
model, thus encouraging model users to take into account the possible
imprecision in generated estimates. The fact that the values of variables are
random does not imply that the same values are unpredictable, but rather that
the exact value is unknown [MIO87]. The different values which variables can
take have a distinctive probability associated with them, denoting the
likelihood of that particular value occurring. The probability of a variable
being assigned the value x corresponds to the fraction of tests where x is
registered. Usually, the value range of a variable is known along with the
average value and to a certain extent its statistical dispersion. It is a common
perception among people that the assignment of values to variables adheres to
a uniform distribution, but according to [MIO87] this assignment does not
need one specific probability distribution as a basis.

3.3.3.1 Causes of Randomness

Three main reasons are stated in [MIO87] for the randomness in assigning
values to variables. First, the process of a programmer unintentionally
injecting faults into the code, resulting in failures when executed, is highly
complex and unpredictable. Second, software typically runs in environments
where human knowledge of conditions under which it operates might be
incomplete. A third and final issue of interest is that failures depend on faults
and that a program is run under specific conditions which, together with one
or more faults, trigger a failure. The latter can be viewed as a combination of
the first and second cause. Knowing the probability of a certain amount of
failures appearing within a given time interval, a measure of the average
number of failures can be found by combining probabilities and the
cumulative number of failures discovered during that period.

3.3.3.2 Failure Probability Distribution

The more testing and fault removal is performed, the harder it becomes to
uncover additional failures, and hence the probability of failure detection is
not constant. The probability of a variable being assigned a given value is
destined to change with time; for instance, the likelihood of discovering
exactly two failures during one hour of testing will differ from the probability
of detecting the same amount of failures in, say, three hours. This is a
characteristic of random processes, which “can be viewed as a set of random
variables, each corresponding to a point in time” [MIO87]. Thus, the number
of failures detected in the application can be represented as a random process,
characterized by the probability distribution of the random variables and the
variance with respect to time. [MIO87] elaborates: ”A random process whose
probability distribution varies with time is called nonhomogeneous. Most

Chapter 3 Software Reliability Growth Models

 32

failure processes during test fit this situation”. Poisson distributions are
frequently employed probability models when dealing with random processes.
When a process changes continuously with respect to time it is referred to as a
non-homogenous Poisson process – NHPP.

Figure 3.3

Probability distribution for number of
failures found in one and five hours respectively

How time affects a random process is tried illustrated in the example of figure
3.3 above. Both graphs depict the probability of assigning a given value to a
variable, based on a table “showing failure distributions of the cumulative
number of failures experienced at two different time points” in [MIO87]. The
darker curve denotes the probability of having found x number of failures after
an hour of testing, while the brighter of the two graphs presents the probability
after five hours of testing. As one might expect, it is more likely to uncover a
higher number of failures during a five hour session than during a mere hour
of testing.

In order to identify and subsequently remove any faults from the software
prior to its release, faults need to manifest themselves in the form of
detectable failures. Two main factors of contribution are listed in [MIO87]
with regards to failure behavior:

Probability change with time

-

0,05

0,10

0,15

0,20

0,25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Value of random variable

Pr
ob

ab
ili

ty

Chapter 3 Software Reliability Growth Models

 33

 The number of faults in the software being executed

 The execution environment or operational profile of execution

The occurrence of failures is impacted by how long the software has been
running, the environment in which it operates and, finally, the operational
profile used during program execution, which in turn is influenced by the
overall testing strategy.

3.3.4 Operational Environment

The environment of a software application is made up of external factors such
as input to the system and output from the system, which describe the
operational profile [MIO87]. Practically all software systems process some
kind of input and produce output although it might not be visible to the end
user. These variables of input and output may have a multitude of states, and
as a consequence it is not feasible to test all of them. To accommodate for
this, the amount of data to be processed is reduced to a subset of all possible
states during testing. The states which variables may “enter” carry different
probabilities of application during an operational phase. Thus, it is desired that
state selection for use during testing corresponds to the state probabilities of
actual operational use. The main intention is to ensure that tests mirror
expected system usage once the software becomes operational.

Some systems are dependent on requested input to a be of a particular format
in order to function properly. In the case of unexpected input this may lead to
failure for systems lacking robustness. Two classes of states can be deduced,
namely valid and invalid states, which can be dynamically modified by
conditions and other states. The values classified as invalid may in many cases
have less likelihood of being put to use according to an operational profile, but
are perfectly capable of causing failures if exception handling has not been
implemented for erroneous input data. Although test data have been selected
from an operational profile there is no guarantee that all possible input data
from the entire input space will yield expected results. Thus, to be able to
assess the precision of the reliability estimate one needs to make sure that
chosen data cover the system’s input space well, in addition to using the
operational profile as a basis for input selection.

Probabilities for assigning specific states to system variables are defined in the
operational profile, hence providing a measure as to the probability of a given
run being chosen during an operational phase. The cumulative probability of
all possible runs will, logically, be 100%, but because of resource limitations
it is highly unlikely that all combinations will be exercised during testing. A
measure referred to as input space coverage is defined in [MIO87], which
denotes the sum of all probabilities associated with executed test runs. For a
given run taking place during the operational phase, this measure will state the

Chapter 3 Software Reliability Growth Models

 34

probability of the same run having been tested prior to operational use. When
dealing with vast input spaces the measure will be accordingly modest.

As mentioned earlier, it is an infeasible task for most systems, possibly with
the exception of simple and easy-to-understand applications, to perform tests
covering the entire input space. In order to increase code coverage, techniques
are employed which exploit the fact that a lot of input data are similar. Input
exhibiting a certain level of similarity are hence grouped together and
assigned a probability which is the sum of each individual input probability,
which in turn refers to the likelihood of the current input being selected during
operational use. A particular value or input is chosen from the input class to
represent its entire group. This technique, referred to as equivalence
partitioning in [MIO87] and exemplified in figure 3.4, causes a drastic
reduction as far as the input space is concerned, but increases the risk of
neglecting states that may result in system failure.

Figure 3.4
An illustration of equivalence partitioning

All in all, the picture of what parts of the input space ought to be covered
appears to be a rather blurry one. In [MIO87] it may seem contradictory to
first emphasize a broad coverage of the input space, thus running additional
tests to complement the operational profile, while later stating that in practice
there is no passable way unless some kind of simplification technique is used,
leaving considerable input data untested. If there is a conclusion to be drawn

”aa”

”ab”

”ac”

”ad”

”ae”

”af”

”a”

”b”

”c”

”d”

”e”

”f”

””

Partition

Input

Chapter 3 Software Reliability Growth Models

 35

from this matter it should be that the process of selecting input data for testing
purposes needs thorough consideration, in order to satisfy input space
coverage. A more dedicated and in-depth look at operational profiles is taken
in chapter 4.

3.3.5 Reliability Modeling

Three factors are said to impact the reliability of software systems. The first
factor is the introduction of faults in the code, which depends on
characteristics of the development process as well as the resulting code, such
as the size of code and developer tools and knowledge [MIO87]. The second
factor is removal of faults in the code. Because software engineers know there
is no silver bullet present that will prevent faults from entering program code
as development progresses, the fault detection and removal processes need to
be optimized. Fault removal is dependent on time spent on testing, operational
profile and the quality of repair activities. Some of the revealed faults might
not be eliminated or correctly removed as a result of unsatisfactory
documentation of detected failures or lack of structure and clarity in the
source code [MIO87]. The third and final factor is the environment, which
directly governs the operational profile of the system. If the environmental
representation of the operational profile turns out to be imprecise, it is set to
affect reliability estimates more or less significantly.

Reliability representation Definition
Failure intensity Average number of failures per unit

of time, typically per hour. The
advantage of this measure is the fact
that it requires only one number to be
stated

Reliability Probability of failure-free operation
in a given time interval

Mean Time To Failure Denoting the average number of a
chosen time unit (minutes, hours,
days) between successive failures in a
system. Frequently used by hardware
vendors, but less common in software
reliability

Table 3.3: Alternative representations of reliability

[MIO87] claims that “since some of the foregoing factors are probabolistic in
nature and operate over time, software reliability models are generally
formulated in terms of random processes”. Existing reliability models are
distinguished by the probability distribution of failure times and number of
failures detected, as well as variations in the random process over time. A
software reliability model specifies a general dependency between the failure

Chapter 3 Software Reliability Growth Models

 36

process and the aforementioned factors. Because reliability is defined with
respect to time these models are referred to as time-based models. However,
this does not rule out the possibility of alternative representations of reliability
conveying useful information about software reliability. There are a multitude
of ways of describing the failure process, and this fact is put to good use by
the models.

The estimates generated by the reliability models can be applied in several
ways. The most common representations of reliability are presented in table
3.3 above. Failure intensity is usually the preferred choice because it exists at
all times and “because they combine additively” [MIO87].

3.3.6 Parametrizing the Model of Choice

A reliability model is not a mere function that can be put to use straight away.
The models are presented as general mathematical expressions with non-
defined parameters that depend on the particular system for which reliability
estimates are being produced. Thus, the set of parameters associated with the
model of preference has to be determined before its intended function can be
performed. The process of determining the parameters can be accomplished in
one out of two proposed ways [MIO87]:

 Estimation
– parameters are determined by estimating a value based on failure

data from early rounds of testing

 Prediction
– parameters are established by considering properties of the system

and the development process

Both of these approaches introduce added uncertainty to the numbers used in
estimating reliability. Uncertainty is typically expressed in the form of
confidence intervals for parameters used to create a specific instance of the
chosen model – a model parametrized for a particular software application.

With a parametrized reliability model in place, [MIO87] lists the following
findings possible:

 The average number of failures experienced at any point in time
 The average number of failures in a time interval
 The failure intensity at any point in time
 The probability distribution of failure intervals

It is desirable for a reliability model to possess a variety of properties. Among
other things, a model should be capable of giving “good predictions of future
failure behavior” and be “based on sound assumptions” [MIO87]. The initial

Chapter 3 Software Reliability Growth Models

 37

property can be viewed as elementary and a matter of course, since the
fundamental intention behind a reliability model is to quantify the reliability
of a software system. The second property regarding sound assumptions is
somehow connected to the first property in that complete confidence can not
be put in a model whose assumptions are not supported. Model assumptions
generally relate to how the operational environment of a system, as specified
in the operational profile, does not change, but is kept constant.

A reliability model may prove useful beyond generating reliability estimates
for applications. Its ability to enhance communication is underlined in
[MIO87], stating that high-quality models improve project communication
and provide a common framework for increased understanding of the
development process. Additionally, a model is capable of promoting visibility
to management and other stakeholders. These are essential advantages even if
the resulting predictions were to end up imprecise or useless at worst,
especially considering the relatively modest resource consumption involved in
making use of an existing model. Developing a reliability model from scratch,
however, requires substantial amounts of theoretical work, tool building and
accumulation of practical knowledge [MIO87].

3.3.7 Model Variants

Several reliability models exist that are geared towards software. The first
models appeared during the early 1970s, and as of today well over 100 distinct
models are published. This section is devoted to models fitting the black box
category – models which view the system as a monolithic unit. White box
models, on the other hand, regard software systems as a constituted set of
modules. Each module carries its own reliability and the overall system
reliability can be estimated by exploiting knowledge of how the individual
modules execute. For the purpose of this report we have chosen to focus on
black box reliability models, since models belonging to this category have
been the ones mentioned explicitly in published articles on code coverage and
reliability. Black box models distinguish themselves from one another by
means of:

 Different statistical distributions are used in the models to represent the

average number of failures experienced versus execution time
 Diverse assumptions are made
 Different factors are taken into account that are said to affect reliability

Some models are more renowned and more frequently employed than others,
and several models are strikingly similar because their foundation is based on
earlier models. A selection of principal models are presented briefly and in
cronological order below. The presentation is merely intended to give a flavor
of the respective elements of each model and the main assumptions they
make. A more thorough approach is taken in chapter 5 with regards to the

Chapter 3 Software Reliability Growth Models

 38

Musa-Okumoto model, which will be utilized in considering the possibility of
reliability model implementation in JCoverage.

3.3.7.1 Jelinski and Moranda/Shooman (1971)

These practically identical models were two of the earliest reliability models
to be developed. According to ”Software Reliability Engineering” by Michael
Rung-Tsong Lyu [Lyu05], they were basically published at the same time
with no knowledge of one another and make a number of assumptions. Firstly,
the number of faults in the code is assumed to be fixed prior to testing and
fault removal is not expected to introduce new faults. Moving on, the number
of machine instructions is assumed to be more or less constant and an
operational profile ought to be present. Finally, the detection rate is presumed
to be proportional to the remaining number of faults in the code. As a result,
the model is said to have a “hazard rate” that decreases linearly with time
[Lyu05].

3.3.7.2 Littlewood-Verrall (1973)

According to ”A Survey of Software Reliability Models” authored by Ganesh
J. Pai [Pai02], the Littlewood-Verrall model is one of the most complex ones,
requiring substantial resources and hence considered to be an expensive
alternative. The model is referred to as a Bayesian software reliability growth
model which consider ”reliability growth in the context of both the number of
faults that have been detected and the failure-free operation. Further, in the
absence of failure data, Bayesian models consider that the model parameters
have a prior distribution, which reflects judgement on the unknown data
based on history e.g. a prior version and perhaps expert opinion about the
software” [Pai02].

3.3.7.3 Goel and Okumoto (1979)

The Goel-Okumoto model assumes that the average number of failures
experienced can be described by a Poisson distribution and that the expected
number of failures observed is a finite number in infinite time. Further, the
amount of failures discovered is assumed to be constant with respect to time,
as was the case with the Jelinski and Moranda-Shooman models [Pai02].

3.3.7.4 Basic Musa (1979)

The same year in which the Goel-Okumoto model was introduced also saw
the emergence of the Basic Musa reliability model. The main assumption of
this model is that the number of failures observed at a time t is finite and
follows a Poisson process. Contrary to existing models at the time, execution
time is used in the estimation process. Execution time between failures is

Chapter 3 Software Reliability Growth Models

 39

assumed to be exponentially distributed and the number of failures
encountered is taken to be constant with regards to time [Pai02].

3.3.7.5 Musa-Okumoto (1984)

The Musa-Okumoto model, appearing five years after both Okumoto and
Musa launched their initial reliability models, employs execution time in
estimation, as was the case with the Basic Musa model. The Musa-Okumoto
model, exhaustively described in [MIO87] and known as the ”logarithmic
Poisson execution time model”, predicts fewer failures to be found as time
and testing progresses. The number of failures is, contrary to the Goel-
Okumoto model, not considered to be a finite number as time approaches
infinity.

3.3.8 Reliability Model Usage

For smaller projects, estimation is likely to yield imprecise results, and hence
the use of reliability models is generally not recommended. For more
comprehensive projects it is important to take into account the assumptions
made by the available models and to ensure consistency between the
assumptions and system data; for instance deciding whether data obtained
from executed tests fit the probability distribution of the chosen model. As
[Pai02] points out, there exists no universal model that can be completely
trusted in all possible situations, since it is virtually impossible to determine
what factors affect the correctness of any model.

Software reliability models are used for a number of purposes. One intention
can be to perform retrospective estimation to determine achieved reliability
from one specific point in time to the present. An alternative target can be
reliability prediction by parametrizing chosen models and utilizing available
data. With the existence of numerous models it might be tempting to employ
all of them and subsequently compare the results to obtain a realistic estimate.
This strategy is feasible for objects of research, but the use of more than two
models for real-life projects is seen as economically impractical [MIO87].

Chapter 4 Code Coverage and Reliability

 40

”If you think you can, you can. And if you
 think you canʹt, youʹre right.”

Henry Ford

CHAPTER 4:

Code Coverage and Reliability
CHAPTER 4: Code Coverage and Reliability

Now that we have covered the essentials of code coverage analysis and taken
a look at some issues of reliability and estimation through the use of reliability
growth models, it is time to consider the relationship between code coverage
and reliability. We begin this chapter by defining some critical terms within
this context, before moving on to operational profiles and the saturation effect
– two pivotal factors when it comes to testing and software reliability in
general. With these elements in place, we further seek to uncover what
findings and conclusions have been made with respect to the relationship
between code coverage and reliability.

4.1 Term Definitions

n order to add clarity and avoid ambiguity in the later sections of this
chapter, we find it useful to define and explain a few essential terms and
concepts. According to IEEE, reliability is defined as ”the ability of the

system or component to perform its required functions under stated conditions
for a specified period of time”. A more mathematical interpretation defines
reliability as the probability that no error will occur in a given time interval:
Reliability = P (no error in [0, t >).

However, some articles such as [Ham94], find it necessary to distinguish
between reliability and dependability – a formal notion of trustworthiness, by
claiming that an application may well be trustworthy if failures occur that are
of negligible importance, yet these failures will affect reliability negatively.
On the other hand, a potentially catastrophic failure may influence reliability
insignificantly if it occurs in low-usage functionality, yet it is destined to
affect the user’s confidence in the software greatly. We will get back to the
issue of dependability, as well as operational profiles, later in this chapter.

Another term frequently referred to, is testability. Statements that are easy to
reach are said to have high testability, whereas statements that will only get
exercised in rare scenarios, such as error management code, typically have
low testability [Mal+94]. Hence, pieces of code or statements with high
testability are likely to be covered by running a moderate number of tests.
However, a fault in the source code needs to result in an observable failure
during testing in order for testers to detect it, and this is not always the case.
According to [Ham94], a software program with high testability will be seen

I

Chapter 4 Code Coverage and Reliability

 41

to fail if capable of failing. The same article believes that testability might be
a practical way of measuring dependability by using sub-domains of coverage
testing as a basis for testability measurements.

4.2 Operational Profiles

perational profiles have come to play a vital part in testing and
software reliability engineering. An operational profile strives to
mirror actual system usage by allocating realistic probabilities “to

various subdomains of the identified target input domain”, according to Garg
Praerit in his article titled “Investigating Coverage-Reliability Relationship
and Sensitivity of Reliability to Errors in the Operational Profile” [Gar94].
The majority of existing time-based reliability models rely on testing being
executed in accordance with an operational profile of the system. However, as
we will see, operational profiles pose some intricate challenges as well. A
conceptual division of the input domain is captured in figure 4.1.

Figure 4.1

The operational profile deals with
 the identified input domain

4.2.1 Purpose of Operational Profiles

The intuitive purpose of an operational profile is to be able to perform realistic
testing that resembles how the end product will be utilized. By acquiring

O
Su

b
do

m
ai

n

Su
b

do
m

ai
n

Su
b

do
m

ai
n

Su
b

do
m

ai
n

Su
b

do
m

ai
n

Su
b

do
m

ai
n

Identified input domain

Entire input domain

Chapter 4 Code Coverage and Reliability

 42

knowledge of an operational profile one is able to better understand what test
cases to apply and in what order. Based on this, testing should be able to
detect failures and their respective faults in accordance with their occurrence
frequency. According to John D. Musa in his book “Software Reliability
Engineering: More Reliable Software Faster And Cheaper” [Mus04], the
approach of employing operational profiles “rapidly reduces failure intensity
as test proceeds, and the faults that cause frequent failures are found and
removed first”.

The Testing Standards Working Party and its “Reliability Guidelines” [TS04]
emphasizes the usefulness in guiding system testing so that the most critical
parts and features of the application have benefited from extensive effort and
hence contributed to optimizing reliability by finding faults in high-usage
functions. Additionally, the assignment of probabilities to functions in the
software can drive resource management through both development and
testing. Another feature of operational profiles is how operations easily map to
use cases and thus fits in neatly with modern-day object-orientation. For some
applications it might prove feasible to develop supplementary operational
profiles that are tailored to different modes of operation and their criticality
[TS04].

4.2.2 Problems and Challenges

Most time-based reliability models, such as the well-known Musa-Okumoto
model, presume that testing is performed based on an operational profile that
mirrors expected system use. Inevitably, this approach might leave parts of the
code untested – code that could potentially contain faults resulting in failures.
Thus, the accuracy of the operational profile is essential. If the match between
operational profile and actual system usage turns out to be unsatisfactory, the
parts of code and functionality not exercised or only superficially tested could
turn out to be considerably more important than what the profile suggested.
Thus, reliability estimates are at the mercy of profile precision.

There are, however, situations where an operational profile is unknown. If a
completely new software application is being developed, an operational
profile would be unavailable. Other systems might not have an existing profile
because it seems infeasible to estimate it, or that the prospect of developing
one – facilitating data collection and subsequent analysis – would prove too
costly. According to [Gar94], an existing operational profile might turn out to
be insufficient in estimating the reliability for new or considerably modified
software. An experiment was performed that sought to determine the
sensitivity of reliability to errors in an operational profile. Two profiles were
developed and both were employed while testing a UNIX program that
contained ten injected faults. The experiment revealed that two different
operational profiles resulted in vastly differing outcomes when testing the
same program. Hence, there is little doubt that, because of the sensitivity,

Chapter 4 Code Coverage and Reliability

 43

incorrect estimates in the operational profile may lead to drastically
misleading reliability estimates

In their article ”On Software Reliability and Code Coverage”, Richard M.
Karcich, Robert Skibbe, Aditya P. Mathur and Praerit Garg [KSMG96] high-
light the “danger” in relying on incorrect or inaccurate operational profiles
when choosing a set of tests. They rightfully claim that undiscovered faults
may lurk in parts of code that will remain untested because of the profile and,
as we pointed out earlier in this section, instances of inaccuracy could result in
frequent user execution of poorly tested functionality. The conclusion has to
be that if a company opts for operational profiles as a corner-stone in testing
efforts, they better make sure they have the necessary prerequisites and
resources to attain a satisfactory level of precision. Developing operational
profiles half-heartedly will most likely result in a less reliable product than if
testing had been undertaken without the presence of a profile.

4.3 Reliability Overestimation

xisting reliability growth models tend to overestimate the reliability of
software. One of the main contributors to overestimation is the
saturation effect. In this section we will look at the latter effect and a

proposed way of how code coverage can help to make reliability estimates
more accurate.

4.3.1 Saturation Effect

Aditya P. Mathur and Vernon J. Rego claim that functional or structural
testing methods suffer from the phenomenon of saturation effect, in their
article “White-box Models for the Estimation of Software Reliability”
[MR96]. This effect refers to limitations of the functional testing methods in
revealing faults in the tested application. Typically, as testing proceeds fewer
and fewer faults are being discovered, and some faults are destined to survive
no matter how many tests are applied. The reason for this is that remaining
faults may hide in parts of the code that, according to the operational profile,
represent low-usage functionality, in combination with tests being incapable
of revealing all faults. Chapter 4.4.3.2 will look at how the use of mutation
coverage can demonstrate the inability of tests to discover all faults in the
code. As a result, the fault-detecting ability of functional testing is said to
saturate with time and effort spent on testing. This is illustrated in figure 4.2,
where curve A represents fault-detecting behavior as seen by most reliability
models, whereas B mirrors actual or more realistic progress as testing
proceeds.

According to Mei-Hwa Chen, Michael R. Lyu and Erik Wong in the article
“Effect of Code Coverage on Software Reliability Measurement” [CLW01],

E

Chapter 4 Code Coverage and Reliability

 44

empirical studies suggest that overestimation exists because of the reliability
growth models’ inability to take the saturation effect into consideration. These
models predict an increase in reliability as more time and effort is spent on
testing, no matter the increase in number of faults detected or the
improvement in code coverage.

4.3.2 Pre-process Model for Improved Reliability Estimates

Time-domain reliability models use failure history obtained during testing to
predict program behavior, often with contribution from one or more
operational profiles [CLW01]. However, as we have seen, developing an
accurate operational profile and dealing with the saturation effect of functional
testing methods pose significant challenges. According to [CLW01], empirical
and analytical studies reveal an over-optimistic tendency in reliability
estimates. Clearly, there is a need for techniques that pre-process test data
before passing them on to the reliability models presented in chapter 3, with
the purpose of producing improved estimates.

Figure 4.2
Illustration of the saturation effect

Time-domain models estimate reliability based on the failure rate and the time
spent on testing. Hence, they predict an increase in reliability when running
tests that do not discover additional failures. As testing progresses and faults
causing failures are removed, the time interval between successive failures
increases, as do the estimates from reliability growth models. The risk of

Time

Fa
ul

ts
 /

fa
ilu

re
s

A

B

Chapter 4 Code Coverage and Reliability

 45

overestimation grows the more redundant a testing effort turns out to be. In
order to deal with this challenge, an approach is recommended that uses code
coverage information to adjust failure rates prior to reliability estimation.
[CLW01] refers to empirical studies suggesting that fault detectability
statistically correlates with code coverage, and hence that software reliability
correlates with code coverage. Intuitively then, code coverage information can
be exploited to assess the effect of a particular test case. Time intervals
between failures are modified for testing efforts that are redundant with
respect to a chosen coverage criteria, with the intention of reducing their
influence on results produced by time-domain reliability models [CLW01].
Test cases that neither encounter failures, nor increases code coverage are
considered ineffective.

We have chosen to follow the test case definition given in “Testing
Applications on the Web, Second Edition” by Hung Q. Nguyen, Bob Johnson
and Michael Hackett [NJH03]. They consider a test case to be ”a test that
(ideally) executes a single well-defined test objective (e.g., a specific behavior
of a feature under a specific condition). Early in testing, a test case might be
extremely simple; later, however, the program is more stable, so you will need
more complex test cases to provide useful information”. Since so-called
ineffective test cases contribute to an increase in the estimated reliability, even
after test case data have been pre-processed and hence been given a reduced
effect on reliability, this technique mainly strikes us as a means of compelling
testers to further testing. Thus, the practical outcome of employing this
approach appears to be an expanded test set which may include supple-
mentary tests that uncover no additional failures.

[CWL01] views time and code coverage as essential factors when predicting
failures, and consequently combines them to extract effective testing efforts.
A measure, ρ, is used to denote the effective part of the execution time for a
given test case, and is computed based on the relative increase in time and
code coverage. An experiment is referred to that was performed in a
simulation environment, where reliability overestimation from the renowned
Goel-Okumoto and Musa-Okumoto models was shown to decrease
significantly by considering effective testing efforts. Moreover, the study
confirmed that adjusted values for testing efforts based on code coverage
information resulted in far more accurate estimates from reliability growth
models when compared to the actual, observed reliability [CLW01].

4.4 The Code Coverage – Reliability Relationship

he extensive use of failures detected during testing as an indirect
measure of reliability requires strong assumptions about test cases and
testing in general. Hence, employing code coverage to estimate reli-

ability seems like a more direct approach, in the sense that thorough, well-
T

Chapter 4 Code Coverage and Reliability

 46

covered testing is assumed to decrease the likelihood of experiencing failures
and hence contribute to the trustworthiness and reliability of software. The use
of code coverage also solves problems related to data collection and
assumptions regarding test case distribution. Intuitively, a causal effect will
exist between code coverage and defect coverage. Since both code coverage
and defect coverage increase with test intensity or time, it is, however, hardly
surprising that empirical data suggest the presence of a relationship [BP00]. A
wealth of articles propose their own models and present findings and results –
both positive and negative – from empirical investigation and theoretical
analysis. In this section we try to summarize models encountered and
conclusions reached within the code coverage – reliability relationship, based
on available publications.

4.4.1 Models for Relating Code Coverage to Reliability

A few selected models will be presented below to give an overview of ways of
connecting code coverage to software reliability. The model descriptions aim
at giving an overall impression of the models and their feasibility, while
specific details and the determination of parameter values are left to the
respective articles.

4.4.1.1 Node-based Reliability Model

Pankaj Jalote and Y. R. Muralidhara describes a coverage-based model in
their article “A Coverage Based Model for Software Reliability Estimation”
[JM94]. The model bases its estimation on the coverage history of a program
and the fact that most software applications consist of several modules. A
program is represented as a flow graph where each node corresponds to a
module. The number of times that each of the modules are being exercised is
registered and used to estimate module reliability along with the runtime
during system testing. The reliability of a node is assumed to increase in step
with the number of executions. In the example flow graph depicted in figure
4.3 below, the edges connecting the nodes represent a possible transfer of
control and carry a computed weight denoting the probability of a control
transfer taking place from node a to node b. These probabilities are then used
to determine the overall reliability of the system. Logically, the sum of all
edges going out of a node should be 1.0.

The reliability of a node is given by the following equation:

Here, t denotes the time spent in the system, while λi reports the average
failure rate of module i with respect to time [JM94]. Total system reliability is
obtained by traversing different paths, preferably in accordance with an
operational profile, where path reliability is computed as the product of all

Chapter 4 Code Coverage and Reliability

 47

reliability values of the nodes or modules it consists of. Each path going from
start to finish represents a valid execution of the program. According to
[JM94], the two parameters which require value assignment can be viewed as
reasonably constant throughout, assuming that all nodes have comparable
sizes and that similar development techniques have been employed. These
parameters are, to a large extent, a function of general software properties and
hence relatively stable within the organization undertaking development
projects.

Figure 4.3

Node representation of software

[JM94] puts an emphasis on how this coverage-based technique seems more
effective and cost-effective compared to most existing reliability models,
which perform random testing until additional failures have been discovered.
Having computed the reliability estimates for the software, testers can decide
whether sufficient testing has been done with respect to the entire system or
specific modules. The approach is considered practical because of how
achieved coverage directly estimates reliability and thus requires less
extensive data collection. On the downside, they have no experiments
verifying the suitability of the model. We also question whether the article
actually refers to code coverage in the way that we define the term. The model
assumes that node failures are independent of failures in other nodes, justified
by the hypothesis that this is the case with large modules or modules of a

2

3

5
4

6

1
0.75

0.40

0.
50 0.15 0.60

0.100.50

0.25

0.85

0.90

Chapter 4 Code Coverage and Reliability

 48

certain size. Thus, for smaller modules this independence might not be
present. The fact that coverage is measured based on modules as opposed to
other code elements might not have such an impact. However, it puzzles us
how the share of tested code, or modules in this case, appears to be neglected.
Instead they register the number of times a module is tested and use this
information as a basis for reliability estimation. This strikes us as a measure of
test intensity more than of code coverage.

4.4.1.2 Logarithmic-exponential Model

A logarithmic-exponential approach is presented in [MLBK02] that models
the relation between time spent during testing, code coverage and reliability.
In accordance with what was written in [JM94], the article sees code coverage
as a direct measure of how thoroughly a system has been exercised, in contrast
to the traditional measure of test intensity. This fact, along with the emergence
of tools that are capable of tracking coverage measures automatically, suggest
that the relationship between code coverage and reliability deserves renewed
attention. Additionally, developing a model that relates code coverage to
reliability opens up the possibility of computing estimates with respect to
defect density.

The proposed model employs the logarithmic growth model of Musa and
Okumoto, and assumes that code coverage follows a logarithmic 2-parameter
model which can be transformed to a 3-parameter model if feasible. It is based
on the hypothesis that different parts of the code have different probabilities of
being executed during testing – just as some faults and failures are less likely
to be detected than others. In this way [MLBK02] wants to relate a measure of
code coverage to a measure of defect coverage. The model takes into account
that not all faults need to be found at 100% coverage, since ”full statement
coverage can be reached before full branch-coverage because of the sub-
sumption hierarchy”. Test sets should not be randomly chosen from a
distribution based on an operational profile, but rather selected with the
purpose of driving testing towards input and program components with a
greater likelihood of faults and failures being present. This approach is
expected to speed up detection of failures and the underlying faults causing
them. Having executed program code with input corresponding to a chosen
distribution, a reliability growth model can be used to predict the effort
needed to satisfy product reliability requirements [MLBK02]. However,
candidate reliability models must be able to estimate reliability based on tests
that do not employ a data subset of the operational profile.

The article highlights three factors that are considered crucial to the attained
reliability. These factors are:

Chapter 4 Code Coverage and Reliability

 49

 Test strategy employed
 Amount of time spent during testing
 Testing of low-usage modules

As far as time spent during testing is concerned, this has to be measured as
execution time instead of calendar time. Parallel testing and automated testing
tools render possible the execution of considerably more tests and operations
in the software than what would be the case in an operational phase. The last
of the three factors is concerned with how thoroughly low-usage functionality
has been tested. This typically includes code elements such as error-handling
routines. Although hard to test, they are critical components of the software
that require high reliability. Interestingly, the importance of testing low-usage
modules and routines thoroughly seems to be a matter of great dissension.
Whereas [MLBK02] emphasizes the significance of testing these areas
properly, others seek to lower the priority of low-usage testing and hence
focus on the parts of the application that are more frequently exercised.

The reason why a logarithmic growth model is chosen is the defect detection
behavior when performing non-random testing – that is, selecting a test case
with the intention of exercising untested functionality. Parameter
interpretation is a challenge; however, logarithmic models have two
advantages when used to describe testing efforts and enumerables covered
[Mal+94]:

 Superior prediction of number of defects
 Accounts for 100% coverage achieved in finite time

The achieved coverage is, as mentioned earlier, not solely dependent on the
number of tests applied. The distribution of testability values for several
enumerables must be taken into account as well [Mal+94].

4.4.1.3 Hyper-geometric Distribution Model

In the article titled “Test Coverage Dependent Software Reliability Estimation
by the HGD Model” by Raymond Jacoby and Kaori Masuzawa, a software
reliability growth model is presented which is capable of making “estimations
for various kind of real observed test and debug data” [JM92]. A parameter
referred to as the “ease of test” function plays a pivotal part in the HGD
model. This function denotes the number of faults uncovered by a certain test
instance. Apparently the model does not assume that faults found in previous
test instances are removed or corrected prior to the execution of the next test
instance. Thus, faults discovered by a particular instance may well have been
detected earlier during testing.

The “ease of test” measure is estimated based on an estimate of the initial
number of faults in the software and a function representing the effort spent

Chapter 4 Code Coverage and Reliability

 50

on testing. In [JM92] code coverage is then integrated into the function of
estimating testing efforts. The following “ease of test” function is proposed:

In this equation E[m] is an estimate of the number of faults residing in the
application, while tc(i) denotes a function showing a linear progression trend
in code coverage, returning values in the interval 0 to 1. According to [JM92],
other functions might yield a more realistic picture of the progress. The
remaining parameter in the equation above, Ci, is a constant suggesting how
good the tests are at discovering faults. As we already know, there is no
guarantee that faults will be detected even though the code lines causing them
are being executed. As a consequence, this constant is a measure of how well
the tests have been designed to intercept existing faults, and hence Ci is
assumed to be assigned values between 0 and 1. Taking a closer look at the
“ease of test” expression, a test with 0% code coverage will, according to the
function, end up not uncovering any faults, as expected. And even with 100%
code coverage the number of discovered faults will be dependent on the
constant Ci, which is also to be expected.

4.4.1.4 Detectability Profile Model

A method described in [Mal+94] estimates several code coverage measures
based on detectability profiles. The rationale for a detectability profile is that
different code lines, functions, blocks of code – often referred to by the
generic term enumerables – have different probabilities of being executed by
randomly generated tests. The probability of each enumerable being exercised
depends on the parts of code in which it is “wrapped”. Enumerables that are
hidden in code implementing low-usage functionality according to an
operational profile, will typically have low detectability. In many ways
detectability relates closely to testability, as defined in chapter 4.1 earlier.
However, detectability takes into account the probability of the code
containing faults actually causing an observable failure during testing.

Detectability profiles can be employed as a means of estimating code
coverage after a given number of tests have taken place. This would assume
random generation of test sets based on an operational profile, along with an
established detectability profile. Unfortunately, the creation of an accurate
detectability profile requires substantial work. By conveying information on
when given levels of code coverage will be achieved during testing, the
concept of a detectability profile does not directly improve reliability
estimation. On the other hand, one might argue an indirect effect on
estimating software reliability if code coverage can be verified to improve
predictions. The main features of this and other models outlined in this
chapter are summarized in table 4.1.

Chapter 4 Code Coverage and Reliability

 51

Model Characteristics Strengths & weaknesses

Node-based

- estimation based on
coverage history
- flow graph representation

+ less extensive data collection
÷ no verifying experiments
÷ assumes independent node
failures

Logarithmic-
exponential

- Musa-Okumoto reliability
growth model
- relate a measure of code
coverage to a measure of
defect coverage
- driving testing towards
input and components
likely to contain faults

+ superior defect prediction
÷ difficult parameter
interpretation

Hyper-
geometric

- ease-of-test function
based on testing efforts and
initial number of faults
- code coverage included in
estimations of testing effort

÷ nontrivial determination of
constants

Detectability
profile

- detectability profile
generation for various
enumerables
- use of operational profile
- a means of code coverage
estimation

÷ accurate detectability profile
requires extensive processing

Table 4.1: Summary of models incorporating code coverage

4.4.1.5 Influential Factors to the Coverage – Reliability Relationship

Judging from existing literature on the relationship between code coverage
and reliability, the findings with regards to impacting factors appear to be
more suggestive than resolute. [KSMG96] poses the question of whether
conclusions stemming from experiments conducted on smaller programs, are
valid for greater and more complex applications. Hence, both size and
complexity should be viewed as non-negligible factors until experiments
conclude the opposite. The same article suggests that reliability estimates
could end up imprecise and at worst misleading, if the number of people
involved in the development process is relatively small. Then again, defining

Chapter 4 Code Coverage and Reliability

 52

what numbers are small and what numbers are not, is likely to vary by context
and company.

Another factor frequently mentioned in articles is the application domain.
[FGMP95] concludes that the domain does not appear to have any significant
impact on the code coverage – reliability relationship, but instead assumes that
factors such as code complexity, as already noted, might play a more pivotal
role.

4.4.2 Experimental Results and Conclusions Reached

In this section we will look at what positive findings have been made based on
experiments described in reliability literature. For now, the focus will be on
conclusions, hypotheses and reasoning that are in favor of an existing
relationship between code coverage and reliability. However, the center of
attention will be the results obtained while giving a proper explanation as to
how they came about, and not detailed figures of the multitude of experiments
conducted.

4.4.2.1 Code Coverage – Reliability Correlation

[Gar94] is one of the articles that produced positive results with respect to the
aforementioned relationship. In this experiment ten faults were injected into a
software program with the purpose of investigating the sensitivity of
reliability to operational profiles. In addition to concluding that two different
operational profiles provided vastly contrasting results from testing the same
program – as was mentioned in chapter 4.2.2 – reliability was seen to increase
in step with code coverage. Although reliability had a monotonic increase as
code coverage increased, the variance between different coverage measures
was significant. Code coverage was also seen to increase the more faults were
discovered in the sample application. Furthermore, both reliability and code
coverage showed similar staircase growth curves with respect to remaining
faults in the program, thus signaling that neither coverage, nor reliability will
necessarily increase as more faults are found. This does not imply the view
that the number of remaining faults in a program equals its reliability, but
rather that this number is assumed to affect reliability to a certain extent. On
the other hand, reliability was shown to increase when code coverage
increases – a fact that contradicts the theoretical foundation of existing
reliability models, namely that reliability grows with each fault uncovered.
However, such a hypothesis needs confirmation by taking into account the
various application domains and parameters such as fault density, fault
distribution and error types of other software programs [Gar94]. Although the
results obtained show a strong correlation between actual reliability and code
coverage, there is no foundation for generalizing the results until further
experiments have taken place.

Chapter 4 Code Coverage and Reliability

 53

The issue of generalizability of experimental results within the field is a point
of concern in [KSMG96]. The authors ratify that several experiments have
been carried out within the topic, however, they remain sceptical as to the
external validity of these experiments. Typically, the programs selected have
been small and relatively simple when comparing them to commercial
software products. Development environment is also launched as a potential
factor of impact on reliability estimates, in addition to the ones mentioned in
chapter 4.4.1.5. Smaller programs are on average developed in smaller, less
complex development environments than what is the case with commercially
developed systems. Hence, [KSMG96] conducted an experiment with a C
program containing an amount of code lines in the hundred-thousands range,
and constructed in an environment consisting of several full-time developers.

Data analysis was performed with two primary intentions in mind; to establish
the predictive accuracy of the Musa-Okumoto and Goel-Okumoto reliability
models, and determine the correlation between errors in prediction and
changes in coverage. [KSMG96] employs the term Mean Test Case To Failure
– MTCTF, and seeks to predict MTCTF for future weeks based on failure data
from previous weeks. This measure is computed by dividing the number of
test cases performed in a given period, by the relative increase in failure
count. Results obtained from the experiment indicated that an increase in at
least one coverage measure was accompanied by an increase in the actual
MTCTF. Also, the difference between estimated reliability stemming from the
Musa-Okumoto model, and the actual reliability, was seen to vary
significantly throughout the testing process. Errors in predicting MTCTF
seemed to follow at least one of the coverage measures. Thus, if estimation
errors increased, then so would coverage values, however, ”when the
coverage measure does not increase or change significantly, the error
decreases due to the data tracking ability of the Musa-Okumoto model”
[KSMG96]. Any lack of precision could, according to the authors, be a result
of not using an operational profile in the experiment.

With reference to the latter experiment, the Musa-Okumoto reliability model
does not seem to be capable of making MTCTF estimates sufficiently precise.
This fact is likely due to the model’s lack of knowledge as to how thoroughly
a system has been tested up until now, and hence, an increase in module
coverage may result in a drastic increase in the number of failures, yet the
reliability model will fail to predict this [KSMG96]. During reliability
estimation, then, improved MTCTF estimates seem likely to result from
considering coverage in addition to failure data. Statistical correlations
between the error in MTCTF predictions and the chosen coverage measures –
module coverage and branch coverage – were computed to 0.76 and 0.60
respectively. This leads to the hypothesis that high MTCTF estimates from
reliability models, along with relatively low coverage, indicate an over-
estimation which, in turn, could lead to a non-negligible risk for software
requiring exceptional reliability.

Chapter 4 Code Coverage and Reliability

 54

4.4.2.2 Fault Removal Behavior

Fabio Del Frate, Praerit Garg, Aditya Mathur and Alberto Pasquini seek to
uncover possible connections between code coverage and reliability in their
article ”On the Correlation between Code Coverage and Software
Reliability” [FGMP95]. An empirical investigation is performed based on a
four-step methodology. In short, these four steps are:

1) Selecting software programs for use in the experiment
2) Generating operational profiles
3) Creating a set of faults and preparing fault seeding of the chosen

programs
4) Generating data for code coverage and reliability, respectively

The first two steps are reasonably straight-forward to comprehend. In step 3
numerous faults are injected into the program source code based on previously
created fault sets. The final stage of the methodology implies that the
reliability of a program has to be measured for each operational profile, every
time a fault is detected and subsequently removed. Furthermore, the current
program version has to be executed ”on test data generated randomly from
the selected operational profile until a failure occurs” [FGMP95]. The fault
responsible for the largest number of failures must be identified and then
removed, thus resulting in a new ”version” of the program.

For each of the selected programs, reliability and code coverage values were
measured after each fault had been removed. Results obtained indicate that
code coverage may decrease, increase and even remain unchanged upon fault
removal. One plausible reason for code coverage to decrease having removed
a fault from the source code, is a phenomenon referred to as fault masking.
Fault masking implies one fault in the source code preventing a second fault
from being detected. Once the first fault, in this case, is removed, a marginally
smaller part of code will be executed, hence resulting in lower code coverage.
[FGMP95] takes the following approach when explaining fault masking,
where P represents a random program: ”There is no test case in the input
domain of P that will reveal f2, and there is at least one test case in the input
domain of P that will reveal f2 after f1 has been removed”. Another
explanation for decreasing coverage could be that the fault removal requires
additional code to be made. If the existing test cases fail to exercise newly
added code portions, a coverage reduction will be the outcome. This will have
a greater impact on coverage percentages if the number of code lines added
are many when compared to the total size of the program.

Analysis also showed that reliability can go in all directions upon removing a
fault, as was the case with code coverage. Decreasing reliability may also be a
consequence of fault masking. By removing a fault, a subsequent fault might

Chapter 4 Code Coverage and Reliability

 55

get exposed and thus lead to the program failing on a more frequent basis.
However, based on data observations [FGMP95] concludes that ”an increase
in code coverage is always accompanied by an increased or unchanged
reliability”. Furthermore, observations of code coverage and reliability
measures increasing, decreasing or remaining unchanged when faults are
removed, along with an increase in code coverage resulting in unchanged or
increased reliability, are claimed to be independent of software complexity
measures.

Finally, the statistical correlation between code coverage and reliability was
computed to be in the range of 0.89 to 0.99 for larger programs. However, the
statistical correlation varies significantly for smaller programs, whereas larger,
more comprehensive software applications produce higher and more stable
correlation values. In spite of intensive program executions, [FGMP95]
reports that none of the coverage measures employed reached their maximum
levels.

4.4.3 Critics and Experimental Weaknesses

Not all published articles report positive findings as far as the code coverage –
reliability relationship is concerned. This section will take the view of the
ones who are critical to the validity and value of some of the experiments
performed, and brings up a few questions that are seemingly left unanswered.
The two main issues revolve around a lack of prioritization as to what parts of
the code are important and less important, and how much of achieved
reliability is down to code coverage, and not test intensity solely.

4.4.3.1 The Effect of Test Intensity on Reliability

High code coverage is claimed to achieve high defect coverage, implying that
more defects are found in software during testing. This, in turn, is believed to
improve the quality of testing efforts and contribute to better end product
quality. [BP00] discusses the matter of whether the claimed relationship
between code coverage and defect coverage is genuine and existing. The
question is whether there are other variables or factors that might impact the
aforementioned measures, that have not been taken into account in empirical
investigations and experiments performed. [BP00] correctly points out that
code coverage as well as defect coverage typically increase with time and
effort spent on testing the software, and hence it is only logical that empirical
experiments confirm the existence of such a relationship. Focus is therefore
directed to the internal validity of these experiments and whether a third factor
unaccounted for, is interfering with the actual outcome. In the book
”Experimentation in Software Engineering: An Introduction” by Claes
Wohlin et al. [Woh+00], the issue of internal validity is explained this way:
”If a relationship is observed between the treatment and the outcome, we must
make sure that it is a causal relationship, and that it is not a result of a factor

Chapter 4 Code Coverage and Reliability

 56

of which we have no control or have not measured”. The role of internal
validity in an experiment is depicted in figure 4.4 below.

In order to prove the correlation between code coverage and defect coverage,
test intensity has to be accounted for in experiments, or put differently – one
has to determine whether the combined effect of test intensity and code
coverage is capable of explaining defect coverage variations better than test
intensity alone [BP00]. A procedure is presented that assumes testing to not be
coverage-driven, since that would affect the design of test cases and thus
make it infeasible to separate test intensity from coverage. The procedure
requires a sample of projects where defect coverage and code coverage data
exist that correspond to several test intensity values, such as number of test
cases and testing efforts. One should keep in mind that similar test intensity
values are not necessarily comparable across software systems of different
sizes. If code coverage plays a considerable role, simulated samples are
expected to, on average, show a poorer statistical correlation than what is the
case for the actual sample, where the effects of both test intensity and code
coverage should be visible on the resulting defect coverage.

Figure 4.4

Internal validity represented as the black
arrow between treatment and outcome

Cause
construct

Effect
construct

Treatment Outcome

Theory

Observation

Chapter 4 Code Coverage and Reliability

 57

In [BP00] an experiment was conducted where code coverage and defect
coverage was measured in three testing phases. For each of these phases, the
same level of test intensity was applied and each and every software
application was exposed to the same set of test cases. The conclusion of the
experiment was that results obtained did not support the hypothesis that code
coverage carries an additional and pivotal effect on defect coverage, when test
intensity is already accounted for. Instead, [BP00] finds it reasonable to
assume that both code coverage and defect coverage are driven by test
intensity only, but opens up the possibility of factors such as defect
distribution, defect types and differing environments impacting the end result.

4.4.3.2 Absence of Operational Profile Leads to Unweighted Testing

[Ham94] takes a different approach in criticizing the claimed effect of code
coverage on reliability, starting off by explaining two primary ways of
developing a test set. Firstly, a best practice for performing code coverage
testing is described that guides the creation of test sets. Initially, test sets
should be generated based on specifications, while later on expanding the test
set to include tests deemed necessary by studying the source code. The code
coverage of a given test set can then be measured to get an idea as to the
quality of the tests designed. It is recommended that tests be included in the
test set that are capable of covering several requirements in the specification,
since complex operations tend to be more effective at revealing faults in the
code. The alternative and contrasting way of generating test sets, according to
[Ham94], is to employ uniformly distributed random tests within functional
classes.

Mutation coverage, see chapter 2.2.2, can be used as a technique for
measuring the quality of test sets. The theory behind mutation coverage is that
the causes of most faults are rather commonplace and uncomplicated. Hence,
faults that none of the tests are able to uncover might get detected by the
mutation technique, typically including faults caused by the use of unintended
logical operators. By producing mutated versions of the software and test each
of them against the current test set, one can determine which mutations of the
program that were detected by the test set. Hence, we can observe that faults
may remain in the code even after all tests have been run. It is not unusual for
functional test sets to be incapable of detecting an amount of seeded faults,
and the majority of people in charge of testing activities are aware of the
difficulty in satisfying the mutation criteria. As a result, testers are tempted to
create additional tests that are tailored to each mutation, thus disputing the
recommended best practice for coverage testing. As [Ham94] underlines, if
fault seeding represents genuine faults in a good way, the hit ratio can be
looked upon as a quality indicator of testing; however, it is meaningless to
improve coverage so that the seeded faults remaining can be found. After all,
the 100% hit ratio will be achieved because of existing knowledge of seeded
faults.

Chapter 4 Code Coverage and Reliability

 58

The quality of testing nowadays is based on the failure detection probability of
the tests – their ability to uncover failures and their underlying faults in
software. [Ham94] points out that for random testing based on an operational
profile, the failure detection probability takes on the meaning of failure
intensity – the reciprocal of Mean Time To Failure, MTTF. In other words, by
using the system one will encounter failures that are likely to be found during
actual system usage. This seems pretty inevitable, since MTTF is a
widespread measure denoting the reliability of software systems. Coverage
testing contributes to discovering a multitude of failures and hence boasts an
impressive failure detection probability. This fact is down to code coverage
directing focus to broader parts of the code and consequently covering parts of
the source code neglected by alternative testing techniques. The formidable
failure detection results from avoiding to sample the operational profile, and
instead sampling according to classes that emphasize failures [Ham94]. The
main objection to this strategy is that these classes carry no relation to the
operational profile. As we all know, certain parts of a program are likely to be
used more than others, and coverage testing may detect failures and
subsequently remove faults in low-usage functionality and for that reason
show relatively less interest in high-usage scenarios, compared to testing
driven by an operational profile. A possible outcome is encountering problems
in a production phase because of failures hiding in frequently used
functionality of the software. With this in mind, [Ham94] concludes that
coverage testing is, at best, no more significant than random testing. Coverage
testing does not pay attention to the usage profile of a system and would hence
lead to less intensive testing of its most important parts. As a result, software
reliability is likely to get affected.

Based on the arguments and reasoning above, coverage testing could have a
negative impact on reliability even if the test set attains high coverage scores.
Reliability predictions may consequently be overestimated because of code
coverage viewing all parts of the code as equally important. According to
[Ham94], there is little theoretical basis and few experiments that would
suggest there exists a relationship between code coverage and reliability,
while at the same time underlining the sharp contrast between the difficulties
of performing the experiments and their modest results. However, coverage
testing is thought to uncover more failures than random testing, but that does
not automatically imply that code coverage contributes to increased reliability.

Although critical of the code coverage – reliability relationship, [Ham94] sees
code coverage possibly relating to a notion of trustworthiness as defined in
chapter 4.1. Software quality ought to be measured based on results as
opposed to time or effort spent on achieving that level of quality. Thus, hours
spent during testing and failure detection probabilities are inappropriate
candidate measures as far as software quality is concerned. The reason for this
is that neither of these measures will provide an answer as to whether the
software is trustworthy. As was mentioned in the opening section of this

Chapter 4 Code Coverage and Reliability

 59

chapter, failures occurring in low-usage functionality will affect reliability,
but leave trustworthiness practically unchanged. In the words of [Ham94]:
“Catastrophic failures occur because no one has any conception of the
situations that lead to them”. It seems feasible to make measures of
trustworthiness independent of any operational profile, thus suggesting that
code coverage may have a stronger connection to the quality attribute of
trustworthiness, rather than reliability.

4.4.3.3 Inconclusive Results

Not all investigations and experiments performed yield conclusive or even
suggestive results. An automated coverage tool named ATAC is employed in
a series of tests to determine the correlation between code coverage and the
number of faults found in “A Coverage Analysis Tool for the Effectiveness of
Software Testing” by Michael Lyu, Joseph Horgan and Saul London
[LHL94]. The stated hypothesis is that more faults will be discovered as code
coverage increases. A number of groups of developers were formed, with each
individual group responsible for creating a module facilitating automated
landing of commercial air planes. The resulting modules were tested and code
coverage, along with the number of detected faults, were measured. The
findings were deemed inconclusive: ”We did not see strong correlations
between the total faults detected in the program versions and their coverage
measures during various testing conditions” [LHL94]. However, the
hypothesis is not completely rejected as each version was found to have a
different fault distribution from the outset, thus rendering code coverage as an
improper measure of the total number of faults residing in the code.
Additionally, the statistical precision was believed to be reduced since the
number of discovered faults in each version was relatively modest.

Chapter 5 The Musa-Okumoto Model with Data Pre-processing

 60

”The only real mistake is the one from
which we learn nothing.”

John Powell

CHAPTER 5:

The Musa-Okumoto Model with Data Pre-
processing
CHAPTER 5: The Musa-Okumoto Model with Data Pre-processing

This chapter aims to give a thorough presentation of the reliability model of
our choice in proposing a feasible approach to integrating reliability
estimation into an automated tool for code coverage assessment. This software
tool is an open-source product named JCoverage, and its operation is
described in the subsequent chapter. Our suggested approach combines the
use of a well-known reliability model with a technique that employs code
coverage data to improve the estimates. To be more concrete, the logarithmic
Poisson execution model by John D. Musa and Kazuhira Okumoto – from this
point on referred to as the Musa-Okumoto model – is selected, along with the
technique proposed by [CLW01] and presented in chapter 4. We will now
consider each of them in turn, starting with the Musa-Okumoto model.

5.1 The Musa-Okumoto Model

he general elements of reliability estimation and the main features of
reliability models were touched upon in chapter 3. As for the Musa-
Okumoto model it consists of two components: An execution time

component and a calendar time component. [MIO87] claims that the model
has high predicative validity, achieved early during the system test phase. The
required parameters need to be estimated prior to model usage since they do
not relate to pre-execution characteristics of software and development
environment. Thus, the task of predicting any parameters seems virtually
impossible.

The Musa-Okumoto model employs a two-part approach in characterizing
failure behavior. Initially, execution time is used in estimation, while later this
notion of time is converted to calendar time to be more understandable to
testers. This conversion takes place in the calendar time component, which
characterizes how human and computer resources are utilized in the project.
Execution time is said to be a preferable measure of time because of its
superior ability to characterize ”the failure-inducing stress placed on
software” [MOI87].

T

Chapter 5 The Musa-Okumoto Model with Data Pre-processing

 61

5.1.1 Execution Time Component

The execution time component of the model is based on failures appearing as
described by a non-homogeneous Poisson process. In chapter 3, non-
homogeneous referred to a probability distribution changing with time. This is
captured in a failure intensity function λ which, accordingly, changes with
time. The failure intensity describes how the average number of failures
experienced changes at different points in time. The Musa-Okumoto model
defines the failure intensity function as:

() ()θμ−λ=μλ exp0

In the equation above, μ represents the cumulative number of failures
experienced at a given time. λ0 denotes the initial failure intensity – the failure
intensity at the beginning of execution, whereas θ is a failure intensity decay
parameter. The purpose of the latter parameter is to describe the relative
change in failure intensity per failure experienced. When the reliability model
is put to use the failure intensity is predicted to slowly decrease after a certain
time. The reason for this, according to [MOI87], is that the parts of the code
hiding faults even at a late stage of testing are unlikely to be exercised
particularly often. Typically, these pieces of code have a low probability of
being tested because of conditions – requiring atypical user input or an
uncommon environment – that have to be satisfied in order for that code to be
exercised.

One of the advantages of the Musa-Okumoto Model is its ability to tackle
non-uniform operational profiles considerably better than some of the other
reliability models available [MOI87]. A non-uniform operational profile
results from dealing with a system where the operational profile fails to mirror
actual system usage. The main reason as to why this particular model handles
non-uniform operational profiles well, is said to be the Poisson probability
distribution. This distribution appears to provide a better fit to actual failure
detection than probability distributions found in a number of competing
models. Another noteworthy feature of the Musa-Okumoto model is its
ignorance of the quality of fault repairs, thus allowing new faults to be
introduced in the code. The following function is used to denote mean failures
experienced, μ, versus execution time, τ:

In this case λ0 represents the initial failure intensity as execution begins, while
θ is the failure intensity decay parameter. This function – mean failures
experienced versus execution time that is – is infinite at infinite time. An
expression also exists for determining failure intensity based on execution
time, with the symbols carrying the same meaning as in previous definitions:

() ()1ln1
0 += θτλ

θ
τμ

Chapter 5 The Musa-Okumoto Model with Data Pre-processing

 62

The Musa-Okumoto model allows us to compute Mean Time To Failure –
MTTF – given that the failure intensity decay parameter θ is less than 1: θ < 1.
If this condition is satisfied MTTF can be determined by means of the
following expression:

 ()1<θ

Since MTTF may not always be possible to determine, there exists an
alternative expression for computing system reliability. In the function below,
τ’ represents execution time measured from the present whereas τ denotes the
total execution time. As before, θ is the failure intensity decay parameter
while λ0 corresponds to the initial failure intensity.

Making use of the expressions presented thus far makes it possible to quantify
software reliability of a given product, albeit in different ways. In addition, the
Musa-Okumoto model proposes further mathematical functions that convey
useful information for testing purposes. For instance, there are expressions
which estimate the amount of time required to achieve a fixed reliability goal,
or the number of detected failures required to reach that same target. We will
not go into greater detail with respect to these expressions.

When a software program is put to use without any variables changing,
reliability models are no longer considered to be non-homogeneous Poisson
processes. Instead, models are reduced to homogeneous Poisson, with the
number of failures in a fixed time interval corresponding to a Poisson
distribution. The relationship between reliability, R, and the failure intensity,
λ, can be expressed as a function of the execution time, τ:

() ()λττ −= expR

Model characteristics include the use of the two parameters λ and
θ, symbolizing initial failure intensity and failure intensity decay respectively.
As mentioned earlier in this section, these parameters must be estimated
before the model can be used. There will always be a certain amount of
uncertainty in connection with parameter estimation, and this uncertainty is
set to transmit to the different estimated measures of reliability. Having said
that, estimation is generally more accurate than what would be the case with

() ()

θ

ττθλ
θτλττ

/1

0

0

1'
1|' ⎥

⎦

⎤
⎢
⎣

⎡
++

+
=R

() () θθτλ
θ

θτ
11

0 1
1

−+
−

=Θ

()
10

0

+
=

θτλ
λτλ

Chapter 5 The Musa-Okumoto Model with Data Pre-processing

 63

prediction, the latter not even facilitated by the Musa-Okumoto model
[MOI87]. Estimation can be carried out with a statistical method based on
observed failure times. The use of maximum likelihood estimation to
determine which parameter values fit observed data the best, could serve as an
example.

5.1.2 Calendar Time Component

The calendar time component relates execution time and calendar time at each
point in time to a ratio between the two notions of time. During periods when
the system is neither modified nor repaired, this ratio is viewed as a constant.
The component bases itself on a debugging process with factors of limitation
affecting its performance. Resources and the utilization of these are assumed
to be constant during the period in which the model is used. The available
resources and the resource needs of the process are assessed and possible
bottlenecks are identified. A planned resource can be measured in quantities
such as the size of the test team and the number of personnel assigned to fault
removal tasks. The resource needs of the process are found and quantified as
resources required per hour of execution time and/or per failure experienced.
Hence, the ratio between the time units is determined by factors that impact
and limit testing. [MOI87] lists the following candidate factors:

 Failure identification or test crew
 Failure correction or debugging personnel
 Available computer time
 Other limited resources

Out of the four factors stated above, the first three control the rate of testing,
with failure correction personnel typically having the most significant effect
on calendar time prediction. For projects where failure identification and
failure correction is performed by the same individuals, these two tasks can be
merged. The resource consumption, χ, for each individual resource in the
process can be computed as follows:

μμ+τθ=χ rrr

In this formula the resource consumption is a function of both the number of
failures detected and the amount of CPU time used. The variable θr refers to
the resource consumption per CPU hour, while μr denotes the resource
consumption per failure – both of which require necessary adaptation and
tailoring to each project and resource.

The ratio between execution time and calendar time can be found by using the
expression below:

 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+=
1

1

0

0

θτλ
λμθ

ρτ rr
rr

r

Pd
dt

Chapter 5 The Musa-Okumoto Model with Data Pre-processing

 64

Pr refers to resource quantity and ρr denotes resource utilization. θr is assigned
resource consumption per CPU hour, whereas μr represents the resource
consumption per failure. These measures are explained in the following
section. The remaining variables – execution time, failure intensity decay
parameter and initial failure intensity – are the same as for previous
expressions stated in this chapter.

5.1.2.1 Description of Resource Measures

Resource quantity is a measure of the amount of resources available. As far as
computer time is concerned, this measure is in the form of ”prescribed work
periods” [MIO87]. The same source proposes an example for the purpose of
comprehension: If there are 80 computer hours available per week and the
prescribed working week consists of 40 hours, this will yield a resource
quantity for available computer time of 2. For other resources it is a matter of
the number of people, and the fact that some may not work full days is not
taken into account since resource quantity is a measure of available resources
as opposed to employed resources.

Resource utilization is a measure of the amount of available resources that are
put to use. ”Resource utilizations are generally estimated from formula or
practical experience” [MOI87]. Maximum values must be found for the
period in which the current resource is the limiting factor. The two resource
usage parameters – θr and μr – represent average values of resource
expenditure and are affected by factors such as application domain and the
level of experience among software developers. By collecting data on
resource usage along with relevant data obtained during testing, the following
model can be adapted to the data observed:

Additionally, overhead factors such as holidays, vacations, absence, courses
and administrative duties have to be taken into consideration. By now all
parameters necessary for making the move from execution time to calendar
time ought to be presented.

5.2 Code Coverage Pre-process Model

n chapter 4 we introduced a technique developed by Mei-Hwa Chen,
Michael R. Lyu and Eric Wong and described in detail in [CLW01],
which reduces the relative weight of tests in reliability estimation that do

not increase code coverage nor detect additional failures. In this section we
will try to adopt a more technical perspective with regards to this technique
than what was the case in chapter 4.

I

()
τ
τμθ

τ
χ

Δ
Δ

+=
Δ
Δ m

rr
r

Chapter 5 The Musa-Okumoto Model with Data Pre-processing

 65

5.2.1 Model Rationale

The technique, presented as two different versions in [CLW96] and [CLW01]
respectively, is based on reliability models using the time between failures as
a measure of reliability. The line of action is to measure cumulative code
coverage and number of failures after execution of each test case to assess
whether it qualifies as an effective testing effort. If a test case turns out to be
non-effective in this sense, a function is used to reduce the execution time
employed by that particular test case. This consequently leads to a reduction
in the reliability estimate.

The heart of both versions is the compression ratio ρi which is computed for
all tests considered to be non-effective. This is a value which is multiplied by
the execution time of the non-effective test case, thus resulting in a time
reduction before data is relayed to the reliability model. The compression ratio
is computed slightly differently in the two versions, as will be explained
below; however, they both make use of changes in execution time and
cumulative code coverage during calculation and are hence comparable. As is
to be expected, test cases deemed effective will yield a compression ratio of 1
and consequently leave execution time unchanged.

5.2.2 Compression Ratio through Smoothing Parameters

The initial version of the technique presented in [CLW96], proposes two
parameters α and β in computing the all-important compression ratio. These
parameters, referred to as smoothing parameters, are dependent on the
software itself and the reliability model of choice, for instance Goel-Okumoto
or Musa-Okumoto. Unfortunately, information was not obtainable on how a
given reliability model would impact the parameters. The equation below is
used to compute the compression ratio by employing the smoothing
parameters:

In the above expression ti and ci refers to execution time and cumulative code
coverage respectively, upon termination of test case i. Subscript is used to
indicate which test case is referred to. The α and β parameters are the
smoothing parameters mentioned earlier, while δti and δci relate to the change
in execution time and cumulative code coverage before and after execution of
the ith test case.

()2222

222

iiii

iii
i ctct

tct
βδαδβδαδ

αδβδαδρ
⋅++

+⋅
=

Chapter 5 The Musa-Okumoto Model with Data Pre-processing

 66

5.2.3 Compression Ratio through Scaled Parameters

The second version of the technique, elaborated in [CLW01], is based merely
on changes in code coverage and the number of failures discovered. In
practice the parameters c and t are scaled so that their respective numerical
values are virtually equal. The claimed intention is to stabilize the
computation of the compression ratio ρ and can be done at various points in
time. According to [CLW01], code coverage measures are generally scaled so
as to match the average execution time of test cases. The scaled values of c
and t are then used in computing ρ. In the estimation itself the original values
of t are used, but these are adjusted by employment of the estimated
compression ratio. ”Scaling of the execution time does not affect the reliability
estimation process” [CLW01]. The expression for calculating the com-
pression ratio in this version is as follows:

In correspondence with the compression ratio equation of the initial version, ti
and ci denotes execution time and cumulative code coverage respectively,
upon termination of test case i. Once again, subscript is used to indicate the
test case of interest. δti and δci refers to the change in execution time and
cumulative code coverage before and after execution of the ith test case.

For our approach we have chosen the latter of the two versions as the pre-
process technique to be used in conjunction with the Musa-Okumoto software
reliability model.

()2
1

2
1

2
1

2
1

2
1

2
1

2
1

−−−−

−−−

⋅++
⋅+

=
iiii

iii
i ctct

ctt
δδδδ

δδδρ

Chapter 6 A Software Implementation: JCoverage

 67

”Vision is the art of seeing the invisible.”
Jonathan Swift

CHAPTER 6:

A Software Implementation of Automated
Code Coverage Analysis: JCoverage
CHAPTER 6: A Software Implementation of Automated Code Coverage Analysis: JCoverage

This chapter is mainly dedicated to JCoverage – a software tool for automated
code coverage analysis – and its operation and implementation of code
coverage principles. We start off by describing the context and environment of
JCoverage before diving into its operation and means of computing code
coverage measures. Having covered the main functionality and scope of
JCoverage we move on to pinpoint possible improvements for future versions.
Finally, we round off this chapter by considering the possibility and
uncovering the main challenges of integrating the Musa-Okumoto model and
the code coverage pre-processing technique presented in the previous chapter,
to yield a reliability measure.

6.1 Characteristics and Environment

n order to compute code coverage for a system, a tool is needed for
registering which parts of the code are being executed. JCoverage
facilitates code coverage measurements for programs developed in Java,

and appears in three different versions with associated licenses. The version
that we have been examining has a GNU Public License and has not
undergone improvements found in the other two versions. One of the versions
is said to scale better, as well as offering support for Java Remote Method
Invocation. JCoverage is, however, not the only available solution on the
market for measuring code coverage. The main reason why we ended up
focusing on JCoverage was its open-source nature, thus providing us with
access to the source code. This characteristic, in turn, made it possible to
adopt a more detailed approach in studying how various code coverage
measures were implemented.

When putting JCoverage to use it might be practical to employ Apache Ant
and Eclipse simultaneously. Eclipse is an IDE – Integrated Development
Environment – developed in Java and used to develop other Java applications.
One of its features is the capability to make XML-based build files which
specify how the Java application should be compiled. This file can then be
interpreted by Apache Ant, which is a build tool for automating tasks that are
performed several times during development. Typical Ant usage includes code
compilation and related tasks. The tool incorporates a number of possible
“tasks”, known as small programs intended to solve simple problems. These

I

Chapter 6 A Software Implementation: JCoverage

 68

tasks can be combined to constitute macros in the form of XML files which
may then be read and executed by Ant. Examples of tasks include the
generation of Java Archive files, the creation of folders or directories and
deletion of files. Ant distinguishes itself from other build tools in the sense
that it is a Java-developed product that can be executed on a number of
operating systems. With JCoverage being a utility for testing Java code,
possibly developed on a variety of platforms, it seems only natural that
JCoverage can be integrated into the development process in the form of an
Ant task. The environment of JCoverage and its interaction with Ant and
Eclipse is modeled in figure 6.1 below.

Figure 6.1

The respective roles of
JCoverage, Ant and Eclipse

Technically speaking, coverage data are extracted from a Java program during
testing in one of three ways. These implementation approaches were presented
in chapter 2.5 but are briefly reiterated here for the sake of convenience:

 Source code instrumentation
 Byte code instrumentation

 Execution through a modified Java Virtual Machine

Eclipse

Apache Ant

Java Development Kit

Java Runtime Environment

JCoverage

JUnit

Other Ant tasks

Chapter 6 A Software Implementation: JCoverage

 69

By opting for instrumentation of the source code, additional lines of code are
added prior to byte code compilation. In the case of byte code instrumentation
one is not dependent on having source code available, whereas the third and
final alternative requires modifications to be made to JVM so that information
is logged during program execution.

6.2 JCoverage Operation

aving introduced the main concepts of JCoverage it is time to look at
how it goes about to convey coverage information to users. We find
it feasible to divide its operation into two different phases. The first

of these deals with the process of instrumentation, while the second deals with
the computation of coverage measures and the ensuing presentation of
coverage information of interest.

6.2.1 Instrumentation

When code coverage is to be measured the first thing JCoverage does is to
properly instrument the code to be tested. This implies inserting additional
code that will enable information to be logged to a file, which will later
provide users with information as to what parts of the code have been
exercised. JCoverage performs code instrumentation by modifying the byte
code, or more specifically the class files. Technically speaking, code
instrumentation is started once a separate instrument task is called in Ant
which initiates the entire instrumentation process.

 <instrument todir="instr/">

 <fileset dir="build/">

 <include name="**/*.class"/>

 </fileset>

 </instrument>

Extracted parts of an XML file is stated above where Ant is asked to
instrument all class files residing in the build directory and all its sub-
directories. The build directory is placed in a project directory, while all files
successfully instrumented are stored in a directory named instr, also within
the project directory.

When JCoverage is set to instrument a project, all class files of the current
project are examined. Class files that have already been instrumented or
merely contain an interface with no executable code are exempted from
instrumentation. This is solved by attaching an empty interface named
HasBeenInstrumented to each class file previously instrumented. Class files
may thus be checked to see if they implement the interface mentioned above
prior to deciding whether a particular class will be instrumented or not.

H

Chapter 6 A Software Implementation: JCoverage

 70

The source code, which in turn is made into instructions interpreted by the
Java Virtual Machine, is found in the methods of each class. Consequently, all
methods belonging to a class are examined when instrumenting that particular
class. Certain lines of code do not contribute with instructions executed in the
JVM, for instance lines of comments, blank lines for improved visibility and
“} else {”. The else case referred to affects the syntax or sequence of
instructions as they appear in the program, but does not explicitly add
instructions itself. For this reason JCoverage neglects the execution of these
lines when computing coverage measures. It also provides users with the
option of defining elements to be ignored, but we consider this particular
functionality to be of no great concern at this point.

One line of source code can be represented as one or more elementary
instructions in the resulting byte code. In order to be able to decide whether a
line of code has been exercised, JCoverage inserts code ahead of the first
instruction representing that specific line. As a matter of fact, JCoverage adds
code before each line that has byte code instructions associated with it. An
example of code that instruments byte code is stated below.

/**
 * The core instrumentation. This sequence of instructions is
 * emitted into the instrumented class on every line of
 * original Java code.
 *
 * NOTE THAT THIS EMITTED CODE IS ALSO LICENSED UNDER THE GNU
 * GENERAL PUBLIC LICENSE. NON GPL INSTRUMENTED APPLICATIONS
 * MUST BE LICENSED UNDER SEPARATE AGREEMENT. FOR FURTHER
 * DETAILS, PLEASE VISIT http://jcoverage.com/license.html.
 */

InstructionList emitGetInstrumentationAndTouchLine(

LineNumberGen lng) {

 InstructionList il=new InstructionList();

/**
 * Obtain an instance of InstrumentationFactory, via a static
 * call to InstrumentationFactory.
 */

 il.append(classGenHelper.createInvokeStatic(
 InstrumentationFactory.class,

"getInstance",InstrumentationFactory.class));

In the case above, JCoverage adds code for the purpose of accessing an
instance of the InstrumentationFactory class. This class loads existing test
data from a file and saves new data upon terminating program execution.

/**
 * Create a new instance of Instrumentation (or reuse an
 * existing instance, if one is already present in the
 * factory), for the class that we have instrumented.
 */

Chapter 6 A Software Implementation: JCoverage

 71

 il.append(new LDC(

classGenHelper.getConstantPool().addString(
classGenHelper.getClassGen().getClassName())));

 il.append(classGenHelper.createInvokeVirtual(

InstrumentationFactory.class,"newInstrumentation",
Instrumentation.class,String.class));

Moving on, JCoverage adds a String object to the stack with the name of the
class being instrumented. A method of the InstrumentationFactory class is
called next that returns an already existing instance or alternatively creates
and returns a new instance of the Instrumentation class. The method
invoked requires a String object as an input parameter, and the String object
currently residing on the stack will now become the String argument which
the method receives.

/**
 * Update the coverage counters for this line of source code,
 * by "touching" its instrumentation.
 */

 il.append(InstructionListHelper.push(

classGenHelper.getConstantPool(),lng.getSourceLine()));

In the code above, an integer, corresponding to the line number of the source
code that led to the generated instructions, is pushed onto the stack. This
integer comes to use in the following code:

 il.append(classGenHelper.createInvokeInterface(

Instrumentation.class,"touch",void.class,int.class));

 return il;
 }

The integer that was pushed onto the stack in the previous code sequence is
this time used as an argument when calling a method of the Instrumentation
class. This method increments a counter used to indicate the number of times
that this specific line has been exercised during testing. The line number is
used as an index in a data structure for keeping track of the number of
executions for each line contained in the class.

In order for JCoverage to be able to compute branch coverage, all instructions
are studied. In the case of if instructions the line number where the if
construct occurred is registered along with the line number of the first line of
code immediately succeeding the if clause belonging to the if construct. All
data that are generated through the execution of an instrumented Java

Chapter 6 A Software Implementation: JCoverage

 72

application are stored as serialized Java objects in a file named
jcoverage.ser. In the case of successive executions the data are aggregated.

6.2.2 Code Coverage Presentation and Computation

Instrumenting the code is necessary to provide access to and information
about which parts of the code are being executed. All data must further be
processed to enable computation and presentation of coverage measures of
interest. JCoverage offers the possibility of generating coverage reports in
both HTML and XML format to present line coverage and branch coverage
scores on different levels.

Figure 6.2

HTML page for presenting coverage
measures for all packages and classes being tested

Chapter 6 A Software Implementation: JCoverage

 73

6.2.2.1 Coverage Reports

The generation of reports can be done by employing an Ant task. This will
lead to a procedure generating reports based on data stored in the
aforementioned file jcoverage.ser. In the case of an HTML representation
of the report, a series of HTML files are created or alternatively modified if a
report already exists. Code coverage measures are presented for the individual
classes or Java files, the packages, and in total for all code under test, as
illustrated in figure 6.2 above. The report lets users navigate through existing
classes and packages. Each class has a dedicated HTML page where the
source code is presented. The parts of the code not exercised by the test set are
highlighted as shown in figure 6.3 below.

Figure 6.3

HTML page generated by JCoverage for presenting the source
code of a tested class – lines of code left unexercised are highlighted

JCoverage can also produce an XML version of the coverage report. This
consists of a simple XML file which lists all registered data, as well as
computed line coverage and branch coverage for each class and its associated

Chapter 6 A Software Implementation: JCoverage

 74

methods. This file is useful when exchanging coverage data with other
applications or when designing a separate and tailored presentation. Having
said that, it turns out that the XML file generated by JCoverage does not
satisfy the XML standard, thus running the risk of encountering an error
message when employed. The coverage report is shown in XML format in
figure 6.4.

Figure 6.4

XML version of the coverage report

6.2.2.2 Computation of Coverage Measures

JCoverage restricts itself to the computation of two coverage measures,
namely line coverage and branch coverage. Line coverage denotes the
percentage of lines of code executed with respect to the total number of lines
and can be formulated as follows, with lC representing line coverage, cn the
number of lines covered and n the total number of lines:

 %100⋅=

n
nC c

l

Chapter 6 A Software Implementation: JCoverage

 75

Thus, to calculate the line coverage of a given method, the total number of
code lines must be assessed along with how many of these lines have been
executed at least once. The same procedure is employed, irrespective of
whether the line coverage is computed for a class, a package or for the entire
application under test. Figure 6.5 reports a line coverage of 69% for a simple
example program.

Figure 6.5

Coverage report for testing of a sample program

For the purpose of computing branch coverage, JCoverage makes use of the
data structure created during the instrumentation phase, where the line number
of the if construct was stored, along with the line number succeeding the
block of code that, if the expression evaluates to true, is executed. This pair
of lines is then used when calculating the branch coverage. The tool examines
which of the lines that have been visited during testing, and the relationship
between the number of visited lines and the total number of lines in the data
structure is finally returned as the branch coverage. Hence, the computation of
branch coverage follows the same basic procedure as the one used for line
coverage, but with a more restricted set of code lines as input.

Chapter 6 A Software Implementation: JCoverage

 76

Having evaluated and studied JCoverage’s implementation of branch
coverage, we find that it does not seem to correspond to our perception of how
code coverage literature defines the measure. The current implementation
does not check whether the code inside an if construct is executed if the
expression evaluates to true. As mentioned earlier, JCoverage merely verifies
that the line where the if construct appears is exercised, along with the first
line succeeding the if clause. As a consequence branch coverage can be
reported at 100% even when one or more if statements have never evaluated
to true. This situation is illustrated below by means of a constructed and
straightforward example.

Figure 6.6

An example highlighting the branch coverage dilemma

Figure 6.5 on the previous page displayed a coverage report for the sample
program used in figure 6.6 right above. Line coverage was computed to be
69% with branch coverage reaching 100%. As before the yellow lines
represent lines of code that have not been exercised by the tests performed.
Figure 6.6 reveals that the entire block of code inside the if statement has not
been tested, since the boolean variable used to evaluate the expression is set to
false. It is possible to attain complete branch coverage without having
achieved complete line coverage, exemplified by line 15 which is not yet
executed. However, it should not be possible, according to our interpretation

Chapter 6 A Software Implementation: JCoverage

 77

of code coverage literature and the branch coverage measure in particular, to
achieve complete branch coverage without having tested all existing if
clauses.

Even if JCoverage had been modified to test whether the if clause was
executed and hence if the expression evaluates to true, we still question if
this would be sufficient to qualify as branch coverage. According to our
understanding of branch coverage defined in chapter 2.2.1.2, the measure of
branch/decision coverage is based on whether conditions evaluate to both
true and false. This requires all if statements to be combined with
matching else clauses, as shown below.

11: ..

12: if(isAscii) {

13: in = new AsciiReader();

14: }

15: else {

16: in = new UnicodeReader();

17: }

18: return in;

19: ..

The piece of code above serves as an example to illustrate how all if
statements must be properly formatted in order to detect that an expression
evaluates to false. In this specific case, line 15 will be marked as the first
line succeeding the if construct. This line is then examined to find out
whether it has been executed when computing the branch coverage. If,
however, the code stated below is tested, then 100% branch coverage could be
achieved even if the if expression has never evaluated to false.

87: ..

88: if(customerNum < 100) {

89: price = price * 0.9;

90: customerNum++;

91: }

92: getCreditCredentials();

93: ..

In this case line 92 will be verified when computing the branch coverage,
since this is the line immediately following the if clause. Line 92 will be
executed irrespective of whether the if expression evaluates to true or
false; it is not part of an else clause. Since JCoverage ignores whether the
logical expression of an if statement returns both true and false, its notion
of branch coverage appears to resemble a measure known as basic block
coverage. Basic block coverage, described in chapter 2.2.1.1, is meant to

Chapter 6 A Software Implementation: JCoverage

 78

disregard or overlook the size of the different blocks and rather give a picture
of how well the blocks of code are tested. During testing only the largest
blocks might be tested, thus resulting in a coverage measure such as statement
coverage approaching 100%, whereas basic block coverage would detect that
smaller blocks of code have been ignored. However, we have to make a
reservation that the naming conventions of the various code coverage
measures may differ and that a considerable part of this could be down to
name confusions. This may always be a factor when a defined, agreed-upon
standard or framework is non-existent.

In addition to questioning the notion of branch coverage employed by this
tool, we find it necessary to comment upon a few aspects of the line coverage
measure. The code line below raises one point of concern:

44: ..

45: if(debug) Logger.println(“Input file not available.”);

46: ..

When the entire if statement is restricted to a single line of code even line
coverage may reach 100% although not all parts of the code have been
executed. A similar situation occurs when the if statement is integrated into
“different” code on the same line, as exemplified by line 79 below.

77: ..

78: out = “Loading “

79: out += numFiles + “ file” + (numFiles < 1 ? “s” : “”);

80: ..

Thus, JCoverage does not necessarily paint a correct picture of the situation it
measures. On the one hand, lines can be said to have been executed since
certain instructions belonging to them have been exercised and hence, line
coverage reports these lines as covered. On the other hand, we believe that all
instructions on a line of code have to be executed in order for sufficient line
coverage to be reported. If the latter is used as a requirement we know of an
additional case where parts of a line are left untested, namely the evaluation of
boolean expressions with short-circuiting support, as explained in chapter
2.2.1.2. This is mainly an issue when dealing with measures such as condition
coverage and multiple condition coverage. Since JCoverage implements
neither of these measures we find it infeasible to take the evaluation of
boolean expressions into account when assessing whether or not the code is
covered.

Chapter 6 A Software Implementation: JCoverage

 79

6.3 Suggested Improvements

s can be seen from the previous sections of this chapter, JCoverage
presents a few challenges, most of which center around the chosen
implementation of code coverage measures. In this section we try to

explain the efforts needed in order to establish a correspondence between the
coverage measure definitions of this report and the tool implementation of the
same measures.

For JCoverage to be able to determine whether an if expression evaluates to
true, regardless of whether the code to be executed in the case of true is a
block of code, a single line of code or merely a part of one, the code requires
additional instrumentation. As of now, instrumentation code is only added at
the start of each line, whereas the scenario mentioned above would involve
the insertion of instrumentation code ahead of the first instruction to be
executed given an evaluation of true. This raises yet another question: How
should the added lines of instrumentation code count in the computation of
line coverage and branch coverage respectively? If they count in the same way
as the original instrumentations did, certain lines might be counted twice and
impact line coverage accordingly. It hence seems inevitable that data collected
from this added instrumentation should only be used in computing the branch
coverage. Alternatively, the instrumentation for line coverage and the
instrumentations within if clauses can be combined so that a particular line is
not reported as executed until both instrumentations have been called by
JCoverage with their respective parameters.

In order for JCoverage to test whether if expressions evaluate to false it can
instrument if statements as illustrated through the source code excerpt below:

77: ..

78: if(originalExpression || instr.touchIf(78)) {

79: ..

For this particular case || instr.touchIf(78) represents the necessary
instrumentation. This expression will be a method call that returns the value
false, under any circumstances, with the intention of not interfering with the
original evaluation of the if statement, while at the same time indicating that
evaluation has taken place. A call to the method is assumed to be made if
originalExpression evaluates to false only, since the Java excerpt above
short-circuits.

A

Chapter 6 A Software Implementation: JCoverage

 80

6.4 An Approach to Implementing Reliability
Estimation in JCoverage

uring the course of this project we have, among other things, studied
different techniques for estimating software reliability through the
use of code coverage information. A data pre-processing technique

and the Musa-Okumoto model were described in chapter 5 as a combined
means of utilizing code coverage data to come up with realistic and useful
reliability estimates. In this section we consider the feasibility of integrating
the aforementioned approach into JCoverage as an added reliability module.

Figure 6.7

Illustration of the proposed reliability estimation approach

What makes this an attractive strategy, in theory, is that an automated tool for
tracking code coverage provides coverage information that could be directly
employed by the pre-processing technique described in chapters 4 and 5,
before relaying processed data to the Musa-Okumoto model for estimation.
Implementing such an approach in JCoverage is, however, far from
straightforward. We emphasize the fact that the notion of automatically
generating reliability estimates through tool usage is a highly relative one.
Since reliability might be affected by external factors related to phases of
system development as well as the application domain, we are fully aware of

D

Code coverage Failures Test time

Pre-process technique

Musa-Okumoto model

Failures Test time

Reliability estimate

1 2 3

4

5 6

7

8

Chapter 6 A Software Implementation: JCoverage

 81

the fact that reliability estimation requires substantial human intuition,
consideration and effort. Instead, the approach is intended to simplify the
more administrative parts of the effort, particularly with regards to the pre-
process technique.

6.4.1 The Road to Obtaining Reliability Estimates

Throughout this section we will refer to figure 6.7 which depicts the proposed
course of generating a reliability estimate. The numbers from 1 to 8 in the
subsequent text refer to corresponding elements in the figure above.

6.4.1.1 Code Coverage (1)

JCoverage can be used to assess the achieved code coverage once a test case
has finished execution. An experiment is referred to in [CLW01] where block
coverage is used with the pre-process technique. However, the authors have

Figure 6.8

The cumulative frequency of test executions per line of code

Chapter 6 A Software Implementation: JCoverage

 82

deferred empirical experiments with other coverage measures such as branch
coverage, thus ending up on a list of future work. The Musa-Okumoto model
does not make use of code coverage in its estimation of reliability, but an
assumption which is made, unravels new challenges as to how code coverage
is measured. The Musa-Okumoto model assumes, as do several other
reliability models, that faults are removed instantly – that is, immediately
following detection. In the words of [MIO87]: ”In actuality, there is always
some delay, but the effects of the delay are not serious and can easily be
accounted for”.

It is virtually impossible to completely avoid minor modifications to the
program code during testing. This poses a number of challenges in JCoverage,
with the main issue being the way that JCoverage registers code coverage.
Each line is instrumented prior to test execution, and each time that a line is
exercised its line number is reported by the tool. A problem occurs when
wanting to reuse this information after the code has been modified. Figure 6.8
on the preceding page helps to illustrate the problem at hand, displaying the
number of times each line of code in a class has been executed. Let us assume
that a fault is detected in the current class, hence requiring added code or
modifications of the existing code before testing and JCoverage operation may
resume. Now the previously registered data will most likely end up with
incorrect coverage values.

Figure 6.9

Consequences of adding or modifying code

Chapter 6 A Software Implementation: JCoverage

 83

Figure 6.9 above is similar to figure 6.8, except for the introduction of a new
method getName() on lines 25 through 27. Since this method replaces pre-
existing code it will not be visible to JCoverage that the new method has never
been executed. The code previously occupying those same lines, the method
setPhone() in this particular instance, may have been exercised during
earlier phases of testing, thus causing the lines to be marked as executed.
Deleting all information of which lines have been tested would require a re-
run of all previous test cases – an impractical outcome both with respect to
time and resources. A possible solution could be to modify JCoverage so that
it would be capable of dealing with changes in the code under test. We believe
this can be done by registering changes in the code, such as the displacement
of line numbers, the code being removed and the code being added. These
pieces of information may then be used to update previously registered data so
as to mirror the actual code. Alternatively, JCoverage would have to be
modified to accommodate a different way of identifying which lines have
been executed.

6.4.1.2 Failures (2)

In order to decide whether a test case should be deemed effective or not, the
pre-process technique utilizes knowledge of whether that particular test case
detected one or more failures. Additionally, knowledge of the total number of
failures is used by the Musa-Okumoto model. It is therefore an important need
for collecting failure information. An interface must be developed accordingly
for reporting – for each test case – whether a failure was discovered, either
based on manual feeding of data from a tester or an interface towards a
software tool for automatically performing functional testing. As was pointed
out earlier in this chapter, the Musa-Okumoto model assumes that the faults
triggering the observable failures are removed at the time of discovery.

6.4.1.3 Test Time (3)

The time spent on the execution of a test case is measured in execution time –
the amount of time for which the software uses the central processing unit. In
order for JCoverage to measure execution time we suggest further code
instrumentations. Code executing without interruptions can be instrumented in
such a way that time is measured at execution start and termination
respectively. The elapsed time can then be easily computed. By employing
this approach all classes must be analyzed to find blocks of code that execute
uninterrupted. There is no guarantee that the code will run without
interruptions, since applications typically share CPU usage with the system
being tested. An ideal scenario would be to execute tests with as few external
processes as possible competing for processor time. Assuming that CPU usage
of other applications is modest and constant would solve this problem.

Chapter 6 A Software Implementation: JCoverage

 84

6.4.1.4 Pre-process Technique (4)

All the data labeled (1), (2) and (3) in figure 6.7 must be managed so that their
respective values are observable after execution of each test case. A more
detailed description was given in chapter 5 as to how the pre-process
technique reduces the measured execution time of a test case if it failed to
increase code coverage or the number of failures detected. If a test case is
considered effective its execution time will remain unchanged. The initial test
case will always be considered effective for obvious reasons and hence the
actual execution time will be relayed from the pre-process (4) to the Musa-
Okumoto model (7). The pre-process technique will add up the computed
execution time of all test cases to yield a total time consumption, which will
then be used by the Musa-Okumoto reliability model. The latter model also
needs information as to the number of failures detected during testing (5).

6.4.1.5 Musa-Okumoto (7)

Before the Musa-Okumoto model can be put to use it needs to be tailored to
the software program under testing. This is done by means of two parameters
of the model referred to as initial failure intensity λ and failure decay
parameter θ. These must be estimated for the projects to be tested. [MIO87]
suggests that values be estimated by seeking those that match the observed
failure times from the first stage of testing reasonably well. It does not seem
natural to include estimation of these values in JCoverage or any other tool for
that matter, since these parameters ought to be assessed by personnel that is
capable of interpreting necessary data and making intelligent, thought-through
decisions. We believe that this is best accomplished by one or more human
capacities involved with the testing process. In [MIO87] several statistical
methods are presented for estimating parameter values.

There is one particular aspect we would like to bring up with respect to the
estimation of parameters and the use of the pre-process technique (4). When
describing the Musa-Okumoto model in the previous chapter we said
something along the lines of estimation possibly being performed with a
statistical method based on observed failure times. In other words, time is
used as a factor in estimating the model parameters, and we have now decided
to control time through the pre-process technique. The question now is what
will happen when the pre-process technique is employed. For instance, the
model-specific parameters can be estimated to fit an observed curve without
the use of the technique and the observed times are then pre-processed prior to
being fed to the Musa-Okumoto model. As a result, we assume that the
estimated failure time will no longer follow the same curve. The pre-process
technique is a general technique also proposed to be used in conjunction with
the Goel-Okumoto model. Thus, there are no indications as to how the
technique will affect the parameters of the Musa-Okumoto model. In our

Chapter 6 A Software Implementation: JCoverage

 85

opinion it seems natural that the observed data will be pre-processed through
the use of the technique to ensure equal treatment to all time measures.

In order to move from execution time to calendar time, knowledge is needed
concerning the limiting factors of testing activities, with factors represented as
a lack of competent testing personnel or shortage of programmers in charge of
fault removal and repair. Since these limiting factors will vary during the
course of the project, the relationship between execution time and calendar
time is also set to vary. Information concerning this relationship must be
obtained to be able to assess the amount of time required for achieving a given
measure of reliability. The relationship between the two notions of time can
also be found in periods when no code repair is taking place and the failure
intensity remains constant, hence keeping the aforementioned relationship
constant. This is destined to happen when, for instance, a software application
moves from testing to normal, real-life operation. In this case it is the pattern
of usage, ideally matching the operational profile of the program, that will
determine the size of the relationship. Even though a system is operational for
an entire day does not necessarily imply a correspondingly substantial use of
execution time, since a number of programs – particularly those that require
some kind of human interaction – typically remain idle for longer periods of
time. For example, using Microsoft Word for eight hours may correspond to a
mere hour of CPU processing.

6.4.1.6 Reliability Estimates (8)

The Musa-Okumoto model provides a means of computing useful quantities.
Determining a threshold for desired reliability renders possible an estimated
measure of the number of failures that need to be detected in order to achieve
the quality goal set forth. It is also possible to estimate the amount of time
required to reach the same quality goal. Given that the time consumption is
measured in terms of execution time, an overview is needed as to the overall
resource consumption during testing in order to translate this measure into a
number of working days. From this measure it is possible to derive an
estimated date for when sufficient testing has been performed to yield the
desired level of reliability. Yet another measure – Mean Time To Failure –
may also be calculated through use of the Musa-Okumoto model. However,
because the various measures result from employing a model that uses
estimated parameters in its operation, there will always be uncertainty
involved in the values produced. In other words, the uncertainty connected to
parameter estimation transmits to the resulting values, with the uncertainty
expressed in terms of confidence intervals.

6.4.2 Solving the Calendar Time Issue

In describing the calendar time component [MIO87] emphasizes three factors
that hamper testing in some way and hence form the basis for the relationship

Chapter 6 A Software Implementation: JCoverage

 86

between execution time and calendar time, namely failure identification
personnel, failure correction personnel and computer time. As was explained
in chapter 5, the need for the limited resources mentioned above is likely to
vary from project to project. Thus, there is no fixed or constant relationship
between the two notions of time during the different phases of testing. The use
of automated testing utilities may contribute to reducing the impact of
resource limitations of the first type – the number of failure identification
personnel; especially if the tested system is a pre-existing application with
ready-to-run tests, thus not requiring new test cases to be generated. We
underline the use of the word may in the previous sentence since it might be
tempting to cut down on personnel to save money, which would bring us back
to where we were prior to introducing test automation.

In our opinion it does not appear to be imperative to implement the calendar
time component unless there is a specific desire to compute calendar time for
quantities during fault repair and testing. A simple overview of the current
testing situation or status can be obtained even without employing a specific
unit of time. This refers to the measure which indicates the required number of
detected failures in order to attain a desired reliability target. Instead of
estimating a ratio between execution time and calendar time at any time
during testing, a constant ratio can be computed based on the expected profile
of usage for the software during normal operation. This would suffice in
converting measures such as MTTF from execution time to calendar time for
the programs to be used. This proposed solution will not be capable of
estimating the time consumption, measured in calendar time, required for
testing purposes to achieve the desired reliability. It will, on the other hand, be
able to verify the reliability of the end system, once fully developed and
adequately tested.

Employing JCoverage in the realization of the proposed solution looks
challenging, at best. As was pointed out earlier in this chapter there were
several aspects of this tool that did not live up to our expectations. The line
coverage measure was satisfactory and could possibly be used in a prospective
realization. However, there are still problems related to re-use of test data
once faults have been removed from the program under test. Had it not been
for the fact that execution time needs to be measured for the tested
application, then no major modifications to JCoverage would seem necessary.
In this imaginary scenario the XML reports generated by JCoverage itself
could have been input to the estimation module.

Chapter 6 A Software Implementation: JCoverage

 87

6.5 An Alternative Instrumentation Technique and
Code Coverage Tool

ince the current version of JCoverage appears to be infeasible for our
implementation approach, an alternative instrumentation technique as
well as a competing coverage tool were briefly surveyed. The purpose

of this section is to indicate the presence of more than one fixed way of
dealing with code instrumentation, and also to show that automated code
coverage utilities are no longer as scarce as once was the case.

6.5.1 A General Technique for Source Code Instrumentation

A possible alternative to the instrumentation technique used in JCoverage is
presented by Ira. D Baxter in his article titled ”Branch Coverage for Arbitrary
Languages Made Easy” [Bax98]. The article explains how programs that add
instrumentation to the source code can easily be created for the purpose of
code coverage measurement. The uniqueness of the presented technique is its
generality, implying applicability to a wide range of programming languages
for which code coverage measurement is generally not facilitated. Hence,
solutions can be made that do not restrict support to popular languages only,
such as Java, but rather offer support to an array of languages. The
fundamental idea behind the approach described is to identify basic blocks,
meaning parts of code which execute coherently as atomic units, and
subsequently add instrumentation to each of these blocks. The coverage
measure to be computed is branch coverage, although the notion of branch
coverage stated in [Bax98] would come closer to qualify as basic block
coverage according to our definition. The main challenge ahead is to identify
basic blocks across different programming languages. In this case, a basic
block can be explained as a piece or collection of code which is executed
without any transfer of control to another part of the code being made.

The solution portrayed in [Bax98] makes use of so-called strength
transformation systems that accept source-to-source rewrite rules – rules
which can be defined for the transformation from source code to instrumented
source code. Parsers that accompany a number of compiler toolkits will
typically restrict operation to a given class of programming languages. This is
the main reason why [Bax98] wants to employ industrial strength
transformation systems. In order to use a particular programming language, its
syntax must be defined. Since the industrial strength transformation systems
are highly configurable it is a rather straightforward matter to define the
syntax of the languages. Rewrite rules may, for instance, specify patterns to be
replaced by a different pattern if a certain condition evaluates to true.
According to [Bax98] it is easy to establish rewrite rules for procedural
languages since these indicate all points of control transfer with the help of
explicit syntax.

S

Chapter 6 A Software Implementation: JCoverage

 88

We believe that this
technique might be used to
track modifications to the
source code and hence store
code coverage data for the
parts of the code left
unchanged. Before the source
code is transformed by means
of rewrite rules, these rules
are parsed and modified to
adapt to the language to be
transformed. Figure 6.10
depicted to the right illus-
trates the sequence of
changes. In addition to the
instrumentation itself, routines
are required that initialize the
data structure and store code coverage information upon completion of
testing. Functionality for presenting code coverage data obtained from the
performed tests has to be in place as well. One alternative could be to add the
instrumentation to the code ourselves, thus gaining full control of the
instrumentation and being able to ensure that identification of the different
code elements remain unchanged even when modifications are made to the
code. This strategy, although time- and resource-consuming compared to
other solutions, has the prospect of yielding better results. A number of things
would have to be taken explicit care of, such as the assignment of unique
identifiers to points of instrumentation.

6.5.2 A Brief Presentation of Clover

Several alternatives to JCoverage are available on the market, some of which
are commercial products. We opted for an on-the-surface look at a tool
belonging to the latter category. Clover is developed by Cenqua Pty Ltd. and
is a Java code coverage analysis tool which offers one or two coverage
measures not supported by JCoverage. The developer has also made available
a version supporting code coverage measurement for applications developed
through Microsoft .NET. The following code coverage measures are
supported in Clover:

 Method coverage
 Branch coverage
 Statement coverage

These three are measured for projects, packages, files and classes and are
subsequently presented in reports formatted as either HTML, XML, PDF or

Definition of language syntax

Rewrite rules

Source code

Instrumented source code

Figure 6.10
Sequence of modifications to code

Chapter 6 A Software Implementation: JCoverage

 89

plain text. Clover ”accurately measures per statement coverage, rather than
per line coverage” [Cen05]. Historical reports – mentioned as a desirable
feature of automated code coverage tools in chapter 2.5.2 – can be generated
to illustrate the development of each coverage measure, as well as other
project metrics, during the course of the project. Another useful facet of
Clover is the existence of several plug-ins with support for integrated
development environments (IDE) used in Java development. These allow
developers to keep an eye on coverage measures of different parts of the code
without leaving the IDE.

Figure 6.11

HTML report generated by Clover

Clover is developed in Java and measures code coverage for applications
written in Java, as was the case with JCoverage. The basic operation of the
two tools is similar, following the steps of code instrumentation, test
execution and report generation. There are, however, a few noteworthy
differences. Most significantly, JCoverage, being an open-source product, can
be attained by means of a GNU Public License, whereas Clover is a fully
commercial product. Further, JCoverage does not instrument lines that call
log4j – a logger which can optionally be employed for low-level debugging.
This is said to be an advantage, since the instrumentation of the
aforementioned lines would run the risk of impacting code coverage metrics
by making calls to the logger. Finally, the two tools differ somewhat in how

Chapter 6 A Software Implementation: JCoverage

 90

they define branch coverage, with Clover’s implementation of the measure
corresponding significantly better with our definition. The HTML version of
the generated report, shown in figure 6.11 on the preceding page, informs that
the if statement on line 328 has been executed once, at which time it
evaluated to false. The graphical interface for navigation and presenting
information is comparable to the one found in the API specifications of Java
or in javadoc-generated documentation of individual projects.

Chapter 7 Conclusion

 91

”Great is the art of beginning, but
greater is the art of ending.”

Lazurus Long

CHAPTER 7:

Conclusion
CHAPTER 7: Conclusion

Having embarked on a journey that has seen us through intermediate
destinations such as code coverage measures, software reliability models and
estimation, debates revolving the relationship between code coverage and
reliability, not to mention the implementation of code coverage basics into
software utilities, it is now time to bring the expedition to a close, ponder on
the experiences gained and where to look next.

7.1 Summary

ith more and more actors entering the software market,
competition is getting fiercer by the day. As additional products
become available customers are left with the daunting task of

selecting the right one, thus indirectly putting pressure on software businesses
to develop first-class products. Hence it is far from surprising that modern-day
software development methodologies, including the likes of Rational Unified
Process and eXtreme Programming, pay significant attention to the role of
testing in achieving reliable, high-quality applications. There is, however,
always room for improvement. The hunt for means of increasing software
reliability is still on, with code coverage playing a non-negligable role.

The rationale for employing code coverage in testing efforts is apparent.
Although there is no guarantee that all existing faults will be uncovered in
spite of complete code coverage being reported, faults will definitely not be
found in parts of the code which have been left unexercised. Code coverage
can improve test set quality, reveal flaws in test implementation and increase
our understanding of existing tests. The presence of different coverage
measures provides developers and testers with an array of options as to what
set of measures to employ for various projects. Although the latter may appear
to be a blessing, it is, however, just as much a challenge in disguise. The lack
of a standard culminates into an issue of measure definitions. As a result, each
publication on the topic must first elaborate on an exhaustive definition of
each coverage measure used at a later stage, before moving on to the core
content. During the course of this project we have encountered instances
where a definition of a particular coverage measure has matched that of a
different measure, coming from an alternative source.

W

Chapter 7 Conclusion

 92

Automation of reliability models and their estimation is far from straight-
forward. The main challenge rests in the context-dependent parameters which
require substantial human experience, comprehension and interpretation. The
uncertainty involved in these parameters will evidently impact the accuracy of
resulting reliability estimates. Thus, great caution must be taken in the
employment of such estimates, preferably by considering them as merely
estimates and not some fixed, definite quantities of product quality. The
difficulties in estimating software reliability makes it tempting to assume that
code coverage may not only contribute to increased reliability, but also be
utilized as a predictor of reliability.

The proposed relationship between code coverage and reliability has in many
ways been the core theme of this assignment. Having examined a two-digit
number of articles on the aforementioned relationship, a definite and agreed-
upon conclusion with respect to the matter seems far away. The vast majority
of experiments referred to in relevant literature reports positive findings, more
or less, as to the existence of a claimed relationship. However, the big
question is if these results are overthrown by theoretical and critical remarks
made by others, having reservations about the internal validity of the
experiments performed. After all, test intensity increases as code coverage
increases, thus making it highly questionable whether code coverage
contributions amount to anything beyond a negligable increase in reliability,
once test intensity is taken into account. Also, the absence of an operational
profile in a code coverage-driven test strategy is deemed to result in even,
unweighted testing, hence possibly dedicating less attention to high-usage
functionality, relative to an operational profile, at the expense of functionality
less frequently employed. As a matter of fact, the level of testing required for
low-usage areas of a software application strikes us a matter of great
dissension among authors.

Finally, the report was rounded off by examining the internals of a tool for
automated code coverage analysis. The previously noted problem of non-
uniform definitions of coverage measures manifested itself in the
implementation of JCoverage. In addition to suggesting imminent
improvements we also discovered obstacles on our way to proposing an
approach for integrating reliability estimation into JCoverage. We realize that
questions can be raised as to the implementability of one or more propositions
made, but pinpoint the fact that we have mainly focused on unearthing
opportunities rather than deepen into existing constraints. On a final note, we
believe that the emergence of code coverage tools, commercial as well as
open-source, suggests that code coverage is destined to remain on the horizon
for some time to come.

Chapter 7 Conclusion

 93

7.2 Further Work

uring the course of this project we have stumbled upon ideas and
aspects related to both code coverage and reliability that we have had
to neglect because of lacking relevance or shortage of time. One of

these ideas would be to go through with the implementation of a reliability
estimation module, possibly integrated into an appropriate tool for tracking
code coverage. Upon realization of such an estimation tool or module an
experiment could be performed to determine or evaluate its usability. The
resulting observations may then be used to assess improvements or decide
whether such an implementation was feasible in the first place.

The reliability of software applications is affected by factors of the system
development process, with the level or quality of performed testing being one
such factor. In order to improve reliability estimation, propositions are made
to quantify these factors and subsequently use them in the estimation process.
However, through the work of this project we have come to learn that 100%
code coverage by no means implies a code free of faults. We have also seen
how mutation coverage can be employed to demonstrate the incapability of
tests in discovering all existing faults. Thus, by combining these observations
it might prove interesting to uncover how an amalgamation of mutation
coverage and reliability models would change reliability estimates. A measure
of mutation coverage should then be combined with the computed reliability
estimate, so that the varying failure-detecting abilities of tests used during
estimation can be taken into account.

In the early stages of this report we underlined the danger in designing tests
with the explicit purpose of achieving complete coverage as soon as possible.
We also commented on the fact that tests created within agile development
methodologies such as eXtreme Programming, stand the risk of reaching
100% coverage. With this in mind, it would be interesting to acquire more
knowledge as to the relationship between reliability and development
methodology when reliability is estimated by means of code coverage. We
also touched upon the position of code coverage after the introduction of
agile, test-driven methodologies. This issue may deserve more attention, but
will most likely require tedious research.

D

Appendix A References & Bibliography

 94

APPENDIX A:

 References & Bibliography

[Apa05] Apache Maven Project

– What is Maven?
 http://maven.apache.org/about/whatismaven.html

[Bax98] Ira D. Baxter

– Branch Coverage for Arbitrary Languages Made Easy
http://www.semdesigns.com/Company/
Publications/TestCoverage.pdf

[Bei90] Boris Beizer
– Software Testing Techniques, second edition
ISBN 0-442-20672-0

[BP00] Lionel C. Briand & Dietmar Pfahl

– Using Simulation for Assessing the Real Impact of Test-
Coverage on Defect-Coverage

http://www.sce.carleton.ca/faculty/briand/pubs/isern-99-05.pdf

[Cen05] Cenqua Pty Ltd.

– Cenqua Clover Features
http://www.cenqua.com/clover/featurelist.html

[Cor04] Steve Cornett, Bullseye Testing Technology

– Code Coverage Analysis
http://www.bullseye.com/coverage.html

[CLW96] Mei-Hwa Chen, Michael R. Lyu & Eric Wong

– An Empirical Study of the Correlation between Code
Coverage and Reliability Estimation

 IEEE 0-8186-7364-8/96

[CLW01] Mei-Hwa Chen, Michael R. Lyu & Eric Wong

– Effect of Code Coverage on Software Reliability
Measurement

http://www.cse.cuhk.edu.hk/~lyu/paper_pdf/paper20.pdf

[Dam04] Craig E. Damon

– Software Engineering Course Notes
http://www.cs.uvm.edu/%7Ecdamon/cs205/notes.pdf

Appendix A References & Bibliography

 95

[FGMP95] Fabio Del Frate, Praerit Garg, Aditya Mathur &
Alberto Pasquini
– On the Correlation between Code Coverage and Software

Reliability
http://ieeexplore.ieee.org/iel3/3555/10649/
00497650.pdf?arnumber=497650

[Gar94] Praerit Garg, Purdue University

– Investigating Coverage-Reliability Relationship and
Sensitivity of Reliability to Errors in the Operational
Profile

http://portal.acm.org/citation.cfm?id=782204

[Ham94] Dick Hamlet, Portland State University

– Connecting Test Coverage to Software Dependability
http://ieeexplore.ieee.org/iel4/1008/7986/00341368.pdf?arnum
ber=341368

[JM92] Raymond Jacoby & Kaori Masuzawa

– Test Coverage Dependent Software Reliability Estimation
by the HGD Model

http://ieeexplore.ieee.org/iel2/434/7090/
00285845.pdf?arnumber=285845

[JM94] Pankaj Jalote & Y. R. Muralidhara

– A Coverage Based Model for Software Reliability
Estimation

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=11601

[Kos04] Lasse Koskela, Accenture Technology Solutions
– Introduction to Code Coverage
http://www.javaranch.com/newsletter/200401/
IntroToCodeCoverage.html

[KSMG96] Richard M. Karcich, Robert Skibbe, Aditya P. Mathur &

Praerit Garg
– On Software Reliability and Code Coverage
http://ieeexplore.ieee.org/iel3/3554/
10648/00499668.pdf?arnumber=499668

[LHL94] Michael R. Lyu, J. R. Horgan & Saul London,

Bell Communications Research
– A Coverage Analysis Tool for the Effectiveness of Software

Testing
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=13562

Appendix A References & Bibliography

 96

[Lyu05] Michael Rung-Tsong Lyu
– Software Reliability Engineering
http://appsrv.cse.cuhk.edu.hk/~csc6001/SRE2005.ppt

[Mal+94] Yashwant Malaiya, Naixin Li & Jim Bieman, Colorado State

University – Rick Karcich & Bob Skibbe, StorageTek
– The Relationship Between Test Coverage and Reliability
Reliability Engineering, Nov. 1994, pp. 186-195.

[Mar99] Brian Marick, Testing Foundations

– How to Misuse Code Coverage
http://www.testing.com/writings/coverage.pdf

[MIO87] John D. Musa, Anthony Iannino & Kazuhira Okumoto
– Software Reliability: Measurement, Prediction, Application

 ISBN 0-07-044093-X

[MLBK02] Yashwant Malaiya, Michael Naixin Li, James Bieman &

Rick Karcich
– Software Reliability Growth With Test Coverage
http://www.cs.colostate.edu/~bieman/Pubs/
Malaiya-etalPublished02.pdf

[MR91] Marvin Rausand

– Risikoanalyse – Veiledning til NS5814
 ISBN 8251909708

[MR96] Aditya P. Mathur & Vernon J. Rego

– White-box Models for the Estimation of Software Reliability
http://www.cs.purdue.edu/AnnualReports/95/
AR95Book-108.html

[Mus04] John D. Musa

– Software Reliability Engineering:
More Reliable Software Faster And Cheaper

ISBN 1418493872

[NJH03] Hung Q. Nguyen, Bob Johnson, Michael Hackett

– Testing Applications on the Web, Second Edition
 ISBN 0-471-20100-6

[Pai02] Ganesh J. Pai, University of Virginia

– A Survey of Software Reliability Models
www.ece.virginia.edu/~gjp5j/professional/ coursework/gjp-
cs651-SRMsurvey.pdf

Appendix A References & Bibliography

 97

[TS04] The Testing Standards Working Party
– Reliability Guidelines
http://www.testingstandards.co.uk/reliability_guidelines.htm

[Wik05] Wikipedia

– The Free Encyclopedia
 http://en.wikipedia.org/wiki/Main_Page

[Woh+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlsson,

Björn Regnell & Anders Wesslén, Lund University Sweden
– Experimentation in Software Engineering: An Introduction

 ISBN 0-7923-8682-5

Appendix B Glossary

 98

APPENDIX B:

 Glossary

 Application Programming Interface
Definitions of inter-program communication, typically used for
abstractions between applications on higher and lower level.

 Black box testing

Also known as functional testing. Black box testing involves testing the
system from a user’s perspective, exposing it to different types of input
and checking whether or not the resulting output is in accordance with
the specification [Bei90].

 Enumerable

Collective term denoting different quantifiable units of program code
related to code coverage measures, including statements, methods,
blocks, etcetera.

 Error
 Incorrect behavior resulting from a fault [Bei90].

 Error handling
 See exception handling.

 Exception handling
Also known as error handling. Exception handling consists of code
that is called upon in the case of system errors requiring treatment.
The code generally involves operations for restoring system services
or storing data and notifying users prior to system shutdown.

 External validity

Validity type that deals with the extent to which results from an
empirical experiment can be generalized across contexts.

 Failure

Incorrect behavior of a component [Bei90]. The lack of ability of a
component, equipment, subsystem or system to perform its intended
function as designed [Wik05].

Appendix B Glossary

 99

 Fault

Incorrect program or data object – a bug [Bei90]. An abnormal
condition or defect at the component, equipment or subsystem level,
which may lead to a failure.

 GNU Public License

License type that provides everyone with the right to use, copy, modify
and re-distribute the product as long as the rights specified in the
license are passed on. Software which is distributed with this license
associated with it, is referred to as open-source.

 HTML
 Hypertext Markup Language. Web page format for documents.

 Industrial Strength Transformation Systems
Tools employed for large scale reengineering, software quality
analysis and enhancement reverse engineering [Bax98].

 Integrated Development Environment

Application for software development where tools such as source code
editor, compiler, interpreter, automation tool and version control
system are combined and accessible to developers by means of a
graphical user interface.

 Internal validity

Validity type that deals with the extent to which observations from
empirical experiments can actually be said to be caused by the factor
accounted for – that there is a causal relationship between treatment
and outcome.

 Java Virtual Machine - JVM

Software program available to several platforms. JVM emulates a
computer where byte code can be executed and given access to
computer resources, thus facilitating execution of Java applications on
any platform running a JVM implementation.

 log4j

Tool for logging information to file and used as low-tech method for
debugging.

 Maven

A software project management and comprehension tool. Based on the
concept of a project object model, Maven can manage a project's
build, reporting and documentation from a central piece of
information [Apa05].

Appendix B Glossary

 100

 Object code

Intermediate representation of code generated by a compiler after it
processes a source code file [Wik05].

 Object-oriented testing

Testing techniques geared towards applications developed with object-
oriented development methodologies, taking into account distinctive
characteristics of object-orientation such as polymorphism,
encapsulation and inheritance.

 Open-source

Software whose source code is made available, hence giving users the
right and opportunity to create tailored versions of the program.

 Package

Intended as a collection of closely related Java classes that solve a
certain type of problems or deal with a specific, coherent set of
activities.

 Parser

Software program which analyzes grammatical expressions of
program input, based on a formal grammar [Wik05].

 PDF
Abbreviation for Portable Document Format – a file format developed
by Adobe for documents independent of software, hardware and
operating system. The open-standard format combines text, graphics
and images.

 Polymorphism
A software property enabling the existence of several implementations
of methods in object-oriented programming languages. This is the case
when classes inherit from the same class and implement new
functionality in the methods of this class.

 Quality attribute

A measurable part of the system that is used to quantify its quality.

 Race coverage
A coverage measure that reports whether two or more threads execute
the same piece of code simultaneously. Race coverage can be
employed to detect failures in synchronizing access to resources
[Cor04].

Appendix B Glossary

 101

 Random testing

Testing technique for random generation of test cases, implying that
new tests are selected independently of previously executed tests.

 Robustness

The resilience of the system, especially when under stress or when
confronted with invalid input [Wik05].

 Source-to-source rewrite rule

Description of how a text pattern will be transformed into a different
text pattern upon the satisfaction of a particular condition.

 Structural testing

 See white box testing.

 Test-driven development methodologies
Methodologies for developing software where test cases are created
prior to the code attempting to satisfy it, with the purpose of
controlling a given functional requirement.

 Test set
 A set of input data and expected output data used to test a system.

 Trustworthiness
Software property denoting dependable, stable and fault-tolerant
operation while yielding predictable results, typically in one or more
functions deemed critical.

 White box testing

Performing tests on functions that are not directly available for the
users of the final product.

 Wrapper class

A software class which wraps an inner class and forms the interface of
the class it wraps. All other classes must now communicate via the
wrapper class.

 XML

Extensible Markup Language. A W3C recommendation for creating
special-purpose markup languages [Wik05].

Appendix C Index

 102

APPENDIX C:

 Index

actual system usage, 41, 42, 58,

61
actual usage, 21
all-uses coverage, 11
AND operator, 9
Ant, 20, 67, 68, 69, 73
Apache Ant, 67
API, 90
application domain, 52, 64, 80
ATAC, 59
automated code coverage

utilities, 87
automated coverage tool, 59
automated testing, 49, 86
automated testing utilities, 86
automated tools, 4
average failure rate, 46
basic block, 7, 8, 77, 87
basic block coverage, 7, 8, 77,

87
Basic instrumentation, 19
Basic Musa, IV, 38, 39
basic path coverage, 8
Bayesian software reliability

growth model, 38
blank lines, 70
block coverage, 8, 14, 77, 81
block of code, 8, 75, 76, 79
branch coverage, 8, 14, 15, 16,

53, 71, 72, 73, 74, 75, 76, 77, 78,
79, 82, 87, 90

branches, 9, 10, 11, 13
build tools, 68
Byte code, 68
byte code instrumentation, 69
calendar time, 28, 30, 49, 60, 63,

64, 85, 86
calendar time component, 60,

63, 85, 86
catastrophic failure, 40

central processing unit, 29, 83
Clover, V, 88, 89, 94
code complexity, 52
Code coverage, 1, 2, 16, 18, 52,

73, 91
code coverage analysis, I, 2, 3,

4, 5, 6, 15, 16, 17, 18, 20, 21, 40,
67, 88, 92

code coverage analysis tool, 3,
88

code coverage measures, 2, 6,
7, 23, 50, 66, 67, 78, 79, 88, 91

compiler toolkits, 87
component failures, 27
components, 3, 25, 27, 28, 48, 49,

51, 60
compression ratio, 65, 66
computational-use, 11
computer systems, I, 5, 24
computer time, 63, 64, 86
Condition coverage, 9, 10, 13
constructional flaws, 27
control flow, 9, 11
control structures, 8, 13
coverage data, 56, 60, 68, 74, 80,

88
coverage history, 46, 51
coverage measure, I, 2, 3, 5, 7,

10, 11, 12, 13, 16, 17, 20, 48, 52,
53, 55, 59, 67, 69, 70, 72, 74, 77,
78, 79, 82, 87, 88, 89, 91, 92

coverage measures, I, 2, 3, 5, 7,
11, 12, 13, 16, 17, 20, 48, 52, 53,
55, 59, 69, 70, 72, 74, 82, 88, 89,
91, 92

coverage reduction, 54
coverage report, 14, 20, 72, 73,

74, 76
coverage tool, 16, 19, 20, 87, 89,

92

Appendix C Index

 103

CPU, 29, 30, 63, 64, 83, 85
cumulative code coverage, 65,

66
data collection, I, 42, 46, 47, 51
data flow coverage, 11
data types, 14
data-centric systems, 15
debug data, 49
debugging process, 63
decision coverage, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 77
decision points, 1, 15
defect coverage, 3, 7, 46, 48, 51,

55, 56, 57
defect distribution, 57
defect types, 57
defects, 3, 7, 17, 49, 55
def-use pair, 11
detectability, 50, 51
detectability profile, 50, 51
development environment, 22,

53, 60, 89
development methodologies, 4,

6, 20, 23, 91, 93
development process, 15, 22,

35, 36, 37, 51, 68, 93
development techniques, 47
domain, 2, 24, 41, 44, 52, 54
ease of test, 49, 50
Eclipse, 67, 68
effective testing efforts, 45
empirical experiments, 29, 55, 82
empirical investigation, 1, 3, 46,

54, 55
empirical investigations, 1, 3, 55
encapsulation, 22
end product, 1, 2, 7, 18, 22, 41,

55
enumerable, 50
environments, 31, 57
equivalence partitioning, 34
error types, 52
error-handling, 49
estimating parameter values, 84
exception handlers, 8
execution control, 11

execution environment, 33
execution time, 28, 30, 37, 38, 39,

45, 49, 60, 61, 62, 63, 64, 65, 66,
83, 84, 85, 86

experiments, 16, 29, 47, 51, 52,
53, 55, 56, 58, 59, 92

external validity, 53
failure behavior, 32, 36, 60
failure correction personnel, 63,

86
failure data, 28, 36, 38, 53
failure detection probability, 58
failure identification personnel,

86
failure information, 83
failure intensity, 36, 42, 58, 61,

62, 64, 85
failure intensity decay

parameter, 61, 62, 64
failure intensity function, 61
failure intervals, 36
failure times, 35, 63, 84
failures experienced, 30, 61
fault density, 52
fault detectability, 45
fault detection, 18, 35
fault distribution, 52, 59
fault masking, 54
fault repair, 86
fault seeding, 13, 54, 57
fault tree, 25
flow graph, 46, 51
functional testing, 15, 43, 44, 83,

98
GNU Public License, 67, 89
Goel and Okumoto, IV, 38
Goel-Okumoto, 1, 38, 39, 45, 53,

65, 84
hardware, 27, 35
hardware component, 27
HGD model, 49
Historical reports, 20, 89
HTML, 72, 73, 88, 89, 90, 98
human interaction, 85
hypothesis, 12, 47, 48, 52, 53, 57,

59

Appendix C Index

 104

IDE, 67, 89
idle time, 29, 30
IEEE, II, 40, 94
if clause, 71, 76, 77, 79
if construct, 71, 75, 76, 77
if expression, 9, 77, 79
if instructions, 71
if statement, 8, 9, 10, 76, 77, 78,

79, 90
industrial strength

transformation systems, 87
ineffective test cases, 45
initial failure intensity, 61, 62, 64,

84
input parameter, 29, 30, 71
input parameters, 29
input space, 33, 34
input space coverage, 33, 35
instrumentation, 19, 68, 69, 70,

71, 75, 79, 87, 88, 89
instrumentation technique, 87
Integrated Development

Environment, 67
internal validity, 55, 92
interrupt handlers, 8
invalid states, 33
Java Virtual Machine, 19, 68, 70
JCoverage, IV, V, 5, 19, 38, 60,

67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84,
86, 87, 88, 89, 92

Jelinski and Moranda, IV, 38
jump coverage, 11
JVM, 19, 69, 70
limited time, 17
limiting factor, 64, 85
limiting factors, 85
line coverage, 7, 72, 73, 74, 75,

76, 78, 79, 86, 89
line of code, 70, 71, 78, 79, 81, 82
line of source code, 17, 70, 71
linear code sequence, 11
linear progression, 50
Littlewood-Verrall, IV, 38
log4j, 89

logarithmic Poisson execution
model, 60

logical expressions, 17
logical operators, 8, 57
loops, 8, 10
low-usage functionality, 40, 43,

49, 50, 58, 59
low-usage modules, 49
Maven, 20, 94
maximum likelihood estimation,

63
method, 8, 10, 11, 12, 50, 63, 71,

75, 79, 83, 84
Method coverage, 88
module coverage, 53
modules, 3, 12, 17, 28, 37, 46, 47,

59
MTCTF, 53
MTTF, 58, 62, 86
multiple condition coverage, 9,

10, 15, 78
multithreaded applications, 13
Musa-Okumoto, IV, V, 1, 5, 38,

39, 42, 45, 51, 53, 60, 61, 62, 63,
65, 66, 67, 80, 82, 83, 84, 85

mutation coverage, 13, 43, 57, 93
mutation criteria, 57
node, 46, 47, 51
non-homogenous Poisson

process, 32
non-random testing, 49
notion of time, 29, 30, 60
number of failures, 28, 30, 31,

32, 35, 36, 37, 38, 39, 53, 54, 61,
62, 63, 65, 66, 83, 84, 85

number of faults, 33, 38, 44, 49,
50, 51, 59

object code, 7, 13
observed data, 63, 85
off-by-one errors, 12
open-source, I, 60, 67, 89, 92
operating systems, 68
operational profile, 17, 21, 33, 34,

35, 37, 38, 40, 41, 42, 43, 44, 46,
48, 50, 51, 52, 53, 54, 58, 59, 61,
85, 92

Appendix C Index

 105

OR operator, 9
overestimate, 3, 43
overhead factors, 64
packages, 72, 73, 88
parameter estimation, 62, 85
parameters, 36, 38, 47, 52, 60,

62, 64, 65, 66, 79, 84, 85, 92
path, 4, 6, 10, 11, 15, 46
path coverage, 10, 11, 15
path reliability, 46
path testing, 6, 10
PDF, 88
Poisson distributions, 32
polymorphism, 22, 23
predicate coverage, 15
predicate-use, 11
Prediction, 24, 36, 96
pre-process, 1, 5, 20, 44, 45, 66,

67, 80, 81, 83, 84
pre-processing, 1, 20, 67, 80
pre-processing technique, 67, 80
prescribed work periods, 64
probability distribution, 31, 35,

36, 39, 61
procedural languages, 87
production phase, 58
profile precision, 42
programming languages, 16, 23,

87
programming-centric, 21
quality assurance, 2, 27
quality attributes, 3
quality measure, 6
quality of fault repairs, 61
quality of repair, 35
race coverage, 13
random processes, 31, 35
random testing, 47, 58
random tests, 57
random variables, 31
redundant components, 25
redundant test cases, 6
reliability, I, II, 1, 2, 3, 4, 5, 21, 24,

25, 27, 28, 29, 30, 31, 33, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 57, 58, 60, 61, 62, 64, 65, 66,
67, 80, 81, 82, 84, 85, 86, 91, 92,
93, 97

reliability estimates, 1, 2, 27, 29,
35, 36, 37, 42, 43, 44, 47, 51, 53,
80, 92, 93

reliability estimation, I, II, 1, 3, 4,
5, 21, 28, 45, 48, 50, 53, 60, 64,
66, 80, 81, 92, 93

reliability goal, 62
reliability growth models, 3, 29,

30, 40, 43, 44, 45
reliability models, 1, 4, 29, 35, 36,

37, 38, 39, 41, 42, 43, 44, 45, 47,
48, 52, 53, 60, 61, 62, 65, 82, 92,
93

requirements specification, 15
resource consumption, 37, 63,

64, 85
resource limitations, 33, 86
resource utilization, 64
robustness, 33
saturation effect, 3, 40, 43, 44
Shooman, IV, 38
short-circuited operators, 9
short-circuits, 79
smoothing parameters, 65
software developers, 16, 27, 64
software modules, 27
Software reliability, 39
software reliability growth

models, 24, 28
software reliability models, 5, 28,

35, 91
software tools, I, 2, 6
software vendors, I, 1
sound assumptions, 36
source code, 6, 7, 11, 13, 16, 18,

19, 20, 29, 35, 40, 54, 57, 58, 67,
69, 70, 71, 73, 79, 87, 88

source-to-source rewrite rules,
87

statement coverage, 7, 8, 9, 16,
48, 78, 89

statistical precision, 59
structural testing, 6, 15, 43

Appendix C Index

 106

sub-expressions, 9, 10, 13
subsume, 2, 14, 15
subsumption hierarchy, 14
sufficient line coverage, 78
sufficient testing, 18, 21, 47, 85
switch statements, 8
syntax, 70, 87
system failure, 25, 27, 34
system reliability, 27, 37, 46, 62
system usage, 29, 33
tasks, 63, 67
test case, 3, 6, 9, 12, 14, 16, 17,

42, 45, 49, 53, 54, 56, 57, 65, 66,
81, 83, 84, 86

test coverage, 6, 7
test data, 14, 33, 44, 54, 70, 86
test effort, 1
test intensity, 3, 46, 48, 55, 56,

57, 92
test phase, 60
test set, 7, 11, 16, 17, 18, 21, 45,

50, 57, 58, 73, 91
test team, 16, 20, 21, 63
testability, 40, 49, 50
test-driven development

methodologies, 5, 21

test-driven methodologies, 4, 22,
93

testing, 1, 2, 3, 6, 7, 10, 12, 15, 16,
17, 18, 21, 22, 23, 24, 28, 30, 31,
32, 33, 35, 36, 38, 39, 40, 41, 42,
43, 44, 45, 46, 48, 49, 50, 51, 52,
53, 55, 56, 57, 58, 59, 61, 62, 63,
64, 65, 68, 71, 75, 78, 82, 83, 84,
85, 86, 88, 91, 92, 93, 96, 98

testing activities, 17, 57, 85
testing phases, 57
testing process, 53, 84
testing strategy, 1, 3, 33
time measures, 85
time-based models, 36
transformation, 87
trustworthiness, 40, 46, 58
uncertainty, 31, 36, 62, 85, 92
uniformly distributed, 57
unit of time, 35, 86
user needs, 21
user perspective, 21
White box models, 37
wrapper classes, 20
XML, 67, 69, 72, 73, 74, 86, 88, 98

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

